1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/Constants.h" 17 #include "llvm/Instructions.h" 18 #include "llvm/IntrinsicInst.h" 19 #include "llvm/Type.h" 20 #include "llvm/DerivedTypes.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Target/TargetData.h" 24 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/Support/CFG.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/ConstantRange.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 #include <set> 37 #include <map> 38 using namespace llvm; 39 40 static cl::opt<unsigned> 41 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 42 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 43 44 static cl::opt<bool> 45 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 46 cl::desc("Duplicate return instructions into unconditional branches")); 47 48 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 49 50 namespace { 51 class SimplifyCFGOpt { 52 const TargetData *const TD; 53 54 Value *isValueEqualityComparison(TerminatorInst *TI); 55 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 56 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases); 57 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 58 BasicBlock *Pred); 59 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI); 60 61 bool SimplifyReturn(ReturnInst *RI); 62 bool SimplifyUnwind(UnwindInst *UI); 63 bool SimplifyUnreachable(UnreachableInst *UI); 64 bool SimplifySwitch(SwitchInst *SI); 65 bool SimplifyIndirectBr(IndirectBrInst *IBI); 66 bool SimplifyUncondBranch(BranchInst *BI); 67 bool SimplifyCondBranch(BranchInst *BI); 68 69 public: 70 explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {} 71 bool run(BasicBlock *BB); 72 }; 73 } 74 75 /// SafeToMergeTerminators - Return true if it is safe to merge these two 76 /// terminator instructions together. 77 /// 78 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 79 if (SI1 == SI2) return false; // Can't merge with self! 80 81 // It is not safe to merge these two switch instructions if they have a common 82 // successor, and if that successor has a PHI node, and if *that* PHI node has 83 // conflicting incoming values from the two switch blocks. 84 BasicBlock *SI1BB = SI1->getParent(); 85 BasicBlock *SI2BB = SI2->getParent(); 86 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 87 88 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 89 if (SI1Succs.count(*I)) 90 for (BasicBlock::iterator BBI = (*I)->begin(); 91 isa<PHINode>(BBI); ++BBI) { 92 PHINode *PN = cast<PHINode>(BBI); 93 if (PN->getIncomingValueForBlock(SI1BB) != 94 PN->getIncomingValueForBlock(SI2BB)) 95 return false; 96 } 97 98 return true; 99 } 100 101 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 102 /// now be entries in it from the 'NewPred' block. The values that will be 103 /// flowing into the PHI nodes will be the same as those coming in from 104 /// ExistPred, an existing predecessor of Succ. 105 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 106 BasicBlock *ExistPred) { 107 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 108 109 PHINode *PN; 110 for (BasicBlock::iterator I = Succ->begin(); 111 (PN = dyn_cast<PHINode>(I)); ++I) 112 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 113 } 114 115 116 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at 117 /// least one PHI node in it), check to see if the merge at this block is due 118 /// to an "if condition". If so, return the boolean condition that determines 119 /// which entry into BB will be taken. Also, return by references the block 120 /// that will be entered from if the condition is true, and the block that will 121 /// be entered if the condition is false. 122 /// 123 /// This does no checking to see if the true/false blocks have large or unsavory 124 /// instructions in them. 125 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 126 BasicBlock *&IfFalse) { 127 PHINode *SomePHI = cast<PHINode>(BB->begin()); 128 assert(SomePHI->getNumIncomingValues() == 2 && 129 "Function can only handle blocks with 2 predecessors!"); 130 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0); 131 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1); 132 133 // We can only handle branches. Other control flow will be lowered to 134 // branches if possible anyway. 135 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 136 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 137 if (Pred1Br == 0 || Pred2Br == 0) 138 return 0; 139 140 // Eliminate code duplication by ensuring that Pred1Br is conditional if 141 // either are. 142 if (Pred2Br->isConditional()) { 143 // If both branches are conditional, we don't have an "if statement". In 144 // reality, we could transform this case, but since the condition will be 145 // required anyway, we stand no chance of eliminating it, so the xform is 146 // probably not profitable. 147 if (Pred1Br->isConditional()) 148 return 0; 149 150 std::swap(Pred1, Pred2); 151 std::swap(Pred1Br, Pred2Br); 152 } 153 154 if (Pred1Br->isConditional()) { 155 // The only thing we have to watch out for here is to make sure that Pred2 156 // doesn't have incoming edges from other blocks. If it does, the condition 157 // doesn't dominate BB. 158 if (Pred2->getSinglePredecessor() == 0) 159 return 0; 160 161 // If we found a conditional branch predecessor, make sure that it branches 162 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 163 if (Pred1Br->getSuccessor(0) == BB && 164 Pred1Br->getSuccessor(1) == Pred2) { 165 IfTrue = Pred1; 166 IfFalse = Pred2; 167 } else if (Pred1Br->getSuccessor(0) == Pred2 && 168 Pred1Br->getSuccessor(1) == BB) { 169 IfTrue = Pred2; 170 IfFalse = Pred1; 171 } else { 172 // We know that one arm of the conditional goes to BB, so the other must 173 // go somewhere unrelated, and this must not be an "if statement". 174 return 0; 175 } 176 177 return Pred1Br->getCondition(); 178 } 179 180 // Ok, if we got here, both predecessors end with an unconditional branch to 181 // BB. Don't panic! If both blocks only have a single (identical) 182 // predecessor, and THAT is a conditional branch, then we're all ok! 183 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 184 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) 185 return 0; 186 187 // Otherwise, if this is a conditional branch, then we can use it! 188 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 189 if (BI == 0) return 0; 190 191 assert(BI->isConditional() && "Two successors but not conditional?"); 192 if (BI->getSuccessor(0) == Pred1) { 193 IfTrue = Pred1; 194 IfFalse = Pred2; 195 } else { 196 IfTrue = Pred2; 197 IfFalse = Pred1; 198 } 199 return BI->getCondition(); 200 } 201 202 /// DominatesMergePoint - If we have a merge point of an "if condition" as 203 /// accepted above, return true if the specified value dominates the block. We 204 /// don't handle the true generality of domination here, just a special case 205 /// which works well enough for us. 206 /// 207 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 208 /// see if V (which must be an instruction) and its recursive operands 209 /// that do not dominate BB have a combined cost lower than CostRemaining and 210 /// are non-trapping. If both are true, the instruction is inserted into the 211 /// set and true is returned. 212 /// 213 /// The cost for most non-trapping instructions is defined as 1 except for 214 /// Select whose cost is 2. 215 /// 216 /// After this function returns, CostRemaining is decreased by the cost of 217 /// V plus its non-dominating operands. If that cost is greater than 218 /// CostRemaining, false is returned and CostRemaining is undefined. 219 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 220 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 221 unsigned &CostRemaining) { 222 Instruction *I = dyn_cast<Instruction>(V); 223 if (!I) { 224 // Non-instructions all dominate instructions, but not all constantexprs 225 // can be executed unconditionally. 226 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 227 if (C->canTrap()) 228 return false; 229 return true; 230 } 231 BasicBlock *PBB = I->getParent(); 232 233 // We don't want to allow weird loops that might have the "if condition" in 234 // the bottom of this block. 235 if (PBB == BB) return false; 236 237 // If this instruction is defined in a block that contains an unconditional 238 // branch to BB, then it must be in the 'conditional' part of the "if 239 // statement". If not, it definitely dominates the region. 240 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 241 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 242 return true; 243 244 // If we aren't allowing aggressive promotion anymore, then don't consider 245 // instructions in the 'if region'. 246 if (AggressiveInsts == 0) return false; 247 248 // If we have seen this instruction before, don't count it again. 249 if (AggressiveInsts->count(I)) return true; 250 251 // Okay, it looks like the instruction IS in the "condition". Check to 252 // see if it's a cheap instruction to unconditionally compute, and if it 253 // only uses stuff defined outside of the condition. If so, hoist it out. 254 if (!I->isSafeToSpeculativelyExecute()) 255 return false; 256 257 unsigned Cost = 0; 258 259 switch (I->getOpcode()) { 260 default: return false; // Cannot hoist this out safely. 261 case Instruction::Load: 262 // We have to check to make sure there are no instructions before the 263 // load in its basic block, as we are going to hoist the load out to its 264 // predecessor. 265 if (PBB->getFirstNonPHIOrDbg() != I) 266 return false; 267 Cost = 1; 268 break; 269 case Instruction::GetElementPtr: 270 // GEPs are cheap if all indices are constant. 271 if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices()) 272 return false; 273 Cost = 1; 274 break; 275 case Instruction::Add: 276 case Instruction::Sub: 277 case Instruction::And: 278 case Instruction::Or: 279 case Instruction::Xor: 280 case Instruction::Shl: 281 case Instruction::LShr: 282 case Instruction::AShr: 283 case Instruction::ICmp: 284 case Instruction::Trunc: 285 case Instruction::ZExt: 286 case Instruction::SExt: 287 Cost = 1; 288 break; // These are all cheap and non-trapping instructions. 289 290 case Instruction::Select: 291 Cost = 2; 292 break; 293 } 294 295 if (Cost > CostRemaining) 296 return false; 297 298 CostRemaining -= Cost; 299 300 // Okay, we can only really hoist these out if their operands do 301 // not take us over the cost threshold. 302 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 303 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 304 return false; 305 // Okay, it's safe to do this! Remember this instruction. 306 AggressiveInsts->insert(I); 307 return true; 308 } 309 310 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 311 /// and PointerNullValue. Return NULL if value is not a constant int. 312 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) { 313 // Normal constant int. 314 ConstantInt *CI = dyn_cast<ConstantInt>(V); 315 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 316 return CI; 317 318 // This is some kind of pointer constant. Turn it into a pointer-sized 319 // ConstantInt if possible. 320 const IntegerType *PtrTy = TD->getIntPtrType(V->getContext()); 321 322 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 323 if (isa<ConstantPointerNull>(V)) 324 return ConstantInt::get(PtrTy, 0); 325 326 // IntToPtr const int. 327 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 328 if (CE->getOpcode() == Instruction::IntToPtr) 329 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 330 // The constant is very likely to have the right type already. 331 if (CI->getType() == PtrTy) 332 return CI; 333 else 334 return cast<ConstantInt> 335 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 336 } 337 return 0; 338 } 339 340 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 341 /// collection of icmp eq/ne instructions that compare a value against a 342 /// constant, return the value being compared, and stick the constant into the 343 /// Values vector. 344 static Value * 345 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 346 const TargetData *TD, bool isEQ, unsigned &UsedICmps) { 347 Instruction *I = dyn_cast<Instruction>(V); 348 if (I == 0) return 0; 349 350 // If this is an icmp against a constant, handle this as one of the cases. 