1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/GuardUtils.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/MemorySSA.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/ValueHandle.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/ValueMapper.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <set> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "simplifycfg" 92 93 cl::opt<bool> llvm::RequireAndPreserveDomTree( 94 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 95 cl::init(false), 96 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 97 "into preserving DomTree,")); 98 99 // Chosen as 2 so as to be cheap, but still to have enough power to fold 100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 101 // To catch this, we need to fold a compare and a select, hence '2' being the 102 // minimum reasonable default. 103 static cl::opt<unsigned> PHINodeFoldingThreshold( 104 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 105 cl::desc( 106 "Control the amount of phi node folding to perform (default = 2)")); 107 108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 109 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 110 cl::desc("Control the maximal total instruction cost that we are willing " 111 "to speculatively execute to fold a 2-entry PHI node into a " 112 "select (default = 4)")); 113 114 static cl::opt<bool> 115 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 116 cl::desc("Hoist common instructions up to the parent block")); 117 118 static cl::opt<bool> 119 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 120 cl::desc("Sink common instructions down to the end block")); 121 122 static cl::opt<bool> HoistCondStores( 123 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 124 cl::desc("Hoist conditional stores if an unconditional store precedes")); 125 126 static cl::opt<bool> MergeCondStores( 127 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 128 cl::desc("Hoist conditional stores even if an unconditional store does not " 129 "precede - hoist multiple conditional stores into a single " 130 "predicated store")); 131 132 static cl::opt<bool> MergeCondStoresAggressively( 133 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 134 cl::desc("When merging conditional stores, do so even if the resultant " 135 "basic blocks are unlikely to be if-converted as a result")); 136 137 static cl::opt<bool> SpeculateOneExpensiveInst( 138 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 139 cl::desc("Allow exactly one expensive instruction to be speculatively " 140 "executed")); 141 142 static cl::opt<unsigned> MaxSpeculationDepth( 143 "max-speculation-depth", cl::Hidden, cl::init(10), 144 cl::desc("Limit maximum recursion depth when calculating costs of " 145 "speculatively executed instructions")); 146 147 static cl::opt<int> 148 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 149 cl::init(10), 150 cl::desc("Max size of a block which is still considered " 151 "small enough to thread through")); 152 153 // Two is chosen to allow one negation and a logical combine. 154 static cl::opt<unsigned> 155 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 156 cl::init(2), 157 cl::desc("Maximum cost of combining conditions when " 158 "folding branches")); 159 160 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 161 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 162 cl::init(2), 163 cl::desc("Multiplier to apply to threshold when determining whether or not " 164 "to fold branch to common destination when vector operations are " 165 "present")); 166 167 static cl::opt<bool> EnableMergeCompatibleInvokes( 168 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 169 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 170 171 static cl::opt<unsigned> MaxSwitchCasesPerResult( 172 "max-switch-cases-per-result", cl::Hidden, cl::init(16), 173 cl::desc("Limit cases to analyze when converting a switch to select")); 174 175 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 176 STATISTIC(NumLinearMaps, 177 "Number of switch instructions turned into linear mapping"); 178 STATISTIC(NumLookupTables, 179 "Number of switch instructions turned into lookup tables"); 180 STATISTIC( 181 NumLookupTablesHoles, 182 "Number of switch instructions turned into lookup tables (holes checked)"); 183 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 184 STATISTIC(NumFoldValueComparisonIntoPredecessors, 185 "Number of value comparisons folded into predecessor basic blocks"); 186 STATISTIC(NumFoldBranchToCommonDest, 187 "Number of branches folded into predecessor basic block"); 188 STATISTIC( 189 NumHoistCommonCode, 190 "Number of common instruction 'blocks' hoisted up to the begin block"); 191 STATISTIC(NumHoistCommonInstrs, 192 "Number of common instructions hoisted up to the begin block"); 193 STATISTIC(NumSinkCommonCode, 194 "Number of common instruction 'blocks' sunk down to the end block"); 195 STATISTIC(NumSinkCommonInstrs, 196 "Number of common instructions sunk down to the end block"); 197 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 198 STATISTIC(NumInvokes, 199 "Number of invokes with empty resume blocks simplified into calls"); 200 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 201 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 202 203 namespace { 204 205 // The first field contains the value that the switch produces when a certain 206 // case group is selected, and the second field is a vector containing the 207 // cases composing the case group. 208 using SwitchCaseResultVectorTy = 209 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 210 211 // The first field contains the phi node that generates a result of the switch 212 // and the second field contains the value generated for a certain case in the 213 // switch for that PHI. 214 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 215 216 /// ValueEqualityComparisonCase - Represents a case of a switch. 217 struct ValueEqualityComparisonCase { 218 ConstantInt *Value; 219 BasicBlock *Dest; 220 221 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 222 : Value(Value), Dest(Dest) {} 223 224 bool operator<(ValueEqualityComparisonCase RHS) const { 225 // Comparing pointers is ok as we only rely on the order for uniquing. 226 return Value < RHS.Value; 227 } 228 229 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 230 }; 231 232 class SimplifyCFGOpt { 233 const TargetTransformInfo &TTI; 234 DomTreeUpdater *DTU; 235 const DataLayout &DL; 236 ArrayRef<WeakVH> LoopHeaders; 237 const SimplifyCFGOptions &Options; 238 bool Resimplify; 239 240 Value *isValueEqualityComparison(Instruction *TI); 241 BasicBlock *GetValueEqualityComparisonCases( 242 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 243 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 244 BasicBlock *Pred, 245 IRBuilder<> &Builder); 246 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 247 Instruction *PTI, 248 IRBuilder<> &Builder); 249 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 250 IRBuilder<> &Builder); 251 252 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 253 bool simplifySingleResume(ResumeInst *RI); 254 bool simplifyCommonResume(ResumeInst *RI); 255 bool simplifyCleanupReturn(CleanupReturnInst *RI); 256 bool simplifyUnreachable(UnreachableInst *UI); 257 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 258 bool simplifyIndirectBr(IndirectBrInst *IBI); 259 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 260 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 261 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 262 263 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 264 IRBuilder<> &Builder); 265 266 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 267 bool EqTermsOnly); 268 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 269 const TargetTransformInfo &TTI); 270 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 271 BasicBlock *TrueBB, BasicBlock *FalseBB, 272 uint32_t TrueWeight, uint32_t FalseWeight); 273 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 274 const DataLayout &DL); 275 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 276 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 277 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 278 279 public: 280 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 281 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 282 const SimplifyCFGOptions &Opts) 283 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 284 assert((!DTU || !DTU->hasPostDomTree()) && 285 "SimplifyCFG is not yet capable of maintaining validity of a " 286 "PostDomTree, so don't ask for it."); 287 } 288 289 bool simplifyOnce(BasicBlock *BB); 290 bool run(BasicBlock *BB); 291 292 // Helper to set Resimplify and return change indication. 293 bool requestResimplify() { 294 Resimplify = true; 295 return true; 296 } 297 }; 298 299 } // end anonymous namespace 300 301 /// Return true if all the PHI nodes in the basic block \p BB 302 /// receive compatible (identical) incoming values when coming from 303 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 304 /// 305 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 306 /// is provided, and *both* of the values are present in the set, 307 /// then they are considered equal. 308 static bool IncomingValuesAreCompatible( 309 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 310 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 311 assert(IncomingBlocks.size() == 2 && 312 "Only for a pair of incoming blocks at the time!"); 313 314 // FIXME: it is okay if one of the incoming values is an `undef` value, 315 // iff the other incoming value is guaranteed to be a non-poison value. 316 // FIXME: it is okay if one of the incoming values is a `poison` value. 317 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 318 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 319 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 320 if (IV0 == IV1) 321 return true; 322 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 323 EquivalenceSet->contains(IV1)) 324 return true; 325 return false; 326 }); 327 } 328 329 /// Return true if it is safe to merge these two 330 /// terminator instructions together. 331 static bool 332 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 333 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 334 if (SI1 == SI2) 335 return false; // Can't merge with self! 336 337 // It is not safe to merge these two switch instructions if they have a common 338 // successor, and if that successor has a PHI node, and if *that* PHI node has 339 // conflicting incoming values from the two switch blocks. 340 BasicBlock *SI1BB = SI1->getParent(); 341 BasicBlock *SI2BB = SI2->getParent(); 342 343 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 344 bool Fail = false; 345 for (BasicBlock *Succ : successors(SI2BB)) { 346 if (!SI1Succs.count(Succ)) 347 continue; 348 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 349 continue; 350 Fail = true; 351 if (FailBlocks) 352 FailBlocks->insert(Succ); 353 else 354 break; 355 } 356 357 return !Fail; 358 } 359 360 /// Update PHI nodes in Succ to indicate that there will now be entries in it 361 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 362 /// will be the same as those coming in from ExistPred, an existing predecessor 363 /// of Succ. 364 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 365 BasicBlock *ExistPred, 366 MemorySSAUpdater *MSSAU = nullptr) { 367 for (PHINode &PN : Succ->phis()) 368 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 369 if (MSSAU) 370 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 371 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 372 } 373 374 /// Compute an abstract "cost" of speculating the given instruction, 375 /// which is assumed to be safe to speculate. TCC_Free means cheap, 376 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 377 /// expensive. 378 static InstructionCost computeSpeculationCost(const User *I, 379 const TargetTransformInfo &TTI) { 380 assert(isSafeToSpeculativelyExecute(I) && 381 "Instruction is not safe to speculatively execute!"); 382 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 383 } 384 385 /// If we have a merge point of an "if condition" as accepted above, 386 /// return true if the specified value dominates the block. We 387 /// don't handle the true generality of domination here, just a special case 388 /// which works well enough for us. 389 /// 390 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 391 /// see if V (which must be an instruction) and its recursive operands 392 /// that do not dominate BB have a combined cost lower than Budget and 393 /// are non-trapping. If both are true, the instruction is inserted into the 394 /// set and true is returned. 395 /// 396 /// The cost for most non-trapping instructions is defined as 1 except for 397 /// Select whose cost is 2. 398 /// 399 /// After this function returns, Cost is increased by the cost of 400 /// V plus its non-dominating operands. If that cost is greater than 401 /// Budget, false is returned and Cost is undefined. 402 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 403 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 404 InstructionCost &Cost, 405 InstructionCost Budget, 406 const TargetTransformInfo &TTI, 407 unsigned Depth = 0) { 408 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 409 // so limit the recursion depth. 410 // TODO: While this recursion limit does prevent pathological behavior, it 411 // would be better to track visited instructions to avoid cycles. 412 if (Depth == MaxSpeculationDepth) 413 return false; 414 415 Instruction *I = dyn_cast<Instruction>(V); 416 if (!I) { 417 // Non-instructions all dominate instructions, but not all constantexprs 418 // can be executed unconditionally. 419 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 420 if (C->canTrap()) 421 return false; 422 return true; 423 } 424 BasicBlock *PBB = I->getParent(); 425 426 // We don't want to allow weird loops that might have the "if condition" in 427 // the bottom of this block. 428 if (PBB == BB) 429 return false; 430 431 // If this instruction is defined in a block that contains an unconditional 432 // branch to BB, then it must be in the 'conditional' part of the "if 433 // statement". If not, it definitely dominates the region. 434 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 435 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 436 return true; 437 438 // If we have seen this instruction before, don't count it again. 439 if (AggressiveInsts.count(I)) 440 return true; 441 442 // Okay, it looks like the instruction IS in the "condition". Check to 443 // see if it's a cheap instruction to unconditionally compute, and if it 444 // only uses stuff defined outside of the condition. If so, hoist it out. 445 if (!isSafeToSpeculativelyExecute(I)) 446 return false; 447 448 Cost += computeSpeculationCost(I, TTI); 449 450 // Allow exactly one instruction to be speculated regardless of its cost 451 // (as long as it is safe to do so). 452 // This is intended to flatten the CFG even if the instruction is a division 453 // or other expensive operation. The speculation of an expensive instruction 454 // is expected to be undone in CodeGenPrepare if the speculation has not 455 // enabled further IR optimizations. 456 if (Cost > Budget && 457 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 458 !Cost.isValid())) 459 return false; 460 461 // Okay, we can only really hoist these out if their operands do 462 // not take us over the cost threshold. 463 for (Use &Op : I->operands()) 464 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 465 Depth + 1)) 466 return false; 467 // Okay, it's safe to do this! Remember this instruction. 468 AggressiveInsts.insert(I); 469 return true; 470 } 471 472 /// Extract ConstantInt from value, looking through IntToPtr 473 /// and PointerNullValue. Return NULL if value is not a constant int. 474 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 475 // Normal constant int. 476 ConstantInt *CI = dyn_cast<ConstantInt>(V); 477 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 478 return CI; 479 480 // This is some kind of pointer constant. Turn it into a pointer-sized 481 // ConstantInt if possible. 482 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 483 484 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 485 if (isa<ConstantPointerNull>(V)) 486 return ConstantInt::get(PtrTy, 0); 487 488 // IntToPtr const int. 489 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 490 if (CE->getOpcode() == Instruction::IntToPtr) 491 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 492 // The constant is very likely to have the right type already. 493 if (CI->getType() == PtrTy) 494 return CI; 495 else 496 return cast<ConstantInt>( 497 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 498 } 499 return nullptr; 500 } 501 502 namespace { 503 504 /// Given a chain of or (||) or and (&&) comparison of a value against a 505 /// constant, this will try to recover the information required for a switch 506 /// structure. 507 /// It will depth-first traverse the chain of comparison, seeking for patterns 508 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 509 /// representing the different cases for the switch. 510 /// Note that if the chain is composed of '||' it will build the set of elements 511 /// that matches the comparisons (i.e. any of this value validate the chain) 512 /// while for a chain of '&&' it will build the set elements that make the test 513 /// fail. 514 struct ConstantComparesGatherer { 515 const DataLayout &DL; 516 517 /// Value found for the switch comparison 518 Value *CompValue = nullptr; 519 520 /// Extra clause to be checked before the switch 521 Value *Extra = nullptr; 522 523 /// Set of integers to match in switch 524 SmallVector<ConstantInt *, 8> Vals; 525 526 /// Number of comparisons matched in the and/or chain 527 unsigned UsedICmps = 0; 528 529 /// Construct and compute the result for the comparison instruction Cond 530 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 531 gather(Cond); 532 } 533 534 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 535 ConstantComparesGatherer & 536 operator=(const ConstantComparesGatherer &) = delete; 537 538 private: 539 /// Try to set the current value used for the comparison, it succeeds only if 540 /// it wasn't set before or if the new value is the same as the old one 541 bool setValueOnce(Value *NewVal) { 542 if (CompValue && CompValue != NewVal) 543 return false; 544 CompValue = NewVal; 545 return (CompValue != nullptr); 546 } 547 548 /// Try to match Instruction "I" as a comparison against a constant and 549 /// populates the array Vals with the set of values that match (or do not 550 /// match depending on isEQ). 551 /// Return false on failure. On success, the Value the comparison matched 552 /// against is placed in CompValue. 553 /// If CompValue is already set, the function is expected to fail if a match 554 /// is found but the value compared to is different. 555 bool matchInstruction(Instruction *I, bool isEQ) { 556 // If this is an icmp against a constant, handle this as one of the cases. 557 ICmpInst *ICI; 558 ConstantInt *C; 559 if (!((ICI = dyn_cast<ICmpInst>(I)) && 560 (C = GetConstantInt(I->getOperand(1), DL)))) { 561 return false; 562 } 563 564 Value *RHSVal; 565 const APInt *RHSC; 566 567 // Pattern match a special case 568 // (x & ~2^z) == y --> x == y || x == y|2^z 569 // This undoes a transformation done by instcombine to fuse 2 compares. 570 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 571 // It's a little bit hard to see why the following transformations are 572 // correct. Here is a CVC3 program to verify them for 64-bit values: 573 574 /* 575 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 576 x : BITVECTOR(64); 577 y : BITVECTOR(64); 578 z : BITVECTOR(64); 579 mask : BITVECTOR(64) = BVSHL(ONE, z); 580 QUERY( (y & ~mask = y) => 581 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 582 ); 583 QUERY( (y | mask = y) => 584 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 585 ); 586 */ 587 588 // Please note that each pattern must be a dual implication (<--> or 589 // iff). One directional implication can create spurious matches. If the 590 // implication is only one-way, an unsatisfiable condition on the left 591 // side can imply a satisfiable condition on the right side. Dual 592 // implication ensures that satisfiable conditions are transformed to 593 // other satisfiable conditions and unsatisfiable conditions are 594 // transformed to other unsatisfiable conditions. 595 596 // Here is a concrete example of a unsatisfiable condition on the left 597 // implying a satisfiable condition on the right: 598 // 599 // mask = (1 << z) 600 // (x & ~mask) == y --> (x == y || x == (y | mask)) 601 // 602 // Substituting y = 3, z = 0 yields: 603 // (x & -2) == 3 --> (x == 3 || x == 2) 604 605 // Pattern match a special case: 606 /* 607 QUERY( (y & ~mask = y) => 608 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 609 ); 610 */ 611 if (match(ICI->getOperand(0), 612 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 613 APInt Mask = ~*RHSC; 614 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 615 // If we already have a value for the switch, it has to match! 616 if (!setValueOnce(RHSVal)) 617 return false; 618 619 Vals.push_back(C); 620 Vals.push_back( 621 ConstantInt::get(C->getContext(), 622 C->getValue() | Mask)); 623 UsedICmps++; 624 return true; 625 } 626 } 627 628 // Pattern match a special case: 629 /* 630 QUERY( (y | mask = y) => 631 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 632 ); 633 */ 634 if (match(ICI->getOperand(0), 635 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 636 APInt Mask = *RHSC; 637 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 638 // If we already have a value for the switch, it has to match! 639 if (!setValueOnce(RHSVal)) 640 return false; 641 642 Vals.push_back(C); 643 Vals.push_back(ConstantInt::get(C->getContext(), 644 C->getValue() & ~Mask)); 645 UsedICmps++; 646 return true; 647 } 648 } 649 650 // If we already have a value for the switch, it has to match! 651 if (!setValueOnce(ICI->getOperand(0))) 652 return false; 653 654 UsedICmps++; 655 Vals.push_back(C); 656 return ICI->getOperand(0); 657 } 658 659 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 660 ConstantRange Span = 661 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 662 663 // Shift the range if the compare is fed by an add. This is the range 664 // compare idiom as emitted by instcombine. 665 Value *CandidateVal = I->getOperand(0); 666 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 667 Span = Span.subtract(*RHSC); 668 CandidateVal = RHSVal; 669 } 670 671 // If this is an and/!= check, then we are looking to build the set of 672 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 673 // x != 0 && x != 1. 674 if (!isEQ) 675 Span = Span.inverse(); 676 677 // If there are a ton of values, we don't want to make a ginormous switch. 678 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 679 return false; 680 } 681 682 // If we already have a value for the switch, it has to match! 683 if (!setValueOnce(CandidateVal)) 684 return false; 685 686 // Add all values from the range to the set 687 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 688 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 689 690 UsedICmps++; 691 return true; 692 } 693 694 /// Given a potentially 'or'd or 'and'd together collection of icmp 695 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 696 /// the value being compared, and stick the list constants into the Vals 697 /// vector. 698 /// One "Extra" case is allowed to differ from the other. 699 void gather(Value *V) { 700 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 701 702 // Keep a stack (SmallVector for efficiency) for depth-first traversal 703 SmallVector<Value *, 8> DFT; 704 SmallPtrSet<Value *, 8> Visited; 705 706 // Initialize 707 Visited.insert(V); 708 DFT.push_back(V); 709 710 while (!DFT.empty()) { 711 V = DFT.pop_back_val(); 712 713 if (Instruction *I = dyn_cast<Instruction>(V)) { 714 // If it is a || (or && depending on isEQ), process the operands. 715 Value *Op0, *Op1; 716 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 717 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 718 if (Visited.insert(Op1).second) 719 DFT.push_back(Op1); 720 if (Visited.insert(Op0).second) 721 DFT.push_back(Op0); 722 723 continue; 724 } 725 726 // Try to match the current instruction 727 if (matchInstruction(I, isEQ)) 728 // Match succeed, continue the loop 729 continue; 730 } 731 732 // One element of the sequence of || (or &&) could not be match as a 733 // comparison against the same value as the others. 734 // We allow only one "Extra" case to be checked before the switch 735 if (!Extra) { 736 Extra = V; 737 continue; 738 } 739 // Failed to parse a proper sequence, abort now 740 CompValue = nullptr; 741 break; 742 } 743 } 744 }; 745 746 } // end anonymous namespace 747 748 static void EraseTerminatorAndDCECond(Instruction *TI, 749 MemorySSAUpdater *MSSAU = nullptr) { 750 Instruction *Cond = nullptr; 751 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 752 Cond = dyn_cast<Instruction>(SI->getCondition()); 753 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 754 if (BI->isConditional()) 755 Cond = dyn_cast<Instruction>(BI->getCondition()); 756 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 757 Cond = dyn_cast<Instruction>(IBI->getAddress()); 758 } 759 760 TI->eraseFromParent(); 761 if (Cond) 762 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 763 } 764 765 /// Return true if the specified terminator checks 766 /// to see if a value is equal to constant integer value. 767 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 768 Value *CV = nullptr; 769 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 770 // Do not permit merging of large switch instructions into their 771 // predecessors unless there is only one predecessor. 772 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 773 CV = SI->getCondition(); 774 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 775 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 776 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 777 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 778 CV = ICI->getOperand(0); 779 } 780 781 // Unwrap any lossless ptrtoint cast. 782 if (CV) { 783 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 784 Value *Ptr = PTII->getPointerOperand(); 785 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 786 CV = Ptr; 787 } 788 } 789 return CV; 790 } 791 792 /// Given a value comparison instruction, 793 /// decode all of the 'cases' that it represents and return the 'default' block. 794 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 795 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 796 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 797 Cases.reserve(SI->getNumCases()); 798 for (auto Case : SI->cases()) 799 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 800 Case.getCaseSuccessor())); 801 return SI->getDefaultDest(); 802 } 803 804 BranchInst *BI = cast<BranchInst>(TI); 805 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 806 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 807 Cases.push_back(ValueEqualityComparisonCase( 808 GetConstantInt(ICI->getOperand(1), DL), Succ)); 809 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 810 } 811 812 /// Given a vector of bb/value pairs, remove any entries 813 /// in the list that match the specified block. 814 static void 815 EliminateBlockCases(BasicBlock *BB, 816 std::vector<ValueEqualityComparisonCase> &Cases) { 817 llvm::erase_value(Cases, BB); 818 } 819 820 /// Return true if there are any keys in C1 that exist in C2 as well. 821 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 822 std::vector<ValueEqualityComparisonCase> &C2) { 823 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 824 825 // Make V1 be smaller than V2. 826 if (V1->size() > V2->size()) 827 std::swap(V1, V2); 828 829 if (V1->empty()) 830 return false; 831 if (V1->size() == 1) { 832 // Just scan V2. 833 ConstantInt *TheVal = (*V1)[0].Value; 834 for (unsigned i = 0, e = V2->size(); i != e; ++i) 835 if (TheVal == (*V2)[i].Value) 836 return true; 837 } 838 839 // Otherwise, just sort both lists and compare element by element. 840 array_pod_sort(V1->begin(), V1->end()); 841 array_pod_sort(V2->begin(), V2->end()); 842 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 843 while (i1 != e1 && i2 != e2) { 844 if ((*V1)[i1].Value == (*V2)[i2].Value) 845 return true; 846 if ((*V1)[i1].Value < (*V2)[i2].Value) 847 ++i1; 848 else 849 ++i2; 850 } 851 return false; 852 } 853 854 // Set branch weights on SwitchInst. This sets the metadata if there is at 855 // least one non-zero weight. 856 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 857 // Check that there is at least one non-zero weight. Otherwise, pass 858 // nullptr to setMetadata which will erase the existing metadata. 859 MDNode *N = nullptr; 860 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 861 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 862 SI->setMetadata(LLVMContext::MD_prof, N); 863 } 864 865 // Similar to the above, but for branch and select instructions that take 866 // exactly 2 weights. 867 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 868 uint32_t FalseWeight) { 869 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 870 // Check that there is at least one non-zero weight. Otherwise, pass 871 // nullptr to setMetadata which will erase the existing metadata. 872 MDNode *N = nullptr; 873 if (TrueWeight || FalseWeight) 874 N = MDBuilder(I->getParent()->getContext()) 875 .createBranchWeights(TrueWeight, FalseWeight); 876 I->setMetadata(LLVMContext::MD_prof, N); 877 } 878 879 /// If TI is known to be a terminator instruction and its block is known to 880 /// only have a single predecessor block, check to see if that predecessor is 881 /// also a value comparison with the same value, and if that comparison 882 /// determines the outcome of this comparison. If so, simplify TI. This does a 883 /// very limited form of jump threading. 884 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 885 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 886 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 887 if (!PredVal) 888 return false; // Not a value comparison in predecessor. 889 890 Value *ThisVal = isValueEqualityComparison(TI); 891 assert(ThisVal && "This isn't a value comparison!!"); 892 if (ThisVal != PredVal) 893 return false; // Different predicates. 894 895 // TODO: Preserve branch weight metadata, similarly to how 896 // FoldValueComparisonIntoPredecessors preserves it. 897 898 // Find out information about when control will move from Pred to TI's block. 899 std::vector<ValueEqualityComparisonCase> PredCases; 900 BasicBlock *PredDef = 901 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 902 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 903 904 // Find information about how control leaves this block. 905 std::vector<ValueEqualityComparisonCase> ThisCases; 906 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 907 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 908 909 // If TI's block is the default block from Pred's comparison, potentially 910 // simplify TI based on this knowledge. 911 if (PredDef == TI->getParent()) { 912 // If we are here, we know that the value is none of those cases listed in 913 // PredCases. If there are any cases in ThisCases that are in PredCases, we 914 // can simplify TI. 915 if (!ValuesOverlap(PredCases, ThisCases)) 916 return false; 917 918 if (isa<BranchInst>(TI)) { 919 // Okay, one of the successors of this condbr is dead. Convert it to a 920 // uncond br. 921 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 922 // Insert the new branch. 923 Instruction *NI = Builder.CreateBr(ThisDef); 924 (void)NI; 925 926 // Remove PHI node entries for the dead edge. 927 ThisCases[0].Dest->removePredecessor(PredDef); 928 929 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 930 << "Through successor TI: " << *TI << "Leaving: " << *NI 931 << "\n"); 932 933 EraseTerminatorAndDCECond(TI); 934 935 if (DTU) 936 DTU->applyUpdates( 937 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 938 939 return true; 940 } 941 942 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 943 // Okay, TI has cases that are statically dead, prune them away. 944 SmallPtrSet<Constant *, 16> DeadCases; 945 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 946 DeadCases.insert(PredCases[i].Value); 947 948 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 949 << "Through successor TI: " << *TI); 950 951 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 952 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 953 --i; 954 auto *Successor = i->getCaseSuccessor(); 955 if (DTU) 956 ++NumPerSuccessorCases[Successor]; 957 if (DeadCases.count(i->getCaseValue())) { 958 Successor->removePredecessor(PredDef); 959 SI.removeCase(i); 960 if (DTU) 961 --NumPerSuccessorCases[Successor]; 962 } 963 } 964 965 if (DTU) { 966 std::vector<DominatorTree::UpdateType> Updates; 967 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 968 if (I.second == 0) 969 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 970 DTU->applyUpdates(Updates); 971 } 972 973 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 974 return true; 975 } 976 977 // Otherwise, TI's block must correspond to some matched value. Find out 978 // which value (or set of values) this is. 979 ConstantInt *TIV = nullptr; 980 BasicBlock *TIBB = TI->getParent(); 981 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 982 if (PredCases[i].Dest == TIBB) { 983 if (TIV) 984 return false; // Cannot handle multiple values coming to this block. 