1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/ConstantRange.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/GlobalVariable.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/NoFolder.h" 52 #include "llvm/IR/Operator.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/DebugInfo.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/ValueMapper.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <climits> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <map> 74 #include <set> 75 #include <utility> 76 #include <vector> 77 78 using namespace llvm; 79 using namespace PatternMatch; 80 81 #define DEBUG_TYPE "simplifycfg" 82 83 // Chosen as 2 so as to be cheap, but still to have enough power to fold 84 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 85 // To catch this, we need to fold a compare and a select, hence '2' being the 86 // minimum reasonable default. 87 static cl::opt<unsigned> PHINodeFoldingThreshold( 88 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 89 cl::desc( 90 "Control the amount of phi node folding to perform (default = 2)")); 91 92 static cl::opt<bool> DupRet( 93 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 94 cl::desc("Duplicate return instructions into unconditional branches")); 95 96 static cl::opt<bool> 97 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 98 cl::desc("Sink common instructions down to the end block")); 99 100 static cl::opt<bool> HoistCondStores( 101 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 102 cl::desc("Hoist conditional stores if an unconditional store precedes")); 103 104 static cl::opt<bool> MergeCondStores( 105 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 106 cl::desc("Hoist conditional stores even if an unconditional store does not " 107 "precede - hoist multiple conditional stores into a single " 108 "predicated store")); 109 110 static cl::opt<bool> MergeCondStoresAggressively( 111 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 112 cl::desc("When merging conditional stores, do so even if the resultant " 113 "basic blocks are unlikely to be if-converted as a result")); 114 115 static cl::opt<bool> SpeculateOneExpensiveInst( 116 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 117 cl::desc("Allow exactly one expensive instruction to be speculatively " 118 "executed")); 119 120 static cl::opt<unsigned> MaxSpeculationDepth( 121 "max-speculation-depth", cl::Hidden, cl::init(10), 122 cl::desc("Limit maximum recursion depth when calculating costs of " 123 "speculatively executed instructions")); 124 125 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 126 STATISTIC(NumLinearMaps, 127 "Number of switch instructions turned into linear mapping"); 128 STATISTIC(NumLookupTables, 129 "Number of switch instructions turned into lookup tables"); 130 STATISTIC( 131 NumLookupTablesHoles, 132 "Number of switch instructions turned into lookup tables (holes checked)"); 133 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 134 STATISTIC(NumSinkCommons, 135 "Number of common instructions sunk down to the end block"); 136 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 137 138 namespace { 139 140 // The first field contains the value that the switch produces when a certain 141 // case group is selected, and the second field is a vector containing the 142 // cases composing the case group. 143 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 144 SwitchCaseResultVectorTy; 145 // The first field contains the phi node that generates a result of the switch 146 // and the second field contains the value generated for a certain case in the 147 // switch for that PHI. 148 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 149 150 /// ValueEqualityComparisonCase - Represents a case of a switch. 151 struct ValueEqualityComparisonCase { 152 ConstantInt *Value; 153 BasicBlock *Dest; 154 155 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 156 : Value(Value), Dest(Dest) {} 157 158 bool operator<(ValueEqualityComparisonCase RHS) const { 159 // Comparing pointers is ok as we only rely on the order for uniquing. 160 return Value < RHS.Value; 161 } 162 163 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 164 }; 165 166 class SimplifyCFGOpt { 167 const TargetTransformInfo &TTI; 168 const DataLayout &DL; 169 unsigned BonusInstThreshold; 170 AssumptionCache *AC; 171 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 172 Value *isValueEqualityComparison(TerminatorInst *TI); 173 BasicBlock *GetValueEqualityComparisonCases( 174 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 175 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 176 BasicBlock *Pred, 177 IRBuilder<> &Builder); 178 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 179 IRBuilder<> &Builder); 180 181 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 182 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 183 bool SimplifySingleResume(ResumeInst *RI); 184 bool SimplifyCommonResume(ResumeInst *RI); 185 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 186 bool SimplifyUnreachable(UnreachableInst *UI); 187 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 188 bool SimplifyIndirectBr(IndirectBrInst *IBI); 189 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 190 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 191 192 public: 193 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 194 unsigned BonusInstThreshold, AssumptionCache *AC, 195 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 196 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 197 LoopHeaders(LoopHeaders) {} 198 199 bool run(BasicBlock *BB); 200 }; 201 202 } // end anonymous namespace 203 204 /// Return true if it is safe to merge these two 205 /// terminator instructions together. 206 static bool 207 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 208 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 209 if (SI1 == SI2) 210 return false; // Can't merge with self! 211 212 // It is not safe to merge these two switch instructions if they have a common 213 // successor, and if that successor has a PHI node, and if *that* PHI node has 214 // conflicting incoming values from the two switch blocks. 215 BasicBlock *SI1BB = SI1->getParent(); 216 BasicBlock *SI2BB = SI2->getParent(); 217 218 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 219 bool Fail = false; 220 for (BasicBlock *Succ : successors(SI2BB)) 221 if (SI1Succs.count(Succ)) 222 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 223 PHINode *PN = cast<PHINode>(BBI); 224 if (PN->getIncomingValueForBlock(SI1BB) != 225 PN->getIncomingValueForBlock(SI2BB)) { 226 if (FailBlocks) 227 FailBlocks->insert(Succ); 228 Fail = true; 229 } 230 } 231 232 return !Fail; 233 } 234 235 /// Return true if it is safe and profitable to merge these two terminator 236 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 237 /// store all PHI nodes in common successors. 238 static bool 239 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 240 Instruction *Cond, 241 SmallVectorImpl<PHINode *> &PhiNodes) { 242 if (SI1 == SI2) 243 return false; // Can't merge with self! 244 assert(SI1->isUnconditional() && SI2->isConditional()); 245 246 // We fold the unconditional branch if we can easily update all PHI nodes in 247 // common successors: 248 // 1> We have a constant incoming value for the conditional branch; 249 // 2> We have "Cond" as the incoming value for the unconditional branch; 250 // 3> SI2->getCondition() and Cond have same operands. 251 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 252 if (!Ci2) 253 return false; 254 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 255 Cond->getOperand(1) == Ci2->getOperand(1)) && 256 !(Cond->getOperand(0) == Ci2->getOperand(1) && 257 Cond->getOperand(1) == Ci2->getOperand(0))) 258 return false; 259 260 BasicBlock *SI1BB = SI1->getParent(); 261 BasicBlock *SI2BB = SI2->getParent(); 262 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 263 for (BasicBlock *Succ : successors(SI2BB)) 264 if (SI1Succs.count(Succ)) 265 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 266 PHINode *PN = cast<PHINode>(BBI); 267 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 268 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 269 return false; 270 PhiNodes.push_back(PN); 271 } 272 return true; 273 } 274 275 /// Update PHI nodes in Succ to indicate that there will now be entries in it 276 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 277 /// will be the same as those coming in from ExistPred, an existing predecessor 278 /// of Succ. 279 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 280 BasicBlock *ExistPred) { 281 if (!isa<PHINode>(Succ->begin())) 282 return; // Quick exit if nothing to do 283 284 PHINode *PN; 285 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 286 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 287 } 288 289 /// Compute an abstract "cost" of speculating the given instruction, 290 /// which is assumed to be safe to speculate. TCC_Free means cheap, 291 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 292 /// expensive. 293 static unsigned ComputeSpeculationCost(const User *I, 294 const TargetTransformInfo &TTI) { 295 assert(isSafeToSpeculativelyExecute(I) && 296 "Instruction is not safe to speculatively execute!"); 297 return TTI.getUserCost(I); 298 } 299 300 /// If we have a merge point of an "if condition" as accepted above, 301 /// return true if the specified value dominates the block. We 302 /// don't handle the true generality of domination here, just a special case 303 /// which works well enough for us. 304 /// 305 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 306 /// see if V (which must be an instruction) and its recursive operands 307 /// that do not dominate BB have a combined cost lower than CostRemaining and 308 /// are non-trapping. If both are true, the instruction is inserted into the 309 /// set and true is returned. 310 /// 311 /// The cost for most non-trapping instructions is defined as 1 except for 312 /// Select whose cost is 2. 313 /// 314 /// After this function returns, CostRemaining is decreased by the cost of 315 /// V plus its non-dominating operands. If that cost is greater than 316 /// CostRemaining, false is returned and CostRemaining is undefined. 317 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 318 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 319 unsigned &CostRemaining, 320 const TargetTransformInfo &TTI, 321 unsigned Depth = 0) { 322 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 323 // so limit the recursion depth. 324 // TODO: While this recursion limit does prevent pathological behavior, it 325 // would be better to track visited instructions to avoid cycles. 326 if (Depth == MaxSpeculationDepth) 327 return false; 328 329 Instruction *I = dyn_cast<Instruction>(V); 330 if (!I) { 331 // Non-instructions all dominate instructions, but not all constantexprs 332 // can be executed unconditionally. 333 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 334 if (C->canTrap()) 335 return false; 336 return true; 337 } 338 BasicBlock *PBB = I->getParent(); 339 340 // We don't want to allow weird loops that might have the "if condition" in 341 // the bottom of this block. 342 if (PBB == BB) 343 return false; 344 345 // If this instruction is defined in a block that contains an unconditional 346 // branch to BB, then it must be in the 'conditional' part of the "if 347 // statement". If not, it definitely dominates the region. 348 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 349 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 350 return true; 351 352 // If we aren't allowing aggressive promotion anymore, then don't consider 353 // instructions in the 'if region'. 354 if (!AggressiveInsts) 355 return false; 356 357 // If we have seen this instruction before, don't count it again. 358 if (AggressiveInsts->count(I)) 359 return true; 360 361 // Okay, it looks like the instruction IS in the "condition". Check to 362 // see if it's a cheap instruction to unconditionally compute, and if it 363 // only uses stuff defined outside of the condition. If so, hoist it out. 364 if (!isSafeToSpeculativelyExecute(I)) 365 return false; 366 367 unsigned Cost = ComputeSpeculationCost(I, TTI); 368 369 // Allow exactly one instruction to be speculated regardless of its cost 370 // (as long as it is safe to do so). 371 // This is intended to flatten the CFG even if the instruction is a division 372 // or other expensive operation. The speculation of an expensive instruction 373 // is expected to be undone in CodeGenPrepare if the speculation has not 374 // enabled further IR optimizations. 375 if (Cost > CostRemaining && 376 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 377 return false; 378 379 // Avoid unsigned wrap. 380 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 381 382 // Okay, we can only really hoist these out if their operands do 383 // not take us over the cost threshold. 384 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 385 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 386 Depth + 1)) 387 return false; 388 // Okay, it's safe to do this! Remember this instruction. 389 AggressiveInsts->insert(I); 390 return true; 391 } 392 393 /// Extract ConstantInt from value, looking through IntToPtr 394 /// and PointerNullValue. Return NULL if value is not a constant int. 395 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 396 // Normal constant int. 397 ConstantInt *CI = dyn_cast<ConstantInt>(V); 398 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 399 return CI; 400 401 // This is some kind of pointer constant. Turn it into a pointer-sized 402 // ConstantInt if possible. 403 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 404 405 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 406 if (isa<ConstantPointerNull>(V)) 407 return ConstantInt::get(PtrTy, 0); 408 409 // IntToPtr const int. 410 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 411 if (CE->getOpcode() == Instruction::IntToPtr) 412 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 413 // The constant is very likely to have the right type already. 414 if (CI->getType() == PtrTy) 415 return CI; 416 else 417 return cast<ConstantInt>( 418 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 419 } 420 return nullptr; 421 } 422 423 namespace { 424 425 /// Given a chain of or (||) or and (&&) comparison of a value against a 426 /// constant, this will try to recover the information required for a switch 427 /// structure. 428 /// It will depth-first traverse the chain of comparison, seeking for patterns 429 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 430 /// representing the different cases for the switch. 431 /// Note that if the chain is composed of '||' it will build the set of elements 432 /// that matches the comparisons (i.e. any of this value validate the chain) 433 /// while for a chain of '&&' it will build the set elements that make the test 434 /// fail. 435 struct ConstantComparesGatherer { 436 const DataLayout &DL; 437 Value *CompValue; /// Value found for the switch comparison 438 Value *Extra; /// Extra clause to be checked before the switch 439 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 440 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 441 442 /// Construct and compute the result for the comparison instruction Cond 443 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 444 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 445 gather(Cond); 446 } 447 448 /// Prevent copy 449 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 450 ConstantComparesGatherer & 451 operator=(const ConstantComparesGatherer &) = delete; 452 453 private: 454 /// Try to set the current value used for the comparison, it succeeds only if 455 /// it wasn't set before or if the new value is the same as the old one 456 bool setValueOnce(Value *NewVal) { 457 if (CompValue && CompValue != NewVal) 458 return false; 459 CompValue = NewVal; 460 return (CompValue != nullptr); 461 } 462 463 /// Try to match Instruction "I" as a comparison against a constant and 464 /// populates the array Vals with the set of values that match (or do not 465 /// match depending on isEQ). 466 /// Return false on failure. On success, the Value the comparison matched 467 /// against is placed in CompValue. 468 /// If CompValue is already set, the function is expected to fail if a match 469 /// is found but the value compared to is different. 470 bool matchInstruction(Instruction *I, bool isEQ) { 471 // If this is an icmp against a constant, handle this as one of the cases. 472 ICmpInst *ICI; 473 ConstantInt *C; 474 if (!((ICI = dyn_cast<ICmpInst>(I)) && 475 (C = GetConstantInt(I->getOperand(1), DL)))) { 476 return false; 477 } 478 479 Value *RHSVal; 480 const APInt *RHSC; 481 482 // Pattern match a special case 483 // (x & ~2^z) == y --> x == y || x == y|2^z 484 // This undoes a transformation done by instcombine to fuse 2 compares. 485 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 486 487 // It's a little bit hard to see why the following transformations are 488 // correct. Here is a CVC3 program to verify them for 64-bit values: 489 490 /* 491 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 492 x : BITVECTOR(64); 493 y : BITVECTOR(64); 494 z : BITVECTOR(64); 495 mask : BITVECTOR(64) = BVSHL(ONE, z); 496 QUERY( (y & ~mask = y) => 497 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 498 ); 499 QUERY( (y | mask = y) => 500 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 501 ); 502 */ 503 504 // Please note that each pattern must be a dual implication (<--> or 505 // iff). One directional implication can create spurious matches. If the 506 // implication is only one-way, an unsatisfiable condition on the left 507 // side can imply a satisfiable condition on the right side. Dual 508 // implication ensures that satisfiable conditions are transformed to 509 // other satisfiable conditions and unsatisfiable conditions are 510 // transformed to other unsatisfiable conditions. 511 512 // Here is a concrete example of a unsatisfiable condition on the left 513 // implying a satisfiable condition on the right: 514 // 515 // mask = (1 << z) 516 // (x & ~mask) == y --> (x == y || x == (y | mask)) 517 // 518 // Substituting y = 3, z = 0 yields: 519 // (x & -2) == 3 --> (x == 3 || x == 2) 520 521 // Pattern match a special case: 522 /* 523 QUERY( (y & ~mask = y) => 524 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 525 ); 526 */ 527 if (match(ICI->getOperand(0), 528 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 529 APInt Mask = ~*RHSC; 530 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 531 // If we already have a value for the switch, it has to match! 532 if (!setValueOnce(RHSVal)) 533 return false; 534 535 Vals.push_back(C); 536 Vals.push_back( 537 ConstantInt::get(C->getContext(), 538 C->getValue() | Mask)); 539 UsedICmps++; 540 return true; 541 } 542 } 543 544 // Pattern match a special case: 545 /* 546 QUERY( (y | mask = y) => 547 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 548 ); 549 */ 550 if (match(ICI->getOperand(0), 551 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 552 APInt Mask = *RHSC; 553 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 554 // If we already have a value for the switch, it has to match! 555 if (!setValueOnce(RHSVal)) 556 return false; 557 558 Vals.push_back(C); 559 Vals.push_back(ConstantInt::get(C->getContext(), 560 C->getValue() & ~Mask)); 561 UsedICmps++; 562 return true; 563 } 564 } 565 566 // If we already have a value for the switch, it has to match! 567 if (!setValueOnce(ICI->getOperand(0))) 568 return false; 569 570 UsedICmps++; 571 Vals.push_back(C); 572 return ICI->getOperand(0); 573 } 574 575 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 576 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 577 ICI->getPredicate(), C->getValue()); 578 579 // Shift the range if the compare is fed by an add. This is the range 580 // compare idiom as emitted by instcombine. 581 Value *CandidateVal = I->getOperand(0); 582 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 583 Span = Span.subtract(*RHSC); 584 CandidateVal = RHSVal; 585 } 586 587 // If this is an and/!= check, then we are looking to build the set of 588 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 589 // x != 0 && x != 1. 590 if (!isEQ) 591 Span = Span.inverse(); 592 593 // If there are a ton of values, we don't want to make a ginormous switch. 594 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 595 return false; 596 } 597 598 // If we already have a value for the switch, it has to match! 599 if (!setValueOnce(CandidateVal)) 600 return false; 601 602 // Add all values from the range to the set 603 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 604 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 605 606 UsedICmps++; 607 return true; 608 } 609 610 /// Given a potentially 'or'd or 'and'd together collection of icmp 611 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 612 /// the value being compared, and stick the list constants into the Vals 613 /// vector. 614 /// One "Extra" case is allowed to differ from the other. 615 void gather(Value *V) { 616 Instruction *I = dyn_cast<Instruction>(V); 617 bool isEQ = (I->getOpcode() == Instruction::Or); 618 619 // Keep a stack (SmallVector for efficiency) for depth-first traversal 620 SmallVector<Value *, 8> DFT; 621 SmallPtrSet<Value *, 8> Visited; 622 623 // Initialize 624 Visited.insert(V); 625 DFT.push_back(V); 626 627 while (!DFT.empty()) { 628 V = DFT.pop_back_val(); 629 630 if (Instruction *I = dyn_cast<Instruction>(V)) { 631 // If it is a || (or && depending on isEQ), process the operands. 632 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 633 if (Visited.insert(I->getOperand(1)).second) 634 DFT.push_back(I->getOperand(1)); 635 if (Visited.insert(I->getOperand(0)).second) 636 DFT.push_back(I->getOperand(0)); 637 continue; 638 } 639 640 // Try to match the current instruction 641 if (matchInstruction(I, isEQ)) 642 // Match succeed, continue the loop 643 continue; 644 } 645 646 // One element of the sequence of || (or &&) could not be match as a 647 // comparison against the same value as the others. 648 // We allow only one "Extra" case to be checked before the switch 649 if (!Extra) { 650 Extra = V; 651 continue; 652 } 653 // Failed to parse a proper sequence, abort now 654 CompValue = nullptr; 655 break; 656 } 657 } 658 }; 659 660 } // end anonymous namespace 661 662 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 663 Instruction *Cond = nullptr; 664 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 665 Cond = dyn_cast<Instruction>(SI->getCondition()); 666 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 667 if (BI->isConditional()) 668 Cond = dyn_cast<Instruction>(BI->getCondition()); 669 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 670 Cond = dyn_cast<Instruction>(IBI->getAddress()); 671 } 672 673 TI->eraseFromParent(); 674 if (Cond) 675 RecursivelyDeleteTriviallyDeadInstructions(Cond); 676 } 677 678 /// Return true if the specified terminator checks 679 /// to see if a value is equal to constant integer value. 680 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 681 Value *CV = nullptr; 682 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 683 // Do not permit merging of large switch instructions into their 684 // predecessors unless there is only one predecessor. 685 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 686 pred_end(SI->getParent())) <= 687 128) 688 CV = SI->getCondition(); 689 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 690 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 691 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 692 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 693 CV = ICI->getOperand(0); 694 } 695 696 // Unwrap any lossless ptrtoint cast. 697 if (CV) { 698 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 699 Value *Ptr = PTII->getPointerOperand(); 700 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 701 CV = Ptr; 702 } 703 } 704 return CV; 705 } 706 707 /// Given a value comparison instruction, 708 /// decode all of the 'cases' that it represents and return the 'default' block. 709 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 710 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 711 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 712 Cases.reserve(SI->getNumCases()); 713 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 714 ++i) 715 Cases.push_back( 716 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 717 return SI->getDefaultDest(); 718 } 719 720 BranchInst *BI = cast<BranchInst>(TI); 721 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 722 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 723 Cases.push_back(ValueEqualityComparisonCase( 724 GetConstantInt(ICI->getOperand(1), DL), Succ)); 725 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 726 } 727 728 /// Given a vector of bb/value pairs, remove any entries 729 /// in the list that match the specified block. 730 static void 731 EliminateBlockCases(BasicBlock *BB, 732 std::vector<ValueEqualityComparisonCase> &Cases) { 733 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 734 } 735 736 /// Return true if there are any keys in C1 that exist in C2 as well. 737 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 738 std::vector<ValueEqualityComparisonCase> &C2) { 739 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 740 741 // Make V1 be smaller than V2. 742 if (V1->size() > V2->size()) 743 std::swap(V1, V2); 744 745 if (V1->empty()) 746 return false; 747 if (V1->size() == 1) { 748 // Just scan V2. 749 ConstantInt *TheVal = (*V1)[0].Value; 750 for (unsigned i = 0, e = V2->size(); i != e; ++i) 751 if (TheVal == (*V2)[i].Value) 752 return true; 753 } 754 755 // Otherwise, just sort both lists and compare element by element. 756 array_pod_sort(V1->begin(), V1->end()); 757 array_pod_sort(V2->begin(), V2->end()); 758 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 759 while (i1 != e1 && i2 != e2) { 760 if ((*V1)[i1].Value == (*V2)[i2].Value) 761 return true; 762 if ((*V1)[i1].Value < (*V2)[i2].Value) 763 ++i1; 764 else 765 ++i2; 766 } 767 return false; 768 } 769 770 /// If TI is known to be a terminator instruction and its block is known to 771 /// only have a single predecessor block, check to see if that predecessor is 772 /// also a value comparison with the same value, and if that comparison 773 /// determines the outcome of this comparison. If so, simplify TI. This does a 774 /// very limited form of jump threading. 775 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 776 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 777 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 778 if (!PredVal) 779 return false; // Not a value comparison in predecessor. 780 781 Value *ThisVal = isValueEqualityComparison(TI); 782 assert(ThisVal && "This isn't a value comparison!!"); 783 if (ThisVal != PredVal) 784 return false; // Different predicates. 785 786 // TODO: Preserve branch weight metadata, similarly to how 787 // FoldValueComparisonIntoPredecessors preserves it. 788 789 // Find out information about when control will move from Pred to TI's block. 790 std::vector<ValueEqualityComparisonCase> PredCases; 791 BasicBlock *PredDef = 792 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 793 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 794 795 // Find information about how control leaves this block. 796 std::vector<ValueEqualityComparisonCase> ThisCases; 797 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 798 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 799 800 // If TI's block is the default block from Pred's comparison, potentially 801 // simplify TI based on this knowledge. 