351 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 352 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 353 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 354 UsedICmps++; 355 Vals.push_back(C); 356 return I->getOperand(0); 357 } 358 359 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 360 // the set. 361 ConstantRange Span = 362 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 363 364 // If this is an and/!= check then we want to optimize "x ugt 2" into 365 // x != 0 && x != 1. 366 if (!isEQ) 367 Span = Span.inverse(); 368 369 // If there are a ton of values, we don't want to make a ginormous switch. 370 if (Span.getSetSize().ugt(8) || Span.isEmptySet() || 371 // We don't handle wrapped sets yet. 372 Span.isWrappedSet()) 373 return 0; 374 375 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 376 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 377 UsedICmps++; 378 return I->getOperand(0); 379 } 380 return 0; 381 } 382 383 // Otherwise, we can only handle an | or &, depending on isEQ. 384 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 385 return 0; 386 387 unsigned NumValsBeforeLHS = Vals.size(); 388 unsigned UsedICmpsBeforeLHS = UsedICmps; 389 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 390 isEQ, UsedICmps)) { 391 unsigned NumVals = Vals.size(); 392 unsigned UsedICmpsBeforeRHS = UsedICmps; 393 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 394 isEQ, UsedICmps)) { 395 if (LHS == RHS) 396 return LHS; 397 Vals.resize(NumVals); 398 UsedICmps = UsedICmpsBeforeRHS; 399 } 400 401 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 402 // set it and return success. 403 if (Extra == 0 || Extra == I->getOperand(1)) { 404 Extra = I->getOperand(1); 405 return LHS; 406 } 407 408 Vals.resize(NumValsBeforeLHS); 409 UsedICmps = UsedICmpsBeforeLHS; 410 return 0; 411 } 412 413 // If the LHS can't be folded in, but Extra is available and RHS can, try to 414 // use LHS as Extra. 415 if (Extra == 0 || Extra == I->getOperand(0)) { 416 Value *OldExtra = Extra; 417 Extra = I->getOperand(0); 418 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 419 isEQ, UsedICmps)) 420 return RHS; 421 assert(Vals.size() == NumValsBeforeLHS); 422 Extra = OldExtra; 423 } 424 425 return 0; 426 } 427 428 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 429 Instruction* Cond = 0; 430 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 431 Cond = dyn_cast<Instruction>(SI->getCondition()); 432 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 433 if (BI->isConditional()) 434 Cond = dyn_cast<Instruction>(BI->getCondition()); 435 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 436 Cond = dyn_cast<Instruction>(IBI->getAddress()); 437 } 438 439 TI->eraseFromParent(); 440 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 441 } 442 443 /// isValueEqualityComparison - Return true if the specified terminator checks 444 /// to see if a value is equal to constant integer value. 445 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 446 Value *CV = 0; 447 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 448 // Do not permit merging of large switch instructions into their 449 // predecessors unless there is only one predecessor. 450 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 451 pred_end(SI->getParent())) <= 128) 452 CV = SI->getCondition(); 453 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 454 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 455 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 456 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ || 457 ICI->getPredicate() == ICmpInst::ICMP_NE) && 458 GetConstantInt(ICI->getOperand(1), TD)) 459 CV = ICI->getOperand(0); 460 461 // Unwrap any lossless ptrtoint cast. 462 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) 463 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) 464 CV = PTII->getOperand(0); 465 return CV; 466 } 467 468 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 469 /// decode all of the 'cases' that it represents and return the 'default' block. 470 BasicBlock *SimplifyCFGOpt:: 471 GetValueEqualityComparisonCases(TerminatorInst *TI, 472 std::vector<std::pair<ConstantInt*, 473 BasicBlock*> > &Cases) { 474 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 475 Cases.reserve(SI->getNumCases()); 476 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 477 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i))); 478 return SI->getDefaultDest(); 479 } 480 481 BranchInst *BI = cast<BranchInst>(TI); 482 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 483 Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD), 484 BI->getSuccessor(ICI->getPredicate() == 485 ICmpInst::ICMP_NE))); 486 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 487 } 488 489 490 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 491 /// in the list that match the specified block. 492 static void EliminateBlockCases(BasicBlock *BB, 493 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) { 494 for (unsigned i = 0, e = Cases.size(); i != e; ++i) 495 if (Cases[i].second == BB) { 496 Cases.erase(Cases.begin()+i); 497 --i; --e; 498 } 499 } 500 501 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 502 /// well. 503 static bool 504 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1, 505 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) { 506 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2; 507 508 // Make V1 be smaller than V2. 509 if (V1->size() > V2->size()) 510 std::swap(V1, V2); 511 512 if (V1->size() == 0) return false; 513 if (V1->size() == 1) { 514 // Just scan V2. 515 ConstantInt *TheVal = (*V1)[0].first; 516 for (unsigned i = 0, e = V2->size(); i != e; ++i) 517 if (TheVal == (*V2)[i].first) 518 return true; 519 } 520 521 // Otherwise, just sort both lists and compare element by element. 522 array_pod_sort(V1->begin(), V1->end()); 523 array_pod_sort(V2->begin(), V2->end()); 524 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 525 while (i1 != e1 && i2 != e2) { 526 if ((*V1)[i1].first == (*V2)[i2].first) 527 return true; 528 if ((*V1)[i1].first < (*V2)[i2].first) 529 ++i1; 530 else 531 ++i2; 532 } 533 return false; 534 } 535 536 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 537 /// terminator instruction and its block is known to only have a single 538 /// predecessor block, check to see if that predecessor is also a value 539 /// comparison with the same value, and if that comparison determines the 540 /// outcome of this comparison. If so, simplify TI. This does a very limited 541 /// form of jump threading. 542 bool SimplifyCFGOpt:: 543 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 544 BasicBlock *Pred) { 545 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 546 if (!PredVal) return false; // Not a value comparison in predecessor. 547 548 Value *ThisVal = isValueEqualityComparison(TI); 549 assert(ThisVal && "This isn't a value comparison!!"); 550 if (ThisVal != PredVal) return false; // Different predicates. 551 552 // Find out information about when control will move from Pred to TI's block. 553 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; 554 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 555 PredCases); 556 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 557 558 // Find information about how control leaves this block. 559 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases; 560 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 561 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 562 563 // If TI's block is the default block from Pred's comparison, potentially 564 // simplify TI based on this knowledge. 565 if (PredDef == TI->getParent()) { 566 // If we are here, we know that the value is none of those cases listed in 567 // PredCases. If there are any cases in ThisCases that are in PredCases, we 568 // can simplify TI. 569 if (!ValuesOverlap(PredCases, ThisCases)) 570 return false; 571 572 if (isa<BranchInst>(TI)) { 573 // Okay, one of the successors of this condbr is dead. Convert it to a 574 // uncond br. 575 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 576 // Insert the new branch. 577 Instruction *NI = BranchInst::Create(ThisDef, TI); 578 (void) NI; 579 580 // Remove PHI node entries for the dead edge. 581 ThisCases[0].second->removePredecessor(TI->getParent()); 582 583 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 584 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 585 586 EraseTerminatorInstAndDCECond(TI); 587 return true; 588 } 589 590 SwitchInst *SI = cast<SwitchInst>(TI); 591 // Okay, TI has cases that are statically dead, prune them away. 592 SmallPtrSet<Constant*, 16> DeadCases; 593 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 594 DeadCases.insert(PredCases[i].first); 595 596 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 597 << "Through successor TI: " << *TI); 598 599 for (unsigned i = SI->getNumCases()-1; i != 0; --i) 600 if (DeadCases.count(SI->getCaseValue(i))) { 601 SI->getSuccessor(i)->removePredecessor(TI->getParent()); 602 SI->removeCase(i); 603 } 604 605 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 606 return true; 607 } 608 609 // Otherwise, TI's block must correspond to some matched value. Find out 610 // which value (or set of values) this is. 611 ConstantInt *TIV = 0; 612 BasicBlock *TIBB = TI->getParent(); 613 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 614 if (PredCases[i].second == TIBB) { 615 if (TIV != 0) 616 return false; // Cannot handle multiple values coming to this block. 617 TIV = PredCases[i].first; 618 } 619 assert(TIV && "No edge from pred to succ?"); 620 621 // Okay, we found the one constant that our value can be if we get into TI's 622 // BB. Find out which successor will unconditionally be branched to. 623 BasicBlock *TheRealDest = 0; 624 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 625 if (ThisCases[i].first == TIV) { 626 TheRealDest = ThisCases[i].second; 627 break; 628 } 629 630 // If not handled by any explicit cases, it is handled by the default case. 631 if (TheRealDest == 0) TheRealDest = ThisDef; 632 633 // Remove PHI node entries for dead edges. 634 BasicBlock *CheckEdge = TheRealDest; 635 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 636 if (*SI != CheckEdge) 637 (*SI)->removePredecessor(TIBB); 638 else 639 CheckEdge = 0; 640 641 // Insert the new branch. 642 Instruction *NI = BranchInst::Create(TheRealDest, TI); 643 (void) NI; 644 645 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 646 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 647 648 EraseTerminatorInstAndDCECond(TI); 649 return true; 650 } 651 652 namespace { 653 /// ConstantIntOrdering - This class implements a stable ordering of constant 654 /// integers that does not depend on their address. This is important for 655 /// applications that sort ConstantInt's to ensure uniqueness. 656 struct ConstantIntOrdering { 657 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 658 return LHS->getValue().ult(RHS->getValue()); 659 } 660 }; 661 } 662 663 static int ConstantIntSortPredicate(const void *P1, const void *P2) { 664 const ConstantInt *LHS = *(const ConstantInt**)P1; 665 const ConstantInt *RHS = *(const ConstantInt**)P2; 666 if (LHS->getValue().ult(RHS->getValue())) 667 return 1; 668 if (LHS->getValue() == RHS->getValue()) 669 return 0; 670 return -1; 671 } 672 673 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 674 /// equality comparison instruction (either a switch or a branch on "X == c"). 675 /// See if any of the predecessors of the terminator block are value comparisons 676 /// on the same value. If so, and if safe to do so, fold them together. 677 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI) { 678 BasicBlock *BB = TI->getParent(); 679 Value *CV = isValueEqualityComparison(TI); // CondVal 680 assert(CV && "Not a comparison?"); 681 bool Changed = false; 682 683 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 684 while (!Preds.empty()) { 685 BasicBlock *Pred = Preds.pop_back_val(); 686 687 // See if the predecessor is a comparison with the same value. 