1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfo.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/NoFolder.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/KnownBits.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <climits>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <map>
75 #include <set>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 using namespace PatternMatch;
81 
82 #define DEBUG_TYPE "simplifycfg"
83 
84 // Chosen as 2 so as to be cheap, but still to have enough power to fold
85 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
86 // To catch this, we need to fold a compare and a select, hence '2' being the
87 // minimum reasonable default.
88 static cl::opt<unsigned> PHINodeFoldingThreshold(
89     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
90     cl::desc(
91         "Control the amount of phi node folding to perform (default = 2)"));
92 
93 static cl::opt<bool> DupRet(
94     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
95     cl::desc("Duplicate return instructions into unconditional branches"));
96 
97 static cl::opt<bool>
98     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
99                cl::desc("Sink common instructions down to the end block"));
100 
101 static cl::opt<bool> HoistCondStores(
102     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
103     cl::desc("Hoist conditional stores if an unconditional store precedes"));
104 
105 static cl::opt<bool> MergeCondStores(
106     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores even if an unconditional store does not "
108              "precede - hoist multiple conditional stores into a single "
109              "predicated store"));
110 
111 static cl::opt<bool> MergeCondStoresAggressively(
112     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
113     cl::desc("When merging conditional stores, do so even if the resultant "
114              "basic blocks are unlikely to be if-converted as a result"));
115 
116 static cl::opt<bool> SpeculateOneExpensiveInst(
117     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
118     cl::desc("Allow exactly one expensive instruction to be speculatively "
119              "executed"));
120 
121 static cl::opt<unsigned> MaxSpeculationDepth(
122     "max-speculation-depth", cl::Hidden, cl::init(10),
123     cl::desc("Limit maximum recursion depth when calculating costs of "
124              "speculatively executed instructions"));
125 
126 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
127 STATISTIC(NumLinearMaps,
128           "Number of switch instructions turned into linear mapping");
129 STATISTIC(NumLookupTables,
130           "Number of switch instructions turned into lookup tables");
131 STATISTIC(
132     NumLookupTablesHoles,
133     "Number of switch instructions turned into lookup tables (holes checked)");
134 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
135 STATISTIC(NumSinkCommons,
136           "Number of common instructions sunk down to the end block");
137 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
138 
139 namespace {
140 
141 // The first field contains the value that the switch produces when a certain
142 // case group is selected, and the second field is a vector containing the
143 // cases composing the case group.
144 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
145     SwitchCaseResultVectorTy;
146 // The first field contains the phi node that generates a result of the switch
147 // and the second field contains the value generated for a certain case in the
148 // switch for that PHI.
149 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
150 
151 /// ValueEqualityComparisonCase - Represents a case of a switch.
152 struct ValueEqualityComparisonCase {
153   ConstantInt *Value;
154   BasicBlock *Dest;
155 
156   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
157       : Value(Value), Dest(Dest) {}
158 
159   bool operator<(ValueEqualityComparisonCase RHS) const {
160     // Comparing pointers is ok as we only rely on the order for uniquing.
161     return Value < RHS.Value;
162   }
163 
164   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
165 };
166 
167 class SimplifyCFGOpt {
168   const TargetTransformInfo &TTI;
169   const DataLayout &DL;
170   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
171   const SimplifyCFGOptions &Options;
172 
173   Value *isValueEqualityComparison(TerminatorInst *TI);
174   BasicBlock *GetValueEqualityComparisonCases(
175       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
176   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
177                                                      BasicBlock *Pred,
178                                                      IRBuilder<> &Builder);
179   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
180                                            IRBuilder<> &Builder);
181 
182   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
183   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
184   bool SimplifySingleResume(ResumeInst *RI);
185   bool SimplifyCommonResume(ResumeInst *RI);
186   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
187   bool SimplifyUnreachable(UnreachableInst *UI);
188   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
189   bool SimplifyIndirectBr(IndirectBrInst *IBI);
190   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
191   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
192 
193 public:
194   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
195                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
196                  const SimplifyCFGOptions &Opts)
197       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
198 
199   bool run(BasicBlock *BB);
200 };
201 
202 } // end anonymous namespace
203 
204 /// Return true if it is safe to merge these two
205 /// terminator instructions together.
206 static bool
207 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
208                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
209   if (SI1 == SI2)
210     return false; // Can't merge with self!
211 
212   // It is not safe to merge these two switch instructions if they have a common
213   // successor, and if that successor has a PHI node, and if *that* PHI node has
214   // conflicting incoming values from the two switch blocks.
215   BasicBlock *SI1BB = SI1->getParent();
216   BasicBlock *SI2BB = SI2->getParent();
217 
218   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
219   bool Fail = false;
220   for (BasicBlock *Succ : successors(SI2BB))
221     if (SI1Succs.count(Succ))
222       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
223         PHINode *PN = cast<PHINode>(BBI);
224         if (PN->getIncomingValueForBlock(SI1BB) !=
225             PN->getIncomingValueForBlock(SI2BB)) {
226           if (FailBlocks)
227             FailBlocks->insert(Succ);
228           Fail = true;
229         }
230       }
231 
232   return !Fail;
233 }
234 
235 /// Return true if it is safe and profitable to merge these two terminator
236 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
237 /// store all PHI nodes in common successors.
238 static bool
239 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
240                                 Instruction *Cond,
241                                 SmallVectorImpl<PHINode *> &PhiNodes) {
242   if (SI1 == SI2)
243     return false; // Can't merge with self!
244   assert(SI1->isUnconditional() && SI2->isConditional());
245 
246   // We fold the unconditional branch if we can easily update all PHI nodes in
247   // common successors:
248   // 1> We have a constant incoming value for the conditional branch;
249   // 2> We have "Cond" as the incoming value for the unconditional branch;
250   // 3> SI2->getCondition() and Cond have same operands.
251   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
252   if (!Ci2)
253     return false;
254   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
255         Cond->getOperand(1) == Ci2->getOperand(1)) &&
256       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
257         Cond->getOperand(1) == Ci2->getOperand(0)))
258     return false;
259 
260   BasicBlock *SI1BB = SI1->getParent();
261   BasicBlock *SI2BB = SI2->getParent();
262   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
263   for (BasicBlock *Succ : successors(SI2BB))
264     if (SI1Succs.count(Succ))
265       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
266         PHINode *PN = cast<PHINode>(BBI);
267         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
268             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
269           return false;
270         PhiNodes.push_back(PN);
271       }
272   return true;
273 }
274 
275 /// Update PHI nodes in Succ to indicate that there will now be entries in it
276 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
277 /// will be the same as those coming in from ExistPred, an existing predecessor
278 /// of Succ.
279 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
280                                   BasicBlock *ExistPred) {
281   if (!isa<PHINode>(Succ->begin()))
282     return; // Quick exit if nothing to do
283 
284   PHINode *PN;
285   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
286     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
287 }
288 
289 /// Compute an abstract "cost" of speculating the given instruction,
290 /// which is assumed to be safe to speculate. TCC_Free means cheap,
291 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
292 /// expensive.
293 static unsigned ComputeSpeculationCost(const User *I,
294                                        const TargetTransformInfo &TTI) {
295   assert(isSafeToSpeculativelyExecute(I) &&
296          "Instruction is not safe to speculatively execute!");
297   return TTI.getUserCost(I);
298 }
299 
300 /// If we have a merge point of an "if condition" as accepted above,
301 /// return true if the specified value dominates the block.  We
302 /// don't handle the true generality of domination here, just a special case
303 /// which works well enough for us.
304 ///
305 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
306 /// see if V (which must be an instruction) and its recursive operands
307 /// that do not dominate BB have a combined cost lower than CostRemaining and
308 /// are non-trapping.  If both are true, the instruction is inserted into the
309 /// set and true is returned.
310 ///
311 /// The cost for most non-trapping instructions is defined as 1 except for
312 /// Select whose cost is 2.
313 ///
314 /// After this function returns, CostRemaining is decreased by the cost of
315 /// V plus its non-dominating operands.  If that cost is greater than
316 /// CostRemaining, false is returned and CostRemaining is undefined.
317 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
318                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
319                                 unsigned &CostRemaining,
320                                 const TargetTransformInfo &TTI,
321                                 unsigned Depth = 0) {
322   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
323   // so limit the recursion depth.
324   // TODO: While this recursion limit does prevent pathological behavior, it
325   // would be better to track visited instructions to avoid cycles.
326   if (Depth == MaxSpeculationDepth)
327     return false;
328 
329   Instruction *I = dyn_cast<Instruction>(V);
330   if (!I) {
331     // Non-instructions all dominate instructions, but not all constantexprs
332     // can be executed unconditionally.
333     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
334       if (C->canTrap())
335         return false;
336     return true;
337   }
338   BasicBlock *PBB = I->getParent();
339 
340   // We don't want to allow weird loops that might have the "if condition" in
341   // the bottom of this block.
342   if (PBB == BB)
343     return false;
344 
345   // If this instruction is defined in a block that contains an unconditional
346   // branch to BB, then it must be in the 'conditional' part of the "if
347   // statement".  If not, it definitely dominates the region.
348   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
349   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
350     return true;
351 
352   // If we aren't allowing aggressive promotion anymore, then don't consider
353   // instructions in the 'if region'.
354   if (!AggressiveInsts)
355     return false;
356 
357   // If we have seen this instruction before, don't count it again.
358   if (AggressiveInsts->count(I))
359     return true;
360 
361   // Okay, it looks like the instruction IS in the "condition".  Check to
362   // see if it's a cheap instruction to unconditionally compute, and if it
363   // only uses stuff defined outside of the condition.  If so, hoist it out.
364   if (!isSafeToSpeculativelyExecute(I))
365     return false;
366 
367   unsigned Cost = ComputeSpeculationCost(I, TTI);
368 
369   // Allow exactly one instruction to be speculated regardless of its cost
370   // (as long as it is safe to do so).
371   // This is intended to flatten the CFG even if the instruction is a division
372   // or other expensive operation. The speculation of an expensive instruction
373   // is expected to be undone in CodeGenPrepare if the speculation has not
374   // enabled further IR optimizations.
375   if (Cost > CostRemaining &&
376       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
377     return false;
378 
379   // Avoid unsigned wrap.
380   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
381 
382   // Okay, we can only really hoist these out if their operands do
383   // not take us over the cost threshold.
384   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
385     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
386                              Depth + 1))
387       return false;
388   // Okay, it's safe to do this!  Remember this instruction.
389   AggressiveInsts->insert(I);
390   return true;
391 }
392 
393 /// Extract ConstantInt from value, looking through IntToPtr
394 /// and PointerNullValue. Return NULL if value is not a constant int.
395 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
396   // Normal constant int.
397   ConstantInt *CI = dyn_cast<ConstantInt>(V);
398   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
399     return CI;
400 
401   // This is some kind of pointer constant. Turn it into a pointer-sized
402   // ConstantInt if possible.
403   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
404 
405   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
406   if (isa<ConstantPointerNull>(V))
407     return ConstantInt::get(PtrTy, 0);
408 
409   // IntToPtr const int.
410   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
411     if (CE->getOpcode() == Instruction::IntToPtr)
412       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
413         // The constant is very likely to have the right type already.
414         if (CI->getType() == PtrTy)
415           return CI;
416         else
417           return cast<ConstantInt>(
418               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
419       }
420   return nullptr;
421 }
422 
423 namespace {
424 
425 /// Given a chain of or (||) or and (&&) comparison of a value against a
426 /// constant, this will try to recover the information required for a switch
427 /// structure.
428 /// It will depth-first traverse the chain of comparison, seeking for patterns
429 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
430 /// representing the different cases for the switch.
431 /// Note that if the chain is composed of '||' it will build the set of elements
432 /// that matches the comparisons (i.e. any of this value validate the chain)
433 /// while for a chain of '&&' it will build the set elements that make the test
434 /// fail.
435 struct ConstantComparesGatherer {
436   const DataLayout &DL;
437   Value *CompValue; /// Value found for the switch comparison
438   Value *Extra;     /// Extra clause to be checked before the switch
439   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
440   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
441 
442   /// Construct and compute the result for the comparison instruction Cond
443   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
444       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
445     gather(Cond);
446   }
447 
448   /// Prevent copy
449   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
450   ConstantComparesGatherer &
451   operator=(const ConstantComparesGatherer &) = delete;
452 
453 private:
454   /// Try to set the current value used for the comparison, it succeeds only if
455   /// it wasn't set before or if the new value is the same as the old one
456   bool setValueOnce(Value *NewVal) {
457     if (CompValue && CompValue != NewVal)
458       return false;
459     CompValue = NewVal;
460     return (CompValue != nullptr);
461   }
462 
463   /// Try to match Instruction "I" as a comparison against a constant and
464   /// populates the array Vals with the set of values that match (or do not
465   /// match depending on isEQ).
466   /// Return false on failure. On success, the Value the comparison matched
467   /// against is placed in CompValue.
468   /// If CompValue is already set, the function is expected to fail if a match
469   /// is found but the value compared to is different.
470   bool matchInstruction(Instruction *I, bool isEQ) {
471     // If this is an icmp against a constant, handle this as one of the cases.
472     ICmpInst *ICI;
473     ConstantInt *C;
474     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
475           (C = GetConstantInt(I->getOperand(1), DL)))) {
476       return false;
477     }
478 
479     Value *RHSVal;
480     const APInt *RHSC;
481 
482     // Pattern match a special case
483     // (x & ~2^z) == y --> x == y || x == y|2^z
484     // This undoes a transformation done by instcombine to fuse 2 compares.
485     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
486 
487       // It's a little bit hard to see why the following transformations are
488       // correct. Here is a CVC3 program to verify them for 64-bit values:
489 
490       /*
491          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
492          x    : BITVECTOR(64);
493          y    : BITVECTOR(64);
494          z    : BITVECTOR(64);
495          mask : BITVECTOR(64) = BVSHL(ONE, z);
496          QUERY( (y & ~mask = y) =>
497                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
498          );
499          QUERY( (y |  mask = y) =>
500                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
501          );
502       */
503 
504       // Please note that each pattern must be a dual implication (<--> or
505       // iff). One directional implication can create spurious matches. If the
506       // implication is only one-way, an unsatisfiable condition on the left
507       // side can imply a satisfiable condition on the right side. Dual
508       // implication ensures that satisfiable conditions are transformed to
509       // other satisfiable conditions and unsatisfiable conditions are
510       // transformed to other unsatisfiable conditions.
511 
512       // Here is a concrete example of a unsatisfiable condition on the left
513       // implying a satisfiable condition on the right:
514       //
515       // mask = (1 << z)
516       // (x & ~mask) == y  --> (x == y || x == (y | mask))
517       //
518       // Substituting y = 3, z = 0 yields:
519       // (x & -2) == 3 --> (x == 3 || x == 2)
520 
521       // Pattern match a special case:
522       /*
523         QUERY( (y & ~mask = y) =>
524                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
525         );
526       */
527       if (match(ICI->getOperand(0),
528                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
529         APInt Mask = ~*RHSC;
530         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
531           // If we already have a value for the switch, it has to match!
532           if (!setValueOnce(RHSVal))
533             return false;
534 
535           Vals.push_back(C);
536           Vals.push_back(
537               ConstantInt::get(C->getContext(),
538                                C->getValue() | Mask));
539           UsedICmps++;
540           return true;
541         }
542       }
543 
544       // Pattern match a special case:
545       /*
546         QUERY( (y |  mask = y) =>
547                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
548         );
549       */
550       if (match(ICI->getOperand(0),
551                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
552         APInt Mask = *RHSC;
553         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
554           // If we already have a value for the switch, it has to match!
555           if (!setValueOnce(RHSVal))
556             return false;
557 
558           Vals.push_back(C);
559           Vals.push_back(ConstantInt::get(C->getContext(),
560                                           C->getValue() & ~Mask));
561           UsedICmps++;
562           return true;
563         }
564       }
565 
566       // If we already have a value for the switch, it has to match!
567       if (!setValueOnce(ICI->getOperand(0)))
568         return false;
569 
570       UsedICmps++;
571       Vals.push_back(C);
572       return ICI->getOperand(0);
573     }
574 
575     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
576     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
577         ICI->getPredicate(), C->getValue());
578 
579     // Shift the range if the compare is fed by an add. This is the range
580     // compare idiom as emitted by instcombine.
581     Value *CandidateVal = I->getOperand(0);
582     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
583       Span = Span.subtract(*RHSC);
584       CandidateVal = RHSVal;
585     }
586 
587     // If this is an and/!= check, then we are looking to build the set of
588     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
589     // x != 0 && x != 1.
590     if (!isEQ)
591       Span = Span.inverse();
592 
593     // If there are a ton of values, we don't want to make a ginormous switch.
594     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
595       return false;
596     }
597 
598     // If we already have a value for the switch, it has to match!
599     if (!setValueOnce(CandidateVal))
600       return false;
601 
602     // Add all values from the range to the set
603     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
604       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
605 
606     UsedICmps++;
607     return true;
608   }
609 
610   /// Given a potentially 'or'd or 'and'd together collection of icmp
611   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
612   /// the value being compared, and stick the list constants into the Vals
613   /// vector.
614   /// One "Extra" case is allowed to differ from the other.
615   void gather(Value *V) {
616     Instruction *I = dyn_cast<Instruction>(V);
617     bool isEQ = (I->getOpcode() == Instruction::Or);
618 
619     // Keep a stack (SmallVector for efficiency) for depth-first traversal
620     SmallVector<Value *, 8> DFT;
621     SmallPtrSet<Value *, 8> Visited;
622 
623     // Initialize
624     Visited.insert(V);
625     DFT.push_back(V);
626 
627     while (!DFT.empty()) {
628       V = DFT.pop_back_val();
629 
630       if (Instruction *I = dyn_cast<Instruction>(V)) {
631         // If it is a || (or && depending on isEQ), process the operands.
632         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
633           if (Visited.insert(I->getOperand(1)).second)
634             DFT.push_back(I->getOperand(1));
635           if (Visited.insert(I->getOperand(0)).second)
636             DFT.push_back(I->getOperand(0));
637           continue;
638         }
639 
640         // Try to match the current instruction
641         if (matchInstruction(I, isEQ))
642           // Match succeed, continue the loop
643           continue;
644       }
645 
646       // One element of the sequence of || (or &&) could not be match as a
647       // comparison against the same value as the others.
648       // We allow only one "Extra" case to be checked before the switch
649       if (!Extra) {
650         Extra = V;
651         continue;
652       }
653       // Failed to parse a proper sequence, abort now
654       CompValue = nullptr;
655       break;
656     }
657   }
658 };
659 
660 } // end anonymous namespace
661 
662 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
663   Instruction *Cond = nullptr;
664   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
665     Cond = dyn_cast<Instruction>(SI->getCondition());
666   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
667     if (BI->isConditional())
668       Cond = dyn_cast<Instruction>(BI->getCondition());
669   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
670     Cond = dyn_cast<Instruction>(IBI->getAddress());
671   }
672 
673   TI->eraseFromParent();
674   if (Cond)
675     RecursivelyDeleteTriviallyDeadInstructions(Cond);
676 }
677 
678 /// Return true if the specified terminator checks
679 /// to see if a value is equal to constant integer value.
680 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
681   Value *CV = nullptr;
682   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
683     // Do not permit merging of large switch instructions into their
684     // predecessors unless there is only one predecessor.
685     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
686                                                pred_end(SI->getParent())) <=
687         128)
688       CV = SI->getCondition();
689   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
690     if (BI->isConditional() && BI->getCondition()->hasOneUse())
691       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
692         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
693           CV = ICI->getOperand(0);
694       }
695 
696   // Unwrap any lossless ptrtoint cast.
697   if (CV) {
698     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
699       Value *Ptr = PTII->getPointerOperand();
700       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
701         CV = Ptr;
702     }
703   }
704   return CV;
705 }
706 
707 /// Given a value comparison instruction,
708 /// decode all of the 'cases' that it represents and return the 'default' block.
709 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
710     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
711   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
712     Cases.reserve(SI->getNumCases());
713     for (auto Case : SI->cases())
714       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
715                                                   Case.getCaseSuccessor()));
716     return SI->getDefaultDest();
717   }
718 
719   BranchInst *BI = cast<BranchInst>(TI);
720   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
721   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
722   Cases.push_back(ValueEqualityComparisonCase(
723       GetConstantInt(ICI->getOperand(1), DL), Succ));
724   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
725 }
726 
727 /// Given a vector of bb/value pairs, remove any entries
728 /// in the list that match the specified block.
729 static void
730 EliminateBlockCases(BasicBlock *BB,
731                     std::vector<ValueEqualityComparisonCase> &Cases) {
732   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
733 }
734 
735 /// Return true if there are any keys in C1 that exist in C2 as well.
736 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
737                           std::vector<ValueEqualityComparisonCase> &C2) {
738   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
739 
740   // Make V1 be smaller than V2.
741   if (V1->size() > V2->size())
742     std::swap(V1, V2);
743 
744   if (V1->empty())
745     return false;
746   if (V1->size() == 1) {
747     // Just scan V2.
748     ConstantInt *TheVal = (*V1)[0].Value;
749     for (unsigned i = 0, e = V2->size(); i != e; ++i)
750       if (TheVal == (*V2)[i].Value)
751         return true;
752   }
753 
754   // Otherwise, just sort both lists and compare element by element.
755   array_pod_sort(V1->begin(), V1->end());
756   array_pod_sort(V2->begin(), V2->end());
757   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
758   while (i1 != e1 && i2 != e2) {
759     if ((*V1)[i1].Value == (*V2)[i2].Value)
760       return true;
761     if ((*V1)[i1].Value < (*V2)[i2].Value)
762       ++i1;
763     else
764       ++i2;
765   }
766   return false;
767 }
768 
769 /// If TI is known to be a terminator instruction and its block is known to
770 /// only have a single predecessor block, check to see if that predecessor is
771 /// also a value comparison with the same value, and if that comparison
772 /// determines the outcome of this comparison. If so, simplify TI. This does a
773 /// very limited form of jump threading.
774 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
775     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
776   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
777   if (!PredVal)
778     return false; // Not a value comparison in predecessor.
779 
780   Value *ThisVal = isValueEqualityComparison(TI);
781   assert(ThisVal && "This isn't a value comparison!!");
782   if (ThisVal != PredVal)
783     return false; // Different predicates.
784 
785   // TODO: Preserve branch weight metadata, similarly to how
786   // FoldValueComparisonIntoPredecessors preserves it.
787 
788   // Find out information about when control will move from Pred to TI's block.
789   std::vector<ValueEqualityComparisonCase> PredCases;
790   BasicBlock *PredDef =
791       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
792   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
793 
794   // Find information about how control leaves this block.
795   std::vector<ValueEqualityComparisonCase> ThisCases;
796   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
797   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
798 
799   // If TI's block is the default block from Pred's comparison, potentially
800   // simplify TI based on this knowledge.
801   if (PredDef == TI->getParent()) {
802     // If we are here, we know that the value is none of those cases listed in
803     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
804     // can simplify TI.
805     if (!ValuesOverlap(PredCases, ThisCases))
806       return false;
807 
808     if (isa<BranchInst>(TI)) {
809       // Okay, one of the successors of this condbr is dead.  Convert it to a
810       // uncond br.
811       assert(ThisCases.size() == 1 && "Branch can only have one case!");
812       // Insert the new branch.
813       Instruction *NI = Builder.CreateBr(ThisDef);
814       (void)NI;
815 
816       // Remove PHI node entries for the dead edge.
817       ThisCases[0].Dest->removePredecessor(TI->getParent());
818 
819       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
820                    << "Through successor TI: " << *TI << "Leaving: " << *NI
821                    << "\n");
822 
823       EraseTerminatorInstAndDCECond(TI);
824       return true;
825     }
826 
827     SwitchInst *SI = cast<SwitchInst>(TI);
828     // Okay, TI has cases that are statically dead, prune them away.
829     SmallPtrSet<Constant *, 16> DeadCases;
830     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
831       DeadCases.insert(PredCases[i].Value);
832 
833     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
834                  << "Through successor TI: " << *TI);
835 
836     // Collect branch weights into a vector.
