1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/NoFolder.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/ValueMapper.h" 48 #include <algorithm> 49 #include <map> 50 #include <set> 51 using namespace llvm; 52 using namespace PatternMatch; 53 54 #define DEBUG_TYPE "simplifycfg" 55 56 // Chosen as 2 so as to be cheap, but still to have enough power to fold 57 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 58 // To catch this, we need to fold a compare and a select, hence '2' being the 59 // minimum reasonable default. 60 static cl::opt<unsigned> 61 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2), 62 cl::desc("Control the amount of phi node folding to perform (default = 2)")); 63 64 static cl::opt<bool> 65 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 66 cl::desc("Duplicate return instructions into unconditional branches")); 67 68 static cl::opt<bool> 69 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 70 cl::desc("Sink common instructions down to the end block")); 71 72 static cl::opt<bool> HoistCondStores( 73 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 74 cl::desc("Hoist conditional stores if an unconditional store precedes")); 75 76 static cl::opt<bool> MergeCondStores( 77 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 78 cl::desc("Hoist conditional stores even if an unconditional store does not " 79 "precede - hoist multiple conditional stores into a single " 80 "predicated store")); 81 82 static cl::opt<bool> MergeCondStoresAggressively( 83 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 84 cl::desc("When merging conditional stores, do so even if the resultant " 85 "basic blocks are unlikely to be if-converted as a result")); 86 87 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 88 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping"); 89 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 90 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 91 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 92 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 93 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 94 95 namespace { 96 // The first field contains the value that the switch produces when a certain 97 // case group is selected, and the second field is a vector containing the 98 // cases composing the case group. 99 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 100 SwitchCaseResultVectorTy; 101 // The first field contains the phi node that generates a result of the switch 102 // and the second field contains the value generated for a certain case in the 103 // switch for that PHI. 104 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 105 106 /// ValueEqualityComparisonCase - Represents a case of a switch. 107 struct ValueEqualityComparisonCase { 108 ConstantInt *Value; 109 BasicBlock *Dest; 110 111 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 112 : Value(Value), Dest(Dest) {} 113 114 bool operator<(ValueEqualityComparisonCase RHS) const { 115 // Comparing pointers is ok as we only rely on the order for uniquing. 116 return Value < RHS.Value; 117 } 118 119 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 120 }; 121 122 class SimplifyCFGOpt { 123 const TargetTransformInfo &TTI; 124 const DataLayout &DL; 125 unsigned BonusInstThreshold; 126 AssumptionCache *AC; 127 Value *isValueEqualityComparison(TerminatorInst *TI); 128 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 129 std::vector<ValueEqualityComparisonCase> &Cases); 130 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 131 BasicBlock *Pred, 132 IRBuilder<> &Builder); 133 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 134 IRBuilder<> &Builder); 135 136 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 137 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 138 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 139 bool SimplifyUnreachable(UnreachableInst *UI); 140 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 141 bool SimplifyIndirectBr(IndirectBrInst *IBI); 142 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 143 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 144 145 public: 146 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 147 unsigned BonusInstThreshold, AssumptionCache *AC) 148 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {} 149 bool run(BasicBlock *BB); 150 }; 151 } 152 153 /// Return true if it is safe to merge these two 154 /// terminator instructions together. 155 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 156 if (SI1 == SI2) return false; // Can't merge with self! 157 158 // It is not safe to merge these two switch instructions if they have a common 159 // successor, and if that successor has a PHI node, and if *that* PHI node has 160 // conflicting incoming values from the two switch blocks. 161 BasicBlock *SI1BB = SI1->getParent(); 162 BasicBlock *SI2BB = SI2->getParent(); 163 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 164 165 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 166 if (SI1Succs.count(*I)) 167 for (BasicBlock::iterator BBI = (*I)->begin(); 168 isa<PHINode>(BBI); ++BBI) { 169 PHINode *PN = cast<PHINode>(BBI); 170 if (PN->getIncomingValueForBlock(SI1BB) != 171 PN->getIncomingValueForBlock(SI2BB)) 172 return false; 173 } 174 175 return true; 176 } 177 178 /// Return true if it is safe and profitable to merge these two terminator 179 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 180 /// store all PHI nodes in common successors. 181 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 182 BranchInst *SI2, 183 Instruction *Cond, 184 SmallVectorImpl<PHINode*> &PhiNodes) { 185 if (SI1 == SI2) return false; // Can't merge with self! 186 assert(SI1->isUnconditional() && SI2->isConditional()); 187 188 // We fold the unconditional branch if we can easily update all PHI nodes in 189 // common successors: 190 // 1> We have a constant incoming value for the conditional branch; 191 // 2> We have "Cond" as the incoming value for the unconditional branch; 192 // 3> SI2->getCondition() and Cond have same operands. 193 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 194 if (!Ci2) return false; 195 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 196 Cond->getOperand(1) == Ci2->getOperand(1)) && 197 !(Cond->getOperand(0) == Ci2->getOperand(1) && 198 Cond->getOperand(1) == Ci2->getOperand(0))) 199 return false; 200 201 BasicBlock *SI1BB = SI1->getParent(); 202 BasicBlock *SI2BB = SI2->getParent(); 203 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 204 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 205 if (SI1Succs.count(*I)) 206 for (BasicBlock::iterator BBI = (*I)->begin(); 207 isa<PHINode>(BBI); ++BBI) { 208 PHINode *PN = cast<PHINode>(BBI); 209 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 210 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 211 return false; 212 PhiNodes.push_back(PN); 213 } 214 return true; 215 } 216 217 /// Update PHI nodes in Succ to indicate that there will now be entries in it 218 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 219 /// will be the same as those coming in from ExistPred, an existing predecessor 220 /// of Succ. 221 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 222 BasicBlock *ExistPred) { 223 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 224 225 PHINode *PN; 226 for (BasicBlock::iterator I = Succ->begin(); 227 (PN = dyn_cast<PHINode>(I)); ++I) 228 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 229 } 230 231 /// Compute an abstract "cost" of speculating the given instruction, 232 /// which is assumed to be safe to speculate. TCC_Free means cheap, 233 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 234 /// expensive. 235 static unsigned ComputeSpeculationCost(const User *I, 236 const TargetTransformInfo &TTI) { 237 assert(isSafeToSpeculativelyExecute(I) && 238 "Instruction is not safe to speculatively execute!"); 239 return TTI.getUserCost(I); 240 } 241 242 /// If we have a merge point of an "if condition" as accepted above, 243 /// return true if the specified value dominates the block. We 244 /// don't handle the true generality of domination here, just a special case 245 /// which works well enough for us. 246 /// 247 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 248 /// see if V (which must be an instruction) and its recursive operands 249 /// that do not dominate BB have a combined cost lower than CostRemaining and 250 /// are non-trapping. If both are true, the instruction is inserted into the 251 /// set and true is returned. 252 /// 253 /// The cost for most non-trapping instructions is defined as 1 except for 254 /// Select whose cost is 2. 255 /// 256 /// After this function returns, CostRemaining is decreased by the cost of 257 /// V plus its non-dominating operands. If that cost is greater than 258 /// CostRemaining, false is returned and CostRemaining is undefined. 259 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 260 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 261 unsigned &CostRemaining, 262 const TargetTransformInfo &TTI) { 263 Instruction *I = dyn_cast<Instruction>(V); 264 if (!I) { 265 // Non-instructions all dominate instructions, but not all constantexprs 266 // can be executed unconditionally. 267 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 268 if (C->canTrap()) 269 return false; 270 return true; 271 } 272 BasicBlock *PBB = I->getParent(); 273 274 // We don't want to allow weird loops that might have the "if condition" in 275 // the bottom of this block. 276 if (PBB == BB) return false; 277 278 // If this instruction is defined in a block that contains an unconditional 279 // branch to BB, then it must be in the 'conditional' part of the "if 280 // statement". If not, it definitely dominates the region. 281 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 282 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 283 return true; 284 285 // If we aren't allowing aggressive promotion anymore, then don't consider 286 // instructions in the 'if region'. 287 if (!AggressiveInsts) return false; 288 289 // If we have seen this instruction before, don't count it again. 290 if (AggressiveInsts->count(I)) return true; 291 292 // Okay, it looks like the instruction IS in the "condition". Check to 293 // see if it's a cheap instruction to unconditionally compute, and if it 294 // only uses stuff defined outside of the condition. If so, hoist it out. 295 if (!isSafeToSpeculativelyExecute(I)) 296 return false; 297 298 unsigned Cost = ComputeSpeculationCost(I, TTI); 299 300 if (Cost > CostRemaining) 301 return false; 302 303 CostRemaining -= Cost; 304 305 // Okay, we can only really hoist these out if their operands do 306 // not take us over the cost threshold. 307 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 308 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI)) 309 return false; 310 // Okay, it's safe to do this! Remember this instruction. 311 AggressiveInsts->insert(I); 312 return true; 313 } 314 315 /// Extract ConstantInt from value, looking through IntToPtr 316 /// and PointerNullValue. Return NULL if value is not a constant int. 317 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 318 // Normal constant int. 319 ConstantInt *CI = dyn_cast<ConstantInt>(V); 320 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 321 return CI; 322 323 // This is some kind of pointer constant. Turn it into a pointer-sized 324 // ConstantInt if possible. 325 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 326 327 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 328 if (isa<ConstantPointerNull>(V)) 329 return ConstantInt::get(PtrTy, 0); 330 331 // IntToPtr const int. 332 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 333 if (CE->getOpcode() == Instruction::IntToPtr) 334 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 335 // The constant is very likely to have the right type already. 336 if (CI->getType() == PtrTy) 337 return CI; 338 else 339 return cast<ConstantInt> 340 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 341 } 342 return nullptr; 343 } 344 345 namespace { 346 347 /// Given a chain of or (||) or and (&&) comparison of a value against a 348 /// constant, this will try to recover the information required for a switch 349 /// structure. 350 /// It will depth-first traverse the chain of comparison, seeking for patterns 351 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 352 /// representing the different cases for the switch. 353 /// Note that if the chain is composed of '||' it will build the set of elements 354 /// that matches the comparisons (i.e. any of this value validate the chain) 355 /// while for a chain of '&&' it will build the set elements that make the test 356 /// fail. 357 struct ConstantComparesGatherer { 358 const DataLayout &DL; 359 Value *CompValue; /// Value found for the switch comparison 360 Value *Extra; /// Extra clause to be checked before the switch 361 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 362 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 363 364 /// Construct and compute the result for the comparison instruction Cond 365 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 366 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 367 gather(Cond); 368 } 369 370 /// Prevent copy 371 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 372 ConstantComparesGatherer & 373 operator=(const ConstantComparesGatherer &) = delete; 374 375 private: 376 377 /// Try to set the current value used for the comparison, it succeeds only if 378 /// it wasn't set before or if the new value is the same as the old one 379 bool setValueOnce(Value *NewVal) { 380 if(CompValue && CompValue != NewVal) return false; 381 CompValue = NewVal; 382 return (CompValue != nullptr); 383 } 384 385 /// Try to match Instruction "I" as a comparison against a constant and 386 /// populates the array Vals with the set of values that match (or do not 387 /// match depending on isEQ). 388 /// Return false on failure. On success, the Value the comparison matched 389 /// against is placed in CompValue. 390 /// If CompValue is already set, the function is expected to fail if a match 391 /// is found but the value compared to is different. 392 bool matchInstruction(Instruction *I, bool isEQ) { 393 // If this is an icmp against a constant, handle this as one of the cases. 394 ICmpInst *ICI; 395 ConstantInt *C; 396 if (!((ICI = dyn_cast<ICmpInst>(I)) && 397 (C = GetConstantInt(I->getOperand(1), DL)))) { 398 return false; 399 } 400 401 Value *RHSVal; 402 ConstantInt *RHSC; 403 404 // Pattern match a special case 405 // (x & ~2^x) == y --> x == y || x == y|2^x 406 // This undoes a transformation done by instcombine to fuse 2 compares. 407 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 408 if (match(ICI->getOperand(0), 409 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 410 APInt Not = ~RHSC->getValue(); 411 if (Not.isPowerOf2()) { 412 // If we already have a value for the switch, it has to match! 413 if(!setValueOnce(RHSVal)) 414 return false; 415 416 Vals.push_back(C); 417 Vals.push_back(ConstantInt::get(C->getContext(), 418 C->getValue() | Not)); 419 UsedICmps++; 420 return true; 421 } 422 } 423 424 // If we already have a value for the switch, it has to match! 425 if(!setValueOnce(ICI->getOperand(0))) 426 return false; 427 428 UsedICmps++; 429 Vals.push_back(C); 430 return ICI->getOperand(0); 431 } 432 433 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 434 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 435 ICI->getPredicate(), C->getValue()); 436 437 // Shift the range if the compare is fed by an add. This is the range 438 // compare idiom as emitted by instcombine. 439 Value *CandidateVal = I->getOperand(0); 440 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 441 Span = Span.subtract(RHSC->getValue()); 442 CandidateVal = RHSVal; 443 } 444 445 // If this is an and/!= check, then we are looking to build the set of 446 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 447 // x != 0 && x != 1. 448 if (!isEQ) 449 Span = Span.inverse(); 450 451 // If there are a ton of values, we don't want to make a ginormous switch. 452 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 453 return false; 454 } 455 456 // If we already have a value for the switch, it has to match! 457 if(!setValueOnce(CandidateVal)) 458 return false; 459 460 // Add all values from the range to the set 461 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 462 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 463 464 UsedICmps++; 465 return true; 466 467 } 468 469 /// Given a potentially 'or'd or 'and'd together collection of icmp 470 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 471 /// the value being compared, and stick the list constants into the Vals 472 /// vector. 473 /// One "Extra" case is allowed to differ from the other. 474 void gather(Value *V) { 475 Instruction *I = dyn_cast<Instruction>(V); 476 bool isEQ = (I->getOpcode() == Instruction::Or); 477 478 // Keep a stack (SmallVector for efficiency) for depth-first traversal 479 SmallVector<Value *, 8> DFT; 480 481 // Initialize 482 DFT.push_back(V); 483 484 while(!DFT.empty()) { 485 V = DFT.pop_back_val(); 486 487 if (Instruction *I = dyn_cast<Instruction>(V)) { 488 // If it is a || (or && depending on isEQ), process the operands. 489 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 490 DFT.push_back(I->getOperand(1)); 491 DFT.push_back(I->getOperand(0)); 492 continue; 493 } 494 495 // Try to match the current instruction 496 if (matchInstruction(I, isEQ)) 497 // Match succeed, continue the loop 498 continue; 499 } 500 501 // One element of the sequence of || (or &&) could not be match as a 502 // comparison against the same value as the others. 503 // We allow only one "Extra" case to be checked before the switch 504 if (!Extra) { 505 Extra = V; 506 continue; 507 } 508 // Failed to parse a proper sequence, abort now 509 CompValue = nullptr; 510 break; 511 } 512 } 513 }; 514 515 } 516 517 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 518 Instruction *Cond = nullptr; 519 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 520 Cond = dyn_cast<Instruction>(SI->getCondition()); 521 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 522 if (BI->isConditional()) 523 Cond = dyn_cast<Instruction>(BI->getCondition()); 524 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 525 Cond = dyn_cast<Instruction>(IBI->getAddress()); 526 } 527 528 TI->eraseFromParent(); 529 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 530 } 531 532 /// Return true if the specified terminator checks 533 /// to see if a value is equal to constant integer value. 534 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 535 Value *CV = nullptr; 536 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 537 // Do not permit merging of large switch instructions into their 538 // predecessors unless there is only one predecessor. 539 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 540 pred_end(SI->getParent())) <= 128) 541 CV = SI->getCondition(); 542 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 543 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 544 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 545 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 546 CV = ICI->getOperand(0); 547 } 548 549 // Unwrap any lossless ptrtoint cast. 550 if (CV) { 551 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 552 Value *Ptr = PTII->getPointerOperand(); 553 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 554 CV = Ptr; 555 } 556 } 557 return CV; 558 } 559 560 /// Given a value comparison instruction, 561 /// decode all of the 'cases' that it represents and return the 'default' block. 562 BasicBlock *SimplifyCFGOpt:: 563 GetValueEqualityComparisonCases(TerminatorInst *TI, 564 std::vector<ValueEqualityComparisonCase> 565 &Cases) { 566 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 567 Cases.reserve(SI->getNumCases()); 568 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 569 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 570 i.getCaseSuccessor())); 571 return SI->getDefaultDest(); 572 } 573 574 BranchInst *BI = cast<BranchInst>(TI); 575 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 576 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 577 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 578 DL), 579 Succ)); 580 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 581 } 582 583 584 /// Given a vector of bb/value pairs, remove any entries 585 /// in the list that match the specified block. 586 static void EliminateBlockCases(BasicBlock *BB, 587 std::vector<ValueEqualityComparisonCase> &Cases) { 588 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 589 } 590 591 /// Return true if there are any keys in C1 that exist in C2 as well. 592 static bool 593 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 594 std::vector<ValueEqualityComparisonCase > &C2) { 595 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 596 597 // Make V1 be smaller than V2. 598 if (V1->size() > V2->size()) 599 std::swap(V1, V2); 600 601 if (V1->size() == 0) return false; 602 if (V1->size() == 1) { 603 // Just scan V2. 604 ConstantInt *TheVal = (*V1)[0].Value; 605 for (unsigned i = 0, e = V2->size(); i != e; ++i) 606 if (TheVal == (*V2)[i].Value) 607 return true; 608 } 609 610 // Otherwise, just sort both lists and compare element by element. 611 array_pod_sort(V1->begin(), V1->end()); 612 array_pod_sort(V2->begin(), V2->end()); 613 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 614 while (i1 != e1 && i2 != e2) { 615 if ((*V1)[i1].Value == (*V2)[i2].Value) 616 return true; 617 if ((*V1)[i1].Value < (*V2)[i2].Value) 618 ++i1; 619 else 620 ++i2; 621 } 622 return false; 623 } 624 625 /// If TI is known to be a terminator instruction and its block is known to 626 /// only have a single predecessor block, check to see if that predecessor is 627 /// also a value comparison with the same value, and if that comparison 628 /// determines the outcome of this comparison. If so, simplify TI. This does a 629 /// very limited form of jump threading. 630 bool SimplifyCFGOpt:: 631 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 632 BasicBlock *Pred, 633 IRBuilder<> &Builder) { 634 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 635 if (!PredVal) return false; // Not a value comparison in predecessor. 636 637 Value *ThisVal = isValueEqualityComparison(TI); 638 assert(ThisVal && "This isn't a value comparison!!"); 639 if (ThisVal != PredVal) return false; // Different predicates. 640 641 // TODO: Preserve branch weight metadata, similarly to how 642 // FoldValueComparisonIntoPredecessors preserves it. 643 644 // Find out information about when control will move from Pred to TI's block. 645 std::vector<ValueEqualityComparisonCase> PredCases; 646 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 647 PredCases); 648 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 649 650 // Find information about how control leaves this block. 651 std::vector<ValueEqualityComparisonCase> ThisCases; 652 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 653 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 654 655 // If TI's block is the default block from Pred's comparison, potentially 656 // simplify TI based on this knowledge. 657 if (PredDef == TI->getParent()) { 658 // If we are here, we know that the value is none of those cases listed in 659 // PredCases. If there are any cases in ThisCases that are in PredCases, we 660 // can simplify TI. 661 if (!ValuesOverlap(PredCases, ThisCases)) 662 return false; 663 664 if (isa<BranchInst>(TI)) { 665 // Okay, one of the successors of this condbr is dead. Convert it to a 666 // uncond br. 667 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 668 // Insert the new branch. 