1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ValueMapper.h" 48 #include <algorithm> 49 #include <map> 50 #include <set> 51 using namespace llvm; 52 using namespace PatternMatch; 53 54 #define DEBUG_TYPE "simplifycfg" 55 56 static cl::opt<unsigned> 57 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 58 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 59 60 static cl::opt<bool> 61 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 62 cl::desc("Duplicate return instructions into unconditional branches")); 63 64 static cl::opt<bool> 65 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 66 cl::desc("Sink common instructions down to the end block")); 67 68 static cl::opt<bool> HoistCondStores( 69 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 70 cl::desc("Hoist conditional stores if an unconditional store precedes")); 71 72 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 73 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping"); 74 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 75 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 76 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 77 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 78 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 79 80 namespace { 81 // The first field contains the value that the switch produces when a certain 82 // case group is selected, and the second field is a vector containing the cases 83 // composing the case group. 84 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 85 SwitchCaseResultVectorTy; 86 // The first field contains the phi node that generates a result of the switch 87 // and the second field contains the value generated for a certain case in the switch 88 // for that PHI. 89 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 90 91 /// ValueEqualityComparisonCase - Represents a case of a switch. 92 struct ValueEqualityComparisonCase { 93 ConstantInt *Value; 94 BasicBlock *Dest; 95 96 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 97 : Value(Value), Dest(Dest) {} 98 99 bool operator<(ValueEqualityComparisonCase RHS) const { 100 // Comparing pointers is ok as we only rely on the order for uniquing. 101 return Value < RHS.Value; 102 } 103 104 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 105 }; 106 107 class SimplifyCFGOpt { 108 const TargetTransformInfo &TTI; 109 unsigned BonusInstThreshold; 110 const DataLayout *const DL; 111 AssumptionCache *AC; 112 Value *isValueEqualityComparison(TerminatorInst *TI); 113 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 114 std::vector<ValueEqualityComparisonCase> &Cases); 115 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 116 BasicBlock *Pred, 117 IRBuilder<> &Builder); 118 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 119 IRBuilder<> &Builder); 120 121 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 122 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 123 bool SimplifyUnreachable(UnreachableInst *UI); 124 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 125 bool SimplifyIndirectBr(IndirectBrInst *IBI); 126 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 127 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 128 129 public: 130 SimplifyCFGOpt(const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 131 const DataLayout *DL, AssumptionCache *AC) 132 : TTI(TTI), BonusInstThreshold(BonusInstThreshold), DL(DL), AC(AC) {} 133 bool run(BasicBlock *BB); 134 }; 135 } 136 137 /// SafeToMergeTerminators - Return true if it is safe to merge these two 138 /// terminator instructions together. 139 /// 140 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 141 if (SI1 == SI2) return false; // Can't merge with self! 142 143 // It is not safe to merge these two switch instructions if they have a common 144 // successor, and if that successor has a PHI node, and if *that* PHI node has 145 // conflicting incoming values from the two switch blocks. 146 BasicBlock *SI1BB = SI1->getParent(); 147 BasicBlock *SI2BB = SI2->getParent(); 148 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 149 150 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 151 if (SI1Succs.count(*I)) 152 for (BasicBlock::iterator BBI = (*I)->begin(); 153 isa<PHINode>(BBI); ++BBI) { 154 PHINode *PN = cast<PHINode>(BBI); 155 if (PN->getIncomingValueForBlock(SI1BB) != 156 PN->getIncomingValueForBlock(SI2BB)) 157 return false; 158 } 159 160 return true; 161 } 162 163 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 164 /// to merge these two terminator instructions together, where SI1 is an 165 /// unconditional branch. PhiNodes will store all PHI nodes in common 166 /// successors. 167 /// 168 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 169 BranchInst *SI2, 170 Instruction *Cond, 171 SmallVectorImpl<PHINode*> &PhiNodes) { 172 if (SI1 == SI2) return false; // Can't merge with self! 173 assert(SI1->isUnconditional() && SI2->isConditional()); 174 175 // We fold the unconditional branch if we can easily update all PHI nodes in 176 // common successors: 177 // 1> We have a constant incoming value for the conditional branch; 178 // 2> We have "Cond" as the incoming value for the unconditional branch; 179 // 3> SI2->getCondition() and Cond have same operands. 180 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 181 if (!Ci2) return false; 182 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 183 Cond->getOperand(1) == Ci2->getOperand(1)) && 184 !(Cond->getOperand(0) == Ci2->getOperand(1) && 185 Cond->getOperand(1) == Ci2->getOperand(0))) 186 return false; 187 188 BasicBlock *SI1BB = SI1->getParent(); 189 BasicBlock *SI2BB = SI2->getParent(); 190 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 191 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 192 if (SI1Succs.count(*I)) 193 for (BasicBlock::iterator BBI = (*I)->begin(); 194 isa<PHINode>(BBI); ++BBI) { 195 PHINode *PN = cast<PHINode>(BBI); 196 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 197 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 198 return false; 199 PhiNodes.push_back(PN); 200 } 201 return true; 202 } 203 204 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 205 /// now be entries in it from the 'NewPred' block. The values that will be 206 /// flowing into the PHI nodes will be the same as those coming in from 207 /// ExistPred, an existing predecessor of Succ. 208 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 209 BasicBlock *ExistPred) { 210 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 211 212 PHINode *PN; 213 for (BasicBlock::iterator I = Succ->begin(); 214 (PN = dyn_cast<PHINode>(I)); ++I) 215 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 216 } 217 218 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 219 /// given instruction, which is assumed to be safe to speculate. 1 means 220 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 221 static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) { 222 assert(isSafeToSpeculativelyExecute(I, DL) && 223 "Instruction is not safe to speculatively execute!"); 224 switch (Operator::getOpcode(I)) { 225 default: 226 // In doubt, be conservative. 227 return UINT_MAX; 228 case Instruction::GetElementPtr: 229 // GEPs are cheap if all indices are constant. 230 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 231 return UINT_MAX; 232 return 1; 233 case Instruction::ExtractValue: 234 case Instruction::Load: 235 case Instruction::Add: 236 case Instruction::Sub: 237 case Instruction::And: 238 case Instruction::Or: 239 case Instruction::Xor: 240 case Instruction::Shl: 241 case Instruction::LShr: 242 case Instruction::AShr: 243 case Instruction::ICmp: 244 case Instruction::Trunc: 245 case Instruction::ZExt: 246 case Instruction::SExt: 247 case Instruction::BitCast: 248 case Instruction::ExtractElement: 249 case Instruction::InsertElement: 250 return 1; // These are all cheap. 251 252 case Instruction::Call: 253 case Instruction::Select: 254 return 2; 255 } 256 } 257 258 /// DominatesMergePoint - If we have a merge point of an "if condition" as 259 /// accepted above, return true if the specified value dominates the block. We 260 /// don't handle the true generality of domination here, just a special case 261 /// which works well enough for us. 262 /// 263 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 264 /// see if V (which must be an instruction) and its recursive operands 265 /// that do not dominate BB have a combined cost lower than CostRemaining and 266 /// are non-trapping. If both are true, the instruction is inserted into the 267 /// set and true is returned. 268 /// 269 /// The cost for most non-trapping instructions is defined as 1 except for 270 /// Select whose cost is 2. 271 /// 272 /// After this function returns, CostRemaining is decreased by the cost of 273 /// V plus its non-dominating operands. If that cost is greater than 274 /// CostRemaining, false is returned and CostRemaining is undefined. 275 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 276 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 277 unsigned &CostRemaining, 278 const DataLayout *DL) { 279 Instruction *I = dyn_cast<Instruction>(V); 280 if (!I) { 281 // Non-instructions all dominate instructions, but not all constantexprs 282 // can be executed unconditionally. 283 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 284 if (C->canTrap()) 285 return false; 286 return true; 287 } 288 BasicBlock *PBB = I->getParent(); 289 290 // We don't want to allow weird loops that might have the "if condition" in 291 // the bottom of this block. 292 if (PBB == BB) return false; 293 294 // If this instruction is defined in a block that contains an unconditional 295 // branch to BB, then it must be in the 'conditional' part of the "if 296 // statement". If not, it definitely dominates the region. 297 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 298 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 299 return true; 300 301 // If we aren't allowing aggressive promotion anymore, then don't consider 302 // instructions in the 'if region'. 303 if (!AggressiveInsts) return false; 304 305 // If we have seen this instruction before, don't count it again. 306 if (AggressiveInsts->count(I)) return true; 307 308 // Okay, it looks like the instruction IS in the "condition". Check to 309 // see if it's a cheap instruction to unconditionally compute, and if it 310 // only uses stuff defined outside of the condition. If so, hoist it out. 311 if (!isSafeToSpeculativelyExecute(I, DL)) 312 return false; 313 314 unsigned Cost = ComputeSpeculationCost(I, DL); 315 316 if (Cost > CostRemaining) 317 return false; 318 319 CostRemaining -= Cost; 320 321 // Okay, we can only really hoist these out if their operands do 322 // not take us over the cost threshold. 323 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 324 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL)) 325 return false; 326 // Okay, it's safe to do this! Remember this instruction. 327 AggressiveInsts->insert(I); 328 return true; 329 } 330 331 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 332 /// and PointerNullValue. Return NULL if value is not a constant int. 333 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) { 334 // Normal constant int. 335 ConstantInt *CI = dyn_cast<ConstantInt>(V); 336 if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy()) 337 return CI; 338 339 // This is some kind of pointer constant. Turn it into a pointer-sized 340 // ConstantInt if possible. 341 IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType())); 342 343 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 344 if (isa<ConstantPointerNull>(V)) 345 return ConstantInt::get(PtrTy, 0); 346 347 // IntToPtr const int. 348 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 349 if (CE->getOpcode() == Instruction::IntToPtr) 350 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 351 // The constant is very likely to have the right type already. 352 if (CI->getType() == PtrTy) 353 return CI; 354 else 355 return cast<ConstantInt> 356 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 357 } 358 return nullptr; 359 } 360 361 namespace { 362 363 /// Given a chain of or (||) or and (&&) comparison of a value against a 364 /// constant, this will try to recover the information required for a switch 365 /// structure. 366 /// It will depth-first traverse the chain of comparison, seeking for patterns 367 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 368 /// representing the different cases for the switch. 369 /// Note that if the chain is composed of '||' it will build the set of elements 370 /// that matches the comparisons (i.e. any of this value validate the chain) 371 /// while for a chain of '&&' it will build the set elements that make the test 372 /// fail. 373 struct ConstantComparesGatherer { 374 375 Value *CompValue; /// Value found for the switch comparison 376 Value *Extra; /// Extra clause to be checked before the switch 377 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 378 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 379 380 /// Construct and compute the result for the comparison instruction Cond 381 ConstantComparesGatherer(Instruction *Cond, const DataLayout *DL) 382 : CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 383 gather(Cond, DL); 384 } 385 386 /// Prevent copy 387 ConstantComparesGatherer(const ConstantComparesGatherer &) 388 LLVM_DELETED_FUNCTION; 389 ConstantComparesGatherer & 390 operator=(const ConstantComparesGatherer &) LLVM_DELETED_FUNCTION; 391 392 private: 393 394 /// Try to set the current value used for the comparison, it succeeds only if 395 /// it wasn't set before or if the new value is the same as the old one 396 bool setValueOnce(Value *NewVal) { 397 if(CompValue && CompValue != NewVal) return false; 398 CompValue = NewVal; 399 return (CompValue != nullptr); 400 } 401 402 /// Try to match Instruction "I" as a comparison against a constant and 403 /// populates the array Vals with the set of values that match (or do not 404 /// match depending on isEQ). 405 /// Return false on failure. On success, the Value the comparison matched 406 /// against is placed in CompValue. 407 /// If CompValue is already set, the function is expected to fail if a match 408 /// is found but the value compared to is different. 409 bool matchInstruction(Instruction *I, const DataLayout *DL, bool isEQ) { 410 // If this is an icmp against a constant, handle this as one of the cases. 411 ICmpInst *ICI; 412 ConstantInt *C; 413 if (!((ICI = dyn_cast<ICmpInst>(I)) && 414 (C = GetConstantInt(I->getOperand(1), DL)))) { 415 return false; 416 } 417 418 Value *RHSVal; 419 ConstantInt *RHSC; 420 421 // Pattern match a special case 422 // (x & ~2^x) == y --> x == y || x == y|2^x 423 // This undoes a transformation done by instcombine to fuse 2 compares. 424 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 425 if (match(ICI->getOperand(0), 426 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 427 APInt Not = ~RHSC->getValue(); 428 if (Not.isPowerOf2()) { 429 // If we already have a value for the switch, it has to match! 430 if(!setValueOnce(RHSVal)) 431 return false; 432 433 Vals.push_back(C); 434 Vals.push_back(ConstantInt::get(C->getContext(), 435 C->getValue() | Not)); 436 UsedICmps++; 437 return true; 438 } 439 } 440 441 // If we already have a value for the switch, it has to match! 442 if(!setValueOnce(ICI->getOperand(0))) 443 return false; 444 445 UsedICmps++; 446 Vals.push_back(C); 447 return ICI->getOperand(0); 448 } 449 450 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 451 ConstantRange Span = ConstantRange::makeICmpRegion(ICI->getPredicate(), 452 C->getValue()); 453 454 // Shift the range if the compare is fed by an add. This is the range 455 // compare idiom as emitted by instcombine. 456 Value *CandidateVal = I->getOperand(0); 457 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 458 Span = Span.subtract(RHSC->getValue()); 459 CandidateVal = RHSVal; 460 } 461 462 // If this is an and/!= check, then we are looking to build the set of 463 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 464 // x != 0 && x != 1. 465 if (!isEQ) 466 Span = Span.inverse(); 467 468 // If there are a ton of values, we don't want to make a ginormous switch. 469 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 470 return false; 471 } 472 473 // If we already have a value for the switch, it has to match! 474 if(!setValueOnce(CandidateVal)) 475 return false; 476 477 // Add all values from the range to the set 478 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 479 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 480 481 UsedICmps++; 482 return true; 483 484 } 485 486 /// gather - Given a potentially 'or'd or 'and'd together collection of icmp 487 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 488 /// the value being compared, and stick the list constants into the Vals 489 /// vector. 490 /// One "Extra" case is allowed to differ from the other. 491 void gather(Value *V, const DataLayout *DL) { 492 Instruction *I = dyn_cast<Instruction>(V); 493 bool isEQ = (I->getOpcode() == Instruction::Or); 494 495 // Keep a stack (SmallVector for efficiency) for depth-first traversal 496 SmallVector<Value *, 8> DFT; 497 498 // Initialize 499 DFT.push_back(V); 500 501 while(!DFT.empty()) { 502 V = DFT.pop_back_val(); 503 504 if (Instruction *I = dyn_cast<Instruction>(V)) { 505 // If it is a || (or && depending on isEQ), process the operands. 506 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 507 DFT.push_back(I->getOperand(1)); 508 DFT.push_back(I->getOperand(0)); 509 continue; 510 } 511 512 // Try to match the current instruction 513 if (matchInstruction(I, DL, isEQ)) 514 // Match succeed, continue the loop 515 continue; 516 } 517 518 // One element of the sequence of || (or &&) could not be match as a 519 // comparison against the same value as the others. 520 // We allow only one "Extra" case to be checked before the switch 521 if (!Extra) { 522 Extra = V; 523 continue; 524 } 525 // Failed to parse a proper sequence, abort now 526 CompValue = nullptr; 527 break; 528 } 529 } 530 }; 531 532 } 533 534 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 535 Instruction *Cond = nullptr; 536 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 537 Cond = dyn_cast<Instruction>(SI->getCondition()); 538 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 539 if (BI->isConditional()) 540 Cond = dyn_cast<Instruction>(BI->getCondition()); 541 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 542 Cond = dyn_cast<Instruction>(IBI->getAddress()); 543 } 544 545 TI->eraseFromParent(); 546 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 547 } 548 549 /// isValueEqualityComparison - Return true if the specified terminator checks 550 /// to see if a value is equal to constant integer value. 551 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 552 Value *CV = nullptr; 553 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 554 // Do not permit merging of large switch instructions into their 555 // predecessors unless there is only one predecessor. 556 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 557 pred_end(SI->getParent())) <= 128) 558 CV = SI->getCondition(); 559 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 560 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 561 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 562 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 563 CV = ICI->getOperand(0); 564 565 // Unwrap any lossless ptrtoint cast. 566 if (DL && CV) { 567 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 568 Value *Ptr = PTII->getPointerOperand(); 569 if (PTII->getType() == DL->getIntPtrType(Ptr->getType())) 570 CV = Ptr; 571 } 572 } 573 return CV; 574 } 575 576 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 577 /// decode all of the 'cases' that it represents and return the 'default' block. 578 BasicBlock *SimplifyCFGOpt:: 579 GetValueEqualityComparisonCases(TerminatorInst *TI, 580 std::vector<ValueEqualityComparisonCase> 581 &Cases) { 582 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 583 Cases.reserve(SI->getNumCases()); 584 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 585 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 586 i.getCaseSuccessor())); 587 return SI->getDefaultDest(); 588 } 589 590 BranchInst *BI = cast<BranchInst>(TI); 591 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 592 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 593 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 594 DL), 595 Succ)); 596 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 597 } 598 599 600 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 601 /// in the list that match the specified block. 602 static void EliminateBlockCases(BasicBlock *BB, 603 std::vector<ValueEqualityComparisonCase> &Cases) { 604 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 605 } 606 607 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 608 /// well. 609 static bool 610 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 611 std::vector<ValueEqualityComparisonCase > &C2) { 612 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 613 614 // Make V1 be smaller than V2. 615 if (V1->size() > V2->size()) 616 std::swap(V1, V2); 617 618 if (V1->size() == 0) return false; 619 if (V1->size() == 1) { 620 // Just scan V2. 621 ConstantInt *TheVal = (*V1)[0].Value; 622 for (unsigned i = 0, e = V2->size(); i != e; ++i) 623 if (TheVal == (*V2)[i].Value) 624 return true; 625 } 626 627 // Otherwise, just sort both lists and compare element by element. 