1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <climits>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 using namespace PatternMatch;
85 
86 #define DEBUG_TYPE "simplifycfg"
87 
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt<unsigned> PHINodeFoldingThreshold(
93     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
94     cl::desc(
95         "Control the amount of phi node folding to perform (default = 2)"));
96 
97 static cl::opt<bool> DupRet(
98     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
99     cl::desc("Duplicate return instructions into unconditional branches"));
100 
101 static cl::opt<bool>
102     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
103                cl::desc("Sink common instructions down to the end block"));
104 
105 static cl::opt<bool> HoistCondStores(
106     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores if an unconditional store precedes"));
108 
109 static cl::opt<bool> MergeCondStores(
110     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
111     cl::desc("Hoist conditional stores even if an unconditional store does not "
112              "precede - hoist multiple conditional stores into a single "
113              "predicated store"));
114 
115 static cl::opt<bool> MergeCondStoresAggressively(
116     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
117     cl::desc("When merging conditional stores, do so even if the resultant "
118              "basic blocks are unlikely to be if-converted as a result"));
119 
120 static cl::opt<bool> SpeculateOneExpensiveInst(
121     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
122     cl::desc("Allow exactly one expensive instruction to be speculatively "
123              "executed"));
124 
125 static cl::opt<unsigned> MaxSpeculationDepth(
126     "max-speculation-depth", cl::Hidden, cl::init(10),
127     cl::desc("Limit maximum recursion depth when calculating costs of "
128              "speculatively executed instructions"));
129 
130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
131 STATISTIC(NumLinearMaps,
132           "Number of switch instructions turned into linear mapping");
133 STATISTIC(NumLookupTables,
134           "Number of switch instructions turned into lookup tables");
135 STATISTIC(
136     NumLookupTablesHoles,
137     "Number of switch instructions turned into lookup tables (holes checked)");
138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
139 STATISTIC(NumSinkCommons,
140           "Number of common instructions sunk down to the end block");
141 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
142 
143 namespace {
144 
145 // The first field contains the value that the switch produces when a certain
146 // case group is selected, and the second field is a vector containing the
147 // cases composing the case group.
148 using SwitchCaseResultVectorTy =
149     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
150 
151 // The first field contains the phi node that generates a result of the switch
152 // and the second field contains the value generated for a certain case in the
153 // switch for that PHI.
154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
155 
156 /// ValueEqualityComparisonCase - Represents a case of a switch.
157 struct ValueEqualityComparisonCase {
158   ConstantInt *Value;
159   BasicBlock *Dest;
160 
161   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
162       : Value(Value), Dest(Dest) {}
163 
164   bool operator<(ValueEqualityComparisonCase RHS) const {
165     // Comparing pointers is ok as we only rely on the order for uniquing.
166     return Value < RHS.Value;
167   }
168 
169   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
170 };
171 
172 class SimplifyCFGOpt {
173   const TargetTransformInfo &TTI;
174   const DataLayout &DL;
175   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
176   const SimplifyCFGOptions &Options;
177 
178   Value *isValueEqualityComparison(TerminatorInst *TI);
179   BasicBlock *GetValueEqualityComparisonCases(
180       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
181   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
182                                                      BasicBlock *Pred,
183                                                      IRBuilder<> &Builder);
184   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
185                                            IRBuilder<> &Builder);
186 
187   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
188   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
189   bool SimplifySingleResume(ResumeInst *RI);
190   bool SimplifyCommonResume(ResumeInst *RI);
191   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
192   bool SimplifyUnreachable(UnreachableInst *UI);
193   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
194   bool SimplifyIndirectBr(IndirectBrInst *IBI);
195   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
196   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 
198 public:
199   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
200                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
201                  const SimplifyCFGOptions &Opts)
202       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
203 
204   bool run(BasicBlock *BB);
205 };
206 
207 } // end anonymous namespace
208 
209 /// Return true if it is safe to merge these two
210 /// terminator instructions together.
211 static bool
212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
213                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
214   if (SI1 == SI2)
215     return false; // Can't merge with self!
216 
217   // It is not safe to merge these two switch instructions if they have a common
218   // successor, and if that successor has a PHI node, and if *that* PHI node has
219   // conflicting incoming values from the two switch blocks.
220   BasicBlock *SI1BB = SI1->getParent();
221   BasicBlock *SI2BB = SI2->getParent();
222 
223   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
224   bool Fail = false;
225   for (BasicBlock *Succ : successors(SI2BB))
226     if (SI1Succs.count(Succ))
227       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
228         PHINode *PN = cast<PHINode>(BBI);
229         if (PN->getIncomingValueForBlock(SI1BB) !=
230             PN->getIncomingValueForBlock(SI2BB)) {
231           if (FailBlocks)
232             FailBlocks->insert(Succ);
233           Fail = true;
234         }
235       }
236 
237   return !Fail;
238 }
239 
240 /// Return true if it is safe and profitable to merge these two terminator
241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
242 /// store all PHI nodes in common successors.
243 static bool
244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
245                                 Instruction *Cond,
246                                 SmallVectorImpl<PHINode *> &PhiNodes) {
247   if (SI1 == SI2)
248     return false; // Can't merge with self!
249   assert(SI1->isUnconditional() && SI2->isConditional());
250 
251   // We fold the unconditional branch if we can easily update all PHI nodes in
252   // common successors:
253   // 1> We have a constant incoming value for the conditional branch;
254   // 2> We have "Cond" as the incoming value for the unconditional branch;
255   // 3> SI2->getCondition() and Cond have same operands.
256   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
257   if (!Ci2)
258     return false;
259   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
260         Cond->getOperand(1) == Ci2->getOperand(1)) &&
261       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
262         Cond->getOperand(1) == Ci2->getOperand(0)))
263     return false;
264 
265   BasicBlock *SI1BB = SI1->getParent();
266   BasicBlock *SI2BB = SI2->getParent();
267   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
268   for (BasicBlock *Succ : successors(SI2BB))
269     if (SI1Succs.count(Succ))
270       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
271         PHINode *PN = cast<PHINode>(BBI);
272         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
273             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
274           return false;
275         PhiNodes.push_back(PN);
276       }
277   return true;
278 }
279 
280 /// Update PHI nodes in Succ to indicate that there will now be entries in it
281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
282 /// will be the same as those coming in from ExistPred, an existing predecessor
283 /// of Succ.
284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
285                                   BasicBlock *ExistPred) {
286   for (PHINode &PN : Succ->phis())
287     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
288 }
289 
290 /// Compute an abstract "cost" of speculating the given instruction,
291 /// which is assumed to be safe to speculate. TCC_Free means cheap,
292 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
293 /// expensive.
294 static unsigned ComputeSpeculationCost(const User *I,
295                                        const TargetTransformInfo &TTI) {
296   assert(isSafeToSpeculativelyExecute(I) &&
297          "Instruction is not safe to speculatively execute!");
298   return TTI.getUserCost(I);
299 }
300 
301 /// If we have a merge point of an "if condition" as accepted above,
302 /// return true if the specified value dominates the block.  We
303 /// don't handle the true generality of domination here, just a special case
304 /// which works well enough for us.
305 ///
306 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
307 /// see if V (which must be an instruction) and its recursive operands
308 /// that do not dominate BB have a combined cost lower than CostRemaining and
309 /// are non-trapping.  If both are true, the instruction is inserted into the
310 /// set and true is returned.
311 ///
312 /// The cost for most non-trapping instructions is defined as 1 except for
313 /// Select whose cost is 2.
314 ///
315 /// After this function returns, CostRemaining is decreased by the cost of
316 /// V plus its non-dominating operands.  If that cost is greater than
317 /// CostRemaining, false is returned and CostRemaining is undefined.
318 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
319                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
320                                 unsigned &CostRemaining,
321                                 const TargetTransformInfo &TTI,
322                                 unsigned Depth = 0) {
323   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
324   // so limit the recursion depth.
325   // TODO: While this recursion limit does prevent pathological behavior, it
326   // would be better to track visited instructions to avoid cycles.
327   if (Depth == MaxSpeculationDepth)
328     return false;
329 
330   Instruction *I = dyn_cast<Instruction>(V);
331   if (!I) {
332     // Non-instructions all dominate instructions, but not all constantexprs
333     // can be executed unconditionally.
334     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
335       if (C->canTrap())
336         return false;
337     return true;
338   }
339   BasicBlock *PBB = I->getParent();
340 
341   // We don't want to allow weird loops that might have the "if condition" in
342   // the bottom of this block.
343   if (PBB == BB)
344     return false;
345 
346   // If this instruction is defined in a block that contains an unconditional
347   // branch to BB, then it must be in the 'conditional' part of the "if
348   // statement".  If not, it definitely dominates the region.
349   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
350   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
351     return true;
352 
353   // If we aren't allowing aggressive promotion anymore, then don't consider
354   // instructions in the 'if region'.
355   if (!AggressiveInsts)
356     return false;
357 
358   // If we have seen this instruction before, don't count it again.
359   if (AggressiveInsts->count(I))
360     return true;
361 
362   // Okay, it looks like the instruction IS in the "condition".  Check to
363   // see if it's a cheap instruction to unconditionally compute, and if it
364   // only uses stuff defined outside of the condition.  If so, hoist it out.
365   if (!isSafeToSpeculativelyExecute(I))
366     return false;
367 
368   unsigned Cost = ComputeSpeculationCost(I, TTI);
369 
370   // Allow exactly one instruction to be speculated regardless of its cost
371   // (as long as it is safe to do so).
372   // This is intended to flatten the CFG even if the instruction is a division
373   // or other expensive operation. The speculation of an expensive instruction
374   // is expected to be undone in CodeGenPrepare if the speculation has not
375   // enabled further IR optimizations.
376   if (Cost > CostRemaining &&
377       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
378     return false;
379 
380   // Avoid unsigned wrap.
381   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
382 
383   // Okay, we can only really hoist these out if their operands do
384   // not take us over the cost threshold.
385   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
386     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
387                              Depth + 1))
388       return false;
389   // Okay, it's safe to do this!  Remember this instruction.
390   AggressiveInsts->insert(I);
391   return true;
392 }
393 
394 /// Extract ConstantInt from value, looking through IntToPtr
395 /// and PointerNullValue. Return NULL if value is not a constant int.
396 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
397   // Normal constant int.
398   ConstantInt *CI = dyn_cast<ConstantInt>(V);
399   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
400     return CI;
401 
402   // This is some kind of pointer constant. Turn it into a pointer-sized
403   // ConstantInt if possible.
404   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
405 
406   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
407   if (isa<ConstantPointerNull>(V))
408     return ConstantInt::get(PtrTy, 0);
409 
410   // IntToPtr const int.
411   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
412     if (CE->getOpcode() == Instruction::IntToPtr)
413       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
414         // The constant is very likely to have the right type already.
415         if (CI->getType() == PtrTy)
416           return CI;
417         else
418           return cast<ConstantInt>(
419               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
420       }
421   return nullptr;
422 }
423 
424 namespace {
425 
426 /// Given a chain of or (||) or and (&&) comparison of a value against a
427 /// constant, this will try to recover the information required for a switch
428 /// structure.
429 /// It will depth-first traverse the chain of comparison, seeking for patterns
430 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
431 /// representing the different cases for the switch.
432 /// Note that if the chain is composed of '||' it will build the set of elements
433 /// that matches the comparisons (i.e. any of this value validate the chain)
434 /// while for a chain of '&&' it will build the set elements that make the test
435 /// fail.
436 struct ConstantComparesGatherer {
437   const DataLayout &DL;
438 
439   /// Value found for the switch comparison
440   Value *CompValue = nullptr;
441 
442   /// Extra clause to be checked before the switch
443   Value *Extra = nullptr;
444 
445   /// Set of integers to match in switch
446   SmallVector<ConstantInt *, 8> Vals;
447 
448   /// Number of comparisons matched in the and/or chain
449   unsigned UsedICmps = 0;
450 
451   /// Construct and compute the result for the comparison instruction Cond
452   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
453     gather(Cond);
454   }
455 
456   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
457   ConstantComparesGatherer &
458   operator=(const ConstantComparesGatherer &) = delete;
459 
460 private:
461   /// Try to set the current value used for the comparison, it succeeds only if
462   /// it wasn't set before or if the new value is the same as the old one
463   bool setValueOnce(Value *NewVal) {
464     if (CompValue && CompValue != NewVal)
465       return false;
466     CompValue = NewVal;
467     return (CompValue != nullptr);
468   }
469 
470   /// Try to match Instruction "I" as a comparison against a constant and
471   /// populates the array Vals with the set of values that match (or do not
472   /// match depending on isEQ).
473   /// Return false on failure. On success, the Value the comparison matched
474   /// against is placed in CompValue.
475   /// If CompValue is already set, the function is expected to fail if a match
476   /// is found but the value compared to is different.
477   bool matchInstruction(Instruction *I, bool isEQ) {
478     // If this is an icmp against a constant, handle this as one of the cases.
479     ICmpInst *ICI;
480     ConstantInt *C;
481     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
482           (C = GetConstantInt(I->getOperand(1), DL)))) {
483       return false;
484     }
485 
486     Value *RHSVal;
487     const APInt *RHSC;
488 
489     // Pattern match a special case
490     // (x & ~2^z) == y --> x == y || x == y|2^z
491     // This undoes a transformation done by instcombine to fuse 2 compares.
492     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
493       // It's a little bit hard to see why the following transformations are
494       // correct. Here is a CVC3 program to verify them for 64-bit values:
495 
496       /*
497          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
498          x    : BITVECTOR(64);
499          y    : BITVECTOR(64);
500          z    : BITVECTOR(64);
501          mask : BITVECTOR(64) = BVSHL(ONE, z);
502          QUERY( (y & ~mask = y) =>
503                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
504          );
505          QUERY( (y |  mask = y) =>
506                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
507          );
508       */
509 
510       // Please note that each pattern must be a dual implication (<--> or
511       // iff). One directional implication can create spurious matches. If the
512       // implication is only one-way, an unsatisfiable condition on the left
513       // side can imply a satisfiable condition on the right side. Dual
514       // implication ensures that satisfiable conditions are transformed to
515       // other satisfiable conditions and unsatisfiable conditions are
516       // transformed to other unsatisfiable conditions.
517 
518       // Here is a concrete example of a unsatisfiable condition on the left
519       // implying a satisfiable condition on the right:
520       //
521       // mask = (1 << z)
522       // (x & ~mask) == y  --> (x == y || x == (y | mask))
523       //
524       // Substituting y = 3, z = 0 yields:
525       // (x & -2) == 3 --> (x == 3 || x == 2)
526 
527       // Pattern match a special case:
528       /*
529         QUERY( (y & ~mask = y) =>
530                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
531         );
532       */
533       if (match(ICI->getOperand(0),
534                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
535         APInt Mask = ~*RHSC;
536         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
537           // If we already have a value for the switch, it has to match!
538           if (!setValueOnce(RHSVal))
539             return false;
540 
541           Vals.push_back(C);
542           Vals.push_back(
543               ConstantInt::get(C->getContext(),
544                                C->getValue() | Mask));
545           UsedICmps++;
546           return true;
547         }
548       }
549 
550       // Pattern match a special case:
551       /*
552         QUERY( (y |  mask = y) =>
553                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
554         );
555       */
556       if (match(ICI->getOperand(0),
557                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
558         APInt Mask = *RHSC;
559         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
560           // If we already have a value for the switch, it has to match!
561           if (!setValueOnce(RHSVal))
562             return false;
563 
564           Vals.push_back(C);
565           Vals.push_back(ConstantInt::get(C->getContext(),
566                                           C->getValue() & ~Mask));
567           UsedICmps++;
568           return true;
569         }
570       }
571 
572       // If we already have a value for the switch, it has to match!
573       if (!setValueOnce(ICI->getOperand(0)))
574         return false;
575 
576       UsedICmps++;
577       Vals.push_back(C);
578       return ICI->getOperand(0);
579     }
580 
581     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
582     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
583         ICI->getPredicate(), C->getValue());
584 
585     // Shift the range if the compare is fed by an add. This is the range
586     // compare idiom as emitted by instcombine.
