1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/SSAUpdater.h" 76 #include "llvm/Transforms/Utils/ValueMapper.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <climits> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iterator> 83 #include <map> 84 #include <set> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 using namespace PatternMatch; 91 92 #define DEBUG_TYPE "simplifycfg" 93 94 cl::opt<bool> llvm::RequireAndPreserveDomTree( 95 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 96 cl::init(false), 97 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 98 "into preserving DomTree,")); 99 100 // Chosen as 2 so as to be cheap, but still to have enough power to fold 101 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 102 // To catch this, we need to fold a compare and a select, hence '2' being the 103 // minimum reasonable default. 104 static cl::opt<unsigned> PHINodeFoldingThreshold( 105 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 106 cl::desc( 107 "Control the amount of phi node folding to perform (default = 2)")); 108 109 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 110 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 111 cl::desc("Control the maximal total instruction cost that we are willing " 112 "to speculatively execute to fold a 2-entry PHI node into a " 113 "select (default = 4)")); 114 115 static cl::opt<bool> DupRet( 116 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 117 cl::desc("Duplicate return instructions into unconditional branches")); 118 119 static cl::opt<bool> 120 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 121 cl::desc("Hoist common instructions up to the parent block")); 122 123 static cl::opt<bool> 124 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 125 cl::desc("Sink common instructions down to the end block")); 126 127 static cl::opt<bool> HoistCondStores( 128 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 129 cl::desc("Hoist conditional stores if an unconditional store precedes")); 130 131 static cl::opt<bool> MergeCondStores( 132 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 133 cl::desc("Hoist conditional stores even if an unconditional store does not " 134 "precede - hoist multiple conditional stores into a single " 135 "predicated store")); 136 137 static cl::opt<bool> MergeCondStoresAggressively( 138 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 139 cl::desc("When merging conditional stores, do so even if the resultant " 140 "basic blocks are unlikely to be if-converted as a result")); 141 142 static cl::opt<bool> SpeculateOneExpensiveInst( 143 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 144 cl::desc("Allow exactly one expensive instruction to be speculatively " 145 "executed")); 146 147 static cl::opt<unsigned> MaxSpeculationDepth( 148 "max-speculation-depth", cl::Hidden, cl::init(10), 149 cl::desc("Limit maximum recursion depth when calculating costs of " 150 "speculatively executed instructions")); 151 152 static cl::opt<int> 153 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 154 cl::desc("Max size of a block which is still considered " 155 "small enough to thread through")); 156 157 // Two is chosen to allow one negation and a logical combine. 158 static cl::opt<unsigned> 159 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 160 cl::init(2), 161 cl::desc("Maximum cost of combining conditions when " 162 "folding branches")); 163 164 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 165 STATISTIC(NumLinearMaps, 166 "Number of switch instructions turned into linear mapping"); 167 STATISTIC(NumLookupTables, 168 "Number of switch instructions turned into lookup tables"); 169 STATISTIC( 170 NumLookupTablesHoles, 171 "Number of switch instructions turned into lookup tables (holes checked)"); 172 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 173 STATISTIC(NumFoldValueComparisonIntoPredecessors, 174 "Number of value comparisons folded into predecessor basic blocks"); 175 STATISTIC(NumFoldBranchToCommonDest, 176 "Number of branches folded into predecessor basic block"); 177 STATISTIC( 178 NumHoistCommonCode, 179 "Number of common instruction 'blocks' hoisted up to the begin block"); 180 STATISTIC(NumHoistCommonInstrs, 181 "Number of common instructions hoisted up to the begin block"); 182 STATISTIC(NumSinkCommonCode, 183 "Number of common instruction 'blocks' sunk down to the end block"); 184 STATISTIC(NumSinkCommonInstrs, 185 "Number of common instructions sunk down to the end block"); 186 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 187 STATISTIC(NumInvokes, 188 "Number of invokes with empty resume blocks simplified into calls"); 189 190 namespace { 191 192 // The first field contains the value that the switch produces when a certain 193 // case group is selected, and the second field is a vector containing the 194 // cases composing the case group. 195 using SwitchCaseResultVectorTy = 196 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 197 198 // The first field contains the phi node that generates a result of the switch 199 // and the second field contains the value generated for a certain case in the 200 // switch for that PHI. 201 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 202 203 /// ValueEqualityComparisonCase - Represents a case of a switch. 204 struct ValueEqualityComparisonCase { 205 ConstantInt *Value; 206 BasicBlock *Dest; 207 208 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 209 : Value(Value), Dest(Dest) {} 210 211 bool operator<(ValueEqualityComparisonCase RHS) const { 212 // Comparing pointers is ok as we only rely on the order for uniquing. 213 return Value < RHS.Value; 214 } 215 216 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 217 }; 218 219 class SimplifyCFGOpt { 220 const TargetTransformInfo &TTI; 221 DomTreeUpdater *DTU; 222 const DataLayout &DL; 223 ArrayRef<WeakVH> LoopHeaders; 224 const SimplifyCFGOptions &Options; 225 bool Resimplify; 226 227 Value *isValueEqualityComparison(Instruction *TI); 228 BasicBlock *GetValueEqualityComparisonCases( 229 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 230 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 231 BasicBlock *Pred, 232 IRBuilder<> &Builder); 233 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 234 Instruction *PTI, 235 IRBuilder<> &Builder); 236 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 237 IRBuilder<> &Builder); 238 239 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 240 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 241 bool simplifySingleResume(ResumeInst *RI); 242 bool simplifyCommonResume(ResumeInst *RI); 243 bool simplifyCleanupReturn(CleanupReturnInst *RI); 244 bool simplifyUnreachable(UnreachableInst *UI); 245 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 246 bool simplifyIndirectBr(IndirectBrInst *IBI); 247 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 248 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 249 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 250 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 251 252 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 253 IRBuilder<> &Builder); 254 255 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 256 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 257 const TargetTransformInfo &TTI); 258 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 259 BasicBlock *TrueBB, BasicBlock *FalseBB, 260 uint32_t TrueWeight, uint32_t FalseWeight); 261 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 262 const DataLayout &DL); 263 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 264 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 265 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 266 267 public: 268 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 269 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 270 const SimplifyCFGOptions &Opts) 271 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 272 assert((!DTU || !DTU->hasPostDomTree()) && 273 "SimplifyCFG is not yet capable of maintaining validity of a " 274 "PostDomTree, so don't ask for it."); 275 } 276 277 bool simplifyOnce(BasicBlock *BB); 278 bool simplifyOnceImpl(BasicBlock *BB); 279 bool run(BasicBlock *BB); 280 281 // Helper to set Resimplify and return change indication. 282 bool requestResimplify() { 283 Resimplify = true; 284 return true; 285 } 286 }; 287 288 } // end anonymous namespace 289 290 /// Return true if it is safe to merge these two 291 /// terminator instructions together. 292 static bool 293 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 294 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 295 if (SI1 == SI2) 296 return false; // Can't merge with self! 297 298 // It is not safe to merge these two switch instructions if they have a common 299 // successor, and if that successor has a PHI node, and if *that* PHI node has 300 // conflicting incoming values from the two switch blocks. 301 BasicBlock *SI1BB = SI1->getParent(); 302 BasicBlock *SI2BB = SI2->getParent(); 303 304 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 305 bool Fail = false; 306 for (BasicBlock *Succ : successors(SI2BB)) 307 if (SI1Succs.count(Succ)) 308 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 309 PHINode *PN = cast<PHINode>(BBI); 310 if (PN->getIncomingValueForBlock(SI1BB) != 311 PN->getIncomingValueForBlock(SI2BB)) { 312 if (FailBlocks) 313 FailBlocks->insert(Succ); 314 Fail = true; 315 } 316 } 317 318 return !Fail; 319 } 320 321 /// Update PHI nodes in Succ to indicate that there will now be entries in it 322 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 323 /// will be the same as those coming in from ExistPred, an existing predecessor 324 /// of Succ. 325 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 326 BasicBlock *ExistPred, 327 MemorySSAUpdater *MSSAU = nullptr) { 328 for (PHINode &PN : Succ->phis()) 329 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 330 if (MSSAU) 331 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 332 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 333 } 334 335 /// Compute an abstract "cost" of speculating the given instruction, 336 /// which is assumed to be safe to speculate. TCC_Free means cheap, 337 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 338 /// expensive. 339 static InstructionCost computeSpeculationCost(const User *I, 340 const TargetTransformInfo &TTI) { 341 assert(isSafeToSpeculativelyExecute(I) && 342 "Instruction is not safe to speculatively execute!"); 343 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 344 } 345 346 /// If we have a merge point of an "if condition" as accepted above, 347 /// return true if the specified value dominates the block. We 348 /// don't handle the true generality of domination here, just a special case 349 /// which works well enough for us. 350 /// 351 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 352 /// see if V (which must be an instruction) and its recursive operands 353 /// that do not dominate BB have a combined cost lower than Budget and 354 /// are non-trapping. If both are true, the instruction is inserted into the 355 /// set and true is returned. 356 /// 357 /// The cost for most non-trapping instructions is defined as 1 except for 358 /// Select whose cost is 2. 359 /// 360 /// After this function returns, Cost is increased by the cost of 361 /// V plus its non-dominating operands. If that cost is greater than 362 /// Budget, false is returned and Cost is undefined. 363 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 364 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 365 InstructionCost &Cost, 366 InstructionCost Budget, 367 const TargetTransformInfo &TTI, 368 unsigned Depth = 0) { 369 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 370 // so limit the recursion depth. 371 // TODO: While this recursion limit does prevent pathological behavior, it 372 // would be better to track visited instructions to avoid cycles. 373 if (Depth == MaxSpeculationDepth) 374 return false; 375 376 Instruction *I = dyn_cast<Instruction>(V); 377 if (!I) { 378 // Non-instructions all dominate instructions, but not all constantexprs 379 // can be executed unconditionally. 380 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 381 if (C->canTrap()) 382 return false; 383 return true; 384 } 385 BasicBlock *PBB = I->getParent(); 386 387 // We don't want to allow weird loops that might have the "if condition" in 388 // the bottom of this block. 389 if (PBB == BB) 390 return false; 391 392 // If this instruction is defined in a block that contains an unconditional 393 // branch to BB, then it must be in the 'conditional' part of the "if 394 // statement". If not, it definitely dominates the region. 395 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 396 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 397 return true; 398 399 // If we have seen this instruction before, don't count it again. 400 if (AggressiveInsts.count(I)) 401 return true; 402 403 // Okay, it looks like the instruction IS in the "condition". Check to 404 // see if it's a cheap instruction to unconditionally compute, and if it 405 // only uses stuff defined outside of the condition. If so, hoist it out. 406 if (!isSafeToSpeculativelyExecute(I)) 407 return false; 408 409 Cost += computeSpeculationCost(I, TTI); 410 411 // Allow exactly one instruction to be speculated regardless of its cost 412 // (as long as it is safe to do so). 413 // This is intended to flatten the CFG even if the instruction is a division 414 // or other expensive operation. The speculation of an expensive instruction 415 // is expected to be undone in CodeGenPrepare if the speculation has not 416 // enabled further IR optimizations. 417 if (Cost > Budget && 418 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 419 !Cost.isValid())) 420 return false; 421 422 // Okay, we can only really hoist these out if their operands do 423 // not take us over the cost threshold. 424 for (Use &Op : I->operands()) 425 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 426 Depth + 1)) 427 return false; 428 // Okay, it's safe to do this! Remember this instruction. 429 AggressiveInsts.insert(I); 430 return true; 431 } 432 433 /// Extract ConstantInt from value, looking through IntToPtr 434 /// and PointerNullValue. Return NULL if value is not a constant int. 435 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 436 // Normal constant int. 437 ConstantInt *CI = dyn_cast<ConstantInt>(V); 438 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 439 return CI; 440 441 // This is some kind of pointer constant. Turn it into a pointer-sized 442 // ConstantInt if possible. 443 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 444 445 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 446 if (isa<ConstantPointerNull>(V)) 447 return ConstantInt::get(PtrTy, 0); 448 449 // IntToPtr const int. 450 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 451 if (CE->getOpcode() == Instruction::IntToPtr) 452 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 453 // The constant is very likely to have the right type already. 454 if (CI->getType() == PtrTy) 455 return CI; 456 else 457 return cast<ConstantInt>( 458 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 459 } 460 return nullptr; 461 } 462 463 namespace { 464 465 /// Given a chain of or (||) or and (&&) comparison of a value against a 466 /// constant, this will try to recover the information required for a switch 467 /// structure. 468 /// It will depth-first traverse the chain of comparison, seeking for patterns 469 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 470 /// representing the different cases for the switch. 471 /// Note that if the chain is composed of '||' it will build the set of elements 472 /// that matches the comparisons (i.e. any of this value validate the chain) 473 /// while for a chain of '&&' it will build the set elements that make the test 474 /// fail. 475 struct ConstantComparesGatherer { 476 const DataLayout &DL; 477 478 /// Value found for the switch comparison 479 Value *CompValue = nullptr; 480 481 /// Extra clause to be checked before the switch 482 Value *Extra = nullptr; 483 484 /// Set of integers to match in switch 485 SmallVector<ConstantInt *, 8> Vals; 486 487 /// Number of comparisons matched in the and/or chain 488 unsigned UsedICmps = 0; 489 490 /// Construct and compute the result for the comparison instruction Cond 491 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 492 gather(Cond); 493 } 494 495 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 496 ConstantComparesGatherer & 497 operator=(const ConstantComparesGatherer &) = delete; 498 499 private: 500 /// Try to set the current value used for the comparison, it succeeds only if 501 /// it wasn't set before or if the new value is the same as the old one 502 bool setValueOnce(Value *NewVal) { 503 if (CompValue && CompValue != NewVal) 504 return false; 505 CompValue = NewVal; 506 return (CompValue != nullptr); 507 } 508 509 /// Try to match Instruction "I" as a comparison against a constant and 510 /// populates the array Vals with the set of values that match (or do not 511 /// match depending on isEQ). 512 /// Return false on failure. On success, the Value the comparison matched 513 /// against is placed in CompValue. 514 /// If CompValue is already set, the function is expected to fail if a match 515 /// is found but the value compared to is different. 516 bool matchInstruction(Instruction *I, bool isEQ) { 517 // If this is an icmp against a constant, handle this as one of the cases. 518 ICmpInst *ICI; 519 ConstantInt *C; 520 if (!((ICI = dyn_cast<ICmpInst>(I)) && 521 (C = GetConstantInt(I->getOperand(1), DL)))) { 522 return false; 523 } 524 525 Value *RHSVal; 526 const APInt *RHSC; 527 528 // Pattern match a special case 529 // (x & ~2^z) == y --> x == y || x == y|2^z 530 // This undoes a transformation done by instcombine to fuse 2 compares. 531 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 532 // It's a little bit hard to see why the following transformations are 533 // correct. Here is a CVC3 program to verify them for 64-bit values: 534 535 /* 536 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 537 x : BITVECTOR(64); 538 y : BITVECTOR(64); 539 z : BITVECTOR(64); 540 mask : BITVECTOR(64) = BVSHL(ONE, z); 541 QUERY( (y & ~mask = y) => 542 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 543 ); 544 QUERY( (y | mask = y) => 545 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 546 ); 547 */ 548 549 // Please note that each pattern must be a dual implication (<--> or 550 // iff). One directional implication can create spurious matches. If the 551 // implication is only one-way, an unsatisfiable condition on the left 552 // side can imply a satisfiable condition on the right side. Dual 553 // implication ensures that satisfiable conditions are transformed to 554 // other satisfiable conditions and unsatisfiable conditions are 555 // transformed to other unsatisfiable conditions. 556 557 // Here is a concrete example of a unsatisfiable condition on the left 558 // implying a satisfiable condition on the right: 559 // 560 // mask = (1 << z) 561 // (x & ~mask) == y --> (x == y || x == (y | mask)) 562 // 563 // Substituting y = 3, z = 0 yields: 564 // (x & -2) == 3 --> (x == 3 || x == 2) 565 566 // Pattern match a special case: 567 /* 568 QUERY( (y & ~mask = y) => 569 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 570 ); 571 */ 572 if (match(ICI->getOperand(0), 573 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 574 APInt Mask = ~*RHSC; 575 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 576 // If we already have a value for the switch, it has to match! 577 if (!setValueOnce(RHSVal)) 578 return false; 579 580 Vals.push_back(C); 581 Vals.push_back( 582 ConstantInt::get(C->getContext(), 583 C->getValue() | Mask)); 584 UsedICmps++; 585 return true; 586 } 587 } 588 589 // Pattern match a special case: 590 /* 591 QUERY( (y | mask = y) => 592 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 593 ); 594 */ 595 if (match(ICI->getOperand(0), 596 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 597 APInt Mask = *RHSC; 598 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 599 // If we already have a value for the switch, it has to match! 600 if (!setValueOnce(RHSVal)) 601 return false; 602 603 Vals.push_back(C); 604 Vals.push_back(ConstantInt::get(C->getContext(), 605 C->getValue() & ~Mask)); 606 UsedICmps++; 607 return true; 608 } 609 } 610 611 // If we already have a value for the switch, it has to match! 612 if (!setValueOnce(ICI->getOperand(0))) 613 return false; 614 615 UsedICmps++; 616 Vals.push_back(C); 617 return ICI->getOperand(0); 618 } 619 620 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 621 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 622 ICI->getPredicate(), C->getValue()); 623 624 // Shift the range if the compare is fed by an add. This is the range 625 // compare idiom as emitted by instcombine. 626 Value *CandidateVal = I->getOperand(0); 627 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 628 Span = Span.subtract(*RHSC); 629 CandidateVal = RHSVal; 630 } 631 632 // If this is an and/!= check, then we are looking to build the set of 633 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 634 // x != 0 && x != 1. 635 if (!isEQ) 636 Span = Span.inverse(); 637 638 // If there are a ton of values, we don't want to make a ginormous switch. 639 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 640 return false; 641 } 642 643 // If we already have a value for the switch, it has to match! 644 if (!setValueOnce(CandidateVal)) 645 return false; 646 647 // Add all values from the range to the set 648 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 649 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 650 651 UsedICmps++; 652 return true; 653 } 654 655 /// Given a potentially 'or'd or 'and'd together collection of icmp 656 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 657 /// the value being compared, and stick the list constants into the Vals 658 /// vector. 659 /// One "Extra" case is allowed to differ from the other. 660 void gather(Value *V) { 661 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 662 663 // Keep a stack (SmallVector for efficiency) for depth-first traversal 664 SmallVector<Value *, 8> DFT; 665 SmallPtrSet<Value *, 8> Visited; 666 667 // Initialize 668 Visited.insert(V); 669 DFT.push_back(V); 670 671 while (!DFT.empty()) { 672 V = DFT.pop_back_val(); 673 674 if (Instruction *I = dyn_cast<Instruction>(V)) { 675 // If it is a || (or && depending on isEQ), process the operands. 676 Value *Op0, *Op1; 677 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 678 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 679 if (Visited.insert(Op1).second) 680 DFT.push_back(Op1); 681 if (Visited.insert(Op0).second) 682 DFT.push_back(Op0); 683 684 continue; 685 } 686 687 // Try to match the current instruction 688 if (matchInstruction(I, isEQ)) 689 // Match succeed, continue the loop 690 continue; 691 } 692 693 // One element of the sequence of || (or &&) could not be match as a 694 // comparison against the same value as the others. 695 // We allow only one "Extra" case to be checked before the switch 696 if (!Extra) { 697 Extra = V; 698 continue; 699 } 700 // Failed to parse a proper sequence, abort now 701 CompValue = nullptr; 702 break; 703 } 704 } 705 }; 706 707 } // end anonymous namespace 708 709 static void EraseTerminatorAndDCECond(Instruction *TI, 710 MemorySSAUpdater *MSSAU = nullptr) { 711 Instruction *Cond = nullptr; 712 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 713 Cond = dyn_cast<Instruction>(SI->getCondition()); 714 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 715 if (BI->isConditional()) 716 Cond = dyn_cast<Instruction>(BI->getCondition()); 717 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 718 Cond = dyn_cast<Instruction>(IBI->getAddress()); 719 } 720 721 TI->eraseFromParent(); 722 if (Cond) 723 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 724 } 725 726 /// Return true if the specified terminator checks 727 /// to see if a value is equal to constant integer value. 728 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 729 Value *CV = nullptr; 730 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 731 // Do not permit merging of large switch instructions into their 732 // predecessors unless there is only one predecessor. 733 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 734 CV = SI->getCondition(); 735 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 736 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 737 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 738 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 739 CV = ICI->getOperand(0); 740 } 741 742 // Unwrap any lossless ptrtoint cast. 743 if (CV) { 744 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 745 Value *Ptr = PTII->getPointerOperand(); 746 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 747 CV = Ptr; 748 } 749 } 750 return CV; 751 } 752 753 /// Given a value comparison instruction, 754 /// decode all of the 'cases' that it represents and return the 'default' block. 755 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 756 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 757 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 758 Cases.reserve(SI->getNumCases()); 759 for (auto Case : SI->cases()) 760 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 761 Case.getCaseSuccessor())); 762 return SI->getDefaultDest(); 763 } 764 765 BranchInst *BI = cast<BranchInst>(TI); 766 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 767 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 768 Cases.push_back(ValueEqualityComparisonCase( 769 GetConstantInt(ICI->getOperand(1), DL), Succ)); 770 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 771 } 772 773 /// Given a vector of bb/value pairs, remove any entries 774 /// in the list that match the specified block. 775 static void 776 EliminateBlockCases(BasicBlock *BB, 777 std::vector<ValueEqualityComparisonCase> &Cases) { 778 llvm::erase_value(Cases, BB); 779 } 780 781 /// Return true if there are any keys in C1 that exist in C2 as well. 782 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 783 std::vector<ValueEqualityComparisonCase> &C2) { 784 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 785 786 // Make V1 be smaller than V2. 787 if (V1->size() > V2->size()) 788 std::swap(V1, V2); 789 790 if (V1->empty()) 791 return false; 792 if (V1->size() == 1) { 793 // Just scan V2. 794 ConstantInt *TheVal = (*V1)[0].Value; 795 for (unsigned i = 0, e = V2->size(); i != e; ++i) 796 if (TheVal == (*V2)[i].Value) 797 return true; 798 } 799 800 // Otherwise, just sort both lists and compare element by element. 801 array_pod_sort(V1->begin(), V1->end()); 802 array_pod_sort(V2->begin(), V2->end()); 803 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 804 while (i1 != e1 && i2 != e2) { 805 if ((*V1)[i1].Value == (*V2)[i2].Value) 806 return true; 807 if ((*V1)[i1].Value < (*V2)[i2].Value) 808 ++i1; 809 else 810 ++i2; 811 } 812 return false; 813 } 814 815 // Set branch weights on SwitchInst. This sets the metadata if there is at 816 // least one non-zero weight. 817 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 818 // Check that there is at least one non-zero weight. Otherwise, pass 819 // nullptr to setMetadata which will erase the existing metadata. 820 MDNode *N = nullptr; 821 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 822 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 823 SI->setMetadata(LLVMContext::MD_prof, N); 824 } 825 826 // Similar to the above, but for branch and select instructions that take 827 // exactly 2 weights. 828 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 829 uint32_t FalseWeight) { 830 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 831 // Check that there is at least one non-zero weight. Otherwise, pass 832 // nullptr to setMetadata which will erase the existing metadata. 833 MDNode *N = nullptr; 834 if (TrueWeight || FalseWeight) 835 N = MDBuilder(I->getParent()->getContext()) 836 .createBranchWeights(TrueWeight, FalseWeight); 837 I->setMetadata(LLVMContext::MD_prof, N); 838 } 839 840 /// If TI is known to be a terminator instruction and its block is known to 841 /// only have a single predecessor block, check to see if that predecessor is 842 /// also a value comparison with the same value, and if that comparison 843 /// determines the outcome of this comparison. If so, simplify TI. This does a 844 /// very limited form of jump threading. 845 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 846 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 847 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 848 if (!PredVal) 849 return false; // Not a value comparison in predecessor. 850 851 Value *ThisVal = isValueEqualityComparison(TI); 852 assert(ThisVal && "This isn't a value comparison!!"); 853 if (ThisVal != PredVal) 854 return false; // Different predicates. 855 856 // TODO: Preserve branch weight metadata, similarly to how 857 // FoldValueComparisonIntoPredecessors preserves it. 858 859 // Find out information about when control will move from Pred to TI's block. 860 std::vector<ValueEqualityComparisonCase> PredCases; 861 BasicBlock *PredDef = 862 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 863 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 864 865 // Find information about how control leaves this block. 866 std::vector<ValueEqualityComparisonCase> ThisCases; 867 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 868 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 869 870 // If TI's block is the default block from Pred's comparison, potentially 871 // simplify TI based on this knowledge. 872 if (PredDef == TI->getParent()) { 873 // If we are here, we know that the value is none of those cases listed in 874 // PredCases. If there are any cases in ThisCases that are in PredCases, we 875 // can simplify TI. 876 if (!ValuesOverlap(PredCases, ThisCases)) 877 return false; 878 879 if (isa<BranchInst>(TI)) { 880 // Okay, one of the successors of this condbr is dead. Convert it to a 881 // uncond br. 882 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 883 // Insert the new branch. 