1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ConstantRange.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <set>
37 #include <map>
38 using namespace llvm;
39 
40 static cl::opt<unsigned>
41 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
42    cl::desc("Control the amount of phi node folding to perform (default = 1)"));
43 
44 static cl::opt<bool>
45 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
46        cl::desc("Duplicate return instructions into unconditional branches"));
47 
48 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
49 
50 namespace {
51 class SimplifyCFGOpt {
52   const TargetData *const TD;
53 
54   Value *isValueEqualityComparison(TerminatorInst *TI);
55   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
56     std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
57   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
58                                                      BasicBlock *Pred);
59   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI);
60 
61   bool SimplifyReturn(ReturnInst *RI);
62   bool SimplifyUnwind(UnwindInst *UI);
63   bool SimplifyUnreachable(UnreachableInst *UI);
64   bool SimplifySwitch(SwitchInst *SI);
65   bool SimplifyIndirectBr(IndirectBrInst *IBI);
66   bool SimplifyUncondBranch(BranchInst *BI);
67   bool SimplifyCondBranch(BranchInst *BI);
68 
69 public:
70   explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
71   bool run(BasicBlock *BB);
72 };
73 }
74 
75 /// SafeToMergeTerminators - Return true if it is safe to merge these two
76 /// terminator instructions together.
77 ///
78 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
79   if (SI1 == SI2) return false;  // Can't merge with self!
80 
81   // It is not safe to merge these two switch instructions if they have a common
82   // successor, and if that successor has a PHI node, and if *that* PHI node has
83   // conflicting incoming values from the two switch blocks.
84   BasicBlock *SI1BB = SI1->getParent();
85   BasicBlock *SI2BB = SI2->getParent();
86   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
87 
88   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
89     if (SI1Succs.count(*I))
90       for (BasicBlock::iterator BBI = (*I)->begin();
91            isa<PHINode>(BBI); ++BBI) {
92         PHINode *PN = cast<PHINode>(BBI);
93         if (PN->getIncomingValueForBlock(SI1BB) !=
94             PN->getIncomingValueForBlock(SI2BB))
95           return false;
96       }
97 
98   return true;
99 }
100 
101 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
102 /// now be entries in it from the 'NewPred' block.  The values that will be
103 /// flowing into the PHI nodes will be the same as those coming in from
104 /// ExistPred, an existing predecessor of Succ.
105 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
106                                   BasicBlock *ExistPred) {
107   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
108 
109   PHINode *PN;
110   for (BasicBlock::iterator I = Succ->begin();
111        (PN = dyn_cast<PHINode>(I)); ++I)
112     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
113 }
114 
115 
116 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
117 /// least one PHI node in it), check to see if the merge at this block is due
118 /// to an "if condition".  If so, return the boolean condition that determines
119 /// which entry into BB will be taken.  Also, return by references the block
120 /// that will be entered from if the condition is true, and the block that will
121 /// be entered if the condition is false.
122 ///
123 /// This does no checking to see if the true/false blocks have large or unsavory
124 /// instructions in them.
125 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
126                              BasicBlock *&IfFalse) {
127   PHINode *SomePHI = cast<PHINode>(BB->begin());
128   assert(SomePHI->getNumIncomingValues() == 2 &&
129          "Function can only handle blocks with 2 predecessors!");
130   BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
131   BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
132 
133   // We can only handle branches.  Other control flow will be lowered to
134   // branches if possible anyway.
135   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
136   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
137   if (Pred1Br == 0 || Pred2Br == 0)
138     return 0;
139 
140   // Eliminate code duplication by ensuring that Pred1Br is conditional if
141   // either are.
142   if (Pred2Br->isConditional()) {
143     // If both branches are conditional, we don't have an "if statement".  In
144     // reality, we could transform this case, but since the condition will be
145     // required anyway, we stand no chance of eliminating it, so the xform is
146     // probably not profitable.
147     if (Pred1Br->isConditional())
148       return 0;
149 
150     std::swap(Pred1, Pred2);
151     std::swap(Pred1Br, Pred2Br);
152   }
153 
154   if (Pred1Br->isConditional()) {
155     // The only thing we have to watch out for here is to make sure that Pred2
156     // doesn't have incoming edges from other blocks.  If it does, the condition
157     // doesn't dominate BB.
158     if (Pred2->getSinglePredecessor() == 0)
159       return 0;
160 
161     // If we found a conditional branch predecessor, make sure that it branches
162     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
163     if (Pred1Br->getSuccessor(0) == BB &&
164         Pred1Br->getSuccessor(1) == Pred2) {
165       IfTrue = Pred1;
166       IfFalse = Pred2;
167     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
168                Pred1Br->getSuccessor(1) == BB) {
169       IfTrue = Pred2;
170       IfFalse = Pred1;
171     } else {
172       // We know that one arm of the conditional goes to BB, so the other must
173       // go somewhere unrelated, and this must not be an "if statement".
174       return 0;
175     }
176 
177     return Pred1Br->getCondition();
178   }
179 
180   // Ok, if we got here, both predecessors end with an unconditional branch to
181   // BB.  Don't panic!  If both blocks only have a single (identical)
182   // predecessor, and THAT is a conditional branch, then we're all ok!
183   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
184   if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
185     return 0;
186 
187   // Otherwise, if this is a conditional branch, then we can use it!
188   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
189   if (BI == 0) return 0;
190 
191   assert(BI->isConditional() && "Two successors but not conditional?");
192   if (BI->getSuccessor(0) == Pred1) {
193     IfTrue = Pred1;
194     IfFalse = Pred2;
195   } else {
196     IfTrue = Pred2;
197     IfFalse = Pred1;
198   }
199   return BI->getCondition();
200 }
201 
202 /// DominatesMergePoint - If we have a merge point of an "if condition" as
203 /// accepted above, return true if the specified value dominates the block.  We
204 /// don't handle the true generality of domination here, just a special case
205 /// which works well enough for us.
206 ///
207 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
208 /// see if V (which must be an instruction) and its recursive operands
209 /// that do not dominate BB have a combined cost lower than CostRemaining and
210 /// are non-trapping.  If both are true, the instruction is inserted into the
211 /// set and true is returned.
212 ///
213 /// The cost for most non-trapping instructions is defined as 1 except for
214 /// Select whose cost is 2.
215 ///
216 /// After this function returns, CostRemaining is decreased by the cost of
217 /// V plus its non-dominating operands.  If that cost is greater than
218 /// CostRemaining, false is returned and CostRemaining is undefined.
219 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
220                                 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
221                                 unsigned &CostRemaining) {
222   Instruction *I = dyn_cast<Instruction>(V);
223   if (!I) {
224     // Non-instructions all dominate instructions, but not all constantexprs
225     // can be executed unconditionally.
226     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
227       if (C->canTrap())
228         return false;
229     return true;
230   }
231   BasicBlock *PBB = I->getParent();
232 
233   // We don't want to allow weird loops that might have the "if condition" in
234   // the bottom of this block.
235   if (PBB == BB) return false;
236 
237   // If this instruction is defined in a block that contains an unconditional
238   // branch to BB, then it must be in the 'conditional' part of the "if
239   // statement".  If not, it definitely dominates the region.
240   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
241   if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
242     return true;
243 
244   // If we aren't allowing aggressive promotion anymore, then don't consider
245   // instructions in the 'if region'.
246   if (AggressiveInsts == 0) return false;
247 
248   // If we have seen this instruction before, don't count it again.
249   if (AggressiveInsts->count(I)) return true;
250 
251   // Okay, it looks like the instruction IS in the "condition".  Check to
252   // see if it's a cheap instruction to unconditionally compute, and if it
253   // only uses stuff defined outside of the condition.  If so, hoist it out.
254   if (!I->isSafeToSpeculativelyExecute())
255     return false;
256 
257   unsigned Cost = 0;
258 
259   switch (I->getOpcode()) {
260   default: return false;  // Cannot hoist this out safely.
261   case Instruction::Load:
262     // We have to check to make sure there are no instructions before the
263     // load in its basic block, as we are going to hoist the load out to its
264     // predecessor.
265     if (PBB->getFirstNonPHIOrDbg() != I)
266       return false;
267     Cost = 1;
268     break;
269   case Instruction::GetElementPtr:
270     // GEPs are cheap if all indices are constant.
271     if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices())
272       return false;
273     Cost = 1;
274     break;
275   case Instruction::Add:
276   case Instruction::Sub:
277   case Instruction::And:
278   case Instruction::Or:
279   case Instruction::Xor:
280   case Instruction::Shl:
281   case Instruction::LShr:
282   case Instruction::AShr:
283   case Instruction::ICmp:
284   case Instruction::Trunc:
285   case Instruction::ZExt:
286   case Instruction::SExt:
287     Cost = 1;
288     break;   // These are all cheap and non-trapping instructions.
289 
290   case Instruction::Select:
291     Cost = 2;
292     break;
293   }
294 
295   if (Cost > CostRemaining)
296     return false;
297 
298   CostRemaining -= Cost;
299 
300   // Okay, we can only really hoist these out if their operands do
301   // not take us over the cost threshold.
302   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
303     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
304       return false;
305   // Okay, it's safe to do this!  Remember this instruction.
306   AggressiveInsts->insert(I);
307   return true;
308 }
309 
310 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
311 /// and PointerNullValue. Return NULL if value is not a constant int.
312 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
313   // Normal constant int.
314   ConstantInt *CI = dyn_cast<ConstantInt>(V);
315   if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
316     return CI;
317 
318   // This is some kind of pointer constant. Turn it into a pointer-sized
319   // ConstantInt if possible.
320   const IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
321 
322   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
323   if (isa<ConstantPointerNull>(V))
324     return ConstantInt::get(PtrTy, 0);
325 
326   // IntToPtr const int.
327   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
328     if (CE->getOpcode() == Instruction::IntToPtr)
329       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
330         // The constant is very likely to have the right type already.
331         if (CI->getType() == PtrTy)
332           return CI;
333         else
334           return cast<ConstantInt>
335             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
336       }
337   return 0;
338 }
339 
340 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
341 /// collection of icmp eq/ne instructions that compare a value against a
342 /// constant, return the value being compared, and stick the constant into the
343 /// Values vector.
344 static Value *
345 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
346                        const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
347   Instruction *I = dyn_cast<Instruction>(V);
348   if (I == 0) return 0;
349 
350   // If this is an icmp against a constant, handle this as one of the cases.
351   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
352     if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
353       if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
354         UsedICmps++;
355         Vals.push_back(C);
356         return I->getOperand(0);
357       }
358 
359       // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
360       // the set.
361       ConstantRange Span =
362         ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
363 
364       // If this is an and/!= check then we want to optimize "x ugt 2" into
365       // x != 0 && x != 1.
366       if (!isEQ)
367         Span = Span.inverse();
368 
369       // If there are a ton of values, we don't want to make a ginormous switch.
370       if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
371           // We don't handle wrapped sets yet.
372           Span.isWrappedSet())
373         return 0;
374 
375       for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
376         Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
377       UsedICmps++;
378       return I->getOperand(0);
379     }
380     return 0;
381   }
382 
383   // Otherwise, we can only handle an | or &, depending on isEQ.