628 array_pod_sort(V1->begin(), V1->end()); 629 array_pod_sort(V2->begin(), V2->end()); 630 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 631 while (i1 != e1 && i2 != e2) { 632 if ((*V1)[i1].Value == (*V2)[i2].Value) 633 return true; 634 if ((*V1)[i1].Value < (*V2)[i2].Value) 635 ++i1; 636 else 637 ++i2; 638 } 639 return false; 640 } 641 642 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 643 /// terminator instruction and its block is known to only have a single 644 /// predecessor block, check to see if that predecessor is also a value 645 /// comparison with the same value, and if that comparison determines the 646 /// outcome of this comparison. If so, simplify TI. This does a very limited 647 /// form of jump threading. 648 bool SimplifyCFGOpt:: 649 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 650 BasicBlock *Pred, 651 IRBuilder<> &Builder) { 652 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 653 if (!PredVal) return false; // Not a value comparison in predecessor. 654 655 Value *ThisVal = isValueEqualityComparison(TI); 656 assert(ThisVal && "This isn't a value comparison!!"); 657 if (ThisVal != PredVal) return false; // Different predicates. 658 659 // TODO: Preserve branch weight metadata, similarly to how 660 // FoldValueComparisonIntoPredecessors preserves it. 661 662 // Find out information about when control will move from Pred to TI's block. 663 std::vector<ValueEqualityComparisonCase> PredCases; 664 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 665 PredCases); 666 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 667 668 // Find information about how control leaves this block. 669 std::vector<ValueEqualityComparisonCase> ThisCases; 670 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 671 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 672 673 // If TI's block is the default block from Pred's comparison, potentially 674 // simplify TI based on this knowledge. 675 if (PredDef == TI->getParent()) { 676 // If we are here, we know that the value is none of those cases listed in 677 // PredCases. If there are any cases in ThisCases that are in PredCases, we 678 // can simplify TI. 679 if (!ValuesOverlap(PredCases, ThisCases)) 680 return false; 681 682 if (isa<BranchInst>(TI)) { 683 // Okay, one of the successors of this condbr is dead. Convert it to a 684 // uncond br. 685 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 686 // Insert the new branch. 687 Instruction *NI = Builder.CreateBr(ThisDef); 688 (void) NI; 689 690 // Remove PHI node entries for the dead edge. 691 ThisCases[0].Dest->removePredecessor(TI->getParent()); 692 693 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 694 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 695 696 EraseTerminatorInstAndDCECond(TI); 697 return true; 698 } 699 700 SwitchInst *SI = cast<SwitchInst>(TI); 701 // Okay, TI has cases that are statically dead, prune them away. 702 SmallPtrSet<Constant*, 16> DeadCases; 703 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 704 DeadCases.insert(PredCases[i].Value); 705 706 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 707 << "Through successor TI: " << *TI); 708 709 // Collect branch weights into a vector. 710 SmallVector<uint32_t, 8> Weights; 711 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 712 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 713 if (HasWeight) 714 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 715 ++MD_i) { 716 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 717 Weights.push_back(CI->getValue().getZExtValue()); 718 } 719 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 720 --i; 721 if (DeadCases.count(i.getCaseValue())) { 722 if (HasWeight) { 723 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 724 Weights.pop_back(); 725 } 726 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 727 SI->removeCase(i); 728 } 729 } 730 if (HasWeight && Weights.size() >= 2) 731 SI->setMetadata(LLVMContext::MD_prof, 732 MDBuilder(SI->getParent()->getContext()). 733 createBranchWeights(Weights)); 734 735 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 736 return true; 737 } 738 739 // Otherwise, TI's block must correspond to some matched value. Find out 740 // which value (or set of values) this is. 741 ConstantInt *TIV = nullptr; 742 BasicBlock *TIBB = TI->getParent(); 743 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 744 if (PredCases[i].Dest == TIBB) { 745 if (TIV) 746 return false; // Cannot handle multiple values coming to this block. 747 TIV = PredCases[i].Value; 748 } 749 assert(TIV && "No edge from pred to succ?"); 750 751 // Okay, we found the one constant that our value can be if we get into TI's 752 // BB. Find out which successor will unconditionally be branched to. 753 BasicBlock *TheRealDest = nullptr; 754 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 755 if (ThisCases[i].Value == TIV) { 756 TheRealDest = ThisCases[i].Dest; 757 break; 758 } 759 760 // If not handled by any explicit cases, it is handled by the default case. 761 if (!TheRealDest) TheRealDest = ThisDef; 762 763 // Remove PHI node entries for dead edges. 764 BasicBlock *CheckEdge = TheRealDest; 765 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 766 if (*SI != CheckEdge) 767 (*SI)->removePredecessor(TIBB); 768 else 769 CheckEdge = nullptr; 770 771 // Insert the new branch. 772 Instruction *NI = Builder.CreateBr(TheRealDest); 773 (void) NI; 774 775 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 776 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 777 778 EraseTerminatorInstAndDCECond(TI); 779 return true; 780 } 781 782 namespace { 783 /// ConstantIntOrdering - This class implements a stable ordering of constant 784 /// integers that does not depend on their address. This is important for 785 /// applications that sort ConstantInt's to ensure uniqueness. 786 struct ConstantIntOrdering { 787 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 788 return LHS->getValue().ult(RHS->getValue()); 789 } 790 }; 791 } 792 793 static int ConstantIntSortPredicate(ConstantInt *const *P1, 794 ConstantInt *const *P2) { 795 const ConstantInt *LHS = *P1; 796 const ConstantInt *RHS = *P2; 797 if (LHS->getValue().ult(RHS->getValue())) 798 return 1; 799 if (LHS->getValue() == RHS->getValue()) 800 return 0; 801 return -1; 802 } 803 804 static inline bool HasBranchWeights(const Instruction* I) { 805 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 806 if (ProfMD && ProfMD->getOperand(0)) 807 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 808 return MDS->getString().equals("branch_weights"); 809 810 return false; 811 } 812 813 /// Get Weights of a given TerminatorInst, the default weight is at the front 814 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 815 /// metadata. 816 static void GetBranchWeights(TerminatorInst *TI, 817 SmallVectorImpl<uint64_t> &Weights) { 818 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 819 assert(MD); 820 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 821 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 822 Weights.push_back(CI->getValue().getZExtValue()); 823 } 824 825 // If TI is a conditional eq, the default case is the false case, 826 // and the corresponding branch-weight data is at index 2. We swap the 827 // default weight to be the first entry. 828 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 829 assert(Weights.size() == 2); 830 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 831 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 832 std::swap(Weights.front(), Weights.back()); 833 } 834 } 835 836 /// Keep halving the weights until all can fit in uint32_t. 837 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 838 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 839 if (Max > UINT_MAX) { 840 unsigned Offset = 32 - countLeadingZeros(Max); 841 for (uint64_t &I : Weights) 842 I >>= Offset; 843 } 844 } 845 846 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 847 /// equality comparison instruction (either a switch or a branch on "X == c"). 848 /// See if any of the predecessors of the terminator block are value comparisons 849 /// on the same value. If so, and if safe to do so, fold them together. 850 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 851 IRBuilder<> &Builder) { 852 BasicBlock *BB = TI->getParent(); 853 Value *CV = isValueEqualityComparison(TI); // CondVal 854 assert(CV && "Not a comparison?"); 855 bool Changed = false; 856 857 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 858 while (!Preds.empty()) { 859 BasicBlock *Pred = Preds.pop_back_val(); 860 861 // See if the predecessor is a comparison with the same value. 862 TerminatorInst *PTI = Pred->getTerminator(); 863 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 864 865 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 866 // Figure out which 'cases' to copy from SI to PSI. 867 std::vector<ValueEqualityComparisonCase> BBCases; 868 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 869 870 std::vector<ValueEqualityComparisonCase> PredCases; 871 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 872 873 // Based on whether the default edge from PTI goes to BB or not, fill in 874 // PredCases and PredDefault with the new switch cases we would like to 875 // build. 876 SmallVector<BasicBlock*, 8> NewSuccessors; 877 878 // Update the branch weight metadata along the way 879 SmallVector<uint64_t, 8> Weights; 880 bool PredHasWeights = HasBranchWeights(PTI); 881 bool SuccHasWeights = HasBranchWeights(TI); 882 883 if (PredHasWeights) { 884 GetBranchWeights(PTI, Weights); 885 // branch-weight metadata is inconsistent here. 886 if (Weights.size() != 1 + PredCases.size()) 887 PredHasWeights = SuccHasWeights = false; 888 } else if (SuccHasWeights) 889 // If there are no predecessor weights but there are successor weights, 890 // populate Weights with 1, which will later be scaled to the sum of 891 // successor's weights 892 Weights.assign(1 + PredCases.size(), 1); 893 894 SmallVector<uint64_t, 8> SuccWeights; 895 if (SuccHasWeights) { 896 GetBranchWeights(TI, SuccWeights); 897 // branch-weight metadata is inconsistent here. 898 if (SuccWeights.size() != 1 + BBCases.size()) 899 PredHasWeights = SuccHasWeights = false; 900 } else if (PredHasWeights) 901 SuccWeights.assign(1 + BBCases.size(), 1); 902 903 if (PredDefault == BB) { 904 // If this is the default destination from PTI, only the edges in TI 905 // that don't occur in PTI, or that branch to BB will be activated. 906 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 907 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 908 if (PredCases[i].Dest != BB) 909 PTIHandled.insert(PredCases[i].Value); 910 else { 911 // The default destination is BB, we don't need explicit targets. 912 std::swap(PredCases[i], PredCases.back()); 913 914 if (PredHasWeights || SuccHasWeights) { 915 // Increase weight for the default case. 916 Weights[0] += Weights[i+1]; 917 std::swap(Weights[i+1], Weights.back()); 918 Weights.pop_back(); 919 } 920 921 PredCases.pop_back(); 922 --i; --e; 923 } 924 925 // Reconstruct the new switch statement we will be building. 926 if (PredDefault != BBDefault) { 927 PredDefault->removePredecessor(Pred); 928 PredDefault = BBDefault; 929 NewSuccessors.push_back(BBDefault); 930 } 931 932 unsigned CasesFromPred = Weights.size(); 933 uint64_t ValidTotalSuccWeight = 0; 934 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 935 if (!PTIHandled.count(BBCases[i].Value) && 936 BBCases[i].Dest != BBDefault) { 937 PredCases.push_back(BBCases[i]); 938 NewSuccessors.push_back(BBCases[i].Dest); 939 if (SuccHasWeights || PredHasWeights) { 940 // The default weight is at index 0, so weight for the ith case 941 // should be at index i+1. Scale the cases from successor by 942 // PredDefaultWeight (Weights[0]). 943 Weights.push_back(Weights[0] * SuccWeights[i+1]); 944 ValidTotalSuccWeight += SuccWeights[i+1]; 945 } 946 } 947 948 if (SuccHasWeights || PredHasWeights) { 949 ValidTotalSuccWeight += SuccWeights[0]; 950 // Scale the cases from predecessor by ValidTotalSuccWeight. 951 for (unsigned i = 1; i < CasesFromPred; ++i) 952 Weights[i] *= ValidTotalSuccWeight; 953 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 954 Weights[0] *= SuccWeights[0]; 955 } 956 } else { 957 // If this is not the default destination from PSI, only the edges 958 // in SI that occur in PSI with a destination of BB will be 959 // activated. 960 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 961 std::map<ConstantInt*, uint64_t> WeightsForHandled; 962 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 963 if (PredCases[i].Dest == BB) { 964 PTIHandled.insert(PredCases[i].Value); 965 966 if (PredHasWeights || SuccHasWeights) { 967 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 968 std::swap(Weights[i+1], Weights.back()); 969 Weights.pop_back(); 970 } 971 972 std::swap(PredCases[i], PredCases.back()); 973 PredCases.pop_back(); 974 --i; --e; 975 } 976 977 // Okay, now we know which constants were sent to BB from the 978 // predecessor. Figure out where they will all go now. 979 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 980 if (PTIHandled.count(BBCases[i].Value)) { 981 // If this is one we are capable of getting... 982 if (PredHasWeights || SuccHasWeights) 983 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 984 PredCases.push_back(BBCases[i]); 985 NewSuccessors.push_back(BBCases[i].Dest); 986 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 987 } 988 989 // If there are any constants vectored to BB that TI doesn't handle, 990 // they must go to the default destination of TI. 991 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 992 PTIHandled.begin(), 993 E = PTIHandled.end(); I != E; ++I) { 994 if (PredHasWeights || SuccHasWeights) 995 Weights.push_back(WeightsForHandled[*I]); 996 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 997 NewSuccessors.push_back(BBDefault); 998 } 999 } 1000 1001 // Okay, at this point, we know which new successor Pred will get. Make 1002 // sure we update the number of entries in the PHI nodes for these 1003 // successors. 1004 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 1005 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 1006 1007 Builder.SetInsertPoint(PTI); 1008 // Convert pointer to int before we switch. 1009 if (CV->getType()->isPointerTy()) { 1010 assert(DL && "Cannot switch on pointer without DataLayout"); 1011 CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()), 1012 "magicptr"); 1013 } 1014 1015 // Now that the successors are updated, create the new Switch instruction. 1016 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 1017 PredCases.size()); 1018 NewSI->setDebugLoc(PTI->getDebugLoc()); 1019 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1020 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 1021 1022 if (PredHasWeights || SuccHasWeights) { 1023 // Halve the weights if any of them cannot fit in an uint32_t 1024 FitWeights(Weights); 1025 1026 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1027 1028 NewSI->setMetadata(LLVMContext::MD_prof, 1029 MDBuilder(BB->getContext()). 1030 createBranchWeights(MDWeights)); 1031 } 1032 1033 EraseTerminatorInstAndDCECond(PTI); 1034 1035 // Okay, last check. If BB is still a successor of PSI, then we must 1036 // have an infinite loop case. If so, add an infinitely looping block 1037 // to handle the case to preserve the behavior of the code. 1038 BasicBlock *InfLoopBlock = nullptr; 1039 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1040 if (NewSI->getSuccessor(i) == BB) { 1041 if (!InfLoopBlock) { 1042 // Insert it at the end of the function, because it's either code, 1043 // or it won't matter if it's hot. :) 1044 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1045 "infloop", BB->getParent()); 1046 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1047 } 1048 NewSI->setSuccessor(i, InfLoopBlock); 1049 } 1050 1051 Changed = true; 1052 } 1053 } 1054 return Changed; 1055 } 1056 1057 // isSafeToHoistInvoke - If we would need to insert a select that uses the 1058 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 1059 // would need to do this), we can't hoist the invoke, as there is nowhere 1060 // to put the select in this case. 1061 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1062 Instruction *I1, Instruction *I2) { 1063 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1064 PHINode *PN; 1065 for (BasicBlock::iterator BBI = SI->begin(); 1066 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1067 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1068 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1069 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1070 return false; 1071 } 1072 } 1073 } 1074 return true; 1075 } 1076 1077 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1078 1079 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 1080 /// BB2, hoist any common code in the two blocks up into the branch block. The 1081 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1082 static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) { 1083 // This does very trivial matching, with limited scanning, to find identical 1084 // instructions in the two blocks. In particular, we don't want to get into 1085 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1086 // such, we currently just scan for obviously identical instructions in an 1087 // identical order. 1088 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1089 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1090 1091 BasicBlock::iterator BB1_Itr = BB1->begin(); 1092 BasicBlock::iterator BB2_Itr = BB2->begin(); 1093 1094 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1095 // Skip debug info if it is not identical. 1096 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1097 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1098 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1099 while (isa<DbgInfoIntrinsic>(I1)) 1100 I1 = BB1_Itr++; 1101 while (isa<DbgInfoIntrinsic>(I2)) 1102 I2 = BB2_Itr++; 1103 } 1104 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1105 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1106 return false; 1107 1108 BasicBlock *BIParent = BI->getParent(); 1109 1110 bool Changed = false; 1111 do { 1112 // If we are hoisting the terminator instruction, don't move one (making a 1113 // broken BB), instead clone it, and remove BI. 1114 if (isa<TerminatorInst>(I1)) 1115 goto HoistTerminator; 1116 1117 // For a normal instruction, we just move one to right before the branch, 1118 // then replace all uses of the other with the first. Finally, we remove 1119 // the now redundant second instruction. 1120 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1121 if (!I2->use_empty()) 1122 I2->replaceAllUsesWith(I1); 1123 I1->intersectOptionalDataWith(I2); 1124 unsigned KnownIDs[] = { 1125 LLVMContext::MD_tbaa, 1126 LLVMContext::MD_range, 1127 LLVMContext::MD_fpmath, 1128 LLVMContext::MD_invariant_load, 1129 LLVMContext::MD_nonnull 1130 }; 1131 combineMetadata(I1, I2, KnownIDs); 1132 I2->eraseFromParent(); 1133 Changed = true; 1134 1135 I1 = BB1_Itr++; 1136 I2 = BB2_Itr++; 1137 // Skip debug info if it is not identical. 1138 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1139 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1140 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1141 while (isa<DbgInfoIntrinsic>(I1)) 1142 I1 = BB1_Itr++; 1143 while (isa<DbgInfoIntrinsic>(I2)) 1144 I2 = BB2_Itr++; 1145 } 1146 } while (I1->isIdenticalToWhenDefined(I2)); 1147 1148 return true; 1149 1150 HoistTerminator: 1151 // It may not be possible to hoist an invoke. 1152 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1153 return Changed; 1154 1155 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1156 PHINode *PN; 1157 for (BasicBlock::iterator BBI = SI->begin(); 1158 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1159 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1160 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1161 if (BB1V == BB2V) 1162 continue; 1163 1164 // Check for passingValueIsAlwaysUndefined here because we would rather 1165 // eliminate undefined control flow then converting it to a select. 1166 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1167 passingValueIsAlwaysUndefined(BB2V, PN)) 1168 return Changed; 1169 1170 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL)) 1171 return Changed; 1172 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL)) 1173 return Changed; 1174 } 1175 } 1176 1177 // Okay, it is safe to hoist the terminator. 1178 Instruction *NT = I1->clone(); 1179 BIParent->getInstList().insert(BI, NT); 1180 if (!NT->getType()->isVoidTy()) { 1181 I1->replaceAllUsesWith(NT); 1182 I2->replaceAllUsesWith(NT); 1183 NT->takeName(I1); 1184 } 1185 1186 IRBuilder<true, NoFolder> Builder(NT); 1187 // Hoisting one of the terminators from our successor is a great thing. 1188 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1189 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1190 // nodes, so we insert select instruction to compute the final result. 1191 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1192 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1193 PHINode *PN; 1194 for (BasicBlock::iterator BBI = SI->begin(); 1195 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1196 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1197 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1198 if (BB1V == BB2V) continue; 1199 1200 // These values do not agree. Insert a select instruction before NT 1201 // that determines the right value. 