884 Instruction *NI = Builder.CreateBr(ThisDef); 885 (void)NI; 886 887 // Remove PHI node entries for the dead edge. 888 ThisCases[0].Dest->removePredecessor(PredDef); 889 890 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 891 << "Through successor TI: " << *TI << "Leaving: " << *NI 892 << "\n"); 893 894 EraseTerminatorAndDCECond(TI); 895 896 if (DTU) 897 DTU->applyUpdates( 898 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 899 900 return true; 901 } 902 903 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 904 // Okay, TI has cases that are statically dead, prune them away. 905 SmallPtrSet<Constant *, 16> DeadCases; 906 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 907 DeadCases.insert(PredCases[i].Value); 908 909 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 910 << "Through successor TI: " << *TI); 911 912 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 913 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 914 --i; 915 auto *Successor = i->getCaseSuccessor(); 916 ++NumPerSuccessorCases[Successor]; 917 if (DeadCases.count(i->getCaseValue())) { 918 Successor->removePredecessor(PredDef); 919 SI.removeCase(i); 920 --NumPerSuccessorCases[Successor]; 921 } 922 } 923 924 std::vector<DominatorTree::UpdateType> Updates; 925 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 926 if (I.second == 0) 927 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 928 if (DTU) 929 DTU->applyUpdates(Updates); 930 931 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 932 return true; 933 } 934 935 // Otherwise, TI's block must correspond to some matched value. Find out 936 // which value (or set of values) this is. 937 ConstantInt *TIV = nullptr; 938 BasicBlock *TIBB = TI->getParent(); 939 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 940 if (PredCases[i].Dest == TIBB) { 941 if (TIV) 942 return false; // Cannot handle multiple values coming to this block. 943 TIV = PredCases[i].Value; 944 } 945 assert(TIV && "No edge from pred to succ?"); 946 947 // Okay, we found the one constant that our value can be if we get into TI's 948 // BB. Find out which successor will unconditionally be branched to. 949 BasicBlock *TheRealDest = nullptr; 950 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 951 if (ThisCases[i].Value == TIV) { 952 TheRealDest = ThisCases[i].Dest; 953 break; 954 } 955 956 // If not handled by any explicit cases, it is handled by the default case. 957 if (!TheRealDest) 958 TheRealDest = ThisDef; 959 960 SmallSetVector<BasicBlock *, 2> RemovedSuccs; 961 962 // Remove PHI node entries for dead edges. 963 BasicBlock *CheckEdge = TheRealDest; 964 for (BasicBlock *Succ : successors(TIBB)) 965 if (Succ != CheckEdge) { 966 if (Succ != TheRealDest) 967 RemovedSuccs.insert(Succ); 968 Succ->removePredecessor(TIBB); 969 } else 970 CheckEdge = nullptr; 971 972 // Insert the new branch. 973 Instruction *NI = Builder.CreateBr(TheRealDest); 974 (void)NI; 975 976 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 977 << "Through successor TI: " << *TI << "Leaving: " << *NI 978 << "\n"); 979 980 EraseTerminatorAndDCECond(TI); 981 if (DTU) { 982 SmallVector<DominatorTree::UpdateType, 2> Updates; 983 Updates.reserve(RemovedSuccs.size()); 984 for (auto *RemovedSucc : RemovedSuccs) 985 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 986 DTU->applyUpdates(Updates); 987 } 988 return true; 989 } 990 991 namespace { 992 993 /// This class implements a stable ordering of constant 994 /// integers that does not depend on their address. This is important for 995 /// applications that sort ConstantInt's to ensure uniqueness. 996 struct ConstantIntOrdering { 997 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 998 return LHS->getValue().ult(RHS->getValue()); 999 } 1000 }; 1001 1002 } // end anonymous namespace 1003 1004 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1005 ConstantInt *const *P2) { 1006 const ConstantInt *LHS = *P1; 1007 const ConstantInt *RHS = *P2; 1008 if (LHS == RHS) 1009 return 0; 1010 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1011 } 1012 1013 static inline bool HasBranchWeights(const Instruction *I) { 1014 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1015 if (ProfMD && ProfMD->getOperand(0)) 1016 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1017 return MDS->getString().equals("branch_weights"); 1018 1019 return false; 1020 } 1021 1022 /// Get Weights of a given terminator, the default weight is at the front 1023 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1024 /// metadata. 1025 static void GetBranchWeights(Instruction *TI, 1026 SmallVectorImpl<uint64_t> &Weights) { 1027 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1028 assert(MD); 1029 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1030 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1031 Weights.push_back(CI->getValue().getZExtValue()); 1032 } 1033 1034 // If TI is a conditional eq, the default case is the false case, 1035 // and the corresponding branch-weight data is at index 2. We swap the 1036 // default weight to be the first entry. 1037 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1038 assert(Weights.size() == 2); 1039 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1040 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1041 std::swap(Weights.front(), Weights.back()); 1042 } 1043 } 1044 1045 /// Keep halving the weights until all can fit in uint32_t. 1046 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1047 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1048 if (Max > UINT_MAX) { 1049 unsigned Offset = 32 - countLeadingZeros(Max); 1050 for (uint64_t &I : Weights) 1051 I >>= Offset; 1052 } 1053 } 1054 1055 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1056 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1057 Instruction *PTI = PredBlock->getTerminator(); 1058 1059 // If we have bonus instructions, clone them into the predecessor block. 1060 // Note that there may be multiple predecessor blocks, so we cannot move 1061 // bonus instructions to a predecessor block. 1062 for (Instruction &BonusInst : *BB) { 1063 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1064 continue; 1065 1066 Instruction *NewBonusInst = BonusInst.clone(); 1067 1068 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1069 // Unless the instruction has the same !dbg location as the original 1070 // branch, drop it. When we fold the bonus instructions we want to make 1071 // sure we reset their debug locations in order to avoid stepping on 1072 // dead code caused by folding dead branches. 1073 NewBonusInst->setDebugLoc(DebugLoc()); 1074 } 1075 1076 RemapInstruction(NewBonusInst, VMap, 1077 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1078 VMap[&BonusInst] = NewBonusInst; 1079 1080 // If we moved a load, we cannot any longer claim any knowledge about 1081 // its potential value. The previous information might have been valid 1082 // only given the branch precondition. 1083 // For an analogous reason, we must also drop all the metadata whose 1084 // semantics we don't understand. We *can* preserve !annotation, because 1085 // it is tied to the instruction itself, not the value or position. 1086 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1087 1088 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1089 NewBonusInst->takeName(&BonusInst); 1090 BonusInst.setName(NewBonusInst->getName() + ".old"); 1091 1092 // Update (liveout) uses of bonus instructions, 1093 // now that the bonus instruction has been cloned into predecessor. 1094 SSAUpdater SSAUpdate; 1095 SSAUpdate.Initialize(BonusInst.getType(), 1096 (NewBonusInst->getName() + ".merge").str()); 1097 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1098 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1099 for (Use &U : make_early_inc_range(BonusInst.uses())) 1100 SSAUpdate.RewriteUseAfterInsertions(U); 1101 } 1102 } 1103 1104 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1105 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1106 BasicBlock *BB = TI->getParent(); 1107 BasicBlock *Pred = PTI->getParent(); 1108 1109 std::vector<DominatorTree::UpdateType> Updates; 1110 1111 // Figure out which 'cases' to copy from SI to PSI. 1112 std::vector<ValueEqualityComparisonCase> BBCases; 1113 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1114 1115 std::vector<ValueEqualityComparisonCase> PredCases; 1116 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1117 1118 // Based on whether the default edge from PTI goes to BB or not, fill in 1119 // PredCases and PredDefault with the new switch cases we would like to 1120 // build. 1121 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1122 1123 // Update the branch weight metadata along the way 1124 SmallVector<uint64_t, 8> Weights; 1125 bool PredHasWeights = HasBranchWeights(PTI); 1126 bool SuccHasWeights = HasBranchWeights(TI); 1127 1128 if (PredHasWeights) { 1129 GetBranchWeights(PTI, Weights); 1130 // branch-weight metadata is inconsistent here. 1131 if (Weights.size() != 1 + PredCases.size()) 1132 PredHasWeights = SuccHasWeights = false; 1133 } else if (SuccHasWeights) 1134 // If there are no predecessor weights but there are successor weights, 1135 // populate Weights with 1, which will later be scaled to the sum of 1136 // successor's weights 1137 Weights.assign(1 + PredCases.size(), 1); 1138 1139 SmallVector<uint64_t, 8> SuccWeights; 1140 if (SuccHasWeights) { 1141 GetBranchWeights(TI, SuccWeights); 1142 // branch-weight metadata is inconsistent here. 1143 if (SuccWeights.size() != 1 + BBCases.size()) 1144 PredHasWeights = SuccHasWeights = false; 1145 } else if (PredHasWeights) 1146 SuccWeights.assign(1 + BBCases.size(), 1); 1147 1148 if (PredDefault == BB) { 1149 // If this is the default destination from PTI, only the edges in TI 1150 // that don't occur in PTI, or that branch to BB will be activated. 1151 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1152 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1153 if (PredCases[i].Dest != BB) 1154 PTIHandled.insert(PredCases[i].Value); 1155 else { 1156 // The default destination is BB, we don't need explicit targets. 1157 std::swap(PredCases[i], PredCases.back()); 1158 1159 if (PredHasWeights || SuccHasWeights) { 1160 // Increase weight for the default case. 1161 Weights[0] += Weights[i + 1]; 1162 std::swap(Weights[i + 1], Weights.back()); 1163 Weights.pop_back(); 1164 } 1165 1166 PredCases.pop_back(); 1167 --i; 1168 --e; 1169 } 1170 1171 // Reconstruct the new switch statement we will be building. 1172 if (PredDefault != BBDefault) { 1173 PredDefault->removePredecessor(Pred); 1174 if (PredDefault != BB) 1175 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1176 PredDefault = BBDefault; 1177 ++NewSuccessors[BBDefault]; 1178 } 1179 1180 unsigned CasesFromPred = Weights.size(); 1181 uint64_t ValidTotalSuccWeight = 0; 1182 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1183 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1184 PredCases.push_back(BBCases[i]); 1185 ++NewSuccessors[BBCases[i].Dest]; 1186 if (SuccHasWeights || PredHasWeights) { 1187 // The default weight is at index 0, so weight for the ith case 1188 // should be at index i+1. Scale the cases from successor by 1189 // PredDefaultWeight (Weights[0]). 1190 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1191 ValidTotalSuccWeight += SuccWeights[i + 1]; 1192 } 1193 } 1194 1195 if (SuccHasWeights || PredHasWeights) { 1196 ValidTotalSuccWeight += SuccWeights[0]; 1197 // Scale the cases from predecessor by ValidTotalSuccWeight. 1198 for (unsigned i = 1; i < CasesFromPred; ++i) 1199 Weights[i] *= ValidTotalSuccWeight; 1200 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1201 Weights[0] *= SuccWeights[0]; 1202 } 1203 } else { 1204 // If this is not the default destination from PSI, only the edges 1205 // in SI that occur in PSI with a destination of BB will be 1206 // activated. 1207 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1208 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1209 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1210 if (PredCases[i].Dest == BB) { 1211 PTIHandled.insert(PredCases[i].Value); 1212 1213 if (PredHasWeights || SuccHasWeights) { 1214 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1215 std::swap(Weights[i + 1], Weights.back()); 1216 Weights.pop_back(); 1217 } 1218 1219 std::swap(PredCases[i], PredCases.back()); 1220 PredCases.pop_back(); 1221 --i; 1222 --e; 1223 } 1224 1225 // Okay, now we know which constants were sent to BB from the 1226 // predecessor. Figure out where they will all go now. 1227 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1228 if (PTIHandled.count(BBCases[i].Value)) { 1229 // If this is one we are capable of getting... 1230 if (PredHasWeights || SuccHasWeights) 1231 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1232 PredCases.push_back(BBCases[i]); 1233 ++NewSuccessors[BBCases[i].Dest]; 1234 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1235 } 1236 1237 // If there are any constants vectored to BB that TI doesn't handle, 1238 // they must go to the default destination of TI. 1239 for (ConstantInt *I : PTIHandled) { 1240 if (PredHasWeights || SuccHasWeights) 1241 Weights.push_back(WeightsForHandled[I]); 1242 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1243 ++NewSuccessors[BBDefault]; 1244 } 1245 } 1246 1247 // Okay, at this point, we know which new successor Pred will get. Make 1248 // sure we update the number of entries in the PHI nodes for these 1249 // successors. 1250 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1251 NewSuccessors) { 1252 for (auto I : seq(0, NewSuccessor.second)) { 1253 (void)I; 1254 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1255 } 1256 if (!is_contained(successors(Pred), NewSuccessor.first)) 1257 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1258 } 1259 1260 Builder.SetInsertPoint(PTI); 1261 // Convert pointer to int before we switch. 1262 if (CV->getType()->isPointerTy()) { 1263 CV = 1264 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1265 } 1266 1267 // Now that the successors are updated, create the new Switch instruction. 1268 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1269 NewSI->setDebugLoc(PTI->getDebugLoc()); 1270 for (ValueEqualityComparisonCase &V : PredCases) 1271 NewSI->addCase(V.Value, V.Dest); 1272 1273 if (PredHasWeights || SuccHasWeights) { 1274 // Halve the weights if any of them cannot fit in an uint32_t 1275 FitWeights(Weights); 1276 1277 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1278 1279 setBranchWeights(NewSI, MDWeights); 1280 } 1281 1282 EraseTerminatorAndDCECond(PTI); 1283 1284 // Okay, last check. If BB is still a successor of PSI, then we must 1285 // have an infinite loop case. If so, add an infinitely looping block 1286 // to handle the case to preserve the behavior of the code. 1287 BasicBlock *InfLoopBlock = nullptr; 1288 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1289 if (NewSI->getSuccessor(i) == BB) { 1290 if (!InfLoopBlock) { 1291 // Insert it at the end of the function, because it's either code, 1292 // or it won't matter if it's hot. :) 1293 InfLoopBlock = 1294 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1295 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1296 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1297 } 1298 NewSI->setSuccessor(i, InfLoopBlock); 1299 } 1300 1301 if (InfLoopBlock) 1302 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1303 1304 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1305 1306 if (DTU) 1307 DTU->applyUpdates(Updates); 1308 1309 ++NumFoldValueComparisonIntoPredecessors; 1310 return true; 1311 } 1312 1313 /// The specified terminator is a value equality comparison instruction 1314 /// (either a switch or a branch on "X == c"). 1315 /// See if any of the predecessors of the terminator block are value comparisons 1316 /// on the same value. If so, and if safe to do so, fold them together. 1317 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1318 IRBuilder<> &Builder) { 1319 BasicBlock *BB = TI->getParent(); 1320 Value *CV = isValueEqualityComparison(TI); // CondVal 1321 assert(CV && "Not a comparison?"); 1322 1323 bool Changed = false; 1324 1325 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1326 while (!Preds.empty()) { 1327 BasicBlock *Pred = Preds.pop_back_val(); 1328 Instruction *PTI = Pred->getTerminator(); 1329 1330 // Don't try to fold into itself. 1331 if (Pred == BB) 1332 continue; 1333 1334 // See if the predecessor is a comparison with the same value. 1335 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1336 if (PCV != CV) 1337 continue; 1338 1339 SmallSetVector<BasicBlock *, 4> FailBlocks; 1340 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1341 for (auto *Succ : FailBlocks) { 1342 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1343 return false; 1344 } 1345 } 1346 1347 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1348 Changed = true; 1349 } 1350 return Changed; 1351 } 1352 1353 // If we would need to insert a select that uses the value of this invoke 1354 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1355 // can't hoist the invoke, as there is nowhere to put the select in this case. 1356 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1357 Instruction *I1, Instruction *I2) { 1358 for (BasicBlock *Succ : successors(BB1)) { 1359 for (const PHINode &PN : Succ->phis()) { 1360 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1361 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1362 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1363 return false; 1364 } 1365 } 1366 } 1367 return true; 1368 } 1369 1370 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1371 1372 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1373 /// in the two blocks up into the branch block. The caller of this function 1374 /// guarantees that BI's block dominates BB1 and BB2. 1375 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1376 const TargetTransformInfo &TTI) { 1377 // This does very trivial matching, with limited scanning, to find identical 1378 // instructions in the two blocks. In particular, we don't want to get into 1379 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1380 // such, we currently just scan for obviously identical instructions in an 1381 // identical order. 1382 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1383 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1384 1385 BasicBlock::iterator BB1_Itr = BB1->begin(); 1386 BasicBlock::iterator BB2_Itr = BB2->begin(); 1387 1388 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1389 // Skip debug info if it is not identical. 1390 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1391 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1392 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1393 while (isa<DbgInfoIntrinsic>(I1)) 1394 I1 = &*BB1_Itr++; 1395 while (isa<DbgInfoIntrinsic>(I2)) 1396 I2 = &*BB2_Itr++; 1397 } 1398 // FIXME: Can we define a safety predicate for CallBr? 1399 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1400 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1401 isa<CallBrInst>(I1)) 1402 return false; 1403 1404 BasicBlock *BIParent = BI->getParent(); 1405 1406 bool Changed = false; 1407 1408 auto _ = make_scope_exit([&]() { 1409 if (Changed) 1410 ++NumHoistCommonCode; 1411 }); 1412 1413 do { 1414 // If we are hoisting the terminator instruction, don't move one (making a 1415 // broken BB), instead clone it, and remove BI. 1416 if (I1->isTerminator()) 1417 goto HoistTerminator; 1418 1419 // If we're going to hoist a call, make sure that the two instructions we're 1420 // commoning/hoisting are both marked with musttail, or neither of them is 1421 // marked as such. Otherwise, we might end up in a situation where we hoist 1422 // from a block where the terminator is a `ret` to a block where the terminator 1423 // is a `br`, and `musttail` calls expect to be followed by a return. 1424 auto *C1 = dyn_cast<CallInst>(I1); 1425 auto *C2 = dyn_cast<CallInst>(I2); 1426 if (C1 && C2) 1427 if (C1->isMustTailCall() != C2->isMustTailCall()) 1428 return Changed; 1429 1430 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1431 return Changed; 1432 1433 // If any of the two call sites has nomerge attribute, stop hoisting. 1434 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1435 if (CB1->cannotMerge()) 1436 return Changed; 1437 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1438 if (CB2->cannotMerge()) 1439 return Changed; 1440 1441 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1442 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1443 // The debug location is an integral part of a debug info intrinsic 1444 // and can't be separated from it or replaced. Instead of attempting 1445 // to merge locations, simply hoist both copies of the intrinsic. 1446 BIParent->getInstList().splice(BI->getIterator(), 1447 BB1->getInstList(), I1); 1448 BIParent->getInstList().splice(BI->getIterator(), 1449 BB2->getInstList(), I2); 1450 Changed = true; 1451 } else { 1452 // For a normal instruction, we just move one to right before the branch, 1453 // then replace all uses of the other with the first. Finally, we remove 1454 // the now redundant second instruction. 1455 BIParent->getInstList().splice(BI->getIterator(), 1456 BB1->getInstList(), I1); 1457 if (!I2->use_empty()) 1458 I2->replaceAllUsesWith(I1); 1459 I1->andIRFlags(I2); 1460 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1461 LLVMContext::MD_range, 1462 LLVMContext::MD_fpmath, 1463 LLVMContext::MD_invariant_load, 1464 LLVMContext::MD_nonnull, 1465 LLVMContext::MD_invariant_group, 1466 LLVMContext::MD_align, 1467 LLVMContext::MD_dereferenceable, 1468 LLVMContext::MD_dereferenceable_or_null, 1469 LLVMContext::MD_mem_parallel_loop_access, 1470 LLVMContext::MD_access_group, 1471 LLVMContext::MD_preserve_access_index}; 1472 combineMetadata(I1, I2, KnownIDs, true); 1473 1474 // I1 and I2 are being combined into a single instruction. Its debug 1475 // location is the merged locations of the original instructions. 1476 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1477 1478 I2->eraseFromParent(); 1479 Changed = true; 1480 } 1481 ++NumHoistCommonInstrs; 1482 1483 I1 = &*BB1_Itr++; 1484 I2 = &*BB2_Itr++; 1485 // Skip debug info if it is not identical. 1486 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1487 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1488 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1489 while (isa<DbgInfoIntrinsic>(I1)) 1490 I1 = &*BB1_Itr++; 1491 while (isa<DbgInfoIntrinsic>(I2)) 1492 I2 = &*BB2_Itr++; 1493 } 1494 } while (I1->isIdenticalToWhenDefined(I2)); 1495 1496 return true; 1497 1498 HoistTerminator: 1499 // It may not be possible to hoist an invoke. 1500 // FIXME: Can we define a safety predicate for CallBr? 1501 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1502 return Changed; 1503 1504 // TODO: callbr hoisting currently disabled pending further study. 1505 if (isa<CallBrInst>(I1)) 1506 return Changed; 1507 1508 for (BasicBlock *Succ : successors(BB1)) { 1509 for (PHINode &PN : Succ->phis()) { 1510 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1511 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1512 if (BB1V == BB2V) 1513 continue; 1514 1515 // Check for passingValueIsAlwaysUndefined here because we would rather 1516 // eliminate undefined control flow then converting it to a select. 1517 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1518 passingValueIsAlwaysUndefined(BB2V, &PN)) 1519 return Changed; 1520 1521 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1522 return Changed; 1523 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1524 return Changed; 1525 } 1526 } 1527 1528 // Okay, it is safe to hoist the terminator. 1529 Instruction *NT = I1->clone(); 1530 BIParent->getInstList().insert(BI->getIterator(), NT); 1531 if (!NT->getType()->isVoidTy()) { 1532 I1->replaceAllUsesWith(NT); 1533 I2->replaceAllUsesWith(NT); 1534 NT->takeName(I1); 1535 } 1536 Changed = true; 1537 ++NumHoistCommonInstrs; 1538 1539 // Ensure terminator gets a debug location, even an unknown one, in case 1540 // it involves inlinable calls. 1541 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1542 1543 // PHIs created below will adopt NT's merged DebugLoc. 1544 IRBuilder<NoFolder> Builder(NT); 1545 1546 // Hoisting one of the terminators from our successor is a great thing. 1547 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1548 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1549 // nodes, so we insert select instruction to compute the final result. 1550 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1551 for (BasicBlock *Succ : successors(BB1)) { 1552 for (PHINode &PN : Succ->phis()) { 1553 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1554 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1555 if (BB1V == BB2V) 1556 continue; 1557 1558 // These values do not agree. Insert a select instruction before NT 1559 // that determines the right value. 1560 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1561 if (!SI) { 1562 // Propagate fast-math-flags from phi node to its replacement select. 1563 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1564 if (isa<FPMathOperator>(PN)) 1565 Builder.setFastMathFlags(PN.getFastMathFlags()); 1566 1567 SI = cast<SelectInst>( 1568 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1569 BB1V->getName() + "." + BB2V->getName(), BI)); 1570 } 1571 1572 // Make the PHI node use the select for all incoming values for BB1/BB2 1573 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1574 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1575 PN.setIncomingValue(i, SI); 1576 } 1577 } 1578 1579 SmallVector<DominatorTree::UpdateType, 4> Updates; 1580 1581 // Update any PHI nodes in our new successors. 1582 for (BasicBlock *Succ : successors(BB1)) { 1583 AddPredecessorToBlock(Succ, BIParent, BB1); 1584 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1585 } 1586 for (BasicBlock *Succ : successors(BI)) 1587 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1588 1589 EraseTerminatorAndDCECond(BI); 1590 if (DTU) 1591 DTU->applyUpdates(Updates); 1592 return Changed; 1593 } 1594 1595 // Check lifetime markers. 1596 static bool isLifeTimeMarker(const Instruction *I) { 1597 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1598 switch (II->getIntrinsicID()) { 1599 default: 1600 break; 1601 case Intrinsic::lifetime_start: 1602 case Intrinsic::lifetime_end: 1603 return true; 1604 } 1605 } 1606 return false; 1607 } 1608 1609 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1610 // into variables. 1611 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1612 int OpIdx) { 1613 return !isa<IntrinsicInst>(I); 1614 } 1615 1616 // All instructions in Insts belong to different blocks that all unconditionally 1617 // branch to a common successor. Analyze each instruction and return true if it 1618 // would be possible to sink them into their successor, creating one common 1619 // instruction instead. For every value that would be required to be provided by 1620 // PHI node (because an operand varies in each input block), add to PHIOperands. 1621 static bool canSinkInstructions( 1622 ArrayRef<Instruction *> Insts, 1623 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1624 // Prune out obviously bad instructions to move. Each instruction must have 1625 // exactly zero or one use, and we check later that use is by a single, common 1626 // PHI instruction in the successor. 1627 bool HasUse = !Insts.front()->user_empty(); 1628 for (auto *I : Insts) { 1629 // These instructions may change or break semantics if moved. 1630 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1631 I->getType()->isTokenTy()) 1632 return false; 1633 1634 // Do not try to sink an instruction in an infinite loop - it can cause 1635 // this algorithm to infinite loop. 1636 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1637 return false; 1638 1639 // Conservatively return false if I is an inline-asm instruction. Sinking 1640 // and merging inline-asm instructions can potentially create arguments 1641 // that cannot satisfy the inline-asm constraints. 1642 // If the instruction has nomerge attribute, return false. 1643 if (const auto *C = dyn_cast<CallBase>(I)) 1644 if (C->isInlineAsm() || C->cannotMerge()) 1645 return false; 1646 1647 // Each instruction must have zero or one use. 1648 if (HasUse && !I->hasOneUse()) 1649 return false; 1650 if (!HasUse && !I->user_empty()) 1651 return false; 1652 } 1653 1654 const Instruction *I0 = Insts.front(); 1655 for (auto *I : Insts) 1656 if (!I->isSameOperationAs(I0)) 1657 return false; 1658 1659 // All instructions in Insts are known to be the same opcode. If they have a 1660 // use, check that the only user is a PHI or in the same block as the 1661 // instruction, because if a user is in the same block as an instruction we're 1662 // contemplating sinking, it must already be determined to be sinkable. 1663 if (HasUse) { 1664 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1665 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1666 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1667 auto *U = cast<Instruction>(*I->user_begin()); 1668 return (PNUse && 1669 PNUse->getParent() == Succ && 1670 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1671 U->getParent() == I->getParent(); 1672 })) 1673 return false; 1674 } 1675 1676 // Because SROA can't handle speculating stores of selects, try not to sink 1677 // loads, stores or lifetime markers of allocas when we'd have to create a 1678 // PHI for the address operand. Also, because it is likely that loads or 1679 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1680 // them. 1681 // This can cause code churn which can have unintended consequences down 1682 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1683 // FIXME: This is a workaround for a deficiency in SROA - see 1684 // https://llvm.org/bugs/show_bug.cgi?id=30188 1685 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1686 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1687 })) 1688 return false; 1689 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1690 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1691 })) 1692 return false; 1693 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1694 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1695 })) 1696 return false; 1697 1698 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1699 Value *Op = I0->getOperand(OI); 1700 if (Op->getType()->isTokenTy()) 1701 // Don't touch any operand of token type. 1702 return false; 1703 1704 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1705 assert(I->getNumOperands() == I0->getNumOperands()); 1706 return I->getOperand(OI) == I0->getOperand(OI); 1707 }; 1708 if (!all_of(Insts, SameAsI0)) { 1709 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1710 !canReplaceOperandWithVariable(I0, OI)) 1711 // We can't create a PHI from this GEP. 1712 return false; 1713 // Don't create indirect calls! The called value is the final operand. 