1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/NoFolder.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include <algorithm> 48 #include <map> 49 #include <set> 50 using namespace llvm; 51 using namespace PatternMatch; 52 53 static cl::opt<unsigned> 54 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 55 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 56 57 static cl::opt<bool> 58 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 59 cl::desc("Duplicate return instructions into unconditional branches")); 60 61 static cl::opt<bool> 62 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 63 cl::desc("Sink common instructions down to the end block")); 64 65 static cl::opt<bool> HoistCondStores( 66 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 67 cl::desc("Hoist conditional stores if an unconditional store precedes")); 68 69 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 70 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 71 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 72 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 73 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 74 75 namespace { 76 /// ValueEqualityComparisonCase - Represents a case of a switch. 77 struct ValueEqualityComparisonCase { 78 ConstantInt *Value; 79 BasicBlock *Dest; 80 81 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 82 : Value(Value), Dest(Dest) {} 83 84 bool operator<(ValueEqualityComparisonCase RHS) const { 85 // Comparing pointers is ok as we only rely on the order for uniquing. 86 return Value < RHS.Value; 87 } 88 89 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 90 }; 91 92 class SimplifyCFGOpt { 93 const TargetTransformInfo &TTI; 94 const DataLayout *const DL; 95 Value *isValueEqualityComparison(TerminatorInst *TI); 96 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 97 std::vector<ValueEqualityComparisonCase> &Cases); 98 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 99 BasicBlock *Pred, 100 IRBuilder<> &Builder); 101 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 102 IRBuilder<> &Builder); 103 104 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 105 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 106 bool SimplifyUnreachable(UnreachableInst *UI); 107 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 108 bool SimplifyIndirectBr(IndirectBrInst *IBI); 109 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 110 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 111 112 public: 113 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *DL) 114 : TTI(TTI), DL(DL) {} 115 bool run(BasicBlock *BB); 116 }; 117 } 118 119 /// SafeToMergeTerminators - Return true if it is safe to merge these two 120 /// terminator instructions together. 121 /// 122 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 123 if (SI1 == SI2) return false; // Can't merge with self! 124 125 // It is not safe to merge these two switch instructions if they have a common 126 // successor, and if that successor has a PHI node, and if *that* PHI node has 127 // conflicting incoming values from the two switch blocks. 128 BasicBlock *SI1BB = SI1->getParent(); 129 BasicBlock *SI2BB = SI2->getParent(); 130 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 131 132 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 133 if (SI1Succs.count(*I)) 134 for (BasicBlock::iterator BBI = (*I)->begin(); 135 isa<PHINode>(BBI); ++BBI) { 136 PHINode *PN = cast<PHINode>(BBI); 137 if (PN->getIncomingValueForBlock(SI1BB) != 138 PN->getIncomingValueForBlock(SI2BB)) 139 return false; 140 } 141 142 return true; 143 } 144 145 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 146 /// to merge these two terminator instructions together, where SI1 is an 147 /// unconditional branch. PhiNodes will store all PHI nodes in common 148 /// successors. 149 /// 150 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 151 BranchInst *SI2, 152 Instruction *Cond, 153 SmallVectorImpl<PHINode*> &PhiNodes) { 154 if (SI1 == SI2) return false; // Can't merge with self! 155 assert(SI1->isUnconditional() && SI2->isConditional()); 156 157 // We fold the unconditional branch if we can easily update all PHI nodes in 158 // common successors: 159 // 1> We have a constant incoming value for the conditional branch; 160 // 2> We have "Cond" as the incoming value for the unconditional branch; 161 // 3> SI2->getCondition() and Cond have same operands. 162 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 163 if (!Ci2) return false; 164 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 165 Cond->getOperand(1) == Ci2->getOperand(1)) && 166 !(Cond->getOperand(0) == Ci2->getOperand(1) && 167 Cond->getOperand(1) == Ci2->getOperand(0))) 168 return false; 169 170 BasicBlock *SI1BB = SI1->getParent(); 171 BasicBlock *SI2BB = SI2->getParent(); 172 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 173 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 174 if (SI1Succs.count(*I)) 175 for (BasicBlock::iterator BBI = (*I)->begin(); 176 isa<PHINode>(BBI); ++BBI) { 177 PHINode *PN = cast<PHINode>(BBI); 178 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 179 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 180 return false; 181 PhiNodes.push_back(PN); 182 } 183 return true; 184 } 185 186 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 187 /// now be entries in it from the 'NewPred' block. The values that will be 188 /// flowing into the PHI nodes will be the same as those coming in from 189 /// ExistPred, an existing predecessor of Succ. 190 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 191 BasicBlock *ExistPred) { 192 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 193 194 PHINode *PN; 195 for (BasicBlock::iterator I = Succ->begin(); 196 (PN = dyn_cast<PHINode>(I)); ++I) 197 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 198 } 199 200 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 201 /// given instruction, which is assumed to be safe to speculate. 1 means 202 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 203 static unsigned ComputeSpeculationCost(const User *I) { 204 assert(isSafeToSpeculativelyExecute(I) && 205 "Instruction is not safe to speculatively execute!"); 206 switch (Operator::getOpcode(I)) { 207 default: 208 // In doubt, be conservative. 209 return UINT_MAX; 210 case Instruction::GetElementPtr: 211 // GEPs are cheap if all indices are constant. 212 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 213 return UINT_MAX; 214 return 1; 215 case Instruction::Load: 216 case Instruction::Add: 217 case Instruction::Sub: 218 case Instruction::And: 219 case Instruction::Or: 220 case Instruction::Xor: 221 case Instruction::Shl: 222 case Instruction::LShr: 223 case Instruction::AShr: 224 case Instruction::ICmp: 225 case Instruction::Trunc: 226 case Instruction::ZExt: 227 case Instruction::SExt: 228 return 1; // These are all cheap. 229 230 case Instruction::Call: 231 case Instruction::Select: 232 return 2; 233 } 234 } 235 236 /// DominatesMergePoint - If we have a merge point of an "if condition" as 237 /// accepted above, return true if the specified value dominates the block. We 238 /// don't handle the true generality of domination here, just a special case 239 /// which works well enough for us. 240 /// 241 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 242 /// see if V (which must be an instruction) and its recursive operands 243 /// that do not dominate BB have a combined cost lower than CostRemaining and 244 /// are non-trapping. If both are true, the instruction is inserted into the 245 /// set and true is returned. 246 /// 247 /// The cost for most non-trapping instructions is defined as 1 except for 248 /// Select whose cost is 2. 249 /// 250 /// After this function returns, CostRemaining is decreased by the cost of 251 /// V plus its non-dominating operands. If that cost is greater than 252 /// CostRemaining, false is returned and CostRemaining is undefined. 253 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 254 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 255 unsigned &CostRemaining) { 256 Instruction *I = dyn_cast<Instruction>(V); 257 if (!I) { 258 // Non-instructions all dominate instructions, but not all constantexprs 259 // can be executed unconditionally. 260 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 261 if (C->canTrap()) 262 return false; 263 return true; 264 } 265 BasicBlock *PBB = I->getParent(); 266 267 // We don't want to allow weird loops that might have the "if condition" in 268 // the bottom of this block. 269 if (PBB == BB) return false; 270 271 // If this instruction is defined in a block that contains an unconditional 272 // branch to BB, then it must be in the 'conditional' part of the "if 273 // statement". If not, it definitely dominates the region. 274 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 275 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 276 return true; 277 278 // If we aren't allowing aggressive promotion anymore, then don't consider 279 // instructions in the 'if region'. 280 if (AggressiveInsts == 0) return false; 281 282 // If we have seen this instruction before, don't count it again. 283 if (AggressiveInsts->count(I)) return true; 284 285 // Okay, it looks like the instruction IS in the "condition". Check to 286 // see if it's a cheap instruction to unconditionally compute, and if it 287 // only uses stuff defined outside of the condition. If so, hoist it out. 288 if (!isSafeToSpeculativelyExecute(I)) 289 return false; 290 291 unsigned Cost = ComputeSpeculationCost(I); 292 293 if (Cost > CostRemaining) 294 return false; 295 296 CostRemaining -= Cost; 297 298 // Okay, we can only really hoist these out if their operands do 299 // not take us over the cost threshold. 300 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 301 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 302 return false; 303 // Okay, it's safe to do this! Remember this instruction. 304 AggressiveInsts->insert(I); 305 return true; 306 } 307 308 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 309 /// and PointerNullValue. Return NULL if value is not a constant int. 310 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) { 311 // Normal constant int. 312 ConstantInt *CI = dyn_cast<ConstantInt>(V); 313 if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy()) 314 return CI; 315 316 // This is some kind of pointer constant. Turn it into a pointer-sized 317 // ConstantInt if possible. 318 IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType())); 319 320 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 321 if (isa<ConstantPointerNull>(V)) 322 return ConstantInt::get(PtrTy, 0); 323 324 // IntToPtr const int. 325 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 326 if (CE->getOpcode() == Instruction::IntToPtr) 327 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 328 // The constant is very likely to have the right type already. 329 if (CI->getType() == PtrTy) 330 return CI; 331 else 332 return cast<ConstantInt> 333 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 334 } 335 return 0; 336 } 337 338 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 339 /// collection of icmp eq/ne instructions that compare a value against a 340 /// constant, return the value being compared, and stick the constant into the 341 /// Values vector. 342 static Value * 343 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 344 const DataLayout *DL, bool isEQ, unsigned &UsedICmps) { 345 Instruction *I = dyn_cast<Instruction>(V); 346 if (I == 0) return 0; 347 348 // If this is an icmp against a constant, handle this as one of the cases. 349 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 350 if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) { 351 Value *RHSVal; 352 ConstantInt *RHSC; 353 354 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 355 // (x & ~2^x) == y --> x == y || x == y|2^x 356 // This undoes a transformation done by instcombine to fuse 2 compares. 357 if (match(ICI->getOperand(0), 358 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 359 APInt Not = ~RHSC->getValue(); 360 if (Not.isPowerOf2()) { 361 Vals.push_back(C); 362 Vals.push_back( 363 ConstantInt::get(C->getContext(), C->getValue() | Not)); 364 UsedICmps++; 365 return RHSVal; 366 } 367 } 368 369 UsedICmps++; 370 Vals.push_back(C); 371 return I->getOperand(0); 372 } 373 374 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 375 // the set. 376 ConstantRange Span = 377 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 378 379 // Shift the range if the compare is fed by an add. This is the range 380 // compare idiom as emitted by instcombine. 381 bool hasAdd = 382 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC))); 383 if (hasAdd) 384 Span = Span.subtract(RHSC->getValue()); 385 386 // If this is an and/!= check then we want to optimize "x ugt 2" into 387 // x != 0 && x != 1. 388 if (!isEQ) 389 Span = Span.inverse(); 390 391 // If there are a ton of values, we don't want to make a ginormous switch. 392 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 393 return 0; 394 395 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 396 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 397 UsedICmps++; 398 return hasAdd ? RHSVal : I->getOperand(0); 399 } 400 return 0; 401 } 402 403 // Otherwise, we can only handle an | or &, depending on isEQ. 404 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 405 return 0; 406 407 unsigned NumValsBeforeLHS = Vals.size(); 408 unsigned UsedICmpsBeforeLHS = UsedICmps; 409 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL, 410 isEQ, UsedICmps)) { 411 unsigned NumVals = Vals.size(); 412 unsigned UsedICmpsBeforeRHS = UsedICmps; 413 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 414 isEQ, UsedICmps)) { 415 if (LHS == RHS) 416 return LHS; 417 Vals.resize(NumVals); 418 UsedICmps = UsedICmpsBeforeRHS; 419 } 420 421 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 422 // set it and return success. 423 if (Extra == 0 || Extra == I->getOperand(1)) { 424 Extra = I->getOperand(1); 425 return LHS; 426 } 427 428 Vals.resize(NumValsBeforeLHS); 429 UsedICmps = UsedICmpsBeforeLHS; 430 return 0; 431 } 432 433 // If the LHS can't be folded in, but Extra is available and RHS can, try to 434 // use LHS as Extra. 435 if (Extra == 0 || Extra == I->getOperand(0)) { 436 Value *OldExtra = Extra; 437 Extra = I->getOperand(0); 438 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 439 isEQ, UsedICmps)) 440 return RHS; 441 assert(Vals.size() == NumValsBeforeLHS); 442 Extra = OldExtra; 443 } 444 445 return 0; 446 } 447 448 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 449 Instruction *Cond = 0; 450 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 451 Cond = dyn_cast<Instruction>(SI->getCondition()); 452 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 453 if (BI->isConditional()) 454 Cond = dyn_cast<Instruction>(BI->getCondition()); 455 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 456 Cond = dyn_cast<Instruction>(IBI->getAddress()); 457 } 458 459 TI->eraseFromParent(); 460 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 461 } 462 463 /// isValueEqualityComparison - Return true if the specified terminator checks 464 /// to see if a value is equal to constant integer value. 465 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 466 Value *CV = 0; 467 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 468 // Do not permit merging of large switch instructions into their 469 // predecessors unless there is only one predecessor. 470 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 471 pred_end(SI->getParent())) <= 128) 472 CV = SI->getCondition(); 473 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 474 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 475 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 476 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 477 CV = ICI->getOperand(0); 478 479 // Unwrap any lossless ptrtoint cast. 480 if (DL && CV) { 481 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 482 Value *Ptr = PTII->getPointerOperand(); 483 if (PTII->getType() == DL->getIntPtrType(Ptr->getType())) 484 CV = Ptr; 485 } 486 } 487 return CV; 488 } 489 490 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 491 /// decode all of the 'cases' that it represents and return the 'default' block. 492 BasicBlock *SimplifyCFGOpt:: 493 GetValueEqualityComparisonCases(TerminatorInst *TI, 494 std::vector<ValueEqualityComparisonCase> 495 &Cases) { 496 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 497 Cases.reserve(SI->getNumCases()); 498 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 499 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 500 i.getCaseSuccessor())); 501 return SI->getDefaultDest(); 502 } 503 504 BranchInst *BI = cast<BranchInst>(TI); 505 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 506 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 507 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 508 DL), 509 Succ)); 510 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 511 } 512 513 514 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 515 /// in the list that match the specified block. 516 static void EliminateBlockCases(BasicBlock *BB, 517 std::vector<ValueEqualityComparisonCase> &Cases) { 518 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 519 } 520 521 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 522 /// well. 523 static bool 524 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 525 std::vector<ValueEqualityComparisonCase > &C2) { 526 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 527 528 // Make V1 be smaller than V2. 529 if (V1->size() > V2->size()) 530 std::swap(V1, V2); 531 532 if (V1->size() == 0) return false; 533 if (V1->size() == 1) { 534 // Just scan V2. 535 ConstantInt *TheVal = (*V1)[0].Value; 536 for (unsigned i = 0, e = V2->size(); i != e; ++i) 537 if (TheVal == (*V2)[i].Value) 538 return true; 539 } 540 541 // Otherwise, just sort both lists and compare element by element. 542 array_pod_sort(V1->begin(), V1->end()); 543 array_pod_sort(V2->begin(), V2->end()); 544 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 545 while (i1 != e1 && i2 != e2) { 546 if ((*V1)[i1].Value == (*V2)[i2].Value) 547 return true; 548 if ((*V1)[i1].Value < (*V2)[i2].Value) 549 ++i1; 550 else 551 ++i2; 552 } 553 return false; 554 } 555 556 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 557 /// terminator instruction and its block is known to only have a single 558 /// predecessor block, check to see if that predecessor is also a value 559 /// comparison with the same value, and if that comparison determines the 560 /// outcome of this comparison. If so, simplify TI. This does a very limited 561 /// form of jump threading. 562 bool SimplifyCFGOpt:: 563 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 564 BasicBlock *Pred, 565 IRBuilder<> &Builder) { 566 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 567 if (!PredVal) return false; // Not a value comparison in predecessor. 568 569 Value *ThisVal = isValueEqualityComparison(TI); 570 assert(ThisVal && "This isn't a value comparison!!"); 571 if (ThisVal != PredVal) return false; // Different predicates. 572 573 // TODO: Preserve branch weight metadata, similarly to how 574 // FoldValueComparisonIntoPredecessors preserves it. 575 576 // Find out information about when control will move from Pred to TI's block. 