1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/MemorySSA.h"
31 #include "llvm/Analysis/MemorySSAUpdater.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/SSAUpdater.h"
72 #include "llvm/Transforms/Utils/ValueMapper.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <climits>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <map>
80 #include <set>
81 #include <tuple>
82 #include <utility>
83 #include <vector>
84 
85 using namespace llvm;
86 using namespace PatternMatch;
87 
88 #define DEBUG_TYPE "simplifycfg"
89 
90 cl::opt<bool> llvm::RequireAndPreserveDomTree(
91     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
92     cl::init(false),
93     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
94              "into preserving DomTree,"));
95 
96 // Chosen as 2 so as to be cheap, but still to have enough power to fold
97 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
98 // To catch this, we need to fold a compare and a select, hence '2' being the
99 // minimum reasonable default.
100 static cl::opt<unsigned> PHINodeFoldingThreshold(
101     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
102     cl::desc(
103         "Control the amount of phi node folding to perform (default = 2)"));
104 
105 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
106     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
107     cl::desc("Control the maximal total instruction cost that we are willing "
108              "to speculatively execute to fold a 2-entry PHI node into a "
109              "select (default = 4)"));
110 
111 static cl::opt<bool> DupRet(
112     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
113     cl::desc("Duplicate return instructions into unconditional branches"));
114 
115 static cl::opt<bool>
116     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
117                 cl::desc("Hoist common instructions up to the parent block"));
118 
119 static cl::opt<bool>
120     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
121                cl::desc("Sink common instructions down to the end block"));
122 
123 static cl::opt<bool> HoistCondStores(
124     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
125     cl::desc("Hoist conditional stores if an unconditional store precedes"));
126 
127 static cl::opt<bool> MergeCondStores(
128     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
129     cl::desc("Hoist conditional stores even if an unconditional store does not "
130              "precede - hoist multiple conditional stores into a single "
131              "predicated store"));
132 
133 static cl::opt<bool> MergeCondStoresAggressively(
134     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
135     cl::desc("When merging conditional stores, do so even if the resultant "
136              "basic blocks are unlikely to be if-converted as a result"));
137 
138 static cl::opt<bool> SpeculateOneExpensiveInst(
139     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
140     cl::desc("Allow exactly one expensive instruction to be speculatively "
141              "executed"));
142 
143 static cl::opt<unsigned> MaxSpeculationDepth(
144     "max-speculation-depth", cl::Hidden, cl::init(10),
145     cl::desc("Limit maximum recursion depth when calculating costs of "
146              "speculatively executed instructions"));
147 
148 static cl::opt<int>
149 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
150                   cl::desc("Max size of a block which is still considered "
151                            "small enough to thread through"));
152 
153 // Two is chosen to allow one negation and a logical combine.
154 static cl::opt<unsigned>
155     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
156                         cl::init(2),
157                         cl::desc("Maximum cost of combining conditions when "
158                                  "folding branches"));
159 
160 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
161 STATISTIC(NumLinearMaps,
162           "Number of switch instructions turned into linear mapping");
163 STATISTIC(NumLookupTables,
164           "Number of switch instructions turned into lookup tables");
165 STATISTIC(
166     NumLookupTablesHoles,
167     "Number of switch instructions turned into lookup tables (holes checked)");
168 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
169 STATISTIC(NumFoldValueComparisonIntoPredecessors,
170           "Number of value comparisons folded into predecessor basic blocks");
171 STATISTIC(NumFoldBranchToCommonDest,
172           "Number of branches folded into predecessor basic block");
173 STATISTIC(
174     NumHoistCommonCode,
175     "Number of common instruction 'blocks' hoisted up to the begin block");
176 STATISTIC(NumHoistCommonInstrs,
177           "Number of common instructions hoisted up to the begin block");
178 STATISTIC(NumSinkCommonCode,
179           "Number of common instruction 'blocks' sunk down to the end block");
180 STATISTIC(NumSinkCommonInstrs,
181           "Number of common instructions sunk down to the end block");
182 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
183 STATISTIC(NumInvokes,
184           "Number of invokes with empty resume blocks simplified into calls");
185 
186 namespace {
187 
188 // The first field contains the value that the switch produces when a certain
189 // case group is selected, and the second field is a vector containing the
190 // cases composing the case group.
191 using SwitchCaseResultVectorTy =
192     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
193 
194 // The first field contains the phi node that generates a result of the switch
195 // and the second field contains the value generated for a certain case in the
196 // switch for that PHI.
197 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
198 
199 /// ValueEqualityComparisonCase - Represents a case of a switch.
200 struct ValueEqualityComparisonCase {
201   ConstantInt *Value;
202   BasicBlock *Dest;
203 
204   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
205       : Value(Value), Dest(Dest) {}
206 
207   bool operator<(ValueEqualityComparisonCase RHS) const {
208     // Comparing pointers is ok as we only rely on the order for uniquing.
209     return Value < RHS.Value;
210   }
211 
212   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
213 };
214 
215 class SimplifyCFGOpt {
216   const TargetTransformInfo &TTI;
217   const DataLayout &DL;
218   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
219   const SimplifyCFGOptions &Options;
220   bool Resimplify;
221 
222   Value *isValueEqualityComparison(Instruction *TI);
223   BasicBlock *GetValueEqualityComparisonCases(
224       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
225   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
226                                                      BasicBlock *Pred,
227                                                      IRBuilder<> &Builder);
228   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
229                                            IRBuilder<> &Builder);
230 
231   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
232   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
233   bool simplifySingleResume(ResumeInst *RI);
234   bool simplifyCommonResume(ResumeInst *RI);
235   bool simplifyCleanupReturn(CleanupReturnInst *RI);
236   bool simplifyUnreachable(UnreachableInst *UI);
237   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
238   bool simplifyIndirectBr(IndirectBrInst *IBI);
239   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
240   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
241   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
242   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
243 
244   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
245                                              IRBuilder<> &Builder);
246 
247   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
248   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
249                               const TargetTransformInfo &TTI);
250   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
251                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
252                                   uint32_t TrueWeight, uint32_t FalseWeight);
253   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
254                                  const DataLayout &DL);
255   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
256   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
257   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
258 
259 public:
260   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
261                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
262                  const SimplifyCFGOptions &Opts)
263       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
264 
265   bool run(BasicBlock *BB);
266   bool simplifyOnce(BasicBlock *BB);
267 
268   // Helper to set Resimplify and return change indication.
269   bool requestResimplify() {
270     Resimplify = true;
271     return true;
272   }
273 };
274 
275 } // end anonymous namespace
276 
277 /// Return true if it is safe to merge these two
278 /// terminator instructions together.
279 static bool
280 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
281                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
282   if (SI1 == SI2)
283     return false; // Can't merge with self!
284 
285   // It is not safe to merge these two switch instructions if they have a common
286   // successor, and if that successor has a PHI node, and if *that* PHI node has
287   // conflicting incoming values from the two switch blocks.
288   BasicBlock *SI1BB = SI1->getParent();
289   BasicBlock *SI2BB = SI2->getParent();
290 
291   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
292   bool Fail = false;
293   for (BasicBlock *Succ : successors(SI2BB))
294     if (SI1Succs.count(Succ))
295       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
296         PHINode *PN = cast<PHINode>(BBI);
297         if (PN->getIncomingValueForBlock(SI1BB) !=
298             PN->getIncomingValueForBlock(SI2BB)) {
299           if (FailBlocks)
300             FailBlocks->insert(Succ);
301           Fail = true;
302         }
303       }
304 
305   return !Fail;
306 }
307 
308 /// Return true if it is safe and profitable to merge these two terminator
309 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
310 /// store all PHI nodes in common successors.
311 static bool
312 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
313                                 Instruction *Cond,
314                                 SmallVectorImpl<PHINode *> &PhiNodes) {
315   if (SI1 == SI2)
316     return false; // Can't merge with self!
317   assert(SI1->isUnconditional() && SI2->isConditional());
318 
319   // We fold the unconditional branch if we can easily update all PHI nodes in
320   // common successors:
321   // 1> We have a constant incoming value for the conditional branch;
322   // 2> We have "Cond" as the incoming value for the unconditional branch;
323   // 3> SI2->getCondition() and Cond have same operands.
324   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
325   if (!Ci2)
326     return false;
327   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
328         Cond->getOperand(1) == Ci2->getOperand(1)) &&
329       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
330         Cond->getOperand(1) == Ci2->getOperand(0)))
331     return false;
332 
333   BasicBlock *SI1BB = SI1->getParent();
334   BasicBlock *SI2BB = SI2->getParent();
335   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
336   for (BasicBlock *Succ : successors(SI2BB))
337     if (SI1Succs.count(Succ))
338       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
339         PHINode *PN = cast<PHINode>(BBI);
340         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
341             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
342           return false;
343         PhiNodes.push_back(PN);
344       }
345   return true;
346 }
347 
348 /// Update PHI nodes in Succ to indicate that there will now be entries in it
349 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
350 /// will be the same as those coming in from ExistPred, an existing predecessor
351 /// of Succ.
352 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
353                                   BasicBlock *ExistPred,
354                                   MemorySSAUpdater *MSSAU = nullptr) {
355   for (PHINode &PN : Succ->phis())
356     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
357   if (MSSAU)
358     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
359       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
360 }
361 
362 /// Compute an abstract "cost" of speculating the given instruction,
363 /// which is assumed to be safe to speculate. TCC_Free means cheap,
364 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
365 /// expensive.
366 static unsigned ComputeSpeculationCost(const User *I,
367                                        const TargetTransformInfo &TTI) {
368   assert(isSafeToSpeculativelyExecute(I) &&
369          "Instruction is not safe to speculatively execute!");
370   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
371 }
372 
373 /// If we have a merge point of an "if condition" as accepted above,
374 /// return true if the specified value dominates the block.  We
375 /// don't handle the true generality of domination here, just a special case
376 /// which works well enough for us.
377 ///
378 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
379 /// see if V (which must be an instruction) and its recursive operands
380 /// that do not dominate BB have a combined cost lower than CostRemaining and
381 /// are non-trapping.  If both are true, the instruction is inserted into the
382 /// set and true is returned.
383 ///
384 /// The cost for most non-trapping instructions is defined as 1 except for
385 /// Select whose cost is 2.
386 ///
387 /// After this function returns, CostRemaining is decreased by the cost of
388 /// V plus its non-dominating operands.  If that cost is greater than
389 /// CostRemaining, false is returned and CostRemaining is undefined.
390 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
391                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
392                                 int &BudgetRemaining,
393                                 const TargetTransformInfo &TTI,
394                                 unsigned Depth = 0) {
395   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
396   // so limit the recursion depth.
397   // TODO: While this recursion limit does prevent pathological behavior, it
398   // would be better to track visited instructions to avoid cycles.
399   if (Depth == MaxSpeculationDepth)
400     return false;
401 
402   Instruction *I = dyn_cast<Instruction>(V);
403   if (!I) {
404     // Non-instructions all dominate instructions, but not all constantexprs
405     // can be executed unconditionally.
406     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
407       if (C->canTrap())
408         return false;
409     return true;
410   }
411   BasicBlock *PBB = I->getParent();
412 
413   // We don't want to allow weird loops that might have the "if condition" in
414   // the bottom of this block.
415   if (PBB == BB)
416     return false;
417 
418   // If this instruction is defined in a block that contains an unconditional
419   // branch to BB, then it must be in the 'conditional' part of the "if
420   // statement".  If not, it definitely dominates the region.
421   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
422   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
423     return true;
424 
425   // If we have seen this instruction before, don't count it again.
426   if (AggressiveInsts.count(I))
427     return true;
428 
429   // Okay, it looks like the instruction IS in the "condition".  Check to
430   // see if it's a cheap instruction to unconditionally compute, and if it
431   // only uses stuff defined outside of the condition.  If so, hoist it out.
432   if (!isSafeToSpeculativelyExecute(I))
433     return false;
434 
435   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
436 
437   // Allow exactly one instruction to be speculated regardless of its cost
438   // (as long as it is safe to do so).
439   // This is intended to flatten the CFG even if the instruction is a division
440   // or other expensive operation. The speculation of an expensive instruction
441   // is expected to be undone in CodeGenPrepare if the speculation has not
442   // enabled further IR optimizations.
443   if (BudgetRemaining < 0 &&
444       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
445     return false;
446 
447   // Okay, we can only really hoist these out if their operands do
448   // not take us over the cost threshold.
449   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
450     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
451                              Depth + 1))
452       return false;
453   // Okay, it's safe to do this!  Remember this instruction.
454   AggressiveInsts.insert(I);
455   return true;
456 }
457 
458 /// Extract ConstantInt from value, looking through IntToPtr
459 /// and PointerNullValue. Return NULL if value is not a constant int.
460 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
461   // Normal constant int.
462   ConstantInt *CI = dyn_cast<ConstantInt>(V);
463   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
464     return CI;
465 
466   // This is some kind of pointer constant. Turn it into a pointer-sized
467   // ConstantInt if possible.
468   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
469 
470   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
471   if (isa<ConstantPointerNull>(V))
472     return ConstantInt::get(PtrTy, 0);
473 
474   // IntToPtr const int.
475   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
476     if (CE->getOpcode() == Instruction::IntToPtr)
477       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
478         // The constant is very likely to have the right type already.
479         if (CI->getType() == PtrTy)
480           return CI;
481         else
482           return cast<ConstantInt>(
483               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
484       }
485   return nullptr;
486 }
487 
488 namespace {
489 
490 /// Given a chain of or (||) or and (&&) comparison of a value against a
491 /// constant, this will try to recover the information required for a switch
492 /// structure.
493 /// It will depth-first traverse the chain of comparison, seeking for patterns
494 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
495 /// representing the different cases for the switch.
496 /// Note that if the chain is composed of '||' it will build the set of elements
497 /// that matches the comparisons (i.e. any of this value validate the chain)
498 /// while for a chain of '&&' it will build the set elements that make the test
499 /// fail.
500 struct ConstantComparesGatherer {
501   const DataLayout &DL;
502 
503   /// Value found for the switch comparison
504   Value *CompValue = nullptr;
505 
506   /// Extra clause to be checked before the switch
507   Value *Extra = nullptr;
508 
509   /// Set of integers to match in switch
510   SmallVector<ConstantInt *, 8> Vals;
511 
512   /// Number of comparisons matched in the and/or chain
513   unsigned UsedICmps = 0;
514 
515   /// Construct and compute the result for the comparison instruction Cond
516   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
517     gather(Cond);
518   }
519 
520   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
521   ConstantComparesGatherer &
522   operator=(const ConstantComparesGatherer &) = delete;
523 
524 private:
525   /// Try to set the current value used for the comparison, it succeeds only if
526   /// it wasn't set before or if the new value is the same as the old one
527   bool setValueOnce(Value *NewVal) {
528     if (CompValue && CompValue != NewVal)
529       return false;
530     CompValue = NewVal;
531     return (CompValue != nullptr);
532   }
533 
534   /// Try to match Instruction "I" as a comparison against a constant and
535   /// populates the array Vals with the set of values that match (or do not
536   /// match depending on isEQ).
537   /// Return false on failure. On success, the Value the comparison matched
538   /// against is placed in CompValue.
539   /// If CompValue is already set, the function is expected to fail if a match
540   /// is found but the value compared to is different.
541   bool matchInstruction(Instruction *I, bool isEQ) {
542     // If this is an icmp against a constant, handle this as one of the cases.
543     ICmpInst *ICI;
544     ConstantInt *C;
545     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
546           (C = GetConstantInt(I->getOperand(1), DL)))) {
547       return false;
548     }
549 
550     Value *RHSVal;
551     const APInt *RHSC;
552 
553     // Pattern match a special case
554     // (x & ~2^z) == y --> x == y || x == y|2^z
555     // This undoes a transformation done by instcombine to fuse 2 compares.
556     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
557       // It's a little bit hard to see why the following transformations are
558       // correct. Here is a CVC3 program to verify them for 64-bit values:
559 
560       /*
561          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
562          x    : BITVECTOR(64);
563          y    : BITVECTOR(64);
564          z    : BITVECTOR(64);
565          mask : BITVECTOR(64) = BVSHL(ONE, z);
566          QUERY( (y & ~mask = y) =>
567                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
568          );
569          QUERY( (y |  mask = y) =>
570                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
571          );
572       */
573 
574       // Please note that each pattern must be a dual implication (<--> or
575       // iff). One directional implication can create spurious matches. If the
576       // implication is only one-way, an unsatisfiable condition on the left
577       // side can imply a satisfiable condition on the right side. Dual
578       // implication ensures that satisfiable conditions are transformed to
579       // other satisfiable conditions and unsatisfiable conditions are
580       // transformed to other unsatisfiable conditions.
581 
582       // Here is a concrete example of a unsatisfiable condition on the left
583       // implying a satisfiable condition on the right:
584       //
585       // mask = (1 << z)
586       // (x & ~mask) == y  --> (x == y || x == (y | mask))
587       //
588       // Substituting y = 3, z = 0 yields:
589       // (x & -2) == 3 --> (x == 3 || x == 2)
590 
591       // Pattern match a special case:
592       /*
593         QUERY( (y & ~mask = y) =>
594                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
595         );
596       */
597       if (match(ICI->getOperand(0),
598                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
599         APInt Mask = ~*RHSC;
600         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
601           // If we already have a value for the switch, it has to match!
602           if (!setValueOnce(RHSVal))
603             return false;
604 
605           Vals.push_back(C);
606           Vals.push_back(
607               ConstantInt::get(C->getContext(),
608                                C->getValue() | Mask));
609           UsedICmps++;
610           return true;
611         }
612       }
613 
614       // Pattern match a special case:
615       /*
616         QUERY( (y |  mask = y) =>
617                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
618         );
619       */
620       if (match(ICI->getOperand(0),
621                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
622         APInt Mask = *RHSC;
623         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
624           // If we already have a value for the switch, it has to match!
625           if (!setValueOnce(RHSVal))
626             return false;
627 
628           Vals.push_back(C);
629           Vals.push_back(ConstantInt::get(C->getContext(),
630                                           C->getValue() & ~Mask));
631           UsedICmps++;
632           return true;
633         }
634       }
635 
636       // If we already have a value for the switch, it has to match!
637       if (!setValueOnce(ICI->getOperand(0)))
638         return false;
639 
640       UsedICmps++;
641       Vals.push_back(C);
642       return ICI->getOperand(0);
643     }
644 
645     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
646     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
647         ICI->getPredicate(), C->getValue());
648 
649     // Shift the range if the compare is fed by an add. This is the range
650     // compare idiom as emitted by instcombine.
651     Value *CandidateVal = I->getOperand(0);
652     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
653       Span = Span.subtract(*RHSC);
654       CandidateVal = RHSVal;
655     }
656 
657     // If this is an and/!= check, then we are looking to build the set of
658     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
659     // x != 0 && x != 1.
660     if (!isEQ)
661       Span = Span.inverse();
662 
663     // If there are a ton of values, we don't want to make a ginormous switch.
664     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
665       return false;
666     }
667 
668     // If we already have a value for the switch, it has to match!
669     if (!setValueOnce(CandidateVal))
670       return false;
671 
672     // Add all values from the range to the set
673     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
674       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
675 
676     UsedICmps++;
677     return true;
678   }
679 
680   /// Given a potentially 'or'd or 'and'd together collection of icmp
681   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
682   /// the value being compared, and stick the list constants into the Vals
683   /// vector.
684   /// One "Extra" case is allowed to differ from the other.
685   void gather(Value *V) {
686     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
687 
688     // Keep a stack (SmallVector for efficiency) for depth-first traversal
689     SmallVector<Value *, 8> DFT;
690     SmallPtrSet<Value *, 8> Visited;
691 
692     // Initialize
693     Visited.insert(V);
694     DFT.push_back(V);
695 
696     while (!DFT.empty()) {
697       V = DFT.pop_back_val();
698 
699       if (Instruction *I = dyn_cast<Instruction>(V)) {
700         // If it is a || (or && depending on isEQ), process the operands.
701         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
702           if (Visited.insert(I->getOperand(1)).second)
703             DFT.push_back(I->getOperand(1));
704           if (Visited.insert(I->getOperand(0)).second)
705             DFT.push_back(I->getOperand(0));
706           continue;
707         }
708 
709         // Try to match the current instruction
710         if (matchInstruction(I, isEQ))
711           // Match succeed, continue the loop
712           continue;
713       }
714 
715       // One element of the sequence of || (or &&) could not be match as a
716       // comparison against the same value as the others.
717       // We allow only one "Extra" case to be checked before the switch
718       if (!Extra) {
719         Extra = V;
720         continue;
721       }
722       // Failed to parse a proper sequence, abort now
723       CompValue = nullptr;
724       break;
725     }
726   }
727 };
728 
729 } // end anonymous namespace
730 
731 static void EraseTerminatorAndDCECond(Instruction *TI,
732                                       MemorySSAUpdater *MSSAU = nullptr) {
733   Instruction *Cond = nullptr;
734   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
735     Cond = dyn_cast<Instruction>(SI->getCondition());
736   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
737     if (BI->isConditional())
738       Cond = dyn_cast<Instruction>(BI->getCondition());
739   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
740     Cond = dyn_cast<Instruction>(IBI->getAddress());
741   }
742 
743   TI->eraseFromParent();
744   if (Cond)
745     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
746 }
747 
748 /// Return true if the specified terminator checks
749 /// to see if a value is equal to constant integer value.
750 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
751   Value *CV = nullptr;
752   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
753     // Do not permit merging of large switch instructions into their
754     // predecessors unless there is only one predecessor.
755     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
756       CV = SI->getCondition();
757   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
758     if (BI->isConditional() && BI->getCondition()->hasOneUse())
759       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
760         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
761           CV = ICI->getOperand(0);
762       }
763 
764   // Unwrap any lossless ptrtoint cast.
765   if (CV) {
766     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
767       Value *Ptr = PTII->getPointerOperand();
768       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
769         CV = Ptr;
770     }
771   }
772   return CV;
773 }
774 
775 /// Given a value comparison instruction,
776 /// decode all of the 'cases' that it represents and return the 'default' block.
777 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
778     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
779   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
780     Cases.reserve(SI->getNumCases());
781     for (auto Case : SI->cases())
782       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
783                                                   Case.getCaseSuccessor()));
784     return SI->getDefaultDest();
785   }
786 
787   BranchInst *BI = cast<BranchInst>(TI);
788   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
789   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
790   Cases.push_back(ValueEqualityComparisonCase(
791       GetConstantInt(ICI->getOperand(1), DL), Succ));
792   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
793 }
794 
795 /// Given a vector of bb/value pairs, remove any entries
796 /// in the list that match the specified block.
797 static void
798 EliminateBlockCases(BasicBlock *BB,
799                     std::vector<ValueEqualityComparisonCase> &Cases) {
800   llvm::erase_value(Cases, BB);
801 }
802 
803 /// Return true if there are any keys in C1 that exist in C2 as well.
804 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
805                           std::vector<ValueEqualityComparisonCase> &C2) {
806   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
807 
808   // Make V1 be smaller than V2.
809   if (V1->size() > V2->size())
810     std::swap(V1, V2);
811 
812   if (V1->empty())
813     return false;
814   if (V1->size() == 1) {
815     // Just scan V2.
816     ConstantInt *TheVal = (*V1)[0].Value;
817     for (unsigned i = 0, e = V2->size(); i != e; ++i)
818       if (TheVal == (*V2)[i].Value)
819         return true;
820   }
821 
822   // Otherwise, just sort both lists and compare element by element.
823   array_pod_sort(V1->begin(), V1->end());
824   array_pod_sort(V2->begin(), V2->end());
825   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
826   while (i1 != e1 && i2 != e2) {
827     if ((*V1)[i1].Value == (*V2)[i2].Value)
828       return true;
829     if ((*V1)[i1].Value < (*V2)[i2].Value)
830       ++i1;
831     else
832       ++i2;
833   }
834   return false;
835 }
836 
837 // Set branch weights on SwitchInst. This sets the metadata if there is at
838 // least one non-zero weight.
839 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
840   // Check that there is at least one non-zero weight. Otherwise, pass
841   // nullptr to setMetadata which will erase the existing metadata.
842   MDNode *N = nullptr;
843   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
844     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
845   SI->setMetadata(LLVMContext::MD_prof, N);
846 }
847 
848 // Similar to the above, but for branch and select instructions that take
849 // exactly 2 weights.
850 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
851                              uint32_t FalseWeight) {
852   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
853   // Check that there is at least one non-zero weight. Otherwise, pass
854   // nullptr to setMetadata which will erase the existing metadata.
855   MDNode *N = nullptr;
856   if (TrueWeight || FalseWeight)
857     N = MDBuilder(I->getParent()->getContext())
858             .createBranchWeights(TrueWeight, FalseWeight);
859   I->setMetadata(LLVMContext::MD_prof, N);
860 }
861 
862 /// If TI is known to be a terminator instruction and its block is known to
863 /// only have a single predecessor block, check to see if that predecessor is
864 /// also a value comparison with the same value, and if that comparison
865 /// determines the outcome of this comparison. If so, simplify TI. This does a
866 /// very limited form of jump threading.
867 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
868     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
869   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
870   if (!PredVal)
871     return false; // Not a value comparison in predecessor.
872 
873   Value *ThisVal = isValueEqualityComparison(TI);
874   assert(ThisVal && "This isn't a value comparison!!");
875   if (ThisVal != PredVal)
876     return false; // Different predicates.
877 
878   // TODO: Preserve branch weight metadata, similarly to how
879   // FoldValueComparisonIntoPredecessors preserves it.
880 
881   // Find out information about when control will move from Pred to TI's block.
882   std::vector<ValueEqualityComparisonCase> PredCases;
883   BasicBlock *PredDef =
884       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
885   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
886 
887   // Find information about how control leaves this block.