688 TerminatorInst *PTI = Pred->getTerminator(); 689 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 690 691 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 692 // Figure out which 'cases' to copy from SI to PSI. 693 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases; 694 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 695 696 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; 697 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 698 699 // Based on whether the default edge from PTI goes to BB or not, fill in 700 // PredCases and PredDefault with the new switch cases we would like to 701 // build. 702 SmallVector<BasicBlock*, 8> NewSuccessors; 703 704 if (PredDefault == BB) { 705 // If this is the default destination from PTI, only the edges in TI 706 // that don't occur in PTI, or that branch to BB will be activated. 707 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 708 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 709 if (PredCases[i].second != BB) 710 PTIHandled.insert(PredCases[i].first); 711 else { 712 // The default destination is BB, we don't need explicit targets. 713 std::swap(PredCases[i], PredCases.back()); 714 PredCases.pop_back(); 715 --i; --e; 716 } 717 718 // Reconstruct the new switch statement we will be building. 719 if (PredDefault != BBDefault) { 720 PredDefault->removePredecessor(Pred); 721 PredDefault = BBDefault; 722 NewSuccessors.push_back(BBDefault); 723 } 724 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 725 if (!PTIHandled.count(BBCases[i].first) && 726 BBCases[i].second != BBDefault) { 727 PredCases.push_back(BBCases[i]); 728 NewSuccessors.push_back(BBCases[i].second); 729 } 730 731 } else { 732 // If this is not the default destination from PSI, only the edges 733 // in SI that occur in PSI with a destination of BB will be 734 // activated. 735 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 736 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 737 if (PredCases[i].second == BB) { 738 PTIHandled.insert(PredCases[i].first); 739 std::swap(PredCases[i], PredCases.back()); 740 PredCases.pop_back(); 741 --i; --e; 742 } 743 744 // Okay, now we know which constants were sent to BB from the 745 // predecessor. Figure out where they will all go now. 746 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 747 if (PTIHandled.count(BBCases[i].first)) { 748 // If this is one we are capable of getting... 749 PredCases.push_back(BBCases[i]); 750 NewSuccessors.push_back(BBCases[i].second); 751 PTIHandled.erase(BBCases[i].first);// This constant is taken care of 752 } 753 754 // If there are any constants vectored to BB that TI doesn't handle, 755 // they must go to the default destination of TI. 756 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 757 PTIHandled.begin(), 758 E = PTIHandled.end(); I != E; ++I) { 759 PredCases.push_back(std::make_pair(*I, BBDefault)); 760 NewSuccessors.push_back(BBDefault); 761 } 762 } 763 764 // Okay, at this point, we know which new successor Pred will get. Make 765 // sure we update the number of entries in the PHI nodes for these 766 // successors. 767 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 768 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 769 770 // Convert pointer to int before we switch. 771 if (CV->getType()->isPointerTy()) { 772 assert(TD && "Cannot switch on pointer without TargetData"); 773 CV = new PtrToIntInst(CV, TD->getIntPtrType(CV->getContext()), 774 "magicptr", PTI); 775 } 776 777 // Now that the successors are updated, create the new Switch instruction. 778 SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault, 779 PredCases.size(), PTI); 780 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 781 NewSI->addCase(PredCases[i].first, PredCases[i].second); 782 783 EraseTerminatorInstAndDCECond(PTI); 784 785 // Okay, last check. If BB is still a successor of PSI, then we must 786 // have an infinite loop case. If so, add an infinitely looping block 787 // to handle the case to preserve the behavior of the code. 788 BasicBlock *InfLoopBlock = 0; 789 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 790 if (NewSI->getSuccessor(i) == BB) { 791 if (InfLoopBlock == 0) { 792 // Insert it at the end of the function, because it's either code, 793 // or it won't matter if it's hot. :) 794 InfLoopBlock = BasicBlock::Create(BB->getContext(), 795 "infloop", BB->getParent()); 796 BranchInst::Create(InfLoopBlock, InfLoopBlock); 797 } 798 NewSI->setSuccessor(i, InfLoopBlock); 799 } 800 801 Changed = true; 802 } 803 } 804 return Changed; 805 } 806 807 // isSafeToHoistInvoke - If we would need to insert a select that uses the 808 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 809 // would need to do this), we can't hoist the invoke, as there is nowhere 810 // to put the select in this case. 811 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 812 Instruction *I1, Instruction *I2) { 813 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 814 PHINode *PN; 815 for (BasicBlock::iterator BBI = SI->begin(); 816 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 817 Value *BB1V = PN->getIncomingValueForBlock(BB1); 818 Value *BB2V = PN->getIncomingValueForBlock(BB2); 819 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 820 return false; 821 } 822 } 823 } 824 return true; 825 } 826 827 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 828 /// BB2, hoist any common code in the two blocks up into the branch block. The 829 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 830 static bool HoistThenElseCodeToIf(BranchInst *BI) { 831 // This does very trivial matching, with limited scanning, to find identical 832 // instructions in the two blocks. In particular, we don't want to get into 833 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 834 // such, we currently just scan for obviously identical instructions in an 835 // identical order. 836 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 837 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 838 839 BasicBlock::iterator BB1_Itr = BB1->begin(); 840 BasicBlock::iterator BB2_Itr = BB2->begin(); 841 842 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 843 // Skip debug info if it is not identical. 844 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 845 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 846 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 847 while (isa<DbgInfoIntrinsic>(I1)) 848 I1 = BB1_Itr++; 849 while (isa<DbgInfoIntrinsic>(I2)) 850 I2 = BB2_Itr++; 851 } 852 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 853 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 854 return false; 855 856 // If we get here, we can hoist at least one instruction. 857 BasicBlock *BIParent = BI->getParent(); 858 859 do { 860 // If we are hoisting the terminator instruction, don't move one (making a 861 // broken BB), instead clone it, and remove BI. 862 if (isa<TerminatorInst>(I1)) 863 goto HoistTerminator; 864 865 // For a normal instruction, we just move one to right before the branch, 866 // then replace all uses of the other with the first. Finally, we remove 867 // the now redundant second instruction. 868 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 869 if (!I2->use_empty()) 870 I2->replaceAllUsesWith(I1); 871 I1->intersectOptionalDataWith(I2); 872 I2->eraseFromParent(); 873 874 I1 = BB1_Itr++; 875 I2 = BB2_Itr++; 876 // Skip debug info if it is not identical. 877 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 878 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 879 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 880 while (isa<DbgInfoIntrinsic>(I1)) 881 I1 = BB1_Itr++; 882 while (isa<DbgInfoIntrinsic>(I2)) 883 I2 = BB2_Itr++; 884 } 885 } while (I1->isIdenticalToWhenDefined(I2)); 886 887 return true; 888 889 HoistTerminator: 890 // It may not be possible to hoist an invoke. 891 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 892 return true; 893 894 // Okay, it is safe to hoist the terminator. 895 Instruction *NT = I1->clone(); 896 BIParent->getInstList().insert(BI, NT); 897 if (!NT->getType()->isVoidTy()) { 898 I1->replaceAllUsesWith(NT); 899 I2->replaceAllUsesWith(NT); 900 NT->takeName(I1); 901 } 902 903 // Hoisting one of the terminators from our successor is a great thing. 904 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 905 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 906 // nodes, so we insert select instruction to compute the final result. 907 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 908 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 909 PHINode *PN; 910 for (BasicBlock::iterator BBI = SI->begin(); 911 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 912 Value *BB1V = PN->getIncomingValueForBlock(BB1); 913 Value *BB2V = PN->getIncomingValueForBlock(BB2); 914 if (BB1V == BB2V) continue; 915 916 // These values do not agree. Insert a select instruction before NT 917 // that determines the right value. 918 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 919 if (SI == 0) 920 SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V, 921 BB1V->getName()+"."+BB2V->getName(), NT); 922 // Make the PHI node use the select for all incoming values for BB1/BB2 923 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 924 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 925 PN->setIncomingValue(i, SI); 926 } 927 } 928 929 // Update any PHI nodes in our new successors. 930 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 931 AddPredecessorToBlock(*SI, BIParent, BB1); 932 933 EraseTerminatorInstAndDCECond(BI); 934 return true; 935 } 936 937 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1 938 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code 939 /// (for now, restricted to a single instruction that's side effect free) from 940 /// the BB1 into the branch block to speculatively execute it. 941 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) { 942 // Only speculatively execution a single instruction (not counting the 943 // terminator) for now. 944 Instruction *HInst = NULL; 945 Instruction *Term = BB1->getTerminator(); 946 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end(); 947 BBI != BBE; ++BBI) { 948 Instruction *I = BBI; 949 // Skip debug info. 950 if (isa<DbgInfoIntrinsic>(I)) continue; 951 if (I == Term) break; 952 953 if (HInst) 954 return false; 955 HInst = I; 956 } 957 if (!HInst) 958 return false; 959 960 // Be conservative for now. FP select instruction can often be expensive. 961 Value *BrCond = BI->getCondition(); 962 if (isa<FCmpInst>(BrCond)) 963 return false; 964 965 // If BB1 is actually on the false edge of the conditional branch, remember 966 // to swap the select operands later. 967 bool Invert = false; 968 if (BB1 != BI->getSuccessor(0)) { 969 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?"); 970 Invert = true; 971 } 972 973 // Turn 974 // BB: 975 // %t1 = icmp 976 // br i1 %t1, label %BB1, label %BB2 977 // BB1: 978 // %t3 = add %t2, c 979 // br label BB2 980 // BB2: 981 // => 982 // BB: 983 // %t1 = icmp 984 // %t4 = add %t2, c 985 // %t3 = select i1 %t1, %t2, %t3 986 switch (HInst->getOpcode()) { 987 default: return false; // Not safe / profitable to hoist. 988 case Instruction::Add: 989 case Instruction::Sub: 990 // Not worth doing for vector ops. 991 if (HInst->getType()->isVectorTy()) 992 return false; 993 break; 994 case Instruction::And: 995 case Instruction::Or: 996 case Instruction::Xor: 997 case Instruction::Shl: 998 case Instruction::LShr: 999 case Instruction::AShr: 1000 // Don't mess with vector operations. 1001 if (HInst->getType()->isVectorTy()) 1002 return false; 1003 break; // These are all cheap and non-trapping instructions. 1004 } 1005 1006 // If the instruction is obviously dead, don't try to predicate it. 1007 if (HInst->use_empty()) { 1008 HInst->eraseFromParent(); 1009 return true; 1010 } 1011 1012 // Can we speculatively execute the instruction? And what is the value 1013 // if the condition is false? Consider the phi uses, if the incoming value 1014 // from the "if" block are all the same V, then V is the value of the 1015 // select if the condition is false. 1016 BasicBlock *BIParent = BI->getParent(); 1017 SmallVector<PHINode*, 4> PHIUses; 1018 Value *FalseV = NULL; 1019 1020 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0); 1021 for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end(); 1022 UI != E; ++UI) { 1023 // Ignore any user that is not a PHI node in BB2. These can only occur in 1024 // unreachable blocks, because they would not be dominated by the instr. 