802 if (PredDef == TI->getParent()) { 803 // If we are here, we know that the value is none of those cases listed in 804 // PredCases. If there are any cases in ThisCases that are in PredCases, we 805 // can simplify TI. 806 if (!ValuesOverlap(PredCases, ThisCases)) 807 return false; 808 809 if (isa<BranchInst>(TI)) { 810 // Okay, one of the successors of this condbr is dead. Convert it to a 811 // uncond br. 812 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 813 // Insert the new branch. 814 Instruction *NI = Builder.CreateBr(ThisDef); 815 (void)NI; 816 817 // Remove PHI node entries for the dead edge. 818 ThisCases[0].Dest->removePredecessor(TI->getParent()); 819 820 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 821 << "Through successor TI: " << *TI << "Leaving: " << *NI 822 << "\n"); 823 824 EraseTerminatorInstAndDCECond(TI); 825 return true; 826 } 827 828 SwitchInst *SI = cast<SwitchInst>(TI); 829 // Okay, TI has cases that are statically dead, prune them away. 830 SmallPtrSet<Constant *, 16> DeadCases; 831 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 832 DeadCases.insert(PredCases[i].Value); 833 834 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 835 << "Through successor TI: " << *TI); 836 837 // Collect branch weights into a vector. 838 SmallVector<uint32_t, 8> Weights; 839 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 840 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 841 if (HasWeight) 842 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 843 ++MD_i) { 844 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 845 Weights.push_back(CI->getValue().getZExtValue()); 846 } 847 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 848 --i; 849 if (DeadCases.count(i.getCaseValue())) { 850 if (HasWeight) { 851 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 852 Weights.pop_back(); 853 } 854 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 855 SI->removeCase(i); 856 } 857 } 858 if (HasWeight && Weights.size() >= 2) 859 SI->setMetadata(LLVMContext::MD_prof, 860 MDBuilder(SI->getParent()->getContext()) 861 .createBranchWeights(Weights)); 862 863 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 864 return true; 865 } 866 867 // Otherwise, TI's block must correspond to some matched value. Find out 868 // which value (or set of values) this is. 869 ConstantInt *TIV = nullptr; 870 BasicBlock *TIBB = TI->getParent(); 871 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 872 if (PredCases[i].Dest == TIBB) { 873 if (TIV) 874 return false; // Cannot handle multiple values coming to this block. 875 TIV = PredCases[i].Value; 876 } 877 assert(TIV && "No edge from pred to succ?"); 878 879 // Okay, we found the one constant that our value can be if we get into TI's 880 // BB. Find out which successor will unconditionally be branched to. 881 BasicBlock *TheRealDest = nullptr; 882 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 883 if (ThisCases[i].Value == TIV) { 884 TheRealDest = ThisCases[i].Dest; 885 break; 886 } 887 888 // If not handled by any explicit cases, it is handled by the default case. 889 if (!TheRealDest) 890 TheRealDest = ThisDef; 891 892 // Remove PHI node entries for dead edges. 893 BasicBlock *CheckEdge = TheRealDest; 894 for (BasicBlock *Succ : successors(TIBB)) 895 if (Succ != CheckEdge) 896 Succ->removePredecessor(TIBB); 897 else 898 CheckEdge = nullptr; 899 900 // Insert the new branch. 901 Instruction *NI = Builder.CreateBr(TheRealDest); 902 (void)NI; 903 904 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 905 << "Through successor TI: " << *TI << "Leaving: " << *NI 906 << "\n"); 907 908 EraseTerminatorInstAndDCECond(TI); 909 return true; 910 } 911 912 namespace { 913 914 /// This class implements a stable ordering of constant 915 /// integers that does not depend on their address. This is important for 916 /// applications that sort ConstantInt's to ensure uniqueness. 917 struct ConstantIntOrdering { 918 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 919 return LHS->getValue().ult(RHS->getValue()); 920 } 921 }; 922 923 } // end anonymous namespace 924 925 static int ConstantIntSortPredicate(ConstantInt *const *P1, 926 ConstantInt *const *P2) { 927 const ConstantInt *LHS = *P1; 928 const ConstantInt *RHS = *P2; 929 if (LHS == RHS) 930 return 0; 931 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 932 } 933 934 static inline bool HasBranchWeights(const Instruction *I) { 935 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 936 if (ProfMD && ProfMD->getOperand(0)) 937 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 938 return MDS->getString().equals("branch_weights"); 939 940 return false; 941 } 942 943 /// Get Weights of a given TerminatorInst, the default weight is at the front 944 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 945 /// metadata. 946 static void GetBranchWeights(TerminatorInst *TI, 947 SmallVectorImpl<uint64_t> &Weights) { 948 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 949 assert(MD); 950 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 951 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 952 Weights.push_back(CI->getValue().getZExtValue()); 953 } 954 955 // If TI is a conditional eq, the default case is the false case, 956 // and the corresponding branch-weight data is at index 2. We swap the 957 // default weight to be the first entry. 958 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 959 assert(Weights.size() == 2); 960 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 961 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 962 std::swap(Weights.front(), Weights.back()); 963 } 964 } 965 966 /// Keep halving the weights until all can fit in uint32_t. 967 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 968 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 969 if (Max > UINT_MAX) { 970 unsigned Offset = 32 - countLeadingZeros(Max); 971 for (uint64_t &I : Weights) 972 I >>= Offset; 973 } 974 } 975 976 /// The specified terminator is a value equality comparison instruction 977 /// (either a switch or a branch on "X == c"). 978 /// See if any of the predecessors of the terminator block are value comparisons 979 /// on the same value. If so, and if safe to do so, fold them together. 980 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 981 IRBuilder<> &Builder) { 982 BasicBlock *BB = TI->getParent(); 983 Value *CV = isValueEqualityComparison(TI); // CondVal 984 assert(CV && "Not a comparison?"); 985 bool Changed = false; 986 987 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 988 while (!Preds.empty()) { 989 BasicBlock *Pred = Preds.pop_back_val(); 990 991 // See if the predecessor is a comparison with the same value. 992 TerminatorInst *PTI = Pred->getTerminator(); 993 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 994 995 if (PCV == CV && TI != PTI) { 996 SmallSetVector<BasicBlock*, 4> FailBlocks; 997 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 998 for (auto *Succ : FailBlocks) { 999 std::vector<BasicBlock*> Blocks = { TI->getParent() }; 1000 if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split")) 1001 return false; 1002 } 1003 } 1004 1005 // Figure out which 'cases' to copy from SI to PSI. 1006 std::vector<ValueEqualityComparisonCase> BBCases; 1007 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1008 1009 std::vector<ValueEqualityComparisonCase> PredCases; 1010 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1011 1012 // Based on whether the default edge from PTI goes to BB or not, fill in 1013 // PredCases and PredDefault with the new switch cases we would like to 1014 // build. 1015 SmallVector<BasicBlock *, 8> NewSuccessors; 1016 1017 // Update the branch weight metadata along the way 1018 SmallVector<uint64_t, 8> Weights; 1019 bool PredHasWeights = HasBranchWeights(PTI); 1020 bool SuccHasWeights = HasBranchWeights(TI); 1021 1022 if (PredHasWeights) { 1023 GetBranchWeights(PTI, Weights); 1024 // branch-weight metadata is inconsistent here. 1025 if (Weights.size() != 1 + PredCases.size()) 1026 PredHasWeights = SuccHasWeights = false; 1027 } else if (SuccHasWeights) 1028 // If there are no predecessor weights but there are successor weights, 1029 // populate Weights with 1, which will later be scaled to the sum of 1030 // successor's weights 1031 Weights.assign(1 + PredCases.size(), 1); 1032 1033 SmallVector<uint64_t, 8> SuccWeights; 1034 if (SuccHasWeights) { 1035 GetBranchWeights(TI, SuccWeights); 1036 // branch-weight metadata is inconsistent here. 1037 if (SuccWeights.size() != 1 + BBCases.size()) 1038 PredHasWeights = SuccHasWeights = false; 1039 } else if (PredHasWeights) 1040 SuccWeights.assign(1 + BBCases.size(), 1); 1041 1042 if (PredDefault == BB) { 1043 // If this is the default destination from PTI, only the edges in TI 1044 // that don't occur in PTI, or that branch to BB will be activated. 1045 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1046 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1047 if (PredCases[i].Dest != BB) 1048 PTIHandled.insert(PredCases[i].Value); 1049 else { 1050 // The default destination is BB, we don't need explicit targets. 1051 std::swap(PredCases[i], PredCases.back()); 1052 1053 if (PredHasWeights || SuccHasWeights) { 1054 // Increase weight for the default case. 1055 Weights[0] += Weights[i + 1]; 1056 std::swap(Weights[i + 1], Weights.back()); 1057 Weights.pop_back(); 1058 } 1059 1060 PredCases.pop_back(); 1061 --i; 1062 --e; 1063 } 1064 1065 // Reconstruct the new switch statement we will be building. 1066 if (PredDefault != BBDefault) { 1067 PredDefault->removePredecessor(Pred); 1068 PredDefault = BBDefault; 1069 NewSuccessors.push_back(BBDefault); 1070 } 1071 1072 unsigned CasesFromPred = Weights.size(); 1073 uint64_t ValidTotalSuccWeight = 0; 1074 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1075 if (!PTIHandled.count(BBCases[i].Value) && 1076 BBCases[i].Dest != BBDefault) { 1077 PredCases.push_back(BBCases[i]); 1078 NewSuccessors.push_back(BBCases[i].Dest); 1079 if (SuccHasWeights || PredHasWeights) { 1080 // The default weight is at index 0, so weight for the ith case 1081 // should be at index i+1. Scale the cases from successor by 1082 // PredDefaultWeight (Weights[0]). 1083 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1084 ValidTotalSuccWeight += SuccWeights[i + 1]; 1085 } 1086 } 1087 1088 if (SuccHasWeights || PredHasWeights) { 1089 ValidTotalSuccWeight += SuccWeights[0]; 1090 // Scale the cases from predecessor by ValidTotalSuccWeight. 1091 for (unsigned i = 1; i < CasesFromPred; ++i) 1092 Weights[i] *= ValidTotalSuccWeight; 1093 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1094 Weights[0] *= SuccWeights[0]; 1095 } 1096 } else { 1097 // If this is not the default destination from PSI, only the edges 1098 // in SI that occur in PSI with a destination of BB will be 1099 // activated. 1100 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1101 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1102 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1103 if (PredCases[i].Dest == BB) { 1104 PTIHandled.insert(PredCases[i].Value); 1105 1106 if (PredHasWeights || SuccHasWeights) { 1107 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1108 std::swap(Weights[i + 1], Weights.back()); 1109 Weights.pop_back(); 1110 } 1111 1112 std::swap(PredCases[i], PredCases.back()); 1113 PredCases.pop_back(); 1114 --i; 1115 --e; 1116 } 1117 1118 // Okay, now we know which constants were sent to BB from the 1119 // predecessor. Figure out where they will all go now. 1120 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1121 if (PTIHandled.count(BBCases[i].Value)) { 1122 // If this is one we are capable of getting... 1123 if (PredHasWeights || SuccHasWeights) 1124 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1125 PredCases.push_back(BBCases[i]); 1126 NewSuccessors.push_back(BBCases[i].Dest); 1127 PTIHandled.erase( 1128 BBCases[i].Value); // This constant is taken care of 1129 } 1130 1131 // If there are any constants vectored to BB that TI doesn't handle, 1132 // they must go to the default destination of TI. 1133 for (ConstantInt *I : PTIHandled) { 1134 if (PredHasWeights || SuccHasWeights) 1135 Weights.push_back(WeightsForHandled[I]); 1136 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1137 NewSuccessors.push_back(BBDefault); 1138 } 1139 } 1140 1141 // Okay, at this point, we know which new successor Pred will get. Make 1142 // sure we update the number of entries in the PHI nodes for these 1143 // successors. 1144 for (BasicBlock *NewSuccessor : NewSuccessors) 1145 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1146 1147 Builder.SetInsertPoint(PTI); 1148 // Convert pointer to int before we switch. 1149 if (CV->getType()->isPointerTy()) { 1150 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1151 "magicptr"); 1152 } 1153 1154 // Now that the successors are updated, create the new Switch instruction. 1155 SwitchInst *NewSI = 1156 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1157 NewSI->setDebugLoc(PTI->getDebugLoc()); 1158 for (ValueEqualityComparisonCase &V : PredCases) 1159 NewSI->addCase(V.Value, V.Dest); 1160 1161 if (PredHasWeights || SuccHasWeights) { 1162 // Halve the weights if any of them cannot fit in an uint32_t 1163 FitWeights(Weights); 1164 1165 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1166 1167 NewSI->setMetadata( 1168 LLVMContext::MD_prof, 1169 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1170 } 1171 1172 EraseTerminatorInstAndDCECond(PTI); 1173 1174 // Okay, last check. If BB is still a successor of PSI, then we must 1175 // have an infinite loop case. If so, add an infinitely looping block 1176 // to handle the case to preserve the behavior of the code. 1177 BasicBlock *InfLoopBlock = nullptr; 1178 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1179 if (NewSI->getSuccessor(i) == BB) { 1180 if (!InfLoopBlock) { 1181 // Insert it at the end of the function, because it's either code, 1182 // or it won't matter if it's hot. :) 1183 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1184 BB->getParent()); 1185 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1186 } 1187 NewSI->setSuccessor(i, InfLoopBlock); 1188 } 1189 1190 Changed = true; 1191 } 1192 } 1193 return Changed; 1194 } 1195 1196 // If we would need to insert a select that uses the value of this invoke 1197 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1198 // can't hoist the invoke, as there is nowhere to put the select in this case. 1199 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1200 Instruction *I1, Instruction *I2) { 1201 for (BasicBlock *Succ : successors(BB1)) { 1202 PHINode *PN; 1203 for (BasicBlock::iterator BBI = Succ->begin(); 1204 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1205 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1206 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1207 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1208 return false; 1209 } 1210 } 1211 } 1212 return true; 1213 } 1214 1215 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1216 1217 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1218 /// in the two blocks up into the branch block. The caller of this function 1219 /// guarantees that BI's block dominates BB1 and BB2. 1220 static bool HoistThenElseCodeToIf(BranchInst *BI, 1221 const TargetTransformInfo &TTI) { 1222 // This does very trivial matching, with limited scanning, to find identical 1223 // instructions in the two blocks. In particular, we don't want to get into 1224 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1225 // such, we currently just scan for obviously identical instructions in an 1226 // identical order. 1227 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1228 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1229 1230 BasicBlock::iterator BB1_Itr = BB1->begin(); 1231 BasicBlock::iterator BB2_Itr = BB2->begin(); 1232 1233 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1234 // Skip debug info if it is not identical. 1235 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1236 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1237 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1238 while (isa<DbgInfoIntrinsic>(I1)) 1239 I1 = &*BB1_Itr++; 1240 while (isa<DbgInfoIntrinsic>(I2)) 1241 I2 = &*BB2_Itr++; 1242 } 1243 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1244 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1245 return false; 1246 1247 BasicBlock *BIParent = BI->getParent(); 1248 1249 bool Changed = false; 1250 do { 1251 // If we are hoisting the terminator instruction, don't move one (making a 1252 // broken BB), instead clone it, and remove BI. 1253 if (isa<TerminatorInst>(I1)) 1254 goto HoistTerminator; 1255 1256 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1257 return Changed; 1258 1259 // For a normal instruction, we just move one to right before the branch, 1260 // then replace all uses of the other with the first. Finally, we remove 1261 // the now redundant second instruction. 1262 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1263 if (!I2->use_empty()) 1264 I2->replaceAllUsesWith(I1); 1265 I1->andIRFlags(I2); 1266 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1267 LLVMContext::MD_range, 1268 LLVMContext::MD_fpmath, 1269 LLVMContext::MD_invariant_load, 1270 LLVMContext::MD_nonnull, 1271 LLVMContext::MD_invariant_group, 1272 LLVMContext::MD_align, 1273 LLVMContext::MD_dereferenceable, 1274 LLVMContext::MD_dereferenceable_or_null, 1275 LLVMContext::MD_mem_parallel_loop_access}; 1276 combineMetadata(I1, I2, KnownIDs); 1277 1278 // I1 and I2 are being combined into a single instruction. Its debug 1279 // location is the merged locations of the original instructions. 1280 if (!isa<CallInst>(I1)) 1281 I1->setDebugLoc( 1282 DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc())); 1283 1284 I2->eraseFromParent(); 1285 Changed = true; 1286 1287 I1 = &*BB1_Itr++; 1288 I2 = &*BB2_Itr++; 1289 // Skip debug info if it is not identical. 1290 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1291 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1292 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1293 while (isa<DbgInfoIntrinsic>(I1)) 1294 I1 = &*BB1_Itr++; 1295 while (isa<DbgInfoIntrinsic>(I2)) 1296 I2 = &*BB2_Itr++; 1297 } 1298 } while (I1->isIdenticalToWhenDefined(I2)); 1299 1300 return true; 1301 1302 HoistTerminator: 1303 // It may not be possible to hoist an invoke. 1304 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1305 return Changed; 1306 1307 for (BasicBlock *Succ : successors(BB1)) { 1308 PHINode *PN; 1309 for (BasicBlock::iterator BBI = Succ->begin(); 1310 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1311 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1312 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1313 if (BB1V == BB2V) 1314 continue; 1315 1316 // Check for passingValueIsAlwaysUndefined here because we would rather 1317 // eliminate undefined control flow then converting it to a select. 1318 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1319 passingValueIsAlwaysUndefined(BB2V, PN)) 1320 return Changed; 1321 1322 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1323 return Changed; 1324 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1325 return Changed; 1326 } 1327 } 1328 1329 // Okay, it is safe to hoist the terminator. 1330 Instruction *NT = I1->clone(); 1331 BIParent->getInstList().insert(BI->getIterator(), NT); 1332 if (!NT->getType()->isVoidTy()) { 1333 I1->replaceAllUsesWith(NT); 1334 I2->replaceAllUsesWith(NT); 1335 NT->takeName(I1); 1336 } 1337 1338 IRBuilder<NoFolder> Builder(NT); 1339 // Hoisting one of the terminators from our successor is a great thing. 1340 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1341 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1342 // nodes, so we insert select instruction to compute the final result. 1343 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1344 for (BasicBlock *Succ : successors(BB1)) { 1345 PHINode *PN; 1346 for (BasicBlock::iterator BBI = Succ->begin(); 1347 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1348 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1349 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1350 if (BB1V == BB2V) 1351 continue; 1352 1353 // These values do not agree. Insert a select instruction before NT 1354 // that determines the right value. 1355 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1356 if (!SI) 1357 SI = cast<SelectInst>( 1358 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1359 BB1V->getName() + "." + BB2V->getName(), BI)); 1360 1361 // Make the PHI node use the select for all incoming values for BB1/BB2 1362 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1363 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1364 PN->setIncomingValue(i, SI); 1365 } 1366 } 1367 1368 // Update any PHI nodes in our new successors. 1369 for (BasicBlock *Succ : successors(BB1)) 1370 AddPredecessorToBlock(Succ, BIParent, BB1); 1371 1372 EraseTerminatorInstAndDCECond(BI); 1373 return true; 1374 } 1375 1376 // Is it legal to place a variable in operand \c OpIdx of \c I? 1377 // FIXME: This should be promoted to Instruction. 1378 static bool canReplaceOperandWithVariable(const Instruction *I, 1379 unsigned OpIdx) { 1380 // We can't have a PHI with a metadata type. 1381 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 1382 return false; 1383 1384 // Early exit. 1385 if (!isa<Constant>(I->getOperand(OpIdx))) 1386 return true; 1387 1388 switch (I->getOpcode()) { 1389 default: 1390 return true; 1391 case Instruction::Call: 1392 case Instruction::Invoke: 1393 // FIXME: many arithmetic intrinsics have no issue taking a 1394 // variable, however it's hard to distingish these from 1395 // specials such as @llvm.frameaddress that require a constant. 1396 if (isa<IntrinsicInst>(I)) 1397 return false; 1398 1399 // Constant bundle operands may need to retain their constant-ness for 1400 // correctness. 1401 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 1402 return false; 1403 1404 return true; 1405 1406 case Instruction::ShuffleVector: 1407 // Shufflevector masks are constant. 1408 return OpIdx != 2; 1409 case Instruction::ExtractValue: 1410 case Instruction::InsertValue: 1411 // All operands apart from the first are constant. 1412 return OpIdx == 0; 1413 case Instruction::Alloca: 1414 return false; 1415 case Instruction::GetElementPtr: 1416 if (OpIdx == 0) 1417 return true; 1418 gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1); 1419 return It.isSequential(); 1420 } 1421 } 1422 1423 // All instructions in Insts belong to different blocks that all unconditionally 1424 // branch to a common successor. Analyze each instruction and return true if it 1425 // would be possible to sink them into their successor, creating one common 1426 // instruction instead. For every value that would be required to be provided by 1427 // PHI node (because an operand varies in each input block), add to PHIOperands. 1428 static bool canSinkInstructions( 1429 ArrayRef<Instruction *> Insts, 1430 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1431 // Prune out obviously bad instructions to move. Any non-store instruction 1432 // must have exactly one use, and we check later that use is by a single, 1433 // common PHI instruction in the successor. 1434 for (auto *I : Insts) { 1435 // These instructions may change or break semantics if moved. 1436 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1437 I->getType()->isTokenTy()) 1438 return false; 1439 1440 // Conservatively return false if I is an inline-asm instruction. Sinking 1441 // and merging inline-asm instructions can potentially create arguments 1442 // that cannot satisfy the inline-asm constraints. 1443 if (const auto *C = dyn_cast<CallInst>(I)) 1444 if (C->isInlineAsm()) 1445 return false; 1446 1447 // Everything must have only one use too, apart from stores which 1448 // have no uses. 1449 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1450 return false; 1451 } 1452 1453 const Instruction *I0 = Insts.front(); 1454 for (auto *I : Insts) 1455 if (!I->isSameOperationAs(I0)) 1456 return false; 1457 1458 // All instructions in Insts are known to be the same opcode. If they aren't 1459 // stores, check the only user of each is a PHI or in the same block as the 1460 // instruction, because if a user is in the same block as an instruction 1461 // we're contemplating sinking, it must already be determined to be sinkable. 1462 if (!isa<StoreInst>(I0)) { 1463 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1464 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1465 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1466 auto *U = cast<Instruction>(*I->user_begin()); 1467 return (PNUse && 1468 PNUse->getParent() == Succ && 1469 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1470 U->getParent() == I->getParent(); 1471 })) 1472 return false; 1473 } 1474 1475 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1476 if (I0->getOperand(OI)->getType()->isTokenTy()) 1477 // Don't touch any operand of token type. 1478 return false; 1479 1480 // Because SROA can't handle speculating stores of selects, try not 1481 // to sink loads or stores of allocas when we'd have to create a PHI for 1482 // the address operand. Also, because it is likely that loads or stores 1483 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1484 // This can cause code churn which can have unintended consequences down 1485 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1486 // FIXME: This is a workaround for a deficiency in SROA - see 1487 // https://llvm.org/bugs/show_bug.cgi?id=30188 1488 if (OI == 1 && isa<StoreInst>(I0) && 1489 any_of(Insts, [](const Instruction *I) { 1490 return isa<AllocaInst>(I->getOperand(1)); 1491 })) 1492 return false; 1493 if (OI == 0 && isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1494 return isa<AllocaInst>(I->getOperand(0)); 1495 })) 1496 return false; 1497 1498 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1499 assert(I->getNumOperands() == I0->getNumOperands()); 1500 return I->getOperand(OI) == I0->getOperand(OI); 1501 }; 1502 if (!all_of(Insts, SameAsI0)) { 1503 if (!canReplaceOperandWithVariable(I0, OI)) 1504 // We can't create a PHI from this GEP. 1505 return false; 1506 // Don't create indirect calls! The called value is the final operand. 1507 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1508 // FIXME: if the call was *already* indirect, we should do this. 1509 return false; 1510 } 1511 for (auto *I : Insts) 1512 PHIOperands[I].push_back(I->getOperand(OI)); 1513 } 1514 } 1515 return true; 1516 } 1517 1518 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1519 // instruction of every block in Blocks to their common successor, commoning 1520 // into one instruction. 1521 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1522 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1523 1524 // canSinkLastInstruction returning true guarantees that every block has at 1525 // least one non-terminator instruction. 