577 std::vector<ValueEqualityComparisonCase> PredCases; 578 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 579 PredCases); 580 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 581 582 // Find information about how control leaves this block. 583 std::vector<ValueEqualityComparisonCase> ThisCases; 584 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 585 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 586 587 // If TI's block is the default block from Pred's comparison, potentially 588 // simplify TI based on this knowledge. 589 if (PredDef == TI->getParent()) { 590 // If we are here, we know that the value is none of those cases listed in 591 // PredCases. If there are any cases in ThisCases that are in PredCases, we 592 // can simplify TI. 593 if (!ValuesOverlap(PredCases, ThisCases)) 594 return false; 595 596 if (isa<BranchInst>(TI)) { 597 // Okay, one of the successors of this condbr is dead. Convert it to a 598 // uncond br. 599 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 600 // Insert the new branch. 601 Instruction *NI = Builder.CreateBr(ThisDef); 602 (void) NI; 603 604 // Remove PHI node entries for the dead edge. 605 ThisCases[0].Dest->removePredecessor(TI->getParent()); 606 607 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 608 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 609 610 EraseTerminatorInstAndDCECond(TI); 611 return true; 612 } 613 614 SwitchInst *SI = cast<SwitchInst>(TI); 615 // Okay, TI has cases that are statically dead, prune them away. 616 SmallPtrSet<Constant*, 16> DeadCases; 617 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 618 DeadCases.insert(PredCases[i].Value); 619 620 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 621 << "Through successor TI: " << *TI); 622 623 // Collect branch weights into a vector. 624 SmallVector<uint32_t, 8> Weights; 625 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 626 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 627 if (HasWeight) 628 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 629 ++MD_i) { 630 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 631 assert(CI); 632 Weights.push_back(CI->getValue().getZExtValue()); 633 } 634 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 635 --i; 636 if (DeadCases.count(i.getCaseValue())) { 637 if (HasWeight) { 638 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 639 Weights.pop_back(); 640 } 641 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 642 SI->removeCase(i); 643 } 644 } 645 if (HasWeight && Weights.size() >= 2) 646 SI->setMetadata(LLVMContext::MD_prof, 647 MDBuilder(SI->getParent()->getContext()). 648 createBranchWeights(Weights)); 649 650 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 651 return true; 652 } 653 654 // Otherwise, TI's block must correspond to some matched value. Find out 655 // which value (or set of values) this is. 656 ConstantInt *TIV = 0; 657 BasicBlock *TIBB = TI->getParent(); 658 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 659 if (PredCases[i].Dest == TIBB) { 660 if (TIV != 0) 661 return false; // Cannot handle multiple values coming to this block. 662 TIV = PredCases[i].Value; 663 } 664 assert(TIV && "No edge from pred to succ?"); 665 666 // Okay, we found the one constant that our value can be if we get into TI's 667 // BB. Find out which successor will unconditionally be branched to. 668 BasicBlock *TheRealDest = 0; 669 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 670 if (ThisCases[i].Value == TIV) { 671 TheRealDest = ThisCases[i].Dest; 672 break; 673 } 674 675 // If not handled by any explicit cases, it is handled by the default case. 676 if (TheRealDest == 0) TheRealDest = ThisDef; 677 678 // Remove PHI node entries for dead edges. 679 BasicBlock *CheckEdge = TheRealDest; 680 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 681 if (*SI != CheckEdge) 682 (*SI)->removePredecessor(TIBB); 683 else 684 CheckEdge = 0; 685 686 // Insert the new branch. 687 Instruction *NI = Builder.CreateBr(TheRealDest); 688 (void) NI; 689 690 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 691 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 692 693 EraseTerminatorInstAndDCECond(TI); 694 return true; 695 } 696 697 namespace { 698 /// ConstantIntOrdering - This class implements a stable ordering of constant 699 /// integers that does not depend on their address. This is important for 700 /// applications that sort ConstantInt's to ensure uniqueness. 701 struct ConstantIntOrdering { 702 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 703 return LHS->getValue().ult(RHS->getValue()); 704 } 705 }; 706 } 707 708 static int ConstantIntSortPredicate(ConstantInt *const *P1, 709 ConstantInt *const *P2) { 710 const ConstantInt *LHS = *P1; 711 const ConstantInt *RHS = *P2; 712 if (LHS->getValue().ult(RHS->getValue())) 713 return 1; 714 if (LHS->getValue() == RHS->getValue()) 715 return 0; 716 return -1; 717 } 718 719 static inline bool HasBranchWeights(const Instruction* I) { 720 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 721 if (ProfMD && ProfMD->getOperand(0)) 722 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 723 return MDS->getString().equals("branch_weights"); 724 725 return false; 726 } 727 728 /// Get Weights of a given TerminatorInst, the default weight is at the front 729 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 730 /// metadata. 731 static void GetBranchWeights(TerminatorInst *TI, 732 SmallVectorImpl<uint64_t> &Weights) { 733 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 734 assert(MD); 735 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 736 ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i)); 737 Weights.push_back(CI->getValue().getZExtValue()); 738 } 739 740 // If TI is a conditional eq, the default case is the false case, 741 // and the corresponding branch-weight data is at index 2. We swap the 742 // default weight to be the first entry. 743 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 744 assert(Weights.size() == 2); 745 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 746 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 747 std::swap(Weights.front(), Weights.back()); 748 } 749 } 750 751 /// Keep halving the weights until all can fit in uint32_t. 752 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 753 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 754 if (Max > UINT_MAX) { 755 unsigned Offset = 32 - countLeadingZeros(Max); 756 for (uint64_t &I : Weights) 757 I >>= Offset; 758 } 759 } 760 761 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 762 /// equality comparison instruction (either a switch or a branch on "X == c"). 763 /// See if any of the predecessors of the terminator block are value comparisons 764 /// on the same value. If so, and if safe to do so, fold them together. 765 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 766 IRBuilder<> &Builder) { 767 BasicBlock *BB = TI->getParent(); 768 Value *CV = isValueEqualityComparison(TI); // CondVal 769 assert(CV && "Not a comparison?"); 770 bool Changed = false; 771 772 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 773 while (!Preds.empty()) { 774 BasicBlock *Pred = Preds.pop_back_val(); 775 776 // See if the predecessor is a comparison with the same value. 777 TerminatorInst *PTI = Pred->getTerminator(); 778 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 779 780 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 781 // Figure out which 'cases' to copy from SI to PSI. 782 std::vector<ValueEqualityComparisonCase> BBCases; 783 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 784 785 std::vector<ValueEqualityComparisonCase> PredCases; 786 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 787 788 // Based on whether the default edge from PTI goes to BB or not, fill in 789 // PredCases and PredDefault with the new switch cases we would like to 790 // build. 791 SmallVector<BasicBlock*, 8> NewSuccessors; 792 793 // Update the branch weight metadata along the way 794 SmallVector<uint64_t, 8> Weights; 795 bool PredHasWeights = HasBranchWeights(PTI); 796 bool SuccHasWeights = HasBranchWeights(TI); 797 798 if (PredHasWeights) { 799 GetBranchWeights(PTI, Weights); 800 // branch-weight metadata is inconsistent here. 801 if (Weights.size() != 1 + PredCases.size()) 802 PredHasWeights = SuccHasWeights = false; 803 } else if (SuccHasWeights) 804 // If there are no predecessor weights but there are successor weights, 805 // populate Weights with 1, which will later be scaled to the sum of 806 // successor's weights 807 Weights.assign(1 + PredCases.size(), 1); 808 809 SmallVector<uint64_t, 8> SuccWeights; 810 if (SuccHasWeights) { 811 GetBranchWeights(TI, SuccWeights); 812 // branch-weight metadata is inconsistent here. 813 if (SuccWeights.size() != 1 + BBCases.size()) 814 PredHasWeights = SuccHasWeights = false; 815 } else if (PredHasWeights) 816 SuccWeights.assign(1 + BBCases.size(), 1); 817 818 if (PredDefault == BB) { 819 // If this is the default destination from PTI, only the edges in TI 820 // that don't occur in PTI, or that branch to BB will be activated. 821 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 822 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 823 if (PredCases[i].Dest != BB) 824 PTIHandled.insert(PredCases[i].Value); 825 else { 826 // The default destination is BB, we don't need explicit targets. 827 std::swap(PredCases[i], PredCases.back()); 828 829 if (PredHasWeights || SuccHasWeights) { 830 // Increase weight for the default case. 831 Weights[0] += Weights[i+1]; 832 std::swap(Weights[i+1], Weights.back()); 833 Weights.pop_back(); 834 } 835 836 PredCases.pop_back(); 837 --i; --e; 838 } 839 840 // Reconstruct the new switch statement we will be building. 841 if (PredDefault != BBDefault) { 842 PredDefault->removePredecessor(Pred); 843 PredDefault = BBDefault; 844 NewSuccessors.push_back(BBDefault); 845 } 846 847 unsigned CasesFromPred = Weights.size(); 848 uint64_t ValidTotalSuccWeight = 0; 849 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 850 if (!PTIHandled.count(BBCases[i].Value) && 851 BBCases[i].Dest != BBDefault) { 852 PredCases.push_back(BBCases[i]); 853 NewSuccessors.push_back(BBCases[i].Dest); 854 if (SuccHasWeights || PredHasWeights) { 855 // The default weight is at index 0, so weight for the ith case 856 // should be at index i+1. Scale the cases from successor by 857 // PredDefaultWeight (Weights[0]). 858 Weights.push_back(Weights[0] * SuccWeights[i+1]); 859 ValidTotalSuccWeight += SuccWeights[i+1]; 860 } 861 } 862 863 if (SuccHasWeights || PredHasWeights) { 864 ValidTotalSuccWeight += SuccWeights[0]; 865 // Scale the cases from predecessor by ValidTotalSuccWeight. 866 for (unsigned i = 1; i < CasesFromPred; ++i) 867 Weights[i] *= ValidTotalSuccWeight; 868 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 869 Weights[0] *= SuccWeights[0]; 870 } 871 } else { 872 // If this is not the default destination from PSI, only the edges 873 // in SI that occur in PSI with a destination of BB will be 874 // activated. 875 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 876 std::map<ConstantInt*, uint64_t> WeightsForHandled; 877 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 878 if (PredCases[i].Dest == BB) { 879 PTIHandled.insert(PredCases[i].Value); 880 881 if (PredHasWeights || SuccHasWeights) { 882 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 883 std::swap(Weights[i+1], Weights.back()); 884 Weights.pop_back(); 885 } 886 887 std::swap(PredCases[i], PredCases.back()); 888 PredCases.pop_back(); 889 --i; --e; 890 } 891 892 // Okay, now we know which constants were sent to BB from the 893 // predecessor. Figure out where they will all go now. 894 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 895 if (PTIHandled.count(BBCases[i].Value)) { 896 // If this is one we are capable of getting... 897 if (PredHasWeights || SuccHasWeights) 898 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 899 PredCases.push_back(BBCases[i]); 900 NewSuccessors.push_back(BBCases[i].Dest); 901 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 902 } 903 904 // If there are any constants vectored to BB that TI doesn't handle, 905 // they must go to the default destination of TI. 906 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 907 PTIHandled.begin(), 908 E = PTIHandled.end(); I != E; ++I) { 909 if (PredHasWeights || SuccHasWeights) 910 Weights.push_back(WeightsForHandled[*I]); 911 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 912 NewSuccessors.push_back(BBDefault); 913 } 914 } 915 916 // Okay, at this point, we know which new successor Pred will get. Make 917 // sure we update the number of entries in the PHI nodes for these 918 // successors. 919 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 920 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 921 922 Builder.SetInsertPoint(PTI); 923 // Convert pointer to int before we switch. 924 if (CV->getType()->isPointerTy()) { 925 assert(DL && "Cannot switch on pointer without DataLayout"); 926 CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()), 927 "magicptr"); 928 } 929 930 // Now that the successors are updated, create the new Switch instruction. 931 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 932 PredCases.size()); 933 NewSI->setDebugLoc(PTI->getDebugLoc()); 934 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 935 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 936 937 if (PredHasWeights || SuccHasWeights) { 938 // Halve the weights if any of them cannot fit in an uint32_t 939 FitWeights(Weights); 940 941 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 942 943 NewSI->setMetadata(LLVMContext::MD_prof, 944 MDBuilder(BB->getContext()). 945 createBranchWeights(MDWeights)); 946 } 947 948 EraseTerminatorInstAndDCECond(PTI); 949 950 // Okay, last check. If BB is still a successor of PSI, then we must 951 // have an infinite loop case. If so, add an infinitely looping block 952 // to handle the case to preserve the behavior of the code. 953 BasicBlock *InfLoopBlock = 0; 954 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 955 if (NewSI->getSuccessor(i) == BB) { 956 if (InfLoopBlock == 0) { 957 // Insert it at the end of the function, because it's either code, 958 // or it won't matter if it's hot. :) 959 InfLoopBlock = BasicBlock::Create(BB->getContext(), 960 "infloop", BB->getParent()); 961 BranchInst::Create(InfLoopBlock, InfLoopBlock); 962 } 963 NewSI->setSuccessor(i, InfLoopBlock); 964 } 965 966 Changed = true; 967 } 968 } 969 return Changed; 970 } 971 972 // isSafeToHoistInvoke - If we would need to insert a select that uses the 973 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 974 // would need to do this), we can't hoist the invoke, as there is nowhere 975 // to put the select in this case. 976 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 977 Instruction *I1, Instruction *I2) { 978 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 979 PHINode *PN; 980 for (BasicBlock::iterator BBI = SI->begin(); 981 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 982 Value *BB1V = PN->getIncomingValueForBlock(BB1); 983 Value *BB2V = PN->getIncomingValueForBlock(BB2); 984 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 985 return false; 986 } 987 } 988 } 989 return true; 990 } 991 992 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 993 /// BB2, hoist any common code in the two blocks up into the branch block. The 994 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 995 static bool HoistThenElseCodeToIf(BranchInst *BI) { 996 // This does very trivial matching, with limited scanning, to find identical 997 // instructions in the two blocks. In particular, we don't want to get into 998 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 999 // such, we currently just scan for obviously identical instructions in an 1000 // identical order. 1001 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1002 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1003 1004 BasicBlock::iterator BB1_Itr = BB1->begin(); 1005 BasicBlock::iterator BB2_Itr = BB2->begin(); 1006 1007 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1008 // Skip debug info if it is not identical. 1009 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1010 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1011 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1012 while (isa<DbgInfoIntrinsic>(I1)) 1013 I1 = BB1_Itr++; 1014 while (isa<DbgInfoIntrinsic>(I2)) 1015 I2 = BB2_Itr++; 1016 } 1017 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1018 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1019 return false; 1020 1021 BasicBlock *BIParent = BI->getParent(); 1022 1023 bool Changed = false; 1024 do { 1025 // If we are hoisting the terminator instruction, don't move one (making a 1026 // broken BB), instead clone it, and remove BI. 1027 if (isa<TerminatorInst>(I1)) 1028 goto HoistTerminator; 1029 1030 // For a normal instruction, we just move one to right before the branch, 1031 // then replace all uses of the other with the first. Finally, we remove 1032 // the now redundant second instruction. 1033 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1034 if (!I2->use_empty()) 1035 I2->replaceAllUsesWith(I1); 1036 I1->intersectOptionalDataWith(I2); 1037 I2->eraseFromParent(); 1038 Changed = true; 1039 1040 I1 = BB1_Itr++; 1041 I2 = BB2_Itr++; 1042 // Skip debug info if it is not identical. 1043 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1044 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1045 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1046 while (isa<DbgInfoIntrinsic>(I1)) 1047 I1 = BB1_Itr++; 1048 while (isa<DbgInfoIntrinsic>(I2)) 1049 I2 = BB2_Itr++; 1050 } 1051 } while (I1->isIdenticalToWhenDefined(I2)); 1052 1053 return true; 1054 1055 HoistTerminator: 1056 // It may not be possible to hoist an invoke. 1057 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1058 return Changed; 1059 1060 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1061 PHINode *PN; 1062 for (BasicBlock::iterator BBI = SI->begin(); 1063 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1064 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1065 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1066 if (BB1V == BB2V) 1067 continue; 1068 1069 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1070 return Changed; 1071 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1072 return Changed; 1073 } 1074 } 1075 1076 // Okay, it is safe to hoist the terminator. 1077 Instruction *NT = I1->clone(); 1078 BIParent->getInstList().insert(BI, NT); 1079 if (!NT->getType()->isVoidTy()) { 1080 I1->replaceAllUsesWith(NT); 1081 I2->replaceAllUsesWith(NT); 1082 NT->takeName(I1); 1083 } 1084 1085 IRBuilder<true, NoFolder> Builder(NT); 1086 // Hoisting one of the terminators from our successor is a great thing. 1087 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1088 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1089 // nodes, so we insert select instruction to compute the final result. 1090 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1091 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1092 PHINode *PN; 1093 for (BasicBlock::iterator BBI = SI->begin(); 1094 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1095 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1096 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1097 if (BB1V == BB2V) continue; 1098 1099 // These values do not agree. Insert a select instruction before NT 1100 // that determines the right value. 