837     SmallVector<uint32_t, 8> Weights;
838     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
839     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
840     if (HasWeight)
841       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
842            ++MD_i) {
843         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
844         Weights.push_back(CI->getValue().getZExtValue());
845       }
846     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
847       --i;
848       if (DeadCases.count(i->getCaseValue())) {
849         if (HasWeight) {
850           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
851           Weights.pop_back();
852         }
853         i->getCaseSuccessor()->removePredecessor(TI->getParent());
854         SI->removeCase(i);
855       }
856     }
857     if (HasWeight && Weights.size() >= 2)
858       SI->setMetadata(LLVMContext::MD_prof,
859                       MDBuilder(SI->getParent()->getContext())
860                           .createBranchWeights(Weights));
861 
862     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
863     return true;
864   }
865 
866   // Otherwise, TI's block must correspond to some matched value.  Find out
867   // which value (or set of values) this is.
868   ConstantInt *TIV = nullptr;
869   BasicBlock *TIBB = TI->getParent();
870   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
871     if (PredCases[i].Dest == TIBB) {
872       if (TIV)
873         return false; // Cannot handle multiple values coming to this block.
874       TIV = PredCases[i].Value;
875     }
876   assert(TIV && "No edge from pred to succ?");
877 
878   // Okay, we found the one constant that our value can be if we get into TI's
879   // BB.  Find out which successor will unconditionally be branched to.
880   BasicBlock *TheRealDest = nullptr;
881   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
882     if (ThisCases[i].Value == TIV) {
883       TheRealDest = ThisCases[i].Dest;
884       break;
885     }
886 
887   // If not handled by any explicit cases, it is handled by the default case.
888   if (!TheRealDest)
889     TheRealDest = ThisDef;
890 
891   // Remove PHI node entries for dead edges.
892   BasicBlock *CheckEdge = TheRealDest;
893   for (BasicBlock *Succ : successors(TIBB))
894     if (Succ != CheckEdge)
895       Succ->removePredecessor(TIBB);
896     else
897       CheckEdge = nullptr;
898 
899   // Insert the new branch.
900   Instruction *NI = Builder.CreateBr(TheRealDest);
901   (void)NI;
902 
903   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
904                << "Through successor TI: " << *TI << "Leaving: " << *NI
905                << "\n");
906 
907   EraseTerminatorInstAndDCECond(TI);
908   return true;
909 }
910 
911 namespace {
912 
913 /// This class implements a stable ordering of constant
914 /// integers that does not depend on their address.  This is important for
915 /// applications that sort ConstantInt's to ensure uniqueness.
916 struct ConstantIntOrdering {
917   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
918     return LHS->getValue().ult(RHS->getValue());
919   }
920 };
921 
922 } // end anonymous namespace
923 
924 static int ConstantIntSortPredicate(ConstantInt *const *P1,
925                                     ConstantInt *const *P2) {
926   const ConstantInt *LHS = *P1;
927   const ConstantInt *RHS = *P2;
928   if (LHS == RHS)
929     return 0;
930   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
931 }
932 
933 static inline bool HasBranchWeights(const Instruction *I) {
934   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
935   if (ProfMD && ProfMD->getOperand(0))
936     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
937       return MDS->getString().equals("branch_weights");
938 
939   return false;
940 }
941 
942 /// Get Weights of a given TerminatorInst, the default weight is at the front
943 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
944 /// metadata.
945 static void GetBranchWeights(TerminatorInst *TI,
946                              SmallVectorImpl<uint64_t> &Weights) {
947   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
948   assert(MD);
949   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
950     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
951     Weights.push_back(CI->getValue().getZExtValue());
952   }
953 
954   // If TI is a conditional eq, the default case is the false case,
955   // and the corresponding branch-weight data is at index 2. We swap the
956   // default weight to be the first entry.
957   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
958     assert(Weights.size() == 2);
959     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
960     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
961       std::swap(Weights.front(), Weights.back());
962   }
963 }
964 
965 /// Keep halving the weights until all can fit in uint32_t.
966 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
967   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
968   if (Max > UINT_MAX) {
969     unsigned Offset = 32 - countLeadingZeros(Max);
970     for (uint64_t &I : Weights)
971       I >>= Offset;
972   }
973 }
974 
975 /// The specified terminator is a value equality comparison instruction
976 /// (either a switch or a branch on "X == c").
977 /// See if any of the predecessors of the terminator block are value comparisons
978 /// on the same value.  If so, and if safe to do so, fold them together.
979 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
980                                                          IRBuilder<> &Builder) {
981   BasicBlock *BB = TI->getParent();
982   Value *CV = isValueEqualityComparison(TI); // CondVal
983   assert(CV && "Not a comparison?");
984   bool Changed = false;
985 
986   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
987   while (!Preds.empty()) {
988     BasicBlock *Pred = Preds.pop_back_val();
989 
990     // See if the predecessor is a comparison with the same value.
991     TerminatorInst *PTI = Pred->getTerminator();
992     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
993 
994     if (PCV == CV && TI != PTI) {
995       SmallSetVector<BasicBlock*, 4> FailBlocks;
996       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
997         for (auto *Succ : FailBlocks) {
998           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
999             return false;
1000         }
1001       }
1002 
1003       // Figure out which 'cases' to copy from SI to PSI.
1004       std::vector<ValueEqualityComparisonCase> BBCases;
1005       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1006 
1007       std::vector<ValueEqualityComparisonCase> PredCases;
1008       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1009 
1010       // Based on whether the default edge from PTI goes to BB or not, fill in
1011       // PredCases and PredDefault with the new switch cases we would like to
1012       // build.
1013       SmallVector<BasicBlock *, 8> NewSuccessors;
1014 
1015       // Update the branch weight metadata along the way
1016       SmallVector<uint64_t, 8> Weights;
1017       bool PredHasWeights = HasBranchWeights(PTI);
1018       bool SuccHasWeights = HasBranchWeights(TI);
1019 
1020       if (PredHasWeights) {
1021         GetBranchWeights(PTI, Weights);
1022         // branch-weight metadata is inconsistent here.
1023         if (Weights.size() != 1 + PredCases.size())
1024           PredHasWeights = SuccHasWeights = false;
1025       } else if (SuccHasWeights)
1026         // If there are no predecessor weights but there are successor weights,
1027         // populate Weights with 1, which will later be scaled to the sum of
1028         // successor's weights
1029         Weights.assign(1 + PredCases.size(), 1);
1030 
1031       SmallVector<uint64_t, 8> SuccWeights;
1032       if (SuccHasWeights) {
1033         GetBranchWeights(TI, SuccWeights);
1034         // branch-weight metadata is inconsistent here.
1035         if (SuccWeights.size() != 1 + BBCases.size())
1036           PredHasWeights = SuccHasWeights = false;
1037       } else if (PredHasWeights)
1038         SuccWeights.assign(1 + BBCases.size(), 1);
1039 
1040       if (PredDefault == BB) {
1041         // If this is the default destination from PTI, only the edges in TI
1042         // that don't occur in PTI, or that branch to BB will be activated.
1043         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1044         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1045           if (PredCases[i].Dest != BB)
1046             PTIHandled.insert(PredCases[i].Value);
1047           else {
1048             // The default destination is BB, we don't need explicit targets.
1049             std::swap(PredCases[i], PredCases.back());
1050 
1051             if (PredHasWeights || SuccHasWeights) {
1052               // Increase weight for the default case.
1053               Weights[0] += Weights[i + 1];
1054               std::swap(Weights[i + 1], Weights.back());
1055               Weights.pop_back();
1056             }
1057 
1058             PredCases.pop_back();
1059             --i;
1060             --e;
1061           }
1062 
1063         // Reconstruct the new switch statement we will be building.
1064         if (PredDefault != BBDefault) {
1065           PredDefault->removePredecessor(Pred);
1066           PredDefault = BBDefault;
1067           NewSuccessors.push_back(BBDefault);
1068         }
1069 
1070         unsigned CasesFromPred = Weights.size();
1071         uint64_t ValidTotalSuccWeight = 0;
1072         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1073           if (!PTIHandled.count(BBCases[i].Value) &&
1074               BBCases[i].Dest != BBDefault) {
1075             PredCases.push_back(BBCases[i]);
1076             NewSuccessors.push_back(BBCases[i].Dest);
1077             if (SuccHasWeights || PredHasWeights) {
1078               // The default weight is at index 0, so weight for the ith case
1079               // should be at index i+1. Scale the cases from successor by
1080               // PredDefaultWeight (Weights[0]).
1081               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1082               ValidTotalSuccWeight += SuccWeights[i + 1];
1083             }
1084           }
1085 
1086         if (SuccHasWeights || PredHasWeights) {
1087           ValidTotalSuccWeight += SuccWeights[0];
1088           // Scale the cases from predecessor by ValidTotalSuccWeight.
1089           for (unsigned i = 1; i < CasesFromPred; ++i)
1090             Weights[i] *= ValidTotalSuccWeight;
1091           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1092           Weights[0] *= SuccWeights[0];
1093         }
1094       } else {
1095         // If this is not the default destination from PSI, only the edges
1096         // in SI that occur in PSI with a destination of BB will be
1097         // activated.
1098         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1099         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1100         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1101           if (PredCases[i].Dest == BB) {
1102             PTIHandled.insert(PredCases[i].Value);
1103 
1104             if (PredHasWeights || SuccHasWeights) {
1105               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1106               std::swap(Weights[i + 1], Weights.back());
1107               Weights.pop_back();
1108             }
1109 
1110             std::swap(PredCases[i], PredCases.back());
1111             PredCases.pop_back();
1112             --i;
1113             --e;
1114           }
1115 
1116         // Okay, now we know which constants were sent to BB from the
1117         // predecessor.  Figure out where they will all go now.
1118         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1119           if (PTIHandled.count(BBCases[i].Value)) {
1120             // If this is one we are capable of getting...
1121             if (PredHasWeights || SuccHasWeights)
1122               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1123             PredCases.push_back(BBCases[i]);
1124             NewSuccessors.push_back(BBCases[i].Dest);
1125             PTIHandled.erase(
1126                 BBCases[i].Value); // This constant is taken care of
1127           }
1128 
1129         // If there are any constants vectored to BB that TI doesn't handle,
1130         // they must go to the default destination of TI.
1131         for (ConstantInt *I : PTIHandled) {
1132           if (PredHasWeights || SuccHasWeights)
1133             Weights.push_back(WeightsForHandled[I]);
1134           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1135           NewSuccessors.push_back(BBDefault);
1136         }
1137       }
1138 
1139       // Okay, at this point, we know which new successor Pred will get.  Make
1140       // sure we update the number of entries in the PHI nodes for these
1141       // successors.
1142       for (BasicBlock *NewSuccessor : NewSuccessors)
1143         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1144 
1145       Builder.SetInsertPoint(PTI);
1146       // Convert pointer to int before we switch.
1147       if (CV->getType()->isPointerTy()) {
1148         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1149                                     "magicptr");
1150       }
1151 
1152       // Now that the successors are updated, create the new Switch instruction.
1153       SwitchInst *NewSI =
1154           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1155       NewSI->setDebugLoc(PTI->getDebugLoc());
1156       for (ValueEqualityComparisonCase &V : PredCases)
1157         NewSI->addCase(V.Value, V.Dest);
1158 
1159       if (PredHasWeights || SuccHasWeights) {
1160         // Halve the weights if any of them cannot fit in an uint32_t
1161         FitWeights(Weights);
1162 
1163         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1164 
1165         NewSI->setMetadata(
1166             LLVMContext::MD_prof,
1167             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1168       }
1169 
1170       EraseTerminatorInstAndDCECond(PTI);
1171 
1172       // Okay, last check.  If BB is still a successor of PSI, then we must
1173       // have an infinite loop case.  If so, add an infinitely looping block
1174       // to handle the case to preserve the behavior of the code.
1175       BasicBlock *InfLoopBlock = nullptr;
1176       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1177         if (NewSI->getSuccessor(i) == BB) {
1178           if (!InfLoopBlock) {
1179             // Insert it at the end of the function, because it's either code,
1180             // or it won't matter if it's hot. :)
1181             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1182                                               BB->getParent());
1183             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1184           }
1185           NewSI->setSuccessor(i, InfLoopBlock);
1186         }
1187 
1188       Changed = true;
1189     }
1190   }
1191   return Changed;
1192 }
1193 
1194 // If we would need to insert a select that uses the value of this invoke
1195 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1196 // can't hoist the invoke, as there is nowhere to put the select in this case.
1197 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1198                                 Instruction *I1, Instruction *I2) {
1199   for (BasicBlock *Succ : successors(BB1)) {
1200     PHINode *PN;
1201     for (BasicBlock::iterator BBI = Succ->begin();
1202          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1203       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1204       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1205       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1206         return false;
1207       }
1208     }
1209   }
1210   return true;
1211 }
1212 
1213 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1214 
1215 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1216 /// in the two blocks up into the branch block. The caller of this function
1217 /// guarantees that BI's block dominates BB1 and BB2.
1218 static bool HoistThenElseCodeToIf(BranchInst *BI,
1219                                   const TargetTransformInfo &TTI) {
1220   // This does very trivial matching, with limited scanning, to find identical
1221   // instructions in the two blocks.  In particular, we don't want to get into
1222   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1223   // such, we currently just scan for obviously identical instructions in an
1224   // identical order.
1225   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1226   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1227 
1228   BasicBlock::iterator BB1_Itr = BB1->begin();
1229   BasicBlock::iterator BB2_Itr = BB2->begin();
1230 
1231   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1232   // Skip debug info if it is not identical.
1233   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1234   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1235   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1236     while (isa<DbgInfoIntrinsic>(I1))
1237       I1 = &*BB1_Itr++;
1238     while (isa<DbgInfoIntrinsic>(I2))
1239       I2 = &*BB2_Itr++;
1240   }
1241   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1242       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1243     return false;
1244 
1245   BasicBlock *BIParent = BI->getParent();
1246 
1247   bool Changed = false;
1248   do {
1249     // If we are hoisting the terminator instruction, don't move one (making a
1250     // broken BB), instead clone it, and remove BI.
1251     if (isa<TerminatorInst>(I1))
1252       goto HoistTerminator;
1253 
1254     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1255       return Changed;
1256 
1257     // For a normal instruction, we just move one to right before the branch,
1258     // then replace all uses of the other with the first.  Finally, we remove
1259     // the now redundant second instruction.
1260     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1261     if (!I2->use_empty())
1262       I2->replaceAllUsesWith(I1);
1263     I1->andIRFlags(I2);
1264     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1265                            LLVMContext::MD_range,
1266                            LLVMContext::MD_fpmath,
1267                            LLVMContext::MD_invariant_load,
1268                            LLVMContext::MD_nonnull,
1269                            LLVMContext::MD_invariant_group,
1270                            LLVMContext::MD_align,
1271                            LLVMContext::MD_dereferenceable,
1272                            LLVMContext::MD_dereferenceable_or_null,
1273                            LLVMContext::MD_mem_parallel_loop_access};
1274     combineMetadata(I1, I2, KnownIDs);
1275 
1276     // I1 and I2 are being combined into a single instruction.  Its debug
1277     // location is the merged locations of the original instructions.
1278     I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1279 
1280     I2->eraseFromParent();
1281     Changed = true;
1282 
1283     I1 = &*BB1_Itr++;
1284     I2 = &*BB2_Itr++;
1285     // Skip debug info if it is not identical.
1286     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1287     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1288     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1289       while (isa<DbgInfoIntrinsic>(I1))
1290         I1 = &*BB1_Itr++;
1291       while (isa<DbgInfoIntrinsic>(I2))
1292         I2 = &*BB2_Itr++;
1293     }
1294   } while (I1->isIdenticalToWhenDefined(I2));
1295 
1296   return true;
1297 
1298 HoistTerminator:
1299   // It may not be possible to hoist an invoke.
1300   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1301     return Changed;
1302 
1303   for (BasicBlock *Succ : successors(BB1)) {
1304     PHINode *PN;
1305     for (BasicBlock::iterator BBI = Succ->begin();
1306          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1307       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1308       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1309       if (BB1V == BB2V)
1310         continue;
1311 
1312       // Check for passingValueIsAlwaysUndefined here because we would rather
1313       // eliminate undefined control flow then converting it to a select.
1314       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1315           passingValueIsAlwaysUndefined(BB2V, PN))
1316         return Changed;
1317 
1318       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1319         return Changed;
1320       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1321         return Changed;
1322     }
1323   }
1324 
1325   // Okay, it is safe to hoist the terminator.
1326   Instruction *NT = I1->clone();
1327   BIParent->getInstList().insert(BI->getIterator(), NT);
1328   if (!NT->getType()->isVoidTy()) {
1329     I1->replaceAllUsesWith(NT);
1330     I2->replaceAllUsesWith(NT);
1331     NT->takeName(I1);
1332   }
1333 
1334   IRBuilder<NoFolder> Builder(NT);
1335   // Hoisting one of the terminators from our successor is a great thing.
1336   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1337   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1338   // nodes, so we insert select instruction to compute the final result.
1339   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1340   for (BasicBlock *Succ : successors(BB1)) {
1341     PHINode *PN;
1342     for (BasicBlock::iterator BBI = Succ->begin();
1343          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1344       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1345       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1346       if (BB1V == BB2V)
1347         continue;
1348 
1349       // These values do not agree.  Insert a select instruction before NT
1350       // that determines the right value.
1351       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1352       if (!SI)
1353         SI = cast<SelectInst>(
1354             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1355                                  BB1V->getName() + "." + BB2V->getName(), BI));
1356 
1357       // Make the PHI node use the select for all incoming values for BB1/BB2
1358       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1359         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1360           PN->setIncomingValue(i, SI);
1361     }
1362   }
1363 
1364   // Update any PHI nodes in our new successors.
1365   for (BasicBlock *Succ : successors(BB1))
1366     AddPredecessorToBlock(Succ, BIParent, BB1);
1367 
1368   EraseTerminatorInstAndDCECond(BI);
1369   return true;
1370 }
1371 
1372 // All instructions in Insts belong to different blocks that all unconditionally
1373 // branch to a common successor. Analyze each instruction and return true if it
1374 // would be possible to sink them into their successor, creating one common
1375 // instruction instead. For every value that would be required to be provided by
1376 // PHI node (because an operand varies in each input block), add to PHIOperands.
1377 static bool canSinkInstructions(
1378     ArrayRef<Instruction *> Insts,
1379     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1380   // Prune out obviously bad instructions to move. Any non-store instruction
1381   // must have exactly one use, and we check later that use is by a single,
1382   // common PHI instruction in the successor.
1383   for (auto *I : Insts) {
1384     // These instructions may change or break semantics if moved.
1385     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1386         I->getType()->isTokenTy())
1387       return false;
1388 
1389     // Conservatively return false if I is an inline-asm instruction. Sinking
1390     // and merging inline-asm instructions can potentially create arguments
1391     // that cannot satisfy the inline-asm constraints.
1392     if (const auto *C = dyn_cast<CallInst>(I))
1393       if (C->isInlineAsm())
1394         return false;
1395 
1396     // Everything must have only one use too, apart from stores which
1397     // have no uses.
1398     if (!isa<StoreInst>(I) && !I->hasOneUse())
1399       return false;
1400   }
1401 
1402   const Instruction *I0 = Insts.front();
1403   for (auto *I : Insts)
1404     if (!I->isSameOperationAs(I0))
1405       return false;
1406 
1407   // All instructions in Insts are known to be the same opcode. If they aren't
1408   // stores, check the only user of each is a PHI or in the same block as the
1409   // instruction, because if a user is in the same block as an instruction
1410   // we're contemplating sinking, it must already be determined to be sinkable.
1411   if (!isa<StoreInst>(I0)) {
1412     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1413     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1414     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1415           auto *U = cast<Instruction>(*I->user_begin());
1416           return (PNUse &&
1417                   PNUse->getParent() == Succ &&
1418                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1419                  U->getParent() == I->getParent();
1420         }))
1421       return false;
1422   }
1423 
1424   // Because SROA can't handle speculating stores of selects, try not
1425   // to sink loads or stores of allocas when we'd have to create a PHI for
1426   // the address operand. Also, because it is likely that loads or stores
1427   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1428   // This can cause code churn which can have unintended consequences down
1429   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1430   // FIXME: This is a workaround for a deficiency in SROA - see
1431   // https://llvm.org/bugs/show_bug.cgi?id=30188
1432   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1433         return isa<AllocaInst>(I->getOperand(1));
1434       }))
1435     return false;
1436   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1437         return isa<AllocaInst>(I->getOperand(0));
1438       }))
1439     return false;
1440 
1441   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1442     if (I0->getOperand(OI)->getType()->isTokenTy())
1443       // Don't touch any operand of token type.
1444       return false;
1445 
1446     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1447       assert(I->getNumOperands() == I0->getNumOperands());
1448       return I->getOperand(OI) == I0->getOperand(OI);
1449     };
1450     if (!all_of(Insts, SameAsI0)) {
1451       if (!canReplaceOperandWithVariable(I0, OI))
1452         // We can't create a PHI from this GEP.
1453         return false;
1454       // Don't create indirect calls! The called value is the final operand.
1455       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1456         // FIXME: if the call was *already* indirect, we should do this.
1457         return false;
1458       }
1459       for (auto *I : Insts)
1460         PHIOperands[I].push_back(I->getOperand(OI));
1461     }
1462   }
1463   return true;
1464 }
1465 
1466 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1467 // instruction of every block in Blocks to their common successor, commoning
1468 // into one instruction.
1469 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1470   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1471 
1472   // canSinkLastInstruction returning true guarantees that every block has at
1473   // least one non-terminator instruction.
1474   SmallVector<Instruction*,4> Insts;
1475   for (auto *BB : Blocks) {
1476     Instruction *I = BB->getTerminator();
1477     do {
1478       I = I->getPrevNode();
1479     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1480     if (!isa<DbgInfoIntrinsic>(I))
1481       Insts.push_back(I);
1482   }
1483 
1484   // The only checking we need to do now is that all users of all instructions
1485   // are the same PHI node. canSinkLastInstruction should have checked this but
1486   // it is slightly over-aggressive - it gets confused by commutative instructions
1487   // so double-check it here.
1488   Instruction *I0 = Insts.front();
1489   if (!isa<StoreInst>(I0)) {
1490     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1491     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1492           auto *U = cast<Instruction>(*I->user_begin());
1493           return U == PNUse;
1494         }))
1495       return false;
1496   }
1497 
1498   // We don't need to do any more checking here; canSinkLastInstruction should
1499   // have done it all for us.
1500   SmallVector<Value*, 4> NewOperands;
1501   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1502     // This check is different to that in canSinkLastInstruction. There, we
1503     // cared about the global view once simplifycfg (and instcombine) have
1504     // completed - it takes into account PHIs that become trivially
1505     // simplifiable.  However here we need a more local view; if an operand
1506     // differs we create a PHI and rely on instcombine to clean up the very
1507     // small mess we may make.
1508     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1509       return I->getOperand(O) != I0->getOperand(O);
1510     });
1511     if (!NeedPHI) {
1512       NewOperands.push_back(I0->getOperand(O));
1513       continue;
1514     }
1515 
1516     // Create a new PHI in the successor block and populate it.
1517     auto *Op = I0->getOperand(O);
1518     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1519     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1520                                Op->getName() + ".sink", &BBEnd->front());
1521     for (auto *I : Insts)
1522       PN->addIncoming(I->getOperand(O), I->getParent());
1523     NewOperands.push_back(PN);
1524   }
1525 
1526   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1527   // and move it to the start of the successor block.
1528   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1529     I0->getOperandUse(O).set(NewOperands[O]);
1530   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1531 
1532   // Update metadata and IR flags, and merge debug locations.
1533   for (auto *I : Insts)
1534     if (I != I0) {
1535       // The debug location for the "common" instruction is the merged locations
1536       // of all the commoned instructions.  We start with the original location
1537       // of the "common" instruction and iteratively merge each location in the
1538       // loop below.
1539       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1540       // However, as N-way merge for CallInst is rare, so we use simplified API
1541       // instead of using complex API for N-way merge.
1542       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1543       combineMetadataForCSE(I0, I);
1544       I0->andIRFlags(I);
1545     }
1546 
1547   if (!isa<StoreInst>(I0)) {
1548     // canSinkLastInstruction checked that all instructions were used by
1549     // one and only one PHI node. Find that now, RAUW it to our common
1550     // instruction and nuke it.
1551     assert(I0->hasOneUse());
1552     auto *PN = cast<PHINode>(*I0->user_begin());
1553     PN->replaceAllUsesWith(I0);
1554     PN->eraseFromParent();
1555   }
1556 
1557   // Finally nuke all instructions apart from the common instruction.