888   std::vector<ValueEqualityComparisonCase> ThisCases;
889   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
890   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
891 
892   // If TI's block is the default block from Pred's comparison, potentially
893   // simplify TI based on this knowledge.
894   if (PredDef == TI->getParent()) {
895     // If we are here, we know that the value is none of those cases listed in
896     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
897     // can simplify TI.
898     if (!ValuesOverlap(PredCases, ThisCases))
899       return false;
900 
901     if (isa<BranchInst>(TI)) {
902       // Okay, one of the successors of this condbr is dead.  Convert it to a
903       // uncond br.
904       assert(ThisCases.size() == 1 && "Branch can only have one case!");
905       // Insert the new branch.
906       Instruction *NI = Builder.CreateBr(ThisDef);
907       (void)NI;
908 
909       // Remove PHI node entries for the dead edge.
910       ThisCases[0].Dest->removePredecessor(TI->getParent());
911 
912       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
913                         << "Through successor TI: " << *TI << "Leaving: " << *NI
914                         << "\n");
915 
916       EraseTerminatorAndDCECond(TI);
917       return true;
918     }
919 
920     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
921     // Okay, TI has cases that are statically dead, prune them away.
922     SmallPtrSet<Constant *, 16> DeadCases;
923     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
924       DeadCases.insert(PredCases[i].Value);
925 
926     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
927                       << "Through successor TI: " << *TI);
928 
929     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
930       --i;
931       if (DeadCases.count(i->getCaseValue())) {
932         i->getCaseSuccessor()->removePredecessor(TI->getParent());
933         SI.removeCase(i);
934       }
935     }
936     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
937     return true;
938   }
939 
940   // Otherwise, TI's block must correspond to some matched value.  Find out
941   // which value (or set of values) this is.
942   ConstantInt *TIV = nullptr;
943   BasicBlock *TIBB = TI->getParent();
944   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
945     if (PredCases[i].Dest == TIBB) {
946       if (TIV)
947         return false; // Cannot handle multiple values coming to this block.
948       TIV = PredCases[i].Value;
949     }
950   assert(TIV && "No edge from pred to succ?");
951 
952   // Okay, we found the one constant that our value can be if we get into TI's
953   // BB.  Find out which successor will unconditionally be branched to.
954   BasicBlock *TheRealDest = nullptr;
955   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
956     if (ThisCases[i].Value == TIV) {
957       TheRealDest = ThisCases[i].Dest;
958       break;
959     }
960 
961   // If not handled by any explicit cases, it is handled by the default case.
962   if (!TheRealDest)
963     TheRealDest = ThisDef;
964 
965   // Remove PHI node entries for dead edges.
966   BasicBlock *CheckEdge = TheRealDest;
967   for (BasicBlock *Succ : successors(TIBB))
968     if (Succ != CheckEdge)
969       Succ->removePredecessor(TIBB);
970     else
971       CheckEdge = nullptr;
972 
973   // Insert the new branch.
974   Instruction *NI = Builder.CreateBr(TheRealDest);
975   (void)NI;
976 
977   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
978                     << "Through successor TI: " << *TI << "Leaving: " << *NI
979                     << "\n");
980 
981   EraseTerminatorAndDCECond(TI);
982   return true;
983 }
984 
985 namespace {
986 
987 /// This class implements a stable ordering of constant
988 /// integers that does not depend on their address.  This is important for
989 /// applications that sort ConstantInt's to ensure uniqueness.
990 struct ConstantIntOrdering {
991   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
992     return LHS->getValue().ult(RHS->getValue());
993   }
994 };
995 
996 } // end anonymous namespace
997 
998 static int ConstantIntSortPredicate(ConstantInt *const *P1,
999                                     ConstantInt *const *P2) {
1000   const ConstantInt *LHS = *P1;
1001   const ConstantInt *RHS = *P2;
1002   if (LHS == RHS)
1003     return 0;
1004   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1005 }
1006 
1007 static inline bool HasBranchWeights(const Instruction *I) {
1008   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1009   if (ProfMD && ProfMD->getOperand(0))
1010     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1011       return MDS->getString().equals("branch_weights");
1012 
1013   return false;
1014 }
1015 
1016 /// Get Weights of a given terminator, the default weight is at the front
1017 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1018 /// metadata.
1019 static void GetBranchWeights(Instruction *TI,
1020                              SmallVectorImpl<uint64_t> &Weights) {
1021   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1022   assert(MD);
1023   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1024     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1025     Weights.push_back(CI->getValue().getZExtValue());
1026   }
1027 
1028   // If TI is a conditional eq, the default case is the false case,
1029   // and the corresponding branch-weight data is at index 2. We swap the
1030   // default weight to be the first entry.
1031   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1032     assert(Weights.size() == 2);
1033     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1034     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1035       std::swap(Weights.front(), Weights.back());
1036   }
1037 }
1038 
1039 /// Keep halving the weights until all can fit in uint32_t.
1040 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1041   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1042   if (Max > UINT_MAX) {
1043     unsigned Offset = 32 - countLeadingZeros(Max);
1044     for (uint64_t &I : Weights)
1045       I >>= Offset;
1046   }
1047 }
1048 
1049 /// The specified terminator is a value equality comparison instruction
1050 /// (either a switch or a branch on "X == c").
1051 /// See if any of the predecessors of the terminator block are value comparisons
1052 /// on the same value.  If so, and if safe to do so, fold them together.
1053 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1054                                                          IRBuilder<> &Builder) {
1055   BasicBlock *BB = TI->getParent();
1056   Value *CV = isValueEqualityComparison(TI); // CondVal
1057   assert(CV && "Not a comparison?");
1058 
1059   bool Changed = false;
1060 
1061   auto _ = make_scope_exit([&]() {
1062     if (Changed)
1063       ++NumFoldValueComparisonIntoPredecessors;
1064   });
1065 
1066   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1067   while (!Preds.empty()) {
1068     BasicBlock *Pred = Preds.pop_back_val();
1069 
1070     // See if the predecessor is a comparison with the same value.
1071     Instruction *PTI = Pred->getTerminator();
1072     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1073 
1074     if (PCV == CV && TI != PTI) {
1075       SmallSetVector<BasicBlock*, 4> FailBlocks;
1076       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1077         for (auto *Succ : FailBlocks) {
1078           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1079             return false;
1080         }
1081       }
1082 
1083       // Figure out which 'cases' to copy from SI to PSI.
1084       std::vector<ValueEqualityComparisonCase> BBCases;
1085       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1086 
1087       std::vector<ValueEqualityComparisonCase> PredCases;
1088       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1089 
1090       // Based on whether the default edge from PTI goes to BB or not, fill in
1091       // PredCases and PredDefault with the new switch cases we would like to
1092       // build.
1093       SmallVector<BasicBlock *, 8> NewSuccessors;
1094 
1095       // Update the branch weight metadata along the way
1096       SmallVector<uint64_t, 8> Weights;
1097       bool PredHasWeights = HasBranchWeights(PTI);
1098       bool SuccHasWeights = HasBranchWeights(TI);
1099 
1100       if (PredHasWeights) {
1101         GetBranchWeights(PTI, Weights);
1102         // branch-weight metadata is inconsistent here.
1103         if (Weights.size() != 1 + PredCases.size())
1104           PredHasWeights = SuccHasWeights = false;
1105       } else if (SuccHasWeights)
1106         // If there are no predecessor weights but there are successor weights,
1107         // populate Weights with 1, which will later be scaled to the sum of
1108         // successor's weights
1109         Weights.assign(1 + PredCases.size(), 1);
1110 
1111       SmallVector<uint64_t, 8> SuccWeights;
1112       if (SuccHasWeights) {
1113         GetBranchWeights(TI, SuccWeights);
1114         // branch-weight metadata is inconsistent here.
1115         if (SuccWeights.size() != 1 + BBCases.size())
1116           PredHasWeights = SuccHasWeights = false;
1117       } else if (PredHasWeights)
1118         SuccWeights.assign(1 + BBCases.size(), 1);
1119 
1120       if (PredDefault == BB) {
1121         // If this is the default destination from PTI, only the edges in TI
1122         // that don't occur in PTI, or that branch to BB will be activated.
1123         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1124         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1125           if (PredCases[i].Dest != BB)
1126             PTIHandled.insert(PredCases[i].Value);
1127           else {
1128             // The default destination is BB, we don't need explicit targets.
1129             std::swap(PredCases[i], PredCases.back());
1130 
1131             if (PredHasWeights || SuccHasWeights) {
1132               // Increase weight for the default case.
1133               Weights[0] += Weights[i + 1];
1134               std::swap(Weights[i + 1], Weights.back());
1135               Weights.pop_back();
1136             }
1137 
1138             PredCases.pop_back();
1139             --i;
1140             --e;
1141           }
1142 
1143         // Reconstruct the new switch statement we will be building.
1144         if (PredDefault != BBDefault) {
1145           PredDefault->removePredecessor(Pred);
1146           PredDefault = BBDefault;
1147           NewSuccessors.push_back(BBDefault);
1148         }
1149 
1150         unsigned CasesFromPred = Weights.size();
1151         uint64_t ValidTotalSuccWeight = 0;
1152         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1153           if (!PTIHandled.count(BBCases[i].Value) &&
1154               BBCases[i].Dest != BBDefault) {
1155             PredCases.push_back(BBCases[i]);
1156             NewSuccessors.push_back(BBCases[i].Dest);
1157             if (SuccHasWeights || PredHasWeights) {
1158               // The default weight is at index 0, so weight for the ith case
1159               // should be at index i+1. Scale the cases from successor by
1160               // PredDefaultWeight (Weights[0]).
1161               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1162               ValidTotalSuccWeight += SuccWeights[i + 1];
1163             }
1164           }
1165 
1166         if (SuccHasWeights || PredHasWeights) {
1167           ValidTotalSuccWeight += SuccWeights[0];
1168           // Scale the cases from predecessor by ValidTotalSuccWeight.
1169           for (unsigned i = 1; i < CasesFromPred; ++i)
1170             Weights[i] *= ValidTotalSuccWeight;
1171           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1172           Weights[0] *= SuccWeights[0];
1173         }
1174       } else {
1175         // If this is not the default destination from PSI, only the edges
1176         // in SI that occur in PSI with a destination of BB will be
1177         // activated.
1178         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1179         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1180         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1181           if (PredCases[i].Dest == BB) {
1182             PTIHandled.insert(PredCases[i].Value);
1183 
1184             if (PredHasWeights || SuccHasWeights) {
1185               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1186               std::swap(Weights[i + 1], Weights.back());
1187               Weights.pop_back();
1188             }
1189 
1190             std::swap(PredCases[i], PredCases.back());
1191             PredCases.pop_back();
1192             --i;
1193             --e;
1194           }
1195 
1196         // Okay, now we know which constants were sent to BB from the
1197         // predecessor.  Figure out where they will all go now.
1198         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1199           if (PTIHandled.count(BBCases[i].Value)) {
1200             // If this is one we are capable of getting...
1201             if (PredHasWeights || SuccHasWeights)
1202               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1203             PredCases.push_back(BBCases[i]);
1204             NewSuccessors.push_back(BBCases[i].Dest);
1205             PTIHandled.erase(
1206                 BBCases[i].Value); // This constant is taken care of
1207           }
1208 
1209         // If there are any constants vectored to BB that TI doesn't handle,
1210         // they must go to the default destination of TI.
1211         for (ConstantInt *I : PTIHandled) {
1212           if (PredHasWeights || SuccHasWeights)
1213             Weights.push_back(WeightsForHandled[I]);
1214           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1215           NewSuccessors.push_back(BBDefault);
1216         }
1217       }
1218 
1219       // Okay, at this point, we know which new successor Pred will get.  Make
1220       // sure we update the number of entries in the PHI nodes for these
1221       // successors.
1222       for (BasicBlock *NewSuccessor : NewSuccessors)
1223         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1224 
1225       Builder.SetInsertPoint(PTI);
1226       // Convert pointer to int before we switch.
1227       if (CV->getType()->isPointerTy()) {
1228         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1229                                     "magicptr");
1230       }
1231 
1232       // Now that the successors are updated, create the new Switch instruction.
1233       SwitchInst *NewSI =
1234           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1235       NewSI->setDebugLoc(PTI->getDebugLoc());
1236       for (ValueEqualityComparisonCase &V : PredCases)
1237         NewSI->addCase(V.Value, V.Dest);
1238 
1239       if (PredHasWeights || SuccHasWeights) {
1240         // Halve the weights if any of them cannot fit in an uint32_t
1241         FitWeights(Weights);
1242 
1243         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1244 
1245         setBranchWeights(NewSI, MDWeights);
1246       }
1247 
1248       EraseTerminatorAndDCECond(PTI);
1249 
1250       // Okay, last check.  If BB is still a successor of PSI, then we must
1251       // have an infinite loop case.  If so, add an infinitely looping block
1252       // to handle the case to preserve the behavior of the code.
1253       BasicBlock *InfLoopBlock = nullptr;
1254       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1255         if (NewSI->getSuccessor(i) == BB) {
1256           if (!InfLoopBlock) {
1257             // Insert it at the end of the function, because it's either code,
1258             // or it won't matter if it's hot. :)
1259             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1260                                               BB->getParent());
1261             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1262           }
1263           NewSI->setSuccessor(i, InfLoopBlock);
1264         }
1265 
1266       Changed = true;
1267     }
1268   }
1269   return Changed;
1270 }
1271 
1272 // If we would need to insert a select that uses the value of this invoke
1273 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1274 // can't hoist the invoke, as there is nowhere to put the select in this case.
1275 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1276                                 Instruction *I1, Instruction *I2) {
1277   for (BasicBlock *Succ : successors(BB1)) {
1278     for (const PHINode &PN : Succ->phis()) {
1279       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1280       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1281       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1282         return false;
1283       }
1284     }
1285   }
1286   return true;
1287 }
1288 
1289 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1290 
1291 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1292 /// in the two blocks up into the branch block. The caller of this function
1293 /// guarantees that BI's block dominates BB1 and BB2.
1294 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1295                                            const TargetTransformInfo &TTI) {
1296   // This does very trivial matching, with limited scanning, to find identical
1297   // instructions in the two blocks.  In particular, we don't want to get into
1298   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1299   // such, we currently just scan for obviously identical instructions in an
1300   // identical order.
1301   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1302   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1303 
1304   BasicBlock::iterator BB1_Itr = BB1->begin();
1305   BasicBlock::iterator BB2_Itr = BB2->begin();
1306 
1307   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1308   // Skip debug info if it is not identical.
1309   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1310   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1311   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1312     while (isa<DbgInfoIntrinsic>(I1))
1313       I1 = &*BB1_Itr++;
1314     while (isa<DbgInfoIntrinsic>(I2))
1315       I2 = &*BB2_Itr++;
1316   }
1317   // FIXME: Can we define a safety predicate for CallBr?
1318   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1319       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1320       isa<CallBrInst>(I1))
1321     return false;
1322 
1323   BasicBlock *BIParent = BI->getParent();
1324 
1325   bool Changed = false;
1326 
1327   auto _ = make_scope_exit([&]() {
1328     if (Changed)
1329       ++NumHoistCommonCode;
1330   });
1331 
1332   do {
1333     // If we are hoisting the terminator instruction, don't move one (making a
1334     // broken BB), instead clone it, and remove BI.
1335     if (I1->isTerminator())
1336       goto HoistTerminator;
1337 
1338     // If we're going to hoist a call, make sure that the two instructions we're
1339     // commoning/hoisting are both marked with musttail, or neither of them is
1340     // marked as such. Otherwise, we might end up in a situation where we hoist
1341     // from a block where the terminator is a `ret` to a block where the terminator
1342     // is a `br`, and `musttail` calls expect to be followed by a return.
1343     auto *C1 = dyn_cast<CallInst>(I1);
1344     auto *C2 = dyn_cast<CallInst>(I2);
1345     if (C1 && C2)
1346       if (C1->isMustTailCall() != C2->isMustTailCall())
1347         return Changed;
1348 
1349     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1350       return Changed;
1351 
1352     // If any of the two call sites has nomerge attribute, stop hoisting.
1353     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1354       if (CB1->cannotMerge())
1355         return Changed;
1356     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1357       if (CB2->cannotMerge())
1358         return Changed;
1359 
1360     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1361       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1362       // The debug location is an integral part of a debug info intrinsic
1363       // and can't be separated from it or replaced.  Instead of attempting
1364       // to merge locations, simply hoist both copies of the intrinsic.
1365       BIParent->getInstList().splice(BI->getIterator(),
1366                                      BB1->getInstList(), I1);
1367       BIParent->getInstList().splice(BI->getIterator(),
1368                                      BB2->getInstList(), I2);
1369       Changed = true;
1370     } else {
1371       // For a normal instruction, we just move one to right before the branch,
1372       // then replace all uses of the other with the first.  Finally, we remove
1373       // the now redundant second instruction.
1374       BIParent->getInstList().splice(BI->getIterator(),
1375                                      BB1->getInstList(), I1);
1376       if (!I2->use_empty())
1377         I2->replaceAllUsesWith(I1);
1378       I1->andIRFlags(I2);
1379       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1380                              LLVMContext::MD_range,
1381                              LLVMContext::MD_fpmath,
1382                              LLVMContext::MD_invariant_load,
1383                              LLVMContext::MD_nonnull,
1384                              LLVMContext::MD_invariant_group,
1385                              LLVMContext::MD_align,
1386                              LLVMContext::MD_dereferenceable,
1387                              LLVMContext::MD_dereferenceable_or_null,
1388                              LLVMContext::MD_mem_parallel_loop_access,
1389                              LLVMContext::MD_access_group,
1390                              LLVMContext::MD_preserve_access_index};
1391       combineMetadata(I1, I2, KnownIDs, true);
1392 
1393       // I1 and I2 are being combined into a single instruction.  Its debug
1394       // location is the merged locations of the original instructions.
1395       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1396 
1397       I2->eraseFromParent();
1398       Changed = true;
1399     }
1400     ++NumHoistCommonInstrs;
1401 
1402     I1 = &*BB1_Itr++;
1403     I2 = &*BB2_Itr++;
1404     // Skip debug info if it is not identical.
1405     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1406     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1407     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1408       while (isa<DbgInfoIntrinsic>(I1))
1409         I1 = &*BB1_Itr++;
1410       while (isa<DbgInfoIntrinsic>(I2))
1411         I2 = &*BB2_Itr++;
1412     }
1413   } while (I1->isIdenticalToWhenDefined(I2));
1414 
1415   return true;
1416 
1417 HoistTerminator:
1418   // It may not be possible to hoist an invoke.
1419   // FIXME: Can we define a safety predicate for CallBr?
1420   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1421     return Changed;
1422 
1423   // TODO: callbr hoisting currently disabled pending further study.
1424   if (isa<CallBrInst>(I1))
1425     return Changed;
1426 
1427   for (BasicBlock *Succ : successors(BB1)) {
1428     for (PHINode &PN : Succ->phis()) {
1429       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1430       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1431       if (BB1V == BB2V)
1432         continue;
1433 
1434       // Check for passingValueIsAlwaysUndefined here because we would rather
1435       // eliminate undefined control flow then converting it to a select.
1436       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1437           passingValueIsAlwaysUndefined(BB2V, &PN))
1438         return Changed;
1439 
1440       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1441         return Changed;
1442       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1443         return Changed;
1444     }
1445   }
1446 
1447   // Okay, it is safe to hoist the terminator.
1448   Instruction *NT = I1->clone();
1449   BIParent->getInstList().insert(BI->getIterator(), NT);
1450   if (!NT->getType()->isVoidTy()) {
1451     I1->replaceAllUsesWith(NT);
1452     I2->replaceAllUsesWith(NT);
1453     NT->takeName(I1);
1454   }
1455   Changed = true;
1456   ++NumHoistCommonInstrs;
1457 
1458   // Ensure terminator gets a debug location, even an unknown one, in case
1459   // it involves inlinable calls.
1460   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1461 
1462   // PHIs created below will adopt NT's merged DebugLoc.
1463   IRBuilder<NoFolder> Builder(NT);
1464 
1465   // Hoisting one of the terminators from our successor is a great thing.
1466   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1467   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1468   // nodes, so we insert select instruction to compute the final result.
1469   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1470   for (BasicBlock *Succ : successors(BB1)) {
1471     for (PHINode &PN : Succ->phis()) {
1472       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1473       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1474       if (BB1V == BB2V)
1475         continue;
1476 
1477       // These values do not agree.  Insert a select instruction before NT
1478       // that determines the right value.
1479       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1480       if (!SI) {
1481         // Propagate fast-math-flags from phi node to its replacement select.
1482         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1483         if (isa<FPMathOperator>(PN))
1484           Builder.setFastMathFlags(PN.getFastMathFlags());
1485 
1486         SI = cast<SelectInst>(
1487             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1488                                  BB1V->getName() + "." + BB2V->getName(), BI));
1489       }
1490 
1491       // Make the PHI node use the select for all incoming values for BB1/BB2
1492       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1493         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1494           PN.setIncomingValue(i, SI);
1495     }
1496   }
1497 
1498   // Update any PHI nodes in our new successors.
1499   for (BasicBlock *Succ : successors(BB1))
1500     AddPredecessorToBlock(Succ, BIParent, BB1);
1501 
1502   EraseTerminatorAndDCECond(BI);
1503   return Changed;
1504 }
1505 
1506 // Check lifetime markers.
1507 static bool isLifeTimeMarker(const Instruction *I) {
1508   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1509     switch (II->getIntrinsicID()) {
1510     default:
1511       break;
1512     case Intrinsic::lifetime_start:
1513     case Intrinsic::lifetime_end:
1514       return true;
1515     }
1516   }
1517   return false;
1518 }
1519 
1520 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1521 // into variables.
1522 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1523                                                 int OpIdx) {
1524   return !isa<IntrinsicInst>(I);
1525 }
1526 
1527 // All instructions in Insts belong to different blocks that all unconditionally
1528 // branch to a common successor. Analyze each instruction and return true if it
1529 // would be possible to sink them into their successor, creating one common
1530 // instruction instead. For every value that would be required to be provided by
1531 // PHI node (because an operand varies in each input block), add to PHIOperands.
1532 static bool canSinkInstructions(
1533     ArrayRef<Instruction *> Insts,
1534     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1535   // Prune out obviously bad instructions to move. Each instruction must have
1536   // exactly zero or one use, and we check later that use is by a single, common
1537   // PHI instruction in the successor.
1538   bool HasUse = !Insts.front()->user_empty();
1539   for (auto *I : Insts) {
1540     // These instructions may change or break semantics if moved.
1541     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1542         I->getType()->isTokenTy())
1543       return false;
1544 
1545     // Conservatively return false if I is an inline-asm instruction. Sinking
1546     // and merging inline-asm instructions can potentially create arguments
1547     // that cannot satisfy the inline-asm constraints.
1548     // If the instruction has nomerge attribute, return false.
1549     if (const auto *C = dyn_cast<CallBase>(I))
1550       if (C->isInlineAsm() || C->cannotMerge())
1551         return false;
1552 
1553     // Each instruction must have zero or one use.
1554     if (HasUse && !I->hasOneUse())
1555       return false;
1556     if (!HasUse && !I->user_empty())
1557       return false;
1558   }
1559 
1560   const Instruction *I0 = Insts.front();
1561   for (auto *I : Insts)
1562     if (!I->isSameOperationAs(I0))
1563       return false;
1564 
1565   // All instructions in Insts are known to be the same opcode. If they have a
1566   // use, check that the only user is a PHI or in the same block as the
1567   // instruction, because if a user is in the same block as an instruction we're
1568   // contemplating sinking, it must already be determined to be sinkable.
1569   if (HasUse) {
1570     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1571     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1572     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1573           auto *U = cast<Instruction>(*I->user_begin());
1574           return (PNUse &&
1575                   PNUse->getParent() == Succ &&
1576                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1577                  U->getParent() == I->getParent();
1578         }))
1579       return false;
1580   }
1581 
1582   // Because SROA can't handle speculating stores of selects, try not to sink
1583   // loads, stores or lifetime markers of allocas when we'd have to create a
1584   // PHI for the address operand. Also, because it is likely that loads or
1585   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1586   // them.
1587   // This can cause code churn which can have unintended consequences down
1588   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1589   // FIXME: This is a workaround for a deficiency in SROA - see
1590   // https://llvm.org/bugs/show_bug.cgi?id=30188
1591   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1592         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1593       }))
1594     return false;
1595   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1596         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1597       }))
1598     return false;
1599   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1600         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1601       }))
1602     return false;
1603 
1604   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1605     Value *Op = I0->getOperand(OI);
1606     if (Op->getType()->isTokenTy())
1607       // Don't touch any operand of token type.
1608       return false;
1609 
1610     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1611       assert(I->getNumOperands() == I0->getNumOperands());
1612       return I->getOperand(OI) == I0->getOperand(OI);
1613     };
1614     if (!all_of(Insts, SameAsI0)) {
1615       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1616           !canReplaceOperandWithVariable(I0, OI))
1617         // We can't create a PHI from this GEP.
1618         return false;
1619       // Don't create indirect calls! The called value is the final operand.
1620       if (isa<CallBase>(I0) && OI == OE - 1) {
1621         // FIXME: if the call was *already* indirect, we should do this.
1622         return false;
1623       }
1624       for (auto *I : Insts)
1625         PHIOperands[I].push_back(I->getOperand(OI));
1626     }
1627   }
1628   return true;
1629 }
1630 
1631 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1632 // instruction of every block in Blocks to their common successor, commoning
1633 // into one instruction.
1634 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1635   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1636 
1637   // canSinkLastInstruction returning true guarantees that every block has at
1638   // least one non-terminator instruction.