1714 if (isa<CallBase>(I0) && OI == OE - 1) { 1715 // FIXME: if the call was *already* indirect, we should do this. 1716 return false; 1717 } 1718 for (auto *I : Insts) 1719 PHIOperands[I].push_back(I->getOperand(OI)); 1720 } 1721 } 1722 return true; 1723 } 1724 1725 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1726 // instruction of every block in Blocks to their common successor, commoning 1727 // into one instruction. 1728 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1729 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1730 1731 // canSinkInstructions returning true guarantees that every block has at 1732 // least one non-terminator instruction. 1733 SmallVector<Instruction*,4> Insts; 1734 for (auto *BB : Blocks) { 1735 Instruction *I = BB->getTerminator(); 1736 do { 1737 I = I->getPrevNode(); 1738 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1739 if (!isa<DbgInfoIntrinsic>(I)) 1740 Insts.push_back(I); 1741 } 1742 1743 // The only checking we need to do now is that all users of all instructions 1744 // are the same PHI node. canSinkInstructions should have checked this but 1745 // it is slightly over-aggressive - it gets confused by commutative 1746 // instructions so double-check it here. 1747 Instruction *I0 = Insts.front(); 1748 if (!I0->user_empty()) { 1749 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1750 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1751 auto *U = cast<Instruction>(*I->user_begin()); 1752 return U == PNUse; 1753 })) 1754 return false; 1755 } 1756 1757 // We don't need to do any more checking here; canSinkInstructions should 1758 // have done it all for us. 1759 SmallVector<Value*, 4> NewOperands; 1760 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1761 // This check is different to that in canSinkInstructions. There, we 1762 // cared about the global view once simplifycfg (and instcombine) have 1763 // completed - it takes into account PHIs that become trivially 1764 // simplifiable. However here we need a more local view; if an operand 1765 // differs we create a PHI and rely on instcombine to clean up the very 1766 // small mess we may make. 1767 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1768 return I->getOperand(O) != I0->getOperand(O); 1769 }); 1770 if (!NeedPHI) { 1771 NewOperands.push_back(I0->getOperand(O)); 1772 continue; 1773 } 1774 1775 // Create a new PHI in the successor block and populate it. 1776 auto *Op = I0->getOperand(O); 1777 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1778 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1779 Op->getName() + ".sink", &BBEnd->front()); 1780 for (auto *I : Insts) 1781 PN->addIncoming(I->getOperand(O), I->getParent()); 1782 NewOperands.push_back(PN); 1783 } 1784 1785 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1786 // and move it to the start of the successor block. 1787 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1788 I0->getOperandUse(O).set(NewOperands[O]); 1789 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1790 1791 // Update metadata and IR flags, and merge debug locations. 1792 for (auto *I : Insts) 1793 if (I != I0) { 1794 // The debug location for the "common" instruction is the merged locations 1795 // of all the commoned instructions. We start with the original location 1796 // of the "common" instruction and iteratively merge each location in the 1797 // loop below. 1798 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1799 // However, as N-way merge for CallInst is rare, so we use simplified API 1800 // instead of using complex API for N-way merge. 1801 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1802 combineMetadataForCSE(I0, I, true); 1803 I0->andIRFlags(I); 1804 } 1805 1806 if (!I0->user_empty()) { 1807 // canSinkLastInstruction checked that all instructions were used by 1808 // one and only one PHI node. Find that now, RAUW it to our common 1809 // instruction and nuke it. 1810 auto *PN = cast<PHINode>(*I0->user_begin()); 1811 PN->replaceAllUsesWith(I0); 1812 PN->eraseFromParent(); 1813 } 1814 1815 // Finally nuke all instructions apart from the common instruction. 1816 for (auto *I : Insts) 1817 if (I != I0) 1818 I->eraseFromParent(); 1819 1820 return true; 1821 } 1822 1823 namespace { 1824 1825 // LockstepReverseIterator - Iterates through instructions 1826 // in a set of blocks in reverse order from the first non-terminator. 1827 // For example (assume all blocks have size n): 1828 // LockstepReverseIterator I([B1, B2, B3]); 1829 // *I-- = [B1[n], B2[n], B3[n]]; 1830 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1831 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1832 // ... 1833 class LockstepReverseIterator { 1834 ArrayRef<BasicBlock*> Blocks; 1835 SmallVector<Instruction*,4> Insts; 1836 bool Fail; 1837 1838 public: 1839 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1840 reset(); 1841 } 1842 1843 void reset() { 1844 Fail = false; 1845 Insts.clear(); 1846 for (auto *BB : Blocks) { 1847 Instruction *Inst = BB->getTerminator(); 1848 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1849 Inst = Inst->getPrevNode(); 1850 if (!Inst) { 1851 // Block wasn't big enough. 1852 Fail = true; 1853 return; 1854 } 1855 Insts.push_back(Inst); 1856 } 1857 } 1858 1859 bool isValid() const { 1860 return !Fail; 1861 } 1862 1863 void operator--() { 1864 if (Fail) 1865 return; 1866 for (auto *&Inst : Insts) { 1867 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1868 Inst = Inst->getPrevNode(); 1869 // Already at beginning of block. 1870 if (!Inst) { 1871 Fail = true; 1872 return; 1873 } 1874 } 1875 } 1876 1877 ArrayRef<Instruction*> operator * () const { 1878 return Insts; 1879 } 1880 }; 1881 1882 } // end anonymous namespace 1883 1884 /// Check whether BB's predecessors end with unconditional branches. If it is 1885 /// true, sink any common code from the predecessors to BB. 1886 /// We also allow one predecessor to end with conditional branch (but no more 1887 /// than one). 1888 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1889 DomTreeUpdater *DTU) { 1890 // We support two situations: 1891 // (1) all incoming arcs are unconditional 1892 // (2) one incoming arc is conditional 1893 // 1894 // (2) is very common in switch defaults and 1895 // else-if patterns; 1896 // 1897 // if (a) f(1); 1898 // else if (b) f(2); 1899 // 1900 // produces: 1901 // 1902 // [if] 1903 // / \ 1904 // [f(1)] [if] 1905 // | | \ 1906 // | | | 1907 // | [f(2)]| 1908 // \ | / 1909 // [ end ] 1910 // 1911 // [end] has two unconditional predecessor arcs and one conditional. The 1912 // conditional refers to the implicit empty 'else' arc. This conditional 1913 // arc can also be caused by an empty default block in a switch. 1914 // 1915 // In this case, we attempt to sink code from all *unconditional* arcs. 1916 // If we can sink instructions from these arcs (determined during the scan 1917 // phase below) we insert a common successor for all unconditional arcs and 1918 // connect that to [end], to enable sinking: 1919 // 1920 // [if] 1921 // / \ 1922 // [x(1)] [if] 1923 // | | \ 1924 // | | \ 1925 // | [x(2)] | 1926 // \ / | 1927 // [sink.split] | 1928 // \ / 1929 // [ end ] 1930 // 1931 SmallVector<BasicBlock*,4> UnconditionalPreds; 1932 Instruction *Cond = nullptr; 1933 for (auto *B : predecessors(BB)) { 1934 auto *T = B->getTerminator(); 1935 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1936 UnconditionalPreds.push_back(B); 1937 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1938 Cond = T; 1939 else 1940 return false; 1941 } 1942 if (UnconditionalPreds.size() < 2) 1943 return false; 1944 1945 // We take a two-step approach to tail sinking. First we scan from the end of 1946 // each block upwards in lockstep. If the n'th instruction from the end of each 1947 // block can be sunk, those instructions are added to ValuesToSink and we 1948 // carry on. If we can sink an instruction but need to PHI-merge some operands 1949 // (because they're not identical in each instruction) we add these to 1950 // PHIOperands. 1951 unsigned ScanIdx = 0; 1952 SmallPtrSet<Value*,4> InstructionsToSink; 1953 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1954 LockstepReverseIterator LRI(UnconditionalPreds); 1955 while (LRI.isValid() && 1956 canSinkInstructions(*LRI, PHIOperands)) { 1957 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1958 << "\n"); 1959 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1960 ++ScanIdx; 1961 --LRI; 1962 } 1963 1964 // If no instructions can be sunk, early-return. 1965 if (ScanIdx == 0) 1966 return false; 1967 1968 bool Changed = false; 1969 1970 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1971 unsigned NumPHIdValues = 0; 1972 for (auto *I : *LRI) 1973 for (auto *V : PHIOperands[I]) 1974 if (InstructionsToSink.count(V) == 0) 1975 ++NumPHIdValues; 1976 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1977 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1978 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1979 NumPHIInsts++; 1980 1981 return NumPHIInsts <= 1; 1982 }; 1983 1984 if (Cond) { 1985 // Check if we would actually sink anything first! This mutates the CFG and 1986 // adds an extra block. The goal in doing this is to allow instructions that 1987 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1988 // (such as trunc, add) can be sunk and predicated already. So we check that 1989 // we're going to sink at least one non-speculatable instruction. 1990 LRI.reset(); 1991 unsigned Idx = 0; 1992 bool Profitable = false; 1993 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1994 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1995 Profitable = true; 1996 break; 1997 } 1998 --LRI; 1999 ++Idx; 2000 } 2001 if (!Profitable) 2002 return false; 2003 2004 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2005 // We have a conditional edge and we're going to sink some instructions. 2006 // Insert a new block postdominating all blocks we're going to sink from. 2007 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2008 // Edges couldn't be split. 2009 return false; 2010 Changed = true; 2011 } 2012 2013 // Now that we've analyzed all potential sinking candidates, perform the 2014 // actual sink. We iteratively sink the last non-terminator of the source 2015 // blocks into their common successor unless doing so would require too 2016 // many PHI instructions to be generated (currently only one PHI is allowed 2017 // per sunk instruction). 2018 // 2019 // We can use InstructionsToSink to discount values needing PHI-merging that will 2020 // actually be sunk in a later iteration. This allows us to be more 2021 // aggressive in what we sink. This does allow a false positive where we 2022 // sink presuming a later value will also be sunk, but stop half way through 2023 // and never actually sink it which means we produce more PHIs than intended. 2024 // This is unlikely in practice though. 2025 unsigned SinkIdx = 0; 2026 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2027 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2028 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2029 << "\n"); 2030 2031 // Because we've sunk every instruction in turn, the current instruction to 2032 // sink is always at index 0. 2033 LRI.reset(); 2034 if (!ProfitableToSinkInstruction(LRI)) { 2035 // Too many PHIs would be created. 2036 LLVM_DEBUG( 2037 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2038 break; 2039 } 2040 2041 if (!sinkLastInstruction(UnconditionalPreds)) { 2042 LLVM_DEBUG( 2043 dbgs() 2044 << "SINK: stopping here, failed to actually sink instruction!\n"); 2045 break; 2046 } 2047 2048 NumSinkCommonInstrs++; 2049 Changed = true; 2050 } 2051 if (SinkIdx != 0) 2052 ++NumSinkCommonCode; 2053 return Changed; 2054 } 2055 2056 /// Determine if we can hoist sink a sole store instruction out of a 2057 /// conditional block. 2058 /// 2059 /// We are looking for code like the following: 2060 /// BrBB: 2061 /// store i32 %add, i32* %arrayidx2 2062 /// ... // No other stores or function calls (we could be calling a memory 2063 /// ... // function). 2064 /// %cmp = icmp ult %x, %y 2065 /// br i1 %cmp, label %EndBB, label %ThenBB 2066 /// ThenBB: 2067 /// store i32 %add5, i32* %arrayidx2 2068 /// br label EndBB 2069 /// EndBB: 2070 /// ... 2071 /// We are going to transform this into: 2072 /// BrBB: 2073 /// store i32 %add, i32* %arrayidx2 2074 /// ... // 2075 /// %cmp = icmp ult %x, %y 2076 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2077 /// store i32 %add.add5, i32* %arrayidx2 2078 /// ... 2079 /// 2080 /// \return The pointer to the value of the previous store if the store can be 2081 /// hoisted into the predecessor block. 0 otherwise. 2082 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2083 BasicBlock *StoreBB, BasicBlock *EndBB) { 2084 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2085 if (!StoreToHoist) 2086 return nullptr; 2087 2088 // Volatile or atomic. 2089 if (!StoreToHoist->isSimple()) 2090 return nullptr; 2091 2092 Value *StorePtr = StoreToHoist->getPointerOperand(); 2093 2094 // Look for a store to the same pointer in BrBB. 2095 unsigned MaxNumInstToLookAt = 9; 2096 // Skip pseudo probe intrinsic calls which are not really killing any memory 2097 // accesses. 2098 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2099 if (!MaxNumInstToLookAt) 2100 break; 2101 --MaxNumInstToLookAt; 2102 2103 // Could be calling an instruction that affects memory like free(). 2104 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2105 return nullptr; 2106 2107 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2108 // Found the previous store make sure it stores to the same location. 2109 if (SI->getPointerOperand() == StorePtr) 2110 // Found the previous store, return its value operand. 2111 return SI->getValueOperand(); 2112 return nullptr; // Unknown store. 2113 } 2114 } 2115 2116 return nullptr; 2117 } 2118 2119 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2120 /// converted to selects. 2121 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2122 BasicBlock *EndBB, 2123 unsigned &SpeculatedInstructions, 2124 InstructionCost &Cost, 2125 const TargetTransformInfo &TTI) { 2126 TargetTransformInfo::TargetCostKind CostKind = 2127 BB->getParent()->hasMinSize() 2128 ? TargetTransformInfo::TCK_CodeSize 2129 : TargetTransformInfo::TCK_SizeAndLatency; 2130 2131 bool HaveRewritablePHIs = false; 2132 for (PHINode &PN : EndBB->phis()) { 2133 Value *OrigV = PN.getIncomingValueForBlock(BB); 2134 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2135 2136 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2137 // Skip PHIs which are trivial. 2138 if (ThenV == OrigV) 2139 continue; 2140 2141 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2142 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2143 2144 // Don't convert to selects if we could remove undefined behavior instead. 2145 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2146 passingValueIsAlwaysUndefined(ThenV, &PN)) 2147 return false; 2148 2149 HaveRewritablePHIs = true; 2150 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2151 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2152 if (!OrigCE && !ThenCE) 2153 continue; // Known safe and cheap. 2154 2155 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2156 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2157 return false; 2158 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2159 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2160 InstructionCost MaxCost = 2161 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2162 if (OrigCost + ThenCost > MaxCost) 2163 return false; 2164 2165 // Account for the cost of an unfolded ConstantExpr which could end up 2166 // getting expanded into Instructions. 2167 // FIXME: This doesn't account for how many operations are combined in the 2168 // constant expression. 2169 ++SpeculatedInstructions; 2170 if (SpeculatedInstructions > 1) 2171 return false; 2172 } 2173 2174 return HaveRewritablePHIs; 2175 } 2176 2177 /// Speculate a conditional basic block flattening the CFG. 2178 /// 2179 /// Note that this is a very risky transform currently. Speculating 2180 /// instructions like this is most often not desirable. Instead, there is an MI 2181 /// pass which can do it with full awareness of the resource constraints. 2182 /// However, some cases are "obvious" and we should do directly. An example of 2183 /// this is speculating a single, reasonably cheap instruction. 2184 /// 2185 /// There is only one distinct advantage to flattening the CFG at the IR level: 2186 /// it makes very common but simplistic optimizations such as are common in 2187 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2188 /// modeling their effects with easier to reason about SSA value graphs. 2189 /// 2190 /// 2191 /// An illustration of this transform is turning this IR: 2192 /// \code 2193 /// BB: 2194 /// %cmp = icmp ult %x, %y 2195 /// br i1 %cmp, label %EndBB, label %ThenBB 2196 /// ThenBB: 2197 /// %sub = sub %x, %y 2198 /// br label BB2 2199 /// EndBB: 2200 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2201 /// ... 2202 /// \endcode 2203 /// 2204 /// Into this IR: 2205 /// \code 2206 /// BB: 2207 /// %cmp = icmp ult %x, %y 2208 /// %sub = sub %x, %y 2209 /// %cond = select i1 %cmp, 0, %sub 2210 /// ... 2211 /// \endcode 2212 /// 2213 /// \returns true if the conditional block is removed. 2214 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2215 const TargetTransformInfo &TTI) { 2216 // Be conservative for now. FP select instruction can often be expensive. 2217 Value *BrCond = BI->getCondition(); 2218 if (isa<FCmpInst>(BrCond)) 2219 return false; 2220 2221 BasicBlock *BB = BI->getParent(); 2222 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2223 InstructionCost Budget = 2224 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2225 2226 // If ThenBB is actually on the false edge of the conditional branch, remember 2227 // to swap the select operands later. 2228 bool Invert = false; 2229 if (ThenBB != BI->getSuccessor(0)) { 2230 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2231 Invert = true; 2232 } 2233 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2234 2235 // Keep a count of how many times instructions are used within ThenBB when 2236 // they are candidates for sinking into ThenBB. Specifically: 2237 // - They are defined in BB, and 2238 // - They have no side effects, and 2239 // - All of their uses are in ThenBB. 2240 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2241 2242 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2243 2244 unsigned SpeculatedInstructions = 0; 2245 Value *SpeculatedStoreValue = nullptr; 2246 StoreInst *SpeculatedStore = nullptr; 2247 for (BasicBlock::iterator BBI = ThenBB->begin(), 2248 BBE = std::prev(ThenBB->end()); 2249 BBI != BBE; ++BBI) { 2250 Instruction *I = &*BBI; 2251 // Skip debug info. 2252 if (isa<DbgInfoIntrinsic>(I)) { 2253 SpeculatedDbgIntrinsics.push_back(I); 2254 continue; 2255 } 2256 2257 // Skip pseudo probes. The consequence is we lose track of the branch 2258 // probability for ThenBB, which is fine since the optimization here takes 2259 // place regardless of the branch probability. 2260 if (isa<PseudoProbeInst>(I)) { 2261 continue; 2262 } 2263 2264 // Only speculatively execute a single instruction (not counting the 2265 // terminator) for now. 2266 ++SpeculatedInstructions; 2267 if (SpeculatedInstructions > 1) 2268 return false; 2269 2270 // Don't hoist the instruction if it's unsafe or expensive. 2271 if (!isSafeToSpeculativelyExecute(I) && 2272 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2273 I, BB, ThenBB, EndBB)))) 2274 return false; 2275 if (!SpeculatedStoreValue && 2276 computeSpeculationCost(I, TTI) > 2277 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2278 return false; 2279 2280 // Store the store speculation candidate. 2281 if (SpeculatedStoreValue) 2282 SpeculatedStore = cast<StoreInst>(I); 2283 2284 // Do not hoist the instruction if any of its operands are defined but not 2285 // used in BB. The transformation will prevent the operand from 2286 // being sunk into the use block. 2287 for (Use &Op : I->operands()) { 2288 Instruction *OpI = dyn_cast<Instruction>(Op); 2289 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2290 continue; // Not a candidate for sinking. 2291 2292 ++SinkCandidateUseCounts[OpI]; 2293 } 2294 } 2295 2296 // Consider any sink candidates which are only used in ThenBB as costs for 2297 // speculation. Note, while we iterate over a DenseMap here, we are summing 2298 // and so iteration order isn't significant. 2299 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2300 I = SinkCandidateUseCounts.begin(), 2301 E = SinkCandidateUseCounts.end(); 2302 I != E; ++I) 2303 if (I->first->hasNUses(I->second)) { 2304 ++SpeculatedInstructions; 2305 if (SpeculatedInstructions > 1) 2306 return false; 2307 } 2308 2309 // Check that we can insert the selects and that it's not too expensive to do 2310 // so. 2311 bool Convert = SpeculatedStore != nullptr; 2312 InstructionCost Cost = 0; 2313 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2314 SpeculatedInstructions, 2315 Cost, TTI); 2316 if (!Convert || Cost > Budget) 2317 return false; 2318 2319 // If we get here, we can hoist the instruction and if-convert. 2320 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2321 2322 // Insert a select of the value of the speculated store. 2323 if (SpeculatedStoreValue) { 2324 IRBuilder<NoFolder> Builder(BI); 2325 Value *TrueV = SpeculatedStore->getValueOperand(); 2326 Value *FalseV = SpeculatedStoreValue; 2327 if (Invert) 2328 std::swap(TrueV, FalseV); 2329 Value *S = Builder.CreateSelect( 2330 BrCond, TrueV, FalseV, "spec.store.select", BI); 2331 SpeculatedStore->setOperand(0, S); 2332 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2333 SpeculatedStore->getDebugLoc()); 2334 } 2335 2336 // Metadata can be dependent on the condition we are hoisting above. 2337 // Conservatively strip all metadata on the instruction. Drop the debug loc 2338 // to avoid making it appear as if the condition is a constant, which would 2339 // be misleading while debugging. 2340 for (auto &I : *ThenBB) { 2341 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2342 I.setDebugLoc(DebugLoc()); 2343 I.dropUnknownNonDebugMetadata(); 2344 } 2345 2346 // A hoisted conditional probe should be treated as dangling so that it will 2347 // not be over-counted when the samples collected on the non-conditional path 2348 // are counted towards the conditional path. We leave it for the counts 2349 // inference algorithm to figure out a proper count for a danglng probe. 2350 moveAndDanglePseudoProbes(ThenBB, BI); 2351 2352 // Hoist the instructions. 2353 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2354 ThenBB->begin(), std::prev(ThenBB->end())); 2355 2356 // Insert selects and rewrite the PHI operands. 2357 IRBuilder<NoFolder> Builder(BI); 2358 for (PHINode &PN : EndBB->phis()) { 2359 unsigned OrigI = PN.getBasicBlockIndex(BB); 2360 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2361 Value *OrigV = PN.getIncomingValue(OrigI); 2362 Value *ThenV = PN.getIncomingValue(ThenI); 2363 2364 // Skip PHIs which are trivial. 2365 if (OrigV == ThenV) 2366 continue; 2367 2368 // Create a select whose true value is the speculatively executed value and 2369 // false value is the pre-existing value. Swap them if the branch 2370 // destinations were inverted. 2371 Value *TrueV = ThenV, *FalseV = OrigV; 2372 if (Invert) 2373 std::swap(TrueV, FalseV); 2374 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2375 PN.setIncomingValue(OrigI, V); 2376 PN.setIncomingValue(ThenI, V); 2377 } 2378 2379 // Remove speculated dbg intrinsics. 2380 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2381 // dbg value for the different flows and inserting it after the select. 2382 for (Instruction *I : SpeculatedDbgIntrinsics) 2383 I->eraseFromParent(); 2384 2385 ++NumSpeculations; 2386 return true; 2387 } 2388 2389 /// Return true if we can thread a branch across this block. 2390 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2391 int Size = 0; 2392 2393 for (Instruction &I : BB->instructionsWithoutDebug()) { 2394 if (Size > MaxSmallBlockSize) 2395 return false; // Don't clone large BB's. 2396 2397 // Can't fold blocks that contain noduplicate or convergent calls. 2398 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2399 if (CI->cannotDuplicate() || CI->isConvergent()) 2400 return false; 2401 2402 // We will delete Phis while threading, so Phis should not be accounted in 2403 // block's size 2404 if (!isa<PHINode>(I)) 2405 ++Size; 2406 2407 // We can only support instructions that do not define values that are 2408 // live outside of the current basic block. 2409 for (User *U : I.users()) { 2410 Instruction *UI = cast<Instruction>(U); 2411 if (UI->getParent() != BB || isa<PHINode>(UI)) 2412 return false; 2413 } 2414 2415 // Looks ok, continue checking. 2416 } 2417 2418 return true; 2419 } 2420 2421 /// If we have a conditional branch on a PHI node value that is defined in the 2422 /// same block as the branch and if any PHI entries are constants, thread edges 2423 /// corresponding to that entry to be branches to their ultimate destination. 2424 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2425 const DataLayout &DL, AssumptionCache *AC) { 2426 BasicBlock *BB = BI->getParent(); 2427 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2428 // NOTE: we currently cannot transform this case if the PHI node is used 2429 // outside of the block. 2430 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2431 return false; 2432 2433 // Degenerate case of a single entry PHI. 2434 if (PN->getNumIncomingValues() == 1) { 2435 FoldSingleEntryPHINodes(PN->getParent()); 2436 return true; 2437 } 2438 2439 // Now we know that this block has multiple preds and two succs. 2440 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2441 return false; 2442 2443 // Okay, this is a simple enough basic block. See if any phi values are 2444 // constants. 2445 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2446 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2447 if (!CB || !CB->getType()->isIntegerTy(1)) 2448 continue; 2449 2450 // Okay, we now know that all edges from PredBB should be revectored to 2451 // branch to RealDest. 2452 BasicBlock *PredBB = PN->getIncomingBlock(i); 2453 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2454 2455 if (RealDest == BB) 2456 continue; // Skip self loops. 2457 // Skip if the predecessor's terminator is an indirect branch. 2458 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2459 continue; 2460 2461 SmallVector<DominatorTree::UpdateType, 3> Updates; 2462 2463 // The dest block might have PHI nodes, other predecessors and other 2464 // difficult cases. Instead of being smart about this, just insert a new 2465 // block that jumps to the destination block, effectively splitting 2466 // the edge we are about to create. 2467 BasicBlock *EdgeBB = 2468 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2469 RealDest->getParent(), RealDest); 2470 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2471 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2472 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2473 2474 // Update PHI nodes. 2475 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2476 2477 // BB may have instructions that are being threaded over. Clone these 2478 // instructions into EdgeBB. We know that there will be no uses of the 2479 // cloned instructions outside of EdgeBB. 2480 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2481 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2482 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2483 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2484 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2485 continue; 2486 } 2487 // Clone the instruction. 2488 Instruction *N = BBI->clone(); 2489 if (BBI->hasName()) 2490 N->setName(BBI->getName() + ".c"); 2491 2492 // Update operands due to translation. 2493 for (Use &Op : N->operands()) { 2494 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2495 if (PI != TranslateMap.end()) 2496 Op = PI->second; 2497 } 2498 2499 // Check for trivial simplification. 2500 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2501 if (!BBI->use_empty()) 2502 TranslateMap[&*BBI] = V; 2503 if (!N->mayHaveSideEffects()) { 2504 N->deleteValue(); // Instruction folded away, don't need actual inst 2505 N = nullptr; 2506 } 2507 } else { 2508 if (!BBI->use_empty()) 2509 TranslateMap[&*BBI] = N; 2510 } 2511 if (N) { 2512 // Insert the new instruction into its new home. 2513 EdgeBB->getInstList().insert(InsertPt, N); 2514 2515 // Register the new instruction with the assumption cache if necessary. 2516 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2517 AC->registerAssumption(cast<IntrinsicInst>(N)); 2518 } 2519 } 2520 2521 // Loop over all of the edges from PredBB to BB, changing them to branch 2522 // to EdgeBB instead. 2523 Instruction *PredBBTI = PredBB->getTerminator(); 2524 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2525 if (PredBBTI->getSuccessor(i) == BB) { 2526 BB->removePredecessor(PredBB); 2527 PredBBTI->setSuccessor(i, EdgeBB); 2528 } 2529 2530 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2531 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2532 2533 if (DTU) 2534 DTU->applyUpdates(Updates); 2535 2536 // Recurse, simplifying any other constants. 2537 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2538 } 2539 2540 return false; 2541 } 2542 2543 /// Given a BB that starts with the specified two-entry PHI node, 2544 /// see if we can eliminate it. 2545 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2546 DomTreeUpdater *DTU, const DataLayout &DL) { 2547 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2548 // statement", which has a very simple dominance structure. Basically, we 2549 // are trying to find the condition that is being branched on, which 2550 // subsequently causes this merge to happen. We really want control 2551 // dependence information for this check, but simplifycfg can't keep it up 2552 // to date, and this catches most of the cases we care about anyway. 