1025 PHINode *PN = dyn_cast<PHINode>(*UI); 1026 if (!PN || PN->getParent() != BB2) 1027 return false; 1028 PHIUses.push_back(PN); 1029 1030 Value *PHIV = PN->getIncomingValueForBlock(BIParent); 1031 if (!FalseV) 1032 FalseV = PHIV; 1033 else if (FalseV != PHIV) 1034 return false; // Inconsistent value when condition is false. 1035 } 1036 1037 assert(FalseV && "Must have at least one user, and it must be a PHI"); 1038 1039 // Do not hoist the instruction if any of its operands are defined but not 1040 // used in this BB. The transformation will prevent the operand from 1041 // being sunk into the use block. 1042 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); 1043 i != e; ++i) { 1044 Instruction *OpI = dyn_cast<Instruction>(*i); 1045 if (OpI && OpI->getParent() == BIParent && 1046 !OpI->isUsedInBasicBlock(BIParent)) 1047 return false; 1048 } 1049 1050 // If we get here, we can hoist the instruction. Try to place it 1051 // before the icmp instruction preceding the conditional branch. 1052 BasicBlock::iterator InsertPos = BI; 1053 if (InsertPos != BIParent->begin()) 1054 --InsertPos; 1055 // Skip debug info between condition and branch. 1056 while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos)) 1057 --InsertPos; 1058 if (InsertPos == BrCond && !isa<PHINode>(BrCond)) { 1059 SmallPtrSet<Instruction *, 4> BB1Insns; 1060 for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end(); 1061 BB1I != BB1E; ++BB1I) 1062 BB1Insns.insert(BB1I); 1063 for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end(); 1064 UI != UE; ++UI) { 1065 Instruction *Use = cast<Instruction>(*UI); 1066 if (!BB1Insns.count(Use)) continue; 1067 1068 // If BrCond uses the instruction that place it just before 1069 // branch instruction. 1070 InsertPos = BI; 1071 break; 1072 } 1073 } else 1074 InsertPos = BI; 1075 BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst); 1076 1077 // Create a select whose true value is the speculatively executed value and 1078 // false value is the previously determined FalseV. 1079 SelectInst *SI; 1080 if (Invert) 1081 SI = SelectInst::Create(BrCond, FalseV, HInst, 1082 FalseV->getName() + "." + HInst->getName(), BI); 1083 else 1084 SI = SelectInst::Create(BrCond, HInst, FalseV, 1085 HInst->getName() + "." + FalseV->getName(), BI); 1086 1087 // Make the PHI node use the select for all incoming values for "then" and 1088 // "if" blocks. 1089 for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) { 1090 PHINode *PN = PHIUses[i]; 1091 for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j) 1092 if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent) 1093 PN->setIncomingValue(j, SI); 1094 } 1095 1096 ++NumSpeculations; 1097 return true; 1098 } 1099 1100 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1101 /// across this block. 1102 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1103 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1104 unsigned Size = 0; 1105 1106 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1107 if (isa<DbgInfoIntrinsic>(BBI)) 1108 continue; 1109 if (Size > 10) return false; // Don't clone large BB's. 1110 ++Size; 1111 1112 // We can only support instructions that do not define values that are 1113 // live outside of the current basic block. 1114 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1115 UI != E; ++UI) { 1116 Instruction *U = cast<Instruction>(*UI); 1117 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1118 } 1119 1120 // Looks ok, continue checking. 1121 } 1122 1123 return true; 1124 } 1125 1126 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1127 /// that is defined in the same block as the branch and if any PHI entries are 1128 /// constants, thread edges corresponding to that entry to be branches to their 1129 /// ultimate destination. 1130 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) { 1131 BasicBlock *BB = BI->getParent(); 1132 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1133 // NOTE: we currently cannot transform this case if the PHI node is used 1134 // outside of the block. 1135 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1136 return false; 1137 1138 // Degenerate case of a single entry PHI. 1139 if (PN->getNumIncomingValues() == 1) { 1140 FoldSingleEntryPHINodes(PN->getParent()); 1141 return true; 1142 } 1143 1144 // Now we know that this block has multiple preds and two succs. 1145 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1146 1147 // Okay, this is a simple enough basic block. See if any phi values are 1148 // constants. 1149 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1150 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1151 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1152 1153 // Okay, we now know that all edges from PredBB should be revectored to 1154 // branch to RealDest. 1155 BasicBlock *PredBB = PN->getIncomingBlock(i); 1156 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1157 1158 if (RealDest == BB) continue; // Skip self loops. 1159 1160 // The dest block might have PHI nodes, other predecessors and other 1161 // difficult cases. Instead of being smart about this, just insert a new 1162 // block that jumps to the destination block, effectively splitting 1163 // the edge we are about to create. 1164 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1165 RealDest->getName()+".critedge", 1166 RealDest->getParent(), RealDest); 1167 BranchInst::Create(RealDest, EdgeBB); 1168 1169 // Update PHI nodes. 1170 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1171 1172 // BB may have instructions that are being threaded over. Clone these 1173 // instructions into EdgeBB. We know that there will be no uses of the 1174 // cloned instructions outside of EdgeBB. 1175 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1176 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1177 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1178 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1179 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1180 continue; 1181 } 1182 // Clone the instruction. 1183 Instruction *N = BBI->clone(); 1184 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1185 1186 // Update operands due to translation. 1187 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1188 i != e; ++i) { 1189 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1190 if (PI != TranslateMap.end()) 1191 *i = PI->second; 1192 } 1193 1194 // Check for trivial simplification. 1195 if (Value *V = SimplifyInstruction(N, TD)) { 1196 TranslateMap[BBI] = V; 1197 delete N; // Instruction folded away, don't need actual inst 1198 } else { 1199 // Insert the new instruction into its new home. 1200 EdgeBB->getInstList().insert(InsertPt, N); 1201 if (!BBI->use_empty()) 1202 TranslateMap[BBI] = N; 1203 } 1204 } 1205 1206 // Loop over all of the edges from PredBB to BB, changing them to branch 1207 // to EdgeBB instead. 1208 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1209 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1210 if (PredBBTI->getSuccessor(i) == BB) { 1211 BB->removePredecessor(PredBB); 1212 PredBBTI->setSuccessor(i, EdgeBB); 1213 } 1214 1215 // Recurse, simplifying any other constants. 1216 return FoldCondBranchOnPHI(BI, TD) | true; 1217 } 1218 1219 return false; 1220 } 1221 1222 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1223 /// PHI node, see if we can eliminate it. 1224 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) { 1225 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1226 // statement", which has a very simple dominance structure. Basically, we 1227 // are trying to find the condition that is being branched on, which 1228 // subsequently causes this merge to happen. We really want control 1229 // dependence information for this check, but simplifycfg can't keep it up 1230 // to date, and this catches most of the cases we care about anyway. 1231 BasicBlock *BB = PN->getParent(); 1232 BasicBlock *IfTrue, *IfFalse; 1233 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1234 if (!IfCond || 1235 // Don't bother if the branch will be constant folded trivially. 1236 isa<ConstantInt>(IfCond)) 1237 return false; 1238 1239 // Okay, we found that we can merge this two-entry phi node into a select. 1240 // Doing so would require us to fold *all* two entry phi nodes in this block. 1241 // At some point this becomes non-profitable (particularly if the target 1242 // doesn't support cmov's). Only do this transformation if there are two or 1243 // fewer PHI nodes in this block. 1244 unsigned NumPhis = 0; 1245 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1246 if (NumPhis > 2) 1247 return false; 1248 1249 // Loop over the PHI's seeing if we can promote them all to select 1250 // instructions. While we are at it, keep track of the instructions 1251 // that need to be moved to the dominating block. 1252 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1253 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1254 MaxCostVal1 = PHINodeFoldingThreshold; 1255 1256 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1257 PHINode *PN = cast<PHINode>(II++); 1258 if (Value *V = SimplifyInstruction(PN, TD)) { 1259 PN->replaceAllUsesWith(V); 1260 PN->eraseFromParent(); 1261 continue; 1262 } 1263 1264 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1265 MaxCostVal0) || 1266 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1267 MaxCostVal1)) 1268 return false; 1269 } 1270 1271 // If we folded the the first phi, PN dangles at this point. Refresh it. If 1272 // we ran out of PHIs then we simplified them all. 1273 PN = dyn_cast<PHINode>(BB->begin()); 1274 if (PN == 0) return true; 1275 1276 // Don't fold i1 branches on PHIs which contain binary operators. These can 1277 // often be turned into switches and other things. 1278 if (PN->getType()->isIntegerTy(1) && 1279 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1280 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1281 isa<BinaryOperator>(IfCond))) 1282 return false; 1283 1284 // If we all PHI nodes are promotable, check to make sure that all 1285 // instructions in the predecessor blocks can be promoted as well. If 1286 // not, we won't be able to get rid of the control flow, so it's not 1287 // worth promoting to select instructions. 1288 BasicBlock *DomBlock = 0; 1289 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1290 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1291 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1292 IfBlock1 = 0; 1293 } else { 1294 DomBlock = *pred_begin(IfBlock1); 1295 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1296 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1297 // This is not an aggressive instruction that we can promote. 1298 // Because of this, we won't be able to get rid of the control 1299 // flow, so the xform is not worth it. 1300 return false; 1301 } 1302 } 1303 1304 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1305 IfBlock2 = 0; 1306 } else { 1307 DomBlock = *pred_begin(IfBlock2); 1308 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1309 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1310 // This is not an aggressive instruction that we can promote. 1311 // Because of this, we won't be able to get rid of the control 1312 // flow, so the xform is not worth it. 1313 return false; 1314 } 1315 } 1316 1317 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1318 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1319 1320 // If we can still promote the PHI nodes after this gauntlet of tests, 1321 // do all of the PHI's now. 1322 Instruction *InsertPt = DomBlock->getTerminator(); 1323 1324 // Move all 'aggressive' instructions, which are defined in the 1325 // conditional parts of the if's up to the dominating block. 1326 if (IfBlock1) 1327 DomBlock->getInstList().splice(InsertPt, 1328 IfBlock1->getInstList(), IfBlock1->begin(), 1329 IfBlock1->getTerminator()); 1330 if (IfBlock2) 1331 DomBlock->getInstList().splice(InsertPt, 1332 IfBlock2->getInstList(), IfBlock2->begin(), 1333 IfBlock2->getTerminator()); 1334 1335 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1336 // Change the PHI node into a select instruction. 