1639   SmallVector<Instruction*,4> Insts;
1640   for (auto *BB : Blocks) {
1641     Instruction *I = BB->getTerminator();
1642     do {
1643       I = I->getPrevNode();
1644     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1645     if (!isa<DbgInfoIntrinsic>(I))
1646       Insts.push_back(I);
1647   }
1648 
1649   // The only checking we need to do now is that all users of all instructions
1650   // are the same PHI node. canSinkLastInstruction should have checked this but
1651   // it is slightly over-aggressive - it gets confused by commutative instructions
1652   // so double-check it here.
1653   Instruction *I0 = Insts.front();
1654   if (!I0->user_empty()) {
1655     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1656     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1657           auto *U = cast<Instruction>(*I->user_begin());
1658           return U == PNUse;
1659         }))
1660       return false;
1661   }
1662 
1663   // We don't need to do any more checking here; canSinkLastInstruction should
1664   // have done it all for us.
1665   SmallVector<Value*, 4> NewOperands;
1666   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1667     // This check is different to that in canSinkLastInstruction. There, we
1668     // cared about the global view once simplifycfg (and instcombine) have
1669     // completed - it takes into account PHIs that become trivially
1670     // simplifiable.  However here we need a more local view; if an operand
1671     // differs we create a PHI and rely on instcombine to clean up the very
1672     // small mess we may make.
1673     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1674       return I->getOperand(O) != I0->getOperand(O);
1675     });
1676     if (!NeedPHI) {
1677       NewOperands.push_back(I0->getOperand(O));
1678       continue;
1679     }
1680 
1681     // Create a new PHI in the successor block and populate it.
1682     auto *Op = I0->getOperand(O);
1683     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1684     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1685                                Op->getName() + ".sink", &BBEnd->front());
1686     for (auto *I : Insts)
1687       PN->addIncoming(I->getOperand(O), I->getParent());
1688     NewOperands.push_back(PN);
1689   }
1690 
1691   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1692   // and move it to the start of the successor block.
1693   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1694     I0->getOperandUse(O).set(NewOperands[O]);
1695   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1696 
1697   // Update metadata and IR flags, and merge debug locations.
1698   for (auto *I : Insts)
1699     if (I != I0) {
1700       // The debug location for the "common" instruction is the merged locations
1701       // of all the commoned instructions.  We start with the original location
1702       // of the "common" instruction and iteratively merge each location in the
1703       // loop below.
1704       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1705       // However, as N-way merge for CallInst is rare, so we use simplified API
1706       // instead of using complex API for N-way merge.
1707       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1708       combineMetadataForCSE(I0, I, true);
1709       I0->andIRFlags(I);
1710     }
1711 
1712   if (!I0->user_empty()) {
1713     // canSinkLastInstruction checked that all instructions were used by
1714     // one and only one PHI node. Find that now, RAUW it to our common
1715     // instruction and nuke it.
1716     auto *PN = cast<PHINode>(*I0->user_begin());
1717     PN->replaceAllUsesWith(I0);
1718     PN->eraseFromParent();
1719   }
1720 
1721   // Finally nuke all instructions apart from the common instruction.
1722   for (auto *I : Insts)
1723     if (I != I0)
1724       I->eraseFromParent();
1725 
1726   return true;
1727 }
1728 
1729 namespace {
1730 
1731   // LockstepReverseIterator - Iterates through instructions
1732   // in a set of blocks in reverse order from the first non-terminator.
1733   // For example (assume all blocks have size n):
1734   //   LockstepReverseIterator I([B1, B2, B3]);
1735   //   *I-- = [B1[n], B2[n], B3[n]];
1736   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1737   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1738   //   ...
1739   class LockstepReverseIterator {
1740     ArrayRef<BasicBlock*> Blocks;
1741     SmallVector<Instruction*,4> Insts;
1742     bool Fail;
1743 
1744   public:
1745     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1746       reset();
1747     }
1748 
1749     void reset() {
1750       Fail = false;
1751       Insts.clear();
1752       for (auto *BB : Blocks) {
1753         Instruction *Inst = BB->getTerminator();
1754         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1755           Inst = Inst->getPrevNode();
1756         if (!Inst) {
1757           // Block wasn't big enough.
1758           Fail = true;
1759           return;
1760         }
1761         Insts.push_back(Inst);
1762       }
1763     }
1764 
1765     bool isValid() const {
1766       return !Fail;
1767     }
1768 
1769     void operator--() {
1770       if (Fail)
1771         return;
1772       for (auto *&Inst : Insts) {
1773         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1774           Inst = Inst->getPrevNode();
1775         // Already at beginning of block.
1776         if (!Inst) {
1777           Fail = true;
1778           return;
1779         }
1780       }
1781     }
1782 
1783     ArrayRef<Instruction*> operator * () const {
1784       return Insts;
1785     }
1786   };
1787 
1788 } // end anonymous namespace
1789 
1790 /// Check whether BB's predecessors end with unconditional branches. If it is
1791 /// true, sink any common code from the predecessors to BB.
1792 /// We also allow one predecessor to end with conditional branch (but no more
1793 /// than one).
1794 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1795   // We support two situations:
1796   //   (1) all incoming arcs are unconditional
1797   //   (2) one incoming arc is conditional
1798   //
1799   // (2) is very common in switch defaults and
1800   // else-if patterns;
1801   //
1802   //   if (a) f(1);
1803   //   else if (b) f(2);
1804   //
1805   // produces:
1806   //
1807   //       [if]
1808   //      /    \
1809   //    [f(1)] [if]
1810   //      |     | \
1811   //      |     |  |
1812   //      |  [f(2)]|
1813   //       \    | /
1814   //        [ end ]
1815   //
1816   // [end] has two unconditional predecessor arcs and one conditional. The
1817   // conditional refers to the implicit empty 'else' arc. This conditional
1818   // arc can also be caused by an empty default block in a switch.
1819   //
1820   // In this case, we attempt to sink code from all *unconditional* arcs.
1821   // If we can sink instructions from these arcs (determined during the scan
1822   // phase below) we insert a common successor for all unconditional arcs and
1823   // connect that to [end], to enable sinking:
1824   //
1825   //       [if]
1826   //      /    \
1827   //    [x(1)] [if]
1828   //      |     | \
1829   //      |     |  \
1830   //      |  [x(2)] |
1831   //       \   /    |
1832   //   [sink.split] |
1833   //         \     /
1834   //         [ end ]
1835   //
1836   SmallVector<BasicBlock*,4> UnconditionalPreds;
1837   Instruction *Cond = nullptr;
1838   for (auto *B : predecessors(BB)) {
1839     auto *T = B->getTerminator();
1840     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1841       UnconditionalPreds.push_back(B);
1842     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1843       Cond = T;
1844     else
1845       return false;
1846   }
1847   if (UnconditionalPreds.size() < 2)
1848     return false;
1849 
1850   // We take a two-step approach to tail sinking. First we scan from the end of
1851   // each block upwards in lockstep. If the n'th instruction from the end of each
1852   // block can be sunk, those instructions are added to ValuesToSink and we
1853   // carry on. If we can sink an instruction but need to PHI-merge some operands
1854   // (because they're not identical in each instruction) we add these to
1855   // PHIOperands.
1856   unsigned ScanIdx = 0;
1857   SmallPtrSet<Value*,4> InstructionsToSink;
1858   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1859   LockstepReverseIterator LRI(UnconditionalPreds);
1860   while (LRI.isValid() &&
1861          canSinkInstructions(*LRI, PHIOperands)) {
1862     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1863                       << "\n");
1864     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1865     ++ScanIdx;
1866     --LRI;
1867   }
1868 
1869   // If no instructions can be sunk, early-return.
1870   if (ScanIdx == 0)
1871     return false;
1872 
1873   bool Changed = false;
1874 
1875   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1876     unsigned NumPHIdValues = 0;
1877     for (auto *I : *LRI)
1878       for (auto *V : PHIOperands[I])
1879         if (InstructionsToSink.count(V) == 0)
1880           ++NumPHIdValues;
1881     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1882     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1883     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1884         NumPHIInsts++;
1885 
1886     return NumPHIInsts <= 1;
1887   };
1888 
1889   if (Cond) {
1890     // Check if we would actually sink anything first! This mutates the CFG and
1891     // adds an extra block. The goal in doing this is to allow instructions that
1892     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1893     // (such as trunc, add) can be sunk and predicated already. So we check that
1894     // we're going to sink at least one non-speculatable instruction.
1895     LRI.reset();
1896     unsigned Idx = 0;
1897     bool Profitable = false;
1898     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1899       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1900         Profitable = true;
1901         break;
1902       }
1903       --LRI;
1904       ++Idx;
1905     }
1906     if (!Profitable)
1907       return false;
1908 
1909     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1910     // We have a conditional edge and we're going to sink some instructions.
1911     // Insert a new block postdominating all blocks we're going to sink from.
1912     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1913       // Edges couldn't be split.
1914       return false;
1915     Changed = true;
1916   }
1917 
1918   // Now that we've analyzed all potential sinking candidates, perform the
1919   // actual sink. We iteratively sink the last non-terminator of the source
1920   // blocks into their common successor unless doing so would require too
1921   // many PHI instructions to be generated (currently only one PHI is allowed
1922   // per sunk instruction).
1923   //
1924   // We can use InstructionsToSink to discount values needing PHI-merging that will
1925   // actually be sunk in a later iteration. This allows us to be more
1926   // aggressive in what we sink. This does allow a false positive where we
1927   // sink presuming a later value will also be sunk, but stop half way through
1928   // and never actually sink it which means we produce more PHIs than intended.
1929   // This is unlikely in practice though.
1930   unsigned SinkIdx = 0;
1931   for (; SinkIdx != ScanIdx; ++SinkIdx) {
1932     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1933                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1934                       << "\n");
1935 
1936     // Because we've sunk every instruction in turn, the current instruction to
1937     // sink is always at index 0.
1938     LRI.reset();
1939     if (!ProfitableToSinkInstruction(LRI)) {
1940       // Too many PHIs would be created.
1941       LLVM_DEBUG(
1942           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1943       break;
1944     }
1945 
1946     if (!sinkLastInstruction(UnconditionalPreds)) {
1947       LLVM_DEBUG(
1948           dbgs()
1949           << "SINK: stopping here, failed to actually sink instruction!\n");
1950       break;
1951     }
1952 
1953     NumSinkCommonInstrs++;
1954     Changed = true;
1955   }
1956   if (SinkIdx != 0)
1957     ++NumSinkCommonCode;
1958   return Changed;
1959 }
1960 
1961 /// Determine if we can hoist sink a sole store instruction out of a
1962 /// conditional block.
1963 ///
1964 /// We are looking for code like the following:
1965 ///   BrBB:
1966 ///     store i32 %add, i32* %arrayidx2
1967 ///     ... // No other stores or function calls (we could be calling a memory
1968 ///     ... // function).
1969 ///     %cmp = icmp ult %x, %y
1970 ///     br i1 %cmp, label %EndBB, label %ThenBB
1971 ///   ThenBB:
1972 ///     store i32 %add5, i32* %arrayidx2
1973 ///     br label EndBB
1974 ///   EndBB:
1975 ///     ...
1976 ///   We are going to transform this into:
1977 ///   BrBB:
1978 ///     store i32 %add, i32* %arrayidx2
1979 ///     ... //
1980 ///     %cmp = icmp ult %x, %y
1981 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1982 ///     store i32 %add.add5, i32* %arrayidx2
1983 ///     ...
1984 ///
1985 /// \return The pointer to the value of the previous store if the store can be
1986 ///         hoisted into the predecessor block. 0 otherwise.
1987 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1988                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1989   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1990   if (!StoreToHoist)
1991     return nullptr;
1992 
1993   // Volatile or atomic.
1994   if (!StoreToHoist->isSimple())
1995     return nullptr;
1996 
1997   Value *StorePtr = StoreToHoist->getPointerOperand();
1998 
1999   // Look for a store to the same pointer in BrBB.
2000   unsigned MaxNumInstToLookAt = 9;
2001   // Skip pseudo probe intrinsic calls which are not really killing any memory
2002   // accesses.
2003   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2004     if (!MaxNumInstToLookAt)
2005       break;
2006     --MaxNumInstToLookAt;
2007 
2008     // Could be calling an instruction that affects memory like free().
2009     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2010       return nullptr;
2011 
2012     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2013       // Found the previous store make sure it stores to the same location.
2014       if (SI->getPointerOperand() == StorePtr)
2015         // Found the previous store, return its value operand.
2016         return SI->getValueOperand();
2017       return nullptr; // Unknown store.
2018     }
2019   }
2020 
2021   return nullptr;
2022 }
2023 
2024 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2025 /// converted to selects.
2026 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2027                                            BasicBlock *EndBB,
2028                                            unsigned &SpeculatedInstructions,
2029                                            int &BudgetRemaining,
2030                                            const TargetTransformInfo &TTI) {
2031   TargetTransformInfo::TargetCostKind CostKind =
2032     BB->getParent()->hasMinSize()
2033     ? TargetTransformInfo::TCK_CodeSize
2034     : TargetTransformInfo::TCK_SizeAndLatency;
2035 
2036   bool HaveRewritablePHIs = false;
2037   for (PHINode &PN : EndBB->phis()) {
2038     Value *OrigV = PN.getIncomingValueForBlock(BB);
2039     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2040 
2041     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2042     // Skip PHIs which are trivial.
2043     if (ThenV == OrigV)
2044       continue;
2045 
2046     BudgetRemaining -=
2047         TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2048                                CmpInst::BAD_ICMP_PREDICATE, CostKind);
2049 
2050     // Don't convert to selects if we could remove undefined behavior instead.
2051     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2052         passingValueIsAlwaysUndefined(ThenV, &PN))
2053       return false;
2054 
2055     HaveRewritablePHIs = true;
2056     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2057     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2058     if (!OrigCE && !ThenCE)
2059       continue; // Known safe and cheap.
2060 
2061     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2062         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2063       return false;
2064     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2065     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2066     unsigned MaxCost =
2067         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2068     if (OrigCost + ThenCost > MaxCost)
2069       return false;
2070 
2071     // Account for the cost of an unfolded ConstantExpr which could end up
2072     // getting expanded into Instructions.
2073     // FIXME: This doesn't account for how many operations are combined in the
2074     // constant expression.
2075     ++SpeculatedInstructions;
2076     if (SpeculatedInstructions > 1)
2077       return false;
2078   }
2079 
2080   return HaveRewritablePHIs;
2081 }
2082 
2083 /// Speculate a conditional basic block flattening the CFG.
2084 ///
2085 /// Note that this is a very risky transform currently. Speculating
2086 /// instructions like this is most often not desirable. Instead, there is an MI
2087 /// pass which can do it with full awareness of the resource constraints.
2088 /// However, some cases are "obvious" and we should do directly. An example of
2089 /// this is speculating a single, reasonably cheap instruction.
2090 ///
2091 /// There is only one distinct advantage to flattening the CFG at the IR level:
2092 /// it makes very common but simplistic optimizations such as are common in
2093 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2094 /// modeling their effects with easier to reason about SSA value graphs.
2095 ///
2096 ///
2097 /// An illustration of this transform is turning this IR:
2098 /// \code
2099 ///   BB:
2100 ///     %cmp = icmp ult %x, %y
2101 ///     br i1 %cmp, label %EndBB, label %ThenBB
2102 ///   ThenBB:
2103 ///     %sub = sub %x, %y
2104 ///     br label BB2
2105 ///   EndBB:
2106 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2107 ///     ...
2108 /// \endcode
2109 ///
2110 /// Into this IR:
2111 /// \code
2112 ///   BB:
2113 ///     %cmp = icmp ult %x, %y
2114 ///     %sub = sub %x, %y
2115 ///     %cond = select i1 %cmp, 0, %sub
2116 ///     ...
2117 /// \endcode
2118 ///
2119 /// \returns true if the conditional block is removed.
2120 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2121                                             const TargetTransformInfo &TTI) {
2122   // Be conservative for now. FP select instruction can often be expensive.
2123   Value *BrCond = BI->getCondition();
2124   if (isa<FCmpInst>(BrCond))
2125     return false;
2126 
2127   BasicBlock *BB = BI->getParent();
2128   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2129   int BudgetRemaining =
2130     PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2131 
2132   // If ThenBB is actually on the false edge of the conditional branch, remember
2133   // to swap the select operands later.
2134   bool Invert = false;
2135   if (ThenBB != BI->getSuccessor(0)) {
2136     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2137     Invert = true;
2138   }
2139   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2140 
2141   // Keep a count of how many times instructions are used within ThenBB when
2142   // they are candidates for sinking into ThenBB. Specifically:
2143   // - They are defined in BB, and
2144   // - They have no side effects, and
2145   // - All of their uses are in ThenBB.
2146   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2147 
2148   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2149 
2150   unsigned SpeculatedInstructions = 0;
2151   Value *SpeculatedStoreValue = nullptr;
2152   StoreInst *SpeculatedStore = nullptr;
2153   for (BasicBlock::iterator BBI = ThenBB->begin(),
2154                             BBE = std::prev(ThenBB->end());
2155        BBI != BBE; ++BBI) {
2156     Instruction *I = &*BBI;
2157     // Skip debug info.
2158     if (isa<DbgInfoIntrinsic>(I)) {
2159       SpeculatedDbgIntrinsics.push_back(I);
2160       continue;
2161     }
2162 
2163     // Skip pseudo probes. The consequence is we lose track of the branch
2164     // probability for ThenBB, which is fine since the optimization here takes
2165     // place regardless of the branch probability.
2166     if (isa<PseudoProbeInst>(I)) {
2167       SpeculatedDbgIntrinsics.push_back(I);
2168       continue;
2169     }
2170 
2171     // Only speculatively execute a single instruction (not counting the
2172     // terminator) for now.
2173     ++SpeculatedInstructions;
2174     if (SpeculatedInstructions > 1)
2175       return false;
2176 
2177     // Don't hoist the instruction if it's unsafe or expensive.
2178     if (!isSafeToSpeculativelyExecute(I) &&
2179         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2180                                   I, BB, ThenBB, EndBB))))
2181       return false;
2182     if (!SpeculatedStoreValue &&
2183         ComputeSpeculationCost(I, TTI) >
2184             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2185       return false;
2186 
2187     // Store the store speculation candidate.
2188     if (SpeculatedStoreValue)
2189       SpeculatedStore = cast<StoreInst>(I);
2190 
2191     // Do not hoist the instruction if any of its operands are defined but not
2192     // used in BB. The transformation will prevent the operand from
2193     // being sunk into the use block.
2194     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2195       Instruction *OpI = dyn_cast<Instruction>(*i);
2196       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2197         continue; // Not a candidate for sinking.
2198 
2199       ++SinkCandidateUseCounts[OpI];
2200     }
2201   }
2202 
2203   // Consider any sink candidates which are only used in ThenBB as costs for
2204   // speculation. Note, while we iterate over a DenseMap here, we are summing
2205   // and so iteration order isn't significant.
2206   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2207            I = SinkCandidateUseCounts.begin(),
2208            E = SinkCandidateUseCounts.end();
2209        I != E; ++I)
2210     if (I->first->hasNUses(I->second)) {
2211       ++SpeculatedInstructions;
2212       if (SpeculatedInstructions > 1)
2213         return false;
2214     }
2215 
2216   // Check that we can insert the selects and that it's not too expensive to do
2217   // so.
2218   bool Convert = SpeculatedStore != nullptr;
2219   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2220                                             SpeculatedInstructions,
2221                                             BudgetRemaining, TTI);
2222   if (!Convert || BudgetRemaining < 0)
2223     return false;
2224 
2225   // If we get here, we can hoist the instruction and if-convert.
2226   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2227 
2228   // Insert a select of the value of the speculated store.
2229   if (SpeculatedStoreValue) {
2230     IRBuilder<NoFolder> Builder(BI);
2231     Value *TrueV = SpeculatedStore->getValueOperand();
2232     Value *FalseV = SpeculatedStoreValue;
2233     if (Invert)
2234       std::swap(TrueV, FalseV);
2235     Value *S = Builder.CreateSelect(
2236         BrCond, TrueV, FalseV, "spec.store.select", BI);
2237     SpeculatedStore->setOperand(0, S);
2238     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2239                                          SpeculatedStore->getDebugLoc());
2240   }
2241 
2242   // Metadata can be dependent on the condition we are hoisting above.
2243   // Conservatively strip all metadata on the instruction. Drop the debug loc
2244   // to avoid making it appear as if the condition is a constant, which would
2245   // be misleading while debugging.
2246   for (auto &I : *ThenBB) {
2247     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2248       I.setDebugLoc(DebugLoc());
2249     I.dropUnknownNonDebugMetadata();
2250   }
2251 
2252   // Hoist the instructions.
2253   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2254                            ThenBB->begin(), std::prev(ThenBB->end()));
2255 
2256   // Insert selects and rewrite the PHI operands.
2257   IRBuilder<NoFolder> Builder(BI);
2258   for (PHINode &PN : EndBB->phis()) {
2259     unsigned OrigI = PN.getBasicBlockIndex(BB);
2260     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2261     Value *OrigV = PN.getIncomingValue(OrigI);
2262     Value *ThenV = PN.getIncomingValue(ThenI);
2263 
2264     // Skip PHIs which are trivial.
2265     if (OrigV == ThenV)
2266       continue;
2267 
2268     // Create a select whose true value is the speculatively executed value and
2269     // false value is the pre-existing value. Swap them if the branch
2270     // destinations were inverted.
2271     Value *TrueV = ThenV, *FalseV = OrigV;
2272     if (Invert)
2273       std::swap(TrueV, FalseV);
2274     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2275     PN.setIncomingValue(OrigI, V);
2276     PN.setIncomingValue(ThenI, V);
2277   }
2278 
2279   // Remove speculated dbg intrinsics.
2280   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2281   // dbg value for the different flows and inserting it after the select.
2282   for (Instruction *I : SpeculatedDbgIntrinsics)
2283     I->eraseFromParent();
2284 
2285   ++NumSpeculations;
2286   return true;
2287 }
2288 
2289 /// Return true if we can thread a branch across this block.
2290 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2291   int Size = 0;
2292 
2293   for (Instruction &I : BB->instructionsWithoutDebug()) {
2294     if (Size > MaxSmallBlockSize)
2295       return false; // Don't clone large BB's.
2296 
2297     // Can't fold blocks that contain noduplicate or convergent calls.
2298     if (CallInst *CI = dyn_cast<CallInst>(&I))
2299       if (CI->cannotDuplicate() || CI->isConvergent())
2300         return false;
2301 
2302     // We will delete Phis while threading, so Phis should not be accounted in
2303     // block's size
2304     if (!isa<PHINode>(I))
2305       ++Size;
2306 
2307     // We can only support instructions that do not define values that are
2308     // live outside of the current basic block.
2309     for (User *U : I.users()) {
2310       Instruction *UI = cast<Instruction>(U);
2311       if (UI->getParent() != BB || isa<PHINode>(UI))
2312         return false;
2313     }
2314 
2315     // Looks ok, continue checking.
2316   }
2317 
2318   return true;
2319 }
2320 
2321 /// If we have a conditional branch on a PHI node value that is defined in the
2322 /// same block as the branch and if any PHI entries are constants, thread edges
2323 /// corresponding to that entry to be branches to their ultimate destination.
2324 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2325                                 AssumptionCache *AC) {
2326   BasicBlock *BB = BI->getParent();
2327   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2328   // NOTE: we currently cannot transform this case if the PHI node is used
2329   // outside of the block.
2330   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2331     return false;
2332 
2333   // Degenerate case of a single entry PHI.
2334   if (PN->getNumIncomingValues() == 1) {
2335     FoldSingleEntryPHINodes(PN->getParent());
2336     return true;
2337   }
2338 
2339   // Now we know that this block has multiple preds and two succs.
2340   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2341     return false;
2342 
2343   // Okay, this is a simple enough basic block.  See if any phi values are
2344   // constants.
2345   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2346     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2347     if (!CB || !CB->getType()->isIntegerTy(1))
2348       continue;
2349 
2350     // Okay, we now know that all edges from PredBB should be revectored to
2351     // branch to RealDest.
2352     BasicBlock *PredBB = PN->getIncomingBlock(i);
2353     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2354 
2355     if (RealDest == BB)
2356       continue; // Skip self loops.
2357     // Skip if the predecessor's terminator is an indirect branch.
2358     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2359       continue;
2360 
2361     // The dest block might have PHI nodes, other predecessors and other
2362     // difficult cases.  Instead of being smart about this, just insert a new
2363     // block that jumps to the destination block, effectively splitting
2364     // the edge we are about to create.
2365     BasicBlock *EdgeBB =
2366         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2367                            RealDest->getParent(), RealDest);
2368     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2369     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2370 
2371     // Update PHI nodes.
2372     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2373 
2374     // BB may have instructions that are being threaded over.  Clone these
2375     // instructions into EdgeBB.  We know that there will be no uses of the
2376     // cloned instructions outside of EdgeBB.
2377     BasicBlock::iterator InsertPt = EdgeBB->begin();
2378     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2379     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2380       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2381         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2382         continue;
2383       }
2384       // Clone the instruction.
2385       Instruction *N = BBI->clone();
2386       if (BBI->hasName())
2387         N->setName(BBI->getName() + ".c");
2388 
2389       // Update operands due to translation.
2390       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2391         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2392         if (PI != TranslateMap.end())
2393           *i = PI->second;
2394       }
2395 
2396       // Check for trivial simplification.
2397       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2398         if (!BBI->use_empty())
2399           TranslateMap[&*BBI] = V;
2400         if (!N->mayHaveSideEffects()) {
2401           N->deleteValue(); // Instruction folded away, don't need actual inst
2402           N = nullptr;
2403         }
2404       } else {
2405         if (!BBI->use_empty())
2406           TranslateMap[&*BBI] = N;
2407       }
2408       if (N) {
2409         // Insert the new instruction into its new home.
2410         EdgeBB->getInstList().insert(InsertPt, N);
2411 
2412         // Register the new instruction with the assumption cache if necessary.