2553 BasicBlock *BB = PN->getParent(); 2554 2555 BasicBlock *IfTrue, *IfFalse; 2556 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2557 if (!IfCond || 2558 // Don't bother if the branch will be constant folded trivially. 2559 isa<ConstantInt>(IfCond)) 2560 return false; 2561 2562 // Okay, we found that we can merge this two-entry phi node into a select. 2563 // Doing so would require us to fold *all* two entry phi nodes in this block. 2564 // At some point this becomes non-profitable (particularly if the target 2565 // doesn't support cmov's). Only do this transformation if there are two or 2566 // fewer PHI nodes in this block. 2567 unsigned NumPhis = 0; 2568 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2569 if (NumPhis > 2) 2570 return false; 2571 2572 // Loop over the PHI's seeing if we can promote them all to select 2573 // instructions. While we are at it, keep track of the instructions 2574 // that need to be moved to the dominating block. 2575 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2576 InstructionCost Cost = 0; 2577 InstructionCost Budget = 2578 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2579 2580 bool Changed = false; 2581 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2582 PHINode *PN = cast<PHINode>(II++); 2583 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2584 PN->replaceAllUsesWith(V); 2585 PN->eraseFromParent(); 2586 Changed = true; 2587 continue; 2588 } 2589 2590 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2591 Cost, Budget, TTI) || 2592 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2593 Cost, Budget, TTI)) 2594 return Changed; 2595 } 2596 2597 // If we folded the first phi, PN dangles at this point. Refresh it. If 2598 // we ran out of PHIs then we simplified them all. 2599 PN = dyn_cast<PHINode>(BB->begin()); 2600 if (!PN) 2601 return true; 2602 2603 // Return true if at least one of these is a 'not', and another is either 2604 // a 'not' too, or a constant. 2605 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2606 if (!match(V0, m_Not(m_Value()))) 2607 std::swap(V0, V1); 2608 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2609 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2610 }; 2611 2612 // Don't fold i1 branches on PHIs which contain binary operators or 2613 // select form of or/ands, unless one of the incoming values is an 'not' and 2614 // another one is freely invertible. 2615 // These can often be turned into switches and other things. 2616 auto IsBinOpOrAnd = [](Value *V) { 2617 return match( 2618 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2619 }; 2620 if (PN->getType()->isIntegerTy(1) && 2621 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2622 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2623 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2624 PN->getIncomingValue(1))) 2625 return Changed; 2626 2627 // If all PHI nodes are promotable, check to make sure that all instructions 2628 // in the predecessor blocks can be promoted as well. If not, we won't be able 2629 // to get rid of the control flow, so it's not worth promoting to select 2630 // instructions. 2631 BasicBlock *DomBlock = nullptr; 2632 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2633 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2634 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2635 IfBlock1 = nullptr; 2636 } else { 2637 DomBlock = *pred_begin(IfBlock1); 2638 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2639 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2640 !isa<PseudoProbeInst>(I)) { 2641 // This is not an aggressive instruction that we can promote. 2642 // Because of this, we won't be able to get rid of the control flow, so 2643 // the xform is not worth it. 2644 return Changed; 2645 } 2646 } 2647 2648 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2649 IfBlock2 = nullptr; 2650 } else { 2651 DomBlock = *pred_begin(IfBlock2); 2652 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2653 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2654 !isa<PseudoProbeInst>(I)) { 2655 // This is not an aggressive instruction that we can promote. 2656 // Because of this, we won't be able to get rid of the control flow, so 2657 // the xform is not worth it. 2658 return Changed; 2659 } 2660 } 2661 assert(DomBlock && "Failed to find root DomBlock"); 2662 2663 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2664 << " T: " << IfTrue->getName() 2665 << " F: " << IfFalse->getName() << "\n"); 2666 2667 // If we can still promote the PHI nodes after this gauntlet of tests, 2668 // do all of the PHI's now. 2669 Instruction *InsertPt = DomBlock->getTerminator(); 2670 IRBuilder<NoFolder> Builder(InsertPt); 2671 2672 // Move all 'aggressive' instructions, which are defined in the 2673 // conditional parts of the if's up to the dominating block. 2674 if (IfBlock1) 2675 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2676 if (IfBlock2) 2677 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2678 2679 // Propagate fast-math-flags from phi nodes to replacement selects. 2680 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2681 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2682 if (isa<FPMathOperator>(PN)) 2683 Builder.setFastMathFlags(PN->getFastMathFlags()); 2684 2685 // Change the PHI node into a select instruction. 2686 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2687 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2688 2689 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2690 PN->replaceAllUsesWith(Sel); 2691 Sel->takeName(PN); 2692 PN->eraseFromParent(); 2693 } 2694 2695 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2696 // has been flattened. Change DomBlock to jump directly to our new block to 2697 // avoid other simplifycfg's kicking in on the diamond. 2698 Instruction *OldTI = DomBlock->getTerminator(); 2699 Builder.SetInsertPoint(OldTI); 2700 Builder.CreateBr(BB); 2701 2702 SmallVector<DominatorTree::UpdateType, 3> Updates; 2703 if (DTU) { 2704 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2705 for (auto *Successor : successors(DomBlock)) 2706 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2707 } 2708 2709 OldTI->eraseFromParent(); 2710 if (DTU) 2711 DTU->applyUpdates(Updates); 2712 2713 return true; 2714 } 2715 2716 /// If we found a conditional branch that goes to two returning blocks, 2717 /// try to merge them together into one return, 2718 /// introducing a select if the return values disagree. 2719 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2720 IRBuilder<> &Builder) { 2721 auto *BB = BI->getParent(); 2722 assert(BI->isConditional() && "Must be a conditional branch"); 2723 BasicBlock *TrueSucc = BI->getSuccessor(0); 2724 BasicBlock *FalseSucc = BI->getSuccessor(1); 2725 // NOTE: destinations may match, this could be degenerate uncond branch. 2726 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2727 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2728 2729 // Check to ensure both blocks are empty (just a return) or optionally empty 2730 // with PHI nodes. If there are other instructions, merging would cause extra 2731 // computation on one path or the other. 2732 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2733 return false; 2734 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2735 return false; 2736 2737 Builder.SetInsertPoint(BI); 2738 // Okay, we found a branch that is going to two return nodes. If 2739 // there is no return value for this function, just change the 2740 // branch into a return. 2741 if (FalseRet->getNumOperands() == 0) { 2742 TrueSucc->removePredecessor(BB); 2743 FalseSucc->removePredecessor(BB); 2744 Builder.CreateRetVoid(); 2745 EraseTerminatorAndDCECond(BI); 2746 if (DTU) { 2747 SmallVector<DominatorTree::UpdateType, 2> Updates; 2748 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2749 if (TrueSucc != FalseSucc) 2750 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2751 DTU->applyUpdates(Updates); 2752 } 2753 return true; 2754 } 2755 2756 // Otherwise, figure out what the true and false return values are 2757 // so we can insert a new select instruction. 2758 Value *TrueValue = TrueRet->getReturnValue(); 2759 Value *FalseValue = FalseRet->getReturnValue(); 2760 2761 // Unwrap any PHI nodes in the return blocks. 2762 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2763 if (TVPN->getParent() == TrueSucc) 2764 TrueValue = TVPN->getIncomingValueForBlock(BB); 2765 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2766 if (FVPN->getParent() == FalseSucc) 2767 FalseValue = FVPN->getIncomingValueForBlock(BB); 2768 2769 // In order for this transformation to be safe, we must be able to 2770 // unconditionally execute both operands to the return. This is 2771 // normally the case, but we could have a potentially-trapping 2772 // constant expression that prevents this transformation from being 2773 // safe. 2774 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2775 if (TCV->canTrap()) 2776 return false; 2777 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2778 if (FCV->canTrap()) 2779 return false; 2780 2781 // Okay, we collected all the mapped values and checked them for sanity, and 2782 // defined to really do this transformation. First, update the CFG. 2783 TrueSucc->removePredecessor(BB); 2784 FalseSucc->removePredecessor(BB); 2785 2786 // Insert select instructions where needed. 2787 Value *BrCond = BI->getCondition(); 2788 if (TrueValue) { 2789 // Insert a select if the results differ. 2790 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2791 } else if (isa<UndefValue>(TrueValue)) { 2792 TrueValue = FalseValue; 2793 } else { 2794 TrueValue = 2795 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2796 } 2797 } 2798 2799 Value *RI = 2800 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2801 2802 (void)RI; 2803 2804 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2805 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2806 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2807 2808 EraseTerminatorAndDCECond(BI); 2809 if (DTU) { 2810 SmallVector<DominatorTree::UpdateType, 2> Updates; 2811 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2812 if (TrueSucc != FalseSucc) 2813 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2814 DTU->applyUpdates(Updates); 2815 } 2816 2817 return true; 2818 } 2819 2820 /// Return true if either PBI or BI has branch weight available, and store 2821 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2822 /// not have branch weight, use 1:1 as its weight. 2823 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2824 uint64_t &PredTrueWeight, 2825 uint64_t &PredFalseWeight, 2826 uint64_t &SuccTrueWeight, 2827 uint64_t &SuccFalseWeight) { 2828 bool PredHasWeights = 2829 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2830 bool SuccHasWeights = 2831 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2832 if (PredHasWeights || SuccHasWeights) { 2833 if (!PredHasWeights) 2834 PredTrueWeight = PredFalseWeight = 1; 2835 if (!SuccHasWeights) 2836 SuccTrueWeight = SuccFalseWeight = 1; 2837 return true; 2838 } else { 2839 return false; 2840 } 2841 } 2842 2843 // Determine if the two branches share a common destination, 2844 // and deduce a glue that we need to use to join branch's conditions 2845 // to arrive at the common destination. 2846 static Optional<std::pair<Instruction::BinaryOps, bool>> 2847 CheckIfCondBranchesShareCommonDestination(BranchInst *BI, BranchInst *PBI) { 2848 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2849 "Both blocks must end with a conditional branches."); 2850 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2851 "PredBB must be a predecessor of BB."); 2852 2853 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2854 return {{Instruction::Or, false}}; 2855 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2856 return {{Instruction::And, false}}; 2857 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2858 return {{Instruction::And, true}}; 2859 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2860 return {{Instruction::Or, true}}; 2861 return None; 2862 } 2863 2864 static bool PerformBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2865 DomTreeUpdater *DTU, 2866 MemorySSAUpdater *MSSAU) { 2867 BasicBlock *BB = BI->getParent(); 2868 BasicBlock *PredBlock = PBI->getParent(); 2869 2870 // Determine if the two branches share a common destination. 2871 Instruction::BinaryOps Opc; 2872 bool InvertPredCond; 2873 std::tie(Opc, InvertPredCond) = 2874 *CheckIfCondBranchesShareCommonDestination(BI, PBI); 2875 2876 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2877 2878 IRBuilder<> Builder(PBI); 2879 // The builder is used to create instructions to eliminate the branch in BB. 2880 // If BB's terminator has !annotation metadata, add it to the new 2881 // instructions. 2882 Builder.CollectMetadataToCopy(BB->getTerminator(), 2883 {LLVMContext::MD_annotation}); 2884 2885 // If we need to invert the condition in the pred block to match, do so now. 2886 if (InvertPredCond) { 2887 Value *NewCond = PBI->getCondition(); 2888 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2889 CmpInst *CI = cast<CmpInst>(NewCond); 2890 CI->setPredicate(CI->getInversePredicate()); 2891 } else { 2892 NewCond = 2893 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2894 } 2895 2896 PBI->setCondition(NewCond); 2897 PBI->swapSuccessors(); 2898 } 2899 2900 BasicBlock *UniqueSucc = 2901 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2902 2903 // Before cloning instructions, notify the successor basic block that it 2904 // is about to have a new predecessor. This will update PHI nodes, 2905 // which will allow us to update live-out uses of bonus instructions. 2906 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2907 2908 // Try to update branch weights. 2909 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2910 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2911 SuccTrueWeight, SuccFalseWeight)) { 2912 SmallVector<uint64_t, 8> NewWeights; 2913 2914 if (PBI->getSuccessor(0) == BB) { 2915 // PBI: br i1 %x, BB, FalseDest 2916 // BI: br i1 %y, UniqueSucc, FalseDest 2917 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2918 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2919 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2920 // TrueWeight for PBI * FalseWeight for BI. 2921 // We assume that total weights of a BranchInst can fit into 32 bits. 2922 // Therefore, we will not have overflow using 64-bit arithmetic. 2923 NewWeights.push_back(PredFalseWeight * 2924 (SuccFalseWeight + SuccTrueWeight) + 2925 PredTrueWeight * SuccFalseWeight); 2926 } else { 2927 // PBI: br i1 %x, TrueDest, BB 2928 // BI: br i1 %y, TrueDest, UniqueSucc 2929 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2930 // FalseWeight for PBI * TrueWeight for BI. 2931 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2932 PredFalseWeight * SuccTrueWeight); 2933 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2934 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2935 } 2936 2937 // Halve the weights if any of them cannot fit in an uint32_t 2938 FitWeights(NewWeights); 2939 2940 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 2941 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2942 2943 // TODO: If BB is reachable from all paths through PredBlock, then we 2944 // could replace PBI's branch probabilities with BI's. 2945 } else 2946 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2947 2948 // Now, update the CFG. 2949 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 2950 2951 if (DTU) 2952 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 2953 {DominatorTree::Delete, PredBlock, BB}}); 2954 2955 // If BI was a loop latch, it may have had associated loop metadata. 2956 // We need to copy it to the new latch, that is, PBI. 2957 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2958 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2959 2960 ValueToValueMapTy VMap; // maps original values to cloned values 2961 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 2962 2963 // Now that the Cond was cloned into the predecessor basic block, 2964 // or/and the two conditions together. 2965 Instruction *NewCond = cast<Instruction>(Builder.CreateBinOp( 2966 Opc, PBI->getCondition(), VMap[BI->getCondition()], "or.cond")); 2967 PBI->setCondition(NewCond); 2968 2969 // Copy any debug value intrinsics into the end of PredBlock. 2970 for (Instruction &I : *BB) { 2971 if (isa<DbgInfoIntrinsic>(I)) { 2972 Instruction *NewI = I.clone(); 2973 RemapInstruction(NewI, VMap, 2974 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2975 NewI->insertBefore(PBI); 2976 } 2977 } 2978 2979 ++NumFoldBranchToCommonDest; 2980 return true; 2981 } 2982 2983 /// If this basic block is simple enough, and if a predecessor branches to us 2984 /// and one of our successors, fold the block into the predecessor and use 2985 /// logical operations to pick the right destination. 2986 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 2987 MemorySSAUpdater *MSSAU, 2988 const TargetTransformInfo *TTI, 2989 unsigned BonusInstThreshold) { 2990 // If this block ends with an unconditional branch, 2991 // let SpeculativelyExecuteBB() deal with it. 2992 if (!BI->isConditional()) 2993 return false; 2994 2995 BasicBlock *BB = BI->getParent(); 2996 2997 const unsigned PredCount = pred_size(BB); 2998 2999 bool Changed = false; 3000 3001 TargetTransformInfo::TargetCostKind CostKind = 3002 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3003 : TargetTransformInfo::TCK_SizeAndLatency; 3004 3005 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3006 3007 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3008 Cond->getParent() != BB || !Cond->hasOneUse()) 3009 return Changed; 3010 3011 // Only allow this transformation if computing the condition doesn't involve 3012 // too many instructions and these involved instructions can be executed 3013 // unconditionally. We denote all involved instructions except the condition 3014 // as "bonus instructions", and only allow this transformation when the 3015 // number of the bonus instructions we'll need to create when cloning into 3016 // each predecessor does not exceed a certain threshold. 3017 unsigned NumBonusInsts = 0; 3018 for (Instruction &I : *BB) { 3019 // Don't check the branch condition comparison itself. 3020 if (&I == Cond) 3021 continue; 3022 // Ignore dbg intrinsics, and the terminator. 3023 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3024 continue; 3025 // I must be safe to execute unconditionally. 3026 if (!isSafeToSpeculativelyExecute(&I)) 3027 return Changed; 3028 3029 // Account for the cost of duplicating this instruction into each 3030 // predecessor. 3031 NumBonusInsts += PredCount; 3032 // Early exits once we reach the limit. 3033 if (NumBonusInsts > BonusInstThreshold) 3034 return Changed; 3035 } 3036 3037 // Cond is known to be a compare or binary operator. Check to make sure that 3038 // neither operand is a potentially-trapping constant expression. 3039 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3040 if (CE->canTrap()) 3041 return Changed; 3042 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3043 if (CE->canTrap()) 3044 return Changed; 3045 3046 // Finally, don't infinitely unroll conditional loops. 3047 if (is_contained(successors(BB), BB)) 3048 return Changed; 3049 3050 for (BasicBlock *PredBlock : predecessors(BB)) { 3051 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3052 3053 // Check that we have two conditional branches. If there is a PHI node in 3054 // the common successor, verify that the same value flows in from both 3055 // blocks. 3056 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3057 continue; 3058 3059 // Determine if the two branches share a common destination. 3060 Instruction::BinaryOps Opc; 3061 bool InvertPredCond; 3062 if (auto Recepie = CheckIfCondBranchesShareCommonDestination(BI, PBI)) 3063 std::tie(Opc, InvertPredCond) = *Recepie; 3064 else 3065 continue; 3066 3067 // Check the cost of inserting the necessary logic before performing the 3068 // transformation. 3069 if (TTI) { 3070 Type *Ty = BI->getCondition()->getType(); 3071 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3072 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3073 !isa<CmpInst>(PBI->getCondition()))) 3074 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3075 3076 if (Cost > BranchFoldThreshold) 3077 continue; 3078 } 3079 3080 return PerformBranchToCommonDestFolding(BI, PBI, DTU, MSSAU); 3081 } 3082 return Changed; 3083 } 3084 3085 // If there is only one store in BB1 and BB2, return it, otherwise return 3086 // nullptr. 3087 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3088 StoreInst *S = nullptr; 3089 for (auto *BB : {BB1, BB2}) { 3090 if (!BB) 3091 continue; 3092 for (auto &I : *BB) 3093 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3094 if (S) 3095 // Multiple stores seen. 3096 return nullptr; 3097 else 3098 S = SI; 3099 } 3100 } 3101 return S; 3102 } 3103 3104 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3105 Value *AlternativeV = nullptr) { 3106 // PHI is going to be a PHI node that allows the value V that is defined in 3107 // BB to be referenced in BB's only successor. 3108 // 3109 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3110 // doesn't matter to us what the other operand is (it'll never get used). We 3111 // could just create a new PHI with an undef incoming value, but that could 3112 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3113 // other PHI. So here we directly look for some PHI in BB's successor with V 3114 // as an incoming operand. If we find one, we use it, else we create a new 3115 // one. 3116 // 3117 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3118 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3119 // where OtherBB is the single other predecessor of BB's only successor. 3120 PHINode *PHI = nullptr; 3121 BasicBlock *Succ = BB->getSingleSuccessor(); 3122 3123 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3124 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3125 PHI = cast<PHINode>(I); 3126 if (!AlternativeV) 3127 break; 3128 3129 assert(Succ->hasNPredecessors(2)); 3130 auto PredI = pred_begin(Succ); 3131 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3132 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3133 break; 3134 PHI = nullptr; 3135 } 3136 if (PHI) 3137 return PHI; 3138 3139 // If V is not an instruction defined in BB, just return it. 3140 if (!AlternativeV && 3141 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3142 return V; 3143 3144 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3145 PHI->addIncoming(V, BB); 3146 for (BasicBlock *PredBB : predecessors(Succ)) 3147 if (PredBB != BB) 3148 PHI->addIncoming( 3149 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3150 return PHI; 3151 } 3152 3153 static bool mergeConditionalStoreToAddress( 3154 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3155 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3156 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3157 // For every pointer, there must be exactly two stores, one coming from 3158 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3159 // store (to any address) in PTB,PFB or QTB,QFB. 3160 // FIXME: We could relax this restriction with a bit more work and performance 3161 // testing. 3162 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3163 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3164 if (!PStore || !QStore) 3165 return false; 3166 3167 // Now check the stores are compatible. 3168 if (!QStore->isUnordered() || !PStore->isUnordered()) 3169 return false; 3170 3171 // Check that sinking the store won't cause program behavior changes. Sinking 3172 // the store out of the Q blocks won't change any behavior as we're sinking 3173 // from a block to its unconditional successor. But we're moving a store from 3174 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3175 // So we need to check that there are no aliasing loads or stores in 3176 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3177 // operations between PStore and the end of its parent block. 3178 // 3179 // The ideal way to do this is to query AliasAnalysis, but we don't 3180 // preserve AA currently so that is dangerous. Be super safe and just 3181 // check there are no other memory operations at all. 3182 for (auto &I : *QFB->getSinglePredecessor()) 3183 if (I.mayReadOrWriteMemory()) 3184 return false; 3185 for (auto &I : *QFB) 3186 if (&I != QStore && I.mayReadOrWriteMemory()) 3187 return false; 3188 if (QTB) 3189 for (auto &I : *QTB) 3190 if (&I != QStore && I.mayReadOrWriteMemory()) 3191 return false; 3192 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3193 I != E; ++I) 3194 if (&*I != PStore && I->mayReadOrWriteMemory()) 3195 return false; 3196 3197 // If we're not in aggressive mode, we only optimize if we have some 3198 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3199 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3200 if (!BB) 3201 return true; 3202 // Heuristic: if the block can be if-converted/phi-folded and the 3203 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3204 // thread this store. 3205 InstructionCost Cost = 0; 3206 InstructionCost Budget = 3207 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3208 for (auto &I : BB->instructionsWithoutDebug()) { 3209 // Consider terminator instruction to be free. 3210 if (I.isTerminator()) 3211 continue; 3212 // If this is one the stores that we want to speculate out of this BB, 3213 // then don't count it's cost, consider it to be free. 3214 if (auto *S = dyn_cast<StoreInst>(&I)) 3215 if (llvm::find(FreeStores, S)) 3216 continue; 3217 // Else, we have a white-list of instructions that we are ak speculating. 3218 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3219 return false; // Not in white-list - not worthwhile folding. 3220 // And finally, if this is a non-free instruction that we are okay 3221 // speculating, ensure that we consider the speculation budget. 3222 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3223 if (Cost > Budget) 3224 return false; // Eagerly refuse to fold as soon as we're out of budget. 3225 } 3226 assert(Cost <= Budget && 3227 "When we run out of budget we will eagerly return from within the " 3228 "per-instruction loop."); 3229 return true; 3230 }; 3231 3232 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3233 if (!MergeCondStoresAggressively && 3234 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3235 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3236 return false; 3237 3238 // If PostBB has more than two predecessors, we need to split it so we can 3239 // sink the store. 3240 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3241 // We know that QFB's only successor is PostBB. And QFB has a single 3242 // predecessor. If QTB exists, then its only successor is also PostBB. 3243 // If QTB does not exist, then QFB's only predecessor has a conditional 3244 // branch to QFB and PostBB. 3245 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3246 BasicBlock *NewBB = 3247 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3248 if (!NewBB) 3249 return false; 3250 PostBB = NewBB; 3251 } 3252 3253 // OK, we're going to sink the stores to PostBB. The store has to be 3254 // conditional though, so first create the predicate. 3255 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3256 ->getCondition(); 3257 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3258 ->getCondition(); 3259 3260 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3261 PStore->getParent()); 3262 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3263 QStore->getParent(), PPHI); 3264 3265 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3266 3267 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3268 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3269 3270 if (InvertPCond) 3271 PPred = QB.CreateNot(PPred); 3272 if (InvertQCond) 3273 QPred = QB.CreateNot(QPred); 3274 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3275 3276 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3277 /*Unreachable=*/false, 3278 /*BranchWeights=*/nullptr, DTU); 3279 QB.SetInsertPoint(T); 3280 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3281 AAMDNodes AAMD; 3282 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3283 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3284 SI->setAAMetadata(AAMD); 3285 // Choose the minimum alignment. If we could prove both stores execute, we 3286 // could use biggest one. In this case, though, we only know that one of the 3287 // stores executes. And we don't know it's safe to take the alignment from a 3288 // store that doesn't execute. 3289 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3290 3291 QStore->eraseFromParent(); 3292 PStore->eraseFromParent(); 3293 3294 return true; 3295 } 3296 3297 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3298 DomTreeUpdater *DTU, const DataLayout &DL, 3299 const TargetTransformInfo &TTI) { 3300 // The intention here is to find diamonds or triangles (see below) where each 3301 // conditional block contains a store to the same address. Both of these 3302 // stores are conditional, so they can't be unconditionally sunk. But it may 3303 // be profitable to speculatively sink the stores into one merged store at the 3304 // end, and predicate the merged store on the union of the two conditions of 3305 // PBI and QBI. 3306 // 3307 // This can reduce the number of stores executed if both of the conditions are 3308 // true, and can allow the blocks to become small enough to be if-converted. 3309 // This optimization will also chain, so that ladders of test-and-set 3310 // sequences can be if-converted away. 3311 // 3312 // We only deal with simple diamonds or triangles: 3313 // 3314 // PBI or PBI or a combination of the two 3315 // / \ | \ 3316 // PTB PFB | PFB 3317 // \ / | / 3318 // QBI QBI 3319 // / \ | \ 3320 // QTB QFB | QFB 3321 // \ / | / 3322 // PostBB PostBB 3323 // 3324 // We model triangles as a type of diamond with a nullptr "true" block. 