1101 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1102 if (SI == 0) 1103 SI = cast<SelectInst> 1104 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1105 BB1V->getName()+"."+BB2V->getName())); 1106 1107 // Make the PHI node use the select for all incoming values for BB1/BB2 1108 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1109 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1110 PN->setIncomingValue(i, SI); 1111 } 1112 } 1113 1114 // Update any PHI nodes in our new successors. 1115 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1116 AddPredecessorToBlock(*SI, BIParent, BB1); 1117 1118 EraseTerminatorInstAndDCECond(BI); 1119 return true; 1120 } 1121 1122 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1123 /// check whether BBEnd has only two predecessors and the other predecessor 1124 /// ends with an unconditional branch. If it is true, sink any common code 1125 /// in the two predecessors to BBEnd. 1126 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1127 assert(BI1->isUnconditional()); 1128 BasicBlock *BB1 = BI1->getParent(); 1129 BasicBlock *BBEnd = BI1->getSuccessor(0); 1130 1131 // Check that BBEnd has two predecessors and the other predecessor ends with 1132 // an unconditional branch. 1133 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1134 BasicBlock *Pred0 = *PI++; 1135 if (PI == PE) // Only one predecessor. 1136 return false; 1137 BasicBlock *Pred1 = *PI++; 1138 if (PI != PE) // More than two predecessors. 1139 return false; 1140 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1141 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1142 if (!BI2 || !BI2->isUnconditional()) 1143 return false; 1144 1145 // Gather the PHI nodes in BBEnd. 1146 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1147 Instruction *FirstNonPhiInBBEnd = 0; 1148 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1149 I != E; ++I) { 1150 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1151 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1152 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1153 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1154 } else { 1155 FirstNonPhiInBBEnd = &*I; 1156 break; 1157 } 1158 } 1159 if (!FirstNonPhiInBBEnd) 1160 return false; 1161 1162 1163 // This does very trivial matching, with limited scanning, to find identical 1164 // instructions in the two blocks. We scan backward for obviously identical 1165 // instructions in an identical order. 1166 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1167 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1168 RE2 = BB2->getInstList().rend(); 1169 // Skip debug info. 1170 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1171 if (RI1 == RE1) 1172 return false; 1173 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1174 if (RI2 == RE2) 1175 return false; 1176 // Skip the unconditional branches. 1177 ++RI1; 1178 ++RI2; 1179 1180 bool Changed = false; 1181 while (RI1 != RE1 && RI2 != RE2) { 1182 // Skip debug info. 1183 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1184 if (RI1 == RE1) 1185 return Changed; 1186 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1187 if (RI2 == RE2) 1188 return Changed; 1189 1190 Instruction *I1 = &*RI1, *I2 = &*RI2; 1191 // I1 and I2 should have a single use in the same PHI node, and they 1192 // perform the same operation. 1193 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1194 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1195 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1196 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1197 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1198 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1199 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1200 !I1->hasOneUse() || !I2->hasOneUse() || 1201 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1202 MapValueFromBB1ToBB2[I1].first != I2) 1203 return Changed; 1204 1205 // Check whether we should swap the operands of ICmpInst. 1206 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1207 bool SwapOpnds = false; 1208 if (ICmp1 && ICmp2 && 1209 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1210 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1211 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1212 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1213 ICmp2->swapOperands(); 1214 SwapOpnds = true; 1215 } 1216 if (!I1->isSameOperationAs(I2)) { 1217 if (SwapOpnds) 1218 ICmp2->swapOperands(); 1219 return Changed; 1220 } 1221 1222 // The operands should be either the same or they need to be generated 1223 // with a PHI node after sinking. We only handle the case where there is 1224 // a single pair of different operands. 1225 Value *DifferentOp1 = 0, *DifferentOp2 = 0; 1226 unsigned Op1Idx = 0; 1227 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1228 if (I1->getOperand(I) == I2->getOperand(I)) 1229 continue; 1230 // Early exit if we have more-than one pair of different operands or 1231 // the different operand is already in MapValueFromBB1ToBB2. 1232 // Early exit if we need a PHI node to replace a constant. 1233 if (DifferentOp1 || 1234 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1235 MapValueFromBB1ToBB2.end() || 1236 isa<Constant>(I1->getOperand(I)) || 1237 isa<Constant>(I2->getOperand(I))) { 1238 // If we can't sink the instructions, undo the swapping. 1239 if (SwapOpnds) 1240 ICmp2->swapOperands(); 1241 return Changed; 1242 } 1243 DifferentOp1 = I1->getOperand(I); 1244 Op1Idx = I; 1245 DifferentOp2 = I2->getOperand(I); 1246 } 1247 1248 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1249 // remove (I1, I2) from MapValueFromBB1ToBB2. 1250 if (DifferentOp1) { 1251 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1252 DifferentOp1->getName() + ".sink", 1253 BBEnd->begin()); 1254 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1255 // I1 should use NewPN instead of DifferentOp1. 1256 I1->setOperand(Op1Idx, NewPN); 1257 NewPN->addIncoming(DifferentOp1, BB1); 1258 NewPN->addIncoming(DifferentOp2, BB2); 1259 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1260 } 1261 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1262 MapValueFromBB1ToBB2.erase(I1); 1263 1264 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1265 DEBUG(dbgs() << " " << *I2 << "\n";); 1266 // We need to update RE1 and RE2 if we are going to sink the first 1267 // instruction in the basic block down. 1268 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1269 // Sink the instruction. 1270 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1271 if (!OldPN->use_empty()) 1272 OldPN->replaceAllUsesWith(I1); 1273 OldPN->eraseFromParent(); 1274 1275 if (!I2->use_empty()) 1276 I2->replaceAllUsesWith(I1); 1277 I1->intersectOptionalDataWith(I2); 1278 I2->eraseFromParent(); 1279 1280 if (UpdateRE1) 1281 RE1 = BB1->getInstList().rend(); 1282 if (UpdateRE2) 1283 RE2 = BB2->getInstList().rend(); 1284 FirstNonPhiInBBEnd = I1; 1285 NumSinkCommons++; 1286 Changed = true; 1287 } 1288 return Changed; 1289 } 1290 1291 /// \brief Determine if we can hoist sink a sole store instruction out of a 1292 /// conditional block. 1293 /// 1294 /// We are looking for code like the following: 1295 /// BrBB: 1296 /// store i32 %add, i32* %arrayidx2 1297 /// ... // No other stores or function calls (we could be calling a memory 1298 /// ... // function). 1299 /// %cmp = icmp ult %x, %y 1300 /// br i1 %cmp, label %EndBB, label %ThenBB 1301 /// ThenBB: 1302 /// store i32 %add5, i32* %arrayidx2 1303 /// br label EndBB 1304 /// EndBB: 1305 /// ... 1306 /// We are going to transform this into: 1307 /// BrBB: 1308 /// store i32 %add, i32* %arrayidx2 1309 /// ... // 1310 /// %cmp = icmp ult %x, %y 1311 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1312 /// store i32 %add.add5, i32* %arrayidx2 1313 /// ... 1314 /// 1315 /// \return The pointer to the value of the previous store if the store can be 1316 /// hoisted into the predecessor block. 0 otherwise. 1317 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1318 BasicBlock *StoreBB, BasicBlock *EndBB) { 1319 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1320 if (!StoreToHoist) 1321 return 0; 1322 1323 // Volatile or atomic. 1324 if (!StoreToHoist->isSimple()) 1325 return 0; 1326 1327 Value *StorePtr = StoreToHoist->getPointerOperand(); 1328 1329 // Look for a store to the same pointer in BrBB. 1330 unsigned MaxNumInstToLookAt = 10; 1331 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1332 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1333 Instruction *CurI = &*RI; 1334 1335 // Could be calling an instruction that effects memory like free(). 1336 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1337 return 0; 1338 1339 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1340 // Found the previous store make sure it stores to the same location. 1341 if (SI && SI->getPointerOperand() == StorePtr) 1342 // Found the previous store, return its value operand. 1343 return SI->getValueOperand(); 1344 else if (SI) 1345 return 0; // Unknown store. 1346 } 1347 1348 return 0; 1349 } 1350 1351 /// \brief Speculate a conditional basic block flattening the CFG. 1352 /// 1353 /// Note that this is a very risky transform currently. Speculating 1354 /// instructions like this is most often not desirable. Instead, there is an MI 1355 /// pass which can do it with full awareness of the resource constraints. 1356 /// However, some cases are "obvious" and we should do directly. An example of 1357 /// this is speculating a single, reasonably cheap instruction. 1358 /// 1359 /// There is only one distinct advantage to flattening the CFG at the IR level: 1360 /// it makes very common but simplistic optimizations such as are common in 1361 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1362 /// modeling their effects with easier to reason about SSA value graphs. 1363 /// 1364 /// 1365 /// An illustration of this transform is turning this IR: 1366 /// \code 1367 /// BB: 1368 /// %cmp = icmp ult %x, %y 1369 /// br i1 %cmp, label %EndBB, label %ThenBB 1370 /// ThenBB: 1371 /// %sub = sub %x, %y 1372 /// br label BB2 1373 /// EndBB: 1374 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1375 /// ... 1376 /// \endcode 1377 /// 1378 /// Into this IR: 1379 /// \code 1380 /// BB: 1381 /// %cmp = icmp ult %x, %y 1382 /// %sub = sub %x, %y 1383 /// %cond = select i1 %cmp, 0, %sub 1384 /// ... 1385 /// \endcode 1386 /// 1387 /// \returns true if the conditional block is removed. 1388 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) { 1389 // Be conservative for now. FP select instruction can often be expensive. 1390 Value *BrCond = BI->getCondition(); 1391 if (isa<FCmpInst>(BrCond)) 1392 return false; 1393 1394 BasicBlock *BB = BI->getParent(); 1395 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1396 1397 // If ThenBB is actually on the false edge of the conditional branch, remember 1398 // to swap the select operands later. 1399 bool Invert = false; 1400 if (ThenBB != BI->getSuccessor(0)) { 1401 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1402 Invert = true; 1403 } 1404 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1405 1406 // Keep a count of how many times instructions are used within CondBB when 1407 // they are candidates for sinking into CondBB. Specifically: 1408 // - They are defined in BB, and 1409 // - They have no side effects, and 1410 // - All of their uses are in CondBB. 1411 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1412 1413 unsigned SpeculationCost = 0; 1414 Value *SpeculatedStoreValue = 0; 1415 StoreInst *SpeculatedStore = 0; 1416 for (BasicBlock::iterator BBI = ThenBB->begin(), 1417 BBE = std::prev(ThenBB->end()); 1418 BBI != BBE; ++BBI) { 1419 Instruction *I = BBI; 1420 // Skip debug info. 1421 if (isa<DbgInfoIntrinsic>(I)) 1422 continue; 1423 1424 // Only speculatively execution a single instruction (not counting the 1425 // terminator) for now. 1426 ++SpeculationCost; 1427 if (SpeculationCost > 1) 1428 return false; 1429 1430 // Don't hoist the instruction if it's unsafe or expensive. 1431 if (!isSafeToSpeculativelyExecute(I) && 1432 !(HoistCondStores && 1433 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1434 EndBB)))) 1435 return false; 1436 if (!SpeculatedStoreValue && 1437 ComputeSpeculationCost(I) > PHINodeFoldingThreshold) 1438 return false; 1439 1440 // Store the store speculation candidate. 1441 if (SpeculatedStoreValue) 1442 SpeculatedStore = cast<StoreInst>(I); 1443 1444 // Do not hoist the instruction if any of its operands are defined but not 1445 // used in BB. The transformation will prevent the operand from 1446 // being sunk into the use block. 1447 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1448 i != e; ++i) { 1449 Instruction *OpI = dyn_cast<Instruction>(*i); 1450 if (!OpI || OpI->getParent() != BB || 1451 OpI->mayHaveSideEffects()) 1452 continue; // Not a candidate for sinking. 1453 1454 ++SinkCandidateUseCounts[OpI]; 1455 } 1456 } 1457 1458 // Consider any sink candidates which are only used in CondBB as costs for 1459 // speculation. Note, while we iterate over a DenseMap here, we are summing 1460 // and so iteration order isn't significant. 1461 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1462 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1463 I != E; ++I) 1464 if (I->first->getNumUses() == I->second) { 1465 ++SpeculationCost; 1466 if (SpeculationCost > 1) 1467 return false; 1468 } 1469 1470 // Check that the PHI nodes can be converted to selects. 1471 bool HaveRewritablePHIs = false; 1472 for (BasicBlock::iterator I = EndBB->begin(); 1473 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1474 Value *OrigV = PN->getIncomingValueForBlock(BB); 1475 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1476 1477 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1478 // Skip PHIs which are trivial. 1479 if (ThenV == OrigV) 1480 continue; 1481 1482 HaveRewritablePHIs = true; 1483 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1484 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1485 if (!OrigCE && !ThenCE) 1486 continue; // Known safe and cheap. 1487 1488 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1489 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1490 return false; 1491 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0; 1492 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0; 1493 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1494 return false; 1495 1496 // Account for the cost of an unfolded ConstantExpr which could end up 1497 // getting expanded into Instructions. 1498 // FIXME: This doesn't account for how many operations are combined in the 1499 // constant expression. 1500 ++SpeculationCost; 1501 if (SpeculationCost > 1) 1502 return false; 1503 } 1504 1505 // If there are no PHIs to process, bail early. This helps ensure idempotence 1506 // as well. 1507 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1508 return false; 1509 1510 // If we get here, we can hoist the instruction and if-convert. 1511 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1512 1513 // Insert a select of the value of the speculated store. 1514 if (SpeculatedStoreValue) { 1515 IRBuilder<true, NoFolder> Builder(BI); 1516 Value *TrueV = SpeculatedStore->getValueOperand(); 1517 Value *FalseV = SpeculatedStoreValue; 1518 if (Invert) 1519 std::swap(TrueV, FalseV); 1520 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1521 "." + FalseV->getName()); 1522 SpeculatedStore->setOperand(0, S); 1523 } 1524 1525 // Hoist the instructions. 1526 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1527 std::prev(ThenBB->end())); 1528 1529 // Insert selects and rewrite the PHI operands. 1530 IRBuilder<true, NoFolder> Builder(BI); 1531 for (BasicBlock::iterator I = EndBB->begin(); 1532 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1533 unsigned OrigI = PN->getBasicBlockIndex(BB); 1534 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1535 Value *OrigV = PN->getIncomingValue(OrigI); 1536 Value *ThenV = PN->getIncomingValue(ThenI); 1537 1538 // Skip PHIs which are trivial. 1539 if (OrigV == ThenV) 1540 continue; 1541 1542 // Create a select whose true value is the speculatively executed value and 1543 // false value is the preexisting value. Swap them if the branch 1544 // destinations were inverted. 1545 Value *TrueV = ThenV, *FalseV = OrigV; 1546 if (Invert) 1547 std::swap(TrueV, FalseV); 1548 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1549 TrueV->getName() + "." + FalseV->getName()); 1550 PN->setIncomingValue(OrigI, V); 1551 PN->setIncomingValue(ThenI, V); 1552 } 1553 1554 ++NumSpeculations; 1555 return true; 1556 } 1557 1558 /// \returns True if this block contains a CallInst with the NoDuplicate 1559 /// attribute. 1560 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1561 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1562 const CallInst *CI = dyn_cast<CallInst>(I); 1563 if (!CI) 1564 continue; 1565 if (CI->cannotDuplicate()) 1566 return true; 1567 } 1568 return false; 1569 } 1570 1571 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1572 /// across this block. 1573 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1574 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1575 unsigned Size = 0; 1576 1577 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1578 if (isa<DbgInfoIntrinsic>(BBI)) 1579 continue; 1580 if (Size > 10) return false; // Don't clone large BB's. 1581 ++Size; 1582 1583 // We can only support instructions that do not define values that are 1584 // live outside of the current basic block. 1585 for (User *U : BBI->users()) { 1586 Instruction *UI = cast<Instruction>(U); 1587 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1588 } 1589 1590 // Looks ok, continue checking. 1591 } 1592 1593 return true; 1594 } 1595 1596 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1597 /// that is defined in the same block as the branch and if any PHI entries are 1598 /// constants, thread edges corresponding to that entry to be branches to their 1599 /// ultimate destination. 1600 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) { 1601 BasicBlock *BB = BI->getParent(); 1602 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1603 // NOTE: we currently cannot transform this case if the PHI node is used 1604 // outside of the block. 1605 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1606 return false; 1607 1608 // Degenerate case of a single entry PHI. 1609 if (PN->getNumIncomingValues() == 1) { 1610 FoldSingleEntryPHINodes(PN->getParent()); 1611 return true; 1612 } 1613 1614 // Now we know that this block has multiple preds and two succs. 1615 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1616 1617 if (HasNoDuplicateCall(BB)) return false; 1618 1619 // Okay, this is a simple enough basic block. See if any phi values are 1620 // constants. 1621 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1622 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1623 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1624 1625 // Okay, we now know that all edges from PredBB should be revectored to 1626 // branch to RealDest. 1627 BasicBlock *PredBB = PN->getIncomingBlock(i); 1628 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1629 1630 if (RealDest == BB) continue; // Skip self loops. 1631 // Skip if the predecessor's terminator is an indirect branch. 