1526 SmallVector<Instruction*,4> Insts; 1527 for (auto *BB : Blocks) { 1528 Instruction *I = BB->getTerminator(); 1529 do { 1530 I = I->getPrevNode(); 1531 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1532 if (!isa<DbgInfoIntrinsic>(I)) 1533 Insts.push_back(I); 1534 } 1535 1536 // The only checking we need to do now is that all users of all instructions 1537 // are the same PHI node. canSinkLastInstruction should have checked this but 1538 // it is slightly over-aggressive - it gets confused by commutative instructions 1539 // so double-check it here. 1540 Instruction *I0 = Insts.front(); 1541 if (!isa<StoreInst>(I0)) { 1542 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1543 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1544 auto *U = cast<Instruction>(*I->user_begin()); 1545 return U == PNUse; 1546 })) 1547 return false; 1548 } 1549 1550 // We don't need to do any more checking here; canSinkLastInstruction should 1551 // have done it all for us. 1552 SmallVector<Value*, 4> NewOperands; 1553 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1554 // This check is different to that in canSinkLastInstruction. There, we 1555 // cared about the global view once simplifycfg (and instcombine) have 1556 // completed - it takes into account PHIs that become trivially 1557 // simplifiable. However here we need a more local view; if an operand 1558 // differs we create a PHI and rely on instcombine to clean up the very 1559 // small mess we may make. 1560 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1561 return I->getOperand(O) != I0->getOperand(O); 1562 }); 1563 if (!NeedPHI) { 1564 NewOperands.push_back(I0->getOperand(O)); 1565 continue; 1566 } 1567 1568 // Create a new PHI in the successor block and populate it. 1569 auto *Op = I0->getOperand(O); 1570 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1571 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1572 Op->getName() + ".sink", &BBEnd->front()); 1573 for (auto *I : Insts) 1574 PN->addIncoming(I->getOperand(O), I->getParent()); 1575 NewOperands.push_back(PN); 1576 } 1577 1578 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1579 // and move it to the start of the successor block. 1580 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1581 I0->getOperandUse(O).set(NewOperands[O]); 1582 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1583 1584 // The debug location for the "common" instruction is the merged locations of 1585 // all the commoned instructions. We start with the original location of the 1586 // "common" instruction and iteratively merge each location in the loop below. 1587 const DILocation *Loc = I0->getDebugLoc(); 1588 1589 // Update metadata and IR flags, and merge debug locations. 1590 for (auto *I : Insts) 1591 if (I != I0) { 1592 Loc = DILocation::getMergedLocation(Loc, I->getDebugLoc()); 1593 combineMetadataForCSE(I0, I); 1594 I0->andIRFlags(I); 1595 } 1596 if (!isa<CallInst>(I0)) 1597 I0->setDebugLoc(Loc); 1598 1599 if (!isa<StoreInst>(I0)) { 1600 // canSinkLastInstruction checked that all instructions were used by 1601 // one and only one PHI node. Find that now, RAUW it to our common 1602 // instruction and nuke it. 1603 assert(I0->hasOneUse()); 1604 auto *PN = cast<PHINode>(*I0->user_begin()); 1605 PN->replaceAllUsesWith(I0); 1606 PN->eraseFromParent(); 1607 } 1608 1609 // Finally nuke all instructions apart from the common instruction. 1610 for (auto *I : Insts) 1611 if (I != I0) 1612 I->eraseFromParent(); 1613 1614 return true; 1615 } 1616 1617 namespace { 1618 1619 // LockstepReverseIterator - Iterates through instructions 1620 // in a set of blocks in reverse order from the first non-terminator. 1621 // For example (assume all blocks have size n): 1622 // LockstepReverseIterator I([B1, B2, B3]); 1623 // *I-- = [B1[n], B2[n], B3[n]]; 1624 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1625 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1626 // ... 1627 class LockstepReverseIterator { 1628 ArrayRef<BasicBlock*> Blocks; 1629 SmallVector<Instruction*,4> Insts; 1630 bool Fail; 1631 public: 1632 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : 1633 Blocks(Blocks) { 1634 reset(); 1635 } 1636 1637 void reset() { 1638 Fail = false; 1639 Insts.clear(); 1640 for (auto *BB : Blocks) { 1641 Instruction *Inst = BB->getTerminator(); 1642 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1643 Inst = Inst->getPrevNode(); 1644 if (!Inst) { 1645 // Block wasn't big enough. 1646 Fail = true; 1647 return; 1648 } 1649 Insts.push_back(Inst); 1650 } 1651 } 1652 1653 bool isValid() const { 1654 return !Fail; 1655 } 1656 1657 void operator -- () { 1658 if (Fail) 1659 return; 1660 for (auto *&Inst : Insts) { 1661 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1662 Inst = Inst->getPrevNode(); 1663 // Already at beginning of block. 1664 if (!Inst) { 1665 Fail = true; 1666 return; 1667 } 1668 } 1669 } 1670 1671 ArrayRef<Instruction*> operator * () const { 1672 return Insts; 1673 } 1674 }; 1675 1676 } // end anonymous namespace 1677 1678 /// Given an unconditional branch that goes to BBEnd, 1679 /// check whether BBEnd has only two predecessors and the other predecessor 1680 /// ends with an unconditional branch. If it is true, sink any common code 1681 /// in the two predecessors to BBEnd. 1682 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1683 assert(BI1->isUnconditional()); 1684 BasicBlock *BBEnd = BI1->getSuccessor(0); 1685 1686 // We support two situations: 1687 // (1) all incoming arcs are unconditional 1688 // (2) one incoming arc is conditional 1689 // 1690 // (2) is very common in switch defaults and 1691 // else-if patterns; 1692 // 1693 // if (a) f(1); 1694 // else if (b) f(2); 1695 // 1696 // produces: 1697 // 1698 // [if] 1699 // / \ 1700 // [f(1)] [if] 1701 // | | \ 1702 // | | | 1703 // | [f(2)]| 1704 // \ | / 1705 // [ end ] 1706 // 1707 // [end] has two unconditional predecessor arcs and one conditional. The 1708 // conditional refers to the implicit empty 'else' arc. This conditional 1709 // arc can also be caused by an empty default block in a switch. 1710 // 1711 // In this case, we attempt to sink code from all *unconditional* arcs. 1712 // If we can sink instructions from these arcs (determined during the scan 1713 // phase below) we insert a common successor for all unconditional arcs and 1714 // connect that to [end], to enable sinking: 1715 // 1716 // [if] 1717 // / \ 1718 // [x(1)] [if] 1719 // | | \ 1720 // | | \ 1721 // | [x(2)] | 1722 // \ / | 1723 // [sink.split] | 1724 // \ / 1725 // [ end ] 1726 // 1727 SmallVector<BasicBlock*,4> UnconditionalPreds; 1728 Instruction *Cond = nullptr; 1729 for (auto *B : predecessors(BBEnd)) { 1730 auto *T = B->getTerminator(); 1731 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1732 UnconditionalPreds.push_back(B); 1733 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1734 Cond = T; 1735 else 1736 return false; 1737 } 1738 if (UnconditionalPreds.size() < 2) 1739 return false; 1740 1741 bool Changed = false; 1742 // We take a two-step approach to tail sinking. First we scan from the end of 1743 // each block upwards in lockstep. If the n'th instruction from the end of each 1744 // block can be sunk, those instructions are added to ValuesToSink and we 1745 // carry on. If we can sink an instruction but need to PHI-merge some operands 1746 // (because they're not identical in each instruction) we add these to 1747 // PHIOperands. 1748 unsigned ScanIdx = 0; 1749 SmallPtrSet<Value*,4> InstructionsToSink; 1750 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1751 LockstepReverseIterator LRI(UnconditionalPreds); 1752 while (LRI.isValid() && 1753 canSinkInstructions(*LRI, PHIOperands)) { 1754 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1755 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1756 ++ScanIdx; 1757 --LRI; 1758 } 1759 1760 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1761 unsigned NumPHIdValues = 0; 1762 for (auto *I : *LRI) 1763 for (auto *V : PHIOperands[I]) 1764 if (InstructionsToSink.count(V) == 0) 1765 ++NumPHIdValues; 1766 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1767 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1768 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1769 NumPHIInsts++; 1770 1771 return NumPHIInsts <= 1; 1772 }; 1773 1774 if (ScanIdx > 0 && Cond) { 1775 // Check if we would actually sink anything first! This mutates the CFG and 1776 // adds an extra block. The goal in doing this is to allow instructions that 1777 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1778 // (such as trunc, add) can be sunk and predicated already. So we check that 1779 // we're going to sink at least one non-speculatable instruction. 1780 LRI.reset(); 1781 unsigned Idx = 0; 1782 bool Profitable = false; 1783 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1784 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1785 Profitable = true; 1786 break; 1787 } 1788 --LRI; 1789 ++Idx; 1790 } 1791 if (!Profitable) 1792 return false; 1793 1794 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1795 // We have a conditional edge and we're going to sink some instructions. 1796 // Insert a new block postdominating all blocks we're going to sink from. 1797 if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds, 1798 ".sink.split")) 1799 // Edges couldn't be split. 1800 return false; 1801 Changed = true; 1802 } 1803 1804 // Now that we've analyzed all potential sinking candidates, perform the 1805 // actual sink. We iteratively sink the last non-terminator of the source 1806 // blocks into their common successor unless doing so would require too 1807 // many PHI instructions to be generated (currently only one PHI is allowed 1808 // per sunk instruction). 1809 // 1810 // We can use InstructionsToSink to discount values needing PHI-merging that will 1811 // actually be sunk in a later iteration. This allows us to be more 1812 // aggressive in what we sink. This does allow a false positive where we 1813 // sink presuming a later value will also be sunk, but stop half way through 1814 // and never actually sink it which means we produce more PHIs than intended. 1815 // This is unlikely in practice though. 1816 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1817 DEBUG(dbgs() << "SINK: Sink: " 1818 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1819 << "\n"); 1820 1821 // Because we've sunk every instruction in turn, the current instruction to 1822 // sink is always at index 0. 1823 LRI.reset(); 1824 if (!ProfitableToSinkInstruction(LRI)) { 1825 // Too many PHIs would be created. 1826 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1827 break; 1828 } 1829 1830 if (!sinkLastInstruction(UnconditionalPreds)) 1831 return Changed; 1832 NumSinkCommons++; 1833 Changed = true; 1834 } 1835 return Changed; 1836 } 1837 1838 /// \brief Determine if we can hoist sink a sole store instruction out of a 1839 /// conditional block. 1840 /// 1841 /// We are looking for code like the following: 1842 /// BrBB: 1843 /// store i32 %add, i32* %arrayidx2 1844 /// ... // No other stores or function calls (we could be calling a memory 1845 /// ... // function). 1846 /// %cmp = icmp ult %x, %y 1847 /// br i1 %cmp, label %EndBB, label %ThenBB 1848 /// ThenBB: 1849 /// store i32 %add5, i32* %arrayidx2 1850 /// br label EndBB 1851 /// EndBB: 1852 /// ... 1853 /// We are going to transform this into: 1854 /// BrBB: 1855 /// store i32 %add, i32* %arrayidx2 1856 /// ... // 1857 /// %cmp = icmp ult %x, %y 1858 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1859 /// store i32 %add.add5, i32* %arrayidx2 1860 /// ... 1861 /// 1862 /// \return The pointer to the value of the previous store if the store can be 1863 /// hoisted into the predecessor block. 0 otherwise. 1864 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1865 BasicBlock *StoreBB, BasicBlock *EndBB) { 1866 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1867 if (!StoreToHoist) 1868 return nullptr; 1869 1870 // Volatile or atomic. 1871 if (!StoreToHoist->isSimple()) 1872 return nullptr; 1873 1874 Value *StorePtr = StoreToHoist->getPointerOperand(); 1875 1876 // Look for a store to the same pointer in BrBB. 1877 unsigned MaxNumInstToLookAt = 9; 1878 for (Instruction &CurI : reverse(*BrBB)) { 1879 if (!MaxNumInstToLookAt) 1880 break; 1881 // Skip debug info. 1882 if (isa<DbgInfoIntrinsic>(CurI)) 1883 continue; 1884 --MaxNumInstToLookAt; 1885 1886 // Could be calling an instruction that affects memory like free(). 1887 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1888 return nullptr; 1889 1890 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1891 // Found the previous store make sure it stores to the same location. 1892 if (SI->getPointerOperand() == StorePtr) 1893 // Found the previous store, return its value operand. 1894 return SI->getValueOperand(); 1895 return nullptr; // Unknown store. 1896 } 1897 } 1898 1899 return nullptr; 1900 } 1901 1902 /// \brief Speculate a conditional basic block flattening the CFG. 1903 /// 1904 /// Note that this is a very risky transform currently. Speculating 1905 /// instructions like this is most often not desirable. Instead, there is an MI 1906 /// pass which can do it with full awareness of the resource constraints. 1907 /// However, some cases are "obvious" and we should do directly. An example of 1908 /// this is speculating a single, reasonably cheap instruction. 1909 /// 1910 /// There is only one distinct advantage to flattening the CFG at the IR level: 1911 /// it makes very common but simplistic optimizations such as are common in 1912 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1913 /// modeling their effects with easier to reason about SSA value graphs. 1914 /// 1915 /// 1916 /// An illustration of this transform is turning this IR: 1917 /// \code 1918 /// BB: 1919 /// %cmp = icmp ult %x, %y 1920 /// br i1 %cmp, label %EndBB, label %ThenBB 1921 /// ThenBB: 1922 /// %sub = sub %x, %y 1923 /// br label BB2 1924 /// EndBB: 1925 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1926 /// ... 1927 /// \endcode 1928 /// 1929 /// Into this IR: 1930 /// \code 1931 /// BB: 1932 /// %cmp = icmp ult %x, %y 1933 /// %sub = sub %x, %y 1934 /// %cond = select i1 %cmp, 0, %sub 1935 /// ... 1936 /// \endcode 1937 /// 1938 /// \returns true if the conditional block is removed. 1939 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1940 const TargetTransformInfo &TTI) { 1941 // Be conservative for now. FP select instruction can often be expensive. 1942 Value *BrCond = BI->getCondition(); 1943 if (isa<FCmpInst>(BrCond)) 1944 return false; 1945 1946 BasicBlock *BB = BI->getParent(); 1947 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1948 1949 // If ThenBB is actually on the false edge of the conditional branch, remember 1950 // to swap the select operands later. 1951 bool Invert = false; 1952 if (ThenBB != BI->getSuccessor(0)) { 1953 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1954 Invert = true; 1955 } 1956 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1957 1958 // Keep a count of how many times instructions are used within CondBB when 1959 // they are candidates for sinking into CondBB. Specifically: 1960 // - They are defined in BB, and 1961 // - They have no side effects, and 1962 // - All of their uses are in CondBB. 1963 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1964 1965 unsigned SpeculationCost = 0; 1966 Value *SpeculatedStoreValue = nullptr; 1967 StoreInst *SpeculatedStore = nullptr; 1968 for (BasicBlock::iterator BBI = ThenBB->begin(), 1969 BBE = std::prev(ThenBB->end()); 1970 BBI != BBE; ++BBI) { 1971 Instruction *I = &*BBI; 1972 // Skip debug info. 1973 if (isa<DbgInfoIntrinsic>(I)) 1974 continue; 1975 1976 // Only speculatively execute a single instruction (not counting the 1977 // terminator) for now. 1978 ++SpeculationCost; 1979 if (SpeculationCost > 1) 1980 return false; 1981 1982 // Don't hoist the instruction if it's unsafe or expensive. 1983 if (!isSafeToSpeculativelyExecute(I) && 1984 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1985 I, BB, ThenBB, EndBB)))) 1986 return false; 1987 if (!SpeculatedStoreValue && 1988 ComputeSpeculationCost(I, TTI) > 1989 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1990 return false; 1991 1992 // Store the store speculation candidate. 1993 if (SpeculatedStoreValue) 1994 SpeculatedStore = cast<StoreInst>(I); 1995 1996 // Do not hoist the instruction if any of its operands are defined but not 1997 // used in BB. The transformation will prevent the operand from 1998 // being sunk into the use block. 1999 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2000 Instruction *OpI = dyn_cast<Instruction>(*i); 2001 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2002 continue; // Not a candidate for sinking. 2003 2004 ++SinkCandidateUseCounts[OpI]; 2005 } 2006 } 2007 2008 // Consider any sink candidates which are only used in CondBB as costs for 2009 // speculation. Note, while we iterate over a DenseMap here, we are summing 2010 // and so iteration order isn't significant. 2011 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2012 I = SinkCandidateUseCounts.begin(), 2013 E = SinkCandidateUseCounts.end(); 2014 I != E; ++I) 2015 if (I->first->getNumUses() == I->second) { 2016 ++SpeculationCost; 2017 if (SpeculationCost > 1) 2018 return false; 2019 } 2020 2021 // Check that the PHI nodes can be converted to selects. 2022 bool HaveRewritablePHIs = false; 2023 for (BasicBlock::iterator I = EndBB->begin(); 2024 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2025 Value *OrigV = PN->getIncomingValueForBlock(BB); 2026 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 2027 2028 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2029 // Skip PHIs which are trivial. 2030 if (ThenV == OrigV) 2031 continue; 2032 2033 // Don't convert to selects if we could remove undefined behavior instead. 2034 if (passingValueIsAlwaysUndefined(OrigV, PN) || 2035 passingValueIsAlwaysUndefined(ThenV, PN)) 2036 return false; 2037 2038 HaveRewritablePHIs = true; 2039 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2040 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2041 if (!OrigCE && !ThenCE) 2042 continue; // Known safe and cheap. 2043 2044 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2045 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2046 return false; 2047 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2048 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2049 unsigned MaxCost = 2050 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2051 if (OrigCost + ThenCost > MaxCost) 2052 return false; 2053 2054 // Account for the cost of an unfolded ConstantExpr which could end up 2055 // getting expanded into Instructions. 2056 // FIXME: This doesn't account for how many operations are combined in the 2057 // constant expression. 2058 ++SpeculationCost; 2059 if (SpeculationCost > 1) 2060 return false; 2061 } 2062 2063 // If there are no PHIs to process, bail early. This helps ensure idempotence 2064 // as well. 2065 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2066 return false; 2067 2068 // If we get here, we can hoist the instruction and if-convert. 2069 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2070 2071 // Insert a select of the value of the speculated store. 2072 if (SpeculatedStoreValue) { 2073 IRBuilder<NoFolder> Builder(BI); 2074 Value *TrueV = SpeculatedStore->getValueOperand(); 2075 Value *FalseV = SpeculatedStoreValue; 2076 if (Invert) 2077 std::swap(TrueV, FalseV); 2078 Value *S = Builder.CreateSelect( 2079 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2080 SpeculatedStore->setOperand(0, S); 2081 SpeculatedStore->setDebugLoc( 2082 DILocation::getMergedLocation( 2083 BI->getDebugLoc(), SpeculatedStore->getDebugLoc())); 2084 } 2085 2086 // Metadata can be dependent on the condition we are hoisting above. 2087 // Conservatively strip all metadata on the instruction. 2088 for (auto &I : *ThenBB) 2089 I.dropUnknownNonDebugMetadata(); 2090 2091 // Hoist the instructions. 2092 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2093 ThenBB->begin(), std::prev(ThenBB->end())); 2094 2095 // Insert selects and rewrite the PHI operands. 2096 IRBuilder<NoFolder> Builder(BI); 2097 for (BasicBlock::iterator I = EndBB->begin(); 2098 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2099 unsigned OrigI = PN->getBasicBlockIndex(BB); 2100 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 2101 Value *OrigV = PN->getIncomingValue(OrigI); 2102 Value *ThenV = PN->getIncomingValue(ThenI); 2103 2104 // Skip PHIs which are trivial. 2105 if (OrigV == ThenV) 2106 continue; 2107 2108 // Create a select whose true value is the speculatively executed value and 2109 // false value is the preexisting value. Swap them if the branch 2110 // destinations were inverted. 2111 Value *TrueV = ThenV, *FalseV = OrigV; 2112 if (Invert) 2113 std::swap(TrueV, FalseV); 2114 Value *V = Builder.CreateSelect( 2115 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2116 PN->setIncomingValue(OrigI, V); 2117 PN->setIncomingValue(ThenI, V); 2118 } 2119 2120 ++NumSpeculations; 2121 return true; 2122 } 2123 2124 /// Return true if we can thread a branch across this block. 2125 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2126 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2127 unsigned Size = 0; 2128 2129 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2130 if (isa<DbgInfoIntrinsic>(BBI)) 2131 continue; 2132 if (Size > 10) 2133 return false; // Don't clone large BB's. 2134 ++Size; 2135 2136 // We can only support instructions that do not define values that are 2137 // live outside of the current basic block. 2138 for (User *U : BBI->users()) { 2139 Instruction *UI = cast<Instruction>(U); 2140 if (UI->getParent() != BB || isa<PHINode>(UI)) 2141 return false; 2142 } 2143 2144 // Looks ok, continue checking. 2145 } 2146 2147 return true; 2148 } 2149 2150 /// If we have a conditional branch on a PHI node value that is defined in the 2151 /// same block as the branch and if any PHI entries are constants, thread edges 2152 /// corresponding to that entry to be branches to their ultimate destination. 2153 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 2154 BasicBlock *BB = BI->getParent(); 2155 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2156 // NOTE: we currently cannot transform this case if the PHI node is used 2157 // outside of the block. 2158 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2159 return false; 2160 2161 // Degenerate case of a single entry PHI. 2162 if (PN->getNumIncomingValues() == 1) { 2163 FoldSingleEntryPHINodes(PN->getParent()); 2164 return true; 2165 } 2166 2167 // Now we know that this block has multiple preds and two succs. 2168 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2169 return false; 2170 2171 // Can't fold blocks that contain noduplicate or convergent calls. 2172 if (any_of(*BB, [](const Instruction &I) { 2173 const CallInst *CI = dyn_cast<CallInst>(&I); 2174 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2175 })) 2176 return false; 2177 2178 // Okay, this is a simple enough basic block. See if any phi values are 2179 // constants. 2180 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2181 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2182 if (!CB || !CB->getType()->isIntegerTy(1)) 2183 continue; 2184 2185 // Okay, we now know that all edges from PredBB should be revectored to 2186 // branch to RealDest. 2187 BasicBlock *PredBB = PN->getIncomingBlock(i); 2188 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2189 2190 if (RealDest == BB) 2191 continue; // Skip self loops. 2192 // Skip if the predecessor's terminator is an indirect branch. 2193 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2194 continue; 2195 2196 // The dest block might have PHI nodes, other predecessors and other 2197 // difficult cases. Instead of being smart about this, just insert a new 2198 // block that jumps to the destination block, effectively splitting 2199 // the edge we are about to create. 2200 BasicBlock *EdgeBB = 2201 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2202 RealDest->getParent(), RealDest); 2203 BranchInst::Create(RealDest, EdgeBB); 2204 2205 // Update PHI nodes. 2206 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2207 2208 // BB may have instructions that are being threaded over. Clone these 2209 // instructions into EdgeBB. We know that there will be no uses of the 2210 // cloned instructions outside of EdgeBB. 2211 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2212 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2213 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2214 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2215 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2216 continue; 2217 } 2218 // Clone the instruction. 2219 Instruction *N = BBI->clone(); 2220 if (BBI->hasName()) 2221 N->setName(BBI->getName() + ".c"); 2222 2223 // Update operands due to translation. 2224 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2225 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2226 if (PI != TranslateMap.end()) 2227 *i = PI->second; 2228 } 2229 2230 // Check for trivial simplification. 2231 if (Value *V = SimplifyInstruction(N, DL)) { 2232 if (!BBI->use_empty()) 2233 TranslateMap[&*BBI] = V; 2234 if (!N->mayHaveSideEffects()) { 2235 delete N; // Instruction folded away, don't need actual inst 2236 N = nullptr; 2237 } 2238 } else { 2239 if (!BBI->use_empty()) 2240 TranslateMap[&*BBI] = N; 2241 } 2242 // Insert the new instruction into its new home. 2243 if (N) 2244 EdgeBB->getInstList().insert(InsertPt, N); 2245 } 2246 2247 // Loop over all of the edges from PredBB to BB, changing them to branch 2248 // to EdgeBB instead. 2249 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2250 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2251 if (PredBBTI->getSuccessor(i) == BB) { 2252 BB->removePredecessor(PredBB); 2253 PredBBTI->setSuccessor(i, EdgeBB); 2254 } 2255 2256 // Recurse, simplifying any other constants. 2257 return FoldCondBranchOnPHI(BI, DL) | true; 2258 } 2259 2260 return false; 2261 } 2262 2263 /// Given a BB that starts with the specified two-entry PHI node, 2264 /// see if we can eliminate it. 2265 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2266 const DataLayout &DL) { 2267 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2268 // statement", which has a very simple dominance structure. Basically, we 2269 // are trying to find the condition that is being branched on, which 2270 // subsequently causes this merge to happen. We really want control 2271 // dependence information for this check, but simplifycfg can't keep it up 2272 // to date, and this catches most of the cases we care about anyway. 2273 BasicBlock *BB = PN->getParent(); 2274 BasicBlock *IfTrue, *IfFalse; 2275 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2276 if (!IfCond || 2277 // Don't bother if the branch will be constant folded trivially. 2278 isa<ConstantInt>(IfCond)) 2279 return false; 2280 2281 // Okay, we found that we can merge this two-entry phi node into a select. 2282 // Doing so would require us to fold *all* two entry phi nodes in this block. 2283 // At some point this becomes non-profitable (particularly if the target 2284 // doesn't support cmov's). Only do this transformation if there are two or 2285 // fewer PHI nodes in this block. 2286 unsigned NumPhis = 0; 2287 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2288 if (NumPhis > 2) 2289 return false; 2290 2291 // Loop over the PHI's seeing if we can promote them all to select 2292 // instructions. While we are at it, keep track of the instructions 2293 // that need to be moved to the dominating block. 2294 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2295 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2296 MaxCostVal1 = PHINodeFoldingThreshold; 2297 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2298 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2299 2300 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2301 PHINode *PN = cast<PHINode>(II++); 2302 if (Value *V = SimplifyInstruction(PN, DL)) { 2303 PN->replaceAllUsesWith(V); 2304 PN->eraseFromParent(); 2305 continue; 2306 } 2307 2308 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2309 MaxCostVal0, TTI) || 2310 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2311 MaxCostVal1, TTI)) 2312 return false; 2313 } 2314 2315 // If we folded the first phi, PN dangles at this point. Refresh it. If 2316 // we ran out of PHIs then we simplified them all. 2317 PN = dyn_cast<PHINode>(BB->begin()); 2318 if (!PN) 2319 return true; 2320 2321 // Don't fold i1 branches on PHIs which contain binary operators. These can 2322 // often be turned into switches and other things. 