1337 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1338 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1339 1340 Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", InsertPt); 1341 PN->replaceAllUsesWith(NV); 1342 NV->takeName(PN); 1343 PN->eraseFromParent(); 1344 } 1345 1346 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1347 // has been flattened. Change DomBlock to jump directly to our new block to 1348 // avoid other simplifycfg's kicking in on the diamond. 1349 TerminatorInst *OldTI = DomBlock->getTerminator(); 1350 BranchInst::Create(BB, OldTI); 1351 OldTI->eraseFromParent(); 1352 return true; 1353 } 1354 1355 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1356 /// to two returning blocks, try to merge them together into one return, 1357 /// introducing a select if the return values disagree. 1358 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) { 1359 assert(BI->isConditional() && "Must be a conditional branch"); 1360 BasicBlock *TrueSucc = BI->getSuccessor(0); 1361 BasicBlock *FalseSucc = BI->getSuccessor(1); 1362 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1363 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1364 1365 // Check to ensure both blocks are empty (just a return) or optionally empty 1366 // with PHI nodes. If there are other instructions, merging would cause extra 1367 // computation on one path or the other. 1368 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1369 return false; 1370 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1371 return false; 1372 1373 // Okay, we found a branch that is going to two return nodes. If 1374 // there is no return value for this function, just change the 1375 // branch into a return. 1376 if (FalseRet->getNumOperands() == 0) { 1377 TrueSucc->removePredecessor(BI->getParent()); 1378 FalseSucc->removePredecessor(BI->getParent()); 1379 ReturnInst::Create(BI->getContext(), 0, BI); 1380 EraseTerminatorInstAndDCECond(BI); 1381 return true; 1382 } 1383 1384 // Otherwise, figure out what the true and false return values are 1385 // so we can insert a new select instruction. 1386 Value *TrueValue = TrueRet->getReturnValue(); 1387 Value *FalseValue = FalseRet->getReturnValue(); 1388 1389 // Unwrap any PHI nodes in the return blocks. 1390 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1391 if (TVPN->getParent() == TrueSucc) 1392 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1393 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1394 if (FVPN->getParent() == FalseSucc) 1395 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1396 1397 // In order for this transformation to be safe, we must be able to 1398 // unconditionally execute both operands to the return. This is 1399 // normally the case, but we could have a potentially-trapping 1400 // constant expression that prevents this transformation from being 1401 // safe. 1402 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1403 if (TCV->canTrap()) 1404 return false; 1405 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1406 if (FCV->canTrap()) 1407 return false; 1408 1409 // Okay, we collected all the mapped values and checked them for sanity, and 1410 // defined to really do this transformation. First, update the CFG. 1411 TrueSucc->removePredecessor(BI->getParent()); 1412 FalseSucc->removePredecessor(BI->getParent()); 1413 1414 // Insert select instructions where needed. 1415 Value *BrCond = BI->getCondition(); 1416 if (TrueValue) { 1417 // Insert a select if the results differ. 1418 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1419 } else if (isa<UndefValue>(TrueValue)) { 1420 TrueValue = FalseValue; 1421 } else { 1422 TrueValue = SelectInst::Create(BrCond, TrueValue, 1423 FalseValue, "retval", BI); 1424 } 1425 } 1426 1427 Value *RI = !TrueValue ? 1428 ReturnInst::Create(BI->getContext(), BI) : 1429 ReturnInst::Create(BI->getContext(), TrueValue, BI); 1430 (void) RI; 1431 1432 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1433 << "\n " << *BI << "NewRet = " << *RI 1434 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1435 1436 EraseTerminatorInstAndDCECond(BI); 1437 1438 return true; 1439 } 1440 1441 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1442 /// predecessor branches to us and one of our successors, fold the block into 1443 /// the predecessor and use logical operations to pick the right destination. 1444 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1445 BasicBlock *BB = BI->getParent(); 1446 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 1447 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1448 Cond->getParent() != BB || !Cond->hasOneUse()) 1449 return false; 1450 1451 // Only allow this if the condition is a simple instruction that can be 1452 // executed unconditionally. It must be in the same block as the branch, and 1453 // must be at the front of the block. 1454 BasicBlock::iterator FrontIt = BB->front(); 1455 1456 // Ignore dbg intrinsics. 1457 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1458 1459 // Allow a single instruction to be hoisted in addition to the compare 1460 // that feeds the branch. We later ensure that any values that _it_ uses 1461 // were also live in the predecessor, so that we don't unnecessarily create 1462 // register pressure or inhibit out-of-order execution. 1463 Instruction *BonusInst = 0; 1464 if (&*FrontIt != Cond && 1465 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 1466 FrontIt->isSafeToSpeculativelyExecute()) { 1467 BonusInst = &*FrontIt; 1468 ++FrontIt; 1469 1470 // Ignore dbg intrinsics. 1471 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1472 } 1473 1474 // Only a single bonus inst is allowed. 1475 if (&*FrontIt != Cond) 1476 return false; 1477 1478 // Make sure the instruction after the condition is the cond branch. 1479 BasicBlock::iterator CondIt = Cond; ++CondIt; 1480 1481 // Ingore dbg intrinsics. 1482 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 1483 1484 if (&*CondIt != BI) 1485 return false; 1486 1487 // Cond is known to be a compare or binary operator. Check to make sure that 1488 // neither operand is a potentially-trapping constant expression. 1489 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 1490 if (CE->canTrap()) 1491 return false; 1492 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 1493 if (CE->canTrap()) 1494 return false; 1495 1496 // Finally, don't infinitely unroll conditional loops. 1497 BasicBlock *TrueDest = BI->getSuccessor(0); 1498 BasicBlock *FalseDest = BI->getSuccessor(1); 1499 if (TrueDest == BB || FalseDest == BB) 1500 return false; 1501 1502 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1503 BasicBlock *PredBlock = *PI; 1504 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 1505 1506 // Check that we have two conditional branches. If there is a PHI node in 1507 // the common successor, verify that the same value flows in from both 1508 // blocks. 1509 if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 1510 continue; 1511 1512 // Determine if the two branches share a common destination. 1513 Instruction::BinaryOps Opc; 1514 bool InvertPredCond = false; 1515 1516 if (PBI->getSuccessor(0) == TrueDest) 1517 Opc = Instruction::Or; 1518 else if (PBI->getSuccessor(1) == FalseDest) 1519 Opc = Instruction::And; 1520 else if (PBI->getSuccessor(0) == FalseDest) 1521 Opc = Instruction::And, InvertPredCond = true; 1522 else if (PBI->getSuccessor(1) == TrueDest) 1523 Opc = Instruction::Or, InvertPredCond = true; 1524 else 1525 continue; 1526 1527 // Ensure that any values used in the bonus instruction are also used 1528 // by the terminator of the predecessor. This means that those values 1529 // must already have been resolved, so we won't be inhibiting the 1530 // out-of-order core by speculating them earlier. 1531 if (BonusInst) { 1532 // Collect the values used by the bonus inst 1533 SmallPtrSet<Value*, 4> UsedValues; 1534 for (Instruction::op_iterator OI = BonusInst->op_begin(), 1535 OE = BonusInst->op_end(); OI != OE; ++OI) { 1536 Value* V = *OI; 1537 if (!isa<Constant>(V)) 1538 UsedValues.insert(V); 1539 } 1540 1541 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 1542 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 1543 1544 // Walk up to four levels back up the use-def chain of the predecessor's 1545 // terminator to see if all those values were used. The choice of four 1546 // levels is arbitrary, to provide a compile-time-cost bound. 1547 while (!Worklist.empty()) { 1548 std::pair<Value*, unsigned> Pair = Worklist.back(); 1549 Worklist.pop_back(); 1550 1551 if (Pair.second >= 4) continue; 1552 UsedValues.erase(Pair.first); 1553 if (UsedValues.empty()) break; 1554 1555 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 1556 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 1557 OI != OE; ++OI) 1558 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 1559 } 1560 } 1561 1562 if (!UsedValues.empty()) return false; 1563 } 1564 1565 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 1566 1567 // If we need to invert the condition in the pred block to match, do so now. 1568 if (InvertPredCond) { 1569 Value *NewCond = PBI->getCondition(); 1570 1571 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 1572 CmpInst *CI = cast<CmpInst>(NewCond); 1573 CI->setPredicate(CI->getInversePredicate()); 1574 } else { 1575 NewCond = BinaryOperator::CreateNot(NewCond, 1576 PBI->getCondition()->getName()+".not", PBI); 1577 } 1578 1579 PBI->setCondition(NewCond); 1580 BasicBlock *OldTrue = PBI->getSuccessor(0); 1581 BasicBlock *OldFalse = PBI->getSuccessor(1); 1582 PBI->setSuccessor(0, OldFalse); 1583 PBI->setSuccessor(1, OldTrue); 1584 } 1585 1586 // If we have a bonus inst, clone it into the predecessor block. 1587 Instruction *NewBonus = 0; 1588 if (BonusInst) { 1589 NewBonus = BonusInst->clone(); 1590 PredBlock->getInstList().insert(PBI, NewBonus); 1591 NewBonus->takeName(BonusInst); 1592 BonusInst->setName(BonusInst->getName()+".old"); 1593 } 1594 1595 // Clone Cond into the predecessor basic block, and or/and the 1596 // two conditions together. 1597 Instruction *New = Cond->clone(); 1598 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 1599 PredBlock->getInstList().insert(PBI, New); 1600 New->takeName(Cond); 1601 Cond->setName(New->getName()+".old"); 1602 1603 Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(), 1604 New, "or.cond", PBI); 1605 PBI->setCondition(NewCond); 1606 if (PBI->getSuccessor(0) == BB) { 1607 AddPredecessorToBlock(TrueDest, PredBlock, BB); 1608 PBI->setSuccessor(0, TrueDest); 1609 } 1610 if (PBI->getSuccessor(1) == BB) { 1611 AddPredecessorToBlock(FalseDest, PredBlock, BB); 1612 PBI->setSuccessor(1, FalseDest); 1613 } 1614 1615 // Copy any debug value intrinsics into the end of PredBlock. 1616 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 1617 if (isa<DbgInfoIntrinsic>(*I)) 1618 I->clone()->insertBefore(PBI); 1619 1620 return true; 1621 } 1622 return false; 1623 } 1624 1625 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 1626 /// predecessor of another block, this function tries to simplify it. We know 1627 /// that PBI and BI are both conditional branches, and BI is in one of the 1628 /// successor blocks of PBI - PBI branches to BI. 1629 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 1630 assert(PBI->isConditional() && BI->isConditional()); 1631 BasicBlock *BB = BI->getParent(); 1632 1633 // If this block ends with a branch instruction, and if there is a 1634 // predecessor that ends on a branch of the same condition, make 1635 // this conditional branch redundant. 1636 if (PBI->getCondition() == BI->getCondition() && 1637 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 1638 // Okay, the outcome of this conditional branch is statically 1639 // knowable. If this block had a single pred, handle specially. 1640 if (BB->getSinglePredecessor()) { 1641 // Turn this into a branch on constant. 1642 bool CondIsTrue = PBI->getSuccessor(0) == BB; 1643 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 1644 CondIsTrue)); 1645 return true; // Nuke the branch on constant. 1646 } 1647 1648 // Otherwise, if there are multiple predecessors, insert a PHI that merges 1649 // in the constant and simplify the block result. Subsequent passes of 1650 // simplifycfg will thread the block. 