1632 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1633 1634 // The dest block might have PHI nodes, other predecessors and other 1635 // difficult cases. Instead of being smart about this, just insert a new 1636 // block that jumps to the destination block, effectively splitting 1637 // the edge we are about to create. 1638 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1639 RealDest->getName()+".critedge", 1640 RealDest->getParent(), RealDest); 1641 BranchInst::Create(RealDest, EdgeBB); 1642 1643 // Update PHI nodes. 1644 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1645 1646 // BB may have instructions that are being threaded over. Clone these 1647 // instructions into EdgeBB. We know that there will be no uses of the 1648 // cloned instructions outside of EdgeBB. 1649 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1650 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1651 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1652 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1653 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1654 continue; 1655 } 1656 // Clone the instruction. 1657 Instruction *N = BBI->clone(); 1658 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1659 1660 // Update operands due to translation. 1661 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1662 i != e; ++i) { 1663 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1664 if (PI != TranslateMap.end()) 1665 *i = PI->second; 1666 } 1667 1668 // Check for trivial simplification. 1669 if (Value *V = SimplifyInstruction(N, DL)) { 1670 TranslateMap[BBI] = V; 1671 delete N; // Instruction folded away, don't need actual inst 1672 } else { 1673 // Insert the new instruction into its new home. 1674 EdgeBB->getInstList().insert(InsertPt, N); 1675 if (!BBI->use_empty()) 1676 TranslateMap[BBI] = N; 1677 } 1678 } 1679 1680 // Loop over all of the edges from PredBB to BB, changing them to branch 1681 // to EdgeBB instead. 1682 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1683 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1684 if (PredBBTI->getSuccessor(i) == BB) { 1685 BB->removePredecessor(PredBB); 1686 PredBBTI->setSuccessor(i, EdgeBB); 1687 } 1688 1689 // Recurse, simplifying any other constants. 1690 return FoldCondBranchOnPHI(BI, DL) | true; 1691 } 1692 1693 return false; 1694 } 1695 1696 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1697 /// PHI node, see if we can eliminate it. 1698 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) { 1699 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1700 // statement", which has a very simple dominance structure. Basically, we 1701 // are trying to find the condition that is being branched on, which 1702 // subsequently causes this merge to happen. We really want control 1703 // dependence information for this check, but simplifycfg can't keep it up 1704 // to date, and this catches most of the cases we care about anyway. 1705 BasicBlock *BB = PN->getParent(); 1706 BasicBlock *IfTrue, *IfFalse; 1707 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1708 if (!IfCond || 1709 // Don't bother if the branch will be constant folded trivially. 1710 isa<ConstantInt>(IfCond)) 1711 return false; 1712 1713 // Okay, we found that we can merge this two-entry phi node into a select. 1714 // Doing so would require us to fold *all* two entry phi nodes in this block. 1715 // At some point this becomes non-profitable (particularly if the target 1716 // doesn't support cmov's). Only do this transformation if there are two or 1717 // fewer PHI nodes in this block. 1718 unsigned NumPhis = 0; 1719 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1720 if (NumPhis > 2) 1721 return false; 1722 1723 // Loop over the PHI's seeing if we can promote them all to select 1724 // instructions. While we are at it, keep track of the instructions 1725 // that need to be moved to the dominating block. 1726 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1727 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1728 MaxCostVal1 = PHINodeFoldingThreshold; 1729 1730 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1731 PHINode *PN = cast<PHINode>(II++); 1732 if (Value *V = SimplifyInstruction(PN, DL)) { 1733 PN->replaceAllUsesWith(V); 1734 PN->eraseFromParent(); 1735 continue; 1736 } 1737 1738 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1739 MaxCostVal0) || 1740 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1741 MaxCostVal1)) 1742 return false; 1743 } 1744 1745 // If we folded the first phi, PN dangles at this point. Refresh it. If 1746 // we ran out of PHIs then we simplified them all. 1747 PN = dyn_cast<PHINode>(BB->begin()); 1748 if (PN == 0) return true; 1749 1750 // Don't fold i1 branches on PHIs which contain binary operators. These can 1751 // often be turned into switches and other things. 1752 if (PN->getType()->isIntegerTy(1) && 1753 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1754 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1755 isa<BinaryOperator>(IfCond))) 1756 return false; 1757 1758 // If we all PHI nodes are promotable, check to make sure that all 1759 // instructions in the predecessor blocks can be promoted as well. If 1760 // not, we won't be able to get rid of the control flow, so it's not 1761 // worth promoting to select instructions. 1762 BasicBlock *DomBlock = 0; 1763 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1764 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1765 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1766 IfBlock1 = 0; 1767 } else { 1768 DomBlock = *pred_begin(IfBlock1); 1769 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1770 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1771 // This is not an aggressive instruction that we can promote. 1772 // Because of this, we won't be able to get rid of the control 1773 // flow, so the xform is not worth it. 1774 return false; 1775 } 1776 } 1777 1778 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1779 IfBlock2 = 0; 1780 } else { 1781 DomBlock = *pred_begin(IfBlock2); 1782 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1783 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1784 // This is not an aggressive instruction that we can promote. 1785 // Because of this, we won't be able to get rid of the control 1786 // flow, so the xform is not worth it. 1787 return false; 1788 } 1789 } 1790 1791 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1792 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1793 1794 // If we can still promote the PHI nodes after this gauntlet of tests, 1795 // do all of the PHI's now. 1796 Instruction *InsertPt = DomBlock->getTerminator(); 1797 IRBuilder<true, NoFolder> Builder(InsertPt); 1798 1799 // Move all 'aggressive' instructions, which are defined in the 1800 // conditional parts of the if's up to the dominating block. 1801 if (IfBlock1) 1802 DomBlock->getInstList().splice(InsertPt, 1803 IfBlock1->getInstList(), IfBlock1->begin(), 1804 IfBlock1->getTerminator()); 1805 if (IfBlock2) 1806 DomBlock->getInstList().splice(InsertPt, 1807 IfBlock2->getInstList(), IfBlock2->begin(), 1808 IfBlock2->getTerminator()); 1809 1810 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1811 // Change the PHI node into a select instruction. 1812 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1813 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1814 1815 SelectInst *NV = 1816 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1817 PN->replaceAllUsesWith(NV); 1818 NV->takeName(PN); 1819 PN->eraseFromParent(); 1820 } 1821 1822 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1823 // has been flattened. Change DomBlock to jump directly to our new block to 1824 // avoid other simplifycfg's kicking in on the diamond. 1825 TerminatorInst *OldTI = DomBlock->getTerminator(); 1826 Builder.SetInsertPoint(OldTI); 1827 Builder.CreateBr(BB); 1828 OldTI->eraseFromParent(); 1829 return true; 1830 } 1831 1832 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1833 /// to two returning blocks, try to merge them together into one return, 1834 /// introducing a select if the return values disagree. 1835 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1836 IRBuilder<> &Builder) { 1837 assert(BI->isConditional() && "Must be a conditional branch"); 1838 BasicBlock *TrueSucc = BI->getSuccessor(0); 1839 BasicBlock *FalseSucc = BI->getSuccessor(1); 1840 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1841 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1842 1843 // Check to ensure both blocks are empty (just a return) or optionally empty 1844 // with PHI nodes. If there are other instructions, merging would cause extra 1845 // computation on one path or the other. 1846 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1847 return false; 1848 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1849 return false; 1850 1851 Builder.SetInsertPoint(BI); 1852 // Okay, we found a branch that is going to two return nodes. If 1853 // there is no return value for this function, just change the 1854 // branch into a return. 1855 if (FalseRet->getNumOperands() == 0) { 1856 TrueSucc->removePredecessor(BI->getParent()); 1857 FalseSucc->removePredecessor(BI->getParent()); 1858 Builder.CreateRetVoid(); 1859 EraseTerminatorInstAndDCECond(BI); 1860 return true; 1861 } 1862 1863 // Otherwise, figure out what the true and false return values are 1864 // so we can insert a new select instruction. 1865 Value *TrueValue = TrueRet->getReturnValue(); 1866 Value *FalseValue = FalseRet->getReturnValue(); 1867 1868 // Unwrap any PHI nodes in the return blocks. 1869 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1870 if (TVPN->getParent() == TrueSucc) 1871 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1872 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1873 if (FVPN->getParent() == FalseSucc) 1874 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1875 1876 // In order for this transformation to be safe, we must be able to 1877 // unconditionally execute both operands to the return. This is 1878 // normally the case, but we could have a potentially-trapping 1879 // constant expression that prevents this transformation from being 1880 // safe. 1881 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1882 if (TCV->canTrap()) 1883 return false; 1884 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1885 if (FCV->canTrap()) 1886 return false; 1887 1888 // Okay, we collected all the mapped values and checked them for sanity, and 1889 // defined to really do this transformation. First, update the CFG. 1890 TrueSucc->removePredecessor(BI->getParent()); 1891 FalseSucc->removePredecessor(BI->getParent()); 1892 1893 // Insert select instructions where needed. 1894 Value *BrCond = BI->getCondition(); 1895 if (TrueValue) { 1896 // Insert a select if the results differ. 1897 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1898 } else if (isa<UndefValue>(TrueValue)) { 1899 TrueValue = FalseValue; 1900 } else { 1901 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1902 FalseValue, "retval"); 1903 } 1904 } 1905 1906 Value *RI = !TrueValue ? 1907 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1908 1909 (void) RI; 1910 1911 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1912 << "\n " << *BI << "NewRet = " << *RI 1913 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1914 1915 EraseTerminatorInstAndDCECond(BI); 1916 1917 return true; 1918 } 1919 1920 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1921 /// probabilities of the branch taking each edge. Fills in the two APInt 1922 /// parameters and return true, or returns false if no or invalid metadata was 1923 /// found. 1924 static bool ExtractBranchMetadata(BranchInst *BI, 1925 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1926 assert(BI->isConditional() && 1927 "Looking for probabilities on unconditional branch?"); 1928 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1929 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1930 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1931 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1932 if (!CITrue || !CIFalse) return false; 1933 ProbTrue = CITrue->getValue().getZExtValue(); 1934 ProbFalse = CIFalse->getValue().getZExtValue(); 1935 return true; 1936 } 1937 1938 /// checkCSEInPredecessor - Return true if the given instruction is available 1939 /// in its predecessor block. If yes, the instruction will be removed. 1940 /// 1941 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1942 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1943 return false; 1944 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1945 Instruction *PBI = &*I; 1946 // Check whether Inst and PBI generate the same value. 1947 if (Inst->isIdenticalTo(PBI)) { 1948 Inst->replaceAllUsesWith(PBI); 1949 Inst->eraseFromParent(); 1950 return true; 1951 } 1952 } 1953 return false; 1954 } 1955 1956 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1957 /// predecessor branches to us and one of our successors, fold the block into 1958 /// the predecessor and use logical operations to pick the right destination. 1959 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1960 BasicBlock *BB = BI->getParent(); 1961 1962 Instruction *Cond = 0; 1963 if (BI->isConditional()) 1964 Cond = dyn_cast<Instruction>(BI->getCondition()); 1965 else { 1966 // For unconditional branch, check for a simple CFG pattern, where 1967 // BB has a single predecessor and BB's successor is also its predecessor's 1968 // successor. If such pattern exisits, check for CSE between BB and its 1969 // predecessor. 1970 if (BasicBlock *PB = BB->getSinglePredecessor()) 1971 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 1972 if (PBI->isConditional() && 1973 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 1974 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 1975 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 1976 I != E; ) { 1977 Instruction *Curr = I++; 1978 if (isa<CmpInst>(Curr)) { 1979 Cond = Curr; 1980 break; 1981 } 1982 // Quit if we can't remove this instruction. 1983 if (!checkCSEInPredecessor(Curr, PB)) 1984 return false; 1985 } 1986 } 1987 1988 if (Cond == 0) 1989 return false; 1990 } 1991 1992 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1993 Cond->getParent() != BB || !Cond->hasOneUse()) 1994 return false; 1995 1996 // Only allow this if the condition is a simple instruction that can be 1997 // executed unconditionally. It must be in the same block as the branch, and 1998 // must be at the front of the block. 1999 BasicBlock::iterator FrontIt = BB->front(); 2000 2001 // Ignore dbg intrinsics. 2002 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2003 2004 // Allow a single instruction to be hoisted in addition to the compare 2005 // that feeds the branch. We later ensure that any values that _it_ uses 2006 // were also live in the predecessor, so that we don't unnecessarily create 2007 // register pressure or inhibit out-of-order execution. 2008 Instruction *BonusInst = 0; 2009 if (&*FrontIt != Cond && 2010 FrontIt->hasOneUse() && FrontIt->user_back() == Cond && 2011 isSafeToSpeculativelyExecute(FrontIt)) { 2012 BonusInst = &*FrontIt; 2013 ++FrontIt; 2014 2015 // Ignore dbg intrinsics. 2016 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2017 } 2018 2019 // Only a single bonus inst is allowed. 2020 if (&*FrontIt != Cond) 2021 return false; 2022 2023 // Make sure the instruction after the condition is the cond branch. 2024 BasicBlock::iterator CondIt = Cond; ++CondIt; 2025 2026 // Ingore dbg intrinsics. 2027 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2028 2029 if (&*CondIt != BI) 2030 return false; 2031 2032 // Cond is known to be a compare or binary operator. Check to make sure that 2033 // neither operand is a potentially-trapping constant expression. 2034 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2035 if (CE->canTrap()) 2036 return false; 2037 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2038 if (CE->canTrap()) 2039 return false; 2040 2041 // Finally, don't infinitely unroll conditional loops. 2042 BasicBlock *TrueDest = BI->getSuccessor(0); 2043 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0; 2044 if (TrueDest == BB || FalseDest == BB) 2045 return false; 2046 2047 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2048 BasicBlock *PredBlock = *PI; 2049 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2050 2051 // Check that we have two conditional branches. If there is a PHI node in 2052 // the common successor, verify that the same value flows in from both 2053 // blocks. 2054 SmallVector<PHINode*, 4> PHIs; 2055 if (PBI == 0 || PBI->isUnconditional() || 2056 (BI->isConditional() && 2057 !SafeToMergeTerminators(BI, PBI)) || 2058 (!BI->isConditional() && 2059 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2060 continue; 2061 2062 // Determine if the two branches share a common destination. 2063 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2064 bool InvertPredCond = false; 2065 2066 if (BI->isConditional()) { 2067 if (PBI->getSuccessor(0) == TrueDest) 2068 Opc = Instruction::Or; 2069 else if (PBI->getSuccessor(1) == FalseDest) 2070 Opc = Instruction::And; 2071 else if (PBI->getSuccessor(0) == FalseDest) 2072 Opc = Instruction::And, InvertPredCond = true; 2073 else if (PBI->getSuccessor(1) == TrueDest) 2074 Opc = Instruction::Or, InvertPredCond = true; 2075 else 2076 continue; 2077 } else { 2078 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2079 continue; 2080 } 2081 2082 // Ensure that any values used in the bonus instruction are also used 2083 // by the terminator of the predecessor. This means that those values 2084 // must already have been resolved, so we won't be inhibiting the 2085 // out-of-order core by speculating them earlier. We also allow 2086 // instructions that are used by the terminator's condition because it 2087 // exposes more merging opportunities. 2088 bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() && 2089 BonusInst->user_back() == Cond); 2090 2091 if (BonusInst && !UsedByBranch) { 2092 // Collect the values used by the bonus inst 2093 SmallPtrSet<Value*, 4> UsedValues; 2094 for (Instruction::op_iterator OI = BonusInst->op_begin(), 2095 OE = BonusInst->op_end(); OI != OE; ++OI) { 2096 Value *V = *OI; 2097 if (!isa<Constant>(V) && !isa<Argument>(V)) 2098 UsedValues.insert(V); 2099 } 2100 2101 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2102 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2103 2104 // Walk up to four levels back up the use-def chain of the predecessor's 2105 // terminator to see if all those values were used. The choice of four 2106 // levels is arbitrary, to provide a compile-time-cost bound. 2107 while (!Worklist.empty()) { 2108 std::pair<Value*, unsigned> Pair = Worklist.back(); 2109 Worklist.pop_back(); 2110 2111 if (Pair.second >= 4) continue; 2112 UsedValues.erase(Pair.first); 2113 if (UsedValues.empty()) break; 2114 2115 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2116 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2117 OI != OE; ++OI) 2118 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2119 } 2120 } 2121 2122 if (!UsedValues.empty()) return false; 2123 } 2124 2125 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2126 IRBuilder<> Builder(PBI); 2127 2128 // If we need to invert the condition in the pred block to match, do so now. 2129 if (InvertPredCond) { 2130 Value *NewCond = PBI->getCondition(); 2131 2132 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2133 CmpInst *CI = cast<CmpInst>(NewCond); 2134 CI->setPredicate(CI->getInversePredicate()); 2135 } else { 2136 NewCond = Builder.CreateNot(NewCond, 2137 PBI->getCondition()->getName()+".not"); 2138 } 2139 2140 PBI->setCondition(NewCond); 2141 PBI->swapSuccessors(); 2142 } 2143 2144 // If we have a bonus inst, clone it into the predecessor block. 