985 TIV = PredCases[i].Value; 986 } 987 assert(TIV && "No edge from pred to succ?"); 988 989 // Okay, we found the one constant that our value can be if we get into TI's 990 // BB. Find out which successor will unconditionally be branched to. 991 BasicBlock *TheRealDest = nullptr; 992 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 993 if (ThisCases[i].Value == TIV) { 994 TheRealDest = ThisCases[i].Dest; 995 break; 996 } 997 998 // If not handled by any explicit cases, it is handled by the default case. 999 if (!TheRealDest) 1000 TheRealDest = ThisDef; 1001 1002 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1003 1004 // Remove PHI node entries for dead edges. 1005 BasicBlock *CheckEdge = TheRealDest; 1006 for (BasicBlock *Succ : successors(TIBB)) 1007 if (Succ != CheckEdge) { 1008 if (Succ != TheRealDest) 1009 RemovedSuccs.insert(Succ); 1010 Succ->removePredecessor(TIBB); 1011 } else 1012 CheckEdge = nullptr; 1013 1014 // Insert the new branch. 1015 Instruction *NI = Builder.CreateBr(TheRealDest); 1016 (void)NI; 1017 1018 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1019 << "Through successor TI: " << *TI << "Leaving: " << *NI 1020 << "\n"); 1021 1022 EraseTerminatorAndDCECond(TI); 1023 if (DTU) { 1024 SmallVector<DominatorTree::UpdateType, 2> Updates; 1025 Updates.reserve(RemovedSuccs.size()); 1026 for (auto *RemovedSucc : RemovedSuccs) 1027 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1028 DTU->applyUpdates(Updates); 1029 } 1030 return true; 1031 } 1032 1033 namespace { 1034 1035 /// This class implements a stable ordering of constant 1036 /// integers that does not depend on their address. This is important for 1037 /// applications that sort ConstantInt's to ensure uniqueness. 1038 struct ConstantIntOrdering { 1039 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1040 return LHS->getValue().ult(RHS->getValue()); 1041 } 1042 }; 1043 1044 } // end anonymous namespace 1045 1046 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1047 ConstantInt *const *P2) { 1048 const ConstantInt *LHS = *P1; 1049 const ConstantInt *RHS = *P2; 1050 if (LHS == RHS) 1051 return 0; 1052 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1053 } 1054 1055 static inline bool HasBranchWeights(const Instruction *I) { 1056 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1057 if (ProfMD && ProfMD->getOperand(0)) 1058 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1059 return MDS->getString().equals("branch_weights"); 1060 1061 return false; 1062 } 1063 1064 /// Get Weights of a given terminator, the default weight is at the front 1065 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1066 /// metadata. 1067 static void GetBranchWeights(Instruction *TI, 1068 SmallVectorImpl<uint64_t> &Weights) { 1069 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1070 assert(MD); 1071 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1072 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1073 Weights.push_back(CI->getValue().getZExtValue()); 1074 } 1075 1076 // If TI is a conditional eq, the default case is the false case, 1077 // and the corresponding branch-weight data is at index 2. We swap the 1078 // default weight to be the first entry. 1079 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1080 assert(Weights.size() == 2); 1081 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1082 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1083 std::swap(Weights.front(), Weights.back()); 1084 } 1085 } 1086 1087 /// Keep halving the weights until all can fit in uint32_t. 1088 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1089 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1090 if (Max > UINT_MAX) { 1091 unsigned Offset = 32 - countLeadingZeros(Max); 1092 for (uint64_t &I : Weights) 1093 I >>= Offset; 1094 } 1095 } 1096 1097 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1098 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1099 Instruction *PTI = PredBlock->getTerminator(); 1100 1101 // If we have bonus instructions, clone them into the predecessor block. 1102 // Note that there may be multiple predecessor blocks, so we cannot move 1103 // bonus instructions to a predecessor block. 1104 for (Instruction &BonusInst : *BB) { 1105 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1106 continue; 1107 1108 Instruction *NewBonusInst = BonusInst.clone(); 1109 1110 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1111 // Unless the instruction has the same !dbg location as the original 1112 // branch, drop it. When we fold the bonus instructions we want to make 1113 // sure we reset their debug locations in order to avoid stepping on 1114 // dead code caused by folding dead branches. 1115 NewBonusInst->setDebugLoc(DebugLoc()); 1116 } 1117 1118 RemapInstruction(NewBonusInst, VMap, 1119 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1120 VMap[&BonusInst] = NewBonusInst; 1121 1122 // If we moved a load, we cannot any longer claim any knowledge about 1123 // its potential value. The previous information might have been valid 1124 // only given the branch precondition. 1125 // For an analogous reason, we must also drop all the metadata whose 1126 // semantics we don't understand. We *can* preserve !annotation, because 1127 // it is tied to the instruction itself, not the value or position. 1128 // Similarly strip attributes on call parameters that may cause UB in 1129 // location the call is moved to. 1130 NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata( 1131 LLVMContext::MD_annotation); 1132 1133 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1134 NewBonusInst->takeName(&BonusInst); 1135 BonusInst.setName(NewBonusInst->getName() + ".old"); 1136 1137 // Update (liveout) uses of bonus instructions, 1138 // now that the bonus instruction has been cloned into predecessor. 1139 // Note that we expect to be in a block-closed SSA form for this to work! 1140 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1141 auto *UI = cast<Instruction>(U.getUser()); 1142 auto *PN = dyn_cast<PHINode>(UI); 1143 if (!PN) { 1144 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1145 "If the user is not a PHI node, then it should be in the same " 1146 "block as, and come after, the original bonus instruction."); 1147 continue; // Keep using the original bonus instruction. 1148 } 1149 // Is this the block-closed SSA form PHI node? 1150 if (PN->getIncomingBlock(U) == BB) 1151 continue; // Great, keep using the original bonus instruction. 1152 // The only other alternative is an "use" when coming from 1153 // the predecessor block - here we should refer to the cloned bonus instr. 1154 assert(PN->getIncomingBlock(U) == PredBlock && 1155 "Not in block-closed SSA form?"); 1156 U.set(NewBonusInst); 1157 } 1158 } 1159 } 1160 1161 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1162 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1163 BasicBlock *BB = TI->getParent(); 1164 BasicBlock *Pred = PTI->getParent(); 1165 1166 SmallVector<DominatorTree::UpdateType, 32> Updates; 1167 1168 // Figure out which 'cases' to copy from SI to PSI. 1169 std::vector<ValueEqualityComparisonCase> BBCases; 1170 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1171 1172 std::vector<ValueEqualityComparisonCase> PredCases; 1173 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1174 1175 // Based on whether the default edge from PTI goes to BB or not, fill in 1176 // PredCases and PredDefault with the new switch cases we would like to 1177 // build. 1178 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1179 1180 // Update the branch weight metadata along the way 1181 SmallVector<uint64_t, 8> Weights; 1182 bool PredHasWeights = HasBranchWeights(PTI); 1183 bool SuccHasWeights = HasBranchWeights(TI); 1184 1185 if (PredHasWeights) { 1186 GetBranchWeights(PTI, Weights); 1187 // branch-weight metadata is inconsistent here. 1188 if (Weights.size() != 1 + PredCases.size()) 1189 PredHasWeights = SuccHasWeights = false; 1190 } else if (SuccHasWeights) 1191 // If there are no predecessor weights but there are successor weights, 1192 // populate Weights with 1, which will later be scaled to the sum of 1193 // successor's weights 1194 Weights.assign(1 + PredCases.size(), 1); 1195 1196 SmallVector<uint64_t, 8> SuccWeights; 1197 if (SuccHasWeights) { 1198 GetBranchWeights(TI, SuccWeights); 1199 // branch-weight metadata is inconsistent here. 1200 if (SuccWeights.size() != 1 + BBCases.size()) 1201 PredHasWeights = SuccHasWeights = false; 1202 } else if (PredHasWeights) 1203 SuccWeights.assign(1 + BBCases.size(), 1); 1204 1205 if (PredDefault == BB) { 1206 // If this is the default destination from PTI, only the edges in TI 1207 // that don't occur in PTI, or that branch to BB will be activated. 1208 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1209 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1210 if (PredCases[i].Dest != BB) 1211 PTIHandled.insert(PredCases[i].Value); 1212 else { 1213 // The default destination is BB, we don't need explicit targets. 1214 std::swap(PredCases[i], PredCases.back()); 1215 1216 if (PredHasWeights || SuccHasWeights) { 1217 // Increase weight for the default case. 1218 Weights[0] += Weights[i + 1]; 1219 std::swap(Weights[i + 1], Weights.back()); 1220 Weights.pop_back(); 1221 } 1222 1223 PredCases.pop_back(); 1224 --i; 1225 --e; 1226 } 1227 1228 // Reconstruct the new switch statement we will be building. 1229 if (PredDefault != BBDefault) { 1230 PredDefault->removePredecessor(Pred); 1231 if (DTU && PredDefault != BB) 1232 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1233 PredDefault = BBDefault; 1234 ++NewSuccessors[BBDefault]; 1235 } 1236 1237 unsigned CasesFromPred = Weights.size(); 1238 uint64_t ValidTotalSuccWeight = 0; 1239 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1240 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1241 PredCases.push_back(BBCases[i]); 1242 ++NewSuccessors[BBCases[i].Dest]; 1243 if (SuccHasWeights || PredHasWeights) { 1244 // The default weight is at index 0, so weight for the ith case 1245 // should be at index i+1. Scale the cases from successor by 1246 // PredDefaultWeight (Weights[0]). 1247 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1248 ValidTotalSuccWeight += SuccWeights[i + 1]; 1249 } 1250 } 1251 1252 if (SuccHasWeights || PredHasWeights) { 1253 ValidTotalSuccWeight += SuccWeights[0]; 1254 // Scale the cases from predecessor by ValidTotalSuccWeight. 1255 for (unsigned i = 1; i < CasesFromPred; ++i) 1256 Weights[i] *= ValidTotalSuccWeight; 1257 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1258 Weights[0] *= SuccWeights[0]; 1259 } 1260 } else { 1261 // If this is not the default destination from PSI, only the edges 1262 // in SI that occur in PSI with a destination of BB will be 1263 // activated. 1264 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1265 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1266 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1267 if (PredCases[i].Dest == BB) { 1268 PTIHandled.insert(PredCases[i].Value); 1269 1270 if (PredHasWeights || SuccHasWeights) { 1271 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1272 std::swap(Weights[i + 1], Weights.back()); 1273 Weights.pop_back(); 1274 } 1275 1276 std::swap(PredCases[i], PredCases.back()); 1277 PredCases.pop_back(); 1278 --i; 1279 --e; 1280 } 1281 1282 // Okay, now we know which constants were sent to BB from the 1283 // predecessor. Figure out where they will all go now. 1284 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1285 if (PTIHandled.count(BBCases[i].Value)) { 1286 // If this is one we are capable of getting... 1287 if (PredHasWeights || SuccHasWeights) 1288 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1289 PredCases.push_back(BBCases[i]); 1290 ++NewSuccessors[BBCases[i].Dest]; 1291 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1292 } 1293 1294 // If there are any constants vectored to BB that TI doesn't handle, 1295 // they must go to the default destination of TI. 1296 for (ConstantInt *I : PTIHandled) { 1297 if (PredHasWeights || SuccHasWeights) 1298 Weights.push_back(WeightsForHandled[I]); 1299 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1300 ++NewSuccessors[BBDefault]; 1301 } 1302 } 1303 1304 // Okay, at this point, we know which new successor Pred will get. Make 1305 // sure we update the number of entries in the PHI nodes for these 1306 // successors. 1307 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1308 if (DTU) { 1309 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1310 Updates.reserve(Updates.size() + NewSuccessors.size()); 1311 } 1312 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1313 NewSuccessors) { 1314 for (auto I : seq(0, NewSuccessor.second)) { 1315 (void)I; 1316 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1317 } 1318 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1319 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1320 } 1321 1322 Builder.SetInsertPoint(PTI); 1323 // Convert pointer to int before we switch. 1324 if (CV->getType()->isPointerTy()) { 1325 CV = 1326 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1327 } 1328 1329 // Now that the successors are updated, create the new Switch instruction. 1330 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1331 NewSI->setDebugLoc(PTI->getDebugLoc()); 1332 for (ValueEqualityComparisonCase &V : PredCases) 1333 NewSI->addCase(V.Value, V.Dest); 1334 1335 if (PredHasWeights || SuccHasWeights) { 1336 // Halve the weights if any of them cannot fit in an uint32_t 1337 FitWeights(Weights); 1338 1339 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1340 1341 setBranchWeights(NewSI, MDWeights); 1342 } 1343 1344 EraseTerminatorAndDCECond(PTI); 1345 1346 // Okay, last check. If BB is still a successor of PSI, then we must 1347 // have an infinite loop case. If so, add an infinitely looping block 1348 // to handle the case to preserve the behavior of the code. 1349 BasicBlock *InfLoopBlock = nullptr; 1350 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1351 if (NewSI->getSuccessor(i) == BB) { 1352 if (!InfLoopBlock) { 1353 // Insert it at the end of the function, because it's either code, 1354 // or it won't matter if it's hot. :) 1355 InfLoopBlock = 1356 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1357 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1358 if (DTU) 1359 Updates.push_back( 1360 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1361 } 1362 NewSI->setSuccessor(i, InfLoopBlock); 1363 } 1364 1365 if (DTU) { 1366 if (InfLoopBlock) 1367 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1368 1369 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1370 1371 DTU->applyUpdates(Updates); 1372 } 1373 1374 ++NumFoldValueComparisonIntoPredecessors; 1375 return true; 1376 } 1377 1378 /// The specified terminator is a value equality comparison instruction 1379 /// (either a switch or a branch on "X == c"). 1380 /// See if any of the predecessors of the terminator block are value comparisons 1381 /// on the same value. If so, and if safe to do so, fold them together. 1382 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1383 IRBuilder<> &Builder) { 1384 BasicBlock *BB = TI->getParent(); 1385 Value *CV = isValueEqualityComparison(TI); // CondVal 1386 assert(CV && "Not a comparison?"); 1387 1388 bool Changed = false; 1389 1390 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1391 while (!Preds.empty()) { 1392 BasicBlock *Pred = Preds.pop_back_val(); 1393 Instruction *PTI = Pred->getTerminator(); 1394 1395 // Don't try to fold into itself. 1396 if (Pred == BB) 1397 continue; 1398 1399 // See if the predecessor is a comparison with the same value. 1400 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1401 if (PCV != CV) 1402 continue; 1403 1404 SmallSetVector<BasicBlock *, 4> FailBlocks; 1405 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1406 for (auto *Succ : FailBlocks) { 1407 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1408 return false; 1409 } 1410 } 1411 1412 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1413 Changed = true; 1414 } 1415 return Changed; 1416 } 1417 1418 // If we would need to insert a select that uses the value of this invoke 1419 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1420 // can't hoist the invoke, as there is nowhere to put the select in this case. 1421 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1422 Instruction *I1, Instruction *I2) { 1423 for (BasicBlock *Succ : successors(BB1)) { 1424 for (const PHINode &PN : Succ->phis()) { 1425 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1426 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1427 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1428 return false; 1429 } 1430 } 1431 } 1432 return true; 1433 } 1434 1435 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1436 1437 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1438 /// in the two blocks up into the branch block. The caller of this function 1439 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1440 /// only perform hoisting in case both blocks only contain a terminator. In that 1441 /// case, only the original BI will be replaced and selects for PHIs are added. 1442 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1443 const TargetTransformInfo &TTI, 1444 bool EqTermsOnly) { 1445 // This does very trivial matching, with limited scanning, to find identical 1446 // instructions in the two blocks. In particular, we don't want to get into 1447 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1448 // such, we currently just scan for obviously identical instructions in an 1449 // identical order. 1450 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1451 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1452 1453 // If either of the blocks has it's address taken, then we can't do this fold, 1454 // because the code we'd hoist would no longer run when we jump into the block 1455 // by it's address. 1456 if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) 1457 return false; 1458 1459 BasicBlock::iterator BB1_Itr = BB1->begin(); 1460 BasicBlock::iterator BB2_Itr = BB2->begin(); 1461 1462 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1463 // Skip debug info if it is not identical. 1464 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1465 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1466 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1467 while (isa<DbgInfoIntrinsic>(I1)) 1468 I1 = &*BB1_Itr++; 1469 while (isa<DbgInfoIntrinsic>(I2)) 1470 I2 = &*BB2_Itr++; 1471 } 1472 // FIXME: Can we define a safety predicate for CallBr? 1473 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1474 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1475 isa<CallBrInst>(I1)) 1476 return false; 1477 1478 BasicBlock *BIParent = BI->getParent(); 1479 1480 bool Changed = false; 1481 1482 auto _ = make_scope_exit([&]() { 1483 if (Changed) 1484 ++NumHoistCommonCode; 1485 }); 1486 1487 // Check if only hoisting terminators is allowed. This does not add new 1488 // instructions to the hoist location. 1489 if (EqTermsOnly) { 1490 // Skip any debug intrinsics, as they are free to hoist. 1491 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1492 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1493 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1494 return false; 1495 if (!I1NonDbg->isTerminator()) 1496 return false; 1497 // Now we know that we only need to hoist debug intrinsics and the 1498 // terminator. Let the loop below handle those 2 cases. 1499 } 1500 1501 do { 1502 // If we are hoisting the terminator instruction, don't move one (making a 1503 // broken BB), instead clone it, and remove BI. 1504 if (I1->isTerminator()) 1505 goto HoistTerminator; 1506 1507 // If we're going to hoist a call, make sure that the two instructions we're 1508 // commoning/hoisting are both marked with musttail, or neither of them is 1509 // marked as such. Otherwise, we might end up in a situation where we hoist 1510 // from a block where the terminator is a `ret` to a block where the terminator 1511 // is a `br`, and `musttail` calls expect to be followed by a return. 1512 auto *C1 = dyn_cast<CallInst>(I1); 1513 auto *C2 = dyn_cast<CallInst>(I2); 1514 if (C1 && C2) 1515 if (C1->isMustTailCall() != C2->isMustTailCall()) 1516 return Changed; 1517 1518 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1519 return Changed; 1520 1521 // If any of the two call sites has nomerge attribute, stop hoisting. 1522 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1523 if (CB1->cannotMerge()) 1524 return Changed; 1525 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1526 if (CB2->cannotMerge()) 1527 return Changed; 1528 1529 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1530 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1531 // The debug location is an integral part of a debug info intrinsic 1532 // and can't be separated from it or replaced. Instead of attempting 1533 // to merge locations, simply hoist both copies of the intrinsic. 1534 BIParent->getInstList().splice(BI->getIterator(), 1535 BB1->getInstList(), I1); 1536 BIParent->getInstList().splice(BI->getIterator(), 1537 BB2->getInstList(), I2); 1538 Changed = true; 1539 } else { 1540 // For a normal instruction, we just move one to right before the branch, 1541 // then replace all uses of the other with the first. Finally, we remove 1542 // the now redundant second instruction. 1543 BIParent->getInstList().splice(BI->getIterator(), 1544 BB1->getInstList(), I1); 1545 if (!I2->use_empty()) 1546 I2->replaceAllUsesWith(I1); 1547 I1->andIRFlags(I2); 1548 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1549 LLVMContext::MD_range, 1550 LLVMContext::MD_fpmath, 1551 LLVMContext::MD_invariant_load, 1552 LLVMContext::MD_nonnull, 1553 LLVMContext::MD_invariant_group, 1554 LLVMContext::MD_align, 1555 LLVMContext::MD_dereferenceable, 1556 LLVMContext::MD_dereferenceable_or_null, 1557 LLVMContext::MD_mem_parallel_loop_access, 1558 LLVMContext::MD_access_group, 1559 LLVMContext::MD_preserve_access_index}; 1560 combineMetadata(I1, I2, KnownIDs, true); 1561 1562 // I1 and I2 are being combined into a single instruction. Its debug 1563 // location is the merged locations of the original instructions. 1564 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1565 1566 I2->eraseFromParent(); 1567 Changed = true; 1568 } 1569 ++NumHoistCommonInstrs; 1570 1571 I1 = &*BB1_Itr++; 1572 I2 = &*BB2_Itr++; 1573 // Skip debug info if it is not identical. 1574 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1575 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1576 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1577 while (isa<DbgInfoIntrinsic>(I1)) 1578 I1 = &*BB1_Itr++; 1579 while (isa<DbgInfoIntrinsic>(I2)) 1580 I2 = &*BB2_Itr++; 1581 } 1582 } while (I1->isIdenticalToWhenDefined(I2)); 1583 1584 return true; 1585 1586 HoistTerminator: 1587 // It may not be possible to hoist an invoke. 1588 // FIXME: Can we define a safety predicate for CallBr? 1589 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1590 return Changed; 1591 1592 // TODO: callbr hoisting currently disabled pending further study. 1593 if (isa<CallBrInst>(I1)) 1594 return Changed; 1595 1596 for (BasicBlock *Succ : successors(BB1)) { 1597 for (PHINode &PN : Succ->phis()) { 1598 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1599 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1600 if (BB1V == BB2V) 1601 continue; 1602 1603 // Check for passingValueIsAlwaysUndefined here because we would rather 1604 // eliminate undefined control flow then converting it to a select. 1605 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1606 passingValueIsAlwaysUndefined(BB2V, &PN)) 1607 return Changed; 1608 1609 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1610 return Changed; 1611 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1612 return Changed; 1613 } 1614 } 1615 1616 // Okay, it is safe to hoist the terminator. 1617 Instruction *NT = I1->clone(); 1618 BIParent->getInstList().insert(BI->getIterator(), NT); 1619 if (!NT->getType()->isVoidTy()) { 1620 I1->replaceAllUsesWith(NT); 1621 I2->replaceAllUsesWith(NT); 1622 NT->takeName(I1); 1623 } 1624 Changed = true; 1625 ++NumHoistCommonInstrs; 1626 1627 // Ensure terminator gets a debug location, even an unknown one, in case 1628 // it involves inlinable calls. 1629 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1630 1631 // PHIs created below will adopt NT's merged DebugLoc. 1632 IRBuilder<NoFolder> Builder(NT); 1633 1634 // Hoisting one of the terminators from our successor is a great thing. 1635 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1636 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1637 // nodes, so we insert select instruction to compute the final result. 1638 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1639 for (BasicBlock *Succ : successors(BB1)) { 1640 for (PHINode &PN : Succ->phis()) { 1641 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1642 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1643 if (BB1V == BB2V) 1644 continue; 1645 1646 // These values do not agree. Insert a select instruction before NT 1647 // that determines the right value. 1648 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1649 if (!SI) { 1650 // Propagate fast-math-flags from phi node to its replacement select. 1651 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1652 if (isa<FPMathOperator>(PN)) 1653 Builder.setFastMathFlags(PN.getFastMathFlags()); 1654 1655 SI = cast<SelectInst>( 1656 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1657 BB1V->getName() + "." + BB2V->getName(), BI)); 1658 } 1659 1660 // Make the PHI node use the select for all incoming values for BB1/BB2 1661 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1662 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1663 PN.setIncomingValue(i, SI); 1664 } 1665 } 1666 1667 SmallVector<DominatorTree::UpdateType, 4> Updates; 1668 1669 // Update any PHI nodes in our new successors. 1670 for (BasicBlock *Succ : successors(BB1)) { 1671 AddPredecessorToBlock(Succ, BIParent, BB1); 1672 if (DTU) 1673 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1674 } 1675 1676 if (DTU) 1677 for (BasicBlock *Succ : successors(BI)) 1678 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1679 1680 EraseTerminatorAndDCECond(BI); 1681 if (DTU) 1682 DTU->applyUpdates(Updates); 1683 return Changed; 1684 } 1685 1686 // Check lifetime markers. 1687 static bool isLifeTimeMarker(const Instruction *I) { 1688 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1689 switch (II->getIntrinsicID()) { 1690 default: 1691 break; 1692 case Intrinsic::lifetime_start: 1693 case Intrinsic::lifetime_end: 1694 return true; 1695 } 1696 } 1697 return false; 1698 } 1699 1700 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1701 // into variables. 1702 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1703 int OpIdx) { 1704 return !isa<IntrinsicInst>(I); 1705 } 1706 1707 // All instructions in Insts belong to different blocks that all unconditionally 1708 // branch to a common successor. Analyze each instruction and return true if it 1709 // would be possible to sink them into their successor, creating one common 1710 // instruction instead. For every value that would be required to be provided by 1711 // PHI node (because an operand varies in each input block), add to PHIOperands. 1712 static bool canSinkInstructions( 1713 ArrayRef<Instruction *> Insts, 1714 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1715 // Prune out obviously bad instructions to move. Each instruction must have 1716 // exactly zero or one use, and we check later that use is by a single, common 1717 // PHI instruction in the successor. 1718 bool HasUse = !Insts.front()->user_empty(); 1719 for (auto *I : Insts) { 1720 // These instructions may change or break semantics if moved. 1721 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1722 I->getType()->isTokenTy()) 1723 return false; 1724 1725 // Do not try to sink an instruction in an infinite loop - it can cause 1726 // this algorithm to infinite loop. 1727 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1728 return false; 1729 1730 // Conservatively return false if I is an inline-asm instruction. Sinking 1731 // and merging inline-asm instructions can potentially create arguments 1732 // that cannot satisfy the inline-asm constraints. 1733 // If the instruction has nomerge attribute, return false. 1734 if (const auto *C = dyn_cast<CallBase>(I)) 1735 if (C->isInlineAsm() || C->cannotMerge()) 1736 return false; 1737 1738 // Each instruction must have zero or one use. 1739 if (HasUse && !I->hasOneUse()) 1740 return false; 1741 if (!HasUse && !I->user_empty()) 1742 return false; 1743 } 1744 1745 const Instruction *I0 = Insts.front(); 1746 for (auto *I : Insts) 1747 if (!I->isSameOperationAs(I0)) 1748 return false; 1749 1750 // All instructions in Insts are known to be the same opcode. If they have a 1751 // use, check that the only user is a PHI or in the same block as the 1752 // instruction, because if a user is in the same block as an instruction we're 1753 // contemplating sinking, it must already be determined to be sinkable. 1754 if (HasUse) { 1755 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1756 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1757 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1758 auto *U = cast<Instruction>(*I->user_begin()); 1759 return (PNUse && 1760 PNUse->getParent() == Succ && 1761 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1762 U->getParent() == I->getParent(); 1763 })) 1764 return false; 1765 } 1766 1767 // Because SROA can't handle speculating stores of selects, try not to sink 1768 // loads, stores or lifetime markers of allocas when we'd have to create a 1769 // PHI for the address operand. Also, because it is likely that loads or 1770 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1771 // them. 1772 // This can cause code churn which can have unintended consequences down 1773 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1774 // FIXME: This is a workaround for a deficiency in SROA - see 1775 // https://llvm.org/bugs/show_bug.cgi?id=30188 1776 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1777 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1778 })) 1779 return false; 1780 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1781 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1782 })) 1783 return false; 1784 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1785 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1786 })) 1787 return false; 1788 1789 // For calls to be sinkable, they must all be indirect, or have same callee. 1790 // I.e. if we have two direct calls to different callees, we don't want to 1791 // turn that into an indirect call. Likewise, if we have an indirect call, 1792 // and a direct call, we don't actually want to have a single indirect call. 1793 if (isa<CallBase>(I0)) { 1794 auto IsIndirectCall = [](const Instruction *I) { 1795 return cast<CallBase>(I)->isIndirectCall(); 1796 }; 1797 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1798 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1799 if (HaveIndirectCalls) { 1800 if (!AllCallsAreIndirect) 1801 return false; 1802 } else { 1803 // All callees must be identical. 1804 Value *Callee = nullptr; 1805 for (const Instruction *I : Insts) { 1806 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1807 if (!Callee) 1808 Callee = CurrCallee; 1809 else if (Callee != CurrCallee) 1810 return false; 1811 } 1812 } 1813 } 1814 1815 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1816 Value *Op = I0->getOperand(OI); 1817 if (Op->getType()->isTokenTy()) 1818 // Don't touch any operand of token type. 1819 return false; 1820 1821 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1822 assert(I->getNumOperands() == I0->getNumOperands()); 1823 return I->getOperand(OI) == I0->getOperand(OI); 1824 }; 1825 if (!all_of(Insts, SameAsI0)) { 1826 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1827 !canReplaceOperandWithVariable(I0, OI)) 1828 // We can't create a PHI from this GEP. 1829 return false; 1830 for (auto *I : Insts) 1831 PHIOperands[I].push_back(I->getOperand(OI)); 1832 } 1833 } 1834 return true; 1835 } 1836 1837 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1838 // instruction of every block in Blocks to their common successor, commoning 1839 // into one instruction. 