669 Instruction *NI = Builder.CreateBr(ThisDef); 670 (void) NI; 671 672 // Remove PHI node entries for the dead edge. 673 ThisCases[0].Dest->removePredecessor(TI->getParent()); 674 675 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 676 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 677 678 EraseTerminatorInstAndDCECond(TI); 679 return true; 680 } 681 682 SwitchInst *SI = cast<SwitchInst>(TI); 683 // Okay, TI has cases that are statically dead, prune them away. 684 SmallPtrSet<Constant*, 16> DeadCases; 685 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 686 DeadCases.insert(PredCases[i].Value); 687 688 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 689 << "Through successor TI: " << *TI); 690 691 // Collect branch weights into a vector. 692 SmallVector<uint32_t, 8> Weights; 693 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 694 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 695 if (HasWeight) 696 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 697 ++MD_i) { 698 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 699 Weights.push_back(CI->getValue().getZExtValue()); 700 } 701 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 702 --i; 703 if (DeadCases.count(i.getCaseValue())) { 704 if (HasWeight) { 705 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 706 Weights.pop_back(); 707 } 708 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 709 SI->removeCase(i); 710 } 711 } 712 if (HasWeight && Weights.size() >= 2) 713 SI->setMetadata(LLVMContext::MD_prof, 714 MDBuilder(SI->getParent()->getContext()). 715 createBranchWeights(Weights)); 716 717 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 718 return true; 719 } 720 721 // Otherwise, TI's block must correspond to some matched value. Find out 722 // which value (or set of values) this is. 723 ConstantInt *TIV = nullptr; 724 BasicBlock *TIBB = TI->getParent(); 725 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 726 if (PredCases[i].Dest == TIBB) { 727 if (TIV) 728 return false; // Cannot handle multiple values coming to this block. 729 TIV = PredCases[i].Value; 730 } 731 assert(TIV && "No edge from pred to succ?"); 732 733 // Okay, we found the one constant that our value can be if we get into TI's 734 // BB. Find out which successor will unconditionally be branched to. 735 BasicBlock *TheRealDest = nullptr; 736 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 737 if (ThisCases[i].Value == TIV) { 738 TheRealDest = ThisCases[i].Dest; 739 break; 740 } 741 742 // If not handled by any explicit cases, it is handled by the default case. 743 if (!TheRealDest) TheRealDest = ThisDef; 744 745 // Remove PHI node entries for dead edges. 746 BasicBlock *CheckEdge = TheRealDest; 747 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 748 if (*SI != CheckEdge) 749 (*SI)->removePredecessor(TIBB); 750 else 751 CheckEdge = nullptr; 752 753 // Insert the new branch. 754 Instruction *NI = Builder.CreateBr(TheRealDest); 755 (void) NI; 756 757 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 758 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 759 760 EraseTerminatorInstAndDCECond(TI); 761 return true; 762 } 763 764 namespace { 765 /// This class implements a stable ordering of constant 766 /// integers that does not depend on their address. This is important for 767 /// applications that sort ConstantInt's to ensure uniqueness. 768 struct ConstantIntOrdering { 769 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 770 return LHS->getValue().ult(RHS->getValue()); 771 } 772 }; 773 } 774 775 static int ConstantIntSortPredicate(ConstantInt *const *P1, 776 ConstantInt *const *P2) { 777 const ConstantInt *LHS = *P1; 778 const ConstantInt *RHS = *P2; 779 if (LHS->getValue().ult(RHS->getValue())) 780 return 1; 781 if (LHS->getValue() == RHS->getValue()) 782 return 0; 783 return -1; 784 } 785 786 static inline bool HasBranchWeights(const Instruction* I) { 787 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 788 if (ProfMD && ProfMD->getOperand(0)) 789 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 790 return MDS->getString().equals("branch_weights"); 791 792 return false; 793 } 794 795 /// Get Weights of a given TerminatorInst, the default weight is at the front 796 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 797 /// metadata. 798 static void GetBranchWeights(TerminatorInst *TI, 799 SmallVectorImpl<uint64_t> &Weights) { 800 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 801 assert(MD); 802 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 803 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 804 Weights.push_back(CI->getValue().getZExtValue()); 805 } 806 807 // If TI is a conditional eq, the default case is the false case, 808 // and the corresponding branch-weight data is at index 2. We swap the 809 // default weight to be the first entry. 810 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 811 assert(Weights.size() == 2); 812 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 813 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 814 std::swap(Weights.front(), Weights.back()); 815 } 816 } 817 818 /// Keep halving the weights until all can fit in uint32_t. 819 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 820 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 821 if (Max > UINT_MAX) { 822 unsigned Offset = 32 - countLeadingZeros(Max); 823 for (uint64_t &I : Weights) 824 I >>= Offset; 825 } 826 } 827 828 /// The specified terminator is a value equality comparison instruction 829 /// (either a switch or a branch on "X == c"). 830 /// See if any of the predecessors of the terminator block are value comparisons 831 /// on the same value. If so, and if safe to do so, fold them together. 832 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 833 IRBuilder<> &Builder) { 834 BasicBlock *BB = TI->getParent(); 835 Value *CV = isValueEqualityComparison(TI); // CondVal 836 assert(CV && "Not a comparison?"); 837 bool Changed = false; 838 839 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 840 while (!Preds.empty()) { 841 BasicBlock *Pred = Preds.pop_back_val(); 842 843 // See if the predecessor is a comparison with the same value. 844 TerminatorInst *PTI = Pred->getTerminator(); 845 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 846 847 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 848 // Figure out which 'cases' to copy from SI to PSI. 849 std::vector<ValueEqualityComparisonCase> BBCases; 850 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 851 852 std::vector<ValueEqualityComparisonCase> PredCases; 853 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 854 855 // Based on whether the default edge from PTI goes to BB or not, fill in 856 // PredCases and PredDefault with the new switch cases we would like to 857 // build. 858 SmallVector<BasicBlock*, 8> NewSuccessors; 859 860 // Update the branch weight metadata along the way 861 SmallVector<uint64_t, 8> Weights; 862 bool PredHasWeights = HasBranchWeights(PTI); 863 bool SuccHasWeights = HasBranchWeights(TI); 864 865 if (PredHasWeights) { 866 GetBranchWeights(PTI, Weights); 867 // branch-weight metadata is inconsistent here. 868 if (Weights.size() != 1 + PredCases.size()) 869 PredHasWeights = SuccHasWeights = false; 870 } else if (SuccHasWeights) 871 // If there are no predecessor weights but there are successor weights, 872 // populate Weights with 1, which will later be scaled to the sum of 873 // successor's weights 874 Weights.assign(1 + PredCases.size(), 1); 875 876 SmallVector<uint64_t, 8> SuccWeights; 877 if (SuccHasWeights) { 878 GetBranchWeights(TI, SuccWeights); 879 // branch-weight metadata is inconsistent here. 880 if (SuccWeights.size() != 1 + BBCases.size()) 881 PredHasWeights = SuccHasWeights = false; 882 } else if (PredHasWeights) 883 SuccWeights.assign(1 + BBCases.size(), 1); 884 885 if (PredDefault == BB) { 886 // If this is the default destination from PTI, only the edges in TI 887 // that don't occur in PTI, or that branch to BB will be activated. 888 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 889 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 890 if (PredCases[i].Dest != BB) 891 PTIHandled.insert(PredCases[i].Value); 892 else { 893 // The default destination is BB, we don't need explicit targets. 894 std::swap(PredCases[i], PredCases.back()); 895 896 if (PredHasWeights || SuccHasWeights) { 897 // Increase weight for the default case. 898 Weights[0] += Weights[i+1]; 899 std::swap(Weights[i+1], Weights.back()); 900 Weights.pop_back(); 901 } 902 903 PredCases.pop_back(); 904 --i; --e; 905 } 906 907 // Reconstruct the new switch statement we will be building. 908 if (PredDefault != BBDefault) { 909 PredDefault->removePredecessor(Pred); 910 PredDefault = BBDefault; 911 NewSuccessors.push_back(BBDefault); 912 } 913 914 unsigned CasesFromPred = Weights.size(); 915 uint64_t ValidTotalSuccWeight = 0; 916 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 917 if (!PTIHandled.count(BBCases[i].Value) && 918 BBCases[i].Dest != BBDefault) { 919 PredCases.push_back(BBCases[i]); 920 NewSuccessors.push_back(BBCases[i].Dest); 921 if (SuccHasWeights || PredHasWeights) { 922 // The default weight is at index 0, so weight for the ith case 923 // should be at index i+1. Scale the cases from successor by 924 // PredDefaultWeight (Weights[0]). 925 Weights.push_back(Weights[0] * SuccWeights[i+1]); 926 ValidTotalSuccWeight += SuccWeights[i+1]; 927 } 928 } 929 930 if (SuccHasWeights || PredHasWeights) { 931 ValidTotalSuccWeight += SuccWeights[0]; 932 // Scale the cases from predecessor by ValidTotalSuccWeight. 933 for (unsigned i = 1; i < CasesFromPred; ++i) 934 Weights[i] *= ValidTotalSuccWeight; 935 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 936 Weights[0] *= SuccWeights[0]; 937 } 938 } else { 939 // If this is not the default destination from PSI, only the edges 940 // in SI that occur in PSI with a destination of BB will be 941 // activated. 942 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 943 std::map<ConstantInt*, uint64_t> WeightsForHandled; 944 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 945 if (PredCases[i].Dest == BB) { 946 PTIHandled.insert(PredCases[i].Value); 947 948 if (PredHasWeights || SuccHasWeights) { 949 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 950 std::swap(Weights[i+1], Weights.back()); 951 Weights.pop_back(); 952 } 953 954 std::swap(PredCases[i], PredCases.back()); 955 PredCases.pop_back(); 956 --i; --e; 957 } 958 959 // Okay, now we know which constants were sent to BB from the 960 // predecessor. Figure out where they will all go now. 961 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 962 if (PTIHandled.count(BBCases[i].Value)) { 963 // If this is one we are capable of getting... 964 if (PredHasWeights || SuccHasWeights) 965 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 966 PredCases.push_back(BBCases[i]); 967 NewSuccessors.push_back(BBCases[i].Dest); 968 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 969 } 970 971 // If there are any constants vectored to BB that TI doesn't handle, 972 // they must go to the default destination of TI. 973 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 974 PTIHandled.begin(), 975 E = PTIHandled.end(); I != E; ++I) { 976 if (PredHasWeights || SuccHasWeights) 977 Weights.push_back(WeightsForHandled[*I]); 978 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 979 NewSuccessors.push_back(BBDefault); 980 } 981 } 982 983 // Okay, at this point, we know which new successor Pred will get. Make 984 // sure we update the number of entries in the PHI nodes for these 985 // successors. 986 for (BasicBlock *NewSuccessor : NewSuccessors) 987 AddPredecessorToBlock(NewSuccessor, Pred, BB); 988 989 Builder.SetInsertPoint(PTI); 990 // Convert pointer to int before we switch. 991 if (CV->getType()->isPointerTy()) { 992 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 993 "magicptr"); 994 } 995 996 // Now that the successors are updated, create the new Switch instruction. 997 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 998 PredCases.size()); 999 NewSI->setDebugLoc(PTI->getDebugLoc()); 1000 for (ValueEqualityComparisonCase &V : PredCases) 1001 NewSI->addCase(V.Value, V.Dest); 1002 1003 if (PredHasWeights || SuccHasWeights) { 1004 // Halve the weights if any of them cannot fit in an uint32_t 1005 FitWeights(Weights); 1006 1007 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1008 1009 NewSI->setMetadata(LLVMContext::MD_prof, 1010 MDBuilder(BB->getContext()). 1011 createBranchWeights(MDWeights)); 1012 } 1013 1014 EraseTerminatorInstAndDCECond(PTI); 1015 1016 // Okay, last check. If BB is still a successor of PSI, then we must 1017 // have an infinite loop case. If so, add an infinitely looping block 1018 // to handle the case to preserve the behavior of the code. 1019 BasicBlock *InfLoopBlock = nullptr; 1020 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1021 if (NewSI->getSuccessor(i) == BB) { 1022 if (!InfLoopBlock) { 1023 // Insert it at the end of the function, because it's either code, 1024 // or it won't matter if it's hot. :) 1025 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1026 "infloop", BB->getParent()); 1027 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1028 } 1029 NewSI->setSuccessor(i, InfLoopBlock); 1030 } 1031 1032 Changed = true; 1033 } 1034 } 1035 return Changed; 1036 } 1037 1038 // If we would need to insert a select that uses the value of this invoke 1039 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1040 // can't hoist the invoke, as there is nowhere to put the select in this case. 1041 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1042 Instruction *I1, Instruction *I2) { 1043 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1044 PHINode *PN; 1045 for (BasicBlock::iterator BBI = SI->begin(); 1046 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1047 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1048 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1049 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1050 return false; 1051 } 1052 } 1053 } 1054 return true; 1055 } 1056 1057 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1058 1059 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1060 /// in the two blocks up into the branch block. The caller of this function 1061 /// guarantees that BI's block dominates BB1 and BB2. 1062 static bool HoistThenElseCodeToIf(BranchInst *BI, 1063 const TargetTransformInfo &TTI) { 1064 // This does very trivial matching, with limited scanning, to find identical 1065 // instructions in the two blocks. In particular, we don't want to get into 1066 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1067 // such, we currently just scan for obviously identical instructions in an 1068 // identical order. 1069 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1070 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1071 1072 BasicBlock::iterator BB1_Itr = BB1->begin(); 1073 BasicBlock::iterator BB2_Itr = BB2->begin(); 1074 1075 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1076 // Skip debug info if it is not identical. 1077 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1078 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1079 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1080 while (isa<DbgInfoIntrinsic>(I1)) 1081 I1 = &*BB1_Itr++; 1082 while (isa<DbgInfoIntrinsic>(I2)) 1083 I2 = &*BB2_Itr++; 1084 } 1085 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1086 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1087 return false; 1088 1089 BasicBlock *BIParent = BI->getParent(); 1090 1091 bool Changed = false; 1092 do { 1093 // If we are hoisting the terminator instruction, don't move one (making a 1094 // broken BB), instead clone it, and remove BI. 1095 if (isa<TerminatorInst>(I1)) 1096 goto HoistTerminator; 1097 1098 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1099 return Changed; 1100 1101 // For a normal instruction, we just move one to right before the branch, 1102 // then replace all uses of the other with the first. Finally, we remove 1103 // the now redundant second instruction. 1104 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1105 if (!I2->use_empty()) 1106 I2->replaceAllUsesWith(I1); 1107 I1->intersectOptionalDataWith(I2); 1108 unsigned KnownIDs[] = { 1109 LLVMContext::MD_tbaa, LLVMContext::MD_range, 1110 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 1111 LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group, 1112 LLVMContext::MD_align, LLVMContext::MD_dereferenceable, 1113 LLVMContext::MD_dereferenceable_or_null}; 1114 combineMetadata(I1, I2, KnownIDs); 1115 I2->eraseFromParent(); 1116 Changed = true; 1117 1118 I1 = &*BB1_Itr++; 1119 I2 = &*BB2_Itr++; 1120 // Skip debug info if it is not identical. 1121 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1122 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1123 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1124 while (isa<DbgInfoIntrinsic>(I1)) 1125 I1 = &*BB1_Itr++; 1126 while (isa<DbgInfoIntrinsic>(I2)) 1127 I2 = &*BB2_Itr++; 1128 } 1129 } while (I1->isIdenticalToWhenDefined(I2)); 1130 1131 return true; 1132 1133 HoistTerminator: 1134 // It may not be possible to hoist an invoke. 1135 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1136 return Changed; 1137 1138 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1139 PHINode *PN; 1140 for (BasicBlock::iterator BBI = SI->begin(); 1141 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1142 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1143 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1144 if (BB1V == BB2V) 1145 continue; 1146 1147 // Check for passingValueIsAlwaysUndefined here because we would rather 1148 // eliminate undefined control flow then converting it to a select. 1149 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1150 passingValueIsAlwaysUndefined(BB2V, PN)) 1151 return Changed; 1152 1153 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1154 return Changed; 1155 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1156 return Changed; 1157 } 1158 } 1159 1160 // Okay, it is safe to hoist the terminator. 1161 Instruction *NT = I1->clone(); 1162 BIParent->getInstList().insert(BI->getIterator(), NT); 1163 if (!NT->getType()->isVoidTy()) { 1164 I1->replaceAllUsesWith(NT); 1165 I2->replaceAllUsesWith(NT); 1166 NT->takeName(I1); 1167 } 1168 1169 IRBuilder<true, NoFolder> Builder(NT); 1170 // Hoisting one of the terminators from our successor is a great thing. 1171 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1172 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1173 // nodes, so we insert select instruction to compute the final result. 1174 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1175 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1176 PHINode *PN; 1177 for (BasicBlock::iterator BBI = SI->begin(); 1178 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1179 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1180 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1181 if (BB1V == BB2V) continue; 1182 1183 // These values do not agree. Insert a select instruction before NT 1184 // that determines the right value. 1185 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1186 if (!SI) 1187 SI = cast<SelectInst> 1188 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1189 BB1V->getName()+"."+BB2V->getName())); 1190 1191 // Make the PHI node use the select for all incoming values for BB1/BB2 1192 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1193 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1194 PN->setIncomingValue(i, SI); 1195 } 1196 } 1197 1198 // Update any PHI nodes in our new successors. 1199 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1200 AddPredecessorToBlock(*SI, BIParent, BB1); 1201 1202 EraseTerminatorInstAndDCECond(BI); 1203 return true; 1204 } 1205 1206 /// Given an unconditional branch that goes to BBEnd, 1207 /// check whether BBEnd has only two predecessors and the other predecessor 1208 /// ends with an unconditional branch. If it is true, sink any common code 1209 /// in the two predecessors to BBEnd. 1210 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1211 assert(BI1->isUnconditional()); 1212 BasicBlock *BB1 = BI1->getParent(); 1213 BasicBlock *BBEnd = BI1->getSuccessor(0); 1214 1215 // Check that BBEnd has two predecessors and the other predecessor ends with 1216 // an unconditional branch. 1217 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1218 BasicBlock *Pred0 = *PI++; 1219 if (PI == PE) // Only one predecessor. 1220 return false; 1221 BasicBlock *Pred1 = *PI++; 1222 if (PI != PE) // More than two predecessors. 1223 return false; 1224 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1225 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1226 if (!BI2 || !BI2->isUnconditional()) 1227 return false; 1228 1229 // Gather the PHI nodes in BBEnd. 1230 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1231 Instruction *FirstNonPhiInBBEnd = nullptr; 1232 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1233 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1234 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1235 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1236 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1237 } else { 1238 FirstNonPhiInBBEnd = &*I; 1239 break; 1240 } 1241 } 1242 if (!FirstNonPhiInBBEnd) 1243 return false; 1244 1245 // This does very trivial matching, with limited scanning, to find identical 1246 // instructions in the two blocks. We scan backward for obviously identical 1247 // instructions in an identical order. 1248 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1249 RE1 = BB1->getInstList().rend(), 1250 RI2 = BB2->getInstList().rbegin(), 1251 RE2 = BB2->getInstList().rend(); 1252 // Skip debug info. 1253 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1254 if (RI1 == RE1) 1255 return false; 1256 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1257 if (RI2 == RE2) 1258 return false; 1259 // Skip the unconditional branches. 1260 ++RI1; 1261 ++RI2; 1262 1263 bool Changed = false; 1264 while (RI1 != RE1 && RI2 != RE2) { 1265 // Skip debug info. 1266 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1267 if (RI1 == RE1) 1268 return Changed; 1269 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1270 if (RI2 == RE2) 1271 return Changed; 1272 1273 Instruction *I1 = &*RI1, *I2 = &*RI2; 1274 auto InstPair = std::make_pair(I1, I2); 1275 // I1 and I2 should have a single use in the same PHI node, and they 1276 // perform the same operation. 1277 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1278 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1279 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1280 I1->isEHPad() || I2->isEHPad() || 1281 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1282 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1283 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1284 !I1->hasOneUse() || !I2->hasOneUse() || 1285 !JointValueMap.count(InstPair)) 1286 return Changed; 1287 1288 // Check whether we should swap the operands of ICmpInst. 1289 // TODO: Add support of communativity. 1290 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1291 bool SwapOpnds = false; 1292 if (ICmp1 && ICmp2 && 1293 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1294 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1295 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1296 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1297 ICmp2->swapOperands(); 1298 SwapOpnds = true; 1299 } 1300 if (!I1->isSameOperationAs(I2)) { 1301 if (SwapOpnds) 1302 ICmp2->swapOperands(); 1303 return Changed; 1304 } 1305 1306 // The operands should be either the same or they need to be generated 1307 // with a PHI node after sinking. We only handle the case where there is 1308 // a single pair of different operands. 1309 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1310 unsigned Op1Idx = ~0U; 1311 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1312 if (I1->getOperand(I) == I2->getOperand(I)) 1313 continue; 1314 // Early exit if we have more-than one pair of different operands or if 1315 // we need a PHI node to replace a constant. 