1558   for (auto *I : Insts)
1559     if (I != I0)
1560       I->eraseFromParent();
1561 
1562   return true;
1563 }
1564 
1565 namespace {
1566 
1567   // LockstepReverseIterator - Iterates through instructions
1568   // in a set of blocks in reverse order from the first non-terminator.
1569   // For example (assume all blocks have size n):
1570   //   LockstepReverseIterator I([B1, B2, B3]);
1571   //   *I-- = [B1[n], B2[n], B3[n]];
1572   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1573   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1574   //   ...
1575   class LockstepReverseIterator {
1576     ArrayRef<BasicBlock*> Blocks;
1577     SmallVector<Instruction*,4> Insts;
1578     bool Fail;
1579   public:
1580     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1581       Blocks(Blocks) {
1582       reset();
1583     }
1584 
1585     void reset() {
1586       Fail = false;
1587       Insts.clear();
1588       for (auto *BB : Blocks) {
1589         Instruction *Inst = BB->getTerminator();
1590         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1591           Inst = Inst->getPrevNode();
1592         if (!Inst) {
1593           // Block wasn't big enough.
1594           Fail = true;
1595           return;
1596         }
1597         Insts.push_back(Inst);
1598       }
1599     }
1600 
1601     bool isValid() const {
1602       return !Fail;
1603     }
1604 
1605     void operator -- () {
1606       if (Fail)
1607         return;
1608       for (auto *&Inst : Insts) {
1609         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1610           Inst = Inst->getPrevNode();
1611         // Already at beginning of block.
1612         if (!Inst) {
1613           Fail = true;
1614           return;
1615         }
1616       }
1617     }
1618 
1619     ArrayRef<Instruction*> operator * () const {
1620       return Insts;
1621     }
1622   };
1623 
1624 } // end anonymous namespace
1625 
1626 /// Given an unconditional branch that goes to BBEnd,
1627 /// check whether BBEnd has only two predecessors and the other predecessor
1628 /// ends with an unconditional branch. If it is true, sink any common code
1629 /// in the two predecessors to BBEnd.
1630 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1631   assert(BI1->isUnconditional());
1632   BasicBlock *BBEnd = BI1->getSuccessor(0);
1633 
1634   // We support two situations:
1635   //   (1) all incoming arcs are unconditional
1636   //   (2) one incoming arc is conditional
1637   //
1638   // (2) is very common in switch defaults and
1639   // else-if patterns;
1640   //
1641   //   if (a) f(1);
1642   //   else if (b) f(2);
1643   //
1644   // produces:
1645   //
1646   //       [if]
1647   //      /    \
1648   //    [f(1)] [if]
1649   //      |     | \
1650   //      |     |  |
1651   //      |  [f(2)]|
1652   //       \    | /
1653   //        [ end ]
1654   //
1655   // [end] has two unconditional predecessor arcs and one conditional. The
1656   // conditional refers to the implicit empty 'else' arc. This conditional
1657   // arc can also be caused by an empty default block in a switch.
1658   //
1659   // In this case, we attempt to sink code from all *unconditional* arcs.
1660   // If we can sink instructions from these arcs (determined during the scan
1661   // phase below) we insert a common successor for all unconditional arcs and
1662   // connect that to [end], to enable sinking:
1663   //
1664   //       [if]
1665   //      /    \
1666   //    [x(1)] [if]
1667   //      |     | \
1668   //      |     |  \
1669   //      |  [x(2)] |
1670   //       \   /    |
1671   //   [sink.split] |
1672   //         \     /
1673   //         [ end ]
1674   //
1675   SmallVector<BasicBlock*,4> UnconditionalPreds;
1676   Instruction *Cond = nullptr;
1677   for (auto *B : predecessors(BBEnd)) {
1678     auto *T = B->getTerminator();
1679     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1680       UnconditionalPreds.push_back(B);
1681     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1682       Cond = T;
1683     else
1684       return false;
1685   }
1686   if (UnconditionalPreds.size() < 2)
1687     return false;
1688 
1689   bool Changed = false;
1690   // We take a two-step approach to tail sinking. First we scan from the end of
1691   // each block upwards in lockstep. If the n'th instruction from the end of each
1692   // block can be sunk, those instructions are added to ValuesToSink and we
1693   // carry on. If we can sink an instruction but need to PHI-merge some operands
1694   // (because they're not identical in each instruction) we add these to
1695   // PHIOperands.
1696   unsigned ScanIdx = 0;
1697   SmallPtrSet<Value*,4> InstructionsToSink;
1698   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1699   LockstepReverseIterator LRI(UnconditionalPreds);
1700   while (LRI.isValid() &&
1701          canSinkInstructions(*LRI, PHIOperands)) {
1702     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1703     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1704     ++ScanIdx;
1705     --LRI;
1706   }
1707 
1708   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1709     unsigned NumPHIdValues = 0;
1710     for (auto *I : *LRI)
1711       for (auto *V : PHIOperands[I])
1712         if (InstructionsToSink.count(V) == 0)
1713           ++NumPHIdValues;
1714     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1715     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1716     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1717         NumPHIInsts++;
1718 
1719     return NumPHIInsts <= 1;
1720   };
1721 
1722   if (ScanIdx > 0 && Cond) {
1723     // Check if we would actually sink anything first! This mutates the CFG and
1724     // adds an extra block. The goal in doing this is to allow instructions that
1725     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1726     // (such as trunc, add) can be sunk and predicated already. So we check that
1727     // we're going to sink at least one non-speculatable instruction.
1728     LRI.reset();
1729     unsigned Idx = 0;
1730     bool Profitable = false;
1731     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1732       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1733         Profitable = true;
1734         break;
1735       }
1736       --LRI;
1737       ++Idx;
1738     }
1739     if (!Profitable)
1740       return false;
1741 
1742     DEBUG(dbgs() << "SINK: Splitting edge\n");
1743     // We have a conditional edge and we're going to sink some instructions.
1744     // Insert a new block postdominating all blocks we're going to sink from.
1745     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1746                                 ".sink.split"))
1747       // Edges couldn't be split.
1748       return false;
1749     Changed = true;
1750   }
1751 
1752   // Now that we've analyzed all potential sinking candidates, perform the
1753   // actual sink. We iteratively sink the last non-terminator of the source
1754   // blocks into their common successor unless doing so would require too
1755   // many PHI instructions to be generated (currently only one PHI is allowed
1756   // per sunk instruction).
1757   //
1758   // We can use InstructionsToSink to discount values needing PHI-merging that will
1759   // actually be sunk in a later iteration. This allows us to be more
1760   // aggressive in what we sink. This does allow a false positive where we
1761   // sink presuming a later value will also be sunk, but stop half way through
1762   // and never actually sink it which means we produce more PHIs than intended.
1763   // This is unlikely in practice though.
1764   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1765     DEBUG(dbgs() << "SINK: Sink: "
1766                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1767                  << "\n");
1768 
1769     // Because we've sunk every instruction in turn, the current instruction to
1770     // sink is always at index 0.
1771     LRI.reset();
1772     if (!ProfitableToSinkInstruction(LRI)) {
1773       // Too many PHIs would be created.
1774       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1775       break;
1776     }
1777 
1778     if (!sinkLastInstruction(UnconditionalPreds))
1779       return Changed;
1780     NumSinkCommons++;
1781     Changed = true;
1782   }
1783   return Changed;
1784 }
1785 
1786 /// \brief Determine if we can hoist sink a sole store instruction out of a
1787 /// conditional block.
1788 ///
1789 /// We are looking for code like the following:
1790 ///   BrBB:
1791 ///     store i32 %add, i32* %arrayidx2
1792 ///     ... // No other stores or function calls (we could be calling a memory
1793 ///     ... // function).
1794 ///     %cmp = icmp ult %x, %y
1795 ///     br i1 %cmp, label %EndBB, label %ThenBB
1796 ///   ThenBB:
1797 ///     store i32 %add5, i32* %arrayidx2
1798 ///     br label EndBB
1799 ///   EndBB:
1800 ///     ...
1801 ///   We are going to transform this into:
1802 ///   BrBB:
1803 ///     store i32 %add, i32* %arrayidx2
1804 ///     ... //
1805 ///     %cmp = icmp ult %x, %y
1806 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1807 ///     store i32 %add.add5, i32* %arrayidx2
1808 ///     ...
1809 ///
1810 /// \return The pointer to the value of the previous store if the store can be
1811 ///         hoisted into the predecessor block. 0 otherwise.
1812 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1813                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1814   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1815   if (!StoreToHoist)
1816     return nullptr;
1817 
1818   // Volatile or atomic.
1819   if (!StoreToHoist->isSimple())
1820     return nullptr;
1821 
1822   Value *StorePtr = StoreToHoist->getPointerOperand();
1823 
1824   // Look for a store to the same pointer in BrBB.
1825   unsigned MaxNumInstToLookAt = 9;
1826   for (Instruction &CurI : reverse(*BrBB)) {
1827     if (!MaxNumInstToLookAt)
1828       break;
1829     // Skip debug info.
1830     if (isa<DbgInfoIntrinsic>(CurI))
1831       continue;
1832     --MaxNumInstToLookAt;
1833 
1834     // Could be calling an instruction that affects memory like free().
1835     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1836       return nullptr;
1837 
1838     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1839       // Found the previous store make sure it stores to the same location.
1840       if (SI->getPointerOperand() == StorePtr)
1841         // Found the previous store, return its value operand.
1842         return SI->getValueOperand();
1843       return nullptr; // Unknown store.
1844     }
1845   }
1846 
1847   return nullptr;
1848 }
1849 
1850 /// \brief Speculate a conditional basic block flattening the CFG.
1851 ///
1852 /// Note that this is a very risky transform currently. Speculating
1853 /// instructions like this is most often not desirable. Instead, there is an MI
1854 /// pass which can do it with full awareness of the resource constraints.
1855 /// However, some cases are "obvious" and we should do directly. An example of
1856 /// this is speculating a single, reasonably cheap instruction.
1857 ///
1858 /// There is only one distinct advantage to flattening the CFG at the IR level:
1859 /// it makes very common but simplistic optimizations such as are common in
1860 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1861 /// modeling their effects with easier to reason about SSA value graphs.
1862 ///
1863 ///
1864 /// An illustration of this transform is turning this IR:
1865 /// \code
1866 ///   BB:
1867 ///     %cmp = icmp ult %x, %y
1868 ///     br i1 %cmp, label %EndBB, label %ThenBB
1869 ///   ThenBB:
1870 ///     %sub = sub %x, %y
1871 ///     br label BB2
1872 ///   EndBB:
1873 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1874 ///     ...
1875 /// \endcode
1876 ///
1877 /// Into this IR:
1878 /// \code
1879 ///   BB:
1880 ///     %cmp = icmp ult %x, %y
1881 ///     %sub = sub %x, %y
1882 ///     %cond = select i1 %cmp, 0, %sub
1883 ///     ...
1884 /// \endcode
1885 ///
1886 /// \returns true if the conditional block is removed.
1887 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1888                                    const TargetTransformInfo &TTI) {
1889   // Be conservative for now. FP select instruction can often be expensive.
1890   Value *BrCond = BI->getCondition();
1891   if (isa<FCmpInst>(BrCond))
1892     return false;
1893 
1894   BasicBlock *BB = BI->getParent();
1895   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1896 
1897   // If ThenBB is actually on the false edge of the conditional branch, remember
1898   // to swap the select operands later.
1899   bool Invert = false;
1900   if (ThenBB != BI->getSuccessor(0)) {
1901     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1902     Invert = true;
1903   }
1904   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1905 
1906   // Keep a count of how many times instructions are used within CondBB when
1907   // they are candidates for sinking into CondBB. Specifically:
1908   // - They are defined in BB, and
1909   // - They have no side effects, and
1910   // - All of their uses are in CondBB.
1911   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1912 
1913   unsigned SpeculationCost = 0;
1914   Value *SpeculatedStoreValue = nullptr;
1915   StoreInst *SpeculatedStore = nullptr;
1916   for (BasicBlock::iterator BBI = ThenBB->begin(),
1917                             BBE = std::prev(ThenBB->end());
1918        BBI != BBE; ++BBI) {
1919     Instruction *I = &*BBI;
1920     // Skip debug info.
1921     if (isa<DbgInfoIntrinsic>(I))
1922       continue;
1923 
1924     // Only speculatively execute a single instruction (not counting the
1925     // terminator) for now.
1926     ++SpeculationCost;
1927     if (SpeculationCost > 1)
1928       return false;
1929 
1930     // Don't hoist the instruction if it's unsafe or expensive.
1931     if (!isSafeToSpeculativelyExecute(I) &&
1932         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1933                                   I, BB, ThenBB, EndBB))))
1934       return false;
1935     if (!SpeculatedStoreValue &&
1936         ComputeSpeculationCost(I, TTI) >
1937             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1938       return false;
1939 
1940     // Store the store speculation candidate.
1941     if (SpeculatedStoreValue)
1942       SpeculatedStore = cast<StoreInst>(I);
1943 
1944     // Do not hoist the instruction if any of its operands are defined but not
1945     // used in BB. The transformation will prevent the operand from
1946     // being sunk into the use block.
1947     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1948       Instruction *OpI = dyn_cast<Instruction>(*i);
1949       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1950         continue; // Not a candidate for sinking.
1951 
1952       ++SinkCandidateUseCounts[OpI];
1953     }
1954   }
1955 
1956   // Consider any sink candidates which are only used in CondBB as costs for
1957   // speculation. Note, while we iterate over a DenseMap here, we are summing
1958   // and so iteration order isn't significant.
1959   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1960            I = SinkCandidateUseCounts.begin(),
1961            E = SinkCandidateUseCounts.end();
1962        I != E; ++I)
1963     if (I->first->getNumUses() == I->second) {
1964       ++SpeculationCost;
1965       if (SpeculationCost > 1)
1966         return false;
1967     }
1968 
1969   // Check that the PHI nodes can be converted to selects.
1970   bool HaveRewritablePHIs = false;
1971   for (BasicBlock::iterator I = EndBB->begin();
1972        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1973     Value *OrigV = PN->getIncomingValueForBlock(BB);
1974     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1975 
1976     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1977     // Skip PHIs which are trivial.
1978     if (ThenV == OrigV)
1979       continue;
1980 
1981     // Don't convert to selects if we could remove undefined behavior instead.
1982     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1983         passingValueIsAlwaysUndefined(ThenV, PN))
1984       return false;
1985 
1986     HaveRewritablePHIs = true;
1987     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1988     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1989     if (!OrigCE && !ThenCE)
1990       continue; // Known safe and cheap.
1991 
1992     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1993         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1994       return false;
1995     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1996     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1997     unsigned MaxCost =
1998         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
1999     if (OrigCost + ThenCost > MaxCost)
2000       return false;
2001 
2002     // Account for the cost of an unfolded ConstantExpr which could end up
2003     // getting expanded into Instructions.
2004     // FIXME: This doesn't account for how many operations are combined in the
2005     // constant expression.
2006     ++SpeculationCost;
2007     if (SpeculationCost > 1)
2008       return false;
2009   }
2010 
2011   // If there are no PHIs to process, bail early. This helps ensure idempotence
2012   // as well.
2013   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2014     return false;
2015 
2016   // If we get here, we can hoist the instruction and if-convert.
2017   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2018 
2019   // Insert a select of the value of the speculated store.
2020   if (SpeculatedStoreValue) {
2021     IRBuilder<NoFolder> Builder(BI);
2022     Value *TrueV = SpeculatedStore->getValueOperand();
2023     Value *FalseV = SpeculatedStoreValue;
2024     if (Invert)
2025       std::swap(TrueV, FalseV);
2026     Value *S = Builder.CreateSelect(
2027         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2028     SpeculatedStore->setOperand(0, S);
2029     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2030                                          SpeculatedStore->getDebugLoc());
2031   }
2032 
2033   // Metadata can be dependent on the condition we are hoisting above.
2034   // Conservatively strip all metadata on the instruction.
2035   for (auto &I : *ThenBB)
2036     I.dropUnknownNonDebugMetadata();
2037 
2038   // Hoist the instructions.
2039   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2040                            ThenBB->begin(), std::prev(ThenBB->end()));
2041 
2042   // Insert selects and rewrite the PHI operands.
2043   IRBuilder<NoFolder> Builder(BI);
2044   for (BasicBlock::iterator I = EndBB->begin();
2045        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2046     unsigned OrigI = PN->getBasicBlockIndex(BB);
2047     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2048     Value *OrigV = PN->getIncomingValue(OrigI);
2049     Value *ThenV = PN->getIncomingValue(ThenI);
2050 
2051     // Skip PHIs which are trivial.
2052     if (OrigV == ThenV)
2053       continue;
2054 
2055     // Create a select whose true value is the speculatively executed value and
2056     // false value is the preexisting value. Swap them if the branch
2057     // destinations were inverted.
2058     Value *TrueV = ThenV, *FalseV = OrigV;
2059     if (Invert)
2060       std::swap(TrueV, FalseV);
2061     Value *V = Builder.CreateSelect(
2062         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2063     PN->setIncomingValue(OrigI, V);
2064     PN->setIncomingValue(ThenI, V);
2065   }
2066 
2067   ++NumSpeculations;
2068   return true;
2069 }
2070 
2071 /// Return true if we can thread a branch across this block.
2072 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2073   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2074   unsigned Size = 0;
2075 
2076   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2077     if (isa<DbgInfoIntrinsic>(BBI))
2078       continue;
2079     if (Size > 10)
2080       return false; // Don't clone large BB's.
2081     ++Size;
2082 
2083     // We can only support instructions that do not define values that are
2084     // live outside of the current basic block.
2085     for (User *U : BBI->users()) {
2086       Instruction *UI = cast<Instruction>(U);
2087       if (UI->getParent() != BB || isa<PHINode>(UI))
2088         return false;
2089     }
2090 
2091     // Looks ok, continue checking.
2092   }
2093 
2094   return true;
2095 }
2096 
2097 /// If we have a conditional branch on a PHI node value that is defined in the
2098 /// same block as the branch and if any PHI entries are constants, thread edges
2099 /// corresponding to that entry to be branches to their ultimate destination.
2100 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2101                                 AssumptionCache *AC) {
2102   BasicBlock *BB = BI->getParent();
2103   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2104   // NOTE: we currently cannot transform this case if the PHI node is used
2105   // outside of the block.
2106   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2107     return false;
2108 
2109   // Degenerate case of a single entry PHI.
2110   if (PN->getNumIncomingValues() == 1) {
2111     FoldSingleEntryPHINodes(PN->getParent());
2112     return true;
2113   }
2114 
2115   // Now we know that this block has multiple preds and two succs.
2116   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2117     return false;
2118 
2119   // Can't fold blocks that contain noduplicate or convergent calls.
2120   if (any_of(*BB, [](const Instruction &I) {
2121         const CallInst *CI = dyn_cast<CallInst>(&I);
2122         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2123       }))
2124     return false;
2125 
2126   // Okay, this is a simple enough basic block.  See if any phi values are
2127   // constants.
2128   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2129     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2130     if (!CB || !CB->getType()->isIntegerTy(1))
2131       continue;
2132 
2133     // Okay, we now know that all edges from PredBB should be revectored to
2134     // branch to RealDest.
2135     BasicBlock *PredBB = PN->getIncomingBlock(i);
2136     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2137 
2138     if (RealDest == BB)
2139       continue; // Skip self loops.
2140     // Skip if the predecessor's terminator is an indirect branch.
2141     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2142       continue;
2143 
2144     // The dest block might have PHI nodes, other predecessors and other
2145     // difficult cases.  Instead of being smart about this, just insert a new
2146     // block that jumps to the destination block, effectively splitting
2147     // the edge we are about to create.
2148     BasicBlock *EdgeBB =
2149         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2150                            RealDest->getParent(), RealDest);
2151     BranchInst::Create(RealDest, EdgeBB);
2152 
2153     // Update PHI nodes.
2154     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2155 
2156     // BB may have instructions that are being threaded over.  Clone these
2157     // instructions into EdgeBB.  We know that there will be no uses of the
2158     // cloned instructions outside of EdgeBB.
2159     BasicBlock::iterator InsertPt = EdgeBB->begin();
2160     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2161     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2162       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2163         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2164         continue;
2165       }
2166       // Clone the instruction.
2167       Instruction *N = BBI->clone();
2168       if (BBI->hasName())
2169         N->setName(BBI->getName() + ".c");
2170 
2171       // Update operands due to translation.
2172       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2173         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2174         if (PI != TranslateMap.end())
2175           *i = PI->second;
2176       }
2177 
2178       // Check for trivial simplification.
2179       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2180         if (!BBI->use_empty())
2181           TranslateMap[&*BBI] = V;
2182         if (!N->mayHaveSideEffects()) {
2183           N->deleteValue(); // Instruction folded away, don't need actual inst
2184           N = nullptr;
2185         }
2186       } else {
2187         if (!BBI->use_empty())
2188           TranslateMap[&*BBI] = N;
2189       }
2190       // Insert the new instruction into its new home.
2191       if (N)
2192         EdgeBB->getInstList().insert(InsertPt, N);
2193 
2194       // Register the new instruction with the assumption cache if necessary.
2195       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2196         if (II->getIntrinsicID() == Intrinsic::assume)
2197           AC->registerAssumption(II);
2198     }
2199 
2200     // Loop over all of the edges from PredBB to BB, changing them to branch
2201     // to EdgeBB instead.
2202     TerminatorInst *PredBBTI = PredBB->getTerminator();
2203     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2204       if (PredBBTI->getSuccessor(i) == BB) {
2205         BB->removePredecessor(PredBB);
2206         PredBBTI->setSuccessor(i, EdgeBB);
2207       }
2208 
2209     // Recurse, simplifying any other constants.
2210     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2211   }
2212 
2213   return false;
2214 }
2215 
2216 /// Given a BB that starts with the specified two-entry PHI node,
2217 /// see if we can eliminate it.
2218 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2219                                 const DataLayout &DL) {
2220   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2221   // statement", which has a very simple dominance structure.  Basically, we
2222   // are trying to find the condition that is being branched on, which
2223   // subsequently causes this merge to happen.  We really want control
2224   // dependence information for this check, but simplifycfg can't keep it up
2225   // to date, and this catches most of the cases we care about anyway.
2226   BasicBlock *BB = PN->getParent();
2227   BasicBlock *IfTrue, *IfFalse;
2228   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2229   if (!IfCond ||
2230       // Don't bother if the branch will be constant folded trivially.
2231       isa<ConstantInt>(IfCond))
2232     return false;
2233 
2234   // Okay, we found that we can merge this two-entry phi node into a select.
2235   // Doing so would require us to fold *all* two entry phi nodes in this block.
2236   // At some point this becomes non-profitable (particularly if the target
2237   // doesn't support cmov's).  Only do this transformation if there are two or
2238   // fewer PHI nodes in this block.
2239   unsigned NumPhis = 0;
2240   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2241     if (NumPhis > 2)
2242       return false;
2243 
2244   // Loop over the PHI's seeing if we can promote them all to select
2245   // instructions.  While we are at it, keep track of the instructions
2246   // that need to be moved to the dominating block.
2247   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2248   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2249            MaxCostVal1 = PHINodeFoldingThreshold;
2250   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2251   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2252 
2253   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2254     PHINode *PN = cast<PHINode>(II++);
2255     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2256       PN->replaceAllUsesWith(V);
2257       PN->eraseFromParent();
2258       continue;
2259     }
2260 
2261     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2262                              MaxCostVal0, TTI) ||
2263         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2264                              MaxCostVal1, TTI))
2265       return false;
2266   }
2267 
2268   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2269   // we ran out of PHIs then we simplified them all.
2270   PN = dyn_cast<PHINode>(BB->begin());
2271   if (!PN)
2272     return true;
2273 
2274   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2275   // often be turned into switches and other things.
2276   if (PN->getType()->isIntegerTy(1) &&
2277       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2278        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2279        isa<BinaryOperator>(IfCond)))
2280     return false;
2281 
2282   // If all PHI nodes are promotable, check to make sure that all instructions
2283   // in the predecessor blocks can be promoted as well. If not, we won't be able
2284   // to get rid of the control flow, so it's not worth promoting to select
2285   // instructions.
2286   BasicBlock *DomBlock = nullptr;
2287   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2288   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2289   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2290     IfBlock1 = nullptr;
2291   } else {
2292     DomBlock = *pred_begin(IfBlock1);
2293     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2294          ++I)
2295       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2296         // This is not an aggressive instruction that we can promote.