1202 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1203 if (!SI) 1204 SI = cast<SelectInst> 1205 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1206 BB1V->getName()+"."+BB2V->getName())); 1207 1208 // Make the PHI node use the select for all incoming values for BB1/BB2 1209 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1210 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1211 PN->setIncomingValue(i, SI); 1212 } 1213 } 1214 1215 // Update any PHI nodes in our new successors. 1216 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1217 AddPredecessorToBlock(*SI, BIParent, BB1); 1218 1219 EraseTerminatorInstAndDCECond(BI); 1220 return true; 1221 } 1222 1223 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1224 /// check whether BBEnd has only two predecessors and the other predecessor 1225 /// ends with an unconditional branch. If it is true, sink any common code 1226 /// in the two predecessors to BBEnd. 1227 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1228 assert(BI1->isUnconditional()); 1229 BasicBlock *BB1 = BI1->getParent(); 1230 BasicBlock *BBEnd = BI1->getSuccessor(0); 1231 1232 // Check that BBEnd has two predecessors and the other predecessor ends with 1233 // an unconditional branch. 1234 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1235 BasicBlock *Pred0 = *PI++; 1236 if (PI == PE) // Only one predecessor. 1237 return false; 1238 BasicBlock *Pred1 = *PI++; 1239 if (PI != PE) // More than two predecessors. 1240 return false; 1241 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1242 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1243 if (!BI2 || !BI2->isUnconditional()) 1244 return false; 1245 1246 // Gather the PHI nodes in BBEnd. 1247 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1248 Instruction *FirstNonPhiInBBEnd = nullptr; 1249 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1250 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1251 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1252 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1253 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1254 } else { 1255 FirstNonPhiInBBEnd = &*I; 1256 break; 1257 } 1258 } 1259 if (!FirstNonPhiInBBEnd) 1260 return false; 1261 1262 // This does very trivial matching, with limited scanning, to find identical 1263 // instructions in the two blocks. We scan backward for obviously identical 1264 // instructions in an identical order. 1265 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1266 RE1 = BB1->getInstList().rend(), 1267 RI2 = BB2->getInstList().rbegin(), 1268 RE2 = BB2->getInstList().rend(); 1269 // Skip debug info. 1270 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1271 if (RI1 == RE1) 1272 return false; 1273 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1274 if (RI2 == RE2) 1275 return false; 1276 // Skip the unconditional branches. 1277 ++RI1; 1278 ++RI2; 1279 1280 bool Changed = false; 1281 while (RI1 != RE1 && RI2 != RE2) { 1282 // Skip debug info. 1283 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1284 if (RI1 == RE1) 1285 return Changed; 1286 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1287 if (RI2 == RE2) 1288 return Changed; 1289 1290 Instruction *I1 = &*RI1, *I2 = &*RI2; 1291 auto InstPair = std::make_pair(I1, I2); 1292 // I1 and I2 should have a single use in the same PHI node, and they 1293 // perform the same operation. 1294 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1295 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1296 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1297 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1298 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1299 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1300 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1301 !I1->hasOneUse() || !I2->hasOneUse() || 1302 !JointValueMap.count(InstPair)) 1303 return Changed; 1304 1305 // Check whether we should swap the operands of ICmpInst. 1306 // TODO: Add support of communativity. 1307 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1308 bool SwapOpnds = false; 1309 if (ICmp1 && ICmp2 && 1310 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1311 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1312 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1313 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1314 ICmp2->swapOperands(); 1315 SwapOpnds = true; 1316 } 1317 if (!I1->isSameOperationAs(I2)) { 1318 if (SwapOpnds) 1319 ICmp2->swapOperands(); 1320 return Changed; 1321 } 1322 1323 // The operands should be either the same or they need to be generated 1324 // with a PHI node after sinking. We only handle the case where there is 1325 // a single pair of different operands. 1326 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1327 unsigned Op1Idx = ~0U; 1328 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1329 if (I1->getOperand(I) == I2->getOperand(I)) 1330 continue; 1331 // Early exit if we have more-than one pair of different operands or if 1332 // we need a PHI node to replace a constant. 1333 if (Op1Idx != ~0U || 1334 isa<Constant>(I1->getOperand(I)) || 1335 isa<Constant>(I2->getOperand(I))) { 1336 // If we can't sink the instructions, undo the swapping. 1337 if (SwapOpnds) 1338 ICmp2->swapOperands(); 1339 return Changed; 1340 } 1341 DifferentOp1 = I1->getOperand(I); 1342 Op1Idx = I; 1343 DifferentOp2 = I2->getOperand(I); 1344 } 1345 1346 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1347 DEBUG(dbgs() << " " << *I2 << "\n"); 1348 1349 // We insert the pair of different operands to JointValueMap and 1350 // remove (I1, I2) from JointValueMap. 1351 if (Op1Idx != ~0U) { 1352 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1353 if (!NewPN) { 1354 NewPN = 1355 PHINode::Create(DifferentOp1->getType(), 2, 1356 DifferentOp1->getName() + ".sink", BBEnd->begin()); 1357 NewPN->addIncoming(DifferentOp1, BB1); 1358 NewPN->addIncoming(DifferentOp2, BB2); 1359 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1360 } 1361 // I1 should use NewPN instead of DifferentOp1. 1362 I1->setOperand(Op1Idx, NewPN); 1363 } 1364 PHINode *OldPN = JointValueMap[InstPair]; 1365 JointValueMap.erase(InstPair); 1366 1367 // We need to update RE1 and RE2 if we are going to sink the first 1368 // instruction in the basic block down. 1369 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1370 // Sink the instruction. 1371 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1372 if (!OldPN->use_empty()) 1373 OldPN->replaceAllUsesWith(I1); 1374 OldPN->eraseFromParent(); 1375 1376 if (!I2->use_empty()) 1377 I2->replaceAllUsesWith(I1); 1378 I1->intersectOptionalDataWith(I2); 1379 // TODO: Use combineMetadata here to preserve what metadata we can 1380 // (analogous to the hoisting case above). 1381 I2->eraseFromParent(); 1382 1383 if (UpdateRE1) 1384 RE1 = BB1->getInstList().rend(); 1385 if (UpdateRE2) 1386 RE2 = BB2->getInstList().rend(); 1387 FirstNonPhiInBBEnd = I1; 1388 NumSinkCommons++; 1389 Changed = true; 1390 } 1391 return Changed; 1392 } 1393 1394 /// \brief Determine if we can hoist sink a sole store instruction out of a 1395 /// conditional block. 1396 /// 1397 /// We are looking for code like the following: 1398 /// BrBB: 1399 /// store i32 %add, i32* %arrayidx2 1400 /// ... // No other stores or function calls (we could be calling a memory 1401 /// ... // function). 1402 /// %cmp = icmp ult %x, %y 1403 /// br i1 %cmp, label %EndBB, label %ThenBB 1404 /// ThenBB: 1405 /// store i32 %add5, i32* %arrayidx2 1406 /// br label EndBB 1407 /// EndBB: 1408 /// ... 1409 /// We are going to transform this into: 1410 /// BrBB: 1411 /// store i32 %add, i32* %arrayidx2 1412 /// ... // 1413 /// %cmp = icmp ult %x, %y 1414 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1415 /// store i32 %add.add5, i32* %arrayidx2 1416 /// ... 1417 /// 1418 /// \return The pointer to the value of the previous store if the store can be 1419 /// hoisted into the predecessor block. 0 otherwise. 1420 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1421 BasicBlock *StoreBB, BasicBlock *EndBB) { 1422 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1423 if (!StoreToHoist) 1424 return nullptr; 1425 1426 // Volatile or atomic. 1427 if (!StoreToHoist->isSimple()) 1428 return nullptr; 1429 1430 Value *StorePtr = StoreToHoist->getPointerOperand(); 1431 1432 // Look for a store to the same pointer in BrBB. 1433 unsigned MaxNumInstToLookAt = 10; 1434 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1435 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1436 Instruction *CurI = &*RI; 1437 1438 // Could be calling an instruction that effects memory like free(). 1439 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1440 return nullptr; 1441 1442 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1443 // Found the previous store make sure it stores to the same location. 1444 if (SI && SI->getPointerOperand() == StorePtr) 1445 // Found the previous store, return its value operand. 1446 return SI->getValueOperand(); 1447 else if (SI) 1448 return nullptr; // Unknown store. 1449 } 1450 1451 return nullptr; 1452 } 1453 1454 /// \brief Speculate a conditional basic block flattening the CFG. 1455 /// 1456 /// Note that this is a very risky transform currently. Speculating 1457 /// instructions like this is most often not desirable. Instead, there is an MI 1458 /// pass which can do it with full awareness of the resource constraints. 1459 /// However, some cases are "obvious" and we should do directly. An example of 1460 /// this is speculating a single, reasonably cheap instruction. 1461 /// 1462 /// There is only one distinct advantage to flattening the CFG at the IR level: 1463 /// it makes very common but simplistic optimizations such as are common in 1464 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1465 /// modeling their effects with easier to reason about SSA value graphs. 1466 /// 1467 /// 1468 /// An illustration of this transform is turning this IR: 1469 /// \code 1470 /// BB: 1471 /// %cmp = icmp ult %x, %y 1472 /// br i1 %cmp, label %EndBB, label %ThenBB 1473 /// ThenBB: 1474 /// %sub = sub %x, %y 1475 /// br label BB2 1476 /// EndBB: 1477 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1478 /// ... 1479 /// \endcode 1480 /// 1481 /// Into this IR: 1482 /// \code 1483 /// BB: 1484 /// %cmp = icmp ult %x, %y 1485 /// %sub = sub %x, %y 1486 /// %cond = select i1 %cmp, 0, %sub 1487 /// ... 1488 /// \endcode 1489 /// 1490 /// \returns true if the conditional block is removed. 1491 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1492 const DataLayout *DL) { 1493 // Be conservative for now. FP select instruction can often be expensive. 1494 Value *BrCond = BI->getCondition(); 1495 if (isa<FCmpInst>(BrCond)) 1496 return false; 1497 1498 BasicBlock *BB = BI->getParent(); 1499 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1500 1501 // If ThenBB is actually on the false edge of the conditional branch, remember 1502 // to swap the select operands later. 1503 bool Invert = false; 1504 if (ThenBB != BI->getSuccessor(0)) { 1505 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1506 Invert = true; 1507 } 1508 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1509 1510 // Keep a count of how many times instructions are used within CondBB when 1511 // they are candidates for sinking into CondBB. Specifically: 1512 // - They are defined in BB, and 1513 // - They have no side effects, and 1514 // - All of their uses are in CondBB. 1515 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1516 1517 unsigned SpeculationCost = 0; 1518 Value *SpeculatedStoreValue = nullptr; 1519 StoreInst *SpeculatedStore = nullptr; 1520 for (BasicBlock::iterator BBI = ThenBB->begin(), 1521 BBE = std::prev(ThenBB->end()); 1522 BBI != BBE; ++BBI) { 1523 Instruction *I = BBI; 1524 // Skip debug info. 1525 if (isa<DbgInfoIntrinsic>(I)) 1526 continue; 1527 1528 // Only speculatively execution a single instruction (not counting the 1529 // terminator) for now. 1530 ++SpeculationCost; 1531 if (SpeculationCost > 1) 1532 return false; 1533 1534 // Don't hoist the instruction if it's unsafe or expensive. 1535 if (!isSafeToSpeculativelyExecute(I, DL) && 1536 !(HoistCondStores && 1537 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1538 EndBB)))) 1539 return false; 1540 if (!SpeculatedStoreValue && 1541 ComputeSpeculationCost(I, DL) > PHINodeFoldingThreshold) 1542 return false; 1543 1544 // Store the store speculation candidate. 1545 if (SpeculatedStoreValue) 1546 SpeculatedStore = cast<StoreInst>(I); 1547 1548 // Do not hoist the instruction if any of its operands are defined but not 1549 // used in BB. The transformation will prevent the operand from 1550 // being sunk into the use block. 1551 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1552 i != e; ++i) { 1553 Instruction *OpI = dyn_cast<Instruction>(*i); 1554 if (!OpI || OpI->getParent() != BB || 1555 OpI->mayHaveSideEffects()) 1556 continue; // Not a candidate for sinking. 1557 1558 ++SinkCandidateUseCounts[OpI]; 1559 } 1560 } 1561 1562 // Consider any sink candidates which are only used in CondBB as costs for 1563 // speculation. Note, while we iterate over a DenseMap here, we are summing 1564 // and so iteration order isn't significant. 1565 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1566 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1567 I != E; ++I) 1568 if (I->first->getNumUses() == I->second) { 1569 ++SpeculationCost; 1570 if (SpeculationCost > 1) 1571 return false; 1572 } 1573 1574 // Check that the PHI nodes can be converted to selects. 1575 bool HaveRewritablePHIs = false; 1576 for (BasicBlock::iterator I = EndBB->begin(); 1577 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1578 Value *OrigV = PN->getIncomingValueForBlock(BB); 1579 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1580 1581 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1582 // Skip PHIs which are trivial. 1583 if (ThenV == OrigV) 1584 continue; 1585 1586 // Don't convert to selects if we could remove undefined behavior instead. 1587 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1588 passingValueIsAlwaysUndefined(ThenV, PN)) 1589 return false; 1590 1591 HaveRewritablePHIs = true; 1592 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1593 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1594 if (!OrigCE && !ThenCE) 1595 continue; // Known safe and cheap. 1596 1597 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) || 1598 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL))) 1599 return false; 1600 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL) : 0; 1601 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL) : 0; 1602 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1603 return false; 1604 1605 // Account for the cost of an unfolded ConstantExpr which could end up 1606 // getting expanded into Instructions. 1607 // FIXME: This doesn't account for how many operations are combined in the 1608 // constant expression. 1609 ++SpeculationCost; 1610 if (SpeculationCost > 1) 1611 return false; 1612 } 1613 1614 // If there are no PHIs to process, bail early. This helps ensure idempotence 1615 // as well. 1616 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1617 return false; 1618 1619 // If we get here, we can hoist the instruction and if-convert. 1620 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1621 1622 // Insert a select of the value of the speculated store. 1623 if (SpeculatedStoreValue) { 1624 IRBuilder<true, NoFolder> Builder(BI); 1625 Value *TrueV = SpeculatedStore->getValueOperand(); 1626 Value *FalseV = SpeculatedStoreValue; 1627 if (Invert) 1628 std::swap(TrueV, FalseV); 1629 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1630 "." + FalseV->getName()); 1631 SpeculatedStore->setOperand(0, S); 1632 } 1633 1634 // Hoist the instructions. 1635 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1636 std::prev(ThenBB->end())); 1637 1638 // Insert selects and rewrite the PHI operands. 1639 IRBuilder<true, NoFolder> Builder(BI); 1640 for (BasicBlock::iterator I = EndBB->begin(); 1641 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1642 unsigned OrigI = PN->getBasicBlockIndex(BB); 1643 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1644 Value *OrigV = PN->getIncomingValue(OrigI); 1645 Value *ThenV = PN->getIncomingValue(ThenI); 1646 1647 // Skip PHIs which are trivial. 1648 if (OrigV == ThenV) 1649 continue; 1650 1651 // Create a select whose true value is the speculatively executed value and 1652 // false value is the preexisting value. Swap them if the branch 1653 // destinations were inverted. 1654 Value *TrueV = ThenV, *FalseV = OrigV; 1655 if (Invert) 1656 std::swap(TrueV, FalseV); 1657 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1658 TrueV->getName() + "." + FalseV->getName()); 1659 PN->setIncomingValue(OrigI, V); 1660 PN->setIncomingValue(ThenI, V); 1661 } 1662 1663 ++NumSpeculations; 1664 return true; 1665 } 1666 1667 /// \returns True if this block contains a CallInst with the NoDuplicate 1668 /// attribute. 1669 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1670 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1671 const CallInst *CI = dyn_cast<CallInst>(I); 1672 if (!CI) 1673 continue; 1674 if (CI->cannotDuplicate()) 1675 return true; 1676 } 1677 return false; 1678 } 1679 1680 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1681 /// across this block. 1682 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1683 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1684 unsigned Size = 0; 1685 1686 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1687 if (isa<DbgInfoIntrinsic>(BBI)) 1688 continue; 1689 if (Size > 10) return false; // Don't clone large BB's. 1690 ++Size; 1691 1692 // We can only support instructions that do not define values that are 1693 // live outside of the current basic block. 1694 for (User *U : BBI->users()) { 1695 Instruction *UI = cast<Instruction>(U); 1696 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1697 } 1698 1699 // Looks ok, continue checking. 1700 } 1701 1702 return true; 1703 } 1704 1705 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1706 /// that is defined in the same block as the branch and if any PHI entries are 1707 /// constants, thread edges corresponding to that entry to be branches to their 1708 /// ultimate destination. 1709 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) { 1710 BasicBlock *BB = BI->getParent(); 1711 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1712 // NOTE: we currently cannot transform this case if the PHI node is used 1713 // outside of the block. 1714 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1715 return false; 1716 1717 // Degenerate case of a single entry PHI. 1718 if (PN->getNumIncomingValues() == 1) { 1719 FoldSingleEntryPHINodes(PN->getParent()); 1720 return true; 1721 } 1722 1723 // Now we know that this block has multiple preds and two succs. 1724 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1725 1726 if (HasNoDuplicateCall(BB)) return false; 1727 1728 // Okay, this is a simple enough basic block. See if any phi values are 1729 // constants. 1730 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1731 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1732 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1733 1734 // Okay, we now know that all edges from PredBB should be revectored to 1735 // branch to RealDest. 1736 BasicBlock *PredBB = PN->getIncomingBlock(i); 1737 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1738 1739 if (RealDest == BB) continue; // Skip self loops. 1740 // Skip if the predecessor's terminator is an indirect branch. 1741 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1742 1743 // The dest block might have PHI nodes, other predecessors and other 1744 // difficult cases. Instead of being smart about this, just insert a new 1745 // block that jumps to the destination block, effectively splitting 1746 // the edge we are about to create. 1747 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1748 RealDest->getName()+".critedge", 1749 RealDest->getParent(), RealDest); 1750 BranchInst::Create(RealDest, EdgeBB); 1751 1752 // Update PHI nodes. 1753 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1754 1755 // BB may have instructions that are being threaded over. Clone these 1756 // instructions into EdgeBB. We know that there will be no uses of the 1757 // cloned instructions outside of EdgeBB. 1758 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1759 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1760 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1761 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1762 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1763 continue; 1764 } 1765 // Clone the instruction. 1766 Instruction *N = BBI->clone(); 1767 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1768 1769 // Update operands due to translation. 1770 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1771 i != e; ++i) { 1772 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1773 if (PI != TranslateMap.end()) 1774 *i = PI->second; 1775 } 1776 1777 // Check for trivial simplification. 1778 if (Value *V = SimplifyInstruction(N, DL)) { 1779 TranslateMap[BBI] = V; 1780 delete N; // Instruction folded away, don't need actual inst 1781 } else { 1782 // Insert the new instruction into its new home. 1783 EdgeBB->getInstList().insert(InsertPt, N); 1784 if (!BBI->use_empty()) 1785 TranslateMap[BBI] = N; 1786 } 1787 } 1788 1789 // Loop over all of the edges from PredBB to BB, changing them to branch 1790 // to EdgeBB instead. 