1316 if (Op1Idx != ~0U || 1317 isa<Constant>(I1->getOperand(I)) || 1318 isa<Constant>(I2->getOperand(I))) { 1319 // If we can't sink the instructions, undo the swapping. 1320 if (SwapOpnds) 1321 ICmp2->swapOperands(); 1322 return Changed; 1323 } 1324 DifferentOp1 = I1->getOperand(I); 1325 Op1Idx = I; 1326 DifferentOp2 = I2->getOperand(I); 1327 } 1328 1329 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1330 DEBUG(dbgs() << " " << *I2 << "\n"); 1331 1332 // We insert the pair of different operands to JointValueMap and 1333 // remove (I1, I2) from JointValueMap. 1334 if (Op1Idx != ~0U) { 1335 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1336 if (!NewPN) { 1337 NewPN = 1338 PHINode::Create(DifferentOp1->getType(), 2, 1339 DifferentOp1->getName() + ".sink", &BBEnd->front()); 1340 NewPN->addIncoming(DifferentOp1, BB1); 1341 NewPN->addIncoming(DifferentOp2, BB2); 1342 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1343 } 1344 // I1 should use NewPN instead of DifferentOp1. 1345 I1->setOperand(Op1Idx, NewPN); 1346 } 1347 PHINode *OldPN = JointValueMap[InstPair]; 1348 JointValueMap.erase(InstPair); 1349 1350 // We need to update RE1 and RE2 if we are going to sink the first 1351 // instruction in the basic block down. 1352 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1353 // Sink the instruction. 1354 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(), 1355 BB1->getInstList(), I1); 1356 if (!OldPN->use_empty()) 1357 OldPN->replaceAllUsesWith(I1); 1358 OldPN->eraseFromParent(); 1359 1360 if (!I2->use_empty()) 1361 I2->replaceAllUsesWith(I1); 1362 I1->intersectOptionalDataWith(I2); 1363 // TODO: Use combineMetadata here to preserve what metadata we can 1364 // (analogous to the hoisting case above). 1365 I2->eraseFromParent(); 1366 1367 if (UpdateRE1) 1368 RE1 = BB1->getInstList().rend(); 1369 if (UpdateRE2) 1370 RE2 = BB2->getInstList().rend(); 1371 FirstNonPhiInBBEnd = &*I1; 1372 NumSinkCommons++; 1373 Changed = true; 1374 } 1375 return Changed; 1376 } 1377 1378 /// \brief Determine if we can hoist sink a sole store instruction out of a 1379 /// conditional block. 1380 /// 1381 /// We are looking for code like the following: 1382 /// BrBB: 1383 /// store i32 %add, i32* %arrayidx2 1384 /// ... // No other stores or function calls (we could be calling a memory 1385 /// ... // function). 1386 /// %cmp = icmp ult %x, %y 1387 /// br i1 %cmp, label %EndBB, label %ThenBB 1388 /// ThenBB: 1389 /// store i32 %add5, i32* %arrayidx2 1390 /// br label EndBB 1391 /// EndBB: 1392 /// ... 1393 /// We are going to transform this into: 1394 /// BrBB: 1395 /// store i32 %add, i32* %arrayidx2 1396 /// ... // 1397 /// %cmp = icmp ult %x, %y 1398 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1399 /// store i32 %add.add5, i32* %arrayidx2 1400 /// ... 1401 /// 1402 /// \return The pointer to the value of the previous store if the store can be 1403 /// hoisted into the predecessor block. 0 otherwise. 1404 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1405 BasicBlock *StoreBB, BasicBlock *EndBB) { 1406 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1407 if (!StoreToHoist) 1408 return nullptr; 1409 1410 // Volatile or atomic. 1411 if (!StoreToHoist->isSimple()) 1412 return nullptr; 1413 1414 Value *StorePtr = StoreToHoist->getPointerOperand(); 1415 1416 // Look for a store to the same pointer in BrBB. 1417 unsigned MaxNumInstToLookAt = 10; 1418 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1419 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1420 Instruction *CurI = &*RI; 1421 1422 // Could be calling an instruction that effects memory like free(). 1423 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1424 return nullptr; 1425 1426 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1427 // Found the previous store make sure it stores to the same location. 1428 if (SI && SI->getPointerOperand() == StorePtr) 1429 // Found the previous store, return its value operand. 1430 return SI->getValueOperand(); 1431 else if (SI) 1432 return nullptr; // Unknown store. 1433 } 1434 1435 return nullptr; 1436 } 1437 1438 /// \brief Speculate a conditional basic block flattening the CFG. 1439 /// 1440 /// Note that this is a very risky transform currently. Speculating 1441 /// instructions like this is most often not desirable. Instead, there is an MI 1442 /// pass which can do it with full awareness of the resource constraints. 1443 /// However, some cases are "obvious" and we should do directly. An example of 1444 /// this is speculating a single, reasonably cheap instruction. 1445 /// 1446 /// There is only one distinct advantage to flattening the CFG at the IR level: 1447 /// it makes very common but simplistic optimizations such as are common in 1448 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1449 /// modeling their effects with easier to reason about SSA value graphs. 1450 /// 1451 /// 1452 /// An illustration of this transform is turning this IR: 1453 /// \code 1454 /// BB: 1455 /// %cmp = icmp ult %x, %y 1456 /// br i1 %cmp, label %EndBB, label %ThenBB 1457 /// ThenBB: 1458 /// %sub = sub %x, %y 1459 /// br label BB2 1460 /// EndBB: 1461 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1462 /// ... 1463 /// \endcode 1464 /// 1465 /// Into this IR: 1466 /// \code 1467 /// BB: 1468 /// %cmp = icmp ult %x, %y 1469 /// %sub = sub %x, %y 1470 /// %cond = select i1 %cmp, 0, %sub 1471 /// ... 1472 /// \endcode 1473 /// 1474 /// \returns true if the conditional block is removed. 1475 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1476 const TargetTransformInfo &TTI) { 1477 // Be conservative for now. FP select instruction can often be expensive. 1478 Value *BrCond = BI->getCondition(); 1479 if (isa<FCmpInst>(BrCond)) 1480 return false; 1481 1482 BasicBlock *BB = BI->getParent(); 1483 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1484 1485 // If ThenBB is actually on the false edge of the conditional branch, remember 1486 // to swap the select operands later. 1487 bool Invert = false; 1488 if (ThenBB != BI->getSuccessor(0)) { 1489 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1490 Invert = true; 1491 } 1492 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1493 1494 // Keep a count of how many times instructions are used within CondBB when 1495 // they are candidates for sinking into CondBB. Specifically: 1496 // - They are defined in BB, and 1497 // - They have no side effects, and 1498 // - All of their uses are in CondBB. 1499 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1500 1501 unsigned SpeculationCost = 0; 1502 Value *SpeculatedStoreValue = nullptr; 1503 StoreInst *SpeculatedStore = nullptr; 1504 for (BasicBlock::iterator BBI = ThenBB->begin(), 1505 BBE = std::prev(ThenBB->end()); 1506 BBI != BBE; ++BBI) { 1507 Instruction *I = &*BBI; 1508 // Skip debug info. 1509 if (isa<DbgInfoIntrinsic>(I)) 1510 continue; 1511 1512 // Only speculatively execute a single instruction (not counting the 1513 // terminator) for now. 1514 ++SpeculationCost; 1515 if (SpeculationCost > 1) 1516 return false; 1517 1518 // Don't hoist the instruction if it's unsafe or expensive. 1519 if (!isSafeToSpeculativelyExecute(I) && 1520 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1521 I, BB, ThenBB, EndBB)))) 1522 return false; 1523 if (!SpeculatedStoreValue && 1524 ComputeSpeculationCost(I, TTI) > 1525 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1526 return false; 1527 1528 // Store the store speculation candidate. 1529 if (SpeculatedStoreValue) 1530 SpeculatedStore = cast<StoreInst>(I); 1531 1532 // Do not hoist the instruction if any of its operands are defined but not 1533 // used in BB. The transformation will prevent the operand from 1534 // being sunk into the use block. 1535 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1536 i != e; ++i) { 1537 Instruction *OpI = dyn_cast<Instruction>(*i); 1538 if (!OpI || OpI->getParent() != BB || 1539 OpI->mayHaveSideEffects()) 1540 continue; // Not a candidate for sinking. 1541 1542 ++SinkCandidateUseCounts[OpI]; 1543 } 1544 } 1545 1546 // Consider any sink candidates which are only used in CondBB as costs for 1547 // speculation. Note, while we iterate over a DenseMap here, we are summing 1548 // and so iteration order isn't significant. 1549 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1550 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1551 I != E; ++I) 1552 if (I->first->getNumUses() == I->second) { 1553 ++SpeculationCost; 1554 if (SpeculationCost > 1) 1555 return false; 1556 } 1557 1558 // Check that the PHI nodes can be converted to selects. 1559 bool HaveRewritablePHIs = false; 1560 for (BasicBlock::iterator I = EndBB->begin(); 1561 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1562 Value *OrigV = PN->getIncomingValueForBlock(BB); 1563 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1564 1565 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1566 // Skip PHIs which are trivial. 1567 if (ThenV == OrigV) 1568 continue; 1569 1570 // Don't convert to selects if we could remove undefined behavior instead. 1571 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1572 passingValueIsAlwaysUndefined(ThenV, PN)) 1573 return false; 1574 1575 HaveRewritablePHIs = true; 1576 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1577 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1578 if (!OrigCE && !ThenCE) 1579 continue; // Known safe and cheap. 1580 1581 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1582 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1583 return false; 1584 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1585 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1586 unsigned MaxCost = 2 * PHINodeFoldingThreshold * 1587 TargetTransformInfo::TCC_Basic; 1588 if (OrigCost + ThenCost > MaxCost) 1589 return false; 1590 1591 // Account for the cost of an unfolded ConstantExpr which could end up 1592 // getting expanded into Instructions. 1593 // FIXME: This doesn't account for how many operations are combined in the 1594 // constant expression. 1595 ++SpeculationCost; 1596 if (SpeculationCost > 1) 1597 return false; 1598 } 1599 1600 // If there are no PHIs to process, bail early. This helps ensure idempotence 1601 // as well. 1602 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1603 return false; 1604 1605 // If we get here, we can hoist the instruction and if-convert. 1606 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1607 1608 // Insert a select of the value of the speculated store. 1609 if (SpeculatedStoreValue) { 1610 IRBuilder<true, NoFolder> Builder(BI); 1611 Value *TrueV = SpeculatedStore->getValueOperand(); 1612 Value *FalseV = SpeculatedStoreValue; 1613 if (Invert) 1614 std::swap(TrueV, FalseV); 1615 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1616 "." + FalseV->getName()); 1617 SpeculatedStore->setOperand(0, S); 1618 } 1619 1620 // Metadata can be dependent on the condition we are hoisting above. 1621 // Conservatively strip all metadata on the instruction. 1622 for (auto &I: *ThenBB) 1623 I.dropUnknownNonDebugMetadata(); 1624 1625 // Hoist the instructions. 1626 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1627 ThenBB->begin(), std::prev(ThenBB->end())); 1628 1629 // Insert selects and rewrite the PHI operands. 1630 IRBuilder<true, NoFolder> Builder(BI); 1631 for (BasicBlock::iterator I = EndBB->begin(); 1632 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1633 unsigned OrigI = PN->getBasicBlockIndex(BB); 1634 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1635 Value *OrigV = PN->getIncomingValue(OrigI); 1636 Value *ThenV = PN->getIncomingValue(ThenI); 1637 1638 // Skip PHIs which are trivial. 1639 if (OrigV == ThenV) 1640 continue; 1641 1642 // Create a select whose true value is the speculatively executed value and 1643 // false value is the preexisting value. Swap them if the branch 1644 // destinations were inverted. 1645 Value *TrueV = ThenV, *FalseV = OrigV; 1646 if (Invert) 1647 std::swap(TrueV, FalseV); 1648 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1649 TrueV->getName() + "." + FalseV->getName()); 1650 PN->setIncomingValue(OrigI, V); 1651 PN->setIncomingValue(ThenI, V); 1652 } 1653 1654 ++NumSpeculations; 1655 return true; 1656 } 1657 1658 /// \returns True if this block contains a CallInst with the NoDuplicate 1659 /// attribute. 1660 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1661 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1662 const CallInst *CI = dyn_cast<CallInst>(I); 1663 if (!CI) 1664 continue; 1665 if (CI->cannotDuplicate()) 1666 return true; 1667 } 1668 return false; 1669 } 1670 1671 /// Return true if we can thread a branch across this block. 1672 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1673 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1674 unsigned Size = 0; 1675 1676 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1677 if (isa<DbgInfoIntrinsic>(BBI)) 1678 continue; 1679 if (Size > 10) return false; // Don't clone large BB's. 1680 ++Size; 1681 1682 // We can only support instructions that do not define values that are 1683 // live outside of the current basic block. 1684 for (User *U : BBI->users()) { 1685 Instruction *UI = cast<Instruction>(U); 1686 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1687 } 1688 1689 // Looks ok, continue checking. 1690 } 1691 1692 return true; 1693 } 1694 1695 /// If we have a conditional branch on a PHI node value that is defined in the 1696 /// same block as the branch and if any PHI entries are constants, thread edges 1697 /// corresponding to that entry to be branches to their ultimate destination. 1698 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1699 BasicBlock *BB = BI->getParent(); 1700 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1701 // NOTE: we currently cannot transform this case if the PHI node is used 1702 // outside of the block. 1703 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1704 return false; 1705 1706 // Degenerate case of a single entry PHI. 1707 if (PN->getNumIncomingValues() == 1) { 1708 FoldSingleEntryPHINodes(PN->getParent()); 1709 return true; 1710 } 1711 1712 // Now we know that this block has multiple preds and two succs. 1713 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1714 1715 if (HasNoDuplicateCall(BB)) return false; 1716 1717 // Okay, this is a simple enough basic block. See if any phi values are 1718 // constants. 1719 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1720 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1721 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1722 1723 // Okay, we now know that all edges from PredBB should be revectored to 1724 // branch to RealDest. 1725 BasicBlock *PredBB = PN->getIncomingBlock(i); 1726 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1727 1728 if (RealDest == BB) continue; // Skip self loops. 1729 // Skip if the predecessor's terminator is an indirect branch. 1730 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1731 1732 // The dest block might have PHI nodes, other predecessors and other 1733 // difficult cases. Instead of being smart about this, just insert a new 1734 // block that jumps to the destination block, effectively splitting 1735 // the edge we are about to create. 1736 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1737 RealDest->getName()+".critedge", 1738 RealDest->getParent(), RealDest); 1739 BranchInst::Create(RealDest, EdgeBB); 1740 1741 // Update PHI nodes. 1742 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1743 1744 // BB may have instructions that are being threaded over. Clone these 1745 // instructions into EdgeBB. We know that there will be no uses of the 1746 // cloned instructions outside of EdgeBB. 1747 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1748 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1749 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1750 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1751 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1752 continue; 1753 } 1754 // Clone the instruction. 1755 Instruction *N = BBI->clone(); 1756 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1757 1758 // Update operands due to translation. 1759 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1760 i != e; ++i) { 1761 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1762 if (PI != TranslateMap.end()) 1763 *i = PI->second; 1764 } 1765 1766 // Check for trivial simplification. 1767 if (Value *V = SimplifyInstruction(N, DL)) { 1768 TranslateMap[&*BBI] = V; 1769 delete N; // Instruction folded away, don't need actual inst 1770 } else { 1771 // Insert the new instruction into its new home. 1772 EdgeBB->getInstList().insert(InsertPt, N); 1773 if (!BBI->use_empty()) 1774 TranslateMap[&*BBI] = N; 1775 } 1776 } 1777 1778 // Loop over all of the edges from PredBB to BB, changing them to branch 1779 // to EdgeBB instead. 1780 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1781 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1782 if (PredBBTI->getSuccessor(i) == BB) { 1783 BB->removePredecessor(PredBB); 1784 PredBBTI->setSuccessor(i, EdgeBB); 1785 } 1786 1787 // Recurse, simplifying any other constants. 1788 return FoldCondBranchOnPHI(BI, DL) | true; 1789 } 1790 1791 return false; 1792 } 1793 1794 /// Given a BB that starts with the specified two-entry PHI node, 1795 /// see if we can eliminate it. 1796 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1797 const DataLayout &DL) { 1798 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1799 // statement", which has a very simple dominance structure. Basically, we 1800 // are trying to find the condition that is being branched on, which 1801 // subsequently causes this merge to happen. We really want control 1802 // dependence information for this check, but simplifycfg can't keep it up 1803 // to date, and this catches most of the cases we care about anyway. 1804 BasicBlock *BB = PN->getParent(); 1805 BasicBlock *IfTrue, *IfFalse; 1806 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1807 if (!IfCond || 1808 // Don't bother if the branch will be constant folded trivially. 1809 isa<ConstantInt>(IfCond)) 1810 return false; 1811 1812 // Okay, we found that we can merge this two-entry phi node into a select. 1813 // Doing so would require us to fold *all* two entry phi nodes in this block. 1814 // At some point this becomes non-profitable (particularly if the target 1815 // doesn't support cmov's). Only do this transformation if there are two or 1816 // fewer PHI nodes in this block. 1817 unsigned NumPhis = 0; 1818 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1819 if (NumPhis > 2) 1820 return false; 1821 1822 // Loop over the PHI's seeing if we can promote them all to select 1823 // instructions. While we are at it, keep track of the instructions 1824 // that need to be moved to the dominating block. 1825 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1826 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1827 MaxCostVal1 = PHINodeFoldingThreshold; 1828 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1829 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1830 1831 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1832 PHINode *PN = cast<PHINode>(II++); 1833 if (Value *V = SimplifyInstruction(PN, DL)) { 1834 PN->replaceAllUsesWith(V); 1835 PN->eraseFromParent(); 1836 continue; 1837 } 1838 1839 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1840 MaxCostVal0, TTI) || 1841 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1842 MaxCostVal1, TTI)) 1843 return false; 1844 } 1845 1846 // If we folded the first phi, PN dangles at this point. Refresh it. If 1847 // we ran out of PHIs then we simplified them all. 1848 PN = dyn_cast<PHINode>(BB->begin()); 1849 if (!PN) return true; 1850 1851 // Don't fold i1 branches on PHIs which contain binary operators. These can 1852 // often be turned into switches and other things. 1853 if (PN->getType()->isIntegerTy(1) && 1854 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1855 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1856 isa<BinaryOperator>(IfCond))) 1857 return false; 1858 1859 // If we all PHI nodes are promotable, check to make sure that all 1860 // instructions in the predecessor blocks can be promoted as well. If 1861 // not, we won't be able to get rid of the control flow, so it's not 1862 // worth promoting to select instructions. 1863 BasicBlock *DomBlock = nullptr; 1864 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1865 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1866 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1867 IfBlock1 = nullptr; 1868 } else { 1869 DomBlock = *pred_begin(IfBlock1); 1870 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1871 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1872 // This is not an aggressive instruction that we can promote. 1873 // Because of this, we won't be able to get rid of the control 1874 // flow, so the xform is not worth it. 1875 return false; 1876 } 1877 } 1878 1879 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1880 IfBlock2 = nullptr; 1881 } else { 1882 DomBlock = *pred_begin(IfBlock2); 1883 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1884 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1885 // This is not an aggressive instruction that we can promote. 1886 // Because of this, we won't be able to get rid of the control 1887 // flow, so the xform is not worth it. 1888 return false; 1889 } 1890 } 1891 1892 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1893 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1894 1895 // If we can still promote the PHI nodes after this gauntlet of tests, 1896 // do all of the PHI's now. 1897 Instruction *InsertPt = DomBlock->getTerminator(); 1898 IRBuilder<true, NoFolder> Builder(InsertPt); 1899 1900 // Move all 'aggressive' instructions, which are defined in the 1901 // conditional parts of the if's up to the dominating block. 1902 if (IfBlock1) 1903 DomBlock->getInstList().splice(InsertPt->getIterator(), 1904 IfBlock1->getInstList(), IfBlock1->begin(), 1905 IfBlock1->getTerminator()->getIterator()); 1906 if (IfBlock2) 1907 DomBlock->getInstList().splice(InsertPt->getIterator(), 1908 IfBlock2->getInstList(), IfBlock2->begin(), 1909 IfBlock2->getTerminator()->getIterator()); 1910 1911 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1912 // Change the PHI node into a select instruction. 1913 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1914 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1915 1916 SelectInst *NV = 1917 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1918 PN->replaceAllUsesWith(NV); 1919 NV->takeName(PN); 1920 PN->eraseFromParent(); 1921 } 1922 1923 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1924 // has been flattened. Change DomBlock to jump directly to our new block to 1925 // avoid other simplifycfg's kicking in on the diamond. 1926 TerminatorInst *OldTI = DomBlock->getTerminator(); 1927 Builder.SetInsertPoint(OldTI); 1928 Builder.CreateBr(BB); 1929 OldTI->eraseFromParent(); 1930 return true; 1931 } 1932 1933 /// If we found a conditional branch that goes to two returning blocks, 1934 /// try to merge them together into one return, 1935 /// introducing a select if the return values disagree. 1936 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1937 IRBuilder<> &Builder) { 1938 assert(BI->isConditional() && "Must be a conditional branch"); 1939 BasicBlock *TrueSucc = BI->getSuccessor(0); 1940 BasicBlock *FalseSucc = BI->getSuccessor(1); 1941 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1942 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1943 1944 // Check to ensure both blocks are empty (just a return) or optionally empty 1945 // with PHI nodes. If there are other instructions, merging would cause extra 1946 // computation on one path or the other. 1947 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1948 return false; 1949 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1950 return false; 1951 1952 Builder.SetInsertPoint(BI); 1953 // Okay, we found a branch that is going to two return nodes. If 1954 // there is no return value for this function, just change the 1955 // branch into a return. 