587     Value *CandidateVal = I->getOperand(0);
588     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
589       Span = Span.subtract(*RHSC);
590       CandidateVal = RHSVal;
591     }
592 
593     // If this is an and/!= check, then we are looking to build the set of
594     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
595     // x != 0 && x != 1.
596     if (!isEQ)
597       Span = Span.inverse();
598 
599     // If there are a ton of values, we don't want to make a ginormous switch.
600     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
601       return false;
602     }
603 
604     // If we already have a value for the switch, it has to match!
605     if (!setValueOnce(CandidateVal))
606       return false;
607 
608     // Add all values from the range to the set
609     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
610       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
611 
612     UsedICmps++;
613     return true;
614   }
615 
616   /// Given a potentially 'or'd or 'and'd together collection of icmp
617   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
618   /// the value being compared, and stick the list constants into the Vals
619   /// vector.
620   /// One "Extra" case is allowed to differ from the other.
621   void gather(Value *V) {
622     Instruction *I = dyn_cast<Instruction>(V);
623     bool isEQ = (I->getOpcode() == Instruction::Or);
624 
625     // Keep a stack (SmallVector for efficiency) for depth-first traversal
626     SmallVector<Value *, 8> DFT;
627     SmallPtrSet<Value *, 8> Visited;
628 
629     // Initialize
630     Visited.insert(V);
631     DFT.push_back(V);
632 
633     while (!DFT.empty()) {
634       V = DFT.pop_back_val();
635 
636       if (Instruction *I = dyn_cast<Instruction>(V)) {
637         // If it is a || (or && depending on isEQ), process the operands.
638         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
639           if (Visited.insert(I->getOperand(1)).second)
640             DFT.push_back(I->getOperand(1));
641           if (Visited.insert(I->getOperand(0)).second)
642             DFT.push_back(I->getOperand(0));
643           continue;
644         }
645 
646         // Try to match the current instruction
647         if (matchInstruction(I, isEQ))
648           // Match succeed, continue the loop
649           continue;
650       }
651 
652       // One element of the sequence of || (or &&) could not be match as a
653       // comparison against the same value as the others.
654       // We allow only one "Extra" case to be checked before the switch
655       if (!Extra) {
656         Extra = V;
657         continue;
658       }
659       // Failed to parse a proper sequence, abort now
660       CompValue = nullptr;
661       break;
662     }
663   }
664 };
665 
666 } // end anonymous namespace
667 
668 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
669   Instruction *Cond = nullptr;
670   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
671     Cond = dyn_cast<Instruction>(SI->getCondition());
672   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
673     if (BI->isConditional())
674       Cond = dyn_cast<Instruction>(BI->getCondition());
675   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
676     Cond = dyn_cast<Instruction>(IBI->getAddress());
677   }
678 
679   TI->eraseFromParent();
680   if (Cond)
681     RecursivelyDeleteTriviallyDeadInstructions(Cond);
682 }
683 
684 /// Return true if the specified terminator checks
685 /// to see if a value is equal to constant integer value.
686 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
687   Value *CV = nullptr;
688   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
689     // Do not permit merging of large switch instructions into their
690     // predecessors unless there is only one predecessor.
691     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
692                                                pred_end(SI->getParent())) <=
693         128)
694       CV = SI->getCondition();
695   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
696     if (BI->isConditional() && BI->getCondition()->hasOneUse())
697       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
698         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
699           CV = ICI->getOperand(0);
700       }
701 
702   // Unwrap any lossless ptrtoint cast.
703   if (CV) {
704     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
705       Value *Ptr = PTII->getPointerOperand();
706       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
707         CV = Ptr;
708     }
709   }
710   return CV;
711 }
712 
713 /// Given a value comparison instruction,
714 /// decode all of the 'cases' that it represents and return the 'default' block.
715 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
716     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
717   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
718     Cases.reserve(SI->getNumCases());
719     for (auto Case : SI->cases())
720       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
721                                                   Case.getCaseSuccessor()));
722     return SI->getDefaultDest();
723   }
724 
725   BranchInst *BI = cast<BranchInst>(TI);
726   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
727   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
728   Cases.push_back(ValueEqualityComparisonCase(
729       GetConstantInt(ICI->getOperand(1), DL), Succ));
730   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
731 }
732 
733 /// Given a vector of bb/value pairs, remove any entries
734 /// in the list that match the specified block.
735 static void
736 EliminateBlockCases(BasicBlock *BB,
737                     std::vector<ValueEqualityComparisonCase> &Cases) {
738   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
739 }
740 
741 /// Return true if there are any keys in C1 that exist in C2 as well.
742 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
743                           std::vector<ValueEqualityComparisonCase> &C2) {
744   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
745 
746   // Make V1 be smaller than V2.
747   if (V1->size() > V2->size())
748     std::swap(V1, V2);
749 
750   if (V1->empty())
751     return false;
752   if (V1->size() == 1) {
753     // Just scan V2.
754     ConstantInt *TheVal = (*V1)[0].Value;
755     for (unsigned i = 0, e = V2->size(); i != e; ++i)
756       if (TheVal == (*V2)[i].Value)
757         return true;
758   }
759 
760   // Otherwise, just sort both lists and compare element by element.
761   array_pod_sort(V1->begin(), V1->end());
762   array_pod_sort(V2->begin(), V2->end());
763   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
764   while (i1 != e1 && i2 != e2) {
765     if ((*V1)[i1].Value == (*V2)[i2].Value)
766       return true;
767     if ((*V1)[i1].Value < (*V2)[i2].Value)
768       ++i1;
769     else
770       ++i2;
771   }
772   return false;
773 }
774 
775 // Set branch weights on SwitchInst. This sets the metadata if there is at
776 // least one non-zero weight.
777 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
778   // Check that there is at least one non-zero weight. Otherwise, pass
779   // nullptr to setMetadata which will erase the existing metadata.
780   MDNode *N = nullptr;
781   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
782     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
783   SI->setMetadata(LLVMContext::MD_prof, N);
784 }
785 
786 // Similar to the above, but for branch and select instructions that take
787 // exactly 2 weights.
788 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
789                              uint32_t FalseWeight) {
790   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
791   // Check that there is at least one non-zero weight. Otherwise, pass
792   // nullptr to setMetadata which will erase the existing metadata.
793   MDNode *N = nullptr;
794   if (TrueWeight || FalseWeight)
795     N = MDBuilder(I->getParent()->getContext())
796             .createBranchWeights(TrueWeight, FalseWeight);
797   I->setMetadata(LLVMContext::MD_prof, N);
798 }
799 
800 /// If TI is known to be a terminator instruction and its block is known to
801 /// only have a single predecessor block, check to see if that predecessor is
802 /// also a value comparison with the same value, and if that comparison
803 /// determines the outcome of this comparison. If so, simplify TI. This does a
804 /// very limited form of jump threading.
805 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
806     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
807   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
808   if (!PredVal)
809     return false; // Not a value comparison in predecessor.
810 
811   Value *ThisVal = isValueEqualityComparison(TI);
812   assert(ThisVal && "This isn't a value comparison!!");
813   if (ThisVal != PredVal)
814     return false; // Different predicates.
815 
816   // TODO: Preserve branch weight metadata, similarly to how
817   // FoldValueComparisonIntoPredecessors preserves it.
818 
819   // Find out information about when control will move from Pred to TI's block.
820   std::vector<ValueEqualityComparisonCase> PredCases;
821   BasicBlock *PredDef =
822       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
823   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
824 
825   // Find information about how control leaves this block.
826   std::vector<ValueEqualityComparisonCase> ThisCases;
827   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
828   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
829 
830   // If TI's block is the default block from Pred's comparison, potentially
831   // simplify TI based on this knowledge.
832   if (PredDef == TI->getParent()) {
833     // If we are here, we know that the value is none of those cases listed in
834     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
835     // can simplify TI.
836     if (!ValuesOverlap(PredCases, ThisCases))
837       return false;
838 
839     if (isa<BranchInst>(TI)) {
840       // Okay, one of the successors of this condbr is dead.  Convert it to a
841       // uncond br.
842       assert(ThisCases.size() == 1 && "Branch can only have one case!");
843       // Insert the new branch.
844       Instruction *NI = Builder.CreateBr(ThisDef);
845       (void)NI;
846 
847       // Remove PHI node entries for the dead edge.
848       ThisCases[0].Dest->removePredecessor(TI->getParent());
849 
850       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
851                    << "Through successor TI: " << *TI << "Leaving: " << *NI
852                    << "\n");
853 
854       EraseTerminatorInstAndDCECond(TI);
855       return true;
856     }
857 
858     SwitchInst *SI = cast<SwitchInst>(TI);
859     // Okay, TI has cases that are statically dead, prune them away.
860     SmallPtrSet<Constant *, 16> DeadCases;
861     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
862       DeadCases.insert(PredCases[i].Value);
863 
864     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
865                  << "Through successor TI: " << *TI);
866 
867     // Collect branch weights into a vector.
868     SmallVector<uint32_t, 8> Weights;
869     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
870     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
871     if (HasWeight)
872       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
873            ++MD_i) {
874         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
875         Weights.push_back(CI->getValue().getZExtValue());
876       }
877     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
878       --i;
879       if (DeadCases.count(i->getCaseValue())) {
880         if (HasWeight) {
881           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
882           Weights.pop_back();
883         }
884         i->getCaseSuccessor()->removePredecessor(TI->getParent());
885         SI->removeCase(i);
886       }
887     }
888     if (HasWeight && Weights.size() >= 2)
889       setBranchWeights(SI, Weights);
890 
891     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
892     return true;
893   }
894 
895   // Otherwise, TI's block must correspond to some matched value.  Find out
896   // which value (or set of values) this is.
897   ConstantInt *TIV = nullptr;
898   BasicBlock *TIBB = TI->getParent();
899   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
900     if (PredCases[i].Dest == TIBB) {
901       if (TIV)
902         return false; // Cannot handle multiple values coming to this block.
903       TIV = PredCases[i].Value;
904     }
905   assert(TIV && "No edge from pred to succ?");
906 
907   // Okay, we found the one constant that our value can be if we get into TI's
908   // BB.  Find out which successor will unconditionally be branched to.
909   BasicBlock *TheRealDest = nullptr;
910   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
911     if (ThisCases[i].Value == TIV) {
912       TheRealDest = ThisCases[i].Dest;
913       break;
914     }
915 
916   // If not handled by any explicit cases, it is handled by the default case.
917   if (!TheRealDest)
918     TheRealDest = ThisDef;
919 
920   // Remove PHI node entries for dead edges.
921   BasicBlock *CheckEdge = TheRealDest;
922   for (BasicBlock *Succ : successors(TIBB))
923     if (Succ != CheckEdge)
924       Succ->removePredecessor(TIBB);
925     else
926       CheckEdge = nullptr;
927 
928   // Insert the new branch.
929   Instruction *NI = Builder.CreateBr(TheRealDest);
930   (void)NI;
931 
932   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
933                << "Through successor TI: " << *TI << "Leaving: " << *NI
934                << "\n");
935 
936   EraseTerminatorInstAndDCECond(TI);
937   return true;
938 }
939 
940 namespace {
941 
942 /// This class implements a stable ordering of constant
943 /// integers that does not depend on their address.  This is important for
944 /// applications that sort ConstantInt's to ensure uniqueness.
945 struct ConstantIntOrdering {
946   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
947     return LHS->getValue().ult(RHS->getValue());
948   }
949 };
950 
951 } // end anonymous namespace
952 
953 static int ConstantIntSortPredicate(ConstantInt *const *P1,
954                                     ConstantInt *const *P2) {
955   const ConstantInt *LHS = *P1;
956   const ConstantInt *RHS = *P2;
957   if (LHS == RHS)
958     return 0;
959   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
960 }
961 
962 static inline bool HasBranchWeights(const Instruction *I) {
963   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
964   if (ProfMD && ProfMD->getOperand(0))
965     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
966       return MDS->getString().equals("branch_weights");
967 
968   return false;
969 }
970 
971 /// Get Weights of a given TerminatorInst, the default weight is at the front
972 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
973 /// metadata.
974 static void GetBranchWeights(TerminatorInst *TI,
975                              SmallVectorImpl<uint64_t> &Weights) {
976   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
977   assert(MD);
978   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
979     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
980     Weights.push_back(CI->getValue().getZExtValue());
981   }
982 
983   // If TI is a conditional eq, the default case is the false case,
984   // and the corresponding branch-weight data is at index 2. We swap the
985   // default weight to be the first entry.
986   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
987     assert(Weights.size() == 2);
988     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
989     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
990       std::swap(Weights.front(), Weights.back());
991   }
992 }
993 
994 /// Keep halving the weights until all can fit in uint32_t.
995 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
996   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
997   if (Max > UINT_MAX) {
998     unsigned Offset = 32 - countLeadingZeros(Max);
999     for (uint64_t &I : Weights)
1000       I >>= Offset;
1001   }
1002 }
1003 
1004 /// The specified terminator is a value equality comparison instruction
1005 /// (either a switch or a branch on "X == c").
1006 /// See if any of the predecessors of the terminator block are value comparisons
1007 /// on the same value.  If so, and if safe to do so, fold them together.
1008 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
1009                                                          IRBuilder<> &Builder) {
1010   BasicBlock *BB = TI->getParent();
1011   Value *CV = isValueEqualityComparison(TI); // CondVal
1012   assert(CV && "Not a comparison?");
1013   bool Changed = false;
1014 
1015   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1016   while (!Preds.empty()) {
1017     BasicBlock *Pred = Preds.pop_back_val();
1018 
1019     // See if the predecessor is a comparison with the same value.
1020     TerminatorInst *PTI = Pred->getTerminator();
1021     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1022 
1023     if (PCV == CV && TI != PTI) {
1024       SmallSetVector<BasicBlock*, 4> FailBlocks;
1025       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1026         for (auto *Succ : FailBlocks) {
1027           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1028             return false;
1029         }
1030       }
1031 
1032       // Figure out which 'cases' to copy from SI to PSI.
1033       std::vector<ValueEqualityComparisonCase> BBCases;
1034       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1035 
1036       std::vector<ValueEqualityComparisonCase> PredCases;
1037       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1038 
1039       // Based on whether the default edge from PTI goes to BB or not, fill in
1040       // PredCases and PredDefault with the new switch cases we would like to
1041       // build.
1042       SmallVector<BasicBlock *, 8> NewSuccessors;
1043 
1044       // Update the branch weight metadata along the way
1045       SmallVector<uint64_t, 8> Weights;
1046       bool PredHasWeights = HasBranchWeights(PTI);
1047       bool SuccHasWeights = HasBranchWeights(TI);
1048 
1049       if (PredHasWeights) {
1050         GetBranchWeights(PTI, Weights);
1051         // branch-weight metadata is inconsistent here.
1052         if (Weights.size() != 1 + PredCases.size())
1053           PredHasWeights = SuccHasWeights = false;
1054       } else if (SuccHasWeights)
1055         // If there are no predecessor weights but there are successor weights,
1056         // populate Weights with 1, which will later be scaled to the sum of
1057         // successor's weights
1058         Weights.assign(1 + PredCases.size(), 1);
1059 
1060       SmallVector<uint64_t, 8> SuccWeights;
1061       if (SuccHasWeights) {
1062         GetBranchWeights(TI, SuccWeights);
1063         // branch-weight metadata is inconsistent here.
1064         if (SuccWeights.size() != 1 + BBCases.size())
1065           PredHasWeights = SuccHasWeights = false;
1066       } else if (PredHasWeights)
1067         SuccWeights.assign(1 + BBCases.size(), 1);
1068 
1069       if (PredDefault == BB) {
1070         // If this is the default destination from PTI, only the edges in TI
1071         // that don't occur in PTI, or that branch to BB will be activated.
1072         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1073         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1074           if (PredCases[i].Dest != BB)
1075             PTIHandled.insert(PredCases[i].Value);
1076           else {
1077             // The default destination is BB, we don't need explicit targets.
1078             std::swap(PredCases[i], PredCases.back());
1079 
1080             if (PredHasWeights || SuccHasWeights) {
1081               // Increase weight for the default case.
1082               Weights[0] += Weights[i + 1];
1083               std::swap(Weights[i + 1], Weights.back());
1084               Weights.pop_back();
1085             }
1086 
1087             PredCases.pop_back();
1088             --i;
1089             --e;
1090           }
1091 
1092         // Reconstruct the new switch statement we will be building.