1791 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1792 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1793 if (PredBBTI->getSuccessor(i) == BB) { 1794 BB->removePredecessor(PredBB); 1795 PredBBTI->setSuccessor(i, EdgeBB); 1796 } 1797 1798 // Recurse, simplifying any other constants. 1799 return FoldCondBranchOnPHI(BI, DL) | true; 1800 } 1801 1802 return false; 1803 } 1804 1805 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1806 /// PHI node, see if we can eliminate it. 1807 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) { 1808 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1809 // statement", which has a very simple dominance structure. Basically, we 1810 // are trying to find the condition that is being branched on, which 1811 // subsequently causes this merge to happen. We really want control 1812 // dependence information for this check, but simplifycfg can't keep it up 1813 // to date, and this catches most of the cases we care about anyway. 1814 BasicBlock *BB = PN->getParent(); 1815 BasicBlock *IfTrue, *IfFalse; 1816 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1817 if (!IfCond || 1818 // Don't bother if the branch will be constant folded trivially. 1819 isa<ConstantInt>(IfCond)) 1820 return false; 1821 1822 // Okay, we found that we can merge this two-entry phi node into a select. 1823 // Doing so would require us to fold *all* two entry phi nodes in this block. 1824 // At some point this becomes non-profitable (particularly if the target 1825 // doesn't support cmov's). Only do this transformation if there are two or 1826 // fewer PHI nodes in this block. 1827 unsigned NumPhis = 0; 1828 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1829 if (NumPhis > 2) 1830 return false; 1831 1832 // Loop over the PHI's seeing if we can promote them all to select 1833 // instructions. While we are at it, keep track of the instructions 1834 // that need to be moved to the dominating block. 1835 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1836 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1837 MaxCostVal1 = PHINodeFoldingThreshold; 1838 1839 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1840 PHINode *PN = cast<PHINode>(II++); 1841 if (Value *V = SimplifyInstruction(PN, DL)) { 1842 PN->replaceAllUsesWith(V); 1843 PN->eraseFromParent(); 1844 continue; 1845 } 1846 1847 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1848 MaxCostVal0, DL) || 1849 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1850 MaxCostVal1, DL)) 1851 return false; 1852 } 1853 1854 // If we folded the first phi, PN dangles at this point. Refresh it. If 1855 // we ran out of PHIs then we simplified them all. 1856 PN = dyn_cast<PHINode>(BB->begin()); 1857 if (!PN) return true; 1858 1859 // Don't fold i1 branches on PHIs which contain binary operators. These can 1860 // often be turned into switches and other things. 1861 if (PN->getType()->isIntegerTy(1) && 1862 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1863 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1864 isa<BinaryOperator>(IfCond))) 1865 return false; 1866 1867 // If we all PHI nodes are promotable, check to make sure that all 1868 // instructions in the predecessor blocks can be promoted as well. If 1869 // not, we won't be able to get rid of the control flow, so it's not 1870 // worth promoting to select instructions. 1871 BasicBlock *DomBlock = nullptr; 1872 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1873 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1874 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1875 IfBlock1 = nullptr; 1876 } else { 1877 DomBlock = *pred_begin(IfBlock1); 1878 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1879 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1880 // This is not an aggressive instruction that we can promote. 1881 // Because of this, we won't be able to get rid of the control 1882 // flow, so the xform is not worth it. 1883 return false; 1884 } 1885 } 1886 1887 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1888 IfBlock2 = nullptr; 1889 } else { 1890 DomBlock = *pred_begin(IfBlock2); 1891 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1892 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1893 // This is not an aggressive instruction that we can promote. 1894 // Because of this, we won't be able to get rid of the control 1895 // flow, so the xform is not worth it. 1896 return false; 1897 } 1898 } 1899 1900 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1901 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1902 1903 // If we can still promote the PHI nodes after this gauntlet of tests, 1904 // do all of the PHI's now. 1905 Instruction *InsertPt = DomBlock->getTerminator(); 1906 IRBuilder<true, NoFolder> Builder(InsertPt); 1907 1908 // Move all 'aggressive' instructions, which are defined in the 1909 // conditional parts of the if's up to the dominating block. 1910 if (IfBlock1) 1911 DomBlock->getInstList().splice(InsertPt, 1912 IfBlock1->getInstList(), IfBlock1->begin(), 1913 IfBlock1->getTerminator()); 1914 if (IfBlock2) 1915 DomBlock->getInstList().splice(InsertPt, 1916 IfBlock2->getInstList(), IfBlock2->begin(), 1917 IfBlock2->getTerminator()); 1918 1919 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1920 // Change the PHI node into a select instruction. 1921 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1922 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1923 1924 SelectInst *NV = 1925 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1926 PN->replaceAllUsesWith(NV); 1927 NV->takeName(PN); 1928 PN->eraseFromParent(); 1929 } 1930 1931 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1932 // has been flattened. Change DomBlock to jump directly to our new block to 1933 // avoid other simplifycfg's kicking in on the diamond. 1934 TerminatorInst *OldTI = DomBlock->getTerminator(); 1935 Builder.SetInsertPoint(OldTI); 1936 Builder.CreateBr(BB); 1937 OldTI->eraseFromParent(); 1938 return true; 1939 } 1940 1941 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1942 /// to two returning blocks, try to merge them together into one return, 1943 /// introducing a select if the return values disagree. 1944 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1945 IRBuilder<> &Builder) { 1946 assert(BI->isConditional() && "Must be a conditional branch"); 1947 BasicBlock *TrueSucc = BI->getSuccessor(0); 1948 BasicBlock *FalseSucc = BI->getSuccessor(1); 1949 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1950 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1951 1952 // Check to ensure both blocks are empty (just a return) or optionally empty 1953 // with PHI nodes. If there are other instructions, merging would cause extra 1954 // computation on one path or the other. 1955 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1956 return false; 1957 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1958 return false; 1959 1960 Builder.SetInsertPoint(BI); 1961 // Okay, we found a branch that is going to two return nodes. If 1962 // there is no return value for this function, just change the 1963 // branch into a return. 1964 if (FalseRet->getNumOperands() == 0) { 1965 TrueSucc->removePredecessor(BI->getParent()); 1966 FalseSucc->removePredecessor(BI->getParent()); 1967 Builder.CreateRetVoid(); 1968 EraseTerminatorInstAndDCECond(BI); 1969 return true; 1970 } 1971 1972 // Otherwise, figure out what the true and false return values are 1973 // so we can insert a new select instruction. 1974 Value *TrueValue = TrueRet->getReturnValue(); 1975 Value *FalseValue = FalseRet->getReturnValue(); 1976 1977 // Unwrap any PHI nodes in the return blocks. 1978 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1979 if (TVPN->getParent() == TrueSucc) 1980 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1981 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1982 if (FVPN->getParent() == FalseSucc) 1983 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1984 1985 // In order for this transformation to be safe, we must be able to 1986 // unconditionally execute both operands to the return. This is 1987 // normally the case, but we could have a potentially-trapping 1988 // constant expression that prevents this transformation from being 1989 // safe. 1990 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1991 if (TCV->canTrap()) 1992 return false; 1993 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1994 if (FCV->canTrap()) 1995 return false; 1996 1997 // Okay, we collected all the mapped values and checked them for sanity, and 1998 // defined to really do this transformation. First, update the CFG. 1999 TrueSucc->removePredecessor(BI->getParent()); 2000 FalseSucc->removePredecessor(BI->getParent()); 2001 2002 // Insert select instructions where needed. 2003 Value *BrCond = BI->getCondition(); 2004 if (TrueValue) { 2005 // Insert a select if the results differ. 2006 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2007 } else if (isa<UndefValue>(TrueValue)) { 2008 TrueValue = FalseValue; 2009 } else { 2010 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 2011 FalseValue, "retval"); 2012 } 2013 } 2014 2015 Value *RI = !TrueValue ? 2016 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2017 2018 (void) RI; 2019 2020 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2021 << "\n " << *BI << "NewRet = " << *RI 2022 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 2023 2024 EraseTerminatorInstAndDCECond(BI); 2025 2026 return true; 2027 } 2028 2029 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 2030 /// probabilities of the branch taking each edge. Fills in the two APInt 2031 /// parameters and return true, or returns false if no or invalid metadata was 2032 /// found. 2033 static bool ExtractBranchMetadata(BranchInst *BI, 2034 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2035 assert(BI->isConditional() && 2036 "Looking for probabilities on unconditional branch?"); 2037 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2038 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2039 ConstantInt *CITrue = 2040 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 2041 ConstantInt *CIFalse = 2042 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 2043 if (!CITrue || !CIFalse) return false; 2044 ProbTrue = CITrue->getValue().getZExtValue(); 2045 ProbFalse = CIFalse->getValue().getZExtValue(); 2046 return true; 2047 } 2048 2049 /// checkCSEInPredecessor - Return true if the given instruction is available 2050 /// in its predecessor block. If yes, the instruction will be removed. 2051 /// 2052 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2053 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2054 return false; 2055 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2056 Instruction *PBI = &*I; 2057 // Check whether Inst and PBI generate the same value. 2058 if (Inst->isIdenticalTo(PBI)) { 2059 Inst->replaceAllUsesWith(PBI); 2060 Inst->eraseFromParent(); 2061 return true; 2062 } 2063 } 2064 return false; 2065 } 2066 2067 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 2068 /// predecessor branches to us and one of our successors, fold the block into 2069 /// the predecessor and use logical operations to pick the right destination. 2070 bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL, 2071 unsigned BonusInstThreshold) { 2072 BasicBlock *BB = BI->getParent(); 2073 2074 Instruction *Cond = nullptr; 2075 if (BI->isConditional()) 2076 Cond = dyn_cast<Instruction>(BI->getCondition()); 2077 else { 2078 // For unconditional branch, check for a simple CFG pattern, where 2079 // BB has a single predecessor and BB's successor is also its predecessor's 2080 // successor. If such pattern exisits, check for CSE between BB and its 2081 // predecessor. 2082 if (BasicBlock *PB = BB->getSinglePredecessor()) 2083 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2084 if (PBI->isConditional() && 2085 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2086 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2087 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2088 I != E; ) { 2089 Instruction *Curr = I++; 2090 if (isa<CmpInst>(Curr)) { 2091 Cond = Curr; 2092 break; 2093 } 2094 // Quit if we can't remove this instruction. 2095 if (!checkCSEInPredecessor(Curr, PB)) 2096 return false; 2097 } 2098 } 2099 2100 if (!Cond) 2101 return false; 2102 } 2103 2104 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2105 Cond->getParent() != BB || !Cond->hasOneUse()) 2106 return false; 2107 2108 // Make sure the instruction after the condition is the cond branch. 2109 BasicBlock::iterator CondIt = Cond; ++CondIt; 2110 2111 // Ignore dbg intrinsics. 2112 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2113 2114 if (&*CondIt != BI) 2115 return false; 2116 2117 // Only allow this transformation if computing the condition doesn't involve 2118 // too many instructions and these involved instructions can be executed 2119 // unconditionally. We denote all involved instructions except the condition 2120 // as "bonus instructions", and only allow this transformation when the 2121 // number of the bonus instructions does not exceed a certain threshold. 2122 unsigned NumBonusInsts = 0; 2123 for (auto I = BB->begin(); Cond != I; ++I) { 2124 // Ignore dbg intrinsics. 2125 if (isa<DbgInfoIntrinsic>(I)) 2126 continue; 2127 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I, DL)) 2128 return false; 2129 // I has only one use and can be executed unconditionally. 2130 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2131 if (User == nullptr || User->getParent() != BB) 2132 return false; 2133 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2134 // to use any other instruction, User must be an instruction between next(I) 2135 // and Cond. 2136 ++NumBonusInsts; 2137 // Early exits once we reach the limit. 2138 if (NumBonusInsts > BonusInstThreshold) 2139 return false; 2140 } 2141 2142 // Cond is known to be a compare or binary operator. Check to make sure that 2143 // neither operand is a potentially-trapping constant expression. 2144 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2145 if (CE->canTrap()) 2146 return false; 2147 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2148 if (CE->canTrap()) 2149 return false; 2150 2151 // Finally, don't infinitely unroll conditional loops. 2152 BasicBlock *TrueDest = BI->getSuccessor(0); 2153 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2154 if (TrueDest == BB || FalseDest == BB) 2155 return false; 2156 2157 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2158 BasicBlock *PredBlock = *PI; 2159 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2160 2161 // Check that we have two conditional branches. If there is a PHI node in 2162 // the common successor, verify that the same value flows in from both 2163 // blocks. 2164 SmallVector<PHINode*, 4> PHIs; 2165 if (!PBI || PBI->isUnconditional() || 2166 (BI->isConditional() && 2167 !SafeToMergeTerminators(BI, PBI)) || 2168 (!BI->isConditional() && 2169 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2170 continue; 2171 2172 // Determine if the two branches share a common destination. 2173 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2174 bool InvertPredCond = false; 2175 2176 if (BI->isConditional()) { 2177 if (PBI->getSuccessor(0) == TrueDest) 2178 Opc = Instruction::Or; 2179 else if (PBI->getSuccessor(1) == FalseDest) 2180 Opc = Instruction::And; 2181 else if (PBI->getSuccessor(0) == FalseDest) 2182 Opc = Instruction::And, InvertPredCond = true; 2183 else if (PBI->getSuccessor(1) == TrueDest) 2184 Opc = Instruction::Or, InvertPredCond = true; 2185 else 2186 continue; 2187 } else { 2188 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2189 continue; 2190 } 2191 2192 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2193 IRBuilder<> Builder(PBI); 2194 2195 // If we need to invert the condition in the pred block to match, do so now. 2196 if (InvertPredCond) { 2197 Value *NewCond = PBI->getCondition(); 2198 2199 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2200 CmpInst *CI = cast<CmpInst>(NewCond); 2201 CI->setPredicate(CI->getInversePredicate()); 2202 } else { 2203 NewCond = Builder.CreateNot(NewCond, 2204 PBI->getCondition()->getName()+".not"); 2205 } 2206 2207 PBI->setCondition(NewCond); 2208 PBI->swapSuccessors(); 2209 } 2210 2211 // If we have bonus instructions, clone them into the predecessor block. 2212 // Note that there may be mutliple predecessor blocks, so we cannot move 2213 // bonus instructions to a predecessor block. 2214 ValueToValueMapTy VMap; // maps original values to cloned values 2215 // We already make sure Cond is the last instruction before BI. Therefore, 2216 // every instructions before Cond other than DbgInfoIntrinsic are bonus 2217 // instructions. 2218 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) { 2219 if (isa<DbgInfoIntrinsic>(BonusInst)) 2220 continue; 2221 Instruction *NewBonusInst = BonusInst->clone(); 2222 RemapInstruction(NewBonusInst, VMap, 2223 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2224 VMap[BonusInst] = NewBonusInst; 2225 2226 // If we moved a load, we cannot any longer claim any knowledge about 2227 // its potential value. The previous information might have been valid 2228 // only given the branch precondition. 2229 // For an analogous reason, we must also drop all the metadata whose 2230 // semantics we don't understand. 2231 NewBonusInst->dropUnknownMetadata(LLVMContext::MD_dbg); 2232 2233 PredBlock->getInstList().insert(PBI, NewBonusInst); 2234 NewBonusInst->takeName(BonusInst); 2235 BonusInst->setName(BonusInst->getName() + ".old"); 2236 } 2237 2238 // Clone Cond into the predecessor basic block, and or/and the 2239 // two conditions together. 2240 Instruction *New = Cond->clone(); 2241 RemapInstruction(New, VMap, 2242 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2243 PredBlock->getInstList().insert(PBI, New); 2244 New->takeName(Cond); 2245 Cond->setName(New->getName() + ".old"); 2246 2247 if (BI->isConditional()) { 2248 Instruction *NewCond = 2249 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2250 New, "or.cond")); 2251 PBI->setCondition(NewCond); 2252 2253 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2254 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2255 PredFalseWeight); 2256 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2257 SuccFalseWeight); 2258 SmallVector<uint64_t, 8> NewWeights; 2259 2260 if (PBI->getSuccessor(0) == BB) { 2261 if (PredHasWeights && SuccHasWeights) { 2262 // PBI: br i1 %x, BB, FalseDest 2263 // BI: br i1 %y, TrueDest, FalseDest 2264 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2265 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2266 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2267 // TrueWeight for PBI * FalseWeight for BI. 2268 // We assume that total weights of a BranchInst can fit into 32 bits. 2269 // Therefore, we will not have overflow using 64-bit arithmetic. 2270 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2271 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2272 } 2273 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2274 PBI->setSuccessor(0, TrueDest); 2275 } 2276 if (PBI->getSuccessor(1) == BB) { 2277 if (PredHasWeights && SuccHasWeights) { 2278 // PBI: br i1 %x, TrueDest, BB 2279 // BI: br i1 %y, TrueDest, FalseDest 2280 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2281 // FalseWeight for PBI * TrueWeight for BI. 2282 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2283 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2284 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2285 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2286 } 2287 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2288 PBI->setSuccessor(1, FalseDest); 2289 } 2290 if (NewWeights.size() == 2) { 2291 // Halve the weights if any of them cannot fit in an uint32_t 2292 FitWeights(NewWeights); 2293 2294 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2295 PBI->setMetadata(LLVMContext::MD_prof, 2296 MDBuilder(BI->getContext()). 2297 createBranchWeights(MDWeights)); 2298 } else 2299 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2300 } else { 2301 // Update PHI nodes in the common successors. 2302 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2303 ConstantInt *PBI_C = cast<ConstantInt>( 2304 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2305 assert(PBI_C->getType()->isIntegerTy(1)); 2306 Instruction *MergedCond = nullptr; 2307 if (PBI->getSuccessor(0) == TrueDest) { 2308 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2309 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2310 // is false: !PBI_Cond and BI_Value 2311 Instruction *NotCond = 2312 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2313 "not.cond")); 2314 MergedCond = 2315 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2316 NotCond, New, 2317 "and.cond")); 2318 if (PBI_C->isOne()) 2319 MergedCond = 2320 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2321 PBI->getCondition(), MergedCond, 2322 "or.cond")); 2323 } else { 2324 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2325 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2326 // is false: PBI_Cond and BI_Value 2327 MergedCond = 2328 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2329 PBI->getCondition(), New, 2330 "and.cond")); 2331 if (PBI_C->isOne()) { 2332 Instruction *NotCond = 2333 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2334 "not.cond")); 2335 MergedCond = 2336 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2337 NotCond, MergedCond, 2338 "or.cond")); 2339 } 2340 } 2341 // Update PHI Node. 2342 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2343 MergedCond); 2344 } 2345 // Change PBI from Conditional to Unconditional. 