1651 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 1652 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 1653 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 1654 std::distance(PB, PE), 1655 BI->getCondition()->getName() + ".pr", 1656 BB->begin()); 1657 // Okay, we're going to insert the PHI node. Since PBI is not the only 1658 // predecessor, compute the PHI'd conditional value for all of the preds. 1659 // Any predecessor where the condition is not computable we keep symbolic. 1660 for (pred_iterator PI = PB; PI != PE; ++PI) { 1661 BasicBlock *P = *PI; 1662 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 1663 PBI != BI && PBI->isConditional() && 1664 PBI->getCondition() == BI->getCondition() && 1665 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 1666 bool CondIsTrue = PBI->getSuccessor(0) == BB; 1667 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 1668 CondIsTrue), P); 1669 } else { 1670 NewPN->addIncoming(BI->getCondition(), P); 1671 } 1672 } 1673 1674 BI->setCondition(NewPN); 1675 return true; 1676 } 1677 } 1678 1679 // If this is a conditional branch in an empty block, and if any 1680 // predecessors is a conditional branch to one of our destinations, 1681 // fold the conditions into logical ops and one cond br. 1682 BasicBlock::iterator BBI = BB->begin(); 1683 // Ignore dbg intrinsics. 1684 while (isa<DbgInfoIntrinsic>(BBI)) 1685 ++BBI; 1686 if (&*BBI != BI) 1687 return false; 1688 1689 1690 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 1691 if (CE->canTrap()) 1692 return false; 1693 1694 int PBIOp, BIOp; 1695 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 1696 PBIOp = BIOp = 0; 1697 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 1698 PBIOp = 0, BIOp = 1; 1699 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 1700 PBIOp = 1, BIOp = 0; 1701 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 1702 PBIOp = BIOp = 1; 1703 else 1704 return false; 1705 1706 // Check to make sure that the other destination of this branch 1707 // isn't BB itself. If so, this is an infinite loop that will 1708 // keep getting unwound. 1709 if (PBI->getSuccessor(PBIOp) == BB) 1710 return false; 1711 1712 // Do not perform this transformation if it would require 1713 // insertion of a large number of select instructions. For targets 1714 // without predication/cmovs, this is a big pessimization. 1715 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 1716 1717 unsigned NumPhis = 0; 1718 for (BasicBlock::iterator II = CommonDest->begin(); 1719 isa<PHINode>(II); ++II, ++NumPhis) 1720 if (NumPhis > 2) // Disable this xform. 1721 return false; 1722 1723 // Finally, if everything is ok, fold the branches to logical ops. 1724 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 1725 1726 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 1727 << "AND: " << *BI->getParent()); 1728 1729 1730 // If OtherDest *is* BB, then BB is a basic block with a single conditional 1731 // branch in it, where one edge (OtherDest) goes back to itself but the other 1732 // exits. We don't *know* that the program avoids the infinite loop 1733 // (even though that seems likely). If we do this xform naively, we'll end up 1734 // recursively unpeeling the loop. Since we know that (after the xform is 1735 // done) that the block *is* infinite if reached, we just make it an obviously 1736 // infinite loop with no cond branch. 1737 if (OtherDest == BB) { 1738 // Insert it at the end of the function, because it's either code, 1739 // or it won't matter if it's hot. :) 1740 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 1741 "infloop", BB->getParent()); 1742 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1743 OtherDest = InfLoopBlock; 1744 } 1745 1746 DEBUG(dbgs() << *PBI->getParent()->getParent()); 1747 1748 // BI may have other predecessors. Because of this, we leave 1749 // it alone, but modify PBI. 1750 1751 // Make sure we get to CommonDest on True&True directions. 1752 Value *PBICond = PBI->getCondition(); 1753 if (PBIOp) 1754 PBICond = BinaryOperator::CreateNot(PBICond, 1755 PBICond->getName()+".not", 1756 PBI); 1757 Value *BICond = BI->getCondition(); 1758 if (BIOp) 1759 BICond = BinaryOperator::CreateNot(BICond, 1760 BICond->getName()+".not", 1761 PBI); 1762 // Merge the conditions. 1763 Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI); 1764 1765 // Modify PBI to branch on the new condition to the new dests. 1766 PBI->setCondition(Cond); 1767 PBI->setSuccessor(0, CommonDest); 1768 PBI->setSuccessor(1, OtherDest); 1769 1770 // OtherDest may have phi nodes. If so, add an entry from PBI's 1771 // block that are identical to the entries for BI's block. 1772 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 1773 1774 // We know that the CommonDest already had an edge from PBI to 1775 // it. If it has PHIs though, the PHIs may have different 1776 // entries for BB and PBI's BB. If so, insert a select to make 1777 // them agree. 1778 PHINode *PN; 1779 for (BasicBlock::iterator II = CommonDest->begin(); 1780 (PN = dyn_cast<PHINode>(II)); ++II) { 1781 Value *BIV = PN->getIncomingValueForBlock(BB); 1782 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 1783 Value *PBIV = PN->getIncomingValue(PBBIdx); 1784 if (BIV != PBIV) { 1785 // Insert a select in PBI to pick the right value. 1786 Value *NV = SelectInst::Create(PBICond, PBIV, BIV, 1787 PBIV->getName()+".mux", PBI); 1788 PN->setIncomingValue(PBBIdx, NV); 1789 } 1790 } 1791 1792 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 1793 DEBUG(dbgs() << *PBI->getParent()->getParent()); 1794 1795 // This basic block is probably dead. We know it has at least 1796 // one fewer predecessor. 1797 return true; 1798 } 1799 1800 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 1801 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 1802 // Takes care of updating the successors and removing the old terminator. 1803 // Also makes sure not to introduce new successors by assuming that edges to 1804 // non-successor TrueBBs and FalseBBs aren't reachable. 1805 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 1806 BasicBlock *TrueBB, BasicBlock *FalseBB){ 1807 // Remove any superfluous successor edges from the CFG. 1808 // First, figure out which successors to preserve. 1809 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 1810 // successor. 1811 BasicBlock *KeepEdge1 = TrueBB; 1812 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 1813 1814 // Then remove the rest. 1815 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 1816 BasicBlock *Succ = OldTerm->getSuccessor(I); 1817 // Make sure only to keep exactly one copy of each edge. 1818 if (Succ == KeepEdge1) 1819 KeepEdge1 = 0; 1820 else if (Succ == KeepEdge2) 1821 KeepEdge2 = 0; 1822 else 1823 Succ->removePredecessor(OldTerm->getParent()); 1824 } 1825 1826 // Insert an appropriate new terminator. 1827 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 1828 if (TrueBB == FalseBB) 1829 // We were only looking for one successor, and it was present. 1830 // Create an unconditional branch to it. 1831 BranchInst::Create(TrueBB, OldTerm); 1832 else 1833 // We found both of the successors we were looking for. 1834 // Create a conditional branch sharing the condition of the select. 1835 BranchInst::Create(TrueBB, FalseBB, Cond, OldTerm); 1836 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 1837 // Neither of the selected blocks were successors, so this 1838 // terminator must be unreachable. 1839 new UnreachableInst(OldTerm->getContext(), OldTerm); 1840 } else { 1841 // One of the selected values was a successor, but the other wasn't. 1842 // Insert an unconditional branch to the one that was found; 1843 // the edge to the one that wasn't must be unreachable. 1844 if (KeepEdge1 == 0) 1845 // Only TrueBB was found. 1846 BranchInst::Create(TrueBB, OldTerm); 1847 else 1848 // Only FalseBB was found. 1849 BranchInst::Create(FalseBB, OldTerm); 1850 } 1851 1852 EraseTerminatorInstAndDCECond(OldTerm); 1853 return true; 1854 } 1855 1856 // SimplifySwitchOnSelect - Replaces 1857 // (switch (select cond, X, Y)) on constant X, Y 1858 // with a branch - conditional if X and Y lead to distinct BBs, 1859 // unconditional otherwise. 1860 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 1861 // Check for constant integer values in the select. 1862 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 1863 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 1864 if (!TrueVal || !FalseVal) 1865 return false; 1866 1867 // Find the relevant condition and destinations. 1868 Value *Condition = Select->getCondition(); 1869 BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal)); 1870 BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal)); 1871 1872 // Perform the actual simplification. 1873 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB); 1874 } 1875 1876 // SimplifyIndirectBrOnSelect - Replaces 1877 // (indirectbr (select cond, blockaddress(@fn, BlockA), 1878 // blockaddress(@fn, BlockB))) 1879 // with 1880 // (br cond, BlockA, BlockB). 1881 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 1882 // Check that both operands of the select are block addresses. 1883 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 1884 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 1885 if (!TBA || !FBA) 1886 return false; 1887 1888 // Extract the actual blocks. 1889 BasicBlock *TrueBB = TBA->getBasicBlock(); 1890 BasicBlock *FalseBB = FBA->getBasicBlock(); 1891 1892 // Perform the actual simplification. 1893 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB); 1894 } 1895 1896 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 1897 /// instruction (a seteq/setne with a constant) as the only instruction in a 1898 /// block that ends with an uncond branch. We are looking for a very specific 1899 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 1900 /// this case, we merge the first two "or's of icmp" into a switch, but then the 1901 /// default value goes to an uncond block with a seteq in it, we get something 1902 /// like: 1903 /// 1904 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 1905 /// DEFAULT: 1906 /// %tmp = icmp eq i8 %A, 92 1907 /// br label %end 1908 /// end: 1909 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 1910 /// 1911 /// We prefer to split the edge to 'end' so that there is a true/false entry to 1912 /// the PHI, merging the third icmp into the switch. 1913 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 1914 const TargetData *TD) { 1915 BasicBlock *BB = ICI->getParent(); 1916 // If the block has any PHIs in it or the icmp has multiple uses, it is too 1917 // complex. 1918 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 1919 1920 Value *V = ICI->getOperand(0); 1921 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 1922 1923 // The pattern we're looking for is where our only predecessor is a switch on 1924 // 'V' and this block is the default case for the switch. In this case we can 1925 // fold the compared value into the switch to simplify things. 1926 BasicBlock *Pred = BB->getSinglePredecessor(); 1927 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 1928 1929 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 1930 if (SI->getCondition() != V) 1931 return false; 1932 1933 // If BB is reachable on a non-default case, then we simply know the value of 1934 // V in this block. Substitute it and constant fold the icmp instruction 1935 // away. 1936 if (SI->getDefaultDest() != BB) { 1937 ConstantInt *VVal = SI->findCaseDest(BB); 1938 assert(VVal && "Should have a unique destination value"); 1939 ICI->setOperand(0, VVal); 1940 1941 if (Value *V = SimplifyInstruction(ICI, TD)) { 1942 ICI->replaceAllUsesWith(V); 1943 ICI->eraseFromParent(); 1944 } 1945 // BB is now empty, so it is likely to simplify away. 1946 return SimplifyCFG(BB) | true; 1947 } 1948 1949 // Ok, the block is reachable from the default dest. If the constant we're 1950 // comparing exists in one of the other edges, then we can constant fold ICI 1951 // and zap it. 1952 if (SI->findCaseValue(Cst) != 0) { 1953 Value *V; 1954 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1955 V = ConstantInt::getFalse(BB->getContext()); 1956 else 1957 V = ConstantInt::getTrue(BB->getContext()); 1958 1959 ICI->replaceAllUsesWith(V); 1960 ICI->eraseFromParent(); 1961 // BB is now empty, so it is likely to simplify away. 1962 return SimplifyCFG(BB) | true; 1963 } 1964 1965 // The use of the icmp has to be in the 'end' block, by the only PHI node in 1966 // the block. 