1093         if (PredDefault != BBDefault) {
1094           PredDefault->removePredecessor(Pred);
1095           PredDefault = BBDefault;
1096           NewSuccessors.push_back(BBDefault);
1097         }
1098 
1099         unsigned CasesFromPred = Weights.size();
1100         uint64_t ValidTotalSuccWeight = 0;
1101         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1102           if (!PTIHandled.count(BBCases[i].Value) &&
1103               BBCases[i].Dest != BBDefault) {
1104             PredCases.push_back(BBCases[i]);
1105             NewSuccessors.push_back(BBCases[i].Dest);
1106             if (SuccHasWeights || PredHasWeights) {
1107               // The default weight is at index 0, so weight for the ith case
1108               // should be at index i+1. Scale the cases from successor by
1109               // PredDefaultWeight (Weights[0]).
1110               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1111               ValidTotalSuccWeight += SuccWeights[i + 1];
1112             }
1113           }
1114 
1115         if (SuccHasWeights || PredHasWeights) {
1116           ValidTotalSuccWeight += SuccWeights[0];
1117           // Scale the cases from predecessor by ValidTotalSuccWeight.
1118           for (unsigned i = 1; i < CasesFromPred; ++i)
1119             Weights[i] *= ValidTotalSuccWeight;
1120           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1121           Weights[0] *= SuccWeights[0];
1122         }
1123       } else {
1124         // If this is not the default destination from PSI, only the edges
1125         // in SI that occur in PSI with a destination of BB will be
1126         // activated.
1127         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1128         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1129         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1130           if (PredCases[i].Dest == BB) {
1131             PTIHandled.insert(PredCases[i].Value);
1132 
1133             if (PredHasWeights || SuccHasWeights) {
1134               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1135               std::swap(Weights[i + 1], Weights.back());
1136               Weights.pop_back();
1137             }
1138 
1139             std::swap(PredCases[i], PredCases.back());
1140             PredCases.pop_back();
1141             --i;
1142             --e;
1143           }
1144 
1145         // Okay, now we know which constants were sent to BB from the
1146         // predecessor.  Figure out where they will all go now.
1147         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1148           if (PTIHandled.count(BBCases[i].Value)) {
1149             // If this is one we are capable of getting...
1150             if (PredHasWeights || SuccHasWeights)
1151               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1152             PredCases.push_back(BBCases[i]);
1153             NewSuccessors.push_back(BBCases[i].Dest);
1154             PTIHandled.erase(
1155                 BBCases[i].Value); // This constant is taken care of
1156           }
1157 
1158         // If there are any constants vectored to BB that TI doesn't handle,
1159         // they must go to the default destination of TI.
1160         for (ConstantInt *I : PTIHandled) {
1161           if (PredHasWeights || SuccHasWeights)
1162             Weights.push_back(WeightsForHandled[I]);
1163           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1164           NewSuccessors.push_back(BBDefault);
1165         }
1166       }
1167 
1168       // Okay, at this point, we know which new successor Pred will get.  Make
1169       // sure we update the number of entries in the PHI nodes for these
1170       // successors.
1171       for (BasicBlock *NewSuccessor : NewSuccessors)
1172         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1173 
1174       Builder.SetInsertPoint(PTI);
1175       // Convert pointer to int before we switch.
1176       if (CV->getType()->isPointerTy()) {
1177         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1178                                     "magicptr");
1179       }
1180 
1181       // Now that the successors are updated, create the new Switch instruction.
1182       SwitchInst *NewSI =
1183           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1184       NewSI->setDebugLoc(PTI->getDebugLoc());
1185       for (ValueEqualityComparisonCase &V : PredCases)
1186         NewSI->addCase(V.Value, V.Dest);
1187 
1188       if (PredHasWeights || SuccHasWeights) {
1189         // Halve the weights if any of them cannot fit in an uint32_t
1190         FitWeights(Weights);
1191 
1192         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1193 
1194         setBranchWeights(NewSI, MDWeights);
1195       }
1196 
1197       EraseTerminatorInstAndDCECond(PTI);
1198 
1199       // Okay, last check.  If BB is still a successor of PSI, then we must
1200       // have an infinite loop case.  If so, add an infinitely looping block
1201       // to handle the case to preserve the behavior of the code.
1202       BasicBlock *InfLoopBlock = nullptr;
1203       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1204         if (NewSI->getSuccessor(i) == BB) {
1205           if (!InfLoopBlock) {
1206             // Insert it at the end of the function, because it's either code,
1207             // or it won't matter if it's hot. :)
1208             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1209                                               BB->getParent());
1210             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1211           }
1212           NewSI->setSuccessor(i, InfLoopBlock);
1213         }
1214 
1215       Changed = true;
1216     }
1217   }
1218   return Changed;
1219 }
1220 
1221 // If we would need to insert a select that uses the value of this invoke
1222 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1223 // can't hoist the invoke, as there is nowhere to put the select in this case.
1224 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1225                                 Instruction *I1, Instruction *I2) {
1226   for (BasicBlock *Succ : successors(BB1)) {
1227     for (const PHINode &PN : Succ->phis()) {
1228       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1229       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1230       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1231         return false;
1232       }
1233     }
1234   }
1235   return true;
1236 }
1237 
1238 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1239 
1240 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1241 /// in the two blocks up into the branch block. The caller of this function
1242 /// guarantees that BI's block dominates BB1 and BB2.
1243 static bool HoistThenElseCodeToIf(BranchInst *BI,
1244                                   const TargetTransformInfo &TTI) {
1245   // This does very trivial matching, with limited scanning, to find identical
1246   // instructions in the two blocks.  In particular, we don't want to get into
1247   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1248   // such, we currently just scan for obviously identical instructions in an
1249   // identical order.
1250   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1251   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1252 
1253   BasicBlock::iterator BB1_Itr = BB1->begin();
1254   BasicBlock::iterator BB2_Itr = BB2->begin();
1255 
1256   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1257   // Skip debug info if it is not identical.
1258   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1259   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1260   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1261     while (isa<DbgInfoIntrinsic>(I1))
1262       I1 = &*BB1_Itr++;
1263     while (isa<DbgInfoIntrinsic>(I2))
1264       I2 = &*BB2_Itr++;
1265   }
1266   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1267       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1268     return false;
1269 
1270   BasicBlock *BIParent = BI->getParent();
1271 
1272   bool Changed = false;
1273   do {
1274     // If we are hoisting the terminator instruction, don't move one (making a
1275     // broken BB), instead clone it, and remove BI.
1276     if (isa<TerminatorInst>(I1))
1277       goto HoistTerminator;
1278 
1279     // If we're going to hoist a call, make sure that the two instructions we're
1280     // commoning/hoisting are both marked with musttail, or neither of them is
1281     // marked as such. Otherwise, we might end up in a situation where we hoist
1282     // from a block where the terminator is a `ret` to a block where the terminator
1283     // is a `br`, and `musttail` calls expect to be followed by a return.
1284     auto *C1 = dyn_cast<CallInst>(I1);
1285     auto *C2 = dyn_cast<CallInst>(I2);
1286     if (C1 && C2)
1287       if (C1->isMustTailCall() != C2->isMustTailCall())
1288         return Changed;
1289 
1290     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1291       return Changed;
1292 
1293     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1294       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1295       // The debug location is an integral part of a debug info intrinsic
1296       // and can't be separated from it or replaced.  Instead of attempting
1297       // to merge locations, simply hoist both copies of the intrinsic.
1298       BIParent->getInstList().splice(BI->getIterator(),
1299                                      BB1->getInstList(), I1);
1300       BIParent->getInstList().splice(BI->getIterator(),
1301                                      BB2->getInstList(), I2);
1302       Changed = true;
1303     } else {
1304       // For a normal instruction, we just move one to right before the branch,
1305       // then replace all uses of the other with the first.  Finally, we remove
1306       // the now redundant second instruction.
1307       BIParent->getInstList().splice(BI->getIterator(),
1308                                      BB1->getInstList(), I1);
1309       if (!I2->use_empty())
1310         I2->replaceAllUsesWith(I1);
1311       I1->andIRFlags(I2);
1312       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1313                              LLVMContext::MD_range,
1314                              LLVMContext::MD_fpmath,
1315                              LLVMContext::MD_invariant_load,
1316                              LLVMContext::MD_nonnull,
1317                              LLVMContext::MD_invariant_group,
1318                              LLVMContext::MD_align,
1319                              LLVMContext::MD_dereferenceable,
1320                              LLVMContext::MD_dereferenceable_or_null,
1321                              LLVMContext::MD_mem_parallel_loop_access};
1322       combineMetadata(I1, I2, KnownIDs);
1323 
1324       // I1 and I2 are being combined into a single instruction.  Its debug
1325       // location is the merged locations of the original instructions.
1326       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1327 
1328       I2->eraseFromParent();
1329       Changed = true;
1330     }
1331 
1332     I1 = &*BB1_Itr++;
1333     I2 = &*BB2_Itr++;
1334     // Skip debug info if it is not identical.
1335     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1336     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1337     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1338       while (isa<DbgInfoIntrinsic>(I1))
1339         I1 = &*BB1_Itr++;
1340       while (isa<DbgInfoIntrinsic>(I2))
1341         I2 = &*BB2_Itr++;
1342     }
1343   } while (I1->isIdenticalToWhenDefined(I2));
1344 
1345   return true;
1346 
1347 HoistTerminator:
1348   // It may not be possible to hoist an invoke.
1349   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1350     return Changed;
1351 
1352   for (BasicBlock *Succ : successors(BB1)) {
1353     for (PHINode &PN : Succ->phis()) {
1354       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1355       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1356       if (BB1V == BB2V)
1357         continue;
1358 
1359       // Check for passingValueIsAlwaysUndefined here because we would rather
1360       // eliminate undefined control flow then converting it to a select.
1361       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1362           passingValueIsAlwaysUndefined(BB2V, &PN))
1363         return Changed;
1364 
1365       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1366         return Changed;
1367       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1368         return Changed;
1369     }
1370   }
1371 
1372   // Okay, it is safe to hoist the terminator.
1373   Instruction *NT = I1->clone();
1374   BIParent->getInstList().insert(BI->getIterator(), NT);
1375   if (!NT->getType()->isVoidTy()) {
1376     I1->replaceAllUsesWith(NT);
1377     I2->replaceAllUsesWith(NT);
1378     NT->takeName(I1);
1379   }
1380 
1381   IRBuilder<NoFolder> Builder(NT);
1382   // Hoisting one of the terminators from our successor is a great thing.
1383   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1384   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1385   // nodes, so we insert select instruction to compute the final result.
1386   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1387   for (BasicBlock *Succ : successors(BB1)) {
1388     for (PHINode &PN : Succ->phis()) {
1389       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1390       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1391       if (BB1V == BB2V)
1392         continue;
1393 
1394       // These values do not agree.  Insert a select instruction before NT
1395       // that determines the right value.
1396       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1397       if (!SI)
1398         SI = cast<SelectInst>(
1399             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1400                                  BB1V->getName() + "." + BB2V->getName(), BI));
1401 
1402       // Make the PHI node use the select for all incoming values for BB1/BB2
1403       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1404         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1405           PN.setIncomingValue(i, SI);
1406     }
1407   }
1408 
1409   // Update any PHI nodes in our new successors.
1410   for (BasicBlock *Succ : successors(BB1))
1411     AddPredecessorToBlock(Succ, BIParent, BB1);
1412 
1413   EraseTerminatorInstAndDCECond(BI);
1414   return true;
1415 }
1416 
1417 // All instructions in Insts belong to different blocks that all unconditionally
1418 // branch to a common successor. Analyze each instruction and return true if it
1419 // would be possible to sink them into their successor, creating one common
1420 // instruction instead. For every value that would be required to be provided by
1421 // PHI node (because an operand varies in each input block), add to PHIOperands.
1422 static bool canSinkInstructions(
1423     ArrayRef<Instruction *> Insts,
1424     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1425   // Prune out obviously bad instructions to move. Any non-store instruction
1426   // must have exactly one use, and we check later that use is by a single,
1427   // common PHI instruction in the successor.
1428   for (auto *I : Insts) {
1429     // These instructions may change or break semantics if moved.
1430     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1431         I->getType()->isTokenTy())
1432       return false;
1433 
1434     // Conservatively return false if I is an inline-asm instruction. Sinking
1435     // and merging inline-asm instructions can potentially create arguments
1436     // that cannot satisfy the inline-asm constraints.
1437     if (const auto *C = dyn_cast<CallInst>(I))
1438       if (C->isInlineAsm())
1439         return false;
1440 
1441     // Everything must have only one use too, apart from stores which
1442     // have no uses.
1443     if (!isa<StoreInst>(I) && !I->hasOneUse())
1444       return false;
1445   }
1446 
1447   const Instruction *I0 = Insts.front();
1448   for (auto *I : Insts)
1449     if (!I->isSameOperationAs(I0))
1450       return false;
1451 
1452   // All instructions in Insts are known to be the same opcode. If they aren't
1453   // stores, check the only user of each is a PHI or in the same block as the
1454   // instruction, because if a user is in the same block as an instruction
1455   // we're contemplating sinking, it must already be determined to be sinkable.
1456   if (!isa<StoreInst>(I0)) {
1457     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1458     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1459     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1460           auto *U = cast<Instruction>(*I->user_begin());
1461           return (PNUse &&
1462                   PNUse->getParent() == Succ &&
1463                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1464                  U->getParent() == I->getParent();
1465         }))
1466       return false;
1467   }
1468 
1469   // Because SROA can't handle speculating stores of selects, try not
1470   // to sink loads or stores of allocas when we'd have to create a PHI for
1471   // the address operand. Also, because it is likely that loads or stores
1472   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1473   // This can cause code churn which can have unintended consequences down
1474   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1475   // FIXME: This is a workaround for a deficiency in SROA - see
1476   // https://llvm.org/bugs/show_bug.cgi?id=30188
1477   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1478         return isa<AllocaInst>(I->getOperand(1));
1479       }))
1480     return false;
1481   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1482         return isa<AllocaInst>(I->getOperand(0));
1483       }))
1484     return false;
1485 
1486   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1487     if (I0->getOperand(OI)->getType()->isTokenTy())
1488       // Don't touch any operand of token type.
1489       return false;
1490 
1491     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1492       assert(I->getNumOperands() == I0->getNumOperands());
1493       return I->getOperand(OI) == I0->getOperand(OI);
1494     };
1495     if (!all_of(Insts, SameAsI0)) {
1496       if (!canReplaceOperandWithVariable(I0, OI))
1497         // We can't create a PHI from this GEP.
1498         return false;
1499       // Don't create indirect calls! The called value is the final operand.
1500       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1501         // FIXME: if the call was *already* indirect, we should do this.
1502         return false;
1503       }
1504       for (auto *I : Insts)
1505         PHIOperands[I].push_back(I->getOperand(OI));
1506     }
1507   }
1508   return true;
1509 }
1510 
1511 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1512 // instruction of every block in Blocks to their common successor, commoning
1513 // into one instruction.
1514 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1515   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1516 
1517   // canSinkLastInstruction returning true guarantees that every block has at
1518   // least one non-terminator instruction.
1519   SmallVector<Instruction*,4> Insts;
1520   for (auto *BB : Blocks) {
1521     Instruction *I = BB->getTerminator();
1522     do {
1523       I = I->getPrevNode();
1524     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1525     if (!isa<DbgInfoIntrinsic>(I))
1526       Insts.push_back(I);
1527   }
1528 
1529   // The only checking we need to do now is that all users of all instructions
1530   // are the same PHI node. canSinkLastInstruction should have checked this but
1531   // it is slightly over-aggressive - it gets confused by commutative instructions
1532   // so double-check it here.
1533   Instruction *I0 = Insts.front();
1534   if (!isa<StoreInst>(I0)) {
1535     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1536     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1537           auto *U = cast<Instruction>(*I->user_begin());
1538           return U == PNUse;
1539         }))
1540       return false;
1541   }
1542 
1543   // We don't need to do any more checking here; canSinkLastInstruction should
1544   // have done it all for us.