1840 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1841 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1842 1843 // canSinkInstructions returning true guarantees that every block has at 1844 // least one non-terminator instruction. 1845 SmallVector<Instruction*,4> Insts; 1846 for (auto *BB : Blocks) { 1847 Instruction *I = BB->getTerminator(); 1848 do { 1849 I = I->getPrevNode(); 1850 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1851 if (!isa<DbgInfoIntrinsic>(I)) 1852 Insts.push_back(I); 1853 } 1854 1855 // The only checking we need to do now is that all users of all instructions 1856 // are the same PHI node. canSinkInstructions should have checked this but 1857 // it is slightly over-aggressive - it gets confused by commutative 1858 // instructions so double-check it here. 1859 Instruction *I0 = Insts.front(); 1860 if (!I0->user_empty()) { 1861 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1862 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1863 auto *U = cast<Instruction>(*I->user_begin()); 1864 return U == PNUse; 1865 })) 1866 return false; 1867 } 1868 1869 // We don't need to do any more checking here; canSinkInstructions should 1870 // have done it all for us. 1871 SmallVector<Value*, 4> NewOperands; 1872 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1873 // This check is different to that in canSinkInstructions. There, we 1874 // cared about the global view once simplifycfg (and instcombine) have 1875 // completed - it takes into account PHIs that become trivially 1876 // simplifiable. However here we need a more local view; if an operand 1877 // differs we create a PHI and rely on instcombine to clean up the very 1878 // small mess we may make. 1879 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1880 return I->getOperand(O) != I0->getOperand(O); 1881 }); 1882 if (!NeedPHI) { 1883 NewOperands.push_back(I0->getOperand(O)); 1884 continue; 1885 } 1886 1887 // Create a new PHI in the successor block and populate it. 1888 auto *Op = I0->getOperand(O); 1889 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1890 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1891 Op->getName() + ".sink", &BBEnd->front()); 1892 for (auto *I : Insts) 1893 PN->addIncoming(I->getOperand(O), I->getParent()); 1894 NewOperands.push_back(PN); 1895 } 1896 1897 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1898 // and move it to the start of the successor block. 1899 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1900 I0->getOperandUse(O).set(NewOperands[O]); 1901 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1902 1903 // Update metadata and IR flags, and merge debug locations. 1904 for (auto *I : Insts) 1905 if (I != I0) { 1906 // The debug location for the "common" instruction is the merged locations 1907 // of all the commoned instructions. We start with the original location 1908 // of the "common" instruction and iteratively merge each location in the 1909 // loop below. 1910 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1911 // However, as N-way merge for CallInst is rare, so we use simplified API 1912 // instead of using complex API for N-way merge. 1913 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1914 combineMetadataForCSE(I0, I, true); 1915 I0->andIRFlags(I); 1916 } 1917 1918 if (!I0->user_empty()) { 1919 // canSinkLastInstruction checked that all instructions were used by 1920 // one and only one PHI node. Find that now, RAUW it to our common 1921 // instruction and nuke it. 1922 auto *PN = cast<PHINode>(*I0->user_begin()); 1923 PN->replaceAllUsesWith(I0); 1924 PN->eraseFromParent(); 1925 } 1926 1927 // Finally nuke all instructions apart from the common instruction. 1928 for (auto *I : Insts) 1929 if (I != I0) 1930 I->eraseFromParent(); 1931 1932 return true; 1933 } 1934 1935 namespace { 1936 1937 // LockstepReverseIterator - Iterates through instructions 1938 // in a set of blocks in reverse order from the first non-terminator. 1939 // For example (assume all blocks have size n): 1940 // LockstepReverseIterator I([B1, B2, B3]); 1941 // *I-- = [B1[n], B2[n], B3[n]]; 1942 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1943 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1944 // ... 1945 class LockstepReverseIterator { 1946 ArrayRef<BasicBlock*> Blocks; 1947 SmallVector<Instruction*,4> Insts; 1948 bool Fail; 1949 1950 public: 1951 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1952 reset(); 1953 } 1954 1955 void reset() { 1956 Fail = false; 1957 Insts.clear(); 1958 for (auto *BB : Blocks) { 1959 Instruction *Inst = BB->getTerminator(); 1960 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1961 Inst = Inst->getPrevNode(); 1962 if (!Inst) { 1963 // Block wasn't big enough. 1964 Fail = true; 1965 return; 1966 } 1967 Insts.push_back(Inst); 1968 } 1969 } 1970 1971 bool isValid() const { 1972 return !Fail; 1973 } 1974 1975 void operator--() { 1976 if (Fail) 1977 return; 1978 for (auto *&Inst : Insts) { 1979 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1980 Inst = Inst->getPrevNode(); 1981 // Already at beginning of block. 1982 if (!Inst) { 1983 Fail = true; 1984 return; 1985 } 1986 } 1987 } 1988 1989 void operator++() { 1990 if (Fail) 1991 return; 1992 for (auto *&Inst : Insts) { 1993 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1994 Inst = Inst->getNextNode(); 1995 // Already at end of block. 1996 if (!Inst) { 1997 Fail = true; 1998 return; 1999 } 2000 } 2001 } 2002 2003 ArrayRef<Instruction*> operator * () const { 2004 return Insts; 2005 } 2006 }; 2007 2008 } // end anonymous namespace 2009 2010 /// Check whether BB's predecessors end with unconditional branches. If it is 2011 /// true, sink any common code from the predecessors to BB. 2012 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 2013 DomTreeUpdater *DTU) { 2014 // We support two situations: 2015 // (1) all incoming arcs are unconditional 2016 // (2) there are non-unconditional incoming arcs 2017 // 2018 // (2) is very common in switch defaults and 2019 // else-if patterns; 2020 // 2021 // if (a) f(1); 2022 // else if (b) f(2); 2023 // 2024 // produces: 2025 // 2026 // [if] 2027 // / \ 2028 // [f(1)] [if] 2029 // | | \ 2030 // | | | 2031 // | [f(2)]| 2032 // \ | / 2033 // [ end ] 2034 // 2035 // [end] has two unconditional predecessor arcs and one conditional. The 2036 // conditional refers to the implicit empty 'else' arc. This conditional 2037 // arc can also be caused by an empty default block in a switch. 2038 // 2039 // In this case, we attempt to sink code from all *unconditional* arcs. 2040 // If we can sink instructions from these arcs (determined during the scan 2041 // phase below) we insert a common successor for all unconditional arcs and 2042 // connect that to [end], to enable sinking: 2043 // 2044 // [if] 2045 // / \ 2046 // [x(1)] [if] 2047 // | | \ 2048 // | | \ 2049 // | [x(2)] | 2050 // \ / | 2051 // [sink.split] | 2052 // \ / 2053 // [ end ] 2054 // 2055 SmallVector<BasicBlock*,4> UnconditionalPreds; 2056 bool HaveNonUnconditionalPredecessors = false; 2057 for (auto *PredBB : predecessors(BB)) { 2058 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2059 if (PredBr && PredBr->isUnconditional()) 2060 UnconditionalPreds.push_back(PredBB); 2061 else 2062 HaveNonUnconditionalPredecessors = true; 2063 } 2064 if (UnconditionalPreds.size() < 2) 2065 return false; 2066 2067 // We take a two-step approach to tail sinking. First we scan from the end of 2068 // each block upwards in lockstep. If the n'th instruction from the end of each 2069 // block can be sunk, those instructions are added to ValuesToSink and we 2070 // carry on. If we can sink an instruction but need to PHI-merge some operands 2071 // (because they're not identical in each instruction) we add these to 2072 // PHIOperands. 2073 int ScanIdx = 0; 2074 SmallPtrSet<Value*,4> InstructionsToSink; 2075 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2076 LockstepReverseIterator LRI(UnconditionalPreds); 2077 while (LRI.isValid() && 2078 canSinkInstructions(*LRI, PHIOperands)) { 2079 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2080 << "\n"); 2081 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2082 ++ScanIdx; 2083 --LRI; 2084 } 2085 2086 // If no instructions can be sunk, early-return. 2087 if (ScanIdx == 0) 2088 return false; 2089 2090 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2091 2092 if (!followedByDeoptOrUnreachable) { 2093 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2094 // actually sink before encountering instruction that is unprofitable to 2095 // sink? 2096 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2097 unsigned NumPHIdValues = 0; 2098 for (auto *I : *LRI) 2099 for (auto *V : PHIOperands[I]) { 2100 if (!InstructionsToSink.contains(V)) 2101 ++NumPHIdValues; 2102 // FIXME: this check is overly optimistic. We may end up not sinking 2103 // said instruction, due to the very same profitability check. 2104 // See @creating_too_many_phis in sink-common-code.ll. 2105 } 2106 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2107 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2108 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2109 NumPHIInsts++; 2110 2111 return NumPHIInsts <= 1; 2112 }; 2113 2114 // We've determined that we are going to sink last ScanIdx instructions, 2115 // and recorded them in InstructionsToSink. Now, some instructions may be 2116 // unprofitable to sink. But that determination depends on the instructions 2117 // that we are going to sink. 2118 2119 // First, forward scan: find the first instruction unprofitable to sink, 2120 // recording all the ones that are profitable to sink. 2121 // FIXME: would it be better, after we detect that not all are profitable. 2122 // to either record the profitable ones, or erase the unprofitable ones? 2123 // Maybe we need to choose (at runtime) the one that will touch least 2124 // instrs? 2125 LRI.reset(); 2126 int Idx = 0; 2127 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2128 while (Idx < ScanIdx) { 2129 if (!ProfitableToSinkInstruction(LRI)) { 2130 // Too many PHIs would be created. 2131 LLVM_DEBUG( 2132 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2133 break; 2134 } 2135 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2136 --LRI; 2137 ++Idx; 2138 } 2139 2140 // If no instructions can be sunk, early-return. 2141 if (Idx == 0) 2142 return false; 2143 2144 // Did we determine that (only) some instructions are unprofitable to sink? 2145 if (Idx < ScanIdx) { 2146 // Okay, some instructions are unprofitable. 2147 ScanIdx = Idx; 2148 InstructionsToSink = InstructionsProfitableToSink; 2149 2150 // But, that may make other instructions unprofitable, too. 2151 // So, do a backward scan, do any earlier instructions become 2152 // unprofitable? 2153 assert( 2154 !ProfitableToSinkInstruction(LRI) && 2155 "We already know that the last instruction is unprofitable to sink"); 2156 ++LRI; 2157 --Idx; 2158 while (Idx >= 0) { 2159 // If we detect that an instruction becomes unprofitable to sink, 2160 // all earlier instructions won't be sunk either, 2161 // so preemptively keep InstructionsProfitableToSink in sync. 2162 // FIXME: is this the most performant approach? 2163 for (auto *I : *LRI) 2164 InstructionsProfitableToSink.erase(I); 2165 if (!ProfitableToSinkInstruction(LRI)) { 2166 // Everything starting with this instruction won't be sunk. 2167 ScanIdx = Idx; 2168 InstructionsToSink = InstructionsProfitableToSink; 2169 } 2170 ++LRI; 2171 --Idx; 2172 } 2173 } 2174 2175 // If no instructions can be sunk, early-return. 2176 if (ScanIdx == 0) 2177 return false; 2178 } 2179 2180 bool Changed = false; 2181 2182 if (HaveNonUnconditionalPredecessors) { 2183 if (!followedByDeoptOrUnreachable) { 2184 // It is always legal to sink common instructions from unconditional 2185 // predecessors. However, if not all predecessors are unconditional, 2186 // this transformation might be pessimizing. So as a rule of thumb, 2187 // don't do it unless we'd sink at least one non-speculatable instruction. 2188 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2189 LRI.reset(); 2190 int Idx = 0; 2191 bool Profitable = false; 2192 while (Idx < ScanIdx) { 2193 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2194 Profitable = true; 2195 break; 2196 } 2197 --LRI; 2198 ++Idx; 2199 } 2200 if (!Profitable) 2201 return false; 2202 } 2203 2204 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2205 // We have a conditional edge and we're going to sink some instructions. 2206 // Insert a new block postdominating all blocks we're going to sink from. 2207 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2208 // Edges couldn't be split. 2209 return false; 2210 Changed = true; 2211 } 2212 2213 // Now that we've analyzed all potential sinking candidates, perform the 2214 // actual sink. We iteratively sink the last non-terminator of the source 2215 // blocks into their common successor unless doing so would require too 2216 // many PHI instructions to be generated (currently only one PHI is allowed 2217 // per sunk instruction). 2218 // 2219 // We can use InstructionsToSink to discount values needing PHI-merging that will 2220 // actually be sunk in a later iteration. This allows us to be more 2221 // aggressive in what we sink. This does allow a false positive where we 2222 // sink presuming a later value will also be sunk, but stop half way through 2223 // and never actually sink it which means we produce more PHIs than intended. 2224 // This is unlikely in practice though. 2225 int SinkIdx = 0; 2226 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2227 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2228 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2229 << "\n"); 2230 2231 // Because we've sunk every instruction in turn, the current instruction to 2232 // sink is always at index 0. 2233 LRI.reset(); 2234 2235 if (!sinkLastInstruction(UnconditionalPreds)) { 2236 LLVM_DEBUG( 2237 dbgs() 2238 << "SINK: stopping here, failed to actually sink instruction!\n"); 2239 break; 2240 } 2241 2242 NumSinkCommonInstrs++; 2243 Changed = true; 2244 } 2245 if (SinkIdx != 0) 2246 ++NumSinkCommonCode; 2247 return Changed; 2248 } 2249 2250 namespace { 2251 2252 struct CompatibleSets { 2253 using SetTy = SmallVector<InvokeInst *, 2>; 2254 2255 SmallVector<SetTy, 1> Sets; 2256 2257 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2258 2259 SetTy &getCompatibleSet(InvokeInst *II); 2260 2261 void insert(InvokeInst *II); 2262 }; 2263 2264 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2265 // Perform a linear scan over all the existing sets, see if the new `invoke` 2266 // is compatible with any particular set. Since we know that all the `invokes` 2267 // within a set are compatible, only check the first `invoke` in each set. 2268 // WARNING: at worst, this has quadratic complexity. 2269 for (CompatibleSets::SetTy &Set : Sets) { 2270 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2271 return Set; 2272 } 2273 2274 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2275 return Sets.emplace_back(); 2276 } 2277 2278 void CompatibleSets::insert(InvokeInst *II) { 2279 getCompatibleSet(II).emplace_back(II); 2280 } 2281 2282 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2283 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2284 2285 // Can we theoretically merge these `invoke`s? 2286 auto IsIllegalToMerge = [](InvokeInst *II) { 2287 return II->cannotMerge() || II->isInlineAsm(); 2288 }; 2289 if (any_of(Invokes, IsIllegalToMerge)) 2290 return false; 2291 2292 // Either both `invoke`s must be direct, 2293 // or both `invoke`s must be indirect. 2294 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2295 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2296 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2297 if (HaveIndirectCalls) { 2298 if (!AllCallsAreIndirect) 2299 return false; 2300 } else { 2301 // All callees must be identical. 2302 Value *Callee = nullptr; 2303 for (InvokeInst *II : Invokes) { 2304 Value *CurrCallee = II->getCalledOperand(); 2305 assert(CurrCallee && "There is always a called operand."); 2306 if (!Callee) 2307 Callee = CurrCallee; 2308 else if (Callee != CurrCallee) 2309 return false; 2310 } 2311 } 2312 2313 // Either both `invoke`s must not have a normal destination, 2314 // or both `invoke`s must have a normal destination, 2315 auto HasNormalDest = [](InvokeInst *II) { 2316 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2317 }; 2318 if (any_of(Invokes, HasNormalDest)) { 2319 // Do not merge `invoke` that does not have a normal destination with one 2320 // that does have a normal destination, even though doing so would be legal. 2321 if (!all_of(Invokes, HasNormalDest)) 2322 return false; 2323 2324 // All normal destinations must be identical. 2325 BasicBlock *NormalBB = nullptr; 2326 for (InvokeInst *II : Invokes) { 2327 BasicBlock *CurrNormalBB = II->getNormalDest(); 2328 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2329 if (!NormalBB) 2330 NormalBB = CurrNormalBB; 2331 else if (NormalBB != CurrNormalBB) 2332 return false; 2333 } 2334 2335 // In the normal destination, the incoming values for these two `invoke`s 2336 // must be compatible. 2337 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2338 if (!IncomingValuesAreCompatible( 2339 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2340 &EquivalenceSet)) 2341 return false; 2342 } 2343 2344 #ifndef NDEBUG 2345 // All unwind destinations must be identical. 2346 // We know that because we have started from said unwind destination. 2347 BasicBlock *UnwindBB = nullptr; 2348 for (InvokeInst *II : Invokes) { 2349 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2350 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2351 if (!UnwindBB) 2352 UnwindBB = CurrUnwindBB; 2353 else 2354 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2355 } 2356 #endif 2357 2358 // In the unwind destination, the incoming values for these two `invoke`s 2359 // must be compatible. 2360 if (!IncomingValuesAreCompatible( 2361 Invokes.front()->getUnwindDest(), 2362 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2363 return false; 2364 2365 // Ignoring arguments, these `invoke`s must be identical, 2366 // including operand bundles. 2367 const InvokeInst *II0 = Invokes.front(); 2368 for (auto *II : Invokes.drop_front()) 2369 if (!II->isSameOperationAs(II0)) 2370 return false; 2371 2372 // Can we theoretically form the data operands for the merged `invoke`? 2373 auto IsIllegalToMergeArguments = [](auto Ops) { 2374 Type *Ty = std::get<0>(Ops)->getType(); 2375 assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?"); 2376 return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops); 2377 }; 2378 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2379 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2380 IsIllegalToMergeArguments)) 2381 return false; 2382 2383 return true; 2384 } 2385 2386 } // namespace 2387 2388 // Merge all invokes in the provided set, all of which are compatible 2389 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2390 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2391 DomTreeUpdater *DTU) { 2392 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2393 2394 SmallVector<DominatorTree::UpdateType, 8> Updates; 2395 if (DTU) 2396 Updates.reserve(2 + 3 * Invokes.size()); 2397 2398 bool HasNormalDest = 2399 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2400 2401 // Clone one of the invokes into a new basic block. 2402 // Since they are all compatible, it doesn't matter which invoke is cloned. 2403 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2404 InvokeInst *II0 = Invokes.front(); 2405 BasicBlock *II0BB = II0->getParent(); 2406 BasicBlock *InsertBeforeBlock = 2407 II0->getParent()->getIterator()->getNextNode(); 2408 Function *Func = II0BB->getParent(); 2409 LLVMContext &Ctx = II0->getContext(); 2410 2411 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2412 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2413 2414 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2415 // NOTE: all invokes have the same attributes, so no handling needed. 2416 MergedInvokeBB->getInstList().push_back(MergedInvoke); 2417 2418 if (!HasNormalDest) { 2419 // This set does not have a normal destination, 2420 // so just form a new block with unreachable terminator. 2421 BasicBlock *MergedNormalDest = BasicBlock::Create( 2422 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2423 new UnreachableInst(Ctx, MergedNormalDest); 2424 MergedInvoke->setNormalDest(MergedNormalDest); 2425 } 2426 2427 // The unwind destination, however, remainds identical for all invokes here. 2428 2429 return MergedInvoke; 2430 }(); 2431 2432 if (DTU) { 2433 // Predecessor blocks that contained these invokes will now branch to 2434 // the new block that contains the merged invoke, ... 2435 for (InvokeInst *II : Invokes) 2436 Updates.push_back( 2437 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2438 2439 // ... which has the new `unreachable` block as normal destination, 2440 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2441 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2442 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2443 SuccBBOfMergedInvoke}); 2444 2445 // Since predecessor blocks now unconditionally branch to a new block, 2446 // they no longer branch to their original successors. 2447 for (InvokeInst *II : Invokes) 2448 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2449 Updates.push_back( 2450 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2451 } 2452 2453 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2454 2455 // Form the merged operands for the merged invoke. 2456 for (Use &U : MergedInvoke->operands()) { 2457 // Only PHI together the indirect callees and data operands. 2458 if (MergedInvoke->isCallee(&U)) { 2459 if (!IsIndirectCall) 2460 continue; 2461 } else if (!MergedInvoke->isDataOperand(&U)) 2462 continue; 2463 2464 // Don't create trivial PHI's with all-identical incoming values. 2465 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2466 return II->getOperand(U.getOperandNo()) != U.get(); 2467 }); 2468 if (!NeedPHI) 2469 continue; 2470 2471 // Form a PHI out of all the data ops under this index. 2472 PHINode *PN = PHINode::Create( 2473 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke); 2474 for (InvokeInst *II : Invokes) 2475 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2476 2477 U.set(PN); 2478 } 2479 2480 // We've ensured that each PHI node has compatible (identical) incoming values 2481 // when coming from each of the `invoke`s in the current merge set, 2482 // so update the PHI nodes accordingly. 2483 for (BasicBlock *Succ : successors(MergedInvoke)) 2484 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2485 /*ExistPred=*/Invokes.front()->getParent()); 2486 2487 // And finally, replace the original `invoke`s with an unconditional branch 2488 // to the block with the merged `invoke`. Also, give that merged `invoke` 2489 // the merged debugloc of all the original `invoke`s. 2490 const DILocation *MergedDebugLoc = nullptr; 2491 for (InvokeInst *II : Invokes) { 2492 // Compute the debug location common to all the original `invoke`s. 2493 if (!MergedDebugLoc) 2494 MergedDebugLoc = II->getDebugLoc(); 2495 else 2496 MergedDebugLoc = 2497 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2498 2499 // And replace the old `invoke` with an unconditionally branch 2500 // to the block with the merged `invoke`. 2501 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2502 OrigSuccBB->removePredecessor(II->getParent()); 2503 BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2504 II->replaceAllUsesWith(MergedInvoke); 2505 II->eraseFromParent(); 2506 ++NumInvokesMerged; 2507 } 2508 MergedInvoke->setDebugLoc(MergedDebugLoc); 2509 ++NumInvokeSetsFormed; 2510 2511 if (DTU) 2512 DTU->applyUpdates(Updates); 2513 } 2514 2515 /// If this block is a `landingpad` exception handling block, categorize all 2516 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2517 /// being "mergeable" together, and then merge invokes in each set together. 2518 /// 2519 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2520 /// [...] [...] 2521 /// | | 2522 /// [invoke0] [invoke1] 2523 /// / \ / \ 2524 /// [cont0] [landingpad] [cont1] 2525 /// to: 2526 /// [...] [...] 2527 /// \ / 2528 /// [invoke] 2529 /// / \ 2530 /// [cont] [landingpad] 2531 /// 2532 /// But of course we can only do that if the invokes share the `landingpad`, 2533 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2534 /// and the invoked functions are "compatible". 2535 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2536 if (!EnableMergeCompatibleInvokes) 2537 return false; 2538 2539 bool Changed = false; 2540 2541 // FIXME: generalize to all exception handling blocks? 2542 if (!BB->isLandingPad()) 2543 return Changed; 2544 2545 CompatibleSets Grouper; 2546 2547 // Record all the predecessors of this `landingpad`. As per verifier, 2548 // the only allowed predecessor is the unwind edge of an `invoke`. 2549 // We want to group "compatible" `invokes` into the same set to be merged. 2550 for (BasicBlock *PredBB : predecessors(BB)) 2551 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 2552 2553 // And now, merge `invoke`s that were grouped togeter. 2554 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 2555 if (Invokes.size() < 2) 2556 continue; 2557 Changed = true; 2558 MergeCompatibleInvokesImpl(Invokes, DTU); 2559 } 2560 2561 return Changed; 2562 } 2563 2564 /// Determine if we can hoist sink a sole store instruction out of a 2565 /// conditional block. 2566 /// 2567 /// We are looking for code like the following: 2568 /// BrBB: 2569 /// store i32 %add, i32* %arrayidx2 2570 /// ... // No other stores or function calls (we could be calling a memory 2571 /// ... // function). 2572 /// %cmp = icmp ult %x, %y 2573 /// br i1 %cmp, label %EndBB, label %ThenBB 2574 /// ThenBB: 2575 /// store i32 %add5, i32* %arrayidx2 2576 /// br label EndBB 2577 /// EndBB: 2578 /// ... 2579 /// We are going to transform this into: 2580 /// BrBB: 2581 /// store i32 %add, i32* %arrayidx2 2582 /// ... // 2583 /// %cmp = icmp ult %x, %y 2584 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2585 /// store i32 %add.add5, i32* %arrayidx2 2586 /// ... 2587 /// 2588 /// \return The pointer to the value of the previous store if the store can be 2589 /// hoisted into the predecessor block. 0 otherwise. 2590 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2591 BasicBlock *StoreBB, BasicBlock *EndBB) { 2592 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2593 if (!StoreToHoist) 2594 return nullptr; 2595 2596 // Volatile or atomic. 2597 if (!StoreToHoist->isSimple()) 2598 return nullptr; 2599 2600 Value *StorePtr = StoreToHoist->getPointerOperand(); 2601 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2602 2603 // Look for a store to the same pointer in BrBB. 2604 unsigned MaxNumInstToLookAt = 9; 2605 // Skip pseudo probe intrinsic calls which are not really killing any memory 2606 // accesses. 2607 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2608 if (!MaxNumInstToLookAt) 2609 break; 2610 --MaxNumInstToLookAt; 2611 2612 // Could be calling an instruction that affects memory like free(). 2613 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 2614 return nullptr; 2615 2616 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2617 // Found the previous store to same location and type. Make sure it is 2618 // simple, to avoid introducing a spurious non-atomic write after an 2619 // atomic write. 2620 if (SI->getPointerOperand() == StorePtr && 2621 SI->getValueOperand()->getType() == StoreTy && SI->isSimple()) 2622 // Found the previous store, return its value operand. 2623 return SI->getValueOperand(); 2624 return nullptr; // Unknown store. 2625 } 2626 2627 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 2628 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 2629 LI->isSimple()) { 2630 // Local objects (created by an `alloca` instruction) are always 2631 // writable, so once we are past a read from a location it is valid to 2632 // also write to that same location. 2633 // If the address of the local object never escapes the function, that 2634 // means it's never concurrently read or written, hence moving the store 2635 // from under the condition will not introduce a data race. 2636 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); 2637 if (AI && !PointerMayBeCaptured(AI, false, true)) 2638 // Found a previous load, return it. 2639 return LI; 2640 } 2641 // The load didn't work out, but we may still find a store. 2642 } 2643 } 2644 2645 return nullptr; 2646 } 2647 2648 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2649 /// converted to selects. 2650 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2651 BasicBlock *EndBB, 2652 unsigned &SpeculatedInstructions, 2653 InstructionCost &Cost, 2654 const TargetTransformInfo &TTI) { 2655 TargetTransformInfo::TargetCostKind CostKind = 2656 BB->getParent()->hasMinSize() 2657 ? TargetTransformInfo::TCK_CodeSize 2658 : TargetTransformInfo::TCK_SizeAndLatency; 2659 2660 bool HaveRewritablePHIs = false; 2661 for (PHINode &PN : EndBB->phis()) { 2662 Value *OrigV = PN.getIncomingValueForBlock(BB); 2663 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2664 2665 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2666 // Skip PHIs which are trivial. 2667 if (ThenV == OrigV) 2668 continue; 2669 2670 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2671 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2672 2673 // Don't convert to selects if we could remove undefined behavior instead. 2674 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2675 passingValueIsAlwaysUndefined(ThenV, &PN)) 2676 return false; 2677 2678 HaveRewritablePHIs = true; 2679 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2680 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2681 if (!OrigCE && !ThenCE) 2682 continue; // Known safe and cheap. 2683 2684 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2685 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2686 return false; 2687 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2688 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2689 InstructionCost MaxCost = 2690 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2691 if (OrigCost + ThenCost > MaxCost) 2692 return false; 2693 2694 // Account for the cost of an unfolded ConstantExpr which could end up 2695 // getting expanded into Instructions. 2696 // FIXME: This doesn't account for how many operations are combined in the 2697 // constant expression. 2698 ++SpeculatedInstructions; 2699 if (SpeculatedInstructions > 1) 2700 return false; 2701 } 2702 2703 return HaveRewritablePHIs; 2704 } 2705 2706 /// Speculate a conditional basic block flattening the CFG. 2707 /// 2708 /// Note that this is a very risky transform currently. Speculating 2709 /// instructions like this is most often not desirable. Instead, there is an MI 2710 /// pass which can do it with full awareness of the resource constraints. 2711 /// However, some cases are "obvious" and we should do directly. An example of 2712 /// this is speculating a single, reasonably cheap instruction. 2713 /// 2714 /// There is only one distinct advantage to flattening the CFG at the IR level: 2715 /// it makes very common but simplistic optimizations such as are common in 2716 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2717 /// modeling their effects with easier to reason about SSA value graphs. 2718 /// 2719 /// 2720 /// An illustration of this transform is turning this IR: 2721 /// \code 2722 /// BB: 2723 /// %cmp = icmp ult %x, %y 2724 /// br i1 %cmp, label %EndBB, label %ThenBB 2725 /// ThenBB: 2726 /// %sub = sub %x, %y 2727 /// br label BB2 2728 /// EndBB: 2729 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2730 /// ... 2731 /// \endcode 2732 /// 2733 /// Into this IR: 2734 /// \code 2735 /// BB: 2736 /// %cmp = icmp ult %x, %y 2737 /// %sub = sub %x, %y 2738 /// %cond = select i1 %cmp, 0, %sub 2739 /// ... 2740 /// \endcode 2741 /// 2742 /// \returns true if the conditional block is removed. 2743 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2744 const TargetTransformInfo &TTI) { 2745 // Be conservative for now. FP select instruction can often be expensive. 2746 Value *BrCond = BI->getCondition(); 2747 if (isa<FCmpInst>(BrCond)) 2748 return false; 2749 2750 BasicBlock *BB = BI->getParent(); 2751 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2752 InstructionCost Budget = 2753 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2754 2755 // If ThenBB is actually on the false edge of the conditional branch, remember 2756 // to swap the select operands later. 2757 bool Invert = false; 2758 if (ThenBB != BI->getSuccessor(0)) { 2759 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2760 Invert = true; 2761 } 2762 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2763 2764 // If the branch is non-unpredictable, and is predicted to *not* branch to 2765 // the `then` block, then avoid speculating it. 2766 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { 2767 uint64_t TWeight, FWeight; 2768 if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) { 2769 uint64_t EndWeight = Invert ? TWeight : FWeight; 2770 BranchProbability BIEndProb = 2771 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 2772 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 2773 if (BIEndProb >= Likely) 2774 return false; 2775 } 2776 } 2777 2778 // Keep a count of how many times instructions are used within ThenBB when 2779 // they are candidates for sinking into ThenBB. Specifically: 2780 // - They are defined in BB, and 2781 // - They have no side effects, and 2782 // - All of their uses are in ThenBB. 