2346 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2347 EraseTerminatorInstAndDCECond(PBI); 2348 PBI = New_PBI; 2349 } 2350 2351 // TODO: If BB is reachable from all paths through PredBlock, then we 2352 // could replace PBI's branch probabilities with BI's. 2353 2354 // Copy any debug value intrinsics into the end of PredBlock. 2355 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2356 if (isa<DbgInfoIntrinsic>(*I)) 2357 I->clone()->insertBefore(PBI); 2358 2359 return true; 2360 } 2361 return false; 2362 } 2363 2364 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2365 /// predecessor of another block, this function tries to simplify it. We know 2366 /// that PBI and BI are both conditional branches, and BI is in one of the 2367 /// successor blocks of PBI - PBI branches to BI. 2368 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2369 assert(PBI->isConditional() && BI->isConditional()); 2370 BasicBlock *BB = BI->getParent(); 2371 2372 // If this block ends with a branch instruction, and if there is a 2373 // predecessor that ends on a branch of the same condition, make 2374 // this conditional branch redundant. 2375 if (PBI->getCondition() == BI->getCondition() && 2376 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2377 // Okay, the outcome of this conditional branch is statically 2378 // knowable. If this block had a single pred, handle specially. 2379 if (BB->getSinglePredecessor()) { 2380 // Turn this into a branch on constant. 2381 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2382 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2383 CondIsTrue)); 2384 return true; // Nuke the branch on constant. 2385 } 2386 2387 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2388 // in the constant and simplify the block result. Subsequent passes of 2389 // simplifycfg will thread the block. 2390 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2391 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2392 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2393 std::distance(PB, PE), 2394 BI->getCondition()->getName() + ".pr", 2395 BB->begin()); 2396 // Okay, we're going to insert the PHI node. Since PBI is not the only 2397 // predecessor, compute the PHI'd conditional value for all of the preds. 2398 // Any predecessor where the condition is not computable we keep symbolic. 2399 for (pred_iterator PI = PB; PI != PE; ++PI) { 2400 BasicBlock *P = *PI; 2401 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2402 PBI != BI && PBI->isConditional() && 2403 PBI->getCondition() == BI->getCondition() && 2404 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2405 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2406 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2407 CondIsTrue), P); 2408 } else { 2409 NewPN->addIncoming(BI->getCondition(), P); 2410 } 2411 } 2412 2413 BI->setCondition(NewPN); 2414 return true; 2415 } 2416 } 2417 2418 // If this is a conditional branch in an empty block, and if any 2419 // predecessors are a conditional branch to one of our destinations, 2420 // fold the conditions into logical ops and one cond br. 2421 BasicBlock::iterator BBI = BB->begin(); 2422 // Ignore dbg intrinsics. 2423 while (isa<DbgInfoIntrinsic>(BBI)) 2424 ++BBI; 2425 if (&*BBI != BI) 2426 return false; 2427 2428 2429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2430 if (CE->canTrap()) 2431 return false; 2432 2433 int PBIOp, BIOp; 2434 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2435 PBIOp = BIOp = 0; 2436 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2437 PBIOp = 0, BIOp = 1; 2438 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2439 PBIOp = 1, BIOp = 0; 2440 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2441 PBIOp = BIOp = 1; 2442 else 2443 return false; 2444 2445 // Check to make sure that the other destination of this branch 2446 // isn't BB itself. If so, this is an infinite loop that will 2447 // keep getting unwound. 2448 if (PBI->getSuccessor(PBIOp) == BB) 2449 return false; 2450 2451 // Do not perform this transformation if it would require 2452 // insertion of a large number of select instructions. For targets 2453 // without predication/cmovs, this is a big pessimization. 2454 2455 // Also do not perform this transformation if any phi node in the common 2456 // destination block can trap when reached by BB or PBB (PR17073). In that 2457 // case, it would be unsafe to hoist the operation into a select instruction. 2458 2459 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2460 unsigned NumPhis = 0; 2461 for (BasicBlock::iterator II = CommonDest->begin(); 2462 isa<PHINode>(II); ++II, ++NumPhis) { 2463 if (NumPhis > 2) // Disable this xform. 2464 return false; 2465 2466 PHINode *PN = cast<PHINode>(II); 2467 Value *BIV = PN->getIncomingValueForBlock(BB); 2468 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2469 if (CE->canTrap()) 2470 return false; 2471 2472 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2473 Value *PBIV = PN->getIncomingValue(PBBIdx); 2474 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2475 if (CE->canTrap()) 2476 return false; 2477 } 2478 2479 // Finally, if everything is ok, fold the branches to logical ops. 2480 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2481 2482 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2483 << "AND: " << *BI->getParent()); 2484 2485 2486 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2487 // branch in it, where one edge (OtherDest) goes back to itself but the other 2488 // exits. We don't *know* that the program avoids the infinite loop 2489 // (even though that seems likely). If we do this xform naively, we'll end up 2490 // recursively unpeeling the loop. Since we know that (after the xform is 2491 // done) that the block *is* infinite if reached, we just make it an obviously 2492 // infinite loop with no cond branch. 2493 if (OtherDest == BB) { 2494 // Insert it at the end of the function, because it's either code, 2495 // or it won't matter if it's hot. :) 2496 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2497 "infloop", BB->getParent()); 2498 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2499 OtherDest = InfLoopBlock; 2500 } 2501 2502 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2503 2504 // BI may have other predecessors. Because of this, we leave 2505 // it alone, but modify PBI. 2506 2507 // Make sure we get to CommonDest on True&True directions. 2508 Value *PBICond = PBI->getCondition(); 2509 IRBuilder<true, NoFolder> Builder(PBI); 2510 if (PBIOp) 2511 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2512 2513 Value *BICond = BI->getCondition(); 2514 if (BIOp) 2515 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2516 2517 // Merge the conditions. 2518 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2519 2520 // Modify PBI to branch on the new condition to the new dests. 2521 PBI->setCondition(Cond); 2522 PBI->setSuccessor(0, CommonDest); 2523 PBI->setSuccessor(1, OtherDest); 2524 2525 // Update branch weight for PBI. 2526 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2527 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2528 PredFalseWeight); 2529 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2530 SuccFalseWeight); 2531 if (PredHasWeights && SuccHasWeights) { 2532 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2533 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2534 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2535 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2536 // The weight to CommonDest should be PredCommon * SuccTotal + 2537 // PredOther * SuccCommon. 2538 // The weight to OtherDest should be PredOther * SuccOther. 2539 SmallVector<uint64_t, 2> NewWeights; 2540 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2541 PredOther * SuccCommon); 2542 NewWeights.push_back(PredOther * SuccOther); 2543 // Halve the weights if any of them cannot fit in an uint32_t 2544 FitWeights(NewWeights); 2545 2546 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2547 PBI->setMetadata(LLVMContext::MD_prof, 2548 MDBuilder(BI->getContext()). 2549 createBranchWeights(MDWeights)); 2550 } 2551 2552 // OtherDest may have phi nodes. If so, add an entry from PBI's 2553 // block that are identical to the entries for BI's block. 2554 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2555 2556 // We know that the CommonDest already had an edge from PBI to 2557 // it. If it has PHIs though, the PHIs may have different 2558 // entries for BB and PBI's BB. If so, insert a select to make 2559 // them agree. 2560 PHINode *PN; 2561 for (BasicBlock::iterator II = CommonDest->begin(); 2562 (PN = dyn_cast<PHINode>(II)); ++II) { 2563 Value *BIV = PN->getIncomingValueForBlock(BB); 2564 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2565 Value *PBIV = PN->getIncomingValue(PBBIdx); 2566 if (BIV != PBIV) { 2567 // Insert a select in PBI to pick the right value. 2568 Value *NV = cast<SelectInst> 2569 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2570 PN->setIncomingValue(PBBIdx, NV); 2571 } 2572 } 2573 2574 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2575 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2576 2577 // This basic block is probably dead. We know it has at least 2578 // one fewer predecessor. 2579 return true; 2580 } 2581 2582 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2583 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2584 // Takes care of updating the successors and removing the old terminator. 2585 // Also makes sure not to introduce new successors by assuming that edges to 2586 // non-successor TrueBBs and FalseBBs aren't reachable. 2587 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2588 BasicBlock *TrueBB, BasicBlock *FalseBB, 2589 uint32_t TrueWeight, 2590 uint32_t FalseWeight){ 2591 // Remove any superfluous successor edges from the CFG. 2592 // First, figure out which successors to preserve. 2593 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2594 // successor. 2595 BasicBlock *KeepEdge1 = TrueBB; 2596 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2597 2598 // Then remove the rest. 2599 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2600 BasicBlock *Succ = OldTerm->getSuccessor(I); 2601 // Make sure only to keep exactly one copy of each edge. 2602 if (Succ == KeepEdge1) 2603 KeepEdge1 = nullptr; 2604 else if (Succ == KeepEdge2) 2605 KeepEdge2 = nullptr; 2606 else 2607 Succ->removePredecessor(OldTerm->getParent()); 2608 } 2609 2610 IRBuilder<> Builder(OldTerm); 2611 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2612 2613 // Insert an appropriate new terminator. 2614 if (!KeepEdge1 && !KeepEdge2) { 2615 if (TrueBB == FalseBB) 2616 // We were only looking for one successor, and it was present. 2617 // Create an unconditional branch to it. 2618 Builder.CreateBr(TrueBB); 2619 else { 2620 // We found both of the successors we were looking for. 2621 // Create a conditional branch sharing the condition of the select. 2622 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2623 if (TrueWeight != FalseWeight) 2624 NewBI->setMetadata(LLVMContext::MD_prof, 2625 MDBuilder(OldTerm->getContext()). 2626 createBranchWeights(TrueWeight, FalseWeight)); 2627 } 2628 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2629 // Neither of the selected blocks were successors, so this 2630 // terminator must be unreachable. 2631 new UnreachableInst(OldTerm->getContext(), OldTerm); 2632 } else { 2633 // One of the selected values was a successor, but the other wasn't. 2634 // Insert an unconditional branch to the one that was found; 2635 // the edge to the one that wasn't must be unreachable. 2636 if (!KeepEdge1) 2637 // Only TrueBB was found. 2638 Builder.CreateBr(TrueBB); 2639 else 2640 // Only FalseBB was found. 2641 Builder.CreateBr(FalseBB); 2642 } 2643 2644 EraseTerminatorInstAndDCECond(OldTerm); 2645 return true; 2646 } 2647 2648 // SimplifySwitchOnSelect - Replaces 2649 // (switch (select cond, X, Y)) on constant X, Y 2650 // with a branch - conditional if X and Y lead to distinct BBs, 2651 // unconditional otherwise. 2652 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2653 // Check for constant integer values in the select. 2654 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2655 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2656 if (!TrueVal || !FalseVal) 2657 return false; 2658 2659 // Find the relevant condition and destinations. 2660 Value *Condition = Select->getCondition(); 2661 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2662 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2663 2664 // Get weight for TrueBB and FalseBB. 2665 uint32_t TrueWeight = 0, FalseWeight = 0; 2666 SmallVector<uint64_t, 8> Weights; 2667 bool HasWeights = HasBranchWeights(SI); 2668 if (HasWeights) { 2669 GetBranchWeights(SI, Weights); 2670 if (Weights.size() == 1 + SI->getNumCases()) { 2671 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2672 getSuccessorIndex()]; 2673 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2674 getSuccessorIndex()]; 2675 } 2676 } 2677 2678 // Perform the actual simplification. 2679 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2680 TrueWeight, FalseWeight); 2681 } 2682 2683 // SimplifyIndirectBrOnSelect - Replaces 2684 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2685 // blockaddress(@fn, BlockB))) 2686 // with 2687 // (br cond, BlockA, BlockB). 2688 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2689 // Check that both operands of the select are block addresses. 2690 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2691 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2692 if (!TBA || !FBA) 2693 return false; 2694 2695 // Extract the actual blocks. 2696 BasicBlock *TrueBB = TBA->getBasicBlock(); 2697 BasicBlock *FalseBB = FBA->getBasicBlock(); 2698 2699 // Perform the actual simplification. 2700 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2701 0, 0); 2702 } 2703 2704 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2705 /// instruction (a seteq/setne with a constant) as the only instruction in a 2706 /// block that ends with an uncond branch. We are looking for a very specific 2707 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2708 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2709 /// default value goes to an uncond block with a seteq in it, we get something 2710 /// like: 2711 /// 2712 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2713 /// DEFAULT: 2714 /// %tmp = icmp eq i8 %A, 92 2715 /// br label %end 2716 /// end: 2717 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2718 /// 2719 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2720 /// the PHI, merging the third icmp into the switch. 2721 static bool TryToSimplifyUncondBranchWithICmpInIt( 2722 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2723 unsigned BonusInstThreshold, const DataLayout *DL, AssumptionCache *AC) { 2724 BasicBlock *BB = ICI->getParent(); 2725 2726 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2727 // complex. 2728 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2729 2730 Value *V = ICI->getOperand(0); 2731 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2732 2733 // The pattern we're looking for is where our only predecessor is a switch on 2734 // 'V' and this block is the default case for the switch. In this case we can 2735 // fold the compared value into the switch to simplify things. 2736 BasicBlock *Pred = BB->getSinglePredecessor(); 2737 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 2738 2739 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2740 if (SI->getCondition() != V) 2741 return false; 2742 2743 // If BB is reachable on a non-default case, then we simply know the value of 2744 // V in this block. Substitute it and constant fold the icmp instruction 2745 // away. 2746 if (SI->getDefaultDest() != BB) { 2747 ConstantInt *VVal = SI->findCaseDest(BB); 2748 assert(VVal && "Should have a unique destination value"); 2749 ICI->setOperand(0, VVal); 2750 2751 if (Value *V = SimplifyInstruction(ICI, DL)) { 2752 ICI->replaceAllUsesWith(V); 2753 ICI->eraseFromParent(); 2754 } 2755 // BB is now empty, so it is likely to simplify away. 2756 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 2757 } 2758 2759 // Ok, the block is reachable from the default dest. If the constant we're 2760 // comparing exists in one of the other edges, then we can constant fold ICI 2761 // and zap it. 2762 if (SI->findCaseValue(Cst) != SI->case_default()) { 2763 Value *V; 2764 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2765 V = ConstantInt::getFalse(BB->getContext()); 2766 else 2767 V = ConstantInt::getTrue(BB->getContext()); 2768 2769 ICI->replaceAllUsesWith(V); 2770 ICI->eraseFromParent(); 2771 // BB is now empty, so it is likely to simplify away. 2772 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 2773 } 2774 2775 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2776 // the block. 2777 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2778 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 2779 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 2780 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2781 return false; 2782 2783 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2784 // true in the PHI. 2785 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2786 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2787 2788 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2789 std::swap(DefaultCst, NewCst); 2790 2791 // Replace ICI (which is used by the PHI for the default value) with true or 2792 // false depending on if it is EQ or NE. 2793 ICI->replaceAllUsesWith(DefaultCst); 2794 ICI->eraseFromParent(); 2795 2796 // Okay, the switch goes to this block on a default value. Add an edge from 2797 // the switch to the merge point on the compared value. 2798 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2799 BB->getParent(), BB); 2800 SmallVector<uint64_t, 8> Weights; 2801 bool HasWeights = HasBranchWeights(SI); 2802 if (HasWeights) { 2803 GetBranchWeights(SI, Weights); 2804 if (Weights.size() == 1 + SI->getNumCases()) { 2805 // Split weight for default case to case for "Cst". 2806 Weights[0] = (Weights[0]+1) >> 1; 2807 Weights.push_back(Weights[0]); 2808 2809 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2810 SI->setMetadata(LLVMContext::MD_prof, 2811 MDBuilder(SI->getContext()). 2812 createBranchWeights(MDWeights)); 2813 } 2814 } 2815 SI->addCase(Cst, NewBB); 2816 2817 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2818 Builder.SetInsertPoint(NewBB); 2819 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2820 Builder.CreateBr(SuccBlock); 2821 PHIUse->addIncoming(NewCst, NewBB); 2822 return true; 2823 } 2824 2825 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2826 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2827 /// fold it into a switch instruction if so. 2828 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL, 2829 IRBuilder<> &Builder) { 2830 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2831 if (!Cond) return false; 2832 2833 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2834 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2835 // 'setne's and'ed together, collect them. 2836 2837 // Try to gather values from a chain of and/or to be turned into a switch 2838 ConstantComparesGatherer ConstantCompare(Cond, DL); 2839 // Unpack the result 2840 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals; 2841 Value *CompVal = ConstantCompare.CompValue; 2842 unsigned UsedICmps = ConstantCompare.UsedICmps; 2843 Value *ExtraCase = ConstantCompare.Extra; 2844 2845 // If we didn't have a multiply compared value, fail. 2846 if (!CompVal) return false; 2847 2848 // Avoid turning single icmps into a switch. 2849 if (UsedICmps <= 1) 2850 return false; 2851 2852 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 2853 2854 // There might be duplicate constants in the list, which the switch 2855 // instruction can't handle, remove them now. 2856 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2857 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2858 2859 // If Extra was used, we require at least two switch values to do the 2860 // transformation. A switch with one value is just an cond branch. 2861 if (ExtraCase && Values.size() < 2) return false; 2862 2863 // TODO: Preserve branch weight metadata, similarly to how 2864 // FoldValueComparisonIntoPredecessors preserves it. 2865 2866 // Figure out which block is which destination. 2867 BasicBlock *DefaultBB = BI->getSuccessor(1); 2868 BasicBlock *EdgeBB = BI->getSuccessor(0); 2869 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2870 2871 BasicBlock *BB = BI->getParent(); 2872 2873 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2874 << " cases into SWITCH. BB is:\n" << *BB); 2875 2876 // If there are any extra values that couldn't be folded into the switch 2877 // then we evaluate them with an explicit branch first. Split the block 2878 // right before the condbr to handle it. 2879 if (ExtraCase) { 2880 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2881 // Remove the uncond branch added to the old block. 