1956 if (FalseRet->getNumOperands() == 0) { 1957 TrueSucc->removePredecessor(BI->getParent()); 1958 FalseSucc->removePredecessor(BI->getParent()); 1959 Builder.CreateRetVoid(); 1960 EraseTerminatorInstAndDCECond(BI); 1961 return true; 1962 } 1963 1964 // Otherwise, figure out what the true and false return values are 1965 // so we can insert a new select instruction. 1966 Value *TrueValue = TrueRet->getReturnValue(); 1967 Value *FalseValue = FalseRet->getReturnValue(); 1968 1969 // Unwrap any PHI nodes in the return blocks. 1970 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1971 if (TVPN->getParent() == TrueSucc) 1972 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1973 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1974 if (FVPN->getParent() == FalseSucc) 1975 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1976 1977 // In order for this transformation to be safe, we must be able to 1978 // unconditionally execute both operands to the return. This is 1979 // normally the case, but we could have a potentially-trapping 1980 // constant expression that prevents this transformation from being 1981 // safe. 1982 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1983 if (TCV->canTrap()) 1984 return false; 1985 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1986 if (FCV->canTrap()) 1987 return false; 1988 1989 // Okay, we collected all the mapped values and checked them for sanity, and 1990 // defined to really do this transformation. First, update the CFG. 1991 TrueSucc->removePredecessor(BI->getParent()); 1992 FalseSucc->removePredecessor(BI->getParent()); 1993 1994 // Insert select instructions where needed. 1995 Value *BrCond = BI->getCondition(); 1996 if (TrueValue) { 1997 // Insert a select if the results differ. 1998 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1999 } else if (isa<UndefValue>(TrueValue)) { 2000 TrueValue = FalseValue; 2001 } else { 2002 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 2003 FalseValue, "retval"); 2004 } 2005 } 2006 2007 Value *RI = !TrueValue ? 2008 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2009 2010 (void) RI; 2011 2012 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2013 << "\n " << *BI << "NewRet = " << *RI 2014 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 2015 2016 EraseTerminatorInstAndDCECond(BI); 2017 2018 return true; 2019 } 2020 2021 /// Given a conditional BranchInstruction, retrieve the probabilities of the 2022 /// branch taking each edge. Fills in the two APInt parameters and returns true, 2023 /// or returns false if no or invalid metadata was found. 2024 static bool ExtractBranchMetadata(BranchInst *BI, 2025 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2026 assert(BI->isConditional() && 2027 "Looking for probabilities on unconditional branch?"); 2028 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2029 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2030 ConstantInt *CITrue = 2031 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 2032 ConstantInt *CIFalse = 2033 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 2034 if (!CITrue || !CIFalse) return false; 2035 ProbTrue = CITrue->getValue().getZExtValue(); 2036 ProbFalse = CIFalse->getValue().getZExtValue(); 2037 return true; 2038 } 2039 2040 /// Return true if the given instruction is available 2041 /// in its predecessor block. If yes, the instruction will be removed. 2042 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2043 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2044 return false; 2045 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2046 Instruction *PBI = &*I; 2047 // Check whether Inst and PBI generate the same value. 2048 if (Inst->isIdenticalTo(PBI)) { 2049 Inst->replaceAllUsesWith(PBI); 2050 Inst->eraseFromParent(); 2051 return true; 2052 } 2053 } 2054 return false; 2055 } 2056 2057 /// If this basic block is simple enough, and if a predecessor branches to us 2058 /// and one of our successors, fold the block into the predecessor and use 2059 /// logical operations to pick the right destination. 2060 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2061 BasicBlock *BB = BI->getParent(); 2062 2063 Instruction *Cond = nullptr; 2064 if (BI->isConditional()) 2065 Cond = dyn_cast<Instruction>(BI->getCondition()); 2066 else { 2067 // For unconditional branch, check for a simple CFG pattern, where 2068 // BB has a single predecessor and BB's successor is also its predecessor's 2069 // successor. If such pattern exisits, check for CSE between BB and its 2070 // predecessor. 2071 if (BasicBlock *PB = BB->getSinglePredecessor()) 2072 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2073 if (PBI->isConditional() && 2074 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2075 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2076 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2077 I != E; ) { 2078 Instruction *Curr = &*I++; 2079 if (isa<CmpInst>(Curr)) { 2080 Cond = Curr; 2081 break; 2082 } 2083 // Quit if we can't remove this instruction. 2084 if (!checkCSEInPredecessor(Curr, PB)) 2085 return false; 2086 } 2087 } 2088 2089 if (!Cond) 2090 return false; 2091 } 2092 2093 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2094 Cond->getParent() != BB || !Cond->hasOneUse()) 2095 return false; 2096 2097 // Make sure the instruction after the condition is the cond branch. 2098 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2099 2100 // Ignore dbg intrinsics. 2101 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2102 2103 if (&*CondIt != BI) 2104 return false; 2105 2106 // Only allow this transformation if computing the condition doesn't involve 2107 // too many instructions and these involved instructions can be executed 2108 // unconditionally. We denote all involved instructions except the condition 2109 // as "bonus instructions", and only allow this transformation when the 2110 // number of the bonus instructions does not exceed a certain threshold. 2111 unsigned NumBonusInsts = 0; 2112 for (auto I = BB->begin(); Cond != I; ++I) { 2113 // Ignore dbg intrinsics. 2114 if (isa<DbgInfoIntrinsic>(I)) 2115 continue; 2116 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2117 return false; 2118 // I has only one use and can be executed unconditionally. 2119 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2120 if (User == nullptr || User->getParent() != BB) 2121 return false; 2122 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2123 // to use any other instruction, User must be an instruction between next(I) 2124 // and Cond. 2125 ++NumBonusInsts; 2126 // Early exits once we reach the limit. 2127 if (NumBonusInsts > BonusInstThreshold) 2128 return false; 2129 } 2130 2131 // Cond is known to be a compare or binary operator. Check to make sure that 2132 // neither operand is a potentially-trapping constant expression. 2133 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2134 if (CE->canTrap()) 2135 return false; 2136 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2137 if (CE->canTrap()) 2138 return false; 2139 2140 // Finally, don't infinitely unroll conditional loops. 2141 BasicBlock *TrueDest = BI->getSuccessor(0); 2142 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2143 if (TrueDest == BB || FalseDest == BB) 2144 return false; 2145 2146 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2147 BasicBlock *PredBlock = *PI; 2148 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2149 2150 // Check that we have two conditional branches. If there is a PHI node in 2151 // the common successor, verify that the same value flows in from both 2152 // blocks. 2153 SmallVector<PHINode*, 4> PHIs; 2154 if (!PBI || PBI->isUnconditional() || 2155 (BI->isConditional() && 2156 !SafeToMergeTerminators(BI, PBI)) || 2157 (!BI->isConditional() && 2158 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2159 continue; 2160 2161 // Determine if the two branches share a common destination. 2162 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2163 bool InvertPredCond = false; 2164 2165 if (BI->isConditional()) { 2166 if (PBI->getSuccessor(0) == TrueDest) 2167 Opc = Instruction::Or; 2168 else if (PBI->getSuccessor(1) == FalseDest) 2169 Opc = Instruction::And; 2170 else if (PBI->getSuccessor(0) == FalseDest) 2171 Opc = Instruction::And, InvertPredCond = true; 2172 else if (PBI->getSuccessor(1) == TrueDest) 2173 Opc = Instruction::Or, InvertPredCond = true; 2174 else 2175 continue; 2176 } else { 2177 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2178 continue; 2179 } 2180 2181 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2182 IRBuilder<> Builder(PBI); 2183 2184 // If we need to invert the condition in the pred block to match, do so now. 2185 if (InvertPredCond) { 2186 Value *NewCond = PBI->getCondition(); 2187 2188 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2189 CmpInst *CI = cast<CmpInst>(NewCond); 2190 CI->setPredicate(CI->getInversePredicate()); 2191 } else { 2192 NewCond = Builder.CreateNot(NewCond, 2193 PBI->getCondition()->getName()+".not"); 2194 } 2195 2196 PBI->setCondition(NewCond); 2197 PBI->swapSuccessors(); 2198 } 2199 2200 // If we have bonus instructions, clone them into the predecessor block. 2201 // Note that there may be multiple predecessor blocks, so we cannot move 2202 // bonus instructions to a predecessor block. 2203 ValueToValueMapTy VMap; // maps original values to cloned values 2204 // We already make sure Cond is the last instruction before BI. Therefore, 2205 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2206 // instructions. 2207 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) { 2208 if (isa<DbgInfoIntrinsic>(BonusInst)) 2209 continue; 2210 Instruction *NewBonusInst = BonusInst->clone(); 2211 RemapInstruction(NewBonusInst, VMap, 2212 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2213 VMap[&*BonusInst] = NewBonusInst; 2214 2215 // If we moved a load, we cannot any longer claim any knowledge about 2216 // its potential value. The previous information might have been valid 2217 // only given the branch precondition. 2218 // For an analogous reason, we must also drop all the metadata whose 2219 // semantics we don't understand. 2220 NewBonusInst->dropUnknownNonDebugMetadata(); 2221 2222 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2223 NewBonusInst->takeName(&*BonusInst); 2224 BonusInst->setName(BonusInst->getName() + ".old"); 2225 } 2226 2227 // Clone Cond into the predecessor basic block, and or/and the 2228 // two conditions together. 2229 Instruction *New = Cond->clone(); 2230 RemapInstruction(New, VMap, 2231 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2232 PredBlock->getInstList().insert(PBI->getIterator(), New); 2233 New->takeName(Cond); 2234 Cond->setName(New->getName() + ".old"); 2235 2236 if (BI->isConditional()) { 2237 Instruction *NewCond = 2238 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2239 New, "or.cond")); 2240 PBI->setCondition(NewCond); 2241 2242 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2243 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2244 PredFalseWeight); 2245 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2246 SuccFalseWeight); 2247 SmallVector<uint64_t, 8> NewWeights; 2248 2249 if (PBI->getSuccessor(0) == BB) { 2250 if (PredHasWeights && SuccHasWeights) { 2251 // PBI: br i1 %x, BB, FalseDest 2252 // BI: br i1 %y, TrueDest, FalseDest 2253 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2254 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2255 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2256 // TrueWeight for PBI * FalseWeight for BI. 2257 // We assume that total weights of a BranchInst can fit into 32 bits. 2258 // Therefore, we will not have overflow using 64-bit arithmetic. 2259 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2260 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2261 } 2262 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2263 PBI->setSuccessor(0, TrueDest); 2264 } 2265 if (PBI->getSuccessor(1) == BB) { 2266 if (PredHasWeights && SuccHasWeights) { 2267 // PBI: br i1 %x, TrueDest, BB 2268 // BI: br i1 %y, TrueDest, FalseDest 2269 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2270 // FalseWeight for PBI * TrueWeight for BI. 2271 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2272 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2273 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2274 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2275 } 2276 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2277 PBI->setSuccessor(1, FalseDest); 2278 } 2279 if (NewWeights.size() == 2) { 2280 // Halve the weights if any of them cannot fit in an uint32_t 2281 FitWeights(NewWeights); 2282 2283 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2284 PBI->setMetadata(LLVMContext::MD_prof, 2285 MDBuilder(BI->getContext()). 2286 createBranchWeights(MDWeights)); 2287 } else 2288 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2289 } else { 2290 // Update PHI nodes in the common successors. 2291 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2292 ConstantInt *PBI_C = cast<ConstantInt>( 2293 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2294 assert(PBI_C->getType()->isIntegerTy(1)); 2295 Instruction *MergedCond = nullptr; 2296 if (PBI->getSuccessor(0) == TrueDest) { 2297 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2298 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2299 // is false: !PBI_Cond and BI_Value 2300 Instruction *NotCond = 2301 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2302 "not.cond")); 2303 MergedCond = 2304 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2305 NotCond, New, 2306 "and.cond")); 2307 if (PBI_C->isOne()) 2308 MergedCond = 2309 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2310 PBI->getCondition(), MergedCond, 2311 "or.cond")); 2312 } else { 2313 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2314 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2315 // is false: PBI_Cond and BI_Value 2316 MergedCond = 2317 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2318 PBI->getCondition(), New, 2319 "and.cond")); 2320 if (PBI_C->isOne()) { 2321 Instruction *NotCond = 2322 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2323 "not.cond")); 2324 MergedCond = 2325 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2326 NotCond, MergedCond, 2327 "or.cond")); 2328 } 2329 } 2330 // Update PHI Node. 2331 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2332 MergedCond); 2333 } 2334 // Change PBI from Conditional to Unconditional. 2335 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2336 EraseTerminatorInstAndDCECond(PBI); 2337 PBI = New_PBI; 2338 } 2339 2340 // TODO: If BB is reachable from all paths through PredBlock, then we 2341 // could replace PBI's branch probabilities with BI's. 2342 2343 // Copy any debug value intrinsics into the end of PredBlock. 2344 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2345 if (isa<DbgInfoIntrinsic>(*I)) 2346 I->clone()->insertBefore(PBI); 2347 2348 return true; 2349 } 2350 return false; 2351 } 2352 2353 // If there is only one store in BB1 and BB2, return it, otherwise return 2354 // nullptr. 2355 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2356 StoreInst *S = nullptr; 2357 for (auto *BB : {BB1, BB2}) { 2358 if (!BB) 2359 continue; 2360 for (auto &I : *BB) 2361 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2362 if (S) 2363 // Multiple stores seen. 2364 return nullptr; 2365 else 2366 S = SI; 2367 } 2368 } 2369 return S; 2370 } 2371 2372 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2373 Value *AlternativeV = nullptr) { 2374 // PHI is going to be a PHI node that allows the value V that is defined in 2375 // BB to be referenced in BB's only successor. 2376 // 2377 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2378 // doesn't matter to us what the other operand is (it'll never get used). We 2379 // could just create a new PHI with an undef incoming value, but that could 2380 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2381 // other PHI. So here we directly look for some PHI in BB's successor with V 2382 // as an incoming operand. If we find one, we use it, else we create a new 2383 // one. 2384 // 2385 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2386 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2387 // where OtherBB is the single other predecessor of BB's only successor. 2388 PHINode *PHI = nullptr; 2389 BasicBlock *Succ = BB->getSingleSuccessor(); 2390 2391 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2392 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2393 PHI = cast<PHINode>(I); 2394 if (!AlternativeV) 2395 break; 2396 2397 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2398 auto PredI = pred_begin(Succ); 2399 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2400 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2401 break; 2402 PHI = nullptr; 2403 } 2404 if (PHI) 2405 return PHI; 2406 2407 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2408 PHI->addIncoming(V, BB); 2409 for (BasicBlock *PredBB : predecessors(Succ)) 2410 if (PredBB != BB) 2411 PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()), 2412 PredBB); 2413 return PHI; 2414 } 2415 2416 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2417 BasicBlock *QTB, BasicBlock *QFB, 2418 BasicBlock *PostBB, Value *Address, 2419 bool InvertPCond, bool InvertQCond) { 2420 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2421 return Operator::getOpcode(&I) == Instruction::BitCast && 2422 I.getType()->isPointerTy(); 2423 }; 2424 2425 // If we're not in aggressive mode, we only optimize if we have some 2426 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2427 auto IsWorthwhile = [&](BasicBlock *BB) { 2428 if (!BB) 2429 return true; 2430 // Heuristic: if the block can be if-converted/phi-folded and the 2431 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2432 // thread this store. 2433 unsigned N = 0; 2434 for (auto &I : *BB) { 2435 // Cheap instructions viable for folding. 2436 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2437 isa<StoreInst>(I)) 2438 ++N; 2439 // Free instructions. 2440 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2441 IsaBitcastOfPointerType(I)) 2442 continue; 2443 else 2444 return false; 2445 } 2446 return N <= PHINodeFoldingThreshold; 2447 }; 2448 2449 if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) || 2450 !IsWorthwhile(PFB) || 2451 !IsWorthwhile(QTB) || 2452 !IsWorthwhile(QFB))) 2453 return false; 2454 2455 // For every pointer, there must be exactly two stores, one coming from 2456 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2457 // store (to any address) in PTB,PFB or QTB,QFB. 2458 // FIXME: We could relax this restriction with a bit more work and performance 2459 // testing. 2460 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2461 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2462 if (!PStore || !QStore) 2463 return false; 2464 2465 // Now check the stores are compatible. 2466 if (!QStore->isUnordered() || !PStore->isUnordered()) 2467 return false; 2468 2469 // Check that sinking the store won't cause program behavior changes. Sinking 2470 // the store out of the Q blocks won't change any behavior as we're sinking 2471 // from a block to its unconditional successor. But we're moving a store from 2472 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2473 // So we need to check that there are no aliasing loads or stores in 2474 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2475 // operations between PStore and the end of its parent block. 2476 // 2477 // The ideal way to do this is to query AliasAnalysis, but we don't 2478 // preserve AA currently so that is dangerous. Be super safe and just 2479 // check there are no other memory operations at all. 2480 for (auto &I : *QFB->getSinglePredecessor()) 2481 if (I.mayReadOrWriteMemory()) 2482 return false; 2483 for (auto &I : *QFB) 2484 if (&I != QStore && I.mayReadOrWriteMemory()) 2485 return false; 2486 if (QTB) 2487 for (auto &I : *QTB) 2488 if (&I != QStore && I.mayReadOrWriteMemory()) 2489 return false; 2490 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2491 I != E; ++I) 2492 if (&*I != PStore && I->mayReadOrWriteMemory()) 2493 return false; 2494 2495 // OK, we're going to sink the stores to PostBB. The store has to be 2496 // conditional though, so first create the predicate. 2497 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2498 ->getCondition(); 2499 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2500 ->getCondition(); 2501 2502 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2503 PStore->getParent()); 2504 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2505 QStore->getParent(), PPHI); 2506 2507 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2508 2509 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2510 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2511 2512 if (InvertPCond) 2513 PPred = QB.CreateNot(PPred); 2514 if (InvertQCond) 2515 QPred = QB.CreateNot(QPred); 2516 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2517 2518 auto *T = 2519 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2520 QB.SetInsertPoint(T); 2521 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2522 AAMDNodes AAMD; 2523 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2524 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2525 SI->setAAMetadata(AAMD); 2526 2527 QStore->eraseFromParent(); 2528 PStore->eraseFromParent(); 2529 2530 return true; 2531 } 2532 2533 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2534 // The intention here is to find diamonds or triangles (see below) where each 2535 // conditional block contains a store to the same address. Both of these 2536 // stores are conditional, so they can't be unconditionally sunk. But it may 2537 // be profitable to speculatively sink the stores into one merged store at the 2538 // end, and predicate the merged store on the union of the two conditions of 2539 // PBI and QBI. 2540 // 2541 // This can reduce the number of stores executed if both of the conditions are 2542 // true, and can allow the blocks to become small enough to be if-converted. 2543 // This optimization will also chain, so that ladders of test-and-set 2544 // sequences can be if-converted away. 2545 // 2546 // We only deal with simple diamonds or triangles: 2547 // 2548 // PBI or PBI or a combination of the two 2549 // / \ | \ 2550 // PTB PFB | PFB 2551 // \ / | / 2552 // QBI QBI 2553 // / \ | \ 2554 // QTB QFB | QFB 2555 // \ / | / 2556 // PostBB PostBB 2557 // 2558 // We model triangles as a type of diamond with a nullptr "true" block. 2559 // Triangles are canonicalized so that the fallthrough edge is represented by 2560 // a true condition, as in the diagram above. 2561 // 2562 BasicBlock *PTB = PBI->getSuccessor(0); 2563 BasicBlock *PFB = PBI->getSuccessor(1); 2564 BasicBlock *QTB = QBI->getSuccessor(0); 2565 BasicBlock *QFB = QBI->getSuccessor(1); 2566 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2567 2568 bool InvertPCond = false, InvertQCond = false; 2569 // Canonicalize fallthroughs to the true branches. 2570 if (PFB == QBI->getParent()) { 2571 std::swap(PFB, PTB); 2572 InvertPCond = true; 2573 } 2574 if (QFB == PostBB) { 2575 std::swap(QFB, QTB); 2576 InvertQCond = true; 2577 } 2578 2579 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2580 // and QFB may not. Model fallthroughs as a nullptr block. 2581 if (PTB == QBI->getParent()) 2582 PTB = nullptr; 2583 if (QTB == PostBB) 2584 QTB = nullptr; 2585 2586 // Legality bailouts. We must have at least the non-fallthrough blocks and 2587 // the post-dominating block, and the non-fallthroughs must only have one 2588 // predecessor. 