384   if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
385     return 0;
386 
387   unsigned NumValsBeforeLHS = Vals.size();
388   unsigned UsedICmpsBeforeLHS = UsedICmps;
389   if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
390                                           isEQ, UsedICmps)) {
391     unsigned NumVals = Vals.size();
392     unsigned UsedICmpsBeforeRHS = UsedICmps;
393     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
394                                             isEQ, UsedICmps)) {
395       if (LHS == RHS)
396         return LHS;
397       Vals.resize(NumVals);
398       UsedICmps = UsedICmpsBeforeRHS;
399     }
400 
401     // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
402     // set it and return success.
403     if (Extra == 0 || Extra == I->getOperand(1)) {
404       Extra = I->getOperand(1);
405       return LHS;
406     }
407 
408     Vals.resize(NumValsBeforeLHS);
409     UsedICmps = UsedICmpsBeforeLHS;
410     return 0;
411   }
412 
413   // If the LHS can't be folded in, but Extra is available and RHS can, try to
414   // use LHS as Extra.
415   if (Extra == 0 || Extra == I->getOperand(0)) {
416     Value *OldExtra = Extra;
417     Extra = I->getOperand(0);
418     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
419                                             isEQ, UsedICmps))
420       return RHS;
421     assert(Vals.size() == NumValsBeforeLHS);
422     Extra = OldExtra;
423   }
424 
425   return 0;
426 }
427 
428 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
429   Instruction* Cond = 0;
430   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
431     Cond = dyn_cast<Instruction>(SI->getCondition());
432   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
433     if (BI->isConditional())
434       Cond = dyn_cast<Instruction>(BI->getCondition());
435   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
436     Cond = dyn_cast<Instruction>(IBI->getAddress());
437   }
438 
439   TI->eraseFromParent();
440   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
441 }
442 
443 /// isValueEqualityComparison - Return true if the specified terminator checks
444 /// to see if a value is equal to constant integer value.
445 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
446   Value *CV = 0;
447   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
448     // Do not permit merging of large switch instructions into their
449     // predecessors unless there is only one predecessor.
450     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
451                                              pred_end(SI->getParent())) <= 128)
452       CV = SI->getCondition();
453   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
454     if (BI->isConditional() && BI->getCondition()->hasOneUse())
455       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
456         if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
457              ICI->getPredicate() == ICmpInst::ICMP_NE) &&
458             GetConstantInt(ICI->getOperand(1), TD))
459           CV = ICI->getOperand(0);
460 
461   // Unwrap any lossless ptrtoint cast.
462   if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
463     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
464       CV = PTII->getOperand(0);
465   return CV;
466 }
467 
468 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
469 /// decode all of the 'cases' that it represents and return the 'default' block.
470 BasicBlock *SimplifyCFGOpt::
471 GetValueEqualityComparisonCases(TerminatorInst *TI,
472                                 std::vector<std::pair<ConstantInt*,
473                                                       BasicBlock*> > &Cases) {
474   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
475     Cases.reserve(SI->getNumCases());
476     for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
477       Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
478     return SI->getDefaultDest();
479   }
480 
481   BranchInst *BI = cast<BranchInst>(TI);
482   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
483   Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
484                                  BI->getSuccessor(ICI->getPredicate() ==
485                                                   ICmpInst::ICMP_NE)));
486   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
487 }
488 
489 
490 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
491 /// in the list that match the specified block.
492 static void EliminateBlockCases(BasicBlock *BB,
493                std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
494   for (unsigned i = 0, e = Cases.size(); i != e; ++i)
495     if (Cases[i].second == BB) {
496       Cases.erase(Cases.begin()+i);
497       --i; --e;
498     }
499 }
500 
501 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
502 /// well.
503 static bool
504 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
505               std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
506   std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
507 
508   // Make V1 be smaller than V2.
509   if (V1->size() > V2->size())
510     std::swap(V1, V2);
511 
512   if (V1->size() == 0) return false;
513   if (V1->size() == 1) {
514     // Just scan V2.
515     ConstantInt *TheVal = (*V1)[0].first;
516     for (unsigned i = 0, e = V2->size(); i != e; ++i)
517       if (TheVal == (*V2)[i].first)
518         return true;
519   }
520 
521   // Otherwise, just sort both lists and compare element by element.
522   array_pod_sort(V1->begin(), V1->end());
523   array_pod_sort(V2->begin(), V2->end());
524   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
525   while (i1 != e1 && i2 != e2) {
526     if ((*V1)[i1].first == (*V2)[i2].first)
527       return true;
528     if ((*V1)[i1].first < (*V2)[i2].first)
529       ++i1;
530     else
531       ++i2;
532   }
533   return false;
534 }
535 
536 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
537 /// terminator instruction and its block is known to only have a single
538 /// predecessor block, check to see if that predecessor is also a value
539 /// comparison with the same value, and if that comparison determines the
540 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
541 /// form of jump threading.
542 bool SimplifyCFGOpt::
543 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
544                                               BasicBlock *Pred) {
545   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
546   if (!PredVal) return false;  // Not a value comparison in predecessor.
547 
548   Value *ThisVal = isValueEqualityComparison(TI);
549   assert(ThisVal && "This isn't a value comparison!!");
550   if (ThisVal != PredVal) return false;  // Different predicates.
551 
552   // Find out information about when control will move from Pred to TI's block.
553   std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
554   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
555                                                         PredCases);
556   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
557 
558   // Find information about how control leaves this block.
559   std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
560   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
561   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
562 
563   // If TI's block is the default block from Pred's comparison, potentially
564   // simplify TI based on this knowledge.
565   if (PredDef == TI->getParent()) {
566     // If we are here, we know that the value is none of those cases listed in
567     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
568     // can simplify TI.
569     if (!ValuesOverlap(PredCases, ThisCases))
570       return false;
571 
572     if (isa<BranchInst>(TI)) {
573       // Okay, one of the successors of this condbr is dead.  Convert it to a
574       // uncond br.
575       assert(ThisCases.size() == 1 && "Branch can only have one case!");
576       // Insert the new branch.
577       Instruction *NI = BranchInst::Create(ThisDef, TI);
578       (void) NI;
579 
580       // Remove PHI node entries for the dead edge.
581       ThisCases[0].second->removePredecessor(TI->getParent());
582 
583       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
584            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
585 
586       EraseTerminatorInstAndDCECond(TI);
587       return true;
588     }
589 
590     SwitchInst *SI = cast<SwitchInst>(TI);
591     // Okay, TI has cases that are statically dead, prune them away.
592     SmallPtrSet<Constant*, 16> DeadCases;
593     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
594       DeadCases.insert(PredCases[i].first);
595 
596     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
597                  << "Through successor TI: " << *TI);
598 
599     for (unsigned i = SI->getNumCases()-1; i != 0; --i)
600       if (DeadCases.count(SI->getCaseValue(i))) {
601         SI->getSuccessor(i)->removePredecessor(TI->getParent());
602         SI->removeCase(i);
603       }
604 
605     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
606     return true;
607   }
608 
609   // Otherwise, TI's block must correspond to some matched value.  Find out
610   // which value (or set of values) this is.
611   ConstantInt *TIV = 0;
612   BasicBlock *TIBB = TI->getParent();
613   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
614     if (PredCases[i].second == TIBB) {
615       if (TIV != 0)
616         return false;  // Cannot handle multiple values coming to this block.
617       TIV = PredCases[i].first;
618     }
619   assert(TIV && "No edge from pred to succ?");
620 
621   // Okay, we found the one constant that our value can be if we get into TI's
622   // BB.  Find out which successor will unconditionally be branched to.
623   BasicBlock *TheRealDest = 0;
624   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
625     if (ThisCases[i].first == TIV) {
626       TheRealDest = ThisCases[i].second;
627       break;
628     }
629 
630   // If not handled by any explicit cases, it is handled by the default case.
631   if (TheRealDest == 0) TheRealDest = ThisDef;
632 
633   // Remove PHI node entries for dead edges.
634   BasicBlock *CheckEdge = TheRealDest;
635   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
636     if (*SI != CheckEdge)
637       (*SI)->removePredecessor(TIBB);
638     else
639       CheckEdge = 0;
640 
641   // Insert the new branch.
642   Instruction *NI = BranchInst::Create(TheRealDest, TI);
643   (void) NI;
644 
645   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
646             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
647 
648   EraseTerminatorInstAndDCECond(TI);
649   return true;
650 }
651 
652 namespace {
653   /// ConstantIntOrdering - This class implements a stable ordering of constant
654   /// integers that does not depend on their address.  This is important for
655   /// applications that sort ConstantInt's to ensure uniqueness.
656   struct ConstantIntOrdering {
657     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
658       return LHS->getValue().ult(RHS->getValue());
659     }
660   };
661 }
662 
663 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
664   const ConstantInt *LHS = *(const ConstantInt**)P1;
665   const ConstantInt *RHS = *(const ConstantInt**)P2;
666   if (LHS->getValue().ult(RHS->getValue()))
667     return 1;
668   if (LHS->getValue() == RHS->getValue())
669     return 0;
670   return -1;
671 }
672 
673 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
674 /// equality comparison instruction (either a switch or a branch on "X == c").
675 /// See if any of the predecessors of the terminator block are value comparisons
676 /// on the same value.  If so, and if safe to do so, fold them together.
677 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
678   BasicBlock *BB = TI->getParent();
679   Value *CV = isValueEqualityComparison(TI);  // CondVal
680   assert(CV && "Not a comparison?");
681   bool Changed = false;
682 
683   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
684   while (!Preds.empty()) {
685     BasicBlock *Pred = Preds.pop_back_val();
686 
687     // See if the predecessor is a comparison with the same value.
688     TerminatorInst *PTI = Pred->getTerminator();
689     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
690 
691     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
692       // Figure out which 'cases' to copy from SI to PSI.
693       std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
694       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
695 
696       std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
697       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
698 
699       // Based on whether the default edge from PTI goes to BB or not, fill in
700       // PredCases and PredDefault with the new switch cases we would like to
701       // build.
702       SmallVector<BasicBlock*, 8> NewSuccessors;
703 
704       if (PredDefault == BB) {
705         // If this is the default destination from PTI, only the edges in TI
706         // that don't occur in PTI, or that branch to BB will be activated.
707         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
708         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
709           if (PredCases[i].second != BB)
710             PTIHandled.insert(PredCases[i].first);
711           else {
712             // The default destination is BB, we don't need explicit targets.
713             std::swap(PredCases[i], PredCases.back());
714             PredCases.pop_back();
715             --i; --e;
716           }
717 
718         // Reconstruct the new switch statement we will be building.
719         if (PredDefault != BBDefault) {
720           PredDefault->removePredecessor(Pred);
721           PredDefault = BBDefault;
722           NewSuccessors.push_back(BBDefault);
723         }
724         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
725           if (!PTIHandled.count(BBCases[i].first) &&
726               BBCases[i].second != BBDefault) {
727             PredCases.push_back(BBCases[i]);
728             NewSuccessors.push_back(BBCases[i].second);
729           }
730 
731       } else {
732         // If this is not the default destination from PSI, only the edges
733         // in SI that occur in PSI with a destination of BB will be
734         // activated.