1545   SmallVector<Value*, 4> NewOperands;
1546   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1547     // This check is different to that in canSinkLastInstruction. There, we
1548     // cared about the global view once simplifycfg (and instcombine) have
1549     // completed - it takes into account PHIs that become trivially
1550     // simplifiable.  However here we need a more local view; if an operand
1551     // differs we create a PHI and rely on instcombine to clean up the very
1552     // small mess we may make.
1553     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1554       return I->getOperand(O) != I0->getOperand(O);
1555     });
1556     if (!NeedPHI) {
1557       NewOperands.push_back(I0->getOperand(O));
1558       continue;
1559     }
1560 
1561     // Create a new PHI in the successor block and populate it.
1562     auto *Op = I0->getOperand(O);
1563     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1564     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1565                                Op->getName() + ".sink", &BBEnd->front());
1566     for (auto *I : Insts)
1567       PN->addIncoming(I->getOperand(O), I->getParent());
1568     NewOperands.push_back(PN);
1569   }
1570 
1571   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1572   // and move it to the start of the successor block.
1573   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1574     I0->getOperandUse(O).set(NewOperands[O]);
1575   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1576 
1577   // Update metadata and IR flags, and merge debug locations.
1578   for (auto *I : Insts)
1579     if (I != I0) {
1580       // The debug location for the "common" instruction is the merged locations
1581       // of all the commoned instructions.  We start with the original location
1582       // of the "common" instruction and iteratively merge each location in the
1583       // loop below.
1584       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1585       // However, as N-way merge for CallInst is rare, so we use simplified API
1586       // instead of using complex API for N-way merge.
1587       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1588       combineMetadataForCSE(I0, I);
1589       I0->andIRFlags(I);
1590     }
1591 
1592   if (!isa<StoreInst>(I0)) {
1593     // canSinkLastInstruction checked that all instructions were used by
1594     // one and only one PHI node. Find that now, RAUW it to our common
1595     // instruction and nuke it.
1596     assert(I0->hasOneUse());
1597     auto *PN = cast<PHINode>(*I0->user_begin());
1598     PN->replaceAllUsesWith(I0);
1599     PN->eraseFromParent();
1600   }
1601 
1602   // Finally nuke all instructions apart from the common instruction.
1603   for (auto *I : Insts)
1604     if (I != I0)
1605       I->eraseFromParent();
1606 
1607   return true;
1608 }
1609 
1610 namespace {
1611 
1612   // LockstepReverseIterator - Iterates through instructions
1613   // in a set of blocks in reverse order from the first non-terminator.
1614   // For example (assume all blocks have size n):
1615   //   LockstepReverseIterator I([B1, B2, B3]);
1616   //   *I-- = [B1[n], B2[n], B3[n]];
1617   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1618   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1619   //   ...
1620   class LockstepReverseIterator {
1621     ArrayRef<BasicBlock*> Blocks;
1622     SmallVector<Instruction*,4> Insts;
1623     bool Fail;
1624 
1625   public:
1626     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1627       reset();
1628     }
1629 
1630     void reset() {
1631       Fail = false;
1632       Insts.clear();
1633       for (auto *BB : Blocks) {
1634         Instruction *Inst = BB->getTerminator();
1635         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1636           Inst = Inst->getPrevNode();
1637         if (!Inst) {
1638           // Block wasn't big enough.
1639           Fail = true;
1640           return;
1641         }
1642         Insts.push_back(Inst);
1643       }
1644     }
1645 
1646     bool isValid() const {
1647       return !Fail;
1648     }
1649 
1650     void operator--() {
1651       if (Fail)
1652         return;
1653       for (auto *&Inst : Insts) {
1654         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1655           Inst = Inst->getPrevNode();
1656         // Already at beginning of block.
1657         if (!Inst) {
1658           Fail = true;
1659           return;
1660         }
1661       }
1662     }
1663 
1664     ArrayRef<Instruction*> operator * () const {
1665       return Insts;
1666     }
1667   };
1668 
1669 } // end anonymous namespace
1670 
1671 /// Check whether BB's predecessors end with unconditional branches. If it is
1672 /// true, sink any common code from the predecessors to BB.
1673 /// We also allow one predecessor to end with conditional branch (but no more
1674 /// than one).
1675 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1676   // We support two situations:
1677   //   (1) all incoming arcs are unconditional
1678   //   (2) one incoming arc is conditional
1679   //
1680   // (2) is very common in switch defaults and
1681   // else-if patterns;
1682   //
1683   //   if (a) f(1);
1684   //   else if (b) f(2);
1685   //
1686   // produces:
1687   //
1688   //       [if]
1689   //      /    \
1690   //    [f(1)] [if]
1691   //      |     | \
1692   //      |     |  |
1693   //      |  [f(2)]|
1694   //       \    | /
1695   //        [ end ]
1696   //
1697   // [end] has two unconditional predecessor arcs and one conditional. The
1698   // conditional refers to the implicit empty 'else' arc. This conditional
1699   // arc can also be caused by an empty default block in a switch.
1700   //
1701   // In this case, we attempt to sink code from all *unconditional* arcs.
1702   // If we can sink instructions from these arcs (determined during the scan
1703   // phase below) we insert a common successor for all unconditional arcs and
1704   // connect that to [end], to enable sinking:
1705   //
1706   //       [if]
1707   //      /    \
1708   //    [x(1)] [if]
1709   //      |     | \
1710   //      |     |  \
1711   //      |  [x(2)] |
1712   //       \   /    |
1713   //   [sink.split] |
1714   //         \     /
1715   //         [ end ]
1716   //
1717   SmallVector<BasicBlock*,4> UnconditionalPreds;
1718   Instruction *Cond = nullptr;
1719   for (auto *B : predecessors(BB)) {
1720     auto *T = B->getTerminator();
1721     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1722       UnconditionalPreds.push_back(B);
1723     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1724       Cond = T;
1725     else
1726       return false;
1727   }
1728   if (UnconditionalPreds.size() < 2)
1729     return false;
1730 
1731   bool Changed = false;
1732   // We take a two-step approach to tail sinking. First we scan from the end of
1733   // each block upwards in lockstep. If the n'th instruction from the end of each
1734   // block can be sunk, those instructions are added to ValuesToSink and we
1735   // carry on. If we can sink an instruction but need to PHI-merge some operands
1736   // (because they're not identical in each instruction) we add these to
1737   // PHIOperands.
1738   unsigned ScanIdx = 0;
1739   SmallPtrSet<Value*,4> InstructionsToSink;
1740   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1741   LockstepReverseIterator LRI(UnconditionalPreds);
1742   while (LRI.isValid() &&
1743          canSinkInstructions(*LRI, PHIOperands)) {
1744     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1745     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1746     ++ScanIdx;
1747     --LRI;
1748   }
1749 
1750   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1751     unsigned NumPHIdValues = 0;
1752     for (auto *I : *LRI)
1753       for (auto *V : PHIOperands[I])
1754         if (InstructionsToSink.count(V) == 0)
1755           ++NumPHIdValues;
1756     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1757     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1758     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1759         NumPHIInsts++;
1760 
1761     return NumPHIInsts <= 1;
1762   };
1763 
1764   if (ScanIdx > 0 && Cond) {
1765     // Check if we would actually sink anything first! This mutates the CFG and
1766     // adds an extra block. The goal in doing this is to allow instructions that
1767     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1768     // (such as trunc, add) can be sunk and predicated already. So we check that
1769     // we're going to sink at least one non-speculatable instruction.
1770     LRI.reset();
1771     unsigned Idx = 0;
1772     bool Profitable = false;
1773     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1774       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1775         Profitable = true;
1776         break;
1777       }
1778       --LRI;
1779       ++Idx;
1780     }
1781     if (!Profitable)
1782       return false;
1783 
1784     DEBUG(dbgs() << "SINK: Splitting edge\n");
1785     // We have a conditional edge and we're going to sink some instructions.
1786     // Insert a new block postdominating all blocks we're going to sink from.
1787     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1788       // Edges couldn't be split.
1789       return false;
1790     Changed = true;
1791   }
1792 
1793   // Now that we've analyzed all potential sinking candidates, perform the
1794   // actual sink. We iteratively sink the last non-terminator of the source
1795   // blocks into their common successor unless doing so would require too
1796   // many PHI instructions to be generated (currently only one PHI is allowed
1797   // per sunk instruction).
1798   //
1799   // We can use InstructionsToSink to discount values needing PHI-merging that will
1800   // actually be sunk in a later iteration. This allows us to be more
1801   // aggressive in what we sink. This does allow a false positive where we
1802   // sink presuming a later value will also be sunk, but stop half way through
1803   // and never actually sink it which means we produce more PHIs than intended.
1804   // This is unlikely in practice though.
1805   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1806     DEBUG(dbgs() << "SINK: Sink: "
1807                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1808                  << "\n");
1809 
1810     // Because we've sunk every instruction in turn, the current instruction to
1811     // sink is always at index 0.
1812     LRI.reset();
1813     if (!ProfitableToSinkInstruction(LRI)) {
1814       // Too many PHIs would be created.
1815       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1816       break;
1817     }
1818 
1819     if (!sinkLastInstruction(UnconditionalPreds))
1820       return Changed;
1821     NumSinkCommons++;
1822     Changed = true;
1823   }
1824   return Changed;
1825 }
1826 
1827 /// \brief Determine if we can hoist sink a sole store instruction out of a
1828 /// conditional block.
1829 ///
1830 /// We are looking for code like the following:
1831 ///   BrBB:
1832 ///     store i32 %add, i32* %arrayidx2
1833 ///     ... // No other stores or function calls (we could be calling a memory
1834 ///     ... // function).
1835 ///     %cmp = icmp ult %x, %y
1836 ///     br i1 %cmp, label %EndBB, label %ThenBB
1837 ///   ThenBB:
1838 ///     store i32 %add5, i32* %arrayidx2
1839 ///     br label EndBB
1840 ///   EndBB:
1841 ///     ...
1842 ///   We are going to transform this into:
1843 ///   BrBB:
1844 ///     store i32 %add, i32* %arrayidx2
1845 ///     ... //
1846 ///     %cmp = icmp ult %x, %y
1847 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1848 ///     store i32 %add.add5, i32* %arrayidx2
1849 ///     ...
1850 ///
1851 /// \return The pointer to the value of the previous store if the store can be
1852 ///         hoisted into the predecessor block. 0 otherwise.
1853 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1854                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1855   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1856   if (!StoreToHoist)
1857     return nullptr;
1858 
1859   // Volatile or atomic.
1860   if (!StoreToHoist->isSimple())
1861     return nullptr;
1862 
1863   Value *StorePtr = StoreToHoist->getPointerOperand();
1864 
1865   // Look for a store to the same pointer in BrBB.
1866   unsigned MaxNumInstToLookAt = 9;
1867   for (Instruction &CurI : reverse(*BrBB)) {
1868     if (!MaxNumInstToLookAt)
1869       break;
1870     // Skip debug info.
1871     if (isa<DbgInfoIntrinsic>(CurI))
1872       continue;
1873     --MaxNumInstToLookAt;
1874 
1875     // Could be calling an instruction that affects memory like free().
1876     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1877       return nullptr;
1878 
1879     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1880       // Found the previous store make sure it stores to the same location.
1881       if (SI->getPointerOperand() == StorePtr)
1882         // Found the previous store, return its value operand.
1883         return SI->getValueOperand();
1884       return nullptr; // Unknown store.
1885     }
1886   }
1887 
1888   return nullptr;
1889 }
1890 
1891 /// \brief Speculate a conditional basic block flattening the CFG.
1892 ///
1893 /// Note that this is a very risky transform currently. Speculating
1894 /// instructions like this is most often not desirable. Instead, there is an MI
1895 /// pass which can do it with full awareness of the resource constraints.
1896 /// However, some cases are "obvious" and we should do directly. An example of
1897 /// this is speculating a single, reasonably cheap instruction.
1898 ///
1899 /// There is only one distinct advantage to flattening the CFG at the IR level:
1900 /// it makes very common but simplistic optimizations such as are common in
1901 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1902 /// modeling their effects with easier to reason about SSA value graphs.
1903 ///
1904 ///
1905 /// An illustration of this transform is turning this IR:
1906 /// \code
1907 ///   BB:
1908 ///     %cmp = icmp ult %x, %y
1909 ///     br i1 %cmp, label %EndBB, label %ThenBB
1910 ///   ThenBB:
1911 ///     %sub = sub %x, %y
1912 ///     br label BB2
1913 ///   EndBB:
1914 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1915 ///     ...
1916 /// \endcode
1917 ///
1918 /// Into this IR:
1919 /// \code
1920 ///   BB:
1921 ///     %cmp = icmp ult %x, %y
1922 ///     %sub = sub %x, %y
1923 ///     %cond = select i1 %cmp, 0, %sub
1924 ///     ...
1925 /// \endcode
1926 ///
1927 /// \returns true if the conditional block is removed.
1928 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1929                                    const TargetTransformInfo &TTI) {
1930   // Be conservative for now. FP select instruction can often be expensive.
1931   Value *BrCond = BI->getCondition();
1932   if (isa<FCmpInst>(BrCond))
1933     return false;
1934 
1935   BasicBlock *BB = BI->getParent();
1936   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1937 
1938   // If ThenBB is actually on the false edge of the conditional branch, remember
1939   // to swap the select operands later.
1940   bool Invert = false;
1941   if (ThenBB != BI->getSuccessor(0)) {
1942     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1943     Invert = true;
1944   }
1945   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1946 
1947   // Keep a count of how many times instructions are used within CondBB when
1948   // they are candidates for sinking into CondBB. Specifically:
1949   // - They are defined in BB, and
1950   // - They have no side effects, and
1951   // - All of their uses are in CondBB.
1952   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1953 
1954   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1955 
1956   unsigned SpeculationCost = 0;
1957   Value *SpeculatedStoreValue = nullptr;
1958   StoreInst *SpeculatedStore = nullptr;
1959   for (BasicBlock::iterator BBI = ThenBB->begin(),
1960                             BBE = std::prev(ThenBB->end());
1961        BBI != BBE; ++BBI) {
1962     Instruction *I = &*BBI;
1963     // Skip debug info.
1964     if (isa<DbgInfoIntrinsic>(I)) {
1965       SpeculatedDbgIntrinsics.push_back(I);
1966       continue;
1967     }
1968 
1969     // Only speculatively execute a single instruction (not counting the
1970     // terminator) for now.
1971     ++SpeculationCost;
1972     if (SpeculationCost > 1)
1973       return false;
1974 
1975     // Don't hoist the instruction if it's unsafe or expensive.
1976     if (!isSafeToSpeculativelyExecute(I) &&
1977         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1978                                   I, BB, ThenBB, EndBB))))
1979       return false;
1980     if (!SpeculatedStoreValue &&
1981         ComputeSpeculationCost(I, TTI) >
1982             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1983       return false;
1984 
1985     // Store the store speculation candidate.
1986     if (SpeculatedStoreValue)
1987       SpeculatedStore = cast<StoreInst>(I);
1988 
1989     // Do not hoist the instruction if any of its operands are defined but not
1990     // used in BB. The transformation will prevent the operand from
1991     // being sunk into the use block.
1992     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1993       Instruction *OpI = dyn_cast<Instruction>(*i);
1994       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1995         continue; // Not a candidate for sinking.
1996 
1997       ++SinkCandidateUseCounts[OpI];
1998     }
1999   }
2000 
2001   // Consider any sink candidates which are only used in CondBB as costs for
2002   // speculation. Note, while we iterate over a DenseMap here, we are summing
2003   // and so iteration order isn't significant.
2004   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2005            I = SinkCandidateUseCounts.begin(),
2006            E = SinkCandidateUseCounts.end();
2007        I != E; ++I)
2008     if (I->first->getNumUses() == I->second) {
2009       ++SpeculationCost;
2010       if (SpeculationCost > 1)
2011         return false;
2012     }
2013 
2014   // Check that the PHI nodes can be converted to selects.
2015   bool HaveRewritablePHIs = false;
2016   for (PHINode &PN : EndBB->phis()) {
2017     Value *OrigV = PN.getIncomingValueForBlock(BB);
2018     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2019 
2020     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2021     // Skip PHIs which are trivial.
2022     if (ThenV == OrigV)
2023       continue;
2024 
2025     // Don't convert to selects if we could remove undefined behavior instead.