2783 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2784 2785 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2786 2787 unsigned SpeculatedInstructions = 0; 2788 Value *SpeculatedStoreValue = nullptr; 2789 StoreInst *SpeculatedStore = nullptr; 2790 for (BasicBlock::iterator BBI = ThenBB->begin(), 2791 BBE = std::prev(ThenBB->end()); 2792 BBI != BBE; ++BBI) { 2793 Instruction *I = &*BBI; 2794 // Skip debug info. 2795 if (isa<DbgInfoIntrinsic>(I)) { 2796 SpeculatedDbgIntrinsics.push_back(I); 2797 continue; 2798 } 2799 2800 // Skip pseudo probes. The consequence is we lose track of the branch 2801 // probability for ThenBB, which is fine since the optimization here takes 2802 // place regardless of the branch probability. 2803 if (isa<PseudoProbeInst>(I)) { 2804 // The probe should be deleted so that it will not be over-counted when 2805 // the samples collected on the non-conditional path are counted towards 2806 // the conditional path. We leave it for the counts inference algorithm to 2807 // figure out a proper count for an unknown probe. 2808 SpeculatedDbgIntrinsics.push_back(I); 2809 continue; 2810 } 2811 2812 // Only speculatively execute a single instruction (not counting the 2813 // terminator) for now. 2814 ++SpeculatedInstructions; 2815 if (SpeculatedInstructions > 1) 2816 return false; 2817 2818 // Don't hoist the instruction if it's unsafe or expensive. 2819 if (!isSafeToSpeculativelyExecute(I) && 2820 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2821 I, BB, ThenBB, EndBB)))) 2822 return false; 2823 if (!SpeculatedStoreValue && 2824 computeSpeculationCost(I, TTI) > 2825 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2826 return false; 2827 2828 // Store the store speculation candidate. 2829 if (SpeculatedStoreValue) 2830 SpeculatedStore = cast<StoreInst>(I); 2831 2832 // Do not hoist the instruction if any of its operands are defined but not 2833 // used in BB. The transformation will prevent the operand from 2834 // being sunk into the use block. 2835 for (Use &Op : I->operands()) { 2836 Instruction *OpI = dyn_cast<Instruction>(Op); 2837 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2838 continue; // Not a candidate for sinking. 2839 2840 ++SinkCandidateUseCounts[OpI]; 2841 } 2842 } 2843 2844 // Consider any sink candidates which are only used in ThenBB as costs for 2845 // speculation. Note, while we iterate over a DenseMap here, we are summing 2846 // and so iteration order isn't significant. 2847 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2848 I = SinkCandidateUseCounts.begin(), 2849 E = SinkCandidateUseCounts.end(); 2850 I != E; ++I) 2851 if (I->first->hasNUses(I->second)) { 2852 ++SpeculatedInstructions; 2853 if (SpeculatedInstructions > 1) 2854 return false; 2855 } 2856 2857 // Check that we can insert the selects and that it's not too expensive to do 2858 // so. 2859 bool Convert = SpeculatedStore != nullptr; 2860 InstructionCost Cost = 0; 2861 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2862 SpeculatedInstructions, 2863 Cost, TTI); 2864 if (!Convert || Cost > Budget) 2865 return false; 2866 2867 // If we get here, we can hoist the instruction and if-convert. 2868 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2869 2870 // Insert a select of the value of the speculated store. 2871 if (SpeculatedStoreValue) { 2872 IRBuilder<NoFolder> Builder(BI); 2873 Value *TrueV = SpeculatedStore->getValueOperand(); 2874 Value *FalseV = SpeculatedStoreValue; 2875 if (Invert) 2876 std::swap(TrueV, FalseV); 2877 Value *S = Builder.CreateSelect( 2878 BrCond, TrueV, FalseV, "spec.store.select", BI); 2879 SpeculatedStore->setOperand(0, S); 2880 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2881 SpeculatedStore->getDebugLoc()); 2882 } 2883 2884 // Metadata can be dependent on the condition we are hoisting above. 2885 // Conservatively strip all metadata on the instruction. Drop the debug loc 2886 // to avoid making it appear as if the condition is a constant, which would 2887 // be misleading while debugging. 2888 // Similarly strip attributes that maybe dependent on condition we are 2889 // hoisting above. 2890 for (auto &I : *ThenBB) { 2891 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2892 I.setDebugLoc(DebugLoc()); 2893 I.dropUndefImplyingAttrsAndUnknownMetadata(); 2894 } 2895 2896 // Hoist the instructions. 2897 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2898 ThenBB->begin(), std::prev(ThenBB->end())); 2899 2900 // Insert selects and rewrite the PHI operands. 2901 IRBuilder<NoFolder> Builder(BI); 2902 for (PHINode &PN : EndBB->phis()) { 2903 unsigned OrigI = PN.getBasicBlockIndex(BB); 2904 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2905 Value *OrigV = PN.getIncomingValue(OrigI); 2906 Value *ThenV = PN.getIncomingValue(ThenI); 2907 2908 // Skip PHIs which are trivial. 2909 if (OrigV == ThenV) 2910 continue; 2911 2912 // Create a select whose true value is the speculatively executed value and 2913 // false value is the pre-existing value. Swap them if the branch 2914 // destinations were inverted. 2915 Value *TrueV = ThenV, *FalseV = OrigV; 2916 if (Invert) 2917 std::swap(TrueV, FalseV); 2918 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2919 PN.setIncomingValue(OrigI, V); 2920 PN.setIncomingValue(ThenI, V); 2921 } 2922 2923 // Remove speculated dbg intrinsics. 2924 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2925 // dbg value for the different flows and inserting it after the select. 2926 for (Instruction *I : SpeculatedDbgIntrinsics) 2927 I->eraseFromParent(); 2928 2929 ++NumSpeculations; 2930 return true; 2931 } 2932 2933 /// Return true if we can thread a branch across this block. 2934 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2935 int Size = 0; 2936 2937 SmallPtrSet<const Value *, 32> EphValues; 2938 auto IsEphemeral = [&](const Instruction *I) { 2939 if (isa<AssumeInst>(I)) 2940 return true; 2941 return !I->mayHaveSideEffects() && !I->isTerminator() && 2942 all_of(I->users(), 2943 [&](const User *U) { return EphValues.count(U); }); 2944 }; 2945 2946 // Walk the loop in reverse so that we can identify ephemeral values properly 2947 // (values only feeding assumes). 2948 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 2949 // Can't fold blocks that contain noduplicate or convergent calls. 2950 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2951 if (CI->cannotDuplicate() || CI->isConvergent()) 2952 return false; 2953 2954 // Ignore ephemeral values which are deleted during codegen. 2955 if (IsEphemeral(&I)) 2956 EphValues.insert(&I); 2957 // We will delete Phis while threading, so Phis should not be accounted in 2958 // block's size. 2959 else if (!isa<PHINode>(I)) { 2960 if (Size++ > MaxSmallBlockSize) 2961 return false; // Don't clone large BB's. 2962 } 2963 2964 // We can only support instructions that do not define values that are 2965 // live outside of the current basic block. 2966 for (User *U : I.users()) { 2967 Instruction *UI = cast<Instruction>(U); 2968 if (UI->getParent() != BB || isa<PHINode>(UI)) 2969 return false; 2970 } 2971 2972 // Looks ok, continue checking. 2973 } 2974 2975 return true; 2976 } 2977 2978 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From, 2979 BasicBlock *To) { 2980 // Don't look past the block defining the value, we might get the value from 2981 // a previous loop iteration. 2982 auto *I = dyn_cast<Instruction>(V); 2983 if (I && I->getParent() == To) 2984 return nullptr; 2985 2986 // We know the value if the From block branches on it. 2987 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 2988 if (BI && BI->isConditional() && BI->getCondition() == V && 2989 BI->getSuccessor(0) != BI->getSuccessor(1)) 2990 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) 2991 : ConstantInt::getFalse(BI->getContext()); 2992 2993 return nullptr; 2994 } 2995 2996 /// If we have a conditional branch on something for which we know the constant 2997 /// value in predecessors (e.g. a phi node in the current block), thread edges 2998 /// from the predecessor to their ultimate destination. 2999 static Optional<bool> 3000 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, 3001 const DataLayout &DL, 3002 AssumptionCache *AC) { 3003 SmallMapVector<BasicBlock *, ConstantInt *, 8> KnownValues; 3004 BasicBlock *BB = BI->getParent(); 3005 Value *Cond = BI->getCondition(); 3006 PHINode *PN = dyn_cast<PHINode>(Cond); 3007 if (PN && PN->getParent() == BB) { 3008 // Degenerate case of a single entry PHI. 3009 if (PN->getNumIncomingValues() == 1) { 3010 FoldSingleEntryPHINodes(PN->getParent()); 3011 return true; 3012 } 3013 3014 for (Use &U : PN->incoming_values()) 3015 if (auto *CB = dyn_cast<ConstantInt>(U)) 3016 KnownValues.insert({PN->getIncomingBlock(U), CB}); 3017 } else { 3018 for (BasicBlock *Pred : predecessors(BB)) { 3019 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB)) 3020 KnownValues.insert({Pred, CB}); 3021 } 3022 } 3023 3024 if (KnownValues.empty()) 3025 return false; 3026 3027 // Now we know that this block has multiple preds and two succs. 3028 // Check that the block is small enough and values defined in the block are 3029 // not used outside of it. 3030 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 3031 return false; 3032 3033 for (const auto &Pair : KnownValues) { 3034 // Okay, we now know that all edges from PredBB should be revectored to 3035 // branch to RealDest. 3036 ConstantInt *CB = Pair.second; 3037 BasicBlock *PredBB = Pair.first; 3038 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3039 3040 if (RealDest == BB) 3041 continue; // Skip self loops. 3042 // Skip if the predecessor's terminator is an indirect branch. 3043 if (isa<IndirectBrInst>(PredBB->getTerminator())) 3044 continue; 3045 3046 SmallVector<DominatorTree::UpdateType, 3> Updates; 3047 3048 // The dest block might have PHI nodes, other predecessors and other 3049 // difficult cases. Instead of being smart about this, just insert a new 3050 // block that jumps to the destination block, effectively splitting 3051 // the edge we are about to create. 3052 BasicBlock *EdgeBB = 3053 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 3054 RealDest->getParent(), RealDest); 3055 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 3056 if (DTU) 3057 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3058 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 3059 3060 // Update PHI nodes. 3061 AddPredecessorToBlock(RealDest, EdgeBB, BB); 3062 3063 // BB may have instructions that are being threaded over. Clone these 3064 // instructions into EdgeBB. We know that there will be no uses of the 3065 // cloned instructions outside of EdgeBB. 3066 BasicBlock::iterator InsertPt = EdgeBB->begin(); 3067 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3068 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3069 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3070 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 3071 continue; 3072 } 3073 // Clone the instruction. 3074 Instruction *N = BBI->clone(); 3075 if (BBI->hasName()) 3076 N->setName(BBI->getName() + ".c"); 3077 3078 // Update operands due to translation. 3079 for (Use &Op : N->operands()) { 3080 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3081 if (PI != TranslateMap.end()) 3082 Op = PI->second; 3083 } 3084 3085 // Check for trivial simplification. 3086 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3087 if (!BBI->use_empty()) 3088 TranslateMap[&*BBI] = V; 3089 if (!N->mayHaveSideEffects()) { 3090 N->deleteValue(); // Instruction folded away, don't need actual inst 3091 N = nullptr; 3092 } 3093 } else { 3094 if (!BBI->use_empty()) 3095 TranslateMap[&*BBI] = N; 3096 } 3097 if (N) { 3098 // Insert the new instruction into its new home. 3099 EdgeBB->getInstList().insert(InsertPt, N); 3100 3101 // Register the new instruction with the assumption cache if necessary. 3102 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3103 if (AC) 3104 AC->registerAssumption(Assume); 3105 } 3106 } 3107 3108 // Loop over all of the edges from PredBB to BB, changing them to branch 3109 // to EdgeBB instead. 3110 Instruction *PredBBTI = PredBB->getTerminator(); 3111 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 3112 if (PredBBTI->getSuccessor(i) == BB) { 3113 BB->removePredecessor(PredBB); 3114 PredBBTI->setSuccessor(i, EdgeBB); 3115 } 3116 3117 if (DTU) { 3118 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 3119 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 3120 3121 DTU->applyUpdates(Updates); 3122 } 3123 3124 // Signal repeat, simplifying any other constants. 3125 return None; 3126 } 3127 3128 return false; 3129 } 3130 3131 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI, 3132 DomTreeUpdater *DTU, 3133 const DataLayout &DL, 3134 AssumptionCache *AC) { 3135 Optional<bool> Result; 3136 bool EverChanged = false; 3137 do { 3138 // Note that None means "we changed things, but recurse further." 3139 Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); 3140 EverChanged |= Result == None || *Result; 3141 } while (Result == None); 3142 return EverChanged; 3143 } 3144 3145 /// Given a BB that starts with the specified two-entry PHI node, 3146 /// see if we can eliminate it. 3147 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3148 DomTreeUpdater *DTU, const DataLayout &DL) { 3149 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3150 // statement", which has a very simple dominance structure. Basically, we 3151 // are trying to find the condition that is being branched on, which 3152 // subsequently causes this merge to happen. We really want control 3153 // dependence information for this check, but simplifycfg can't keep it up 3154 // to date, and this catches most of the cases we care about anyway. 3155 BasicBlock *BB = PN->getParent(); 3156 3157 BasicBlock *IfTrue, *IfFalse; 3158 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3159 if (!DomBI) 3160 return false; 3161 Value *IfCond = DomBI->getCondition(); 3162 // Don't bother if the branch will be constant folded trivially. 3163 if (isa<ConstantInt>(IfCond)) 3164 return false; 3165 3166 BasicBlock *DomBlock = DomBI->getParent(); 3167 SmallVector<BasicBlock *, 2> IfBlocks; 3168 llvm::copy_if( 3169 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3170 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3171 }); 3172 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3173 "Will have either one or two blocks to speculate."); 3174 3175 // If the branch is non-unpredictable, see if we either predictably jump to 3176 // the merge bb (if we have only a single 'then' block), or if we predictably 3177 // jump to one specific 'then' block (if we have two of them). 3178 // It isn't beneficial to speculatively execute the code 3179 // from the block that we know is predictably not entered. 3180 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) { 3181 uint64_t TWeight, FWeight; 3182 if (DomBI->extractProfMetadata(TWeight, FWeight) && 3183 (TWeight + FWeight) != 0) { 3184 BranchProbability BITrueProb = 3185 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3186 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3187 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3188 if (IfBlocks.size() == 1) { 3189 BranchProbability BIBBProb = 3190 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3191 if (BIBBProb >= Likely) 3192 return false; 3193 } else { 3194 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3195 return false; 3196 } 3197 } 3198 } 3199 3200 // Don't try to fold an unreachable block. For example, the phi node itself 3201 // can't be the candidate if-condition for a select that we want to form. 3202 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3203 if (IfCondPhiInst->getParent() == BB) 3204 return false; 3205 3206 // Okay, we found that we can merge this two-entry phi node into a select. 3207 // Doing so would require us to fold *all* two entry phi nodes in this block. 3208 // At some point this becomes non-profitable (particularly if the target 3209 // doesn't support cmov's). Only do this transformation if there are two or 3210 // fewer PHI nodes in this block. 3211 unsigned NumPhis = 0; 3212 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3213 if (NumPhis > 2) 3214 return false; 3215 3216 // Loop over the PHI's seeing if we can promote them all to select 3217 // instructions. While we are at it, keep track of the instructions 3218 // that need to be moved to the dominating block. 3219 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3220 InstructionCost Cost = 0; 3221 InstructionCost Budget = 3222 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3223 3224 bool Changed = false; 3225 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3226 PHINode *PN = cast<PHINode>(II++); 3227 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 3228 PN->replaceAllUsesWith(V); 3229 PN->eraseFromParent(); 3230 Changed = true; 3231 continue; 3232 } 3233 3234 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 3235 Cost, Budget, TTI) || 3236 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 3237 Cost, Budget, TTI)) 3238 return Changed; 3239 } 3240 3241 // If we folded the first phi, PN dangles at this point. Refresh it. If 3242 // we ran out of PHIs then we simplified them all. 3243 PN = dyn_cast<PHINode>(BB->begin()); 3244 if (!PN) 3245 return true; 3246 3247 // Return true if at least one of these is a 'not', and another is either 3248 // a 'not' too, or a constant. 3249 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3250 if (!match(V0, m_Not(m_Value()))) 3251 std::swap(V0, V1); 3252 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3253 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3254 }; 3255 3256 // Don't fold i1 branches on PHIs which contain binary operators or 3257 // (possibly inverted) select form of or/ands, unless one of 3258 // the incoming values is an 'not' and another one is freely invertible. 3259 // These can often be turned into switches and other things. 3260 auto IsBinOpOrAnd = [](Value *V) { 3261 return match( 3262 V, m_CombineOr( 3263 m_BinOp(), 3264 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3265 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3266 }; 3267 if (PN->getType()->isIntegerTy(1) && 3268 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3269 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3270 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3271 PN->getIncomingValue(1))) 3272 return Changed; 3273 3274 // If all PHI nodes are promotable, check to make sure that all instructions 3275 // in the predecessor blocks can be promoted as well. If not, we won't be able 3276 // to get rid of the control flow, so it's not worth promoting to select 3277 // instructions. 3278 for (BasicBlock *IfBlock : IfBlocks) 3279 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3280 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3281 // This is not an aggressive instruction that we can promote. 3282 // Because of this, we won't be able to get rid of the control flow, so 3283 // the xform is not worth it. 3284 return Changed; 3285 } 3286 3287 // If either of the blocks has it's address taken, we can't do this fold. 3288 if (any_of(IfBlocks, 3289 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3290 return Changed; 3291 3292 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 3293 << " T: " << IfTrue->getName() 3294 << " F: " << IfFalse->getName() << "\n"); 3295 3296 // If we can still promote the PHI nodes after this gauntlet of tests, 3297 // do all of the PHI's now. 3298 3299 // Move all 'aggressive' instructions, which are defined in the 3300 // conditional parts of the if's up to the dominating block. 3301 for (BasicBlock *IfBlock : IfBlocks) 3302 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3303 3304 IRBuilder<NoFolder> Builder(DomBI); 3305 // Propagate fast-math-flags from phi nodes to replacement selects. 3306 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3307 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3308 if (isa<FPMathOperator>(PN)) 3309 Builder.setFastMathFlags(PN->getFastMathFlags()); 3310 3311 // Change the PHI node into a select instruction. 3312 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3313 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3314 3315 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3316 PN->replaceAllUsesWith(Sel); 3317 Sel->takeName(PN); 3318 PN->eraseFromParent(); 3319 } 3320 3321 // At this point, all IfBlocks are empty, so our if statement 3322 // has been flattened. Change DomBlock to jump directly to our new block to 3323 // avoid other simplifycfg's kicking in on the diamond. 3324 Builder.CreateBr(BB); 3325 3326 SmallVector<DominatorTree::UpdateType, 3> Updates; 3327 if (DTU) { 3328 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3329 for (auto *Successor : successors(DomBlock)) 3330 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3331 } 3332 3333 DomBI->eraseFromParent(); 3334 if (DTU) 3335 DTU->applyUpdates(Updates); 3336 3337 return true; 3338 } 3339 3340 static Value *createLogicalOp(IRBuilderBase &Builder, 3341 Instruction::BinaryOps Opc, Value *LHS, 3342 Value *RHS, const Twine &Name = "") { 3343 // Try to relax logical op to binary op. 3344 if (impliesPoison(RHS, LHS)) 3345 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3346 if (Opc == Instruction::And) 3347 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3348 if (Opc == Instruction::Or) 3349 return Builder.CreateLogicalOr(LHS, RHS, Name); 3350 llvm_unreachable("Invalid logical opcode"); 3351 } 3352 3353 /// Return true if either PBI or BI has branch weight available, and store 3354 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3355 /// not have branch weight, use 1:1 as its weight. 3356 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3357 uint64_t &PredTrueWeight, 3358 uint64_t &PredFalseWeight, 3359 uint64_t &SuccTrueWeight, 3360 uint64_t &SuccFalseWeight) { 3361 bool PredHasWeights = 3362 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 3363 bool SuccHasWeights = 3364 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 3365 if (PredHasWeights || SuccHasWeights) { 3366 if (!PredHasWeights) 3367 PredTrueWeight = PredFalseWeight = 1; 3368 if (!SuccHasWeights) 3369 SuccTrueWeight = SuccFalseWeight = 1; 3370 return true; 3371 } else { 3372 return false; 3373 } 3374 } 3375 3376 /// Determine if the two branches share a common destination and deduce a glue 3377 /// that joins the branches' conditions to arrive at the common destination if 3378 /// that would be profitable. 3379 static Optional<std::pair<Instruction::BinaryOps, bool>> 3380 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3381 const TargetTransformInfo *TTI) { 3382 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3383 "Both blocks must end with a conditional branches."); 3384 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3385 "PredBB must be a predecessor of BB."); 3386 3387 // We have the potential to fold the conditions together, but if the 3388 // predecessor branch is predictable, we may not want to merge them. 3389 uint64_t PTWeight, PFWeight; 3390 BranchProbability PBITrueProb, Likely; 3391 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3392 PBI->extractProfMetadata(PTWeight, PFWeight) && 3393 (PTWeight + PFWeight) != 0) { 3394 PBITrueProb = 3395 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3396 Likely = TTI->getPredictableBranchThreshold(); 3397 } 3398 3399 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3400 // Speculate the 2nd condition unless the 1st is probably true. 3401 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3402 return {{Instruction::Or, false}}; 3403 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3404 // Speculate the 2nd condition unless the 1st is probably false. 3405 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3406 return {{Instruction::And, false}}; 3407 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3408 // Speculate the 2nd condition unless the 1st is probably true. 3409 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3410 return {{Instruction::And, true}}; 3411 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3412 // Speculate the 2nd condition unless the 1st is probably false. 3413 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3414 return {{Instruction::Or, true}}; 3415 } 3416 return None; 3417 } 3418 3419 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3420 DomTreeUpdater *DTU, 3421 MemorySSAUpdater *MSSAU, 3422 const TargetTransformInfo *TTI) { 3423 BasicBlock *BB = BI->getParent(); 3424 BasicBlock *PredBlock = PBI->getParent(); 3425 3426 // Determine if the two branches share a common destination. 3427 Instruction::BinaryOps Opc; 3428 bool InvertPredCond; 3429 std::tie(Opc, InvertPredCond) = 3430 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3431 3432 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3433 3434 IRBuilder<> Builder(PBI); 3435 // The builder is used to create instructions to eliminate the branch in BB. 3436 // If BB's terminator has !annotation metadata, add it to the new 3437 // instructions. 3438 Builder.CollectMetadataToCopy(BB->getTerminator(), 3439 {LLVMContext::MD_annotation}); 3440 3441 // If we need to invert the condition in the pred block to match, do so now. 3442 if (InvertPredCond) { 3443 Value *NewCond = PBI->getCondition(); 3444 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3445 CmpInst *CI = cast<CmpInst>(NewCond); 3446 CI->setPredicate(CI->getInversePredicate()); 3447 } else { 3448 NewCond = 3449 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3450 } 3451 3452 PBI->setCondition(NewCond); 3453 PBI->swapSuccessors(); 3454 } 3455 3456 BasicBlock *UniqueSucc = 3457 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3458 3459 // Before cloning instructions, notify the successor basic block that it 3460 // is about to have a new predecessor. This will update PHI nodes, 3461 // which will allow us to update live-out uses of bonus instructions. 3462 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3463 3464 // Try to update branch weights. 3465 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3466 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3467 SuccTrueWeight, SuccFalseWeight)) { 3468 SmallVector<uint64_t, 8> NewWeights; 3469 3470 if (PBI->getSuccessor(0) == BB) { 3471 // PBI: br i1 %x, BB, FalseDest 3472 // BI: br i1 %y, UniqueSucc, FalseDest 3473 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3474 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3475 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3476 // TrueWeight for PBI * FalseWeight for BI. 3477 // We assume that total weights of a BranchInst can fit into 32 bits. 3478 // Therefore, we will not have overflow using 64-bit arithmetic. 3479 NewWeights.push_back(PredFalseWeight * 3480 (SuccFalseWeight + SuccTrueWeight) + 3481 PredTrueWeight * SuccFalseWeight); 3482 } else { 3483 // PBI: br i1 %x, TrueDest, BB 3484 // BI: br i1 %y, TrueDest, UniqueSucc 3485 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3486 // FalseWeight for PBI * TrueWeight for BI. 3487 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3488 PredFalseWeight * SuccTrueWeight); 3489 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3490 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3491 } 3492 3493 // Halve the weights if any of them cannot fit in an uint32_t 3494 FitWeights(NewWeights); 3495 3496 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3497 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3498 3499 // TODO: If BB is reachable from all paths through PredBlock, then we 3500 // could replace PBI's branch probabilities with BI's. 3501 } else 3502 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3503 3504 // Now, update the CFG. 3505 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3506 3507 if (DTU) 3508 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3509 {DominatorTree::Delete, PredBlock, BB}}); 3510 3511 // If BI was a loop latch, it may have had associated loop metadata. 3512 // We need to copy it to the new latch, that is, PBI. 3513 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3514 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3515 3516 ValueToValueMapTy VMap; // maps original values to cloned values 3517 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3518 3519 // Now that the Cond was cloned into the predecessor basic block, 3520 // or/and the two conditions together. 3521 Value *BICond = VMap[BI->getCondition()]; 3522 PBI->setCondition( 3523 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3524 3525 // Copy any debug value intrinsics into the end of PredBlock. 3526 for (Instruction &I : *BB) { 3527 if (isa<DbgInfoIntrinsic>(I)) { 3528 Instruction *NewI = I.clone(); 3529 RemapInstruction(NewI, VMap, 3530 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3531 NewI->insertBefore(PBI); 3532 } 3533 } 3534 3535 ++NumFoldBranchToCommonDest; 3536 return true; 3537 } 3538 3539 /// Return if an instruction's type or any of its operands' types are a vector 3540 /// type. 3541 static bool isVectorOp(Instruction &I) { 3542 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 3543 return U->getType()->isVectorTy(); 3544 }); 3545 } 3546 3547 /// If this basic block is simple enough, and if a predecessor branches to us 3548 /// and one of our successors, fold the block into the predecessor and use 3549 /// logical operations to pick the right destination. 3550 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3551 MemorySSAUpdater *MSSAU, 3552 const TargetTransformInfo *TTI, 3553 unsigned BonusInstThreshold) { 3554 // If this block ends with an unconditional branch, 3555 // let SpeculativelyExecuteBB() deal with it. 3556 if (!BI->isConditional()) 3557 return false; 3558 3559 BasicBlock *BB = BI->getParent(); 3560 TargetTransformInfo::TargetCostKind CostKind = 3561 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3562 : TargetTransformInfo::TCK_SizeAndLatency; 3563 3564 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3565 3566 if (!Cond || 3567 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 3568 !isa<SelectInst>(Cond)) || 3569 Cond->getParent() != BB || !Cond->hasOneUse()) 3570 return false; 3571 3572 // Cond is known to be a compare or binary operator. Check to make sure that 3573 // neither operand is a potentially-trapping constant expression. 3574 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3575 if (CE->canTrap()) 3576 return false; 3577 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3578 if (CE->canTrap()) 3579 return false; 3580 3581 // Finally, don't infinitely unroll conditional loops. 3582 if (is_contained(successors(BB), BB)) 3583 return false; 3584 3585 // With which predecessors will we want to deal with? 3586 SmallVector<BasicBlock *, 8> Preds; 3587 for (BasicBlock *PredBlock : predecessors(BB)) { 3588 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3589 3590 // Check that we have two conditional branches. If there is a PHI node in 3591 // the common successor, verify that the same value flows in from both 3592 // blocks. 3593 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3594 continue; 3595 3596 // Determine if the two branches share a common destination. 3597 Instruction::BinaryOps Opc; 3598 bool InvertPredCond; 3599 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3600 std::tie(Opc, InvertPredCond) = *Recipe; 3601 else 3602 continue; 3603 3604 // Check the cost of inserting the necessary logic before performing the 3605 // transformation. 3606 if (TTI) { 3607 Type *Ty = BI->getCondition()->getType(); 3608 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3609 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3610 !isa<CmpInst>(PBI->getCondition()))) 3611 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3612 3613 if (Cost > BranchFoldThreshold) 3614 continue; 3615 } 3616 3617 // Ok, we do want to deal with this predecessor. Record it. 3618 Preds.emplace_back(PredBlock); 3619 } 3620 3621 // If there aren't any predecessors into which we can fold, 3622 // don't bother checking the cost. 3623 if (Preds.empty()) 3624 return false; 3625 3626 // Only allow this transformation if computing the condition doesn't involve 3627 // too many instructions and these involved instructions can be executed 3628 // unconditionally. We denote all involved instructions except the condition 3629 // as "bonus instructions", and only allow this transformation when the 3630 // number of the bonus instructions we'll need to create when cloning into 3631 // each predecessor does not exceed a certain threshold. 3632 unsigned NumBonusInsts = 0; 3633 bool SawVectorOp = false; 3634 const unsigned PredCount = Preds.size(); 3635 for (Instruction &I : *BB) { 3636 // Don't check the branch condition comparison itself. 