735         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
736         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
737           if (PredCases[i].second == BB) {
738             PTIHandled.insert(PredCases[i].first);
739             std::swap(PredCases[i], PredCases.back());
740             PredCases.pop_back();
741             --i; --e;
742           }
743 
744         // Okay, now we know which constants were sent to BB from the
745         // predecessor.  Figure out where they will all go now.
746         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
747           if (PTIHandled.count(BBCases[i].first)) {
748             // If this is one we are capable of getting...
749             PredCases.push_back(BBCases[i]);
750             NewSuccessors.push_back(BBCases[i].second);
751             PTIHandled.erase(BBCases[i].first);// This constant is taken care of
752           }
753 
754         // If there are any constants vectored to BB that TI doesn't handle,
755         // they must go to the default destination of TI.
756         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
757                                     PTIHandled.begin(),
758                E = PTIHandled.end(); I != E; ++I) {
759           PredCases.push_back(std::make_pair(*I, BBDefault));
760           NewSuccessors.push_back(BBDefault);
761         }
762       }
763 
764       // Okay, at this point, we know which new successor Pred will get.  Make
765       // sure we update the number of entries in the PHI nodes for these
766       // successors.
767       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
768         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
769 
770       // Convert pointer to int before we switch.
771       if (CV->getType()->isPointerTy()) {
772         assert(TD && "Cannot switch on pointer without TargetData");
773         CV = new PtrToIntInst(CV, TD->getIntPtrType(CV->getContext()),
774                               "magicptr", PTI);
775       }
776 
777       // Now that the successors are updated, create the new Switch instruction.
778       SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
779                                              PredCases.size(), PTI);
780       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
781         NewSI->addCase(PredCases[i].first, PredCases[i].second);
782 
783       EraseTerminatorInstAndDCECond(PTI);
784 
785       // Okay, last check.  If BB is still a successor of PSI, then we must
786       // have an infinite loop case.  If so, add an infinitely looping block
787       // to handle the case to preserve the behavior of the code.
788       BasicBlock *InfLoopBlock = 0;
789       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
790         if (NewSI->getSuccessor(i) == BB) {
791           if (InfLoopBlock == 0) {
792             // Insert it at the end of the function, because it's either code,
793             // or it won't matter if it's hot. :)
794             InfLoopBlock = BasicBlock::Create(BB->getContext(),
795                                               "infloop", BB->getParent());
796             BranchInst::Create(InfLoopBlock, InfLoopBlock);
797           }
798           NewSI->setSuccessor(i, InfLoopBlock);
799         }
800 
801       Changed = true;
802     }
803   }
804   return Changed;
805 }
806 
807 // isSafeToHoistInvoke - If we would need to insert a select that uses the
808 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
809 // would need to do this), we can't hoist the invoke, as there is nowhere
810 // to put the select in this case.
811 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
812                                 Instruction *I1, Instruction *I2) {
813   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
814     PHINode *PN;
815     for (BasicBlock::iterator BBI = SI->begin();
816          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
817       Value *BB1V = PN->getIncomingValueForBlock(BB1);
818       Value *BB2V = PN->getIncomingValueForBlock(BB2);
819       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
820         return false;
821       }
822     }
823   }
824   return true;
825 }
826 
827 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
828 /// BB2, hoist any common code in the two blocks up into the branch block.  The
829 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
830 static bool HoistThenElseCodeToIf(BranchInst *BI) {
831   // This does very trivial matching, with limited scanning, to find identical
832   // instructions in the two blocks.  In particular, we don't want to get into
833   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
834   // such, we currently just scan for obviously identical instructions in an
835   // identical order.
836   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
837   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
838 
839   BasicBlock::iterator BB1_Itr = BB1->begin();
840   BasicBlock::iterator BB2_Itr = BB2->begin();
841 
842   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
843   // Skip debug info if it is not identical.
844   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
845   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
846   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
847     while (isa<DbgInfoIntrinsic>(I1))
848       I1 = BB1_Itr++;
849     while (isa<DbgInfoIntrinsic>(I2))
850       I2 = BB2_Itr++;
851   }
852   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
853       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
854     return false;
855 
856   // If we get here, we can hoist at least one instruction.
857   BasicBlock *BIParent = BI->getParent();
858 
859   do {
860     // If we are hoisting the terminator instruction, don't move one (making a
861     // broken BB), instead clone it, and remove BI.
862     if (isa<TerminatorInst>(I1))
863       goto HoistTerminator;
864 
865     // For a normal instruction, we just move one to right before the branch,
866     // then replace all uses of the other with the first.  Finally, we remove
867     // the now redundant second instruction.
868     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
869     if (!I2->use_empty())
870       I2->replaceAllUsesWith(I1);
871     I1->intersectOptionalDataWith(I2);
872     I2->eraseFromParent();
873 
874     I1 = BB1_Itr++;
875     I2 = BB2_Itr++;
876     // Skip debug info if it is not identical.
877     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
878     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
879     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
880       while (isa<DbgInfoIntrinsic>(I1))
881         I1 = BB1_Itr++;
882       while (isa<DbgInfoIntrinsic>(I2))
883         I2 = BB2_Itr++;
884     }
885   } while (I1->isIdenticalToWhenDefined(I2));
886 
887   return true;
888 
889 HoistTerminator:
890   // It may not be possible to hoist an invoke.
891   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
892     return true;
893 
894   // Okay, it is safe to hoist the terminator.
895   Instruction *NT = I1->clone();
896   BIParent->getInstList().insert(BI, NT);
897   if (!NT->getType()->isVoidTy()) {
898     I1->replaceAllUsesWith(NT);
899     I2->replaceAllUsesWith(NT);
900     NT->takeName(I1);
901   }
902 
903   // Hoisting one of the terminators from our successor is a great thing.
904   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
905   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
906   // nodes, so we insert select instruction to compute the final result.
907   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
908   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
909     PHINode *PN;
910     for (BasicBlock::iterator BBI = SI->begin();
911          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
912       Value *BB1V = PN->getIncomingValueForBlock(BB1);
913       Value *BB2V = PN->getIncomingValueForBlock(BB2);
914       if (BB1V == BB2V) continue;
915 
916       // These values do not agree.  Insert a select instruction before NT
917       // that determines the right value.
918       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
919       if (SI == 0)
920         SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
921                                 BB1V->getName()+"."+BB2V->getName(), NT);
922       // Make the PHI node use the select for all incoming values for BB1/BB2
923       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
924         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
925           PN->setIncomingValue(i, SI);
926     }
927   }
928 
929   // Update any PHI nodes in our new successors.
930   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
931     AddPredecessorToBlock(*SI, BIParent, BB1);
932 
933   EraseTerminatorInstAndDCECond(BI);
934   return true;
935 }
936 
937 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
938 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
939 /// (for now, restricted to a single instruction that's side effect free) from
940 /// the BB1 into the branch block to speculatively execute it.
941 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
942   // Only speculatively execution a single instruction (not counting the
943   // terminator) for now.
944   Instruction *HInst = NULL;
945   Instruction *Term = BB1->getTerminator();
946   for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
947        BBI != BBE; ++BBI) {
948     Instruction *I = BBI;
949     // Skip debug info.
950     if (isa<DbgInfoIntrinsic>(I)) continue;
951     if (I == Term) break;
952 
953     if (HInst)
954       return false;
955     HInst = I;
956   }
957   if (!HInst)
958     return false;
959 
960   // Be conservative for now. FP select instruction can often be expensive.
961   Value *BrCond = BI->getCondition();
962   if (isa<FCmpInst>(BrCond))
963     return false;
964 
965   // If BB1 is actually on the false edge of the conditional branch, remember
966   // to swap the select operands later.
967   bool Invert = false;
968   if (BB1 != BI->getSuccessor(0)) {
969     assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
970     Invert = true;
971   }
972 
973   // Turn
974   // BB:
975   //     %t1 = icmp
976   //     br i1 %t1, label %BB1, label %BB2
977   // BB1:
978   //     %t3 = add %t2, c
979   //     br label BB2
980   // BB2:
981   // =>
982   // BB:
983   //     %t1 = icmp
984   //     %t4 = add %t2, c
985   //     %t3 = select i1 %t1, %t2, %t3
986   switch (HInst->getOpcode()) {
987   default: return false;  // Not safe / profitable to hoist.
988   case Instruction::Add:
989   case Instruction::Sub:
990     // Not worth doing for vector ops.
991     if (HInst->getType()->isVectorTy())
992       return false;
993     break;
994   case Instruction::And:
995   case Instruction::Or:
996   case Instruction::Xor:
997   case Instruction::Shl:
998   case Instruction::LShr:
999   case Instruction::AShr:
1000     // Don't mess with vector operations.
1001     if (HInst->getType()->isVectorTy())
1002       return false;
1003     break;   // These are all cheap and non-trapping instructions.
1004   }
1005 
1006   // If the instruction is obviously dead, don't try to predicate it.
1007   if (HInst->use_empty()) {
1008     HInst->eraseFromParent();
1009     return true;
1010   }
1011 
1012   // Can we speculatively execute the instruction? And what is the value
1013   // if the condition is false? Consider the phi uses, if the incoming value
1014   // from the "if" block are all the same V, then V is the value of the
1015   // select if the condition is false.
1016   BasicBlock *BIParent = BI->getParent();
1017   SmallVector<PHINode*, 4> PHIUses;
1018   Value *FalseV = NULL;
1019 
1020   BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1021   for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
1022        UI != E; ++UI) {
1023     // Ignore any user that is not a PHI node in BB2.  These can only occur in
1024     // unreachable blocks, because they would not be dominated by the instr.
1025     PHINode *PN = dyn_cast<PHINode>(*UI);
1026     if (!PN || PN->getParent() != BB2)
1027       return false;
1028     PHIUses.push_back(PN);
1029 
1030     Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1031     if (!FalseV)
1032       FalseV = PHIV;
1033     else if (FalseV != PHIV)
1034       return false;  // Inconsistent value when condition is false.
1035   }
1036 
1037   assert(FalseV && "Must have at least one user, and it must be a PHI");
1038 
1039   // Do not hoist the instruction if any of its operands are defined but not
1040   // used in this BB. The transformation will prevent the operand from
1041   // being sunk into the use block.
1042   for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1043        i != e; ++i) {
1044     Instruction *OpI = dyn_cast<Instruction>(*i);
1045     if (OpI && OpI->getParent() == BIParent &&
1046         !OpI->isUsedInBasicBlock(BIParent))
1047       return false;
1048   }
1049 
1050   // If we get here, we can hoist the instruction. Try to place it
1051   // before the icmp instruction preceding the conditional branch.
1052   BasicBlock::iterator InsertPos = BI;
1053   if (InsertPos != BIParent->begin())
1054     --InsertPos;
1055   // Skip debug info between condition and branch.