2323 if (PN->getType()->isIntegerTy(1) && 2324 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2325 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2326 isa<BinaryOperator>(IfCond))) 2327 return false; 2328 2329 // If all PHI nodes are promotable, check to make sure that all instructions 2330 // in the predecessor blocks can be promoted as well. If not, we won't be able 2331 // to get rid of the control flow, so it's not worth promoting to select 2332 // instructions. 2333 BasicBlock *DomBlock = nullptr; 2334 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2335 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2336 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2337 IfBlock1 = nullptr; 2338 } else { 2339 DomBlock = *pred_begin(IfBlock1); 2340 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2341 ++I) 2342 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2343 // This is not an aggressive instruction that we can promote. 2344 // Because of this, we won't be able to get rid of the control flow, so 2345 // the xform is not worth it. 2346 return false; 2347 } 2348 } 2349 2350 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2351 IfBlock2 = nullptr; 2352 } else { 2353 DomBlock = *pred_begin(IfBlock2); 2354 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2355 ++I) 2356 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2357 // This is not an aggressive instruction that we can promote. 2358 // Because of this, we won't be able to get rid of the control flow, so 2359 // the xform is not worth it. 2360 return false; 2361 } 2362 } 2363 2364 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2365 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2366 2367 // If we can still promote the PHI nodes after this gauntlet of tests, 2368 // do all of the PHI's now. 2369 Instruction *InsertPt = DomBlock->getTerminator(); 2370 IRBuilder<NoFolder> Builder(InsertPt); 2371 2372 // Move all 'aggressive' instructions, which are defined in the 2373 // conditional parts of the if's up to the dominating block. 2374 if (IfBlock1) { 2375 for (auto &I : *IfBlock1) 2376 I.dropUnknownNonDebugMetadata(); 2377 DomBlock->getInstList().splice(InsertPt->getIterator(), 2378 IfBlock1->getInstList(), IfBlock1->begin(), 2379 IfBlock1->getTerminator()->getIterator()); 2380 } 2381 if (IfBlock2) { 2382 for (auto &I : *IfBlock2) 2383 I.dropUnknownNonDebugMetadata(); 2384 DomBlock->getInstList().splice(InsertPt->getIterator(), 2385 IfBlock2->getInstList(), IfBlock2->begin(), 2386 IfBlock2->getTerminator()->getIterator()); 2387 } 2388 2389 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2390 // Change the PHI node into a select instruction. 2391 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2392 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2393 2394 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2395 PN->replaceAllUsesWith(Sel); 2396 Sel->takeName(PN); 2397 PN->eraseFromParent(); 2398 } 2399 2400 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2401 // has been flattened. Change DomBlock to jump directly to our new block to 2402 // avoid other simplifycfg's kicking in on the diamond. 2403 TerminatorInst *OldTI = DomBlock->getTerminator(); 2404 Builder.SetInsertPoint(OldTI); 2405 Builder.CreateBr(BB); 2406 OldTI->eraseFromParent(); 2407 return true; 2408 } 2409 2410 /// If we found a conditional branch that goes to two returning blocks, 2411 /// try to merge them together into one return, 2412 /// introducing a select if the return values disagree. 2413 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2414 IRBuilder<> &Builder) { 2415 assert(BI->isConditional() && "Must be a conditional branch"); 2416 BasicBlock *TrueSucc = BI->getSuccessor(0); 2417 BasicBlock *FalseSucc = BI->getSuccessor(1); 2418 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2419 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2420 2421 // Check to ensure both blocks are empty (just a return) or optionally empty 2422 // with PHI nodes. If there are other instructions, merging would cause extra 2423 // computation on one path or the other. 2424 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2425 return false; 2426 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2427 return false; 2428 2429 Builder.SetInsertPoint(BI); 2430 // Okay, we found a branch that is going to two return nodes. If 2431 // there is no return value for this function, just change the 2432 // branch into a return. 2433 if (FalseRet->getNumOperands() == 0) { 2434 TrueSucc->removePredecessor(BI->getParent()); 2435 FalseSucc->removePredecessor(BI->getParent()); 2436 Builder.CreateRetVoid(); 2437 EraseTerminatorInstAndDCECond(BI); 2438 return true; 2439 } 2440 2441 // Otherwise, figure out what the true and false return values are 2442 // so we can insert a new select instruction. 2443 Value *TrueValue = TrueRet->getReturnValue(); 2444 Value *FalseValue = FalseRet->getReturnValue(); 2445 2446 // Unwrap any PHI nodes in the return blocks. 2447 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2448 if (TVPN->getParent() == TrueSucc) 2449 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2450 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2451 if (FVPN->getParent() == FalseSucc) 2452 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2453 2454 // In order for this transformation to be safe, we must be able to 2455 // unconditionally execute both operands to the return. This is 2456 // normally the case, but we could have a potentially-trapping 2457 // constant expression that prevents this transformation from being 2458 // safe. 2459 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2460 if (TCV->canTrap()) 2461 return false; 2462 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2463 if (FCV->canTrap()) 2464 return false; 2465 2466 // Okay, we collected all the mapped values and checked them for sanity, and 2467 // defined to really do this transformation. First, update the CFG. 2468 TrueSucc->removePredecessor(BI->getParent()); 2469 FalseSucc->removePredecessor(BI->getParent()); 2470 2471 // Insert select instructions where needed. 2472 Value *BrCond = BI->getCondition(); 2473 if (TrueValue) { 2474 // Insert a select if the results differ. 2475 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2476 } else if (isa<UndefValue>(TrueValue)) { 2477 TrueValue = FalseValue; 2478 } else { 2479 TrueValue = 2480 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2481 } 2482 } 2483 2484 Value *RI = 2485 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2486 2487 (void)RI; 2488 2489 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2490 << "\n " << *BI << "NewRet = " << *RI 2491 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2492 2493 EraseTerminatorInstAndDCECond(BI); 2494 2495 return true; 2496 } 2497 2498 /// Return true if the given instruction is available 2499 /// in its predecessor block. If yes, the instruction will be removed. 2500 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2501 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2502 return false; 2503 for (Instruction &I : *PB) { 2504 Instruction *PBI = &I; 2505 // Check whether Inst and PBI generate the same value. 2506 if (Inst->isIdenticalTo(PBI)) { 2507 Inst->replaceAllUsesWith(PBI); 2508 Inst->eraseFromParent(); 2509 return true; 2510 } 2511 } 2512 return false; 2513 } 2514 2515 /// Return true if either PBI or BI has branch weight available, and store 2516 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2517 /// not have branch weight, use 1:1 as its weight. 2518 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2519 uint64_t &PredTrueWeight, 2520 uint64_t &PredFalseWeight, 2521 uint64_t &SuccTrueWeight, 2522 uint64_t &SuccFalseWeight) { 2523 bool PredHasWeights = 2524 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2525 bool SuccHasWeights = 2526 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2527 if (PredHasWeights || SuccHasWeights) { 2528 if (!PredHasWeights) 2529 PredTrueWeight = PredFalseWeight = 1; 2530 if (!SuccHasWeights) 2531 SuccTrueWeight = SuccFalseWeight = 1; 2532 return true; 2533 } else { 2534 return false; 2535 } 2536 } 2537 2538 /// If this basic block is simple enough, and if a predecessor branches to us 2539 /// and one of our successors, fold the block into the predecessor and use 2540 /// logical operations to pick the right destination. 2541 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2542 BasicBlock *BB = BI->getParent(); 2543 2544 Instruction *Cond = nullptr; 2545 if (BI->isConditional()) 2546 Cond = dyn_cast<Instruction>(BI->getCondition()); 2547 else { 2548 // For unconditional branch, check for a simple CFG pattern, where 2549 // BB has a single predecessor and BB's successor is also its predecessor's 2550 // successor. If such pattern exisits, check for CSE between BB and its 2551 // predecessor. 2552 if (BasicBlock *PB = BB->getSinglePredecessor()) 2553 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2554 if (PBI->isConditional() && 2555 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2556 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2557 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2558 Instruction *Curr = &*I++; 2559 if (isa<CmpInst>(Curr)) { 2560 Cond = Curr; 2561 break; 2562 } 2563 // Quit if we can't remove this instruction. 2564 if (!checkCSEInPredecessor(Curr, PB)) 2565 return false; 2566 } 2567 } 2568 2569 if (!Cond) 2570 return false; 2571 } 2572 2573 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2574 Cond->getParent() != BB || !Cond->hasOneUse()) 2575 return false; 2576 2577 // Make sure the instruction after the condition is the cond branch. 2578 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2579 2580 // Ignore dbg intrinsics. 2581 while (isa<DbgInfoIntrinsic>(CondIt)) 2582 ++CondIt; 2583 2584 if (&*CondIt != BI) 2585 return false; 2586 2587 // Only allow this transformation if computing the condition doesn't involve 2588 // too many instructions and these involved instructions can be executed 2589 // unconditionally. We denote all involved instructions except the condition 2590 // as "bonus instructions", and only allow this transformation when the 2591 // number of the bonus instructions does not exceed a certain threshold. 2592 unsigned NumBonusInsts = 0; 2593 for (auto I = BB->begin(); Cond != &*I; ++I) { 2594 // Ignore dbg intrinsics. 2595 if (isa<DbgInfoIntrinsic>(I)) 2596 continue; 2597 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2598 return false; 2599 // I has only one use and can be executed unconditionally. 2600 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2601 if (User == nullptr || User->getParent() != BB) 2602 return false; 2603 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2604 // to use any other instruction, User must be an instruction between next(I) 2605 // and Cond. 2606 ++NumBonusInsts; 2607 // Early exits once we reach the limit. 2608 if (NumBonusInsts > BonusInstThreshold) 2609 return false; 2610 } 2611 2612 // Cond is known to be a compare or binary operator. Check to make sure that 2613 // neither operand is a potentially-trapping constant expression. 2614 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2615 if (CE->canTrap()) 2616 return false; 2617 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2618 if (CE->canTrap()) 2619 return false; 2620 2621 // Finally, don't infinitely unroll conditional loops. 2622 BasicBlock *TrueDest = BI->getSuccessor(0); 2623 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2624 if (TrueDest == BB || FalseDest == BB) 2625 return false; 2626 2627 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2628 BasicBlock *PredBlock = *PI; 2629 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2630 2631 // Check that we have two conditional branches. If there is a PHI node in 2632 // the common successor, verify that the same value flows in from both 2633 // blocks. 2634 SmallVector<PHINode *, 4> PHIs; 2635 if (!PBI || PBI->isUnconditional() || 2636 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2637 (!BI->isConditional() && 2638 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2639 continue; 2640 2641 // Determine if the two branches share a common destination. 2642 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2643 bool InvertPredCond = false; 2644 2645 if (BI->isConditional()) { 2646 if (PBI->getSuccessor(0) == TrueDest) { 2647 Opc = Instruction::Or; 2648 } else if (PBI->getSuccessor(1) == FalseDest) { 2649 Opc = Instruction::And; 2650 } else if (PBI->getSuccessor(0) == FalseDest) { 2651 Opc = Instruction::And; 2652 InvertPredCond = true; 2653 } else if (PBI->getSuccessor(1) == TrueDest) { 2654 Opc = Instruction::Or; 2655 InvertPredCond = true; 2656 } else { 2657 continue; 2658 } 2659 } else { 2660 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2661 continue; 2662 } 2663 2664 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2665 IRBuilder<> Builder(PBI); 2666 2667 // If we need to invert the condition in the pred block to match, do so now. 2668 if (InvertPredCond) { 2669 Value *NewCond = PBI->getCondition(); 2670 2671 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2672 CmpInst *CI = cast<CmpInst>(NewCond); 2673 CI->setPredicate(CI->getInversePredicate()); 2674 } else { 2675 NewCond = 2676 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2677 } 2678 2679 PBI->setCondition(NewCond); 2680 PBI->swapSuccessors(); 2681 } 2682 2683 // If we have bonus instructions, clone them into the predecessor block. 2684 // Note that there may be multiple predecessor blocks, so we cannot move 2685 // bonus instructions to a predecessor block. 2686 ValueToValueMapTy VMap; // maps original values to cloned values 2687 // We already make sure Cond is the last instruction before BI. Therefore, 2688 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2689 // instructions. 2690 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2691 if (isa<DbgInfoIntrinsic>(BonusInst)) 2692 continue; 2693 Instruction *NewBonusInst = BonusInst->clone(); 2694 RemapInstruction(NewBonusInst, VMap, 2695 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2696 VMap[&*BonusInst] = NewBonusInst; 2697 2698 // If we moved a load, we cannot any longer claim any knowledge about 2699 // its potential value. The previous information might have been valid 2700 // only given the branch precondition. 2701 // For an analogous reason, we must also drop all the metadata whose 2702 // semantics we don't understand. 2703 NewBonusInst->dropUnknownNonDebugMetadata(); 2704 2705 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2706 NewBonusInst->takeName(&*BonusInst); 2707 BonusInst->setName(BonusInst->getName() + ".old"); 2708 } 2709 2710 // Clone Cond into the predecessor basic block, and or/and the 2711 // two conditions together. 2712 Instruction *New = Cond->clone(); 2713 RemapInstruction(New, VMap, 2714 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2715 PredBlock->getInstList().insert(PBI->getIterator(), New); 2716 New->takeName(Cond); 2717 Cond->setName(New->getName() + ".old"); 2718 2719 if (BI->isConditional()) { 2720 Instruction *NewCond = cast<Instruction>( 2721 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2722 PBI->setCondition(NewCond); 2723 2724 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2725 bool HasWeights = 2726 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2727 SuccTrueWeight, SuccFalseWeight); 2728 SmallVector<uint64_t, 8> NewWeights; 2729 2730 if (PBI->getSuccessor(0) == BB) { 2731 if (HasWeights) { 2732 // PBI: br i1 %x, BB, FalseDest 2733 // BI: br i1 %y, TrueDest, FalseDest 2734 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2735 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2736 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2737 // TrueWeight for PBI * FalseWeight for BI. 2738 // We assume that total weights of a BranchInst can fit into 32 bits. 2739 // Therefore, we will not have overflow using 64-bit arithmetic. 2740 NewWeights.push_back(PredFalseWeight * 2741 (SuccFalseWeight + SuccTrueWeight) + 2742 PredTrueWeight * SuccFalseWeight); 2743 } 2744 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2745 PBI->setSuccessor(0, TrueDest); 2746 } 2747 if (PBI->getSuccessor(1) == BB) { 2748 if (HasWeights) { 2749 // PBI: br i1 %x, TrueDest, BB 2750 // BI: br i1 %y, TrueDest, FalseDest 2751 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2752 // FalseWeight for PBI * TrueWeight for BI. 2753 NewWeights.push_back(PredTrueWeight * 2754 (SuccFalseWeight + SuccTrueWeight) + 2755 PredFalseWeight * SuccTrueWeight); 2756 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2757 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2758 } 2759 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2760 PBI->setSuccessor(1, FalseDest); 2761 } 2762 if (NewWeights.size() == 2) { 2763 // Halve the weights if any of them cannot fit in an uint32_t 2764 FitWeights(NewWeights); 2765 2766 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2767 NewWeights.end()); 2768 PBI->setMetadata( 2769 LLVMContext::MD_prof, 2770 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2771 } else 2772 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2773 } else { 2774 // Update PHI nodes in the common successors. 2775 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2776 ConstantInt *PBI_C = cast<ConstantInt>( 2777 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2778 assert(PBI_C->getType()->isIntegerTy(1)); 2779 Instruction *MergedCond = nullptr; 2780 if (PBI->getSuccessor(0) == TrueDest) { 2781 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2782 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2783 // is false: !PBI_Cond and BI_Value 2784 Instruction *NotCond = cast<Instruction>( 2785 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2786 MergedCond = cast<Instruction>( 2787 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2788 if (PBI_C->isOne()) 2789 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2790 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2791 } else { 2792 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2793 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2794 // is false: PBI_Cond and BI_Value 2795 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2796 Instruction::And, PBI->getCondition(), New, "and.cond")); 2797 if (PBI_C->isOne()) { 2798 Instruction *NotCond = cast<Instruction>( 2799 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2800 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2801 Instruction::Or, NotCond, MergedCond, "or.cond")); 2802 } 2803 } 2804 // Update PHI Node. 2805 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2806 MergedCond); 2807 } 2808 // Change PBI from Conditional to Unconditional. 2809 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2810 EraseTerminatorInstAndDCECond(PBI); 2811 PBI = New_PBI; 2812 } 2813 2814 // If BI was a loop latch, it may have had associated loop metadata. 2815 // We need to copy it to the new latch, that is, PBI. 2816 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2817 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2818 2819 // TODO: If BB is reachable from all paths through PredBlock, then we 2820 // could replace PBI's branch probabilities with BI's. 2821 2822 // Copy any debug value intrinsics into the end of PredBlock. 2823 for (Instruction &I : *BB) 2824 if (isa<DbgInfoIntrinsic>(I)) 2825 I.clone()->insertBefore(PBI); 2826 2827 return true; 2828 } 2829 return false; 2830 } 2831 2832 // If there is only one store in BB1 and BB2, return it, otherwise return 2833 // nullptr. 2834 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2835 StoreInst *S = nullptr; 2836 for (auto *BB : {BB1, BB2}) { 2837 if (!BB) 2838 continue; 2839 for (auto &I : *BB) 2840 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2841 if (S) 2842 // Multiple stores seen. 2843 return nullptr; 2844 else 2845 S = SI; 2846 } 2847 } 2848 return S; 2849 } 2850 2851 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2852 Value *AlternativeV = nullptr) { 2853 // PHI is going to be a PHI node that allows the value V that is defined in 2854 // BB to be referenced in BB's only successor. 2855 // 2856 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2857 // doesn't matter to us what the other operand is (it'll never get used). We 2858 // could just create a new PHI with an undef incoming value, but that could 2859 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2860 // other PHI. So here we directly look for some PHI in BB's successor with V 2861 // as an incoming operand. If we find one, we use it, else we create a new 2862 // one. 2863 // 2864 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2865 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2866 // where OtherBB is the single other predecessor of BB's only successor. 2867 PHINode *PHI = nullptr; 2868 BasicBlock *Succ = BB->getSingleSuccessor(); 2869 2870 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2871 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2872 PHI = cast<PHINode>(I); 2873 if (!AlternativeV) 2874 break; 2875 2876 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2877 auto PredI = pred_begin(Succ); 2878 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2879 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2880 break; 2881 PHI = nullptr; 2882 } 2883 if (PHI) 2884 return PHI; 2885 2886 // If V is not an instruction defined in BB, just return it. 2887 if (!AlternativeV && 2888 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2889 return V; 2890 2891 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2892 PHI->addIncoming(V, BB); 2893 for (BasicBlock *PredBB : predecessors(Succ)) 2894 if (PredBB != BB) 2895 PHI->addIncoming( 2896 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2897 return PHI; 2898 } 2899 2900 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2901 BasicBlock *QTB, BasicBlock *QFB, 2902 BasicBlock *PostBB, Value *Address, 2903 bool InvertPCond, bool InvertQCond) { 2904 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2905 return Operator::getOpcode(&I) == Instruction::BitCast && 2906 I.getType()->isPointerTy(); 2907 }; 2908 2909 // If we're not in aggressive mode, we only optimize if we have some 2910 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2911 auto IsWorthwhile = [&](BasicBlock *BB) { 2912 if (!BB) 2913 return true; 2914 // Heuristic: if the block can be if-converted/phi-folded and the 2915 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2916 // thread this store. 2917 unsigned N = 0; 2918 for (auto &I : *BB) { 2919 // Cheap instructions viable for folding. 2920 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2921 isa<StoreInst>(I)) 2922 ++N; 2923 // Free instructions. 2924 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2925 IsaBitcastOfPointerType(I)) 2926 continue; 2927 else 2928 return false; 2929 } 2930 return N <= PHINodeFoldingThreshold; 2931 }; 2932 2933 if (!MergeCondStoresAggressively && 2934 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2935 !IsWorthwhile(QFB))) 2936 return false; 2937 2938 // For every pointer, there must be exactly two stores, one coming from 2939 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2940 // store (to any address) in PTB,PFB or QTB,QFB. 2941 // FIXME: We could relax this restriction with a bit more work and performance 2942 // testing. 2943 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2944 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2945 if (!PStore || !QStore) 2946 return false; 2947 2948 // Now check the stores are compatible. 2949 if (!QStore->isUnordered() || !PStore->isUnordered()) 2950 return false; 2951 2952 // Check that sinking the store won't cause program behavior changes. Sinking 2953 // the store out of the Q blocks won't change any behavior as we're sinking 2954 // from a block to its unconditional successor. But we're moving a store from 2955 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2956 // So we need to check that there are no aliasing loads or stores in 2957 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2958 // operations between PStore and the end of its parent block. 2959 // 2960 // The ideal way to do this is to query AliasAnalysis, but we don't 2961 // preserve AA currently so that is dangerous. Be super safe and just 2962 // check there are no other memory operations at all. 2963 for (auto &I : *QFB->getSinglePredecessor()) 2964 if (I.mayReadOrWriteMemory()) 2965 return false; 2966 for (auto &I : *QFB) 2967 if (&I != QStore && I.mayReadOrWriteMemory()) 2968 return false; 2969 if (QTB) 2970 for (auto &I : *QTB) 2971 if (&I != QStore && I.mayReadOrWriteMemory()) 2972 return false; 2973 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2974 I != E; ++I) 2975 if (&*I != PStore && I->mayReadOrWriteMemory()) 2976 return false; 2977 2978 // OK, we're going to sink the stores to PostBB. The store has to be 2979 // conditional though, so first create the predicate. 2980 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2981 ->getCondition(); 2982 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2983 ->getCondition(); 2984 2985 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2986 PStore->getParent()); 2987 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2988 QStore->getParent(), PPHI); 2989 2990 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2991 2992 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2993 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2994 2995 if (InvertPCond) 2996 PPred = QB.CreateNot(PPred); 2997 if (InvertQCond) 2998 QPred = QB.CreateNot(QPred); 2999 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3000 3001 auto *T = 3002 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3003 QB.SetInsertPoint(T); 3004 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3005 AAMDNodes AAMD; 3006 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3007 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3008 SI->setAAMetadata(AAMD); 3009 3010 QStore->eraseFromParent(); 3011 PStore->eraseFromParent(); 3012 3013 return true; 3014 } 3015 3016 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 3017 // The intention here is to find diamonds or triangles (see below) where each 3018 // conditional block contains a store to the same address. Both of these 3019 // stores are conditional, so they can't be unconditionally sunk. But it may 3020 // be profitable to speculatively sink the stores into one merged store at the 3021 // end, and predicate the merged store on the union of the two conditions of 3022 // PBI and QBI. 3023 // 3024 // This can reduce the number of stores executed if both of the conditions are 3025 // true, and can allow the blocks to become small enough to be if-converted. 3026 // This optimization will also chain, so that ladders of test-and-set 3027 // sequences can be if-converted away. 3028 // 3029 // We only deal with simple diamonds or triangles: 3030 // 3031 // PBI or PBI or a combination of the two 3032 // / \ | \ 3033 // PTB PFB | PFB 3034 // \ / | / 3035 // QBI QBI 3036 // / \ | \ 3037 // QTB QFB | QFB 3038 // \ / | / 3039 // PostBB PostBB 3040 // 3041 // We model triangles as a type of diamond with a nullptr "true" block. 3042 // Triangles are canonicalized so that the fallthrough edge is represented by 3043 // a true condition, as in the diagram above. 