2026     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2027         passingValueIsAlwaysUndefined(ThenV, &PN))
2028       return false;
2029 
2030     HaveRewritablePHIs = true;
2031     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2032     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2033     if (!OrigCE && !ThenCE)
2034       continue; // Known safe and cheap.
2035 
2036     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2037         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2038       return false;
2039     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2040     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2041     unsigned MaxCost =
2042         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2043     if (OrigCost + ThenCost > MaxCost)
2044       return false;
2045 
2046     // Account for the cost of an unfolded ConstantExpr which could end up
2047     // getting expanded into Instructions.
2048     // FIXME: This doesn't account for how many operations are combined in the
2049     // constant expression.
2050     ++SpeculationCost;
2051     if (SpeculationCost > 1)
2052       return false;
2053   }
2054 
2055   // If there are no PHIs to process, bail early. This helps ensure idempotence
2056   // as well.
2057   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2058     return false;
2059 
2060   // If we get here, we can hoist the instruction and if-convert.
2061   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2062 
2063   // Insert a select of the value of the speculated store.
2064   if (SpeculatedStoreValue) {
2065     IRBuilder<NoFolder> Builder(BI);
2066     Value *TrueV = SpeculatedStore->getValueOperand();
2067     Value *FalseV = SpeculatedStoreValue;
2068     if (Invert)
2069       std::swap(TrueV, FalseV);
2070     Value *S = Builder.CreateSelect(
2071         BrCond, TrueV, FalseV, "spec.store.select", BI);
2072     SpeculatedStore->setOperand(0, S);
2073     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2074                                          SpeculatedStore->getDebugLoc());
2075   }
2076 
2077   // Metadata can be dependent on the condition we are hoisting above.
2078   // Conservatively strip all metadata on the instruction.
2079   for (auto &I : *ThenBB)
2080     I.dropUnknownNonDebugMetadata();
2081 
2082   // Hoist the instructions.
2083   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2084                            ThenBB->begin(), std::prev(ThenBB->end()));
2085 
2086   // Insert selects and rewrite the PHI operands.
2087   IRBuilder<NoFolder> Builder(BI);
2088   for (PHINode &PN : EndBB->phis()) {
2089     unsigned OrigI = PN.getBasicBlockIndex(BB);
2090     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2091     Value *OrigV = PN.getIncomingValue(OrigI);
2092     Value *ThenV = PN.getIncomingValue(ThenI);
2093 
2094     // Skip PHIs which are trivial.
2095     if (OrigV == ThenV)
2096       continue;
2097 
2098     // Create a select whose true value is the speculatively executed value and
2099     // false value is the preexisting value. Swap them if the branch
2100     // destinations were inverted.
2101     Value *TrueV = ThenV, *FalseV = OrigV;
2102     if (Invert)
2103       std::swap(TrueV, FalseV);
2104     Value *V = Builder.CreateSelect(
2105         BrCond, TrueV, FalseV, "spec.select", BI);
2106     PN.setIncomingValue(OrigI, V);
2107     PN.setIncomingValue(ThenI, V);
2108   }
2109 
2110   // Remove speculated dbg intrinsics.
2111   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2112   // dbg value for the different flows and inserting it after the select.
2113   for (Instruction *I : SpeculatedDbgIntrinsics)
2114     I->eraseFromParent();
2115 
2116   ++NumSpeculations;
2117   return true;
2118 }
2119 
2120 /// Return true if we can thread a branch across this block.
2121 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2122   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2123   unsigned Size = 0;
2124 
2125   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2126     if (isa<DbgInfoIntrinsic>(BBI))
2127       continue;
2128     if (Size > 10)
2129       return false; // Don't clone large BB's.
2130     ++Size;
2131 
2132     // We can only support instructions that do not define values that are
2133     // live outside of the current basic block.
2134     for (User *U : BBI->users()) {
2135       Instruction *UI = cast<Instruction>(U);
2136       if (UI->getParent() != BB || isa<PHINode>(UI))
2137         return false;
2138     }
2139 
2140     // Looks ok, continue checking.
2141   }
2142 
2143   return true;
2144 }
2145 
2146 /// If we have a conditional branch on a PHI node value that is defined in the
2147 /// same block as the branch and if any PHI entries are constants, thread edges
2148 /// corresponding to that entry to be branches to their ultimate destination.
2149 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2150                                 AssumptionCache *AC) {
2151   BasicBlock *BB = BI->getParent();
2152   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2153   // NOTE: we currently cannot transform this case if the PHI node is used
2154   // outside of the block.
2155   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2156     return false;
2157 
2158   // Degenerate case of a single entry PHI.
2159   if (PN->getNumIncomingValues() == 1) {
2160     FoldSingleEntryPHINodes(PN->getParent());
2161     return true;
2162   }
2163 
2164   // Now we know that this block has multiple preds and two succs.
2165   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2166     return false;
2167 
2168   // Can't fold blocks that contain noduplicate or convergent calls.
2169   if (any_of(*BB, [](const Instruction &I) {
2170         const CallInst *CI = dyn_cast<CallInst>(&I);
2171         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2172       }))
2173     return false;
2174 
2175   // Okay, this is a simple enough basic block.  See if any phi values are
2176   // constants.
2177   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2178     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2179     if (!CB || !CB->getType()->isIntegerTy(1))
2180       continue;
2181 
2182     // Okay, we now know that all edges from PredBB should be revectored to
2183     // branch to RealDest.
2184     BasicBlock *PredBB = PN->getIncomingBlock(i);
2185     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2186 
2187     if (RealDest == BB)
2188       continue; // Skip self loops.
2189     // Skip if the predecessor's terminator is an indirect branch.
2190     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2191       continue;
2192 
2193     // The dest block might have PHI nodes, other predecessors and other
2194     // difficult cases.  Instead of being smart about this, just insert a new
2195     // block that jumps to the destination block, effectively splitting
2196     // the edge we are about to create.
2197     BasicBlock *EdgeBB =
2198         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2199                            RealDest->getParent(), RealDest);
2200     BranchInst::Create(RealDest, EdgeBB);
2201 
2202     // Update PHI nodes.
2203     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2204 
2205     // BB may have instructions that are being threaded over.  Clone these
2206     // instructions into EdgeBB.  We know that there will be no uses of the
2207     // cloned instructions outside of EdgeBB.
2208     BasicBlock::iterator InsertPt = EdgeBB->begin();
2209     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2210     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2211       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2212         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2213         continue;
2214       }
2215       // Clone the instruction.
2216       Instruction *N = BBI->clone();
2217       if (BBI->hasName())
2218         N->setName(BBI->getName() + ".c");
2219 
2220       // Update operands due to translation.
2221       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2222         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2223         if (PI != TranslateMap.end())
2224           *i = PI->second;
2225       }
2226 
2227       // Check for trivial simplification.
2228       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2229         if (!BBI->use_empty())
2230           TranslateMap[&*BBI] = V;
2231         if (!N->mayHaveSideEffects()) {
2232           N->deleteValue(); // Instruction folded away, don't need actual inst
2233           N = nullptr;
2234         }
2235       } else {
2236         if (!BBI->use_empty())
2237           TranslateMap[&*BBI] = N;
2238       }
2239       // Insert the new instruction into its new home.
2240       if (N)
2241         EdgeBB->getInstList().insert(InsertPt, N);
2242 
2243       // Register the new instruction with the assumption cache if necessary.
2244       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2245         if (II->getIntrinsicID() == Intrinsic::assume)
2246           AC->registerAssumption(II);
2247     }
2248 
2249     // Loop over all of the edges from PredBB to BB, changing them to branch
2250     // to EdgeBB instead.
2251     TerminatorInst *PredBBTI = PredBB->getTerminator();
2252     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2253       if (PredBBTI->getSuccessor(i) == BB) {
2254         BB->removePredecessor(PredBB);
2255         PredBBTI->setSuccessor(i, EdgeBB);
2256       }
2257 
2258     // Recurse, simplifying any other constants.
2259     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2260   }
2261 
2262   return false;
2263 }
2264 
2265 /// Given a BB that starts with the specified two-entry PHI node,
2266 /// see if we can eliminate it.
2267 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2268                                 const DataLayout &DL) {
2269   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2270   // statement", which has a very simple dominance structure.  Basically, we
2271   // are trying to find the condition that is being branched on, which
2272   // subsequently causes this merge to happen.  We really want control
2273   // dependence information for this check, but simplifycfg can't keep it up
2274   // to date, and this catches most of the cases we care about anyway.
2275   BasicBlock *BB = PN->getParent();
2276   const Function *Fn = BB->getParent();
2277   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2278     return false;
2279 
2280   BasicBlock *IfTrue, *IfFalse;
2281   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2282   if (!IfCond ||
2283       // Don't bother if the branch will be constant folded trivially.
2284       isa<ConstantInt>(IfCond))
2285     return false;
2286 
2287   // Okay, we found that we can merge this two-entry phi node into a select.
2288   // Doing so would require us to fold *all* two entry phi nodes in this block.
2289   // At some point this becomes non-profitable (particularly if the target
2290   // doesn't support cmov's).  Only do this transformation if there are two or
2291   // fewer PHI nodes in this block.
2292   unsigned NumPhis = 0;
2293   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2294     if (NumPhis > 2)
2295       return false;
2296 
2297   // Loop over the PHI's seeing if we can promote them all to select
2298   // instructions.  While we are at it, keep track of the instructions
2299   // that need to be moved to the dominating block.
2300   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2301   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2302            MaxCostVal1 = PHINodeFoldingThreshold;
2303   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2304   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2305 
2306   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2307     PHINode *PN = cast<PHINode>(II++);
2308     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2309       PN->replaceAllUsesWith(V);
2310       PN->eraseFromParent();
2311       continue;
2312     }
2313 
2314     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2315                              MaxCostVal0, TTI) ||
2316         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2317                              MaxCostVal1, TTI))
2318       return false;
2319   }
2320 
2321   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2322   // we ran out of PHIs then we simplified them all.
2323   PN = dyn_cast<PHINode>(BB->begin());
2324   if (!PN)
2325     return true;
2326 
2327   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2328   // often be turned into switches and other things.
2329   if (PN->getType()->isIntegerTy(1) &&
2330       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2331        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2332        isa<BinaryOperator>(IfCond)))
2333     return false;
2334 
2335   // If all PHI nodes are promotable, check to make sure that all instructions
2336   // in the predecessor blocks can be promoted as well. If not, we won't be able
2337   // to get rid of the control flow, so it's not worth promoting to select
2338   // instructions.
2339   BasicBlock *DomBlock = nullptr;
2340   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2341   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2342   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2343     IfBlock1 = nullptr;
2344   } else {
2345     DomBlock = *pred_begin(IfBlock1);
2346     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2347          ++I)
2348       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2349         // This is not an aggressive instruction that we can promote.
2350         // Because of this, we won't be able to get rid of the control flow, so
2351         // the xform is not worth it.
2352         return false;
2353       }
2354   }
2355 
2356   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2357     IfBlock2 = nullptr;
2358   } else {
2359     DomBlock = *pred_begin(IfBlock2);
2360     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2361          ++I)
2362       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2363         // This is not an aggressive instruction that we can promote.
2364         // Because of this, we won't be able to get rid of the control flow, so
2365         // the xform is not worth it.
2366         return false;
2367       }
2368   }
2369 
2370   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2371                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2372 
2373   // If we can still promote the PHI nodes after this gauntlet of tests,
2374   // do all of the PHI's now.
2375   Instruction *InsertPt = DomBlock->getTerminator();
2376   IRBuilder<NoFolder> Builder(InsertPt);
2377 
2378   // Move all 'aggressive' instructions, which are defined in the
2379   // conditional parts of the if's up to the dominating block.
2380   if (IfBlock1) {
2381     for (auto &I : *IfBlock1)
2382       I.dropUnknownNonDebugMetadata();
2383     DomBlock->getInstList().splice(InsertPt->getIterator(),
2384                                    IfBlock1->getInstList(), IfBlock1->begin(),
2385                                    IfBlock1->getTerminator()->getIterator());
2386   }
2387   if (IfBlock2) {
2388     for (auto &I : *IfBlock2)
2389       I.dropUnknownNonDebugMetadata();
2390     DomBlock->getInstList().splice(InsertPt->getIterator(),
2391                                    IfBlock2->getInstList(), IfBlock2->begin(),
2392                                    IfBlock2->getTerminator()->getIterator());
2393   }
2394 
2395   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2396     // Change the PHI node into a select instruction.
2397     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2398     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2399 
2400     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2401     PN->replaceAllUsesWith(Sel);
2402     Sel->takeName(PN);
2403     PN->eraseFromParent();
2404   }
2405 
2406   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2407   // has been flattened.  Change DomBlock to jump directly to our new block to
2408   // avoid other simplifycfg's kicking in on the diamond.
2409   TerminatorInst *OldTI = DomBlock->getTerminator();
2410   Builder.SetInsertPoint(OldTI);
2411   Builder.CreateBr(BB);
2412   OldTI->eraseFromParent();
2413   return true;
2414 }
2415 
2416 /// If we found a conditional branch that goes to two returning blocks,
2417 /// try to merge them together into one return,
2418 /// introducing a select if the return values disagree.
2419 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2420                                            IRBuilder<> &Builder) {
2421   assert(BI->isConditional() && "Must be a conditional branch");
2422   BasicBlock *TrueSucc = BI->getSuccessor(0);
2423   BasicBlock *FalseSucc = BI->getSuccessor(1);
2424   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2425   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2426 
2427   // Check to ensure both blocks are empty (just a return) or optionally empty
2428   // with PHI nodes.  If there are other instructions, merging would cause extra
2429   // computation on one path or the other.
2430   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2431     return false;
2432   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2433     return false;
2434 
2435   Builder.SetInsertPoint(BI);
2436   // Okay, we found a branch that is going to two return nodes.  If
2437   // there is no return value for this function, just change the
2438   // branch into a return.
2439   if (FalseRet->getNumOperands() == 0) {
2440     TrueSucc->removePredecessor(BI->getParent());
2441     FalseSucc->removePredecessor(BI->getParent());
2442     Builder.CreateRetVoid();
2443     EraseTerminatorInstAndDCECond(BI);
2444     return true;
2445   }
2446 
2447   // Otherwise, figure out what the true and false return values are
2448   // so we can insert a new select instruction.
2449   Value *TrueValue = TrueRet->getReturnValue();
2450   Value *FalseValue = FalseRet->getReturnValue();
2451 
2452   // Unwrap any PHI nodes in the return blocks.
2453   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2454     if (TVPN->getParent() == TrueSucc)
2455       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2456   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2457     if (FVPN->getParent() == FalseSucc)
2458       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2459 
2460   // In order for this transformation to be safe, we must be able to
2461   // unconditionally execute both operands to the return.  This is
2462   // normally the case, but we could have a potentially-trapping
2463   // constant expression that prevents this transformation from being
2464   // safe.
2465   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2466     if (TCV->canTrap())
2467       return false;
2468   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2469     if (FCV->canTrap())
2470       return false;
2471 
2472   // Okay, we collected all the mapped values and checked them for sanity, and
2473   // defined to really do this transformation.  First, update the CFG.
2474   TrueSucc->removePredecessor(BI->getParent());
2475   FalseSucc->removePredecessor(BI->getParent());
2476 
2477   // Insert select instructions where needed.
2478   Value *BrCond = BI->getCondition();
2479   if (TrueValue) {
2480     // Insert a select if the results differ.
2481     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2482     } else if (isa<UndefValue>(TrueValue)) {
2483       TrueValue = FalseValue;
2484     } else {
2485       TrueValue =
2486           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2487     }
2488   }
2489 
2490   Value *RI =
2491       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2492 
2493   (void)RI;
2494 
2495   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2496                << "\n  " << *BI << "NewRet = " << *RI
2497                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2498 
2499   EraseTerminatorInstAndDCECond(BI);
2500 
2501   return true;
2502 }
2503 
2504 /// Return true if the given instruction is available
2505 /// in its predecessor block. If yes, the instruction will be removed.
2506 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2507   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2508     return false;
2509   for (Instruction &I : *PB) {
2510     Instruction *PBI = &I;
2511     // Check whether Inst and PBI generate the same value.