1056   while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1057     --InsertPos;
1058   if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1059     SmallPtrSet<Instruction *, 4> BB1Insns;
1060     for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
1061         BB1I != BB1E; ++BB1I)
1062       BB1Insns.insert(BB1I);
1063     for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1064         UI != UE; ++UI) {
1065       Instruction *Use = cast<Instruction>(*UI);
1066       if (!BB1Insns.count(Use)) continue;
1067 
1068       // If BrCond uses the instruction that place it just before
1069       // branch instruction.
1070       InsertPos = BI;
1071       break;
1072     }
1073   } else
1074     InsertPos = BI;
1075   BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1076 
1077   // Create a select whose true value is the speculatively executed value and
1078   // false value is the previously determined FalseV.
1079   SelectInst *SI;
1080   if (Invert)
1081     SI = SelectInst::Create(BrCond, FalseV, HInst,
1082                             FalseV->getName() + "." + HInst->getName(), BI);
1083   else
1084     SI = SelectInst::Create(BrCond, HInst, FalseV,
1085                             HInst->getName() + "." + FalseV->getName(), BI);
1086 
1087   // Make the PHI node use the select for all incoming values for "then" and
1088   // "if" blocks.
1089   for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1090     PHINode *PN = PHIUses[i];
1091     for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1092       if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
1093         PN->setIncomingValue(j, SI);
1094   }
1095 
1096   ++NumSpeculations;
1097   return true;
1098 }
1099 
1100 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1101 /// across this block.
1102 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1103   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1104   unsigned Size = 0;
1105 
1106   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1107     if (isa<DbgInfoIntrinsic>(BBI))
1108       continue;
1109     if (Size > 10) return false;  // Don't clone large BB's.
1110     ++Size;
1111 
1112     // We can only support instructions that do not define values that are
1113     // live outside of the current basic block.
1114     for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1115          UI != E; ++UI) {
1116       Instruction *U = cast<Instruction>(*UI);
1117       if (U->getParent() != BB || isa<PHINode>(U)) return false;
1118     }
1119 
1120     // Looks ok, continue checking.
1121   }
1122 
1123   return true;
1124 }
1125 
1126 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1127 /// that is defined in the same block as the branch and if any PHI entries are
1128 /// constants, thread edges corresponding to that entry to be branches to their
1129 /// ultimate destination.
1130 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1131   BasicBlock *BB = BI->getParent();
1132   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1133   // NOTE: we currently cannot transform this case if the PHI node is used
1134   // outside of the block.
1135   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1136     return false;
1137 
1138   // Degenerate case of a single entry PHI.
1139   if (PN->getNumIncomingValues() == 1) {
1140     FoldSingleEntryPHINodes(PN->getParent());
1141     return true;
1142   }
1143 
1144   // Now we know that this block has multiple preds and two succs.
1145   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1146 
1147   // Okay, this is a simple enough basic block.  See if any phi values are
1148   // constants.
1149   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1150     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1151     if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1152 
1153     // Okay, we now know that all edges from PredBB should be revectored to
1154     // branch to RealDest.
1155     BasicBlock *PredBB = PN->getIncomingBlock(i);
1156     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1157 
1158     if (RealDest == BB) continue;  // Skip self loops.
1159 
1160     // The dest block might have PHI nodes, other predecessors and other
1161     // difficult cases.  Instead of being smart about this, just insert a new
1162     // block that jumps to the destination block, effectively splitting
1163     // the edge we are about to create.
1164     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1165                                             RealDest->getName()+".critedge",
1166                                             RealDest->getParent(), RealDest);
1167     BranchInst::Create(RealDest, EdgeBB);
1168 
1169     // Update PHI nodes.
1170     AddPredecessorToBlock(RealDest, EdgeBB, BB);
1171 
1172     // BB may have instructions that are being threaded over.  Clone these
1173     // instructions into EdgeBB.  We know that there will be no uses of the
1174     // cloned instructions outside of EdgeBB.
1175     BasicBlock::iterator InsertPt = EdgeBB->begin();
1176     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1177     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1178       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1179         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1180         continue;
1181       }
1182       // Clone the instruction.
1183       Instruction *N = BBI->clone();
1184       if (BBI->hasName()) N->setName(BBI->getName()+".c");
1185 
1186       // Update operands due to translation.
1187       for (User::op_iterator i = N->op_begin(), e = N->op_end();
1188            i != e; ++i) {
1189         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1190         if (PI != TranslateMap.end())
1191           *i = PI->second;
1192       }
1193 
1194       // Check for trivial simplification.
1195       if (Value *V = SimplifyInstruction(N, TD)) {
1196         TranslateMap[BBI] = V;
1197         delete N;   // Instruction folded away, don't need actual inst
1198       } else {
1199         // Insert the new instruction into its new home.
1200         EdgeBB->getInstList().insert(InsertPt, N);
1201         if (!BBI->use_empty())
1202           TranslateMap[BBI] = N;
1203       }
1204     }
1205 
1206     // Loop over all of the edges from PredBB to BB, changing them to branch
1207     // to EdgeBB instead.
1208     TerminatorInst *PredBBTI = PredBB->getTerminator();
1209     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1210       if (PredBBTI->getSuccessor(i) == BB) {
1211         BB->removePredecessor(PredBB);
1212         PredBBTI->setSuccessor(i, EdgeBB);
1213       }
1214 
1215     // Recurse, simplifying any other constants.
1216     return FoldCondBranchOnPHI(BI, TD) | true;
1217   }
1218 
1219   return false;
1220 }
1221 
1222 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1223 /// PHI node, see if we can eliminate it.
1224 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1225   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1226   // statement", which has a very simple dominance structure.  Basically, we
1227   // are trying to find the condition that is being branched on, which
1228   // subsequently causes this merge to happen.  We really want control
1229   // dependence information for this check, but simplifycfg can't keep it up
1230   // to date, and this catches most of the cases we care about anyway.
1231   BasicBlock *BB = PN->getParent();
1232   BasicBlock *IfTrue, *IfFalse;
1233   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1234   if (!IfCond ||
1235       // Don't bother if the branch will be constant folded trivially.
1236       isa<ConstantInt>(IfCond))
1237     return false;
1238 
1239   // Okay, we found that we can merge this two-entry phi node into a select.
1240   // Doing so would require us to fold *all* two entry phi nodes in this block.
1241   // At some point this becomes non-profitable (particularly if the target
1242   // doesn't support cmov's).  Only do this transformation if there are two or
1243   // fewer PHI nodes in this block.
1244   unsigned NumPhis = 0;
1245   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1246     if (NumPhis > 2)
1247       return false;
1248 
1249   // Loop over the PHI's seeing if we can promote them all to select
1250   // instructions.  While we are at it, keep track of the instructions
1251   // that need to be moved to the dominating block.
1252   SmallPtrSet<Instruction*, 4> AggressiveInsts;
1253   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1254            MaxCostVal1 = PHINodeFoldingThreshold;
1255 
1256   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1257     PHINode *PN = cast<PHINode>(II++);
1258     if (Value *V = SimplifyInstruction(PN, TD)) {
1259       PN->replaceAllUsesWith(V);
1260       PN->eraseFromParent();
1261       continue;
1262     }
1263 
1264     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1265                              MaxCostVal0) ||
1266         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1267                              MaxCostVal1))
1268       return false;
1269   }
1270 
1271   // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
1272   // we ran out of PHIs then we simplified them all.
1273   PN = dyn_cast<PHINode>(BB->begin());
1274   if (PN == 0) return true;
1275 
1276   // Don't fold i1 branches on PHIs which contain binary operators.  These can
1277   // often be turned into switches and other things.
1278   if (PN->getType()->isIntegerTy(1) &&
1279       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1280        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1281        isa<BinaryOperator>(IfCond)))
1282     return false;
1283 
1284   // If we all PHI nodes are promotable, check to make sure that all
1285   // instructions in the predecessor blocks can be promoted as well.  If
1286   // not, we won't be able to get rid of the control flow, so it's not
1287   // worth promoting to select instructions.
1288   BasicBlock *DomBlock = 0;
1289   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1290   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1291   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1292     IfBlock1 = 0;
1293   } else {
1294     DomBlock = *pred_begin(IfBlock1);
1295     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1296       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1297         // This is not an aggressive instruction that we can promote.
1298         // Because of this, we won't be able to get rid of the control
1299         // flow, so the xform is not worth it.
1300         return false;
1301       }
1302   }
1303 
1304   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1305     IfBlock2 = 0;
1306   } else {
1307     DomBlock = *pred_begin(IfBlock2);
1308     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1309       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1310         // This is not an aggressive instruction that we can promote.
1311         // Because of this, we won't be able to get rid of the control
1312         // flow, so the xform is not worth it.
1313         return false;
1314       }
1315   }
1316 
1317   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1318                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1319 
1320   // If we can still promote the PHI nodes after this gauntlet of tests,
1321   // do all of the PHI's now.
1322   Instruction *InsertPt = DomBlock->getTerminator();
1323 
1324   // Move all 'aggressive' instructions, which are defined in the
1325   // conditional parts of the if's up to the dominating block.
1326   if (IfBlock1)
1327     DomBlock->getInstList().splice(InsertPt,
1328                                    IfBlock1->getInstList(), IfBlock1->begin(),
1329                                    IfBlock1->getTerminator());
1330   if (IfBlock2)
1331     DomBlock->getInstList().splice(InsertPt,
1332                                    IfBlock2->getInstList(), IfBlock2->begin(),
1333                                    IfBlock2->getTerminator());
1334 
1335   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1336     // Change the PHI node into a select instruction.
1337     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1338     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1339 
1340     Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", InsertPt);
1341     PN->replaceAllUsesWith(NV);
1342     NV->takeName(PN);
1343     PN->eraseFromParent();
1344   }
1345 
1346   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1347   // has been flattened.  Change DomBlock to jump directly to our new block to
1348   // avoid other simplifycfg's kicking in on the diamond.
1349   TerminatorInst *OldTI = DomBlock->getTerminator();
1350   BranchInst::Create(BB, OldTI);
1351   OldTI->eraseFromParent();
1352   return true;
1353 }
1354 
1355 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1356 /// to two returning blocks, try to merge them together into one return,
1357 /// introducing a select if the return values disagree.
1358 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1359   assert(BI->isConditional() && "Must be a conditional branch");
1360   BasicBlock *TrueSucc = BI->getSuccessor(0);
1361   BasicBlock *FalseSucc = BI->getSuccessor(1);
1362   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1363   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1364 
1365   // Check to ensure both blocks are empty (just a return) or optionally empty
1366   // with PHI nodes.  If there are other instructions, merging would cause extra
1367   // computation on one path or the other.
1368   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1369     return false;
1370   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1371     return false;
1372 
1373   // Okay, we found a branch that is going to two return nodes.  If
1374   // there is no return value for this function, just change the
1375   // branch into a return.
1376   if (FalseRet->getNumOperands() == 0) {
1377     TrueSucc->removePredecessor(BI->getParent());
1378     FalseSucc->removePredecessor(BI->getParent());
1379     ReturnInst::Create(BI->getContext(), 0, BI);
1380     EraseTerminatorInstAndDCECond(BI);
1381     return true;
1382   }
1383 
1384   // Otherwise, figure out what the true and false return values are
1385   // so we can insert a new select instruction.