3637 if (&I == Cond) 3638 continue; 3639 // Ignore dbg intrinsics, and the terminator. 3640 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3641 continue; 3642 // I must be safe to execute unconditionally. 3643 if (!isSafeToSpeculativelyExecute(&I)) 3644 return false; 3645 SawVectorOp |= isVectorOp(I); 3646 3647 // Account for the cost of duplicating this instruction into each 3648 // predecessor. Ignore free instructions. 3649 if (!TTI || 3650 TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) { 3651 NumBonusInsts += PredCount; 3652 3653 // Early exits once we reach the limit. 3654 if (NumBonusInsts > 3655 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 3656 return false; 3657 } 3658 3659 auto IsBCSSAUse = [BB, &I](Use &U) { 3660 auto *UI = cast<Instruction>(U.getUser()); 3661 if (auto *PN = dyn_cast<PHINode>(UI)) 3662 return PN->getIncomingBlock(U) == BB; 3663 return UI->getParent() == BB && I.comesBefore(UI); 3664 }; 3665 3666 // Does this instruction require rewriting of uses? 3667 if (!all_of(I.uses(), IsBCSSAUse)) 3668 return false; 3669 } 3670 if (NumBonusInsts > 3671 BonusInstThreshold * 3672 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 3673 return false; 3674 3675 // Ok, we have the budget. Perform the transformation. 3676 for (BasicBlock *PredBlock : Preds) { 3677 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3678 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3679 } 3680 return false; 3681 } 3682 3683 // If there is only one store in BB1 and BB2, return it, otherwise return 3684 // nullptr. 3685 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3686 StoreInst *S = nullptr; 3687 for (auto *BB : {BB1, BB2}) { 3688 if (!BB) 3689 continue; 3690 for (auto &I : *BB) 3691 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3692 if (S) 3693 // Multiple stores seen. 3694 return nullptr; 3695 else 3696 S = SI; 3697 } 3698 } 3699 return S; 3700 } 3701 3702 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3703 Value *AlternativeV = nullptr) { 3704 // PHI is going to be a PHI node that allows the value V that is defined in 3705 // BB to be referenced in BB's only successor. 3706 // 3707 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3708 // doesn't matter to us what the other operand is (it'll never get used). We 3709 // could just create a new PHI with an undef incoming value, but that could 3710 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3711 // other PHI. So here we directly look for some PHI in BB's successor with V 3712 // as an incoming operand. If we find one, we use it, else we create a new 3713 // one. 3714 // 3715 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3716 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3717 // where OtherBB is the single other predecessor of BB's only successor. 3718 PHINode *PHI = nullptr; 3719 BasicBlock *Succ = BB->getSingleSuccessor(); 3720 3721 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3722 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3723 PHI = cast<PHINode>(I); 3724 if (!AlternativeV) 3725 break; 3726 3727 assert(Succ->hasNPredecessors(2)); 3728 auto PredI = pred_begin(Succ); 3729 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3730 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3731 break; 3732 PHI = nullptr; 3733 } 3734 if (PHI) 3735 return PHI; 3736 3737 // If V is not an instruction defined in BB, just return it. 3738 if (!AlternativeV && 3739 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3740 return V; 3741 3742 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3743 PHI->addIncoming(V, BB); 3744 for (BasicBlock *PredBB : predecessors(Succ)) 3745 if (PredBB != BB) 3746 PHI->addIncoming( 3747 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3748 return PHI; 3749 } 3750 3751 static bool mergeConditionalStoreToAddress( 3752 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3753 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3754 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3755 // For every pointer, there must be exactly two stores, one coming from 3756 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3757 // store (to any address) in PTB,PFB or QTB,QFB. 3758 // FIXME: We could relax this restriction with a bit more work and performance 3759 // testing. 3760 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3761 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3762 if (!PStore || !QStore) 3763 return false; 3764 3765 // Now check the stores are compatible. 3766 if (!QStore->isUnordered() || !PStore->isUnordered() || 3767 PStore->getValueOperand()->getType() != 3768 QStore->getValueOperand()->getType()) 3769 return false; 3770 3771 // Check that sinking the store won't cause program behavior changes. Sinking 3772 // the store out of the Q blocks won't change any behavior as we're sinking 3773 // from a block to its unconditional successor. But we're moving a store from 3774 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3775 // So we need to check that there are no aliasing loads or stores in 3776 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3777 // operations between PStore and the end of its parent block. 3778 // 3779 // The ideal way to do this is to query AliasAnalysis, but we don't 3780 // preserve AA currently so that is dangerous. Be super safe and just 3781 // check there are no other memory operations at all. 3782 for (auto &I : *QFB->getSinglePredecessor()) 3783 if (I.mayReadOrWriteMemory()) 3784 return false; 3785 for (auto &I : *QFB) 3786 if (&I != QStore && I.mayReadOrWriteMemory()) 3787 return false; 3788 if (QTB) 3789 for (auto &I : *QTB) 3790 if (&I != QStore && I.mayReadOrWriteMemory()) 3791 return false; 3792 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3793 I != E; ++I) 3794 if (&*I != PStore && I->mayReadOrWriteMemory()) 3795 return false; 3796 3797 // If we're not in aggressive mode, we only optimize if we have some 3798 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3799 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3800 if (!BB) 3801 return true; 3802 // Heuristic: if the block can be if-converted/phi-folded and the 3803 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3804 // thread this store. 3805 InstructionCost Cost = 0; 3806 InstructionCost Budget = 3807 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3808 for (auto &I : BB->instructionsWithoutDebug(false)) { 3809 // Consider terminator instruction to be free. 3810 if (I.isTerminator()) 3811 continue; 3812 // If this is one the stores that we want to speculate out of this BB, 3813 // then don't count it's cost, consider it to be free. 3814 if (auto *S = dyn_cast<StoreInst>(&I)) 3815 if (llvm::find(FreeStores, S)) 3816 continue; 3817 // Else, we have a white-list of instructions that we are ak speculating. 3818 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3819 return false; // Not in white-list - not worthwhile folding. 3820 // And finally, if this is a non-free instruction that we are okay 3821 // speculating, ensure that we consider the speculation budget. 3822 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3823 if (Cost > Budget) 3824 return false; // Eagerly refuse to fold as soon as we're out of budget. 3825 } 3826 assert(Cost <= Budget && 3827 "When we run out of budget we will eagerly return from within the " 3828 "per-instruction loop."); 3829 return true; 3830 }; 3831 3832 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3833 if (!MergeCondStoresAggressively && 3834 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3835 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3836 return false; 3837 3838 // If PostBB has more than two predecessors, we need to split it so we can 3839 // sink the store. 3840 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3841 // We know that QFB's only successor is PostBB. And QFB has a single 3842 // predecessor. If QTB exists, then its only successor is also PostBB. 3843 // If QTB does not exist, then QFB's only predecessor has a conditional 3844 // branch to QFB and PostBB. 3845 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3846 BasicBlock *NewBB = 3847 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3848 if (!NewBB) 3849 return false; 3850 PostBB = NewBB; 3851 } 3852 3853 // OK, we're going to sink the stores to PostBB. The store has to be 3854 // conditional though, so first create the predicate. 3855 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3856 ->getCondition(); 3857 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3858 ->getCondition(); 3859 3860 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3861 PStore->getParent()); 3862 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3863 QStore->getParent(), PPHI); 3864 3865 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3866 3867 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3868 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3869 3870 if (InvertPCond) 3871 PPred = QB.CreateNot(PPred); 3872 if (InvertQCond) 3873 QPred = QB.CreateNot(QPred); 3874 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3875 3876 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3877 /*Unreachable=*/false, 3878 /*BranchWeights=*/nullptr, DTU); 3879 QB.SetInsertPoint(T); 3880 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3881 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 3882 // Choose the minimum alignment. If we could prove both stores execute, we 3883 // could use biggest one. In this case, though, we only know that one of the 3884 // stores executes. And we don't know it's safe to take the alignment from a 3885 // store that doesn't execute. 3886 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3887 3888 QStore->eraseFromParent(); 3889 PStore->eraseFromParent(); 3890 3891 return true; 3892 } 3893 3894 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3895 DomTreeUpdater *DTU, const DataLayout &DL, 3896 const TargetTransformInfo &TTI) { 3897 // The intention here is to find diamonds or triangles (see below) where each 3898 // conditional block contains a store to the same address. Both of these 3899 // stores are conditional, so they can't be unconditionally sunk. But it may 3900 // be profitable to speculatively sink the stores into one merged store at the 3901 // end, and predicate the merged store on the union of the two conditions of 3902 // PBI and QBI. 3903 // 3904 // This can reduce the number of stores executed if both of the conditions are 3905 // true, and can allow the blocks to become small enough to be if-converted. 3906 // This optimization will also chain, so that ladders of test-and-set 3907 // sequences can be if-converted away. 3908 // 3909 // We only deal with simple diamonds or triangles: 3910 // 3911 // PBI or PBI or a combination of the two 3912 // / \ | \ 3913 // PTB PFB | PFB 3914 // \ / | / 3915 // QBI QBI 3916 // / \ | \ 3917 // QTB QFB | QFB 3918 // \ / | / 3919 // PostBB PostBB 3920 // 3921 // We model triangles as a type of diamond with a nullptr "true" block. 3922 // Triangles are canonicalized so that the fallthrough edge is represented by 3923 // a true condition, as in the diagram above. 3924 BasicBlock *PTB = PBI->getSuccessor(0); 3925 BasicBlock *PFB = PBI->getSuccessor(1); 3926 BasicBlock *QTB = QBI->getSuccessor(0); 3927 BasicBlock *QFB = QBI->getSuccessor(1); 3928 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3929 3930 // Make sure we have a good guess for PostBB. If QTB's only successor is 3931 // QFB, then QFB is a better PostBB. 3932 if (QTB->getSingleSuccessor() == QFB) 3933 PostBB = QFB; 3934 3935 // If we couldn't find a good PostBB, stop. 3936 if (!PostBB) 3937 return false; 3938 3939 bool InvertPCond = false, InvertQCond = false; 3940 // Canonicalize fallthroughs to the true branches. 3941 if (PFB == QBI->getParent()) { 3942 std::swap(PFB, PTB); 3943 InvertPCond = true; 3944 } 3945 if (QFB == PostBB) { 3946 std::swap(QFB, QTB); 3947 InvertQCond = true; 3948 } 3949 3950 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3951 // and QFB may not. Model fallthroughs as a nullptr block. 3952 if (PTB == QBI->getParent()) 3953 PTB = nullptr; 3954 if (QTB == PostBB) 3955 QTB = nullptr; 3956 3957 // Legality bailouts. We must have at least the non-fallthrough blocks and 3958 // the post-dominating block, and the non-fallthroughs must only have one 3959 // predecessor. 3960 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3961 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3962 }; 3963 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3964 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3965 return false; 3966 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3967 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3968 return false; 3969 if (!QBI->getParent()->hasNUses(2)) 3970 return false; 3971 3972 // OK, this is a sequence of two diamonds or triangles. 3973 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3974 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3975 for (auto *BB : {PTB, PFB}) { 3976 if (!BB) 3977 continue; 3978 for (auto &I : *BB) 3979 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3980 PStoreAddresses.insert(SI->getPointerOperand()); 3981 } 3982 for (auto *BB : {QTB, QFB}) { 3983 if (!BB) 3984 continue; 3985 for (auto &I : *BB) 3986 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3987 QStoreAddresses.insert(SI->getPointerOperand()); 3988 } 3989 3990 set_intersect(PStoreAddresses, QStoreAddresses); 3991 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3992 // clear what it contains. 3993 auto &CommonAddresses = PStoreAddresses; 3994 3995 bool Changed = false; 3996 for (auto *Address : CommonAddresses) 3997 Changed |= 3998 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3999 InvertPCond, InvertQCond, DTU, DL, TTI); 4000 return Changed; 4001 } 4002 4003 /// If the previous block ended with a widenable branch, determine if reusing 4004 /// the target block is profitable and legal. This will have the effect of 4005 /// "widening" PBI, but doesn't require us to reason about hosting safety. 4006 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4007 DomTreeUpdater *DTU) { 4008 // TODO: This can be generalized in two important ways: 4009 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 4010 // values from the PBI edge. 4011 // 2) We can sink side effecting instructions into BI's fallthrough 4012 // successor provided they doesn't contribute to computation of 4013 // BI's condition. 4014 Value *CondWB, *WC; 4015 BasicBlock *IfTrueBB, *IfFalseBB; 4016 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 4017 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 4018 return false; 4019 if (!IfFalseBB->phis().empty()) 4020 return false; // TODO 4021 // Use lambda to lazily compute expensive condition after cheap ones. 4022 auto NoSideEffects = [](BasicBlock &BB) { 4023 return llvm::none_of(BB, [](const Instruction &I) { 4024 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 4025 }); 4026 }; 4027 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 4028 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 4029 NoSideEffects(*BI->getParent())) { 4030 auto *OldSuccessor = BI->getSuccessor(1); 4031 OldSuccessor->removePredecessor(BI->getParent()); 4032 BI->setSuccessor(1, IfFalseBB); 4033 if (DTU) 4034 DTU->applyUpdates( 4035 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4036 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4037 return true; 4038 } 4039 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4040 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4041 NoSideEffects(*BI->getParent())) { 4042 auto *OldSuccessor = BI->getSuccessor(0); 4043 OldSuccessor->removePredecessor(BI->getParent()); 4044 BI->setSuccessor(0, IfFalseBB); 4045 if (DTU) 4046 DTU->applyUpdates( 4047 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4048 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4049 return true; 4050 } 4051 return false; 4052 } 4053 4054 /// If we have a conditional branch as a predecessor of another block, 4055 /// this function tries to simplify it. We know 4056 /// that PBI and BI are both conditional branches, and BI is in one of the 4057 /// successor blocks of PBI - PBI branches to BI. 4058 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4059 DomTreeUpdater *DTU, 4060 const DataLayout &DL, 4061 const TargetTransformInfo &TTI) { 4062 assert(PBI->isConditional() && BI->isConditional()); 4063 BasicBlock *BB = BI->getParent(); 4064 4065 // If this block ends with a branch instruction, and if there is a 4066 // predecessor that ends on a branch of the same condition, make 4067 // this conditional branch redundant. 4068 if (PBI->getCondition() == BI->getCondition() && 4069 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4070 // Okay, the outcome of this conditional branch is statically 4071 // knowable. If this block had a single pred, handle specially, otherwise 4072 // FoldCondBranchOnValueKnownInPredecessor() will handle it. 4073 if (BB->getSinglePredecessor()) { 4074 // Turn this into a branch on constant. 4075 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4076 BI->setCondition( 4077 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4078 return true; // Nuke the branch on constant. 4079 } 4080 } 4081 4082 // If the previous block ended with a widenable branch, determine if reusing 4083 // the target block is profitable and legal. This will have the effect of 4084 // "widening" PBI, but doesn't require us to reason about hosting safety. 4085 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4086 return true; 4087 4088 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 4089 if (CE->canTrap()) 4090 return false; 4091 4092 // If both branches are conditional and both contain stores to the same 4093 // address, remove the stores from the conditionals and create a conditional 4094 // merged store at the end. 4095 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4096 return true; 4097 4098 // If this is a conditional branch in an empty block, and if any 4099 // predecessors are a conditional branch to one of our destinations, 4100 // fold the conditions into logical ops and one cond br. 4101 4102 // Ignore dbg intrinsics. 4103 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4104 return false; 4105 4106 int PBIOp, BIOp; 4107 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4108 PBIOp = 0; 4109 BIOp = 0; 4110 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4111 PBIOp = 0; 4112 BIOp = 1; 4113 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4114 PBIOp = 1; 4115 BIOp = 0; 4116 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4117 PBIOp = 1; 4118 BIOp = 1; 4119 } else { 4120 return false; 4121 } 4122 4123 // Check to make sure that the other destination of this branch 4124 // isn't BB itself. If so, this is an infinite loop that will 4125 // keep getting unwound. 4126 if (PBI->getSuccessor(PBIOp) == BB) 4127 return false; 4128 4129 // Do not perform this transformation if it would require 4130 // insertion of a large number of select instructions. For targets 4131 // without predication/cmovs, this is a big pessimization. 4132 4133 // Also do not perform this transformation if any phi node in the common 4134 // destination block can trap when reached by BB or PBB (PR17073). In that 4135 // case, it would be unsafe to hoist the operation into a select instruction. 4136 4137 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4138 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4139 unsigned NumPhis = 0; 4140 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4141 ++II, ++NumPhis) { 4142 if (NumPhis > 2) // Disable this xform. 4143 return false; 4144 4145 PHINode *PN = cast<PHINode>(II); 4146 Value *BIV = PN->getIncomingValueForBlock(BB); 4147 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 4148 if (CE->canTrap()) 4149 return false; 4150 4151 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 4152 Value *PBIV = PN->getIncomingValue(PBBIdx); 4153 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 4154 if (CE->canTrap()) 4155 return false; 4156 } 4157 4158 // Finally, if everything is ok, fold the branches to logical ops. 4159 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4160 4161 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4162 << "AND: " << *BI->getParent()); 4163 4164 SmallVector<DominatorTree::UpdateType, 5> Updates; 4165 4166 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4167 // branch in it, where one edge (OtherDest) goes back to itself but the other 4168 // exits. We don't *know* that the program avoids the infinite loop 4169 // (even though that seems likely). If we do this xform naively, we'll end up 4170 // recursively unpeeling the loop. Since we know that (after the xform is 4171 // done) that the block *is* infinite if reached, we just make it an obviously 4172 // infinite loop with no cond branch. 4173 if (OtherDest == BB) { 4174 // Insert it at the end of the function, because it's either code, 4175 // or it won't matter if it's hot. :) 4176 BasicBlock *InfLoopBlock = 4177 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4178 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4179 if (DTU) 4180 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4181 OtherDest = InfLoopBlock; 4182 } 4183 4184 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4185 4186 // BI may have other predecessors. Because of this, we leave 4187 // it alone, but modify PBI. 4188 4189 // Make sure we get to CommonDest on True&True directions. 4190 Value *PBICond = PBI->getCondition(); 4191 IRBuilder<NoFolder> Builder(PBI); 4192 if (PBIOp) 4193 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4194 4195 Value *BICond = BI->getCondition(); 4196 if (BIOp) 4197 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4198 4199 // Merge the conditions. 4200 Value *Cond = 4201 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4202 4203 // Modify PBI to branch on the new condition to the new dests. 4204 PBI->setCondition(Cond); 4205 PBI->setSuccessor(0, CommonDest); 4206 PBI->setSuccessor(1, OtherDest); 4207 4208 if (DTU) { 4209 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4210 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4211 4212 DTU->applyUpdates(Updates); 4213 } 4214 4215 // Update branch weight for PBI. 4216 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4217 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4218 bool HasWeights = 4219 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4220 SuccTrueWeight, SuccFalseWeight); 4221 if (HasWeights) { 4222 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4223 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4224 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4225 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4226 // The weight to CommonDest should be PredCommon * SuccTotal + 4227 // PredOther * SuccCommon. 4228 // The weight to OtherDest should be PredOther * SuccOther. 4229 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4230 PredOther * SuccCommon, 4231 PredOther * SuccOther}; 4232 // Halve the weights if any of them cannot fit in an uint32_t 4233 FitWeights(NewWeights); 4234 4235 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 4236 } 4237 4238 // OtherDest may have phi nodes. If so, add an entry from PBI's 4239 // block that are identical to the entries for BI's block. 4240 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4241 4242 // We know that the CommonDest already had an edge from PBI to 4243 // it. If it has PHIs though, the PHIs may have different 4244 // entries for BB and PBI's BB. If so, insert a select to make 4245 // them agree. 4246 for (PHINode &PN : CommonDest->phis()) { 4247 Value *BIV = PN.getIncomingValueForBlock(BB); 4248 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4249 Value *PBIV = PN.getIncomingValue(PBBIdx); 4250 if (BIV != PBIV) { 4251 // Insert a select in PBI to pick the right value. 4252 SelectInst *NV = cast<SelectInst>( 4253 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4254 PN.setIncomingValue(PBBIdx, NV); 4255 // Although the select has the same condition as PBI, the original branch 4256 // weights for PBI do not apply to the new select because the select's 4257 // 'logical' edges are incoming edges of the phi that is eliminated, not 4258 // the outgoing edges of PBI. 4259 if (HasWeights) { 4260 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4261 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4262 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4263 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4264 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4265 // The weight to PredOtherDest should be PredOther * SuccCommon. 4266 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4267 PredOther * SuccCommon}; 4268 4269 FitWeights(NewWeights); 4270 4271 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 4272 } 4273 } 4274 } 4275 4276 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4277 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4278 4279 // This basic block is probably dead. We know it has at least 4280 // one fewer predecessor. 4281 return true; 4282 } 4283 4284 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4285 // true or to FalseBB if Cond is false. 4286 // Takes care of updating the successors and removing the old terminator. 4287 // Also makes sure not to introduce new successors by assuming that edges to 4288 // non-successor TrueBBs and FalseBBs aren't reachable. 4289 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 4290 Value *Cond, BasicBlock *TrueBB, 4291 BasicBlock *FalseBB, 4292 uint32_t TrueWeight, 4293 uint32_t FalseWeight) { 4294 auto *BB = OldTerm->getParent(); 4295 // Remove any superfluous successor edges from the CFG. 4296 // First, figure out which successors to preserve. 4297 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4298 // successor. 4299 BasicBlock *KeepEdge1 = TrueBB; 4300 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4301 4302 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4303 4304 // Then remove the rest. 4305 for (BasicBlock *Succ : successors(OldTerm)) { 4306 // Make sure only to keep exactly one copy of each edge. 4307 if (Succ == KeepEdge1) 4308 KeepEdge1 = nullptr; 4309 else if (Succ == KeepEdge2) 4310 KeepEdge2 = nullptr; 4311 else { 4312 Succ->removePredecessor(BB, 4313 /*KeepOneInputPHIs=*/true); 4314 4315 if (Succ != TrueBB && Succ != FalseBB) 4316 RemovedSuccessors.insert(Succ); 4317 } 4318 } 4319 4320 IRBuilder<> Builder(OldTerm); 4321 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4322 4323 // Insert an appropriate new terminator. 4324 if (!KeepEdge1 && !KeepEdge2) { 4325 if (TrueBB == FalseBB) { 4326 // We were only looking for one successor, and it was present. 4327 // Create an unconditional branch to it. 4328 Builder.CreateBr(TrueBB); 4329 } else { 4330 // We found both of the successors we were looking for. 4331 // Create a conditional branch sharing the condition of the select. 4332 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4333 if (TrueWeight != FalseWeight) 4334 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4335 } 4336 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4337 // Neither of the selected blocks were successors, so this 4338 // terminator must be unreachable. 4339 new UnreachableInst(OldTerm->getContext(), OldTerm); 4340 } else { 4341 // One of the selected values was a successor, but the other wasn't. 4342 // Insert an unconditional branch to the one that was found; 4343 // the edge to the one that wasn't must be unreachable. 4344 if (!KeepEdge1) { 4345 // Only TrueBB was found. 4346 Builder.CreateBr(TrueBB); 4347 } else { 4348 // Only FalseBB was found. 4349 Builder.CreateBr(FalseBB); 4350 } 4351 } 4352 4353 EraseTerminatorAndDCECond(OldTerm); 4354 4355 if (DTU) { 4356 SmallVector<DominatorTree::UpdateType, 2> Updates; 4357 Updates.reserve(RemovedSuccessors.size()); 4358 for (auto *RemovedSuccessor : RemovedSuccessors) 4359 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4360 DTU->applyUpdates(Updates); 4361 } 4362 4363 return true; 4364 } 4365 4366 // Replaces 4367 // (switch (select cond, X, Y)) on constant X, Y 4368 // with a branch - conditional if X and Y lead to distinct BBs, 4369 // unconditional otherwise. 4370 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4371 SelectInst *Select) { 4372 // Check for constant integer values in the select. 4373 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4374 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4375 if (!TrueVal || !FalseVal) 4376 return false; 4377 4378 // Find the relevant condition and destinations. 4379 Value *Condition = Select->getCondition(); 4380 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4381 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4382 4383 // Get weight for TrueBB and FalseBB. 4384 uint32_t TrueWeight = 0, FalseWeight = 0; 4385 SmallVector<uint64_t, 8> Weights; 4386 bool HasWeights = HasBranchWeights(SI); 4387 if (HasWeights) { 4388 GetBranchWeights(SI, Weights); 4389 if (Weights.size() == 1 + SI->getNumCases()) { 4390 TrueWeight = 4391 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4392 FalseWeight = 4393 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4394 } 4395 } 4396 4397 // Perform the actual simplification. 4398 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4399 FalseWeight); 4400 } 4401 4402 // Replaces 4403 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4404 // blockaddress(@fn, BlockB))) 4405 // with 4406 // (br cond, BlockA, BlockB). 4407 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4408 SelectInst *SI) { 4409 // Check that both operands of the select are block addresses. 4410 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4411 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4412 if (!TBA || !FBA) 4413 return false; 4414 4415 // Extract the actual blocks. 4416 BasicBlock *TrueBB = TBA->getBasicBlock(); 4417 BasicBlock *FalseBB = FBA->getBasicBlock(); 4418 4419 // Perform the actual simplification. 4420 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4421 0); 4422 } 4423 4424 /// This is called when we find an icmp instruction 4425 /// (a seteq/setne with a constant) as the only instruction in a 4426 /// block that ends with an uncond branch. We are looking for a very specific 4427 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4428 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4429 /// default value goes to an uncond block with a seteq in it, we get something 4430 /// like: 4431 /// 4432 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4433 /// DEFAULT: 4434 /// %tmp = icmp eq i8 %A, 92 4435 /// br label %end 4436 /// end: 4437 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4438 /// 4439 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4440 /// the PHI, merging the third icmp into the switch. 4441 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4442 ICmpInst *ICI, IRBuilder<> &Builder) { 4443 BasicBlock *BB = ICI->getParent(); 4444 4445 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4446 // complex. 4447 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4448 return false; 4449 4450 Value *V = ICI->getOperand(0); 4451 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4452 4453 // The pattern we're looking for is where our only predecessor is a switch on 4454 // 'V' and this block is the default case for the switch. In this case we can 4455 // fold the compared value into the switch to simplify things. 4456 BasicBlock *Pred = BB->getSinglePredecessor(); 4457 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4458 return false; 4459 4460 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4461 if (SI->getCondition() != V) 4462 return false; 4463 4464 // If BB is reachable on a non-default case, then we simply know the value of 4465 // V in this block. Substitute it and constant fold the icmp instruction 4466 // away. 4467 if (SI->getDefaultDest() != BB) { 4468 ConstantInt *VVal = SI->findCaseDest(BB); 4469 assert(VVal && "Should have a unique destination value"); 4470 ICI->setOperand(0, VVal); 4471 4472 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4473 ICI->replaceAllUsesWith(V); 4474 ICI->eraseFromParent(); 4475 } 4476 // BB is now empty, so it is likely to simplify away. 4477 return requestResimplify(); 4478 } 4479 4480 // Ok, the block is reachable from the default dest. If the constant we're 4481 // comparing exists in one of the other edges, then we can constant fold ICI 4482 // and zap it. 4483 if (SI->findCaseValue(Cst) != SI->case_default()) { 4484 Value *V; 4485 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4486 V = ConstantInt::getFalse(BB->getContext()); 4487 else 4488 V = ConstantInt::getTrue(BB->getContext()); 4489 4490 ICI->replaceAllUsesWith(V); 4491 ICI->eraseFromParent(); 4492 // BB is now empty, so it is likely to simplify away. 4493 return requestResimplify(); 4494 } 4495 4496 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4497 // the block. 