2512     if (Inst->isIdenticalTo(PBI)) {
2513       Inst->replaceAllUsesWith(PBI);
2514       Inst->eraseFromParent();
2515       return true;
2516     }
2517   }
2518   return false;
2519 }
2520 
2521 /// Return true if either PBI or BI has branch weight available, and store
2522 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2523 /// not have branch weight, use 1:1 as its weight.
2524 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2525                                    uint64_t &PredTrueWeight,
2526                                    uint64_t &PredFalseWeight,
2527                                    uint64_t &SuccTrueWeight,
2528                                    uint64_t &SuccFalseWeight) {
2529   bool PredHasWeights =
2530       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2531   bool SuccHasWeights =
2532       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2533   if (PredHasWeights || SuccHasWeights) {
2534     if (!PredHasWeights)
2535       PredTrueWeight = PredFalseWeight = 1;
2536     if (!SuccHasWeights)
2537       SuccTrueWeight = SuccFalseWeight = 1;
2538     return true;
2539   } else {
2540     return false;
2541   }
2542 }
2543 
2544 /// If this basic block is simple enough, and if a predecessor branches to us
2545 /// and one of our successors, fold the block into the predecessor and use
2546 /// logical operations to pick the right destination.
2547 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2548   BasicBlock *BB = BI->getParent();
2549 
2550   Instruction *Cond = nullptr;
2551   if (BI->isConditional())
2552     Cond = dyn_cast<Instruction>(BI->getCondition());
2553   else {
2554     // For unconditional branch, check for a simple CFG pattern, where
2555     // BB has a single predecessor and BB's successor is also its predecessor's
2556     // successor. If such pattern exists, check for CSE between BB and its
2557     // predecessor.
2558     if (BasicBlock *PB = BB->getSinglePredecessor())
2559       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2560         if (PBI->isConditional() &&
2561             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2562              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2563           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2564             Instruction *Curr = &*I++;
2565             if (isa<CmpInst>(Curr)) {
2566               Cond = Curr;
2567               break;
2568             }
2569             // Quit if we can't remove this instruction.
2570             if (!checkCSEInPredecessor(Curr, PB))
2571               return false;
2572           }
2573         }
2574 
2575     if (!Cond)
2576       return false;
2577   }
2578 
2579   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2580       Cond->getParent() != BB || !Cond->hasOneUse())
2581     return false;
2582 
2583   // Make sure the instruction after the condition is the cond branch.
2584   BasicBlock::iterator CondIt = ++Cond->getIterator();
2585 
2586   // Ignore dbg intrinsics.
2587   while (isa<DbgInfoIntrinsic>(CondIt))
2588     ++CondIt;
2589 
2590   if (&*CondIt != BI)
2591     return false;
2592 
2593   // Only allow this transformation if computing the condition doesn't involve
2594   // too many instructions and these involved instructions can be executed
2595   // unconditionally. We denote all involved instructions except the condition
2596   // as "bonus instructions", and only allow this transformation when the
2597   // number of the bonus instructions does not exceed a certain threshold.
2598   unsigned NumBonusInsts = 0;
2599   for (auto I = BB->begin(); Cond != &*I; ++I) {
2600     // Ignore dbg intrinsics.
2601     if (isa<DbgInfoIntrinsic>(I))
2602       continue;
2603     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2604       return false;
2605     // I has only one use and can be executed unconditionally.
2606     Instruction *User = dyn_cast<Instruction>(I->user_back());
2607     if (User == nullptr || User->getParent() != BB)
2608       return false;
2609     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2610     // to use any other instruction, User must be an instruction between next(I)
2611     // and Cond.
2612     ++NumBonusInsts;
2613     // Early exits once we reach the limit.
2614     if (NumBonusInsts > BonusInstThreshold)
2615       return false;
2616   }
2617 
2618   // Cond is known to be a compare or binary operator.  Check to make sure that
2619   // neither operand is a potentially-trapping constant expression.
2620   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2621     if (CE->canTrap())
2622       return false;
2623   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2624     if (CE->canTrap())
2625       return false;
2626 
2627   // Finally, don't infinitely unroll conditional loops.
2628   BasicBlock *TrueDest = BI->getSuccessor(0);
2629   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2630   if (TrueDest == BB || FalseDest == BB)
2631     return false;
2632 
2633   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2634     BasicBlock *PredBlock = *PI;
2635     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2636 
2637     // Check that we have two conditional branches.  If there is a PHI node in
2638     // the common successor, verify that the same value flows in from both
2639     // blocks.
2640     SmallVector<PHINode *, 4> PHIs;
2641     if (!PBI || PBI->isUnconditional() ||
2642         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2643         (!BI->isConditional() &&
2644          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2645       continue;
2646 
2647     // Determine if the two branches share a common destination.
2648     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2649     bool InvertPredCond = false;
2650 
2651     if (BI->isConditional()) {
2652       if (PBI->getSuccessor(0) == TrueDest) {
2653         Opc = Instruction::Or;
2654       } else if (PBI->getSuccessor(1) == FalseDest) {
2655         Opc = Instruction::And;
2656       } else if (PBI->getSuccessor(0) == FalseDest) {
2657         Opc = Instruction::And;
2658         InvertPredCond = true;
2659       } else if (PBI->getSuccessor(1) == TrueDest) {
2660         Opc = Instruction::Or;
2661         InvertPredCond = true;
2662       } else {
2663         continue;
2664       }
2665     } else {
2666       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2667         continue;
2668     }
2669 
2670     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2671     IRBuilder<> Builder(PBI);
2672 
2673     // If we need to invert the condition in the pred block to match, do so now.
2674     if (InvertPredCond) {
2675       Value *NewCond = PBI->getCondition();
2676 
2677       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2678         CmpInst *CI = cast<CmpInst>(NewCond);
2679         CI->setPredicate(CI->getInversePredicate());
2680       } else {
2681         NewCond =
2682             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2683       }
2684 
2685       PBI->setCondition(NewCond);
2686       PBI->swapSuccessors();
2687     }
2688 
2689     // If we have bonus instructions, clone them into the predecessor block.
2690     // Note that there may be multiple predecessor blocks, so we cannot move
2691     // bonus instructions to a predecessor block.
2692     ValueToValueMapTy VMap; // maps original values to cloned values
2693     // We already make sure Cond is the last instruction before BI. Therefore,
2694     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2695     // instructions.
2696     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2697       if (isa<DbgInfoIntrinsic>(BonusInst))
2698         continue;
2699       Instruction *NewBonusInst = BonusInst->clone();
2700       RemapInstruction(NewBonusInst, VMap,
2701                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2702       VMap[&*BonusInst] = NewBonusInst;
2703 
2704       // If we moved a load, we cannot any longer claim any knowledge about
2705       // its potential value. The previous information might have been valid
2706       // only given the branch precondition.
2707       // For an analogous reason, we must also drop all the metadata whose
2708       // semantics we don't understand.
2709       NewBonusInst->dropUnknownNonDebugMetadata();
2710 
2711       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2712       NewBonusInst->takeName(&*BonusInst);
2713       BonusInst->setName(BonusInst->getName() + ".old");
2714     }
2715 
2716     // Clone Cond into the predecessor basic block, and or/and the
2717     // two conditions together.
2718     Instruction *New = Cond->clone();
2719     RemapInstruction(New, VMap,
2720                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2721     PredBlock->getInstList().insert(PBI->getIterator(), New);
2722     New->takeName(Cond);
2723     Cond->setName(New->getName() + ".old");
2724 
2725     if (BI->isConditional()) {
2726       Instruction *NewCond = cast<Instruction>(
2727           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2728       PBI->setCondition(NewCond);
2729 
2730       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2731       bool HasWeights =
2732           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2733                                  SuccTrueWeight, SuccFalseWeight);
2734       SmallVector<uint64_t, 8> NewWeights;
2735 
2736       if (PBI->getSuccessor(0) == BB) {
2737         if (HasWeights) {
2738           // PBI: br i1 %x, BB, FalseDest
2739           // BI:  br i1 %y, TrueDest, FalseDest
2740           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2741           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2742           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2743           //               TrueWeight for PBI * FalseWeight for BI.
2744           // We assume that total weights of a BranchInst can fit into 32 bits.
2745           // Therefore, we will not have overflow using 64-bit arithmetic.
2746           NewWeights.push_back(PredFalseWeight *
2747                                    (SuccFalseWeight + SuccTrueWeight) +
2748                                PredTrueWeight * SuccFalseWeight);
2749         }
2750         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2751         PBI->setSuccessor(0, TrueDest);
2752       }
2753       if (PBI->getSuccessor(1) == BB) {
2754         if (HasWeights) {
2755           // PBI: br i1 %x, TrueDest, BB
2756           // BI:  br i1 %y, TrueDest, FalseDest
2757           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2758           //              FalseWeight for PBI * TrueWeight for BI.
2759           NewWeights.push_back(PredTrueWeight *
2760                                    (SuccFalseWeight + SuccTrueWeight) +
2761                                PredFalseWeight * SuccTrueWeight);
2762           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2763           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2764         }
2765         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2766         PBI->setSuccessor(1, FalseDest);
2767       }
2768       if (NewWeights.size() == 2) {
2769         // Halve the weights if any of them cannot fit in an uint32_t
2770         FitWeights(NewWeights);
2771 
2772         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2773                                            NewWeights.end());
2774         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2775       } else
2776         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2777     } else {
2778       // Update PHI nodes in the common successors.
2779       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2780         ConstantInt *PBI_C = cast<ConstantInt>(
2781             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2782         assert(PBI_C->getType()->isIntegerTy(1));
2783         Instruction *MergedCond = nullptr;
2784         if (PBI->getSuccessor(0) == TrueDest) {
2785           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2786           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2787           //       is false: !PBI_Cond and BI_Value
2788           Instruction *NotCond = cast<Instruction>(
2789               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2790           MergedCond = cast<Instruction>(
2791               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2792           if (PBI_C->isOne())
2793             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2794                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2795         } else {
2796           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2797           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2798           //       is false: PBI_Cond and BI_Value
2799           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2800               Instruction::And, PBI->getCondition(), New, "and.cond"));
2801           if (PBI_C->isOne()) {
2802             Instruction *NotCond = cast<Instruction>(
2803                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2804             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2805                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2806           }
2807         }
2808         // Update PHI Node.
2809         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2810                                   MergedCond);
2811       }
2812       // Change PBI from Conditional to Unconditional.
2813       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2814       EraseTerminatorInstAndDCECond(PBI);
2815       PBI = New_PBI;
2816     }
2817 
2818     // If BI was a loop latch, it may have had associated loop metadata.
2819     // We need to copy it to the new latch, that is, PBI.
2820     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2821       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2822 
2823     // TODO: If BB is reachable from all paths through PredBlock, then we
2824     // could replace PBI's branch probabilities with BI's.
2825 
2826     // Copy any debug value intrinsics into the end of PredBlock.
2827     for (Instruction &I : *BB)
2828       if (isa<DbgInfoIntrinsic>(I))
2829         I.clone()->insertBefore(PBI);
2830 
2831     return true;
2832   }
2833   return false;
2834 }
2835 
2836 // If there is only one store in BB1 and BB2, return it, otherwise return
2837 // nullptr.
2838 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2839   StoreInst *S = nullptr;
2840   for (auto *BB : {BB1, BB2}) {
2841     if (!BB)
2842       continue;
2843     for (auto &I : *BB)
2844       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2845         if (S)
2846           // Multiple stores seen.
2847           return nullptr;
2848         else
2849           S = SI;
2850       }
2851   }
2852   return S;
2853 }
2854 
2855 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2856                                               Value *AlternativeV = nullptr) {
2857   // PHI is going to be a PHI node that allows the value V that is defined in
2858   // BB to be referenced in BB's only successor.
2859   //
2860   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2861   // doesn't matter to us what the other operand is (it'll never get used). We
2862   // could just create a new PHI with an undef incoming value, but that could
2863   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2864   // other PHI. So here we directly look for some PHI in BB's successor with V
2865   // as an incoming operand. If we find one, we use it, else we create a new
2866   // one.
2867   //
2868   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2869   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2870   // where OtherBB is the single other predecessor of BB's only successor.
2871   PHINode *PHI = nullptr;
2872   BasicBlock *Succ = BB->getSingleSuccessor();
2873 
2874   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2875     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2876       PHI = cast<PHINode>(I);
2877       if (!AlternativeV)
2878         break;
2879 
2880       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2881       auto PredI = pred_begin(Succ);
2882       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2883       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2884         break;
2885       PHI = nullptr;
2886     }
2887   if (PHI)
2888     return PHI;
2889 
2890   // If V is not an instruction defined in BB, just return it.
2891   if (!AlternativeV &&
2892       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2893     return V;
2894 
2895   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2896   PHI->addIncoming(V, BB);
2897   for (BasicBlock *PredBB : predecessors(Succ))
2898     if (PredBB != BB)
2899       PHI->addIncoming(
2900           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2901   return PHI;
2902 }
2903 
2904 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2905                                            BasicBlock *QTB, BasicBlock *QFB,
2906                                            BasicBlock *PostBB, Value *Address,
2907                                            bool InvertPCond, bool InvertQCond,
2908                                            const DataLayout &DL) {
2909   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2910     return Operator::getOpcode(&I) == Instruction::BitCast &&
2911            I.getType()->isPointerTy();
2912   };
2913 
2914   // If we're not in aggressive mode, we only optimize if we have some
2915   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2916   auto IsWorthwhile = [&](BasicBlock *BB) {
2917     if (!BB)
2918       return true;
2919     // Heuristic: if the block can be if-converted/phi-folded and the
2920     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2921     // thread this store.
2922     unsigned N = 0;
2923     for (auto &I : *BB) {
2924       // Cheap instructions viable for folding.
2925       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2926           isa<StoreInst>(I))
2927         ++N;
2928       // Free instructions.
2929       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2930                IsaBitcastOfPointerType(I))
2931         continue;
2932       else
2933         return false;
2934     }
2935     // The store we want to merge is counted in N, so add 1 to make sure
2936     // we're counting the instructions that would be left.
2937     return N <= (PHINodeFoldingThreshold + 1);
2938   };
2939 
2940   if (!MergeCondStoresAggressively &&
2941       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2942        !IsWorthwhile(QFB)))
2943     return false;
2944 
2945   // For every pointer, there must be exactly two stores, one coming from
2946   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2947   // store (to any address) in PTB,PFB or QTB,QFB.
2948   // FIXME: We could relax this restriction with a bit more work and performance
2949   // testing.
2950   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2951   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2952   if (!PStore || !QStore)
2953     return false;
2954 
2955   // Now check the stores are compatible.
2956   if (!QStore->isUnordered() || !PStore->isUnordered())
2957     return false;
2958 
2959   // Check that sinking the store won't cause program behavior changes. Sinking
2960   // the store out of the Q blocks won't change any behavior as we're sinking
2961   // from a block to its unconditional successor. But we're moving a store from
2962   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2963   // So we need to check that there are no aliasing loads or stores in
2964   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2965   // operations between PStore and the end of its parent block.
2966   //
2967   // The ideal way to do this is to query AliasAnalysis, but we don't
2968   // preserve AA currently so that is dangerous. Be super safe and just
2969   // check there are no other memory operations at all.
2970   for (auto &I : *QFB->getSinglePredecessor())
2971     if (I.mayReadOrWriteMemory())
2972       return false;
2973   for (auto &I : *QFB)
2974     if (&I != QStore && I.mayReadOrWriteMemory())
2975       return false;
2976   if (QTB)
2977     for (auto &I : *QTB)
2978       if (&I != QStore && I.mayReadOrWriteMemory())
2979         return false;
2980   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2981        I != E; ++I)
2982     if (&*I != PStore && I->mayReadOrWriteMemory())
2983       return false;
2984 
2985   // If PostBB has more than two predecessors, we need to split it so we can
2986   // sink the store.
2987   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
2988     // We know that QFB's only successor is PostBB. And QFB has a single
2989     // predecessor. If QTB exists, then its only successor is also PostBB.
2990     // If QTB does not exist, then QFB's only predecessor has a conditional
2991     // branch to QFB and PostBB.