2145 Instruction *NewBonus = 0; 2146 if (BonusInst) { 2147 NewBonus = BonusInst->clone(); 2148 2149 // If we moved a load, we cannot any longer claim any knowledge about 2150 // its potential value. The previous information might have been valid 2151 // only given the branch precondition. 2152 // For an analogous reason, we must also drop all the metadata whose 2153 // semantics we don't understand. 2154 NewBonus->dropUnknownMetadata(LLVMContext::MD_dbg); 2155 2156 PredBlock->getInstList().insert(PBI, NewBonus); 2157 NewBonus->takeName(BonusInst); 2158 BonusInst->setName(BonusInst->getName()+".old"); 2159 } 2160 2161 // Clone Cond into the predecessor basic block, and or/and the 2162 // two conditions together. 2163 Instruction *New = Cond->clone(); 2164 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2165 PredBlock->getInstList().insert(PBI, New); 2166 New->takeName(Cond); 2167 Cond->setName(New->getName()+".old"); 2168 2169 if (BI->isConditional()) { 2170 Instruction *NewCond = 2171 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2172 New, "or.cond")); 2173 PBI->setCondition(NewCond); 2174 2175 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2176 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2177 PredFalseWeight); 2178 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2179 SuccFalseWeight); 2180 SmallVector<uint64_t, 8> NewWeights; 2181 2182 if (PBI->getSuccessor(0) == BB) { 2183 if (PredHasWeights && SuccHasWeights) { 2184 // PBI: br i1 %x, BB, FalseDest 2185 // BI: br i1 %y, TrueDest, FalseDest 2186 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2187 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2188 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2189 // TrueWeight for PBI * FalseWeight for BI. 2190 // We assume that total weights of a BranchInst can fit into 32 bits. 2191 // Therefore, we will not have overflow using 64-bit arithmetic. 2192 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2193 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2194 } 2195 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2196 PBI->setSuccessor(0, TrueDest); 2197 } 2198 if (PBI->getSuccessor(1) == BB) { 2199 if (PredHasWeights && SuccHasWeights) { 2200 // PBI: br i1 %x, TrueDest, BB 2201 // BI: br i1 %y, TrueDest, FalseDest 2202 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2203 // FalseWeight for PBI * TrueWeight for BI. 2204 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2205 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2206 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2207 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2208 } 2209 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2210 PBI->setSuccessor(1, FalseDest); 2211 } 2212 if (NewWeights.size() == 2) { 2213 // Halve the weights if any of them cannot fit in an uint32_t 2214 FitWeights(NewWeights); 2215 2216 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2217 PBI->setMetadata(LLVMContext::MD_prof, 2218 MDBuilder(BI->getContext()). 2219 createBranchWeights(MDWeights)); 2220 } else 2221 PBI->setMetadata(LLVMContext::MD_prof, NULL); 2222 } else { 2223 // Update PHI nodes in the common successors. 2224 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2225 ConstantInt *PBI_C = cast<ConstantInt>( 2226 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2227 assert(PBI_C->getType()->isIntegerTy(1)); 2228 Instruction *MergedCond = 0; 2229 if (PBI->getSuccessor(0) == TrueDest) { 2230 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2231 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2232 // is false: !PBI_Cond and BI_Value 2233 Instruction *NotCond = 2234 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2235 "not.cond")); 2236 MergedCond = 2237 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2238 NotCond, New, 2239 "and.cond")); 2240 if (PBI_C->isOne()) 2241 MergedCond = 2242 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2243 PBI->getCondition(), MergedCond, 2244 "or.cond")); 2245 } else { 2246 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2247 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2248 // is false: PBI_Cond and BI_Value 2249 MergedCond = 2250 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2251 PBI->getCondition(), New, 2252 "and.cond")); 2253 if (PBI_C->isOne()) { 2254 Instruction *NotCond = 2255 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2256 "not.cond")); 2257 MergedCond = 2258 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2259 NotCond, MergedCond, 2260 "or.cond")); 2261 } 2262 } 2263 // Update PHI Node. 2264 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2265 MergedCond); 2266 } 2267 // Change PBI from Conditional to Unconditional. 2268 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2269 EraseTerminatorInstAndDCECond(PBI); 2270 PBI = New_PBI; 2271 } 2272 2273 // TODO: If BB is reachable from all paths through PredBlock, then we 2274 // could replace PBI's branch probabilities with BI's. 2275 2276 // Copy any debug value intrinsics into the end of PredBlock. 2277 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2278 if (isa<DbgInfoIntrinsic>(*I)) 2279 I->clone()->insertBefore(PBI); 2280 2281 return true; 2282 } 2283 return false; 2284 } 2285 2286 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2287 /// predecessor of another block, this function tries to simplify it. We know 2288 /// that PBI and BI are both conditional branches, and BI is in one of the 2289 /// successor blocks of PBI - PBI branches to BI. 2290 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2291 assert(PBI->isConditional() && BI->isConditional()); 2292 BasicBlock *BB = BI->getParent(); 2293 2294 // If this block ends with a branch instruction, and if there is a 2295 // predecessor that ends on a branch of the same condition, make 2296 // this conditional branch redundant. 2297 if (PBI->getCondition() == BI->getCondition() && 2298 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2299 // Okay, the outcome of this conditional branch is statically 2300 // knowable. If this block had a single pred, handle specially. 2301 if (BB->getSinglePredecessor()) { 2302 // Turn this into a branch on constant. 2303 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2304 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2305 CondIsTrue)); 2306 return true; // Nuke the branch on constant. 2307 } 2308 2309 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2310 // in the constant and simplify the block result. Subsequent passes of 2311 // simplifycfg will thread the block. 2312 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2313 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2314 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2315 std::distance(PB, PE), 2316 BI->getCondition()->getName() + ".pr", 2317 BB->begin()); 2318 // Okay, we're going to insert the PHI node. Since PBI is not the only 2319 // predecessor, compute the PHI'd conditional value for all of the preds. 2320 // Any predecessor where the condition is not computable we keep symbolic. 2321 for (pred_iterator PI = PB; PI != PE; ++PI) { 2322 BasicBlock *P = *PI; 2323 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2324 PBI != BI && PBI->isConditional() && 2325 PBI->getCondition() == BI->getCondition() && 2326 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2327 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2328 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2329 CondIsTrue), P); 2330 } else { 2331 NewPN->addIncoming(BI->getCondition(), P); 2332 } 2333 } 2334 2335 BI->setCondition(NewPN); 2336 return true; 2337 } 2338 } 2339 2340 // If this is a conditional branch in an empty block, and if any 2341 // predecessors is a conditional branch to one of our destinations, 2342 // fold the conditions into logical ops and one cond br. 2343 BasicBlock::iterator BBI = BB->begin(); 2344 // Ignore dbg intrinsics. 2345 while (isa<DbgInfoIntrinsic>(BBI)) 2346 ++BBI; 2347 if (&*BBI != BI) 2348 return false; 2349 2350 2351 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2352 if (CE->canTrap()) 2353 return false; 2354 2355 int PBIOp, BIOp; 2356 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2357 PBIOp = BIOp = 0; 2358 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2359 PBIOp = 0, BIOp = 1; 2360 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2361 PBIOp = 1, BIOp = 0; 2362 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2363 PBIOp = BIOp = 1; 2364 else 2365 return false; 2366 2367 // Check to make sure that the other destination of this branch 2368 // isn't BB itself. If so, this is an infinite loop that will 2369 // keep getting unwound. 2370 if (PBI->getSuccessor(PBIOp) == BB) 2371 return false; 2372 2373 // Do not perform this transformation if it would require 2374 // insertion of a large number of select instructions. For targets 2375 // without predication/cmovs, this is a big pessimization. 2376 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2377 2378 unsigned NumPhis = 0; 2379 for (BasicBlock::iterator II = CommonDest->begin(); 2380 isa<PHINode>(II); ++II, ++NumPhis) 2381 if (NumPhis > 2) // Disable this xform. 2382 return false; 2383 2384 // Finally, if everything is ok, fold the branches to logical ops. 2385 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2386 2387 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2388 << "AND: " << *BI->getParent()); 2389 2390 2391 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2392 // branch in it, where one edge (OtherDest) goes back to itself but the other 2393 // exits. We don't *know* that the program avoids the infinite loop 2394 // (even though that seems likely). If we do this xform naively, we'll end up 2395 // recursively unpeeling the loop. Since we know that (after the xform is 2396 // done) that the block *is* infinite if reached, we just make it an obviously 2397 // infinite loop with no cond branch. 2398 if (OtherDest == BB) { 2399 // Insert it at the end of the function, because it's either code, 2400 // or it won't matter if it's hot. :) 2401 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2402 "infloop", BB->getParent()); 2403 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2404 OtherDest = InfLoopBlock; 2405 } 2406 2407 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2408 2409 // BI may have other predecessors. Because of this, we leave 2410 // it alone, but modify PBI. 2411 2412 // Make sure we get to CommonDest on True&True directions. 2413 Value *PBICond = PBI->getCondition(); 2414 IRBuilder<true, NoFolder> Builder(PBI); 2415 if (PBIOp) 2416 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2417 2418 Value *BICond = BI->getCondition(); 2419 if (BIOp) 2420 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2421 2422 // Merge the conditions. 2423 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2424 2425 // Modify PBI to branch on the new condition to the new dests. 2426 PBI->setCondition(Cond); 2427 PBI->setSuccessor(0, CommonDest); 2428 PBI->setSuccessor(1, OtherDest); 2429 2430 // Update branch weight for PBI. 2431 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2432 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2433 PredFalseWeight); 2434 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2435 SuccFalseWeight); 2436 if (PredHasWeights && SuccHasWeights) { 2437 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2438 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2439 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2440 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2441 // The weight to CommonDest should be PredCommon * SuccTotal + 2442 // PredOther * SuccCommon. 2443 // The weight to OtherDest should be PredOther * SuccOther. 2444 SmallVector<uint64_t, 2> NewWeights; 2445 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2446 PredOther * SuccCommon); 2447 NewWeights.push_back(PredOther * SuccOther); 2448 // Halve the weights if any of them cannot fit in an uint32_t 2449 FitWeights(NewWeights); 2450 2451 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2452 PBI->setMetadata(LLVMContext::MD_prof, 2453 MDBuilder(BI->getContext()). 2454 createBranchWeights(MDWeights)); 2455 } 2456 2457 // OtherDest may have phi nodes. If so, add an entry from PBI's 2458 // block that are identical to the entries for BI's block. 2459 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2460 2461 // We know that the CommonDest already had an edge from PBI to 2462 // it. If it has PHIs though, the PHIs may have different 2463 // entries for BB and PBI's BB. If so, insert a select to make 2464 // them agree. 2465 PHINode *PN; 2466 for (BasicBlock::iterator II = CommonDest->begin(); 2467 (PN = dyn_cast<PHINode>(II)); ++II) { 2468 Value *BIV = PN->getIncomingValueForBlock(BB); 2469 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2470 Value *PBIV = PN->getIncomingValue(PBBIdx); 2471 if (BIV != PBIV) { 2472 // Insert a select in PBI to pick the right value. 2473 Value *NV = cast<SelectInst> 2474 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2475 PN->setIncomingValue(PBBIdx, NV); 2476 } 2477 } 2478 2479 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2480 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2481 2482 // This basic block is probably dead. We know it has at least 2483 // one fewer predecessor. 2484 return true; 2485 } 2486 2487 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2488 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2489 // Takes care of updating the successors and removing the old terminator. 2490 // Also makes sure not to introduce new successors by assuming that edges to 2491 // non-successor TrueBBs and FalseBBs aren't reachable. 2492 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2493 BasicBlock *TrueBB, BasicBlock *FalseBB, 2494 uint32_t TrueWeight, 2495 uint32_t FalseWeight){ 2496 // Remove any superfluous successor edges from the CFG. 2497 // First, figure out which successors to preserve. 2498 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2499 // successor. 2500 BasicBlock *KeepEdge1 = TrueBB; 2501 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 2502 2503 // Then remove the rest. 2504 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2505 BasicBlock *Succ = OldTerm->getSuccessor(I); 2506 // Make sure only to keep exactly one copy of each edge. 2507 if (Succ == KeepEdge1) 2508 KeepEdge1 = 0; 2509 else if (Succ == KeepEdge2) 2510 KeepEdge2 = 0; 2511 else 2512 Succ->removePredecessor(OldTerm->getParent()); 2513 } 2514 2515 IRBuilder<> Builder(OldTerm); 2516 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2517 2518 // Insert an appropriate new terminator. 2519 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 2520 if (TrueBB == FalseBB) 2521 // We were only looking for one successor, and it was present. 2522 // Create an unconditional branch to it. 2523 Builder.CreateBr(TrueBB); 2524 else { 2525 // We found both of the successors we were looking for. 2526 // Create a conditional branch sharing the condition of the select. 2527 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2528 if (TrueWeight != FalseWeight) 2529 NewBI->setMetadata(LLVMContext::MD_prof, 2530 MDBuilder(OldTerm->getContext()). 2531 createBranchWeights(TrueWeight, FalseWeight)); 2532 } 2533 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2534 // Neither of the selected blocks were successors, so this 2535 // terminator must be unreachable. 2536 new UnreachableInst(OldTerm->getContext(), OldTerm); 2537 } else { 2538 // One of the selected values was a successor, but the other wasn't. 2539 // Insert an unconditional branch to the one that was found; 2540 // the edge to the one that wasn't must be unreachable. 2541 if (KeepEdge1 == 0) 2542 // Only TrueBB was found. 2543 Builder.CreateBr(TrueBB); 2544 else 2545 // Only FalseBB was found. 2546 Builder.CreateBr(FalseBB); 2547 } 2548 2549 EraseTerminatorInstAndDCECond(OldTerm); 2550 return true; 2551 } 2552 2553 // SimplifySwitchOnSelect - Replaces 2554 // (switch (select cond, X, Y)) on constant X, Y 2555 // with a branch - conditional if X and Y lead to distinct BBs, 2556 // unconditional otherwise. 2557 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2558 // Check for constant integer values in the select. 2559 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2560 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2561 if (!TrueVal || !FalseVal) 2562 return false; 2563 2564 // Find the relevant condition and destinations. 2565 Value *Condition = Select->getCondition(); 2566 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2567 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2568 2569 // Get weight for TrueBB and FalseBB. 2570 uint32_t TrueWeight = 0, FalseWeight = 0; 2571 SmallVector<uint64_t, 8> Weights; 2572 bool HasWeights = HasBranchWeights(SI); 2573 if (HasWeights) { 2574 GetBranchWeights(SI, Weights); 2575 if (Weights.size() == 1 + SI->getNumCases()) { 2576 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2577 getSuccessorIndex()]; 2578 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2579 getSuccessorIndex()]; 2580 } 2581 } 2582 2583 // Perform the actual simplification. 2584 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2585 TrueWeight, FalseWeight); 2586 } 2587 2588 // SimplifyIndirectBrOnSelect - Replaces 2589 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2590 // blockaddress(@fn, BlockB))) 2591 // with 2592 // (br cond, BlockA, BlockB). 2593 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2594 // Check that both operands of the select are block addresses. 2595 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2596 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2597 if (!TBA || !FBA) 2598 return false; 2599 2600 // Extract the actual blocks. 2601 BasicBlock *TrueBB = TBA->getBasicBlock(); 2602 BasicBlock *FalseBB = FBA->getBasicBlock(); 2603 2604 // Perform the actual simplification. 2605 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2606 0, 0); 2607 } 2608 2609 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2610 /// instruction (a seteq/setne with a constant) as the only instruction in a 2611 /// block that ends with an uncond branch. We are looking for a very specific 2612 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2613 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2614 /// default value goes to an uncond block with a seteq in it, we get something 2615 /// like: 2616 /// 2617 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2618 /// DEFAULT: 2619 /// %tmp = icmp eq i8 %A, 92 2620 /// br label %end 2621 /// end: 2622 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2623 /// 2624 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2625 /// the PHI, merging the third icmp into the switch. 2626 static bool TryToSimplifyUncondBranchWithICmpInIt( 2627 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2628 const DataLayout *DL) { 2629 BasicBlock *BB = ICI->getParent(); 2630 2631 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2632 // complex. 