1386   Value *TrueValue = TrueRet->getReturnValue();
1387   Value *FalseValue = FalseRet->getReturnValue();
1388 
1389   // Unwrap any PHI nodes in the return blocks.
1390   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1391     if (TVPN->getParent() == TrueSucc)
1392       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1393   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1394     if (FVPN->getParent() == FalseSucc)
1395       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1396 
1397   // In order for this transformation to be safe, we must be able to
1398   // unconditionally execute both operands to the return.  This is
1399   // normally the case, but we could have a potentially-trapping
1400   // constant expression that prevents this transformation from being
1401   // safe.
1402   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1403     if (TCV->canTrap())
1404       return false;
1405   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1406     if (FCV->canTrap())
1407       return false;
1408 
1409   // Okay, we collected all the mapped values and checked them for sanity, and
1410   // defined to really do this transformation.  First, update the CFG.
1411   TrueSucc->removePredecessor(BI->getParent());
1412   FalseSucc->removePredecessor(BI->getParent());
1413 
1414   // Insert select instructions where needed.
1415   Value *BrCond = BI->getCondition();
1416   if (TrueValue) {
1417     // Insert a select if the results differ.
1418     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1419     } else if (isa<UndefValue>(TrueValue)) {
1420       TrueValue = FalseValue;
1421     } else {
1422       TrueValue = SelectInst::Create(BrCond, TrueValue,
1423                                      FalseValue, "retval", BI);
1424     }
1425   }
1426 
1427   Value *RI = !TrueValue ?
1428               ReturnInst::Create(BI->getContext(), BI) :
1429               ReturnInst::Create(BI->getContext(), TrueValue, BI);
1430   (void) RI;
1431 
1432   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1433                << "\n  " << *BI << "NewRet = " << *RI
1434                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1435 
1436   EraseTerminatorInstAndDCECond(BI);
1437 
1438   return true;
1439 }
1440 
1441 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1442 /// predecessor branches to us and one of our successors, fold the block into
1443 /// the predecessor and use logical operations to pick the right destination.
1444 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1445   BasicBlock *BB = BI->getParent();
1446   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1447   if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1448     Cond->getParent() != BB || !Cond->hasOneUse())
1449   return false;
1450 
1451   // Only allow this if the condition is a simple instruction that can be
1452   // executed unconditionally.  It must be in the same block as the branch, and
1453   // must be at the front of the block.
1454   BasicBlock::iterator FrontIt = BB->front();
1455 
1456   // Ignore dbg intrinsics.
1457   while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1458 
1459   // Allow a single instruction to be hoisted in addition to the compare
1460   // that feeds the branch.  We later ensure that any values that _it_ uses
1461   // were also live in the predecessor, so that we don't unnecessarily create
1462   // register pressure or inhibit out-of-order execution.
1463   Instruction *BonusInst = 0;
1464   if (&*FrontIt != Cond &&
1465       FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1466       FrontIt->isSafeToSpeculativelyExecute()) {
1467     BonusInst = &*FrontIt;
1468     ++FrontIt;
1469 
1470     // Ignore dbg intrinsics.
1471     while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1472   }
1473 
1474   // Only a single bonus inst is allowed.
1475   if (&*FrontIt != Cond)
1476     return false;
1477 
1478   // Make sure the instruction after the condition is the cond branch.
1479   BasicBlock::iterator CondIt = Cond; ++CondIt;
1480 
1481   // Ingore dbg intrinsics.
1482   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1483 
1484   if (&*CondIt != BI)
1485     return false;
1486 
1487   // Cond is known to be a compare or binary operator.  Check to make sure that
1488   // neither operand is a potentially-trapping constant expression.
1489   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1490     if (CE->canTrap())
1491       return false;
1492   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1493     if (CE->canTrap())
1494       return false;
1495 
1496   // Finally, don't infinitely unroll conditional loops.
1497   BasicBlock *TrueDest  = BI->getSuccessor(0);
1498   BasicBlock *FalseDest = BI->getSuccessor(1);
1499   if (TrueDest == BB || FalseDest == BB)
1500     return false;
1501 
1502   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1503     BasicBlock *PredBlock = *PI;
1504     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1505 
1506     // Check that we have two conditional branches.  If there is a PHI node in
1507     // the common successor, verify that the same value flows in from both
1508     // blocks.
1509     if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
1510       continue;
1511 
1512     // Determine if the two branches share a common destination.
1513     Instruction::BinaryOps Opc;
1514     bool InvertPredCond = false;
1515 
1516     if (PBI->getSuccessor(0) == TrueDest)
1517       Opc = Instruction::Or;
1518     else if (PBI->getSuccessor(1) == FalseDest)
1519       Opc = Instruction::And;
1520     else if (PBI->getSuccessor(0) == FalseDest)
1521       Opc = Instruction::And, InvertPredCond = true;
1522     else if (PBI->getSuccessor(1) == TrueDest)
1523       Opc = Instruction::Or, InvertPredCond = true;
1524     else
1525       continue;
1526 
1527     // Ensure that any values used in the bonus instruction are also used
1528     // by the terminator of the predecessor.  This means that those values
1529     // must already have been resolved, so we won't be inhibiting the
1530     // out-of-order core by speculating them earlier.
1531     if (BonusInst) {
1532       // Collect the values used by the bonus inst
1533       SmallPtrSet<Value*, 4> UsedValues;
1534       for (Instruction::op_iterator OI = BonusInst->op_begin(),
1535            OE = BonusInst->op_end(); OI != OE; ++OI) {
1536         Value* V = *OI;
1537         if (!isa<Constant>(V))
1538           UsedValues.insert(V);
1539       }
1540 
1541       SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1542       Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1543 
1544       // Walk up to four levels back up the use-def chain of the predecessor's
1545       // terminator to see if all those values were used.  The choice of four
1546       // levels is arbitrary, to provide a compile-time-cost bound.
1547       while (!Worklist.empty()) {
1548         std::pair<Value*, unsigned> Pair = Worklist.back();
1549         Worklist.pop_back();
1550 
1551         if (Pair.second >= 4) continue;
1552         UsedValues.erase(Pair.first);
1553         if (UsedValues.empty()) break;
1554 
1555         if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1556           for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1557                OI != OE; ++OI)
1558             Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1559         }
1560       }
1561 
1562       if (!UsedValues.empty()) return false;
1563     }
1564 
1565     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1566 
1567     // If we need to invert the condition in the pred block to match, do so now.
1568     if (InvertPredCond) {
1569       Value *NewCond = PBI->getCondition();
1570 
1571       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1572         CmpInst *CI = cast<CmpInst>(NewCond);
1573         CI->setPredicate(CI->getInversePredicate());
1574       } else {
1575         NewCond = BinaryOperator::CreateNot(NewCond,
1576                                   PBI->getCondition()->getName()+".not", PBI);
1577       }
1578 
1579       PBI->setCondition(NewCond);
1580       BasicBlock *OldTrue = PBI->getSuccessor(0);
1581       BasicBlock *OldFalse = PBI->getSuccessor(1);
1582       PBI->setSuccessor(0, OldFalse);
1583       PBI->setSuccessor(1, OldTrue);
1584     }
1585 
1586     // If we have a bonus inst, clone it into the predecessor block.
1587     Instruction *NewBonus = 0;
1588     if (BonusInst) {
1589       NewBonus = BonusInst->clone();
1590       PredBlock->getInstList().insert(PBI, NewBonus);
1591       NewBonus->takeName(BonusInst);
1592       BonusInst->setName(BonusInst->getName()+".old");
1593     }
1594 
1595     // Clone Cond into the predecessor basic block, and or/and the
1596     // two conditions together.
1597     Instruction *New = Cond->clone();
1598     if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1599     PredBlock->getInstList().insert(PBI, New);
1600     New->takeName(Cond);
1601     Cond->setName(New->getName()+".old");
1602 
1603     Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1604                                             New, "or.cond", PBI);
1605     PBI->setCondition(NewCond);
1606     if (PBI->getSuccessor(0) == BB) {
1607       AddPredecessorToBlock(TrueDest, PredBlock, BB);
1608       PBI->setSuccessor(0, TrueDest);
1609     }
1610     if (PBI->getSuccessor(1) == BB) {
1611       AddPredecessorToBlock(FalseDest, PredBlock, BB);
1612       PBI->setSuccessor(1, FalseDest);
1613     }
1614 
1615     // Copy any debug value intrinsics into the end of PredBlock.
1616     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1617       if (isa<DbgInfoIntrinsic>(*I))
1618         I->clone()->insertBefore(PBI);
1619 
1620     return true;
1621   }
1622   return false;
1623 }
1624 
1625 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1626 /// predecessor of another block, this function tries to simplify it.  We know
1627 /// that PBI and BI are both conditional branches, and BI is in one of the
1628 /// successor blocks of PBI - PBI branches to BI.
1629 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1630   assert(PBI->isConditional() && BI->isConditional());
1631   BasicBlock *BB = BI->getParent();
1632 
1633   // If this block ends with a branch instruction, and if there is a
1634   // predecessor that ends on a branch of the same condition, make
1635   // this conditional branch redundant.
1636   if (PBI->getCondition() == BI->getCondition() &&
1637       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1638     // Okay, the outcome of this conditional branch is statically
1639     // knowable.  If this block had a single pred, handle specially.
1640     if (BB->getSinglePredecessor()) {
1641       // Turn this into a branch on constant.
1642       bool CondIsTrue = PBI->getSuccessor(0) == BB;
1643       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1644                                         CondIsTrue));
1645       return true;  // Nuke the branch on constant.
1646     }
1647 
1648     // Otherwise, if there are multiple predecessors, insert a PHI that merges
1649     // in the constant and simplify the block result.  Subsequent passes of
1650     // simplifycfg will thread the block.
1651     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1652       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
1653       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1654                                        std::distance(PB, PE),
1655                                        BI->getCondition()->getName() + ".pr",
1656                                        BB->begin());
1657       // Okay, we're going to insert the PHI node.  Since PBI is not the only
1658       // predecessor, compute the PHI'd conditional value for all of the preds.
1659       // Any predecessor where the condition is not computable we keep symbolic.
1660       for (pred_iterator PI = PB; PI != PE; ++PI) {
1661         BasicBlock *P = *PI;
1662         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1663             PBI != BI && PBI->isConditional() &&
1664             PBI->getCondition() == BI->getCondition() &&
1665             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1666           bool CondIsTrue = PBI->getSuccessor(0) == BB;
1667           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1668                                               CondIsTrue), P);
1669         } else {
1670           NewPN->addIncoming(BI->getCondition(), P);
1671         }
1672       }
1673 
1674       BI->setCondition(NewPN);
1675       return true;
1676     }
1677   }
1678 
1679   // If this is a conditional branch in an empty block, and if any
1680   // predecessors is a conditional branch to one of our destinations,
1681   // fold the conditions into logical ops and one cond br.
1682   BasicBlock::iterator BBI = BB->begin();
1683   // Ignore dbg intrinsics.