2589 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2590 return BB->getSinglePredecessor() == P && 2591 BB->getSingleSuccessor() == S; 2592 }; 2593 if (!PostBB || 2594 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2595 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2596 return false; 2597 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2598 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2599 return false; 2600 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2601 return false; 2602 2603 // OK, this is a sequence of two diamonds or triangles. 2604 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2605 SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses; 2606 for (auto *BB : {PTB, PFB}) { 2607 if (!BB) 2608 continue; 2609 for (auto &I : *BB) 2610 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2611 PStoreAddresses.insert(SI->getPointerOperand()); 2612 } 2613 for (auto *BB : {QTB, QFB}) { 2614 if (!BB) 2615 continue; 2616 for (auto &I : *BB) 2617 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2618 QStoreAddresses.insert(SI->getPointerOperand()); 2619 } 2620 2621 set_intersect(PStoreAddresses, QStoreAddresses); 2622 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2623 // clear what it contains. 2624 auto &CommonAddresses = PStoreAddresses; 2625 2626 bool Changed = false; 2627 for (auto *Address : CommonAddresses) 2628 Changed |= mergeConditionalStoreToAddress( 2629 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2630 return Changed; 2631 } 2632 2633 /// If we have a conditional branch as a predecessor of another block, 2634 /// this function tries to simplify it. We know 2635 /// that PBI and BI are both conditional branches, and BI is in one of the 2636 /// successor blocks of PBI - PBI branches to BI. 2637 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2638 const DataLayout &DL) { 2639 assert(PBI->isConditional() && BI->isConditional()); 2640 BasicBlock *BB = BI->getParent(); 2641 2642 // If this block ends with a branch instruction, and if there is a 2643 // predecessor that ends on a branch of the same condition, make 2644 // this conditional branch redundant. 2645 if (PBI->getCondition() == BI->getCondition() && 2646 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2647 // Okay, the outcome of this conditional branch is statically 2648 // knowable. If this block had a single pred, handle specially. 2649 if (BB->getSinglePredecessor()) { 2650 // Turn this into a branch on constant. 2651 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2652 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2653 CondIsTrue)); 2654 return true; // Nuke the branch on constant. 2655 } 2656 2657 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2658 // in the constant and simplify the block result. Subsequent passes of 2659 // simplifycfg will thread the block. 2660 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2661 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2662 PHINode *NewPN = PHINode::Create( 2663 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2664 BI->getCondition()->getName() + ".pr", &BB->front()); 2665 // Okay, we're going to insert the PHI node. Since PBI is not the only 2666 // predecessor, compute the PHI'd conditional value for all of the preds. 2667 // Any predecessor where the condition is not computable we keep symbolic. 2668 for (pred_iterator PI = PB; PI != PE; ++PI) { 2669 BasicBlock *P = *PI; 2670 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2671 PBI != BI && PBI->isConditional() && 2672 PBI->getCondition() == BI->getCondition() && 2673 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2674 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2675 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2676 CondIsTrue), P); 2677 } else { 2678 NewPN->addIncoming(BI->getCondition(), P); 2679 } 2680 } 2681 2682 BI->setCondition(NewPN); 2683 return true; 2684 } 2685 } 2686 2687 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2688 if (CE->canTrap()) 2689 return false; 2690 2691 // If BI is reached from the true path of PBI and PBI's condition implies 2692 // BI's condition, we know the direction of the BI branch. 2693 if (PBI->getSuccessor(0) == BI->getParent() && 2694 isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) && 2695 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 2696 BB->getSinglePredecessor()) { 2697 // Turn this into a branch on constant. 2698 auto *OldCond = BI->getCondition(); 2699 BI->setCondition(ConstantInt::getTrue(BB->getContext())); 2700 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 2701 return true; // Nuke the branch on constant. 2702 } 2703 2704 // If both branches are conditional and both contain stores to the same 2705 // address, remove the stores from the conditionals and create a conditional 2706 // merged store at the end. 2707 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2708 return true; 2709 2710 // If this is a conditional branch in an empty block, and if any 2711 // predecessors are a conditional branch to one of our destinations, 2712 // fold the conditions into logical ops and one cond br. 2713 BasicBlock::iterator BBI = BB->begin(); 2714 // Ignore dbg intrinsics. 2715 while (isa<DbgInfoIntrinsic>(BBI)) 2716 ++BBI; 2717 if (&*BBI != BI) 2718 return false; 2719 2720 int PBIOp, BIOp; 2721 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2722 PBIOp = BIOp = 0; 2723 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2724 PBIOp = 0, BIOp = 1; 2725 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2726 PBIOp = 1, BIOp = 0; 2727 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2728 PBIOp = BIOp = 1; 2729 else 2730 return false; 2731 2732 // Check to make sure that the other destination of this branch 2733 // isn't BB itself. If so, this is an infinite loop that will 2734 // keep getting unwound. 2735 if (PBI->getSuccessor(PBIOp) == BB) 2736 return false; 2737 2738 // Do not perform this transformation if it would require 2739 // insertion of a large number of select instructions. For targets 2740 // without predication/cmovs, this is a big pessimization. 2741 2742 // Also do not perform this transformation if any phi node in the common 2743 // destination block can trap when reached by BB or PBB (PR17073). In that 2744 // case, it would be unsafe to hoist the operation into a select instruction. 2745 2746 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2747 unsigned NumPhis = 0; 2748 for (BasicBlock::iterator II = CommonDest->begin(); 2749 isa<PHINode>(II); ++II, ++NumPhis) { 2750 if (NumPhis > 2) // Disable this xform. 2751 return false; 2752 2753 PHINode *PN = cast<PHINode>(II); 2754 Value *BIV = PN->getIncomingValueForBlock(BB); 2755 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2756 if (CE->canTrap()) 2757 return false; 2758 2759 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2760 Value *PBIV = PN->getIncomingValue(PBBIdx); 2761 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2762 if (CE->canTrap()) 2763 return false; 2764 } 2765 2766 // Finally, if everything is ok, fold the branches to logical ops. 2767 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2768 2769 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2770 << "AND: " << *BI->getParent()); 2771 2772 2773 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2774 // branch in it, where one edge (OtherDest) goes back to itself but the other 2775 // exits. We don't *know* that the program avoids the infinite loop 2776 // (even though that seems likely). If we do this xform naively, we'll end up 2777 // recursively unpeeling the loop. Since we know that (after the xform is 2778 // done) that the block *is* infinite if reached, we just make it an obviously 2779 // infinite loop with no cond branch. 2780 if (OtherDest == BB) { 2781 // Insert it at the end of the function, because it's either code, 2782 // or it won't matter if it's hot. :) 2783 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2784 "infloop", BB->getParent()); 2785 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2786 OtherDest = InfLoopBlock; 2787 } 2788 2789 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2790 2791 // BI may have other predecessors. Because of this, we leave 2792 // it alone, but modify PBI. 2793 2794 // Make sure we get to CommonDest on True&True directions. 2795 Value *PBICond = PBI->getCondition(); 2796 IRBuilder<true, NoFolder> Builder(PBI); 2797 if (PBIOp) 2798 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2799 2800 Value *BICond = BI->getCondition(); 2801 if (BIOp) 2802 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2803 2804 // Merge the conditions. 2805 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2806 2807 // Modify PBI to branch on the new condition to the new dests. 2808 PBI->setCondition(Cond); 2809 PBI->setSuccessor(0, CommonDest); 2810 PBI->setSuccessor(1, OtherDest); 2811 2812 // Update branch weight for PBI. 2813 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2814 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2815 PredFalseWeight); 2816 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2817 SuccFalseWeight); 2818 if (PredHasWeights && SuccHasWeights) { 2819 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2820 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2821 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2822 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2823 // The weight to CommonDest should be PredCommon * SuccTotal + 2824 // PredOther * SuccCommon. 2825 // The weight to OtherDest should be PredOther * SuccOther. 2826 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2827 PredOther * SuccCommon, 2828 PredOther * SuccOther}; 2829 // Halve the weights if any of them cannot fit in an uint32_t 2830 FitWeights(NewWeights); 2831 2832 PBI->setMetadata(LLVMContext::MD_prof, 2833 MDBuilder(BI->getContext()) 2834 .createBranchWeights(NewWeights[0], NewWeights[1])); 2835 } 2836 2837 // OtherDest may have phi nodes. If so, add an entry from PBI's 2838 // block that are identical to the entries for BI's block. 2839 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2840 2841 // We know that the CommonDest already had an edge from PBI to 2842 // it. If it has PHIs though, the PHIs may have different 2843 // entries for BB and PBI's BB. If so, insert a select to make 2844 // them agree. 2845 PHINode *PN; 2846 for (BasicBlock::iterator II = CommonDest->begin(); 2847 (PN = dyn_cast<PHINode>(II)); ++II) { 2848 Value *BIV = PN->getIncomingValueForBlock(BB); 2849 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2850 Value *PBIV = PN->getIncomingValue(PBBIdx); 2851 if (BIV != PBIV) { 2852 // Insert a select in PBI to pick the right value. 2853 Value *NV = cast<SelectInst> 2854 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2855 PN->setIncomingValue(PBBIdx, NV); 2856 } 2857 } 2858 2859 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2860 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2861 2862 // This basic block is probably dead. We know it has at least 2863 // one fewer predecessor. 2864 return true; 2865 } 2866 2867 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 2868 // true or to FalseBB if Cond is false. 2869 // Takes care of updating the successors and removing the old terminator. 2870 // Also makes sure not to introduce new successors by assuming that edges to 2871 // non-successor TrueBBs and FalseBBs aren't reachable. 2872 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2873 BasicBlock *TrueBB, BasicBlock *FalseBB, 2874 uint32_t TrueWeight, 2875 uint32_t FalseWeight){ 2876 // Remove any superfluous successor edges from the CFG. 2877 // First, figure out which successors to preserve. 2878 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2879 // successor. 2880 BasicBlock *KeepEdge1 = TrueBB; 2881 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2882 2883 // Then remove the rest. 2884 for (BasicBlock *Succ : OldTerm->successors()) { 2885 // Make sure only to keep exactly one copy of each edge. 2886 if (Succ == KeepEdge1) 2887 KeepEdge1 = nullptr; 2888 else if (Succ == KeepEdge2) 2889 KeepEdge2 = nullptr; 2890 else 2891 Succ->removePredecessor(OldTerm->getParent(), 2892 /*DontDeleteUselessPHIs=*/true); 2893 } 2894 2895 IRBuilder<> Builder(OldTerm); 2896 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2897 2898 // Insert an appropriate new terminator. 2899 if (!KeepEdge1 && !KeepEdge2) { 2900 if (TrueBB == FalseBB) 2901 // We were only looking for one successor, and it was present. 2902 // Create an unconditional branch to it. 2903 Builder.CreateBr(TrueBB); 2904 else { 2905 // We found both of the successors we were looking for. 2906 // Create a conditional branch sharing the condition of the select. 2907 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2908 if (TrueWeight != FalseWeight) 2909 NewBI->setMetadata(LLVMContext::MD_prof, 2910 MDBuilder(OldTerm->getContext()). 2911 createBranchWeights(TrueWeight, FalseWeight)); 2912 } 2913 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2914 // Neither of the selected blocks were successors, so this 2915 // terminator must be unreachable. 2916 new UnreachableInst(OldTerm->getContext(), OldTerm); 2917 } else { 2918 // One of the selected values was a successor, but the other wasn't. 2919 // Insert an unconditional branch to the one that was found; 2920 // the edge to the one that wasn't must be unreachable. 2921 if (!KeepEdge1) 2922 // Only TrueBB was found. 2923 Builder.CreateBr(TrueBB); 2924 else 2925 // Only FalseBB was found. 2926 Builder.CreateBr(FalseBB); 2927 } 2928 2929 EraseTerminatorInstAndDCECond(OldTerm); 2930 return true; 2931 } 2932 2933 // Replaces 2934 // (switch (select cond, X, Y)) on constant X, Y 2935 // with a branch - conditional if X and Y lead to distinct BBs, 2936 // unconditional otherwise. 2937 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2938 // Check for constant integer values in the select. 2939 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2940 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2941 if (!TrueVal || !FalseVal) 2942 return false; 2943 2944 // Find the relevant condition and destinations. 2945 Value *Condition = Select->getCondition(); 2946 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2947 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2948 2949 // Get weight for TrueBB and FalseBB. 2950 uint32_t TrueWeight = 0, FalseWeight = 0; 2951 SmallVector<uint64_t, 8> Weights; 2952 bool HasWeights = HasBranchWeights(SI); 2953 if (HasWeights) { 2954 GetBranchWeights(SI, Weights); 2955 if (Weights.size() == 1 + SI->getNumCases()) { 2956 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2957 getSuccessorIndex()]; 2958 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2959 getSuccessorIndex()]; 2960 } 2961 } 2962 2963 // Perform the actual simplification. 2964 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2965 TrueWeight, FalseWeight); 2966 } 2967 2968 // Replaces 2969 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2970 // blockaddress(@fn, BlockB))) 2971 // with 2972 // (br cond, BlockA, BlockB). 2973 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2974 // Check that both operands of the select are block addresses. 2975 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2976 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2977 if (!TBA || !FBA) 2978 return false; 2979 2980 // Extract the actual blocks. 2981 BasicBlock *TrueBB = TBA->getBasicBlock(); 2982 BasicBlock *FalseBB = FBA->getBasicBlock(); 2983 2984 // Perform the actual simplification. 2985 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2986 0, 0); 2987 } 2988 2989 /// This is called when we find an icmp instruction 2990 /// (a seteq/setne with a constant) as the only instruction in a 2991 /// block that ends with an uncond branch. We are looking for a very specific 2992 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2993 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2994 /// default value goes to an uncond block with a seteq in it, we get something 2995 /// like: 2996 /// 2997 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2998 /// DEFAULT: 2999 /// %tmp = icmp eq i8 %A, 92 3000 /// br label %end 3001 /// end: 3002 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3003 /// 3004 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3005 /// the PHI, merging the third icmp into the switch. 3006 static bool TryToSimplifyUncondBranchWithICmpInIt( 3007 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3008 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3009 AssumptionCache *AC) { 3010 BasicBlock *BB = ICI->getParent(); 3011 3012 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3013 // complex. 3014 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 3015 3016 Value *V = ICI->getOperand(0); 3017 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3018 3019 // The pattern we're looking for is where our only predecessor is a switch on 3020 // 'V' and this block is the default case for the switch. In this case we can 3021 // fold the compared value into the switch to simplify things. 3022 BasicBlock *Pred = BB->getSinglePredecessor(); 3023 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 3024 3025 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3026 if (SI->getCondition() != V) 3027 return false; 3028 3029 // If BB is reachable on a non-default case, then we simply know the value of 3030 // V in this block. Substitute it and constant fold the icmp instruction 3031 // away. 3032 if (SI->getDefaultDest() != BB) { 3033 ConstantInt *VVal = SI->findCaseDest(BB); 3034 assert(VVal && "Should have a unique destination value"); 3035 ICI->setOperand(0, VVal); 3036 3037 if (Value *V = SimplifyInstruction(ICI, DL)) { 3038 ICI->replaceAllUsesWith(V); 3039 ICI->eraseFromParent(); 3040 } 3041 // BB is now empty, so it is likely to simplify away. 3042 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3043 } 3044 3045 // Ok, the block is reachable from the default dest. If the constant we're 3046 // comparing exists in one of the other edges, then we can constant fold ICI 3047 // and zap it. 3048 if (SI->findCaseValue(Cst) != SI->case_default()) { 3049 Value *V; 3050 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3051 V = ConstantInt::getFalse(BB->getContext()); 3052 else 3053 V = ConstantInt::getTrue(BB->getContext()); 3054 3055 ICI->replaceAllUsesWith(V); 3056 ICI->eraseFromParent(); 3057 // BB is now empty, so it is likely to simplify away. 3058 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3059 } 3060 3061 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3062 // the block. 3063 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3064 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3065 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3066 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3067 return false; 3068 3069 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3070 // true in the PHI. 3071 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3072 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3073 3074 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3075 std::swap(DefaultCst, NewCst); 3076 3077 // Replace ICI (which is used by the PHI for the default value) with true or 3078 // false depending on if it is EQ or NE. 3079 ICI->replaceAllUsesWith(DefaultCst); 3080 ICI->eraseFromParent(); 3081 3082 // Okay, the switch goes to this block on a default value. Add an edge from 3083 // the switch to the merge point on the compared value. 3084 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 3085 BB->getParent(), BB); 3086 SmallVector<uint64_t, 8> Weights; 3087 bool HasWeights = HasBranchWeights(SI); 3088 if (HasWeights) { 3089 GetBranchWeights(SI, Weights); 3090 if (Weights.size() == 1 + SI->getNumCases()) { 3091 // Split weight for default case to case for "Cst". 3092 Weights[0] = (Weights[0]+1) >> 1; 3093 Weights.push_back(Weights[0]); 3094 3095 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3096 SI->setMetadata(LLVMContext::MD_prof, 3097 MDBuilder(SI->getContext()). 3098 createBranchWeights(MDWeights)); 3099 } 3100 } 3101 SI->addCase(Cst, NewBB); 3102 3103 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3104 Builder.SetInsertPoint(NewBB); 3105 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3106 Builder.CreateBr(SuccBlock); 3107 PHIUse->addIncoming(NewCst, NewBB); 3108 return true; 3109 } 3110 3111 /// The specified branch is a conditional branch. 3112 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3113 /// fold it into a switch instruction if so. 3114 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3115 const DataLayout &DL) { 3116 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3117 if (!Cond) return false; 3118 3119 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3120 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3121 // 'setne's and'ed together, collect them. 3122 3123 // Try to gather values from a chain of and/or to be turned into a switch 3124 ConstantComparesGatherer ConstantCompare(Cond, DL); 3125 // Unpack the result 3126 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals; 3127 Value *CompVal = ConstantCompare.CompValue; 3128 unsigned UsedICmps = ConstantCompare.UsedICmps; 3129 Value *ExtraCase = ConstantCompare.Extra; 3130 3131 // If we didn't have a multiply compared value, fail. 3132 if (!CompVal) return false; 3133 3134 // Avoid turning single icmps into a switch. 3135 if (UsedICmps <= 1) 3136 return false; 3137 3138 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3139 3140 // There might be duplicate constants in the list, which the switch 3141 // instruction can't handle, remove them now. 3142 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3143 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3144 3145 // If Extra was used, we require at least two switch values to do the 3146 // transformation. A switch with one value is just a conditional branch. 3147 if (ExtraCase && Values.size() < 2) return false; 3148 3149 // TODO: Preserve branch weight metadata, similarly to how 3150 // FoldValueComparisonIntoPredecessors preserves it. 3151 3152 // Figure out which block is which destination. 3153 BasicBlock *DefaultBB = BI->getSuccessor(1); 3154 BasicBlock *EdgeBB = BI->getSuccessor(0); 3155 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 3156 3157 BasicBlock *BB = BI->getParent(); 3158 3159 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3160 << " cases into SWITCH. BB is:\n" << *BB); 3161 3162 // If there are any extra values that couldn't be folded into the switch 3163 // then we evaluate them with an explicit branch first. Split the block 3164 // right before the condbr to handle it. 3165 if (ExtraCase) { 3166 BasicBlock *NewBB = 3167 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3168 // Remove the uncond branch added to the old block. 3169 TerminatorInst *OldTI = BB->getTerminator(); 3170 Builder.SetInsertPoint(OldTI); 3171 3172 if (TrueWhenEqual) 3173 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3174 else 3175 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3176 3177 OldTI->eraseFromParent(); 3178 3179 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3180 // for the edge we just added. 3181 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3182 3183 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3184 << "\nEXTRABB = " << *BB); 3185 BB = NewBB; 3186 } 3187 3188 Builder.SetInsertPoint(BI); 3189 // Convert pointer to int before we switch. 3190 if (CompVal->getType()->isPointerTy()) { 3191 CompVal = Builder.CreatePtrToInt( 3192 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3193 } 3194 3195 // Create the new switch instruction now. 3196 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3197 3198 // Add all of the 'cases' to the switch instruction. 3199 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3200 New->addCase(Values[i], EdgeBB); 3201 3202 // We added edges from PI to the EdgeBB. As such, if there were any 3203 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3204 // the number of edges added. 