1967 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 1968 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 1969 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 1970 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 1971 return false; 1972 1973 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 1974 // true in the PHI. 1975 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 1976 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 1977 1978 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1979 std::swap(DefaultCst, NewCst); 1980 1981 // Replace ICI (which is used by the PHI for the default value) with true or 1982 // false depending on if it is EQ or NE. 1983 ICI->replaceAllUsesWith(DefaultCst); 1984 ICI->eraseFromParent(); 1985 1986 // Okay, the switch goes to this block on a default value. Add an edge from 1987 // the switch to the merge point on the compared value. 1988 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 1989 BB->getParent(), BB); 1990 SI->addCase(Cst, NewBB); 1991 1992 // NewBB branches to the phi block, add the uncond branch and the phi entry. 1993 BranchInst::Create(SuccBlock, NewBB); 1994 PHIUse->addIncoming(NewCst, NewBB); 1995 return true; 1996 } 1997 1998 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 1999 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2000 /// fold it into a switch instruction if so. 2001 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD) { 2002 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2003 if (Cond == 0) return false; 2004 2005 2006 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2007 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2008 // 'setne's and'ed together, collect them. 2009 Value *CompVal = 0; 2010 std::vector<ConstantInt*> Values; 2011 bool TrueWhenEqual = true; 2012 Value *ExtraCase = 0; 2013 unsigned UsedICmps = 0; 2014 2015 if (Cond->getOpcode() == Instruction::Or) { 2016 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2017 UsedICmps); 2018 } else if (Cond->getOpcode() == Instruction::And) { 2019 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2020 UsedICmps); 2021 TrueWhenEqual = false; 2022 } 2023 2024 // If we didn't have a multiply compared value, fail. 2025 if (CompVal == 0) return false; 2026 2027 // Avoid turning single icmps into a switch. 2028 if (UsedICmps <= 1) 2029 return false; 2030 2031 // There might be duplicate constants in the list, which the switch 2032 // instruction can't handle, remove them now. 2033 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2034 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2035 2036 // If Extra was used, we require at least two switch values to do the 2037 // transformation. A switch with one value is just an cond branch. 2038 if (ExtraCase && Values.size() < 2) return false; 2039 2040 // Figure out which block is which destination. 2041 BasicBlock *DefaultBB = BI->getSuccessor(1); 2042 BasicBlock *EdgeBB = BI->getSuccessor(0); 2043 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2044 2045 BasicBlock *BB = BI->getParent(); 2046 2047 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2048 << " cases into SWITCH. BB is:\n" << *BB); 2049 2050 // If there are any extra values that couldn't be folded into the switch 2051 // then we evaluate them with an explicit branch first. Split the block 2052 // right before the condbr to handle it. 2053 if (ExtraCase) { 2054 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2055 // Remove the uncond branch added to the old block. 2056 TerminatorInst *OldTI = BB->getTerminator(); 2057 2058 if (TrueWhenEqual) 2059 BranchInst::Create(EdgeBB, NewBB, ExtraCase, OldTI); 2060 else 2061 BranchInst::Create(NewBB, EdgeBB, ExtraCase, OldTI); 2062 2063 OldTI->eraseFromParent(); 2064 2065 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2066 // for the edge we just added. 2067 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2068 2069 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2070 << "\nEXTRABB = " << *BB); 2071 BB = NewBB; 2072 } 2073 2074 // Convert pointer to int before we switch. 2075 if (CompVal->getType()->isPointerTy()) { 2076 assert(TD && "Cannot switch on pointer without TargetData"); 2077 CompVal = new PtrToIntInst(CompVal, 2078 TD->getIntPtrType(CompVal->getContext()), 2079 "magicptr", BI); 2080 } 2081 2082 // Create the new switch instruction now. 2083 SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB, Values.size(), BI); 2084 2085 // Add all of the 'cases' to the switch instruction. 2086 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2087 New->addCase(Values[i], EdgeBB); 2088 2089 // We added edges from PI to the EdgeBB. As such, if there were any 2090 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2091 // the number of edges added. 2092 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2093 isa<PHINode>(BBI); ++BBI) { 2094 PHINode *PN = cast<PHINode>(BBI); 2095 Value *InVal = PN->getIncomingValueForBlock(BB); 2096 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2097 PN->addIncoming(InVal, BB); 2098 } 2099 2100 // Erase the old branch instruction. 2101 EraseTerminatorInstAndDCECond(BI); 2102 2103 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2104 return true; 2105 } 2106 2107 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI) { 2108 BasicBlock *BB = RI->getParent(); 2109 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2110 2111 // Find predecessors that end with branches. 2112 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2113 SmallVector<BranchInst*, 8> CondBranchPreds; 2114 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2115 BasicBlock *P = *PI; 2116 TerminatorInst *PTI = P->getTerminator(); 2117 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2118 if (BI->isUnconditional()) 2119 UncondBranchPreds.push_back(P); 2120 else 2121 CondBranchPreds.push_back(BI); 2122 } 2123 } 2124 2125 // If we found some, do the transformation! 2126 if (!UncondBranchPreds.empty() && DupRet) { 2127 while (!UncondBranchPreds.empty()) { 2128 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2129 DEBUG(dbgs() << "FOLDING: " << *BB 2130 << "INTO UNCOND BRANCH PRED: " << *Pred); 2131 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2132 } 2133 2134 // If we eliminated all predecessors of the block, delete the block now. 2135 if (pred_begin(BB) == pred_end(BB)) 2136 // We know there are no successors, so just nuke the block. 2137 BB->eraseFromParent(); 2138 2139 return true; 2140 } 2141 2142 // Check out all of the conditional branches going to this return 2143 // instruction. If any of them just select between returns, change the 2144 // branch itself into a select/return pair. 2145 while (!CondBranchPreds.empty()) { 2146 BranchInst *BI = CondBranchPreds.pop_back_val(); 2147 2148 // Check to see if the non-BB successor is also a return block. 2149 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2150 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2151 SimplifyCondBranchToTwoReturns(BI)) 2152 return true; 2153 } 2154 return false; 2155 } 2156 2157 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI) { 2158 // Check to see if the first instruction in this block is just an unwind. 2159 // If so, replace any invoke instructions which use this as an exception 2160 // destination with call instructions. 2161 BasicBlock *BB = UI->getParent(); 2162 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2163 2164 bool Changed = false; 2165 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2166 while (!Preds.empty()) { 2167 BasicBlock *Pred = Preds.back(); 2168 InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()); 2169 if (II && II->getUnwindDest() == BB) { 2170 // Insert a new branch instruction before the invoke, because this 2171 // is now a fall through. 2172 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II); 2173 Pred->getInstList().remove(II); // Take out of symbol table 2174 2175 // Insert the call now. 2176 SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3); 2177 CallInst *CI = CallInst::Create(II->getCalledValue(), 2178 Args.begin(), Args.end(), 2179 II->getName(), BI); 2180 CI->setCallingConv(II->getCallingConv()); 2181 CI->setAttributes(II->getAttributes()); 2182 // If the invoke produced a value, the Call now does instead. 2183 II->replaceAllUsesWith(CI); 2184 delete II; 2185 Changed = true; 2186 } 2187 2188 Preds.pop_back(); 2189 } 2190 2191 // If this block is now dead (and isn't the entry block), remove it. 2192 if (pred_begin(BB) == pred_end(BB) && 2193 BB != &BB->getParent()->getEntryBlock()) { 2194 // We know there are no successors, so just nuke the block. 2195 BB->eraseFromParent(); 2196 return true; 2197 } 2198 2199 return Changed; 2200 } 2201 2202 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2203 BasicBlock *BB = UI->getParent(); 2204 2205 bool Changed = false; 2206 2207 // If there are any instructions immediately before the unreachable that can 2208 // be removed, do so. 2209 while (UI != BB->begin()) { 2210 BasicBlock::iterator BBI = UI; 2211 --BBI; 2212 // Do not delete instructions that can have side effects, like calls 2213 // (which may never return) and volatile loads and stores. 2214 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2215 2216 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) 2217 if (SI->isVolatile()) 2218 break; 2219 2220 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) 2221 if (LI->isVolatile()) 2222 break; 2223 2224 // Delete this instruction (any uses are guaranteed to be dead) 2225 if (!BBI->use_empty()) 2226 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2227 BBI->eraseFromParent(); 2228 Changed = true; 2229 } 2230 2231 // If the unreachable instruction is the first in the block, take a gander 2232 // at all of the predecessors of this instruction, and simplify them. 2233 if (&BB->front() != UI) return Changed; 2234 2235 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2236 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 2237 TerminatorInst *TI = Preds[i]->getTerminator(); 2238 2239 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2240 if (BI->isUnconditional()) { 2241 if (BI->getSuccessor(0) == BB) { 2242 new UnreachableInst(TI->getContext(), TI); 2243 TI->eraseFromParent(); 2244 Changed = true; 2245 } 2246 } else { 2247 if (BI->getSuccessor(0) == BB) { 2248 BranchInst::Create(BI->getSuccessor(1), BI); 2249 EraseTerminatorInstAndDCECond(BI); 2250 } else if (BI->getSuccessor(1) == BB) { 2251 BranchInst::Create(BI->getSuccessor(0), BI); 2252 EraseTerminatorInstAndDCECond(BI); 2253 Changed = true; 2254 } 2255 } 2256 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2257 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 2258 if (SI->getSuccessor(i) == BB) { 2259 BB->removePredecessor(SI->getParent()); 2260 SI->removeCase(i); 2261 --i; --e; 2262 Changed = true; 2263 } 2264 // If the default value is unreachable, figure out the most popular 2265 // destination and make it the default. 2266 if (SI->getSuccessor(0) == BB) { 2267 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 2268 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) { 2269 std::pair<unsigned, unsigned>& entry = 2270 Popularity[SI->getSuccessor(i)]; 2271 if (entry.first == 0) { 2272 entry.first = 1; 2273 entry.second = i; 2274 } else { 2275 entry.first++; 2276 } 2277 } 2278 2279 // Find the most popular block. 2280 unsigned MaxPop = 0; 2281 unsigned MaxIndex = 0; 2282 BasicBlock *MaxBlock = 0; 2283 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 2284 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 2285 if (I->second.first > MaxPop || 2286 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 2287 MaxPop = I->second.first; 2288 MaxIndex = I->second.second; 2289 MaxBlock = I->first; 2290 } 2291 } 2292 if (MaxBlock) { 2293 // Make this the new default, allowing us to delete any explicit 2294 // edges to it. 2295 SI->setSuccessor(0, MaxBlock); 2296 Changed = true; 2297 2298 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 2299 // it. 2300 if (isa<PHINode>(MaxBlock->begin())) 2301 for (unsigned i = 0; i != MaxPop-1; ++i) 2302 MaxBlock->removePredecessor(SI->getParent()); 2303 2304 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 2305 if (SI->getSuccessor(i) == MaxBlock) { 2306 SI->removeCase(i); 2307 --i; --e; 2308 } 2309 } 2310 } 2311 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 2312 if (II->getUnwindDest() == BB) { 2313 // Convert the invoke to a call instruction. This would be a good 2314 // place to note that the call does not throw though. 