2413         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2414           AC->registerAssumption(cast<IntrinsicInst>(N));
2415       }
2416     }
2417 
2418     // Loop over all of the edges from PredBB to BB, changing them to branch
2419     // to EdgeBB instead.
2420     Instruction *PredBBTI = PredBB->getTerminator();
2421     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2422       if (PredBBTI->getSuccessor(i) == BB) {
2423         BB->removePredecessor(PredBB);
2424         PredBBTI->setSuccessor(i, EdgeBB);
2425       }
2426 
2427     // Recurse, simplifying any other constants.
2428     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2429   }
2430 
2431   return false;
2432 }
2433 
2434 /// Given a BB that starts with the specified two-entry PHI node,
2435 /// see if we can eliminate it.
2436 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2437                                 const DataLayout &DL) {
2438   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2439   // statement", which has a very simple dominance structure.  Basically, we
2440   // are trying to find the condition that is being branched on, which
2441   // subsequently causes this merge to happen.  We really want control
2442   // dependence information for this check, but simplifycfg can't keep it up
2443   // to date, and this catches most of the cases we care about anyway.
2444   BasicBlock *BB = PN->getParent();
2445 
2446   BasicBlock *IfTrue, *IfFalse;
2447   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2448   if (!IfCond ||
2449       // Don't bother if the branch will be constant folded trivially.
2450       isa<ConstantInt>(IfCond))
2451     return false;
2452 
2453   // Okay, we found that we can merge this two-entry phi node into a select.
2454   // Doing so would require us to fold *all* two entry phi nodes in this block.
2455   // At some point this becomes non-profitable (particularly if the target
2456   // doesn't support cmov's).  Only do this transformation if there are two or
2457   // fewer PHI nodes in this block.
2458   unsigned NumPhis = 0;
2459   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2460     if (NumPhis > 2)
2461       return false;
2462 
2463   // Loop over the PHI's seeing if we can promote them all to select
2464   // instructions.  While we are at it, keep track of the instructions
2465   // that need to be moved to the dominating block.
2466   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2467   int BudgetRemaining =
2468       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2469 
2470   bool Changed = false;
2471   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2472     PHINode *PN = cast<PHINode>(II++);
2473     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2474       PN->replaceAllUsesWith(V);
2475       PN->eraseFromParent();
2476       Changed = true;
2477       continue;
2478     }
2479 
2480     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2481                              BudgetRemaining, TTI) ||
2482         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2483                              BudgetRemaining, TTI))
2484       return Changed;
2485   }
2486 
2487   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2488   // we ran out of PHIs then we simplified them all.
2489   PN = dyn_cast<PHINode>(BB->begin());
2490   if (!PN)
2491     return true;
2492 
2493   // Return true if at least one of these is a 'not', and another is either
2494   // a 'not' too, or a constant.
2495   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2496     if (!match(V0, m_Not(m_Value())))
2497       std::swap(V0, V1);
2498     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2499     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2500   };
2501 
2502   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2503   // of the incoming values is an 'not' and another one is freely invertible.
2504   // These can often be turned into switches and other things.
2505   if (PN->getType()->isIntegerTy(1) &&
2506       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2507        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2508        isa<BinaryOperator>(IfCond)) &&
2509       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2510                                  PN->getIncomingValue(1)))
2511     return Changed;
2512 
2513   // If all PHI nodes are promotable, check to make sure that all instructions
2514   // in the predecessor blocks can be promoted as well. If not, we won't be able
2515   // to get rid of the control flow, so it's not worth promoting to select
2516   // instructions.
2517   BasicBlock *DomBlock = nullptr;
2518   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2519   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2520   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2521     IfBlock1 = nullptr;
2522   } else {
2523     DomBlock = *pred_begin(IfBlock1);
2524     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2525       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2526           !isa<PseudoProbeInst>(I)) {
2527         // This is not an aggressive instruction that we can promote.
2528         // Because of this, we won't be able to get rid of the control flow, so
2529         // the xform is not worth it.
2530         return Changed;
2531       }
2532   }
2533 
2534   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2535     IfBlock2 = nullptr;
2536   } else {
2537     DomBlock = *pred_begin(IfBlock2);
2538     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2539       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2540           !isa<PseudoProbeInst>(I)) {
2541         // This is not an aggressive instruction that we can promote.
2542         // Because of this, we won't be able to get rid of the control flow, so
2543         // the xform is not worth it.
2544         return Changed;
2545       }
2546   }
2547   assert(DomBlock && "Failed to find root DomBlock");
2548 
2549   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2550                     << "  T: " << IfTrue->getName()
2551                     << "  F: " << IfFalse->getName() << "\n");
2552 
2553   // If we can still promote the PHI nodes after this gauntlet of tests,
2554   // do all of the PHI's now.
2555   Instruction *InsertPt = DomBlock->getTerminator();
2556   IRBuilder<NoFolder> Builder(InsertPt);
2557 
2558   // Move all 'aggressive' instructions, which are defined in the
2559   // conditional parts of the if's up to the dominating block.
2560   if (IfBlock1)
2561     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2562   if (IfBlock2)
2563     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2564 
2565   // Propagate fast-math-flags from phi nodes to replacement selects.
2566   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2567   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2568     if (isa<FPMathOperator>(PN))
2569       Builder.setFastMathFlags(PN->getFastMathFlags());
2570 
2571     // Change the PHI node into a select instruction.
2572     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2573     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2574 
2575     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2576     PN->replaceAllUsesWith(Sel);
2577     Sel->takeName(PN);
2578     PN->eraseFromParent();
2579   }
2580 
2581   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2582   // has been flattened.  Change DomBlock to jump directly to our new block to
2583   // avoid other simplifycfg's kicking in on the diamond.
2584   Instruction *OldTI = DomBlock->getTerminator();
2585   Builder.SetInsertPoint(OldTI);
2586   Builder.CreateBr(BB);
2587   OldTI->eraseFromParent();
2588   return true;
2589 }
2590 
2591 /// If we found a conditional branch that goes to two returning blocks,
2592 /// try to merge them together into one return,
2593 /// introducing a select if the return values disagree.
2594 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2595                                                     IRBuilder<> &Builder) {
2596   assert(BI->isConditional() && "Must be a conditional branch");
2597   BasicBlock *TrueSucc = BI->getSuccessor(0);
2598   BasicBlock *FalseSucc = BI->getSuccessor(1);
2599   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2600   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2601 
2602   // Check to ensure both blocks are empty (just a return) or optionally empty
2603   // with PHI nodes.  If there are other instructions, merging would cause extra
2604   // computation on one path or the other.
2605   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2606     return false;
2607   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2608     return false;
2609 
2610   Builder.SetInsertPoint(BI);
2611   // Okay, we found a branch that is going to two return nodes.  If
2612   // there is no return value for this function, just change the
2613   // branch into a return.
2614   if (FalseRet->getNumOperands() == 0) {
2615     TrueSucc->removePredecessor(BI->getParent());
2616     FalseSucc->removePredecessor(BI->getParent());
2617     Builder.CreateRetVoid();
2618     EraseTerminatorAndDCECond(BI);
2619     return true;
2620   }
2621 
2622   // Otherwise, figure out what the true and false return values are
2623   // so we can insert a new select instruction.
2624   Value *TrueValue = TrueRet->getReturnValue();
2625   Value *FalseValue = FalseRet->getReturnValue();
2626 
2627   // Unwrap any PHI nodes in the return blocks.
2628   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2629     if (TVPN->getParent() == TrueSucc)
2630       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2631   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2632     if (FVPN->getParent() == FalseSucc)
2633       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2634 
2635   // In order for this transformation to be safe, we must be able to
2636   // unconditionally execute both operands to the return.  This is
2637   // normally the case, but we could have a potentially-trapping
2638   // constant expression that prevents this transformation from being
2639   // safe.
2640   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2641     if (TCV->canTrap())
2642       return false;
2643   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2644     if (FCV->canTrap())
2645       return false;
2646 
2647   // Okay, we collected all the mapped values and checked them for sanity, and
2648   // defined to really do this transformation.  First, update the CFG.
2649   TrueSucc->removePredecessor(BI->getParent());
2650   FalseSucc->removePredecessor(BI->getParent());
2651 
2652   // Insert select instructions where needed.
2653   Value *BrCond = BI->getCondition();
2654   if (TrueValue) {
2655     // Insert a select if the results differ.
2656     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2657     } else if (isa<UndefValue>(TrueValue)) {
2658       TrueValue = FalseValue;
2659     } else {
2660       TrueValue =
2661           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2662     }
2663   }
2664 
2665   Value *RI =
2666       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2667 
2668   (void)RI;
2669 
2670   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2671                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2672                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2673 
2674   EraseTerminatorAndDCECond(BI);
2675 
2676   return true;
2677 }
2678 
2679 /// Return true if the given instruction is available
2680 /// in its predecessor block. If yes, the instruction will be removed.
2681 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2682   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2683     return false;
2684   for (Instruction &I : *PB) {
2685     Instruction *PBI = &I;
2686     // Check whether Inst and PBI generate the same value.
2687     if (Inst->isIdenticalTo(PBI)) {
2688       Inst->replaceAllUsesWith(PBI);
2689       Inst->eraseFromParent();
2690       return true;
2691     }
2692   }
2693   return false;
2694 }
2695 
2696 /// Return true if either PBI or BI has branch weight available, and store
2697 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2698 /// not have branch weight, use 1:1 as its weight.
2699 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2700                                    uint64_t &PredTrueWeight,
2701                                    uint64_t &PredFalseWeight,
2702                                    uint64_t &SuccTrueWeight,
2703                                    uint64_t &SuccFalseWeight) {
2704   bool PredHasWeights =
2705       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2706   bool SuccHasWeights =
2707       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2708   if (PredHasWeights || SuccHasWeights) {
2709     if (!PredHasWeights)
2710       PredTrueWeight = PredFalseWeight = 1;
2711     if (!SuccHasWeights)
2712       SuccTrueWeight = SuccFalseWeight = 1;
2713     return true;
2714   } else {
2715     return false;
2716   }
2717 }
2718 
2719 /// If this basic block is simple enough, and if a predecessor branches to us
2720 /// and one of our successors, fold the block into the predecessor and use
2721 /// logical operations to pick the right destination.
2722 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2723                                   const TargetTransformInfo *TTI,
2724                                   unsigned BonusInstThreshold) {
2725   BasicBlock *BB = BI->getParent();
2726 
2727   const unsigned PredCount = pred_size(BB);
2728 
2729   bool Changed = false;
2730 
2731   auto _ = make_scope_exit([&]() {
2732     if (Changed)
2733       ++NumFoldBranchToCommonDest;
2734   });
2735 
2736   TargetTransformInfo::TargetCostKind CostKind =
2737     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
2738                                   : TargetTransformInfo::TCK_SizeAndLatency;
2739 
2740   Instruction *Cond = nullptr;
2741   if (BI->isConditional())
2742     Cond = dyn_cast<Instruction>(BI->getCondition());
2743   else {
2744     // For unconditional branch, check for a simple CFG pattern, where
2745     // BB has a single predecessor and BB's successor is also its predecessor's
2746     // successor. If such pattern exists, check for CSE between BB and its
2747     // predecessor.
2748     if (BasicBlock *PB = BB->getSinglePredecessor())
2749       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2750         if (PBI->isConditional() &&
2751             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2752              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2753           for (auto I = BB->instructionsWithoutDebug().begin(),
2754                     E = BB->instructionsWithoutDebug().end();
2755                I != E;) {
2756             Instruction *Curr = &*I++;
2757             if (isa<CmpInst>(Curr)) {
2758               Cond = Curr;
2759               break;
2760             }
2761             // Quit if we can't remove this instruction.
2762             if (!tryCSEWithPredecessor(Curr, PB))
2763               return Changed;
2764             Changed = true;
2765           }
2766         }
2767 
2768     if (!Cond)
2769       return Changed;
2770   }
2771 
2772   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2773       Cond->getParent() != BB || !Cond->hasOneUse())
2774     return Changed;
2775 
2776   // Only allow this transformation if computing the condition doesn't involve
2777   // too many instructions and these involved instructions can be executed
2778   // unconditionally. We denote all involved instructions except the condition
2779   // as "bonus instructions", and only allow this transformation when the
2780   // number of the bonus instructions we'll need to create when cloning into
2781   // each predecessor does not exceed a certain threshold.
2782   unsigned NumBonusInsts = 0;
2783   for (Instruction &I : *BB) {
2784     // Don't check the branch condition comparison itself.
2785     if (&I == Cond)
2786       continue;
2787     // Ignore dbg intrinsics, and the terminator.
2788     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
2789       continue;
2790     // I must be safe to execute unconditionally.
2791     if (!isSafeToSpeculativelyExecute(&I))
2792       return Changed;
2793 
2794     // Account for the cost of duplicating this instruction into each
2795     // predecessor.
2796     NumBonusInsts += PredCount;
2797     // Early exits once we reach the limit.
2798     if (NumBonusInsts > BonusInstThreshold)
2799       return Changed;
2800   }
2801 
2802   // Also, for now, all liveout uses of bonus instructions must be in PHI nodes
2803   // in successor blocks as incoming values from the bonus instructions's block,
2804   // otherwise we'll fail to update them.
2805   // FIXME: We could lift this restriction, but we need to form PHI nodes and
2806   // rewrite offending uses, but we can't do that without having a domtree.
2807   if (any_of(*BB, [BB](Instruction &I) {
2808         return any_of(I.uses(), [BB](Use &U) {
2809           auto *User = cast<Instruction>(U.getUser());
2810           if (User->getParent() == BB)
2811             return false; // Not an external use.
2812           auto *PN = dyn_cast<PHINode>(User);
2813           return !PN || PN->getIncomingBlock(U) != BB;
2814         });
2815       }))
2816     return Changed;
2817 
2818   // Cond is known to be a compare or binary operator.  Check to make sure that
2819   // neither operand is a potentially-trapping constant expression.
2820   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2821     if (CE->canTrap())
2822       return Changed;
2823   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2824     if (CE->canTrap())
2825       return Changed;
2826 
2827   // Finally, don't infinitely unroll conditional loops.
2828   BasicBlock *TrueDest = BI->getSuccessor(0);
2829   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2830   if (TrueDest == BB || FalseDest == BB)
2831     return Changed;
2832 
2833   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2834     BasicBlock *PredBlock = *PI;
2835     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2836 
2837     // Check that we have two conditional branches.  If there is a PHI node in
2838     // the common successor, verify that the same value flows in from both
2839     // blocks.
2840     SmallVector<PHINode *, 4> PHIs;
2841     if (!PBI || PBI->isUnconditional() ||
2842         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2843         (!BI->isConditional() &&
2844          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2845       continue;
2846 
2847     // Determine if the two branches share a common destination.
2848     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2849     bool InvertPredCond = false;
2850 
2851     if (BI->isConditional()) {
2852       if (PBI->getSuccessor(0) == TrueDest) {
2853         Opc = Instruction::Or;
2854       } else if (PBI->getSuccessor(1) == FalseDest) {
2855         Opc = Instruction::And;
2856       } else if (PBI->getSuccessor(0) == FalseDest) {
2857         Opc = Instruction::And;
2858         InvertPredCond = true;
2859       } else if (PBI->getSuccessor(1) == TrueDest) {
2860         Opc = Instruction::Or;
2861         InvertPredCond = true;
2862       } else {
2863         continue;
2864       }
2865     } else {
2866       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2867         continue;
2868     }
2869 
2870     // Check the cost of inserting the necessary logic before performing the
2871     // transformation.
2872     if (TTI && Opc != Instruction::BinaryOpsEnd) {
2873       Type *Ty = BI->getCondition()->getType();
2874       unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
2875       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
2876           !isa<CmpInst>(PBI->getCondition())))
2877         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
2878 
2879       if (Cost > BranchFoldThreshold)
2880         continue;
2881     }
2882 
2883     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2884     Changed = true;
2885 
2886     IRBuilder<> Builder(PBI);
2887 
2888     // If we need to invert the condition in the pred block to match, do so now.
2889     if (InvertPredCond) {
2890       Value *NewCond = PBI->getCondition();
2891 
2892       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2893         CmpInst *CI = cast<CmpInst>(NewCond);
2894         CI->setPredicate(CI->getInversePredicate());
2895       } else {
2896         NewCond =
2897             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2898       }
2899 
2900       PBI->setCondition(NewCond);
2901       PBI->swapSuccessors();
2902     }
2903 
2904     BasicBlock *UniqueSucc =
2905         BI->isConditional()
2906             ? (PBI->getSuccessor(0) == BB ? TrueDest : FalseDest)
2907             : TrueDest;
2908 
2909     // Before cloning instructions, notify the successor basic block that it
2910     // is about to have a new predecessor. This will update PHI nodes,
2911     // which will allow us to update live-out uses of bonus instructions.
2912     if (BI->isConditional())
2913       AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2914 
2915     // If we have bonus instructions, clone them into the predecessor block.
2916     // Note that there may be multiple predecessor blocks, so we cannot move
2917     // bonus instructions to a predecessor block.
2918     ValueToValueMapTy VMap; // maps original values to cloned values
2919     Instruction *CondInPred;
2920     for (Instruction &BonusInst : *BB) {
2921       if (isa<DbgInfoIntrinsic>(BonusInst) || isa<BranchInst>(BonusInst))
2922         continue;
2923 
2924       Instruction *NewBonusInst = BonusInst.clone();
2925 
2926       if (&BonusInst == Cond)
2927         CondInPred = NewBonusInst;
2928 
2929       // When we fold the bonus instructions we want to make sure we
2930       // reset their debug locations in order to avoid stepping on dead
2931       // code caused by folding dead branches.
2932       NewBonusInst->setDebugLoc(DebugLoc());
2933 
2934       RemapInstruction(NewBonusInst, VMap,
2935                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2936       VMap[&BonusInst] = NewBonusInst;
2937 
2938       // If we moved a load, we cannot any longer claim any knowledge about
2939       // its potential value. The previous information might have been valid
2940       // only given the branch precondition.
2941       // For an analogous reason, we must also drop all the metadata whose
2942       // semantics we don't understand.
2943       NewBonusInst->dropUnknownNonDebugMetadata();
2944 
2945       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2946       NewBonusInst->takeName(&BonusInst);
2947       BonusInst.setName(BonusInst.getName() + ".old");
2948       BonusInst.replaceUsesWithIf(
2949           NewBonusInst, [BB, BI, UniqueSucc, PredBlock](Use &U) {
2950             auto *User = cast<Instruction>(U.getUser());
2951             // Ignore non-external uses of bonus instructions.
2952             if (User->getParent() == BB) {
2953               assert(!isa<PHINode>(User) &&
2954                      "Non-external users are never PHI instructions.");
2955               return false;
2956             }
2957             (void)BI;
2958             assert(isa<PHINode>(User) && "All external users must be PHI's.");
2959             auto *PN = cast<PHINode>(User);
2960             assert(is_contained(successors(BB), User->getParent()) &&
2961                    "All external users must be in successors of BB.");
2962             assert((PN->getIncomingBlock(U) == BB ||
2963                     PN->getIncomingBlock(U) == PredBlock) &&
2964                    "The incoming block for that incoming value external use "
2965                    "must be either the original block with bonus instructions, "
2966                    "or the new predecessor block.");
2967             // UniqueSucc is the block for which we change it's predecessors,
2968             // so it is the only block in which we'll need to update PHI nodes.
2969             if (User->getParent() != UniqueSucc)
2970               return false;
2971             // Update the incoming value for the new predecessor.
2972             return PN->getIncomingBlock(U) ==
2973                    (BI->isConditional() ? PredBlock : BB);
2974           });
2975     }
2976 
2977     // Now that the Cond was cloned into the predecessor basic block,
2978     // or/and the two conditions together.
2979     if (BI->isConditional()) {
2980       Instruction *NewCond = cast<Instruction>(
2981           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2982       PBI->setCondition(NewCond);
2983 
2984       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2985       bool HasWeights =
2986           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2987                                  SuccTrueWeight, SuccFalseWeight);
2988       SmallVector<uint64_t, 8> NewWeights;
2989 
2990       if (PBI->getSuccessor(0) == BB) {
2991         if (HasWeights) {
2992           // PBI: br i1 %x, BB, FalseDest
2993           // BI:  br i1 %y, UniqueSucc, FalseDest
2994           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2995           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2996           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2997           //               TrueWeight for PBI * FalseWeight for BI.
2998           // We assume that total weights of a BranchInst can fit into 32 bits.
2999           // Therefore, we will not have overflow using 64-bit arithmetic.
3000           NewWeights.push_back(PredFalseWeight *
3001                                    (SuccFalseWeight + SuccTrueWeight) +
3002                                PredTrueWeight * SuccFalseWeight);
3003         }
3004         PBI->setSuccessor(0, UniqueSucc);
3005       }
3006       if (PBI->getSuccessor(1) == BB) {
3007         if (HasWeights) {
3008           // PBI: br i1 %x, TrueDest, BB
3009           // BI:  br i1 %y, TrueDest, UniqueSucc
3010           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3011           //              FalseWeight for PBI * TrueWeight for BI.
3012           NewWeights.push_back(PredTrueWeight *
3013                                    (SuccFalseWeight + SuccTrueWeight) +
3014                                PredFalseWeight * SuccTrueWeight);
3015           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3016           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3017         }
3018         PBI->setSuccessor(1, UniqueSucc);
3019       }
3020       if (NewWeights.size() == 2) {
3021         // Halve the weights if any of them cannot fit in an uint32_t
3022         FitWeights(NewWeights);
3023 
3024         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
3025                                            NewWeights.end());
3026         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3027       } else
3028         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3029     } else {
3030       // Update PHI nodes in the common successors.
3031       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
3032         ConstantInt *PBI_C = cast<ConstantInt>(
3033             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
3034         assert(PBI_C->getType()->isIntegerTy(1));
3035         Instruction *MergedCond = nullptr;
3036         if (PBI->getSuccessor(0) == UniqueSucc) {
3037           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
3038           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
3039           //       is false: !PBI_Cond and BI_Value
3040           Instruction *NotCond = cast<Instruction>(
3041               Builder.CreateNot(PBI->getCondition(), "not.cond"));
3042           MergedCond = cast<Instruction>(
3043                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
3044                                    "and.cond"));
3045           if (PBI_C->isOne())
3046             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3047                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
3048         } else {
3049           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
3050           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
3051           //       is false: PBI_Cond and BI_Value
3052           MergedCond = cast<Instruction>(Builder.CreateBinOp(
3053               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
3054           if (PBI_C->isOne()) {
3055             Instruction *NotCond = cast<Instruction>(
3056                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
3057             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3058                 Instruction::Or, NotCond, MergedCond, "or.cond"));
3059           }
3060         }
3061         // Update PHI Node.
3062 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
3063       }
3064 
3065       // PBI is changed to branch to UniqueSucc below. Remove itself from
3066       // potential phis from all other successors.
3067       if (MSSAU)
3068         MSSAU->changeCondBranchToUnconditionalTo(PBI, UniqueSucc);
3069 
3070       // Change PBI from Conditional to Unconditional.
3071       BranchInst *New_PBI = BranchInst::Create(UniqueSucc, PBI);
3072       EraseTerminatorAndDCECond(PBI, MSSAU);
3073       PBI = New_PBI;
3074     }
3075 
3076     // If BI was a loop latch, it may have had associated loop metadata.
3077     // We need to copy it to the new latch, that is, PBI.
3078     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3079       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3080 
3081     // TODO: If BB is reachable from all paths through PredBlock, then we
3082     // could replace PBI's branch probabilities with BI's.
3083 
3084     // Copy any debug value intrinsics into the end of PredBlock.
3085     for (Instruction &I : *BB) {
3086       if (isa<DbgInfoIntrinsic>(I)) {
3087         Instruction *NewI = I.clone();
3088         RemapInstruction(NewI, VMap,
3089                          RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3090         NewI->insertBefore(PBI);
3091       }
3092     }
3093 
3094     return Changed;
3095   }
3096   return Changed;
3097 }
3098 
3099 // If there is only one store in BB1 and BB2, return it, otherwise return
3100 // nullptr.
3101 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3102   StoreInst *S = nullptr;
3103   for (auto *BB : {BB1, BB2}) {
3104     if (!BB)
3105       continue;
3106     for (auto &I : *BB)
3107       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3108         if (S)
3109           // Multiple stores seen.
3110           return nullptr;
3111         else
3112           S = SI;
3113       }
3114   }
3115   return S;
3116 }
3117 
3118 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3119                                               Value *AlternativeV = nullptr) {
3120   // PHI is going to be a PHI node that allows the value V that is defined in
3121   // BB to be referenced in BB's only successor.
3122   //
3123   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3124   // doesn't matter to us what the other operand is (it'll never get used). We
3125   // could just create a new PHI with an undef incoming value, but that could
3126   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3127   // other PHI. So here we directly look for some PHI in BB's successor with V
3128   // as an incoming operand. If we find one, we use it, else we create a new
3129   // one.
3130   //
3131   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3132   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3133   // where OtherBB is the single other predecessor of BB's only successor.
3134   PHINode *PHI = nullptr;
3135   BasicBlock *Succ = BB->getSingleSuccessor();
3136 
3137   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3138     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3139       PHI = cast<PHINode>(I);
3140       if (!AlternativeV)
3141         break;
3142 
3143       assert(Succ->hasNPredecessors(2));
3144       auto PredI = pred_begin(Succ);
3145       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3146       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3147         break;
3148       PHI = nullptr;
3149     }
3150   if (PHI)
3151     return PHI;
3152 
3153   // If V is not an instruction defined in BB, just return it.