4498 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4499 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4500 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4501 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4502 return false; 4503 4504 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4505 // true in the PHI. 4506 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4507 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4508 4509 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4510 std::swap(DefaultCst, NewCst); 4511 4512 // Replace ICI (which is used by the PHI for the default value) with true or 4513 // false depending on if it is EQ or NE. 4514 ICI->replaceAllUsesWith(DefaultCst); 4515 ICI->eraseFromParent(); 4516 4517 SmallVector<DominatorTree::UpdateType, 2> Updates; 4518 4519 // Okay, the switch goes to this block on a default value. Add an edge from 4520 // the switch to the merge point on the compared value. 4521 BasicBlock *NewBB = 4522 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4523 { 4524 SwitchInstProfUpdateWrapper SIW(*SI); 4525 auto W0 = SIW.getSuccessorWeight(0); 4526 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4527 if (W0) { 4528 NewW = ((uint64_t(*W0) + 1) >> 1); 4529 SIW.setSuccessorWeight(0, *NewW); 4530 } 4531 SIW.addCase(Cst, NewBB, NewW); 4532 if (DTU) 4533 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4534 } 4535 4536 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4537 Builder.SetInsertPoint(NewBB); 4538 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4539 Builder.CreateBr(SuccBlock); 4540 PHIUse->addIncoming(NewCst, NewBB); 4541 if (DTU) { 4542 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4543 DTU->applyUpdates(Updates); 4544 } 4545 return true; 4546 } 4547 4548 /// The specified branch is a conditional branch. 4549 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4550 /// fold it into a switch instruction if so. 4551 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4552 IRBuilder<> &Builder, 4553 const DataLayout &DL) { 4554 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4555 if (!Cond) 4556 return false; 4557 4558 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4559 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4560 // 'setne's and'ed together, collect them. 4561 4562 // Try to gather values from a chain of and/or to be turned into a switch 4563 ConstantComparesGatherer ConstantCompare(Cond, DL); 4564 // Unpack the result 4565 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4566 Value *CompVal = ConstantCompare.CompValue; 4567 unsigned UsedICmps = ConstantCompare.UsedICmps; 4568 Value *ExtraCase = ConstantCompare.Extra; 4569 4570 // If we didn't have a multiply compared value, fail. 4571 if (!CompVal) 4572 return false; 4573 4574 // Avoid turning single icmps into a switch. 4575 if (UsedICmps <= 1) 4576 return false; 4577 4578 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4579 4580 // There might be duplicate constants in the list, which the switch 4581 // instruction can't handle, remove them now. 4582 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4583 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4584 4585 // If Extra was used, we require at least two switch values to do the 4586 // transformation. A switch with one value is just a conditional branch. 4587 if (ExtraCase && Values.size() < 2) 4588 return false; 4589 4590 // TODO: Preserve branch weight metadata, similarly to how 4591 // FoldValueComparisonIntoPredecessors preserves it. 4592 4593 // Figure out which block is which destination. 4594 BasicBlock *DefaultBB = BI->getSuccessor(1); 4595 BasicBlock *EdgeBB = BI->getSuccessor(0); 4596 if (!TrueWhenEqual) 4597 std::swap(DefaultBB, EdgeBB); 4598 4599 BasicBlock *BB = BI->getParent(); 4600 4601 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4602 << " cases into SWITCH. BB is:\n" 4603 << *BB); 4604 4605 SmallVector<DominatorTree::UpdateType, 2> Updates; 4606 4607 // If there are any extra values that couldn't be folded into the switch 4608 // then we evaluate them with an explicit branch first. Split the block 4609 // right before the condbr to handle it. 4610 if (ExtraCase) { 4611 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4612 /*MSSAU=*/nullptr, "switch.early.test"); 4613 4614 // Remove the uncond branch added to the old block. 4615 Instruction *OldTI = BB->getTerminator(); 4616 Builder.SetInsertPoint(OldTI); 4617 4618 // There can be an unintended UB if extra values are Poison. Before the 4619 // transformation, extra values may not be evaluated according to the 4620 // condition, and it will not raise UB. But after transformation, we are 4621 // evaluating extra values before checking the condition, and it will raise 4622 // UB. It can be solved by adding freeze instruction to extra values. 4623 AssumptionCache *AC = Options.AC; 4624 4625 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4626 ExtraCase = Builder.CreateFreeze(ExtraCase); 4627 4628 if (TrueWhenEqual) 4629 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4630 else 4631 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4632 4633 OldTI->eraseFromParent(); 4634 4635 if (DTU) 4636 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4637 4638 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4639 // for the edge we just added. 4640 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4641 4642 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4643 << "\nEXTRABB = " << *BB); 4644 BB = NewBB; 4645 } 4646 4647 Builder.SetInsertPoint(BI); 4648 // Convert pointer to int before we switch. 4649 if (CompVal->getType()->isPointerTy()) { 4650 CompVal = Builder.CreatePtrToInt( 4651 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4652 } 4653 4654 // Create the new switch instruction now. 4655 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4656 4657 // Add all of the 'cases' to the switch instruction. 4658 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4659 New->addCase(Values[i], EdgeBB); 4660 4661 // We added edges from PI to the EdgeBB. As such, if there were any 4662 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4663 // the number of edges added. 4664 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4665 PHINode *PN = cast<PHINode>(BBI); 4666 Value *InVal = PN->getIncomingValueForBlock(BB); 4667 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4668 PN->addIncoming(InVal, BB); 4669 } 4670 4671 // Erase the old branch instruction. 4672 EraseTerminatorAndDCECond(BI); 4673 if (DTU) 4674 DTU->applyUpdates(Updates); 4675 4676 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4677 return true; 4678 } 4679 4680 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4681 if (isa<PHINode>(RI->getValue())) 4682 return simplifyCommonResume(RI); 4683 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4684 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4685 // The resume must unwind the exception that caused control to branch here. 4686 return simplifySingleResume(RI); 4687 4688 return false; 4689 } 4690 4691 // Check if cleanup block is empty 4692 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4693 for (Instruction &I : R) { 4694 auto *II = dyn_cast<IntrinsicInst>(&I); 4695 if (!II) 4696 return false; 4697 4698 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4699 switch (IntrinsicID) { 4700 case Intrinsic::dbg_declare: 4701 case Intrinsic::dbg_value: 4702 case Intrinsic::dbg_label: 4703 case Intrinsic::lifetime_end: 4704 break; 4705 default: 4706 return false; 4707 } 4708 } 4709 return true; 4710 } 4711 4712 // Simplify resume that is shared by several landing pads (phi of landing pad). 4713 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4714 BasicBlock *BB = RI->getParent(); 4715 4716 // Check that there are no other instructions except for debug and lifetime 4717 // intrinsics between the phi's and resume instruction. 4718 if (!isCleanupBlockEmpty( 4719 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4720 return false; 4721 4722 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4723 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4724 4725 // Check incoming blocks to see if any of them are trivial. 4726 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4727 Idx++) { 4728 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4729 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4730 4731 // If the block has other successors, we can not delete it because 4732 // it has other dependents. 4733 if (IncomingBB->getUniqueSuccessor() != BB) 4734 continue; 4735 4736 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4737 // Not the landing pad that caused the control to branch here. 4738 if (IncomingValue != LandingPad) 4739 continue; 4740 4741 if (isCleanupBlockEmpty( 4742 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4743 TrivialUnwindBlocks.insert(IncomingBB); 4744 } 4745 4746 // If no trivial unwind blocks, don't do any simplifications. 4747 if (TrivialUnwindBlocks.empty()) 4748 return false; 4749 4750 // Turn all invokes that unwind here into calls. 4751 for (auto *TrivialBB : TrivialUnwindBlocks) { 4752 // Blocks that will be simplified should be removed from the phi node. 4753 // Note there could be multiple edges to the resume block, and we need 4754 // to remove them all. 4755 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4756 BB->removePredecessor(TrivialBB, true); 4757 4758 for (BasicBlock *Pred : 4759 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4760 removeUnwindEdge(Pred, DTU); 4761 ++NumInvokes; 4762 } 4763 4764 // In each SimplifyCFG run, only the current processed block can be erased. 4765 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4766 // of erasing TrivialBB, we only remove the branch to the common resume 4767 // block so that we can later erase the resume block since it has no 4768 // predecessors. 4769 TrivialBB->getTerminator()->eraseFromParent(); 4770 new UnreachableInst(RI->getContext(), TrivialBB); 4771 if (DTU) 4772 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4773 } 4774 4775 // Delete the resume block if all its predecessors have been removed. 4776 if (pred_empty(BB)) 4777 DeleteDeadBlock(BB, DTU); 4778 4779 return !TrivialUnwindBlocks.empty(); 4780 } 4781 4782 // Simplify resume that is only used by a single (non-phi) landing pad. 4783 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4784 BasicBlock *BB = RI->getParent(); 4785 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4786 assert(RI->getValue() == LPInst && 4787 "Resume must unwind the exception that caused control to here"); 4788 4789 // Check that there are no other instructions except for debug intrinsics. 4790 if (!isCleanupBlockEmpty( 4791 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4792 return false; 4793 4794 // Turn all invokes that unwind here into calls and delete the basic block. 4795 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4796 removeUnwindEdge(Pred, DTU); 4797 ++NumInvokes; 4798 } 4799 4800 // The landingpad is now unreachable. Zap it. 4801 DeleteDeadBlock(BB, DTU); 4802 return true; 4803 } 4804 4805 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4806 // If this is a trivial cleanup pad that executes no instructions, it can be 4807 // eliminated. If the cleanup pad continues to the caller, any predecessor 4808 // that is an EH pad will be updated to continue to the caller and any 4809 // predecessor that terminates with an invoke instruction will have its invoke 4810 // instruction converted to a call instruction. If the cleanup pad being 4811 // simplified does not continue to the caller, each predecessor will be 4812 // updated to continue to the unwind destination of the cleanup pad being 4813 // simplified. 4814 BasicBlock *BB = RI->getParent(); 4815 CleanupPadInst *CPInst = RI->getCleanupPad(); 4816 if (CPInst->getParent() != BB) 4817 // This isn't an empty cleanup. 4818 return false; 4819 4820 // We cannot kill the pad if it has multiple uses. This typically arises 4821 // from unreachable basic blocks. 4822 if (!CPInst->hasOneUse()) 4823 return false; 4824 4825 // Check that there are no other instructions except for benign intrinsics. 4826 if (!isCleanupBlockEmpty( 4827 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4828 return false; 4829 4830 // If the cleanup return we are simplifying unwinds to the caller, this will 4831 // set UnwindDest to nullptr. 4832 BasicBlock *UnwindDest = RI->getUnwindDest(); 4833 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4834 4835 // We're about to remove BB from the control flow. Before we do, sink any 4836 // PHINodes into the unwind destination. Doing this before changing the 4837 // control flow avoids some potentially slow checks, since we can currently 4838 // be certain that UnwindDest and BB have no common predecessors (since they 4839 // are both EH pads). 4840 if (UnwindDest) { 4841 // First, go through the PHI nodes in UnwindDest and update any nodes that 4842 // reference the block we are removing 4843 for (PHINode &DestPN : UnwindDest->phis()) { 4844 int Idx = DestPN.getBasicBlockIndex(BB); 4845 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4846 assert(Idx != -1); 4847 // This PHI node has an incoming value that corresponds to a control 4848 // path through the cleanup pad we are removing. If the incoming 4849 // value is in the cleanup pad, it must be a PHINode (because we 4850 // verified above that the block is otherwise empty). Otherwise, the 4851 // value is either a constant or a value that dominates the cleanup 4852 // pad being removed. 4853 // 4854 // Because BB and UnwindDest are both EH pads, all of their 4855 // predecessors must unwind to these blocks, and since no instruction 4856 // can have multiple unwind destinations, there will be no overlap in 4857 // incoming blocks between SrcPN and DestPN. 4858 Value *SrcVal = DestPN.getIncomingValue(Idx); 4859 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4860 4861 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4862 for (auto *Pred : predecessors(BB)) { 4863 Value *Incoming = 4864 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4865 DestPN.addIncoming(Incoming, Pred); 4866 } 4867 } 4868 4869 // Sink any remaining PHI nodes directly into UnwindDest. 4870 Instruction *InsertPt = DestEHPad; 4871 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4872 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4873 // If the PHI node has no uses or all of its uses are in this basic 4874 // block (meaning they are debug or lifetime intrinsics), just leave 4875 // it. It will be erased when we erase BB below. 4876 continue; 4877 4878 // Otherwise, sink this PHI node into UnwindDest. 4879 // Any predecessors to UnwindDest which are not already represented 4880 // must be back edges which inherit the value from the path through 4881 // BB. In this case, the PHI value must reference itself. 4882 for (auto *pred : predecessors(UnwindDest)) 4883 if (pred != BB) 4884 PN.addIncoming(&PN, pred); 4885 PN.moveBefore(InsertPt); 4886 // Also, add a dummy incoming value for the original BB itself, 4887 // so that the PHI is well-formed until we drop said predecessor. 4888 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4889 } 4890 } 4891 4892 std::vector<DominatorTree::UpdateType> Updates; 4893 4894 // We use make_early_inc_range here because we will remove all predecessors. 4895 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4896 if (UnwindDest == nullptr) { 4897 if (DTU) { 4898 DTU->applyUpdates(Updates); 4899 Updates.clear(); 4900 } 4901 removeUnwindEdge(PredBB, DTU); 4902 ++NumInvokes; 4903 } else { 4904 BB->removePredecessor(PredBB); 4905 Instruction *TI = PredBB->getTerminator(); 4906 TI->replaceUsesOfWith(BB, UnwindDest); 4907 if (DTU) { 4908 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4909 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4910 } 4911 } 4912 } 4913 4914 if (DTU) 4915 DTU->applyUpdates(Updates); 4916 4917 DeleteDeadBlock(BB, DTU); 4918 4919 return true; 4920 } 4921 4922 // Try to merge two cleanuppads together. 4923 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4924 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4925 // with. 4926 BasicBlock *UnwindDest = RI->getUnwindDest(); 4927 if (!UnwindDest) 4928 return false; 4929 4930 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4931 // be safe to merge without code duplication. 4932 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4933 return false; 4934 4935 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4936 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4937 if (!SuccessorCleanupPad) 4938 return false; 4939 4940 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4941 // Replace any uses of the successor cleanupad with the predecessor pad 4942 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4943 // funclet bundle operands. 4944 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4945 // Remove the old cleanuppad. 4946 SuccessorCleanupPad->eraseFromParent(); 4947 // Now, we simply replace the cleanupret with a branch to the unwind 4948 // destination. 4949 BranchInst::Create(UnwindDest, RI->getParent()); 4950 RI->eraseFromParent(); 4951 4952 return true; 4953 } 4954 4955 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4956 // It is possible to transiantly have an undef cleanuppad operand because we 4957 // have deleted some, but not all, dead blocks. 4958 // Eventually, this block will be deleted. 4959 if (isa<UndefValue>(RI->getOperand(0))) 4960 return false; 4961 4962 if (mergeCleanupPad(RI)) 4963 return true; 4964 4965 if (removeEmptyCleanup(RI, DTU)) 4966 return true; 4967 4968 return false; 4969 } 4970 4971 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 4972 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4973 BasicBlock *BB = UI->getParent(); 4974 4975 bool Changed = false; 4976 4977 // If there are any instructions immediately before the unreachable that can 4978 // be removed, do so. 4979 while (UI->getIterator() != BB->begin()) { 4980 BasicBlock::iterator BBI = UI->getIterator(); 4981 --BBI; 4982 4983 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 4984 break; // Can not drop any more instructions. We're done here. 4985 // Otherwise, this instruction can be freely erased, 4986 // even if it is not side-effect free. 4987 4988 // Note that deleting EH's here is in fact okay, although it involves a bit 4989 // of subtle reasoning. If this inst is an EH, all the predecessors of this 4990 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 4991 // and we can therefore guarantee this block will be erased. 4992 4993 // Delete this instruction (any uses are guaranteed to be dead) 4994 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 4995 BBI->eraseFromParent(); 4996 Changed = true; 4997 } 4998 4999 // If the unreachable instruction is the first in the block, take a gander 5000 // at all of the predecessors of this instruction, and simplify them. 5001 if (&BB->front() != UI) 5002 return Changed; 5003 5004 std::vector<DominatorTree::UpdateType> Updates; 5005 5006 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5007 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 5008 auto *Predecessor = Preds[i]; 5009 Instruction *TI = Predecessor->getTerminator(); 5010 IRBuilder<> Builder(TI); 5011 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5012 // We could either have a proper unconditional branch, 5013 // or a degenerate conditional branch with matching destinations. 5014 if (all_of(BI->successors(), 5015 [BB](auto *Successor) { return Successor == BB; })) { 5016 new UnreachableInst(TI->getContext(), TI); 5017 TI->eraseFromParent(); 5018 Changed = true; 5019 } else { 5020 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5021 Value* Cond = BI->getCondition(); 5022 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5023 "The destinations are guaranteed to be different here."); 5024 if (BI->getSuccessor(0) == BB) { 5025 Builder.CreateAssumption(Builder.CreateNot(Cond)); 5026 Builder.CreateBr(BI->getSuccessor(1)); 5027 } else { 5028 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5029 Builder.CreateAssumption(Cond); 5030 Builder.CreateBr(BI->getSuccessor(0)); 5031 } 5032 EraseTerminatorAndDCECond(BI); 5033 Changed = true; 5034 } 5035 if (DTU) 5036 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5037 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5038 SwitchInstProfUpdateWrapper SU(*SI); 5039 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5040 if (i->getCaseSuccessor() != BB) { 5041 ++i; 5042 continue; 5043 } 5044 BB->removePredecessor(SU->getParent()); 5045 i = SU.removeCase(i); 5046 e = SU->case_end(); 5047 Changed = true; 5048 } 5049 // Note that the default destination can't be removed! 5050 if (DTU && SI->getDefaultDest() != BB) 5051 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5052 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5053 if (II->getUnwindDest() == BB) { 5054 if (DTU) { 5055 DTU->applyUpdates(Updates); 5056 Updates.clear(); 5057 } 5058 removeUnwindEdge(TI->getParent(), DTU); 5059 Changed = true; 5060 } 5061 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5062 if (CSI->getUnwindDest() == BB) { 5063 if (DTU) { 5064 DTU->applyUpdates(Updates); 5065 Updates.clear(); 5066 } 5067 removeUnwindEdge(TI->getParent(), DTU); 5068 Changed = true; 5069 continue; 5070 } 5071 5072 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5073 E = CSI->handler_end(); 5074 I != E; ++I) { 5075 if (*I == BB) { 5076 CSI->removeHandler(I); 5077 --I; 5078 --E; 5079 Changed = true; 5080 } 5081 } 5082 if (DTU) 5083 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5084 if (CSI->getNumHandlers() == 0) { 5085 if (CSI->hasUnwindDest()) { 5086 // Redirect all predecessors of the block containing CatchSwitchInst 5087 // to instead branch to the CatchSwitchInst's unwind destination. 5088 if (DTU) { 5089 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5090 Updates.push_back({DominatorTree::Insert, 5091 PredecessorOfPredecessor, 5092 CSI->getUnwindDest()}); 5093 Updates.push_back({DominatorTree::Delete, 5094 PredecessorOfPredecessor, Predecessor}); 5095 } 5096 } 5097 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5098 } else { 5099 // Rewrite all preds to unwind to caller (or from invoke to call). 5100 if (DTU) { 5101 DTU->applyUpdates(Updates); 5102 Updates.clear(); 5103 } 5104 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5105 for (BasicBlock *EHPred : EHPreds) 5106 removeUnwindEdge(EHPred, DTU); 5107 } 5108 // The catchswitch is no longer reachable. 5109 new UnreachableInst(CSI->getContext(), CSI); 5110 CSI->eraseFromParent(); 5111 Changed = true; 5112 } 5113 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5114 (void)CRI; 5115 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5116 "Expected to always have an unwind to BB."); 5117 if (DTU) 5118 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5119 new UnreachableInst(TI->getContext(), TI); 5120 TI->eraseFromParent(); 5121 Changed = true; 5122 } 5123 } 5124 5125 if (DTU) 5126 DTU->applyUpdates(Updates); 5127 5128 // If this block is now dead, remove it. 5129 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5130 DeleteDeadBlock(BB, DTU); 5131 return true; 5132 } 5133 5134 return Changed; 5135 } 5136 5137 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5138 assert(Cases.size() >= 1); 5139 5140 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 5141 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5142 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5143 return false; 5144 } 5145 return true; 5146 } 5147 5148 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5149 DomTreeUpdater *DTU) { 5150 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5151 auto *BB = Switch->getParent(); 5152 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5153 OrigDefaultBlock->removePredecessor(BB); 5154 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5155 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5156 OrigDefaultBlock); 5157 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5158 Switch->setDefaultDest(&*NewDefaultBlock); 5159 if (DTU) { 5160 SmallVector<DominatorTree::UpdateType, 2> Updates; 5161 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5162 if (!is_contained(successors(BB), OrigDefaultBlock)) 5163 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5164 DTU->applyUpdates(Updates); 5165 } 5166 } 5167 5168 /// Turn a switch with two reachable destinations into an integer range 5169 /// comparison and branch. 5170 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 5171 IRBuilder<> &Builder) { 5172 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5173 5174 bool HasDefault = 5175 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5176 5177 auto *BB = SI->getParent(); 5178 5179 // Partition the cases into two sets with different destinations. 5180 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5181 BasicBlock *DestB = nullptr; 5182 SmallVector<ConstantInt *, 16> CasesA; 5183 SmallVector<ConstantInt *, 16> CasesB; 5184 5185 for (auto Case : SI->cases()) { 5186 BasicBlock *Dest = Case.getCaseSuccessor(); 5187 if (!DestA) 5188 DestA = Dest; 5189 if (Dest == DestA) { 5190 CasesA.push_back(Case.getCaseValue()); 5191 continue; 5192 } 5193 if (!DestB) 5194 DestB = Dest; 5195 if (Dest == DestB) { 5196 CasesB.push_back(Case.getCaseValue()); 5197 continue; 5198 } 5199 return false; // More than two destinations. 5200 } 5201 5202 assert(DestA && DestB && 5203 "Single-destination switch should have been folded."); 5204 assert(DestA != DestB); 5205 assert(DestB != SI->getDefaultDest()); 5206 assert(!CasesB.empty() && "There must be non-default cases."); 5207 assert(!CasesA.empty() || HasDefault); 5208 5209 // Figure out if one of the sets of cases form a contiguous range. 5210 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5211 BasicBlock *ContiguousDest = nullptr; 5212 BasicBlock *OtherDest = nullptr; 5213 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 5214 ContiguousCases = &CasesA; 5215 ContiguousDest = DestA; 5216 OtherDest = DestB; 5217 } else if (CasesAreContiguous(CasesB)) { 5218 ContiguousCases = &CasesB; 5219 ContiguousDest = DestB; 5220 OtherDest = DestA; 5221 } else 5222 return false; 5223 5224 // Start building the compare and branch. 5225 5226 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5227 Constant *NumCases = 5228 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5229 5230 Value *Sub = SI->getCondition(); 5231 if (!Offset->isNullValue()) 5232 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5233 5234 Value *Cmp; 5235 // If NumCases overflowed, then all possible values jump to the successor. 5236 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5237 Cmp = ConstantInt::getTrue(SI->getContext()); 5238 else 5239 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5240 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5241 5242 // Update weight for the newly-created conditional branch. 5243 if (HasBranchWeights(SI)) { 5244 SmallVector<uint64_t, 8> Weights; 5245 GetBranchWeights(SI, Weights); 5246 if (Weights.size() == 1 + SI->getNumCases()) { 5247 uint64_t TrueWeight = 0; 5248 uint64_t FalseWeight = 0; 5249 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5250 if (SI->getSuccessor(I) == ContiguousDest) 5251 TrueWeight += Weights[I]; 5252 else 5253 FalseWeight += Weights[I]; 5254 } 5255 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5256 TrueWeight /= 2; 5257 FalseWeight /= 2; 5258 } 5259 setBranchWeights(NewBI, TrueWeight, FalseWeight); 5260 } 5261 } 5262 5263 // Prune obsolete incoming values off the successors' PHI nodes. 5264 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5265 unsigned PreviousEdges = ContiguousCases->size(); 5266 if (ContiguousDest == SI->getDefaultDest()) 5267 ++PreviousEdges; 5268 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5269 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5270 } 5271 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5272 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5273 if (OtherDest == SI->getDefaultDest()) 5274 ++PreviousEdges; 5275 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5276 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5277 } 5278 5279 // Clean up the default block - it may have phis or other instructions before 5280 // the unreachable terminator. 5281 if (!HasDefault) 5282 createUnreachableSwitchDefault(SI, DTU); 5283 5284 auto *UnreachableDefault = SI->getDefaultDest(); 5285 5286 // Drop the switch. 5287 SI->eraseFromParent(); 5288 5289 if (!HasDefault && DTU) 5290 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5291 5292 return true; 5293 } 5294 5295 /// Compute masked bits for the condition of a switch 5296 /// and use it to remove dead cases. 5297 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5298 AssumptionCache *AC, 5299 const DataLayout &DL) { 5300 Value *Cond = SI->getCondition(); 5301 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5302 5303 // We can also eliminate cases by determining that their values are outside of 5304 // the limited range of the condition based on how many significant (non-sign) 5305 // bits are in the condition value. 5306 unsigned MaxSignificantBitsInCond = 5307 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5308 5309 // Gather dead cases. 5310 SmallVector<ConstantInt *, 8> DeadCases; 5311 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5312 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5313 for (auto &Case : SI->cases()) { 5314 auto *Successor = Case.getCaseSuccessor(); 5315 if (DTU) { 5316 if (!NumPerSuccessorCases.count(Successor)) 5317 UniqueSuccessors.push_back(Successor); 5318 ++NumPerSuccessorCases[Successor]; 5319 } 5320 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5321 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5322 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5323 DeadCases.push_back(Case.getCaseValue()); 5324 if (DTU) 5325 --NumPerSuccessorCases[Successor]; 5326 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5327 << " is dead.\n"); 5328 } 5329 } 5330 5331 // If we can prove that the cases must cover all possible values, the 5332 // default destination becomes dead and we can remove it. If we know some 5333 // of the bits in the value, we can use that to more precisely compute the 5334 // number of possible unique case values. 5335 bool HasDefault = 5336 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5337 const unsigned NumUnknownBits = 5338 Known.getBitWidth() - (Known.Zero | Known.One).countPopulation(); 5339 assert(NumUnknownBits <= Known.getBitWidth()); 5340 if (HasDefault && DeadCases.empty() && 5341 NumUnknownBits < 64 /* avoid overflow */ && 5342 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5343 createUnreachableSwitchDefault(SI, DTU); 5344 return true; 5345 } 5346 5347 if (DeadCases.empty()) 5348 return false; 5349 5350 SwitchInstProfUpdateWrapper SIW(*SI); 5351 for (ConstantInt *DeadCase : DeadCases) { 5352 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5353 assert(CaseI != SI->case_default() && 5354 "Case was not found. Probably mistake in DeadCases forming."); 5355 // Prune unused values from PHI nodes. 5356 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5357 SIW.removeCase(CaseI); 5358 } 5359 5360 if (DTU) { 5361 std::vector<DominatorTree::UpdateType> Updates; 5362 for (auto *Successor : UniqueSuccessors) 5363 if (NumPerSuccessorCases[Successor] == 0) 5364 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5365 DTU->applyUpdates(Updates); 5366 } 5367 5368 return true; 5369 } 5370 5371 /// If BB would be eligible for simplification by 5372 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5373 /// by an unconditional branch), look at the phi node for BB in the successor 5374 /// block and see if the incoming value is equal to CaseValue. If so, return 5375 /// the phi node, and set PhiIndex to BB's index in the phi node. 5376 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5377 BasicBlock *BB, int *PhiIndex) { 5378 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5379 return nullptr; // BB must be empty to be a candidate for simplification. 5380 if (!BB->getSinglePredecessor()) 5381 return nullptr; // BB must be dominated by the switch. 5382 5383 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5384 if (!Branch || !Branch->isUnconditional()) 5385 return nullptr; // Terminator must be unconditional branch. 5386 5387 BasicBlock *Succ = Branch->getSuccessor(0); 5388 5389 for (PHINode &PHI : Succ->phis()) { 5390 int Idx = PHI.getBasicBlockIndex(BB); 5391 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5392 5393 Value *InValue = PHI.getIncomingValue(Idx); 5394 if (InValue != CaseValue) 5395 continue; 5396 5397 *PhiIndex = Idx; 5398 return &PHI; 5399 } 5400 5401 return nullptr; 5402 } 5403 5404 /// Try to forward the condition of a switch instruction to a phi node 5405 /// dominated by the switch, if that would mean that some of the destination 5406 /// blocks of the switch can be folded away. Return true if a change is made. 5407 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5408 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5409 5410 ForwardingNodesMap ForwardingNodes; 5411 BasicBlock *SwitchBlock = SI->getParent(); 5412 bool Changed = false; 5413 for (auto &Case : SI->cases()) { 5414 ConstantInt *CaseValue = Case.getCaseValue(); 5415 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5416 5417 // Replace phi operands in successor blocks that are using the constant case 5418 // value rather than the switch condition variable: 5419 // switchbb: 5420 // switch i32 %x, label %default [ 5421 // i32 17, label %succ 5422 // ... 