2315 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II); 2316 II->removeFromParent(); // Take out of symbol table 2317 2318 // Insert the call now... 2319 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 2320 CallInst *CI = CallInst::Create(II->getCalledValue(), 2321 Args.begin(), Args.end(), 2322 II->getName(), BI); 2323 CI->setCallingConv(II->getCallingConv()); 2324 CI->setAttributes(II->getAttributes()); 2325 // If the invoke produced a value, the call does now instead. 2326 II->replaceAllUsesWith(CI); 2327 delete II; 2328 Changed = true; 2329 } 2330 } 2331 } 2332 2333 // If this block is now dead, remove it. 2334 if (pred_begin(BB) == pred_end(BB) && 2335 BB != &BB->getParent()->getEntryBlock()) { 2336 // We know there are no successors, so just nuke the block. 2337 BB->eraseFromParent(); 2338 return true; 2339 } 2340 2341 return Changed; 2342 } 2343 2344 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 2345 /// integer range comparison into a sub, an icmp and a branch. 2346 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI) { 2347 assert(SI->getNumCases() > 2 && "Degenerate switch?"); 2348 2349 // Make sure all cases point to the same destination and gather the values. 2350 SmallVector<ConstantInt *, 16> Cases; 2351 Cases.push_back(SI->getCaseValue(1)); 2352 for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) { 2353 if (SI->getSuccessor(I-1) != SI->getSuccessor(I)) 2354 return false; 2355 Cases.push_back(SI->getCaseValue(I)); 2356 } 2357 assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered"); 2358 2359 // Sort the case values, then check if they form a range we can transform. 2360 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 2361 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 2362 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 2363 return false; 2364 } 2365 2366 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 2367 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1); 2368 2369 Value *Sub = SI->getCondition(); 2370 if (!Offset->isNullValue()) 2371 Sub = BinaryOperator::CreateAdd(Sub, Offset, Sub->getName()+".off", SI); 2372 Value *Cmp = new ICmpInst(SI, ICmpInst::ICMP_ULT, Sub, NumCases, "switch"); 2373 BranchInst::Create(SI->getSuccessor(1), SI->getDefaultDest(), Cmp, SI); 2374 2375 // Prune obsolete incoming values off the successor's PHI nodes. 2376 for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin(); 2377 isa<PHINode>(BBI); ++BBI) { 2378 for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I) 2379 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 2380 } 2381 SI->eraseFromParent(); 2382 2383 return true; 2384 } 2385 2386 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI) { 2387 // If this switch is too complex to want to look at, ignore it. 2388 if (!isValueEqualityComparison(SI)) 2389 return false; 2390 2391 BasicBlock *BB = SI->getParent(); 2392 2393 // If we only have one predecessor, and if it is a branch on this value, 2394 // see if that predecessor totally determines the outcome of this switch. 2395 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 2396 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred)) 2397 return SimplifyCFG(BB) | true; 2398 2399 Value *Cond = SI->getCondition(); 2400 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 2401 if (SimplifySwitchOnSelect(SI, Select)) 2402 return SimplifyCFG(BB) | true; 2403 2404 // If the block only contains the switch, see if we can fold the block 2405 // away into any preds. 2406 BasicBlock::iterator BBI = BB->begin(); 2407 // Ignore dbg intrinsics. 2408 while (isa<DbgInfoIntrinsic>(BBI)) 2409 ++BBI; 2410 if (SI == &*BBI) 2411 if (FoldValueComparisonIntoPredecessors(SI)) 2412 return SimplifyCFG(BB) | true; 2413 2414 // Try to transform the switch into an icmp and a branch. 2415 if (TurnSwitchRangeIntoICmp(SI)) 2416 return SimplifyCFG(BB) | true; 2417 2418 return false; 2419 } 2420 2421 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 2422 BasicBlock *BB = IBI->getParent(); 2423 bool Changed = false; 2424 2425 // Eliminate redundant destinations. 2426 SmallPtrSet<Value *, 8> Succs; 2427 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 2428 BasicBlock *Dest = IBI->getDestination(i); 2429 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 2430 Dest->removePredecessor(BB); 2431 IBI->removeDestination(i); 2432 --i; --e; 2433 Changed = true; 2434 } 2435 } 2436 2437 if (IBI->getNumDestinations() == 0) { 2438 // If the indirectbr has no successors, change it to unreachable. 2439 new UnreachableInst(IBI->getContext(), IBI); 2440 EraseTerminatorInstAndDCECond(IBI); 2441 return true; 2442 } 2443 2444 if (IBI->getNumDestinations() == 1) { 2445 // If the indirectbr has one successor, change it to a direct branch. 2446 BranchInst::Create(IBI->getDestination(0), IBI); 2447 EraseTerminatorInstAndDCECond(IBI); 2448 return true; 2449 } 2450 2451 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 2452 if (SimplifyIndirectBrOnSelect(IBI, SI)) 2453 return SimplifyCFG(BB) | true; 2454 } 2455 return Changed; 2456 } 2457 2458 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI) { 2459 BasicBlock *BB = BI->getParent(); 2460 2461 // If the Terminator is the only non-phi instruction, simplify the block. 2462 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(); 2463 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 2464 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 2465 return true; 2466 2467 // If the only instruction in the block is a seteq/setne comparison 2468 // against a constant, try to simplify the block. 2469 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 2470 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 2471 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 2472 ; 2473 if (I->isTerminator() && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD)) 2474 return true; 2475 } 2476 2477 return false; 2478 } 2479 2480 2481 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI) { 2482 BasicBlock *BB = BI->getParent(); 2483 2484 // Conditional branch 2485 if (isValueEqualityComparison(BI)) { 2486 // If we only have one predecessor, and if it is a branch on this value, 2487 // see if that predecessor totally determines the outcome of this 2488 // switch. 2489 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 2490 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred)) 2491 return SimplifyCFG(BB) | true; 2492 2493 // This block must be empty, except for the setcond inst, if it exists. 2494 // Ignore dbg intrinsics. 2495 BasicBlock::iterator I = BB->begin(); 2496 // Ignore dbg intrinsics. 2497 while (isa<DbgInfoIntrinsic>(I)) 2498 ++I; 2499 if (&*I == BI) { 2500 if (FoldValueComparisonIntoPredecessors(BI)) 2501 return SimplifyCFG(BB) | true; 2502 } else if (&*I == cast<Instruction>(BI->getCondition())){ 2503 ++I; 2504 // Ignore dbg intrinsics. 2505 while (isa<DbgInfoIntrinsic>(I)) 2506 ++I; 2507 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI)) 2508 return SimplifyCFG(BB) | true; 2509 } 2510 } 2511 2512 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 2513 if (SimplifyBranchOnICmpChain(BI, TD)) 2514 return true; 2515 2516 // We have a conditional branch to two blocks that are only reachable 2517 // from BI. We know that the condbr dominates the two blocks, so see if 2518 // there is any identical code in the "then" and "else" blocks. If so, we 2519 // can hoist it up to the branching block. 2520 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 2521 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 2522 if (HoistThenElseCodeToIf(BI)) 2523 return SimplifyCFG(BB) | true; 2524 } else { 2525 // If Successor #1 has multiple preds, we may be able to conditionally 2526 // execute Successor #0 if it branches to successor #1. 2527 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 2528 if (Succ0TI->getNumSuccessors() == 1 && 2529 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 2530 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 2531 return SimplifyCFG(BB) | true; 2532 } 2533 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 2534 // If Successor #0 has multiple preds, we may be able to conditionally 2535 // execute Successor #1 if it branches to successor #0. 2536 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 2537 if (Succ1TI->getNumSuccessors() == 1 && 2538 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 2539 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 2540 return SimplifyCFG(BB) | true; 2541 } 2542 2543 // If this is a branch on a phi node in the current block, thread control 2544 // through this block if any PHI node entries are constants. 2545 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 2546 if (PN->getParent() == BI->getParent()) 2547 if (FoldCondBranchOnPHI(BI, TD)) 2548 return SimplifyCFG(BB) | true; 2549 2550 // If this basic block is ONLY a setcc and a branch, and if a predecessor 2551 // branches to us and one of our successors, fold the setcc into the 2552 // predecessor and use logical operations to pick the right destination. 2553 if (FoldBranchToCommonDest(BI)) 2554 return SimplifyCFG(BB) | true; 2555 2556 // Scan predecessor blocks for conditional branches. 2557 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 2558 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 2559 if (PBI != BI && PBI->isConditional()) 2560 if (SimplifyCondBranchToCondBranch(PBI, BI)) 2561 return SimplifyCFG(BB) | true; 2562 2563 return false; 2564 } 2565 2566 bool SimplifyCFGOpt::run(BasicBlock *BB) { 2567 bool Changed = false; 2568 2569 assert(BB && BB->getParent() && "Block not embedded in function!"); 2570 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 2571 2572 // Remove basic blocks that have no predecessors (except the entry block)... 2573 // or that just have themself as a predecessor. These are unreachable. 2574 if ((pred_begin(BB) == pred_end(BB) && 2575 BB != &BB->getParent()->getEntryBlock()) || 2576 BB->getSinglePredecessor() == BB) { 2577 DEBUG(dbgs() << "Removing BB: \n" << *BB); 2578 DeleteDeadBlock(BB); 2579 return true; 2580 } 2581 2582 // Check to see if we can constant propagate this terminator instruction 2583 // away... 2584 Changed |= ConstantFoldTerminator(BB); 2585 2586 // Check for and eliminate duplicate PHI nodes in this block. 2587 Changed |= EliminateDuplicatePHINodes(BB); 2588 2589 // Merge basic blocks into their predecessor if there is only one distinct 2590 // pred, and if there is only one distinct successor of the predecessor, and 2591 // if there are no PHI nodes. 2592 // 2593 if (MergeBlockIntoPredecessor(BB)) 2594 return true; 2595 2596 // If there is a trivial two-entry PHI node in this basic block, and we can 2597 // eliminate it, do so now. 2598 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 2599 if (PN->getNumIncomingValues() == 2) 2600 Changed |= FoldTwoEntryPHINode(PN, TD); 2601 2602 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 2603 if (BI->isUnconditional()) { 2604 if (SimplifyUncondBranch(BI)) return true; 2605 } else { 2606 if (SimplifyCondBranch(BI)) return true; 2607 } 2608 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 2609 if (SimplifyReturn(RI)) return true; 2610 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2611 if (SimplifySwitch(SI)) return true; 2612 } else if (UnreachableInst *UI = 2613 dyn_cast<UnreachableInst>(BB->getTerminator())) { 2614 if (SimplifyUnreachable(UI)) return true; 2615 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 2616 if (SimplifyUnwind(UI)) return true; 2617 } else if (IndirectBrInst *IBI = 2618 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 2619 if (SimplifyIndirectBr(IBI)) return true; 2620 } 2621 2622 return Changed; 2623 } 2624 2625 /// SimplifyCFG - This function is used to do simplification of a CFG. For 2626 /// example, it adjusts branches to branches to eliminate the extra hop, it 2627 /// eliminates unreachable basic blocks, and does other "peephole" optimization 2628 /// of the CFG. It returns true if a modification was made. 2629 /// 2630 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) { 2631 return SimplifyCFGOpt(TD).run(BB); 2632 } 2633