3205 for (BasicBlock::iterator BBI = EdgeBB->begin(); 3206 isa<PHINode>(BBI); ++BBI) { 3207 PHINode *PN = cast<PHINode>(BBI); 3208 Value *InVal = PN->getIncomingValueForBlock(BB); 3209 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 3210 PN->addIncoming(InVal, BB); 3211 } 3212 3213 // Erase the old branch instruction. 3214 EraseTerminatorInstAndDCECond(BI); 3215 3216 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3217 return true; 3218 } 3219 3220 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3221 // If this is a trivial landing pad that just continues unwinding the caught 3222 // exception then zap the landing pad, turning its invokes into calls. 3223 BasicBlock *BB = RI->getParent(); 3224 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3225 if (RI->getValue() != LPInst) 3226 // Not a landing pad, or the resume is not unwinding the exception that 3227 // caused control to branch here. 3228 return false; 3229 3230 // Check that there are no other instructions except for debug intrinsics. 3231 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3232 while (++I != E) 3233 if (!isa<DbgInfoIntrinsic>(I)) 3234 return false; 3235 3236 // Turn all invokes that unwind here into calls and delete the basic block. 3237 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3238 BasicBlock *Pred = *PI++; 3239 removeUnwindEdge(Pred); 3240 } 3241 3242 // The landingpad is now unreachable. Zap it. 3243 BB->eraseFromParent(); 3244 return true; 3245 } 3246 3247 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3248 // If this is a trivial cleanup pad that executes no instructions, it can be 3249 // eliminated. If the cleanup pad continues to the caller, any predecessor 3250 // that is an EH pad will be updated to continue to the caller and any 3251 // predecessor that terminates with an invoke instruction will have its invoke 3252 // instruction converted to a call instruction. If the cleanup pad being 3253 // simplified does not continue to the caller, each predecessor will be 3254 // updated to continue to the unwind destination of the cleanup pad being 3255 // simplified. 3256 BasicBlock *BB = RI->getParent(); 3257 Instruction *CPInst = dyn_cast<CleanupPadInst>(BB->getFirstNonPHI()); 3258 if (!CPInst) 3259 // This isn't an empty cleanup. 3260 return false; 3261 3262 // Check that there are no other instructions except for debug intrinsics. 3263 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3264 while (++I != E) 3265 if (!isa<DbgInfoIntrinsic>(I)) 3266 return false; 3267 3268 // If the cleanup return we are simplifying unwinds to the caller, this 3269 // will set UnwindDest to nullptr. 3270 BasicBlock *UnwindDest = RI->getUnwindDest(); 3271 3272 // We're about to remove BB from the control flow. Before we do, sink any 3273 // PHINodes into the unwind destination. Doing this before changing the 3274 // control flow avoids some potentially slow checks, since we can currently 3275 // be certain that UnwindDest and BB have no common predecessors (since they 3276 // are both EH pads). 3277 if (UnwindDest) { 3278 // First, go through the PHI nodes in UnwindDest and update any nodes that 3279 // reference the block we are removing 3280 for (BasicBlock::iterator I = UnwindDest->begin(), 3281 IE = UnwindDest->getFirstNonPHI()->getIterator(); 3282 I != IE; ++I) { 3283 PHINode *DestPN = cast<PHINode>(I); 3284 3285 int Idx = DestPN->getBasicBlockIndex(BB); 3286 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3287 assert(Idx != -1); 3288 // This PHI node has an incoming value that corresponds to a control 3289 // path through the cleanup pad we are removing. If the incoming 3290 // value is in the cleanup pad, it must be a PHINode (because we 3291 // verified above that the block is otherwise empty). Otherwise, the 3292 // value is either a constant or a value that dominates the cleanup 3293 // pad being removed. 3294 // 3295 // Because BB and UnwindDest are both EH pads, all of their 3296 // predecessors must unwind to these blocks, and since no instruction 3297 // can have multiple unwind destinations, there will be no overlap in 3298 // incoming blocks between SrcPN and DestPN. 3299 Value *SrcVal = DestPN->getIncomingValue(Idx); 3300 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3301 3302 // Remove the entry for the block we are deleting. 3303 DestPN->removeIncomingValue(Idx, false); 3304 3305 if (SrcPN && SrcPN->getParent() == BB) { 3306 // If the incoming value was a PHI node in the cleanup pad we are 3307 // removing, we need to merge that PHI node's incoming values into 3308 // DestPN. 3309 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3310 SrcIdx != SrcE; ++SrcIdx) { 3311 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3312 SrcPN->getIncomingBlock(SrcIdx)); 3313 } 3314 } else { 3315 // Otherwise, the incoming value came from above BB and 3316 // so we can just reuse it. We must associate all of BB's 3317 // predecessors with this value. 3318 for (auto *pred : predecessors(BB)) { 3319 DestPN->addIncoming(SrcVal, pred); 3320 } 3321 } 3322 } 3323 3324 // Sink any remaining PHI nodes directly into UnwindDest. 3325 Instruction *InsertPt = UnwindDest->getFirstNonPHI(); 3326 for (BasicBlock::iterator I = BB->begin(), 3327 IE = BB->getFirstNonPHI()->getIterator(); 3328 I != IE;) { 3329 // The iterator must be incremented here because the instructions are 3330 // being moved to another block. 3331 PHINode *PN = cast<PHINode>(I++); 3332 if (PN->use_empty()) 3333 // If the PHI node has no uses, just leave it. It will be erased 3334 // when we erase BB below. 3335 continue; 3336 3337 // Otherwise, sink this PHI node into UnwindDest. 3338 // Any predecessors to UnwindDest which are not already represented 3339 // must be back edges which inherit the value from the path through 3340 // BB. In this case, the PHI value must reference itself. 3341 for (auto *pred : predecessors(UnwindDest)) 3342 if (pred != BB) 3343 PN->addIncoming(PN, pred); 3344 PN->moveBefore(InsertPt); 3345 } 3346 } 3347 3348 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3349 // The iterator must be updated here because we are removing this pred. 3350 BasicBlock *PredBB = *PI++; 3351 if (UnwindDest == nullptr) { 3352 removeUnwindEdge(PredBB); 3353 } else { 3354 TerminatorInst *TI = PredBB->getTerminator(); 3355 TI->replaceUsesOfWith(BB, UnwindDest); 3356 } 3357 } 3358 3359 // The cleanup pad is now unreachable. Zap it. 3360 BB->eraseFromParent(); 3361 return true; 3362 } 3363 3364 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3365 BasicBlock *BB = RI->getParent(); 3366 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 3367 3368 // Find predecessors that end with branches. 3369 SmallVector<BasicBlock*, 8> UncondBranchPreds; 3370 SmallVector<BranchInst*, 8> CondBranchPreds; 3371 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3372 BasicBlock *P = *PI; 3373 TerminatorInst *PTI = P->getTerminator(); 3374 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3375 if (BI->isUnconditional()) 3376 UncondBranchPreds.push_back(P); 3377 else 3378 CondBranchPreds.push_back(BI); 3379 } 3380 } 3381 3382 // If we found some, do the transformation! 3383 if (!UncondBranchPreds.empty() && DupRet) { 3384 while (!UncondBranchPreds.empty()) { 3385 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3386 DEBUG(dbgs() << "FOLDING: " << *BB 3387 << "INTO UNCOND BRANCH PRED: " << *Pred); 3388 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3389 } 3390 3391 // If we eliminated all predecessors of the block, delete the block now. 3392 if (pred_empty(BB)) 3393 // We know there are no successors, so just nuke the block. 3394 BB->eraseFromParent(); 3395 3396 return true; 3397 } 3398 3399 // Check out all of the conditional branches going to this return 3400 // instruction. If any of them just select between returns, change the 3401 // branch itself into a select/return pair. 3402 while (!CondBranchPreds.empty()) { 3403 BranchInst *BI = CondBranchPreds.pop_back_val(); 3404 3405 // Check to see if the non-BB successor is also a return block. 3406 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3407 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3408 SimplifyCondBranchToTwoReturns(BI, Builder)) 3409 return true; 3410 } 3411 return false; 3412 } 3413 3414 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3415 BasicBlock *BB = UI->getParent(); 3416 3417 bool Changed = false; 3418 3419 // If there are any instructions immediately before the unreachable that can 3420 // be removed, do so. 3421 while (UI->getIterator() != BB->begin()) { 3422 BasicBlock::iterator BBI = UI->getIterator(); 3423 --BBI; 3424 // Do not delete instructions that can have side effects which might cause 3425 // the unreachable to not be reachable; specifically, calls and volatile 3426 // operations may have this effect. 3427 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3428 3429 if (BBI->mayHaveSideEffects()) { 3430 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 3431 if (SI->isVolatile()) 3432 break; 3433 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 3434 if (LI->isVolatile()) 3435 break; 3436 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3437 if (RMWI->isVolatile()) 3438 break; 3439 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3440 if (CXI->isVolatile()) 3441 break; 3442 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3443 !isa<LandingPadInst>(BBI)) { 3444 break; 3445 } 3446 // Note that deleting LandingPad's here is in fact okay, although it 3447 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3448 // all the predecessors of this block will be the unwind edges of Invokes, 3449 // and we can therefore guarantee this block will be erased. 3450 } 3451 3452 // Delete this instruction (any uses are guaranteed to be dead) 3453 if (!BBI->use_empty()) 3454 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3455 BBI->eraseFromParent(); 3456 Changed = true; 3457 } 3458 3459 // If the unreachable instruction is the first in the block, take a gander 3460 // at all of the predecessors of this instruction, and simplify them. 3461 if (&BB->front() != UI) return Changed; 3462 3463 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3464 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3465 TerminatorInst *TI = Preds[i]->getTerminator(); 3466 IRBuilder<> Builder(TI); 3467 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3468 if (BI->isUnconditional()) { 3469 if (BI->getSuccessor(0) == BB) { 3470 new UnreachableInst(TI->getContext(), TI); 3471 TI->eraseFromParent(); 3472 Changed = true; 3473 } 3474 } else { 3475 if (BI->getSuccessor(0) == BB) { 3476 Builder.CreateBr(BI->getSuccessor(1)); 3477 EraseTerminatorInstAndDCECond(BI); 3478 } else if (BI->getSuccessor(1) == BB) { 3479 Builder.CreateBr(BI->getSuccessor(0)); 3480 EraseTerminatorInstAndDCECond(BI); 3481 Changed = true; 3482 } 3483 } 3484 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3485 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3486 i != e; ++i) 3487 if (i.getCaseSuccessor() == BB) { 3488 BB->removePredecessor(SI->getParent()); 3489 SI->removeCase(i); 3490 --i; --e; 3491 Changed = true; 3492 } 3493 } else if ((isa<InvokeInst>(TI) && 3494 cast<InvokeInst>(TI)->getUnwindDest() == BB) || 3495 isa<CatchEndPadInst>(TI) || isa<TerminatePadInst>(TI)) { 3496 removeUnwindEdge(TI->getParent()); 3497 Changed = true; 3498 } else if (isa<CleanupReturnInst>(TI) || isa<CleanupEndPadInst>(TI)) { 3499 new UnreachableInst(TI->getContext(), TI); 3500 TI->eraseFromParent(); 3501 Changed = true; 3502 } 3503 // TODO: If TI is a CatchPadInst, then (BB must be its normal dest and) 3504 // we can eliminate it, redirecting its preds to its unwind successor, 3505 // or to the next outer handler if the removed catch is the last for its 3506 // catchendpad. 3507 } 3508 3509 // If this block is now dead, remove it. 3510 if (pred_empty(BB) && 3511 BB != &BB->getParent()->getEntryBlock()) { 3512 // We know there are no successors, so just nuke the block. 3513 BB->eraseFromParent(); 3514 return true; 3515 } 3516 3517 return Changed; 3518 } 3519 3520 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3521 assert(Cases.size() >= 1); 3522 3523 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3524 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3525 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3526 return false; 3527 } 3528 return true; 3529 } 3530 3531 /// Turn a switch with two reachable destinations into an integer range 3532 /// comparison and branch. 3533 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3534 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3535 3536 bool HasDefault = 3537 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3538 3539 // Partition the cases into two sets with different destinations. 3540 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3541 BasicBlock *DestB = nullptr; 3542 SmallVector <ConstantInt *, 16> CasesA; 3543 SmallVector <ConstantInt *, 16> CasesB; 3544 3545 for (SwitchInst::CaseIt I : SI->cases()) { 3546 BasicBlock *Dest = I.getCaseSuccessor(); 3547 if (!DestA) DestA = Dest; 3548 if (Dest == DestA) { 3549 CasesA.push_back(I.getCaseValue()); 3550 continue; 3551 } 3552 if (!DestB) DestB = Dest; 3553 if (Dest == DestB) { 3554 CasesB.push_back(I.getCaseValue()); 3555 continue; 3556 } 3557 return false; // More than two destinations. 3558 } 3559 3560 assert(DestA && DestB && "Single-destination switch should have been folded."); 3561 assert(DestA != DestB); 3562 assert(DestB != SI->getDefaultDest()); 3563 assert(!CasesB.empty() && "There must be non-default cases."); 3564 assert(!CasesA.empty() || HasDefault); 3565 3566 // Figure out if one of the sets of cases form a contiguous range. 3567 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3568 BasicBlock *ContiguousDest = nullptr; 3569 BasicBlock *OtherDest = nullptr; 3570 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3571 ContiguousCases = &CasesA; 3572 ContiguousDest = DestA; 3573 OtherDest = DestB; 3574 } else if (CasesAreContiguous(CasesB)) { 3575 ContiguousCases = &CasesB; 3576 ContiguousDest = DestB; 3577 OtherDest = DestA; 3578 } else 3579 return false; 3580 3581 // Start building the compare and branch. 3582 3583 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3584 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3585 3586 Value *Sub = SI->getCondition(); 3587 if (!Offset->isNullValue()) 3588 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3589 3590 Value *Cmp; 3591 // If NumCases overflowed, then all possible values jump to the successor. 3592 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3593 Cmp = ConstantInt::getTrue(SI->getContext()); 3594 else 3595 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3596 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3597 3598 // Update weight for the newly-created conditional branch. 3599 if (HasBranchWeights(SI)) { 3600 SmallVector<uint64_t, 8> Weights; 3601 GetBranchWeights(SI, Weights); 3602 if (Weights.size() == 1 + SI->getNumCases()) { 3603 uint64_t TrueWeight = 0; 3604 uint64_t FalseWeight = 0; 3605 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3606 if (SI->getSuccessor(I) == ContiguousDest) 3607 TrueWeight += Weights[I]; 3608 else 3609 FalseWeight += Weights[I]; 3610 } 3611 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3612 TrueWeight /= 2; 3613 FalseWeight /= 2; 3614 } 3615 NewBI->setMetadata(LLVMContext::MD_prof, 3616 MDBuilder(SI->getContext()).createBranchWeights( 3617 (uint32_t)TrueWeight, (uint32_t)FalseWeight)); 3618 } 3619 } 3620 3621 // Prune obsolete incoming values off the successors' PHI nodes. 3622 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3623 unsigned PreviousEdges = ContiguousCases->size(); 3624 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges; 3625 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3626 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3627 } 3628 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3629 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3630 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges; 3631 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3632 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3633 } 3634 3635 // Drop the switch. 3636 SI->eraseFromParent(); 3637 3638 return true; 3639 } 3640 3641 /// Compute masked bits for the condition of a switch 3642 /// and use it to remove dead cases. 3643 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3644 const DataLayout &DL) { 3645 Value *Cond = SI->getCondition(); 3646 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3647 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3648 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3649 3650 // Gather dead cases. 3651 SmallVector<ConstantInt*, 8> DeadCases; 3652 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3653 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3654 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3655 DeadCases.push_back(I.getCaseValue()); 3656 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3657 << I.getCaseValue() << "' is dead.\n"); 3658 } 3659 } 3660 3661 // If we can prove that the cases must cover all possible values, the 3662 // default destination becomes dead and we can remove it. If we know some 3663 // of the bits in the value, we can use that to more precisely compute the 3664 // number of possible unique case values. 3665 bool HasDefault = 3666 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3667 const unsigned NumUnknownBits = Bits - 3668 (KnownZero.Or(KnownOne)).countPopulation(); 3669 assert(NumUnknownBits <= Bits); 3670 if (HasDefault && DeadCases.empty() && 3671 NumUnknownBits < 64 /* avoid overflow */ && 3672 SI->getNumCases() == (1ULL << NumUnknownBits)) { 3673 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 3674 BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(), 3675 SI->getParent(), ""); 3676 SI->setDefaultDest(&*NewDefault); 3677 SplitBlock(&*NewDefault, &NewDefault->front()); 3678 auto *OldTI = NewDefault->getTerminator(); 3679 new UnreachableInst(SI->getContext(), OldTI); 3680 EraseTerminatorInstAndDCECond(OldTI); 3681 return true; 3682 } 3683 3684 SmallVector<uint64_t, 8> Weights; 3685 bool HasWeight = HasBranchWeights(SI); 3686 if (HasWeight) { 3687 GetBranchWeights(SI, Weights); 3688 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3689 } 3690 3691 // Remove dead cases from the switch. 3692 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3693 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3694 assert(Case != SI->case_default() && 3695 "Case was not found. Probably mistake in DeadCases forming."); 3696 if (HasWeight) { 3697 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3698 Weights.pop_back(); 3699 } 3700 3701 // Prune unused values from PHI nodes. 3702 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3703 SI->removeCase(Case); 3704 } 3705 if (HasWeight && Weights.size() >= 2) { 3706 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3707 SI->setMetadata(LLVMContext::MD_prof, 3708 MDBuilder(SI->getParent()->getContext()). 3709 createBranchWeights(MDWeights)); 3710 } 3711 3712 return !DeadCases.empty(); 3713 } 3714 3715 /// If BB would be eligible for simplification by 3716 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3717 /// by an unconditional branch), look at the phi node for BB in the successor 3718 /// block and see if the incoming value is equal to CaseValue. If so, return 3719 /// the phi node, and set PhiIndex to BB's index in the phi node. 3720 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3721 BasicBlock *BB, 3722 int *PhiIndex) { 3723 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3724 return nullptr; // BB must be empty to be a candidate for simplification. 3725 if (!BB->getSinglePredecessor()) 3726 return nullptr; // BB must be dominated by the switch. 3727 3728 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3729 if (!Branch || !Branch->isUnconditional()) 3730 return nullptr; // Terminator must be unconditional branch. 3731 3732 BasicBlock *Succ = Branch->getSuccessor(0); 3733 3734 BasicBlock::iterator I = Succ->begin(); 3735 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3736 int Idx = PHI->getBasicBlockIndex(BB); 3737 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3738 3739 Value *InValue = PHI->getIncomingValue(Idx); 3740 if (InValue != CaseValue) continue; 3741 3742 *PhiIndex = Idx; 3743 return PHI; 3744 } 3745 3746 return nullptr; 3747 } 3748 3749 /// Try to forward the condition of a switch instruction to a phi node 3750 /// dominated by the switch, if that would mean that some of the destination 3751 /// blocks of the switch can be folded away. 3752 /// Returns true if a change is made. 3753 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3754 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3755 ForwardingNodesMap ForwardingNodes; 3756 3757 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3758 ConstantInt *CaseValue = I.getCaseValue(); 3759 BasicBlock *CaseDest = I.getCaseSuccessor(); 3760 3761 int PhiIndex; 3762 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3763 &PhiIndex); 3764 if (!PHI) continue; 3765 3766 ForwardingNodes[PHI].push_back(PhiIndex); 3767 } 3768 3769 bool Changed = false; 3770 3771 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3772 E = ForwardingNodes.end(); I != E; ++I) { 3773 PHINode *Phi = I->first; 3774 SmallVectorImpl<int> &Indexes = I->second; 3775 3776 if (Indexes.size() < 2) continue; 3777 3778 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3779 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3780 Changed = true; 3781 } 3782 3783 return Changed; 3784 } 3785 3786 /// Return true if the backend will be able to handle 3787 /// initializing an array of constants like C. 3788 static bool ValidLookupTableConstant(Constant *C) { 3789 if (C->isThreadDependent()) 3790 return false; 3791 if (C->isDLLImportDependent()) 3792 return false; 3793 3794 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3795 return CE->isGEPWithNoNotionalOverIndexing(); 3796 3797 return isa<ConstantFP>(C) || 3798 isa<ConstantInt>(C) || 3799 isa<ConstantPointerNull>(C) || 3800 isa<GlobalValue>(C) || 3801 isa<UndefValue>(C); 3802 } 3803 3804 /// If V is a Constant, return it. Otherwise, try to look up 3805 /// its constant value in ConstantPool, returning 0 if it's not there. 3806 static Constant *LookupConstant(Value *V, 3807 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3808 if (Constant *C = dyn_cast<Constant>(V)) 3809 return C; 3810 return ConstantPool.lookup(V); 3811 } 3812 3813 /// Try to fold instruction I into a constant. This works for 3814 /// simple instructions such as binary operations where both operands are 3815 /// constant or can be replaced by constants from the ConstantPool. Returns the 3816 /// resulting constant on success, 0 otherwise. 3817 static Constant * 3818 ConstantFold(Instruction *I, const DataLayout &DL, 3819 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 3820 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3821 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3822 if (!A) 3823 return nullptr; 3824 if (A->isAllOnesValue()) 3825 return LookupConstant(Select->getTrueValue(), ConstantPool); 3826 if (A->isNullValue()) 3827 return LookupConstant(Select->getFalseValue(), ConstantPool); 3828 return nullptr; 3829 } 3830 3831 SmallVector<Constant *, 4> COps; 3832 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3833 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3834 COps.push_back(A); 3835 else 3836 return nullptr; 3837 } 3838 3839 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 3840 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3841 COps[1], DL); 3842 } 3843 3844 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 3845 } 3846 3847 /// Try to determine the resulting constant values in phi nodes 3848 /// at the common destination basic block, *CommonDest, for one of the case 3849 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3850 /// case), of a switch instruction SI. 3851 static bool 3852 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 3853 BasicBlock **CommonDest, 3854 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 3855 const DataLayout &DL) { 3856 // The block from which we enter the common destination. 