2992     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
2993     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
2994                                                "condstore.split");
2995     if (!NewBB)
2996       return false;
2997     PostBB = NewBB;
2998   }
2999 
3000   // OK, we're going to sink the stores to PostBB. The store has to be
3001   // conditional though, so first create the predicate.
3002   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3003                      ->getCondition();
3004   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3005                      ->getCondition();
3006 
3007   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3008                                                 PStore->getParent());
3009   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3010                                                 QStore->getParent(), PPHI);
3011 
3012   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3013 
3014   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3015   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3016 
3017   if (InvertPCond)
3018     PPred = QB.CreateNot(PPred);
3019   if (InvertQCond)
3020     QPred = QB.CreateNot(QPred);
3021   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3022 
3023   auto *T =
3024       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3025   QB.SetInsertPoint(T);
3026   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3027   AAMDNodes AAMD;
3028   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3029   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3030   SI->setAAMetadata(AAMD);
3031   unsigned PAlignment = PStore->getAlignment();
3032   unsigned QAlignment = QStore->getAlignment();
3033   unsigned TypeAlignment =
3034       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3035   unsigned MinAlignment;
3036   unsigned MaxAlignment;
3037   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3038   // Choose the minimum alignment. If we could prove both stores execute, we
3039   // could use biggest one.  In this case, though, we only know that one of the
3040   // stores executes.  And we don't know it's safe to take the alignment from a
3041   // store that doesn't execute.
3042   if (MinAlignment != 0) {
3043     // Choose the minimum of all non-zero alignments.
3044     SI->setAlignment(MinAlignment);
3045   } else if (MaxAlignment != 0) {
3046     // Choose the minimal alignment between the non-zero alignment and the ABI
3047     // default alignment for the type of the stored value.
3048     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3049   } else {
3050     // If both alignments are zero, use ABI default alignment for the type of
3051     // the stored value.
3052     SI->setAlignment(TypeAlignment);
3053   }
3054 
3055   QStore->eraseFromParent();
3056   PStore->eraseFromParent();
3057 
3058   return true;
3059 }
3060 
3061 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3062                                    const DataLayout &DL) {
3063   // The intention here is to find diamonds or triangles (see below) where each
3064   // conditional block contains a store to the same address. Both of these
3065   // stores are conditional, so they can't be unconditionally sunk. But it may
3066   // be profitable to speculatively sink the stores into one merged store at the
3067   // end, and predicate the merged store on the union of the two conditions of
3068   // PBI and QBI.
3069   //
3070   // This can reduce the number of stores executed if both of the conditions are
3071   // true, and can allow the blocks to become small enough to be if-converted.
3072   // This optimization will also chain, so that ladders of test-and-set
3073   // sequences can be if-converted away.
3074   //
3075   // We only deal with simple diamonds or triangles:
3076   //
3077   //     PBI       or      PBI        or a combination of the two
3078   //    /   \               | \
3079   //   PTB  PFB             |  PFB
3080   //    \   /               | /
3081   //     QBI                QBI
3082   //    /  \                | \
3083   //   QTB  QFB             |  QFB
3084   //    \  /                | /
3085   //    PostBB            PostBB
3086   //
3087   // We model triangles as a type of diamond with a nullptr "true" block.
3088   // Triangles are canonicalized so that the fallthrough edge is represented by
3089   // a true condition, as in the diagram above.
3090   BasicBlock *PTB = PBI->getSuccessor(0);
3091   BasicBlock *PFB = PBI->getSuccessor(1);
3092   BasicBlock *QTB = QBI->getSuccessor(0);
3093   BasicBlock *QFB = QBI->getSuccessor(1);
3094   BasicBlock *PostBB = QFB->getSingleSuccessor();
3095 
3096   // Make sure we have a good guess for PostBB. If QTB's only successor is
3097   // QFB, then QFB is a better PostBB.
3098   if (QTB->getSingleSuccessor() == QFB)
3099     PostBB = QFB;
3100 
3101   // If we couldn't find a good PostBB, stop.
3102   if (!PostBB)
3103     return false;
3104 
3105   bool InvertPCond = false, InvertQCond = false;
3106   // Canonicalize fallthroughs to the true branches.
3107   if (PFB == QBI->getParent()) {
3108     std::swap(PFB, PTB);
3109     InvertPCond = true;
3110   }
3111   if (QFB == PostBB) {
3112     std::swap(QFB, QTB);
3113     InvertQCond = true;
3114   }
3115 
3116   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3117   // and QFB may not. Model fallthroughs as a nullptr block.
3118   if (PTB == QBI->getParent())
3119     PTB = nullptr;
3120   if (QTB == PostBB)
3121     QTB = nullptr;
3122 
3123   // Legality bailouts. We must have at least the non-fallthrough blocks and
3124   // the post-dominating block, and the non-fallthroughs must only have one
3125   // predecessor.
3126   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3127     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3128   };
3129   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3130       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3131     return false;
3132   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3133       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3134     return false;
3135   if (!QBI->getParent()->hasNUses(2))
3136     return false;
3137 
3138   // OK, this is a sequence of two diamonds or triangles.
3139   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3140   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3141   for (auto *BB : {PTB, PFB}) {
3142     if (!BB)
3143       continue;
3144     for (auto &I : *BB)
3145       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3146         PStoreAddresses.insert(SI->getPointerOperand());
3147   }
3148   for (auto *BB : {QTB, QFB}) {
3149     if (!BB)
3150       continue;
3151     for (auto &I : *BB)
3152       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3153         QStoreAddresses.insert(SI->getPointerOperand());
3154   }
3155 
3156   set_intersect(PStoreAddresses, QStoreAddresses);
3157   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3158   // clear what it contains.
3159   auto &CommonAddresses = PStoreAddresses;
3160 
3161   bool Changed = false;
3162   for (auto *Address : CommonAddresses)
3163     Changed |= mergeConditionalStoreToAddress(
3164         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3165   return Changed;
3166 }
3167 
3168 /// If we have a conditional branch as a predecessor of another block,
3169 /// this function tries to simplify it.  We know
3170 /// that PBI and BI are both conditional branches, and BI is in one of the
3171 /// successor blocks of PBI - PBI branches to BI.
3172 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3173                                            const DataLayout &DL) {
3174   assert(PBI->isConditional() && BI->isConditional());
3175   BasicBlock *BB = BI->getParent();
3176 
3177   // If this block ends with a branch instruction, and if there is a
3178   // predecessor that ends on a branch of the same condition, make
3179   // this conditional branch redundant.
3180   if (PBI->getCondition() == BI->getCondition() &&
3181       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3182     // Okay, the outcome of this conditional branch is statically
3183     // knowable.  If this block had a single pred, handle specially.
3184     if (BB->getSinglePredecessor()) {
3185       // Turn this into a branch on constant.
3186       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3187       BI->setCondition(
3188           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3189       return true; // Nuke the branch on constant.
3190     }
3191 
3192     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3193     // in the constant and simplify the block result.  Subsequent passes of
3194     // simplifycfg will thread the block.
3195     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3196       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3197       PHINode *NewPN = PHINode::Create(
3198           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3199           BI->getCondition()->getName() + ".pr", &BB->front());
3200       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3201       // predecessor, compute the PHI'd conditional value for all of the preds.
3202       // Any predecessor where the condition is not computable we keep symbolic.
3203       for (pred_iterator PI = PB; PI != PE; ++PI) {
3204         BasicBlock *P = *PI;
3205         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3206             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3207             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3208           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3209           NewPN->addIncoming(
3210               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3211               P);
3212         } else {
3213           NewPN->addIncoming(BI->getCondition(), P);
3214         }
3215       }
3216 
3217       BI->setCondition(NewPN);
3218       return true;
3219     }
3220   }
3221 
3222   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3223     if (CE->canTrap())
3224       return false;
3225 
3226   // If both branches are conditional and both contain stores to the same
3227   // address, remove the stores from the conditionals and create a conditional
3228   // merged store at the end.
3229   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3230     return true;
3231 
3232   // If this is a conditional branch in an empty block, and if any
3233   // predecessors are a conditional branch to one of our destinations,
3234   // fold the conditions into logical ops and one cond br.
3235   BasicBlock::iterator BBI = BB->begin();
3236   // Ignore dbg intrinsics.
3237   while (isa<DbgInfoIntrinsic>(BBI))
3238     ++BBI;
3239   if (&*BBI != BI)
3240     return false;
3241 
3242   int PBIOp, BIOp;
3243   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3244     PBIOp = 0;
3245     BIOp = 0;
3246   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3247     PBIOp = 0;
3248     BIOp = 1;
3249   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3250     PBIOp = 1;
3251     BIOp = 0;
3252   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3253     PBIOp = 1;
3254     BIOp = 1;
3255   } else {
3256     return false;
3257   }
3258 
3259   // Check to make sure that the other destination of this branch
3260   // isn't BB itself.  If so, this is an infinite loop that will
3261   // keep getting unwound.
3262   if (PBI->getSuccessor(PBIOp) == BB)
3263     return false;
3264 
3265   // Do not perform this transformation if it would require
3266   // insertion of a large number of select instructions. For targets
3267   // without predication/cmovs, this is a big pessimization.
3268 
3269   // Also do not perform this transformation if any phi node in the common
3270   // destination block can trap when reached by BB or PBB (PR17073). In that
3271   // case, it would be unsafe to hoist the operation into a select instruction.
3272 
3273   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3274   unsigned NumPhis = 0;
3275   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3276        ++II, ++NumPhis) {
3277     if (NumPhis > 2) // Disable this xform.
3278       return false;
3279 
3280     PHINode *PN = cast<PHINode>(II);
3281     Value *BIV = PN->getIncomingValueForBlock(BB);
3282     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3283       if (CE->canTrap())
3284         return false;
3285 
3286     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3287     Value *PBIV = PN->getIncomingValue(PBBIdx);
3288     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3289       if (CE->canTrap())
3290         return false;
3291   }
3292 
3293   // Finally, if everything is ok, fold the branches to logical ops.
3294   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3295 
3296   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3297                << "AND: " << *BI->getParent());
3298 
3299   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3300   // branch in it, where one edge (OtherDest) goes back to itself but the other
3301   // exits.  We don't *know* that the program avoids the infinite loop
3302   // (even though that seems likely).  If we do this xform naively, we'll end up
3303   // recursively unpeeling the loop.  Since we know that (after the xform is
3304   // done) that the block *is* infinite if reached, we just make it an obviously
3305   // infinite loop with no cond branch.
3306   if (OtherDest == BB) {
3307     // Insert it at the end of the function, because it's either code,
3308     // or it won't matter if it's hot. :)
3309     BasicBlock *InfLoopBlock =
3310         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3311     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3312     OtherDest = InfLoopBlock;
3313   }
3314 
3315   DEBUG(dbgs() << *PBI->getParent()->getParent());
3316 
3317   // BI may have other predecessors.  Because of this, we leave
3318   // it alone, but modify PBI.
3319 
3320   // Make sure we get to CommonDest on True&True directions.
3321   Value *PBICond = PBI->getCondition();
3322   IRBuilder<NoFolder> Builder(PBI);
3323   if (PBIOp)
3324     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3325 
3326   Value *BICond = BI->getCondition();
3327   if (BIOp)
3328     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3329 
3330   // Merge the conditions.
3331   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3332 
3333   // Modify PBI to branch on the new condition to the new dests.
3334   PBI->setCondition(Cond);
3335   PBI->setSuccessor(0, CommonDest);
3336   PBI->setSuccessor(1, OtherDest);
3337 
3338   // Update branch weight for PBI.
3339   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3340   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3341   bool HasWeights =
3342       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3343                              SuccTrueWeight, SuccFalseWeight);
3344   if (HasWeights) {
3345     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3346     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3347     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3348     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3349     // The weight to CommonDest should be PredCommon * SuccTotal +
3350     //                                    PredOther * SuccCommon.
3351     // The weight to OtherDest should be PredOther * SuccOther.
3352     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3353                                   PredOther * SuccCommon,
3354                               PredOther * SuccOther};
3355     // Halve the weights if any of them cannot fit in an uint32_t
3356     FitWeights(NewWeights);
3357 
3358     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3359   }
3360 
3361   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3362   // block that are identical to the entries for BI's block.
3363   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3364 
3365   // We know that the CommonDest already had an edge from PBI to
3366   // it.  If it has PHIs though, the PHIs may have different
3367   // entries for BB and PBI's BB.  If so, insert a select to make
3368   // them agree.
3369   for (PHINode &PN : CommonDest->phis()) {
3370     Value *BIV = PN.getIncomingValueForBlock(BB);
3371     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3372     Value *PBIV = PN.getIncomingValue(PBBIdx);
3373     if (BIV != PBIV) {
3374       // Insert a select in PBI to pick the right value.
3375       SelectInst *NV = cast<SelectInst>(
3376           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3377       PN.setIncomingValue(PBBIdx, NV);
3378       // Although the select has the same condition as PBI, the original branch
3379       // weights for PBI do not apply to the new select because the select's
3380       // 'logical' edges are incoming edges of the phi that is eliminated, not
3381       // the outgoing edges of PBI.
3382       if (HasWeights) {
3383         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3384         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3385         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3386         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3387         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3388         // The weight to PredOtherDest should be PredOther * SuccCommon.
3389         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3390                                   PredOther * SuccCommon};
3391 
3392         FitWeights(NewWeights);
3393 
3394         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3395       }
3396     }
3397   }
3398 
3399   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3400   DEBUG(dbgs() << *PBI->getParent()->getParent());
3401 
3402   // This basic block is probably dead.  We know it has at least
3403   // one fewer predecessor.
3404   return true;
3405 }
3406 
3407 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3408 // true or to FalseBB if Cond is false.
3409 // Takes care of updating the successors and removing the old terminator.
3410 // Also makes sure not to introduce new successors by assuming that edges to
3411 // non-successor TrueBBs and FalseBBs aren't reachable.
3412 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3413                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3414                                        uint32_t TrueWeight,
3415                                        uint32_t FalseWeight) {
3416   // Remove any superfluous successor edges from the CFG.
3417   // First, figure out which successors to preserve.
3418   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3419   // successor.
3420   BasicBlock *KeepEdge1 = TrueBB;
3421   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3422 
3423   // Then remove the rest.
3424   for (BasicBlock *Succ : OldTerm->successors()) {
3425     // Make sure only to keep exactly one copy of each edge.
3426     if (Succ == KeepEdge1)
3427       KeepEdge1 = nullptr;
3428     else if (Succ == KeepEdge2)
3429       KeepEdge2 = nullptr;
3430     else
3431       Succ->removePredecessor(OldTerm->getParent(),
3432                               /*DontDeleteUselessPHIs=*/true);
3433   }
3434 
3435   IRBuilder<> Builder(OldTerm);
3436   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3437 
3438   // Insert an appropriate new terminator.
3439   if (!KeepEdge1 && !KeepEdge2) {
3440     if (TrueBB == FalseBB)
3441       // We were only looking for one successor, and it was present.
3442       // Create an unconditional branch to it.
3443       Builder.CreateBr(TrueBB);
3444     else {
3445       // We found both of the successors we were looking for.
3446       // Create a conditional branch sharing the condition of the select.
3447       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3448       if (TrueWeight != FalseWeight)
3449         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3450     }
3451   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3452     // Neither of the selected blocks were successors, so this
3453     // terminator must be unreachable.
3454     new UnreachableInst(OldTerm->getContext(), OldTerm);
3455   } else {
3456     // One of the selected values was a successor, but the other wasn't.
3457     // Insert an unconditional branch to the one that was found;
3458     // the edge to the one that wasn't must be unreachable.
3459     if (!KeepEdge1)
3460       // Only TrueBB was found.
3461       Builder.CreateBr(TrueBB);
3462     else
3463       // Only FalseBB was found.
3464       Builder.CreateBr(FalseBB);
3465   }
3466 
3467   EraseTerminatorInstAndDCECond(OldTerm);
3468   return true;
3469 }
3470 
3471 // Replaces
3472 //   (switch (select cond, X, Y)) on constant X, Y
3473 // with a branch - conditional if X and Y lead to distinct BBs,
3474 // unconditional otherwise.
3475 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3476   // Check for constant integer values in the select.
3477   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3478   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3479   if (!TrueVal || !FalseVal)
3480     return false;
3481 
3482   // Find the relevant condition and destinations.