1684   while (isa<DbgInfoIntrinsic>(BBI))
1685     ++BBI;
1686   if (&*BBI != BI)
1687     return false;
1688 
1689 
1690   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1691     if (CE->canTrap())
1692       return false;
1693 
1694   int PBIOp, BIOp;
1695   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1696     PBIOp = BIOp = 0;
1697   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1698     PBIOp = 0, BIOp = 1;
1699   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1700     PBIOp = 1, BIOp = 0;
1701   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1702     PBIOp = BIOp = 1;
1703   else
1704     return false;
1705 
1706   // Check to make sure that the other destination of this branch
1707   // isn't BB itself.  If so, this is an infinite loop that will
1708   // keep getting unwound.
1709   if (PBI->getSuccessor(PBIOp) == BB)
1710     return false;
1711 
1712   // Do not perform this transformation if it would require
1713   // insertion of a large number of select instructions. For targets
1714   // without predication/cmovs, this is a big pessimization.
1715   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1716 
1717   unsigned NumPhis = 0;
1718   for (BasicBlock::iterator II = CommonDest->begin();
1719        isa<PHINode>(II); ++II, ++NumPhis)
1720     if (NumPhis > 2) // Disable this xform.
1721       return false;
1722 
1723   // Finally, if everything is ok, fold the branches to logical ops.
1724   BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1725 
1726   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1727                << "AND: " << *BI->getParent());
1728 
1729 
1730   // If OtherDest *is* BB, then BB is a basic block with a single conditional
1731   // branch in it, where one edge (OtherDest) goes back to itself but the other
1732   // exits.  We don't *know* that the program avoids the infinite loop
1733   // (even though that seems likely).  If we do this xform naively, we'll end up
1734   // recursively unpeeling the loop.  Since we know that (after the xform is
1735   // done) that the block *is* infinite if reached, we just make it an obviously
1736   // infinite loop with no cond branch.
1737   if (OtherDest == BB) {
1738     // Insert it at the end of the function, because it's either code,
1739     // or it won't matter if it's hot. :)
1740     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1741                                                   "infloop", BB->getParent());
1742     BranchInst::Create(InfLoopBlock, InfLoopBlock);
1743     OtherDest = InfLoopBlock;
1744   }
1745 
1746   DEBUG(dbgs() << *PBI->getParent()->getParent());
1747 
1748   // BI may have other predecessors.  Because of this, we leave
1749   // it alone, but modify PBI.
1750 
1751   // Make sure we get to CommonDest on True&True directions.
1752   Value *PBICond = PBI->getCondition();
1753   if (PBIOp)
1754     PBICond = BinaryOperator::CreateNot(PBICond,
1755                                         PBICond->getName()+".not",
1756                                         PBI);
1757   Value *BICond = BI->getCondition();
1758   if (BIOp)
1759     BICond = BinaryOperator::CreateNot(BICond,
1760                                        BICond->getName()+".not",
1761                                        PBI);
1762   // Merge the conditions.
1763   Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1764 
1765   // Modify PBI to branch on the new condition to the new dests.
1766   PBI->setCondition(Cond);
1767   PBI->setSuccessor(0, CommonDest);
1768   PBI->setSuccessor(1, OtherDest);
1769 
1770   // OtherDest may have phi nodes.  If so, add an entry from PBI's
1771   // block that are identical to the entries for BI's block.
1772   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
1773 
1774   // We know that the CommonDest already had an edge from PBI to
1775   // it.  If it has PHIs though, the PHIs may have different
1776   // entries for BB and PBI's BB.  If so, insert a select to make
1777   // them agree.
1778   PHINode *PN;
1779   for (BasicBlock::iterator II = CommonDest->begin();
1780        (PN = dyn_cast<PHINode>(II)); ++II) {
1781     Value *BIV = PN->getIncomingValueForBlock(BB);
1782     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1783     Value *PBIV = PN->getIncomingValue(PBBIdx);
1784     if (BIV != PBIV) {
1785       // Insert a select in PBI to pick the right value.
1786       Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1787                                      PBIV->getName()+".mux", PBI);
1788       PN->setIncomingValue(PBBIdx, NV);
1789     }
1790   }
1791 
1792   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1793   DEBUG(dbgs() << *PBI->getParent()->getParent());
1794 
1795   // This basic block is probably dead.  We know it has at least
1796   // one fewer predecessor.
1797   return true;
1798 }
1799 
1800 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
1801 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
1802 // Takes care of updating the successors and removing the old terminator.
1803 // Also makes sure not to introduce new successors by assuming that edges to
1804 // non-successor TrueBBs and FalseBBs aren't reachable.
1805 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
1806                                        BasicBlock *TrueBB, BasicBlock *FalseBB){
1807   // Remove any superfluous successor edges from the CFG.
1808   // First, figure out which successors to preserve.
1809   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1810   // successor.
1811   BasicBlock *KeepEdge1 = TrueBB;
1812   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1813 
1814   // Then remove the rest.
1815   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
1816     BasicBlock *Succ = OldTerm->getSuccessor(I);
1817     // Make sure only to keep exactly one copy of each edge.
1818     if (Succ == KeepEdge1)
1819       KeepEdge1 = 0;
1820     else if (Succ == KeepEdge2)
1821       KeepEdge2 = 0;
1822     else
1823       Succ->removePredecessor(OldTerm->getParent());
1824   }
1825 
1826   // Insert an appropriate new terminator.
1827   if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1828     if (TrueBB == FalseBB)
1829       // We were only looking for one successor, and it was present.
1830       // Create an unconditional branch to it.
1831       BranchInst::Create(TrueBB, OldTerm);
1832     else
1833       // We found both of the successors we were looking for.
1834       // Create a conditional branch sharing the condition of the select.
1835       BranchInst::Create(TrueBB, FalseBB, Cond, OldTerm);
1836   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1837     // Neither of the selected blocks were successors, so this
1838     // terminator must be unreachable.
1839     new UnreachableInst(OldTerm->getContext(), OldTerm);
1840   } else {
1841     // One of the selected values was a successor, but the other wasn't.
1842     // Insert an unconditional branch to the one that was found;
1843     // the edge to the one that wasn't must be unreachable.
1844     if (KeepEdge1 == 0)
1845       // Only TrueBB was found.
1846       BranchInst::Create(TrueBB, OldTerm);
1847     else
1848       // Only FalseBB was found.
1849       BranchInst::Create(FalseBB, OldTerm);
1850   }
1851 
1852   EraseTerminatorInstAndDCECond(OldTerm);
1853   return true;
1854 }
1855 
1856 // SimplifySwitchOnSelect - Replaces
1857 //   (switch (select cond, X, Y)) on constant X, Y
1858 // with a branch - conditional if X and Y lead to distinct BBs,
1859 // unconditional otherwise.
1860 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
1861   // Check for constant integer values in the select.
1862   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
1863   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
1864   if (!TrueVal || !FalseVal)
1865     return false;
1866 
1867   // Find the relevant condition and destinations.
1868   Value *Condition = Select->getCondition();
1869   BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal));
1870   BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal));
1871 
1872   // Perform the actual simplification.
1873   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
1874 }
1875 
1876 // SimplifyIndirectBrOnSelect - Replaces
1877 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
1878 //                             blockaddress(@fn, BlockB)))
1879 // with
1880 //   (br cond, BlockA, BlockB).
1881 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
1882   // Check that both operands of the select are block addresses.
1883   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
1884   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
1885   if (!TBA || !FBA)
1886     return false;
1887 
1888   // Extract the actual blocks.
1889   BasicBlock *TrueBB = TBA->getBasicBlock();
1890   BasicBlock *FalseBB = FBA->getBasicBlock();
1891 
1892   // Perform the actual simplification.
1893   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
1894 }
1895 
1896 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1897 /// instruction (a seteq/setne with a constant) as the only instruction in a
1898 /// block that ends with an uncond branch.  We are looking for a very specific
1899 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
1900 /// this case, we merge the first two "or's of icmp" into a switch, but then the
1901 /// default value goes to an uncond block with a seteq in it, we get something
1902 /// like:
1903 ///
1904 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
1905 /// DEFAULT:
1906 ///   %tmp = icmp eq i8 %A, 92
1907 ///   br label %end
1908 /// end:
1909 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1910 ///
1911 /// We prefer to split the edge to 'end' so that there is a true/false entry to
1912 /// the PHI, merging the third icmp into the switch.
1913 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
1914                                                   const TargetData *TD) {
1915   BasicBlock *BB = ICI->getParent();
1916   // If the block has any PHIs in it or the icmp has multiple uses, it is too
1917   // complex.
1918   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
1919 
1920   Value *V = ICI->getOperand(0);
1921   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
1922 
1923   // The pattern we're looking for is where our only predecessor is a switch on
1924   // 'V' and this block is the default case for the switch.  In this case we can
1925   // fold the compared value into the switch to simplify things.
1926   BasicBlock *Pred = BB->getSinglePredecessor();
1927   if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
1928 
1929   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
1930   if (SI->getCondition() != V)
1931     return false;
1932 
1933   // If BB is reachable on a non-default case, then we simply know the value of
1934   // V in this block.  Substitute it and constant fold the icmp instruction
1935   // away.
1936   if (SI->getDefaultDest() != BB) {
1937     ConstantInt *VVal = SI->findCaseDest(BB);
1938     assert(VVal && "Should have a unique destination value");
1939     ICI->setOperand(0, VVal);
1940 
1941     if (Value *V = SimplifyInstruction(ICI, TD)) {
1942       ICI->replaceAllUsesWith(V);
1943       ICI->eraseFromParent();
1944     }
1945     // BB is now empty, so it is likely to simplify away.
1946     return SimplifyCFG(BB) | true;
1947   }
1948 
1949   // Ok, the block is reachable from the default dest.  If the constant we're
1950   // comparing exists in one of the other edges, then we can constant fold ICI
1951   // and zap it.
1952   if (SI->findCaseValue(Cst) != 0) {
1953     Value *V;
1954     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1955       V = ConstantInt::getFalse(BB->getContext());
1956     else
1957       V = ConstantInt::getTrue(BB->getContext());
1958 
1959     ICI->replaceAllUsesWith(V);
1960     ICI->eraseFromParent();
1961     // BB is now empty, so it is likely to simplify away.
1962     return SimplifyCFG(BB) | true;
1963   }
1964 
1965   // The use of the icmp has to be in the 'end' block, by the only PHI node in
1966   // the block.
1967   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
1968   PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
1969   if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
1970       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
1971     return false;
1972 
1973   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
1974   // true in the PHI.
1975   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
1976   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
1977 
1978   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1979     std::swap(DefaultCst, NewCst);
1980 
1981   // Replace ICI (which is used by the PHI for the default value) with true or
1982   // false depending on if it is EQ or NE.
1983   ICI->replaceAllUsesWith(DefaultCst);
1984   ICI->eraseFromParent();
1985 
1986   // Okay, the switch goes to this block on a default value.  Add an edge from
1987   // the switch to the merge point on the compared value.
1988   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
1989                                          BB->getParent(), BB);
1990   SI->addCase(Cst, NewBB);
1991 
1992   // NewBB branches to the phi block, add the uncond branch and the phi entry.