2297         // Because of this, we won't be able to get rid of the control flow, so
2298         // the xform is not worth it.
2299         return false;
2300       }
2301   }
2302 
2303   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2304     IfBlock2 = nullptr;
2305   } else {
2306     DomBlock = *pred_begin(IfBlock2);
2307     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2308          ++I)
2309       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2310         // This is not an aggressive instruction that we can promote.
2311         // Because of this, we won't be able to get rid of the control flow, so
2312         // the xform is not worth it.
2313         return false;
2314       }
2315   }
2316 
2317   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2318                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2319 
2320   // If we can still promote the PHI nodes after this gauntlet of tests,
2321   // do all of the PHI's now.
2322   Instruction *InsertPt = DomBlock->getTerminator();
2323   IRBuilder<NoFolder> Builder(InsertPt);
2324 
2325   // Move all 'aggressive' instructions, which are defined in the
2326   // conditional parts of the if's up to the dominating block.
2327   if (IfBlock1) {
2328     for (auto &I : *IfBlock1)
2329       I.dropUnknownNonDebugMetadata();
2330     DomBlock->getInstList().splice(InsertPt->getIterator(),
2331                                    IfBlock1->getInstList(), IfBlock1->begin(),
2332                                    IfBlock1->getTerminator()->getIterator());
2333   }
2334   if (IfBlock2) {
2335     for (auto &I : *IfBlock2)
2336       I.dropUnknownNonDebugMetadata();
2337     DomBlock->getInstList().splice(InsertPt->getIterator(),
2338                                    IfBlock2->getInstList(), IfBlock2->begin(),
2339                                    IfBlock2->getTerminator()->getIterator());
2340   }
2341 
2342   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2343     // Change the PHI node into a select instruction.
2344     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2345     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2346 
2347     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2348     PN->replaceAllUsesWith(Sel);
2349     Sel->takeName(PN);
2350     PN->eraseFromParent();
2351   }
2352 
2353   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2354   // has been flattened.  Change DomBlock to jump directly to our new block to
2355   // avoid other simplifycfg's kicking in on the diamond.
2356   TerminatorInst *OldTI = DomBlock->getTerminator();
2357   Builder.SetInsertPoint(OldTI);
2358   Builder.CreateBr(BB);
2359   OldTI->eraseFromParent();
2360   return true;
2361 }
2362 
2363 /// If we found a conditional branch that goes to two returning blocks,
2364 /// try to merge them together into one return,
2365 /// introducing a select if the return values disagree.
2366 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2367                                            IRBuilder<> &Builder) {
2368   assert(BI->isConditional() && "Must be a conditional branch");
2369   BasicBlock *TrueSucc = BI->getSuccessor(0);
2370   BasicBlock *FalseSucc = BI->getSuccessor(1);
2371   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2372   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2373 
2374   // Check to ensure both blocks are empty (just a return) or optionally empty
2375   // with PHI nodes.  If there are other instructions, merging would cause extra
2376   // computation on one path or the other.
2377   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2378     return false;
2379   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2380     return false;
2381 
2382   Builder.SetInsertPoint(BI);
2383   // Okay, we found a branch that is going to two return nodes.  If
2384   // there is no return value for this function, just change the
2385   // branch into a return.
2386   if (FalseRet->getNumOperands() == 0) {
2387     TrueSucc->removePredecessor(BI->getParent());
2388     FalseSucc->removePredecessor(BI->getParent());
2389     Builder.CreateRetVoid();
2390     EraseTerminatorInstAndDCECond(BI);
2391     return true;
2392   }
2393 
2394   // Otherwise, figure out what the true and false return values are
2395   // so we can insert a new select instruction.
2396   Value *TrueValue = TrueRet->getReturnValue();
2397   Value *FalseValue = FalseRet->getReturnValue();
2398 
2399   // Unwrap any PHI nodes in the return blocks.
2400   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2401     if (TVPN->getParent() == TrueSucc)
2402       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2403   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2404     if (FVPN->getParent() == FalseSucc)
2405       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2406 
2407   // In order for this transformation to be safe, we must be able to
2408   // unconditionally execute both operands to the return.  This is
2409   // normally the case, but we could have a potentially-trapping
2410   // constant expression that prevents this transformation from being
2411   // safe.
2412   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2413     if (TCV->canTrap())
2414       return false;
2415   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2416     if (FCV->canTrap())
2417       return false;
2418 
2419   // Okay, we collected all the mapped values and checked them for sanity, and
2420   // defined to really do this transformation.  First, update the CFG.
2421   TrueSucc->removePredecessor(BI->getParent());
2422   FalseSucc->removePredecessor(BI->getParent());
2423 
2424   // Insert select instructions where needed.
2425   Value *BrCond = BI->getCondition();
2426   if (TrueValue) {
2427     // Insert a select if the results differ.
2428     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2429     } else if (isa<UndefValue>(TrueValue)) {
2430       TrueValue = FalseValue;
2431     } else {
2432       TrueValue =
2433           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2434     }
2435   }
2436 
2437   Value *RI =
2438       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2439 
2440   (void)RI;
2441 
2442   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2443                << "\n  " << *BI << "NewRet = " << *RI
2444                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2445 
2446   EraseTerminatorInstAndDCECond(BI);
2447 
2448   return true;
2449 }
2450 
2451 /// Return true if the given instruction is available
2452 /// in its predecessor block. If yes, the instruction will be removed.
2453 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2454   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2455     return false;
2456   for (Instruction &I : *PB) {
2457     Instruction *PBI = &I;
2458     // Check whether Inst and PBI generate the same value.
2459     if (Inst->isIdenticalTo(PBI)) {
2460       Inst->replaceAllUsesWith(PBI);
2461       Inst->eraseFromParent();
2462       return true;
2463     }
2464   }
2465   return false;
2466 }
2467 
2468 /// Return true if either PBI or BI has branch weight available, and store
2469 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2470 /// not have branch weight, use 1:1 as its weight.
2471 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2472                                    uint64_t &PredTrueWeight,
2473                                    uint64_t &PredFalseWeight,
2474                                    uint64_t &SuccTrueWeight,
2475                                    uint64_t &SuccFalseWeight) {
2476   bool PredHasWeights =
2477       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2478   bool SuccHasWeights =
2479       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2480   if (PredHasWeights || SuccHasWeights) {
2481     if (!PredHasWeights)
2482       PredTrueWeight = PredFalseWeight = 1;
2483     if (!SuccHasWeights)
2484       SuccTrueWeight = SuccFalseWeight = 1;
2485     return true;
2486   } else {
2487     return false;
2488   }
2489 }
2490 
2491 /// If this basic block is simple enough, and if a predecessor branches to us
2492 /// and one of our successors, fold the block into the predecessor and use
2493 /// logical operations to pick the right destination.
2494 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2495   BasicBlock *BB = BI->getParent();
2496 
2497   Instruction *Cond = nullptr;
2498   if (BI->isConditional())
2499     Cond = dyn_cast<Instruction>(BI->getCondition());
2500   else {
2501     // For unconditional branch, check for a simple CFG pattern, where
2502     // BB has a single predecessor and BB's successor is also its predecessor's
2503     // successor. If such pattern exists, check for CSE between BB and its
2504     // predecessor.
2505     if (BasicBlock *PB = BB->getSinglePredecessor())
2506       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2507         if (PBI->isConditional() &&
2508             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2509              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2510           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2511             Instruction *Curr = &*I++;
2512             if (isa<CmpInst>(Curr)) {
2513               Cond = Curr;
2514               break;
2515             }
2516             // Quit if we can't remove this instruction.
2517             if (!checkCSEInPredecessor(Curr, PB))
2518               return false;
2519           }
2520         }
2521 
2522     if (!Cond)
2523       return false;
2524   }
2525 
2526   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2527       Cond->getParent() != BB || !Cond->hasOneUse())
2528     return false;
2529 
2530   // Make sure the instruction after the condition is the cond branch.
2531   BasicBlock::iterator CondIt = ++Cond->getIterator();
2532 
2533   // Ignore dbg intrinsics.
2534   while (isa<DbgInfoIntrinsic>(CondIt))
2535     ++CondIt;
2536 
2537   if (&*CondIt != BI)
2538     return false;
2539 
2540   // Only allow this transformation if computing the condition doesn't involve
2541   // too many instructions and these involved instructions can be executed
2542   // unconditionally. We denote all involved instructions except the condition
2543   // as "bonus instructions", and only allow this transformation when the
2544   // number of the bonus instructions does not exceed a certain threshold.
2545   unsigned NumBonusInsts = 0;
2546   for (auto I = BB->begin(); Cond != &*I; ++I) {
2547     // Ignore dbg intrinsics.
2548     if (isa<DbgInfoIntrinsic>(I))
2549       continue;
2550     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2551       return false;
2552     // I has only one use and can be executed unconditionally.
2553     Instruction *User = dyn_cast<Instruction>(I->user_back());
2554     if (User == nullptr || User->getParent() != BB)
2555       return false;
2556     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2557     // to use any other instruction, User must be an instruction between next(I)
2558     // and Cond.
2559     ++NumBonusInsts;
2560     // Early exits once we reach the limit.
2561     if (NumBonusInsts > BonusInstThreshold)
2562       return false;
2563   }
2564 
2565   // Cond is known to be a compare or binary operator.  Check to make sure that
2566   // neither operand is a potentially-trapping constant expression.
2567   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2568     if (CE->canTrap())
2569       return false;
2570   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2571     if (CE->canTrap())
2572       return false;
2573 
2574   // Finally, don't infinitely unroll conditional loops.
2575   BasicBlock *TrueDest = BI->getSuccessor(0);
2576   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2577   if (TrueDest == BB || FalseDest == BB)
2578     return false;
2579 
2580   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2581     BasicBlock *PredBlock = *PI;
2582     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2583 
2584     // Check that we have two conditional branches.  If there is a PHI node in
2585     // the common successor, verify that the same value flows in from both
2586     // blocks.
2587     SmallVector<PHINode *, 4> PHIs;
2588     if (!PBI || PBI->isUnconditional() ||
2589         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2590         (!BI->isConditional() &&
2591          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2592       continue;
2593 
2594     // Determine if the two branches share a common destination.
2595     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2596     bool InvertPredCond = false;
2597 
2598     if (BI->isConditional()) {
2599       if (PBI->getSuccessor(0) == TrueDest) {
2600         Opc = Instruction::Or;
2601       } else if (PBI->getSuccessor(1) == FalseDest) {
2602         Opc = Instruction::And;
2603       } else if (PBI->getSuccessor(0) == FalseDest) {
2604         Opc = Instruction::And;
2605         InvertPredCond = true;
2606       } else if (PBI->getSuccessor(1) == TrueDest) {
2607         Opc = Instruction::Or;
2608         InvertPredCond = true;
2609       } else {
2610         continue;
2611       }
2612     } else {
2613       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2614         continue;
2615     }
2616 
2617     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2618     IRBuilder<> Builder(PBI);
2619 
2620     // If we need to invert the condition in the pred block to match, do so now.
2621     if (InvertPredCond) {
2622       Value *NewCond = PBI->getCondition();
2623 
2624       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2625         CmpInst *CI = cast<CmpInst>(NewCond);
2626         CI->setPredicate(CI->getInversePredicate());
2627       } else {
2628         NewCond =
2629             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2630       }
2631 
2632       PBI->setCondition(NewCond);
2633       PBI->swapSuccessors();
2634     }
2635 
2636     // If we have bonus instructions, clone them into the predecessor block.
2637     // Note that there may be multiple predecessor blocks, so we cannot move
2638     // bonus instructions to a predecessor block.
2639     ValueToValueMapTy VMap; // maps original values to cloned values
2640     // We already make sure Cond is the last instruction before BI. Therefore,
2641     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2642     // instructions.
2643     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2644       if (isa<DbgInfoIntrinsic>(BonusInst))
2645         continue;
2646       Instruction *NewBonusInst = BonusInst->clone();
2647       RemapInstruction(NewBonusInst, VMap,
2648                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2649       VMap[&*BonusInst] = NewBonusInst;
2650 
2651       // If we moved a load, we cannot any longer claim any knowledge about
2652       // its potential value. The previous information might have been valid
2653       // only given the branch precondition.
2654       // For an analogous reason, we must also drop all the metadata whose
2655       // semantics we don't understand.
2656       NewBonusInst->dropUnknownNonDebugMetadata();
2657 
2658       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2659       NewBonusInst->takeName(&*BonusInst);
2660       BonusInst->setName(BonusInst->getName() + ".old");
2661     }
2662 
2663     // Clone Cond into the predecessor basic block, and or/and the
2664     // two conditions together.
2665     Instruction *New = Cond->clone();
2666     RemapInstruction(New, VMap,
2667                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2668     PredBlock->getInstList().insert(PBI->getIterator(), New);
2669     New->takeName(Cond);
2670     Cond->setName(New->getName() + ".old");
2671 
2672     if (BI->isConditional()) {
2673       Instruction *NewCond = cast<Instruction>(
2674           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2675       PBI->setCondition(NewCond);
2676 
2677       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2678       bool HasWeights =
2679           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2680                                  SuccTrueWeight, SuccFalseWeight);
2681       SmallVector<uint64_t, 8> NewWeights;
2682 
2683       if (PBI->getSuccessor(0) == BB) {
2684         if (HasWeights) {
2685           // PBI: br i1 %x, BB, FalseDest
2686           // BI:  br i1 %y, TrueDest, FalseDest
2687           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2688           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2689           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2690           //               TrueWeight for PBI * FalseWeight for BI.
2691           // We assume that total weights of a BranchInst can fit into 32 bits.
2692           // Therefore, we will not have overflow using 64-bit arithmetic.
2693           NewWeights.push_back(PredFalseWeight *
2694                                    (SuccFalseWeight + SuccTrueWeight) +
2695                                PredTrueWeight * SuccFalseWeight);
2696         }
2697         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2698         PBI->setSuccessor(0, TrueDest);
2699       }
2700       if (PBI->getSuccessor(1) == BB) {
2701         if (HasWeights) {
2702           // PBI: br i1 %x, TrueDest, BB
2703           // BI:  br i1 %y, TrueDest, FalseDest
2704           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2705           //              FalseWeight for PBI * TrueWeight for BI.
2706           NewWeights.push_back(PredTrueWeight *
2707                                    (SuccFalseWeight + SuccTrueWeight) +
2708                                PredFalseWeight * SuccTrueWeight);
2709           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2710           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2711         }
2712         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2713         PBI->setSuccessor(1, FalseDest);
2714       }
2715       if (NewWeights.size() == 2) {
2716         // Halve the weights if any of them cannot fit in an uint32_t
2717         FitWeights(NewWeights);
2718 
2719         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2720                                            NewWeights.end());
2721         PBI->setMetadata(
2722             LLVMContext::MD_prof,
2723             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2724       } else
2725         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2726     } else {
2727       // Update PHI nodes in the common successors.
2728       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2729         ConstantInt *PBI_C = cast<ConstantInt>(
2730             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2731         assert(PBI_C->getType()->isIntegerTy(1));
2732         Instruction *MergedCond = nullptr;
2733         if (PBI->getSuccessor(0) == TrueDest) {
2734           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2735           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2736           //       is false: !PBI_Cond and BI_Value
2737           Instruction *NotCond = cast<Instruction>(
2738               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2739           MergedCond = cast<Instruction>(
2740               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2741           if (PBI_C->isOne())
2742             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2743                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2744         } else {
2745           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2746           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2747           //       is false: PBI_Cond and BI_Value
2748           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2749               Instruction::And, PBI->getCondition(), New, "and.cond"));
2750           if (PBI_C->isOne()) {
2751             Instruction *NotCond = cast<Instruction>(
2752                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2753             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2754                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2755           }
2756         }
2757         // Update PHI Node.
2758         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2759                                   MergedCond);
2760       }
2761       // Change PBI from Conditional to Unconditional.
2762       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2763       EraseTerminatorInstAndDCECond(PBI);
2764       PBI = New_PBI;
2765     }
2766 
2767     // If BI was a loop latch, it may have had associated loop metadata.
2768     // We need to copy it to the new latch, that is, PBI.
2769     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2770       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2771 
2772     // TODO: If BB is reachable from all paths through PredBlock, then we
2773     // could replace PBI's branch probabilities with BI's.
2774 
2775     // Copy any debug value intrinsics into the end of PredBlock.
2776     for (Instruction &I : *BB)
2777       if (isa<DbgInfoIntrinsic>(I))
2778         I.clone()->insertBefore(PBI);
2779 
2780     return true;
2781   }
2782   return false;
2783 }
2784 
2785 // If there is only one store in BB1 and BB2, return it, otherwise return
2786 // nullptr.
2787 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2788   StoreInst *S = nullptr;
2789   for (auto *BB : {BB1, BB2}) {
2790     if (!BB)
2791       continue;
2792     for (auto &I : *BB)
2793       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2794         if (S)
2795           // Multiple stores seen.
2796           return nullptr;
2797         else
2798           S = SI;
2799       }
2800   }
2801   return S;
2802 }
2803 
2804 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2805                                               Value *AlternativeV = nullptr) {
2806   // PHI is going to be a PHI node that allows the value V that is defined in
2807   // BB to be referenced in BB's only successor.
2808   //
2809   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2810   // doesn't matter to us what the other operand is (it'll never get used). We
2811   // could just create a new PHI with an undef incoming value, but that could
2812   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2813   // other PHI. So here we directly look for some PHI in BB's successor with V
2814   // as an incoming operand. If we find one, we use it, else we create a new
2815   // one.
2816   //
2817   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2818   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2819   // where OtherBB is the single other predecessor of BB's only successor.
2820   PHINode *PHI = nullptr;
2821   BasicBlock *Succ = BB->getSingleSuccessor();
2822 
2823   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2824     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2825       PHI = cast<PHINode>(I);
2826       if (!AlternativeV)
2827         break;
2828 
2829       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2830       auto PredI = pred_begin(Succ);
2831       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2832       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2833         break;
2834       PHI = nullptr;
2835     }
2836   if (PHI)
2837     return PHI;
2838 
2839   // If V is not an instruction defined in BB, just return it.
2840   if (!AlternativeV &&
2841       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2842     return V;
2843 
2844   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2845   PHI->addIncoming(V, BB);
2846   for (BasicBlock *PredBB : predecessors(Succ))
2847     if (PredBB != BB)
2848       PHI->addIncoming(
2849           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2850   return PHI;
2851 }
2852 
2853 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2854                                            BasicBlock *QTB, BasicBlock *QFB,
2855                                            BasicBlock *PostBB, Value *Address,
2856                                            bool InvertPCond, bool InvertQCond,
2857                                            const DataLayout &DL) {
2858   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2859     return Operator::getOpcode(&I) == Instruction::BitCast &&
2860            I.getType()->isPointerTy();
2861   };
2862 
2863   // If we're not in aggressive mode, we only optimize if we have some
2864   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2865   auto IsWorthwhile = [&](BasicBlock *BB) {
2866     if (!BB)
2867       return true;
2868     // Heuristic: if the block can be if-converted/phi-folded and the
2869     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2870     // thread this store.
2871     unsigned N = 0;
2872     for (auto &I : *BB) {
2873       // Cheap instructions viable for folding.
2874       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2875           isa<StoreInst>(I))
2876         ++N;
2877       // Free instructions.
2878       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2879                IsaBitcastOfPointerType(I))
2880         continue;
2881       else
2882         return false;
2883     }
2884     return N <= PHINodeFoldingThreshold;
2885   };
2886 
2887   if (!MergeCondStoresAggressively &&
2888       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2889        !IsWorthwhile(QFB)))
2890     return false;
2891 
2892   // For every pointer, there must be exactly two stores, one coming from
2893   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2894   // store (to any address) in PTB,PFB or QTB,QFB.
2895   // FIXME: We could relax this restriction with a bit more work and performance
2896   // testing.
2897   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2898   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2899   if (!PStore || !QStore)
2900     return false;
2901 
2902   // Now check the stores are compatible.
2903   if (!QStore->isUnordered() || !PStore->isUnordered())
2904     return false;
2905 
2906   // Check that sinking the store won't cause program behavior changes. Sinking
2907   // the store out of the Q blocks won't change any behavior as we're sinking
2908   // from a block to its unconditional successor. But we're moving a store from
2909   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2910   // So we need to check that there are no aliasing loads or stores in
2911   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2912   // operations between PStore and the end of its parent block.
2913   //
2914   // The ideal way to do this is to query AliasAnalysis, but we don't
2915   // preserve AA currently so that is dangerous. Be super safe and just
2916   // check there are no other memory operations at all.
2917   for (auto &I : *QFB->getSinglePredecessor())
2918     if (I.mayReadOrWriteMemory())
2919       return false;
2920   for (auto &I : *QFB)
2921     if (&I != QStore && I.mayReadOrWriteMemory())
2922       return false;
2923   if (QTB)
2924     for (auto &I : *QTB)
2925       if (&I != QStore && I.mayReadOrWriteMemory())
2926         return false;
2927   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2928        I != E; ++I)
2929     if (&*I != PStore && I->mayReadOrWriteMemory())
2930       return false;
2931 
2932   // OK, we're going to sink the stores to PostBB. The store has to be
2933   // conditional though, so first create the predicate.
2934   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2935                      ->getCondition();
2936   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2937                      ->getCondition();
2938 
2939   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2940                                                 PStore->getParent());
2941   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2942                                                 QStore->getParent(), PPHI);
2943 
2944   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2945 
2946   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2947   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2948 
2949   if (InvertPCond)
2950     PPred = QB.CreateNot(PPred);
2951   if (InvertQCond)
2952     QPred = QB.CreateNot(QPred);
2953   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2954 
2955   auto *T =
2956       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2957   QB.SetInsertPoint(T);
2958   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2959   AAMDNodes AAMD;
2960   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2961   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2962   SI->setAAMetadata(AAMD);
2963   unsigned PAlignment = PStore->getAlignment();
2964   unsigned QAlignment = QStore->getAlignment();
2965   unsigned TypeAlignment =
2966       DL.getABITypeAlignment(SI->getValueOperand()->getType());
2967   unsigned MinAlignment;
2968   unsigned MaxAlignment;
2969   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
2970   // Choose the minimum alignment. If we could prove both stores execute, we
2971   // could use biggest one.  In this case, though, we only know that one of the
2972   // stores executes.  And we don't know it's safe to take the alignment from a
2973   // store that doesn't execute.
2974   if (MinAlignment != 0) {
2975     // Choose the minimum of all non-zero alignments.
2976     SI->setAlignment(MinAlignment);
2977   } else if (MaxAlignment != 0) {
2978     // Choose the minimal alignment between the non-zero alignment and the ABI
2979     // default alignment for the type of the stored value.
2980     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
2981   } else {
2982     // If both alignments are zero, use ABI default alignment for the type of
2983     // the stored value.
2984     SI->setAlignment(TypeAlignment);
2985   }
2986 
2987   QStore->eraseFromParent();
2988   PStore->eraseFromParent();
2989 
2990   return true;
2991 }
2992 
2993 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
2994                                    const DataLayout &DL) {
2995   // The intention here is to find diamonds or triangles (see below) where each
2996   // conditional block contains a store to the same address. Both of these
2997   // stores are conditional, so they can't be unconditionally sunk. But it may
2998   // be profitable to speculatively sink the stores into one merged store at the
2999   // end, and predicate the merged store on the union of the two conditions of
3000   // PBI and QBI.
3001   //
3002   // This can reduce the number of stores executed if both of the conditions are
3003   // true, and can allow the blocks to become small enough to be if-converted.
3004   // This optimization will also chain, so that ladders of test-and-set
3005   // sequences can be if-converted away.
3006   //
3007   // We only deal with simple diamonds or triangles:
3008   //
3009   //     PBI       or      PBI        or a combination of the two
3010   //    /   \               | \
3011   //   PTB  PFB             |  PFB
3012   //    \   /               | /
3013   //     QBI                QBI
3014   //    /  \                | \
3015   //   QTB  QFB             |  QFB
3016   //    \  /                | /
3017   //    PostBB            PostBB
3018   //
3019   // We model triangles as a type of diamond with a nullptr "true" block.
3020   // Triangles are canonicalized so that the fallthrough edge is represented by
3021   // a true condition, as in the diagram above.