3154   if (!AlternativeV &&
3155       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3156     return V;
3157 
3158   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3159   PHI->addIncoming(V, BB);
3160   for (BasicBlock *PredBB : predecessors(Succ))
3161     if (PredBB != BB)
3162       PHI->addIncoming(
3163           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3164   return PHI;
3165 }
3166 
3167 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
3168                                            BasicBlock *QTB, BasicBlock *QFB,
3169                                            BasicBlock *PostBB, Value *Address,
3170                                            bool InvertPCond, bool InvertQCond,
3171                                            const DataLayout &DL,
3172                                            const TargetTransformInfo &TTI) {
3173   // For every pointer, there must be exactly two stores, one coming from
3174   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3175   // store (to any address) in PTB,PFB or QTB,QFB.
3176   // FIXME: We could relax this restriction with a bit more work and performance
3177   // testing.
3178   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3179   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3180   if (!PStore || !QStore)
3181     return false;
3182 
3183   // Now check the stores are compatible.
3184   if (!QStore->isUnordered() || !PStore->isUnordered())
3185     return false;
3186 
3187   // Check that sinking the store won't cause program behavior changes. Sinking
3188   // the store out of the Q blocks won't change any behavior as we're sinking
3189   // from a block to its unconditional successor. But we're moving a store from
3190   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3191   // So we need to check that there are no aliasing loads or stores in
3192   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3193   // operations between PStore and the end of its parent block.
3194   //
3195   // The ideal way to do this is to query AliasAnalysis, but we don't
3196   // preserve AA currently so that is dangerous. Be super safe and just
3197   // check there are no other memory operations at all.
3198   for (auto &I : *QFB->getSinglePredecessor())
3199     if (I.mayReadOrWriteMemory())
3200       return false;
3201   for (auto &I : *QFB)
3202     if (&I != QStore && I.mayReadOrWriteMemory())
3203       return false;
3204   if (QTB)
3205     for (auto &I : *QTB)
3206       if (&I != QStore && I.mayReadOrWriteMemory())
3207         return false;
3208   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3209        I != E; ++I)
3210     if (&*I != PStore && I->mayReadOrWriteMemory())
3211       return false;
3212 
3213   // If we're not in aggressive mode, we only optimize if we have some
3214   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3215   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3216     if (!BB)
3217       return true;
3218     // Heuristic: if the block can be if-converted/phi-folded and the
3219     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3220     // thread this store.
3221     int BudgetRemaining =
3222         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3223     for (auto &I : BB->instructionsWithoutDebug()) {
3224       // Consider terminator instruction to be free.
3225       if (I.isTerminator())
3226         continue;
3227       // If this is one the stores that we want to speculate out of this BB,
3228       // then don't count it's cost, consider it to be free.
3229       if (auto *S = dyn_cast<StoreInst>(&I))
3230         if (llvm::find(FreeStores, S))
3231           continue;
3232       // Else, we have a white-list of instructions that we are ak speculating.
3233       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3234         return false; // Not in white-list - not worthwhile folding.
3235       // And finally, if this is a non-free instruction that we are okay
3236       // speculating, ensure that we consider the speculation budget.
3237       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3238       if (BudgetRemaining < 0)
3239         return false; // Eagerly refuse to fold as soon as we're out of budget.
3240     }
3241     assert(BudgetRemaining >= 0 &&
3242            "When we run out of budget we will eagerly return from within the "
3243            "per-instruction loop.");
3244     return true;
3245   };
3246 
3247   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3248   if (!MergeCondStoresAggressively &&
3249       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3250        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3251     return false;
3252 
3253   // If PostBB has more than two predecessors, we need to split it so we can
3254   // sink the store.
3255   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3256     // We know that QFB's only successor is PostBB. And QFB has a single
3257     // predecessor. If QTB exists, then its only successor is also PostBB.
3258     // If QTB does not exist, then QFB's only predecessor has a conditional
3259     // branch to QFB and PostBB.
3260     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3261     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3262                                                "condstore.split");
3263     if (!NewBB)
3264       return false;
3265     PostBB = NewBB;
3266   }
3267 
3268   // OK, we're going to sink the stores to PostBB. The store has to be
3269   // conditional though, so first create the predicate.
3270   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3271                      ->getCondition();
3272   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3273                      ->getCondition();
3274 
3275   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3276                                                 PStore->getParent());
3277   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3278                                                 QStore->getParent(), PPHI);
3279 
3280   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3281 
3282   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3283   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3284 
3285   if (InvertPCond)
3286     PPred = QB.CreateNot(PPred);
3287   if (InvertQCond)
3288     QPred = QB.CreateNot(QPred);
3289   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3290 
3291   auto *T =
3292       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3293   QB.SetInsertPoint(T);
3294   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3295   AAMDNodes AAMD;
3296   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3297   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3298   SI->setAAMetadata(AAMD);
3299   // Choose the minimum alignment. If we could prove both stores execute, we
3300   // could use biggest one.  In this case, though, we only know that one of the
3301   // stores executes.  And we don't know it's safe to take the alignment from a
3302   // store that doesn't execute.
3303   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3304 
3305   QStore->eraseFromParent();
3306   PStore->eraseFromParent();
3307 
3308   return true;
3309 }
3310 
3311 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3312                                    const DataLayout &DL,
3313                                    const TargetTransformInfo &TTI) {
3314   // The intention here is to find diamonds or triangles (see below) where each
3315   // conditional block contains a store to the same address. Both of these
3316   // stores are conditional, so they can't be unconditionally sunk. But it may
3317   // be profitable to speculatively sink the stores into one merged store at the
3318   // end, and predicate the merged store on the union of the two conditions of
3319   // PBI and QBI.
3320   //
3321   // This can reduce the number of stores executed if both of the conditions are
3322   // true, and can allow the blocks to become small enough to be if-converted.
3323   // This optimization will also chain, so that ladders of test-and-set
3324   // sequences can be if-converted away.
3325   //
3326   // We only deal with simple diamonds or triangles:
3327   //
3328   //     PBI       or      PBI        or a combination of the two
3329   //    /   \               | \
3330   //   PTB  PFB             |  PFB
3331   //    \   /               | /
3332   //     QBI                QBI
3333   //    /  \                | \
3334   //   QTB  QFB             |  QFB
3335   //    \  /                | /
3336   //    PostBB            PostBB
3337   //
3338   // We model triangles as a type of diamond with a nullptr "true" block.
3339   // Triangles are canonicalized so that the fallthrough edge is represented by
3340   // a true condition, as in the diagram above.
3341   BasicBlock *PTB = PBI->getSuccessor(0);
3342   BasicBlock *PFB = PBI->getSuccessor(1);
3343   BasicBlock *QTB = QBI->getSuccessor(0);
3344   BasicBlock *QFB = QBI->getSuccessor(1);
3345   BasicBlock *PostBB = QFB->getSingleSuccessor();
3346 
3347   // Make sure we have a good guess for PostBB. If QTB's only successor is
3348   // QFB, then QFB is a better PostBB.
3349   if (QTB->getSingleSuccessor() == QFB)
3350     PostBB = QFB;
3351 
3352   // If we couldn't find a good PostBB, stop.
3353   if (!PostBB)
3354     return false;
3355 
3356   bool InvertPCond = false, InvertQCond = false;
3357   // Canonicalize fallthroughs to the true branches.
3358   if (PFB == QBI->getParent()) {
3359     std::swap(PFB, PTB);
3360     InvertPCond = true;
3361   }
3362   if (QFB == PostBB) {
3363     std::swap(QFB, QTB);
3364     InvertQCond = true;
3365   }
3366 
3367   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3368   // and QFB may not. Model fallthroughs as a nullptr block.
3369   if (PTB == QBI->getParent())
3370     PTB = nullptr;
3371   if (QTB == PostBB)
3372     QTB = nullptr;
3373 
3374   // Legality bailouts. We must have at least the non-fallthrough blocks and
3375   // the post-dominating block, and the non-fallthroughs must only have one
3376   // predecessor.
3377   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3378     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3379   };
3380   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3381       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3382     return false;
3383   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3384       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3385     return false;
3386   if (!QBI->getParent()->hasNUses(2))
3387     return false;
3388 
3389   // OK, this is a sequence of two diamonds or triangles.
3390   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3391   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3392   for (auto *BB : {PTB, PFB}) {
3393     if (!BB)
3394       continue;
3395     for (auto &I : *BB)
3396       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3397         PStoreAddresses.insert(SI->getPointerOperand());
3398   }
3399   for (auto *BB : {QTB, QFB}) {
3400     if (!BB)
3401       continue;
3402     for (auto &I : *BB)
3403       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3404         QStoreAddresses.insert(SI->getPointerOperand());
3405   }
3406 
3407   set_intersect(PStoreAddresses, QStoreAddresses);
3408   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3409   // clear what it contains.
3410   auto &CommonAddresses = PStoreAddresses;
3411 
3412   bool Changed = false;
3413   for (auto *Address : CommonAddresses)
3414     Changed |= mergeConditionalStoreToAddress(
3415         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3416   return Changed;
3417 }
3418 
3419 
3420 /// If the previous block ended with a widenable branch, determine if reusing
3421 /// the target block is profitable and legal.  This will have the effect of
3422 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3423 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3424   // TODO: This can be generalized in two important ways:
3425   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3426   //    values from the PBI edge.
3427   // 2) We can sink side effecting instructions into BI's fallthrough
3428   //    successor provided they doesn't contribute to computation of
3429   //    BI's condition.
3430   Value *CondWB, *WC;
3431   BasicBlock *IfTrueBB, *IfFalseBB;
3432   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3433       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3434     return false;
3435   if (!IfFalseBB->phis().empty())
3436     return false; // TODO
3437   // Use lambda to lazily compute expensive condition after cheap ones.
3438   auto NoSideEffects = [](BasicBlock &BB) {
3439     return !llvm::any_of(BB, [](const Instruction &I) {
3440         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3441       });
3442   };
3443   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3444       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3445       NoSideEffects(*BI->getParent())) {
3446     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3447     BI->setSuccessor(1, IfFalseBB);
3448     return true;
3449   }
3450   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3451       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3452       NoSideEffects(*BI->getParent())) {
3453     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3454     BI->setSuccessor(0, IfFalseBB);
3455     return true;
3456   }
3457   return false;
3458 }
3459 
3460 /// If we have a conditional branch as a predecessor of another block,
3461 /// this function tries to simplify it.  We know
3462 /// that PBI and BI are both conditional branches, and BI is in one of the
3463 /// successor blocks of PBI - PBI branches to BI.
3464 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3465                                            const DataLayout &DL,
3466                                            const TargetTransformInfo &TTI) {
3467   assert(PBI->isConditional() && BI->isConditional());
3468   BasicBlock *BB = BI->getParent();
3469 
3470   // If this block ends with a branch instruction, and if there is a
3471   // predecessor that ends on a branch of the same condition, make
3472   // this conditional branch redundant.
3473   if (PBI->getCondition() == BI->getCondition() &&
3474       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3475     // Okay, the outcome of this conditional branch is statically
3476     // knowable.  If this block had a single pred, handle specially.
3477     if (BB->getSinglePredecessor()) {
3478       // Turn this into a branch on constant.
3479       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3480       BI->setCondition(
3481           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3482       return true; // Nuke the branch on constant.
3483     }
3484 
3485     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3486     // in the constant and simplify the block result.  Subsequent passes of
3487     // simplifycfg will thread the block.
3488     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3489       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3490       PHINode *NewPN = PHINode::Create(
3491           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3492           BI->getCondition()->getName() + ".pr", &BB->front());
3493       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3494       // predecessor, compute the PHI'd conditional value for all of the preds.
3495       // Any predecessor where the condition is not computable we keep symbolic.
3496       for (pred_iterator PI = PB; PI != PE; ++PI) {
3497         BasicBlock *P = *PI;
3498         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3499             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3500             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3501           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3502           NewPN->addIncoming(
3503               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3504               P);
3505         } else {
3506           NewPN->addIncoming(BI->getCondition(), P);
3507         }
3508       }
3509 
3510       BI->setCondition(NewPN);
3511       return true;
3512     }
3513   }
3514 
3515   // If the previous block ended with a widenable branch, determine if reusing
3516   // the target block is profitable and legal.  This will have the effect of
3517   // "widening" PBI, but doesn't require us to reason about hosting safety.
3518   if (tryWidenCondBranchToCondBranch(PBI, BI))
3519     return true;
3520 
3521   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3522     if (CE->canTrap())
3523       return false;
3524 
3525   // If both branches are conditional and both contain stores to the same
3526   // address, remove the stores from the conditionals and create a conditional
3527   // merged store at the end.
3528   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3529     return true;
3530 
3531   // If this is a conditional branch in an empty block, and if any
3532   // predecessors are a conditional branch to one of our destinations,
3533   // fold the conditions into logical ops and one cond br.
3534 
3535   // Ignore dbg intrinsics.
3536   if (&*BB->instructionsWithoutDebug().begin() != BI)
3537     return false;
3538 
3539   int PBIOp, BIOp;
3540   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3541     PBIOp = 0;
3542     BIOp = 0;
3543   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3544     PBIOp = 0;
3545     BIOp = 1;
3546   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3547     PBIOp = 1;
3548     BIOp = 0;
3549   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3550     PBIOp = 1;
3551     BIOp = 1;
3552   } else {
3553     return false;
3554   }
3555 
3556   // Check to make sure that the other destination of this branch
3557   // isn't BB itself.  If so, this is an infinite loop that will
3558   // keep getting unwound.
3559   if (PBI->getSuccessor(PBIOp) == BB)
3560     return false;
3561 
3562   // Do not perform this transformation if it would require
3563   // insertion of a large number of select instructions. For targets
3564   // without predication/cmovs, this is a big pessimization.
3565 
3566   // Also do not perform this transformation if any phi node in the common
3567   // destination block can trap when reached by BB or PBB (PR17073). In that
3568   // case, it would be unsafe to hoist the operation into a select instruction.
3569 
3570   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3571   unsigned NumPhis = 0;
3572   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3573        ++II, ++NumPhis) {
3574     if (NumPhis > 2) // Disable this xform.
3575       return false;
3576 
3577     PHINode *PN = cast<PHINode>(II);
3578     Value *BIV = PN->getIncomingValueForBlock(BB);
3579     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3580       if (CE->canTrap())
3581         return false;
3582 
3583     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3584     Value *PBIV = PN->getIncomingValue(PBBIdx);
3585     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3586       if (CE->canTrap())
3587         return false;
3588   }
3589 
3590   // Finally, if everything is ok, fold the branches to logical ops.
3591   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3592 
3593   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3594                     << "AND: " << *BI->getParent());
3595 
3596   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3597   // branch in it, where one edge (OtherDest) goes back to itself but the other
3598   // exits.  We don't *know* that the program avoids the infinite loop
3599   // (even though that seems likely).  If we do this xform naively, we'll end up
3600   // recursively unpeeling the loop.  Since we know that (after the xform is
3601   // done) that the block *is* infinite if reached, we just make it an obviously
3602   // infinite loop with no cond branch.
3603   if (OtherDest == BB) {
3604     // Insert it at the end of the function, because it's either code,
3605     // or it won't matter if it's hot. :)
3606     BasicBlock *InfLoopBlock =
3607         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3608     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3609     OtherDest = InfLoopBlock;
3610   }
3611 
3612   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3613 
3614   // BI may have other predecessors.  Because of this, we leave
3615   // it alone, but modify PBI.
3616 
3617   // Make sure we get to CommonDest on True&True directions.
3618   Value *PBICond = PBI->getCondition();
3619   IRBuilder<NoFolder> Builder(PBI);
3620   if (PBIOp)
3621     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3622 
3623   Value *BICond = BI->getCondition();
3624   if (BIOp)
3625     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3626 
3627   // Merge the conditions.
3628   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3629 
3630   // Modify PBI to branch on the new condition to the new dests.
3631   PBI->setCondition(Cond);
3632   PBI->setSuccessor(0, CommonDest);
3633   PBI->setSuccessor(1, OtherDest);
3634 
3635   // Update branch weight for PBI.
3636   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3637   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3638   bool HasWeights =
3639       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3640                              SuccTrueWeight, SuccFalseWeight);
3641   if (HasWeights) {
3642     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3643     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3644     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3645     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3646     // The weight to CommonDest should be PredCommon * SuccTotal +
3647     //                                    PredOther * SuccCommon.
3648     // The weight to OtherDest should be PredOther * SuccOther.
3649     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3650                                   PredOther * SuccCommon,
3651                               PredOther * SuccOther};
3652     // Halve the weights if any of them cannot fit in an uint32_t
3653     FitWeights(NewWeights);
3654 
3655     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3656   }
3657 
3658   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3659   // block that are identical to the entries for BI's block.
3660   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3661 
3662   // We know that the CommonDest already had an edge from PBI to
3663   // it.  If it has PHIs though, the PHIs may have different
3664   // entries for BB and PBI's BB.  If so, insert a select to make
3665   // them agree.
3666   for (PHINode &PN : CommonDest->phis()) {
3667     Value *BIV = PN.getIncomingValueForBlock(BB);
3668     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3669     Value *PBIV = PN.getIncomingValue(PBBIdx);
3670     if (BIV != PBIV) {
3671       // Insert a select in PBI to pick the right value.
3672       SelectInst *NV = cast<SelectInst>(
3673           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3674       PN.setIncomingValue(PBBIdx, NV);
3675       // Although the select has the same condition as PBI, the original branch
3676       // weights for PBI do not apply to the new select because the select's
3677       // 'logical' edges are incoming edges of the phi that is eliminated, not
3678       // the outgoing edges of PBI.
3679       if (HasWeights) {
3680         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3681         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3682         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3683         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3684         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3685         // The weight to PredOtherDest should be PredOther * SuccCommon.
3686         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3687                                   PredOther * SuccCommon};
3688 
3689         FitWeights(NewWeights);
3690 
3691         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3692       }
3693     }
3694   }
3695 
3696   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3697   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3698 
3699   // This basic block is probably dead.  We know it has at least
3700   // one fewer predecessor.
3701   return true;
3702 }
3703 
3704 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3705 // true or to FalseBB if Cond is false.
3706 // Takes care of updating the successors and removing the old terminator.
3707 // Also makes sure not to introduce new successors by assuming that edges to
3708 // non-successor TrueBBs and FalseBBs aren't reachable.
3709 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3710                                                 Value *Cond, BasicBlock *TrueBB,
3711                                                 BasicBlock *FalseBB,
3712                                                 uint32_t TrueWeight,
3713                                                 uint32_t FalseWeight) {
3714   // Remove any superfluous successor edges from the CFG.
3715   // First, figure out which successors to preserve.
3716   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3717   // successor.
3718   BasicBlock *KeepEdge1 = TrueBB;
3719   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3720 
3721   // Then remove the rest.
3722   for (BasicBlock *Succ : successors(OldTerm)) {
3723     // Make sure only to keep exactly one copy of each edge.
3724     if (Succ == KeepEdge1)
3725       KeepEdge1 = nullptr;
3726     else if (Succ == KeepEdge2)
3727       KeepEdge2 = nullptr;
3728     else
3729       Succ->removePredecessor(OldTerm->getParent(),
3730                               /*KeepOneInputPHIs=*/true);
3731   }
3732 
3733   IRBuilder<> Builder(OldTerm);
3734   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3735 
3736   // Insert an appropriate new terminator.
3737   if (!KeepEdge1 && !KeepEdge2) {
3738     if (TrueBB == FalseBB)
3739       // We were only looking for one successor, and it was present.
3740       // Create an unconditional branch to it.
3741       Builder.CreateBr(TrueBB);
3742     else {
3743       // We found both of the successors we were looking for.
3744       // Create a conditional branch sharing the condition of the select.
3745       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3746       if (TrueWeight != FalseWeight)
3747         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3748     }
3749   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3750     // Neither of the selected blocks were successors, so this
3751     // terminator must be unreachable.
3752     new UnreachableInst(OldTerm->getContext(), OldTerm);
3753   } else {
3754     // One of the selected values was a successor, but the other wasn't.
3755     // Insert an unconditional branch to the one that was found;
3756     // the edge to the one that wasn't must be unreachable.
3757     if (!KeepEdge1)
3758       // Only TrueBB was found.
3759       Builder.CreateBr(TrueBB);
3760     else
3761       // Only FalseBB was found.
3762       Builder.CreateBr(FalseBB);
3763   }
3764 
3765   EraseTerminatorAndDCECond(OldTerm);
3766   return true;
3767 }
3768 
3769 // Replaces
3770 //   (switch (select cond, X, Y)) on constant X, Y
3771 // with a branch - conditional if X and Y lead to distinct BBs,
3772 // unconditional otherwise.
3773 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3774                                             SelectInst *Select) {
3775   // Check for constant integer values in the select.
3776   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3777   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3778   if (!TrueVal || !FalseVal)
3779     return false;
3780 
3781   // Find the relevant condition and destinations.
3782   Value *Condition = Select->getCondition();
3783   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3784   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3785 
3786   // Get weight for TrueBB and FalseBB.
3787   uint32_t TrueWeight = 0, FalseWeight = 0;
3788   SmallVector<uint64_t, 8> Weights;
3789   bool HasWeights = HasBranchWeights(SI);
3790   if (HasWeights) {
3791     GetBranchWeights(SI, Weights);
3792     if (Weights.size() == 1 + SI->getNumCases()) {
3793       TrueWeight =
3794           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3795       FalseWeight =
3796           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3797     }
3798   }
3799 
3800   // Perform the actual simplification.
3801   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3802                                     FalseWeight);
3803 }
3804 
3805 // Replaces
3806 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3807 //                             blockaddress(@fn, BlockB)))
3808 // with
3809 //   (br cond, BlockA, BlockB).
3810 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3811                                                 SelectInst *SI) {
3812   // Check that both operands of the select are block addresses.
3813   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3814   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3815   if (!TBA || !FBA)
3816     return false;
3817 
3818   // Extract the actual blocks.
3819   BasicBlock *TrueBB = TBA->getBasicBlock();
3820   BasicBlock *FalseBB = FBA->getBasicBlock();
3821 
3822   // Perform the actual simplification.
3823   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3824                                     0);
3825 }
3826 
3827 /// This is called when we find an icmp instruction
3828 /// (a seteq/setne with a constant) as the only instruction in a
3829 /// block that ends with an uncond branch.  We are looking for a very specific
3830 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3831 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3832 /// default value goes to an uncond block with a seteq in it, we get something
3833 /// like:
3834 ///
3835 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3836 /// DEFAULT:
3837 ///   %tmp = icmp eq i8 %A, 92
3838 ///   br label %end
3839 /// end:
3840 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3841 ///
3842 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3843 /// the PHI, merging the third icmp into the switch.
3844 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3845     ICmpInst *ICI, IRBuilder<> &Builder) {
3846   BasicBlock *BB = ICI->getParent();
3847 
3848   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3849   // complex.
3850   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3851     return false;
3852 
3853   Value *V = ICI->getOperand(0);
3854   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3855 
3856   // The pattern we're looking for is where our only predecessor is a switch on
3857   // 'V' and this block is the default case for the switch.  In this case we can
3858   // fold the compared value into the switch to simplify things.
3859   BasicBlock *Pred = BB->getSinglePredecessor();
3860   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3861     return false;
3862 
3863   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3864   if (SI->getCondition() != V)
3865     return false;
3866 
3867   // If BB is reachable on a non-default case, then we simply know the value of
3868   // V in this block.  Substitute it and constant fold the icmp instruction
3869   // away.
3870   if (SI->getDefaultDest() != BB) {
3871     ConstantInt *VVal = SI->findCaseDest(BB);
3872     assert(VVal && "Should have a unique destination value");
3873     ICI->setOperand(0, VVal);
3874 
3875     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3876       ICI->replaceAllUsesWith(V);
3877       ICI->eraseFromParent();
3878     }
3879     // BB is now empty, so it is likely to simplify away.
3880     return requestResimplify();
3881   }
3882 
3883   // Ok, the block is reachable from the default dest.  If the constant we're
3884   // comparing exists in one of the other edges, then we can constant fold ICI
3885   // and zap it.
3886   if (SI->findCaseValue(Cst) != SI->case_default()) {
3887     Value *V;
3888     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3889       V = ConstantInt::getFalse(BB->getContext());
3890     else
3891       V = ConstantInt::getTrue(BB->getContext());
3892 
3893     ICI->replaceAllUsesWith(V);
3894     ICI->eraseFromParent();
3895     // BB is now empty, so it is likely to simplify away.
3896     return requestResimplify();
3897   }
3898 
3899   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3900   // the block.
3901   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3902   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3903   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3904       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3905     return false;
3906 
3907   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3908   // true in the PHI.
3909   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3910   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3911 
3912   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3913     std::swap(DefaultCst, NewCst);
3914 
3915   // Replace ICI (which is used by the PHI for the default value) with true or
3916   // false depending on if it is EQ or NE.
3917   ICI->replaceAllUsesWith(DefaultCst);
3918   ICI->eraseFromParent();
3919 
3920   // Okay, the switch goes to this block on a default value.  Add an edge from
3921   // the switch to the merge point on the compared value.
3922   BasicBlock *NewBB =
3923       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3924   {
3925     SwitchInstProfUpdateWrapper SIW(*SI);
3926     auto W0 = SIW.getSuccessorWeight(0);
3927     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3928     if (W0) {
3929       NewW = ((uint64_t(*W0) + 1) >> 1);
3930       SIW.setSuccessorWeight(0, *NewW);
3931     }
3932     SIW.addCase(Cst, NewBB, NewW);
3933   }
3934 
3935   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3936   Builder.SetInsertPoint(NewBB);
3937   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3938   Builder.CreateBr(SuccBlock);
3939   PHIUse->addIncoming(NewCst, NewBB);
3940   return true;
3941 }
3942 
3943 /// The specified branch is a conditional branch.
3944 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3945 /// fold it into a switch instruction if so.
3946 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
3947                                                IRBuilder<> &Builder,
3948                                                const DataLayout &DL) {
3949   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3950   if (!Cond)
3951     return false;
3952 
3953   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3954   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3955   // 'setne's and'ed together, collect them.