2633 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2634 2635 Value *V = ICI->getOperand(0); 2636 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2637 2638 // The pattern we're looking for is where our only predecessor is a switch on 2639 // 'V' and this block is the default case for the switch. In this case we can 2640 // fold the compared value into the switch to simplify things. 2641 BasicBlock *Pred = BB->getSinglePredecessor(); 2642 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 2643 2644 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2645 if (SI->getCondition() != V) 2646 return false; 2647 2648 // If BB is reachable on a non-default case, then we simply know the value of 2649 // V in this block. Substitute it and constant fold the icmp instruction 2650 // away. 2651 if (SI->getDefaultDest() != BB) { 2652 ConstantInt *VVal = SI->findCaseDest(BB); 2653 assert(VVal && "Should have a unique destination value"); 2654 ICI->setOperand(0, VVal); 2655 2656 if (Value *V = SimplifyInstruction(ICI, DL)) { 2657 ICI->replaceAllUsesWith(V); 2658 ICI->eraseFromParent(); 2659 } 2660 // BB is now empty, so it is likely to simplify away. 2661 return SimplifyCFG(BB, TTI, DL) | true; 2662 } 2663 2664 // Ok, the block is reachable from the default dest. If the constant we're 2665 // comparing exists in one of the other edges, then we can constant fold ICI 2666 // and zap it. 2667 if (SI->findCaseValue(Cst) != SI->case_default()) { 2668 Value *V; 2669 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2670 V = ConstantInt::getFalse(BB->getContext()); 2671 else 2672 V = ConstantInt::getTrue(BB->getContext()); 2673 2674 ICI->replaceAllUsesWith(V); 2675 ICI->eraseFromParent(); 2676 // BB is now empty, so it is likely to simplify away. 2677 return SimplifyCFG(BB, TTI, DL) | true; 2678 } 2679 2680 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2681 // the block. 2682 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2683 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 2684 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 2685 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2686 return false; 2687 2688 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2689 // true in the PHI. 2690 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2691 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2692 2693 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2694 std::swap(DefaultCst, NewCst); 2695 2696 // Replace ICI (which is used by the PHI for the default value) with true or 2697 // false depending on if it is EQ or NE. 2698 ICI->replaceAllUsesWith(DefaultCst); 2699 ICI->eraseFromParent(); 2700 2701 // Okay, the switch goes to this block on a default value. Add an edge from 2702 // the switch to the merge point on the compared value. 2703 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2704 BB->getParent(), BB); 2705 SmallVector<uint64_t, 8> Weights; 2706 bool HasWeights = HasBranchWeights(SI); 2707 if (HasWeights) { 2708 GetBranchWeights(SI, Weights); 2709 if (Weights.size() == 1 + SI->getNumCases()) { 2710 // Split weight for default case to case for "Cst". 2711 Weights[0] = (Weights[0]+1) >> 1; 2712 Weights.push_back(Weights[0]); 2713 2714 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2715 SI->setMetadata(LLVMContext::MD_prof, 2716 MDBuilder(SI->getContext()). 2717 createBranchWeights(MDWeights)); 2718 } 2719 } 2720 SI->addCase(Cst, NewBB); 2721 2722 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2723 Builder.SetInsertPoint(NewBB); 2724 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2725 Builder.CreateBr(SuccBlock); 2726 PHIUse->addIncoming(NewCst, NewBB); 2727 return true; 2728 } 2729 2730 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2731 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2732 /// fold it into a switch instruction if so. 2733 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL, 2734 IRBuilder<> &Builder) { 2735 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2736 if (Cond == 0) return false; 2737 2738 2739 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2740 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2741 // 'setne's and'ed together, collect them. 2742 Value *CompVal = 0; 2743 std::vector<ConstantInt*> Values; 2744 bool TrueWhenEqual = true; 2745 Value *ExtraCase = 0; 2746 unsigned UsedICmps = 0; 2747 2748 if (Cond->getOpcode() == Instruction::Or) { 2749 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true, 2750 UsedICmps); 2751 } else if (Cond->getOpcode() == Instruction::And) { 2752 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false, 2753 UsedICmps); 2754 TrueWhenEqual = false; 2755 } 2756 2757 // If we didn't have a multiply compared value, fail. 2758 if (CompVal == 0) return false; 2759 2760 // Avoid turning single icmps into a switch. 2761 if (UsedICmps <= 1) 2762 return false; 2763 2764 // There might be duplicate constants in the list, which the switch 2765 // instruction can't handle, remove them now. 2766 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2767 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2768 2769 // If Extra was used, we require at least two switch values to do the 2770 // transformation. A switch with one value is just an cond branch. 2771 if (ExtraCase && Values.size() < 2) return false; 2772 2773 // TODO: Preserve branch weight metadata, similarly to how 2774 // FoldValueComparisonIntoPredecessors preserves it. 2775 2776 // Figure out which block is which destination. 2777 BasicBlock *DefaultBB = BI->getSuccessor(1); 2778 BasicBlock *EdgeBB = BI->getSuccessor(0); 2779 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2780 2781 BasicBlock *BB = BI->getParent(); 2782 2783 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2784 << " cases into SWITCH. BB is:\n" << *BB); 2785 2786 // If there are any extra values that couldn't be folded into the switch 2787 // then we evaluate them with an explicit branch first. Split the block 2788 // right before the condbr to handle it. 2789 if (ExtraCase) { 2790 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2791 // Remove the uncond branch added to the old block. 2792 TerminatorInst *OldTI = BB->getTerminator(); 2793 Builder.SetInsertPoint(OldTI); 2794 2795 if (TrueWhenEqual) 2796 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2797 else 2798 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2799 2800 OldTI->eraseFromParent(); 2801 2802 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2803 // for the edge we just added. 2804 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2805 2806 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2807 << "\nEXTRABB = " << *BB); 2808 BB = NewBB; 2809 } 2810 2811 Builder.SetInsertPoint(BI); 2812 // Convert pointer to int before we switch. 2813 if (CompVal->getType()->isPointerTy()) { 2814 assert(DL && "Cannot switch on pointer without DataLayout"); 2815 CompVal = Builder.CreatePtrToInt(CompVal, 2816 DL->getIntPtrType(CompVal->getType()), 2817 "magicptr"); 2818 } 2819 2820 // Create the new switch instruction now. 2821 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2822 2823 // Add all of the 'cases' to the switch instruction. 2824 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2825 New->addCase(Values[i], EdgeBB); 2826 2827 // We added edges from PI to the EdgeBB. As such, if there were any 2828 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2829 // the number of edges added. 2830 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2831 isa<PHINode>(BBI); ++BBI) { 2832 PHINode *PN = cast<PHINode>(BBI); 2833 Value *InVal = PN->getIncomingValueForBlock(BB); 2834 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2835 PN->addIncoming(InVal, BB); 2836 } 2837 2838 // Erase the old branch instruction. 2839 EraseTerminatorInstAndDCECond(BI); 2840 2841 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2842 return true; 2843 } 2844 2845 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2846 // If this is a trivial landing pad that just continues unwinding the caught 2847 // exception then zap the landing pad, turning its invokes into calls. 2848 BasicBlock *BB = RI->getParent(); 2849 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2850 if (RI->getValue() != LPInst) 2851 // Not a landing pad, or the resume is not unwinding the exception that 2852 // caused control to branch here. 2853 return false; 2854 2855 // Check that there are no other instructions except for debug intrinsics. 2856 BasicBlock::iterator I = LPInst, E = RI; 2857 while (++I != E) 2858 if (!isa<DbgInfoIntrinsic>(I)) 2859 return false; 2860 2861 // Turn all invokes that unwind here into calls and delete the basic block. 2862 bool InvokeRequiresTableEntry = false; 2863 bool Changed = false; 2864 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2865 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2866 2867 if (II->hasFnAttr(Attribute::UWTable)) { 2868 // Don't remove an `invoke' instruction if the ABI requires an entry into 2869 // the table. 2870 InvokeRequiresTableEntry = true; 2871 continue; 2872 } 2873 2874 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2875 2876 // Insert a call instruction before the invoke. 2877 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2878 Call->takeName(II); 2879 Call->setCallingConv(II->getCallingConv()); 2880 Call->setAttributes(II->getAttributes()); 2881 Call->setDebugLoc(II->getDebugLoc()); 2882 2883 // Anything that used the value produced by the invoke instruction now uses 2884 // the value produced by the call instruction. Note that we do this even 2885 // for void functions and calls with no uses so that the callgraph edge is 2886 // updated. 2887 II->replaceAllUsesWith(Call); 2888 BB->removePredecessor(II->getParent()); 2889 2890 // Insert a branch to the normal destination right before the invoke. 2891 BranchInst::Create(II->getNormalDest(), II); 2892 2893 // Finally, delete the invoke instruction! 2894 II->eraseFromParent(); 2895 Changed = true; 2896 } 2897 2898 if (!InvokeRequiresTableEntry) 2899 // The landingpad is now unreachable. Zap it. 2900 BB->eraseFromParent(); 2901 2902 return Changed; 2903 } 2904 2905 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2906 BasicBlock *BB = RI->getParent(); 2907 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2908 2909 // Find predecessors that end with branches. 2910 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2911 SmallVector<BranchInst*, 8> CondBranchPreds; 2912 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2913 BasicBlock *P = *PI; 2914 TerminatorInst *PTI = P->getTerminator(); 2915 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2916 if (BI->isUnconditional()) 2917 UncondBranchPreds.push_back(P); 2918 else 2919 CondBranchPreds.push_back(BI); 2920 } 2921 } 2922 2923 // If we found some, do the transformation! 2924 if (!UncondBranchPreds.empty() && DupRet) { 2925 while (!UncondBranchPreds.empty()) { 2926 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2927 DEBUG(dbgs() << "FOLDING: " << *BB 2928 << "INTO UNCOND BRANCH PRED: " << *Pred); 2929 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2930 } 2931 2932 // If we eliminated all predecessors of the block, delete the block now. 2933 if (pred_begin(BB) == pred_end(BB)) 2934 // We know there are no successors, so just nuke the block. 2935 BB->eraseFromParent(); 2936 2937 return true; 2938 } 2939 2940 // Check out all of the conditional branches going to this return 2941 // instruction. If any of them just select between returns, change the 2942 // branch itself into a select/return pair. 2943 while (!CondBranchPreds.empty()) { 2944 BranchInst *BI = CondBranchPreds.pop_back_val(); 2945 2946 // Check to see if the non-BB successor is also a return block. 2947 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2948 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2949 SimplifyCondBranchToTwoReturns(BI, Builder)) 2950 return true; 2951 } 2952 return false; 2953 } 2954 2955 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2956 BasicBlock *BB = UI->getParent(); 2957 2958 bool Changed = false; 2959 2960 // If there are any instructions immediately before the unreachable that can 2961 // be removed, do so. 2962 while (UI != BB->begin()) { 2963 BasicBlock::iterator BBI = UI; 2964 --BBI; 2965 // Do not delete instructions that can have side effects which might cause 2966 // the unreachable to not be reachable; specifically, calls and volatile 2967 // operations may have this effect. 2968 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2969 2970 if (BBI->mayHaveSideEffects()) { 2971 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2972 if (SI->isVolatile()) 2973 break; 2974 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2975 if (LI->isVolatile()) 2976 break; 2977 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2978 if (RMWI->isVolatile()) 2979 break; 2980 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2981 if (CXI->isVolatile()) 2982 break; 2983 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2984 !isa<LandingPadInst>(BBI)) { 2985 break; 2986 } 2987 // Note that deleting LandingPad's here is in fact okay, although it 2988 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2989 // all the predecessors of this block will be the unwind edges of Invokes, 2990 // and we can therefore guarantee this block will be erased. 2991 } 2992 2993 // Delete this instruction (any uses are guaranteed to be dead) 2994 if (!BBI->use_empty()) 2995 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2996 BBI->eraseFromParent(); 2997 Changed = true; 2998 } 2999 3000 // If the unreachable instruction is the first in the block, take a gander 3001 // at all of the predecessors of this instruction, and simplify them. 3002 if (&BB->front() != UI) return Changed; 3003 3004 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3005 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3006 TerminatorInst *TI = Preds[i]->getTerminator(); 3007 IRBuilder<> Builder(TI); 3008 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3009 if (BI->isUnconditional()) { 3010 if (BI->getSuccessor(0) == BB) { 3011 new UnreachableInst(TI->getContext(), TI); 3012 TI->eraseFromParent(); 3013 Changed = true; 3014 } 3015 } else { 3016 if (BI->getSuccessor(0) == BB) { 3017 Builder.CreateBr(BI->getSuccessor(1)); 3018 EraseTerminatorInstAndDCECond(BI); 3019 } else if (BI->getSuccessor(1) == BB) { 3020 Builder.CreateBr(BI->getSuccessor(0)); 3021 EraseTerminatorInstAndDCECond(BI); 3022 Changed = true; 3023 } 3024 } 3025 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3026 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3027 i != e; ++i) 3028 if (i.getCaseSuccessor() == BB) { 3029 BB->removePredecessor(SI->getParent()); 3030 SI->removeCase(i); 3031 --i; --e; 3032 Changed = true; 3033 } 3034 // If the default value is unreachable, figure out the most popular 3035 // destination and make it the default. 3036 if (SI->getDefaultDest() == BB) { 3037 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 3038 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3039 i != e; ++i) { 3040 std::pair<unsigned, unsigned> &entry = 3041 Popularity[i.getCaseSuccessor()]; 3042 if (entry.first == 0) { 3043 entry.first = 1; 3044 entry.second = i.getCaseIndex(); 3045 } else { 3046 entry.first++; 3047 } 3048 } 3049 3050 // Find the most popular block. 3051 unsigned MaxPop = 0; 3052 unsigned MaxIndex = 0; 3053 BasicBlock *MaxBlock = 0; 3054 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 3055 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 3056 if (I->second.first > MaxPop || 3057 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 3058 MaxPop = I->second.first; 3059 MaxIndex = I->second.second; 3060 MaxBlock = I->first; 3061 } 3062 } 3063 if (MaxBlock) { 3064 // Make this the new default, allowing us to delete any explicit 3065 // edges to it. 3066 SI->setDefaultDest(MaxBlock); 3067 Changed = true; 3068 3069 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 3070 // it. 3071 if (isa<PHINode>(MaxBlock->begin())) 3072 for (unsigned i = 0; i != MaxPop-1; ++i) 3073 MaxBlock->removePredecessor(SI->getParent()); 3074 3075 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3076 i != e; ++i) 3077 if (i.getCaseSuccessor() == MaxBlock) { 3078 SI->removeCase(i); 3079 --i; --e; 3080 } 3081 } 3082 } 3083 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3084 if (II->getUnwindDest() == BB) { 3085 // Convert the invoke to a call instruction. This would be a good 3086 // place to note that the call does not throw though. 3087 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3088 II->removeFromParent(); // Take out of symbol table 3089 3090 // Insert the call now... 3091 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3092 Builder.SetInsertPoint(BI); 3093 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3094 Args, II->getName()); 3095 CI->setCallingConv(II->getCallingConv()); 3096 CI->setAttributes(II->getAttributes()); 3097 // If the invoke produced a value, the call does now instead. 3098 II->replaceAllUsesWith(CI); 3099 delete II; 3100 Changed = true; 3101 } 3102 } 3103 } 3104 3105 // If this block is now dead, remove it. 3106 if (pred_begin(BB) == pred_end(BB) && 3107 BB != &BB->getParent()->getEntryBlock()) { 3108 // We know there are no successors, so just nuke the block. 3109 BB->eraseFromParent(); 3110 return true; 3111 } 3112 3113 return Changed; 3114 } 3115 3116 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 3117 /// integer range comparison into a sub, an icmp and a branch. 3118 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3119 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3120 3121 // Make sure all cases point to the same destination and gather the values. 3122 SmallVector<ConstantInt *, 16> Cases; 3123 SwitchInst::CaseIt I = SI->case_begin(); 3124 Cases.push_back(I.getCaseValue()); 3125 SwitchInst::CaseIt PrevI = I++; 3126 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3127 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3128 return false; 3129 Cases.push_back(I.getCaseValue()); 3130 } 3131 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3132 3133 // Sort the case values, then check if they form a range we can transform. 3134 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3135 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3136 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3137 return false; 3138 } 3139 3140 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3141 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3142 3143 Value *Sub = SI->getCondition(); 3144 if (!Offset->isNullValue()) 3145 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3146 Value *Cmp; 3147 // If NumCases overflowed, then all possible values jump to the successor. 3148 if (NumCases->isNullValue() && SI->getNumCases() != 0) 3149 Cmp = ConstantInt::getTrue(SI->getContext()); 3150 else 3151 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3152 BranchInst *NewBI = Builder.CreateCondBr( 3153 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3154 3155 // Update weight for the newly-created conditional branch. 3156 SmallVector<uint64_t, 8> Weights; 3157 bool HasWeights = HasBranchWeights(SI); 3158 if (HasWeights) { 3159 GetBranchWeights(SI, Weights); 3160 if (Weights.size() == 1 + SI->getNumCases()) { 3161 // Combine all weights for the cases to be the true weight of NewBI. 