3325 // Triangles are canonicalized so that the fallthrough edge is represented by 3326 // a true condition, as in the diagram above. 3327 BasicBlock *PTB = PBI->getSuccessor(0); 3328 BasicBlock *PFB = PBI->getSuccessor(1); 3329 BasicBlock *QTB = QBI->getSuccessor(0); 3330 BasicBlock *QFB = QBI->getSuccessor(1); 3331 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3332 3333 // Make sure we have a good guess for PostBB. If QTB's only successor is 3334 // QFB, then QFB is a better PostBB. 3335 if (QTB->getSingleSuccessor() == QFB) 3336 PostBB = QFB; 3337 3338 // If we couldn't find a good PostBB, stop. 3339 if (!PostBB) 3340 return false; 3341 3342 bool InvertPCond = false, InvertQCond = false; 3343 // Canonicalize fallthroughs to the true branches. 3344 if (PFB == QBI->getParent()) { 3345 std::swap(PFB, PTB); 3346 InvertPCond = true; 3347 } 3348 if (QFB == PostBB) { 3349 std::swap(QFB, QTB); 3350 InvertQCond = true; 3351 } 3352 3353 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3354 // and QFB may not. Model fallthroughs as a nullptr block. 3355 if (PTB == QBI->getParent()) 3356 PTB = nullptr; 3357 if (QTB == PostBB) 3358 QTB = nullptr; 3359 3360 // Legality bailouts. We must have at least the non-fallthrough blocks and 3361 // the post-dominating block, and the non-fallthroughs must only have one 3362 // predecessor. 3363 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3364 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3365 }; 3366 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3367 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3368 return false; 3369 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3370 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3371 return false; 3372 if (!QBI->getParent()->hasNUses(2)) 3373 return false; 3374 3375 // OK, this is a sequence of two diamonds or triangles. 3376 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3377 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3378 for (auto *BB : {PTB, PFB}) { 3379 if (!BB) 3380 continue; 3381 for (auto &I : *BB) 3382 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3383 PStoreAddresses.insert(SI->getPointerOperand()); 3384 } 3385 for (auto *BB : {QTB, QFB}) { 3386 if (!BB) 3387 continue; 3388 for (auto &I : *BB) 3389 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3390 QStoreAddresses.insert(SI->getPointerOperand()); 3391 } 3392 3393 set_intersect(PStoreAddresses, QStoreAddresses); 3394 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3395 // clear what it contains. 3396 auto &CommonAddresses = PStoreAddresses; 3397 3398 bool Changed = false; 3399 for (auto *Address : CommonAddresses) 3400 Changed |= 3401 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3402 InvertPCond, InvertQCond, DTU, DL, TTI); 3403 return Changed; 3404 } 3405 3406 /// If the previous block ended with a widenable branch, determine if reusing 3407 /// the target block is profitable and legal. This will have the effect of 3408 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3409 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3410 DomTreeUpdater *DTU) { 3411 // TODO: This can be generalized in two important ways: 3412 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3413 // values from the PBI edge. 3414 // 2) We can sink side effecting instructions into BI's fallthrough 3415 // successor provided they doesn't contribute to computation of 3416 // BI's condition. 3417 Value *CondWB, *WC; 3418 BasicBlock *IfTrueBB, *IfFalseBB; 3419 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3420 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3421 return false; 3422 if (!IfFalseBB->phis().empty()) 3423 return false; // TODO 3424 // Use lambda to lazily compute expensive condition after cheap ones. 3425 auto NoSideEffects = [](BasicBlock &BB) { 3426 return !llvm::any_of(BB, [](const Instruction &I) { 3427 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3428 }); 3429 }; 3430 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3431 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3432 NoSideEffects(*BI->getParent())) { 3433 auto *OldSuccessor = BI->getSuccessor(1); 3434 OldSuccessor->removePredecessor(BI->getParent()); 3435 BI->setSuccessor(1, IfFalseBB); 3436 if (DTU) 3437 DTU->applyUpdates( 3438 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3439 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3440 return true; 3441 } 3442 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3443 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3444 NoSideEffects(*BI->getParent())) { 3445 auto *OldSuccessor = BI->getSuccessor(0); 3446 OldSuccessor->removePredecessor(BI->getParent()); 3447 BI->setSuccessor(0, IfFalseBB); 3448 if (DTU) 3449 DTU->applyUpdates( 3450 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3451 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3452 return true; 3453 } 3454 return false; 3455 } 3456 3457 /// If we have a conditional branch as a predecessor of another block, 3458 /// this function tries to simplify it. We know 3459 /// that PBI and BI are both conditional branches, and BI is in one of the 3460 /// successor blocks of PBI - PBI branches to BI. 3461 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3462 DomTreeUpdater *DTU, 3463 const DataLayout &DL, 3464 const TargetTransformInfo &TTI) { 3465 assert(PBI->isConditional() && BI->isConditional()); 3466 BasicBlock *BB = BI->getParent(); 3467 3468 // If this block ends with a branch instruction, and if there is a 3469 // predecessor that ends on a branch of the same condition, make 3470 // this conditional branch redundant. 3471 if (PBI->getCondition() == BI->getCondition() && 3472 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3473 // Okay, the outcome of this conditional branch is statically 3474 // knowable. If this block had a single pred, handle specially. 3475 if (BB->getSinglePredecessor()) { 3476 // Turn this into a branch on constant. 3477 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3478 BI->setCondition( 3479 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3480 return true; // Nuke the branch on constant. 3481 } 3482 3483 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3484 // in the constant and simplify the block result. Subsequent passes of 3485 // simplifycfg will thread the block. 3486 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3487 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3488 PHINode *NewPN = PHINode::Create( 3489 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3490 BI->getCondition()->getName() + ".pr", &BB->front()); 3491 // Okay, we're going to insert the PHI node. Since PBI is not the only 3492 // predecessor, compute the PHI'd conditional value for all of the preds. 3493 // Any predecessor where the condition is not computable we keep symbolic. 3494 for (pred_iterator PI = PB; PI != PE; ++PI) { 3495 BasicBlock *P = *PI; 3496 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3497 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3498 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3499 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3500 NewPN->addIncoming( 3501 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3502 P); 3503 } else { 3504 NewPN->addIncoming(BI->getCondition(), P); 3505 } 3506 } 3507 3508 BI->setCondition(NewPN); 3509 return true; 3510 } 3511 } 3512 3513 // If the previous block ended with a widenable branch, determine if reusing 3514 // the target block is profitable and legal. This will have the effect of 3515 // "widening" PBI, but doesn't require us to reason about hosting safety. 3516 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3517 return true; 3518 3519 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3520 if (CE->canTrap()) 3521 return false; 3522 3523 // If both branches are conditional and both contain stores to the same 3524 // address, remove the stores from the conditionals and create a conditional 3525 // merged store at the end. 3526 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3527 return true; 3528 3529 // If this is a conditional branch in an empty block, and if any 3530 // predecessors are a conditional branch to one of our destinations, 3531 // fold the conditions into logical ops and one cond br. 3532 3533 // Ignore dbg intrinsics. 3534 if (&*BB->instructionsWithoutDebug().begin() != BI) 3535 return false; 3536 3537 int PBIOp, BIOp; 3538 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3539 PBIOp = 0; 3540 BIOp = 0; 3541 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3542 PBIOp = 0; 3543 BIOp = 1; 3544 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3545 PBIOp = 1; 3546 BIOp = 0; 3547 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3548 PBIOp = 1; 3549 BIOp = 1; 3550 } else { 3551 return false; 3552 } 3553 3554 // Check to make sure that the other destination of this branch 3555 // isn't BB itself. If so, this is an infinite loop that will 3556 // keep getting unwound. 3557 if (PBI->getSuccessor(PBIOp) == BB) 3558 return false; 3559 3560 // Do not perform this transformation if it would require 3561 // insertion of a large number of select instructions. For targets 3562 // without predication/cmovs, this is a big pessimization. 3563 3564 // Also do not perform this transformation if any phi node in the common 3565 // destination block can trap when reached by BB or PBB (PR17073). In that 3566 // case, it would be unsafe to hoist the operation into a select instruction. 3567 3568 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3569 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3570 unsigned NumPhis = 0; 3571 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3572 ++II, ++NumPhis) { 3573 if (NumPhis > 2) // Disable this xform. 3574 return false; 3575 3576 PHINode *PN = cast<PHINode>(II); 3577 Value *BIV = PN->getIncomingValueForBlock(BB); 3578 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3579 if (CE->canTrap()) 3580 return false; 3581 3582 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3583 Value *PBIV = PN->getIncomingValue(PBBIdx); 3584 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3585 if (CE->canTrap()) 3586 return false; 3587 } 3588 3589 // Finally, if everything is ok, fold the branches to logical ops. 3590 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3591 3592 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3593 << "AND: " << *BI->getParent()); 3594 3595 SmallVector<DominatorTree::UpdateType, 5> Updates; 3596 3597 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3598 // branch in it, where one edge (OtherDest) goes back to itself but the other 3599 // exits. We don't *know* that the program avoids the infinite loop 3600 // (even though that seems likely). If we do this xform naively, we'll end up 3601 // recursively unpeeling the loop. Since we know that (after the xform is 3602 // done) that the block *is* infinite if reached, we just make it an obviously 3603 // infinite loop with no cond branch. 3604 if (OtherDest == BB) { 3605 // Insert it at the end of the function, because it's either code, 3606 // or it won't matter if it's hot. :) 3607 BasicBlock *InfLoopBlock = 3608 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3609 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3610 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3611 OtherDest = InfLoopBlock; 3612 } 3613 3614 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3615 3616 // BI may have other predecessors. Because of this, we leave 3617 // it alone, but modify PBI. 3618 3619 // Make sure we get to CommonDest on True&True directions. 3620 Value *PBICond = PBI->getCondition(); 3621 IRBuilder<NoFolder> Builder(PBI); 3622 if (PBIOp) 3623 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3624 3625 Value *BICond = BI->getCondition(); 3626 if (BIOp) 3627 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3628 3629 // Merge the conditions. 3630 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3631 3632 // Modify PBI to branch on the new condition to the new dests. 3633 PBI->setCondition(Cond); 3634 PBI->setSuccessor(0, CommonDest); 3635 PBI->setSuccessor(1, OtherDest); 3636 3637 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3638 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3639 3640 if (DTU) 3641 DTU->applyUpdates(Updates); 3642 3643 // Update branch weight for PBI. 3644 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3645 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3646 bool HasWeights = 3647 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3648 SuccTrueWeight, SuccFalseWeight); 3649 if (HasWeights) { 3650 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3651 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3652 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3653 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3654 // The weight to CommonDest should be PredCommon * SuccTotal + 3655 // PredOther * SuccCommon. 3656 // The weight to OtherDest should be PredOther * SuccOther. 3657 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3658 PredOther * SuccCommon, 3659 PredOther * SuccOther}; 3660 // Halve the weights if any of them cannot fit in an uint32_t 3661 FitWeights(NewWeights); 3662 3663 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3664 } 3665 3666 // OtherDest may have phi nodes. If so, add an entry from PBI's 3667 // block that are identical to the entries for BI's block. 3668 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3669 3670 // We know that the CommonDest already had an edge from PBI to 3671 // it. If it has PHIs though, the PHIs may have different 3672 // entries for BB and PBI's BB. If so, insert a select to make 3673 // them agree. 3674 for (PHINode &PN : CommonDest->phis()) { 3675 Value *BIV = PN.getIncomingValueForBlock(BB); 3676 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3677 Value *PBIV = PN.getIncomingValue(PBBIdx); 3678 if (BIV != PBIV) { 3679 // Insert a select in PBI to pick the right value. 3680 SelectInst *NV = cast<SelectInst>( 3681 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3682 PN.setIncomingValue(PBBIdx, NV); 3683 // Although the select has the same condition as PBI, the original branch 3684 // weights for PBI do not apply to the new select because the select's 3685 // 'logical' edges are incoming edges of the phi that is eliminated, not 3686 // the outgoing edges of PBI. 3687 if (HasWeights) { 3688 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3689 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3690 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3691 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3692 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3693 // The weight to PredOtherDest should be PredOther * SuccCommon. 3694 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3695 PredOther * SuccCommon}; 3696 3697 FitWeights(NewWeights); 3698 3699 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3700 } 3701 } 3702 } 3703 3704 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3705 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3706 3707 // This basic block is probably dead. We know it has at least 3708 // one fewer predecessor. 3709 return true; 3710 } 3711 3712 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3713 // true or to FalseBB if Cond is false. 3714 // Takes care of updating the successors and removing the old terminator. 3715 // Also makes sure not to introduce new successors by assuming that edges to 3716 // non-successor TrueBBs and FalseBBs aren't reachable. 3717 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3718 Value *Cond, BasicBlock *TrueBB, 3719 BasicBlock *FalseBB, 3720 uint32_t TrueWeight, 3721 uint32_t FalseWeight) { 3722 auto *BB = OldTerm->getParent(); 3723 // Remove any superfluous successor edges from the CFG. 3724 // First, figure out which successors to preserve. 3725 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3726 // successor. 3727 BasicBlock *KeepEdge1 = TrueBB; 3728 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3729 3730 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 3731 3732 // Then remove the rest. 3733 for (BasicBlock *Succ : successors(OldTerm)) { 3734 // Make sure only to keep exactly one copy of each edge. 3735 if (Succ == KeepEdge1) 3736 KeepEdge1 = nullptr; 3737 else if (Succ == KeepEdge2) 3738 KeepEdge2 = nullptr; 3739 else { 3740 Succ->removePredecessor(BB, 3741 /*KeepOneInputPHIs=*/true); 3742 3743 if (Succ != TrueBB && Succ != FalseBB) 3744 RemovedSuccessors.insert(Succ); 3745 } 3746 } 3747 3748 IRBuilder<> Builder(OldTerm); 3749 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3750 3751 // Insert an appropriate new terminator. 3752 if (!KeepEdge1 && !KeepEdge2) { 3753 if (TrueBB == FalseBB) { 3754 // We were only looking for one successor, and it was present. 3755 // Create an unconditional branch to it. 3756 Builder.CreateBr(TrueBB); 3757 } else { 3758 // We found both of the successors we were looking for. 3759 // Create a conditional branch sharing the condition of the select. 3760 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3761 if (TrueWeight != FalseWeight) 3762 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3763 } 3764 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3765 // Neither of the selected blocks were successors, so this 3766 // terminator must be unreachable. 3767 new UnreachableInst(OldTerm->getContext(), OldTerm); 3768 } else { 3769 // One of the selected values was a successor, but the other wasn't. 3770 // Insert an unconditional branch to the one that was found; 3771 // the edge to the one that wasn't must be unreachable. 3772 if (!KeepEdge1) { 3773 // Only TrueBB was found. 3774 Builder.CreateBr(TrueBB); 3775 } else { 3776 // Only FalseBB was found. 3777 Builder.CreateBr(FalseBB); 3778 } 3779 } 3780 3781 EraseTerminatorAndDCECond(OldTerm); 3782 3783 if (DTU) { 3784 SmallVector<DominatorTree::UpdateType, 2> Updates; 3785 Updates.reserve(RemovedSuccessors.size()); 3786 for (auto *RemovedSuccessor : RemovedSuccessors) 3787 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3788 DTU->applyUpdates(Updates); 3789 } 3790 3791 return true; 3792 } 3793 3794 // Replaces 3795 // (switch (select cond, X, Y)) on constant X, Y 3796 // with a branch - conditional if X and Y lead to distinct BBs, 3797 // unconditional otherwise. 3798 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3799 SelectInst *Select) { 3800 // Check for constant integer values in the select. 3801 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3802 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3803 if (!TrueVal || !FalseVal) 3804 return false; 3805 3806 // Find the relevant condition and destinations. 3807 Value *Condition = Select->getCondition(); 3808 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3809 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3810 3811 // Get weight for TrueBB and FalseBB. 3812 uint32_t TrueWeight = 0, FalseWeight = 0; 3813 SmallVector<uint64_t, 8> Weights; 3814 bool HasWeights = HasBranchWeights(SI); 3815 if (HasWeights) { 3816 GetBranchWeights(SI, Weights); 3817 if (Weights.size() == 1 + SI->getNumCases()) { 3818 TrueWeight = 3819 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3820 FalseWeight = 3821 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3822 } 3823 } 3824 3825 // Perform the actual simplification. 3826 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3827 FalseWeight); 3828 } 3829 3830 // Replaces 3831 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3832 // blockaddress(@fn, BlockB))) 3833 // with 3834 // (br cond, BlockA, BlockB). 3835 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3836 SelectInst *SI) { 3837 // Check that both operands of the select are block addresses. 3838 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3839 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3840 if (!TBA || !FBA) 3841 return false; 3842 3843 // Extract the actual blocks. 3844 BasicBlock *TrueBB = TBA->getBasicBlock(); 3845 BasicBlock *FalseBB = FBA->getBasicBlock(); 3846 3847 // Perform the actual simplification. 3848 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3849 0); 3850 } 3851 3852 /// This is called when we find an icmp instruction 3853 /// (a seteq/setne with a constant) as the only instruction in a 3854 /// block that ends with an uncond branch. We are looking for a very specific 3855 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3856 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3857 /// default value goes to an uncond block with a seteq in it, we get something 3858 /// like: 3859 /// 3860 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3861 /// DEFAULT: 3862 /// %tmp = icmp eq i8 %A, 92 3863 /// br label %end 3864 /// end: 3865 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3866 /// 3867 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3868 /// the PHI, merging the third icmp into the switch. 3869 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3870 ICmpInst *ICI, IRBuilder<> &Builder) { 3871 BasicBlock *BB = ICI->getParent(); 3872 3873 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3874 // complex. 3875 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3876 return false; 3877 3878 Value *V = ICI->getOperand(0); 3879 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3880 3881 // The pattern we're looking for is where our only predecessor is a switch on 3882 // 'V' and this block is the default case for the switch. In this case we can 3883 // fold the compared value into the switch to simplify things. 3884 BasicBlock *Pred = BB->getSinglePredecessor(); 3885 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3886 return false; 3887 3888 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3889 if (SI->getCondition() != V) 3890 return false; 3891 3892 // If BB is reachable on a non-default case, then we simply know the value of 3893 // V in this block. Substitute it and constant fold the icmp instruction 3894 // away. 3895 if (SI->getDefaultDest() != BB) { 3896 ConstantInt *VVal = SI->findCaseDest(BB); 3897 assert(VVal && "Should have a unique destination value"); 3898 ICI->setOperand(0, VVal); 3899 3900 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3901 ICI->replaceAllUsesWith(V); 3902 ICI->eraseFromParent(); 3903 } 3904 // BB is now empty, so it is likely to simplify away. 3905 return requestResimplify(); 3906 } 3907 3908 // Ok, the block is reachable from the default dest. If the constant we're 3909 // comparing exists in one of the other edges, then we can constant fold ICI 3910 // and zap it. 3911 if (SI->findCaseValue(Cst) != SI->case_default()) { 3912 Value *V; 3913 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3914 V = ConstantInt::getFalse(BB->getContext()); 3915 else 3916 V = ConstantInt::getTrue(BB->getContext()); 3917 3918 ICI->replaceAllUsesWith(V); 3919 ICI->eraseFromParent(); 3920 // BB is now empty, so it is likely to simplify away. 3921 return requestResimplify(); 3922 } 3923 3924 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3925 // the block. 3926 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3927 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3928 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3929 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3930 return false; 3931 3932 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3933 // true in the PHI. 3934 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3935 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3936 3937 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3938 std::swap(DefaultCst, NewCst); 3939 3940 // Replace ICI (which is used by the PHI for the default value) with true or 3941 // false depending on if it is EQ or NE. 3942 ICI->replaceAllUsesWith(DefaultCst); 3943 ICI->eraseFromParent(); 3944 3945 SmallVector<DominatorTree::UpdateType, 2> Updates; 3946 3947 // Okay, the switch goes to this block on a default value. Add an edge from 3948 // the switch to the merge point on the compared value. 3949 BasicBlock *NewBB = 3950 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3951 { 3952 SwitchInstProfUpdateWrapper SIW(*SI); 3953 auto W0 = SIW.getSuccessorWeight(0); 3954 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3955 if (W0) { 3956 NewW = ((uint64_t(*W0) + 1) >> 1); 3957 SIW.setSuccessorWeight(0, *NewW); 3958 } 3959 SIW.addCase(Cst, NewBB, NewW); 3960 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 3961 } 3962 3963 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3964 Builder.SetInsertPoint(NewBB); 3965 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3966 Builder.CreateBr(SuccBlock); 3967 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 3968 PHIUse->addIncoming(NewCst, NewBB); 3969 if (DTU) 3970 DTU->applyUpdates(Updates); 3971 return true; 3972 } 3973 3974 /// The specified branch is a conditional branch. 3975 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3976 /// fold it into a switch instruction if so. 3977 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3978 IRBuilder<> &Builder, 3979 const DataLayout &DL) { 3980 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3981 if (!Cond) 3982 return false; 3983 3984 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3985 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3986 // 'setne's and'ed together, collect them. 3987 3988 // Try to gather values from a chain of and/or to be turned into a switch 3989 ConstantComparesGatherer ConstantCompare(Cond, DL); 3990 // Unpack the result 3991 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3992 Value *CompVal = ConstantCompare.CompValue; 3993 unsigned UsedICmps = ConstantCompare.UsedICmps; 3994 Value *ExtraCase = ConstantCompare.Extra; 3995 3996 // If we didn't have a multiply compared value, fail. 3997 if (!CompVal) 3998 return false; 3999 4000 // Avoid turning single icmps into a switch. 4001 if (UsedICmps <= 1) 4002 return false; 4003 4004 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4005 4006 // There might be duplicate constants in the list, which the switch 4007 // instruction can't handle, remove them now. 4008 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4009 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4010 4011 // If Extra was used, we require at least two switch values to do the 4012 // transformation. A switch with one value is just a conditional branch. 4013 if (ExtraCase && Values.size() < 2) 4014 return false; 4015 4016 // TODO: Preserve branch weight metadata, similarly to how 4017 // FoldValueComparisonIntoPredecessors preserves it. 4018 4019 // Figure out which block is which destination. 4020 BasicBlock *DefaultBB = BI->getSuccessor(1); 4021 BasicBlock *EdgeBB = BI->getSuccessor(0); 4022 if (!TrueWhenEqual) 4023 std::swap(DefaultBB, EdgeBB); 4024 4025 BasicBlock *BB = BI->getParent(); 4026 4027 // MSAN does not like undefs as branch condition which can be introduced 4028 // with "explicit branch". 4029 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4030 return false; 4031 4032 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4033 << " cases into SWITCH. BB is:\n" 4034 << *BB); 4035 4036 SmallVector<DominatorTree::UpdateType, 2> Updates; 4037 4038 // If there are any extra values that couldn't be folded into the switch 4039 // then we evaluate them with an explicit branch first. Split the block 4040 // right before the condbr to handle it. 4041 if (ExtraCase) { 4042 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4043 /*MSSAU=*/nullptr, "switch.early.test"); 4044 4045 // Remove the uncond branch added to the old block. 4046 Instruction *OldTI = BB->getTerminator(); 4047 Builder.SetInsertPoint(OldTI); 4048 4049 if (TrueWhenEqual) 4050 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4051 else 4052 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4053 4054 OldTI->eraseFromParent(); 4055 4056 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4057 4058 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4059 // for the edge we just added. 4060 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4061 4062 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4063 << "\nEXTRABB = " << *BB); 4064 BB = NewBB; 4065 } 4066 4067 Builder.SetInsertPoint(BI); 4068 // Convert pointer to int before we switch. 4069 if (CompVal->getType()->isPointerTy()) { 4070 CompVal = Builder.CreatePtrToInt( 4071 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4072 } 4073 4074 // Create the new switch instruction now. 4075 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4076 4077 // Add all of the 'cases' to the switch instruction. 4078 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4079 New->addCase(Values[i], EdgeBB); 4080 4081 // We added edges from PI to the EdgeBB. As such, if there were any 4082 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4083 // the number of edges added. 4084 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4085 PHINode *PN = cast<PHINode>(BBI); 4086 Value *InVal = PN->getIncomingValueForBlock(BB); 4087 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4088 PN->addIncoming(InVal, BB); 4089 } 4090 4091 // Erase the old branch instruction. 4092 EraseTerminatorAndDCECond(BI); 4093 if (DTU) 4094 DTU->applyUpdates(Updates); 4095 4096 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4097 return true; 4098 } 4099 4100 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4101 if (isa<PHINode>(RI->getValue())) 4102 return simplifyCommonResume(RI); 4103 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4104 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4105 // The resume must unwind the exception that caused control to branch here. 4106 return simplifySingleResume(RI); 4107 4108 return false; 4109 } 4110 4111 // Check if cleanup block is empty 4112 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4113 for (Instruction &I : R) { 4114 auto *II = dyn_cast<IntrinsicInst>(&I); 4115 if (!II) 4116 return false; 4117 4118 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4119 switch (IntrinsicID) { 4120 case Intrinsic::dbg_declare: 4121 case Intrinsic::dbg_value: 4122 case Intrinsic::dbg_label: 4123 case Intrinsic::lifetime_end: 4124 break; 4125 default: 4126 return false; 4127 } 4128 } 4129 return true; 4130 } 4131 4132 // Simplify resume that is shared by several landing pads (phi of landing pad). 