3022   //
3023   BasicBlock *PTB = PBI->getSuccessor(0);
3024   BasicBlock *PFB = PBI->getSuccessor(1);
3025   BasicBlock *QTB = QBI->getSuccessor(0);
3026   BasicBlock *QFB = QBI->getSuccessor(1);
3027   BasicBlock *PostBB = QFB->getSingleSuccessor();
3028 
3029   // Make sure we have a good guess for PostBB. If QTB's only successor is
3030   // QFB, then QFB is a better PostBB.
3031   if (QTB->getSingleSuccessor() == QFB)
3032     PostBB = QFB;
3033 
3034   // If we couldn't find a good PostBB, stop.
3035   if (!PostBB)
3036     return false;
3037 
3038   bool InvertPCond = false, InvertQCond = false;
3039   // Canonicalize fallthroughs to the true branches.
3040   if (PFB == QBI->getParent()) {
3041     std::swap(PFB, PTB);
3042     InvertPCond = true;
3043   }
3044   if (QFB == PostBB) {
3045     std::swap(QFB, QTB);
3046     InvertQCond = true;
3047   }
3048 
3049   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3050   // and QFB may not. Model fallthroughs as a nullptr block.
3051   if (PTB == QBI->getParent())
3052     PTB = nullptr;
3053   if (QTB == PostBB)
3054     QTB = nullptr;
3055 
3056   // Legality bailouts. We must have at least the non-fallthrough blocks and
3057   // the post-dominating block, and the non-fallthroughs must only have one
3058   // predecessor.
3059   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3060     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3061   };
3062   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3063       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3064     return false;
3065   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3066       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3067     return false;
3068   if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2))
3069     return false;
3070 
3071   // OK, this is a sequence of two diamonds or triangles.
3072   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3073   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3074   for (auto *BB : {PTB, PFB}) {
3075     if (!BB)
3076       continue;
3077     for (auto &I : *BB)
3078       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3079         PStoreAddresses.insert(SI->getPointerOperand());
3080   }
3081   for (auto *BB : {QTB, QFB}) {
3082     if (!BB)
3083       continue;
3084     for (auto &I : *BB)
3085       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3086         QStoreAddresses.insert(SI->getPointerOperand());
3087   }
3088 
3089   set_intersect(PStoreAddresses, QStoreAddresses);
3090   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3091   // clear what it contains.
3092   auto &CommonAddresses = PStoreAddresses;
3093 
3094   bool Changed = false;
3095   for (auto *Address : CommonAddresses)
3096     Changed |= mergeConditionalStoreToAddress(
3097         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3098   return Changed;
3099 }
3100 
3101 /// If we have a conditional branch as a predecessor of another block,
3102 /// this function tries to simplify it.  We know
3103 /// that PBI and BI are both conditional branches, and BI is in one of the
3104 /// successor blocks of PBI - PBI branches to BI.
3105 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3106                                            const DataLayout &DL) {
3107   assert(PBI->isConditional() && BI->isConditional());
3108   BasicBlock *BB = BI->getParent();
3109 
3110   // If this block ends with a branch instruction, and if there is a
3111   // predecessor that ends on a branch of the same condition, make
3112   // this conditional branch redundant.
3113   if (PBI->getCondition() == BI->getCondition() &&
3114       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3115     // Okay, the outcome of this conditional branch is statically
3116     // knowable.  If this block had a single pred, handle specially.
3117     if (BB->getSinglePredecessor()) {
3118       // Turn this into a branch on constant.
3119       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3120       BI->setCondition(
3121           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3122       return true; // Nuke the branch on constant.
3123     }
3124 
3125     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3126     // in the constant and simplify the block result.  Subsequent passes of
3127     // simplifycfg will thread the block.
3128     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3129       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3130       PHINode *NewPN = PHINode::Create(
3131           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3132           BI->getCondition()->getName() + ".pr", &BB->front());
3133       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3134       // predecessor, compute the PHI'd conditional value for all of the preds.
3135       // Any predecessor where the condition is not computable we keep symbolic.
3136       for (pred_iterator PI = PB; PI != PE; ++PI) {
3137         BasicBlock *P = *PI;
3138         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3139             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3140             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3141           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3142           NewPN->addIncoming(
3143               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3144               P);
3145         } else {
3146           NewPN->addIncoming(BI->getCondition(), P);
3147         }
3148       }
3149 
3150       BI->setCondition(NewPN);
3151       return true;
3152     }
3153   }
3154 
3155   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3156     if (CE->canTrap())
3157       return false;
3158 
3159   // If both branches are conditional and both contain stores to the same
3160   // address, remove the stores from the conditionals and create a conditional
3161   // merged store at the end.
3162   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3163     return true;
3164 
3165   // If this is a conditional branch in an empty block, and if any
3166   // predecessors are a conditional branch to one of our destinations,
3167   // fold the conditions into logical ops and one cond br.
3168   BasicBlock::iterator BBI = BB->begin();
3169   // Ignore dbg intrinsics.
3170   while (isa<DbgInfoIntrinsic>(BBI))
3171     ++BBI;
3172   if (&*BBI != BI)
3173     return false;
3174 
3175   int PBIOp, BIOp;
3176   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3177     PBIOp = 0;
3178     BIOp = 0;
3179   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3180     PBIOp = 0;
3181     BIOp = 1;
3182   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3183     PBIOp = 1;
3184     BIOp = 0;
3185   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3186     PBIOp = 1;
3187     BIOp = 1;
3188   } else {
3189     return false;
3190   }
3191 
3192   // Check to make sure that the other destination of this branch
3193   // isn't BB itself.  If so, this is an infinite loop that will
3194   // keep getting unwound.
3195   if (PBI->getSuccessor(PBIOp) == BB)
3196     return false;
3197 
3198   // Do not perform this transformation if it would require
3199   // insertion of a large number of select instructions. For targets
3200   // without predication/cmovs, this is a big pessimization.
3201 
3202   // Also do not perform this transformation if any phi node in the common
3203   // destination block can trap when reached by BB or PBB (PR17073). In that
3204   // case, it would be unsafe to hoist the operation into a select instruction.
3205 
3206   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3207   unsigned NumPhis = 0;
3208   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3209        ++II, ++NumPhis) {
3210     if (NumPhis > 2) // Disable this xform.
3211       return false;
3212 
3213     PHINode *PN = cast<PHINode>(II);
3214     Value *BIV = PN->getIncomingValueForBlock(BB);
3215     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3216       if (CE->canTrap())
3217         return false;
3218 
3219     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3220     Value *PBIV = PN->getIncomingValue(PBBIdx);
3221     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3222       if (CE->canTrap())
3223         return false;
3224   }
3225 
3226   // Finally, if everything is ok, fold the branches to logical ops.
3227   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3228 
3229   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3230                << "AND: " << *BI->getParent());
3231 
3232   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3233   // branch in it, where one edge (OtherDest) goes back to itself but the other
3234   // exits.  We don't *know* that the program avoids the infinite loop
3235   // (even though that seems likely).  If we do this xform naively, we'll end up
3236   // recursively unpeeling the loop.  Since we know that (after the xform is
3237   // done) that the block *is* infinite if reached, we just make it an obviously
3238   // infinite loop with no cond branch.
3239   if (OtherDest == BB) {
3240     // Insert it at the end of the function, because it's either code,
3241     // or it won't matter if it's hot. :)
3242     BasicBlock *InfLoopBlock =
3243         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3244     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3245     OtherDest = InfLoopBlock;
3246   }
3247 
3248   DEBUG(dbgs() << *PBI->getParent()->getParent());
3249 
3250   // BI may have other predecessors.  Because of this, we leave
3251   // it alone, but modify PBI.
3252 
3253   // Make sure we get to CommonDest on True&True directions.
3254   Value *PBICond = PBI->getCondition();
3255   IRBuilder<NoFolder> Builder(PBI);
3256   if (PBIOp)
3257     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3258 
3259   Value *BICond = BI->getCondition();
3260   if (BIOp)
3261     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3262 
3263   // Merge the conditions.
3264   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3265 
3266   // Modify PBI to branch on the new condition to the new dests.
3267   PBI->setCondition(Cond);
3268   PBI->setSuccessor(0, CommonDest);
3269   PBI->setSuccessor(1, OtherDest);
3270 
3271   // Update branch weight for PBI.
3272   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3273   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3274   bool HasWeights =
3275       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3276                              SuccTrueWeight, SuccFalseWeight);
3277   if (HasWeights) {
3278     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3279     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3280     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3281     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3282     // The weight to CommonDest should be PredCommon * SuccTotal +
3283     //                                    PredOther * SuccCommon.
3284     // The weight to OtherDest should be PredOther * SuccOther.
3285     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3286                                   PredOther * SuccCommon,
3287                               PredOther * SuccOther};
3288     // Halve the weights if any of them cannot fit in an uint32_t
3289     FitWeights(NewWeights);
3290 
3291     PBI->setMetadata(LLVMContext::MD_prof,
3292                      MDBuilder(BI->getContext())
3293                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3294   }
3295 
3296   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3297   // block that are identical to the entries for BI's block.
3298   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3299 
3300   // We know that the CommonDest already had an edge from PBI to
3301   // it.  If it has PHIs though, the PHIs may have different
3302   // entries for BB and PBI's BB.  If so, insert a select to make
3303   // them agree.
3304   PHINode *PN;
3305   for (BasicBlock::iterator II = CommonDest->begin();
3306        (PN = dyn_cast<PHINode>(II)); ++II) {
3307     Value *BIV = PN->getIncomingValueForBlock(BB);
3308     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3309     Value *PBIV = PN->getIncomingValue(PBBIdx);
3310     if (BIV != PBIV) {
3311       // Insert a select in PBI to pick the right value.
3312       SelectInst *NV = cast<SelectInst>(
3313           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3314       PN->setIncomingValue(PBBIdx, NV);
3315       // Although the select has the same condition as PBI, the original branch
3316       // weights for PBI do not apply to the new select because the select's
3317       // 'logical' edges are incoming edges of the phi that is eliminated, not
3318       // the outgoing edges of PBI.
3319       if (HasWeights) {
3320         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3321         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3322         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3323         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3324         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3325         // The weight to PredOtherDest should be PredOther * SuccCommon.
3326         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3327                                   PredOther * SuccCommon};
3328 
3329         FitWeights(NewWeights);
3330 
3331         NV->setMetadata(LLVMContext::MD_prof,
3332                         MDBuilder(BI->getContext())
3333                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3334       }
3335     }
3336   }
3337 
3338   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3339   DEBUG(dbgs() << *PBI->getParent()->getParent());
3340 
3341   // This basic block is probably dead.  We know it has at least
3342   // one fewer predecessor.
3343   return true;
3344 }
3345 
3346 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3347 // true or to FalseBB if Cond is false.
3348 // Takes care of updating the successors and removing the old terminator.
3349 // Also makes sure not to introduce new successors by assuming that edges to
3350 // non-successor TrueBBs and FalseBBs aren't reachable.
3351 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3352                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3353                                        uint32_t TrueWeight,
3354                                        uint32_t FalseWeight) {
3355   // Remove any superfluous successor edges from the CFG.
3356   // First, figure out which successors to preserve.
3357   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3358   // successor.
3359   BasicBlock *KeepEdge1 = TrueBB;
3360   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3361 
3362   // Then remove the rest.
3363   for (BasicBlock *Succ : OldTerm->successors()) {
3364     // Make sure only to keep exactly one copy of each edge.
3365     if (Succ == KeepEdge1)
3366       KeepEdge1 = nullptr;
3367     else if (Succ == KeepEdge2)
3368       KeepEdge2 = nullptr;
3369     else
3370       Succ->removePredecessor(OldTerm->getParent(),
3371                               /*DontDeleteUselessPHIs=*/true);
3372   }
3373 
3374   IRBuilder<> Builder(OldTerm);
3375   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3376 
3377   // Insert an appropriate new terminator.
3378   if (!KeepEdge1 && !KeepEdge2) {
3379     if (TrueBB == FalseBB)
3380       // We were only looking for one successor, and it was present.
3381       // Create an unconditional branch to it.
3382       Builder.CreateBr(TrueBB);
3383     else {
3384       // We found both of the successors we were looking for.
3385       // Create a conditional branch sharing the condition of the select.
3386       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3387       if (TrueWeight != FalseWeight)
3388         NewBI->setMetadata(LLVMContext::MD_prof,
3389                            MDBuilder(OldTerm->getContext())
3390                                .createBranchWeights(TrueWeight, FalseWeight));
3391     }
3392   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3393     // Neither of the selected blocks were successors, so this
3394     // terminator must be unreachable.
3395     new UnreachableInst(OldTerm->getContext(), OldTerm);
3396   } else {
3397     // One of the selected values was a successor, but the other wasn't.
3398     // Insert an unconditional branch to the one that was found;
3399     // the edge to the one that wasn't must be unreachable.
3400     if (!KeepEdge1)
3401       // Only TrueBB was found.
3402       Builder.CreateBr(TrueBB);
3403     else
3404       // Only FalseBB was found.
3405       Builder.CreateBr(FalseBB);
3406   }
3407 
3408   EraseTerminatorInstAndDCECond(OldTerm);
3409   return true;
3410 }
3411 
3412 // Replaces
3413 //   (switch (select cond, X, Y)) on constant X, Y
3414 // with a branch - conditional if X and Y lead to distinct BBs,
3415 // unconditional otherwise.
3416 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3417   // Check for constant integer values in the select.
3418   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3419   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3420   if (!TrueVal || !FalseVal)
3421     return false;
3422 
3423   // Find the relevant condition and destinations.
3424   Value *Condition = Select->getCondition();
3425   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3426   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3427 
3428   // Get weight for TrueBB and FalseBB.
3429   uint32_t TrueWeight = 0, FalseWeight = 0;
3430   SmallVector<uint64_t, 8> Weights;
3431   bool HasWeights = HasBranchWeights(SI);
3432   if (HasWeights) {
3433     GetBranchWeights(SI, Weights);
3434     if (Weights.size() == 1 + SI->getNumCases()) {
3435       TrueWeight =
3436           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3437       FalseWeight =
3438           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3439     }
3440   }
3441 
3442   // Perform the actual simplification.
3443   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3444                                     FalseWeight);
3445 }
3446 
3447 // Replaces
3448 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3449 //                             blockaddress(@fn, BlockB)))
3450 // with
3451 //   (br cond, BlockA, BlockB).
3452 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3453   // Check that both operands of the select are block addresses.
3454   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3455   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3456   if (!TBA || !FBA)
3457     return false;
3458 
3459   // Extract the actual blocks.
3460   BasicBlock *TrueBB = TBA->getBasicBlock();
3461   BasicBlock *FalseBB = FBA->getBasicBlock();
3462 
3463   // Perform the actual simplification.
3464   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3465                                     0);
3466 }
3467 
3468 /// This is called when we find an icmp instruction
3469 /// (a seteq/setne with a constant) as the only instruction in a
3470 /// block that ends with an uncond branch.  We are looking for a very specific
3471 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3472 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3473 /// default value goes to an uncond block with a seteq in it, we get something
3474 /// like:
3475 ///
3476 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3477 /// DEFAULT:
3478 ///   %tmp = icmp eq i8 %A, 92
3479 ///   br label %end
3480 /// end:
3481 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3482 ///
3483 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3484 /// the PHI, merging the third icmp into the switch.
3485 static bool tryToSimplifyUncondBranchWithICmpInIt(
3486     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3487     const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) {
3488   BasicBlock *BB = ICI->getParent();
3489 
3490   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3491   // complex.
3492   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3493     return false;
3494 
3495   Value *V = ICI->getOperand(0);
3496   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3497 
3498   // The pattern we're looking for is where our only predecessor is a switch on
3499   // 'V' and this block is the default case for the switch.  In this case we can
3500   // fold the compared value into the switch to simplify things.
3501   BasicBlock *Pred = BB->getSinglePredecessor();
3502   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3503     return false;
3504 
3505   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3506   if (SI->getCondition() != V)
3507     return false;
3508 
3509   // If BB is reachable on a non-default case, then we simply know the value of
3510   // V in this block.  Substitute it and constant fold the icmp instruction
3511   // away.
3512   if (SI->getDefaultDest() != BB) {
3513     ConstantInt *VVal = SI->findCaseDest(BB);
3514     assert(VVal && "Should have a unique destination value");
3515     ICI->setOperand(0, VVal);
3516 
3517     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3518       ICI->replaceAllUsesWith(V);
3519       ICI->eraseFromParent();
3520     }
3521     // BB is now empty, so it is likely to simplify away.
3522     return simplifyCFG(BB, TTI, Options) | true;
3523   }
3524 
3525   // Ok, the block is reachable from the default dest.  If the constant we're
3526   // comparing exists in one of the other edges, then we can constant fold ICI
3527   // and zap it.
3528   if (SI->findCaseValue(Cst) != SI->case_default()) {
3529     Value *V;
3530     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3531       V = ConstantInt::getFalse(BB->getContext());
3532     else
3533       V = ConstantInt::getTrue(BB->getContext());
3534 
3535     ICI->replaceAllUsesWith(V);
3536     ICI->eraseFromParent();
3537     // BB is now empty, so it is likely to simplify away.
3538     return simplifyCFG(BB, TTI, Options) | true;
3539   }
3540 
3541   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3542   // the block.
3543   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3544   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3545   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3546       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3547     return false;
3548 
3549   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3550   // true in the PHI.
3551   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3552   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3553 
3554   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3555     std::swap(DefaultCst, NewCst);
3556 
3557   // Replace ICI (which is used by the PHI for the default value) with true or
3558   // false depending on if it is EQ or NE.
3559   ICI->replaceAllUsesWith(DefaultCst);
3560   ICI->eraseFromParent();
3561 
3562   // Okay, the switch goes to this block on a default value.  Add an edge from
3563   // the switch to the merge point on the compared value.
3564   BasicBlock *NewBB =
3565       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3566   SmallVector<uint64_t, 8> Weights;
3567   bool HasWeights = HasBranchWeights(SI);
3568   if (HasWeights) {
3569     GetBranchWeights(SI, Weights);
3570     if (Weights.size() == 1 + SI->getNumCases()) {
3571       // Split weight for default case to case for "Cst".
3572       Weights[0] = (Weights[0] + 1) >> 1;
3573       Weights.push_back(Weights[0]);
3574 
3575       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3576       SI->setMetadata(
3577           LLVMContext::MD_prof,
3578           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3579     }
3580   }
3581   SI->addCase(Cst, NewBB);
3582 
3583   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3584   Builder.SetInsertPoint(NewBB);
3585   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3586   Builder.CreateBr(SuccBlock);
3587   PHIUse->addIncoming(NewCst, NewBB);
3588   return true;
3589 }
3590 
3591 /// The specified branch is a conditional branch.
3592 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3593 /// fold it into a switch instruction if so.
3594 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3595                                       const DataLayout &DL) {
3596   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3597   if (!Cond)
3598     return false;
3599 
3600   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3601   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3602   // 'setne's and'ed together, collect them.
3603 
3604   // Try to gather values from a chain of and/or to be turned into a switch
3605   ConstantComparesGatherer ConstantCompare(Cond, DL);
3606   // Unpack the result
3607   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3608   Value *CompVal = ConstantCompare.CompValue;
3609   unsigned UsedICmps = ConstantCompare.UsedICmps;
3610   Value *ExtraCase = ConstantCompare.Extra;
3611 
3612   // If we didn't have a multiply compared value, fail.
3613   if (!CompVal)
3614     return false;
3615 
3616   // Avoid turning single icmps into a switch.
3617   if (UsedICmps <= 1)
3618     return false;
3619 
3620   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3621 
3622   // There might be duplicate constants in the list, which the switch
3623   // instruction can't handle, remove them now.
3624   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3625   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3626 
3627   // If Extra was used, we require at least two switch values to do the
3628   // transformation.  A switch with one value is just a conditional branch.
3629   if (ExtraCase && Values.size() < 2)
3630     return false;
3631 
3632   // TODO: Preserve branch weight metadata, similarly to how
3633   // FoldValueComparisonIntoPredecessors preserves it.
3634 
3635   // Figure out which block is which destination.
3636   BasicBlock *DefaultBB = BI->getSuccessor(1);
3637   BasicBlock *EdgeBB = BI->getSuccessor(0);
3638   if (!TrueWhenEqual)
3639     std::swap(DefaultBB, EdgeBB);
3640 
3641   BasicBlock *BB = BI->getParent();
3642 
3643   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3644                << " cases into SWITCH.  BB is:\n"
3645                << *BB);
3646 
3647   // If there are any extra values that couldn't be folded into the switch
3648   // then we evaluate them with an explicit branch first.  Split the block
3649   // right before the condbr to handle it.
3650   if (ExtraCase) {
3651     BasicBlock *NewBB =
3652         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3653     // Remove the uncond branch added to the old block.
3654     TerminatorInst *OldTI = BB->getTerminator();
3655     Builder.SetInsertPoint(OldTI);
3656 
3657     if (TrueWhenEqual)
3658       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3659     else
3660       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3661 
3662     OldTI->eraseFromParent();
3663 
3664     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3665     // for the edge we just added.
3666     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3667 
3668     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3669                  << "\nEXTRABB = " << *BB);
3670     BB = NewBB;
3671   }
3672 
3673   Builder.SetInsertPoint(BI);
3674   // Convert pointer to int before we switch.
3675   if (CompVal->getType()->isPointerTy()) {
3676     CompVal = Builder.CreatePtrToInt(
3677         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3678   }
3679 
3680   // Create the new switch instruction now.
3681   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3682 
3683   // Add all of the 'cases' to the switch instruction.
3684   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3685     New->addCase(Values[i], EdgeBB);
3686 
3687   // We added edges from PI to the EdgeBB.  As such, if there were any
3688   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3689   // the number of edges added.
3690   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3691     PHINode *PN = cast<PHINode>(BBI);
3692     Value *InVal = PN->getIncomingValueForBlock(BB);
3693     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3694       PN->addIncoming(InVal, BB);
3695   }
3696 
3697   // Erase the old branch instruction.
3698   EraseTerminatorInstAndDCECond(BI);
3699 
3700   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3701   return true;
3702 }
3703 
3704 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3705   if (isa<PHINode>(RI->getValue()))
3706     return SimplifyCommonResume(RI);
3707   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3708            RI->getValue() == RI->getParent()->getFirstNonPHI())
3709     // The resume must unwind the exception that caused control to branch here.
3710     return SimplifySingleResume(RI);
3711 
3712   return false;
3713 }
3714 
3715 // Simplify resume that is shared by several landing pads (phi of landing pad).
3716 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3717   BasicBlock *BB = RI->getParent();
3718 
3719   // Check that there are no other instructions except for debug intrinsics
3720   // between the phi of landing pads (RI->getValue()) and resume instruction.
3721   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3722                        E = RI->getIterator();
3723   while (++I != E)
3724     if (!isa<DbgInfoIntrinsic>(I))
3725       return false;
3726 
3727   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3728   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3729 
3730   // Check incoming blocks to see if any of them are trivial.
3731   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3732        Idx++) {
3733     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3734     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3735 
3736     // If the block has other successors, we can not delete it because
3737     // it has other dependents.
3738     if (IncomingBB->getUniqueSuccessor() != BB)
3739       continue;
3740 
3741     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3742     // Not the landing pad that caused the control to branch here.
3743     if (IncomingValue != LandingPad)
3744       continue;
3745 
3746     bool isTrivial = true;
3747 
3748     I = IncomingBB->getFirstNonPHI()->getIterator();
3749     E = IncomingBB->getTerminator()->getIterator();
3750     while (++I != E)
3751       if (!isa<DbgInfoIntrinsic>(I)) {
3752         isTrivial = false;
3753         break;
3754       }
3755 
3756     if (isTrivial)
3757       TrivialUnwindBlocks.insert(IncomingBB);
3758   }
3759 
3760   // If no trivial unwind blocks, don't do any simplifications.
3761   if (TrivialUnwindBlocks.empty())
3762     return false;
3763 
3764   // Turn all invokes that unwind here into calls.
3765   for (auto *TrivialBB : TrivialUnwindBlocks) {
3766     // Blocks that will be simplified should be removed from the phi node.
3767     // Note there could be multiple edges to the resume block, and we need
3768     // to remove them all.
3769     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3770       BB->removePredecessor(TrivialBB, true);
3771 
3772     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3773          PI != PE;) {
3774       BasicBlock *Pred = *PI++;
3775       removeUnwindEdge(Pred);
3776     }
3777 
3778     // In each SimplifyCFG run, only the current processed block can be erased.
3779     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3780     // of erasing TrivialBB, we only remove the branch to the common resume
3781     // block so that we can later erase the resume block since it has no
3782     // predecessors.