1993   BranchInst::Create(SuccBlock, NewBB);
1994   PHIUse->addIncoming(NewCst, NewBB);
1995   return true;
1996 }
1997 
1998 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
1999 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2000 /// fold it into a switch instruction if so.
2001 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD) {
2002   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2003   if (Cond == 0) return false;
2004 
2005 
2006   // Change br (X == 0 | X == 1), T, F into a switch instruction.
2007   // If this is a bunch of seteq's or'd together, or if it's a bunch of
2008   // 'setne's and'ed together, collect them.
2009   Value *CompVal = 0;
2010   std::vector<ConstantInt*> Values;
2011   bool TrueWhenEqual = true;
2012   Value *ExtraCase = 0;
2013   unsigned UsedICmps = 0;
2014 
2015   if (Cond->getOpcode() == Instruction::Or) {
2016     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2017                                      UsedICmps);
2018   } else if (Cond->getOpcode() == Instruction::And) {
2019     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2020                                      UsedICmps);
2021     TrueWhenEqual = false;
2022   }
2023 
2024   // If we didn't have a multiply compared value, fail.
2025   if (CompVal == 0) return false;
2026 
2027   // Avoid turning single icmps into a switch.
2028   if (UsedICmps <= 1)
2029     return false;
2030 
2031   // There might be duplicate constants in the list, which the switch
2032   // instruction can't handle, remove them now.
2033   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2034   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2035 
2036   // If Extra was used, we require at least two switch values to do the
2037   // transformation.  A switch with one value is just an cond branch.
2038   if (ExtraCase && Values.size() < 2) return false;
2039 
2040   // Figure out which block is which destination.
2041   BasicBlock *DefaultBB = BI->getSuccessor(1);
2042   BasicBlock *EdgeBB    = BI->getSuccessor(0);
2043   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2044 
2045   BasicBlock *BB = BI->getParent();
2046 
2047   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2048                << " cases into SWITCH.  BB is:\n" << *BB);
2049 
2050   // If there are any extra values that couldn't be folded into the switch
2051   // then we evaluate them with an explicit branch first.  Split the block
2052   // right before the condbr to handle it.
2053   if (ExtraCase) {
2054     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2055     // Remove the uncond branch added to the old block.
2056     TerminatorInst *OldTI = BB->getTerminator();
2057 
2058     if (TrueWhenEqual)
2059       BranchInst::Create(EdgeBB, NewBB, ExtraCase, OldTI);
2060     else
2061       BranchInst::Create(NewBB, EdgeBB, ExtraCase, OldTI);
2062 
2063     OldTI->eraseFromParent();
2064 
2065     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2066     // for the edge we just added.
2067     AddPredecessorToBlock(EdgeBB, BB, NewBB);
2068 
2069     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2070           << "\nEXTRABB = " << *BB);
2071     BB = NewBB;
2072   }
2073 
2074   // Convert pointer to int before we switch.
2075   if (CompVal->getType()->isPointerTy()) {
2076     assert(TD && "Cannot switch on pointer without TargetData");
2077     CompVal = new PtrToIntInst(CompVal,
2078                                TD->getIntPtrType(CompVal->getContext()),
2079                                "magicptr", BI);
2080   }
2081 
2082   // Create the new switch instruction now.
2083   SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB, Values.size(), BI);
2084 
2085   // Add all of the 'cases' to the switch instruction.
2086   for (unsigned i = 0, e = Values.size(); i != e; ++i)
2087     New->addCase(Values[i], EdgeBB);
2088 
2089   // We added edges from PI to the EdgeBB.  As such, if there were any
2090   // PHI nodes in EdgeBB, they need entries to be added corresponding to
2091   // the number of edges added.
2092   for (BasicBlock::iterator BBI = EdgeBB->begin();
2093        isa<PHINode>(BBI); ++BBI) {
2094     PHINode *PN = cast<PHINode>(BBI);
2095     Value *InVal = PN->getIncomingValueForBlock(BB);
2096     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2097       PN->addIncoming(InVal, BB);
2098   }
2099 
2100   // Erase the old branch instruction.
2101   EraseTerminatorInstAndDCECond(BI);
2102 
2103   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2104   return true;
2105 }
2106 
2107 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI) {
2108   BasicBlock *BB = RI->getParent();
2109   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2110 
2111   // Find predecessors that end with branches.
2112   SmallVector<BasicBlock*, 8> UncondBranchPreds;
2113   SmallVector<BranchInst*, 8> CondBranchPreds;
2114   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2115     BasicBlock *P = *PI;
2116     TerminatorInst *PTI = P->getTerminator();
2117     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2118       if (BI->isUnconditional())
2119         UncondBranchPreds.push_back(P);
2120       else
2121         CondBranchPreds.push_back(BI);
2122     }
2123   }
2124 
2125   // If we found some, do the transformation!
2126   if (!UncondBranchPreds.empty() && DupRet) {
2127     while (!UncondBranchPreds.empty()) {
2128       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2129       DEBUG(dbgs() << "FOLDING: " << *BB
2130             << "INTO UNCOND BRANCH PRED: " << *Pred);
2131       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2132     }
2133 
2134     // If we eliminated all predecessors of the block, delete the block now.
2135     if (pred_begin(BB) == pred_end(BB))
2136       // We know there are no successors, so just nuke the block.
2137       BB->eraseFromParent();
2138 
2139     return true;
2140   }
2141 
2142   // Check out all of the conditional branches going to this return
2143   // instruction.  If any of them just select between returns, change the
2144   // branch itself into a select/return pair.
2145   while (!CondBranchPreds.empty()) {
2146     BranchInst *BI = CondBranchPreds.pop_back_val();
2147 
2148     // Check to see if the non-BB successor is also a return block.
2149     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2150         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2151         SimplifyCondBranchToTwoReturns(BI))
2152       return true;
2153   }
2154   return false;
2155 }
2156 
2157 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI) {
2158   // Check to see if the first instruction in this block is just an unwind.
2159   // If so, replace any invoke instructions which use this as an exception
2160   // destination with call instructions.
2161   BasicBlock *BB = UI->getParent();
2162   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2163 
2164   bool Changed = false;
2165   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2166   while (!Preds.empty()) {
2167     BasicBlock *Pred = Preds.back();
2168     InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2169     if (II && II->getUnwindDest() == BB) {
2170       // Insert a new branch instruction before the invoke, because this
2171       // is now a fall through.
2172       BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2173       Pred->getInstList().remove(II);   // Take out of symbol table
2174 
2175       // Insert the call now.
2176       SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2177       CallInst *CI = CallInst::Create(II->getCalledValue(),
2178                                       Args.begin(), Args.end(),
2179                                       II->getName(), BI);
2180       CI->setCallingConv(II->getCallingConv());
2181       CI->setAttributes(II->getAttributes());
2182       // If the invoke produced a value, the Call now does instead.
2183       II->replaceAllUsesWith(CI);
2184       delete II;
2185       Changed = true;
2186     }
2187 
2188     Preds.pop_back();
2189   }
2190 
2191   // If this block is now dead (and isn't the entry block), remove it.
2192   if (pred_begin(BB) == pred_end(BB) &&
2193       BB != &BB->getParent()->getEntryBlock()) {
2194     // We know there are no successors, so just nuke the block.
2195     BB->eraseFromParent();
2196     return true;
2197   }
2198 
2199   return Changed;
2200 }
2201 
2202 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2203   BasicBlock *BB = UI->getParent();
2204 
2205   bool Changed = false;
2206 
2207   // If there are any instructions immediately before the unreachable that can
2208   // be removed, do so.
2209   while (UI != BB->begin()) {
2210     BasicBlock::iterator BBI = UI;
2211     --BBI;
2212     // Do not delete instructions that can have side effects, like calls
2213     // (which may never return) and volatile loads and stores.
2214     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2215 
2216     if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
2217       if (SI->isVolatile())
2218         break;
2219 
2220     if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
2221       if (LI->isVolatile())
2222         break;
2223 
2224     // Delete this instruction (any uses are guaranteed to be dead)
2225     if (!BBI->use_empty())
2226       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2227     BBI->eraseFromParent();
2228     Changed = true;
2229   }
2230 
2231   // If the unreachable instruction is the first in the block, take a gander
2232   // at all of the predecessors of this instruction, and simplify them.
2233   if (&BB->front() != UI) return Changed;
2234 
2235   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2236   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2237     TerminatorInst *TI = Preds[i]->getTerminator();
2238 
2239     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2240       if (BI->isUnconditional()) {
2241         if (BI->getSuccessor(0) == BB) {
2242           new UnreachableInst(TI->getContext(), TI);
2243           TI->eraseFromParent();
2244           Changed = true;
2245         }
2246       } else {
2247         if (BI->getSuccessor(0) == BB) {
2248           BranchInst::Create(BI->getSuccessor(1), BI);
2249           EraseTerminatorInstAndDCECond(BI);
2250         } else if (BI->getSuccessor(1) == BB) {
2251           BranchInst::Create(BI->getSuccessor(0), BI);
2252           EraseTerminatorInstAndDCECond(BI);
2253           Changed = true;
2254         }
2255       }
2256     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2257       for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2258         if (SI->getSuccessor(i) == BB) {
2259           BB->removePredecessor(SI->getParent());
2260           SI->removeCase(i);
2261           --i; --e;
2262           Changed = true;
2263         }
2264       // If the default value is unreachable, figure out the most popular
2265       // destination and make it the default.
2266       if (SI->getSuccessor(0) == BB) {
2267         std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2268         for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
2269           std::pair<unsigned, unsigned>& entry =
2270               Popularity[SI->getSuccessor(i)];
2271           if (entry.first == 0) {
2272             entry.first = 1;
2273             entry.second = i;
2274           } else {
2275             entry.first++;
2276           }
2277         }
2278 
2279         // Find the most popular block.
2280         unsigned MaxPop = 0;
2281         unsigned MaxIndex = 0;
2282         BasicBlock *MaxBlock = 0;
2283         for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2284              I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2285           if (I->second.first > MaxPop ||
2286               (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2287             MaxPop = I->second.first;
2288             MaxIndex = I->second.second;
2289             MaxBlock = I->first;
2290           }
2291         }
2292         if (MaxBlock) {
2293           // Make this the new default, allowing us to delete any explicit
2294           // edges to it.
2295           SI->setSuccessor(0, MaxBlock);
2296           Changed = true;
2297 
2298           // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2299           // it.
2300           if (isa<PHINode>(MaxBlock->begin()))
2301             for (unsigned i = 0; i != MaxPop-1; ++i)
2302               MaxBlock->removePredecessor(SI->getParent());
2303 
2304           for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2305             if (SI->getSuccessor(i) == MaxBlock) {
2306               SI->removeCase(i);
2307               --i; --e;
2308             }
2309         }
2310       }
2311     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2312       if (II->getUnwindDest() == BB) {
2313         // Convert the invoke to a call instruction.  This would be a good
2314         // place to note that the call does not throw though.
2315         BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2316         II->removeFromParent();   // Take out of symbol table
2317 
2318         // Insert the call now...