3162 // We assume that the sum of all weights for a Terminator can fit into 32 3163 // bits. 3164 uint32_t NewTrueWeight = 0; 3165 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3166 NewTrueWeight += (uint32_t)Weights[I]; 3167 NewBI->setMetadata(LLVMContext::MD_prof, 3168 MDBuilder(SI->getContext()). 3169 createBranchWeights(NewTrueWeight, 3170 (uint32_t)Weights[0])); 3171 } 3172 } 3173 3174 // Prune obsolete incoming values off the successor's PHI nodes. 3175 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3176 isa<PHINode>(BBI); ++BBI) { 3177 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3178 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3179 } 3180 SI->eraseFromParent(); 3181 3182 return true; 3183 } 3184 3185 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3186 /// and use it to remove dead cases. 3187 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3188 Value *Cond = SI->getCondition(); 3189 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3190 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3191 ComputeMaskedBits(Cond, KnownZero, KnownOne); 3192 3193 // Gather dead cases. 3194 SmallVector<ConstantInt*, 8> DeadCases; 3195 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3196 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3197 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3198 DeadCases.push_back(I.getCaseValue()); 3199 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3200 << I.getCaseValue() << "' is dead.\n"); 3201 } 3202 } 3203 3204 SmallVector<uint64_t, 8> Weights; 3205 bool HasWeight = HasBranchWeights(SI); 3206 if (HasWeight) { 3207 GetBranchWeights(SI, Weights); 3208 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3209 } 3210 3211 // Remove dead cases from the switch. 3212 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3213 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3214 assert(Case != SI->case_default() && 3215 "Case was not found. Probably mistake in DeadCases forming."); 3216 if (HasWeight) { 3217 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3218 Weights.pop_back(); 3219 } 3220 3221 // Prune unused values from PHI nodes. 3222 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3223 SI->removeCase(Case); 3224 } 3225 if (HasWeight && Weights.size() >= 2) { 3226 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3227 SI->setMetadata(LLVMContext::MD_prof, 3228 MDBuilder(SI->getParent()->getContext()). 3229 createBranchWeights(MDWeights)); 3230 } 3231 3232 return !DeadCases.empty(); 3233 } 3234 3235 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3236 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3237 /// by an unconditional branch), look at the phi node for BB in the successor 3238 /// block and see if the incoming value is equal to CaseValue. If so, return 3239 /// the phi node, and set PhiIndex to BB's index in the phi node. 3240 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3241 BasicBlock *BB, 3242 int *PhiIndex) { 3243 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3244 return NULL; // BB must be empty to be a candidate for simplification. 3245 if (!BB->getSinglePredecessor()) 3246 return NULL; // BB must be dominated by the switch. 3247 3248 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3249 if (!Branch || !Branch->isUnconditional()) 3250 return NULL; // Terminator must be unconditional branch. 3251 3252 BasicBlock *Succ = Branch->getSuccessor(0); 3253 3254 BasicBlock::iterator I = Succ->begin(); 3255 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3256 int Idx = PHI->getBasicBlockIndex(BB); 3257 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3258 3259 Value *InValue = PHI->getIncomingValue(Idx); 3260 if (InValue != CaseValue) continue; 3261 3262 *PhiIndex = Idx; 3263 return PHI; 3264 } 3265 3266 return NULL; 3267 } 3268 3269 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3270 /// instruction to a phi node dominated by the switch, if that would mean that 3271 /// some of the destination blocks of the switch can be folded away. 3272 /// Returns true if a change is made. 3273 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3274 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3275 ForwardingNodesMap ForwardingNodes; 3276 3277 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3278 ConstantInt *CaseValue = I.getCaseValue(); 3279 BasicBlock *CaseDest = I.getCaseSuccessor(); 3280 3281 int PhiIndex; 3282 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3283 &PhiIndex); 3284 if (!PHI) continue; 3285 3286 ForwardingNodes[PHI].push_back(PhiIndex); 3287 } 3288 3289 bool Changed = false; 3290 3291 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3292 E = ForwardingNodes.end(); I != E; ++I) { 3293 PHINode *Phi = I->first; 3294 SmallVectorImpl<int> &Indexes = I->second; 3295 3296 if (Indexes.size() < 2) continue; 3297 3298 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3299 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3300 Changed = true; 3301 } 3302 3303 return Changed; 3304 } 3305 3306 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3307 /// initializing an array of constants like C. 3308 static bool ValidLookupTableConstant(Constant *C) { 3309 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3310 return CE->isGEPWithNoNotionalOverIndexing(); 3311 3312 return isa<ConstantFP>(C) || 3313 isa<ConstantInt>(C) || 3314 isa<ConstantPointerNull>(C) || 3315 isa<GlobalValue>(C) || 3316 isa<UndefValue>(C); 3317 } 3318 3319 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3320 /// its constant value in ConstantPool, returning 0 if it's not there. 3321 static Constant *LookupConstant(Value *V, 3322 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3323 if (Constant *C = dyn_cast<Constant>(V)) 3324 return C; 3325 return ConstantPool.lookup(V); 3326 } 3327 3328 /// ConstantFold - Try to fold instruction I into a constant. This works for 3329 /// simple instructions such as binary operations where both operands are 3330 /// constant or can be replaced by constants from the ConstantPool. Returns the 3331 /// resulting constant on success, 0 otherwise. 3332 static Constant * 3333 ConstantFold(Instruction *I, 3334 const SmallDenseMap<Value *, Constant *> &ConstantPool, 3335 const DataLayout *DL) { 3336 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3337 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3338 if (!A) 3339 return 0; 3340 if (A->isAllOnesValue()) 3341 return LookupConstant(Select->getTrueValue(), ConstantPool); 3342 if (A->isNullValue()) 3343 return LookupConstant(Select->getFalseValue(), ConstantPool); 3344 return 0; 3345 } 3346 3347 SmallVector<Constant *, 4> COps; 3348 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3349 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3350 COps.push_back(A); 3351 else 3352 return 0; 3353 } 3354 3355 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) 3356 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3357 COps[1], DL); 3358 3359 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 3360 } 3361 3362 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3363 /// at the common destination basic block, *CommonDest, for one of the case 3364 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3365 /// case), of a switch instruction SI. 3366 static bool 3367 GetCaseResults(SwitchInst *SI, 3368 ConstantInt *CaseVal, 3369 BasicBlock *CaseDest, 3370 BasicBlock **CommonDest, 3371 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res, 3372 const DataLayout *DL) { 3373 // The block from which we enter the common destination. 3374 BasicBlock *Pred = SI->getParent(); 3375 3376 // If CaseDest is empty except for some side-effect free instructions through 3377 // which we can constant-propagate the CaseVal, continue to its successor. 3378 SmallDenseMap<Value*, Constant*> ConstantPool; 3379 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3380 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3381 ++I) { 3382 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3383 // If the terminator is a simple branch, continue to the next block. 3384 if (T->getNumSuccessors() != 1) 3385 return false; 3386 Pred = CaseDest; 3387 CaseDest = T->getSuccessor(0); 3388 } else if (isa<DbgInfoIntrinsic>(I)) { 3389 // Skip debug intrinsic. 3390 continue; 3391 } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) { 3392 // Instruction is side-effect free and constant. 3393 ConstantPool.insert(std::make_pair(I, C)); 3394 } else { 3395 break; 3396 } 3397 } 3398 3399 // If we did not have a CommonDest before, use the current one. 3400 if (!*CommonDest) 3401 *CommonDest = CaseDest; 3402 // If the destination isn't the common one, abort. 3403 if (CaseDest != *CommonDest) 3404 return false; 3405 3406 // Get the values for this case from phi nodes in the destination block. 3407 BasicBlock::iterator I = (*CommonDest)->begin(); 3408 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3409 int Idx = PHI->getBasicBlockIndex(Pred); 3410 if (Idx == -1) 3411 continue; 3412 3413 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3414 ConstantPool); 3415 if (!ConstVal) 3416 return false; 3417 3418 // Note: If the constant comes from constant-propagating the case value 3419 // through the CaseDest basic block, it will be safe to remove the 3420 // instructions in that block. They cannot be used (except in the phi nodes 3421 // we visit) outside CaseDest, because that block does not dominate its 3422 // successor. If it did, we would not be in this phi node. 3423 3424 // Be conservative about which kinds of constants we support. 3425 if (!ValidLookupTableConstant(ConstVal)) 3426 return false; 3427 3428 Res.push_back(std::make_pair(PHI, ConstVal)); 3429 } 3430 3431 return Res.size() > 0; 3432 } 3433 3434 namespace { 3435 /// SwitchLookupTable - This class represents a lookup table that can be used 3436 /// to replace a switch. 3437 class SwitchLookupTable { 3438 public: 3439 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3440 /// with the contents of Values, using DefaultValue to fill any holes in the 3441 /// table. 3442 SwitchLookupTable(Module &M, 3443 uint64_t TableSize, 3444 ConstantInt *Offset, 3445 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3446 Constant *DefaultValue, 3447 const DataLayout *DL); 3448 3449 /// BuildLookup - Build instructions with Builder to retrieve the value at 3450 /// the position given by Index in the lookup table. 3451 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3452 3453 /// WouldFitInRegister - Return true if a table with TableSize elements of 3454 /// type ElementType would fit in a target-legal register. 3455 static bool WouldFitInRegister(const DataLayout *DL, 3456 uint64_t TableSize, 3457 const Type *ElementType); 3458 3459 private: 3460 // Depending on the contents of the table, it can be represented in 3461 // different ways. 3462 enum { 3463 // For tables where each element contains the same value, we just have to 3464 // store that single value and return it for each lookup. 3465 SingleValueKind, 3466 3467 // For small tables with integer elements, we can pack them into a bitmap 3468 // that fits into a target-legal register. Values are retrieved by 3469 // shift and mask operations. 3470 BitMapKind, 3471 3472 // The table is stored as an array of values. Values are retrieved by load 3473 // instructions from the table. 3474 ArrayKind 3475 } Kind; 3476 3477 // For SingleValueKind, this is the single value. 3478 Constant *SingleValue; 3479 3480 // For BitMapKind, this is the bitmap. 3481 ConstantInt *BitMap; 3482 IntegerType *BitMapElementTy; 3483 3484 // For ArrayKind, this is the array. 3485 GlobalVariable *Array; 3486 }; 3487 } 3488 3489 SwitchLookupTable::SwitchLookupTable(Module &M, 3490 uint64_t TableSize, 3491 ConstantInt *Offset, 3492 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3493 Constant *DefaultValue, 3494 const DataLayout *DL) 3495 : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) { 3496 assert(Values.size() && "Can't build lookup table without values!"); 3497 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3498 3499 // If all values in the table are equal, this is that value. 3500 SingleValue = Values.begin()->second; 3501 3502 Type *ValueType = Values.begin()->second->getType(); 3503 3504 // Build up the table contents. 3505 SmallVector<Constant*, 64> TableContents(TableSize); 3506 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3507 ConstantInt *CaseVal = Values[I].first; 3508 Constant *CaseRes = Values[I].second; 3509 assert(CaseRes->getType() == ValueType); 3510 3511 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3512 .getLimitedValue(); 3513 TableContents[Idx] = CaseRes; 3514 3515 if (CaseRes != SingleValue) 3516 SingleValue = 0; 3517 } 3518 3519 // Fill in any holes in the table with the default result. 3520 if (Values.size() < TableSize) { 3521 assert(DefaultValue && "Need a default value to fill the lookup table holes."); 3522 assert(DefaultValue->getType() == ValueType); 3523 for (uint64_t I = 0; I < TableSize; ++I) { 3524 if (!TableContents[I]) 3525 TableContents[I] = DefaultValue; 3526 } 3527 3528 if (DefaultValue != SingleValue) 3529 SingleValue = 0; 3530 } 3531 3532 // If each element in the table contains the same value, we only need to store 3533 // that single value. 3534 if (SingleValue) { 3535 Kind = SingleValueKind; 3536 return; 3537 } 3538 3539 // If the type is integer and the table fits in a register, build a bitmap. 3540 if (WouldFitInRegister(DL, TableSize, ValueType)) { 3541 IntegerType *IT = cast<IntegerType>(ValueType); 3542 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3543 for (uint64_t I = TableSize; I > 0; --I) { 3544 TableInt <<= IT->getBitWidth(); 3545 // Insert values into the bitmap. Undef values are set to zero. 3546 if (!isa<UndefValue>(TableContents[I - 1])) { 3547 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3548 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3549 } 3550 } 3551 BitMap = ConstantInt::get(M.getContext(), TableInt); 3552 BitMapElementTy = IT; 3553 Kind = BitMapKind; 3554 ++NumBitMaps; 3555 return; 3556 } 3557 3558 // Store the table in an array. 3559 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 3560 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3561 3562 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3563 GlobalVariable::PrivateLinkage, 3564 Initializer, 3565 "switch.table"); 3566 Array->setUnnamedAddr(true); 3567 Kind = ArrayKind; 3568 } 3569 3570 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3571 switch (Kind) { 3572 case SingleValueKind: 3573 return SingleValue; 3574 case BitMapKind: { 3575 // Type of the bitmap (e.g. i59). 3576 IntegerType *MapTy = BitMap->getType(); 3577 3578 // Cast Index to the same type as the bitmap. 3579 // Note: The Index is <= the number of elements in the table, so 3580 // truncating it to the width of the bitmask is safe. 3581 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3582 3583 // Multiply the shift amount by the element width. 3584 ShiftAmt = Builder.CreateMul(ShiftAmt, 3585 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3586 "switch.shiftamt"); 3587 3588 // Shift down. 3589 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3590 "switch.downshift"); 3591 // Mask off. 3592 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3593 "switch.masked"); 3594 } 3595 case ArrayKind: { 3596 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3597 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3598 "switch.gep"); 3599 return Builder.CreateLoad(GEP, "switch.load"); 3600 } 3601 } 3602 llvm_unreachable("Unknown lookup table kind!"); 3603 } 3604 3605 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL, 3606 uint64_t TableSize, 3607 const Type *ElementType) { 3608 if (!DL) 3609 return false; 3610 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3611 if (!IT) 3612 return false; 3613 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3614 // are <= 15, we could try to narrow the type. 3615 3616 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3617 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3618 return false; 3619 return DL->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3620 } 3621 3622 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3623 /// for this switch, based on the number of cases, size of the table and the 3624 /// types of the results. 3625 static bool ShouldBuildLookupTable(SwitchInst *SI, 3626 uint64_t TableSize, 3627 const TargetTransformInfo &TTI, 3628 const DataLayout *DL, 3629 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3630 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3631 return false; // TableSize overflowed, or mul below might overflow. 3632 3633 bool AllTablesFitInRegister = true; 3634 bool HasIllegalType = false; 3635 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3636 E = ResultTypes.end(); I != E; ++I) { 3637 Type *Ty = I->second; 3638 3639 // Saturate this flag to true. 3640 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3641 3642 // Saturate this flag to false. 3643 AllTablesFitInRegister = AllTablesFitInRegister && 3644 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 3645 3646 // If both flags saturate, we're done. NOTE: This *only* works with 3647 // saturating flags, and all flags have to saturate first due to the 3648 // non-deterministic behavior of iterating over a dense map. 3649 if (HasIllegalType && !AllTablesFitInRegister) 3650 break; 3651 } 3652 3653 // If each table would fit in a register, we should build it anyway. 3654 if (AllTablesFitInRegister) 3655 return true; 3656 3657 // Don't build a table that doesn't fit in-register if it has illegal types. 3658 if (HasIllegalType) 3659 return false; 3660 3661 // The table density should be at least 40%. This is the same criterion as for 3662 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3663 // FIXME: Find the best cut-off. 3664 return SI->getNumCases() * 10 >= TableSize * 4; 3665 } 3666 3667 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3668 /// phi nodes in a common successor block with different constant values, 3669 /// replace the switch with lookup tables. 3670 static bool SwitchToLookupTable(SwitchInst *SI, 3671 IRBuilder<> &Builder, 3672 const TargetTransformInfo &TTI, 3673 const DataLayout* DL) { 3674 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3675 3676 // Only build lookup table when we have a target that supports it. 3677 if (!TTI.shouldBuildLookupTables()) 3678 return false; 3679 3680 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3681 // split off a dense part and build a lookup table for that. 3682 3683 // FIXME: This creates arrays of GEPs to constant strings, which means each 3684 // GEP needs a runtime relocation in PIC code. We should just build one big 3685 // string and lookup indices into that. 3686 3687 // Ignore switches with less than three cases. Lookup tables will not make them 3688 // faster, so we don't analyze them. 3689 if (SI->getNumCases() < 3) 3690 return false; 3691 3692 // Figure out the corresponding result for each case value and phi node in the 3693 // common destination, as well as the the min and max case values. 3694 assert(SI->case_begin() != SI->case_end()); 3695 SwitchInst::CaseIt CI = SI->case_begin(); 3696 ConstantInt *MinCaseVal = CI.getCaseValue(); 3697 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3698 3699 BasicBlock *CommonDest = 0; 3700 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3701 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3702 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3703 SmallDenseMap<PHINode*, Type*> ResultTypes; 3704 SmallVector<PHINode*, 4> PHIs; 3705 3706 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3707 ConstantInt *CaseVal = CI.getCaseValue(); 3708 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3709 MinCaseVal = CaseVal; 3710 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3711 MaxCaseVal = CaseVal; 3712 3713 // Resulting value at phi nodes for this case value. 