3783     TrivialBB->getTerminator()->eraseFromParent();
3784     new UnreachableInst(RI->getContext(), TrivialBB);
3785   }
3786 
3787   // Delete the resume block if all its predecessors have been removed.
3788   if (pred_empty(BB))
3789     BB->eraseFromParent();
3790 
3791   return !TrivialUnwindBlocks.empty();
3792 }
3793 
3794 // Simplify resume that is only used by a single (non-phi) landing pad.
3795 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3796   BasicBlock *BB = RI->getParent();
3797   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3798   assert(RI->getValue() == LPInst &&
3799          "Resume must unwind the exception that caused control to here");
3800 
3801   // Check that there are no other instructions except for debug intrinsics.
3802   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3803   while (++I != E)
3804     if (!isa<DbgInfoIntrinsic>(I))
3805       return false;
3806 
3807   // Turn all invokes that unwind here into calls and delete the basic block.
3808   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3809     BasicBlock *Pred = *PI++;
3810     removeUnwindEdge(Pred);
3811   }
3812 
3813   // The landingpad is now unreachable.  Zap it.
3814   BB->eraseFromParent();
3815   if (LoopHeaders)
3816     LoopHeaders->erase(BB);
3817   return true;
3818 }
3819 
3820 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3821   // If this is a trivial cleanup pad that executes no instructions, it can be
3822   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3823   // that is an EH pad will be updated to continue to the caller and any
3824   // predecessor that terminates with an invoke instruction will have its invoke
3825   // instruction converted to a call instruction.  If the cleanup pad being
3826   // simplified does not continue to the caller, each predecessor will be
3827   // updated to continue to the unwind destination of the cleanup pad being
3828   // simplified.
3829   BasicBlock *BB = RI->getParent();
3830   CleanupPadInst *CPInst = RI->getCleanupPad();
3831   if (CPInst->getParent() != BB)
3832     // This isn't an empty cleanup.
3833     return false;
3834 
3835   // We cannot kill the pad if it has multiple uses.  This typically arises
3836   // from unreachable basic blocks.
3837   if (!CPInst->hasOneUse())
3838     return false;
3839 
3840   // Check that there are no other instructions except for benign intrinsics.
3841   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3842   while (++I != E) {
3843     auto *II = dyn_cast<IntrinsicInst>(I);
3844     if (!II)
3845       return false;
3846 
3847     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3848     switch (IntrinsicID) {
3849     case Intrinsic::dbg_declare:
3850     case Intrinsic::dbg_value:
3851     case Intrinsic::lifetime_end:
3852       break;
3853     default:
3854       return false;
3855     }
3856   }
3857 
3858   // If the cleanup return we are simplifying unwinds to the caller, this will
3859   // set UnwindDest to nullptr.
3860   BasicBlock *UnwindDest = RI->getUnwindDest();
3861   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3862 
3863   // We're about to remove BB from the control flow.  Before we do, sink any
3864   // PHINodes into the unwind destination.  Doing this before changing the
3865   // control flow avoids some potentially slow checks, since we can currently
3866   // be certain that UnwindDest and BB have no common predecessors (since they
3867   // are both EH pads).
3868   if (UnwindDest) {
3869     // First, go through the PHI nodes in UnwindDest and update any nodes that
3870     // reference the block we are removing
3871     for (BasicBlock::iterator I = UnwindDest->begin(),
3872                               IE = DestEHPad->getIterator();
3873          I != IE; ++I) {
3874       PHINode *DestPN = cast<PHINode>(I);
3875 
3876       int Idx = DestPN->getBasicBlockIndex(BB);
3877       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3878       assert(Idx != -1);
3879       // This PHI node has an incoming value that corresponds to a control
3880       // path through the cleanup pad we are removing.  If the incoming
3881       // value is in the cleanup pad, it must be a PHINode (because we
3882       // verified above that the block is otherwise empty).  Otherwise, the
3883       // value is either a constant or a value that dominates the cleanup
3884       // pad being removed.
3885       //
3886       // Because BB and UnwindDest are both EH pads, all of their
3887       // predecessors must unwind to these blocks, and since no instruction
3888       // can have multiple unwind destinations, there will be no overlap in
3889       // incoming blocks between SrcPN and DestPN.
3890       Value *SrcVal = DestPN->getIncomingValue(Idx);
3891       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3892 
3893       // Remove the entry for the block we are deleting.
3894       DestPN->removeIncomingValue(Idx, false);
3895 
3896       if (SrcPN && SrcPN->getParent() == BB) {
3897         // If the incoming value was a PHI node in the cleanup pad we are
3898         // removing, we need to merge that PHI node's incoming values into
3899         // DestPN.
3900         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3901              SrcIdx != SrcE; ++SrcIdx) {
3902           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3903                               SrcPN->getIncomingBlock(SrcIdx));
3904         }
3905       } else {
3906         // Otherwise, the incoming value came from above BB and
3907         // so we can just reuse it.  We must associate all of BB's
3908         // predecessors with this value.
3909         for (auto *pred : predecessors(BB)) {
3910           DestPN->addIncoming(SrcVal, pred);
3911         }
3912       }
3913     }
3914 
3915     // Sink any remaining PHI nodes directly into UnwindDest.
3916     Instruction *InsertPt = DestEHPad;
3917     for (BasicBlock::iterator I = BB->begin(),
3918                               IE = BB->getFirstNonPHI()->getIterator();
3919          I != IE;) {
3920       // The iterator must be incremented here because the instructions are
3921       // being moved to another block.
3922       PHINode *PN = cast<PHINode>(I++);
3923       if (PN->use_empty())
3924         // If the PHI node has no uses, just leave it.  It will be erased
3925         // when we erase BB below.
3926         continue;
3927 
3928       // Otherwise, sink this PHI node into UnwindDest.
3929       // Any predecessors to UnwindDest which are not already represented
3930       // must be back edges which inherit the value from the path through
3931       // BB.  In this case, the PHI value must reference itself.
3932       for (auto *pred : predecessors(UnwindDest))
3933         if (pred != BB)
3934           PN->addIncoming(PN, pred);
3935       PN->moveBefore(InsertPt);
3936     }
3937   }
3938 
3939   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3940     // The iterator must be updated here because we are removing this pred.
3941     BasicBlock *PredBB = *PI++;
3942     if (UnwindDest == nullptr) {
3943       removeUnwindEdge(PredBB);
3944     } else {
3945       TerminatorInst *TI = PredBB->getTerminator();
3946       TI->replaceUsesOfWith(BB, UnwindDest);
3947     }
3948   }
3949 
3950   // The cleanup pad is now unreachable.  Zap it.
3951   BB->eraseFromParent();
3952   return true;
3953 }
3954 
3955 // Try to merge two cleanuppads together.
3956 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3957   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3958   // with.
3959   BasicBlock *UnwindDest = RI->getUnwindDest();
3960   if (!UnwindDest)
3961     return false;
3962 
3963   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3964   // be safe to merge without code duplication.
3965   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3966     return false;
3967 
3968   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3969   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3970   if (!SuccessorCleanupPad)
3971     return false;
3972 
3973   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3974   // Replace any uses of the successor cleanupad with the predecessor pad
3975   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3976   // funclet bundle operands.
3977   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3978   // Remove the old cleanuppad.
3979   SuccessorCleanupPad->eraseFromParent();
3980   // Now, we simply replace the cleanupret with a branch to the unwind
3981   // destination.
3982   BranchInst::Create(UnwindDest, RI->getParent());
3983   RI->eraseFromParent();
3984 
3985   return true;
3986 }
3987 
3988 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3989   // It is possible to transiantly have an undef cleanuppad operand because we
3990   // have deleted some, but not all, dead blocks.
3991   // Eventually, this block will be deleted.
3992   if (isa<UndefValue>(RI->getOperand(0)))
3993     return false;
3994 
3995   if (mergeCleanupPad(RI))
3996     return true;
3997 
3998   if (removeEmptyCleanup(RI))
3999     return true;
4000 
4001   return false;
4002 }
4003 
4004 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4005   BasicBlock *BB = RI->getParent();
4006   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4007     return false;
4008 
4009   // Find predecessors that end with branches.
4010   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4011   SmallVector<BranchInst *, 8> CondBranchPreds;
4012   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4013     BasicBlock *P = *PI;
4014     TerminatorInst *PTI = P->getTerminator();
4015     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4016       if (BI->isUnconditional())
4017         UncondBranchPreds.push_back(P);
4018       else
4019         CondBranchPreds.push_back(BI);
4020     }
4021   }
4022 
4023   // If we found some, do the transformation!
4024   if (!UncondBranchPreds.empty() && DupRet) {
4025     while (!UncondBranchPreds.empty()) {
4026       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4027       DEBUG(dbgs() << "FOLDING: " << *BB
4028                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4029       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4030     }
4031 
4032     // If we eliminated all predecessors of the block, delete the block now.
4033     if (pred_empty(BB)) {
4034       // We know there are no successors, so just nuke the block.
4035       BB->eraseFromParent();
4036       if (LoopHeaders)
4037         LoopHeaders->erase(BB);
4038     }
4039 
4040     return true;
4041   }
4042 
4043   // Check out all of the conditional branches going to this return
4044   // instruction.  If any of them just select between returns, change the
4045   // branch itself into a select/return pair.
4046   while (!CondBranchPreds.empty()) {
4047     BranchInst *BI = CondBranchPreds.pop_back_val();
4048 
4049     // Check to see if the non-BB successor is also a return block.
4050     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4051         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4052         SimplifyCondBranchToTwoReturns(BI, Builder))
4053       return true;
4054   }
4055   return false;
4056 }
4057 
4058 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4059   BasicBlock *BB = UI->getParent();
4060 
4061   bool Changed = false;
4062 
4063   // If there are any instructions immediately before the unreachable that can
4064   // be removed, do so.
4065   while (UI->getIterator() != BB->begin()) {
4066     BasicBlock::iterator BBI = UI->getIterator();
4067     --BBI;
4068     // Do not delete instructions that can have side effects which might cause
4069     // the unreachable to not be reachable; specifically, calls and volatile
4070     // operations may have this effect.
4071     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4072       break;
4073 
4074     if (BBI->mayHaveSideEffects()) {
4075       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4076         if (SI->isVolatile())
4077           break;
4078       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4079         if (LI->isVolatile())
4080           break;
4081       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4082         if (RMWI->isVolatile())
4083           break;
4084       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4085         if (CXI->isVolatile())
4086           break;
4087       } else if (isa<CatchPadInst>(BBI)) {
4088         // A catchpad may invoke exception object constructors and such, which
4089         // in some languages can be arbitrary code, so be conservative by
4090         // default.
4091         // For CoreCLR, it just involves a type test, so can be removed.
4092         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4093             EHPersonality::CoreCLR)
4094           break;
4095       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4096                  !isa<LandingPadInst>(BBI)) {
4097         break;
4098       }
4099       // Note that deleting LandingPad's here is in fact okay, although it
4100       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4101       // all the predecessors of this block will be the unwind edges of Invokes,
4102       // and we can therefore guarantee this block will be erased.
4103     }
4104 
4105     // Delete this instruction (any uses are guaranteed to be dead)
4106     if (!BBI->use_empty())
4107       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4108     BBI->eraseFromParent();
4109     Changed = true;
4110   }
4111 
4112   // If the unreachable instruction is the first in the block, take a gander
4113   // at all of the predecessors of this instruction, and simplify them.
4114   if (&BB->front() != UI)
4115     return Changed;
4116 
4117   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4118   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4119     TerminatorInst *TI = Preds[i]->getTerminator();
4120     IRBuilder<> Builder(TI);
4121     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4122       if (BI->isUnconditional()) {
4123         if (BI->getSuccessor(0) == BB) {
4124           new UnreachableInst(TI->getContext(), TI);
4125           TI->eraseFromParent();
4126           Changed = true;
4127         }
4128       } else {
4129         if (BI->getSuccessor(0) == BB) {
4130           Builder.CreateBr(BI->getSuccessor(1));
4131           EraseTerminatorInstAndDCECond(BI);
4132         } else if (BI->getSuccessor(1) == BB) {
4133           Builder.CreateBr(BI->getSuccessor(0));
4134           EraseTerminatorInstAndDCECond(BI);
4135           Changed = true;
4136         }
4137       }
4138     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4139       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4140         if (i->getCaseSuccessor() != BB) {
4141           ++i;
4142           continue;
4143         }
4144         BB->removePredecessor(SI->getParent());
4145         i = SI->removeCase(i);
4146         e = SI->case_end();
4147         Changed = true;
4148       }
4149     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4150       if (II->getUnwindDest() == BB) {
4151         removeUnwindEdge(TI->getParent());
4152         Changed = true;
4153       }
4154     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4155       if (CSI->getUnwindDest() == BB) {
4156         removeUnwindEdge(TI->getParent());
4157         Changed = true;
4158         continue;
4159       }
4160 
4161       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4162                                              E = CSI->handler_end();
4163            I != E; ++I) {
4164         if (*I == BB) {
4165           CSI->removeHandler(I);
4166           --I;
4167           --E;
4168           Changed = true;
4169         }
4170       }
4171       if (CSI->getNumHandlers() == 0) {
4172         BasicBlock *CatchSwitchBB = CSI->getParent();
4173         if (CSI->hasUnwindDest()) {
4174           // Redirect preds to the unwind dest
4175           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4176         } else {
4177           // Rewrite all preds to unwind to caller (or from invoke to call).
4178           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4179           for (BasicBlock *EHPred : EHPreds)
4180             removeUnwindEdge(EHPred);
4181         }
4182         // The catchswitch is no longer reachable.
4183         new UnreachableInst(CSI->getContext(), CSI);
4184         CSI->eraseFromParent();
4185         Changed = true;
4186       }
4187     } else if (isa<CleanupReturnInst>(TI)) {
4188       new UnreachableInst(TI->getContext(), TI);
4189       TI->eraseFromParent();
4190       Changed = true;
4191     }
4192   }
4193 
4194   // If this block is now dead, remove it.
4195   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4196     // We know there are no successors, so just nuke the block.
4197     BB->eraseFromParent();
4198     if (LoopHeaders)
4199       LoopHeaders->erase(BB);
4200     return true;
4201   }
4202 
4203   return Changed;
4204 }
4205 
4206 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4207   assert(Cases.size() >= 1);
4208 
4209   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4210   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4211     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4212       return false;
4213   }
4214   return true;
4215 }
4216 
4217 /// Turn a switch with two reachable destinations into an integer range
4218 /// comparison and branch.
4219 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4220   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4221 
4222   bool HasDefault =
4223       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4224 
4225   // Partition the cases into two sets with different destinations.
4226   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4227   BasicBlock *DestB = nullptr;
4228   SmallVector<ConstantInt *, 16> CasesA;
4229   SmallVector<ConstantInt *, 16> CasesB;
4230 
4231   for (auto Case : SI->cases()) {
4232     BasicBlock *Dest = Case.getCaseSuccessor();
4233     if (!DestA)
4234       DestA = Dest;
4235     if (Dest == DestA) {
4236       CasesA.push_back(Case.getCaseValue());
4237       continue;
4238     }
4239     if (!DestB)
4240       DestB = Dest;
4241     if (Dest == DestB) {
4242       CasesB.push_back(Case.getCaseValue());
4243       continue;
4244     }
4245     return false; // More than two destinations.
4246   }
4247 
4248   assert(DestA && DestB &&
4249          "Single-destination switch should have been folded.");
4250   assert(DestA != DestB);
4251   assert(DestB != SI->getDefaultDest());
4252   assert(!CasesB.empty() && "There must be non-default cases.");
4253   assert(!CasesA.empty() || HasDefault);
4254 
4255   // Figure out if one of the sets of cases form a contiguous range.
4256   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4257   BasicBlock *ContiguousDest = nullptr;
4258   BasicBlock *OtherDest = nullptr;
4259   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4260     ContiguousCases = &CasesA;
4261     ContiguousDest = DestA;
4262     OtherDest = DestB;
4263   } else if (CasesAreContiguous(CasesB)) {
4264     ContiguousCases = &CasesB;
4265     ContiguousDest = DestB;
4266     OtherDest = DestA;
4267   } else
4268     return false;
4269 
4270   // Start building the compare and branch.
4271 
4272   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4273   Constant *NumCases =
4274       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4275 
4276   Value *Sub = SI->getCondition();
4277   if (!Offset->isNullValue())
4278     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4279 
4280   Value *Cmp;
4281   // If NumCases overflowed, then all possible values jump to the successor.
4282   if (NumCases->isNullValue() && !ContiguousCases->empty())
4283     Cmp = ConstantInt::getTrue(SI->getContext());
4284   else
4285     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4286   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4287 
4288   // Update weight for the newly-created conditional branch.
4289   if (HasBranchWeights(SI)) {
4290     SmallVector<uint64_t, 8> Weights;
4291     GetBranchWeights(SI, Weights);
4292     if (Weights.size() == 1 + SI->getNumCases()) {
4293       uint64_t TrueWeight = 0;
4294       uint64_t FalseWeight = 0;
4295       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4296         if (SI->getSuccessor(I) == ContiguousDest)
4297           TrueWeight += Weights[I];
4298         else
4299           FalseWeight += Weights[I];
4300       }
4301       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4302         TrueWeight /= 2;
4303         FalseWeight /= 2;
4304       }
4305       NewBI->setMetadata(LLVMContext::MD_prof,
4306                          MDBuilder(SI->getContext())
4307                              .createBranchWeights((uint32_t)TrueWeight,
4308                                                   (uint32_t)FalseWeight));
4309     }
4310   }
4311 
4312   // Prune obsolete incoming values off the successors' PHI nodes.
4313   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4314     unsigned PreviousEdges = ContiguousCases->size();
4315     if (ContiguousDest == SI->getDefaultDest())
4316       ++PreviousEdges;
4317     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4318       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4319   }
4320   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4321     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4322     if (OtherDest == SI->getDefaultDest())
4323       ++PreviousEdges;
4324     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4325       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4326   }
4327 
4328   // Drop the switch.
4329   SI->eraseFromParent();
4330 
4331   return true;
4332 }
4333 
4334 /// Compute masked bits for the condition of a switch
4335 /// and use it to remove dead cases.
4336 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4337                                      const DataLayout &DL) {
4338   Value *Cond = SI->getCondition();
4339   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4340   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4341 
4342   // We can also eliminate cases by determining that their values are outside of
4343   // the limited range of the condition based on how many significant (non-sign)
4344   // bits are in the condition value.
4345   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4346   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4347 
4348   // Gather dead cases.
4349   SmallVector<ConstantInt *, 8> DeadCases;
4350   for (auto &Case : SI->cases()) {
4351     const APInt &CaseVal = Case.getCaseValue()->getValue();
4352     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4353         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4354       DeadCases.push_back(Case.getCaseValue());
4355       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4356     }
4357   }
4358 
4359   // If we can prove that the cases must cover all possible values, the
4360   // default destination becomes dead and we can remove it.  If we know some
4361   // of the bits in the value, we can use that to more precisely compute the
4362   // number of possible unique case values.
4363   bool HasDefault =
4364       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4365   const unsigned NumUnknownBits =
4366       Bits - (Known.Zero | Known.One).countPopulation();
4367   assert(NumUnknownBits <= Bits);
4368   if (HasDefault && DeadCases.empty() &&
4369       NumUnknownBits < 64 /* avoid overflow */ &&
4370       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4371     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4372     BasicBlock *NewDefault =
4373         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4374     SI->setDefaultDest(&*NewDefault);
4375     SplitBlock(&*NewDefault, &NewDefault->front());
4376     auto *OldTI = NewDefault->getTerminator();
4377     new UnreachableInst(SI->getContext(), OldTI);
4378     EraseTerminatorInstAndDCECond(OldTI);
4379     return true;
4380   }
4381 
4382   SmallVector<uint64_t, 8> Weights;
4383   bool HasWeight = HasBranchWeights(SI);
4384   if (HasWeight) {
4385     GetBranchWeights(SI, Weights);
4386     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4387   }
4388 
4389   // Remove dead cases from the switch.
4390   for (ConstantInt *DeadCase : DeadCases) {
4391     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4392     assert(CaseI != SI->case_default() &&
4393            "Case was not found. Probably mistake in DeadCases forming.");
4394     if (HasWeight) {
4395       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4396       Weights.pop_back();
4397     }
4398 
4399     // Prune unused values from PHI nodes.
4400     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4401     SI->removeCase(CaseI);
4402   }
4403   if (HasWeight && Weights.size() >= 2) {
4404     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4405     SI->setMetadata(LLVMContext::MD_prof,
4406                     MDBuilder(SI->getParent()->getContext())
4407                         .createBranchWeights(MDWeights));
4408   }
4409 
4410   return !DeadCases.empty();
4411 }
4412 
4413 /// If BB would be eligible for simplification by
4414 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4415 /// by an unconditional branch), look at the phi node for BB in the successor
4416 /// block and see if the incoming value is equal to CaseValue. If so, return
4417 /// the phi node, and set PhiIndex to BB's index in the phi node.
4418 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4419                                               BasicBlock *BB, int *PhiIndex) {
4420   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4421     return nullptr; // BB must be empty to be a candidate for simplification.
4422   if (!BB->getSinglePredecessor())
4423     return nullptr; // BB must be dominated by the switch.
4424 
4425   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4426   if (!Branch || !Branch->isUnconditional())
4427     return nullptr; // Terminator must be unconditional branch.
4428 
4429   BasicBlock *Succ = Branch->getSuccessor(0);
4430 
4431   BasicBlock::iterator I = Succ->begin();
4432   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4433     int Idx = PHI->getBasicBlockIndex(BB);
4434     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4435 
4436     Value *InValue = PHI->getIncomingValue(Idx);
4437     if (InValue != CaseValue)
4438       continue;
4439 
4440     *PhiIndex = Idx;
4441     return PHI;
4442   }
4443 
4444   return nullptr;
4445 }
4446 
4447 /// Try to forward the condition of a switch instruction to a phi node
4448 /// dominated by the switch, if that would mean that some of the destination
4449 /// blocks of the switch can be folded away. Return true if a change is made.
4450 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4451   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4452   ForwardingNodesMap ForwardingNodes;
4453   BasicBlock *SwitchBlock = SI->getParent();
4454   bool Changed = false;
4455   for (auto &Case : SI->cases()) {
4456     ConstantInt *CaseValue = Case.getCaseValue();
4457     BasicBlock *CaseDest = Case.getCaseSuccessor();
4458 
4459     // Replace phi operands in successor blocks that are using the constant case
4460     // value rather than the switch condition variable:
4461     //   switchbb:
4462     //   switch i32 %x, label %default [
4463     //     i32 17, label %succ
4464     //   ...
4465     //   succ:
4466     //     %r = phi i32 ... [ 17, %switchbb ] ...
4467     // -->
4468     //     %r = phi i32 ... [ %x, %switchbb ] ...
4469 
4470     for (Instruction &InstInCaseDest : *CaseDest) {
4471       auto *Phi = dyn_cast<PHINode>(&InstInCaseDest);
4472       if (!Phi) break;
4473 
4474       // This only works if there is exactly 1 incoming edge from the switch to
4475       // a phi. If there is >1, that means multiple cases of the switch map to 1
4476       // value in the phi, and that phi value is not the switch condition. Thus,
4477       // this transform would not make sense (the phi would be invalid because
4478       // a phi can't have different incoming values from the same block).
4479       int SwitchBBIdx = Phi->getBasicBlockIndex(SwitchBlock);
4480       if (Phi->getIncomingValue(SwitchBBIdx) == CaseValue &&
4481           count(Phi->blocks(), SwitchBlock) == 1) {
4482         Phi->setIncomingValue(SwitchBBIdx, SI->getCondition());
4483         Changed = true;
4484       }
4485     }
4486 
4487     // Collect phi nodes that are indirectly using this switch's case constants.
4488     int PhiIdx;
4489     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4490       ForwardingNodes[Phi].push_back(PhiIdx);
4491   }
4492 
4493   for (auto &ForwardingNode : ForwardingNodes) {
4494     PHINode *Phi = ForwardingNode.first;
4495     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4496     if (Indexes.size() < 2)
4497       continue;
4498 
4499     for (int Index : Indexes)
4500       Phi->setIncomingValue(Index, SI->getCondition());
4501     Changed = true;
4502   }
4503 
4504   return Changed;
4505 }
4506 
4507 /// Return true if the backend will be able to handle
4508 /// initializing an array of constants like C.