2319         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2320         CallInst *CI = CallInst::Create(II->getCalledValue(),
2321                                         Args.begin(), Args.end(),
2322                                         II->getName(), BI);
2323         CI->setCallingConv(II->getCallingConv());
2324         CI->setAttributes(II->getAttributes());
2325         // If the invoke produced a value, the call does now instead.
2326         II->replaceAllUsesWith(CI);
2327         delete II;
2328         Changed = true;
2329       }
2330     }
2331   }
2332 
2333   // If this block is now dead, remove it.
2334   if (pred_begin(BB) == pred_end(BB) &&
2335       BB != &BB->getParent()->getEntryBlock()) {
2336     // We know there are no successors, so just nuke the block.
2337     BB->eraseFromParent();
2338     return true;
2339   }
2340 
2341   return Changed;
2342 }
2343 
2344 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2345 /// integer range comparison into a sub, an icmp and a branch.
2346 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI) {
2347   assert(SI->getNumCases() > 2 && "Degenerate switch?");
2348 
2349   // Make sure all cases point to the same destination and gather the values.
2350   SmallVector<ConstantInt *, 16> Cases;
2351   Cases.push_back(SI->getCaseValue(1));
2352   for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) {
2353     if (SI->getSuccessor(I-1) != SI->getSuccessor(I))
2354       return false;
2355     Cases.push_back(SI->getCaseValue(I));
2356   }
2357   assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered");
2358 
2359   // Sort the case values, then check if they form a range we can transform.
2360   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2361   for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2362     if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2363       return false;
2364   }
2365 
2366   Constant *Offset = ConstantExpr::getNeg(Cases.back());
2367   Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1);
2368 
2369   Value *Sub = SI->getCondition();
2370   if (!Offset->isNullValue())
2371     Sub = BinaryOperator::CreateAdd(Sub, Offset, Sub->getName()+".off", SI);
2372   Value *Cmp = new ICmpInst(SI, ICmpInst::ICMP_ULT, Sub, NumCases, "switch");
2373   BranchInst::Create(SI->getSuccessor(1), SI->getDefaultDest(), Cmp, SI);
2374 
2375   // Prune obsolete incoming values off the successor's PHI nodes.
2376   for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin();
2377        isa<PHINode>(BBI); ++BBI) {
2378     for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I)
2379       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2380   }
2381   SI->eraseFromParent();
2382 
2383   return true;
2384 }
2385 
2386 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI) {
2387   // If this switch is too complex to want to look at, ignore it.
2388   if (!isValueEqualityComparison(SI))
2389     return false;
2390 
2391   BasicBlock *BB = SI->getParent();
2392 
2393   // If we only have one predecessor, and if it is a branch on this value,
2394   // see if that predecessor totally determines the outcome of this switch.
2395   if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2396     if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
2397       return SimplifyCFG(BB) | true;
2398 
2399   Value *Cond = SI->getCondition();
2400   if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
2401     if (SimplifySwitchOnSelect(SI, Select))
2402       return SimplifyCFG(BB) | true;
2403 
2404   // If the block only contains the switch, see if we can fold the block
2405   // away into any preds.
2406   BasicBlock::iterator BBI = BB->begin();
2407   // Ignore dbg intrinsics.
2408   while (isa<DbgInfoIntrinsic>(BBI))
2409     ++BBI;
2410   if (SI == &*BBI)
2411     if (FoldValueComparisonIntoPredecessors(SI))
2412       return SimplifyCFG(BB) | true;
2413 
2414   // Try to transform the switch into an icmp and a branch.
2415   if (TurnSwitchRangeIntoICmp(SI))
2416     return SimplifyCFG(BB) | true;
2417 
2418   return false;
2419 }
2420 
2421 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2422   BasicBlock *BB = IBI->getParent();
2423   bool Changed = false;
2424 
2425   // Eliminate redundant destinations.
2426   SmallPtrSet<Value *, 8> Succs;
2427   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2428     BasicBlock *Dest = IBI->getDestination(i);
2429     if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2430       Dest->removePredecessor(BB);
2431       IBI->removeDestination(i);
2432       --i; --e;
2433       Changed = true;
2434     }
2435   }
2436 
2437   if (IBI->getNumDestinations() == 0) {
2438     // If the indirectbr has no successors, change it to unreachable.
2439     new UnreachableInst(IBI->getContext(), IBI);
2440     EraseTerminatorInstAndDCECond(IBI);
2441     return true;
2442   }
2443 
2444   if (IBI->getNumDestinations() == 1) {
2445     // If the indirectbr has one successor, change it to a direct branch.
2446     BranchInst::Create(IBI->getDestination(0), IBI);
2447     EraseTerminatorInstAndDCECond(IBI);
2448     return true;
2449   }
2450 
2451   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2452     if (SimplifyIndirectBrOnSelect(IBI, SI))
2453       return SimplifyCFG(BB) | true;
2454   }
2455   return Changed;
2456 }
2457 
2458 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI) {
2459   BasicBlock *BB = BI->getParent();
2460 
2461   // If the Terminator is the only non-phi instruction, simplify the block.
2462   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
2463   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2464       TryToSimplifyUncondBranchFromEmptyBlock(BB))
2465     return true;
2466 
2467   // If the only instruction in the block is a seteq/setne comparison
2468   // against a constant, try to simplify the block.
2469   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2470     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2471       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2472         ;
2473       if (I->isTerminator() && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD))
2474         return true;
2475     }
2476 
2477   return false;
2478 }
2479 
2480 
2481 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI) {
2482   BasicBlock *BB = BI->getParent();
2483 
2484   // Conditional branch
2485   if (isValueEqualityComparison(BI)) {
2486     // If we only have one predecessor, and if it is a branch on this value,
2487     // see if that predecessor totally determines the outcome of this
2488     // switch.
2489     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2490       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
2491         return SimplifyCFG(BB) | true;
2492 
2493     // This block must be empty, except for the setcond inst, if it exists.
2494     // Ignore dbg intrinsics.
2495     BasicBlock::iterator I = BB->begin();
2496     // Ignore dbg intrinsics.
2497     while (isa<DbgInfoIntrinsic>(I))
2498       ++I;
2499     if (&*I == BI) {
2500       if (FoldValueComparisonIntoPredecessors(BI))
2501         return SimplifyCFG(BB) | true;
2502     } else if (&*I == cast<Instruction>(BI->getCondition())){
2503       ++I;
2504       // Ignore dbg intrinsics.
2505       while (isa<DbgInfoIntrinsic>(I))
2506         ++I;
2507       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI))
2508         return SimplifyCFG(BB) | true;
2509     }
2510   }
2511 
2512   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2513   if (SimplifyBranchOnICmpChain(BI, TD))
2514     return true;
2515 
2516   // We have a conditional branch to two blocks that are only reachable
2517   // from BI.  We know that the condbr dominates the two blocks, so see if
2518   // there is any identical code in the "then" and "else" blocks.  If so, we
2519   // can hoist it up to the branching block.
2520   if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2521     if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2522       if (HoistThenElseCodeToIf(BI))
2523         return SimplifyCFG(BB) | true;
2524     } else {
2525       // If Successor #1 has multiple preds, we may be able to conditionally
2526       // execute Successor #0 if it branches to successor #1.
2527       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2528       if (Succ0TI->getNumSuccessors() == 1 &&
2529           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2530         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2531           return SimplifyCFG(BB) | true;
2532     }
2533   } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2534     // If Successor #0 has multiple preds, we may be able to conditionally
2535     // execute Successor #1 if it branches to successor #0.
2536     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2537     if (Succ1TI->getNumSuccessors() == 1 &&
2538         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2539       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
2540         return SimplifyCFG(BB) | true;
2541   }
2542 
2543   // If this is a branch on a phi node in the current block, thread control
2544   // through this block if any PHI node entries are constants.
2545   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2546     if (PN->getParent() == BI->getParent())
2547       if (FoldCondBranchOnPHI(BI, TD))
2548         return SimplifyCFG(BB) | true;
2549 
2550   // If this basic block is ONLY a setcc and a branch, and if a predecessor
2551   // branches to us and one of our successors, fold the setcc into the
2552   // predecessor and use logical operations to pick the right destination.
2553   if (FoldBranchToCommonDest(BI))
2554     return SimplifyCFG(BB) | true;
2555 
2556   // Scan predecessor blocks for conditional branches.
2557   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2558     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2559       if (PBI != BI && PBI->isConditional())
2560         if (SimplifyCondBranchToCondBranch(PBI, BI))
2561           return SimplifyCFG(BB) | true;
2562 
2563   return false;
2564 }
2565 
2566 bool SimplifyCFGOpt::run(BasicBlock *BB) {
2567   bool Changed = false;
2568 
2569   assert(BB && BB->getParent() && "Block not embedded in function!");
2570   assert(BB->getTerminator() && "Degenerate basic block encountered!");
2571 
2572   // Remove basic blocks that have no predecessors (except the entry block)...
2573   // or that just have themself as a predecessor.  These are unreachable.
2574   if ((pred_begin(BB) == pred_end(BB) &&
2575        BB != &BB->getParent()->getEntryBlock()) ||
2576       BB->getSinglePredecessor() == BB) {
2577     DEBUG(dbgs() << "Removing BB: \n" << *BB);
2578     DeleteDeadBlock(BB);
2579     return true;
2580   }
2581 
2582   // Check to see if we can constant propagate this terminator instruction
2583   // away...
2584   Changed |= ConstantFoldTerminator(BB);
2585 
2586   // Check for and eliminate duplicate PHI nodes in this block.
2587   Changed |= EliminateDuplicatePHINodes(BB);
2588 
2589   // Merge basic blocks into their predecessor if there is only one distinct
2590   // pred, and if there is only one distinct successor of the predecessor, and
2591   // if there are no PHI nodes.
2592   //
2593   if (MergeBlockIntoPredecessor(BB))
2594     return true;
2595 
2596   // If there is a trivial two-entry PHI node in this basic block, and we can
2597   // eliminate it, do so now.
2598   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
2599     if (PN->getNumIncomingValues() == 2)
2600       Changed |= FoldTwoEntryPHINode(PN, TD);
2601 
2602   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2603     if (BI->isUnconditional()) {
2604       if (SimplifyUncondBranch(BI)) return true;
2605     } else {
2606       if (SimplifyCondBranch(BI)) return true;
2607     }
2608   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
2609     if (SimplifyReturn(RI)) return true;
2610   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2611     if (SimplifySwitch(SI)) return true;
2612   } else if (UnreachableInst *UI =
2613                dyn_cast<UnreachableInst>(BB->getTerminator())) {
2614     if (SimplifyUnreachable(UI)) return true;
2615   } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
2616     if (SimplifyUnwind(UI)) return true;
2617   } else if (IndirectBrInst *IBI =
2618                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
2619     if (SimplifyIndirectBr(IBI)) return true;
2620   }
2621 
2622   return Changed;
2623 }
2624 
2625 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
2626 /// example, it adjusts branches to branches to eliminate the extra hop, it
2627 /// eliminates unreachable basic blocks, and does other "peephole" optimization
2628 /// of the CFG.  It returns true if a modification was made.
2629 ///
2630 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
2631   return SimplifyCFGOpt(TD).run(BB);
2632 }
2633