4133 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4134 BasicBlock *BB = RI->getParent(); 4135 4136 // Check that there are no other instructions except for debug and lifetime 4137 // intrinsics between the phi's and resume instruction. 4138 if (!isCleanupBlockEmpty( 4139 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4140 return false; 4141 4142 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4143 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4144 4145 // Check incoming blocks to see if any of them are trivial. 4146 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4147 Idx++) { 4148 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4149 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4150 4151 // If the block has other successors, we can not delete it because 4152 // it has other dependents. 4153 if (IncomingBB->getUniqueSuccessor() != BB) 4154 continue; 4155 4156 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4157 // Not the landing pad that caused the control to branch here. 4158 if (IncomingValue != LandingPad) 4159 continue; 4160 4161 if (isCleanupBlockEmpty( 4162 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4163 TrivialUnwindBlocks.insert(IncomingBB); 4164 } 4165 4166 // If no trivial unwind blocks, don't do any simplifications. 4167 if (TrivialUnwindBlocks.empty()) 4168 return false; 4169 4170 // Turn all invokes that unwind here into calls. 4171 for (auto *TrivialBB : TrivialUnwindBlocks) { 4172 // Blocks that will be simplified should be removed from the phi node. 4173 // Note there could be multiple edges to the resume block, and we need 4174 // to remove them all. 4175 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4176 BB->removePredecessor(TrivialBB, true); 4177 4178 for (BasicBlock *Pred : 4179 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4180 removeUnwindEdge(Pred, DTU); 4181 ++NumInvokes; 4182 } 4183 4184 // In each SimplifyCFG run, only the current processed block can be erased. 4185 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4186 // of erasing TrivialBB, we only remove the branch to the common resume 4187 // block so that we can later erase the resume block since it has no 4188 // predecessors. 4189 TrivialBB->getTerminator()->eraseFromParent(); 4190 new UnreachableInst(RI->getContext(), TrivialBB); 4191 if (DTU) 4192 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4193 } 4194 4195 // Delete the resume block if all its predecessors have been removed. 4196 if (pred_empty(BB)) { 4197 if (DTU) 4198 DTU->deleteBB(BB); 4199 else 4200 BB->eraseFromParent(); 4201 } 4202 4203 return !TrivialUnwindBlocks.empty(); 4204 } 4205 4206 // Simplify resume that is only used by a single (non-phi) landing pad. 4207 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4208 BasicBlock *BB = RI->getParent(); 4209 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4210 assert(RI->getValue() == LPInst && 4211 "Resume must unwind the exception that caused control to here"); 4212 4213 // Check that there are no other instructions except for debug intrinsics. 4214 if (!isCleanupBlockEmpty( 4215 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4216 return false; 4217 4218 // Turn all invokes that unwind here into calls and delete the basic block. 4219 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4220 removeUnwindEdge(Pred, DTU); 4221 ++NumInvokes; 4222 } 4223 4224 // The landingpad is now unreachable. Zap it. 4225 if (DTU) 4226 DTU->deleteBB(BB); 4227 else 4228 BB->eraseFromParent(); 4229 return true; 4230 } 4231 4232 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4233 // If this is a trivial cleanup pad that executes no instructions, it can be 4234 // eliminated. If the cleanup pad continues to the caller, any predecessor 4235 // that is an EH pad will be updated to continue to the caller and any 4236 // predecessor that terminates with an invoke instruction will have its invoke 4237 // instruction converted to a call instruction. If the cleanup pad being 4238 // simplified does not continue to the caller, each predecessor will be 4239 // updated to continue to the unwind destination of the cleanup pad being 4240 // simplified. 4241 BasicBlock *BB = RI->getParent(); 4242 CleanupPadInst *CPInst = RI->getCleanupPad(); 4243 if (CPInst->getParent() != BB) 4244 // This isn't an empty cleanup. 4245 return false; 4246 4247 // We cannot kill the pad if it has multiple uses. This typically arises 4248 // from unreachable basic blocks. 4249 if (!CPInst->hasOneUse()) 4250 return false; 4251 4252 // Check that there are no other instructions except for benign intrinsics. 4253 if (!isCleanupBlockEmpty( 4254 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4255 return false; 4256 4257 // If the cleanup return we are simplifying unwinds to the caller, this will 4258 // set UnwindDest to nullptr. 4259 BasicBlock *UnwindDest = RI->getUnwindDest(); 4260 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4261 4262 // We're about to remove BB from the control flow. Before we do, sink any 4263 // PHINodes into the unwind destination. Doing this before changing the 4264 // control flow avoids some potentially slow checks, since we can currently 4265 // be certain that UnwindDest and BB have no common predecessors (since they 4266 // are both EH pads). 4267 if (UnwindDest) { 4268 // First, go through the PHI nodes in UnwindDest and update any nodes that 4269 // reference the block we are removing 4270 for (BasicBlock::iterator I = UnwindDest->begin(), 4271 IE = DestEHPad->getIterator(); 4272 I != IE; ++I) { 4273 PHINode *DestPN = cast<PHINode>(I); 4274 4275 int Idx = DestPN->getBasicBlockIndex(BB); 4276 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4277 assert(Idx != -1); 4278 // This PHI node has an incoming value that corresponds to a control 4279 // path through the cleanup pad we are removing. If the incoming 4280 // value is in the cleanup pad, it must be a PHINode (because we 4281 // verified above that the block is otherwise empty). Otherwise, the 4282 // value is either a constant or a value that dominates the cleanup 4283 // pad being removed. 4284 // 4285 // Because BB and UnwindDest are both EH pads, all of their 4286 // predecessors must unwind to these blocks, and since no instruction 4287 // can have multiple unwind destinations, there will be no overlap in 4288 // incoming blocks between SrcPN and DestPN. 4289 Value *SrcVal = DestPN->getIncomingValue(Idx); 4290 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4291 4292 // Remove the entry for the block we are deleting. 4293 DestPN->removeIncomingValue(Idx, false); 4294 4295 if (SrcPN && SrcPN->getParent() == BB) { 4296 // If the incoming value was a PHI node in the cleanup pad we are 4297 // removing, we need to merge that PHI node's incoming values into 4298 // DestPN. 4299 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4300 SrcIdx != SrcE; ++SrcIdx) { 4301 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4302 SrcPN->getIncomingBlock(SrcIdx)); 4303 } 4304 } else { 4305 // Otherwise, the incoming value came from above BB and 4306 // so we can just reuse it. We must associate all of BB's 4307 // predecessors with this value. 4308 for (auto *pred : predecessors(BB)) { 4309 DestPN->addIncoming(SrcVal, pred); 4310 } 4311 } 4312 } 4313 4314 // Sink any remaining PHI nodes directly into UnwindDest. 4315 Instruction *InsertPt = DestEHPad; 4316 for (BasicBlock::iterator I = BB->begin(), 4317 IE = BB->getFirstNonPHI()->getIterator(); 4318 I != IE;) { 4319 // The iterator must be incremented here because the instructions are 4320 // being moved to another block. 4321 PHINode *PN = cast<PHINode>(I++); 4322 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4323 // If the PHI node has no uses or all of its uses are in this basic 4324 // block (meaning they are debug or lifetime intrinsics), just leave 4325 // it. It will be erased when we erase BB below. 4326 continue; 4327 4328 // Otherwise, sink this PHI node into UnwindDest. 4329 // Any predecessors to UnwindDest which are not already represented 4330 // must be back edges which inherit the value from the path through 4331 // BB. In this case, the PHI value must reference itself. 4332 for (auto *pred : predecessors(UnwindDest)) 4333 if (pred != BB) 4334 PN->addIncoming(PN, pred); 4335 PN->moveBefore(InsertPt); 4336 } 4337 } 4338 4339 std::vector<DominatorTree::UpdateType> Updates; 4340 4341 // We use make_early_inc_range here because we may remove some predecessors. 4342 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4343 if (UnwindDest == nullptr) { 4344 if (DTU) 4345 DTU->applyUpdates(Updates); 4346 Updates.clear(); 4347 removeUnwindEdge(PredBB, DTU); 4348 ++NumInvokes; 4349 } else { 4350 Instruction *TI = PredBB->getTerminator(); 4351 TI->replaceUsesOfWith(BB, UnwindDest); 4352 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4353 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4354 } 4355 } 4356 4357 if (DTU) { 4358 DTU->applyUpdates(Updates); 4359 DTU->deleteBB(BB); 4360 } else 4361 // The cleanup pad is now unreachable. Zap it. 4362 BB->eraseFromParent(); 4363 4364 return true; 4365 } 4366 4367 // Try to merge two cleanuppads together. 4368 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4369 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4370 // with. 4371 BasicBlock *UnwindDest = RI->getUnwindDest(); 4372 if (!UnwindDest) 4373 return false; 4374 4375 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4376 // be safe to merge without code duplication. 4377 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4378 return false; 4379 4380 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4381 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4382 if (!SuccessorCleanupPad) 4383 return false; 4384 4385 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4386 // Replace any uses of the successor cleanupad with the predecessor pad 4387 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4388 // funclet bundle operands. 4389 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4390 // Remove the old cleanuppad. 4391 SuccessorCleanupPad->eraseFromParent(); 4392 // Now, we simply replace the cleanupret with a branch to the unwind 4393 // destination. 4394 BranchInst::Create(UnwindDest, RI->getParent()); 4395 RI->eraseFromParent(); 4396 4397 return true; 4398 } 4399 4400 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4401 // It is possible to transiantly have an undef cleanuppad operand because we 4402 // have deleted some, but not all, dead blocks. 4403 // Eventually, this block will be deleted. 4404 if (isa<UndefValue>(RI->getOperand(0))) 4405 return false; 4406 4407 if (mergeCleanupPad(RI)) 4408 return true; 4409 4410 if (removeEmptyCleanup(RI, DTU)) 4411 return true; 4412 4413 return false; 4414 } 4415 4416 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4417 BasicBlock *BB = RI->getParent(); 4418 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4419 return false; 4420 4421 // Find predecessors that end with branches. 4422 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4423 SmallVector<BranchInst *, 8> CondBranchPreds; 4424 for (BasicBlock *P : predecessors(BB)) { 4425 Instruction *PTI = P->getTerminator(); 4426 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4427 if (BI->isUnconditional()) 4428 UncondBranchPreds.push_back(P); 4429 else 4430 CondBranchPreds.push_back(BI); 4431 } 4432 } 4433 4434 // If we found some, do the transformation! 4435 if (!UncondBranchPreds.empty() && DupRet) { 4436 while (!UncondBranchPreds.empty()) { 4437 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4438 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4439 << "INTO UNCOND BRANCH PRED: " << *Pred); 4440 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4441 } 4442 4443 // If we eliminated all predecessors of the block, delete the block now. 4444 if (pred_empty(BB)) { 4445 // We know there are no successors, so just nuke the block. 4446 if (DTU) 4447 DTU->deleteBB(BB); 4448 else 4449 BB->eraseFromParent(); 4450 } 4451 4452 return true; 4453 } 4454 4455 // Check out all of the conditional branches going to this return 4456 // instruction. If any of them just select between returns, change the 4457 // branch itself into a select/return pair. 4458 while (!CondBranchPreds.empty()) { 4459 BranchInst *BI = CondBranchPreds.pop_back_val(); 4460 4461 // Check to see if the non-BB successor is also a return block. 4462 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4463 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4464 SimplifyCondBranchToTwoReturns(BI, Builder)) 4465 return true; 4466 } 4467 return false; 4468 } 4469 4470 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4471 BasicBlock *BB = UI->getParent(); 4472 4473 bool Changed = false; 4474 4475 // If there are any instructions immediately before the unreachable that can 4476 // be removed, do so. 4477 while (UI->getIterator() != BB->begin()) { 4478 BasicBlock::iterator BBI = UI->getIterator(); 4479 --BBI; 4480 // Do not delete instructions that can have side effects which might cause 4481 // the unreachable to not be reachable; specifically, calls and volatile 4482 // operations may have this effect. 4483 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4484 break; 4485 4486 if (BBI->mayHaveSideEffects()) { 4487 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4488 if (SI->isVolatile()) 4489 break; 4490 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4491 if (LI->isVolatile()) 4492 break; 4493 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4494 if (RMWI->isVolatile()) 4495 break; 4496 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4497 if (CXI->isVolatile()) 4498 break; 4499 } else if (isa<CatchPadInst>(BBI)) { 4500 // A catchpad may invoke exception object constructors and such, which 4501 // in some languages can be arbitrary code, so be conservative by 4502 // default. 4503 // For CoreCLR, it just involves a type test, so can be removed. 4504 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4505 EHPersonality::CoreCLR) 4506 break; 4507 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4508 !isa<LandingPadInst>(BBI)) { 4509 break; 4510 } 4511 // Note that deleting LandingPad's here is in fact okay, although it 4512 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4513 // all the predecessors of this block will be the unwind edges of Invokes, 4514 // and we can therefore guarantee this block will be erased. 4515 } 4516 4517 // Delete this instruction (any uses are guaranteed to be dead) 4518 if (!BBI->use_empty()) 4519 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4520 BBI->eraseFromParent(); 4521 Changed = true; 4522 } 4523 4524 // If the unreachable instruction is the first in the block, take a gander 4525 // at all of the predecessors of this instruction, and simplify them. 4526 if (&BB->front() != UI) 4527 return Changed; 4528 4529 std::vector<DominatorTree::UpdateType> Updates; 4530 4531 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4532 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4533 auto *Predecessor = Preds[i]; 4534 Instruction *TI = Predecessor->getTerminator(); 4535 IRBuilder<> Builder(TI); 4536 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4537 // We could either have a proper unconditional branch, 4538 // or a degenerate conditional branch with matching destinations. 4539 if (all_of(BI->successors(), 4540 [BB](auto *Successor) { return Successor == BB; })) { 4541 new UnreachableInst(TI->getContext(), TI); 4542 TI->eraseFromParent(); 4543 Changed = true; 4544 } else { 4545 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4546 Value* Cond = BI->getCondition(); 4547 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4548 "The destinations are guaranteed to be different here."); 4549 if (BI->getSuccessor(0) == BB) { 4550 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4551 Builder.CreateBr(BI->getSuccessor(1)); 4552 } else { 4553 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4554 Builder.CreateAssumption(Cond); 4555 Builder.CreateBr(BI->getSuccessor(0)); 4556 } 4557 EraseTerminatorAndDCECond(BI); 4558 Changed = true; 4559 } 4560 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4561 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4562 SwitchInstProfUpdateWrapper SU(*SI); 4563 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4564 if (i->getCaseSuccessor() != BB) { 4565 ++i; 4566 continue; 4567 } 4568 BB->removePredecessor(SU->getParent()); 4569 i = SU.removeCase(i); 4570 e = SU->case_end(); 4571 Changed = true; 4572 } 4573 // Note that the default destination can't be removed! 4574 if (SI->getDefaultDest() != BB) 4575 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4576 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4577 if (II->getUnwindDest() == BB) { 4578 if (DTU) 4579 DTU->applyUpdates(Updates); 4580 Updates.clear(); 4581 removeUnwindEdge(TI->getParent(), DTU); 4582 Changed = true; 4583 } 4584 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4585 if (CSI->getUnwindDest() == BB) { 4586 if (DTU) 4587 DTU->applyUpdates(Updates); 4588 Updates.clear(); 4589 removeUnwindEdge(TI->getParent(), DTU); 4590 Changed = true; 4591 continue; 4592 } 4593 4594 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4595 E = CSI->handler_end(); 4596 I != E; ++I) { 4597 if (*I == BB) { 4598 CSI->removeHandler(I); 4599 --I; 4600 --E; 4601 Changed = true; 4602 } 4603 } 4604 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4605 if (CSI->getNumHandlers() == 0) { 4606 if (CSI->hasUnwindDest()) { 4607 // Redirect all predecessors of the block containing CatchSwitchInst 4608 // to instead branch to the CatchSwitchInst's unwind destination. 4609 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4610 Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor, 4611 CSI->getUnwindDest()}); 4612 Updates.push_back( 4613 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor}); 4614 } 4615 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4616 } else { 4617 // Rewrite all preds to unwind to caller (or from invoke to call). 4618 if (DTU) 4619 DTU->applyUpdates(Updates); 4620 Updates.clear(); 4621 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4622 for (BasicBlock *EHPred : EHPreds) 4623 removeUnwindEdge(EHPred, DTU); 4624 } 4625 // The catchswitch is no longer reachable. 4626 new UnreachableInst(CSI->getContext(), CSI); 4627 CSI->eraseFromParent(); 4628 Changed = true; 4629 } 4630 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4631 (void)CRI; 4632 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4633 "Expected to always have an unwind to BB."); 4634 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4635 new UnreachableInst(TI->getContext(), TI); 4636 TI->eraseFromParent(); 4637 Changed = true; 4638 } 4639 } 4640 4641 if (DTU) 4642 DTU->applyUpdates(Updates); 4643 4644 // If this block is now dead, remove it. 4645 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4646 // We know there are no successors, so just nuke the block. 4647 if (DTU) 4648 DTU->deleteBB(BB); 4649 else 4650 BB->eraseFromParent(); 4651 return true; 4652 } 4653 4654 return Changed; 4655 } 4656 4657 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4658 assert(Cases.size() >= 1); 4659 4660 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4661 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4662 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4663 return false; 4664 } 4665 return true; 4666 } 4667 4668 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4669 DomTreeUpdater *DTU) { 4670 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4671 auto *BB = Switch->getParent(); 4672 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4673 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4674 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4675 Switch->setDefaultDest(&*NewDefaultBlock); 4676 if (DTU) 4677 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4678 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4679 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4680 SmallVector<DominatorTree::UpdateType, 2> Updates; 4681 for (auto *Successor : successors(NewDefaultBlock)) 4682 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4683 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4684 new UnreachableInst(Switch->getContext(), NewTerminator); 4685 EraseTerminatorAndDCECond(NewTerminator); 4686 if (DTU) 4687 DTU->applyUpdates(Updates); 4688 } 4689 4690 /// Turn a switch with two reachable destinations into an integer range 4691 /// comparison and branch. 4692 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4693 IRBuilder<> &Builder) { 4694 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4695 4696 bool HasDefault = 4697 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4698 4699 auto *BB = SI->getParent(); 4700 4701 // Partition the cases into two sets with different destinations. 4702 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4703 BasicBlock *DestB = nullptr; 4704 SmallVector<ConstantInt *, 16> CasesA; 4705 SmallVector<ConstantInt *, 16> CasesB; 4706 4707 for (auto Case : SI->cases()) { 4708 BasicBlock *Dest = Case.getCaseSuccessor(); 4709 if (!DestA) 4710 DestA = Dest; 4711 if (Dest == DestA) { 4712 CasesA.push_back(Case.getCaseValue()); 4713 continue; 4714 } 4715 if (!DestB) 4716 DestB = Dest; 4717 if (Dest == DestB) { 4718 CasesB.push_back(Case.getCaseValue()); 4719 continue; 4720 } 4721 return false; // More than two destinations. 4722 } 4723 4724 assert(DestA && DestB && 4725 "Single-destination switch should have been folded."); 4726 assert(DestA != DestB); 4727 assert(DestB != SI->getDefaultDest()); 4728 assert(!CasesB.empty() && "There must be non-default cases."); 4729 assert(!CasesA.empty() || HasDefault); 4730 4731 // Figure out if one of the sets of cases form a contiguous range. 4732 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4733 BasicBlock *ContiguousDest = nullptr; 4734 BasicBlock *OtherDest = nullptr; 4735 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4736 ContiguousCases = &CasesA; 4737 ContiguousDest = DestA; 4738 OtherDest = DestB; 4739 } else if (CasesAreContiguous(CasesB)) { 4740 ContiguousCases = &CasesB; 4741 ContiguousDest = DestB; 4742 OtherDest = DestA; 4743 } else 4744 return false; 4745 4746 // Start building the compare and branch. 4747 4748 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4749 Constant *NumCases = 4750 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4751 4752 Value *Sub = SI->getCondition(); 4753 if (!Offset->isNullValue()) 4754 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4755 4756 Value *Cmp; 4757 // If NumCases overflowed, then all possible values jump to the successor. 4758 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4759 Cmp = ConstantInt::getTrue(SI->getContext()); 4760 else 4761 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4762 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4763 4764 // Update weight for the newly-created conditional branch. 4765 if (HasBranchWeights(SI)) { 4766 SmallVector<uint64_t, 8> Weights; 4767 GetBranchWeights(SI, Weights); 4768 if (Weights.size() == 1 + SI->getNumCases()) { 4769 uint64_t TrueWeight = 0; 4770 uint64_t FalseWeight = 0; 4771 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4772 if (SI->getSuccessor(I) == ContiguousDest) 4773 TrueWeight += Weights[I]; 4774 else 4775 FalseWeight += Weights[I]; 4776 } 4777 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4778 TrueWeight /= 2; 4779 FalseWeight /= 2; 4780 } 4781 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4782 } 4783 } 4784 4785 // Prune obsolete incoming values off the successors' PHI nodes. 4786 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4787 unsigned PreviousEdges = ContiguousCases->size(); 4788 if (ContiguousDest == SI->getDefaultDest()) 4789 ++PreviousEdges; 4790 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4791 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4792 } 4793 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4794 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4795 if (OtherDest == SI->getDefaultDest()) 4796 ++PreviousEdges; 4797 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4798 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4799 } 4800 4801 // Clean up the default block - it may have phis or other instructions before 4802 // the unreachable terminator. 4803 if (!HasDefault) 4804 createUnreachableSwitchDefault(SI, DTU); 4805 4806 auto *UnreachableDefault = SI->getDefaultDest(); 4807 4808 // Drop the switch. 4809 SI->eraseFromParent(); 4810 4811 if (!HasDefault && DTU) 4812 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4813 4814 return true; 4815 } 4816 4817 /// Compute masked bits for the condition of a switch 4818 /// and use it to remove dead cases. 4819 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4820 AssumptionCache *AC, 4821 const DataLayout &DL) { 4822 Value *Cond = SI->getCondition(); 4823 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4824 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4825 4826 // We can also eliminate cases by determining that their values are outside of 4827 // the limited range of the condition based on how many significant (non-sign) 4828 // bits are in the condition value. 4829 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4830 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4831 4832 // Gather dead cases. 4833 SmallVector<ConstantInt *, 8> DeadCases; 4834 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 4835 for (auto &Case : SI->cases()) { 4836 auto *Successor = Case.getCaseSuccessor(); 4837 ++NumPerSuccessorCases[Successor]; 4838 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4839 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4840 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4841 DeadCases.push_back(Case.getCaseValue()); 4842 --NumPerSuccessorCases[Successor]; 4843 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4844 << " is dead.\n"); 4845 } 4846 } 4847 4848 // If we can prove that the cases must cover all possible values, the 4849 // default destination becomes dead and we can remove it. If we know some 4850 // of the bits in the value, we can use that to more precisely compute the 4851 // number of possible unique case values. 4852 bool HasDefault = 4853 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4854 const unsigned NumUnknownBits = 4855 Bits - (Known.Zero | Known.One).countPopulation(); 4856 assert(NumUnknownBits <= Bits); 4857 if (HasDefault && DeadCases.empty() && 4858 NumUnknownBits < 64 /* avoid overflow */ && 4859 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4860 createUnreachableSwitchDefault(SI, DTU); 4861 return true; 4862 } 4863 4864 if (DeadCases.empty()) 4865 return false; 4866 4867 SwitchInstProfUpdateWrapper SIW(*SI); 4868 for (ConstantInt *DeadCase : DeadCases) { 4869 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4870 assert(CaseI != SI->case_default() && 4871 "Case was not found. Probably mistake in DeadCases forming."); 4872 // Prune unused values from PHI nodes. 4873 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4874 SIW.removeCase(CaseI); 4875 } 4876 4877 std::vector<DominatorTree::UpdateType> Updates; 4878 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4879 if (I.second == 0) 4880 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4881 if (DTU) 4882 DTU->applyUpdates(Updates); 4883 4884 return true; 4885 } 4886 4887 /// If BB would be eligible for simplification by 4888 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4889 /// by an unconditional branch), look at the phi node for BB in the successor 4890 /// block and see if the incoming value is equal to CaseValue. If so, return 4891 /// the phi node, and set PhiIndex to BB's index in the phi node. 4892 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4893 BasicBlock *BB, int *PhiIndex) { 4894 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4895 return nullptr; // BB must be empty to be a candidate for simplification. 4896 if (!BB->getSinglePredecessor()) 4897 return nullptr; // BB must be dominated by the switch. 4898 4899 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4900 if (!Branch || !Branch->isUnconditional()) 4901 return nullptr; // Terminator must be unconditional branch. 4902 4903 BasicBlock *Succ = Branch->getSuccessor(0); 4904 4905 for (PHINode &PHI : Succ->phis()) { 4906 int Idx = PHI.getBasicBlockIndex(BB); 4907 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4908 4909 Value *InValue = PHI.getIncomingValue(Idx); 4910 if (InValue != CaseValue) 4911 continue; 4912 4913 *PhiIndex = Idx; 4914 return &PHI; 4915 } 4916 4917 return nullptr; 4918 } 4919 4920 /// Try to forward the condition of a switch instruction to a phi node 4921 /// dominated by the switch, if that would mean that some of the destination 4922 /// blocks of the switch can be folded away. Return true if a change is made. 4923 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4924 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4925 4926 ForwardingNodesMap ForwardingNodes; 4927 BasicBlock *SwitchBlock = SI->getParent(); 4928 bool Changed = false; 4929 for (auto &Case : SI->cases()) { 4930 ConstantInt *CaseValue = Case.getCaseValue(); 4931 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4932 4933 // Replace phi operands in successor blocks that are using the constant case 4934 // value rather than the switch condition variable: 4935 // switchbb: 4936 // switch i32 %x, label %default [ 4937 // i32 17, label %succ 4938 // ... 4939 // succ: 4940 // %r = phi i32 ... [ 17, %switchbb ] ... 4941 // --> 4942 // %r = phi i32 ... [ %x, %switchbb ] ... 4943 4944 for (PHINode &Phi : CaseDest->phis()) { 4945 // This only works if there is exactly 1 incoming edge from the switch to 4946 // a phi. If there is >1, that means multiple cases of the switch map to 1 4947 // value in the phi, and that phi value is not the switch condition. Thus, 4948 // this transform would not make sense (the phi would be invalid because 4949 // a phi can't have different incoming values from the same block). 4950 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4951 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4952 count(Phi.blocks(), SwitchBlock) == 1) { 4953 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4954 Changed = true; 4955 } 4956 } 4957 4958 // Collect phi nodes that are indirectly using this switch's case constants. 