3044 // 3045 BasicBlock *PTB = PBI->getSuccessor(0); 3046 BasicBlock *PFB = PBI->getSuccessor(1); 3047 BasicBlock *QTB = QBI->getSuccessor(0); 3048 BasicBlock *QFB = QBI->getSuccessor(1); 3049 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3050 3051 bool InvertPCond = false, InvertQCond = false; 3052 // Canonicalize fallthroughs to the true branches. 3053 if (PFB == QBI->getParent()) { 3054 std::swap(PFB, PTB); 3055 InvertPCond = true; 3056 } 3057 if (QFB == PostBB) { 3058 std::swap(QFB, QTB); 3059 InvertQCond = true; 3060 } 3061 3062 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3063 // and QFB may not. Model fallthroughs as a nullptr block. 3064 if (PTB == QBI->getParent()) 3065 PTB = nullptr; 3066 if (QTB == PostBB) 3067 QTB = nullptr; 3068 3069 // Legality bailouts. We must have at least the non-fallthrough blocks and 3070 // the post-dominating block, and the non-fallthroughs must only have one 3071 // predecessor. 3072 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3073 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3074 }; 3075 if (!PostBB || 3076 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3077 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3078 return false; 3079 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3080 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3081 return false; 3082 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 3083 return false; 3084 3085 // OK, this is a sequence of two diamonds or triangles. 3086 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3087 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3088 for (auto *BB : {PTB, PFB}) { 3089 if (!BB) 3090 continue; 3091 for (auto &I : *BB) 3092 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3093 PStoreAddresses.insert(SI->getPointerOperand()); 3094 } 3095 for (auto *BB : {QTB, QFB}) { 3096 if (!BB) 3097 continue; 3098 for (auto &I : *BB) 3099 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3100 QStoreAddresses.insert(SI->getPointerOperand()); 3101 } 3102 3103 set_intersect(PStoreAddresses, QStoreAddresses); 3104 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3105 // clear what it contains. 3106 auto &CommonAddresses = PStoreAddresses; 3107 3108 bool Changed = false; 3109 for (auto *Address : CommonAddresses) 3110 Changed |= mergeConditionalStoreToAddress( 3111 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 3112 return Changed; 3113 } 3114 3115 /// If we have a conditional branch as a predecessor of another block, 3116 /// this function tries to simplify it. We know 3117 /// that PBI and BI are both conditional branches, and BI is in one of the 3118 /// successor blocks of PBI - PBI branches to BI. 3119 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3120 const DataLayout &DL) { 3121 assert(PBI->isConditional() && BI->isConditional()); 3122 BasicBlock *BB = BI->getParent(); 3123 3124 // If this block ends with a branch instruction, and if there is a 3125 // predecessor that ends on a branch of the same condition, make 3126 // this conditional branch redundant. 3127 if (PBI->getCondition() == BI->getCondition() && 3128 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3129 // Okay, the outcome of this conditional branch is statically 3130 // knowable. If this block had a single pred, handle specially. 3131 if (BB->getSinglePredecessor()) { 3132 // Turn this into a branch on constant. 3133 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3134 BI->setCondition( 3135 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3136 return true; // Nuke the branch on constant. 3137 } 3138 3139 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3140 // in the constant and simplify the block result. Subsequent passes of 3141 // simplifycfg will thread the block. 3142 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3143 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3144 PHINode *NewPN = PHINode::Create( 3145 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3146 BI->getCondition()->getName() + ".pr", &BB->front()); 3147 // Okay, we're going to insert the PHI node. Since PBI is not the only 3148 // predecessor, compute the PHI'd conditional value for all of the preds. 3149 // Any predecessor where the condition is not computable we keep symbolic. 3150 for (pred_iterator PI = PB; PI != PE; ++PI) { 3151 BasicBlock *P = *PI; 3152 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3153 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3154 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3155 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3156 NewPN->addIncoming( 3157 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3158 P); 3159 } else { 3160 NewPN->addIncoming(BI->getCondition(), P); 3161 } 3162 } 3163 3164 BI->setCondition(NewPN); 3165 return true; 3166 } 3167 } 3168 3169 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3170 if (CE->canTrap()) 3171 return false; 3172 3173 // If both branches are conditional and both contain stores to the same 3174 // address, remove the stores from the conditionals and create a conditional 3175 // merged store at the end. 3176 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 3177 return true; 3178 3179 // If this is a conditional branch in an empty block, and if any 3180 // predecessors are a conditional branch to one of our destinations, 3181 // fold the conditions into logical ops and one cond br. 3182 BasicBlock::iterator BBI = BB->begin(); 3183 // Ignore dbg intrinsics. 3184 while (isa<DbgInfoIntrinsic>(BBI)) 3185 ++BBI; 3186 if (&*BBI != BI) 3187 return false; 3188 3189 int PBIOp, BIOp; 3190 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3191 PBIOp = 0; 3192 BIOp = 0; 3193 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3194 PBIOp = 0; 3195 BIOp = 1; 3196 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3197 PBIOp = 1; 3198 BIOp = 0; 3199 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3200 PBIOp = 1; 3201 BIOp = 1; 3202 } else { 3203 return false; 3204 } 3205 3206 // Check to make sure that the other destination of this branch 3207 // isn't BB itself. If so, this is an infinite loop that will 3208 // keep getting unwound. 3209 if (PBI->getSuccessor(PBIOp) == BB) 3210 return false; 3211 3212 // Do not perform this transformation if it would require 3213 // insertion of a large number of select instructions. For targets 3214 // without predication/cmovs, this is a big pessimization. 3215 3216 // Also do not perform this transformation if any phi node in the common 3217 // destination block can trap when reached by BB or PBB (PR17073). In that 3218 // case, it would be unsafe to hoist the operation into a select instruction. 3219 3220 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3221 unsigned NumPhis = 0; 3222 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3223 ++II, ++NumPhis) { 3224 if (NumPhis > 2) // Disable this xform. 3225 return false; 3226 3227 PHINode *PN = cast<PHINode>(II); 3228 Value *BIV = PN->getIncomingValueForBlock(BB); 3229 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3230 if (CE->canTrap()) 3231 return false; 3232 3233 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3234 Value *PBIV = PN->getIncomingValue(PBBIdx); 3235 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3236 if (CE->canTrap()) 3237 return false; 3238 } 3239 3240 // Finally, if everything is ok, fold the branches to logical ops. 3241 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3242 3243 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3244 << "AND: " << *BI->getParent()); 3245 3246 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3247 // branch in it, where one edge (OtherDest) goes back to itself but the other 3248 // exits. We don't *know* that the program avoids the infinite loop 3249 // (even though that seems likely). If we do this xform naively, we'll end up 3250 // recursively unpeeling the loop. Since we know that (after the xform is 3251 // done) that the block *is* infinite if reached, we just make it an obviously 3252 // infinite loop with no cond branch. 3253 if (OtherDest == BB) { 3254 // Insert it at the end of the function, because it's either code, 3255 // or it won't matter if it's hot. :) 3256 BasicBlock *InfLoopBlock = 3257 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3258 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3259 OtherDest = InfLoopBlock; 3260 } 3261 3262 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3263 3264 // BI may have other predecessors. Because of this, we leave 3265 // it alone, but modify PBI. 3266 3267 // Make sure we get to CommonDest on True&True directions. 3268 Value *PBICond = PBI->getCondition(); 3269 IRBuilder<NoFolder> Builder(PBI); 3270 if (PBIOp) 3271 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3272 3273 Value *BICond = BI->getCondition(); 3274 if (BIOp) 3275 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3276 3277 // Merge the conditions. 3278 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3279 3280 // Modify PBI to branch on the new condition to the new dests. 3281 PBI->setCondition(Cond); 3282 PBI->setSuccessor(0, CommonDest); 3283 PBI->setSuccessor(1, OtherDest); 3284 3285 // Update branch weight for PBI. 3286 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3287 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3288 bool HasWeights = 3289 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3290 SuccTrueWeight, SuccFalseWeight); 3291 if (HasWeights) { 3292 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3293 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3294 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3295 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3296 // The weight to CommonDest should be PredCommon * SuccTotal + 3297 // PredOther * SuccCommon. 3298 // The weight to OtherDest should be PredOther * SuccOther. 3299 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3300 PredOther * SuccCommon, 3301 PredOther * SuccOther}; 3302 // Halve the weights if any of them cannot fit in an uint32_t 3303 FitWeights(NewWeights); 3304 3305 PBI->setMetadata(LLVMContext::MD_prof, 3306 MDBuilder(BI->getContext()) 3307 .createBranchWeights(NewWeights[0], NewWeights[1])); 3308 } 3309 3310 // OtherDest may have phi nodes. If so, add an entry from PBI's 3311 // block that are identical to the entries for BI's block. 3312 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3313 3314 // We know that the CommonDest already had an edge from PBI to 3315 // it. If it has PHIs though, the PHIs may have different 3316 // entries for BB and PBI's BB. If so, insert a select to make 3317 // them agree. 3318 PHINode *PN; 3319 for (BasicBlock::iterator II = CommonDest->begin(); 3320 (PN = dyn_cast<PHINode>(II)); ++II) { 3321 Value *BIV = PN->getIncomingValueForBlock(BB); 3322 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3323 Value *PBIV = PN->getIncomingValue(PBBIdx); 3324 if (BIV != PBIV) { 3325 // Insert a select in PBI to pick the right value. 3326 SelectInst *NV = cast<SelectInst>( 3327 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3328 PN->setIncomingValue(PBBIdx, NV); 3329 // Although the select has the same condition as PBI, the original branch 3330 // weights for PBI do not apply to the new select because the select's 3331 // 'logical' edges are incoming edges of the phi that is eliminated, not 3332 // the outgoing edges of PBI. 3333 if (HasWeights) { 3334 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3335 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3336 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3337 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3338 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3339 // The weight to PredOtherDest should be PredOther * SuccCommon. 3340 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3341 PredOther * SuccCommon}; 3342 3343 FitWeights(NewWeights); 3344 3345 NV->setMetadata(LLVMContext::MD_prof, 3346 MDBuilder(BI->getContext()) 3347 .createBranchWeights(NewWeights[0], NewWeights[1])); 3348 } 3349 } 3350 } 3351 3352 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3353 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3354 3355 // This basic block is probably dead. We know it has at least 3356 // one fewer predecessor. 3357 return true; 3358 } 3359 3360 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3361 // true or to FalseBB if Cond is false. 3362 // Takes care of updating the successors and removing the old terminator. 3363 // Also makes sure not to introduce new successors by assuming that edges to 3364 // non-successor TrueBBs and FalseBBs aren't reachable. 3365 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3366 BasicBlock *TrueBB, BasicBlock *FalseBB, 3367 uint32_t TrueWeight, 3368 uint32_t FalseWeight) { 3369 // Remove any superfluous successor edges from the CFG. 3370 // First, figure out which successors to preserve. 3371 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3372 // successor. 3373 BasicBlock *KeepEdge1 = TrueBB; 3374 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3375 3376 // Then remove the rest. 3377 for (BasicBlock *Succ : OldTerm->successors()) { 3378 // Make sure only to keep exactly one copy of each edge. 3379 if (Succ == KeepEdge1) 3380 KeepEdge1 = nullptr; 3381 else if (Succ == KeepEdge2) 3382 KeepEdge2 = nullptr; 3383 else 3384 Succ->removePredecessor(OldTerm->getParent(), 3385 /*DontDeleteUselessPHIs=*/true); 3386 } 3387 3388 IRBuilder<> Builder(OldTerm); 3389 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3390 3391 // Insert an appropriate new terminator. 3392 if (!KeepEdge1 && !KeepEdge2) { 3393 if (TrueBB == FalseBB) 3394 // We were only looking for one successor, and it was present. 3395 // Create an unconditional branch to it. 3396 Builder.CreateBr(TrueBB); 3397 else { 3398 // We found both of the successors we were looking for. 3399 // Create a conditional branch sharing the condition of the select. 3400 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3401 if (TrueWeight != FalseWeight) 3402 NewBI->setMetadata(LLVMContext::MD_prof, 3403 MDBuilder(OldTerm->getContext()) 3404 .createBranchWeights(TrueWeight, FalseWeight)); 3405 } 3406 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3407 // Neither of the selected blocks were successors, so this 3408 // terminator must be unreachable. 3409 new UnreachableInst(OldTerm->getContext(), OldTerm); 3410 } else { 3411 // One of the selected values was a successor, but the other wasn't. 3412 // Insert an unconditional branch to the one that was found; 3413 // the edge to the one that wasn't must be unreachable. 3414 if (!KeepEdge1) 3415 // Only TrueBB was found. 3416 Builder.CreateBr(TrueBB); 3417 else 3418 // Only FalseBB was found. 3419 Builder.CreateBr(FalseBB); 3420 } 3421 3422 EraseTerminatorInstAndDCECond(OldTerm); 3423 return true; 3424 } 3425 3426 // Replaces 3427 // (switch (select cond, X, Y)) on constant X, Y 3428 // with a branch - conditional if X and Y lead to distinct BBs, 3429 // unconditional otherwise. 3430 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3431 // Check for constant integer values in the select. 3432 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3433 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3434 if (!TrueVal || !FalseVal) 3435 return false; 3436 3437 // Find the relevant condition and destinations. 3438 Value *Condition = Select->getCondition(); 3439 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3440 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3441 3442 // Get weight for TrueBB and FalseBB. 3443 uint32_t TrueWeight = 0, FalseWeight = 0; 3444 SmallVector<uint64_t, 8> Weights; 3445 bool HasWeights = HasBranchWeights(SI); 3446 if (HasWeights) { 3447 GetBranchWeights(SI, Weights); 3448 if (Weights.size() == 1 + SI->getNumCases()) { 3449 TrueWeight = 3450 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3451 FalseWeight = 3452 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3453 } 3454 } 3455 3456 // Perform the actual simplification. 3457 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3458 FalseWeight); 3459 } 3460 3461 // Replaces 3462 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3463 // blockaddress(@fn, BlockB))) 3464 // with 3465 // (br cond, BlockA, BlockB). 3466 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3467 // Check that both operands of the select are block addresses. 3468 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3469 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3470 if (!TBA || !FBA) 3471 return false; 3472 3473 // Extract the actual blocks. 3474 BasicBlock *TrueBB = TBA->getBasicBlock(); 3475 BasicBlock *FalseBB = FBA->getBasicBlock(); 3476 3477 // Perform the actual simplification. 3478 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3479 0); 3480 } 3481 3482 /// This is called when we find an icmp instruction 3483 /// (a seteq/setne with a constant) as the only instruction in a 3484 /// block that ends with an uncond branch. We are looking for a very specific 3485 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3486 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3487 /// default value goes to an uncond block with a seteq in it, we get something 3488 /// like: 3489 /// 3490 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3491 /// DEFAULT: 3492 /// %tmp = icmp eq i8 %A, 92 3493 /// br label %end 3494 /// end: 3495 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3496 /// 3497 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3498 /// the PHI, merging the third icmp into the switch. 3499 static bool TryToSimplifyUncondBranchWithICmpInIt( 3500 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3501 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3502 AssumptionCache *AC) { 3503 BasicBlock *BB = ICI->getParent(); 3504 3505 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3506 // complex. 3507 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3508 return false; 3509 3510 Value *V = ICI->getOperand(0); 3511 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3512 3513 // The pattern we're looking for is where our only predecessor is a switch on 3514 // 'V' and this block is the default case for the switch. In this case we can 3515 // fold the compared value into the switch to simplify things. 3516 BasicBlock *Pred = BB->getSinglePredecessor(); 3517 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3518 return false; 3519 3520 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3521 if (SI->getCondition() != V) 3522 return false; 3523 3524 // If BB is reachable on a non-default case, then we simply know the value of 3525 // V in this block. Substitute it and constant fold the icmp instruction 3526 // away. 3527 if (SI->getDefaultDest() != BB) { 3528 ConstantInt *VVal = SI->findCaseDest(BB); 3529 assert(VVal && "Should have a unique destination value"); 3530 ICI->setOperand(0, VVal); 3531 3532 if (Value *V = SimplifyInstruction(ICI, DL)) { 3533 ICI->replaceAllUsesWith(V); 3534 ICI->eraseFromParent(); 3535 } 3536 // BB is now empty, so it is likely to simplify away. 3537 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3538 } 3539 3540 // Ok, the block is reachable from the default dest. If the constant we're 3541 // comparing exists in one of the other edges, then we can constant fold ICI 3542 // and zap it. 3543 if (SI->findCaseValue(Cst) != SI->case_default()) { 3544 Value *V; 3545 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3546 V = ConstantInt::getFalse(BB->getContext()); 3547 else 3548 V = ConstantInt::getTrue(BB->getContext()); 3549 3550 ICI->replaceAllUsesWith(V); 3551 ICI->eraseFromParent(); 3552 // BB is now empty, so it is likely to simplify away. 3553 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3554 } 3555 3556 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3557 // the block. 3558 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3559 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3560 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3561 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3562 return false; 3563 3564 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3565 // true in the PHI. 3566 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3567 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3568 3569 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3570 std::swap(DefaultCst, NewCst); 3571 3572 // Replace ICI (which is used by the PHI for the default value) with true or 3573 // false depending on if it is EQ or NE. 3574 ICI->replaceAllUsesWith(DefaultCst); 3575 ICI->eraseFromParent(); 3576 3577 // Okay, the switch goes to this block on a default value. Add an edge from 3578 // the switch to the merge point on the compared value. 3579 BasicBlock *NewBB = 3580 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3581 SmallVector<uint64_t, 8> Weights; 3582 bool HasWeights = HasBranchWeights(SI); 3583 if (HasWeights) { 3584 GetBranchWeights(SI, Weights); 3585 if (Weights.size() == 1 + SI->getNumCases()) { 3586 // Split weight for default case to case for "Cst". 3587 Weights[0] = (Weights[0] + 1) >> 1; 3588 Weights.push_back(Weights[0]); 3589 3590 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3591 SI->setMetadata( 3592 LLVMContext::MD_prof, 3593 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3594 } 3595 } 3596 SI->addCase(Cst, NewBB); 3597 3598 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3599 Builder.SetInsertPoint(NewBB); 3600 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3601 Builder.CreateBr(SuccBlock); 3602 PHIUse->addIncoming(NewCst, NewBB); 3603 return true; 3604 } 3605 3606 /// The specified branch is a conditional branch. 3607 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3608 /// fold it into a switch instruction if so. 3609 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3610 const DataLayout &DL) { 3611 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3612 if (!Cond) 3613 return false; 3614 3615 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3616 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3617 // 'setne's and'ed together, collect them. 3618 3619 // Try to gather values from a chain of and/or to be turned into a switch 3620 ConstantComparesGatherer ConstantCompare(Cond, DL); 3621 // Unpack the result 3622 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3623 Value *CompVal = ConstantCompare.CompValue; 3624 unsigned UsedICmps = ConstantCompare.UsedICmps; 3625 Value *ExtraCase = ConstantCompare.Extra; 3626 3627 // If we didn't have a multiply compared value, fail. 3628 if (!CompVal) 3629 return false; 3630 3631 // Avoid turning single icmps into a switch. 3632 if (UsedICmps <= 1) 3633 return false; 3634 3635 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3636 3637 // There might be duplicate constants in the list, which the switch 3638 // instruction can't handle, remove them now. 3639 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3640 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3641 3642 // If Extra was used, we require at least two switch values to do the 3643 // transformation. A switch with one value is just a conditional branch. 3644 if (ExtraCase && Values.size() < 2) 3645 return false; 3646 3647 // TODO: Preserve branch weight metadata, similarly to how 3648 // FoldValueComparisonIntoPredecessors preserves it. 3649 3650 // Figure out which block is which destination. 3651 BasicBlock *DefaultBB = BI->getSuccessor(1); 3652 BasicBlock *EdgeBB = BI->getSuccessor(0); 3653 if (!TrueWhenEqual) 3654 std::swap(DefaultBB, EdgeBB); 3655 3656 BasicBlock *BB = BI->getParent(); 3657 3658 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3659 << " cases into SWITCH. BB is:\n" 3660 << *BB); 3661 3662 // If there are any extra values that couldn't be folded into the switch 3663 // then we evaluate them with an explicit branch first. Split the block 3664 // right before the condbr to handle it. 3665 if (ExtraCase) { 3666 BasicBlock *NewBB = 3667 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3668 // Remove the uncond branch added to the old block. 3669 TerminatorInst *OldTI = BB->getTerminator(); 3670 Builder.SetInsertPoint(OldTI); 3671 3672 if (TrueWhenEqual) 3673 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3674 else 3675 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3676 3677 OldTI->eraseFromParent(); 3678 3679 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3680 // for the edge we just added. 3681 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3682 3683 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3684 << "\nEXTRABB = " << *BB); 3685 BB = NewBB; 3686 } 3687 3688 Builder.SetInsertPoint(BI); 3689 // Convert pointer to int before we switch. 3690 if (CompVal->getType()->isPointerTy()) { 3691 CompVal = Builder.CreatePtrToInt( 3692 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3693 } 3694 3695 // Create the new switch instruction now. 3696 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3697 3698 // Add all of the 'cases' to the switch instruction. 3699 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3700 New->addCase(Values[i], EdgeBB); 3701 3702 // We added edges from PI to the EdgeBB. As such, if there were any 3703 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3704 // the number of edges added. 3705 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3706 PHINode *PN = cast<PHINode>(BBI); 3707 Value *InVal = PN->getIncomingValueForBlock(BB); 3708 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3709 PN->addIncoming(InVal, BB); 3710 } 3711 3712 // Erase the old branch instruction. 3713 EraseTerminatorInstAndDCECond(BI); 3714 3715 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3716 return true; 3717 } 3718 3719 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3720 if (isa<PHINode>(RI->getValue())) 3721 return SimplifyCommonResume(RI); 3722 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3723 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3724 // The resume must unwind the exception that caused control to branch here. 3725 return SimplifySingleResume(RI); 3726 3727 return false; 3728 } 3729 3730 // Simplify resume that is shared by several landing pads (phi of landing pad). 3731 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3732 BasicBlock *BB = RI->getParent(); 3733 3734 // Check that there are no other instructions except for debug intrinsics 3735 // between the phi of landing pads (RI->getValue()) and resume instruction. 3736 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3737 E = RI->getIterator(); 3738 while (++I != E) 3739 if (!isa<DbgInfoIntrinsic>(I)) 3740 return false; 3741 3742 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3743 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3744 3745 // Check incoming blocks to see if any of them are trivial. 3746 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3747 Idx++) { 3748 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3749 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3750 3751 // If the block has other successors, we can not delete it because 3752 // it has other dependents. 3753 if (IncomingBB->getUniqueSuccessor() != BB) 3754 continue; 3755 3756 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3757 // Not the landing pad that caused the control to branch here. 3758 if (IncomingValue != LandingPad) 3759 continue; 3760 3761 bool isTrivial = true; 3762 3763 I = IncomingBB->getFirstNonPHI()->getIterator(); 3764 E = IncomingBB->getTerminator()->getIterator(); 3765 while (++I != E) 3766 if (!isa<DbgInfoIntrinsic>(I)) { 3767 isTrivial = false; 3768 break; 3769 } 3770 3771 if (isTrivial) 3772 TrivialUnwindBlocks.insert(IncomingBB); 3773 } 3774 3775 // If no trivial unwind blocks, don't do any simplifications. 