3857 BasicBlock *Pred = SI->getParent(); 3858 3859 // If CaseDest is empty except for some side-effect free instructions through 3860 // which we can constant-propagate the CaseVal, continue to its successor. 3861 SmallDenseMap<Value*, Constant*> ConstantPool; 3862 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3863 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3864 ++I) { 3865 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3866 // If the terminator is a simple branch, continue to the next block. 3867 if (T->getNumSuccessors() != 1) 3868 return false; 3869 Pred = CaseDest; 3870 CaseDest = T->getSuccessor(0); 3871 } else if (isa<DbgInfoIntrinsic>(I)) { 3872 // Skip debug intrinsic. 3873 continue; 3874 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 3875 // Instruction is side-effect free and constant. 3876 3877 // If the instruction has uses outside this block or a phi node slot for 3878 // the block, it is not safe to bypass the instruction since it would then 3879 // no longer dominate all its uses. 3880 for (auto &Use : I->uses()) { 3881 User *User = Use.getUser(); 3882 if (Instruction *I = dyn_cast<Instruction>(User)) 3883 if (I->getParent() == CaseDest) 3884 continue; 3885 if (PHINode *Phi = dyn_cast<PHINode>(User)) 3886 if (Phi->getIncomingBlock(Use) == CaseDest) 3887 continue; 3888 return false; 3889 } 3890 3891 ConstantPool.insert(std::make_pair(&*I, C)); 3892 } else { 3893 break; 3894 } 3895 } 3896 3897 // If we did not have a CommonDest before, use the current one. 3898 if (!*CommonDest) 3899 *CommonDest = CaseDest; 3900 // If the destination isn't the common one, abort. 3901 if (CaseDest != *CommonDest) 3902 return false; 3903 3904 // Get the values for this case from phi nodes in the destination block. 3905 BasicBlock::iterator I = (*CommonDest)->begin(); 3906 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3907 int Idx = PHI->getBasicBlockIndex(Pred); 3908 if (Idx == -1) 3909 continue; 3910 3911 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3912 ConstantPool); 3913 if (!ConstVal) 3914 return false; 3915 3916 // Be conservative about which kinds of constants we support. 3917 if (!ValidLookupTableConstant(ConstVal)) 3918 return false; 3919 3920 Res.push_back(std::make_pair(PHI, ConstVal)); 3921 } 3922 3923 return Res.size() > 0; 3924 } 3925 3926 // Helper function used to add CaseVal to the list of cases that generate 3927 // Result. 3928 static void MapCaseToResult(ConstantInt *CaseVal, 3929 SwitchCaseResultVectorTy &UniqueResults, 3930 Constant *Result) { 3931 for (auto &I : UniqueResults) { 3932 if (I.first == Result) { 3933 I.second.push_back(CaseVal); 3934 return; 3935 } 3936 } 3937 UniqueResults.push_back(std::make_pair(Result, 3938 SmallVector<ConstantInt*, 4>(1, CaseVal))); 3939 } 3940 3941 // Helper function that initializes a map containing 3942 // results for the PHI node of the common destination block for a switch 3943 // instruction. Returns false if multiple PHI nodes have been found or if 3944 // there is not a common destination block for the switch. 3945 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 3946 BasicBlock *&CommonDest, 3947 SwitchCaseResultVectorTy &UniqueResults, 3948 Constant *&DefaultResult, 3949 const DataLayout &DL) { 3950 for (auto &I : SI->cases()) { 3951 ConstantInt *CaseVal = I.getCaseValue(); 3952 3953 // Resulting value at phi nodes for this case value. 3954 SwitchCaseResultsTy Results; 3955 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 3956 DL)) 3957 return false; 3958 3959 // Only one value per case is permitted 3960 if (Results.size() > 1) 3961 return false; 3962 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 3963 3964 // Check the PHI consistency. 3965 if (!PHI) 3966 PHI = Results[0].first; 3967 else if (PHI != Results[0].first) 3968 return false; 3969 } 3970 // Find the default result value. 3971 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 3972 BasicBlock *DefaultDest = SI->getDefaultDest(); 3973 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 3974 DL); 3975 // If the default value is not found abort unless the default destination 3976 // is unreachable. 3977 DefaultResult = 3978 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 3979 if ((!DefaultResult && 3980 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 3981 return false; 3982 3983 return true; 3984 } 3985 3986 // Helper function that checks if it is possible to transform a switch with only 3987 // two cases (or two cases + default) that produces a result into a select. 3988 // Example: 3989 // switch (a) { 3990 // case 10: %0 = icmp eq i32 %a, 10 3991 // return 10; %1 = select i1 %0, i32 10, i32 4 3992 // case 20: ----> %2 = icmp eq i32 %a, 20 3993 // return 2; %3 = select i1 %2, i32 2, i32 %1 3994 // default: 3995 // return 4; 3996 // } 3997 static Value * 3998 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 3999 Constant *DefaultResult, Value *Condition, 4000 IRBuilder<> &Builder) { 4001 assert(ResultVector.size() == 2 && 4002 "We should have exactly two unique results at this point"); 4003 // If we are selecting between only two cases transform into a simple 4004 // select or a two-way select if default is possible. 4005 if (ResultVector[0].second.size() == 1 && 4006 ResultVector[1].second.size() == 1) { 4007 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4008 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4009 4010 bool DefaultCanTrigger = DefaultResult; 4011 Value *SelectValue = ResultVector[1].first; 4012 if (DefaultCanTrigger) { 4013 Value *const ValueCompare = 4014 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4015 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4016 DefaultResult, "switch.select"); 4017 } 4018 Value *const ValueCompare = 4019 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4020 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 4021 "switch.select"); 4022 } 4023 4024 return nullptr; 4025 } 4026 4027 // Helper function to cleanup a switch instruction that has been converted into 4028 // a select, fixing up PHI nodes and basic blocks. 4029 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4030 Value *SelectValue, 4031 IRBuilder<> &Builder) { 4032 BasicBlock *SelectBB = SI->getParent(); 4033 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4034 PHI->removeIncomingValue(SelectBB); 4035 PHI->addIncoming(SelectValue, SelectBB); 4036 4037 Builder.CreateBr(PHI->getParent()); 4038 4039 // Remove the switch. 4040 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4041 BasicBlock *Succ = SI->getSuccessor(i); 4042 4043 if (Succ == PHI->getParent()) 4044 continue; 4045 Succ->removePredecessor(SelectBB); 4046 } 4047 SI->eraseFromParent(); 4048 } 4049 4050 /// If the switch is only used to initialize one or more 4051 /// phi nodes in a common successor block with only two different 4052 /// constant values, replace the switch with select. 4053 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4054 AssumptionCache *AC, const DataLayout &DL) { 4055 Value *const Cond = SI->getCondition(); 4056 PHINode *PHI = nullptr; 4057 BasicBlock *CommonDest = nullptr; 4058 Constant *DefaultResult; 4059 SwitchCaseResultVectorTy UniqueResults; 4060 // Collect all the cases that will deliver the same value from the switch. 4061 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4062 DL)) 4063 return false; 4064 // Selects choose between maximum two values. 4065 if (UniqueResults.size() != 2) 4066 return false; 4067 assert(PHI != nullptr && "PHI for value select not found"); 4068 4069 Builder.SetInsertPoint(SI); 4070 Value *SelectValue = ConvertTwoCaseSwitch( 4071 UniqueResults, 4072 DefaultResult, Cond, Builder); 4073 if (SelectValue) { 4074 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4075 return true; 4076 } 4077 // The switch couldn't be converted into a select. 4078 return false; 4079 } 4080 4081 namespace { 4082 /// This class represents a lookup table that can be used to replace a switch. 4083 class SwitchLookupTable { 4084 public: 4085 /// Create a lookup table to use as a switch replacement with the contents 4086 /// of Values, using DefaultValue to fill any holes in the table. 4087 SwitchLookupTable( 4088 Module &M, uint64_t TableSize, ConstantInt *Offset, 4089 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4090 Constant *DefaultValue, const DataLayout &DL); 4091 4092 /// Build instructions with Builder to retrieve the value at 4093 /// the position given by Index in the lookup table. 4094 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4095 4096 /// Return true if a table with TableSize elements of 4097 /// type ElementType would fit in a target-legal register. 4098 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4099 Type *ElementType); 4100 4101 private: 4102 // Depending on the contents of the table, it can be represented in 4103 // different ways. 4104 enum { 4105 // For tables where each element contains the same value, we just have to 4106 // store that single value and return it for each lookup. 4107 SingleValueKind, 4108 4109 // For tables where there is a linear relationship between table index 4110 // and values. We calculate the result with a simple multiplication 4111 // and addition instead of a table lookup. 4112 LinearMapKind, 4113 4114 // For small tables with integer elements, we can pack them into a bitmap 4115 // that fits into a target-legal register. Values are retrieved by 4116 // shift and mask operations. 4117 BitMapKind, 4118 4119 // The table is stored as an array of values. Values are retrieved by load 4120 // instructions from the table. 4121 ArrayKind 4122 } Kind; 4123 4124 // For SingleValueKind, this is the single value. 4125 Constant *SingleValue; 4126 4127 // For BitMapKind, this is the bitmap. 4128 ConstantInt *BitMap; 4129 IntegerType *BitMapElementTy; 4130 4131 // For LinearMapKind, these are the constants used to derive the value. 4132 ConstantInt *LinearOffset; 4133 ConstantInt *LinearMultiplier; 4134 4135 // For ArrayKind, this is the array. 4136 GlobalVariable *Array; 4137 }; 4138 } 4139 4140 SwitchLookupTable::SwitchLookupTable( 4141 Module &M, uint64_t TableSize, ConstantInt *Offset, 4142 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4143 Constant *DefaultValue, const DataLayout &DL) 4144 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4145 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4146 assert(Values.size() && "Can't build lookup table without values!"); 4147 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4148 4149 // If all values in the table are equal, this is that value. 4150 SingleValue = Values.begin()->second; 4151 4152 Type *ValueType = Values.begin()->second->getType(); 4153 4154 // Build up the table contents. 4155 SmallVector<Constant*, 64> TableContents(TableSize); 4156 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4157 ConstantInt *CaseVal = Values[I].first; 4158 Constant *CaseRes = Values[I].second; 4159 assert(CaseRes->getType() == ValueType); 4160 4161 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 4162 .getLimitedValue(); 4163 TableContents[Idx] = CaseRes; 4164 4165 if (CaseRes != SingleValue) 4166 SingleValue = nullptr; 4167 } 4168 4169 // Fill in any holes in the table with the default result. 4170 if (Values.size() < TableSize) { 4171 assert(DefaultValue && 4172 "Need a default value to fill the lookup table holes."); 4173 assert(DefaultValue->getType() == ValueType); 4174 for (uint64_t I = 0; I < TableSize; ++I) { 4175 if (!TableContents[I]) 4176 TableContents[I] = DefaultValue; 4177 } 4178 4179 if (DefaultValue != SingleValue) 4180 SingleValue = nullptr; 4181 } 4182 4183 // If each element in the table contains the same value, we only need to store 4184 // that single value. 4185 if (SingleValue) { 4186 Kind = SingleValueKind; 4187 return; 4188 } 4189 4190 // Check if we can derive the value with a linear transformation from the 4191 // table index. 4192 if (isa<IntegerType>(ValueType)) { 4193 bool LinearMappingPossible = true; 4194 APInt PrevVal; 4195 APInt DistToPrev; 4196 assert(TableSize >= 2 && "Should be a SingleValue table."); 4197 // Check if there is the same distance between two consecutive values. 4198 for (uint64_t I = 0; I < TableSize; ++I) { 4199 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4200 if (!ConstVal) { 4201 // This is an undef. We could deal with it, but undefs in lookup tables 4202 // are very seldom. It's probably not worth the additional complexity. 4203 LinearMappingPossible = false; 4204 break; 4205 } 4206 APInt Val = ConstVal->getValue(); 4207 if (I != 0) { 4208 APInt Dist = Val - PrevVal; 4209 if (I == 1) { 4210 DistToPrev = Dist; 4211 } else if (Dist != DistToPrev) { 4212 LinearMappingPossible = false; 4213 break; 4214 } 4215 } 4216 PrevVal = Val; 4217 } 4218 if (LinearMappingPossible) { 4219 LinearOffset = cast<ConstantInt>(TableContents[0]); 4220 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4221 Kind = LinearMapKind; 4222 ++NumLinearMaps; 4223 return; 4224 } 4225 } 4226 4227 // If the type is integer and the table fits in a register, build a bitmap. 4228 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4229 IntegerType *IT = cast<IntegerType>(ValueType); 4230 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4231 for (uint64_t I = TableSize; I > 0; --I) { 4232 TableInt <<= IT->getBitWidth(); 4233 // Insert values into the bitmap. Undef values are set to zero. 4234 if (!isa<UndefValue>(TableContents[I - 1])) { 4235 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4236 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4237 } 4238 } 4239 BitMap = ConstantInt::get(M.getContext(), TableInt); 4240 BitMapElementTy = IT; 4241 Kind = BitMapKind; 4242 ++NumBitMaps; 4243 return; 4244 } 4245 4246 // Store the table in an array. 4247 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4248 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4249 4250 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 4251 GlobalVariable::PrivateLinkage, 4252 Initializer, 4253 "switch.table"); 4254 Array->setUnnamedAddr(true); 4255 Kind = ArrayKind; 4256 } 4257 4258 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4259 switch (Kind) { 4260 case SingleValueKind: 4261 return SingleValue; 4262 case LinearMapKind: { 4263 // Derive the result value from the input value. 4264 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4265 false, "switch.idx.cast"); 4266 if (!LinearMultiplier->isOne()) 4267 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4268 if (!LinearOffset->isZero()) 4269 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4270 return Result; 4271 } 4272 case BitMapKind: { 4273 // Type of the bitmap (e.g. i59). 4274 IntegerType *MapTy = BitMap->getType(); 4275 4276 // Cast Index to the same type as the bitmap. 4277 // Note: The Index is <= the number of elements in the table, so 4278 // truncating it to the width of the bitmask is safe. 4279 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4280 4281 // Multiply the shift amount by the element width. 4282 ShiftAmt = Builder.CreateMul(ShiftAmt, 4283 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4284 "switch.shiftamt"); 4285 4286 // Shift down. 4287 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 4288 "switch.downshift"); 4289 // Mask off. 4290 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 4291 "switch.masked"); 4292 } 4293 case ArrayKind: { 4294 // Make sure the table index will not overflow when treated as signed. 4295 IntegerType *IT = cast<IntegerType>(Index->getType()); 4296 uint64_t TableSize = Array->getInitializer()->getType() 4297 ->getArrayNumElements(); 4298 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4299 Index = Builder.CreateZExt(Index, 4300 IntegerType::get(IT->getContext(), 4301 IT->getBitWidth() + 1), 4302 "switch.tableidx.zext"); 4303 4304 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 4305 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4306 GEPIndices, "switch.gep"); 4307 return Builder.CreateLoad(GEP, "switch.load"); 4308 } 4309 } 4310 llvm_unreachable("Unknown lookup table kind!"); 4311 } 4312 4313 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4314 uint64_t TableSize, 4315 Type *ElementType) { 4316 auto *IT = dyn_cast<IntegerType>(ElementType); 4317 if (!IT) 4318 return false; 4319 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4320 // are <= 15, we could try to narrow the type. 4321 4322 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4323 if (TableSize >= UINT_MAX/IT->getBitWidth()) 4324 return false; 4325 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4326 } 4327 4328 /// Determine whether a lookup table should be built for this switch, based on 4329 /// the number of cases, size of the table, and the types of the results. 4330 static bool 4331 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4332 const TargetTransformInfo &TTI, const DataLayout &DL, 4333 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4334 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4335 return false; // TableSize overflowed, or mul below might overflow. 4336 4337 bool AllTablesFitInRegister = true; 4338 bool HasIllegalType = false; 4339 for (const auto &I : ResultTypes) { 4340 Type *Ty = I.second; 4341 4342 // Saturate this flag to true. 4343 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4344 4345 // Saturate this flag to false. 4346 AllTablesFitInRegister = AllTablesFitInRegister && 4347 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4348 4349 // If both flags saturate, we're done. NOTE: This *only* works with 4350 // saturating flags, and all flags have to saturate first due to the 4351 // non-deterministic behavior of iterating over a dense map. 4352 if (HasIllegalType && !AllTablesFitInRegister) 4353 break; 4354 } 4355 4356 // If each table would fit in a register, we should build it anyway. 4357 if (AllTablesFitInRegister) 4358 return true; 4359 4360 // Don't build a table that doesn't fit in-register if it has illegal types. 4361 if (HasIllegalType) 4362 return false; 4363 4364 // The table density should be at least 40%. This is the same criterion as for 4365 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4366 // FIXME: Find the best cut-off. 4367 return SI->getNumCases() * 10 >= TableSize * 4; 4368 } 4369 4370 /// Try to reuse the switch table index compare. Following pattern: 4371 /// \code 4372 /// if (idx < tablesize) 4373 /// r = table[idx]; // table does not contain default_value 4374 /// else 4375 /// r = default_value; 4376 /// if (r != default_value) 4377 /// ... 4378 /// \endcode 4379 /// Is optimized to: 4380 /// \code 4381 /// cond = idx < tablesize; 4382 /// if (cond) 4383 /// r = table[idx]; 4384 /// else 4385 /// r = default_value; 4386 /// if (cond) 4387 /// ... 4388 /// \endcode 4389 /// Jump threading will then eliminate the second if(cond). 4390 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock, 4391 BranchInst *RangeCheckBranch, Constant *DefaultValue, 4392 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) { 4393 4394 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4395 if (!CmpInst) 4396 return; 4397 4398 // We require that the compare is in the same block as the phi so that jump 4399 // threading can do its work afterwards. 4400 if (CmpInst->getParent() != PhiBlock) 4401 return; 4402 4403 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4404 if (!CmpOp1) 4405 return; 4406 4407 Value *RangeCmp = RangeCheckBranch->getCondition(); 4408 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4409 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4410 4411 // Check if the compare with the default value is constant true or false. 4412 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4413 DefaultValue, CmpOp1, true); 4414 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4415 return; 4416 4417 // Check if the compare with the case values is distinct from the default 4418 // compare result. 4419 for (auto ValuePair : Values) { 4420 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4421 ValuePair.second, CmpOp1, true); 4422 if (!CaseConst || CaseConst == DefaultConst) 4423 return; 4424 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4425 "Expect true or false as compare result."); 4426 } 4427 4428 // Check if the branch instruction dominates the phi node. It's a simple 4429 // dominance check, but sufficient for our needs. 4430 // Although this check is invariant in the calling loops, it's better to do it 4431 // at this late stage. Practically we do it at most once for a switch. 4432 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4433 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4434 BasicBlock *Pred = *PI; 4435 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4436 return; 4437 } 4438 4439 if (DefaultConst == FalseConst) { 4440 // The compare yields the same result. We can replace it. 4441 CmpInst->replaceAllUsesWith(RangeCmp); 4442 ++NumTableCmpReuses; 4443 } else { 4444 // The compare yields the same result, just inverted. We can replace it. 4445 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp, 4446 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4447 RangeCheckBranch); 4448 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4449 ++NumTableCmpReuses; 4450 } 4451 } 4452 4453 /// If the switch is only used to initialize one or more phi nodes in a common 4454 /// successor block with different constant values, replace the switch with 4455 /// lookup tables. 4456 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4457 const DataLayout &DL, 4458 const TargetTransformInfo &TTI) { 4459 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4460 4461 // Only build lookup table when we have a target that supports it. 4462 if (!TTI.shouldBuildLookupTables()) 4463 return false; 4464 4465 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4466 // split off a dense part and build a lookup table for that. 4467 4468 // FIXME: This creates arrays of GEPs to constant strings, which means each 4469 // GEP needs a runtime relocation in PIC code. We should just build one big 4470 // string and lookup indices into that. 4471 4472 // Ignore switches with less than three cases. Lookup tables will not make them 4473 // faster, so we don't analyze them. 4474 if (SI->getNumCases() < 3) 4475 return false; 4476 4477 // Figure out the corresponding result for each case value and phi node in the 4478 // common destination, as well as the min and max case values. 4479 assert(SI->case_begin() != SI->case_end()); 4480 SwitchInst::CaseIt CI = SI->case_begin(); 4481 ConstantInt *MinCaseVal = CI.getCaseValue(); 4482 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4483 4484 BasicBlock *CommonDest = nullptr; 4485 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 4486 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 4487 SmallDenseMap<PHINode*, Constant*> DefaultResults; 4488 SmallDenseMap<PHINode*, Type*> ResultTypes; 4489 SmallVector<PHINode*, 4> PHIs; 4490 4491 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4492 ConstantInt *CaseVal = CI.getCaseValue(); 4493 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4494 MinCaseVal = CaseVal; 4495 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4496 MaxCaseVal = CaseVal; 4497 4498 // Resulting value at phi nodes for this case value. 4499 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 4500 ResultsTy Results; 4501 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4502 Results, DL)) 4503 return false; 4504 4505 // Append the result from this case to the list for each phi. 4506 for (const auto &I : Results) { 4507 PHINode *PHI = I.first; 4508 Constant *Value = I.second; 4509 if (!ResultLists.count(PHI)) 4510 PHIs.push_back(PHI); 4511 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4512 } 4513 } 4514 4515 // Keep track of the result types. 