4959 int PhiIdx; 4960 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4961 ForwardingNodes[Phi].push_back(PhiIdx); 4962 } 4963 4964 for (auto &ForwardingNode : ForwardingNodes) { 4965 PHINode *Phi = ForwardingNode.first; 4966 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4967 if (Indexes.size() < 2) 4968 continue; 4969 4970 for (int Index : Indexes) 4971 Phi->setIncomingValue(Index, SI->getCondition()); 4972 Changed = true; 4973 } 4974 4975 return Changed; 4976 } 4977 4978 /// Return true if the backend will be able to handle 4979 /// initializing an array of constants like C. 4980 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4981 if (C->isThreadDependent()) 4982 return false; 4983 if (C->isDLLImportDependent()) 4984 return false; 4985 4986 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4987 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4988 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4989 return false; 4990 4991 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4992 if (!CE->isGEPWithNoNotionalOverIndexing()) 4993 return false; 4994 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4995 return false; 4996 } 4997 4998 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4999 return false; 5000 5001 return true; 5002 } 5003 5004 /// If V is a Constant, return it. Otherwise, try to look up 5005 /// its constant value in ConstantPool, returning 0 if it's not there. 5006 static Constant * 5007 LookupConstant(Value *V, 5008 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5009 if (Constant *C = dyn_cast<Constant>(V)) 5010 return C; 5011 return ConstantPool.lookup(V); 5012 } 5013 5014 /// Try to fold instruction I into a constant. This works for 5015 /// simple instructions such as binary operations where both operands are 5016 /// constant or can be replaced by constants from the ConstantPool. Returns the 5017 /// resulting constant on success, 0 otherwise. 5018 static Constant * 5019 ConstantFold(Instruction *I, const DataLayout &DL, 5020 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5021 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5022 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5023 if (!A) 5024 return nullptr; 5025 if (A->isAllOnesValue()) 5026 return LookupConstant(Select->getTrueValue(), ConstantPool); 5027 if (A->isNullValue()) 5028 return LookupConstant(Select->getFalseValue(), ConstantPool); 5029 return nullptr; 5030 } 5031 5032 SmallVector<Constant *, 4> COps; 5033 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5034 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5035 COps.push_back(A); 5036 else 5037 return nullptr; 5038 } 5039 5040 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5041 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5042 COps[1], DL); 5043 } 5044 5045 return ConstantFoldInstOperands(I, COps, DL); 5046 } 5047 5048 /// Try to determine the resulting constant values in phi nodes 5049 /// at the common destination basic block, *CommonDest, for one of the case 5050 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5051 /// case), of a switch instruction SI. 5052 static bool 5053 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5054 BasicBlock **CommonDest, 5055 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5056 const DataLayout &DL, const TargetTransformInfo &TTI) { 5057 // The block from which we enter the common destination. 5058 BasicBlock *Pred = SI->getParent(); 5059 5060 // If CaseDest is empty except for some side-effect free instructions through 5061 // which we can constant-propagate the CaseVal, continue to its successor. 5062 SmallDenseMap<Value *, Constant *> ConstantPool; 5063 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5064 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5065 if (I.isTerminator()) { 5066 // If the terminator is a simple branch, continue to the next block. 5067 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5068 return false; 5069 Pred = CaseDest; 5070 CaseDest = I.getSuccessor(0); 5071 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5072 // Instruction is side-effect free and constant. 5073 5074 // If the instruction has uses outside this block or a phi node slot for 5075 // the block, it is not safe to bypass the instruction since it would then 5076 // no longer dominate all its uses. 5077 for (auto &Use : I.uses()) { 5078 User *User = Use.getUser(); 5079 if (Instruction *I = dyn_cast<Instruction>(User)) 5080 if (I->getParent() == CaseDest) 5081 continue; 5082 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5083 if (Phi->getIncomingBlock(Use) == CaseDest) 5084 continue; 5085 return false; 5086 } 5087 5088 ConstantPool.insert(std::make_pair(&I, C)); 5089 } else { 5090 break; 5091 } 5092 } 5093 5094 // If we did not have a CommonDest before, use the current one. 5095 if (!*CommonDest) 5096 *CommonDest = CaseDest; 5097 // If the destination isn't the common one, abort. 5098 if (CaseDest != *CommonDest) 5099 return false; 5100 5101 // Get the values for this case from phi nodes in the destination block. 5102 for (PHINode &PHI : (*CommonDest)->phis()) { 5103 int Idx = PHI.getBasicBlockIndex(Pred); 5104 if (Idx == -1) 5105 continue; 5106 5107 Constant *ConstVal = 5108 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5109 if (!ConstVal) 5110 return false; 5111 5112 // Be conservative about which kinds of constants we support. 5113 if (!ValidLookupTableConstant(ConstVal, TTI)) 5114 return false; 5115 5116 Res.push_back(std::make_pair(&PHI, ConstVal)); 5117 } 5118 5119 return Res.size() > 0; 5120 } 5121 5122 // Helper function used to add CaseVal to the list of cases that generate 5123 // Result. Returns the updated number of cases that generate this result. 5124 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5125 SwitchCaseResultVectorTy &UniqueResults, 5126 Constant *Result) { 5127 for (auto &I : UniqueResults) { 5128 if (I.first == Result) { 5129 I.second.push_back(CaseVal); 5130 return I.second.size(); 5131 } 5132 } 5133 UniqueResults.push_back( 5134 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5135 return 1; 5136 } 5137 5138 // Helper function that initializes a map containing 5139 // results for the PHI node of the common destination block for a switch 5140 // instruction. Returns false if multiple PHI nodes have been found or if 5141 // there is not a common destination block for the switch. 5142 static bool 5143 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5144 SwitchCaseResultVectorTy &UniqueResults, 5145 Constant *&DefaultResult, const DataLayout &DL, 5146 const TargetTransformInfo &TTI, 5147 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5148 for (auto &I : SI->cases()) { 5149 ConstantInt *CaseVal = I.getCaseValue(); 5150 5151 // Resulting value at phi nodes for this case value. 5152 SwitchCaseResultsTy Results; 5153 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5154 DL, TTI)) 5155 return false; 5156 5157 // Only one value per case is permitted. 5158 if (Results.size() > 1) 5159 return false; 5160 5161 // Add the case->result mapping to UniqueResults. 5162 const uintptr_t NumCasesForResult = 5163 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5164 5165 // Early out if there are too many cases for this result. 5166 if (NumCasesForResult > MaxCasesPerResult) 5167 return false; 5168 5169 // Early out if there are too many unique results. 5170 if (UniqueResults.size() > MaxUniqueResults) 5171 return false; 5172 5173 // Check the PHI consistency. 5174 if (!PHI) 5175 PHI = Results[0].first; 5176 else if (PHI != Results[0].first) 5177 return false; 5178 } 5179 // Find the default result value. 5180 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5181 BasicBlock *DefaultDest = SI->getDefaultDest(); 5182 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5183 DL, TTI); 5184 // If the default value is not found abort unless the default destination 5185 // is unreachable. 5186 DefaultResult = 5187 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5188 if ((!DefaultResult && 5189 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5190 return false; 5191 5192 return true; 5193 } 5194 5195 // Helper function that checks if it is possible to transform a switch with only 5196 // two cases (or two cases + default) that produces a result into a select. 5197 // Example: 5198 // switch (a) { 5199 // case 10: %0 = icmp eq i32 %a, 10 5200 // return 10; %1 = select i1 %0, i32 10, i32 4 5201 // case 20: ----> %2 = icmp eq i32 %a, 20 5202 // return 2; %3 = select i1 %2, i32 2, i32 %1 5203 // default: 5204 // return 4; 5205 // } 5206 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5207 Constant *DefaultResult, Value *Condition, 5208 IRBuilder<> &Builder) { 5209 assert(ResultVector.size() == 2 && 5210 "We should have exactly two unique results at this point"); 5211 // If we are selecting between only two cases transform into a simple 5212 // select or a two-way select if default is possible. 5213 if (ResultVector[0].second.size() == 1 && 5214 ResultVector[1].second.size() == 1) { 5215 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5216 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5217 5218 bool DefaultCanTrigger = DefaultResult; 5219 Value *SelectValue = ResultVector[1].first; 5220 if (DefaultCanTrigger) { 5221 Value *const ValueCompare = 5222 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5223 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5224 DefaultResult, "switch.select"); 5225 } 5226 Value *const ValueCompare = 5227 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5228 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5229 SelectValue, "switch.select"); 5230 } 5231 5232 return nullptr; 5233 } 5234 5235 // Helper function to cleanup a switch instruction that has been converted into 5236 // a select, fixing up PHI nodes and basic blocks. 5237 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5238 Value *SelectValue, 5239 IRBuilder<> &Builder, 5240 DomTreeUpdater *DTU) { 5241 std::vector<DominatorTree::UpdateType> Updates; 5242 5243 BasicBlock *SelectBB = SI->getParent(); 5244 BasicBlock *DestBB = PHI->getParent(); 5245 5246 if (!is_contained(predecessors(DestBB), SelectBB)) 5247 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5248 Builder.CreateBr(DestBB); 5249 5250 // Remove the switch. 5251 5252 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5253 PHI->removeIncomingValue(SelectBB); 5254 PHI->addIncoming(SelectValue, SelectBB); 5255 5256 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5257 BasicBlock *Succ = SI->getSuccessor(i); 5258 5259 if (Succ == DestBB) 5260 continue; 5261 Succ->removePredecessor(SelectBB); 5262 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5263 } 5264 SI->eraseFromParent(); 5265 if (DTU) 5266 DTU->applyUpdates(Updates); 5267 } 5268 5269 /// If the switch is only used to initialize one or more 5270 /// phi nodes in a common successor block with only two different 5271 /// constant values, replace the switch with select. 5272 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5273 DomTreeUpdater *DTU, const DataLayout &DL, 5274 const TargetTransformInfo &TTI) { 5275 Value *const Cond = SI->getCondition(); 5276 PHINode *PHI = nullptr; 5277 BasicBlock *CommonDest = nullptr; 5278 Constant *DefaultResult; 5279 SwitchCaseResultVectorTy UniqueResults; 5280 // Collect all the cases that will deliver the same value from the switch. 5281 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5282 DL, TTI, 2, 1)) 5283 return false; 5284 // Selects choose between maximum two values. 5285 if (UniqueResults.size() != 2) 5286 return false; 5287 assert(PHI != nullptr && "PHI for value select not found"); 5288 5289 Builder.SetInsertPoint(SI); 5290 Value *SelectValue = 5291 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5292 if (SelectValue) { 5293 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5294 return true; 5295 } 5296 // The switch couldn't be converted into a select. 5297 return false; 5298 } 5299 5300 namespace { 5301 5302 /// This class represents a lookup table that can be used to replace a switch. 5303 class SwitchLookupTable { 5304 public: 5305 /// Create a lookup table to use as a switch replacement with the contents 5306 /// of Values, using DefaultValue to fill any holes in the table. 5307 SwitchLookupTable( 5308 Module &M, uint64_t TableSize, ConstantInt *Offset, 5309 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5310 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5311 5312 /// Build instructions with Builder to retrieve the value at 5313 /// the position given by Index in the lookup table. 5314 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5315 5316 /// Return true if a table with TableSize elements of 5317 /// type ElementType would fit in a target-legal register. 5318 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5319 Type *ElementType); 5320 5321 private: 5322 // Depending on the contents of the table, it can be represented in 5323 // different ways. 5324 enum { 5325 // For tables where each element contains the same value, we just have to 5326 // store that single value and return it for each lookup. 5327 SingleValueKind, 5328 5329 // For tables where there is a linear relationship between table index 5330 // and values. We calculate the result with a simple multiplication 5331 // and addition instead of a table lookup. 5332 LinearMapKind, 5333 5334 // For small tables with integer elements, we can pack them into a bitmap 5335 // that fits into a target-legal register. Values are retrieved by 5336 // shift and mask operations. 5337 BitMapKind, 5338 5339 // The table is stored as an array of values. Values are retrieved by load 5340 // instructions from the table. 5341 ArrayKind 5342 } Kind; 5343 5344 // For SingleValueKind, this is the single value. 5345 Constant *SingleValue = nullptr; 5346 5347 // For BitMapKind, this is the bitmap. 5348 ConstantInt *BitMap = nullptr; 5349 IntegerType *BitMapElementTy = nullptr; 5350 5351 // For LinearMapKind, these are the constants used to derive the value. 5352 ConstantInt *LinearOffset = nullptr; 5353 ConstantInt *LinearMultiplier = nullptr; 5354 5355 // For ArrayKind, this is the array. 5356 GlobalVariable *Array = nullptr; 5357 }; 5358 5359 } // end anonymous namespace 5360 5361 SwitchLookupTable::SwitchLookupTable( 5362 Module &M, uint64_t TableSize, ConstantInt *Offset, 5363 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5364 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5365 assert(Values.size() && "Can't build lookup table without values!"); 5366 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5367 5368 // If all values in the table are equal, this is that value. 5369 SingleValue = Values.begin()->second; 5370 5371 Type *ValueType = Values.begin()->second->getType(); 5372 5373 // Build up the table contents. 5374 SmallVector<Constant *, 64> TableContents(TableSize); 5375 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5376 ConstantInt *CaseVal = Values[I].first; 5377 Constant *CaseRes = Values[I].second; 5378 assert(CaseRes->getType() == ValueType); 5379 5380 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5381 TableContents[Idx] = CaseRes; 5382 5383 if (CaseRes != SingleValue) 5384 SingleValue = nullptr; 5385 } 5386 5387 // Fill in any holes in the table with the default result. 5388 if (Values.size() < TableSize) { 5389 assert(DefaultValue && 5390 "Need a default value to fill the lookup table holes."); 5391 assert(DefaultValue->getType() == ValueType); 5392 for (uint64_t I = 0; I < TableSize; ++I) { 5393 if (!TableContents[I]) 5394 TableContents[I] = DefaultValue; 5395 } 5396 5397 if (DefaultValue != SingleValue) 5398 SingleValue = nullptr; 5399 } 5400 5401 // If each element in the table contains the same value, we only need to store 5402 // that single value. 5403 if (SingleValue) { 5404 Kind = SingleValueKind; 5405 return; 5406 } 5407 5408 // Check if we can derive the value with a linear transformation from the 5409 // table index. 5410 if (isa<IntegerType>(ValueType)) { 5411 bool LinearMappingPossible = true; 5412 APInt PrevVal; 5413 APInt DistToPrev; 5414 assert(TableSize >= 2 && "Should be a SingleValue table."); 5415 // Check if there is the same distance between two consecutive values. 5416 for (uint64_t I = 0; I < TableSize; ++I) { 5417 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5418 if (!ConstVal) { 5419 // This is an undef. We could deal with it, but undefs in lookup tables 5420 // are very seldom. It's probably not worth the additional complexity. 5421 LinearMappingPossible = false; 5422 break; 5423 } 5424 const APInt &Val = ConstVal->getValue(); 5425 if (I != 0) { 5426 APInt Dist = Val - PrevVal; 5427 if (I == 1) { 5428 DistToPrev = Dist; 5429 } else if (Dist != DistToPrev) { 5430 LinearMappingPossible = false; 5431 break; 5432 } 5433 } 5434 PrevVal = Val; 5435 } 5436 if (LinearMappingPossible) { 5437 LinearOffset = cast<ConstantInt>(TableContents[0]); 5438 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5439 Kind = LinearMapKind; 5440 ++NumLinearMaps; 5441 return; 5442 } 5443 } 5444 5445 // If the type is integer and the table fits in a register, build a bitmap. 5446 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5447 IntegerType *IT = cast<IntegerType>(ValueType); 5448 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5449 for (uint64_t I = TableSize; I > 0; --I) { 5450 TableInt <<= IT->getBitWidth(); 5451 // Insert values into the bitmap. Undef values are set to zero. 5452 if (!isa<UndefValue>(TableContents[I - 1])) { 5453 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5454 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5455 } 5456 } 5457 BitMap = ConstantInt::get(M.getContext(), TableInt); 5458 BitMapElementTy = IT; 5459 Kind = BitMapKind; 5460 ++NumBitMaps; 5461 return; 5462 } 5463 5464 // Store the table in an array. 5465 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5466 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5467 5468 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5469 GlobalVariable::PrivateLinkage, Initializer, 5470 "switch.table." + FuncName); 5471 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5472 // Set the alignment to that of an array items. We will be only loading one 5473 // value out of it. 5474 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5475 Kind = ArrayKind; 5476 } 5477 5478 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5479 switch (Kind) { 5480 case SingleValueKind: 5481 return SingleValue; 5482 case LinearMapKind: { 5483 // Derive the result value from the input value. 5484 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5485 false, "switch.idx.cast"); 5486 if (!LinearMultiplier->isOne()) 5487 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5488 if (!LinearOffset->isZero()) 5489 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5490 return Result; 5491 } 5492 case BitMapKind: { 5493 // Type of the bitmap (e.g. i59). 5494 IntegerType *MapTy = BitMap->getType(); 5495 5496 // Cast Index to the same type as the bitmap. 5497 // Note: The Index is <= the number of elements in the table, so 5498 // truncating it to the width of the bitmask is safe. 5499 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5500 5501 // Multiply the shift amount by the element width. 5502 ShiftAmt = Builder.CreateMul( 5503 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5504 "switch.shiftamt"); 5505 5506 // Shift down. 5507 Value *DownShifted = 5508 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5509 // Mask off. 5510 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5511 } 5512 case ArrayKind: { 5513 // Make sure the table index will not overflow when treated as signed. 5514 IntegerType *IT = cast<IntegerType>(Index->getType()); 5515 uint64_t TableSize = 5516 Array->getInitializer()->getType()->getArrayNumElements(); 5517 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5518 Index = Builder.CreateZExt( 5519 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5520 "switch.tableidx.zext"); 5521 5522 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5523 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5524 GEPIndices, "switch.gep"); 5525 return Builder.CreateLoad( 5526 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5527 "switch.load"); 5528 } 5529 } 5530 llvm_unreachable("Unknown lookup table kind!"); 5531 } 5532 5533 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5534 uint64_t TableSize, 5535 Type *ElementType) { 5536 auto *IT = dyn_cast<IntegerType>(ElementType); 5537 if (!IT) 5538 return false; 5539 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5540 // are <= 15, we could try to narrow the type. 5541 5542 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5543 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5544 return false; 5545 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5546 } 5547 5548 /// Determine whether a lookup table should be built for this switch, based on 5549 /// the number of cases, size of the table, and the types of the results. 5550 static bool 5551 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5552 const TargetTransformInfo &TTI, const DataLayout &DL, 5553 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5554 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5555 return false; // TableSize overflowed, or mul below might overflow. 5556 5557 bool AllTablesFitInRegister = true; 5558 bool HasIllegalType = false; 5559 for (const auto &I : ResultTypes) { 5560 Type *Ty = I.second; 5561 5562 // Saturate this flag to true. 5563 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5564 5565 // Saturate this flag to false. 5566 AllTablesFitInRegister = 5567 AllTablesFitInRegister && 5568 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5569 5570 // If both flags saturate, we're done. NOTE: This *only* works with 5571 // saturating flags, and all flags have to saturate first due to the 5572 // non-deterministic behavior of iterating over a dense map. 5573 if (HasIllegalType && !AllTablesFitInRegister) 5574 break; 5575 } 5576 5577 // If each table would fit in a register, we should build it anyway. 5578 if (AllTablesFitInRegister) 5579 return true; 5580 5581 // Don't build a table that doesn't fit in-register if it has illegal types. 5582 if (HasIllegalType) 5583 return false; 5584 5585 // The table density should be at least 40%. This is the same criterion as for 5586 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5587 // FIXME: Find the best cut-off. 5588 return SI->getNumCases() * 10 >= TableSize * 4; 5589 } 5590 5591 /// Try to reuse the switch table index compare. Following pattern: 5592 /// \code 5593 /// if (idx < tablesize) 5594 /// r = table[idx]; // table does not contain default_value 5595 /// else 5596 /// r = default_value; 5597 /// if (r != default_value) 5598 /// ... 5599 /// \endcode 5600 /// Is optimized to: 5601 /// \code 5602 /// cond = idx < tablesize; 5603 /// if (cond) 5604 /// r = table[idx]; 5605 /// else 5606 /// r = default_value; 5607 /// if (cond) 5608 /// ... 5609 /// \endcode 5610 /// Jump threading will then eliminate the second if(cond). 5611 static void reuseTableCompare( 5612 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5613 Constant *DefaultValue, 5614 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5615 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5616 if (!CmpInst) 5617 return; 5618 5619 // We require that the compare is in the same block as the phi so that jump 5620 // threading can do its work afterwards. 5621 if (CmpInst->getParent() != PhiBlock) 5622 return; 5623 5624 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5625 if (!CmpOp1) 5626 return; 5627 5628 Value *RangeCmp = RangeCheckBranch->getCondition(); 5629 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5630 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5631 5632 // Check if the compare with the default value is constant true or false. 5633 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5634 DefaultValue, CmpOp1, true); 5635 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5636 return; 5637 5638 // Check if the compare with the case values is distinct from the default 5639 // compare result. 5640 for (auto ValuePair : Values) { 5641 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5642 ValuePair.second, CmpOp1, true); 5643 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5644 return; 5645 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5646 "Expect true or false as compare result."); 5647 } 5648 5649 // Check if the branch instruction dominates the phi node. It's a simple 5650 // dominance check, but sufficient for our needs. 5651 // Although this check is invariant in the calling loops, it's better to do it 5652 // at this late stage. Practically we do it at most once for a switch. 5653 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5654 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5655 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5656 return; 5657 } 5658 5659 if (DefaultConst == FalseConst) { 5660 // The compare yields the same result. We can replace it. 5661 CmpInst->replaceAllUsesWith(RangeCmp); 5662 ++NumTableCmpReuses; 5663 } else { 5664 // The compare yields the same result, just inverted. We can replace it. 5665 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5666 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5667 RangeCheckBranch); 5668 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5669 ++NumTableCmpReuses; 5670 } 5671 } 5672 5673 /// If the switch is only used to initialize one or more phi nodes in a common 5674 /// successor block with different constant values, replace the switch with 5675 /// lookup tables. 5676 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5677 DomTreeUpdater *DTU, const DataLayout &DL, 5678 const TargetTransformInfo &TTI) { 5679 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5680 5681 BasicBlock *BB = SI->getParent(); 5682 Function *Fn = BB->getParent(); 5683 // Only build lookup table when we have a target that supports it or the 5684 // attribute is not set. 5685 if (!TTI.shouldBuildLookupTables() || 5686 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5687 return false; 5688 5689 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5690 // split off a dense part and build a lookup table for that. 5691 5692 // FIXME: This creates arrays of GEPs to constant strings, which means each 5693 // GEP needs a runtime relocation in PIC code. We should just build one big 5694 // string and lookup indices into that. 5695 5696 // Ignore switches with less than three cases. Lookup tables will not make 5697 // them faster, so we don't analyze them. 5698 if (SI->getNumCases() < 3) 5699 return false; 5700 5701 // Figure out the corresponding result for each case value and phi node in the 5702 // common destination, as well as the min and max case values. 5703 assert(!SI->cases().empty()); 5704 SwitchInst::CaseIt CI = SI->case_begin(); 5705 ConstantInt *MinCaseVal = CI->getCaseValue(); 5706 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5707 5708 BasicBlock *CommonDest = nullptr; 5709 5710 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5711 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5712 5713 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5714 SmallDenseMap<PHINode *, Type *> ResultTypes; 5715 SmallVector<PHINode *, 4> PHIs; 5716 5717 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5718 ConstantInt *CaseVal = CI->getCaseValue(); 5719 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5720 MinCaseVal = CaseVal; 5721 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5722 MaxCaseVal = CaseVal; 5723 5724 // Resulting value at phi nodes for this case value. 5725 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5726 ResultsTy Results; 5727 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5728 Results, DL, TTI)) 5729 return false; 5730 5731 // Append the result from this case to the list for each phi. 5732 for (const auto &I : Results) { 5733 PHINode *PHI = I.first; 5734 Constant *Value = I.second; 5735 if (!ResultLists.count(PHI)) 5736 PHIs.push_back(PHI); 5737 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5738 } 5739 } 5740 5741 // Keep track of the result types. 5742 for (PHINode *PHI : PHIs) { 5743 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5744 } 5745 5746 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5747 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5748 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5749 bool TableHasHoles = (NumResults < TableSize); 5750 5751 // If the table has holes, we need a constant result for the default case 5752 // or a bitmask that fits in a register. 5753 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5754 bool HasDefaultResults = 5755 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5756 DefaultResultsList, DL, TTI); 5757 5758 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5759 if (NeedMask) { 5760 // As an extra penalty for the validity test we require more cases. 5761 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5762 return false; 5763 if (!DL.fitsInLegalInteger(TableSize)) 5764 return false; 5765 } 5766 5767 for (const auto &I : DefaultResultsList) { 5768 PHINode *PHI = I.first; 5769 Constant *Result = I.second; 5770 DefaultResults[PHI] = Result; 5771 } 5772 5773 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5774 return false; 5775 5776 std::vector<DominatorTree::UpdateType> Updates; 5777 5778 // Create the BB that does the lookups. 5779 Module &Mod = *CommonDest->getParent()->getParent(); 5780 BasicBlock *LookupBB = BasicBlock::Create( 5781 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5782 5783 // Compute the table index value. 5784 Builder.SetInsertPoint(SI); 5785 Value *TableIndex; 5786 if (MinCaseVal->isNullValue()) 5787 TableIndex = SI->getCondition(); 5788 else 5789 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5790 "switch.tableidx"); 5791 5792 // Compute the maximum table size representable by the integer type we are 5793 // switching upon. 5794 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5795 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5796 assert(MaxTableSize >= TableSize && 5797 "It is impossible for a switch to have more entries than the max " 5798 "representable value of its input integer type's size."); 5799 5800 // If the default destination is unreachable, or if the lookup table covers 5801 // all values of the conditional variable, branch directly to the lookup table 5802 // BB. Otherwise, check that the condition is within the case range. 