3956 
3957   // Try to gather values from a chain of and/or to be turned into a switch
3958   ConstantComparesGatherer ConstantCompare(Cond, DL);
3959   // Unpack the result
3960   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3961   Value *CompVal = ConstantCompare.CompValue;
3962   unsigned UsedICmps = ConstantCompare.UsedICmps;
3963   Value *ExtraCase = ConstantCompare.Extra;
3964 
3965   // If we didn't have a multiply compared value, fail.
3966   if (!CompVal)
3967     return false;
3968 
3969   // Avoid turning single icmps into a switch.
3970   if (UsedICmps <= 1)
3971     return false;
3972 
3973   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3974 
3975   // There might be duplicate constants in the list, which the switch
3976   // instruction can't handle, remove them now.
3977   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3978   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3979 
3980   // If Extra was used, we require at least two switch values to do the
3981   // transformation.  A switch with one value is just a conditional branch.
3982   if (ExtraCase && Values.size() < 2)
3983     return false;
3984 
3985   // TODO: Preserve branch weight metadata, similarly to how
3986   // FoldValueComparisonIntoPredecessors preserves it.
3987 
3988   // Figure out which block is which destination.
3989   BasicBlock *DefaultBB = BI->getSuccessor(1);
3990   BasicBlock *EdgeBB = BI->getSuccessor(0);
3991   if (!TrueWhenEqual)
3992     std::swap(DefaultBB, EdgeBB);
3993 
3994   BasicBlock *BB = BI->getParent();
3995 
3996   // MSAN does not like undefs as branch condition which can be introduced
3997   // with "explicit branch".
3998   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
3999     return false;
4000 
4001   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4002                     << " cases into SWITCH.  BB is:\n"
4003                     << *BB);
4004 
4005   // If there are any extra values that couldn't be folded into the switch
4006   // then we evaluate them with an explicit branch first. Split the block
4007   // right before the condbr to handle it.
4008   if (ExtraCase) {
4009     BasicBlock *NewBB =
4010         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
4011     // Remove the uncond branch added to the old block.
4012     Instruction *OldTI = BB->getTerminator();
4013     Builder.SetInsertPoint(OldTI);
4014 
4015     if (TrueWhenEqual)
4016       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4017     else
4018       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4019 
4020     OldTI->eraseFromParent();
4021 
4022     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4023     // for the edge we just added.
4024     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4025 
4026     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4027                       << "\nEXTRABB = " << *BB);
4028     BB = NewBB;
4029   }
4030 
4031   Builder.SetInsertPoint(BI);
4032   // Convert pointer to int before we switch.
4033   if (CompVal->getType()->isPointerTy()) {
4034     CompVal = Builder.CreatePtrToInt(
4035         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4036   }
4037 
4038   // Create the new switch instruction now.
4039   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4040 
4041   // Add all of the 'cases' to the switch instruction.
4042   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4043     New->addCase(Values[i], EdgeBB);
4044 
4045   // We added edges from PI to the EdgeBB.  As such, if there were any
4046   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4047   // the number of edges added.
4048   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4049     PHINode *PN = cast<PHINode>(BBI);
4050     Value *InVal = PN->getIncomingValueForBlock(BB);
4051     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4052       PN->addIncoming(InVal, BB);
4053   }
4054 
4055   // Erase the old branch instruction.
4056   EraseTerminatorAndDCECond(BI);
4057 
4058   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4059   return true;
4060 }
4061 
4062 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4063   if (isa<PHINode>(RI->getValue()))
4064     return simplifyCommonResume(RI);
4065   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4066            RI->getValue() == RI->getParent()->getFirstNonPHI())
4067     // The resume must unwind the exception that caused control to branch here.
4068     return simplifySingleResume(RI);
4069 
4070   return false;
4071 }
4072 
4073 // Check if cleanup block is empty
4074 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4075   for (Instruction &I : R) {
4076     auto *II = dyn_cast<IntrinsicInst>(&I);
4077     if (!II)
4078       return false;
4079 
4080     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4081     switch (IntrinsicID) {
4082     case Intrinsic::dbg_declare:
4083     case Intrinsic::dbg_value:
4084     case Intrinsic::dbg_label:
4085     case Intrinsic::lifetime_end:
4086       break;
4087     default:
4088       return false;
4089     }
4090   }
4091   return true;
4092 }
4093 
4094 // Simplify resume that is shared by several landing pads (phi of landing pad).
4095 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4096   BasicBlock *BB = RI->getParent();
4097 
4098   // Check that there are no other instructions except for debug and lifetime
4099   // intrinsics between the phi's and resume instruction.
4100   if (!isCleanupBlockEmpty(
4101           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4102     return false;
4103 
4104   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4105   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4106 
4107   // Check incoming blocks to see if any of them are trivial.
4108   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4109        Idx++) {
4110     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4111     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4112 
4113     // If the block has other successors, we can not delete it because
4114     // it has other dependents.
4115     if (IncomingBB->getUniqueSuccessor() != BB)
4116       continue;
4117 
4118     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4119     // Not the landing pad that caused the control to branch here.
4120     if (IncomingValue != LandingPad)
4121       continue;
4122 
4123     if (isCleanupBlockEmpty(
4124             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4125       TrivialUnwindBlocks.insert(IncomingBB);
4126   }
4127 
4128   // If no trivial unwind blocks, don't do any simplifications.
4129   if (TrivialUnwindBlocks.empty())
4130     return false;
4131 
4132   // Turn all invokes that unwind here into calls.
4133   for (auto *TrivialBB : TrivialUnwindBlocks) {
4134     // Blocks that will be simplified should be removed from the phi node.
4135     // Note there could be multiple edges to the resume block, and we need
4136     // to remove them all.
4137     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4138       BB->removePredecessor(TrivialBB, true);
4139 
4140     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
4141          PI != PE;) {
4142       BasicBlock *Pred = *PI++;
4143       removeUnwindEdge(Pred);
4144       ++NumInvokes;
4145     }
4146 
4147     // In each SimplifyCFG run, only the current processed block can be erased.
4148     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4149     // of erasing TrivialBB, we only remove the branch to the common resume
4150     // block so that we can later erase the resume block since it has no
4151     // predecessors.
4152     TrivialBB->getTerminator()->eraseFromParent();
4153     new UnreachableInst(RI->getContext(), TrivialBB);
4154   }
4155 
4156   // Delete the resume block if all its predecessors have been removed.
4157   if (pred_empty(BB))
4158     BB->eraseFromParent();
4159 
4160   return !TrivialUnwindBlocks.empty();
4161 }
4162 
4163 // Simplify resume that is only used by a single (non-phi) landing pad.
4164 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4165   BasicBlock *BB = RI->getParent();
4166   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4167   assert(RI->getValue() == LPInst &&
4168          "Resume must unwind the exception that caused control to here");
4169 
4170   // Check that there are no other instructions except for debug intrinsics.
4171   if (!isCleanupBlockEmpty(
4172           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4173     return false;
4174 
4175   // Turn all invokes that unwind here into calls and delete the basic block.
4176   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4177     BasicBlock *Pred = *PI++;
4178     removeUnwindEdge(Pred);
4179     ++NumInvokes;
4180   }
4181 
4182   // The landingpad is now unreachable.  Zap it.
4183   if (LoopHeaders)
4184     LoopHeaders->erase(BB);
4185   BB->eraseFromParent();
4186   return true;
4187 }
4188 
4189 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
4190   // If this is a trivial cleanup pad that executes no instructions, it can be
4191   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4192   // that is an EH pad will be updated to continue to the caller and any
4193   // predecessor that terminates with an invoke instruction will have its invoke
4194   // instruction converted to a call instruction.  If the cleanup pad being
4195   // simplified does not continue to the caller, each predecessor will be
4196   // updated to continue to the unwind destination of the cleanup pad being
4197   // simplified.
4198   BasicBlock *BB = RI->getParent();
4199   CleanupPadInst *CPInst = RI->getCleanupPad();
4200   if (CPInst->getParent() != BB)
4201     // This isn't an empty cleanup.
4202     return false;
4203 
4204   // We cannot kill the pad if it has multiple uses.  This typically arises
4205   // from unreachable basic blocks.
4206   if (!CPInst->hasOneUse())
4207     return false;
4208 
4209   // Check that there are no other instructions except for benign intrinsics.
4210   if (!isCleanupBlockEmpty(
4211           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4212     return false;
4213 
4214   // If the cleanup return we are simplifying unwinds to the caller, this will
4215   // set UnwindDest to nullptr.
4216   BasicBlock *UnwindDest = RI->getUnwindDest();
4217   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4218 
4219   // We're about to remove BB from the control flow.  Before we do, sink any
4220   // PHINodes into the unwind destination.  Doing this before changing the
4221   // control flow avoids some potentially slow checks, since we can currently
4222   // be certain that UnwindDest and BB have no common predecessors (since they
4223   // are both EH pads).
4224   if (UnwindDest) {
4225     // First, go through the PHI nodes in UnwindDest and update any nodes that
4226     // reference the block we are removing
4227     for (BasicBlock::iterator I = UnwindDest->begin(),
4228                               IE = DestEHPad->getIterator();
4229          I != IE; ++I) {
4230       PHINode *DestPN = cast<PHINode>(I);
4231 
4232       int Idx = DestPN->getBasicBlockIndex(BB);
4233       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4234       assert(Idx != -1);
4235       // This PHI node has an incoming value that corresponds to a control
4236       // path through the cleanup pad we are removing.  If the incoming
4237       // value is in the cleanup pad, it must be a PHINode (because we
4238       // verified above that the block is otherwise empty).  Otherwise, the
4239       // value is either a constant or a value that dominates the cleanup
4240       // pad being removed.
4241       //
4242       // Because BB and UnwindDest are both EH pads, all of their
4243       // predecessors must unwind to these blocks, and since no instruction
4244       // can have multiple unwind destinations, there will be no overlap in
4245       // incoming blocks between SrcPN and DestPN.
4246       Value *SrcVal = DestPN->getIncomingValue(Idx);
4247       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4248 
4249       // Remove the entry for the block we are deleting.
4250       DestPN->removeIncomingValue(Idx, false);
4251 
4252       if (SrcPN && SrcPN->getParent() == BB) {
4253         // If the incoming value was a PHI node in the cleanup pad we are
4254         // removing, we need to merge that PHI node's incoming values into
4255         // DestPN.
4256         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4257              SrcIdx != SrcE; ++SrcIdx) {
4258           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4259                               SrcPN->getIncomingBlock(SrcIdx));
4260         }
4261       } else {
4262         // Otherwise, the incoming value came from above BB and
4263         // so we can just reuse it.  We must associate all of BB's
4264         // predecessors with this value.
4265         for (auto *pred : predecessors(BB)) {
4266           DestPN->addIncoming(SrcVal, pred);
4267         }
4268       }
4269     }
4270 
4271     // Sink any remaining PHI nodes directly into UnwindDest.
4272     Instruction *InsertPt = DestEHPad;
4273     for (BasicBlock::iterator I = BB->begin(),
4274                               IE = BB->getFirstNonPHI()->getIterator();
4275          I != IE;) {
4276       // The iterator must be incremented here because the instructions are
4277       // being moved to another block.
4278       PHINode *PN = cast<PHINode>(I++);
4279       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4280         // If the PHI node has no uses or all of its uses are in this basic
4281         // block (meaning they are debug or lifetime intrinsics), just leave
4282         // it.  It will be erased when we erase BB below.
4283         continue;
4284 
4285       // Otherwise, sink this PHI node into UnwindDest.
4286       // Any predecessors to UnwindDest which are not already represented
4287       // must be back edges which inherit the value from the path through
4288       // BB.  In this case, the PHI value must reference itself.
4289       for (auto *pred : predecessors(UnwindDest))
4290         if (pred != BB)
4291           PN->addIncoming(PN, pred);
4292       PN->moveBefore(InsertPt);
4293     }
4294   }
4295 
4296   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4297     // The iterator must be updated here because we are removing this pred.
4298     BasicBlock *PredBB = *PI++;
4299     if (UnwindDest == nullptr) {
4300       removeUnwindEdge(PredBB);
4301       ++NumInvokes;
4302     } else {
4303       Instruction *TI = PredBB->getTerminator();
4304       TI->replaceUsesOfWith(BB, UnwindDest);
4305     }
4306   }
4307 
4308   // The cleanup pad is now unreachable.  Zap it.
4309   BB->eraseFromParent();
4310   return true;
4311 }
4312 
4313 // Try to merge two cleanuppads together.
4314 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4315   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4316   // with.
4317   BasicBlock *UnwindDest = RI->getUnwindDest();
4318   if (!UnwindDest)
4319     return false;
4320 
4321   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4322   // be safe to merge without code duplication.
4323   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4324     return false;
4325 
4326   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4327   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4328   if (!SuccessorCleanupPad)
4329     return false;
4330 
4331   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4332   // Replace any uses of the successor cleanupad with the predecessor pad
4333   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4334   // funclet bundle operands.
4335   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4336   // Remove the old cleanuppad.
4337   SuccessorCleanupPad->eraseFromParent();
4338   // Now, we simply replace the cleanupret with a branch to the unwind
4339   // destination.
4340   BranchInst::Create(UnwindDest, RI->getParent());
4341   RI->eraseFromParent();
4342 
4343   return true;
4344 }
4345 
4346 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4347   // It is possible to transiantly have an undef cleanuppad operand because we
4348   // have deleted some, but not all, dead blocks.
4349   // Eventually, this block will be deleted.
4350   if (isa<UndefValue>(RI->getOperand(0)))
4351     return false;
4352 
4353   if (mergeCleanupPad(RI))
4354     return true;
4355 
4356   if (removeEmptyCleanup(RI))
4357     return true;
4358 
4359   return false;
4360 }
4361 
4362 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4363   BasicBlock *BB = RI->getParent();
4364   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4365     return false;
4366 
4367   // Find predecessors that end with branches.
4368   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4369   SmallVector<BranchInst *, 8> CondBranchPreds;
4370   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4371     BasicBlock *P = *PI;
4372     Instruction *PTI = P->getTerminator();
4373     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4374       if (BI->isUnconditional())
4375         UncondBranchPreds.push_back(P);
4376       else
4377         CondBranchPreds.push_back(BI);
4378     }
4379   }
4380 
4381   // If we found some, do the transformation!
4382   if (!UncondBranchPreds.empty() && DupRet) {
4383     while (!UncondBranchPreds.empty()) {
4384       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4385       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4386                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4387       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4388     }
4389 
4390     // If we eliminated all predecessors of the block, delete the block now.
4391     if (pred_empty(BB)) {
4392       // We know there are no successors, so just nuke the block.
4393       if (LoopHeaders)
4394         LoopHeaders->erase(BB);
4395       BB->eraseFromParent();
4396     }
4397 
4398     return true;
4399   }
4400 
4401   // Check out all of the conditional branches going to this return
4402   // instruction.  If any of them just select between returns, change the
4403   // branch itself into a select/return pair.
4404   while (!CondBranchPreds.empty()) {
4405     BranchInst *BI = CondBranchPreds.pop_back_val();
4406 
4407     // Check to see if the non-BB successor is also a return block.
4408     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4409         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4410         SimplifyCondBranchToTwoReturns(BI, Builder))
4411       return true;
4412   }
4413   return false;
4414 }
4415 
4416 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4417   BasicBlock *BB = UI->getParent();
4418 
4419   bool Changed = false;
4420 
4421   // If there are any instructions immediately before the unreachable that can
4422   // be removed, do so.
4423   while (UI->getIterator() != BB->begin()) {
4424     BasicBlock::iterator BBI = UI->getIterator();
4425     --BBI;
4426     // Do not delete instructions that can have side effects which might cause
4427     // the unreachable to not be reachable; specifically, calls and volatile
4428     // operations may have this effect.
4429     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4430       break;
4431 
4432     if (BBI->mayHaveSideEffects()) {
4433       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4434         if (SI->isVolatile())
4435           break;
4436       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4437         if (LI->isVolatile())
4438           break;
4439       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4440         if (RMWI->isVolatile())
4441           break;
4442       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4443         if (CXI->isVolatile())
4444           break;
4445       } else if (isa<CatchPadInst>(BBI)) {
4446         // A catchpad may invoke exception object constructors and such, which
4447         // in some languages can be arbitrary code, so be conservative by
4448         // default.
4449         // For CoreCLR, it just involves a type test, so can be removed.
4450         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4451             EHPersonality::CoreCLR)
4452           break;
4453       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4454                  !isa<LandingPadInst>(BBI)) {
4455         break;
4456       }
4457       // Note that deleting LandingPad's here is in fact okay, although it
4458       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4459       // all the predecessors of this block will be the unwind edges of Invokes,
4460       // and we can therefore guarantee this block will be erased.
4461     }
4462 
4463     // Delete this instruction (any uses are guaranteed to be dead)
4464     if (!BBI->use_empty())
4465       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4466     BBI->eraseFromParent();
4467     Changed = true;
4468   }
4469 
4470   // If the unreachable instruction is the first in the block, take a gander
4471   // at all of the predecessors of this instruction, and simplify them.
4472   if (&BB->front() != UI)
4473     return Changed;
4474 
4475   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4476   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4477     Instruction *TI = Preds[i]->getTerminator();
4478     IRBuilder<> Builder(TI);
4479     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4480       if (BI->isUnconditional()) {
4481         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4482         new UnreachableInst(TI->getContext(), TI);
4483         TI->eraseFromParent();
4484         Changed = true;
4485       } else {
4486         Value* Cond = BI->getCondition();
4487         if (BI->getSuccessor(0) == BB) {
4488           Builder.CreateAssumption(Builder.CreateNot(Cond));
4489           Builder.CreateBr(BI->getSuccessor(1));
4490         } else {
4491           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4492           Builder.CreateAssumption(Cond);
4493           Builder.CreateBr(BI->getSuccessor(0));
4494         }
4495         EraseTerminatorAndDCECond(BI);
4496         Changed = true;
4497       }
4498     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4499       SwitchInstProfUpdateWrapper SU(*SI);
4500       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4501         if (i->getCaseSuccessor() != BB) {
4502           ++i;
4503           continue;
4504         }
4505         BB->removePredecessor(SU->getParent());
4506         i = SU.removeCase(i);
4507         e = SU->case_end();
4508         Changed = true;
4509       }
4510     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4511       if (II->getUnwindDest() == BB) {
4512         removeUnwindEdge(TI->getParent());
4513         Changed = true;
4514       }
4515     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4516       if (CSI->getUnwindDest() == BB) {
4517         removeUnwindEdge(TI->getParent());
4518         Changed = true;
4519         continue;
4520       }
4521 
4522       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4523                                              E = CSI->handler_end();
4524            I != E; ++I) {
4525         if (*I == BB) {
4526           CSI->removeHandler(I);
4527           --I;
4528           --E;
4529           Changed = true;
4530         }
4531       }
4532       if (CSI->getNumHandlers() == 0) {
4533         BasicBlock *CatchSwitchBB = CSI->getParent();
4534         if (CSI->hasUnwindDest()) {
4535           // Redirect preds to the unwind dest
4536           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4537         } else {
4538           // Rewrite all preds to unwind to caller (or from invoke to call).
4539           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4540           for (BasicBlock *EHPred : EHPreds)
4541             removeUnwindEdge(EHPred);
4542         }
4543         // The catchswitch is no longer reachable.
4544         new UnreachableInst(CSI->getContext(), CSI);
4545         CSI->eraseFromParent();
4546         Changed = true;
4547       }
4548     } else if (isa<CleanupReturnInst>(TI)) {
4549       new UnreachableInst(TI->getContext(), TI);
4550       TI->eraseFromParent();
4551       Changed = true;
4552     }
4553   }
4554 
4555   // If this block is now dead, remove it.
4556   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4557     // We know there are no successors, so just nuke the block.
4558     if (LoopHeaders)
4559       LoopHeaders->erase(BB);
4560     BB->eraseFromParent();
4561     return true;
4562   }
4563 
4564   return Changed;
4565 }
4566 
4567 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4568   assert(Cases.size() >= 1);
4569 
4570   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4571   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4572     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4573       return false;
4574   }
4575   return true;
4576 }
4577 
4578 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4579   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4580   BasicBlock *NewDefaultBlock =
4581      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4582   Switch->setDefaultDest(&*NewDefaultBlock);
4583   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4584   auto *NewTerminator = NewDefaultBlock->getTerminator();
4585   new UnreachableInst(Switch->getContext(), NewTerminator);
4586   EraseTerminatorAndDCECond(NewTerminator);
4587 }
4588 
4589 /// Turn a switch with two reachable destinations into an integer range
4590 /// comparison and branch.
4591 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4592                                              IRBuilder<> &Builder) {
4593   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4594 
4595   bool HasDefault =
4596       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4597 
4598   // Partition the cases into two sets with different destinations.
4599   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4600   BasicBlock *DestB = nullptr;
4601   SmallVector<ConstantInt *, 16> CasesA;
4602   SmallVector<ConstantInt *, 16> CasesB;
4603 
4604   for (auto Case : SI->cases()) {
4605     BasicBlock *Dest = Case.getCaseSuccessor();
4606     if (!DestA)
4607       DestA = Dest;
4608     if (Dest == DestA) {
4609       CasesA.push_back(Case.getCaseValue());
4610       continue;
4611     }
4612     if (!DestB)
4613       DestB = Dest;
4614     if (Dest == DestB) {
4615       CasesB.push_back(Case.getCaseValue());
4616       continue;
4617     }
4618     return false; // More than two destinations.
4619   }
4620 
4621   assert(DestA && DestB &&
4622          "Single-destination switch should have been folded.");
4623   assert(DestA != DestB);
4624   assert(DestB != SI->getDefaultDest());
4625   assert(!CasesB.empty() && "There must be non-default cases.");
4626   assert(!CasesA.empty() || HasDefault);
4627 
4628   // Figure out if one of the sets of cases form a contiguous range.
4629   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4630   BasicBlock *ContiguousDest = nullptr;
4631   BasicBlock *OtherDest = nullptr;
4632   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4633     ContiguousCases = &CasesA;
4634     ContiguousDest = DestA;
4635     OtherDest = DestB;
4636   } else if (CasesAreContiguous(CasesB)) {
4637     ContiguousCases = &CasesB;
4638     ContiguousDest = DestB;
4639     OtherDest = DestA;
4640   } else
4641     return false;
4642 
4643   // Start building the compare and branch.
4644 
4645   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4646   Constant *NumCases =
4647       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4648 
4649   Value *Sub = SI->getCondition();
4650   if (!Offset->isNullValue())
4651     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4652 
4653   Value *Cmp;
4654   // If NumCases overflowed, then all possible values jump to the successor.
4655   if (NumCases->isNullValue() && !ContiguousCases->empty())
4656     Cmp = ConstantInt::getTrue(SI->getContext());
4657   else
4658     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4659   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4660 
4661   // Update weight for the newly-created conditional branch.
4662   if (HasBranchWeights(SI)) {
4663     SmallVector<uint64_t, 8> Weights;
4664     GetBranchWeights(SI, Weights);
4665     if (Weights.size() == 1 + SI->getNumCases()) {
4666       uint64_t TrueWeight = 0;
4667       uint64_t FalseWeight = 0;
4668       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4669         if (SI->getSuccessor(I) == ContiguousDest)
4670           TrueWeight += Weights[I];
4671         else
4672           FalseWeight += Weights[I];
4673       }
4674       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4675         TrueWeight /= 2;
4676         FalseWeight /= 2;
4677       }
4678       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4679     }
4680   }
4681 
4682   // Prune obsolete incoming values off the successors' PHI nodes.
4683   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4684     unsigned PreviousEdges = ContiguousCases->size();
4685     if (ContiguousDest == SI->getDefaultDest())
4686       ++PreviousEdges;
4687     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4688       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4689   }
4690   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4691     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4692     if (OtherDest == SI->getDefaultDest())
4693       ++PreviousEdges;
4694     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4695       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4696   }
4697 
4698   // Clean up the default block - it may have phis or other instructions before
4699   // the unreachable terminator.
4700   if (!HasDefault)
4701     createUnreachableSwitchDefault(SI);
4702 
4703   // Drop the switch.
4704   SI->eraseFromParent();
4705 
4706   return true;
4707 }
4708 
4709 /// Compute masked bits for the condition of a switch
4710 /// and use it to remove dead cases.
4711 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4712                                      const DataLayout &DL) {
4713   Value *Cond = SI->getCondition();
4714   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4715   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4716 
4717   // We can also eliminate cases by determining that their values are outside of
4718   // the limited range of the condition based on how many significant (non-sign)
4719   // bits are in the condition value.
4720   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4721   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4722 
4723   // Gather dead cases.
4724   SmallVector<ConstantInt *, 8> DeadCases;
4725   for (auto &Case : SI->cases()) {
4726     const APInt &CaseVal = Case.getCaseValue()->getValue();
4727     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4728         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4729       DeadCases.push_back(Case.getCaseValue());
4730       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4731                         << " is dead.\n");
4732     }
4733   }
4734 
4735   // If we can prove that the cases must cover all possible values, the
4736   // default destination becomes dead and we can remove it.  If we know some
4737   // of the bits in the value, we can use that to more precisely compute the
4738   // number of possible unique case values.
4739   bool HasDefault =
4740       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4741   const unsigned NumUnknownBits =
4742       Bits - (Known.Zero | Known.One).countPopulation();
4743   assert(NumUnknownBits <= Bits);
4744   if (HasDefault && DeadCases.empty() &&
4745       NumUnknownBits < 64 /* avoid overflow */ &&
4746       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4747     createUnreachableSwitchDefault(SI);
4748     return true;
4749   }
4750 
4751   if (DeadCases.empty())
4752     return false;
4753 
4754   SwitchInstProfUpdateWrapper SIW(*SI);
4755   for (ConstantInt *DeadCase : DeadCases) {
4756     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4757     assert(CaseI != SI->case_default() &&
4758            "Case was not found. Probably mistake in DeadCases forming.");
4759     // Prune unused values from PHI nodes.