4516 for (PHINode *PHI : PHIs) { 4517 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4518 } 4519 4520 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4521 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4522 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4523 bool TableHasHoles = (NumResults < TableSize); 4524 4525 // If the table has holes, we need a constant result for the default case 4526 // or a bitmask that fits in a register. 4527 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 4528 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4529 &CommonDest, DefaultResultsList, DL); 4530 4531 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4532 if (NeedMask) { 4533 // As an extra penalty for the validity test we require more cases. 4534 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4535 return false; 4536 if (!DL.fitsInLegalInteger(TableSize)) 4537 return false; 4538 } 4539 4540 for (const auto &I : DefaultResultsList) { 4541 PHINode *PHI = I.first; 4542 Constant *Result = I.second; 4543 DefaultResults[PHI] = Result; 4544 } 4545 4546 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4547 return false; 4548 4549 // Create the BB that does the lookups. 4550 Module &Mod = *CommonDest->getParent()->getParent(); 4551 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 4552 "switch.lookup", 4553 CommonDest->getParent(), 4554 CommonDest); 4555 4556 // Compute the table index value. 4557 Builder.SetInsertPoint(SI); 4558 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 4559 "switch.tableidx"); 4560 4561 // Compute the maximum table size representable by the integer type we are 4562 // switching upon. 4563 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4564 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4565 assert(MaxTableSize >= TableSize && 4566 "It is impossible for a switch to have more entries than the max " 4567 "representable value of its input integer type's size."); 4568 4569 // If the default destination is unreachable, or if the lookup table covers 4570 // all values of the conditional variable, branch directly to the lookup table 4571 // BB. Otherwise, check that the condition is within the case range. 4572 const bool DefaultIsReachable = 4573 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4574 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4575 BranchInst *RangeCheckBranch = nullptr; 4576 4577 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4578 Builder.CreateBr(LookupBB); 4579 // Note: We call removeProdecessor later since we need to be able to get the 4580 // PHI value for the default case in case we're using a bit mask. 4581 } else { 4582 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 4583 MinCaseVal->getType(), TableSize)); 4584 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4585 } 4586 4587 // Populate the BB that does the lookups. 4588 Builder.SetInsertPoint(LookupBB); 4589 4590 if (NeedMask) { 4591 // Before doing the lookup we do the hole check. 4592 // The LookupBB is therefore re-purposed to do the hole check 4593 // and we create a new LookupBB. 4594 BasicBlock *MaskBB = LookupBB; 4595 MaskBB->setName("switch.hole_check"); 4596 LookupBB = BasicBlock::Create(Mod.getContext(), 4597 "switch.lookup", 4598 CommonDest->getParent(), 4599 CommonDest); 4600 4601 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4602 // unnecessary illegal types. 4603 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4604 APInt MaskInt(TableSizePowOf2, 0); 4605 APInt One(TableSizePowOf2, 1); 4606 // Build bitmask; fill in a 1 bit for every case. 4607 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4608 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4609 uint64_t Idx = (ResultList[I].first->getValue() - 4610 MinCaseVal->getValue()).getLimitedValue(); 4611 MaskInt |= One << Idx; 4612 } 4613 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4614 4615 // Get the TableIndex'th bit of the bitmask. 4616 // If this bit is 0 (meaning hole) jump to the default destination, 4617 // else continue with table lookup. 4618 IntegerType *MapTy = TableMask->getType(); 4619 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4620 "switch.maskindex"); 4621 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4622 "switch.shifted"); 4623 Value *LoBit = Builder.CreateTrunc(Shifted, 4624 Type::getInt1Ty(Mod.getContext()), 4625 "switch.lobit"); 4626 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4627 4628 Builder.SetInsertPoint(LookupBB); 4629 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4630 } 4631 4632 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4633 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4634 // do not delete PHINodes here. 4635 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4636 /*DontDeleteUselessPHIs=*/true); 4637 } 4638 4639 bool ReturnedEarly = false; 4640 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4641 PHINode *PHI = PHIs[I]; 4642 const ResultListTy &ResultList = ResultLists[PHI]; 4643 4644 // If using a bitmask, use any value to fill the lookup table holes. 4645 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4646 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4647 4648 Value *Result = Table.BuildLookup(TableIndex, Builder); 4649 4650 // If the result is used to return immediately from the function, we want to 4651 // do that right here. 4652 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4653 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4654 Builder.CreateRet(Result); 4655 ReturnedEarly = true; 4656 break; 4657 } 4658 4659 // Do a small peephole optimization: re-use the switch table compare if 4660 // possible. 4661 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4662 BasicBlock *PhiBlock = PHI->getParent(); 4663 // Search for compare instructions which use the phi. 4664 for (auto *User : PHI->users()) { 4665 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4666 } 4667 } 4668 4669 PHI->addIncoming(Result, LookupBB); 4670 } 4671 4672 if (!ReturnedEarly) 4673 Builder.CreateBr(CommonDest); 4674 4675 // Remove the switch. 4676 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4677 BasicBlock *Succ = SI->getSuccessor(i); 4678 4679 if (Succ == SI->getDefaultDest()) 4680 continue; 4681 Succ->removePredecessor(SI->getParent()); 4682 } 4683 SI->eraseFromParent(); 4684 4685 ++NumLookupTables; 4686 if (NeedMask) 4687 ++NumLookupTablesHoles; 4688 return true; 4689 } 4690 4691 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4692 BasicBlock *BB = SI->getParent(); 4693 4694 if (isValueEqualityComparison(SI)) { 4695 // If we only have one predecessor, and if it is a branch on this value, 4696 // see if that predecessor totally determines the outcome of this switch. 4697 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4698 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4699 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4700 4701 Value *Cond = SI->getCondition(); 4702 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4703 if (SimplifySwitchOnSelect(SI, Select)) 4704 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4705 4706 // If the block only contains the switch, see if we can fold the block 4707 // away into any preds. 4708 BasicBlock::iterator BBI = BB->begin(); 4709 // Ignore dbg intrinsics. 4710 while (isa<DbgInfoIntrinsic>(BBI)) 4711 ++BBI; 4712 if (SI == &*BBI) 4713 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4714 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4715 } 4716 4717 // Try to transform the switch into an icmp and a branch. 4718 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4719 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4720 4721 // Remove unreachable cases. 4722 if (EliminateDeadSwitchCases(SI, AC, DL)) 4723 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4724 4725 if (SwitchToSelect(SI, Builder, AC, DL)) 4726 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4727 4728 if (ForwardSwitchConditionToPHI(SI)) 4729 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4730 4731 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 4732 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4733 4734 return false; 4735 } 4736 4737 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4738 BasicBlock *BB = IBI->getParent(); 4739 bool Changed = false; 4740 4741 // Eliminate redundant destinations. 4742 SmallPtrSet<Value *, 8> Succs; 4743 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4744 BasicBlock *Dest = IBI->getDestination(i); 4745 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 4746 Dest->removePredecessor(BB); 4747 IBI->removeDestination(i); 4748 --i; --e; 4749 Changed = true; 4750 } 4751 } 4752 4753 if (IBI->getNumDestinations() == 0) { 4754 // If the indirectbr has no successors, change it to unreachable. 4755 new UnreachableInst(IBI->getContext(), IBI); 4756 EraseTerminatorInstAndDCECond(IBI); 4757 return true; 4758 } 4759 4760 if (IBI->getNumDestinations() == 1) { 4761 // If the indirectbr has one successor, change it to a direct branch. 4762 BranchInst::Create(IBI->getDestination(0), IBI); 4763 EraseTerminatorInstAndDCECond(IBI); 4764 return true; 4765 } 4766 4767 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4768 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4769 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4770 } 4771 return Changed; 4772 } 4773 4774 /// Given an block with only a single landing pad and a unconditional branch 4775 /// try to find another basic block which this one can be merged with. This 4776 /// handles cases where we have multiple invokes with unique landing pads, but 4777 /// a shared handler. 4778 /// 4779 /// We specifically choose to not worry about merging non-empty blocks 4780 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 4781 /// practice, the optimizer produces empty landing pad blocks quite frequently 4782 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 4783 /// sinking in this file) 4784 /// 4785 /// This is primarily a code size optimization. We need to avoid performing 4786 /// any transform which might inhibit optimization (such as our ability to 4787 /// specialize a particular handler via tail commoning). We do this by not 4788 /// merging any blocks which require us to introduce a phi. Since the same 4789 /// values are flowing through both blocks, we don't loose any ability to 4790 /// specialize. If anything, we make such specialization more likely. 4791 /// 4792 /// TODO - This transformation could remove entries from a phi in the target 4793 /// block when the inputs in the phi are the same for the two blocks being 4794 /// merged. In some cases, this could result in removal of the PHI entirely. 4795 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 4796 BasicBlock *BB) { 4797 auto Succ = BB->getUniqueSuccessor(); 4798 assert(Succ); 4799 // If there's a phi in the successor block, we'd likely have to introduce 4800 // a phi into the merged landing pad block. 4801 if (isa<PHINode>(*Succ->begin())) 4802 return false; 4803 4804 for (BasicBlock *OtherPred : predecessors(Succ)) { 4805 if (BB == OtherPred) 4806 continue; 4807 BasicBlock::iterator I = OtherPred->begin(); 4808 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 4809 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 4810 continue; 4811 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 4812 BranchInst *BI2 = dyn_cast<BranchInst>(I); 4813 if (!BI2 || !BI2->isIdenticalTo(BI)) 4814 continue; 4815 4816 // We've found an identical block. Update our predeccessors to take that 4817 // path instead and make ourselves dead. 4818 SmallSet<BasicBlock *, 16> Preds; 4819 Preds.insert(pred_begin(BB), pred_end(BB)); 4820 for (BasicBlock *Pred : Preds) { 4821 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 4822 assert(II->getNormalDest() != BB && 4823 II->getUnwindDest() == BB && "unexpected successor"); 4824 II->setUnwindDest(OtherPred); 4825 } 4826 4827 // The debug info in OtherPred doesn't cover the merged control flow that 4828 // used to go through BB. We need to delete it or update it. 4829 for (auto I = OtherPred->begin(), E = OtherPred->end(); 4830 I != E;) { 4831 Instruction &Inst = *I; I++; 4832 if (isa<DbgInfoIntrinsic>(Inst)) 4833 Inst.eraseFromParent(); 4834 } 4835 4836 SmallSet<BasicBlock *, 16> Succs; 4837 Succs.insert(succ_begin(BB), succ_end(BB)); 4838 for (BasicBlock *Succ : Succs) { 4839 Succ->removePredecessor(BB); 4840 } 4841 4842 IRBuilder<> Builder(BI); 4843 Builder.CreateUnreachable(); 4844 BI->eraseFromParent(); 4845 return true; 4846 } 4847 return false; 4848 } 4849 4850 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 4851 BasicBlock *BB = BI->getParent(); 4852 4853 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 4854 return true; 4855 4856 // If the Terminator is the only non-phi instruction, simplify the block. 4857 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 4858 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 4859 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 4860 return true; 4861 4862 // If the only instruction in the block is a seteq/setne comparison 4863 // against a constant, try to simplify the block. 4864 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 4865 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 4866 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 4867 ; 4868 if (I->isTerminator() && 4869 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 4870 BonusInstThreshold, AC)) 4871 return true; 4872 } 4873 4874 // See if we can merge an empty landing pad block with another which is 4875 // equivalent. 4876 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 4877 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 4878 if (I->isTerminator() && 4879 TryToMergeLandingPad(LPad, BI, BB)) 4880 return true; 4881 } 4882 4883 // If this basic block is ONLY a compare and a branch, and if a predecessor 4884 // branches to us and our successor, fold the comparison into the 4885 // predecessor and use logical operations to update the incoming value 4886 // for PHI nodes in common successor. 4887 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 4888 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4889 return false; 4890 } 4891 4892 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 4893 BasicBlock *PredPred = nullptr; 4894 for (auto *P : predecessors(BB)) { 4895 BasicBlock *PPred = P->getSinglePredecessor(); 4896 if (!PPred || (PredPred && PredPred != PPred)) 4897 return nullptr; 4898 PredPred = PPred; 4899 } 4900 return PredPred; 4901 } 4902 4903 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 4904 BasicBlock *BB = BI->getParent(); 4905 4906 // Conditional branch 4907 if (isValueEqualityComparison(BI)) { 4908 // If we only have one predecessor, and if it is a branch on this value, 4909 // see if that predecessor totally determines the outcome of this 4910 // switch. 4911 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4912 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 4913 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4914 4915 // This block must be empty, except for the setcond inst, if it exists. 4916 // Ignore dbg intrinsics. 4917 BasicBlock::iterator I = BB->begin(); 4918 // Ignore dbg intrinsics. 4919 while (isa<DbgInfoIntrinsic>(I)) 4920 ++I; 4921 if (&*I == BI) { 4922 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 4923 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4924 } else if (&*I == cast<Instruction>(BI->getCondition())){ 4925 ++I; 4926 // Ignore dbg intrinsics. 4927 while (isa<DbgInfoIntrinsic>(I)) 4928 ++I; 4929 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 4930 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4931 } 4932 } 4933 4934 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 4935 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 4936 return true; 4937 4938 // If this basic block is ONLY a compare and a branch, and if a predecessor 4939 // branches to us and one of our successors, fold the comparison into the 4940 // predecessor and use logical operations to pick the right destination. 4941 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 4942 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4943 4944 // We have a conditional branch to two blocks that are only reachable 4945 // from BI. We know that the condbr dominates the two blocks, so see if 4946 // there is any identical code in the "then" and "else" blocks. If so, we 4947 // can hoist it up to the branching block. 4948 if (BI->getSuccessor(0)->getSinglePredecessor()) { 4949 if (BI->getSuccessor(1)->getSinglePredecessor()) { 4950 if (HoistThenElseCodeToIf(BI, TTI)) 4951 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4952 } else { 4953 // If Successor #1 has multiple preds, we may be able to conditionally 4954 // execute Successor #0 if it branches to Successor #1. 4955 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4956 if (Succ0TI->getNumSuccessors() == 1 && 4957 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4958 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 4959 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4960 } 4961 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 4962 // If Successor #0 has multiple preds, we may be able to conditionally 4963 // execute Successor #1 if it branches to Successor #0. 4964 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4965 if (Succ1TI->getNumSuccessors() == 1 && 4966 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4967 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 4968 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4969 } 4970 4971 // If this is a branch on a phi node in the current block, thread control 4972 // through this block if any PHI node entries are constants. 4973 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4974 if (PN->getParent() == BI->getParent()) 4975 if (FoldCondBranchOnPHI(BI, DL)) 4976 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4977 4978 // Scan predecessor blocks for conditional branches. 4979 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4980 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4981 if (PBI != BI && PBI->isConditional()) 4982 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 4983 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4984 4985 // Look for diamond patterns. 4986 if (MergeCondStores) 4987 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 4988 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 4989 if (PBI != BI && PBI->isConditional()) 4990 if (mergeConditionalStores(PBI, BI)) 4991 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4992 4993 return false; 4994 } 4995 4996 /// Check if passing a value to an instruction will cause undefined behavior. 4997 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4998 Constant *C = dyn_cast<Constant>(V); 4999 if (!C) 5000 return false; 5001 5002 if (I->use_empty()) 5003 return false; 5004 5005 if (C->isNullValue()) { 5006 // Only look at the first use, avoid hurting compile time with long uselists 5007 User *Use = *I->user_begin(); 5008 5009 // Now make sure that there are no instructions in between that can alter 5010 // control flow (eg. calls) 5011 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 5012 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5013 return false; 5014 5015 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5016 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5017 if (GEP->getPointerOperand() == I) 5018 return passingValueIsAlwaysUndefined(V, GEP); 5019 5020 // Look through bitcasts. 5021 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5022 return passingValueIsAlwaysUndefined(V, BC); 5023 5024 // Load from null is undefined. 5025 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5026 if (!LI->isVolatile()) 5027 return LI->getPointerAddressSpace() == 0; 5028 5029 // Store to null is undefined. 5030 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5031 if (!SI->isVolatile()) 5032 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 5033 } 5034 return false; 5035 } 5036 5037 /// If BB has an incoming value that will always trigger undefined behavior 5038 /// (eg. null pointer dereference), remove the branch leading here. 5039 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5040 for (BasicBlock::iterator i = BB->begin(); 5041 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5042 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5043 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5044 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5045 IRBuilder<> Builder(T); 5046 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5047 BB->removePredecessor(PHI->getIncomingBlock(i)); 5048 // Turn uncoditional branches into unreachables and remove the dead 5049 // destination from conditional branches. 5050 if (BI->isUnconditional()) 5051 Builder.CreateUnreachable(); 5052 else 5053 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 5054 BI->getSuccessor(0)); 5055 BI->eraseFromParent(); 5056 return true; 5057 } 5058 // TODO: SwitchInst. 5059 } 5060 5061 return false; 5062 } 5063 5064 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5065 bool Changed = false; 5066 5067 assert(BB && BB->getParent() && "Block not embedded in function!"); 5068 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5069 5070 // Remove basic blocks that have no predecessors (except the entry block)... 5071 // or that just have themself as a predecessor. These are unreachable. 5072 if ((pred_empty(BB) && 5073 BB != &BB->getParent()->getEntryBlock()) || 5074 BB->getSinglePredecessor() == BB) { 5075 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5076 DeleteDeadBlock(BB); 5077 return true; 5078 } 5079 5080 // Check to see if we can constant propagate this terminator instruction 5081 // away... 5082 Changed |= ConstantFoldTerminator(BB, true); 5083 5084 // Check for and eliminate duplicate PHI nodes in this block. 5085 Changed |= EliminateDuplicatePHINodes(BB); 5086 5087 // Check for and remove branches that will always cause undefined behavior. 5088 Changed |= removeUndefIntroducingPredecessor(BB); 5089 5090 // Merge basic blocks into their predecessor if there is only one distinct 5091 // pred, and if there is only one distinct successor of the predecessor, and 5092 // if there are no PHI nodes. 5093 // 5094 if (MergeBlockIntoPredecessor(BB)) 5095 return true; 5096 5097 IRBuilder<> Builder(BB); 5098 5099 // If there is a trivial two-entry PHI node in this basic block, and we can 5100 // eliminate it, do so now. 5101 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5102 if (PN->getNumIncomingValues() == 2) 5103 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5104 5105 Builder.SetInsertPoint(BB->getTerminator()); 5106 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5107 if (BI->isUnconditional()) { 5108 if (SimplifyUncondBranch(BI, Builder)) return true; 5109 } else { 5110 if (SimplifyCondBranch(BI, Builder)) return true; 5111 } 5112 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5113 if (SimplifyReturn(RI, Builder)) return true; 5114 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5115 if (SimplifyResume(RI, Builder)) return true; 5116 } else if (CleanupReturnInst *RI = 5117 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5118 if (SimplifyCleanupReturn(RI)) return true; 5119 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5120 if (SimplifySwitch(SI, Builder)) return true; 5121 } else if (UnreachableInst *UI = 5122 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5123 if (SimplifyUnreachable(UI)) return true; 5124 } else if (IndirectBrInst *IBI = 5125 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5126 if (SimplifyIndirectBr(IBI)) return true; 5127 } 5128 5129 return Changed; 5130 } 5131 5132 /// This function is used to do simplification of a CFG. 5133 /// For example, it adjusts branches to branches to eliminate the extra hop, 5134 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5135 /// of the CFG. It returns true if a modification was made. 5136 /// 5137 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5138 unsigned BonusInstThreshold, AssumptionCache *AC) { 5139 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5140 BonusInstThreshold, AC).run(BB); 5141 } 5142