5803 const bool DefaultIsReachable = 5804 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5805 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5806 BranchInst *RangeCheckBranch = nullptr; 5807 5808 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5809 Builder.CreateBr(LookupBB); 5810 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5811 // Note: We call removeProdecessor later since we need to be able to get the 5812 // PHI value for the default case in case we're using a bit mask. 5813 } else { 5814 Value *Cmp = Builder.CreateICmpULT( 5815 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5816 RangeCheckBranch = 5817 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5818 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5819 } 5820 5821 // Populate the BB that does the lookups. 5822 Builder.SetInsertPoint(LookupBB); 5823 5824 if (NeedMask) { 5825 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5826 // re-purposed to do the hole check, and we create a new LookupBB. 5827 BasicBlock *MaskBB = LookupBB; 5828 MaskBB->setName("switch.hole_check"); 5829 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5830 CommonDest->getParent(), CommonDest); 5831 5832 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5833 // unnecessary illegal types. 5834 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5835 APInt MaskInt(TableSizePowOf2, 0); 5836 APInt One(TableSizePowOf2, 1); 5837 // Build bitmask; fill in a 1 bit for every case. 5838 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5839 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5840 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5841 .getLimitedValue(); 5842 MaskInt |= One << Idx; 5843 } 5844 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5845 5846 // Get the TableIndex'th bit of the bitmask. 5847 // If this bit is 0 (meaning hole) jump to the default destination, 5848 // else continue with table lookup. 5849 IntegerType *MapTy = TableMask->getType(); 5850 Value *MaskIndex = 5851 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5852 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5853 Value *LoBit = Builder.CreateTrunc( 5854 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5855 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5856 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5857 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5858 Builder.SetInsertPoint(LookupBB); 5859 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5860 } 5861 5862 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5863 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5864 // do not delete PHINodes here. 5865 SI->getDefaultDest()->removePredecessor(BB, 5866 /*KeepOneInputPHIs=*/true); 5867 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5868 } 5869 5870 bool ReturnedEarly = false; 5871 for (PHINode *PHI : PHIs) { 5872 const ResultListTy &ResultList = ResultLists[PHI]; 5873 5874 // If using a bitmask, use any value to fill the lookup table holes. 5875 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5876 StringRef FuncName = Fn->getName(); 5877 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5878 FuncName); 5879 5880 Value *Result = Table.BuildLookup(TableIndex, Builder); 5881 5882 // If the result is used to return immediately from the function, we want to 5883 // do that right here. 5884 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5885 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5886 Builder.CreateRet(Result); 5887 ReturnedEarly = true; 5888 break; 5889 } 5890 5891 // Do a small peephole optimization: re-use the switch table compare if 5892 // possible. 5893 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5894 BasicBlock *PhiBlock = PHI->getParent(); 5895 // Search for compare instructions which use the phi. 5896 for (auto *User : PHI->users()) { 5897 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5898 } 5899 } 5900 5901 PHI->addIncoming(Result, LookupBB); 5902 } 5903 5904 if (!ReturnedEarly) { 5905 Builder.CreateBr(CommonDest); 5906 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 5907 } 5908 5909 // Remove the switch. 5910 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 5911 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5912 BasicBlock *Succ = SI->getSuccessor(i); 5913 5914 if (Succ == SI->getDefaultDest()) 5915 continue; 5916 Succ->removePredecessor(BB); 5917 RemovedSuccessors.insert(Succ); 5918 } 5919 SI->eraseFromParent(); 5920 5921 if (DTU) { 5922 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 5923 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 5924 DTU->applyUpdates(Updates); 5925 } 5926 5927 ++NumLookupTables; 5928 if (NeedMask) 5929 ++NumLookupTablesHoles; 5930 return true; 5931 } 5932 5933 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5934 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5935 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5936 uint64_t Range = Diff + 1; 5937 uint64_t NumCases = Values.size(); 5938 // 40% is the default density for building a jump table in optsize/minsize mode. 5939 uint64_t MinDensity = 40; 5940 5941 return NumCases * 100 >= Range * MinDensity; 5942 } 5943 5944 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5945 /// of cases. 5946 /// 5947 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5948 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5949 /// 5950 /// This converts a sparse switch into a dense switch which allows better 5951 /// lowering and could also allow transforming into a lookup table. 5952 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5953 const DataLayout &DL, 5954 const TargetTransformInfo &TTI) { 5955 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5956 if (CondTy->getIntegerBitWidth() > 64 || 5957 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5958 return false; 5959 // Only bother with this optimization if there are more than 3 switch cases; 5960 // SDAG will only bother creating jump tables for 4 or more cases. 5961 if (SI->getNumCases() < 4) 5962 return false; 5963 5964 // This transform is agnostic to the signedness of the input or case values. We 5965 // can treat the case values as signed or unsigned. We can optimize more common 5966 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5967 // as signed. 5968 SmallVector<int64_t,4> Values; 5969 for (auto &C : SI->cases()) 5970 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5971 llvm::sort(Values); 5972 5973 // If the switch is already dense, there's nothing useful to do here. 5974 if (isSwitchDense(Values)) 5975 return false; 5976 5977 // First, transform the values such that they start at zero and ascend. 5978 int64_t Base = Values[0]; 5979 for (auto &V : Values) 5980 V -= (uint64_t)(Base); 5981 5982 // Now we have signed numbers that have been shifted so that, given enough 5983 // precision, there are no negative values. Since the rest of the transform 5984 // is bitwise only, we switch now to an unsigned representation. 5985 5986 // This transform can be done speculatively because it is so cheap - it 5987 // results in a single rotate operation being inserted. 5988 // FIXME: It's possible that optimizing a switch on powers of two might also 5989 // be beneficial - flag values are often powers of two and we could use a CLZ 5990 // as the key function. 5991 5992 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5993 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5994 // less than 64. 5995 unsigned Shift = 64; 5996 for (auto &V : Values) 5997 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5998 assert(Shift < 64); 5999 if (Shift > 0) 6000 for (auto &V : Values) 6001 V = (int64_t)((uint64_t)V >> Shift); 6002 6003 if (!isSwitchDense(Values)) 6004 // Transform didn't create a dense switch. 6005 return false; 6006 6007 // The obvious transform is to shift the switch condition right and emit a 6008 // check that the condition actually cleanly divided by GCD, i.e. 6009 // C & (1 << Shift - 1) == 0 6010 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6011 // 6012 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6013 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6014 // are nonzero then the switch condition will be very large and will hit the 6015 // default case. 6016 6017 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6018 Builder.SetInsertPoint(SI); 6019 auto *ShiftC = ConstantInt::get(Ty, Shift); 6020 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6021 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6022 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6023 auto *Rot = Builder.CreateOr(LShr, Shl); 6024 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6025 6026 for (auto Case : SI->cases()) { 6027 auto *Orig = Case.getCaseValue(); 6028 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6029 Case.setValue( 6030 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6031 } 6032 return true; 6033 } 6034 6035 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6036 BasicBlock *BB = SI->getParent(); 6037 6038 if (isValueEqualityComparison(SI)) { 6039 // If we only have one predecessor, and if it is a branch on this value, 6040 // see if that predecessor totally determines the outcome of this switch. 6041 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6042 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6043 return requestResimplify(); 6044 6045 Value *Cond = SI->getCondition(); 6046 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6047 if (SimplifySwitchOnSelect(SI, Select)) 6048 return requestResimplify(); 6049 6050 // If the block only contains the switch, see if we can fold the block 6051 // away into any preds. 6052 if (SI == &*BB->instructionsWithoutDebug().begin()) 6053 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6054 return requestResimplify(); 6055 } 6056 6057 // Try to transform the switch into an icmp and a branch. 6058 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6059 return requestResimplify(); 6060 6061 // Remove unreachable cases. 6062 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6063 return requestResimplify(); 6064 6065 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6066 return requestResimplify(); 6067 6068 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6069 return requestResimplify(); 6070 6071 // The conversion from switch to lookup tables results in difficult-to-analyze 6072 // code and makes pruning branches much harder. This is a problem if the 6073 // switch expression itself can still be restricted as a result of inlining or 6074 // CVP. Therefore, only apply this transformation during late stages of the 6075 // optimisation pipeline. 6076 if (Options.ConvertSwitchToLookupTable && 6077 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6078 return requestResimplify(); 6079 6080 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6081 return requestResimplify(); 6082 6083 return false; 6084 } 6085 6086 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6087 BasicBlock *BB = IBI->getParent(); 6088 bool Changed = false; 6089 6090 // Eliminate redundant destinations. 6091 SmallPtrSet<Value *, 8> Succs; 6092 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6093 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6094 BasicBlock *Dest = IBI->getDestination(i); 6095 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6096 if (!Dest->hasAddressTaken()) 6097 RemovedSuccs.insert(Dest); 6098 Dest->removePredecessor(BB); 6099 IBI->removeDestination(i); 6100 --i; 6101 --e; 6102 Changed = true; 6103 } 6104 } 6105 6106 if (DTU) { 6107 std::vector<DominatorTree::UpdateType> Updates; 6108 Updates.reserve(RemovedSuccs.size()); 6109 for (auto *RemovedSucc : RemovedSuccs) 6110 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6111 DTU->applyUpdates(Updates); 6112 } 6113 6114 if (IBI->getNumDestinations() == 0) { 6115 // If the indirectbr has no successors, change it to unreachable. 6116 new UnreachableInst(IBI->getContext(), IBI); 6117 EraseTerminatorAndDCECond(IBI); 6118 return true; 6119 } 6120 6121 if (IBI->getNumDestinations() == 1) { 6122 // If the indirectbr has one successor, change it to a direct branch. 6123 BranchInst::Create(IBI->getDestination(0), IBI); 6124 EraseTerminatorAndDCECond(IBI); 6125 return true; 6126 } 6127 6128 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6129 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6130 return requestResimplify(); 6131 } 6132 return Changed; 6133 } 6134 6135 /// Given an block with only a single landing pad and a unconditional branch 6136 /// try to find another basic block which this one can be merged with. This 6137 /// handles cases where we have multiple invokes with unique landing pads, but 6138 /// a shared handler. 6139 /// 6140 /// We specifically choose to not worry about merging non-empty blocks 6141 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6142 /// practice, the optimizer produces empty landing pad blocks quite frequently 6143 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6144 /// sinking in this file) 6145 /// 6146 /// This is primarily a code size optimization. We need to avoid performing 6147 /// any transform which might inhibit optimization (such as our ability to 6148 /// specialize a particular handler via tail commoning). We do this by not 6149 /// merging any blocks which require us to introduce a phi. Since the same 6150 /// values are flowing through both blocks, we don't lose any ability to 6151 /// specialize. If anything, we make such specialization more likely. 6152 /// 6153 /// TODO - This transformation could remove entries from a phi in the target 6154 /// block when the inputs in the phi are the same for the two blocks being 6155 /// merged. In some cases, this could result in removal of the PHI entirely. 6156 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6157 BasicBlock *BB, DomTreeUpdater *DTU) { 6158 auto Succ = BB->getUniqueSuccessor(); 6159 assert(Succ); 6160 // If there's a phi in the successor block, we'd likely have to introduce 6161 // a phi into the merged landing pad block. 6162 if (isa<PHINode>(*Succ->begin())) 6163 return false; 6164 6165 for (BasicBlock *OtherPred : predecessors(Succ)) { 6166 if (BB == OtherPred) 6167 continue; 6168 BasicBlock::iterator I = OtherPred->begin(); 6169 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6170 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6171 continue; 6172 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6173 ; 6174 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6175 if (!BI2 || !BI2->isIdenticalTo(BI)) 6176 continue; 6177 6178 std::vector<DominatorTree::UpdateType> Updates; 6179 6180 // We've found an identical block. Update our predecessors to take that 6181 // path instead and make ourselves dead. 6182 SmallPtrSet<BasicBlock *, 16> Preds; 6183 Preds.insert(pred_begin(BB), pred_end(BB)); 6184 for (BasicBlock *Pred : Preds) { 6185 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6186 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6187 "unexpected successor"); 6188 II->setUnwindDest(OtherPred); 6189 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6190 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6191 } 6192 6193 // The debug info in OtherPred doesn't cover the merged control flow that 6194 // used to go through BB. We need to delete it or update it. 6195 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6196 Instruction &Inst = *I; 6197 I++; 6198 if (isa<DbgInfoIntrinsic>(Inst)) 6199 Inst.eraseFromParent(); 6200 } 6201 6202 SmallPtrSet<BasicBlock *, 16> Succs; 6203 Succs.insert(succ_begin(BB), succ_end(BB)); 6204 for (BasicBlock *Succ : Succs) { 6205 Succ->removePredecessor(BB); 6206 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6207 } 6208 6209 IRBuilder<> Builder(BI); 6210 Builder.CreateUnreachable(); 6211 BI->eraseFromParent(); 6212 if (DTU) 6213 DTU->applyUpdates(Updates); 6214 return true; 6215 } 6216 return false; 6217 } 6218 6219 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6220 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6221 : simplifyCondBranch(Branch, Builder); 6222 } 6223 6224 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6225 IRBuilder<> &Builder) { 6226 BasicBlock *BB = BI->getParent(); 6227 BasicBlock *Succ = BI->getSuccessor(0); 6228 6229 // If the Terminator is the only non-phi instruction, simplify the block. 6230 // If LoopHeader is provided, check if the block or its successor is a loop 6231 // header. (This is for early invocations before loop simplify and 6232 // vectorization to keep canonical loop forms for nested loops. These blocks 6233 // can be eliminated when the pass is invoked later in the back-end.) 6234 // Note that if BB has only one predecessor then we do not introduce new 6235 // backedge, so we can eliminate BB. 6236 bool NeedCanonicalLoop = 6237 Options.NeedCanonicalLoop && 6238 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6239 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6240 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6241 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6242 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6243 return true; 6244 6245 // If the only instruction in the block is a seteq/setne comparison against a 6246 // constant, try to simplify the block. 6247 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6248 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6249 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6250 ; 6251 if (I->isTerminator() && 6252 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6253 return true; 6254 } 6255 6256 // See if we can merge an empty landing pad block with another which is 6257 // equivalent. 6258 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6259 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6260 ; 6261 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6262 return true; 6263 } 6264 6265 // If this basic block is ONLY a compare and a branch, and if a predecessor 6266 // branches to us and our successor, fold the comparison into the 6267 // predecessor and use logical operations to update the incoming value 6268 // for PHI nodes in common successor. 6269 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6270 Options.BonusInstThreshold)) 6271 return requestResimplify(); 6272 return false; 6273 } 6274 6275 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6276 BasicBlock *PredPred = nullptr; 6277 for (auto *P : predecessors(BB)) { 6278 BasicBlock *PPred = P->getSinglePredecessor(); 6279 if (!PPred || (PredPred && PredPred != PPred)) 6280 return nullptr; 6281 PredPred = PPred; 6282 } 6283 return PredPred; 6284 } 6285 6286 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6287 BasicBlock *BB = BI->getParent(); 6288 if (!Options.SimplifyCondBranch) 6289 return false; 6290 6291 // Conditional branch 6292 if (isValueEqualityComparison(BI)) { 6293 // If we only have one predecessor, and if it is a branch on this value, 6294 // see if that predecessor totally determines the outcome of this 6295 // switch. 6296 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6297 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6298 return requestResimplify(); 6299 6300 // This block must be empty, except for the setcond inst, if it exists. 6301 // Ignore dbg and pseudo intrinsics. 6302 auto I = BB->instructionsWithoutDebug(true).begin(); 6303 if (&*I == BI) { 6304 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6305 return requestResimplify(); 6306 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6307 ++I; 6308 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6309 return requestResimplify(); 6310 } 6311 } 6312 6313 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6314 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6315 return true; 6316 6317 // If this basic block has dominating predecessor blocks and the dominating 6318 // blocks' conditions imply BI's condition, we know the direction of BI. 6319 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6320 if (Imp) { 6321 // Turn this into a branch on constant. 6322 auto *OldCond = BI->getCondition(); 6323 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6324 : ConstantInt::getFalse(BB->getContext()); 6325 BI->setCondition(TorF); 6326 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6327 return requestResimplify(); 6328 } 6329 6330 // If this basic block is ONLY a compare and a branch, and if a predecessor 6331 // branches to us and one of our successors, fold the comparison into the 6332 // predecessor and use logical operations to pick the right destination. 6333 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6334 Options.BonusInstThreshold)) 6335 return requestResimplify(); 6336 6337 // We have a conditional branch to two blocks that are only reachable 6338 // from BI. We know that the condbr dominates the two blocks, so see if 6339 // there is any identical code in the "then" and "else" blocks. If so, we 6340 // can hoist it up to the branching block. 6341 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6342 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6343 if (HoistCommon && Options.HoistCommonInsts) 6344 if (HoistThenElseCodeToIf(BI, TTI)) 6345 return requestResimplify(); 6346 } else { 6347 // If Successor #1 has multiple preds, we may be able to conditionally 6348 // execute Successor #0 if it branches to Successor #1. 6349 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6350 if (Succ0TI->getNumSuccessors() == 1 && 6351 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6352 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6353 return requestResimplify(); 6354 } 6355 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6356 // If Successor #0 has multiple preds, we may be able to conditionally 6357 // execute Successor #1 if it branches to Successor #0. 6358 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6359 if (Succ1TI->getNumSuccessors() == 1 && 6360 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6361 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6362 return requestResimplify(); 6363 } 6364 6365 // If this is a branch on a phi node in the current block, thread control 6366 // through this block if any PHI node entries are constants. 6367 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6368 if (PN->getParent() == BI->getParent()) 6369 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6370 return requestResimplify(); 6371 6372 // Scan predecessor blocks for conditional branches. 6373 for (BasicBlock *Pred : predecessors(BB)) 6374 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6375 if (PBI != BI && PBI->isConditional()) 6376 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6377 return requestResimplify(); 6378 6379 // Look for diamond patterns. 6380 if (MergeCondStores) 6381 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6382 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6383 if (PBI != BI && PBI->isConditional()) 6384 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6385 return requestResimplify(); 6386 6387 return false; 6388 } 6389 6390 /// Check if passing a value to an instruction will cause undefined behavior. 6391 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6392 Constant *C = dyn_cast<Constant>(V); 6393 if (!C) 6394 return false; 6395 6396 if (I->use_empty()) 6397 return false; 6398 6399 if (C->isNullValue() || isa<UndefValue>(C)) { 6400 // Only look at the first use, avoid hurting compile time with long uselists 6401 User *Use = *I->user_begin(); 6402 6403 // Now make sure that there are no instructions in between that can alter 6404 // control flow (eg. calls) 6405 for (BasicBlock::iterator 6406 i = ++BasicBlock::iterator(I), 6407 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6408 i != UI; ++i) 6409 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6410 return false; 6411 6412 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6413 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6414 if (GEP->getPointerOperand() == I) { 6415 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6416 PtrValueMayBeModified = true; 6417 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6418 } 6419 6420 // Look through bitcasts. 6421 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6422 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6423 6424 // Load from null is undefined. 6425 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6426 if (!LI->isVolatile()) 6427 return !NullPointerIsDefined(LI->getFunction(), 6428 LI->getPointerAddressSpace()); 6429 6430 // Store to null is undefined. 6431 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6432 if (!SI->isVolatile()) 6433 return (!NullPointerIsDefined(SI->getFunction(), 6434 SI->getPointerAddressSpace())) && 6435 SI->getPointerOperand() == I; 6436 6437 if (auto *CB = dyn_cast<CallBase>(Use)) { 6438 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6439 return false; 6440 // A call to null is undefined. 6441 if (CB->getCalledOperand() == I) 6442 return true; 6443 6444 if (C->isNullValue()) { 6445 for (const llvm::Use &Arg : CB->args()) 6446 if (Arg == I) { 6447 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6448 if (CB->isPassingUndefUB(ArgIdx) && 6449 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6450 // Passing null to a nonnnull+noundef argument is undefined. 6451 return !PtrValueMayBeModified; 6452 } 6453 } 6454 } else if (isa<UndefValue>(C)) { 6455 // Passing undef to a noundef argument is undefined. 6456 for (const llvm::Use &Arg : CB->args()) 6457 if (Arg == I) { 6458 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6459 if (CB->isPassingUndefUB(ArgIdx)) { 6460 // Passing undef to a noundef argument is undefined. 6461 return true; 6462 } 6463 } 6464 } 6465 } 6466 } 6467 return false; 6468 } 6469 6470 /// If BB has an incoming value that will always trigger undefined behavior 6471 /// (eg. null pointer dereference), remove the branch leading here. 6472 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6473 DomTreeUpdater *DTU) { 6474 for (PHINode &PHI : BB->phis()) 6475 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6476 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6477 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6478 Instruction *T = Predecessor->getTerminator(); 6479 IRBuilder<> Builder(T); 6480 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6481 BB->removePredecessor(Predecessor); 6482 // Turn uncoditional branches into unreachables and remove the dead 6483 // destination from conditional branches. 6484 if (BI->isUnconditional()) 6485 Builder.CreateUnreachable(); 6486 else 6487 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6488 : BI->getSuccessor(0)); 6489 BI->eraseFromParent(); 6490 if (DTU) 6491 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6492 return true; 6493 } 6494 // TODO: SwitchInst. 6495 } 6496 6497 return false; 6498 } 6499 6500 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6501 bool Changed = false; 6502 6503 assert(BB && BB->getParent() && "Block not embedded in function!"); 6504 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6505 6506 // Remove basic blocks that have no predecessors (except the entry block)... 6507 // or that just have themself as a predecessor. These are unreachable. 6508 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6509 BB->getSinglePredecessor() == BB) { 6510 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6511 DeleteDeadBlock(BB, DTU); 6512 return true; 6513 } 6514 6515 // Check to see if we can constant propagate this terminator instruction 6516 // away... 6517 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6518 /*TLI=*/nullptr, DTU); 6519 6520 // Check for and eliminate duplicate PHI nodes in this block. 6521 Changed |= EliminateDuplicatePHINodes(BB); 6522 6523 // Check for and remove branches that will always cause undefined behavior. 6524 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6525 6526 // Merge basic blocks into their predecessor if there is only one distinct 6527 // pred, and if there is only one distinct successor of the predecessor, and 6528 // if there are no PHI nodes. 6529 if (MergeBlockIntoPredecessor(BB, DTU)) 6530 return true; 6531 6532 if (SinkCommon && Options.SinkCommonInsts) 6533 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6534 6535 IRBuilder<> Builder(BB); 6536 6537 if (Options.FoldTwoEntryPHINode) { 6538 // If there is a trivial two-entry PHI node in this basic block, and we can 6539 // eliminate it, do so now. 6540 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6541 if (PN->getNumIncomingValues() == 2) 6542 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6543 } 6544 6545 Instruction *Terminator = BB->getTerminator(); 6546 Builder.SetInsertPoint(Terminator); 6547 switch (Terminator->getOpcode()) { 6548 case Instruction::Br: 6549 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6550 break; 6551 case Instruction::Ret: 6552 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6553 break; 6554 case Instruction::Resume: 6555 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6556 break; 6557 case Instruction::CleanupRet: 6558 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6559 break; 6560 case Instruction::Switch: 6561 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6562 break; 6563 case Instruction::Unreachable: 6564 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6565 break; 6566 case Instruction::IndirectBr: 6567 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6568 break; 6569 } 6570 6571 return Changed; 6572 } 6573 6574 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6575 bool Changed = simplifyOnceImpl(BB); 6576 6577 return Changed; 6578 } 6579 6580 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6581 bool Changed = false; 6582 6583 // Repeated simplify BB as long as resimplification is requested. 6584 do { 6585 Resimplify = false; 6586 6587 // Perform one round of simplifcation. Resimplify flag will be set if 6588 // another iteration is requested. 6589 Changed |= simplifyOnce(BB); 6590 } while (Resimplify); 6591 6592 return Changed; 6593 } 6594 6595 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6596 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6597 ArrayRef<WeakVH> LoopHeaders) { 6598 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6599 Options) 6600 .run(BB); 6601 } 6602