4760     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4761     SIW.removeCase(CaseI);
4762   }
4763 
4764   return true;
4765 }
4766 
4767 /// If BB would be eligible for simplification by
4768 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4769 /// by an unconditional branch), look at the phi node for BB in the successor
4770 /// block and see if the incoming value is equal to CaseValue. If so, return
4771 /// the phi node, and set PhiIndex to BB's index in the phi node.
4772 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4773                                               BasicBlock *BB, int *PhiIndex) {
4774   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4775     return nullptr; // BB must be empty to be a candidate for simplification.
4776   if (!BB->getSinglePredecessor())
4777     return nullptr; // BB must be dominated by the switch.
4778 
4779   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4780   if (!Branch || !Branch->isUnconditional())
4781     return nullptr; // Terminator must be unconditional branch.
4782 
4783   BasicBlock *Succ = Branch->getSuccessor(0);
4784 
4785   for (PHINode &PHI : Succ->phis()) {
4786     int Idx = PHI.getBasicBlockIndex(BB);
4787     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4788 
4789     Value *InValue = PHI.getIncomingValue(Idx);
4790     if (InValue != CaseValue)
4791       continue;
4792 
4793     *PhiIndex = Idx;
4794     return &PHI;
4795   }
4796 
4797   return nullptr;
4798 }
4799 
4800 /// Try to forward the condition of a switch instruction to a phi node
4801 /// dominated by the switch, if that would mean that some of the destination
4802 /// blocks of the switch can be folded away. Return true if a change is made.
4803 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4804   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4805 
4806   ForwardingNodesMap ForwardingNodes;
4807   BasicBlock *SwitchBlock = SI->getParent();
4808   bool Changed = false;
4809   for (auto &Case : SI->cases()) {
4810     ConstantInt *CaseValue = Case.getCaseValue();
4811     BasicBlock *CaseDest = Case.getCaseSuccessor();
4812 
4813     // Replace phi operands in successor blocks that are using the constant case
4814     // value rather than the switch condition variable:
4815     //   switchbb:
4816     //   switch i32 %x, label %default [
4817     //     i32 17, label %succ
4818     //   ...
4819     //   succ:
4820     //     %r = phi i32 ... [ 17, %switchbb ] ...
4821     // -->
4822     //     %r = phi i32 ... [ %x, %switchbb ] ...
4823 
4824     for (PHINode &Phi : CaseDest->phis()) {
4825       // This only works if there is exactly 1 incoming edge from the switch to
4826       // a phi. If there is >1, that means multiple cases of the switch map to 1
4827       // value in the phi, and that phi value is not the switch condition. Thus,
4828       // this transform would not make sense (the phi would be invalid because
4829       // a phi can't have different incoming values from the same block).
4830       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4831       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4832           count(Phi.blocks(), SwitchBlock) == 1) {
4833         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4834         Changed = true;
4835       }
4836     }
4837 
4838     // Collect phi nodes that are indirectly using this switch's case constants.
4839     int PhiIdx;
4840     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4841       ForwardingNodes[Phi].push_back(PhiIdx);
4842   }
4843 
4844   for (auto &ForwardingNode : ForwardingNodes) {
4845     PHINode *Phi = ForwardingNode.first;
4846     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4847     if (Indexes.size() < 2)
4848       continue;
4849 
4850     for (int Index : Indexes)
4851       Phi->setIncomingValue(Index, SI->getCondition());
4852     Changed = true;
4853   }
4854 
4855   return Changed;
4856 }
4857 
4858 /// Return true if the backend will be able to handle
4859 /// initializing an array of constants like C.
4860 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4861   if (C->isThreadDependent())
4862     return false;
4863   if (C->isDLLImportDependent())
4864     return false;
4865 
4866   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4867       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4868       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4869     return false;
4870 
4871   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4872     if (!CE->isGEPWithNoNotionalOverIndexing())
4873       return false;
4874     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4875       return false;
4876   }
4877 
4878   if (!TTI.shouldBuildLookupTablesForConstant(C))
4879     return false;
4880 
4881   return true;
4882 }
4883 
4884 /// If V is a Constant, return it. Otherwise, try to look up
4885 /// its constant value in ConstantPool, returning 0 if it's not there.
4886 static Constant *
4887 LookupConstant(Value *V,
4888                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4889   if (Constant *C = dyn_cast<Constant>(V))
4890     return C;
4891   return ConstantPool.lookup(V);
4892 }
4893 
4894 /// Try to fold instruction I into a constant. This works for
4895 /// simple instructions such as binary operations where both operands are
4896 /// constant or can be replaced by constants from the ConstantPool. Returns the
4897 /// resulting constant on success, 0 otherwise.
4898 static Constant *
4899 ConstantFold(Instruction *I, const DataLayout &DL,
4900              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4901   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4902     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4903     if (!A)
4904       return nullptr;
4905     if (A->isAllOnesValue())
4906       return LookupConstant(Select->getTrueValue(), ConstantPool);
4907     if (A->isNullValue())
4908       return LookupConstant(Select->getFalseValue(), ConstantPool);
4909     return nullptr;
4910   }
4911 
4912   SmallVector<Constant *, 4> COps;
4913   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4914     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4915       COps.push_back(A);
4916     else
4917       return nullptr;
4918   }
4919 
4920   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4921     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4922                                            COps[1], DL);
4923   }
4924 
4925   return ConstantFoldInstOperands(I, COps, DL);
4926 }
4927 
4928 /// Try to determine the resulting constant values in phi nodes
4929 /// at the common destination basic block, *CommonDest, for one of the case
4930 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4931 /// case), of a switch instruction SI.
4932 static bool
4933 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4934                BasicBlock **CommonDest,
4935                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4936                const DataLayout &DL, const TargetTransformInfo &TTI) {
4937   // The block from which we enter the common destination.
4938   BasicBlock *Pred = SI->getParent();
4939 
4940   // If CaseDest is empty except for some side-effect free instructions through
4941   // which we can constant-propagate the CaseVal, continue to its successor.
4942   SmallDenseMap<Value *, Constant *> ConstantPool;
4943   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4944   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4945     if (I.isTerminator()) {
4946       // If the terminator is a simple branch, continue to the next block.
4947       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4948         return false;
4949       Pred = CaseDest;
4950       CaseDest = I.getSuccessor(0);
4951     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4952       // Instruction is side-effect free and constant.
4953 
4954       // If the instruction has uses outside this block or a phi node slot for
4955       // the block, it is not safe to bypass the instruction since it would then
4956       // no longer dominate all its uses.
4957       for (auto &Use : I.uses()) {
4958         User *User = Use.getUser();
4959         if (Instruction *I = dyn_cast<Instruction>(User))
4960           if (I->getParent() == CaseDest)
4961             continue;
4962         if (PHINode *Phi = dyn_cast<PHINode>(User))
4963           if (Phi->getIncomingBlock(Use) == CaseDest)
4964             continue;
4965         return false;
4966       }
4967 
4968       ConstantPool.insert(std::make_pair(&I, C));
4969     } else {
4970       break;
4971     }
4972   }
4973 
4974   // If we did not have a CommonDest before, use the current one.
4975   if (!*CommonDest)
4976     *CommonDest = CaseDest;
4977   // If the destination isn't the common one, abort.
4978   if (CaseDest != *CommonDest)
4979     return false;
4980 
4981   // Get the values for this case from phi nodes in the destination block.
4982   for (PHINode &PHI : (*CommonDest)->phis()) {
4983     int Idx = PHI.getBasicBlockIndex(Pred);
4984     if (Idx == -1)
4985       continue;
4986 
4987     Constant *ConstVal =
4988         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4989     if (!ConstVal)
4990       return false;
4991 
4992     // Be conservative about which kinds of constants we support.
4993     if (!ValidLookupTableConstant(ConstVal, TTI))
4994       return false;
4995 
4996     Res.push_back(std::make_pair(&PHI, ConstVal));
4997   }
4998 
4999   return Res.size() > 0;
5000 }
5001 
5002 // Helper function used to add CaseVal to the list of cases that generate
5003 // Result. Returns the updated number of cases that generate this result.
5004 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5005                                  SwitchCaseResultVectorTy &UniqueResults,
5006                                  Constant *Result) {
5007   for (auto &I : UniqueResults) {
5008     if (I.first == Result) {
5009       I.second.push_back(CaseVal);
5010       return I.second.size();
5011     }
5012   }
5013   UniqueResults.push_back(
5014       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5015   return 1;
5016 }
5017 
5018 // Helper function that initializes a map containing
5019 // results for the PHI node of the common destination block for a switch
5020 // instruction. Returns false if multiple PHI nodes have been found or if
5021 // there is not a common destination block for the switch.
5022 static bool
5023 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5024                       SwitchCaseResultVectorTy &UniqueResults,
5025                       Constant *&DefaultResult, const DataLayout &DL,
5026                       const TargetTransformInfo &TTI,
5027                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5028   for (auto &I : SI->cases()) {
5029     ConstantInt *CaseVal = I.getCaseValue();
5030 
5031     // Resulting value at phi nodes for this case value.
5032     SwitchCaseResultsTy Results;
5033     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5034                         DL, TTI))
5035       return false;
5036 
5037     // Only one value per case is permitted.
5038     if (Results.size() > 1)
5039       return false;
5040 
5041     // Add the case->result mapping to UniqueResults.
5042     const uintptr_t NumCasesForResult =
5043         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5044 
5045     // Early out if there are too many cases for this result.
5046     if (NumCasesForResult > MaxCasesPerResult)
5047       return false;
5048 
5049     // Early out if there are too many unique results.
5050     if (UniqueResults.size() > MaxUniqueResults)
5051       return false;
5052 
5053     // Check the PHI consistency.
5054     if (!PHI)
5055       PHI = Results[0].first;
5056     else if (PHI != Results[0].first)
5057       return false;
5058   }
5059   // Find the default result value.
5060   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5061   BasicBlock *DefaultDest = SI->getDefaultDest();
5062   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5063                  DL, TTI);
5064   // If the default value is not found abort unless the default destination
5065   // is unreachable.
5066   DefaultResult =
5067       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5068   if ((!DefaultResult &&
5069        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5070     return false;
5071 
5072   return true;
5073 }
5074 
5075 // Helper function that checks if it is possible to transform a switch with only
5076 // two cases (or two cases + default) that produces a result into a select.
5077 // Example:
5078 // switch (a) {
5079 //   case 10:                %0 = icmp eq i32 %a, 10
5080 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5081 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5082 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5083 //   default:
5084 //     return 4;
5085 // }
5086 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5087                                    Constant *DefaultResult, Value *Condition,
5088                                    IRBuilder<> &Builder) {
5089   assert(ResultVector.size() == 2 &&
5090          "We should have exactly two unique results at this point");
5091   // If we are selecting between only two cases transform into a simple
5092   // select or a two-way select if default is possible.
5093   if (ResultVector[0].second.size() == 1 &&
5094       ResultVector[1].second.size() == 1) {
5095     ConstantInt *const FirstCase = ResultVector[0].second[0];
5096     ConstantInt *const SecondCase = ResultVector[1].second[0];
5097 
5098     bool DefaultCanTrigger = DefaultResult;
5099     Value *SelectValue = ResultVector[1].first;
5100     if (DefaultCanTrigger) {
5101       Value *const ValueCompare =
5102           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5103       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5104                                          DefaultResult, "switch.select");
5105     }
5106     Value *const ValueCompare =
5107         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5108     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5109                                 SelectValue, "switch.select");
5110   }
5111 
5112   return nullptr;
5113 }
5114 
5115 // Helper function to cleanup a switch instruction that has been converted into
5116 // a select, fixing up PHI nodes and basic blocks.
5117 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5118                                               Value *SelectValue,
5119                                               IRBuilder<> &Builder) {
5120   BasicBlock *SelectBB = SI->getParent();
5121   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5122     PHI->removeIncomingValue(SelectBB);
5123   PHI->addIncoming(SelectValue, SelectBB);
5124 
5125   Builder.CreateBr(PHI->getParent());
5126 
5127   // Remove the switch.
5128   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5129     BasicBlock *Succ = SI->getSuccessor(i);
5130 
5131     if (Succ == PHI->getParent())
5132       continue;
5133     Succ->removePredecessor(SelectBB);
5134   }
5135   SI->eraseFromParent();
5136 }
5137 
5138 /// If the switch is only used to initialize one or more
5139 /// phi nodes in a common successor block with only two different
5140 /// constant values, replace the switch with select.
5141 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5142                            const DataLayout &DL,
5143                            const TargetTransformInfo &TTI) {
5144   Value *const Cond = SI->getCondition();
5145   PHINode *PHI = nullptr;
5146   BasicBlock *CommonDest = nullptr;
5147   Constant *DefaultResult;
5148   SwitchCaseResultVectorTy UniqueResults;
5149   // Collect all the cases that will deliver the same value from the switch.
5150   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5151                              DL, TTI, 2, 1))
5152     return false;
5153   // Selects choose between maximum two values.
5154   if (UniqueResults.size() != 2)
5155     return false;
5156   assert(PHI != nullptr && "PHI for value select not found");
5157 
5158   Builder.SetInsertPoint(SI);
5159   Value *SelectValue =
5160       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5161   if (SelectValue) {
5162     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
5163     return true;
5164   }
5165   // The switch couldn't be converted into a select.
5166   return false;
5167 }
5168 
5169 namespace {
5170 
5171 /// This class represents a lookup table that can be used to replace a switch.
5172 class SwitchLookupTable {
5173 public:
5174   /// Create a lookup table to use as a switch replacement with the contents
5175   /// of Values, using DefaultValue to fill any holes in the table.
5176   SwitchLookupTable(
5177       Module &M, uint64_t TableSize, ConstantInt *Offset,
5178       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5179       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5180 
5181   /// Build instructions with Builder to retrieve the value at
5182   /// the position given by Index in the lookup table.
5183   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5184 
5185   /// Return true if a table with TableSize elements of
5186   /// type ElementType would fit in a target-legal register.
5187   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5188                                  Type *ElementType);
5189 
5190 private:
5191   // Depending on the contents of the table, it can be represented in
5192   // different ways.
5193   enum {
5194     // For tables where each element contains the same value, we just have to
5195     // store that single value and return it for each lookup.
5196     SingleValueKind,
5197 
5198     // For tables where there is a linear relationship between table index
5199     // and values. We calculate the result with a simple multiplication
5200     // and addition instead of a table lookup.
5201     LinearMapKind,
5202 
5203     // For small tables with integer elements, we can pack them into a bitmap
5204     // that fits into a target-legal register. Values are retrieved by
5205     // shift and mask operations.
5206     BitMapKind,
5207 
5208     // The table is stored as an array of values. Values are retrieved by load
5209     // instructions from the table.
5210     ArrayKind
5211   } Kind;
5212 
5213   // For SingleValueKind, this is the single value.
5214   Constant *SingleValue = nullptr;
5215 
5216   // For BitMapKind, this is the bitmap.
5217   ConstantInt *BitMap = nullptr;
5218   IntegerType *BitMapElementTy = nullptr;
5219 
5220   // For LinearMapKind, these are the constants used to derive the value.
5221   ConstantInt *LinearOffset = nullptr;
5222   ConstantInt *LinearMultiplier = nullptr;
5223 
5224   // For ArrayKind, this is the array.
5225   GlobalVariable *Array = nullptr;
5226 };
5227 
5228 } // end anonymous namespace
5229 
5230 SwitchLookupTable::SwitchLookupTable(
5231     Module &M, uint64_t TableSize, ConstantInt *Offset,
5232     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5233     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5234   assert(Values.size() && "Can't build lookup table without values!");
5235   assert(TableSize >= Values.size() && "Can't fit values in table!");
5236 
5237   // If all values in the table are equal, this is that value.
5238   SingleValue = Values.begin()->second;
5239 
5240   Type *ValueType = Values.begin()->second->getType();
5241 
5242   // Build up the table contents.
5243   SmallVector<Constant *, 64> TableContents(TableSize);
5244   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5245     ConstantInt *CaseVal = Values[I].first;
5246     Constant *CaseRes = Values[I].second;
5247     assert(CaseRes->getType() == ValueType);
5248 
5249     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5250     TableContents[Idx] = CaseRes;
5251 
5252     if (CaseRes != SingleValue)
5253       SingleValue = nullptr;
5254   }
5255 
5256   // Fill in any holes in the table with the default result.
5257   if (Values.size() < TableSize) {
5258     assert(DefaultValue &&
5259            "Need a default value to fill the lookup table holes.");
5260     assert(DefaultValue->getType() == ValueType);
5261     for (uint64_t I = 0; I < TableSize; ++I) {
5262       if (!TableContents[I])
5263         TableContents[I] = DefaultValue;
5264     }
5265 
5266     if (DefaultValue != SingleValue)
5267       SingleValue = nullptr;
5268   }
5269 
5270   // If each element in the table contains the same value, we only need to store
5271   // that single value.
5272   if (SingleValue) {
5273     Kind = SingleValueKind;
5274     return;
5275   }
5276 
5277   // Check if we can derive the value with a linear transformation from the
5278   // table index.
5279   if (isa<IntegerType>(ValueType)) {
5280     bool LinearMappingPossible = true;
5281     APInt PrevVal;
5282     APInt DistToPrev;
5283     assert(TableSize >= 2 && "Should be a SingleValue table.");
5284     // Check if there is the same distance between two consecutive values.
5285     for (uint64_t I = 0; I < TableSize; ++I) {
5286       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5287       if (!ConstVal) {
5288         // This is an undef. We could deal with it, but undefs in lookup tables
5289         // are very seldom. It's probably not worth the additional complexity.
5290         LinearMappingPossible = false;
5291         break;
5292       }
5293       const APInt &Val = ConstVal->getValue();
5294       if (I != 0) {
5295         APInt Dist = Val - PrevVal;
5296         if (I == 1) {
5297           DistToPrev = Dist;
5298         } else if (Dist != DistToPrev) {
5299           LinearMappingPossible = false;
5300           break;
5301         }
5302       }
5303       PrevVal = Val;
5304     }
5305     if (LinearMappingPossible) {
5306       LinearOffset = cast<ConstantInt>(TableContents[0]);
5307       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5308       Kind = LinearMapKind;
5309       ++NumLinearMaps;
5310       return;
5311     }
5312   }
5313 
5314   // If the type is integer and the table fits in a register, build a bitmap.
5315   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5316     IntegerType *IT = cast<IntegerType>(ValueType);
5317     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5318     for (uint64_t I = TableSize; I > 0; --I) {
5319       TableInt <<= IT->getBitWidth();
5320       // Insert values into the bitmap. Undef values are set to zero.
5321       if (!isa<UndefValue>(TableContents[I - 1])) {
5322         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5323         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5324       }
5325     }
5326     BitMap = ConstantInt::get(M.getContext(), TableInt);
5327     BitMapElementTy = IT;
5328     Kind = BitMapKind;
5329     ++NumBitMaps;
5330     return;
5331   }
5332 
5333   // Store the table in an array.
5334   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5335   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5336 
5337   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5338                              GlobalVariable::PrivateLinkage, Initializer,
5339                              "switch.table." + FuncName);
5340   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5341   // Set the alignment to that of an array items. We will be only loading one
5342   // value out of it.
5343   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5344   Kind = ArrayKind;
5345 }
5346 
5347 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5348   switch (Kind) {
5349   case SingleValueKind:
5350     return SingleValue;
5351   case LinearMapKind: {
5352     // Derive the result value from the input value.
5353     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5354                                           false, "switch.idx.cast");
5355     if (!LinearMultiplier->isOne())
5356       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5357     if (!LinearOffset->isZero())
5358       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5359     return Result;
5360   }
5361   case BitMapKind: {
5362     // Type of the bitmap (e.g. i59).
5363     IntegerType *MapTy = BitMap->getType();
5364 
5365     // Cast Index to the same type as the bitmap.
5366     // Note: The Index is <= the number of elements in the table, so
5367     // truncating it to the width of the bitmask is safe.
5368     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5369 
5370     // Multiply the shift amount by the element width.
5371     ShiftAmt = Builder.CreateMul(
5372         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5373         "switch.shiftamt");
5374 
5375     // Shift down.
5376     Value *DownShifted =
5377         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5378     // Mask off.
5379     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5380   }
5381   case ArrayKind: {
5382     // Make sure the table index will not overflow when treated as signed.
5383     IntegerType *IT = cast<IntegerType>(Index->getType());
5384     uint64_t TableSize =
5385         Array->getInitializer()->getType()->getArrayNumElements();
5386     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5387       Index = Builder.CreateZExt(
5388           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5389           "switch.tableidx.zext");
5390 
5391     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5392     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5393                                            GEPIndices, "switch.gep");
5394     return Builder.CreateLoad(
5395         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5396         "switch.load");
5397   }
5398   }
5399   llvm_unreachable("Unknown lookup table kind!");
5400 }
5401 
5402 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5403                                            uint64_t TableSize,
5404                                            Type *ElementType) {
5405   auto *IT = dyn_cast<IntegerType>(ElementType);
5406   if (!IT)
5407     return false;
5408   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5409   // are <= 15, we could try to narrow the type.
5410 
5411   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5412   if (TableSize >= UINT_MAX / IT->getBitWidth())
5413     return false;
5414   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5415 }
5416 
5417 /// Determine whether a lookup table should be built for this switch, based on
5418 /// the number of cases, size of the table, and the types of the results.
5419 static bool
5420 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5421                        const TargetTransformInfo &TTI, const DataLayout &DL,
5422                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5423   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5424     return false; // TableSize overflowed, or mul below might overflow.
5425 
5426   bool AllTablesFitInRegister = true;
5427   bool HasIllegalType = false;
5428   for (const auto &I : ResultTypes) {
5429     Type *Ty = I.second;
5430 
5431     // Saturate this flag to true.
5432     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5433 
5434     // Saturate this flag to false.
5435     AllTablesFitInRegister =
5436         AllTablesFitInRegister &&
5437         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5438 
5439     // If both flags saturate, we're done. NOTE: This *only* works with
5440     // saturating flags, and all flags have to saturate first due to the
5441     // non-deterministic behavior of iterating over a dense map.
5442     if (HasIllegalType && !AllTablesFitInRegister)
5443       break;
5444   }
5445 
5446   // If each table would fit in a register, we should build it anyway.
5447   if (AllTablesFitInRegister)
5448     return true;
5449 
5450   // Don't build a table that doesn't fit in-register if it has illegal types.
5451   if (HasIllegalType)
5452     return false;
5453 
5454   // The table density should be at least 40%. This is the same criterion as for
5455   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5456   // FIXME: Find the best cut-off.
5457   return SI->getNumCases() * 10 >= TableSize * 4;
5458 }
5459 
5460 /// Try to reuse the switch table index compare. Following pattern:
5461 /// \code
5462 ///     if (idx < tablesize)
5463 ///        r = table[idx]; // table does not contain default_value
5464 ///     else
5465 ///        r = default_value;
5466 ///     if (r != default_value)
5467 ///        ...
5468 /// \endcode
5469 /// Is optimized to:
5470 /// \code
5471 ///     cond = idx < tablesize;
5472 ///     if (cond)
5473 ///        r = table[idx];
5474 ///     else
5475 ///        r = default_value;
5476 ///     if (cond)
5477 ///        ...
5478 /// \endcode
5479 /// Jump threading will then eliminate the second if(cond).
5480 static void reuseTableCompare(
5481     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5482     Constant *DefaultValue,
5483     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5484   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5485   if (!CmpInst)
5486     return;
5487 
5488   // We require that the compare is in the same block as the phi so that jump
5489   // threading can do its work afterwards.
5490   if (CmpInst->getParent() != PhiBlock)
5491     return;
5492 
5493   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5494   if (!CmpOp1)
5495     return;
5496 
5497   Value *RangeCmp = RangeCheckBranch->getCondition();
5498   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5499   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5500 
5501   // Check if the compare with the default value is constant true or false.
5502   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5503                                                  DefaultValue, CmpOp1, true);
5504   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5505     return;
5506 
5507   // Check if the compare with the case values is distinct from the default
5508   // compare result.
5509   for (auto ValuePair : Values) {
5510     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5511                                                 ValuePair.second, CmpOp1, true);
5512     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5513       return;
5514     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5515            "Expect true or false as compare result.");
5516   }
5517 
5518   // Check if the branch instruction dominates the phi node. It's a simple
5519   // dominance check, but sufficient for our needs.
5520   // Although this check is invariant in the calling loops, it's better to do it
5521   // at this late stage. Practically we do it at most once for a switch.
5522   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5523   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5524     BasicBlock *Pred = *PI;
5525     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5526       return;
5527   }
5528 
5529   if (DefaultConst == FalseConst) {
5530     // The compare yields the same result. We can replace it.
5531     CmpInst->replaceAllUsesWith(RangeCmp);
5532     ++NumTableCmpReuses;
5533   } else {
5534     // The compare yields the same result, just inverted. We can replace it.
5535     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5536         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5537         RangeCheckBranch);
5538     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5539     ++NumTableCmpReuses;
5540   }
5541 }
5542 
5543 /// If the switch is only used to initialize one or more phi nodes in a common
5544 /// successor block with different constant values, replace the switch with
5545 /// lookup tables.
5546 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5547                                 const DataLayout &DL,
5548                                 const TargetTransformInfo &TTI) {
5549   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5550 
5551   Function *Fn = SI->getParent()->getParent();
5552   // Only build lookup table when we have a target that supports it or the
5553   // attribute is not set.
5554   if (!TTI.shouldBuildLookupTables() ||
5555       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5556     return false;
5557 
5558   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5559   // split off a dense part and build a lookup table for that.
5560 
5561   // FIXME: This creates arrays of GEPs to constant strings, which means each
5562   // GEP needs a runtime relocation in PIC code. We should just build one big
5563   // string and lookup indices into that.
5564 
5565   // Ignore switches with less than three cases. Lookup tables will not make
5566   // them faster, so we don't analyze them.