2882 TerminatorInst *OldTI = BB->getTerminator(); 2883 Builder.SetInsertPoint(OldTI); 2884 2885 if (TrueWhenEqual) 2886 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2887 else 2888 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2889 2890 OldTI->eraseFromParent(); 2891 2892 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2893 // for the edge we just added. 2894 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2895 2896 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2897 << "\nEXTRABB = " << *BB); 2898 BB = NewBB; 2899 } 2900 2901 Builder.SetInsertPoint(BI); 2902 // Convert pointer to int before we switch. 2903 if (CompVal->getType()->isPointerTy()) { 2904 assert(DL && "Cannot switch on pointer without DataLayout"); 2905 CompVal = Builder.CreatePtrToInt(CompVal, 2906 DL->getIntPtrType(CompVal->getType()), 2907 "magicptr"); 2908 } 2909 2910 // Create the new switch instruction now. 2911 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2912 2913 // Add all of the 'cases' to the switch instruction. 2914 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2915 New->addCase(Values[i], EdgeBB); 2916 2917 // We added edges from PI to the EdgeBB. As such, if there were any 2918 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2919 // the number of edges added. 2920 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2921 isa<PHINode>(BBI); ++BBI) { 2922 PHINode *PN = cast<PHINode>(BBI); 2923 Value *InVal = PN->getIncomingValueForBlock(BB); 2924 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2925 PN->addIncoming(InVal, BB); 2926 } 2927 2928 // Erase the old branch instruction. 2929 EraseTerminatorInstAndDCECond(BI); 2930 2931 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2932 return true; 2933 } 2934 2935 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2936 // If this is a trivial landing pad that just continues unwinding the caught 2937 // exception then zap the landing pad, turning its invokes into calls. 2938 BasicBlock *BB = RI->getParent(); 2939 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2940 if (RI->getValue() != LPInst) 2941 // Not a landing pad, or the resume is not unwinding the exception that 2942 // caused control to branch here. 2943 return false; 2944 2945 // Check that there are no other instructions except for debug intrinsics. 2946 BasicBlock::iterator I = LPInst, E = RI; 2947 while (++I != E) 2948 if (!isa<DbgInfoIntrinsic>(I)) 2949 return false; 2950 2951 // Turn all invokes that unwind here into calls and delete the basic block. 2952 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2953 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2954 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2955 // Insert a call instruction before the invoke. 2956 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2957 Call->takeName(II); 2958 Call->setCallingConv(II->getCallingConv()); 2959 Call->setAttributes(II->getAttributes()); 2960 Call->setDebugLoc(II->getDebugLoc()); 2961 2962 // Anything that used the value produced by the invoke instruction now uses 2963 // the value produced by the call instruction. Note that we do this even 2964 // for void functions and calls with no uses so that the callgraph edge is 2965 // updated. 2966 II->replaceAllUsesWith(Call); 2967 BB->removePredecessor(II->getParent()); 2968 2969 // Insert a branch to the normal destination right before the invoke. 2970 BranchInst::Create(II->getNormalDest(), II); 2971 2972 // Finally, delete the invoke instruction! 2973 II->eraseFromParent(); 2974 } 2975 2976 // The landingpad is now unreachable. Zap it. 2977 BB->eraseFromParent(); 2978 return true; 2979 } 2980 2981 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2982 BasicBlock *BB = RI->getParent(); 2983 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2984 2985 // Find predecessors that end with branches. 2986 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2987 SmallVector<BranchInst*, 8> CondBranchPreds; 2988 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2989 BasicBlock *P = *PI; 2990 TerminatorInst *PTI = P->getTerminator(); 2991 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2992 if (BI->isUnconditional()) 2993 UncondBranchPreds.push_back(P); 2994 else 2995 CondBranchPreds.push_back(BI); 2996 } 2997 } 2998 2999 // If we found some, do the transformation! 3000 if (!UncondBranchPreds.empty() && DupRet) { 3001 while (!UncondBranchPreds.empty()) { 3002 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3003 DEBUG(dbgs() << "FOLDING: " << *BB 3004 << "INTO UNCOND BRANCH PRED: " << *Pred); 3005 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3006 } 3007 3008 // If we eliminated all predecessors of the block, delete the block now. 3009 if (pred_empty(BB)) 3010 // We know there are no successors, so just nuke the block. 3011 BB->eraseFromParent(); 3012 3013 return true; 3014 } 3015 3016 // Check out all of the conditional branches going to this return 3017 // instruction. If any of them just select between returns, change the 3018 // branch itself into a select/return pair. 3019 while (!CondBranchPreds.empty()) { 3020 BranchInst *BI = CondBranchPreds.pop_back_val(); 3021 3022 // Check to see if the non-BB successor is also a return block. 3023 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3024 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3025 SimplifyCondBranchToTwoReturns(BI, Builder)) 3026 return true; 3027 } 3028 return false; 3029 } 3030 3031 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3032 BasicBlock *BB = UI->getParent(); 3033 3034 bool Changed = false; 3035 3036 // If there are any instructions immediately before the unreachable that can 3037 // be removed, do so. 3038 while (UI != BB->begin()) { 3039 BasicBlock::iterator BBI = UI; 3040 --BBI; 3041 // Do not delete instructions that can have side effects which might cause 3042 // the unreachable to not be reachable; specifically, calls and volatile 3043 // operations may have this effect. 3044 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3045 3046 if (BBI->mayHaveSideEffects()) { 3047 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 3048 if (SI->isVolatile()) 3049 break; 3050 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 3051 if (LI->isVolatile()) 3052 break; 3053 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3054 if (RMWI->isVolatile()) 3055 break; 3056 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3057 if (CXI->isVolatile()) 3058 break; 3059 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3060 !isa<LandingPadInst>(BBI)) { 3061 break; 3062 } 3063 // Note that deleting LandingPad's here is in fact okay, although it 3064 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3065 // all the predecessors of this block will be the unwind edges of Invokes, 3066 // and we can therefore guarantee this block will be erased. 3067 } 3068 3069 // Delete this instruction (any uses are guaranteed to be dead) 3070 if (!BBI->use_empty()) 3071 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3072 BBI->eraseFromParent(); 3073 Changed = true; 3074 } 3075 3076 // If the unreachable instruction is the first in the block, take a gander 3077 // at all of the predecessors of this instruction, and simplify them. 3078 if (&BB->front() != UI) return Changed; 3079 3080 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3081 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3082 TerminatorInst *TI = Preds[i]->getTerminator(); 3083 IRBuilder<> Builder(TI); 3084 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3085 if (BI->isUnconditional()) { 3086 if (BI->getSuccessor(0) == BB) { 3087 new UnreachableInst(TI->getContext(), TI); 3088 TI->eraseFromParent(); 3089 Changed = true; 3090 } 3091 } else { 3092 if (BI->getSuccessor(0) == BB) { 3093 Builder.CreateBr(BI->getSuccessor(1)); 3094 EraseTerminatorInstAndDCECond(BI); 3095 } else if (BI->getSuccessor(1) == BB) { 3096 Builder.CreateBr(BI->getSuccessor(0)); 3097 EraseTerminatorInstAndDCECond(BI); 3098 Changed = true; 3099 } 3100 } 3101 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3102 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3103 i != e; ++i) 3104 if (i.getCaseSuccessor() == BB) { 3105 BB->removePredecessor(SI->getParent()); 3106 SI->removeCase(i); 3107 --i; --e; 3108 Changed = true; 3109 } 3110 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3111 if (II->getUnwindDest() == BB) { 3112 // Convert the invoke to a call instruction. This would be a good 3113 // place to note that the call does not throw though. 3114 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3115 II->removeFromParent(); // Take out of symbol table 3116 3117 // Insert the call now... 3118 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3119 Builder.SetInsertPoint(BI); 3120 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3121 Args, II->getName()); 3122 CI->setCallingConv(II->getCallingConv()); 3123 CI->setAttributes(II->getAttributes()); 3124 // If the invoke produced a value, the call does now instead. 3125 II->replaceAllUsesWith(CI); 3126 delete II; 3127 Changed = true; 3128 } 3129 } 3130 } 3131 3132 // If this block is now dead, remove it. 3133 if (pred_empty(BB) && 3134 BB != &BB->getParent()->getEntryBlock()) { 3135 // We know there are no successors, so just nuke the block. 3136 BB->eraseFromParent(); 3137 return true; 3138 } 3139 3140 return Changed; 3141 } 3142 3143 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3144 assert(Cases.size() >= 1); 3145 3146 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3147 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3148 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3149 return false; 3150 } 3151 return true; 3152 } 3153 3154 /// Turn a switch with two reachable destinations into an integer range 3155 /// comparison and branch. 3156 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3157 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3158 3159 bool HasDefault = 3160 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3161 3162 // Partition the cases into two sets with different destinations. 3163 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3164 BasicBlock *DestB = nullptr; 3165 SmallVector <ConstantInt *, 16> CasesA; 3166 SmallVector <ConstantInt *, 16> CasesB; 3167 3168 for (SwitchInst::CaseIt I : SI->cases()) { 3169 BasicBlock *Dest = I.getCaseSuccessor(); 3170 if (!DestA) DestA = Dest; 3171 if (Dest == DestA) { 3172 CasesA.push_back(I.getCaseValue()); 3173 continue; 3174 } 3175 if (!DestB) DestB = Dest; 3176 if (Dest == DestB) { 3177 CasesB.push_back(I.getCaseValue()); 3178 continue; 3179 } 3180 return false; // More than two destinations. 3181 } 3182 3183 assert(DestA && DestB && "Single-destination switch should have been folded."); 3184 assert(DestA != DestB); 3185 assert(DestB != SI->getDefaultDest()); 3186 assert(!CasesB.empty() && "There must be non-default cases."); 3187 assert(!CasesA.empty() || HasDefault); 3188 3189 // Figure out if one of the sets of cases form a contiguous range. 3190 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3191 BasicBlock *ContiguousDest = nullptr; 3192 BasicBlock *OtherDest = nullptr; 3193 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3194 ContiguousCases = &CasesA; 3195 ContiguousDest = DestA; 3196 OtherDest = DestB; 3197 } else if (CasesAreContiguous(CasesB)) { 3198 ContiguousCases = &CasesB; 3199 ContiguousDest = DestB; 3200 OtherDest = DestA; 3201 } else 3202 return false; 3203 3204 // Start building the compare and branch. 3205 3206 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3207 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3208 3209 Value *Sub = SI->getCondition(); 3210 if (!Offset->isNullValue()) 3211 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3212 3213 Value *Cmp; 3214 // If NumCases overflowed, then all possible values jump to the successor. 3215 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3216 Cmp = ConstantInt::getTrue(SI->getContext()); 3217 else 3218 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3219 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3220 3221 // Update weight for the newly-created conditional branch. 3222 if (HasBranchWeights(SI)) { 3223 SmallVector<uint64_t, 8> Weights; 3224 GetBranchWeights(SI, Weights); 3225 if (Weights.size() == 1 + SI->getNumCases()) { 3226 uint64_t TrueWeight = 0; 3227 uint64_t FalseWeight = 0; 3228 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3229 if (SI->getSuccessor(I) == ContiguousDest) 3230 TrueWeight += Weights[I]; 3231 else 3232 FalseWeight += Weights[I]; 3233 } 3234 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3235 TrueWeight /= 2; 3236 FalseWeight /= 2; 3237 } 3238 NewBI->setMetadata(LLVMContext::MD_prof, 3239 MDBuilder(SI->getContext()).createBranchWeights( 3240 (uint32_t)TrueWeight, (uint32_t)FalseWeight)); 3241 } 3242 } 3243 3244 // Prune obsolete incoming values off the successors' PHI nodes. 3245 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3246 unsigned PreviousEdges = ContiguousCases->size(); 3247 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges; 3248 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3249 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3250 } 3251 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3252 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3253 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges; 3254 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3255 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3256 } 3257 3258 // Drop the switch. 3259 SI->eraseFromParent(); 3260 3261 return true; 3262 } 3263 3264 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3265 /// and use it to remove dead cases. 3266 static bool EliminateDeadSwitchCases(SwitchInst *SI, const DataLayout *DL, 3267 AssumptionCache *AC) { 3268 Value *Cond = SI->getCondition(); 3269 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3270 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3271 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3272 3273 // Gather dead cases. 3274 SmallVector<ConstantInt*, 8> DeadCases; 3275 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3276 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3277 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3278 DeadCases.push_back(I.getCaseValue()); 3279 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3280 << I.getCaseValue() << "' is dead.\n"); 3281 } 3282 } 3283 3284 SmallVector<uint64_t, 8> Weights; 3285 bool HasWeight = HasBranchWeights(SI); 3286 if (HasWeight) { 3287 GetBranchWeights(SI, Weights); 3288 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3289 } 3290 3291 // Remove dead cases from the switch. 3292 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3293 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3294 assert(Case != SI->case_default() && 3295 "Case was not found. Probably mistake in DeadCases forming."); 3296 if (HasWeight) { 3297 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3298 Weights.pop_back(); 3299 } 3300 3301 // Prune unused values from PHI nodes. 3302 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3303 SI->removeCase(Case); 3304 } 3305 if (HasWeight && Weights.size() >= 2) { 3306 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3307 SI->setMetadata(LLVMContext::MD_prof, 3308 MDBuilder(SI->getParent()->getContext()). 3309 createBranchWeights(MDWeights)); 3310 } 3311 3312 return !DeadCases.empty(); 3313 } 3314 3315 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3316 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3317 /// by an unconditional branch), look at the phi node for BB in the successor 3318 /// block and see if the incoming value is equal to CaseValue. If so, return 3319 /// the phi node, and set PhiIndex to BB's index in the phi node. 3320 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3321 BasicBlock *BB, 3322 int *PhiIndex) { 3323 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3324 return nullptr; // BB must be empty to be a candidate for simplification. 3325 if (!BB->getSinglePredecessor()) 3326 return nullptr; // BB must be dominated by the switch. 3327 3328 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3329 if (!Branch || !Branch->isUnconditional()) 3330 return nullptr; // Terminator must be unconditional branch. 3331 3332 BasicBlock *Succ = Branch->getSuccessor(0); 3333 3334 BasicBlock::iterator I = Succ->begin(); 3335 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3336 int Idx = PHI->getBasicBlockIndex(BB); 3337 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3338 3339 Value *InValue = PHI->getIncomingValue(Idx); 3340 if (InValue != CaseValue) continue; 3341 3342 *PhiIndex = Idx; 3343 return PHI; 3344 } 3345 3346 return nullptr; 3347 } 3348 3349 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3350 /// instruction to a phi node dominated by the switch, if that would mean that 3351 /// some of the destination blocks of the switch can be folded away. 3352 /// Returns true if a change is made. 3353 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3354 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3355 ForwardingNodesMap ForwardingNodes; 3356 3357 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3358 ConstantInt *CaseValue = I.getCaseValue(); 3359 BasicBlock *CaseDest = I.getCaseSuccessor(); 3360 3361 int PhiIndex; 3362 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3363 &PhiIndex); 3364 if (!PHI) continue; 3365 3366 ForwardingNodes[PHI].push_back(PhiIndex); 3367 } 3368 3369 bool Changed = false; 3370 3371 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3372 E = ForwardingNodes.end(); I != E; ++I) { 3373 PHINode *Phi = I->first; 3374 SmallVectorImpl<int> &Indexes = I->second; 3375 3376 if (Indexes.size() < 2) continue; 3377 3378 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3379 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3380 Changed = true; 3381 } 3382 3383 return Changed; 3384 } 3385 3386 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3387 /// initializing an array of constants like C. 3388 static bool ValidLookupTableConstant(Constant *C) { 3389 if (C->isThreadDependent()) 3390 return false; 3391 if (C->isDLLImportDependent()) 3392 return false; 3393 3394 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3395 return CE->isGEPWithNoNotionalOverIndexing(); 3396 3397 return isa<ConstantFP>(C) || 3398 isa<ConstantInt>(C) || 3399 isa<ConstantPointerNull>(C) || 3400 isa<GlobalValue>(C) || 3401 isa<UndefValue>(C); 3402 } 3403 3404 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3405 /// its constant value in ConstantPool, returning 0 if it's not there. 3406 static Constant *LookupConstant(Value *V, 3407 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3408 if (Constant *C = dyn_cast<Constant>(V)) 3409 return C; 3410 return ConstantPool.lookup(V); 3411 } 3412 3413 /// ConstantFold - Try to fold instruction I into a constant. This works for 3414 /// simple instructions such as binary operations where both operands are 3415 /// constant or can be replaced by constants from the ConstantPool. Returns the 3416 /// resulting constant on success, 0 otherwise. 3417 static Constant * 3418 ConstantFold(Instruction *I, 3419 const SmallDenseMap<Value *, Constant *> &ConstantPool, 3420 const DataLayout *DL) { 3421 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3422 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3423 if (!A) 3424 return nullptr; 3425 if (A->isAllOnesValue()) 3426 return LookupConstant(Select->getTrueValue(), ConstantPool); 3427 if (A->isNullValue()) 3428 return LookupConstant(Select->getFalseValue(), ConstantPool); 3429 return nullptr; 3430 } 3431 3432 SmallVector<Constant *, 4> COps; 3433 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3434 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3435 COps.push_back(A); 3436 else 3437 return nullptr; 3438 } 3439 3440 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) 3441 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3442 COps[1], DL); 3443 3444 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 3445 } 3446 3447 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3448 /// at the common destination basic block, *CommonDest, for one of the case 3449 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3450 /// case), of a switch instruction SI. 3451 static bool 3452 GetCaseResults(SwitchInst *SI, 3453 ConstantInt *CaseVal, 3454 BasicBlock *CaseDest, 3455 BasicBlock **CommonDest, 3456 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res, 3457 const DataLayout *DL) { 3458 // The block from which we enter the common destination. 3459 BasicBlock *Pred = SI->getParent(); 3460 3461 // If CaseDest is empty except for some side-effect free instructions through 3462 // which we can constant-propagate the CaseVal, continue to its successor. 3463 SmallDenseMap<Value*, Constant*> ConstantPool; 3464 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3465 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3466 ++I) { 3467 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3468 // If the terminator is a simple branch, continue to the next block. 3469 if (T->getNumSuccessors() != 1) 3470 return false; 3471 Pred = CaseDest; 3472 CaseDest = T->getSuccessor(0); 3473 } else if (isa<DbgInfoIntrinsic>(I)) { 3474 // Skip debug intrinsic. 3475 continue; 3476 } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) { 3477 // Instruction is side-effect free and constant. 