5423 // succ: 5424 // %r = phi i32 ... [ 17, %switchbb ] ... 5425 // --> 5426 // %r = phi i32 ... [ %x, %switchbb ] ... 5427 5428 for (PHINode &Phi : CaseDest->phis()) { 5429 // This only works if there is exactly 1 incoming edge from the switch to 5430 // a phi. If there is >1, that means multiple cases of the switch map to 1 5431 // value in the phi, and that phi value is not the switch condition. Thus, 5432 // this transform would not make sense (the phi would be invalid because 5433 // a phi can't have different incoming values from the same block). 5434 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5435 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5436 count(Phi.blocks(), SwitchBlock) == 1) { 5437 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5438 Changed = true; 5439 } 5440 } 5441 5442 // Collect phi nodes that are indirectly using this switch's case constants. 5443 int PhiIdx; 5444 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5445 ForwardingNodes[Phi].push_back(PhiIdx); 5446 } 5447 5448 for (auto &ForwardingNode : ForwardingNodes) { 5449 PHINode *Phi = ForwardingNode.first; 5450 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5451 if (Indexes.size() < 2) 5452 continue; 5453 5454 for (int Index : Indexes) 5455 Phi->setIncomingValue(Index, SI->getCondition()); 5456 Changed = true; 5457 } 5458 5459 return Changed; 5460 } 5461 5462 /// Return true if the backend will be able to handle 5463 /// initializing an array of constants like C. 5464 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5465 if (C->isThreadDependent()) 5466 return false; 5467 if (C->isDLLImportDependent()) 5468 return false; 5469 5470 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5471 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5472 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5473 return false; 5474 5475 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5476 // Pointer casts and in-bounds GEPs will not prohibit the backend from 5477 // materializing the array of constants. 5478 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 5479 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI)) 5480 return false; 5481 } 5482 5483 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5484 return false; 5485 5486 return true; 5487 } 5488 5489 /// If V is a Constant, return it. Otherwise, try to look up 5490 /// its constant value in ConstantPool, returning 0 if it's not there. 5491 static Constant * 5492 LookupConstant(Value *V, 5493 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5494 if (Constant *C = dyn_cast<Constant>(V)) 5495 return C; 5496 return ConstantPool.lookup(V); 5497 } 5498 5499 /// Try to fold instruction I into a constant. This works for 5500 /// simple instructions such as binary operations where both operands are 5501 /// constant or can be replaced by constants from the ConstantPool. Returns the 5502 /// resulting constant on success, 0 otherwise. 5503 static Constant * 5504 ConstantFold(Instruction *I, const DataLayout &DL, 5505 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5506 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5507 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5508 if (!A) 5509 return nullptr; 5510 if (A->isAllOnesValue()) 5511 return LookupConstant(Select->getTrueValue(), ConstantPool); 5512 if (A->isNullValue()) 5513 return LookupConstant(Select->getFalseValue(), ConstantPool); 5514 return nullptr; 5515 } 5516 5517 SmallVector<Constant *, 4> COps; 5518 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5519 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5520 COps.push_back(A); 5521 else 5522 return nullptr; 5523 } 5524 5525 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5526 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5527 COps[1], DL); 5528 } 5529 5530 return ConstantFoldInstOperands(I, COps, DL); 5531 } 5532 5533 /// Try to determine the resulting constant values in phi nodes 5534 /// at the common destination basic block, *CommonDest, for one of the case 5535 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5536 /// case), of a switch instruction SI. 5537 static bool 5538 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5539 BasicBlock **CommonDest, 5540 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5541 const DataLayout &DL, const TargetTransformInfo &TTI) { 5542 // The block from which we enter the common destination. 5543 BasicBlock *Pred = SI->getParent(); 5544 5545 // If CaseDest is empty except for some side-effect free instructions through 5546 // which we can constant-propagate the CaseVal, continue to its successor. 5547 SmallDenseMap<Value *, Constant *> ConstantPool; 5548 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5549 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 5550 if (I.isTerminator()) { 5551 // If the terminator is a simple branch, continue to the next block. 5552 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5553 return false; 5554 Pred = CaseDest; 5555 CaseDest = I.getSuccessor(0); 5556 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5557 // Instruction is side-effect free and constant. 5558 5559 // If the instruction has uses outside this block or a phi node slot for 5560 // the block, it is not safe to bypass the instruction since it would then 5561 // no longer dominate all its uses. 5562 for (auto &Use : I.uses()) { 5563 User *User = Use.getUser(); 5564 if (Instruction *I = dyn_cast<Instruction>(User)) 5565 if (I->getParent() == CaseDest) 5566 continue; 5567 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5568 if (Phi->getIncomingBlock(Use) == CaseDest) 5569 continue; 5570 return false; 5571 } 5572 5573 ConstantPool.insert(std::make_pair(&I, C)); 5574 } else { 5575 break; 5576 } 5577 } 5578 5579 // If we did not have a CommonDest before, use the current one. 5580 if (!*CommonDest) 5581 *CommonDest = CaseDest; 5582 // If the destination isn't the common one, abort. 5583 if (CaseDest != *CommonDest) 5584 return false; 5585 5586 // Get the values for this case from phi nodes in the destination block. 5587 for (PHINode &PHI : (*CommonDest)->phis()) { 5588 int Idx = PHI.getBasicBlockIndex(Pred); 5589 if (Idx == -1) 5590 continue; 5591 5592 Constant *ConstVal = 5593 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5594 if (!ConstVal) 5595 return false; 5596 5597 // Be conservative about which kinds of constants we support. 5598 if (!ValidLookupTableConstant(ConstVal, TTI)) 5599 return false; 5600 5601 Res.push_back(std::make_pair(&PHI, ConstVal)); 5602 } 5603 5604 return Res.size() > 0; 5605 } 5606 5607 // Helper function used to add CaseVal to the list of cases that generate 5608 // Result. Returns the updated number of cases that generate this result. 5609 static size_t mapCaseToResult(ConstantInt *CaseVal, 5610 SwitchCaseResultVectorTy &UniqueResults, 5611 Constant *Result) { 5612 for (auto &I : UniqueResults) { 5613 if (I.first == Result) { 5614 I.second.push_back(CaseVal); 5615 return I.second.size(); 5616 } 5617 } 5618 UniqueResults.push_back( 5619 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5620 return 1; 5621 } 5622 5623 // Helper function that initializes a map containing 5624 // results for the PHI node of the common destination block for a switch 5625 // instruction. Returns false if multiple PHI nodes have been found or if 5626 // there is not a common destination block for the switch. 5627 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 5628 BasicBlock *&CommonDest, 5629 SwitchCaseResultVectorTy &UniqueResults, 5630 Constant *&DefaultResult, 5631 const DataLayout &DL, 5632 const TargetTransformInfo &TTI, 5633 uintptr_t MaxUniqueResults) { 5634 for (auto &I : SI->cases()) { 5635 ConstantInt *CaseVal = I.getCaseValue(); 5636 5637 // Resulting value at phi nodes for this case value. 5638 SwitchCaseResultsTy Results; 5639 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5640 DL, TTI)) 5641 return false; 5642 5643 // Only one value per case is permitted. 5644 if (Results.size() > 1) 5645 return false; 5646 5647 // Add the case->result mapping to UniqueResults. 5648 const size_t NumCasesForResult = 5649 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5650 5651 // Early out if there are too many cases for this result. 5652 if (NumCasesForResult > MaxSwitchCasesPerResult) 5653 return false; 5654 5655 // Early out if there are too many unique results. 5656 if (UniqueResults.size() > MaxUniqueResults) 5657 return false; 5658 5659 // Check the PHI consistency. 5660 if (!PHI) 5661 PHI = Results[0].first; 5662 else if (PHI != Results[0].first) 5663 return false; 5664 } 5665 // Find the default result value. 5666 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5667 BasicBlock *DefaultDest = SI->getDefaultDest(); 5668 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5669 DL, TTI); 5670 // If the default value is not found abort unless the default destination 5671 // is unreachable. 5672 DefaultResult = 5673 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5674 if ((!DefaultResult && 5675 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5676 return false; 5677 5678 return true; 5679 } 5680 5681 // Helper function that checks if it is possible to transform a switch with only 5682 // two cases (or two cases + default) that produces a result into a select. 5683 // TODO: Handle switches with more than 2 cases that map to the same result. 5684 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, 5685 Constant *DefaultResult, Value *Condition, 5686 IRBuilder<> &Builder) { 5687 // If we are selecting between only two cases transform into a simple 5688 // select or a two-way select if default is possible. 5689 // Example: 5690 // switch (a) { %0 = icmp eq i32 %a, 10 5691 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 5692 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 5693 // default: return 4; %3 = select i1 %2, i32 2, i32 %1 5694 // } 5695 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5696 ResultVector[1].second.size() == 1) { 5697 ConstantInt *FirstCase = ResultVector[0].second[0]; 5698 ConstantInt *SecondCase = ResultVector[1].second[0]; 5699 Value *SelectValue = ResultVector[1].first; 5700 if (DefaultResult) { 5701 Value *ValueCompare = 5702 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5703 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5704 DefaultResult, "switch.select"); 5705 } 5706 Value *ValueCompare = 5707 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5708 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5709 SelectValue, "switch.select"); 5710 } 5711 5712 // Handle the degenerate case where two cases have the same result value. 5713 if (ResultVector.size() == 1 && DefaultResult) { 5714 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; 5715 unsigned CaseCount = CaseValues.size(); 5716 // n bits group cases map to the same result: 5717 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default 5718 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default 5719 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default 5720 if (isPowerOf2_32(CaseCount)) { 5721 ConstantInt *MinCaseVal = CaseValues[0]; 5722 // Find mininal value. 5723 for (auto Case : CaseValues) 5724 if (Case->getValue().slt(MinCaseVal->getValue())) 5725 MinCaseVal = Case; 5726 5727 // Mark the bits case number touched. 5728 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); 5729 for (auto Case : CaseValues) 5730 BitMask |= (Case->getValue() - MinCaseVal->getValue()); 5731 5732 // Check if cases with the same result can cover all number 5733 // in touched bits. 5734 if (BitMask.countPopulation() == Log2_32(CaseCount)) { 5735 if (!MinCaseVal->isNullValue()) 5736 Condition = Builder.CreateSub(Condition, MinCaseVal); 5737 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); 5738 Value *Cmp = Builder.CreateICmpEQ( 5739 And, Constant::getNullValue(And->getType()), "switch.selectcmp"); 5740 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5741 } 5742 } 5743 5744 // Handle the degenerate case where two cases have the same value. 5745 if (CaseValues.size() == 2) { 5746 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], 5747 "switch.selectcmp.case1"); 5748 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], 5749 "switch.selectcmp.case2"); 5750 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5751 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5752 } 5753 } 5754 5755 return nullptr; 5756 } 5757 5758 // Helper function to cleanup a switch instruction that has been converted into 5759 // a select, fixing up PHI nodes and basic blocks. 5760 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, 5761 Value *SelectValue, 5762 IRBuilder<> &Builder, 5763 DomTreeUpdater *DTU) { 5764 std::vector<DominatorTree::UpdateType> Updates; 5765 5766 BasicBlock *SelectBB = SI->getParent(); 5767 BasicBlock *DestBB = PHI->getParent(); 5768 5769 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5770 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5771 Builder.CreateBr(DestBB); 5772 5773 // Remove the switch. 5774 5775 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5776 PHI->removeIncomingValue(SelectBB); 5777 PHI->addIncoming(SelectValue, SelectBB); 5778 5779 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5780 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5781 BasicBlock *Succ = SI->getSuccessor(i); 5782 5783 if (Succ == DestBB) 5784 continue; 5785 Succ->removePredecessor(SelectBB); 5786 if (DTU && RemovedSuccessors.insert(Succ).second) 5787 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5788 } 5789 SI->eraseFromParent(); 5790 if (DTU) 5791 DTU->applyUpdates(Updates); 5792 } 5793 5794 /// If a switch is only used to initialize one or more phi nodes in a common 5795 /// successor block with only two different constant values, try to replace the 5796 /// switch with a select. Returns true if the fold was made. 5797 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5798 DomTreeUpdater *DTU, const DataLayout &DL, 5799 const TargetTransformInfo &TTI) { 5800 Value *const Cond = SI->getCondition(); 5801 PHINode *PHI = nullptr; 5802 BasicBlock *CommonDest = nullptr; 5803 Constant *DefaultResult; 5804 SwitchCaseResultVectorTy UniqueResults; 5805 // Collect all the cases that will deliver the same value from the switch. 5806 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5807 DL, TTI, /*MaxUniqueResults*/ 2)) 5808 return false; 5809 5810 assert(PHI != nullptr && "PHI for value select not found"); 5811 Builder.SetInsertPoint(SI); 5812 Value *SelectValue = 5813 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); 5814 if (!SelectValue) 5815 return false; 5816 5817 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); 5818 return true; 5819 } 5820 5821 namespace { 5822 5823 /// This class represents a lookup table that can be used to replace a switch. 5824 class SwitchLookupTable { 5825 public: 5826 /// Create a lookup table to use as a switch replacement with the contents 5827 /// of Values, using DefaultValue to fill any holes in the table. 5828 SwitchLookupTable( 5829 Module &M, uint64_t TableSize, ConstantInt *Offset, 5830 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5831 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5832 5833 /// Build instructions with Builder to retrieve the value at 5834 /// the position given by Index in the lookup table. 5835 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5836 5837 /// Return true if a table with TableSize elements of 5838 /// type ElementType would fit in a target-legal register. 5839 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5840 Type *ElementType); 5841 5842 private: 5843 // Depending on the contents of the table, it can be represented in 5844 // different ways. 5845 enum { 5846 // For tables where each element contains the same value, we just have to 5847 // store that single value and return it for each lookup. 5848 SingleValueKind, 5849 5850 // For tables where there is a linear relationship between table index 5851 // and values. We calculate the result with a simple multiplication 5852 // and addition instead of a table lookup. 5853 LinearMapKind, 5854 5855 // For small tables with integer elements, we can pack them into a bitmap 5856 // that fits into a target-legal register. Values are retrieved by 5857 // shift and mask operations. 5858 BitMapKind, 5859 5860 // The table is stored as an array of values. Values are retrieved by load 5861 // instructions from the table. 5862 ArrayKind 5863 } Kind; 5864 5865 // For SingleValueKind, this is the single value. 5866 Constant *SingleValue = nullptr; 5867 5868 // For BitMapKind, this is the bitmap. 5869 ConstantInt *BitMap = nullptr; 5870 IntegerType *BitMapElementTy = nullptr; 5871 5872 // For LinearMapKind, these are the constants used to derive the value. 5873 ConstantInt *LinearOffset = nullptr; 5874 ConstantInt *LinearMultiplier = nullptr; 5875 5876 // For ArrayKind, this is the array. 5877 GlobalVariable *Array = nullptr; 5878 }; 5879 5880 } // end anonymous namespace 5881 5882 SwitchLookupTable::SwitchLookupTable( 5883 Module &M, uint64_t TableSize, ConstantInt *Offset, 5884 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5885 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5886 assert(Values.size() && "Can't build lookup table without values!"); 5887 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5888 5889 // If all values in the table are equal, this is that value. 5890 SingleValue = Values.begin()->second; 5891 5892 Type *ValueType = Values.begin()->second->getType(); 5893 5894 // Build up the table contents. 5895 SmallVector<Constant *, 64> TableContents(TableSize); 5896 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5897 ConstantInt *CaseVal = Values[I].first; 5898 Constant *CaseRes = Values[I].second; 5899 assert(CaseRes->getType() == ValueType); 5900 5901 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5902 TableContents[Idx] = CaseRes; 5903 5904 if (CaseRes != SingleValue) 5905 SingleValue = nullptr; 5906 } 5907 5908 // Fill in any holes in the table with the default result. 5909 if (Values.size() < TableSize) { 5910 assert(DefaultValue && 5911 "Need a default value to fill the lookup table holes."); 5912 assert(DefaultValue->getType() == ValueType); 5913 for (uint64_t I = 0; I < TableSize; ++I) { 5914 if (!TableContents[I]) 5915 TableContents[I] = DefaultValue; 5916 } 5917 5918 if (DefaultValue != SingleValue) 5919 SingleValue = nullptr; 5920 } 5921 5922 // If each element in the table contains the same value, we only need to store 5923 // that single value. 5924 if (SingleValue) { 5925 Kind = SingleValueKind; 5926 return; 5927 } 5928 5929 // Check if we can derive the value with a linear transformation from the 5930 // table index. 5931 if (isa<IntegerType>(ValueType)) { 5932 bool LinearMappingPossible = true; 5933 APInt PrevVal; 5934 APInt DistToPrev; 5935 assert(TableSize >= 2 && "Should be a SingleValue table."); 5936 // Check if there is the same distance between two consecutive values. 5937 for (uint64_t I = 0; I < TableSize; ++I) { 5938 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5939 if (!ConstVal) { 5940 // This is an undef. We could deal with it, but undefs in lookup tables 5941 // are very seldom. It's probably not worth the additional complexity. 5942 LinearMappingPossible = false; 5943 break; 5944 } 5945 const APInt &Val = ConstVal->getValue(); 5946 if (I != 0) { 5947 APInt Dist = Val - PrevVal; 5948 if (I == 1) { 5949 DistToPrev = Dist; 5950 } else if (Dist != DistToPrev) { 5951 LinearMappingPossible = false; 5952 break; 5953 } 5954 } 5955 PrevVal = Val; 5956 } 5957 if (LinearMappingPossible) { 5958 LinearOffset = cast<ConstantInt>(TableContents[0]); 5959 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5960 Kind = LinearMapKind; 5961 ++NumLinearMaps; 5962 return; 5963 } 5964 } 5965 5966 // If the type is integer and the table fits in a register, build a bitmap. 5967 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5968 IntegerType *IT = cast<IntegerType>(ValueType); 5969 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5970 for (uint64_t I = TableSize; I > 0; --I) { 5971 TableInt <<= IT->getBitWidth(); 5972 // Insert values into the bitmap. Undef values are set to zero. 5973 if (!isa<UndefValue>(TableContents[I - 1])) { 5974 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5975 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5976 } 5977 } 5978 BitMap = ConstantInt::get(M.getContext(), TableInt); 5979 BitMapElementTy = IT; 5980 Kind = BitMapKind; 5981 ++NumBitMaps; 5982 return; 5983 } 5984 5985 // Store the table in an array. 5986 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5987 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5988 5989 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5990 GlobalVariable::PrivateLinkage, Initializer, 5991 "switch.table." + FuncName); 5992 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5993 // Set the alignment to that of an array items. We will be only loading one 5994 // value out of it. 5995 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5996 Kind = ArrayKind; 5997 } 5998 5999 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 6000 switch (Kind) { 6001 case SingleValueKind: 6002 return SingleValue; 6003 case LinearMapKind: { 6004 // Derive the result value from the input value. 6005 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 6006 false, "switch.idx.cast"); 6007 if (!LinearMultiplier->isOne()) 6008 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 6009 if (!LinearOffset->isZero()) 6010 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 6011 return Result; 6012 } 6013 case BitMapKind: { 6014 // Type of the bitmap (e.g. i59). 6015 IntegerType *MapTy = BitMap->getType(); 6016 6017 // Cast Index to the same type as the bitmap. 6018 // Note: The Index is <= the number of elements in the table, so 6019 // truncating it to the width of the bitmask is safe. 6020 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 6021 6022 // Multiply the shift amount by the element width. 6023 ShiftAmt = Builder.CreateMul( 6024 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 6025 "switch.shiftamt"); 6026 6027 // Shift down. 6028 Value *DownShifted = 6029 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 6030 // Mask off. 6031 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6032 } 6033 case ArrayKind: { 6034 // Make sure the table index will not overflow when treated as signed. 6035 IntegerType *IT = cast<IntegerType>(Index->getType()); 6036 uint64_t TableSize = 6037 Array->getInitializer()->getType()->getArrayNumElements(); 6038 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 6039 Index = Builder.CreateZExt( 6040 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6041 "switch.tableidx.zext"); 6042 6043 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6044 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6045 GEPIndices, "switch.gep"); 6046 return Builder.CreateLoad( 6047 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6048 "switch.load"); 6049 } 6050 } 6051 llvm_unreachable("Unknown lookup table kind!"); 6052 } 6053 6054 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 6055 uint64_t TableSize, 6056 Type *ElementType) { 6057 auto *IT = dyn_cast<IntegerType>(ElementType); 6058 if (!IT) 6059 return false; 6060 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6061 // are <= 15, we could try to narrow the type. 6062 6063 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6064 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6065 return false; 6066 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6067 } 6068 6069 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6070 const DataLayout &DL) { 6071 // Allow any legal type. 6072 if (TTI.isTypeLegal(Ty)) 6073 return true; 6074 6075 auto *IT = dyn_cast<IntegerType>(Ty); 6076 if (!IT) 6077 return false; 6078 6079 // Also allow power of 2 integer types that have at least 8 bits and fit in 6080 // a register. These types are common in frontend languages and targets 6081 // usually support loads of these types. 6082 // TODO: We could relax this to any integer that fits in a register and rely 6083 // on ABI alignment and padding in the table to allow the load to be widened. 6084 // Or we could widen the constants and truncate the load. 6085 unsigned BitWidth = IT->getBitWidth(); 6086 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6087 DL.fitsInLegalInteger(IT->getBitWidth()); 6088 } 6089 6090 /// Determine whether a lookup table should be built for this switch, based on 6091 /// the number of cases, size of the table, and the types of the results. 6092 // TODO: We could support larger than legal types by limiting based on the 6093 // number of loads required and/or table size. If the constants are small we 6094 // could use smaller table entries and extend after the load. 6095 static bool 6096 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6097 const TargetTransformInfo &TTI, const DataLayout &DL, 6098 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6099 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 6100 return false; // TableSize overflowed, or mul below might overflow. 6101 6102 bool AllTablesFitInRegister = true; 6103 bool HasIllegalType = false; 6104 for (const auto &I : ResultTypes) { 6105 Type *Ty = I.second; 6106 6107 // Saturate this flag to true. 6108 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6109 6110 // Saturate this flag to false. 6111 AllTablesFitInRegister = 6112 AllTablesFitInRegister && 6113 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 6114 6115 // If both flags saturate, we're done. NOTE: This *only* works with 6116 // saturating flags, and all flags have to saturate first due to the 6117 // non-deterministic behavior of iterating over a dense map. 6118 if (HasIllegalType && !AllTablesFitInRegister) 6119 break; 6120 } 6121 6122 // If each table would fit in a register, we should build it anyway. 6123 if (AllTablesFitInRegister) 6124 return true; 6125 6126 // Don't build a table that doesn't fit in-register if it has illegal types. 6127 if (HasIllegalType) 6128 return false; 6129 6130 // The table density should be at least 40%. This is the same criterion as for 6131 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 6132 // FIXME: Find the best cut-off. 6133 return SI->getNumCases() * 10 >= TableSize * 4; 6134 } 6135 6136 /// Try to reuse the switch table index compare. Following pattern: 6137 /// \code 6138 /// if (idx < tablesize) 6139 /// r = table[idx]; // table does not contain default_value 6140 /// else 6141 /// r = default_value; 6142 /// if (r != default_value) 6143 /// ... 6144 /// \endcode 6145 /// Is optimized to: 6146 /// \code 6147 /// cond = idx < tablesize; 6148 /// if (cond) 6149 /// r = table[idx]; 6150 /// else 6151 /// r = default_value; 6152 /// if (cond) 6153 /// ... 6154 /// \endcode 6155 /// Jump threading will then eliminate the second if(cond). 6156 static void reuseTableCompare( 6157 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6158 Constant *DefaultValue, 6159 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6160 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6161 if (!CmpInst) 6162 return; 6163 6164 // We require that the compare is in the same block as the phi so that jump 6165 // threading can do its work afterwards. 6166 if (CmpInst->getParent() != PhiBlock) 6167 return; 6168 6169 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6170 if (!CmpOp1) 6171 return; 6172 6173 Value *RangeCmp = RangeCheckBranch->getCondition(); 6174 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6175 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6176 6177 // Check if the compare with the default value is constant true or false. 6178 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6179 DefaultValue, CmpOp1, true); 6180 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6181 return; 6182 6183 // Check if the compare with the case values is distinct from the default 6184 // compare result. 6185 for (auto ValuePair : Values) { 6186 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6187 ValuePair.second, CmpOp1, true); 6188 if (!CaseConst || CaseConst == DefaultConst || 6189 (CaseConst != TrueConst && CaseConst != FalseConst)) 6190 return; 6191 } 6192 6193 // Check if the branch instruction dominates the phi node. It's a simple 6194 // dominance check, but sufficient for our needs. 6195 // Although this check is invariant in the calling loops, it's better to do it 6196 // at this late stage. Practically we do it at most once for a switch. 6197 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6198 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6199 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6200 return; 6201 } 6202 6203 if (DefaultConst == FalseConst) { 6204 // The compare yields the same result. We can replace it. 6205 CmpInst->replaceAllUsesWith(RangeCmp); 6206 ++NumTableCmpReuses; 6207 } else { 6208 // The compare yields the same result, just inverted. We can replace it. 6209 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6210 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6211 RangeCheckBranch); 6212 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6213 ++NumTableCmpReuses; 6214 } 6215 } 6216 6217 /// If the switch is only used to initialize one or more phi nodes in a common 6218 /// successor block with different constant values, replace the switch with 6219 /// lookup tables. 6220 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6221 DomTreeUpdater *DTU, const DataLayout &DL, 6222 const TargetTransformInfo &TTI) { 6223 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6224 6225 BasicBlock *BB = SI->getParent(); 6226 Function *Fn = BB->getParent(); 6227 // Only build lookup table when we have a target that supports it or the 6228 // attribute is not set. 6229 if (!TTI.shouldBuildLookupTables() || 6230 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6231 return false; 6232 6233 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6234 // split off a dense part and build a lookup table for that. 6235 6236 // FIXME: This creates arrays of GEPs to constant strings, which means each 6237 // GEP needs a runtime relocation in PIC code. We should just build one big 6238 // string and lookup indices into that. 6239 6240 // Ignore switches with less than three cases. Lookup tables will not make 6241 // them faster, so we don't analyze them. 6242 if (SI->getNumCases() < 3) 6243 return false; 6244 6245 // Figure out the corresponding result for each case value and phi node in the 6246 // common destination, as well as the min and max case values. 6247 assert(!SI->cases().empty()); 6248 SwitchInst::CaseIt CI = SI->case_begin(); 6249 ConstantInt *MinCaseVal = CI->getCaseValue(); 6250 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6251 6252 BasicBlock *CommonDest = nullptr; 6253 6254 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6255 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6256 6257 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6258 SmallDenseMap<PHINode *, Type *> ResultTypes; 6259 SmallVector<PHINode *, 4> PHIs; 6260 6261 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6262 ConstantInt *CaseVal = CI->getCaseValue(); 6263 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6264 MinCaseVal = CaseVal; 6265 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6266 MaxCaseVal = CaseVal; 6267 6268 // Resulting value at phi nodes for this case value. 6269 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6270 ResultsTy Results; 6271 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6272 Results, DL, TTI)) 6273 return false; 6274 6275 // Append the result from this case to the list for each phi. 6276 for (const auto &I : Results) { 6277 PHINode *PHI = I.first; 6278 Constant *Value = I.second; 6279 if (!ResultLists.count(PHI)) 6280 PHIs.push_back(PHI); 6281 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6282 } 6283 } 6284 6285 // Keep track of the result types. 6286 for (PHINode *PHI : PHIs) { 6287 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6288 } 6289 6290 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6291 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 6292 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 6293 bool TableHasHoles = (NumResults < TableSize); 6294 6295 // If the table has holes, we need a constant result for the default case 6296 // or a bitmask that fits in a register. 6297 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6298 bool HasDefaultResults = 6299 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6300 DefaultResultsList, DL, TTI); 6301 6302 bool NeedMask = (TableHasHoles && !HasDefaultResults); 6303 if (NeedMask) { 6304 // As an extra penalty for the validity test we require more cases. 