5567   if (SI->getNumCases() < 3)
5568     return false;
5569 
5570   // Figure out the corresponding result for each case value and phi node in the
5571   // common destination, as well as the min and max case values.
5572   assert(!SI->cases().empty());
5573   SwitchInst::CaseIt CI = SI->case_begin();
5574   ConstantInt *MinCaseVal = CI->getCaseValue();
5575   ConstantInt *MaxCaseVal = CI->getCaseValue();
5576 
5577   BasicBlock *CommonDest = nullptr;
5578 
5579   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5580   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5581 
5582   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5583   SmallDenseMap<PHINode *, Type *> ResultTypes;
5584   SmallVector<PHINode *, 4> PHIs;
5585 
5586   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5587     ConstantInt *CaseVal = CI->getCaseValue();
5588     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5589       MinCaseVal = CaseVal;
5590     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5591       MaxCaseVal = CaseVal;
5592 
5593     // Resulting value at phi nodes for this case value.
5594     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5595     ResultsTy Results;
5596     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5597                         Results, DL, TTI))
5598       return false;
5599 
5600     // Append the result from this case to the list for each phi.
5601     for (const auto &I : Results) {
5602       PHINode *PHI = I.first;
5603       Constant *Value = I.second;
5604       if (!ResultLists.count(PHI))
5605         PHIs.push_back(PHI);
5606       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5607     }
5608   }
5609 
5610   // Keep track of the result types.
5611   for (PHINode *PHI : PHIs) {
5612     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5613   }
5614 
5615   uint64_t NumResults = ResultLists[PHIs[0]].size();
5616   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5617   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5618   bool TableHasHoles = (NumResults < TableSize);
5619 
5620   // If the table has holes, we need a constant result for the default case
5621   // or a bitmask that fits in a register.
5622   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5623   bool HasDefaultResults =
5624       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5625                      DefaultResultsList, DL, TTI);
5626 
5627   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5628   if (NeedMask) {
5629     // As an extra penalty for the validity test we require more cases.
5630     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5631       return false;
5632     if (!DL.fitsInLegalInteger(TableSize))
5633       return false;
5634   }
5635 
5636   for (const auto &I : DefaultResultsList) {
5637     PHINode *PHI = I.first;
5638     Constant *Result = I.second;
5639     DefaultResults[PHI] = Result;
5640   }
5641 
5642   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5643     return false;
5644 
5645   // Create the BB that does the lookups.
5646   Module &Mod = *CommonDest->getParent()->getParent();
5647   BasicBlock *LookupBB = BasicBlock::Create(
5648       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5649 
5650   // Compute the table index value.
5651   Builder.SetInsertPoint(SI);
5652   Value *TableIndex;
5653   if (MinCaseVal->isNullValue())
5654     TableIndex = SI->getCondition();
5655   else
5656     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5657                                    "switch.tableidx");
5658 
5659   // Compute the maximum table size representable by the integer type we are
5660   // switching upon.
5661   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5662   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5663   assert(MaxTableSize >= TableSize &&
5664          "It is impossible for a switch to have more entries than the max "
5665          "representable value of its input integer type's size.");
5666 
5667   // If the default destination is unreachable, or if the lookup table covers
5668   // all values of the conditional variable, branch directly to the lookup table
5669   // BB. Otherwise, check that the condition is within the case range.
5670   const bool DefaultIsReachable =
5671       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5672   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5673   BranchInst *RangeCheckBranch = nullptr;
5674 
5675   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5676     Builder.CreateBr(LookupBB);
5677     // Note: We call removeProdecessor later since we need to be able to get the
5678     // PHI value for the default case in case we're using a bit mask.
5679   } else {
5680     Value *Cmp = Builder.CreateICmpULT(
5681         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5682     RangeCheckBranch =
5683         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5684   }
5685 
5686   // Populate the BB that does the lookups.
5687   Builder.SetInsertPoint(LookupBB);
5688 
5689   if (NeedMask) {
5690     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5691     // re-purposed to do the hole check, and we create a new LookupBB.
5692     BasicBlock *MaskBB = LookupBB;
5693     MaskBB->setName("switch.hole_check");
5694     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5695                                   CommonDest->getParent(), CommonDest);
5696 
5697     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5698     // unnecessary illegal types.
5699     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5700     APInt MaskInt(TableSizePowOf2, 0);
5701     APInt One(TableSizePowOf2, 1);
5702     // Build bitmask; fill in a 1 bit for every case.
5703     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5704     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5705       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5706                          .getLimitedValue();
5707       MaskInt |= One << Idx;
5708     }
5709     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5710 
5711     // Get the TableIndex'th bit of the bitmask.
5712     // If this bit is 0 (meaning hole) jump to the default destination,
5713     // else continue with table lookup.
5714     IntegerType *MapTy = TableMask->getType();
5715     Value *MaskIndex =
5716         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5717     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5718     Value *LoBit = Builder.CreateTrunc(
5719         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5720     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5721 
5722     Builder.SetInsertPoint(LookupBB);
5723     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5724   }
5725 
5726   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5727     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5728     // do not delete PHINodes here.
5729     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5730                                             /*KeepOneInputPHIs=*/true);
5731   }
5732 
5733   bool ReturnedEarly = false;
5734   for (PHINode *PHI : PHIs) {
5735     const ResultListTy &ResultList = ResultLists[PHI];
5736 
5737     // If using a bitmask, use any value to fill the lookup table holes.
5738     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5739     StringRef FuncName = Fn->getName();
5740     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5741                             FuncName);
5742 
5743     Value *Result = Table.BuildLookup(TableIndex, Builder);
5744 
5745     // If the result is used to return immediately from the function, we want to
5746     // do that right here.
5747     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5748         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5749       Builder.CreateRet(Result);
5750       ReturnedEarly = true;
5751       break;
5752     }
5753 
5754     // Do a small peephole optimization: re-use the switch table compare if
5755     // possible.
5756     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5757       BasicBlock *PhiBlock = PHI->getParent();
5758       // Search for compare instructions which use the phi.
5759       for (auto *User : PHI->users()) {
5760         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5761       }
5762     }
5763 
5764     PHI->addIncoming(Result, LookupBB);
5765   }
5766 
5767   if (!ReturnedEarly)
5768     Builder.CreateBr(CommonDest);
5769 
5770   // Remove the switch.
5771   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5772     BasicBlock *Succ = SI->getSuccessor(i);
5773 
5774     if (Succ == SI->getDefaultDest())
5775       continue;
5776     Succ->removePredecessor(SI->getParent());
5777   }
5778   SI->eraseFromParent();
5779 
5780   ++NumLookupTables;
5781   if (NeedMask)
5782     ++NumLookupTablesHoles;
5783   return true;
5784 }
5785 
5786 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5787   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5788   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5789   uint64_t Range = Diff + 1;
5790   uint64_t NumCases = Values.size();
5791   // 40% is the default density for building a jump table in optsize/minsize mode.
5792   uint64_t MinDensity = 40;
5793 
5794   return NumCases * 100 >= Range * MinDensity;
5795 }
5796 
5797 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5798 /// of cases.
5799 ///
5800 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5801 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5802 ///
5803 /// This converts a sparse switch into a dense switch which allows better
5804 /// lowering and could also allow transforming into a lookup table.
5805 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5806                               const DataLayout &DL,
5807                               const TargetTransformInfo &TTI) {
5808   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5809   if (CondTy->getIntegerBitWidth() > 64 ||
5810       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5811     return false;
5812   // Only bother with this optimization if there are more than 3 switch cases;
5813   // SDAG will only bother creating jump tables for 4 or more cases.
5814   if (SI->getNumCases() < 4)
5815     return false;
5816 
5817   // This transform is agnostic to the signedness of the input or case values. We
5818   // can treat the case values as signed or unsigned. We can optimize more common
5819   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5820   // as signed.
5821   SmallVector<int64_t,4> Values;
5822   for (auto &C : SI->cases())
5823     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5824   llvm::sort(Values);
5825 
5826   // If the switch is already dense, there's nothing useful to do here.
5827   if (isSwitchDense(Values))
5828     return false;
5829 
5830   // First, transform the values such that they start at zero and ascend.
5831   int64_t Base = Values[0];
5832   for (auto &V : Values)
5833     V -= (uint64_t)(Base);
5834 
5835   // Now we have signed numbers that have been shifted so that, given enough
5836   // precision, there are no negative values. Since the rest of the transform
5837   // is bitwise only, we switch now to an unsigned representation.
5838 
5839   // This transform can be done speculatively because it is so cheap - it
5840   // results in a single rotate operation being inserted.
5841   // FIXME: It's possible that optimizing a switch on powers of two might also
5842   // be beneficial - flag values are often powers of two and we could use a CLZ
5843   // as the key function.
5844 
5845   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5846   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5847   // less than 64.
5848   unsigned Shift = 64;
5849   for (auto &V : Values)
5850     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5851   assert(Shift < 64);
5852   if (Shift > 0)
5853     for (auto &V : Values)
5854       V = (int64_t)((uint64_t)V >> Shift);
5855 
5856   if (!isSwitchDense(Values))
5857     // Transform didn't create a dense switch.
5858     return false;
5859 
5860   // The obvious transform is to shift the switch condition right and emit a
5861   // check that the condition actually cleanly divided by GCD, i.e.
5862   //   C & (1 << Shift - 1) == 0
5863   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5864   //
5865   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5866   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5867   // are nonzero then the switch condition will be very large and will hit the
5868   // default case.
5869 
5870   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5871   Builder.SetInsertPoint(SI);
5872   auto *ShiftC = ConstantInt::get(Ty, Shift);
5873   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5874   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5875   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5876   auto *Rot = Builder.CreateOr(LShr, Shl);
5877   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5878 
5879   for (auto Case : SI->cases()) {
5880     auto *Orig = Case.getCaseValue();
5881     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5882     Case.setValue(
5883         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5884   }
5885   return true;
5886 }
5887 
5888 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5889   BasicBlock *BB = SI->getParent();
5890 
5891   if (isValueEqualityComparison(SI)) {
5892     // If we only have one predecessor, and if it is a branch on this value,
5893     // see if that predecessor totally determines the outcome of this switch.
5894     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5895       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5896         return requestResimplify();
5897 
5898     Value *Cond = SI->getCondition();
5899     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5900       if (SimplifySwitchOnSelect(SI, Select))
5901         return requestResimplify();
5902 
5903     // If the block only contains the switch, see if we can fold the block
5904     // away into any preds.
5905     if (SI == &*BB->instructionsWithoutDebug().begin())
5906       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5907         return requestResimplify();
5908   }
5909 
5910   // Try to transform the switch into an icmp and a branch.
5911   if (TurnSwitchRangeIntoICmp(SI, Builder))
5912     return requestResimplify();
5913 
5914   // Remove unreachable cases.
5915   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5916     return requestResimplify();
5917 
5918   if (switchToSelect(SI, Builder, DL, TTI))
5919     return requestResimplify();
5920 
5921   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5922     return requestResimplify();
5923 
5924   // The conversion from switch to lookup tables results in difficult-to-analyze
5925   // code and makes pruning branches much harder. This is a problem if the
5926   // switch expression itself can still be restricted as a result of inlining or
5927   // CVP. Therefore, only apply this transformation during late stages of the
5928   // optimisation pipeline.
5929   if (Options.ConvertSwitchToLookupTable &&
5930       SwitchToLookupTable(SI, Builder, DL, TTI))
5931     return requestResimplify();
5932 
5933   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5934     return requestResimplify();
5935 
5936   return false;
5937 }
5938 
5939 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
5940   BasicBlock *BB = IBI->getParent();
5941   bool Changed = false;
5942 
5943   // Eliminate redundant destinations.
5944   SmallPtrSet<Value *, 8> Succs;
5945   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5946     BasicBlock *Dest = IBI->getDestination(i);
5947     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5948       Dest->removePredecessor(BB);
5949       IBI->removeDestination(i);
5950       --i;
5951       --e;
5952       Changed = true;
5953     }
5954   }
5955 
5956   if (IBI->getNumDestinations() == 0) {
5957     // If the indirectbr has no successors, change it to unreachable.
5958     new UnreachableInst(IBI->getContext(), IBI);
5959     EraseTerminatorAndDCECond(IBI);
5960     return true;
5961   }
5962 
5963   if (IBI->getNumDestinations() == 1) {
5964     // If the indirectbr has one successor, change it to a direct branch.
5965     BranchInst::Create(IBI->getDestination(0), IBI);
5966     EraseTerminatorAndDCECond(IBI);
5967     return true;
5968   }
5969 
5970   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5971     if (SimplifyIndirectBrOnSelect(IBI, SI))
5972       return requestResimplify();
5973   }
5974   return Changed;
5975 }
5976 
5977 /// Given an block with only a single landing pad and a unconditional branch
5978 /// try to find another basic block which this one can be merged with.  This
5979 /// handles cases where we have multiple invokes with unique landing pads, but
5980 /// a shared handler.
5981 ///
5982 /// We specifically choose to not worry about merging non-empty blocks
5983 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5984 /// practice, the optimizer produces empty landing pad blocks quite frequently
5985 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5986 /// sinking in this file)
5987 ///
5988 /// This is primarily a code size optimization.  We need to avoid performing
5989 /// any transform which might inhibit optimization (such as our ability to
5990 /// specialize a particular handler via tail commoning).  We do this by not
5991 /// merging any blocks which require us to introduce a phi.  Since the same
5992 /// values are flowing through both blocks, we don't lose any ability to
5993 /// specialize.  If anything, we make such specialization more likely.
5994 ///
5995 /// TODO - This transformation could remove entries from a phi in the target
5996 /// block when the inputs in the phi are the same for the two blocks being
5997 /// merged.  In some cases, this could result in removal of the PHI entirely.
5998 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5999                                  BasicBlock *BB) {
6000   auto Succ = BB->getUniqueSuccessor();
6001   assert(Succ);
6002   // If there's a phi in the successor block, we'd likely have to introduce
6003   // a phi into the merged landing pad block.
6004   if (isa<PHINode>(*Succ->begin()))
6005     return false;
6006 
6007   for (BasicBlock *OtherPred : predecessors(Succ)) {
6008     if (BB == OtherPred)
6009       continue;
6010     BasicBlock::iterator I = OtherPred->begin();
6011     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6012     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6013       continue;
6014     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6015       ;
6016     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6017     if (!BI2 || !BI2->isIdenticalTo(BI))
6018       continue;
6019 
6020     // We've found an identical block.  Update our predecessors to take that
6021     // path instead and make ourselves dead.
6022     SmallPtrSet<BasicBlock *, 16> Preds;
6023     Preds.insert(pred_begin(BB), pred_end(BB));
6024     for (BasicBlock *Pred : Preds) {
6025       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6026       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6027              "unexpected successor");
6028       II->setUnwindDest(OtherPred);
6029     }
6030 
6031     // The debug info in OtherPred doesn't cover the merged control flow that
6032     // used to go through BB.  We need to delete it or update it.
6033     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6034       Instruction &Inst = *I;
6035       I++;
6036       if (isa<DbgInfoIntrinsic>(Inst))
6037         Inst.eraseFromParent();
6038     }
6039 
6040     SmallPtrSet<BasicBlock *, 16> Succs;
6041     Succs.insert(succ_begin(BB), succ_end(BB));
6042     for (BasicBlock *Succ : Succs) {
6043       Succ->removePredecessor(BB);
6044     }
6045 
6046     IRBuilder<> Builder(BI);
6047     Builder.CreateUnreachable();
6048     BI->eraseFromParent();
6049     return true;
6050   }
6051   return false;
6052 }
6053 
6054 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6055   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6056                                    : simplifyCondBranch(Branch, Builder);
6057 }
6058 
6059 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6060                                           IRBuilder<> &Builder) {
6061   BasicBlock *BB = BI->getParent();
6062   BasicBlock *Succ = BI->getSuccessor(0);
6063 
6064   // If the Terminator is the only non-phi instruction, simplify the block.
6065   // If LoopHeader is provided, check if the block or its successor is a loop
6066   // header. (This is for early invocations before loop simplify and
6067   // vectorization to keep canonical loop forms for nested loops. These blocks
6068   // can be eliminated when the pass is invoked later in the back-end.)
6069   // Note that if BB has only one predecessor then we do not introduce new
6070   // backedge, so we can eliminate BB.
6071   bool NeedCanonicalLoop =
6072       Options.NeedCanonicalLoop &&
6073       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
6074        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
6075   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
6076   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6077       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
6078     return true;
6079 
6080   // If the only instruction in the block is a seteq/setne comparison against a
6081   // constant, try to simplify the block.
6082   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6083     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6084       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6085         ;
6086       if (I->isTerminator() &&
6087           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6088         return true;
6089     }
6090 
6091   // See if we can merge an empty landing pad block with another which is
6092   // equivalent.
6093   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6094     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6095       ;
6096     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
6097       return true;
6098   }
6099 
6100   // If this basic block is ONLY a compare and a branch, and if a predecessor
6101   // branches to us and our successor, fold the comparison into the
6102   // predecessor and use logical operations to update the incoming value
6103   // for PHI nodes in common successor.
6104   if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold))
6105     return requestResimplify();
6106   return false;
6107 }
6108 
6109 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6110   BasicBlock *PredPred = nullptr;
6111   for (auto *P : predecessors(BB)) {
6112     BasicBlock *PPred = P->getSinglePredecessor();
6113     if (!PPred || (PredPred && PredPred != PPred))
6114       return nullptr;
6115     PredPred = PPred;
6116   }
6117   return PredPred;
6118 }
6119 
6120 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6121   BasicBlock *BB = BI->getParent();
6122   if (!Options.SimplifyCondBranch)
6123     return false;
6124 
6125   // Conditional branch
6126   if (isValueEqualityComparison(BI)) {
6127     // If we only have one predecessor, and if it is a branch on this value,
6128     // see if that predecessor totally determines the outcome of this
6129     // switch.
6130     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6131       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6132         return requestResimplify();
6133 
6134     // This block must be empty, except for the setcond inst, if it exists.
6135     // Ignore dbg intrinsics.
6136     auto I = BB->instructionsWithoutDebug().begin();
6137     if (&*I == BI) {
6138       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6139         return requestResimplify();
6140     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6141       ++I;
6142       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6143         return requestResimplify();
6144     }
6145   }
6146 
6147   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6148   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6149     return true;
6150 
6151   // If this basic block has dominating predecessor blocks and the dominating
6152   // blocks' conditions imply BI's condition, we know the direction of BI.
6153   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6154   if (Imp) {
6155     // Turn this into a branch on constant.
6156     auto *OldCond = BI->getCondition();
6157     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6158                              : ConstantInt::getFalse(BB->getContext());
6159     BI->setCondition(TorF);
6160     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6161     return requestResimplify();
6162   }
6163 
6164   // If this basic block is ONLY a compare and a branch, and if a predecessor
6165   // branches to us and one of our successors, fold the comparison into the
6166   // predecessor and use logical operations to pick the right destination.
6167   if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold))
6168     return requestResimplify();
6169 
6170   // We have a conditional branch to two blocks that are only reachable
6171   // from BI.  We know that the condbr dominates the two blocks, so see if
6172   // there is any identical code in the "then" and "else" blocks.  If so, we
6173   // can hoist it up to the branching block.
6174   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6175     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6176       if (HoistCommon && Options.HoistCommonInsts)
6177         if (HoistThenElseCodeToIf(BI, TTI))
6178           return requestResimplify();
6179     } else {
6180       // If Successor #1 has multiple preds, we may be able to conditionally
6181       // execute Successor #0 if it branches to Successor #1.
6182       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6183       if (Succ0TI->getNumSuccessors() == 1 &&
6184           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6185         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6186           return requestResimplify();
6187     }
6188   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6189     // If Successor #0 has multiple preds, we may be able to conditionally
6190     // execute Successor #1 if it branches to Successor #0.
6191     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6192     if (Succ1TI->getNumSuccessors() == 1 &&
6193         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6194       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6195         return requestResimplify();
6196   }
6197 
6198   // If this is a branch on a phi node in the current block, thread control
6199   // through this block if any PHI node entries are constants.
6200   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6201     if (PN->getParent() == BI->getParent())
6202       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
6203         return requestResimplify();
6204 
6205   // Scan predecessor blocks for conditional branches.
6206   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6207     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6208       if (PBI != BI && PBI->isConditional())
6209         if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
6210           return requestResimplify();
6211 
6212   // Look for diamond patterns.
6213   if (MergeCondStores)
6214     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6215       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6216         if (PBI != BI && PBI->isConditional())
6217           if (mergeConditionalStores(PBI, BI, DL, TTI))
6218             return requestResimplify();
6219 
6220   return false;
6221 }
6222 
6223 /// Check if passing a value to an instruction will cause undefined behavior.
6224 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6225   Constant *C = dyn_cast<Constant>(V);
6226   if (!C)
6227     return false;
6228 
6229   if (I->use_empty())
6230     return false;
6231 
6232   if (C->isNullValue() || isa<UndefValue>(C)) {
6233     // Only look at the first use, avoid hurting compile time with long uselists
6234     User *Use = *I->user_begin();
6235 
6236     // Now make sure that there are no instructions in between that can alter
6237     // control flow (eg. calls)
6238     for (BasicBlock::iterator
6239              i = ++BasicBlock::iterator(I),
6240              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6241          i != UI; ++i)
6242       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6243         return false;
6244 
6245     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6246     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6247       if (GEP->getPointerOperand() == I)
6248         return passingValueIsAlwaysUndefined(V, GEP);
6249 
6250     // Look through bitcasts.
6251     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6252       return passingValueIsAlwaysUndefined(V, BC);
6253 
6254     // Load from null is undefined.
6255     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6256       if (!LI->isVolatile())
6257         return !NullPointerIsDefined(LI->getFunction(),
6258                                      LI->getPointerAddressSpace());
6259 
6260     // Store to null is undefined.
6261     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6262       if (!SI->isVolatile())
6263         return (!NullPointerIsDefined(SI->getFunction(),
6264                                       SI->getPointerAddressSpace())) &&
6265                SI->getPointerOperand() == I;
6266 
6267     // A call to null is undefined.
6268     if (auto *CB = dyn_cast<CallBase>(Use))
6269       return !NullPointerIsDefined(CB->getFunction()) &&
6270              CB->getCalledOperand() == I;
6271   }
6272   return false;
6273 }
6274 
6275 /// If BB has an incoming value that will always trigger undefined behavior
6276 /// (eg. null pointer dereference), remove the branch leading here.
6277 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6278   for (PHINode &PHI : BB->phis())
6279     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6280       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6281         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6282         IRBuilder<> Builder(T);
6283         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6284           BB->removePredecessor(PHI.getIncomingBlock(i));
6285           // Turn uncoditional branches into unreachables and remove the dead
6286           // destination from conditional branches.
6287           if (BI->isUnconditional())
6288             Builder.CreateUnreachable();
6289           else
6290             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6291                                                        : BI->getSuccessor(0));
6292           BI->eraseFromParent();
6293           return true;
6294         }
6295         // TODO: SwitchInst.
6296       }
6297 
6298   return false;
6299 }
6300 
6301 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6302   bool Changed = false;
6303 
6304   assert(BB && BB->getParent() && "Block not embedded in function!");
6305   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6306 
6307   // Remove basic blocks that have no predecessors (except the entry block)...
6308   // or that just have themself as a predecessor.  These are unreachable.
6309   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6310       BB->getSinglePredecessor() == BB) {
6311     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6312     DeleteDeadBlock(BB);
6313     return true;
6314   }
6315 
6316   // Check to see if we can constant propagate this terminator instruction
6317   // away...
6318   Changed |= ConstantFoldTerminator(BB, true);
6319 
6320   // Check for and eliminate duplicate PHI nodes in this block.
6321   Changed |= EliminateDuplicatePHINodes(BB);
6322 
6323   // Check for and remove branches that will always cause undefined behavior.
6324   Changed |= removeUndefIntroducingPredecessor(BB);
6325 
6326   // Merge basic blocks into their predecessor if there is only one distinct
6327   // pred, and if there is only one distinct successor of the predecessor, and
6328   // if there are no PHI nodes.
6329   if (MergeBlockIntoPredecessor(BB))
6330     return true;
6331 
6332   if (SinkCommon && Options.SinkCommonInsts)
6333     Changed |= SinkCommonCodeFromPredecessors(BB);
6334 
6335   IRBuilder<> Builder(BB);
6336 
6337   if (Options.FoldTwoEntryPHINode) {
6338     // If there is a trivial two-entry PHI node in this basic block, and we can
6339     // eliminate it, do so now.
6340     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6341       if (PN->getNumIncomingValues() == 2)
6342         Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6343   }
6344 
6345   Instruction *Terminator = BB->getTerminator();
6346   Builder.SetInsertPoint(Terminator);
6347   switch (Terminator->getOpcode()) {
6348   case Instruction::Br:
6349     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6350     break;
6351   case Instruction::Ret:
6352     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6353     break;
6354   case Instruction::Resume:
6355     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6356     break;
6357   case Instruction::CleanupRet:
6358     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6359     break;
6360   case Instruction::Switch:
6361     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6362     break;
6363   case Instruction::Unreachable:
6364     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6365     break;
6366   case Instruction::IndirectBr:
6367     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6368     break;
6369   }
6370 
6371   return Changed;
6372 }
6373 
6374 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6375   bool Changed = false;
6376 
6377   // Repeated simplify BB as long as resimplification is requested.
6378   do {
6379     Resimplify = false;
6380 
6381     // Perform one round of simplifcation. Resimplify flag will be set if
6382     // another iteration is requested.
6383     Changed |= simplifyOnce(BB);
6384   } while (Resimplify);
6385 
6386   return Changed;
6387 }
6388 
6389 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6390                        const SimplifyCFGOptions &Options,
6391                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6392   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6393                         Options)
6394       .run(BB);
6395 }
6396