3776 if (TrivialUnwindBlocks.empty()) 3777 return false; 3778 3779 // Turn all invokes that unwind here into calls. 3780 for (auto *TrivialBB : TrivialUnwindBlocks) { 3781 // Blocks that will be simplified should be removed from the phi node. 3782 // Note there could be multiple edges to the resume block, and we need 3783 // to remove them all. 3784 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3785 BB->removePredecessor(TrivialBB, true); 3786 3787 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3788 PI != PE;) { 3789 BasicBlock *Pred = *PI++; 3790 removeUnwindEdge(Pred); 3791 } 3792 3793 // In each SimplifyCFG run, only the current processed block can be erased. 3794 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3795 // of erasing TrivialBB, we only remove the branch to the common resume 3796 // block so that we can later erase the resume block since it has no 3797 // predecessors. 3798 TrivialBB->getTerminator()->eraseFromParent(); 3799 new UnreachableInst(RI->getContext(), TrivialBB); 3800 } 3801 3802 // Delete the resume block if all its predecessors have been removed. 3803 if (pred_empty(BB)) 3804 BB->eraseFromParent(); 3805 3806 return !TrivialUnwindBlocks.empty(); 3807 } 3808 3809 // Simplify resume that is only used by a single (non-phi) landing pad. 3810 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3811 BasicBlock *BB = RI->getParent(); 3812 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3813 assert(RI->getValue() == LPInst && 3814 "Resume must unwind the exception that caused control to here"); 3815 3816 // Check that there are no other instructions except for debug intrinsics. 3817 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3818 while (++I != E) 3819 if (!isa<DbgInfoIntrinsic>(I)) 3820 return false; 3821 3822 // Turn all invokes that unwind here into calls and delete the basic block. 3823 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3824 BasicBlock *Pred = *PI++; 3825 removeUnwindEdge(Pred); 3826 } 3827 3828 // The landingpad is now unreachable. Zap it. 3829 BB->eraseFromParent(); 3830 if (LoopHeaders) 3831 LoopHeaders->erase(BB); 3832 return true; 3833 } 3834 3835 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3836 // If this is a trivial cleanup pad that executes no instructions, it can be 3837 // eliminated. If the cleanup pad continues to the caller, any predecessor 3838 // that is an EH pad will be updated to continue to the caller and any 3839 // predecessor that terminates with an invoke instruction will have its invoke 3840 // instruction converted to a call instruction. If the cleanup pad being 3841 // simplified does not continue to the caller, each predecessor will be 3842 // updated to continue to the unwind destination of the cleanup pad being 3843 // simplified. 3844 BasicBlock *BB = RI->getParent(); 3845 CleanupPadInst *CPInst = RI->getCleanupPad(); 3846 if (CPInst->getParent() != BB) 3847 // This isn't an empty cleanup. 3848 return false; 3849 3850 // We cannot kill the pad if it has multiple uses. This typically arises 3851 // from unreachable basic blocks. 3852 if (!CPInst->hasOneUse()) 3853 return false; 3854 3855 // Check that there are no other instructions except for benign intrinsics. 3856 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3857 while (++I != E) { 3858 auto *II = dyn_cast<IntrinsicInst>(I); 3859 if (!II) 3860 return false; 3861 3862 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3863 switch (IntrinsicID) { 3864 case Intrinsic::dbg_declare: 3865 case Intrinsic::dbg_value: 3866 case Intrinsic::lifetime_end: 3867 break; 3868 default: 3869 return false; 3870 } 3871 } 3872 3873 // If the cleanup return we are simplifying unwinds to the caller, this will 3874 // set UnwindDest to nullptr. 3875 BasicBlock *UnwindDest = RI->getUnwindDest(); 3876 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3877 3878 // We're about to remove BB from the control flow. Before we do, sink any 3879 // PHINodes into the unwind destination. Doing this before changing the 3880 // control flow avoids some potentially slow checks, since we can currently 3881 // be certain that UnwindDest and BB have no common predecessors (since they 3882 // are both EH pads). 3883 if (UnwindDest) { 3884 // First, go through the PHI nodes in UnwindDest and update any nodes that 3885 // reference the block we are removing 3886 for (BasicBlock::iterator I = UnwindDest->begin(), 3887 IE = DestEHPad->getIterator(); 3888 I != IE; ++I) { 3889 PHINode *DestPN = cast<PHINode>(I); 3890 3891 int Idx = DestPN->getBasicBlockIndex(BB); 3892 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3893 assert(Idx != -1); 3894 // This PHI node has an incoming value that corresponds to a control 3895 // path through the cleanup pad we are removing. If the incoming 3896 // value is in the cleanup pad, it must be a PHINode (because we 3897 // verified above that the block is otherwise empty). Otherwise, the 3898 // value is either a constant or a value that dominates the cleanup 3899 // pad being removed. 3900 // 3901 // Because BB and UnwindDest are both EH pads, all of their 3902 // predecessors must unwind to these blocks, and since no instruction 3903 // can have multiple unwind destinations, there will be no overlap in 3904 // incoming blocks between SrcPN and DestPN. 3905 Value *SrcVal = DestPN->getIncomingValue(Idx); 3906 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3907 3908 // Remove the entry for the block we are deleting. 3909 DestPN->removeIncomingValue(Idx, false); 3910 3911 if (SrcPN && SrcPN->getParent() == BB) { 3912 // If the incoming value was a PHI node in the cleanup pad we are 3913 // removing, we need to merge that PHI node's incoming values into 3914 // DestPN. 3915 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3916 SrcIdx != SrcE; ++SrcIdx) { 3917 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3918 SrcPN->getIncomingBlock(SrcIdx)); 3919 } 3920 } else { 3921 // Otherwise, the incoming value came from above BB and 3922 // so we can just reuse it. We must associate all of BB's 3923 // predecessors with this value. 3924 for (auto *pred : predecessors(BB)) { 3925 DestPN->addIncoming(SrcVal, pred); 3926 } 3927 } 3928 } 3929 3930 // Sink any remaining PHI nodes directly into UnwindDest. 3931 Instruction *InsertPt = DestEHPad; 3932 for (BasicBlock::iterator I = BB->begin(), 3933 IE = BB->getFirstNonPHI()->getIterator(); 3934 I != IE;) { 3935 // The iterator must be incremented here because the instructions are 3936 // being moved to another block. 3937 PHINode *PN = cast<PHINode>(I++); 3938 if (PN->use_empty()) 3939 // If the PHI node has no uses, just leave it. It will be erased 3940 // when we erase BB below. 3941 continue; 3942 3943 // Otherwise, sink this PHI node into UnwindDest. 3944 // Any predecessors to UnwindDest which are not already represented 3945 // must be back edges which inherit the value from the path through 3946 // BB. In this case, the PHI value must reference itself. 3947 for (auto *pred : predecessors(UnwindDest)) 3948 if (pred != BB) 3949 PN->addIncoming(PN, pred); 3950 PN->moveBefore(InsertPt); 3951 } 3952 } 3953 3954 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3955 // The iterator must be updated here because we are removing this pred. 3956 BasicBlock *PredBB = *PI++; 3957 if (UnwindDest == nullptr) { 3958 removeUnwindEdge(PredBB); 3959 } else { 3960 TerminatorInst *TI = PredBB->getTerminator(); 3961 TI->replaceUsesOfWith(BB, UnwindDest); 3962 } 3963 } 3964 3965 // The cleanup pad is now unreachable. Zap it. 3966 BB->eraseFromParent(); 3967 return true; 3968 } 3969 3970 // Try to merge two cleanuppads together. 3971 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3972 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3973 // with. 3974 BasicBlock *UnwindDest = RI->getUnwindDest(); 3975 if (!UnwindDest) 3976 return false; 3977 3978 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3979 // be safe to merge without code duplication. 3980 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3981 return false; 3982 3983 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3984 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3985 if (!SuccessorCleanupPad) 3986 return false; 3987 3988 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3989 // Replace any uses of the successor cleanupad with the predecessor pad 3990 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3991 // funclet bundle operands. 3992 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3993 // Remove the old cleanuppad. 3994 SuccessorCleanupPad->eraseFromParent(); 3995 // Now, we simply replace the cleanupret with a branch to the unwind 3996 // destination. 3997 BranchInst::Create(UnwindDest, RI->getParent()); 3998 RI->eraseFromParent(); 3999 4000 return true; 4001 } 4002 4003 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4004 // It is possible to transiantly have an undef cleanuppad operand because we 4005 // have deleted some, but not all, dead blocks. 4006 // Eventually, this block will be deleted. 4007 if (isa<UndefValue>(RI->getOperand(0))) 4008 return false; 4009 4010 if (mergeCleanupPad(RI)) 4011 return true; 4012 4013 if (removeEmptyCleanup(RI)) 4014 return true; 4015 4016 return false; 4017 } 4018 4019 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4020 BasicBlock *BB = RI->getParent(); 4021 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4022 return false; 4023 4024 // Find predecessors that end with branches. 4025 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4026 SmallVector<BranchInst *, 8> CondBranchPreds; 4027 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4028 BasicBlock *P = *PI; 4029 TerminatorInst *PTI = P->getTerminator(); 4030 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4031 if (BI->isUnconditional()) 4032 UncondBranchPreds.push_back(P); 4033 else 4034 CondBranchPreds.push_back(BI); 4035 } 4036 } 4037 4038 // If we found some, do the transformation! 4039 if (!UncondBranchPreds.empty() && DupRet) { 4040 while (!UncondBranchPreds.empty()) { 4041 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4042 DEBUG(dbgs() << "FOLDING: " << *BB 4043 << "INTO UNCOND BRANCH PRED: " << *Pred); 4044 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4045 } 4046 4047 // If we eliminated all predecessors of the block, delete the block now. 4048 if (pred_empty(BB)) { 4049 // We know there are no successors, so just nuke the block. 4050 BB->eraseFromParent(); 4051 if (LoopHeaders) 4052 LoopHeaders->erase(BB); 4053 } 4054 4055 return true; 4056 } 4057 4058 // Check out all of the conditional branches going to this return 4059 // instruction. If any of them just select between returns, change the 4060 // branch itself into a select/return pair. 4061 while (!CondBranchPreds.empty()) { 4062 BranchInst *BI = CondBranchPreds.pop_back_val(); 4063 4064 // Check to see if the non-BB successor is also a return block. 4065 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4066 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4067 SimplifyCondBranchToTwoReturns(BI, Builder)) 4068 return true; 4069 } 4070 return false; 4071 } 4072 4073 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4074 BasicBlock *BB = UI->getParent(); 4075 4076 bool Changed = false; 4077 4078 // If there are any instructions immediately before the unreachable that can 4079 // be removed, do so. 4080 while (UI->getIterator() != BB->begin()) { 4081 BasicBlock::iterator BBI = UI->getIterator(); 4082 --BBI; 4083 // Do not delete instructions that can have side effects which might cause 4084 // the unreachable to not be reachable; specifically, calls and volatile 4085 // operations may have this effect. 4086 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4087 break; 4088 4089 if (BBI->mayHaveSideEffects()) { 4090 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4091 if (SI->isVolatile()) 4092 break; 4093 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4094 if (LI->isVolatile()) 4095 break; 4096 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4097 if (RMWI->isVolatile()) 4098 break; 4099 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4100 if (CXI->isVolatile()) 4101 break; 4102 } else if (isa<CatchPadInst>(BBI)) { 4103 // A catchpad may invoke exception object constructors and such, which 4104 // in some languages can be arbitrary code, so be conservative by 4105 // default. 4106 // For CoreCLR, it just involves a type test, so can be removed. 4107 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4108 EHPersonality::CoreCLR) 4109 break; 4110 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4111 !isa<LandingPadInst>(BBI)) { 4112 break; 4113 } 4114 // Note that deleting LandingPad's here is in fact okay, although it 4115 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4116 // all the predecessors of this block will be the unwind edges of Invokes, 4117 // and we can therefore guarantee this block will be erased. 4118 } 4119 4120 // Delete this instruction (any uses are guaranteed to be dead) 4121 if (!BBI->use_empty()) 4122 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4123 BBI->eraseFromParent(); 4124 Changed = true; 4125 } 4126 4127 // If the unreachable instruction is the first in the block, take a gander 4128 // at all of the predecessors of this instruction, and simplify them. 4129 if (&BB->front() != UI) 4130 return Changed; 4131 4132 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4133 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4134 TerminatorInst *TI = Preds[i]->getTerminator(); 4135 IRBuilder<> Builder(TI); 4136 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4137 if (BI->isUnconditional()) { 4138 if (BI->getSuccessor(0) == BB) { 4139 new UnreachableInst(TI->getContext(), TI); 4140 TI->eraseFromParent(); 4141 Changed = true; 4142 } 4143 } else { 4144 if (BI->getSuccessor(0) == BB) { 4145 Builder.CreateBr(BI->getSuccessor(1)); 4146 EraseTerminatorInstAndDCECond(BI); 4147 } else if (BI->getSuccessor(1) == BB) { 4148 Builder.CreateBr(BI->getSuccessor(0)); 4149 EraseTerminatorInstAndDCECond(BI); 4150 Changed = true; 4151 } 4152 } 4153 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4154 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 4155 ++i) 4156 if (i.getCaseSuccessor() == BB) { 4157 BB->removePredecessor(SI->getParent()); 4158 SI->removeCase(i); 4159 --i; 4160 --e; 4161 Changed = true; 4162 } 4163 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4164 if (II->getUnwindDest() == BB) { 4165 removeUnwindEdge(TI->getParent()); 4166 Changed = true; 4167 } 4168 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4169 if (CSI->getUnwindDest() == BB) { 4170 removeUnwindEdge(TI->getParent()); 4171 Changed = true; 4172 continue; 4173 } 4174 4175 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4176 E = CSI->handler_end(); 4177 I != E; ++I) { 4178 if (*I == BB) { 4179 CSI->removeHandler(I); 4180 --I; 4181 --E; 4182 Changed = true; 4183 } 4184 } 4185 if (CSI->getNumHandlers() == 0) { 4186 BasicBlock *CatchSwitchBB = CSI->getParent(); 4187 if (CSI->hasUnwindDest()) { 4188 // Redirect preds to the unwind dest 4189 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4190 } else { 4191 // Rewrite all preds to unwind to caller (or from invoke to call). 4192 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4193 for (BasicBlock *EHPred : EHPreds) 4194 removeUnwindEdge(EHPred); 4195 } 4196 // The catchswitch is no longer reachable. 4197 new UnreachableInst(CSI->getContext(), CSI); 4198 CSI->eraseFromParent(); 4199 Changed = true; 4200 } 4201 } else if (isa<CleanupReturnInst>(TI)) { 4202 new UnreachableInst(TI->getContext(), TI); 4203 TI->eraseFromParent(); 4204 Changed = true; 4205 } 4206 } 4207 4208 // If this block is now dead, remove it. 4209 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4210 // We know there are no successors, so just nuke the block. 4211 BB->eraseFromParent(); 4212 if (LoopHeaders) 4213 LoopHeaders->erase(BB); 4214 return true; 4215 } 4216 4217 return Changed; 4218 } 4219 4220 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4221 assert(Cases.size() >= 1); 4222 4223 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4224 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4225 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4226 return false; 4227 } 4228 return true; 4229 } 4230 4231 /// Turn a switch with two reachable destinations into an integer range 4232 /// comparison and branch. 4233 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4234 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4235 4236 bool HasDefault = 4237 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4238 4239 // Partition the cases into two sets with different destinations. 4240 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4241 BasicBlock *DestB = nullptr; 4242 SmallVector<ConstantInt *, 16> CasesA; 4243 SmallVector<ConstantInt *, 16> CasesB; 4244 4245 for (SwitchInst::CaseIt I : SI->cases()) { 4246 BasicBlock *Dest = I.getCaseSuccessor(); 4247 if (!DestA) 4248 DestA = Dest; 4249 if (Dest == DestA) { 4250 CasesA.push_back(I.getCaseValue()); 4251 continue; 4252 } 4253 if (!DestB) 4254 DestB = Dest; 4255 if (Dest == DestB) { 4256 CasesB.push_back(I.getCaseValue()); 4257 continue; 4258 } 4259 return false; // More than two destinations. 4260 } 4261 4262 assert(DestA && DestB && 4263 "Single-destination switch should have been folded."); 4264 assert(DestA != DestB); 4265 assert(DestB != SI->getDefaultDest()); 4266 assert(!CasesB.empty() && "There must be non-default cases."); 4267 assert(!CasesA.empty() || HasDefault); 4268 4269 // Figure out if one of the sets of cases form a contiguous range. 4270 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4271 BasicBlock *ContiguousDest = nullptr; 4272 BasicBlock *OtherDest = nullptr; 4273 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4274 ContiguousCases = &CasesA; 4275 ContiguousDest = DestA; 4276 OtherDest = DestB; 4277 } else if (CasesAreContiguous(CasesB)) { 4278 ContiguousCases = &CasesB; 4279 ContiguousDest = DestB; 4280 OtherDest = DestA; 4281 } else 4282 return false; 4283 4284 // Start building the compare and branch. 4285 4286 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4287 Constant *NumCases = 4288 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4289 4290 Value *Sub = SI->getCondition(); 4291 if (!Offset->isNullValue()) 4292 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4293 4294 Value *Cmp; 4295 // If NumCases overflowed, then all possible values jump to the successor. 4296 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4297 Cmp = ConstantInt::getTrue(SI->getContext()); 4298 else 4299 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4300 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4301 4302 // Update weight for the newly-created conditional branch. 4303 if (HasBranchWeights(SI)) { 4304 SmallVector<uint64_t, 8> Weights; 4305 GetBranchWeights(SI, Weights); 4306 if (Weights.size() == 1 + SI->getNumCases()) { 4307 uint64_t TrueWeight = 0; 4308 uint64_t FalseWeight = 0; 4309 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4310 if (SI->getSuccessor(I) == ContiguousDest) 4311 TrueWeight += Weights[I]; 4312 else 4313 FalseWeight += Weights[I]; 4314 } 4315 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4316 TrueWeight /= 2; 4317 FalseWeight /= 2; 4318 } 4319 NewBI->setMetadata(LLVMContext::MD_prof, 4320 MDBuilder(SI->getContext()) 4321 .createBranchWeights((uint32_t)TrueWeight, 4322 (uint32_t)FalseWeight)); 4323 } 4324 } 4325 4326 // Prune obsolete incoming values off the successors' PHI nodes. 4327 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4328 unsigned PreviousEdges = ContiguousCases->size(); 4329 if (ContiguousDest == SI->getDefaultDest()) 4330 ++PreviousEdges; 4331 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4332 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4333 } 4334 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4335 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4336 if (OtherDest == SI->getDefaultDest()) 4337 ++PreviousEdges; 4338 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4339 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4340 } 4341 4342 // Drop the switch. 4343 SI->eraseFromParent(); 4344 4345 return true; 4346 } 4347 4348 /// Compute masked bits for the condition of a switch 4349 /// and use it to remove dead cases. 4350 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4351 const DataLayout &DL) { 4352 Value *Cond = SI->getCondition(); 4353 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4354 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 4355 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 4356 4357 // We can also eliminate cases by determining that their values are outside of 4358 // the limited range of the condition based on how many significant (non-sign) 4359 // bits are in the condition value. 4360 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4361 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4362 4363 // Gather dead cases. 4364 SmallVector<ConstantInt *, 8> DeadCases; 4365 for (auto &Case : SI->cases()) { 4366 APInt CaseVal = Case.getCaseValue()->getValue(); 4367 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 4368 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4369 DeadCases.push_back(Case.getCaseValue()); 4370 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4371 } 4372 } 4373 4374 // If we can prove that the cases must cover all possible values, the 4375 // default destination becomes dead and we can remove it. If we know some 4376 // of the bits in the value, we can use that to more precisely compute the 4377 // number of possible unique case values. 4378 bool HasDefault = 4379 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4380 const unsigned NumUnknownBits = 4381 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 4382 assert(NumUnknownBits <= Bits); 4383 if (HasDefault && DeadCases.empty() && 4384 NumUnknownBits < 64 /* avoid overflow */ && 4385 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4386 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4387 BasicBlock *NewDefault = 4388 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4389 SI->setDefaultDest(&*NewDefault); 4390 SplitBlock(&*NewDefault, &NewDefault->front()); 4391 auto *OldTI = NewDefault->getTerminator(); 4392 new UnreachableInst(SI->getContext(), OldTI); 4393 EraseTerminatorInstAndDCECond(OldTI); 4394 return true; 4395 } 4396 4397 SmallVector<uint64_t, 8> Weights; 4398 bool HasWeight = HasBranchWeights(SI); 4399 if (HasWeight) { 4400 GetBranchWeights(SI, Weights); 4401 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4402 } 4403 4404 // Remove dead cases from the switch. 4405 for (ConstantInt *DeadCase : DeadCases) { 4406 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 4407 assert(Case != SI->case_default() && 4408 "Case was not found. Probably mistake in DeadCases forming."); 4409 if (HasWeight) { 4410 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 4411 Weights.pop_back(); 4412 } 4413 4414 // Prune unused values from PHI nodes. 4415 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 4416 SI->removeCase(Case); 4417 } 4418 if (HasWeight && Weights.size() >= 2) { 4419 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4420 SI->setMetadata(LLVMContext::MD_prof, 4421 MDBuilder(SI->getParent()->getContext()) 4422 .createBranchWeights(MDWeights)); 4423 } 4424 4425 return !DeadCases.empty(); 4426 } 4427 4428 /// If BB would be eligible for simplification by 4429 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4430 /// by an unconditional branch), look at the phi node for BB in the successor 4431 /// block and see if the incoming value is equal to CaseValue. If so, return 4432 /// the phi node, and set PhiIndex to BB's index in the phi node. 4433 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4434 BasicBlock *BB, int *PhiIndex) { 4435 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4436 return nullptr; // BB must be empty to be a candidate for simplification. 4437 if (!BB->getSinglePredecessor()) 4438 return nullptr; // BB must be dominated by the switch. 4439 4440 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4441 if (!Branch || !Branch->isUnconditional()) 4442 return nullptr; // Terminator must be unconditional branch. 4443 4444 BasicBlock *Succ = Branch->getSuccessor(0); 4445 4446 BasicBlock::iterator I = Succ->begin(); 4447 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4448 int Idx = PHI->getBasicBlockIndex(BB); 4449 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4450 4451 Value *InValue = PHI->getIncomingValue(Idx); 4452 if (InValue != CaseValue) 4453 continue; 4454 4455 *PhiIndex = Idx; 4456 return PHI; 4457 } 4458 4459 return nullptr; 4460 } 4461 4462 /// Try to forward the condition of a switch instruction to a phi node 4463 /// dominated by the switch, if that would mean that some of the destination 4464 /// blocks of the switch can be folded away. 4465 /// Returns true if a change is made. 4466 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4467 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4468 ForwardingNodesMap ForwardingNodes; 4469 4470 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4471 ++I) { 4472 ConstantInt *CaseValue = I.getCaseValue(); 4473 BasicBlock *CaseDest = I.getCaseSuccessor(); 4474 4475 int PhiIndex; 4476 PHINode *PHI = 4477 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4478 if (!PHI) 4479 continue; 4480 4481 ForwardingNodes[PHI].push_back(PhiIndex); 4482 } 4483 4484 bool Changed = false; 4485 4486 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4487 E = ForwardingNodes.end(); 4488 I != E; ++I) { 4489 PHINode *Phi = I->first; 4490 SmallVectorImpl<int> &Indexes = I->second; 4491 4492 if (Indexes.size() < 2) 4493 continue; 4494 4495 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4496 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4497 Changed = true; 4498 } 4499 4500 return Changed; 4501 } 4502 4503 /// Return true if the backend will be able to handle 4504 /// initializing an array of constants like C. 4505 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4506 if (C->isThreadDependent()) 4507 return false; 4508 if (C->isDLLImportDependent()) 4509 return false; 4510 4511 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4512 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4513 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4514 return false; 4515 4516 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4517 if (!CE->isGEPWithNoNotionalOverIndexing()) 4518 return false; 4519 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4520 return false; 4521 } 4522 4523 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4524 return false; 4525 4526 return true; 4527 } 4528 4529 /// If V is a Constant, return it. Otherwise, try to look up 4530 /// its constant value in ConstantPool, returning 0 if it's not there. 4531 static Constant * 4532 LookupConstant(Value *V, 4533 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4534 if (Constant *C = dyn_cast<Constant>(V)) 4535 return C; 4536 return ConstantPool.lookup(V); 4537 } 4538 4539 /// Try to fold instruction I into a constant. This works for 4540 /// simple instructions such as binary operations where both operands are 4541 /// constant or can be replaced by constants from the ConstantPool. Returns the 4542 /// resulting constant on success, 0 otherwise. 