3478 3479 // If the instruction has uses outside this block or a phi node slot for 3480 // the block, it is not safe to bypass the instruction since it would then 3481 // no longer dominate all its uses. 3482 for (auto &Use : I->uses()) { 3483 User *User = Use.getUser(); 3484 if (Instruction *I = dyn_cast<Instruction>(User)) 3485 if (I->getParent() == CaseDest) 3486 continue; 3487 if (PHINode *Phi = dyn_cast<PHINode>(User)) 3488 if (Phi->getIncomingBlock(Use) == CaseDest) 3489 continue; 3490 return false; 3491 } 3492 3493 ConstantPool.insert(std::make_pair(I, C)); 3494 } else { 3495 break; 3496 } 3497 } 3498 3499 // If we did not have a CommonDest before, use the current one. 3500 if (!*CommonDest) 3501 *CommonDest = CaseDest; 3502 // If the destination isn't the common one, abort. 3503 if (CaseDest != *CommonDest) 3504 return false; 3505 3506 // Get the values for this case from phi nodes in the destination block. 3507 BasicBlock::iterator I = (*CommonDest)->begin(); 3508 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3509 int Idx = PHI->getBasicBlockIndex(Pred); 3510 if (Idx == -1) 3511 continue; 3512 3513 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3514 ConstantPool); 3515 if (!ConstVal) 3516 return false; 3517 3518 // Be conservative about which kinds of constants we support. 3519 if (!ValidLookupTableConstant(ConstVal)) 3520 return false; 3521 3522 Res.push_back(std::make_pair(PHI, ConstVal)); 3523 } 3524 3525 return Res.size() > 0; 3526 } 3527 3528 // MapCaseToResult - Helper function used to 3529 // add CaseVal to the list of cases that generate Result. 3530 static void MapCaseToResult(ConstantInt *CaseVal, 3531 SwitchCaseResultVectorTy &UniqueResults, 3532 Constant *Result) { 3533 for (auto &I : UniqueResults) { 3534 if (I.first == Result) { 3535 I.second.push_back(CaseVal); 3536 return; 3537 } 3538 } 3539 UniqueResults.push_back(std::make_pair(Result, 3540 SmallVector<ConstantInt*, 4>(1, CaseVal))); 3541 } 3542 3543 // InitializeUniqueCases - Helper function that initializes a map containing 3544 // results for the PHI node of the common destination block for a switch 3545 // instruction. Returns false if multiple PHI nodes have been found or if 3546 // there is not a common destination block for the switch. 3547 static bool InitializeUniqueCases( 3548 SwitchInst *SI, const DataLayout *DL, PHINode *&PHI, 3549 BasicBlock *&CommonDest, 3550 SwitchCaseResultVectorTy &UniqueResults, 3551 Constant *&DefaultResult) { 3552 for (auto &I : SI->cases()) { 3553 ConstantInt *CaseVal = I.getCaseValue(); 3554 3555 // Resulting value at phi nodes for this case value. 3556 SwitchCaseResultsTy Results; 3557 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 3558 DL)) 3559 return false; 3560 3561 // Only one value per case is permitted 3562 if (Results.size() > 1) 3563 return false; 3564 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 3565 3566 // Check the PHI consistency. 3567 if (!PHI) 3568 PHI = Results[0].first; 3569 else if (PHI != Results[0].first) 3570 return false; 3571 } 3572 // Find the default result value. 3573 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 3574 BasicBlock *DefaultDest = SI->getDefaultDest(); 3575 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 3576 DL); 3577 // If the default value is not found abort unless the default destination 3578 // is unreachable. 3579 DefaultResult = 3580 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 3581 if ((!DefaultResult && 3582 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 3583 return false; 3584 3585 return true; 3586 } 3587 3588 // ConvertTwoCaseSwitch - Helper function that checks if it is possible to 3589 // transform a switch with only two cases (or two cases + default) 3590 // that produces a result into a value select. 3591 // Example: 3592 // switch (a) { 3593 // case 10: %0 = icmp eq i32 %a, 10 3594 // return 10; %1 = select i1 %0, i32 10, i32 4 3595 // case 20: ----> %2 = icmp eq i32 %a, 20 3596 // return 2; %3 = select i1 %2, i32 2, i32 %1 3597 // default: 3598 // return 4; 3599 // } 3600 static Value * 3601 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 3602 Constant *DefaultResult, Value *Condition, 3603 IRBuilder<> &Builder) { 3604 assert(ResultVector.size() == 2 && 3605 "We should have exactly two unique results at this point"); 3606 // If we are selecting between only two cases transform into a simple 3607 // select or a two-way select if default is possible. 3608 if (ResultVector[0].second.size() == 1 && 3609 ResultVector[1].second.size() == 1) { 3610 ConstantInt *const FirstCase = ResultVector[0].second[0]; 3611 ConstantInt *const SecondCase = ResultVector[1].second[0]; 3612 3613 bool DefaultCanTrigger = DefaultResult; 3614 Value *SelectValue = ResultVector[1].first; 3615 if (DefaultCanTrigger) { 3616 Value *const ValueCompare = 3617 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 3618 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 3619 DefaultResult, "switch.select"); 3620 } 3621 Value *const ValueCompare = 3622 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 3623 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 3624 "switch.select"); 3625 } 3626 3627 return nullptr; 3628 } 3629 3630 // RemoveSwitchAfterSelectConversion - Helper function to cleanup a switch 3631 // instruction that has been converted into a select, fixing up PHI nodes and 3632 // basic blocks. 3633 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 3634 Value *SelectValue, 3635 IRBuilder<> &Builder) { 3636 BasicBlock *SelectBB = SI->getParent(); 3637 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 3638 PHI->removeIncomingValue(SelectBB); 3639 PHI->addIncoming(SelectValue, SelectBB); 3640 3641 Builder.CreateBr(PHI->getParent()); 3642 3643 // Remove the switch. 3644 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 3645 BasicBlock *Succ = SI->getSuccessor(i); 3646 3647 if (Succ == PHI->getParent()) 3648 continue; 3649 Succ->removePredecessor(SelectBB); 3650 } 3651 SI->eraseFromParent(); 3652 } 3653 3654 /// SwitchToSelect - If the switch is only used to initialize one or more 3655 /// phi nodes in a common successor block with only two different 3656 /// constant values, replace the switch with select. 3657 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 3658 const DataLayout *DL, AssumptionCache *AC) { 3659 Value *const Cond = SI->getCondition(); 3660 PHINode *PHI = nullptr; 3661 BasicBlock *CommonDest = nullptr; 3662 Constant *DefaultResult; 3663 SwitchCaseResultVectorTy UniqueResults; 3664 // Collect all the cases that will deliver the same value from the switch. 3665 if (!InitializeUniqueCases(SI, DL, PHI, CommonDest, UniqueResults, 3666 DefaultResult)) 3667 return false; 3668 // Selects choose between maximum two values. 3669 if (UniqueResults.size() != 2) 3670 return false; 3671 assert(PHI != nullptr && "PHI for value select not found"); 3672 3673 Builder.SetInsertPoint(SI); 3674 Value *SelectValue = ConvertTwoCaseSwitch( 3675 UniqueResults, 3676 DefaultResult, Cond, Builder); 3677 if (SelectValue) { 3678 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 3679 return true; 3680 } 3681 // The switch couldn't be converted into a select. 3682 return false; 3683 } 3684 3685 namespace { 3686 /// SwitchLookupTable - This class represents a lookup table that can be used 3687 /// to replace a switch. 3688 class SwitchLookupTable { 3689 public: 3690 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3691 /// with the contents of Values, using DefaultValue to fill any holes in the 3692 /// table. 3693 SwitchLookupTable(Module &M, 3694 uint64_t TableSize, 3695 ConstantInt *Offset, 3696 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3697 Constant *DefaultValue, 3698 const DataLayout *DL); 3699 3700 /// BuildLookup - Build instructions with Builder to retrieve the value at 3701 /// the position given by Index in the lookup table. 3702 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3703 3704 /// WouldFitInRegister - Return true if a table with TableSize elements of 3705 /// type ElementType would fit in a target-legal register. 3706 static bool WouldFitInRegister(const DataLayout *DL, 3707 uint64_t TableSize, 3708 const Type *ElementType); 3709 3710 private: 3711 // Depending on the contents of the table, it can be represented in 3712 // different ways. 3713 enum { 3714 // For tables where each element contains the same value, we just have to 3715 // store that single value and return it for each lookup. 3716 SingleValueKind, 3717 3718 // For tables where there is a linear relationship between table index 3719 // and values. We calculate the result with a simple multiplication 3720 // and addition instead of a table lookup. 3721 LinearMapKind, 3722 3723 // For small tables with integer elements, we can pack them into a bitmap 3724 // that fits into a target-legal register. Values are retrieved by 3725 // shift and mask operations. 3726 BitMapKind, 3727 3728 // The table is stored as an array of values. Values are retrieved by load 3729 // instructions from the table. 3730 ArrayKind 3731 } Kind; 3732 3733 // For SingleValueKind, this is the single value. 3734 Constant *SingleValue; 3735 3736 // For BitMapKind, this is the bitmap. 3737 ConstantInt *BitMap; 3738 IntegerType *BitMapElementTy; 3739 3740 // For LinearMapKind, these are the constants used to derive the value. 3741 ConstantInt *LinearOffset; 3742 ConstantInt *LinearMultiplier; 3743 3744 // For ArrayKind, this is the array. 3745 GlobalVariable *Array; 3746 }; 3747 } 3748 3749 SwitchLookupTable::SwitchLookupTable(Module &M, 3750 uint64_t TableSize, 3751 ConstantInt *Offset, 3752 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3753 Constant *DefaultValue, 3754 const DataLayout *DL) 3755 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 3756 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 3757 assert(Values.size() && "Can't build lookup table without values!"); 3758 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3759 3760 // If all values in the table are equal, this is that value. 3761 SingleValue = Values.begin()->second; 3762 3763 Type *ValueType = Values.begin()->second->getType(); 3764 3765 // Build up the table contents. 3766 SmallVector<Constant*, 64> TableContents(TableSize); 3767 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3768 ConstantInt *CaseVal = Values[I].first; 3769 Constant *CaseRes = Values[I].second; 3770 assert(CaseRes->getType() == ValueType); 3771 3772 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3773 .getLimitedValue(); 3774 TableContents[Idx] = CaseRes; 3775 3776 if (CaseRes != SingleValue) 3777 SingleValue = nullptr; 3778 } 3779 3780 // Fill in any holes in the table with the default result. 3781 if (Values.size() < TableSize) { 3782 assert(DefaultValue && 3783 "Need a default value to fill the lookup table holes."); 3784 assert(DefaultValue->getType() == ValueType); 3785 for (uint64_t I = 0; I < TableSize; ++I) { 3786 if (!TableContents[I]) 3787 TableContents[I] = DefaultValue; 3788 } 3789 3790 if (DefaultValue != SingleValue) 3791 SingleValue = nullptr; 3792 } 3793 3794 // If each element in the table contains the same value, we only need to store 3795 // that single value. 3796 if (SingleValue) { 3797 Kind = SingleValueKind; 3798 return; 3799 } 3800 3801 // Check if we can derive the value with a linear transformation from the 3802 // table index. 3803 if (isa<IntegerType>(ValueType)) { 3804 bool LinearMappingPossible = true; 3805 APInt PrevVal; 3806 APInt DistToPrev; 3807 assert(TableSize >= 2 && "Should be a SingleValue table."); 3808 // Check if there is the same distance between two consecutive values. 3809 for (uint64_t I = 0; I < TableSize; ++I) { 3810 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 3811 if (!ConstVal) { 3812 // This is an undef. We could deal with it, but undefs in lookup tables 3813 // are very seldom. It's probably not worth the additional complexity. 3814 LinearMappingPossible = false; 3815 break; 3816 } 3817 APInt Val = ConstVal->getValue(); 3818 if (I != 0) { 3819 APInt Dist = Val - PrevVal; 3820 if (I == 1) { 3821 DistToPrev = Dist; 3822 } else if (Dist != DistToPrev) { 3823 LinearMappingPossible = false; 3824 break; 3825 } 3826 } 3827 PrevVal = Val; 3828 } 3829 if (LinearMappingPossible) { 3830 LinearOffset = cast<ConstantInt>(TableContents[0]); 3831 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 3832 Kind = LinearMapKind; 3833 ++NumLinearMaps; 3834 return; 3835 } 3836 } 3837 3838 // If the type is integer and the table fits in a register, build a bitmap. 3839 if (WouldFitInRegister(DL, TableSize, ValueType)) { 3840 IntegerType *IT = cast<IntegerType>(ValueType); 3841 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3842 for (uint64_t I = TableSize; I > 0; --I) { 3843 TableInt <<= IT->getBitWidth(); 3844 // Insert values into the bitmap. Undef values are set to zero. 3845 if (!isa<UndefValue>(TableContents[I - 1])) { 3846 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3847 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3848 } 3849 } 3850 BitMap = ConstantInt::get(M.getContext(), TableInt); 3851 BitMapElementTy = IT; 3852 Kind = BitMapKind; 3853 ++NumBitMaps; 3854 return; 3855 } 3856 3857 // Store the table in an array. 3858 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 3859 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3860 3861 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3862 GlobalVariable::PrivateLinkage, 3863 Initializer, 3864 "switch.table"); 3865 Array->setUnnamedAddr(true); 3866 Kind = ArrayKind; 3867 } 3868 3869 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3870 switch (Kind) { 3871 case SingleValueKind: 3872 return SingleValue; 3873 case LinearMapKind: { 3874 // Derive the result value from the input value. 3875 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 3876 false, "switch.idx.cast"); 3877 if (!LinearMultiplier->isOne()) 3878 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 3879 if (!LinearOffset->isZero()) 3880 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 3881 return Result; 3882 } 3883 case BitMapKind: { 3884 // Type of the bitmap (e.g. i59). 3885 IntegerType *MapTy = BitMap->getType(); 3886 3887 // Cast Index to the same type as the bitmap. 3888 // Note: The Index is <= the number of elements in the table, so 3889 // truncating it to the width of the bitmask is safe. 3890 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3891 3892 // Multiply the shift amount by the element width. 3893 ShiftAmt = Builder.CreateMul(ShiftAmt, 3894 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3895 "switch.shiftamt"); 3896 3897 // Shift down. 3898 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3899 "switch.downshift"); 3900 // Mask off. 3901 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3902 "switch.masked"); 3903 } 3904 case ArrayKind: { 3905 // Make sure the table index will not overflow when treated as signed. 3906 IntegerType *IT = cast<IntegerType>(Index->getType()); 3907 uint64_t TableSize = Array->getInitializer()->getType() 3908 ->getArrayNumElements(); 3909 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 3910 Index = Builder.CreateZExt(Index, 3911 IntegerType::get(IT->getContext(), 3912 IT->getBitWidth() + 1), 3913 "switch.tableidx.zext"); 3914 3915 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3916 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3917 "switch.gep"); 3918 return Builder.CreateLoad(GEP, "switch.load"); 3919 } 3920 } 3921 llvm_unreachable("Unknown lookup table kind!"); 3922 } 3923 3924 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL, 3925 uint64_t TableSize, 3926 const Type *ElementType) { 3927 if (!DL) 3928 return false; 3929 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3930 if (!IT) 3931 return false; 3932 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3933 // are <= 15, we could try to narrow the type. 3934 3935 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3936 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3937 return false; 3938 return DL->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3939 } 3940 3941 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3942 /// for this switch, based on the number of cases, size of the table and the 3943 /// types of the results. 3944 static bool ShouldBuildLookupTable(SwitchInst *SI, 3945 uint64_t TableSize, 3946 const TargetTransformInfo &TTI, 3947 const DataLayout *DL, 3948 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3949 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3950 return false; // TableSize overflowed, or mul below might overflow. 3951 3952 bool AllTablesFitInRegister = true; 3953 bool HasIllegalType = false; 3954 for (const auto &I : ResultTypes) { 3955 Type *Ty = I.second; 3956 3957 // Saturate this flag to true. 3958 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3959 3960 // Saturate this flag to false. 3961 AllTablesFitInRegister = AllTablesFitInRegister && 3962 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 3963 3964 // If both flags saturate, we're done. NOTE: This *only* works with 3965 // saturating flags, and all flags have to saturate first due to the 3966 // non-deterministic behavior of iterating over a dense map. 3967 if (HasIllegalType && !AllTablesFitInRegister) 3968 break; 3969 } 3970 3971 // If each table would fit in a register, we should build it anyway. 3972 if (AllTablesFitInRegister) 3973 return true; 3974 3975 // Don't build a table that doesn't fit in-register if it has illegal types. 3976 if (HasIllegalType) 3977 return false; 3978 3979 // The table density should be at least 40%. This is the same criterion as for 3980 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3981 // FIXME: Find the best cut-off. 3982 return SI->getNumCases() * 10 >= TableSize * 4; 3983 } 3984 3985 /// Try to reuse the switch table index compare. Following pattern: 3986 /// \code 3987 /// if (idx < tablesize) 3988 /// r = table[idx]; // table does not contain default_value 3989 /// else 3990 /// r = default_value; 3991 /// if (r != default_value) 3992 /// ... 3993 /// \endcode 3994 /// Is optimized to: 3995 /// \code 3996 /// cond = idx < tablesize; 3997 /// if (cond) 3998 /// r = table[idx]; 3999 /// else 4000 /// r = default_value; 4001 /// if (cond) 4002 /// ... 4003 /// \endcode 4004 /// Jump threading will then eliminate the second if(cond). 4005 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock, 4006 BranchInst *RangeCheckBranch, Constant *DefaultValue, 4007 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) { 4008 4009 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4010 if (!CmpInst) 4011 return; 4012 4013 // We require that the compare is in the same block as the phi so that jump 4014 // threading can do its work afterwards. 4015 if (CmpInst->getParent() != PhiBlock) 4016 return; 4017 4018 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4019 if (!CmpOp1) 4020 return; 4021 4022 Value *RangeCmp = RangeCheckBranch->getCondition(); 4023 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4024 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4025 4026 // Check if the compare with the default value is constant true or false. 4027 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4028 DefaultValue, CmpOp1, true); 4029 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4030 return; 4031 4032 // Check if the compare with the case values is distinct from the default 4033 // compare result. 4034 for (auto ValuePair : Values) { 4035 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4036 ValuePair.second, CmpOp1, true); 4037 if (!CaseConst || CaseConst == DefaultConst) 4038 return; 4039 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4040 "Expect true or false as compare result."); 4041 } 4042 4043 // Check if the branch instruction dominates the phi node. It's a simple 4044 // dominance check, but sufficient for our needs. 4045 // Although this check is invariant in the calling loops, it's better to do it 4046 // at this late stage. Practically we do it at most once for a switch. 4047 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4048 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4049 BasicBlock *Pred = *PI; 4050 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4051 return; 4052 } 4053 4054 if (DefaultConst == FalseConst) { 4055 // The compare yields the same result. We can replace it. 4056 CmpInst->replaceAllUsesWith(RangeCmp); 4057 ++NumTableCmpReuses; 4058 } else { 4059 // The compare yields the same result, just inverted. We can replace it. 4060 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp, 4061 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4062 RangeCheckBranch); 4063 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4064 ++NumTableCmpReuses; 4065 } 4066 } 4067 4068 /// SwitchToLookupTable - If the switch is only used to initialize one or more 4069 /// phi nodes in a common successor block with different constant values, 4070 /// replace the switch with lookup tables. 4071 static bool SwitchToLookupTable(SwitchInst *SI, 4072 IRBuilder<> &Builder, 4073 const TargetTransformInfo &TTI, 4074 const DataLayout* DL) { 4075 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4076 4077 // Only build lookup table when we have a target that supports it. 4078 if (!TTI.shouldBuildLookupTables()) 4079 return false; 4080 4081 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4082 // split off a dense part and build a lookup table for that. 4083 4084 // FIXME: This creates arrays of GEPs to constant strings, which means each 4085 // GEP needs a runtime relocation in PIC code. We should just build one big 4086 // string and lookup indices into that. 4087 4088 // Ignore switches with less than three cases. Lookup tables will not make them 4089 // faster, so we don't analyze them. 4090 if (SI->getNumCases() < 3) 4091 return false; 4092 4093 // Figure out the corresponding result for each case value and phi node in the 4094 // common destination, as well as the the min and max case values. 