4509 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4510   if (C->isThreadDependent())
4511     return false;
4512   if (C->isDLLImportDependent())
4513     return false;
4514 
4515   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4516       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4517       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4518     return false;
4519 
4520   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4521     if (!CE->isGEPWithNoNotionalOverIndexing())
4522       return false;
4523     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4524       return false;
4525   }
4526 
4527   if (!TTI.shouldBuildLookupTablesForConstant(C))
4528     return false;
4529 
4530   return true;
4531 }
4532 
4533 /// If V is a Constant, return it. Otherwise, try to look up
4534 /// its constant value in ConstantPool, returning 0 if it's not there.
4535 static Constant *
4536 LookupConstant(Value *V,
4537                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4538   if (Constant *C = dyn_cast<Constant>(V))
4539     return C;
4540   return ConstantPool.lookup(V);
4541 }
4542 
4543 /// Try to fold instruction I into a constant. This works for
4544 /// simple instructions such as binary operations where both operands are
4545 /// constant or can be replaced by constants from the ConstantPool. Returns the
4546 /// resulting constant on success, 0 otherwise.
4547 static Constant *
4548 ConstantFold(Instruction *I, const DataLayout &DL,
4549              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4550   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4551     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4552     if (!A)
4553       return nullptr;
4554     if (A->isAllOnesValue())
4555       return LookupConstant(Select->getTrueValue(), ConstantPool);
4556     if (A->isNullValue())
4557       return LookupConstant(Select->getFalseValue(), ConstantPool);
4558     return nullptr;
4559   }
4560 
4561   SmallVector<Constant *, 4> COps;
4562   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4563     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4564       COps.push_back(A);
4565     else
4566       return nullptr;
4567   }
4568 
4569   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4570     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4571                                            COps[1], DL);
4572   }
4573 
4574   return ConstantFoldInstOperands(I, COps, DL);
4575 }
4576 
4577 /// Try to determine the resulting constant values in phi nodes
4578 /// at the common destination basic block, *CommonDest, for one of the case
4579 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4580 /// case), of a switch instruction SI.
4581 static bool
4582 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4583                BasicBlock **CommonDest,
4584                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4585                const DataLayout &DL, const TargetTransformInfo &TTI) {
4586   // The block from which we enter the common destination.
4587   BasicBlock *Pred = SI->getParent();
4588 
4589   // If CaseDest is empty except for some side-effect free instructions through
4590   // which we can constant-propagate the CaseVal, continue to its successor.
4591   SmallDenseMap<Value *, Constant *> ConstantPool;
4592   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4593   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4594        ++I) {
4595     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4596       // If the terminator is a simple branch, continue to the next block.
4597       if (T->getNumSuccessors() != 1 || T->isExceptional())
4598         return false;
4599       Pred = CaseDest;
4600       CaseDest = T->getSuccessor(0);
4601     } else if (isa<DbgInfoIntrinsic>(I)) {
4602       // Skip debug intrinsic.
4603       continue;
4604     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4605       // Instruction is side-effect free and constant.
4606 
4607       // If the instruction has uses outside this block or a phi node slot for
4608       // the block, it is not safe to bypass the instruction since it would then
4609       // no longer dominate all its uses.
4610       for (auto &Use : I->uses()) {
4611         User *User = Use.getUser();
4612         if (Instruction *I = dyn_cast<Instruction>(User))
4613           if (I->getParent() == CaseDest)
4614             continue;
4615         if (PHINode *Phi = dyn_cast<PHINode>(User))
4616           if (Phi->getIncomingBlock(Use) == CaseDest)
4617             continue;
4618         return false;
4619       }
4620 
4621       ConstantPool.insert(std::make_pair(&*I, C));
4622     } else {
4623       break;
4624     }
4625   }
4626 
4627   // If we did not have a CommonDest before, use the current one.
4628   if (!*CommonDest)
4629     *CommonDest = CaseDest;
4630   // If the destination isn't the common one, abort.
4631   if (CaseDest != *CommonDest)
4632     return false;
4633 
4634   // Get the values for this case from phi nodes in the destination block.
4635   BasicBlock::iterator I = (*CommonDest)->begin();
4636   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4637     int Idx = PHI->getBasicBlockIndex(Pred);
4638     if (Idx == -1)
4639       continue;
4640 
4641     Constant *ConstVal =
4642         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4643     if (!ConstVal)
4644       return false;
4645 
4646     // Be conservative about which kinds of constants we support.
4647     if (!ValidLookupTableConstant(ConstVal, TTI))
4648       return false;
4649 
4650     Res.push_back(std::make_pair(PHI, ConstVal));
4651   }
4652 
4653   return Res.size() > 0;
4654 }
4655 
4656 // Helper function used to add CaseVal to the list of cases that generate
4657 // Result.
4658 static void MapCaseToResult(ConstantInt *CaseVal,
4659                             SwitchCaseResultVectorTy &UniqueResults,
4660                             Constant *Result) {
4661   for (auto &I : UniqueResults) {
4662     if (I.first == Result) {
4663       I.second.push_back(CaseVal);
4664       return;
4665     }
4666   }
4667   UniqueResults.push_back(
4668       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4669 }
4670 
4671 // Helper function that initializes a map containing
4672 // results for the PHI node of the common destination block for a switch
4673 // instruction. Returns false if multiple PHI nodes have been found or if
4674 // there is not a common destination block for the switch.
4675 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4676                                   BasicBlock *&CommonDest,
4677                                   SwitchCaseResultVectorTy &UniqueResults,
4678                                   Constant *&DefaultResult,
4679                                   const DataLayout &DL,
4680                                   const TargetTransformInfo &TTI) {
4681   for (auto &I : SI->cases()) {
4682     ConstantInt *CaseVal = I.getCaseValue();
4683 
4684     // Resulting value at phi nodes for this case value.
4685     SwitchCaseResultsTy Results;
4686     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4687                         DL, TTI))
4688       return false;
4689 
4690     // Only one value per case is permitted
4691     if (Results.size() > 1)
4692       return false;
4693     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4694 
4695     // Check the PHI consistency.
4696     if (!PHI)
4697       PHI = Results[0].first;
4698     else if (PHI != Results[0].first)
4699       return false;
4700   }
4701   // Find the default result value.
4702   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4703   BasicBlock *DefaultDest = SI->getDefaultDest();
4704   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4705                  DL, TTI);
4706   // If the default value is not found abort unless the default destination
4707   // is unreachable.
4708   DefaultResult =
4709       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4710   if ((!DefaultResult &&
4711        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4712     return false;
4713 
4714   return true;
4715 }
4716 
4717 // Helper function that checks if it is possible to transform a switch with only
4718 // two cases (or two cases + default) that produces a result into a select.
4719 // Example:
4720 // switch (a) {
4721 //   case 10:                %0 = icmp eq i32 %a, 10
4722 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4723 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4724 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4725 //   default:
4726 //     return 4;
4727 // }
4728 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4729                                    Constant *DefaultResult, Value *Condition,
4730                                    IRBuilder<> &Builder) {
4731   assert(ResultVector.size() == 2 &&
4732          "We should have exactly two unique results at this point");
4733   // If we are selecting between only two cases transform into a simple
4734   // select or a two-way select if default is possible.
4735   if (ResultVector[0].second.size() == 1 &&
4736       ResultVector[1].second.size() == 1) {
4737     ConstantInt *const FirstCase = ResultVector[0].second[0];
4738     ConstantInt *const SecondCase = ResultVector[1].second[0];
4739 
4740     bool DefaultCanTrigger = DefaultResult;
4741     Value *SelectValue = ResultVector[1].first;
4742     if (DefaultCanTrigger) {
4743       Value *const ValueCompare =
4744           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4745       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4746                                          DefaultResult, "switch.select");
4747     }
4748     Value *const ValueCompare =
4749         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4750     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4751                                 SelectValue, "switch.select");
4752   }
4753 
4754   return nullptr;
4755 }
4756 
4757 // Helper function to cleanup a switch instruction that has been converted into
4758 // a select, fixing up PHI nodes and basic blocks.
4759 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4760                                               Value *SelectValue,
4761                                               IRBuilder<> &Builder) {
4762   BasicBlock *SelectBB = SI->getParent();
4763   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4764     PHI->removeIncomingValue(SelectBB);
4765   PHI->addIncoming(SelectValue, SelectBB);
4766 
4767   Builder.CreateBr(PHI->getParent());
4768 
4769   // Remove the switch.
4770   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4771     BasicBlock *Succ = SI->getSuccessor(i);
4772 
4773     if (Succ == PHI->getParent())
4774       continue;
4775     Succ->removePredecessor(SelectBB);
4776   }
4777   SI->eraseFromParent();
4778 }
4779 
4780 /// If the switch is only used to initialize one or more
4781 /// phi nodes in a common successor block with only two different
4782 /// constant values, replace the switch with select.
4783 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4784                            const DataLayout &DL,
4785                            const TargetTransformInfo &TTI) {
4786   Value *const Cond = SI->getCondition();
4787   PHINode *PHI = nullptr;
4788   BasicBlock *CommonDest = nullptr;
4789   Constant *DefaultResult;
4790   SwitchCaseResultVectorTy UniqueResults;
4791   // Collect all the cases that will deliver the same value from the switch.
4792   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4793                              DL, TTI))
4794     return false;
4795   // Selects choose between maximum two values.
4796   if (UniqueResults.size() != 2)
4797     return false;
4798   assert(PHI != nullptr && "PHI for value select not found");
4799 
4800   Builder.SetInsertPoint(SI);
4801   Value *SelectValue =
4802       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4803   if (SelectValue) {
4804     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4805     return true;
4806   }
4807   // The switch couldn't be converted into a select.
4808   return false;
4809 }
4810 
4811 namespace {
4812 
4813 /// This class represents a lookup table that can be used to replace a switch.
4814 class SwitchLookupTable {
4815 public:
4816   /// Create a lookup table to use as a switch replacement with the contents
4817   /// of Values, using DefaultValue to fill any holes in the table.
4818   SwitchLookupTable(
4819       Module &M, uint64_t TableSize, ConstantInt *Offset,
4820       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4821       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4822 
4823   /// Build instructions with Builder to retrieve the value at
4824   /// the position given by Index in the lookup table.
4825   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4826 
4827   /// Return true if a table with TableSize elements of
4828   /// type ElementType would fit in a target-legal register.
4829   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4830                                  Type *ElementType);
4831 
4832 private:
4833   // Depending on the contents of the table, it can be represented in
4834   // different ways.
4835   enum {
4836     // For tables where each element contains the same value, we just have to
4837     // store that single value and return it for each lookup.
4838     SingleValueKind,
4839 
4840     // For tables where there is a linear relationship between table index
4841     // and values. We calculate the result with a simple multiplication
4842     // and addition instead of a table lookup.
4843     LinearMapKind,
4844 
4845     // For small tables with integer elements, we can pack them into a bitmap
4846     // that fits into a target-legal register. Values are retrieved by
4847     // shift and mask operations.
4848     BitMapKind,
4849 
4850     // The table is stored as an array of values. Values are retrieved by load
4851     // instructions from the table.
4852     ArrayKind
4853   } Kind;
4854 
4855   // For SingleValueKind, this is the single value.
4856   Constant *SingleValue;
4857 
4858   // For BitMapKind, this is the bitmap.
4859   ConstantInt *BitMap;
4860   IntegerType *BitMapElementTy;
4861 
4862   // For LinearMapKind, these are the constants used to derive the value.
4863   ConstantInt *LinearOffset;
4864   ConstantInt *LinearMultiplier;
4865 
4866   // For ArrayKind, this is the array.
4867   GlobalVariable *Array;
4868 };
4869 
4870 } // end anonymous namespace
4871 
4872 SwitchLookupTable::SwitchLookupTable(
4873     Module &M, uint64_t TableSize, ConstantInt *Offset,
4874     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4875     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName)
4876     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4877       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4878   assert(Values.size() && "Can't build lookup table without values!");
4879   assert(TableSize >= Values.size() && "Can't fit values in table!");
4880 
4881   // If all values in the table are equal, this is that value.
4882   SingleValue = Values.begin()->second;
4883 
4884   Type *ValueType = Values.begin()->second->getType();
4885 
4886   // Build up the table contents.
4887   SmallVector<Constant *, 64> TableContents(TableSize);
4888   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4889     ConstantInt *CaseVal = Values[I].first;
4890     Constant *CaseRes = Values[I].second;
4891     assert(CaseRes->getType() == ValueType);
4892 
4893     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4894     TableContents[Idx] = CaseRes;
4895 
4896     if (CaseRes != SingleValue)
4897       SingleValue = nullptr;
4898   }
4899 
4900   // Fill in any holes in the table with the default result.
4901   if (Values.size() < TableSize) {
4902     assert(DefaultValue &&
4903            "Need a default value to fill the lookup table holes.");
4904     assert(DefaultValue->getType() == ValueType);
4905     for (uint64_t I = 0; I < TableSize; ++I) {
4906       if (!TableContents[I])
4907         TableContents[I] = DefaultValue;
4908     }
4909 
4910     if (DefaultValue != SingleValue)
4911       SingleValue = nullptr;
4912   }
4913 
4914   // If each element in the table contains the same value, we only need to store
4915   // that single value.
4916   if (SingleValue) {
4917     Kind = SingleValueKind;
4918     return;
4919   }
4920 
4921   // Check if we can derive the value with a linear transformation from the
4922   // table index.
4923   if (isa<IntegerType>(ValueType)) {
4924     bool LinearMappingPossible = true;
4925     APInt PrevVal;
4926     APInt DistToPrev;
4927     assert(TableSize >= 2 && "Should be a SingleValue table.");
4928     // Check if there is the same distance between two consecutive values.
4929     for (uint64_t I = 0; I < TableSize; ++I) {
4930       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4931       if (!ConstVal) {
4932         // This is an undef. We could deal with it, but undefs in lookup tables
4933         // are very seldom. It's probably not worth the additional complexity.
4934         LinearMappingPossible = false;
4935         break;
4936       }
4937       const APInt &Val = ConstVal->getValue();
4938       if (I != 0) {
4939         APInt Dist = Val - PrevVal;
4940         if (I == 1) {
4941           DistToPrev = Dist;
4942         } else if (Dist != DistToPrev) {
4943           LinearMappingPossible = false;
4944           break;
4945         }
4946       }
4947       PrevVal = Val;
4948     }
4949     if (LinearMappingPossible) {
4950       LinearOffset = cast<ConstantInt>(TableContents[0]);
4951       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4952       Kind = LinearMapKind;
4953       ++NumLinearMaps;
4954       return;
4955     }
4956   }
4957 
4958   // If the type is integer and the table fits in a register, build a bitmap.
4959   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4960     IntegerType *IT = cast<IntegerType>(ValueType);
4961     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4962     for (uint64_t I = TableSize; I > 0; --I) {
4963       TableInt <<= IT->getBitWidth();
4964       // Insert values into the bitmap. Undef values are set to zero.
4965       if (!isa<UndefValue>(TableContents[I - 1])) {
4966         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4967         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4968       }
4969     }
4970     BitMap = ConstantInt::get(M.getContext(), TableInt);
4971     BitMapElementTy = IT;
4972     Kind = BitMapKind;
4973     ++NumBitMaps;
4974     return;
4975   }
4976 
4977   // Store the table in an array.
4978   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4979   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4980 
4981   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4982                              GlobalVariable::PrivateLinkage, Initializer,
4983                              "switch.table." + FuncName);
4984   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4985   Kind = ArrayKind;
4986 }
4987 
4988 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4989   switch (Kind) {
4990   case SingleValueKind:
4991     return SingleValue;
4992   case LinearMapKind: {
4993     // Derive the result value from the input value.
4994     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4995                                           false, "switch.idx.cast");
4996     if (!LinearMultiplier->isOne())
4997       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4998     if (!LinearOffset->isZero())
4999       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5000     return Result;
5001   }
5002   case BitMapKind: {
5003     // Type of the bitmap (e.g. i59).
5004     IntegerType *MapTy = BitMap->getType();
5005 
5006     // Cast Index to the same type as the bitmap.
5007     // Note: The Index is <= the number of elements in the table, so
5008     // truncating it to the width of the bitmask is safe.
5009     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5010 
5011     // Multiply the shift amount by the element width.
5012     ShiftAmt = Builder.CreateMul(
5013         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5014         "switch.shiftamt");
5015 
5016     // Shift down.
5017     Value *DownShifted =
5018         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5019     // Mask off.
5020     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5021   }
5022   case ArrayKind: {
5023     // Make sure the table index will not overflow when treated as signed.
5024     IntegerType *IT = cast<IntegerType>(Index->getType());
5025     uint64_t TableSize =
5026         Array->getInitializer()->getType()->getArrayNumElements();
5027     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5028       Index = Builder.CreateZExt(
5029           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5030           "switch.tableidx.zext");
5031 
5032     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5033     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5034                                            GEPIndices, "switch.gep");
5035     return Builder.CreateLoad(GEP, "switch.load");
5036   }
5037   }
5038   llvm_unreachable("Unknown lookup table kind!");
5039 }
5040 
5041 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5042                                            uint64_t TableSize,
5043                                            Type *ElementType) {
5044   auto *IT = dyn_cast<IntegerType>(ElementType);
5045   if (!IT)
5046     return false;
5047   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5048   // are <= 15, we could try to narrow the type.
5049 
5050   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5051   if (TableSize >= UINT_MAX / IT->getBitWidth())
5052     return false;
5053   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5054 }
5055 
5056 /// Determine whether a lookup table should be built for this switch, based on
5057 /// the number of cases, size of the table, and the types of the results.
5058 static bool
5059 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5060                        const TargetTransformInfo &TTI, const DataLayout &DL,
5061                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5062   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5063     return false; // TableSize overflowed, or mul below might overflow.
5064 
5065   bool AllTablesFitInRegister = true;
5066   bool HasIllegalType = false;
5067   for (const auto &I : ResultTypes) {
5068     Type *Ty = I.second;
5069 
5070     // Saturate this flag to true.
5071     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5072 
5073     // Saturate this flag to false.
5074     AllTablesFitInRegister =
5075         AllTablesFitInRegister &&
5076         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5077 
5078     // If both flags saturate, we're done. NOTE: This *only* works with
5079     // saturating flags, and all flags have to saturate first due to the
5080     // non-deterministic behavior of iterating over a dense map.
5081     if (HasIllegalType && !AllTablesFitInRegister)
5082       break;
5083   }
5084 
5085   // If each table would fit in a register, we should build it anyway.
5086   if (AllTablesFitInRegister)
5087     return true;
5088 
5089   // Don't build a table that doesn't fit in-register if it has illegal types.
5090   if (HasIllegalType)
5091     return false;
5092 
5093   // The table density should be at least 40%. This is the same criterion as for
5094   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5095   // FIXME: Find the best cut-off.
5096   return SI->getNumCases() * 10 >= TableSize * 4;
5097 }
5098 
5099 /// Try to reuse the switch table index compare. Following pattern:
5100 /// \code
5101 ///     if (idx < tablesize)
5102 ///        r = table[idx]; // table does not contain default_value
5103 ///     else
5104 ///        r = default_value;
5105 ///     if (r != default_value)
5106 ///        ...
5107 /// \endcode
5108 /// Is optimized to:
5109 /// \code
5110 ///     cond = idx < tablesize;
5111 ///     if (cond)
5112 ///        r = table[idx];
5113 ///     else
5114 ///        r = default_value;
5115 ///     if (cond)
5116 ///        ...
5117 /// \endcode
5118 /// Jump threading will then eliminate the second if(cond).
5119 static void reuseTableCompare(
5120     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5121     Constant *DefaultValue,
5122     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5123 
5124   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5125   if (!CmpInst)
5126     return;
5127 
5128   // We require that the compare is in the same block as the phi so that jump
5129   // threading can do its work afterwards.
5130   if (CmpInst->getParent() != PhiBlock)
5131     return;
5132 
5133   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5134   if (!CmpOp1)
5135     return;
5136 
5137   Value *RangeCmp = RangeCheckBranch->getCondition();
5138   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5139   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5140 
5141   // Check if the compare with the default value is constant true or false.
5142   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5143                                                  DefaultValue, CmpOp1, true);
5144   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5145     return;
5146 
5147   // Check if the compare with the case values is distinct from the default
5148   // compare result.
5149   for (auto ValuePair : Values) {
5150     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5151                                                 ValuePair.second, CmpOp1, true);
5152     if (!CaseConst || CaseConst == DefaultConst)
5153       return;
5154     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5155            "Expect true or false as compare result.");
5156   }
5157 
5158   // Check if the branch instruction dominates the phi node. It's a simple
5159   // dominance check, but sufficient for our needs.
5160   // Although this check is invariant in the calling loops, it's better to do it
5161   // at this late stage. Practically we do it at most once for a switch.
5162   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5163   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5164     BasicBlock *Pred = *PI;
5165     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5166       return;
5167   }
5168 
5169   if (DefaultConst == FalseConst) {
5170     // The compare yields the same result. We can replace it.
5171     CmpInst->replaceAllUsesWith(RangeCmp);
5172     ++NumTableCmpReuses;
5173   } else {
5174     // The compare yields the same result, just inverted. We can replace it.
5175     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5176         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5177         RangeCheckBranch);
5178     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5179     ++NumTableCmpReuses;
5180   }
5181 }
5182 
5183 /// If the switch is only used to initialize one or more phi nodes in a common
5184 /// successor block with different constant values, replace the switch with
5185 /// lookup tables.
5186 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5187                                 const DataLayout &DL,
5188                                 const TargetTransformInfo &TTI) {
5189   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5190 
5191   Function *Fn = SI->getParent()->getParent();
5192   // Only build lookup table when we have a target that supports it or the
5193   // attribute is not set.
5194   if (!TTI.shouldBuildLookupTables() ||
5195       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5196     return false;
5197 
5198   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5199   // split off a dense part and build a lookup table for that.
5200 
5201   // FIXME: This creates arrays of GEPs to constant strings, which means each
5202   // GEP needs a runtime relocation in PIC code. We should just build one big
5203   // string and lookup indices into that.
5204 
5205   // Ignore switches with less than three cases. Lookup tables will not make
5206   // them faster, so we don't analyze them.
5207   if (SI->getNumCases() < 3)
5208     return false;
5209 
5210   // Figure out the corresponding result for each case value and phi node in the
5211   // common destination, as well as the min and max case values.
5212   assert(SI->case_begin() != SI->case_end());
5213   SwitchInst::CaseIt CI = SI->case_begin();
5214   ConstantInt *MinCaseVal = CI->getCaseValue();
5215   ConstantInt *MaxCaseVal = CI->getCaseValue();
5216 
5217   BasicBlock *CommonDest = nullptr;
5218   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5219   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5220   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5221   SmallDenseMap<PHINode *, Type *> ResultTypes;
5222   SmallVector<PHINode *, 4> PHIs;
5223 
5224   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5225     ConstantInt *CaseVal = CI->getCaseValue();
5226     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5227       MinCaseVal = CaseVal;
5228     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5229       MaxCaseVal = CaseVal;
5230 
5231     // Resulting value at phi nodes for this case value.
5232     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5233     ResultsTy Results;
5234     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5235                         Results, DL, TTI))
5236       return false;
5237 
5238     // Append the result from this case to the list for each phi.
5239     for (const auto &I : Results) {
5240       PHINode *PHI = I.first;
5241       Constant *Value = I.second;
5242       if (!ResultLists.count(PHI))
5243         PHIs.push_back(PHI);
5244       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5245     }
5246   }
5247 
5248   // Keep track of the result types.
5249   for (PHINode *PHI : PHIs) {
5250     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5251   }
5252 
5253   uint64_t NumResults = ResultLists[PHIs[0]].size();
5254   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5255   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5256   bool TableHasHoles = (NumResults < TableSize);
5257 
5258   // If the table has holes, we need a constant result for the default case
5259   // or a bitmask that fits in a register.
5260   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5261   bool HasDefaultResults =
5262       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5263                      DefaultResultsList, DL, TTI);
5264 
5265   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5266   if (NeedMask) {
5267     // As an extra penalty for the validity test we require more cases.
5268     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5269       return false;
5270     if (!DL.fitsInLegalInteger(TableSize))
5271       return false;
5272   }
5273 
5274   for (const auto &I : DefaultResultsList) {
5275     PHINode *PHI = I.first;
5276     Constant *Result = I.second;
5277     DefaultResults[PHI] = Result;
5278   }
5279 
5280   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5281     return false;
5282 
5283   // Create the BB that does the lookups.