3714 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3715 ResultsTy Results; 3716 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 3717 Results, DL)) 3718 return false; 3719 3720 // Append the result from this case to the list for each phi. 3721 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3722 if (!ResultLists.count(I->first)) 3723 PHIs.push_back(I->first); 3724 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3725 } 3726 } 3727 3728 // Keep track of the result types. 3729 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3730 PHINode *PHI = PHIs[I]; 3731 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 3732 } 3733 3734 uint64_t NumResults = ResultLists[PHIs[0]].size(); 3735 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3736 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3737 bool TableHasHoles = (NumResults < TableSize); 3738 3739 // If the table has holes, we need a constant result for the default case 3740 // or a bitmask that fits in a register. 3741 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3742 bool HasDefaultResults = false; 3743 if (TableHasHoles) { 3744 HasDefaultResults = GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest, 3745 DefaultResultsList, DL); 3746 } 3747 bool NeedMask = (TableHasHoles && !HasDefaultResults); 3748 if (NeedMask) { 3749 // As an extra penalty for the validity test we require more cases. 3750 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 3751 return false; 3752 if (!(DL && DL->fitsInLegalInteger(TableSize))) 3753 return false; 3754 } 3755 3756 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3757 PHINode *PHI = DefaultResultsList[I].first; 3758 Constant *Result = DefaultResultsList[I].second; 3759 DefaultResults[PHI] = Result; 3760 } 3761 3762 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 3763 return false; 3764 3765 // Create the BB that does the lookups. 3766 Module &Mod = *CommonDest->getParent()->getParent(); 3767 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3768 "switch.lookup", 3769 CommonDest->getParent(), 3770 CommonDest); 3771 3772 // Compute the table index value. 3773 Builder.SetInsertPoint(SI); 3774 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3775 "switch.tableidx"); 3776 3777 // Compute the maximum table size representable by the integer type we are 3778 // switching upon. 3779 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 3780 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 3781 assert(MaxTableSize >= TableSize && 3782 "It is impossible for a switch to have more entries than the max " 3783 "representable value of its input integer type's size."); 3784 3785 // If we have a fully covered lookup table, unconditionally branch to the 3786 // lookup table BB. Otherwise, check if the condition value is within the case 3787 // range. If it is so, branch to the new BB. Otherwise branch to SI's default 3788 // destination. 3789 const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize; 3790 if (GeneratingCoveredLookupTable) { 3791 Builder.CreateBr(LookupBB); 3792 SI->getDefaultDest()->removePredecessor(SI->getParent()); 3793 } else { 3794 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3795 MinCaseVal->getType(), TableSize)); 3796 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3797 } 3798 3799 // Populate the BB that does the lookups. 3800 Builder.SetInsertPoint(LookupBB); 3801 3802 if (NeedMask) { 3803 // Before doing the lookup we do the hole check. 3804 // The LookupBB is therefore re-purposed to do the hole check 3805 // and we create a new LookupBB. 3806 BasicBlock *MaskBB = LookupBB; 3807 MaskBB->setName("switch.hole_check"); 3808 LookupBB = BasicBlock::Create(Mod.getContext(), 3809 "switch.lookup", 3810 CommonDest->getParent(), 3811 CommonDest); 3812 3813 // Build bitmask; fill in a 1 bit for every case. 3814 APInt MaskInt(TableSize, 0); 3815 APInt One(TableSize, 1); 3816 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 3817 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 3818 uint64_t Idx = (ResultList[I].first->getValue() - 3819 MinCaseVal->getValue()).getLimitedValue(); 3820 MaskInt |= One << Idx; 3821 } 3822 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 3823 3824 // Get the TableIndex'th bit of the bitmask. 3825 // If this bit is 0 (meaning hole) jump to the default destination, 3826 // else continue with table lookup. 3827 IntegerType *MapTy = TableMask->getType(); 3828 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 3829 "switch.maskindex"); 3830 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 3831 "switch.shifted"); 3832 Value *LoBit = Builder.CreateTrunc(Shifted, 3833 Type::getInt1Ty(Mod.getContext()), 3834 "switch.lobit"); 3835 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 3836 3837 Builder.SetInsertPoint(LookupBB); 3838 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 3839 } 3840 3841 bool ReturnedEarly = false; 3842 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3843 PHINode *PHI = PHIs[I]; 3844 3845 // If using a bitmask, use any value to fill the lookup table holes. 3846 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 3847 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3848 DV, DL); 3849 3850 Value *Result = Table.BuildLookup(TableIndex, Builder); 3851 3852 // If the result is used to return immediately from the function, we want to 3853 // do that right here. 3854 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 3855 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 3856 Builder.CreateRet(Result); 3857 ReturnedEarly = true; 3858 break; 3859 } 3860 3861 PHI->addIncoming(Result, LookupBB); 3862 } 3863 3864 if (!ReturnedEarly) 3865 Builder.CreateBr(CommonDest); 3866 3867 // Remove the switch. 3868 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 3869 BasicBlock *Succ = SI->getSuccessor(i); 3870 3871 if (Succ == SI->getDefaultDest()) 3872 continue; 3873 Succ->removePredecessor(SI->getParent()); 3874 } 3875 SI->eraseFromParent(); 3876 3877 ++NumLookupTables; 3878 if (NeedMask) 3879 ++NumLookupTablesHoles; 3880 return true; 3881 } 3882 3883 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3884 BasicBlock *BB = SI->getParent(); 3885 3886 if (isValueEqualityComparison(SI)) { 3887 // If we only have one predecessor, and if it is a branch on this value, 3888 // see if that predecessor totally determines the outcome of this switch. 3889 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3890 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3891 return SimplifyCFG(BB, TTI, DL) | true; 3892 3893 Value *Cond = SI->getCondition(); 3894 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3895 if (SimplifySwitchOnSelect(SI, Select)) 3896 return SimplifyCFG(BB, TTI, DL) | true; 3897 3898 // If the block only contains the switch, see if we can fold the block 3899 // away into any preds. 3900 BasicBlock::iterator BBI = BB->begin(); 3901 // Ignore dbg intrinsics. 3902 while (isa<DbgInfoIntrinsic>(BBI)) 3903 ++BBI; 3904 if (SI == &*BBI) 3905 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3906 return SimplifyCFG(BB, TTI, DL) | true; 3907 } 3908 3909 // Try to transform the switch into an icmp and a branch. 3910 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3911 return SimplifyCFG(BB, TTI, DL) | true; 3912 3913 // Remove unreachable cases. 3914 if (EliminateDeadSwitchCases(SI)) 3915 return SimplifyCFG(BB, TTI, DL) | true; 3916 3917 if (ForwardSwitchConditionToPHI(SI)) 3918 return SimplifyCFG(BB, TTI, DL) | true; 3919 3920 if (SwitchToLookupTable(SI, Builder, TTI, DL)) 3921 return SimplifyCFG(BB, TTI, DL) | true; 3922 3923 return false; 3924 } 3925 3926 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3927 BasicBlock *BB = IBI->getParent(); 3928 bool Changed = false; 3929 3930 // Eliminate redundant destinations. 3931 SmallPtrSet<Value *, 8> Succs; 3932 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3933 BasicBlock *Dest = IBI->getDestination(i); 3934 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3935 Dest->removePredecessor(BB); 3936 IBI->removeDestination(i); 3937 --i; --e; 3938 Changed = true; 3939 } 3940 } 3941 3942 if (IBI->getNumDestinations() == 0) { 3943 // If the indirectbr has no successors, change it to unreachable. 3944 new UnreachableInst(IBI->getContext(), IBI); 3945 EraseTerminatorInstAndDCECond(IBI); 3946 return true; 3947 } 3948 3949 if (IBI->getNumDestinations() == 1) { 3950 // If the indirectbr has one successor, change it to a direct branch. 3951 BranchInst::Create(IBI->getDestination(0), IBI); 3952 EraseTerminatorInstAndDCECond(IBI); 3953 return true; 3954 } 3955 3956 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3957 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3958 return SimplifyCFG(BB, TTI, DL) | true; 3959 } 3960 return Changed; 3961 } 3962 3963 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3964 BasicBlock *BB = BI->getParent(); 3965 3966 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3967 return true; 3968 3969 // If the Terminator is the only non-phi instruction, simplify the block. 3970 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3971 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3972 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3973 return true; 3974 3975 // If the only instruction in the block is a seteq/setne comparison 3976 // against a constant, try to simplify the block. 3977 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3978 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3979 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3980 ; 3981 if (I->isTerminator() && 3982 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, DL)) 3983 return true; 3984 } 3985 3986 // If this basic block is ONLY a compare and a branch, and if a predecessor 3987 // branches to us and our successor, fold the comparison into the 3988 // predecessor and use logical operations to update the incoming value 3989 // for PHI nodes in common successor. 3990 if (FoldBranchToCommonDest(BI)) 3991 return SimplifyCFG(BB, TTI, DL) | true; 3992 return false; 3993 } 3994 3995 3996 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 3997 BasicBlock *BB = BI->getParent(); 3998 3999 // Conditional branch 4000 if (isValueEqualityComparison(BI)) { 4001 // If we only have one predecessor, and if it is a branch on this value, 4002 // see if that predecessor totally determines the outcome of this 4003 // switch. 4004 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4005 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 4006 return SimplifyCFG(BB, TTI, DL) | true; 4007 4008 // This block must be empty, except for the setcond inst, if it exists. 4009 // Ignore dbg intrinsics. 4010 BasicBlock::iterator I = BB->begin(); 4011 // Ignore dbg intrinsics. 4012 while (isa<DbgInfoIntrinsic>(I)) 4013 ++I; 4014 if (&*I == BI) { 4015 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 4016 return SimplifyCFG(BB, TTI, DL) | true; 4017 } else if (&*I == cast<Instruction>(BI->getCondition())){ 4018 ++I; 4019 // Ignore dbg intrinsics. 4020 while (isa<DbgInfoIntrinsic>(I)) 4021 ++I; 4022 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 4023 return SimplifyCFG(BB, TTI, DL) | true; 4024 } 4025 } 4026 4027 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 4028 if (SimplifyBranchOnICmpChain(BI, DL, Builder)) 4029 return true; 4030 4031 // If this basic block is ONLY a compare and a branch, and if a predecessor 4032 // branches to us and one of our successors, fold the comparison into the 4033 // predecessor and use logical operations to pick the right destination. 4034 if (FoldBranchToCommonDest(BI)) 4035 return SimplifyCFG(BB, TTI, DL) | true; 4036 4037 // We have a conditional branch to two blocks that are only reachable 4038 // from BI. We know that the condbr dominates the two blocks, so see if 4039 // there is any identical code in the "then" and "else" blocks. If so, we 4040 // can hoist it up to the branching block. 4041 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 4042 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 4043 if (HoistThenElseCodeToIf(BI)) 4044 return SimplifyCFG(BB, TTI, DL) | true; 4045 } else { 4046 // If Successor #1 has multiple preds, we may be able to conditionally 4047 // execute Successor #0 if it branches to successor #1. 4048 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4049 if (Succ0TI->getNumSuccessors() == 1 && 4050 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4051 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 4052 return SimplifyCFG(BB, TTI, DL) | true; 4053 } 4054 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 4055 // If Successor #0 has multiple preds, we may be able to conditionally 4056 // execute Successor #1 if it branches to successor #0. 4057 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4058 if (Succ1TI->getNumSuccessors() == 1 && 4059 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4060 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 4061 return SimplifyCFG(BB, TTI, DL) | true; 4062 } 4063 4064 // If this is a branch on a phi node in the current block, thread control 4065 // through this block if any PHI node entries are constants. 4066 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4067 if (PN->getParent() == BI->getParent()) 4068 if (FoldCondBranchOnPHI(BI, DL)) 4069 return SimplifyCFG(BB, TTI, DL) | true; 4070 4071 // Scan predecessor blocks for conditional branches. 4072 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4073 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4074 if (PBI != BI && PBI->isConditional()) 4075 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4076 return SimplifyCFG(BB, TTI, DL) | true; 4077 4078 return false; 4079 } 4080 4081 /// Check if passing a value to an instruction will cause undefined behavior. 4082 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4083 Constant *C = dyn_cast<Constant>(V); 4084 if (!C) 4085 return false; 4086 4087 if (I->use_empty()) 4088 return false; 4089 4090 if (C->isNullValue()) { 4091 // Only look at the first use, avoid hurting compile time with long uselists 4092 User *Use = *I->user_begin(); 4093 4094 // Now make sure that there are no instructions in between that can alter 4095 // control flow (eg. calls) 4096 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4097 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4098 return false; 4099 4100 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4101 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4102 if (GEP->getPointerOperand() == I) 4103 return passingValueIsAlwaysUndefined(V, GEP); 4104 4105 // Look through bitcasts. 4106 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4107 return passingValueIsAlwaysUndefined(V, BC); 4108 4109 // Load from null is undefined. 4110 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4111 if (!LI->isVolatile()) 4112 return LI->getPointerAddressSpace() == 0; 4113 4114 // Store to null is undefined. 4115 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4116 if (!SI->isVolatile()) 4117 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4118 } 4119 return false; 4120 } 4121 4122 /// If BB has an incoming value that will always trigger undefined behavior 4123 /// (eg. null pointer dereference), remove the branch leading here. 4124 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4125 for (BasicBlock::iterator i = BB->begin(); 4126 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4127 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4128 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4129 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4130 IRBuilder<> Builder(T); 4131 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4132 BB->removePredecessor(PHI->getIncomingBlock(i)); 4133 // Turn uncoditional branches into unreachables and remove the dead 4134 // destination from conditional branches. 4135 if (BI->isUnconditional()) 4136 Builder.CreateUnreachable(); 4137 else 4138 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4139 BI->getSuccessor(0)); 4140 BI->eraseFromParent(); 4141 return true; 4142 } 4143 // TODO: SwitchInst. 4144 } 4145 4146 return false; 4147 } 4148 4149 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4150 bool Changed = false; 4151 4152 assert(BB && BB->getParent() && "Block not embedded in function!"); 4153 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4154 4155 // Remove basic blocks that have no predecessors (except the entry block)... 4156 // or that just have themself as a predecessor. These are unreachable. 4157 if ((pred_begin(BB) == pred_end(BB) && 4158 BB != &BB->getParent()->getEntryBlock()) || 4159 BB->getSinglePredecessor() == BB) { 4160 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4161 DeleteDeadBlock(BB); 4162 return true; 4163 } 4164 4165 // Check to see if we can constant propagate this terminator instruction 4166 // away... 4167 Changed |= ConstantFoldTerminator(BB, true); 4168 4169 // Check for and eliminate duplicate PHI nodes in this block. 4170 Changed |= EliminateDuplicatePHINodes(BB); 4171 4172 // Check for and remove branches that will always cause undefined behavior. 4173 Changed |= removeUndefIntroducingPredecessor(BB); 4174 4175 // Merge basic blocks into their predecessor if there is only one distinct 4176 // pred, and if there is only one distinct successor of the predecessor, and 4177 // if there are no PHI nodes. 4178 // 4179 if (MergeBlockIntoPredecessor(BB)) 4180 return true; 4181 4182 IRBuilder<> Builder(BB); 4183 4184 // If there is a trivial two-entry PHI node in this basic block, and we can 4185 // eliminate it, do so now. 4186 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4187 if (PN->getNumIncomingValues() == 2) 4188 Changed |= FoldTwoEntryPHINode(PN, DL); 4189 4190 Builder.SetInsertPoint(BB->getTerminator()); 4191 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4192 if (BI->isUnconditional()) { 4193 if (SimplifyUncondBranch(BI, Builder)) return true; 4194 } else { 4195 if (SimplifyCondBranch(BI, Builder)) return true; 4196 } 4197 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4198 if (SimplifyReturn(RI, Builder)) return true; 4199 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4200 if (SimplifyResume(RI, Builder)) return true; 4201 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4202 if (SimplifySwitch(SI, Builder)) return true; 4203 } else if (UnreachableInst *UI = 4204 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4205 if (SimplifyUnreachable(UI)) return true; 4206 } else if (IndirectBrInst *IBI = 4207 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4208 if (SimplifyIndirectBr(IBI)) return true; 4209 } 4210 4211 return Changed; 4212 } 4213 4214 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4215 /// example, it adjusts branches to branches to eliminate the extra hop, it 4216 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4217 /// of the CFG. It returns true if a modification was made. 4218 /// 4219 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4220 const DataLayout *DL) { 4221 return SimplifyCFGOpt(TTI, DL).run(BB); 4222 } 4223