6305 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 6306 return false; 6307 if (!DL.fitsInLegalInteger(TableSize)) 6308 return false; 6309 } 6310 6311 for (const auto &I : DefaultResultsList) { 6312 PHINode *PHI = I.first; 6313 Constant *Result = I.second; 6314 DefaultResults[PHI] = Result; 6315 } 6316 6317 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 6318 return false; 6319 6320 std::vector<DominatorTree::UpdateType> Updates; 6321 6322 // Create the BB that does the lookups. 6323 Module &Mod = *CommonDest->getParent()->getParent(); 6324 BasicBlock *LookupBB = BasicBlock::Create( 6325 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6326 6327 // Compute the table index value. 6328 Builder.SetInsertPoint(SI); 6329 Value *TableIndex; 6330 if (MinCaseVal->isNullValue()) 6331 TableIndex = SI->getCondition(); 6332 else 6333 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 6334 "switch.tableidx"); 6335 6336 // Compute the maximum table size representable by the integer type we are 6337 // switching upon. 6338 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6339 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6340 assert(MaxTableSize >= TableSize && 6341 "It is impossible for a switch to have more entries than the max " 6342 "representable value of its input integer type's size."); 6343 6344 // If the default destination is unreachable, or if the lookup table covers 6345 // all values of the conditional variable, branch directly to the lookup table 6346 // BB. Otherwise, check that the condition is within the case range. 6347 const bool DefaultIsReachable = 6348 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6349 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6350 BranchInst *RangeCheckBranch = nullptr; 6351 6352 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6353 Builder.CreateBr(LookupBB); 6354 if (DTU) 6355 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6356 // Note: We call removeProdecessor later since we need to be able to get the 6357 // PHI value for the default case in case we're using a bit mask. 6358 } else { 6359 Value *Cmp = Builder.CreateICmpULT( 6360 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6361 RangeCheckBranch = 6362 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6363 if (DTU) 6364 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6365 } 6366 6367 // Populate the BB that does the lookups. 6368 Builder.SetInsertPoint(LookupBB); 6369 6370 if (NeedMask) { 6371 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6372 // re-purposed to do the hole check, and we create a new LookupBB. 6373 BasicBlock *MaskBB = LookupBB; 6374 MaskBB->setName("switch.hole_check"); 6375 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6376 CommonDest->getParent(), CommonDest); 6377 6378 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6379 // unnecessary illegal types. 6380 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6381 APInt MaskInt(TableSizePowOf2, 0); 6382 APInt One(TableSizePowOf2, 1); 6383 // Build bitmask; fill in a 1 bit for every case. 6384 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6385 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6386 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6387 .getLimitedValue(); 6388 MaskInt |= One << Idx; 6389 } 6390 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6391 6392 // Get the TableIndex'th bit of the bitmask. 6393 // If this bit is 0 (meaning hole) jump to the default destination, 6394 // else continue with table lookup. 6395 IntegerType *MapTy = TableMask->getType(); 6396 Value *MaskIndex = 6397 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6398 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6399 Value *LoBit = Builder.CreateTrunc( 6400 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6401 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6402 if (DTU) { 6403 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6404 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6405 } 6406 Builder.SetInsertPoint(LookupBB); 6407 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6408 } 6409 6410 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6411 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6412 // do not delete PHINodes here. 6413 SI->getDefaultDest()->removePredecessor(BB, 6414 /*KeepOneInputPHIs=*/true); 6415 if (DTU) 6416 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6417 } 6418 6419 for (PHINode *PHI : PHIs) { 6420 const ResultListTy &ResultList = ResultLists[PHI]; 6421 6422 // If using a bitmask, use any value to fill the lookup table holes. 6423 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6424 StringRef FuncName = Fn->getName(); 6425 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6426 FuncName); 6427 6428 Value *Result = Table.BuildLookup(TableIndex, Builder); 6429 6430 // Do a small peephole optimization: re-use the switch table compare if 6431 // possible. 6432 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6433 BasicBlock *PhiBlock = PHI->getParent(); 6434 // Search for compare instructions which use the phi. 6435 for (auto *User : PHI->users()) { 6436 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6437 } 6438 } 6439 6440 PHI->addIncoming(Result, LookupBB); 6441 } 6442 6443 Builder.CreateBr(CommonDest); 6444 if (DTU) 6445 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6446 6447 // Remove the switch. 6448 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6449 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6450 BasicBlock *Succ = SI->getSuccessor(i); 6451 6452 if (Succ == SI->getDefaultDest()) 6453 continue; 6454 Succ->removePredecessor(BB); 6455 if (DTU && RemovedSuccessors.insert(Succ).second) 6456 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6457 } 6458 SI->eraseFromParent(); 6459 6460 if (DTU) 6461 DTU->applyUpdates(Updates); 6462 6463 ++NumLookupTables; 6464 if (NeedMask) 6465 ++NumLookupTablesHoles; 6466 return true; 6467 } 6468 6469 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6470 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6471 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6472 uint64_t Range = Diff + 1; 6473 uint64_t NumCases = Values.size(); 6474 // 40% is the default density for building a jump table in optsize/minsize mode. 6475 uint64_t MinDensity = 40; 6476 6477 return NumCases * 100 >= Range * MinDensity; 6478 } 6479 6480 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6481 /// of cases. 6482 /// 6483 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6484 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6485 /// 6486 /// This converts a sparse switch into a dense switch which allows better 6487 /// lowering and could also allow transforming into a lookup table. 6488 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6489 const DataLayout &DL, 6490 const TargetTransformInfo &TTI) { 6491 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6492 if (CondTy->getIntegerBitWidth() > 64 || 6493 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6494 return false; 6495 // Only bother with this optimization if there are more than 3 switch cases; 6496 // SDAG will only bother creating jump tables for 4 or more cases. 6497 if (SI->getNumCases() < 4) 6498 return false; 6499 6500 // This transform is agnostic to the signedness of the input or case values. We 6501 // can treat the case values as signed or unsigned. We can optimize more common 6502 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6503 // as signed. 6504 SmallVector<int64_t,4> Values; 6505 for (auto &C : SI->cases()) 6506 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6507 llvm::sort(Values); 6508 6509 // If the switch is already dense, there's nothing useful to do here. 6510 if (isSwitchDense(Values)) 6511 return false; 6512 6513 // First, transform the values such that they start at zero and ascend. 6514 int64_t Base = Values[0]; 6515 for (auto &V : Values) 6516 V -= (uint64_t)(Base); 6517 6518 // Now we have signed numbers that have been shifted so that, given enough 6519 // precision, there are no negative values. Since the rest of the transform 6520 // is bitwise only, we switch now to an unsigned representation. 6521 6522 // This transform can be done speculatively because it is so cheap - it 6523 // results in a single rotate operation being inserted. 6524 // FIXME: It's possible that optimizing a switch on powers of two might also 6525 // be beneficial - flag values are often powers of two and we could use a CLZ 6526 // as the key function. 6527 6528 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6529 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6530 // less than 64. 6531 unsigned Shift = 64; 6532 for (auto &V : Values) 6533 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6534 assert(Shift < 64); 6535 if (Shift > 0) 6536 for (auto &V : Values) 6537 V = (int64_t)((uint64_t)V >> Shift); 6538 6539 if (!isSwitchDense(Values)) 6540 // Transform didn't create a dense switch. 6541 return false; 6542 6543 // The obvious transform is to shift the switch condition right and emit a 6544 // check that the condition actually cleanly divided by GCD, i.e. 6545 // C & (1 << Shift - 1) == 0 6546 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6547 // 6548 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6549 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6550 // are nonzero then the switch condition will be very large and will hit the 6551 // default case. 6552 6553 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6554 Builder.SetInsertPoint(SI); 6555 auto *ShiftC = ConstantInt::get(Ty, Shift); 6556 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6557 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6558 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6559 auto *Rot = Builder.CreateOr(LShr, Shl); 6560 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6561 6562 for (auto Case : SI->cases()) { 6563 auto *Orig = Case.getCaseValue(); 6564 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6565 Case.setValue( 6566 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6567 } 6568 return true; 6569 } 6570 6571 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6572 BasicBlock *BB = SI->getParent(); 6573 6574 if (isValueEqualityComparison(SI)) { 6575 // If we only have one predecessor, and if it is a branch on this value, 6576 // see if that predecessor totally determines the outcome of this switch. 6577 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6578 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6579 return requestResimplify(); 6580 6581 Value *Cond = SI->getCondition(); 6582 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6583 if (SimplifySwitchOnSelect(SI, Select)) 6584 return requestResimplify(); 6585 6586 // If the block only contains the switch, see if we can fold the block 6587 // away into any preds. 6588 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 6589 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6590 return requestResimplify(); 6591 } 6592 6593 // Try to transform the switch into an icmp and a branch. 6594 // The conversion from switch to comparison may lose information on 6595 // impossible switch values, so disable it early in the pipeline. 6596 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder)) 6597 return requestResimplify(); 6598 6599 // Remove unreachable cases. 6600 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6601 return requestResimplify(); 6602 6603 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) 6604 return requestResimplify(); 6605 6606 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6607 return requestResimplify(); 6608 6609 // The conversion from switch to lookup tables results in difficult-to-analyze 6610 // code and makes pruning branches much harder. This is a problem if the 6611 // switch expression itself can still be restricted as a result of inlining or 6612 // CVP. Therefore, only apply this transformation during late stages of the 6613 // optimisation pipeline. 6614 if (Options.ConvertSwitchToLookupTable && 6615 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6616 return requestResimplify(); 6617 6618 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6619 return requestResimplify(); 6620 6621 return false; 6622 } 6623 6624 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6625 BasicBlock *BB = IBI->getParent(); 6626 bool Changed = false; 6627 6628 // Eliminate redundant destinations. 6629 SmallPtrSet<Value *, 8> Succs; 6630 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6631 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6632 BasicBlock *Dest = IBI->getDestination(i); 6633 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6634 if (!Dest->hasAddressTaken()) 6635 RemovedSuccs.insert(Dest); 6636 Dest->removePredecessor(BB); 6637 IBI->removeDestination(i); 6638 --i; 6639 --e; 6640 Changed = true; 6641 } 6642 } 6643 6644 if (DTU) { 6645 std::vector<DominatorTree::UpdateType> Updates; 6646 Updates.reserve(RemovedSuccs.size()); 6647 for (auto *RemovedSucc : RemovedSuccs) 6648 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6649 DTU->applyUpdates(Updates); 6650 } 6651 6652 if (IBI->getNumDestinations() == 0) { 6653 // If the indirectbr has no successors, change it to unreachable. 6654 new UnreachableInst(IBI->getContext(), IBI); 6655 EraseTerminatorAndDCECond(IBI); 6656 return true; 6657 } 6658 6659 if (IBI->getNumDestinations() == 1) { 6660 // If the indirectbr has one successor, change it to a direct branch. 6661 BranchInst::Create(IBI->getDestination(0), IBI); 6662 EraseTerminatorAndDCECond(IBI); 6663 return true; 6664 } 6665 6666 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6667 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6668 return requestResimplify(); 6669 } 6670 return Changed; 6671 } 6672 6673 /// Given an block with only a single landing pad and a unconditional branch 6674 /// try to find another basic block which this one can be merged with. This 6675 /// handles cases where we have multiple invokes with unique landing pads, but 6676 /// a shared handler. 6677 /// 6678 /// We specifically choose to not worry about merging non-empty blocks 6679 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6680 /// practice, the optimizer produces empty landing pad blocks quite frequently 6681 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6682 /// sinking in this file) 6683 /// 6684 /// This is primarily a code size optimization. We need to avoid performing 6685 /// any transform which might inhibit optimization (such as our ability to 6686 /// specialize a particular handler via tail commoning). We do this by not 6687 /// merging any blocks which require us to introduce a phi. Since the same 6688 /// values are flowing through both blocks, we don't lose any ability to 6689 /// specialize. If anything, we make such specialization more likely. 6690 /// 6691 /// TODO - This transformation could remove entries from a phi in the target 6692 /// block when the inputs in the phi are the same for the two blocks being 6693 /// merged. In some cases, this could result in removal of the PHI entirely. 6694 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6695 BasicBlock *BB, DomTreeUpdater *DTU) { 6696 auto Succ = BB->getUniqueSuccessor(); 6697 assert(Succ); 6698 // If there's a phi in the successor block, we'd likely have to introduce 6699 // a phi into the merged landing pad block. 6700 if (isa<PHINode>(*Succ->begin())) 6701 return false; 6702 6703 for (BasicBlock *OtherPred : predecessors(Succ)) { 6704 if (BB == OtherPred) 6705 continue; 6706 BasicBlock::iterator I = OtherPred->begin(); 6707 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6708 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6709 continue; 6710 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6711 ; 6712 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6713 if (!BI2 || !BI2->isIdenticalTo(BI)) 6714 continue; 6715 6716 std::vector<DominatorTree::UpdateType> Updates; 6717 6718 // We've found an identical block. Update our predecessors to take that 6719 // path instead and make ourselves dead. 6720 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 6721 for (BasicBlock *Pred : UniquePreds) { 6722 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6723 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6724 "unexpected successor"); 6725 II->setUnwindDest(OtherPred); 6726 if (DTU) { 6727 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6728 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6729 } 6730 } 6731 6732 // The debug info in OtherPred doesn't cover the merged control flow that 6733 // used to go through BB. We need to delete it or update it. 6734 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 6735 if (isa<DbgInfoIntrinsic>(Inst)) 6736 Inst.eraseFromParent(); 6737 6738 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 6739 for (BasicBlock *Succ : UniqueSuccs) { 6740 Succ->removePredecessor(BB); 6741 if (DTU) 6742 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6743 } 6744 6745 IRBuilder<> Builder(BI); 6746 Builder.CreateUnreachable(); 6747 BI->eraseFromParent(); 6748 if (DTU) 6749 DTU->applyUpdates(Updates); 6750 return true; 6751 } 6752 return false; 6753 } 6754 6755 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6756 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6757 : simplifyCondBranch(Branch, Builder); 6758 } 6759 6760 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6761 IRBuilder<> &Builder) { 6762 BasicBlock *BB = BI->getParent(); 6763 BasicBlock *Succ = BI->getSuccessor(0); 6764 6765 // If the Terminator is the only non-phi instruction, simplify the block. 6766 // If LoopHeader is provided, check if the block or its successor is a loop 6767 // header. (This is for early invocations before loop simplify and 6768 // vectorization to keep canonical loop forms for nested loops. These blocks 6769 // can be eliminated when the pass is invoked later in the back-end.) 6770 // Note that if BB has only one predecessor then we do not introduce new 6771 // backedge, so we can eliminate BB. 6772 bool NeedCanonicalLoop = 6773 Options.NeedCanonicalLoop && 6774 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6775 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6776 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6777 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6778 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6779 return true; 6780 6781 // If the only instruction in the block is a seteq/setne comparison against a 6782 // constant, try to simplify the block. 6783 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6784 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6785 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6786 ; 6787 if (I->isTerminator() && 6788 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6789 return true; 6790 } 6791 6792 // See if we can merge an empty landing pad block with another which is 6793 // equivalent. 6794 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6795 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6796 ; 6797 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6798 return true; 6799 } 6800 6801 // If this basic block is ONLY a compare and a branch, and if a predecessor 6802 // branches to us and our successor, fold the comparison into the 6803 // predecessor and use logical operations to update the incoming value 6804 // for PHI nodes in common successor. 6805 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6806 Options.BonusInstThreshold)) 6807 return requestResimplify(); 6808 return false; 6809 } 6810 6811 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6812 BasicBlock *PredPred = nullptr; 6813 for (auto *P : predecessors(BB)) { 6814 BasicBlock *PPred = P->getSinglePredecessor(); 6815 if (!PPred || (PredPred && PredPred != PPred)) 6816 return nullptr; 6817 PredPred = PPred; 6818 } 6819 return PredPred; 6820 } 6821 6822 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6823 assert( 6824 !isa<ConstantInt>(BI->getCondition()) && 6825 BI->getSuccessor(0) != BI->getSuccessor(1) && 6826 "Tautological conditional branch should have been eliminated already."); 6827 6828 BasicBlock *BB = BI->getParent(); 6829 if (!Options.SimplifyCondBranch) 6830 return false; 6831 6832 // Conditional branch 6833 if (isValueEqualityComparison(BI)) { 6834 // If we only have one predecessor, and if it is a branch on this value, 6835 // see if that predecessor totally determines the outcome of this 6836 // switch. 6837 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6838 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6839 return requestResimplify(); 6840 6841 // This block must be empty, except for the setcond inst, if it exists. 6842 // Ignore dbg and pseudo intrinsics. 6843 auto I = BB->instructionsWithoutDebug(true).begin(); 6844 if (&*I == BI) { 6845 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6846 return requestResimplify(); 6847 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6848 ++I; 6849 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6850 return requestResimplify(); 6851 } 6852 } 6853 6854 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6855 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6856 return true; 6857 6858 // If this basic block has dominating predecessor blocks and the dominating 6859 // blocks' conditions imply BI's condition, we know the direction of BI. 6860 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6861 if (Imp) { 6862 // Turn this into a branch on constant. 6863 auto *OldCond = BI->getCondition(); 6864 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6865 : ConstantInt::getFalse(BB->getContext()); 6866 BI->setCondition(TorF); 6867 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6868 return requestResimplify(); 6869 } 6870 6871 // If this basic block is ONLY a compare and a branch, and if a predecessor 6872 // branches to us and one of our successors, fold the comparison into the 6873 // predecessor and use logical operations to pick the right destination. 6874 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6875 Options.BonusInstThreshold)) 6876 return requestResimplify(); 6877 6878 // We have a conditional branch to two blocks that are only reachable 6879 // from BI. We know that the condbr dominates the two blocks, so see if 6880 // there is any identical code in the "then" and "else" blocks. If so, we 6881 // can hoist it up to the branching block. 6882 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6883 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6884 if (HoistCommon && 6885 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6886 return requestResimplify(); 6887 } else { 6888 // If Successor #1 has multiple preds, we may be able to conditionally 6889 // execute Successor #0 if it branches to Successor #1. 6890 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6891 if (Succ0TI->getNumSuccessors() == 1 && 6892 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6893 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6894 return requestResimplify(); 6895 } 6896 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6897 // If Successor #0 has multiple preds, we may be able to conditionally 6898 // execute Successor #1 if it branches to Successor #0. 6899 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6900 if (Succ1TI->getNumSuccessors() == 1 && 6901 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6902 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6903 return requestResimplify(); 6904 } 6905 6906 // If this is a branch on something for which we know the constant value in 6907 // predecessors (e.g. a phi node in the current block), thread control 6908 // through this block. 6909 if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) 6910 return requestResimplify(); 6911 6912 // Scan predecessor blocks for conditional branches. 6913 for (BasicBlock *Pred : predecessors(BB)) 6914 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6915 if (PBI != BI && PBI->isConditional()) 6916 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6917 return requestResimplify(); 6918 6919 // Look for diamond patterns. 6920 if (MergeCondStores) 6921 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6922 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6923 if (PBI != BI && PBI->isConditional()) 6924 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6925 return requestResimplify(); 6926 6927 return false; 6928 } 6929 6930 /// Check if passing a value to an instruction will cause undefined behavior. 6931 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6932 Constant *C = dyn_cast<Constant>(V); 6933 if (!C) 6934 return false; 6935 6936 if (I->use_empty()) 6937 return false; 6938 6939 if (C->isNullValue() || isa<UndefValue>(C)) { 6940 // Only look at the first use, avoid hurting compile time with long uselists 6941 auto *Use = cast<Instruction>(*I->user_begin()); 6942 // Bail out if Use is not in the same BB as I or Use == I or Use comes 6943 // before I in the block. The latter two can be the case if Use is a PHI 6944 // node. 6945 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 6946 return false; 6947 6948 // Now make sure that there are no instructions in between that can alter 6949 // control flow (eg. calls) 6950 auto InstrRange = 6951 make_range(std::next(I->getIterator()), Use->getIterator()); 6952 if (any_of(InstrRange, [](Instruction &I) { 6953 return !isGuaranteedToTransferExecutionToSuccessor(&I); 6954 })) 6955 return false; 6956 6957 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6958 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6959 if (GEP->getPointerOperand() == I) { 6960 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6961 PtrValueMayBeModified = true; 6962 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6963 } 6964 6965 // Look through bitcasts. 6966 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6967 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6968 6969 // Load from null is undefined. 6970 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6971 if (!LI->isVolatile()) 6972 return !NullPointerIsDefined(LI->getFunction(), 6973 LI->getPointerAddressSpace()); 6974 6975 // Store to null is undefined. 6976 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6977 if (!SI->isVolatile()) 6978 return (!NullPointerIsDefined(SI->getFunction(), 6979 SI->getPointerAddressSpace())) && 6980 SI->getPointerOperand() == I; 6981 6982 if (auto *CB = dyn_cast<CallBase>(Use)) { 6983 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6984 return false; 6985 // A call to null is undefined. 6986 if (CB->getCalledOperand() == I) 6987 return true; 6988 6989 if (C->isNullValue()) { 6990 for (const llvm::Use &Arg : CB->args()) 6991 if (Arg == I) { 6992 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6993 if (CB->isPassingUndefUB(ArgIdx) && 6994 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6995 // Passing null to a nonnnull+noundef argument is undefined. 6996 return !PtrValueMayBeModified; 6997 } 6998 } 6999 } else if (isa<UndefValue>(C)) { 7000 // Passing undef to a noundef argument is undefined. 7001 for (const llvm::Use &Arg : CB->args()) 7002 if (Arg == I) { 7003 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7004 if (CB->isPassingUndefUB(ArgIdx)) { 7005 // Passing undef to a noundef argument is undefined. 7006 return true; 7007 } 7008 } 7009 } 7010 } 7011 } 7012 return false; 7013 } 7014 7015 /// If BB has an incoming value that will always trigger undefined behavior 7016 /// (eg. null pointer dereference), remove the branch leading here. 7017 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 7018 DomTreeUpdater *DTU) { 7019 for (PHINode &PHI : BB->phis()) 7020 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 7021 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 7022 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 7023 Instruction *T = Predecessor->getTerminator(); 7024 IRBuilder<> Builder(T); 7025 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 7026 BB->removePredecessor(Predecessor); 7027 // Turn uncoditional branches into unreachables and remove the dead 7028 // destination from conditional branches. 7029 if (BI->isUnconditional()) 7030 Builder.CreateUnreachable(); 7031 else { 7032 // Preserve guarding condition in assume, because it might not be 7033 // inferrable from any dominating condition. 7034 Value *Cond = BI->getCondition(); 7035 if (BI->getSuccessor(0) == BB) 7036 Builder.CreateAssumption(Builder.CreateNot(Cond)); 7037 else 7038 Builder.CreateAssumption(Cond); 7039 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 7040 : BI->getSuccessor(0)); 7041 } 7042 BI->eraseFromParent(); 7043 if (DTU) 7044 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 7045 return true; 7046 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 7047 // Redirect all branches leading to UB into 7048 // a newly created unreachable block. 7049 BasicBlock *Unreachable = BasicBlock::Create( 7050 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 7051 Builder.SetInsertPoint(Unreachable); 7052 // The new block contains only one instruction: Unreachable 7053 Builder.CreateUnreachable(); 7054 for (auto &Case : SI->cases()) 7055 if (Case.getCaseSuccessor() == BB) { 7056 BB->removePredecessor(Predecessor); 7057 Case.setSuccessor(Unreachable); 7058 } 7059 if (SI->getDefaultDest() == BB) { 7060 BB->removePredecessor(Predecessor); 7061 SI->setDefaultDest(Unreachable); 7062 } 7063 7064 if (DTU) 7065 DTU->applyUpdates( 7066 { { DominatorTree::Insert, Predecessor, Unreachable }, 7067 { DominatorTree::Delete, Predecessor, BB } }); 7068 return true; 7069 } 7070 } 7071 7072 return false; 7073 } 7074 7075 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 7076 bool Changed = false; 7077 7078 assert(BB && BB->getParent() && "Block not embedded in function!"); 7079 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 7080 7081 // Remove basic blocks that have no predecessors (except the entry block)... 7082 // or that just have themself as a predecessor. These are unreachable. 7083 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 7084 BB->getSinglePredecessor() == BB) { 7085 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 7086 DeleteDeadBlock(BB, DTU); 7087 return true; 7088 } 7089 7090 // Check to see if we can constant propagate this terminator instruction 7091 // away... 7092 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 7093 /*TLI=*/nullptr, DTU); 7094 7095 // Check for and eliminate duplicate PHI nodes in this block. 7096 Changed |= EliminateDuplicatePHINodes(BB); 7097 7098 // Check for and remove branches that will always cause undefined behavior. 7099 if (removeUndefIntroducingPredecessor(BB, DTU)) 7100 return requestResimplify(); 7101 7102 // Merge basic blocks into their predecessor if there is only one distinct 7103 // pred, and if there is only one distinct successor of the predecessor, and 7104 // if there are no PHI nodes. 7105 if (MergeBlockIntoPredecessor(BB, DTU)) 7106 return true; 7107 7108 if (SinkCommon && Options.SinkCommonInsts) 7109 if (SinkCommonCodeFromPredecessors(BB, DTU) || 7110 MergeCompatibleInvokes(BB, DTU)) { 7111 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 7112 // so we may now how duplicate PHI's. 7113 // Let's rerun EliminateDuplicatePHINodes() first, 7114 // before FoldTwoEntryPHINode() potentially converts them into select's, 7115 // after which we'd need a whole EarlyCSE pass run to cleanup them. 7116 return true; 7117 } 7118 7119 IRBuilder<> Builder(BB); 7120 7121 if (Options.FoldTwoEntryPHINode) { 7122 // If there is a trivial two-entry PHI node in this basic block, and we can 7123 // eliminate it, do so now. 7124 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 7125 if (PN->getNumIncomingValues() == 2) 7126 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL)) 7127 return true; 7128 } 7129 7130 Instruction *Terminator = BB->getTerminator(); 7131 Builder.SetInsertPoint(Terminator); 7132 switch (Terminator->getOpcode()) { 7133 case Instruction::Br: 7134 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 7135 break; 7136 case Instruction::Resume: 7137 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 7138 break; 7139 case Instruction::CleanupRet: 7140 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 7141 break; 7142 case Instruction::Switch: 7143 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 7144 break; 7145 case Instruction::Unreachable: 7146 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 7147 break; 7148 case Instruction::IndirectBr: 7149 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 7150 break; 7151 } 7152 7153 return Changed; 7154 } 7155 7156 bool SimplifyCFGOpt::run(BasicBlock *BB) { 7157 bool Changed = false; 7158 7159 // Repeated simplify BB as long as resimplification is requested. 7160 do { 7161 Resimplify = false; 7162 7163 // Perform one round of simplifcation. Resimplify flag will be set if 7164 // another iteration is requested. 7165 Changed |= simplifyOnce(BB); 7166 } while (Resimplify); 7167 7168 return Changed; 7169 } 7170 7171 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 7172 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 7173 ArrayRef<WeakVH> LoopHeaders) { 7174 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 7175 Options) 7176 .run(BB); 7177 } 7178