4543 static Constant * 4544 ConstantFold(Instruction *I, const DataLayout &DL, 4545 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4546 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4547 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4548 if (!A) 4549 return nullptr; 4550 if (A->isAllOnesValue()) 4551 return LookupConstant(Select->getTrueValue(), ConstantPool); 4552 if (A->isNullValue()) 4553 return LookupConstant(Select->getFalseValue(), ConstantPool); 4554 return nullptr; 4555 } 4556 4557 SmallVector<Constant *, 4> COps; 4558 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4559 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4560 COps.push_back(A); 4561 else 4562 return nullptr; 4563 } 4564 4565 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4566 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4567 COps[1], DL); 4568 } 4569 4570 return ConstantFoldInstOperands(I, COps, DL); 4571 } 4572 4573 /// Try to determine the resulting constant values in phi nodes 4574 /// at the common destination basic block, *CommonDest, for one of the case 4575 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4576 /// case), of a switch instruction SI. 4577 static bool 4578 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4579 BasicBlock **CommonDest, 4580 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4581 const DataLayout &DL, const TargetTransformInfo &TTI) { 4582 // The block from which we enter the common destination. 4583 BasicBlock *Pred = SI->getParent(); 4584 4585 // If CaseDest is empty except for some side-effect free instructions through 4586 // which we can constant-propagate the CaseVal, continue to its successor. 4587 SmallDenseMap<Value *, Constant *> ConstantPool; 4588 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4589 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4590 ++I) { 4591 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4592 // If the terminator is a simple branch, continue to the next block. 4593 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4594 return false; 4595 Pred = CaseDest; 4596 CaseDest = T->getSuccessor(0); 4597 } else if (isa<DbgInfoIntrinsic>(I)) { 4598 // Skip debug intrinsic. 4599 continue; 4600 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4601 // Instruction is side-effect free and constant. 4602 4603 // If the instruction has uses outside this block or a phi node slot for 4604 // the block, it is not safe to bypass the instruction since it would then 4605 // no longer dominate all its uses. 4606 for (auto &Use : I->uses()) { 4607 User *User = Use.getUser(); 4608 if (Instruction *I = dyn_cast<Instruction>(User)) 4609 if (I->getParent() == CaseDest) 4610 continue; 4611 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4612 if (Phi->getIncomingBlock(Use) == CaseDest) 4613 continue; 4614 return false; 4615 } 4616 4617 ConstantPool.insert(std::make_pair(&*I, C)); 4618 } else { 4619 break; 4620 } 4621 } 4622 4623 // If we did not have a CommonDest before, use the current one. 4624 if (!*CommonDest) 4625 *CommonDest = CaseDest; 4626 // If the destination isn't the common one, abort. 4627 if (CaseDest != *CommonDest) 4628 return false; 4629 4630 // Get the values for this case from phi nodes in the destination block. 4631 BasicBlock::iterator I = (*CommonDest)->begin(); 4632 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4633 int Idx = PHI->getBasicBlockIndex(Pred); 4634 if (Idx == -1) 4635 continue; 4636 4637 Constant *ConstVal = 4638 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4639 if (!ConstVal) 4640 return false; 4641 4642 // Be conservative about which kinds of constants we support. 4643 if (!ValidLookupTableConstant(ConstVal, TTI)) 4644 return false; 4645 4646 Res.push_back(std::make_pair(PHI, ConstVal)); 4647 } 4648 4649 return Res.size() > 0; 4650 } 4651 4652 // Helper function used to add CaseVal to the list of cases that generate 4653 // Result. 4654 static void MapCaseToResult(ConstantInt *CaseVal, 4655 SwitchCaseResultVectorTy &UniqueResults, 4656 Constant *Result) { 4657 for (auto &I : UniqueResults) { 4658 if (I.first == Result) { 4659 I.second.push_back(CaseVal); 4660 return; 4661 } 4662 } 4663 UniqueResults.push_back( 4664 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4665 } 4666 4667 // Helper function that initializes a map containing 4668 // results for the PHI node of the common destination block for a switch 4669 // instruction. Returns false if multiple PHI nodes have been found or if 4670 // there is not a common destination block for the switch. 4671 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4672 BasicBlock *&CommonDest, 4673 SwitchCaseResultVectorTy &UniqueResults, 4674 Constant *&DefaultResult, 4675 const DataLayout &DL, 4676 const TargetTransformInfo &TTI) { 4677 for (auto &I : SI->cases()) { 4678 ConstantInt *CaseVal = I.getCaseValue(); 4679 4680 // Resulting value at phi nodes for this case value. 4681 SwitchCaseResultsTy Results; 4682 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4683 DL, TTI)) 4684 return false; 4685 4686 // Only one value per case is permitted 4687 if (Results.size() > 1) 4688 return false; 4689 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4690 4691 // Check the PHI consistency. 4692 if (!PHI) 4693 PHI = Results[0].first; 4694 else if (PHI != Results[0].first) 4695 return false; 4696 } 4697 // Find the default result value. 4698 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4699 BasicBlock *DefaultDest = SI->getDefaultDest(); 4700 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4701 DL, TTI); 4702 // If the default value is not found abort unless the default destination 4703 // is unreachable. 4704 DefaultResult = 4705 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4706 if ((!DefaultResult && 4707 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4708 return false; 4709 4710 return true; 4711 } 4712 4713 // Helper function that checks if it is possible to transform a switch with only 4714 // two cases (or two cases + default) that produces a result into a select. 4715 // Example: 4716 // switch (a) { 4717 // case 10: %0 = icmp eq i32 %a, 10 4718 // return 10; %1 = select i1 %0, i32 10, i32 4 4719 // case 20: ----> %2 = icmp eq i32 %a, 20 4720 // return 2; %3 = select i1 %2, i32 2, i32 %1 4721 // default: 4722 // return 4; 4723 // } 4724 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4725 Constant *DefaultResult, Value *Condition, 4726 IRBuilder<> &Builder) { 4727 assert(ResultVector.size() == 2 && 4728 "We should have exactly two unique results at this point"); 4729 // If we are selecting between only two cases transform into a simple 4730 // select or a two-way select if default is possible. 4731 if (ResultVector[0].second.size() == 1 && 4732 ResultVector[1].second.size() == 1) { 4733 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4734 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4735 4736 bool DefaultCanTrigger = DefaultResult; 4737 Value *SelectValue = ResultVector[1].first; 4738 if (DefaultCanTrigger) { 4739 Value *const ValueCompare = 4740 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4741 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4742 DefaultResult, "switch.select"); 4743 } 4744 Value *const ValueCompare = 4745 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4746 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4747 SelectValue, "switch.select"); 4748 } 4749 4750 return nullptr; 4751 } 4752 4753 // Helper function to cleanup a switch instruction that has been converted into 4754 // a select, fixing up PHI nodes and basic blocks. 4755 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4756 Value *SelectValue, 4757 IRBuilder<> &Builder) { 4758 BasicBlock *SelectBB = SI->getParent(); 4759 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4760 PHI->removeIncomingValue(SelectBB); 4761 PHI->addIncoming(SelectValue, SelectBB); 4762 4763 Builder.CreateBr(PHI->getParent()); 4764 4765 // Remove the switch. 4766 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4767 BasicBlock *Succ = SI->getSuccessor(i); 4768 4769 if (Succ == PHI->getParent()) 4770 continue; 4771 Succ->removePredecessor(SelectBB); 4772 } 4773 SI->eraseFromParent(); 4774 } 4775 4776 /// If the switch is only used to initialize one or more 4777 /// phi nodes in a common successor block with only two different 4778 /// constant values, replace the switch with select. 4779 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4780 AssumptionCache *AC, const DataLayout &DL, 4781 const TargetTransformInfo &TTI) { 4782 Value *const Cond = SI->getCondition(); 4783 PHINode *PHI = nullptr; 4784 BasicBlock *CommonDest = nullptr; 4785 Constant *DefaultResult; 4786 SwitchCaseResultVectorTy UniqueResults; 4787 // Collect all the cases that will deliver the same value from the switch. 4788 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4789 DL, TTI)) 4790 return false; 4791 // Selects choose between maximum two values. 4792 if (UniqueResults.size() != 2) 4793 return false; 4794 assert(PHI != nullptr && "PHI for value select not found"); 4795 4796 Builder.SetInsertPoint(SI); 4797 Value *SelectValue = 4798 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4799 if (SelectValue) { 4800 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4801 return true; 4802 } 4803 // The switch couldn't be converted into a select. 4804 return false; 4805 } 4806 4807 namespace { 4808 4809 /// This class represents a lookup table that can be used to replace a switch. 4810 class SwitchLookupTable { 4811 public: 4812 /// Create a lookup table to use as a switch replacement with the contents 4813 /// of Values, using DefaultValue to fill any holes in the table. 4814 SwitchLookupTable( 4815 Module &M, uint64_t TableSize, ConstantInt *Offset, 4816 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4817 Constant *DefaultValue, const DataLayout &DL); 4818 4819 /// Build instructions with Builder to retrieve the value at 4820 /// the position given by Index in the lookup table. 4821 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4822 4823 /// Return true if a table with TableSize elements of 4824 /// type ElementType would fit in a target-legal register. 4825 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4826 Type *ElementType); 4827 4828 private: 4829 // Depending on the contents of the table, it can be represented in 4830 // different ways. 4831 enum { 4832 // For tables where each element contains the same value, we just have to 4833 // store that single value and return it for each lookup. 4834 SingleValueKind, 4835 4836 // For tables where there is a linear relationship between table index 4837 // and values. We calculate the result with a simple multiplication 4838 // and addition instead of a table lookup. 4839 LinearMapKind, 4840 4841 // For small tables with integer elements, we can pack them into a bitmap 4842 // that fits into a target-legal register. Values are retrieved by 4843 // shift and mask operations. 4844 BitMapKind, 4845 4846 // The table is stored as an array of values. Values are retrieved by load 4847 // instructions from the table. 4848 ArrayKind 4849 } Kind; 4850 4851 // For SingleValueKind, this is the single value. 4852 Constant *SingleValue; 4853 4854 // For BitMapKind, this is the bitmap. 4855 ConstantInt *BitMap; 4856 IntegerType *BitMapElementTy; 4857 4858 // For LinearMapKind, these are the constants used to derive the value. 4859 ConstantInt *LinearOffset; 4860 ConstantInt *LinearMultiplier; 4861 4862 // For ArrayKind, this is the array. 4863 GlobalVariable *Array; 4864 }; 4865 4866 } // end anonymous namespace 4867 4868 SwitchLookupTable::SwitchLookupTable( 4869 Module &M, uint64_t TableSize, ConstantInt *Offset, 4870 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4871 Constant *DefaultValue, const DataLayout &DL) 4872 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4873 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4874 assert(Values.size() && "Can't build lookup table without values!"); 4875 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4876 4877 // If all values in the table are equal, this is that value. 4878 SingleValue = Values.begin()->second; 4879 4880 Type *ValueType = Values.begin()->second->getType(); 4881 4882 // Build up the table contents. 4883 SmallVector<Constant *, 64> TableContents(TableSize); 4884 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4885 ConstantInt *CaseVal = Values[I].first; 4886 Constant *CaseRes = Values[I].second; 4887 assert(CaseRes->getType() == ValueType); 4888 4889 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4890 TableContents[Idx] = CaseRes; 4891 4892 if (CaseRes != SingleValue) 4893 SingleValue = nullptr; 4894 } 4895 4896 // Fill in any holes in the table with the default result. 4897 if (Values.size() < TableSize) { 4898 assert(DefaultValue && 4899 "Need a default value to fill the lookup table holes."); 4900 assert(DefaultValue->getType() == ValueType); 4901 for (uint64_t I = 0; I < TableSize; ++I) { 4902 if (!TableContents[I]) 4903 TableContents[I] = DefaultValue; 4904 } 4905 4906 if (DefaultValue != SingleValue) 4907 SingleValue = nullptr; 4908 } 4909 4910 // If each element in the table contains the same value, we only need to store 4911 // that single value. 4912 if (SingleValue) { 4913 Kind = SingleValueKind; 4914 return; 4915 } 4916 4917 // Check if we can derive the value with a linear transformation from the 4918 // table index. 4919 if (isa<IntegerType>(ValueType)) { 4920 bool LinearMappingPossible = true; 4921 APInt PrevVal; 4922 APInt DistToPrev; 4923 assert(TableSize >= 2 && "Should be a SingleValue table."); 4924 // Check if there is the same distance between two consecutive values. 4925 for (uint64_t I = 0; I < TableSize; ++I) { 4926 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4927 if (!ConstVal) { 4928 // This is an undef. We could deal with it, but undefs in lookup tables 4929 // are very seldom. It's probably not worth the additional complexity. 4930 LinearMappingPossible = false; 4931 break; 4932 } 4933 APInt Val = ConstVal->getValue(); 4934 if (I != 0) { 4935 APInt Dist = Val - PrevVal; 4936 if (I == 1) { 4937 DistToPrev = Dist; 4938 } else if (Dist != DistToPrev) { 4939 LinearMappingPossible = false; 4940 break; 4941 } 4942 } 4943 PrevVal = Val; 4944 } 4945 if (LinearMappingPossible) { 4946 LinearOffset = cast<ConstantInt>(TableContents[0]); 4947 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4948 Kind = LinearMapKind; 4949 ++NumLinearMaps; 4950 return; 4951 } 4952 } 4953 4954 // If the type is integer and the table fits in a register, build a bitmap. 4955 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4956 IntegerType *IT = cast<IntegerType>(ValueType); 4957 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4958 for (uint64_t I = TableSize; I > 0; --I) { 4959 TableInt <<= IT->getBitWidth(); 4960 // Insert values into the bitmap. Undef values are set to zero. 4961 if (!isa<UndefValue>(TableContents[I - 1])) { 4962 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4963 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4964 } 4965 } 4966 BitMap = ConstantInt::get(M.getContext(), TableInt); 4967 BitMapElementTy = IT; 4968 Kind = BitMapKind; 4969 ++NumBitMaps; 4970 return; 4971 } 4972 4973 // Store the table in an array. 4974 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4975 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4976 4977 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4978 GlobalVariable::PrivateLinkage, Initializer, 4979 "switch.table"); 4980 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4981 Kind = ArrayKind; 4982 } 4983 4984 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4985 switch (Kind) { 4986 case SingleValueKind: 4987 return SingleValue; 4988 case LinearMapKind: { 4989 // Derive the result value from the input value. 4990 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4991 false, "switch.idx.cast"); 4992 if (!LinearMultiplier->isOne()) 4993 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4994 if (!LinearOffset->isZero()) 4995 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4996 return Result; 4997 } 4998 case BitMapKind: { 4999 // Type of the bitmap (e.g. i59). 5000 IntegerType *MapTy = BitMap->getType(); 5001 5002 // Cast Index to the same type as the bitmap. 5003 // Note: The Index is <= the number of elements in the table, so 5004 // truncating it to the width of the bitmask is safe. 5005 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5006 5007 // Multiply the shift amount by the element width. 5008 ShiftAmt = Builder.CreateMul( 5009 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5010 "switch.shiftamt"); 5011 5012 // Shift down. 5013 Value *DownShifted = 5014 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5015 // Mask off. 5016 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5017 } 5018 case ArrayKind: { 5019 // Make sure the table index will not overflow when treated as signed. 5020 IntegerType *IT = cast<IntegerType>(Index->getType()); 5021 uint64_t TableSize = 5022 Array->getInitializer()->getType()->getArrayNumElements(); 5023 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5024 Index = Builder.CreateZExt( 5025 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5026 "switch.tableidx.zext"); 5027 5028 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5029 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5030 GEPIndices, "switch.gep"); 5031 return Builder.CreateLoad(GEP, "switch.load"); 5032 } 5033 } 5034 llvm_unreachable("Unknown lookup table kind!"); 5035 } 5036 5037 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5038 uint64_t TableSize, 5039 Type *ElementType) { 5040 auto *IT = dyn_cast<IntegerType>(ElementType); 5041 if (!IT) 5042 return false; 5043 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5044 // are <= 15, we could try to narrow the type. 5045 5046 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5047 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5048 return false; 5049 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5050 } 5051 5052 /// Determine whether a lookup table should be built for this switch, based on 5053 /// the number of cases, size of the table, and the types of the results. 5054 static bool 5055 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5056 const TargetTransformInfo &TTI, const DataLayout &DL, 5057 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5058 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5059 return false; // TableSize overflowed, or mul below might overflow. 5060 5061 bool AllTablesFitInRegister = true; 5062 bool HasIllegalType = false; 5063 for (const auto &I : ResultTypes) { 5064 Type *Ty = I.second; 5065 5066 // Saturate this flag to true. 5067 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5068 5069 // Saturate this flag to false. 5070 AllTablesFitInRegister = 5071 AllTablesFitInRegister && 5072 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5073 5074 // If both flags saturate, we're done. NOTE: This *only* works with 5075 // saturating flags, and all flags have to saturate first due to the 5076 // non-deterministic behavior of iterating over a dense map. 5077 if (HasIllegalType && !AllTablesFitInRegister) 5078 break; 5079 } 5080 5081 // If each table would fit in a register, we should build it anyway. 5082 if (AllTablesFitInRegister) 5083 return true; 5084 5085 // Don't build a table that doesn't fit in-register if it has illegal types. 5086 if (HasIllegalType) 5087 return false; 5088 5089 // The table density should be at least 40%. This is the same criterion as for 5090 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5091 // FIXME: Find the best cut-off. 5092 return SI->getNumCases() * 10 >= TableSize * 4; 5093 } 5094 5095 /// Try to reuse the switch table index compare. Following pattern: 5096 /// \code 5097 /// if (idx < tablesize) 5098 /// r = table[idx]; // table does not contain default_value 5099 /// else 5100 /// r = default_value; 5101 /// if (r != default_value) 5102 /// ... 5103 /// \endcode 5104 /// Is optimized to: 5105 /// \code 5106 /// cond = idx < tablesize; 5107 /// if (cond) 5108 /// r = table[idx]; 5109 /// else 5110 /// r = default_value; 5111 /// if (cond) 5112 /// ... 5113 /// \endcode 5114 /// Jump threading will then eliminate the second if(cond). 5115 static void reuseTableCompare( 5116 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5117 Constant *DefaultValue, 5118 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5119 5120 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5121 if (!CmpInst) 5122 return; 5123 5124 // We require that the compare is in the same block as the phi so that jump 5125 // threading can do its work afterwards. 5126 if (CmpInst->getParent() != PhiBlock) 5127 return; 5128 5129 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5130 if (!CmpOp1) 5131 return; 5132 5133 Value *RangeCmp = RangeCheckBranch->getCondition(); 5134 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5135 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5136 5137 // Check if the compare with the default value is constant true or false. 5138 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5139 DefaultValue, CmpOp1, true); 5140 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5141 return; 5142 5143 // Check if the compare with the case values is distinct from the default 5144 // compare result. 5145 for (auto ValuePair : Values) { 5146 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5147 ValuePair.second, CmpOp1, true); 5148 if (!CaseConst || CaseConst == DefaultConst) 5149 return; 5150 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5151 "Expect true or false as compare result."); 5152 } 5153 5154 // Check if the branch instruction dominates the phi node. It's a simple 5155 // dominance check, but sufficient for our needs. 5156 // Although this check is invariant in the calling loops, it's better to do it 5157 // at this late stage. Practically we do it at most once for a switch. 5158 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5159 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5160 BasicBlock *Pred = *PI; 5161 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5162 return; 5163 } 5164 5165 if (DefaultConst == FalseConst) { 5166 // The compare yields the same result. We can replace it. 5167 CmpInst->replaceAllUsesWith(RangeCmp); 5168 ++NumTableCmpReuses; 5169 } else { 5170 // The compare yields the same result, just inverted. We can replace it. 5171 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5172 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5173 RangeCheckBranch); 5174 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5175 ++NumTableCmpReuses; 5176 } 5177 } 5178 5179 /// If the switch is only used to initialize one or more phi nodes in a common 5180 /// successor block with different constant values, replace the switch with 5181 /// lookup tables. 5182 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5183 const DataLayout &DL, 5184 const TargetTransformInfo &TTI) { 5185 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5186 5187 // Only build lookup table when we have a target that supports it. 5188 if (!TTI.shouldBuildLookupTables()) 5189 return false; 5190 5191 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5192 // split off a dense part and build a lookup table for that. 5193 5194 // FIXME: This creates arrays of GEPs to constant strings, which means each 5195 // GEP needs a runtime relocation in PIC code. We should just build one big 5196 // string and lookup indices into that. 5197 5198 // Ignore switches with less than three cases. Lookup tables will not make 5199 // them 5200 // faster, so we don't analyze them. 5201 if (SI->getNumCases() < 3) 5202 return false; 5203 5204 // Figure out the corresponding result for each case value and phi node in the 5205 // common destination, as well as the min and max case values. 5206 assert(SI->case_begin() != SI->case_end()); 5207 SwitchInst::CaseIt CI = SI->case_begin(); 5208 ConstantInt *MinCaseVal = CI.getCaseValue(); 5209 ConstantInt *MaxCaseVal = CI.getCaseValue(); 5210 5211 BasicBlock *CommonDest = nullptr; 5212 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 5213 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5214 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5215 SmallDenseMap<PHINode *, Type *> ResultTypes; 5216 SmallVector<PHINode *, 4> PHIs; 5217 5218 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5219 ConstantInt *CaseVal = CI.getCaseValue(); 5220 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5221 MinCaseVal = CaseVal; 5222 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5223 MaxCaseVal = CaseVal; 5224 5225 // Resulting value at phi nodes for this case value. 5226 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 5227 ResultsTy Results; 5228 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 5229 Results, DL, TTI)) 5230 return false; 5231 5232 // Append the result from this case to the list for each phi. 5233 for (const auto &I : Results) { 5234 PHINode *PHI = I.first; 5235 Constant *Value = I.second; 5236 if (!ResultLists.count(PHI)) 5237 PHIs.push_back(PHI); 5238 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5239 } 5240 } 5241 5242 // Keep track of the result types. 5243 for (PHINode *PHI : PHIs) { 5244 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5245 } 5246 5247 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5248 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5249 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5250 bool TableHasHoles = (NumResults < TableSize); 5251 5252 // If the table has holes, we need a constant result for the default case 5253 // or a bitmask that fits in a register. 5254 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5255 bool HasDefaultResults = 5256 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5257 DefaultResultsList, DL, TTI); 5258 5259 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5260 if (NeedMask) { 5261 // As an extra penalty for the validity test we require more cases. 5262 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5263 return false; 5264 if (!DL.fitsInLegalInteger(TableSize)) 5265 return false; 5266 } 5267 5268 for (const auto &I : DefaultResultsList) { 5269 PHINode *PHI = I.first; 5270 Constant *Result = I.second; 5271 DefaultResults[PHI] = Result; 5272 } 5273 5274 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5275 return false; 5276 5277 // Create the BB that does the lookups. 5278 Module &Mod = *CommonDest->getParent()->getParent(); 5279 BasicBlock *LookupBB = BasicBlock::Create( 5280 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5281 5282 // Compute the table index value. 5283 Builder.SetInsertPoint(SI); 5284 Value *TableIndex = 5285 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 5286 5287 // Compute the maximum table size representable by the integer type we are 5288 // switching upon. 5289 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5290 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5291 assert(MaxTableSize >= TableSize && 5292 "It is impossible for a switch to have more entries than the max " 5293 "representable value of its input integer type's size."); 5294 5295 // If the default destination is unreachable, or if the lookup table covers 5296 // all values of the conditional variable, branch directly to the lookup table 5297 // BB. Otherwise, check that the condition is within the case range. 5298 const bool DefaultIsReachable = 5299 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5300 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5301 BranchInst *RangeCheckBranch = nullptr; 5302 5303 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5304 Builder.CreateBr(LookupBB); 5305 // Note: We call removeProdecessor later since we need to be able to get the 5306 // PHI value for the default case in case we're using a bit mask. 5307 } else { 5308 Value *Cmp = Builder.CreateICmpULT( 5309 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5310 RangeCheckBranch = 5311 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5312 } 5313 5314 // Populate the BB that does the lookups. 