4095 assert(SI->case_begin() != SI->case_end()); 4096 SwitchInst::CaseIt CI = SI->case_begin(); 4097 ConstantInt *MinCaseVal = CI.getCaseValue(); 4098 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4099 4100 BasicBlock *CommonDest = nullptr; 4101 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 4102 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 4103 SmallDenseMap<PHINode*, Constant*> DefaultResults; 4104 SmallDenseMap<PHINode*, Type*> ResultTypes; 4105 SmallVector<PHINode*, 4> PHIs; 4106 4107 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4108 ConstantInt *CaseVal = CI.getCaseValue(); 4109 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4110 MinCaseVal = CaseVal; 4111 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4112 MaxCaseVal = CaseVal; 4113 4114 // Resulting value at phi nodes for this case value. 4115 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 4116 ResultsTy Results; 4117 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4118 Results, DL)) 4119 return false; 4120 4121 // Append the result from this case to the list for each phi. 4122 for (const auto &I : Results) { 4123 PHINode *PHI = I.first; 4124 Constant *Value = I.second; 4125 if (!ResultLists.count(PHI)) 4126 PHIs.push_back(PHI); 4127 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4128 } 4129 } 4130 4131 // Keep track of the result types. 4132 for (PHINode *PHI : PHIs) { 4133 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4134 } 4135 4136 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4137 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4138 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4139 bool TableHasHoles = (NumResults < TableSize); 4140 4141 // If the table has holes, we need a constant result for the default case 4142 // or a bitmask that fits in a register. 4143 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 4144 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4145 &CommonDest, DefaultResultsList, DL); 4146 4147 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4148 if (NeedMask) { 4149 // As an extra penalty for the validity test we require more cases. 4150 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4151 return false; 4152 if (!(DL && DL->fitsInLegalInteger(TableSize))) 4153 return false; 4154 } 4155 4156 for (const auto &I : DefaultResultsList) { 4157 PHINode *PHI = I.first; 4158 Constant *Result = I.second; 4159 DefaultResults[PHI] = Result; 4160 } 4161 4162 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4163 return false; 4164 4165 // Create the BB that does the lookups. 4166 Module &Mod = *CommonDest->getParent()->getParent(); 4167 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 4168 "switch.lookup", 4169 CommonDest->getParent(), 4170 CommonDest); 4171 4172 // Compute the table index value. 4173 Builder.SetInsertPoint(SI); 4174 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 4175 "switch.tableidx"); 4176 4177 // Compute the maximum table size representable by the integer type we are 4178 // switching upon. 4179 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4180 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4181 assert(MaxTableSize >= TableSize && 4182 "It is impossible for a switch to have more entries than the max " 4183 "representable value of its input integer type's size."); 4184 4185 // If the default destination is unreachable, or if the lookup table covers 4186 // all values of the conditional variable, branch directly to the lookup table 4187 // BB. Otherwise, check that the condition is within the case range. 4188 const bool DefaultIsReachable = 4189 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4190 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4191 BranchInst *RangeCheckBranch = nullptr; 4192 4193 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4194 Builder.CreateBr(LookupBB); 4195 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4196 // do not delete PHINodes here. 4197 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4198 /*DontDeleteUselessPHIs=*/true); 4199 } else { 4200 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 4201 MinCaseVal->getType(), TableSize)); 4202 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4203 } 4204 4205 // Populate the BB that does the lookups. 4206 Builder.SetInsertPoint(LookupBB); 4207 4208 if (NeedMask) { 4209 // Before doing the lookup we do the hole check. 4210 // The LookupBB is therefore re-purposed to do the hole check 4211 // and we create a new LookupBB. 4212 BasicBlock *MaskBB = LookupBB; 4213 MaskBB->setName("switch.hole_check"); 4214 LookupBB = BasicBlock::Create(Mod.getContext(), 4215 "switch.lookup", 4216 CommonDest->getParent(), 4217 CommonDest); 4218 4219 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4220 // unnecessary illegal types. 4221 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4222 APInt MaskInt(TableSizePowOf2, 0); 4223 APInt One(TableSizePowOf2, 1); 4224 // Build bitmask; fill in a 1 bit for every case. 4225 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4226 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4227 uint64_t Idx = (ResultList[I].first->getValue() - 4228 MinCaseVal->getValue()).getLimitedValue(); 4229 MaskInt |= One << Idx; 4230 } 4231 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4232 4233 // Get the TableIndex'th bit of the bitmask. 4234 // If this bit is 0 (meaning hole) jump to the default destination, 4235 // else continue with table lookup. 4236 IntegerType *MapTy = TableMask->getType(); 4237 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4238 "switch.maskindex"); 4239 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4240 "switch.shifted"); 4241 Value *LoBit = Builder.CreateTrunc(Shifted, 4242 Type::getInt1Ty(Mod.getContext()), 4243 "switch.lobit"); 4244 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4245 4246 Builder.SetInsertPoint(LookupBB); 4247 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4248 } 4249 4250 bool ReturnedEarly = false; 4251 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4252 PHINode *PHI = PHIs[I]; 4253 const ResultListTy &ResultList = ResultLists[PHI]; 4254 4255 // If using a bitmask, use any value to fill the lookup table holes. 4256 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4257 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4258 4259 Value *Result = Table.BuildLookup(TableIndex, Builder); 4260 4261 // If the result is used to return immediately from the function, we want to 4262 // do that right here. 4263 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4264 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4265 Builder.CreateRet(Result); 4266 ReturnedEarly = true; 4267 break; 4268 } 4269 4270 // Do a small peephole optimization: re-use the switch table compare if 4271 // possible. 4272 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4273 BasicBlock *PhiBlock = PHI->getParent(); 4274 // Search for compare instructions which use the phi. 4275 for (auto *User : PHI->users()) { 4276 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4277 } 4278 } 4279 4280 PHI->addIncoming(Result, LookupBB); 4281 } 4282 4283 if (!ReturnedEarly) 4284 Builder.CreateBr(CommonDest); 4285 4286 // Remove the switch. 4287 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4288 BasicBlock *Succ = SI->getSuccessor(i); 4289 4290 if (Succ == SI->getDefaultDest()) 4291 continue; 4292 Succ->removePredecessor(SI->getParent()); 4293 } 4294 SI->eraseFromParent(); 4295 4296 ++NumLookupTables; 4297 if (NeedMask) 4298 ++NumLookupTablesHoles; 4299 return true; 4300 } 4301 4302 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4303 BasicBlock *BB = SI->getParent(); 4304 4305 if (isValueEqualityComparison(SI)) { 4306 // If we only have one predecessor, and if it is a branch on this value, 4307 // see if that predecessor totally determines the outcome of this switch. 4308 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4309 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4310 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4311 4312 Value *Cond = SI->getCondition(); 4313 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4314 if (SimplifySwitchOnSelect(SI, Select)) 4315 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4316 4317 // If the block only contains the switch, see if we can fold the block 4318 // away into any preds. 4319 BasicBlock::iterator BBI = BB->begin(); 4320 // Ignore dbg intrinsics. 4321 while (isa<DbgInfoIntrinsic>(BBI)) 4322 ++BBI; 4323 if (SI == &*BBI) 4324 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4325 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4326 } 4327 4328 // Try to transform the switch into an icmp and a branch. 4329 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4330 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4331 4332 // Remove unreachable cases. 4333 if (EliminateDeadSwitchCases(SI, DL, AC)) 4334 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4335 4336 if (SwitchToSelect(SI, Builder, DL, AC)) 4337 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4338 4339 if (ForwardSwitchConditionToPHI(SI)) 4340 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4341 4342 if (SwitchToLookupTable(SI, Builder, TTI, DL)) 4343 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4344 4345 return false; 4346 } 4347 4348 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4349 BasicBlock *BB = IBI->getParent(); 4350 bool Changed = false; 4351 4352 // Eliminate redundant destinations. 4353 SmallPtrSet<Value *, 8> Succs; 4354 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4355 BasicBlock *Dest = IBI->getDestination(i); 4356 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 4357 Dest->removePredecessor(BB); 4358 IBI->removeDestination(i); 4359 --i; --e; 4360 Changed = true; 4361 } 4362 } 4363 4364 if (IBI->getNumDestinations() == 0) { 4365 // If the indirectbr has no successors, change it to unreachable. 4366 new UnreachableInst(IBI->getContext(), IBI); 4367 EraseTerminatorInstAndDCECond(IBI); 4368 return true; 4369 } 4370 4371 if (IBI->getNumDestinations() == 1) { 4372 // If the indirectbr has one successor, change it to a direct branch. 4373 BranchInst::Create(IBI->getDestination(0), IBI); 4374 EraseTerminatorInstAndDCECond(IBI); 4375 return true; 4376 } 4377 4378 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4379 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4380 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4381 } 4382 return Changed; 4383 } 4384 4385 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 4386 BasicBlock *BB = BI->getParent(); 4387 4388 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 4389 return true; 4390 4391 // If the Terminator is the only non-phi instruction, simplify the block. 4392 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(); 4393 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 4394 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 4395 return true; 4396 4397 // If the only instruction in the block is a seteq/setne comparison 4398 // against a constant, try to simplify the block. 4399 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 4400 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 4401 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 4402 ; 4403 if (I->isTerminator() && 4404 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, 4405 BonusInstThreshold, DL, AC)) 4406 return true; 4407 } 4408 4409 // If this basic block is ONLY a compare and a branch, and if a predecessor 4410 // branches to us and our successor, fold the comparison into the 4411 // predecessor and use logical operations to update the incoming value 4412 // for PHI nodes in common successor. 4413 if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold)) 4414 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4415 return false; 4416 } 4417 4418 4419 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 4420 BasicBlock *BB = BI->getParent(); 4421 4422 // Conditional branch 4423 if (isValueEqualityComparison(BI)) { 4424 // If we only have one predecessor, and if it is a branch on this value, 4425 // see if that predecessor totally determines the outcome of this 4426 // switch. 4427 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4428 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 4429 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4430 4431 // This block must be empty, except for the setcond inst, if it exists. 4432 // Ignore dbg intrinsics. 4433 BasicBlock::iterator I = BB->begin(); 4434 // Ignore dbg intrinsics. 4435 while (isa<DbgInfoIntrinsic>(I)) 4436 ++I; 4437 if (&*I == BI) { 4438 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 4439 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4440 } else if (&*I == cast<Instruction>(BI->getCondition())){ 4441 ++I; 4442 // Ignore dbg intrinsics. 4443 while (isa<DbgInfoIntrinsic>(I)) 4444 ++I; 4445 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 4446 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4447 } 4448 } 4449 4450 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 4451 if (SimplifyBranchOnICmpChain(BI, DL, Builder)) 4452 return true; 4453 4454 // If this basic block is ONLY a compare and a branch, and if a predecessor 4455 // branches to us and one of our successors, fold the comparison into the 4456 // predecessor and use logical operations to pick the right destination. 4457 if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold)) 4458 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4459 4460 // We have a conditional branch to two blocks that are only reachable 4461 // from BI. We know that the condbr dominates the two blocks, so see if 4462 // there is any identical code in the "then" and "else" blocks. If so, we 4463 // can hoist it up to the branching block. 4464 if (BI->getSuccessor(0)->getSinglePredecessor()) { 4465 if (BI->getSuccessor(1)->getSinglePredecessor()) { 4466 if (HoistThenElseCodeToIf(BI, DL)) 4467 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4468 } else { 4469 // If Successor #1 has multiple preds, we may be able to conditionally 4470 // execute Successor #0 if it branches to Successor #1. 4471 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4472 if (Succ0TI->getNumSuccessors() == 1 && 4473 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4474 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL)) 4475 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4476 } 4477 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 4478 // If Successor #0 has multiple preds, we may be able to conditionally 4479 // execute Successor #1 if it branches to Successor #0. 4480 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4481 if (Succ1TI->getNumSuccessors() == 1 && 4482 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4483 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL)) 4484 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4485 } 4486 4487 // If this is a branch on a phi node in the current block, thread control 4488 // through this block if any PHI node entries are constants. 4489 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4490 if (PN->getParent() == BI->getParent()) 4491 if (FoldCondBranchOnPHI(BI, DL)) 4492 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4493 4494 // Scan predecessor blocks for conditional branches. 4495 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4496 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4497 if (PBI != BI && PBI->isConditional()) 4498 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4499 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4500 4501 return false; 4502 } 4503 4504 /// Check if passing a value to an instruction will cause undefined behavior. 4505 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4506 Constant *C = dyn_cast<Constant>(V); 4507 if (!C) 4508 return false; 4509 4510 if (I->use_empty()) 4511 return false; 4512 4513 if (C->isNullValue()) { 4514 // Only look at the first use, avoid hurting compile time with long uselists 4515 User *Use = *I->user_begin(); 4516 4517 // Now make sure that there are no instructions in between that can alter 4518 // control flow (eg. calls) 4519 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4520 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4521 return false; 4522 4523 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4524 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4525 if (GEP->getPointerOperand() == I) 4526 return passingValueIsAlwaysUndefined(V, GEP); 4527 4528 // Look through bitcasts. 4529 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4530 return passingValueIsAlwaysUndefined(V, BC); 4531 4532 // Load from null is undefined. 4533 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4534 if (!LI->isVolatile()) 4535 return LI->getPointerAddressSpace() == 0; 4536 4537 // Store to null is undefined. 4538 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4539 if (!SI->isVolatile()) 4540 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4541 } 4542 return false; 4543 } 4544 4545 /// If BB has an incoming value that will always trigger undefined behavior 4546 /// (eg. null pointer dereference), remove the branch leading here. 4547 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4548 for (BasicBlock::iterator i = BB->begin(); 4549 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4550 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4551 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4552 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4553 IRBuilder<> Builder(T); 4554 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4555 BB->removePredecessor(PHI->getIncomingBlock(i)); 4556 // Turn uncoditional branches into unreachables and remove the dead 4557 // destination from conditional branches. 4558 if (BI->isUnconditional()) 4559 Builder.CreateUnreachable(); 4560 else 4561 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4562 BI->getSuccessor(0)); 4563 BI->eraseFromParent(); 4564 return true; 4565 } 4566 // TODO: SwitchInst. 4567 } 4568 4569 return false; 4570 } 4571 4572 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4573 bool Changed = false; 4574 4575 assert(BB && BB->getParent() && "Block not embedded in function!"); 4576 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4577 4578 // Remove basic blocks that have no predecessors (except the entry block)... 4579 // or that just have themself as a predecessor. These are unreachable. 4580 if ((pred_empty(BB) && 4581 BB != &BB->getParent()->getEntryBlock()) || 4582 BB->getSinglePredecessor() == BB) { 4583 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4584 DeleteDeadBlock(BB); 4585 return true; 4586 } 4587 4588 // Check to see if we can constant propagate this terminator instruction 4589 // away... 4590 Changed |= ConstantFoldTerminator(BB, true); 4591 4592 // Check for and eliminate duplicate PHI nodes in this block. 4593 Changed |= EliminateDuplicatePHINodes(BB); 4594 4595 // Check for and remove branches that will always cause undefined behavior. 4596 Changed |= removeUndefIntroducingPredecessor(BB); 4597 4598 // Merge basic blocks into their predecessor if there is only one distinct 4599 // pred, and if there is only one distinct successor of the predecessor, and 4600 // if there are no PHI nodes. 4601 // 4602 if (MergeBlockIntoPredecessor(BB)) 4603 return true; 4604 4605 IRBuilder<> Builder(BB); 4606 4607 // If there is a trivial two-entry PHI node in this basic block, and we can 4608 // eliminate it, do so now. 4609 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4610 if (PN->getNumIncomingValues() == 2) 4611 Changed |= FoldTwoEntryPHINode(PN, DL); 4612 4613 Builder.SetInsertPoint(BB->getTerminator()); 4614 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4615 if (BI->isUnconditional()) { 4616 if (SimplifyUncondBranch(BI, Builder)) return true; 4617 } else { 4618 if (SimplifyCondBranch(BI, Builder)) return true; 4619 } 4620 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4621 if (SimplifyReturn(RI, Builder)) return true; 4622 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4623 if (SimplifyResume(RI, Builder)) return true; 4624 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4625 if (SimplifySwitch(SI, Builder)) return true; 4626 } else if (UnreachableInst *UI = 4627 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4628 if (SimplifyUnreachable(UI)) return true; 4629 } else if (IndirectBrInst *IBI = 4630 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4631 if (SimplifyIndirectBr(IBI)) return true; 4632 } 4633 4634 return Changed; 4635 } 4636 4637 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4638 /// example, it adjusts branches to branches to eliminate the extra hop, it 4639 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4640 /// of the CFG. It returns true if a modification was made. 4641 /// 4642 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4643 unsigned BonusInstThreshold, const DataLayout *DL, 4644 AssumptionCache *AC) { 4645 return SimplifyCFGOpt(TTI, BonusInstThreshold, DL, AC).run(BB); 4646 } 4647