5284   Module &Mod = *CommonDest->getParent()->getParent();
5285   BasicBlock *LookupBB = BasicBlock::Create(
5286       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5287 
5288   // Compute the table index value.
5289   Builder.SetInsertPoint(SI);
5290   Value *TableIndex;
5291   if (MinCaseVal->isNullValue())
5292     TableIndex = SI->getCondition();
5293   else
5294     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5295                                    "switch.tableidx");
5296 
5297   // Compute the maximum table size representable by the integer type we are
5298   // switching upon.
5299   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5300   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5301   assert(MaxTableSize >= TableSize &&
5302          "It is impossible for a switch to have more entries than the max "
5303          "representable value of its input integer type's size.");
5304 
5305   // If the default destination is unreachable, or if the lookup table covers
5306   // all values of the conditional variable, branch directly to the lookup table
5307   // BB. Otherwise, check that the condition is within the case range.
5308   const bool DefaultIsReachable =
5309       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5310   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5311   BranchInst *RangeCheckBranch = nullptr;
5312 
5313   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5314     Builder.CreateBr(LookupBB);
5315     // Note: We call removeProdecessor later since we need to be able to get the
5316     // PHI value for the default case in case we're using a bit mask.
5317   } else {
5318     Value *Cmp = Builder.CreateICmpULT(
5319         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5320     RangeCheckBranch =
5321         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5322   }
5323 
5324   // Populate the BB that does the lookups.
5325   Builder.SetInsertPoint(LookupBB);
5326 
5327   if (NeedMask) {
5328     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5329     // re-purposed to do the hole check, and we create a new LookupBB.
5330     BasicBlock *MaskBB = LookupBB;
5331     MaskBB->setName("switch.hole_check");
5332     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5333                                   CommonDest->getParent(), CommonDest);
5334 
5335     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5336     // unnecessary illegal types.
5337     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5338     APInt MaskInt(TableSizePowOf2, 0);
5339     APInt One(TableSizePowOf2, 1);
5340     // Build bitmask; fill in a 1 bit for every case.
5341     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5342     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5343       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5344                          .getLimitedValue();
5345       MaskInt |= One << Idx;
5346     }
5347     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5348 
5349     // Get the TableIndex'th bit of the bitmask.
5350     // If this bit is 0 (meaning hole) jump to the default destination,
5351     // else continue with table lookup.
5352     IntegerType *MapTy = TableMask->getType();
5353     Value *MaskIndex =
5354         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5355     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5356     Value *LoBit = Builder.CreateTrunc(
5357         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5358     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5359 
5360     Builder.SetInsertPoint(LookupBB);
5361     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5362   }
5363 
5364   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5365     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5366     // do not delete PHINodes here.
5367     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5368                                             /*DontDeleteUselessPHIs=*/true);
5369   }
5370 
5371   bool ReturnedEarly = false;
5372   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5373     PHINode *PHI = PHIs[I];
5374     const ResultListTy &ResultList = ResultLists[PHI];
5375 
5376     // If using a bitmask, use any value to fill the lookup table holes.
5377     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5378     StringRef FuncName = Fn->getName();
5379     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5380                             FuncName);
5381 
5382     Value *Result = Table.BuildLookup(TableIndex, Builder);
5383 
5384     // If the result is used to return immediately from the function, we want to
5385     // do that right here.
5386     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5387         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5388       Builder.CreateRet(Result);
5389       ReturnedEarly = true;
5390       break;
5391     }
5392 
5393     // Do a small peephole optimization: re-use the switch table compare if
5394     // possible.
5395     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5396       BasicBlock *PhiBlock = PHI->getParent();
5397       // Search for compare instructions which use the phi.
5398       for (auto *User : PHI->users()) {
5399         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5400       }
5401     }
5402 
5403     PHI->addIncoming(Result, LookupBB);
5404   }
5405 
5406   if (!ReturnedEarly)
5407     Builder.CreateBr(CommonDest);
5408 
5409   // Remove the switch.
5410   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5411     BasicBlock *Succ = SI->getSuccessor(i);
5412 
5413     if (Succ == SI->getDefaultDest())
5414       continue;
5415     Succ->removePredecessor(SI->getParent());
5416   }
5417   SI->eraseFromParent();
5418 
5419   ++NumLookupTables;
5420   if (NeedMask)
5421     ++NumLookupTablesHoles;
5422   return true;
5423 }
5424 
5425 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5426   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5427   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5428   uint64_t Range = Diff + 1;
5429   uint64_t NumCases = Values.size();
5430   // 40% is the default density for building a jump table in optsize/minsize mode.
5431   uint64_t MinDensity = 40;
5432 
5433   return NumCases * 100 >= Range * MinDensity;
5434 }
5435 
5436 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5437 /// of cases.
5438 ///
5439 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5440 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5441 ///
5442 /// This converts a sparse switch into a dense switch which allows better
5443 /// lowering and could also allow transforming into a lookup table.
5444 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5445                               const DataLayout &DL,
5446                               const TargetTransformInfo &TTI) {
5447   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5448   if (CondTy->getIntegerBitWidth() > 64 ||
5449       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5450     return false;
5451   // Only bother with this optimization if there are more than 3 switch cases;
5452   // SDAG will only bother creating jump tables for 4 or more cases.
5453   if (SI->getNumCases() < 4)
5454     return false;
5455 
5456   // This transform is agnostic to the signedness of the input or case values. We
5457   // can treat the case values as signed or unsigned. We can optimize more common
5458   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5459   // as signed.
5460   SmallVector<int64_t,4> Values;
5461   for (auto &C : SI->cases())
5462     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5463   std::sort(Values.begin(), Values.end());
5464 
5465   // If the switch is already dense, there's nothing useful to do here.
5466   if (isSwitchDense(Values))
5467     return false;
5468 
5469   // First, transform the values such that they start at zero and ascend.
5470   int64_t Base = Values[0];
5471   for (auto &V : Values)
5472     V -= (uint64_t)(Base);
5473 
5474   // Now we have signed numbers that have been shifted so that, given enough
5475   // precision, there are no negative values. Since the rest of the transform
5476   // is bitwise only, we switch now to an unsigned representation.
5477   uint64_t GCD = 0;
5478   for (auto &V : Values)
5479     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5480 
5481   // This transform can be done speculatively because it is so cheap - it results
5482   // in a single rotate operation being inserted. This can only happen if the
5483   // factor extracted is a power of 2.
5484   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5485   // inverse of GCD and then perform this transform.
5486   // FIXME: It's possible that optimizing a switch on powers of two might also
5487   // be beneficial - flag values are often powers of two and we could use a CLZ
5488   // as the key function.
5489   if (GCD <= 1 || !isPowerOf2_64(GCD))
5490     // No common divisor found or too expensive to compute key function.
5491     return false;
5492 
5493   unsigned Shift = Log2_64(GCD);
5494   for (auto &V : Values)
5495     V = (int64_t)((uint64_t)V >> Shift);
5496 
5497   if (!isSwitchDense(Values))
5498     // Transform didn't create a dense switch.
5499     return false;
5500 
5501   // The obvious transform is to shift the switch condition right and emit a
5502   // check that the condition actually cleanly divided by GCD, i.e.
5503   //   C & (1 << Shift - 1) == 0
5504   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5505   //
5506   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5507   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5508   // are nonzero then the switch condition will be very large and will hit the
5509   // default case.
5510 
5511   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5512   Builder.SetInsertPoint(SI);
5513   auto *ShiftC = ConstantInt::get(Ty, Shift);
5514   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5515   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5516   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5517   auto *Rot = Builder.CreateOr(LShr, Shl);
5518   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5519 
5520   for (auto Case : SI->cases()) {
5521     auto *Orig = Case.getCaseValue();
5522     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5523     Case.setValue(
5524         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5525   }
5526   return true;
5527 }
5528 
5529 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5530   BasicBlock *BB = SI->getParent();
5531 
5532   if (isValueEqualityComparison(SI)) {
5533     // If we only have one predecessor, and if it is a branch on this value,
5534     // see if that predecessor totally determines the outcome of this switch.
5535     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5536       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5537         return simplifyCFG(BB, TTI, Options) | true;
5538 
5539     Value *Cond = SI->getCondition();
5540     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5541       if (SimplifySwitchOnSelect(SI, Select))
5542         return simplifyCFG(BB, TTI, Options) | true;
5543 
5544     // If the block only contains the switch, see if we can fold the block
5545     // away into any preds.
5546     BasicBlock::iterator BBI = BB->begin();
5547     // Ignore dbg intrinsics.
5548     while (isa<DbgInfoIntrinsic>(BBI))
5549       ++BBI;
5550     if (SI == &*BBI)
5551       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5552         return simplifyCFG(BB, TTI, Options) | true;
5553   }
5554 
5555   // Try to transform the switch into an icmp and a branch.
5556   if (TurnSwitchRangeIntoICmp(SI, Builder))
5557     return simplifyCFG(BB, TTI, Options) | true;
5558 
5559   // Remove unreachable cases.
5560   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5561     return simplifyCFG(BB, TTI, Options) | true;
5562 
5563   if (switchToSelect(SI, Builder, DL, TTI))
5564     return simplifyCFG(BB, TTI, Options) | true;
5565 
5566   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5567     return simplifyCFG(BB, TTI, Options) | true;
5568 
5569   // The conversion from switch to lookup tables results in difficult-to-analyze
5570   // code and makes pruning branches much harder. This is a problem if the
5571   // switch expression itself can still be restricted as a result of inlining or
5572   // CVP. Therefore, only apply this transformation during late stages of the
5573   // optimisation pipeline.
5574   if (Options.ConvertSwitchToLookupTable &&
5575       SwitchToLookupTable(SI, Builder, DL, TTI))
5576     return simplifyCFG(BB, TTI, Options) | true;
5577 
5578   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5579     return simplifyCFG(BB, TTI, Options) | true;
5580 
5581   return false;
5582 }
5583 
5584 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5585   BasicBlock *BB = IBI->getParent();
5586   bool Changed = false;
5587 
5588   // Eliminate redundant destinations.
5589   SmallPtrSet<Value *, 8> Succs;
5590   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5591     BasicBlock *Dest = IBI->getDestination(i);
5592     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5593       Dest->removePredecessor(BB);
5594       IBI->removeDestination(i);
5595       --i;
5596       --e;
5597       Changed = true;
5598     }
5599   }
5600 
5601   if (IBI->getNumDestinations() == 0) {
5602     // If the indirectbr has no successors, change it to unreachable.
5603     new UnreachableInst(IBI->getContext(), IBI);
5604     EraseTerminatorInstAndDCECond(IBI);
5605     return true;
5606   }
5607 
5608   if (IBI->getNumDestinations() == 1) {
5609     // If the indirectbr has one successor, change it to a direct branch.
5610     BranchInst::Create(IBI->getDestination(0), IBI);
5611     EraseTerminatorInstAndDCECond(IBI);
5612     return true;
5613   }
5614 
5615   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5616     if (SimplifyIndirectBrOnSelect(IBI, SI))
5617       return simplifyCFG(BB, TTI, Options) | true;
5618   }
5619   return Changed;
5620 }
5621 
5622 /// Given an block with only a single landing pad and a unconditional branch
5623 /// try to find another basic block which this one can be merged with.  This
5624 /// handles cases where we have multiple invokes with unique landing pads, but
5625 /// a shared handler.
5626 ///
5627 /// We specifically choose to not worry about merging non-empty blocks
5628 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5629 /// practice, the optimizer produces empty landing pad blocks quite frequently
5630 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5631 /// sinking in this file)
5632 ///
5633 /// This is primarily a code size optimization.  We need to avoid performing
5634 /// any transform which might inhibit optimization (such as our ability to
5635 /// specialize a particular handler via tail commoning).  We do this by not
5636 /// merging any blocks which require us to introduce a phi.  Since the same
5637 /// values are flowing through both blocks, we don't loose any ability to
5638 /// specialize.  If anything, we make such specialization more likely.
5639 ///
5640 /// TODO - This transformation could remove entries from a phi in the target
5641 /// block when the inputs in the phi are the same for the two blocks being
5642 /// merged.  In some cases, this could result in removal of the PHI entirely.
5643 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5644                                  BasicBlock *BB) {
5645   auto Succ = BB->getUniqueSuccessor();
5646   assert(Succ);
5647   // If there's a phi in the successor block, we'd likely have to introduce
5648   // a phi into the merged landing pad block.
5649   if (isa<PHINode>(*Succ->begin()))
5650     return false;
5651 
5652   for (BasicBlock *OtherPred : predecessors(Succ)) {
5653     if (BB == OtherPred)
5654       continue;
5655     BasicBlock::iterator I = OtherPred->begin();
5656     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5657     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5658       continue;
5659     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5660     }
5661     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5662     if (!BI2 || !BI2->isIdenticalTo(BI))
5663       continue;
5664 
5665     // We've found an identical block.  Update our predecessors to take that
5666     // path instead and make ourselves dead.
5667     SmallSet<BasicBlock *, 16> Preds;
5668     Preds.insert(pred_begin(BB), pred_end(BB));
5669     for (BasicBlock *Pred : Preds) {
5670       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5671       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5672              "unexpected successor");
5673       II->setUnwindDest(OtherPred);
5674     }
5675 
5676     // The debug info in OtherPred doesn't cover the merged control flow that
5677     // used to go through BB.  We need to delete it or update it.
5678     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5679       Instruction &Inst = *I;
5680       I++;
5681       if (isa<DbgInfoIntrinsic>(Inst))
5682         Inst.eraseFromParent();
5683     }
5684 
5685     SmallSet<BasicBlock *, 16> Succs;
5686     Succs.insert(succ_begin(BB), succ_end(BB));
5687     for (BasicBlock *Succ : Succs) {
5688       Succ->removePredecessor(BB);
5689     }
5690 
5691     IRBuilder<> Builder(BI);
5692     Builder.CreateUnreachable();
5693     BI->eraseFromParent();
5694     return true;
5695   }
5696   return false;
5697 }
5698 
5699 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5700                                           IRBuilder<> &Builder) {
5701   BasicBlock *BB = BI->getParent();
5702   BasicBlock *Succ = BI->getSuccessor(0);
5703 
5704   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5705     return true;
5706 
5707   // If the Terminator is the only non-phi instruction, simplify the block.
5708   // If LoopHeader is provided, check if the block or its successor is a loop
5709   // header. (This is for early invocations before loop simplify and
5710   // vectorization to keep canonical loop forms for nested loops. These blocks
5711   // can be eliminated when the pass is invoked later in the back-end.)
5712   bool NeedCanonicalLoop =
5713       Options.NeedCanonicalLoop &&
5714       (LoopHeaders && (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5715   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5716   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5717       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5718     return true;
5719 
5720   // If the only instruction in the block is a seteq/setne comparison against a
5721   // constant, try to simplify the block.
5722   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5723     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5724       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5725         ;
5726       if (I->isTerminator() &&
5727           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options))
5728         return true;
5729     }
5730 
5731   // See if we can merge an empty landing pad block with another which is
5732   // equivalent.
5733   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5734     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5735     }
5736     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5737       return true;
5738   }
5739 
5740   // If this basic block is ONLY a compare and a branch, and if a predecessor
5741   // branches to us and our successor, fold the comparison into the
5742   // predecessor and use logical operations to update the incoming value
5743   // for PHI nodes in common successor.
5744   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5745     return simplifyCFG(BB, TTI, Options) | true;
5746   return false;
5747 }
5748 
5749 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5750   BasicBlock *PredPred = nullptr;
5751   for (auto *P : predecessors(BB)) {
5752     BasicBlock *PPred = P->getSinglePredecessor();
5753     if (!PPred || (PredPred && PredPred != PPred))
5754       return nullptr;
5755     PredPred = PPred;
5756   }
5757   return PredPred;
5758 }
5759 
5760 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5761   BasicBlock *BB = BI->getParent();
5762 
5763   // Conditional branch
5764   if (isValueEqualityComparison(BI)) {
5765     // If we only have one predecessor, and if it is a branch on this value,
5766     // see if that predecessor totally determines the outcome of this
5767     // switch.
5768     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5769       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5770         return simplifyCFG(BB, TTI, Options) | true;
5771 
5772     // This block must be empty, except for the setcond inst, if it exists.
5773     // Ignore dbg intrinsics.
5774     BasicBlock::iterator I = BB->begin();
5775     // Ignore dbg intrinsics.
5776     while (isa<DbgInfoIntrinsic>(I))
5777       ++I;
5778     if (&*I == BI) {
5779       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5780         return simplifyCFG(BB, TTI, Options) | true;
5781     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5782       ++I;
5783       // Ignore dbg intrinsics.
5784       while (isa<DbgInfoIntrinsic>(I))
5785         ++I;
5786       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5787         return simplifyCFG(BB, TTI, Options) | true;
5788     }
5789   }
5790 
5791   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5792   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5793     return true;
5794 
5795   // If this basic block has a single dominating predecessor block and the
5796   // dominating block's condition implies BI's condition, we know the direction
5797   // of the BI branch.
5798   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5799     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5800     if (PBI && PBI->isConditional() &&
5801         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5802       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5803       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5804       Optional<bool> Implication = isImpliedCondition(
5805           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5806       if (Implication) {
5807         // Turn this into a branch on constant.
5808         auto *OldCond = BI->getCondition();
5809         ConstantInt *CI = *Implication
5810                               ? ConstantInt::getTrue(BB->getContext())
5811                               : ConstantInt::getFalse(BB->getContext());
5812         BI->setCondition(CI);
5813         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5814         return simplifyCFG(BB, TTI, Options) | true;
5815       }
5816     }
5817   }
5818 
5819   // If this basic block is ONLY a compare and a branch, and if a predecessor
5820   // branches to us and one of our successors, fold the comparison into the
5821   // predecessor and use logical operations to pick the right destination.
5822   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5823     return simplifyCFG(BB, TTI, Options) | true;
5824 
5825   // We have a conditional branch to two blocks that are only reachable
5826   // from BI.  We know that the condbr dominates the two blocks, so see if
5827   // there is any identical code in the "then" and "else" blocks.  If so, we
5828   // can hoist it up to the branching block.
5829   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5830     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5831       if (HoistThenElseCodeToIf(BI, TTI))
5832         return simplifyCFG(BB, TTI, Options) | true;
5833     } else {
5834       // If Successor #1 has multiple preds, we may be able to conditionally
5835       // execute Successor #0 if it branches to Successor #1.
5836       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5837       if (Succ0TI->getNumSuccessors() == 1 &&
5838           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5839         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5840           return simplifyCFG(BB, TTI, Options) | true;
5841     }
5842   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5843     // If Successor #0 has multiple preds, we may be able to conditionally
5844     // execute Successor #1 if it branches to Successor #0.
5845     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5846     if (Succ1TI->getNumSuccessors() == 1 &&
5847         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5848       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5849         return simplifyCFG(BB, TTI, Options) | true;
5850   }
5851 
5852   // If this is a branch on a phi node in the current block, thread control
5853   // through this block if any PHI node entries are constants.
5854   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5855     if (PN->getParent() == BI->getParent())
5856       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5857         return simplifyCFG(BB, TTI, Options) | true;
5858 
5859   // Scan predecessor blocks for conditional branches.
5860   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5861     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5862       if (PBI != BI && PBI->isConditional())
5863         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5864           return simplifyCFG(BB, TTI, Options) | true;
5865 
5866   // Look for diamond patterns.
5867   if (MergeCondStores)
5868     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5869       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5870         if (PBI != BI && PBI->isConditional())
5871           if (mergeConditionalStores(PBI, BI, DL))
5872             return simplifyCFG(BB, TTI, Options) | true;
5873 
5874   return false;
5875 }
5876 
5877 /// Check if passing a value to an instruction will cause undefined behavior.
5878 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5879   Constant *C = dyn_cast<Constant>(V);
5880   if (!C)
5881     return false;
5882 
5883   if (I->use_empty())
5884     return false;
5885 
5886   if (C->isNullValue() || isa<UndefValue>(C)) {
5887     // Only look at the first use, avoid hurting compile time with long uselists
5888     User *Use = *I->user_begin();
5889 
5890     // Now make sure that there are no instructions in between that can alter
5891     // control flow (eg. calls)
5892     for (BasicBlock::iterator
5893              i = ++BasicBlock::iterator(I),
5894              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5895          i != UI; ++i)
5896       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5897         return false;
5898 
5899     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5900     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5901       if (GEP->getPointerOperand() == I)
5902         return passingValueIsAlwaysUndefined(V, GEP);
5903 
5904     // Look through bitcasts.
5905     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5906       return passingValueIsAlwaysUndefined(V, BC);
5907 
5908     // Load from null is undefined.
5909     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5910       if (!LI->isVolatile())
5911         return LI->getPointerAddressSpace() == 0;
5912 
5913     // Store to null is undefined.
5914     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5915       if (!SI->isVolatile())
5916         return SI->getPointerAddressSpace() == 0 &&
5917                SI->getPointerOperand() == I;
5918 
5919     // A call to null is undefined.
5920     if (auto CS = CallSite(Use))
5921       return CS.getCalledValue() == I;
5922   }
5923   return false;
5924 }
5925 
5926 /// If BB has an incoming value that will always trigger undefined behavior
5927 /// (eg. null pointer dereference), remove the branch leading here.
5928 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5929   for (BasicBlock::iterator i = BB->begin();
5930        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5931     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5932       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5933         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5934         IRBuilder<> Builder(T);
5935         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5936           BB->removePredecessor(PHI->getIncomingBlock(i));
5937           // Turn uncoditional branches into unreachables and remove the dead
5938           // destination from conditional branches.
5939           if (BI->isUnconditional())
5940             Builder.CreateUnreachable();
5941           else
5942             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5943                                                        : BI->getSuccessor(0));
5944           BI->eraseFromParent();
5945           return true;
5946         }
5947         // TODO: SwitchInst.
5948       }
5949 
5950   return false;
5951 }
5952 
5953 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5954   bool Changed = false;
5955 
5956   assert(BB && BB->getParent() && "Block not embedded in function!");
5957   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5958 
5959   // Remove basic blocks that have no predecessors (except the entry block)...
5960   // or that just have themself as a predecessor.  These are unreachable.
5961   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5962       BB->getSinglePredecessor() == BB) {
5963     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5964     DeleteDeadBlock(BB);
5965     return true;
5966   }
5967 
5968   // Check to see if we can constant propagate this terminator instruction
5969   // away...
5970   Changed |= ConstantFoldTerminator(BB, true);
5971 
5972   // Check for and eliminate duplicate PHI nodes in this block.
5973   Changed |= EliminateDuplicatePHINodes(BB);
5974 
5975   // Check for and remove branches that will always cause undefined behavior.
5976   Changed |= removeUndefIntroducingPredecessor(BB);
5977 
5978   // Merge basic blocks into their predecessor if there is only one distinct
5979   // pred, and if there is only one distinct successor of the predecessor, and
5980   // if there are no PHI nodes.
5981   //
5982   if (MergeBlockIntoPredecessor(BB))
5983     return true;
5984 
5985   IRBuilder<> Builder(BB);
5986 
5987   // If there is a trivial two-entry PHI node in this basic block, and we can
5988   // eliminate it, do so now.
5989   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5990     if (PN->getNumIncomingValues() == 2)
5991       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5992 
5993   Builder.SetInsertPoint(BB->getTerminator());
5994   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5995     if (BI->isUnconditional()) {
5996       if (SimplifyUncondBranch(BI, Builder))
5997         return true;
5998     } else {
5999       if (SimplifyCondBranch(BI, Builder))
6000         return true;
6001     }
6002   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6003     if (SimplifyReturn(RI, Builder))
6004       return true;
6005   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6006     if (SimplifyResume(RI, Builder))
6007       return true;
6008   } else if (CleanupReturnInst *RI =
6009                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6010     if (SimplifyCleanupReturn(RI))
6011       return true;
6012   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6013     if (SimplifySwitch(SI, Builder))
6014       return true;
6015   } else if (UnreachableInst *UI =
6016                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
6017     if (SimplifyUnreachable(UI))
6018       return true;
6019   } else if (IndirectBrInst *IBI =
6020                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6021     if (SimplifyIndirectBr(IBI))
6022       return true;
6023   }
6024 
6025   return Changed;
6026 }
6027 
6028 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6029                        const SimplifyCFGOptions &Options,
6030                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6031   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6032                         Options)
6033       .run(BB);
6034 }
6035