5315 Builder.SetInsertPoint(LookupBB); 5316 5317 if (NeedMask) { 5318 // Before doing the lookup we do the hole check. 5319 // The LookupBB is therefore re-purposed to do the hole check 5320 // and we create a new LookupBB. 5321 BasicBlock *MaskBB = LookupBB; 5322 MaskBB->setName("switch.hole_check"); 5323 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5324 CommonDest->getParent(), CommonDest); 5325 5326 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 5327 // unnecessary illegal types. 5328 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5329 APInt MaskInt(TableSizePowOf2, 0); 5330 APInt One(TableSizePowOf2, 1); 5331 // Build bitmask; fill in a 1 bit for every case. 5332 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5333 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5334 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5335 .getLimitedValue(); 5336 MaskInt |= One << Idx; 5337 } 5338 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5339 5340 // Get the TableIndex'th bit of the bitmask. 5341 // If this bit is 0 (meaning hole) jump to the default destination, 5342 // else continue with table lookup. 5343 IntegerType *MapTy = TableMask->getType(); 5344 Value *MaskIndex = 5345 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5346 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5347 Value *LoBit = Builder.CreateTrunc( 5348 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5349 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5350 5351 Builder.SetInsertPoint(LookupBB); 5352 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5353 } 5354 5355 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5356 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 5357 // do not delete PHINodes here. 5358 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5359 /*DontDeleteUselessPHIs=*/true); 5360 } 5361 5362 bool ReturnedEarly = false; 5363 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5364 PHINode *PHI = PHIs[I]; 5365 const ResultListTy &ResultList = ResultLists[PHI]; 5366 5367 // If using a bitmask, use any value to fill the lookup table holes. 5368 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5369 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 5370 5371 Value *Result = Table.BuildLookup(TableIndex, Builder); 5372 5373 // If the result is used to return immediately from the function, we want to 5374 // do that right here. 5375 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5376 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5377 Builder.CreateRet(Result); 5378 ReturnedEarly = true; 5379 break; 5380 } 5381 5382 // Do a small peephole optimization: re-use the switch table compare if 5383 // possible. 5384 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5385 BasicBlock *PhiBlock = PHI->getParent(); 5386 // Search for compare instructions which use the phi. 5387 for (auto *User : PHI->users()) { 5388 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5389 } 5390 } 5391 5392 PHI->addIncoming(Result, LookupBB); 5393 } 5394 5395 if (!ReturnedEarly) 5396 Builder.CreateBr(CommonDest); 5397 5398 // Remove the switch. 5399 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5400 BasicBlock *Succ = SI->getSuccessor(i); 5401 5402 if (Succ == SI->getDefaultDest()) 5403 continue; 5404 Succ->removePredecessor(SI->getParent()); 5405 } 5406 SI->eraseFromParent(); 5407 5408 ++NumLookupTables; 5409 if (NeedMask) 5410 ++NumLookupTablesHoles; 5411 return true; 5412 } 5413 5414 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5415 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5416 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5417 uint64_t Range = Diff + 1; 5418 uint64_t NumCases = Values.size(); 5419 // 40% is the default density for building a jump table in optsize/minsize mode. 5420 uint64_t MinDensity = 40; 5421 5422 return NumCases * 100 >= Range * MinDensity; 5423 } 5424 5425 // Try and transform a switch that has "holes" in it to a contiguous sequence 5426 // of cases. 5427 // 5428 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5429 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5430 // 5431 // This converts a sparse switch into a dense switch which allows better 5432 // lowering and could also allow transforming into a lookup table. 5433 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5434 const DataLayout &DL, 5435 const TargetTransformInfo &TTI) { 5436 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5437 if (CondTy->getIntegerBitWidth() > 64 || 5438 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5439 return false; 5440 // Only bother with this optimization if there are more than 3 switch cases; 5441 // SDAG will only bother creating jump tables for 4 or more cases. 5442 if (SI->getNumCases() < 4) 5443 return false; 5444 5445 // This transform is agnostic to the signedness of the input or case values. We 5446 // can treat the case values as signed or unsigned. We can optimize more common 5447 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5448 // as signed. 5449 SmallVector<int64_t,4> Values; 5450 for (auto &C : SI->cases()) 5451 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5452 std::sort(Values.begin(), Values.end()); 5453 5454 // If the switch is already dense, there's nothing useful to do here. 5455 if (isSwitchDense(Values)) 5456 return false; 5457 5458 // First, transform the values such that they start at zero and ascend. 5459 int64_t Base = Values[0]; 5460 for (auto &V : Values) 5461 V -= Base; 5462 5463 // Now we have signed numbers that have been shifted so that, given enough 5464 // precision, there are no negative values. Since the rest of the transform 5465 // is bitwise only, we switch now to an unsigned representation. 5466 uint64_t GCD = 0; 5467 for (auto &V : Values) 5468 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5469 5470 // This transform can be done speculatively because it is so cheap - it results 5471 // in a single rotate operation being inserted. This can only happen if the 5472 // factor extracted is a power of 2. 5473 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5474 // inverse of GCD and then perform this transform. 5475 // FIXME: It's possible that optimizing a switch on powers of two might also 5476 // be beneficial - flag values are often powers of two and we could use a CLZ 5477 // as the key function. 5478 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5479 // No common divisor found or too expensive to compute key function. 5480 return false; 5481 5482 unsigned Shift = Log2_64(GCD); 5483 for (auto &V : Values) 5484 V = (int64_t)((uint64_t)V >> Shift); 5485 5486 if (!isSwitchDense(Values)) 5487 // Transform didn't create a dense switch. 5488 return false; 5489 5490 // The obvious transform is to shift the switch condition right and emit a 5491 // check that the condition actually cleanly divided by GCD, i.e. 5492 // C & (1 << Shift - 1) == 0 5493 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5494 // 5495 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5496 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5497 // are nonzero then the switch condition will be very large and will hit the 5498 // default case. 5499 5500 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5501 Builder.SetInsertPoint(SI); 5502 auto *ShiftC = ConstantInt::get(Ty, Shift); 5503 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5504 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5505 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5506 auto *Rot = Builder.CreateOr(LShr, Shl); 5507 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5508 5509 for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E; 5510 ++C) { 5511 auto *Orig = C.getCaseValue(); 5512 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5513 C.setValue( 5514 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5515 } 5516 return true; 5517 } 5518 5519 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5520 BasicBlock *BB = SI->getParent(); 5521 5522 if (isValueEqualityComparison(SI)) { 5523 // If we only have one predecessor, and if it is a branch on this value, 5524 // see if that predecessor totally determines the outcome of this switch. 5525 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5526 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5527 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5528 5529 Value *Cond = SI->getCondition(); 5530 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5531 if (SimplifySwitchOnSelect(SI, Select)) 5532 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5533 5534 // If the block only contains the switch, see if we can fold the block 5535 // away into any preds. 5536 BasicBlock::iterator BBI = BB->begin(); 5537 // Ignore dbg intrinsics. 5538 while (isa<DbgInfoIntrinsic>(BBI)) 5539 ++BBI; 5540 if (SI == &*BBI) 5541 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5542 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5543 } 5544 5545 // Try to transform the switch into an icmp and a branch. 5546 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5547 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5548 5549 // Remove unreachable cases. 5550 if (EliminateDeadSwitchCases(SI, AC, DL)) 5551 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5552 5553 if (SwitchToSelect(SI, Builder, AC, DL, TTI)) 5554 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5555 5556 if (ForwardSwitchConditionToPHI(SI)) 5557 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5558 5559 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5560 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5561 5562 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5563 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5564 5565 return false; 5566 } 5567 5568 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5569 BasicBlock *BB = IBI->getParent(); 5570 bool Changed = false; 5571 5572 // Eliminate redundant destinations. 5573 SmallPtrSet<Value *, 8> Succs; 5574 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5575 BasicBlock *Dest = IBI->getDestination(i); 5576 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5577 Dest->removePredecessor(BB); 5578 IBI->removeDestination(i); 5579 --i; 5580 --e; 5581 Changed = true; 5582 } 5583 } 5584 5585 if (IBI->getNumDestinations() == 0) { 5586 // If the indirectbr has no successors, change it to unreachable. 5587 new UnreachableInst(IBI->getContext(), IBI); 5588 EraseTerminatorInstAndDCECond(IBI); 5589 return true; 5590 } 5591 5592 if (IBI->getNumDestinations() == 1) { 5593 // If the indirectbr has one successor, change it to a direct branch. 5594 BranchInst::Create(IBI->getDestination(0), IBI); 5595 EraseTerminatorInstAndDCECond(IBI); 5596 return true; 5597 } 5598 5599 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5600 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5601 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5602 } 5603 return Changed; 5604 } 5605 5606 /// Given an block with only a single landing pad and a unconditional branch 5607 /// try to find another basic block which this one can be merged with. This 5608 /// handles cases where we have multiple invokes with unique landing pads, but 5609 /// a shared handler. 5610 /// 5611 /// We specifically choose to not worry about merging non-empty blocks 5612 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5613 /// practice, the optimizer produces empty landing pad blocks quite frequently 5614 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5615 /// sinking in this file) 5616 /// 5617 /// This is primarily a code size optimization. We need to avoid performing 5618 /// any transform which might inhibit optimization (such as our ability to 5619 /// specialize a particular handler via tail commoning). We do this by not 5620 /// merging any blocks which require us to introduce a phi. Since the same 5621 /// values are flowing through both blocks, we don't loose any ability to 5622 /// specialize. If anything, we make such specialization more likely. 5623 /// 5624 /// TODO - This transformation could remove entries from a phi in the target 5625 /// block when the inputs in the phi are the same for the two blocks being 5626 /// merged. In some cases, this could result in removal of the PHI entirely. 5627 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5628 BasicBlock *BB) { 5629 auto Succ = BB->getUniqueSuccessor(); 5630 assert(Succ); 5631 // If there's a phi in the successor block, we'd likely have to introduce 5632 // a phi into the merged landing pad block. 5633 if (isa<PHINode>(*Succ->begin())) 5634 return false; 5635 5636 for (BasicBlock *OtherPred : predecessors(Succ)) { 5637 if (BB == OtherPred) 5638 continue; 5639 BasicBlock::iterator I = OtherPred->begin(); 5640 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5641 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5642 continue; 5643 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5644 } 5645 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5646 if (!BI2 || !BI2->isIdenticalTo(BI)) 5647 continue; 5648 5649 // We've found an identical block. Update our predecessors to take that 5650 // path instead and make ourselves dead. 5651 SmallSet<BasicBlock *, 16> Preds; 5652 Preds.insert(pred_begin(BB), pred_end(BB)); 5653 for (BasicBlock *Pred : Preds) { 5654 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5655 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5656 "unexpected successor"); 5657 II->setUnwindDest(OtherPred); 5658 } 5659 5660 // The debug info in OtherPred doesn't cover the merged control flow that 5661 // used to go through BB. We need to delete it or update it. 5662 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5663 Instruction &Inst = *I; 5664 I++; 5665 if (isa<DbgInfoIntrinsic>(Inst)) 5666 Inst.eraseFromParent(); 5667 } 5668 5669 SmallSet<BasicBlock *, 16> Succs; 5670 Succs.insert(succ_begin(BB), succ_end(BB)); 5671 for (BasicBlock *Succ : Succs) { 5672 Succ->removePredecessor(BB); 5673 } 5674 5675 IRBuilder<> Builder(BI); 5676 Builder.CreateUnreachable(); 5677 BI->eraseFromParent(); 5678 return true; 5679 } 5680 return false; 5681 } 5682 5683 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5684 IRBuilder<> &Builder) { 5685 BasicBlock *BB = BI->getParent(); 5686 5687 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5688 return true; 5689 5690 // If the Terminator is the only non-phi instruction, simplify the block. 5691 // if LoopHeader is provided, check if the block is a loop header 5692 // (This is for early invocations before loop simplify and vectorization 5693 // to keep canonical loop forms for nested loops. 5694 // These blocks can be eliminated when the pass is invoked later 5695 // in the back-end.) 5696 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5697 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5698 (!LoopHeaders || !LoopHeaders->count(BB)) && 5699 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5700 return true; 5701 5702 // If the only instruction in the block is a seteq/setne comparison 5703 // against a constant, try to simplify the block. 5704 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5705 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5706 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5707 ; 5708 if (I->isTerminator() && 5709 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5710 BonusInstThreshold, AC)) 5711 return true; 5712 } 5713 5714 // See if we can merge an empty landing pad block with another which is 5715 // equivalent. 5716 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5717 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5718 } 5719 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5720 return true; 5721 } 5722 5723 // If this basic block is ONLY a compare and a branch, and if a predecessor 5724 // branches to us and our successor, fold the comparison into the 5725 // predecessor and use logical operations to update the incoming value 5726 // for PHI nodes in common successor. 5727 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5728 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5729 return false; 5730 } 5731 5732 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5733 BasicBlock *PredPred = nullptr; 5734 for (auto *P : predecessors(BB)) { 5735 BasicBlock *PPred = P->getSinglePredecessor(); 5736 if (!PPred || (PredPred && PredPred != PPred)) 5737 return nullptr; 5738 PredPred = PPred; 5739 } 5740 return PredPred; 5741 } 5742 5743 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5744 BasicBlock *BB = BI->getParent(); 5745 5746 // Conditional branch 5747 if (isValueEqualityComparison(BI)) { 5748 // If we only have one predecessor, and if it is a branch on this value, 5749 // see if that predecessor totally determines the outcome of this 5750 // switch. 5751 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5752 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5753 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5754 5755 // This block must be empty, except for the setcond inst, if it exists. 5756 // Ignore dbg intrinsics. 5757 BasicBlock::iterator I = BB->begin(); 5758 // Ignore dbg intrinsics. 5759 while (isa<DbgInfoIntrinsic>(I)) 5760 ++I; 5761 if (&*I == BI) { 5762 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5763 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5764 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5765 ++I; 5766 // Ignore dbg intrinsics. 5767 while (isa<DbgInfoIntrinsic>(I)) 5768 ++I; 5769 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5770 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5771 } 5772 } 5773 5774 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5775 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5776 return true; 5777 5778 // If this basic block has a single dominating predecessor block and the 5779 // dominating block's condition implies BI's condition, we know the direction 5780 // of the BI branch. 5781 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5782 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5783 if (PBI && PBI->isConditional() && 5784 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5785 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5786 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5787 Optional<bool> Implication = isImpliedCondition( 5788 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5789 if (Implication) { 5790 // Turn this into a branch on constant. 5791 auto *OldCond = BI->getCondition(); 5792 ConstantInt *CI = *Implication 5793 ? ConstantInt::getTrue(BB->getContext()) 5794 : ConstantInt::getFalse(BB->getContext()); 5795 BI->setCondition(CI); 5796 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5797 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5798 } 5799 } 5800 } 5801 5802 // If this basic block is ONLY a compare and a branch, and if a predecessor 5803 // branches to us and one of our successors, fold the comparison into the 5804 // predecessor and use logical operations to pick the right destination. 5805 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5806 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5807 5808 // We have a conditional branch to two blocks that are only reachable 5809 // from BI. We know that the condbr dominates the two blocks, so see if 5810 // there is any identical code in the "then" and "else" blocks. If so, we 5811 // can hoist it up to the branching block. 5812 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5813 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5814 if (HoistThenElseCodeToIf(BI, TTI)) 5815 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5816 } else { 5817 // If Successor #1 has multiple preds, we may be able to conditionally 5818 // execute Successor #0 if it branches to Successor #1. 5819 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5820 if (Succ0TI->getNumSuccessors() == 1 && 5821 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5822 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5823 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5824 } 5825 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5826 // If Successor #0 has multiple preds, we may be able to conditionally 5827 // execute Successor #1 if it branches to Successor #0. 5828 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5829 if (Succ1TI->getNumSuccessors() == 1 && 5830 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5831 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5832 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5833 } 5834 5835 // If this is a branch on a phi node in the current block, thread control 5836 // through this block if any PHI node entries are constants. 5837 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5838 if (PN->getParent() == BI->getParent()) 5839 if (FoldCondBranchOnPHI(BI, DL)) 5840 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5841 5842 // Scan predecessor blocks for conditional branches. 5843 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5844 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5845 if (PBI != BI && PBI->isConditional()) 5846 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5847 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5848 5849 // Look for diamond patterns. 5850 if (MergeCondStores) 5851 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5852 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5853 if (PBI != BI && PBI->isConditional()) 5854 if (mergeConditionalStores(PBI, BI)) 5855 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5856 5857 return false; 5858 } 5859 5860 /// Check if passing a value to an instruction will cause undefined behavior. 5861 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5862 Constant *C = dyn_cast<Constant>(V); 5863 if (!C) 5864 return false; 5865 5866 if (I->use_empty()) 5867 return false; 5868 5869 if (C->isNullValue() || isa<UndefValue>(C)) { 5870 // Only look at the first use, avoid hurting compile time with long uselists 5871 User *Use = *I->user_begin(); 5872 5873 // Now make sure that there are no instructions in between that can alter 5874 // control flow (eg. calls) 5875 for (BasicBlock::iterator 5876 i = ++BasicBlock::iterator(I), 5877 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5878 i != UI; ++i) 5879 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5880 return false; 5881 5882 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5883 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5884 if (GEP->getPointerOperand() == I) 5885 return passingValueIsAlwaysUndefined(V, GEP); 5886 5887 // Look through bitcasts. 5888 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5889 return passingValueIsAlwaysUndefined(V, BC); 5890 5891 // Load from null is undefined. 5892 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5893 if (!LI->isVolatile()) 5894 return LI->getPointerAddressSpace() == 0; 5895 5896 // Store to null is undefined. 5897 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5898 if (!SI->isVolatile()) 5899 return SI->getPointerAddressSpace() == 0 && 5900 SI->getPointerOperand() == I; 5901 5902 // A call to null is undefined. 5903 if (auto CS = CallSite(Use)) 5904 return CS.getCalledValue() == I; 5905 } 5906 return false; 5907 } 5908 5909 /// If BB has an incoming value that will always trigger undefined behavior 5910 /// (eg. null pointer dereference), remove the branch leading here. 5911 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5912 for (BasicBlock::iterator i = BB->begin(); 5913 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5914 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5915 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5916 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5917 IRBuilder<> Builder(T); 5918 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5919 BB->removePredecessor(PHI->getIncomingBlock(i)); 5920 // Turn uncoditional branches into unreachables and remove the dead 5921 // destination from conditional branches. 5922 if (BI->isUnconditional()) 5923 Builder.CreateUnreachable(); 5924 else 5925 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5926 : BI->getSuccessor(0)); 5927 BI->eraseFromParent(); 5928 return true; 5929 } 5930 // TODO: SwitchInst. 5931 } 5932 5933 return false; 5934 } 5935 5936 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5937 bool Changed = false; 5938 5939 assert(BB && BB->getParent() && "Block not embedded in function!"); 5940 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5941 5942 // Remove basic blocks that have no predecessors (except the entry block)... 5943 // or that just have themself as a predecessor. These are unreachable. 5944 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5945 BB->getSinglePredecessor() == BB) { 5946 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5947 DeleteDeadBlock(BB); 5948 return true; 5949 } 5950 5951 // Check to see if we can constant propagate this terminator instruction 5952 // away... 5953 Changed |= ConstantFoldTerminator(BB, true); 5954 5955 // Check for and eliminate duplicate PHI nodes in this block. 5956 Changed |= EliminateDuplicatePHINodes(BB); 5957 5958 // Check for and remove branches that will always cause undefined behavior. 5959 Changed |= removeUndefIntroducingPredecessor(BB); 5960 5961 // Merge basic blocks into their predecessor if there is only one distinct 5962 // pred, and if there is only one distinct successor of the predecessor, and 5963 // if there are no PHI nodes. 5964 // 5965 if (MergeBlockIntoPredecessor(BB)) 5966 return true; 5967 5968 IRBuilder<> Builder(BB); 5969 5970 // If there is a trivial two-entry PHI node in this basic block, and we can 5971 // eliminate it, do so now. 5972 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5973 if (PN->getNumIncomingValues() == 2) 5974 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5975 5976 Builder.SetInsertPoint(BB->getTerminator()); 5977 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5978 if (BI->isUnconditional()) { 5979 if (SimplifyUncondBranch(BI, Builder)) 5980 return true; 5981 } else { 5982 if (SimplifyCondBranch(BI, Builder)) 5983 return true; 5984 } 5985 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5986 if (SimplifyReturn(RI, Builder)) 5987 return true; 5988 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5989 if (SimplifyResume(RI, Builder)) 5990 return true; 5991 } else if (CleanupReturnInst *RI = 5992 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5993 if (SimplifyCleanupReturn(RI)) 5994 return true; 5995 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5996 if (SimplifySwitch(SI, Builder)) 5997 return true; 5998 } else if (UnreachableInst *UI = 5999 dyn_cast<UnreachableInst>(BB->getTerminator())) { 6000 if (SimplifyUnreachable(UI)) 6001 return true; 6002 } else if (IndirectBrInst *IBI = 6003 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6004 if (SimplifyIndirectBr(IBI)) 6005 return true; 6006 } 6007 6008 return Changed; 6009 } 6010 6011 /// This function is used to do simplification of a CFG. 6012 /// For example, it adjusts branches to branches to eliminate the extra hop, 6013 /// eliminates unreachable basic blocks, and does other "peephole" optimization 6014 /// of the CFG. It returns true if a modification was made. 6015 /// 6016 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6017 unsigned BonusInstThreshold, AssumptionCache *AC, 6018 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6019 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 6020 BonusInstThreshold, AC, LoopHeaders) 6021 .run(BB); 6022 } 6023