3483   Value *Condition = Select->getCondition();
3484   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3485   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3486 
3487   // Get weight for TrueBB and FalseBB.
3488   uint32_t TrueWeight = 0, FalseWeight = 0;
3489   SmallVector<uint64_t, 8> Weights;
3490   bool HasWeights = HasBranchWeights(SI);
3491   if (HasWeights) {
3492     GetBranchWeights(SI, Weights);
3493     if (Weights.size() == 1 + SI->getNumCases()) {
3494       TrueWeight =
3495           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3496       FalseWeight =
3497           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3498     }
3499   }
3500 
3501   // Perform the actual simplification.
3502   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3503                                     FalseWeight);
3504 }
3505 
3506 // Replaces
3507 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3508 //                             blockaddress(@fn, BlockB)))
3509 // with
3510 //   (br cond, BlockA, BlockB).
3511 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3512   // Check that both operands of the select are block addresses.
3513   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3514   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3515   if (!TBA || !FBA)
3516     return false;
3517 
3518   // Extract the actual blocks.
3519   BasicBlock *TrueBB = TBA->getBasicBlock();
3520   BasicBlock *FalseBB = FBA->getBasicBlock();
3521 
3522   // Perform the actual simplification.
3523   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3524                                     0);
3525 }
3526 
3527 /// This is called when we find an icmp instruction
3528 /// (a seteq/setne with a constant) as the only instruction in a
3529 /// block that ends with an uncond branch.  We are looking for a very specific
3530 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3531 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3532 /// default value goes to an uncond block with a seteq in it, we get something
3533 /// like:
3534 ///
3535 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3536 /// DEFAULT:
3537 ///   %tmp = icmp eq i8 %A, 92
3538 ///   br label %end
3539 /// end:
3540 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3541 ///
3542 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3543 /// the PHI, merging the third icmp into the switch.
3544 static bool tryToSimplifyUncondBranchWithICmpInIt(
3545     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3546     const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) {
3547   BasicBlock *BB = ICI->getParent();
3548 
3549   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3550   // complex.
3551   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3552     return false;
3553 
3554   Value *V = ICI->getOperand(0);
3555   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3556 
3557   // The pattern we're looking for is where our only predecessor is a switch on
3558   // 'V' and this block is the default case for the switch.  In this case we can
3559   // fold the compared value into the switch to simplify things.
3560   BasicBlock *Pred = BB->getSinglePredecessor();
3561   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3562     return false;
3563 
3564   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3565   if (SI->getCondition() != V)
3566     return false;
3567 
3568   // If BB is reachable on a non-default case, then we simply know the value of
3569   // V in this block.  Substitute it and constant fold the icmp instruction
3570   // away.
3571   if (SI->getDefaultDest() != BB) {
3572     ConstantInt *VVal = SI->findCaseDest(BB);
3573     assert(VVal && "Should have a unique destination value");
3574     ICI->setOperand(0, VVal);
3575 
3576     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3577       ICI->replaceAllUsesWith(V);
3578       ICI->eraseFromParent();
3579     }
3580     // BB is now empty, so it is likely to simplify away.
3581     return simplifyCFG(BB, TTI, Options) | true;
3582   }
3583 
3584   // Ok, the block is reachable from the default dest.  If the constant we're
3585   // comparing exists in one of the other edges, then we can constant fold ICI
3586   // and zap it.
3587   if (SI->findCaseValue(Cst) != SI->case_default()) {
3588     Value *V;
3589     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3590       V = ConstantInt::getFalse(BB->getContext());
3591     else
3592       V = ConstantInt::getTrue(BB->getContext());
3593 
3594     ICI->replaceAllUsesWith(V);
3595     ICI->eraseFromParent();
3596     // BB is now empty, so it is likely to simplify away.
3597     return simplifyCFG(BB, TTI, Options) | true;
3598   }
3599 
3600   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3601   // the block.
3602   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3603   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3604   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3605       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3606     return false;
3607 
3608   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3609   // true in the PHI.
3610   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3611   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3612 
3613   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3614     std::swap(DefaultCst, NewCst);
3615 
3616   // Replace ICI (which is used by the PHI for the default value) with true or
3617   // false depending on if it is EQ or NE.
3618   ICI->replaceAllUsesWith(DefaultCst);
3619   ICI->eraseFromParent();
3620 
3621   // Okay, the switch goes to this block on a default value.  Add an edge from
3622   // the switch to the merge point on the compared value.
3623   BasicBlock *NewBB =
3624       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3625   SmallVector<uint64_t, 8> Weights;
3626   bool HasWeights = HasBranchWeights(SI);
3627   if (HasWeights) {
3628     GetBranchWeights(SI, Weights);
3629     if (Weights.size() == 1 + SI->getNumCases()) {
3630       // Split weight for default case to case for "Cst".
3631       Weights[0] = (Weights[0] + 1) >> 1;
3632       Weights.push_back(Weights[0]);
3633 
3634       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3635       setBranchWeights(SI, MDWeights);
3636     }
3637   }
3638   SI->addCase(Cst, NewBB);
3639 
3640   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3641   Builder.SetInsertPoint(NewBB);
3642   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3643   Builder.CreateBr(SuccBlock);
3644   PHIUse->addIncoming(NewCst, NewBB);
3645   return true;
3646 }
3647 
3648 /// The specified branch is a conditional branch.
3649 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3650 /// fold it into a switch instruction if so.
3651 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3652                                       const DataLayout &DL) {
3653   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3654   if (!Cond)
3655     return false;
3656 
3657   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3658   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3659   // 'setne's and'ed together, collect them.
3660 
3661   // Try to gather values from a chain of and/or to be turned into a switch
3662   ConstantComparesGatherer ConstantCompare(Cond, DL);
3663   // Unpack the result
3664   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3665   Value *CompVal = ConstantCompare.CompValue;
3666   unsigned UsedICmps = ConstantCompare.UsedICmps;
3667   Value *ExtraCase = ConstantCompare.Extra;
3668 
3669   // If we didn't have a multiply compared value, fail.
3670   if (!CompVal)
3671     return false;
3672 
3673   // Avoid turning single icmps into a switch.
3674   if (UsedICmps <= 1)
3675     return false;
3676 
3677   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3678 
3679   // There might be duplicate constants in the list, which the switch
3680   // instruction can't handle, remove them now.
3681   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3682   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3683 
3684   // If Extra was used, we require at least two switch values to do the
3685   // transformation.  A switch with one value is just a conditional branch.
3686   if (ExtraCase && Values.size() < 2)
3687     return false;
3688 
3689   // TODO: Preserve branch weight metadata, similarly to how
3690   // FoldValueComparisonIntoPredecessors preserves it.
3691 
3692   // Figure out which block is which destination.
3693   BasicBlock *DefaultBB = BI->getSuccessor(1);
3694   BasicBlock *EdgeBB = BI->getSuccessor(0);
3695   if (!TrueWhenEqual)
3696     std::swap(DefaultBB, EdgeBB);
3697 
3698   BasicBlock *BB = BI->getParent();
3699 
3700   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3701                << " cases into SWITCH.  BB is:\n"
3702                << *BB);
3703 
3704   // If there are any extra values that couldn't be folded into the switch
3705   // then we evaluate them with an explicit branch first.  Split the block
3706   // right before the condbr to handle it.
3707   if (ExtraCase) {
3708     BasicBlock *NewBB =
3709         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3710     // Remove the uncond branch added to the old block.
3711     TerminatorInst *OldTI = BB->getTerminator();
3712     Builder.SetInsertPoint(OldTI);
3713 
3714     if (TrueWhenEqual)
3715       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3716     else
3717       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3718 
3719     OldTI->eraseFromParent();
3720 
3721     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3722     // for the edge we just added.
3723     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3724 
3725     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3726                  << "\nEXTRABB = " << *BB);
3727     BB = NewBB;
3728   }
3729 
3730   Builder.SetInsertPoint(BI);
3731   // Convert pointer to int before we switch.
3732   if (CompVal->getType()->isPointerTy()) {
3733     CompVal = Builder.CreatePtrToInt(
3734         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3735   }
3736 
3737   // Create the new switch instruction now.
3738   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3739 
3740   // Add all of the 'cases' to the switch instruction.
3741   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3742     New->addCase(Values[i], EdgeBB);
3743 
3744   // We added edges from PI to the EdgeBB.  As such, if there were any
3745   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3746   // the number of edges added.
3747   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3748     PHINode *PN = cast<PHINode>(BBI);
3749     Value *InVal = PN->getIncomingValueForBlock(BB);
3750     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3751       PN->addIncoming(InVal, BB);
3752   }
3753 
3754   // Erase the old branch instruction.
3755   EraseTerminatorInstAndDCECond(BI);
3756 
3757   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3758   return true;
3759 }
3760 
3761 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3762   if (isa<PHINode>(RI->getValue()))
3763     return SimplifyCommonResume(RI);
3764   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3765            RI->getValue() == RI->getParent()->getFirstNonPHI())
3766     // The resume must unwind the exception that caused control to branch here.
3767     return SimplifySingleResume(RI);
3768 
3769   return false;
3770 }
3771 
3772 // Simplify resume that is shared by several landing pads (phi of landing pad).
3773 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3774   BasicBlock *BB = RI->getParent();
3775 
3776   // Check that there are no other instructions except for debug intrinsics
3777   // between the phi of landing pads (RI->getValue()) and resume instruction.
3778   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3779                        E = RI->getIterator();
3780   while (++I != E)
3781     if (!isa<DbgInfoIntrinsic>(I))
3782       return false;
3783 
3784   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3785   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3786 
3787   // Check incoming blocks to see if any of them are trivial.
3788   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3789        Idx++) {
3790     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3791     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3792 
3793     // If the block has other successors, we can not delete it because
3794     // it has other dependents.
3795     if (IncomingBB->getUniqueSuccessor() != BB)
3796       continue;
3797 
3798     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3799     // Not the landing pad that caused the control to branch here.
3800     if (IncomingValue != LandingPad)
3801       continue;
3802 
3803     bool isTrivial = true;
3804 
3805     I = IncomingBB->getFirstNonPHI()->getIterator();
3806     E = IncomingBB->getTerminator()->getIterator();
3807     while (++I != E)
3808       if (!isa<DbgInfoIntrinsic>(I)) {
3809         isTrivial = false;
3810         break;
3811       }
3812 
3813     if (isTrivial)
3814       TrivialUnwindBlocks.insert(IncomingBB);
3815   }
3816 
3817   // If no trivial unwind blocks, don't do any simplifications.
3818   if (TrivialUnwindBlocks.empty())
3819     return false;
3820 
3821   // Turn all invokes that unwind here into calls.
3822   for (auto *TrivialBB : TrivialUnwindBlocks) {
3823     // Blocks that will be simplified should be removed from the phi node.
3824     // Note there could be multiple edges to the resume block, and we need
3825     // to remove them all.
3826     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3827       BB->removePredecessor(TrivialBB, true);
3828 
3829     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3830          PI != PE;) {
3831       BasicBlock *Pred = *PI++;
3832       removeUnwindEdge(Pred);
3833     }
3834 
3835     // In each SimplifyCFG run, only the current processed block can be erased.
3836     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3837     // of erasing TrivialBB, we only remove the branch to the common resume
3838     // block so that we can later erase the resume block since it has no
3839     // predecessors.
3840     TrivialBB->getTerminator()->eraseFromParent();
3841     new UnreachableInst(RI->getContext(), TrivialBB);
3842   }
3843 
3844   // Delete the resume block if all its predecessors have been removed.
3845   if (pred_empty(BB))
3846     BB->eraseFromParent();
3847 
3848   return !TrivialUnwindBlocks.empty();
3849 }
3850 
3851 // Simplify resume that is only used by a single (non-phi) landing pad.
3852 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3853   BasicBlock *BB = RI->getParent();
3854   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3855   assert(RI->getValue() == LPInst &&
3856          "Resume must unwind the exception that caused control to here");
3857 
3858   // Check that there are no other instructions except for debug intrinsics.
3859   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3860   while (++I != E)
3861     if (!isa<DbgInfoIntrinsic>(I))
3862       return false;
3863 
3864   // Turn all invokes that unwind here into calls and delete the basic block.
3865   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3866     BasicBlock *Pred = *PI++;
3867     removeUnwindEdge(Pred);
3868   }
3869 
3870   // The landingpad is now unreachable.  Zap it.
3871   BB->eraseFromParent();
3872   if (LoopHeaders)
3873     LoopHeaders->erase(BB);
3874   return true;
3875 }
3876 
3877 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3878   // If this is a trivial cleanup pad that executes no instructions, it can be
3879   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3880   // that is an EH pad will be updated to continue to the caller and any
3881   // predecessor that terminates with an invoke instruction will have its invoke
3882   // instruction converted to a call instruction.  If the cleanup pad being
3883   // simplified does not continue to the caller, each predecessor will be
3884   // updated to continue to the unwind destination of the cleanup pad being
3885   // simplified.
3886   BasicBlock *BB = RI->getParent();
3887   CleanupPadInst *CPInst = RI->getCleanupPad();
3888   if (CPInst->getParent() != BB)
3889     // This isn't an empty cleanup.
3890     return false;
3891 
3892   // We cannot kill the pad if it has multiple uses.  This typically arises
3893   // from unreachable basic blocks.
3894   if (!CPInst->hasOneUse())
3895     return false;
3896 
3897   // Check that there are no other instructions except for benign intrinsics.
3898   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3899   while (++I != E) {
3900     auto *II = dyn_cast<IntrinsicInst>(I);
3901     if (!II)
3902       return false;
3903 
3904     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3905     switch (IntrinsicID) {
3906     case Intrinsic::dbg_declare:
3907     case Intrinsic::dbg_value:
3908     case Intrinsic::lifetime_end:
3909       break;
3910     default:
3911       return false;
3912     }
3913   }
3914 
3915   // If the cleanup return we are simplifying unwinds to the caller, this will
3916   // set UnwindDest to nullptr.
3917   BasicBlock *UnwindDest = RI->getUnwindDest();
3918   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3919 
3920   // We're about to remove BB from the control flow.  Before we do, sink any
3921   // PHINodes into the unwind destination.  Doing this before changing the
3922   // control flow avoids some potentially slow checks, since we can currently
3923   // be certain that UnwindDest and BB have no common predecessors (since they
3924   // are both EH pads).
3925   if (UnwindDest) {
3926     // First, go through the PHI nodes in UnwindDest and update any nodes that
3927     // reference the block we are removing
3928     for (BasicBlock::iterator I = UnwindDest->begin(),
3929                               IE = DestEHPad->getIterator();
3930          I != IE; ++I) {
3931       PHINode *DestPN = cast<PHINode>(I);
3932 
3933       int Idx = DestPN->getBasicBlockIndex(BB);
3934       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3935       assert(Idx != -1);
3936       // This PHI node has an incoming value that corresponds to a control
3937       // path through the cleanup pad we are removing.  If the incoming
3938       // value is in the cleanup pad, it must be a PHINode (because we
3939       // verified above that the block is otherwise empty).  Otherwise, the
3940       // value is either a constant or a value that dominates the cleanup
3941       // pad being removed.
3942       //
3943       // Because BB and UnwindDest are both EH pads, all of their
3944       // predecessors must unwind to these blocks, and since no instruction
3945       // can have multiple unwind destinations, there will be no overlap in
3946       // incoming blocks between SrcPN and DestPN.
3947       Value *SrcVal = DestPN->getIncomingValue(Idx);
3948       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3949 
3950       // Remove the entry for the block we are deleting.
3951       DestPN->removeIncomingValue(Idx, false);
3952 
3953       if (SrcPN && SrcPN->getParent() == BB) {
3954         // If the incoming value was a PHI node in the cleanup pad we are
3955         // removing, we need to merge that PHI node's incoming values into
3956         // DestPN.
3957         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3958              SrcIdx != SrcE; ++SrcIdx) {
3959           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3960                               SrcPN->getIncomingBlock(SrcIdx));
3961         }
3962       } else {
3963         // Otherwise, the incoming value came from above BB and
3964         // so we can just reuse it.  We must associate all of BB's
3965         // predecessors with this value.
3966         for (auto *pred : predecessors(BB)) {
3967           DestPN->addIncoming(SrcVal, pred);
3968         }
3969       }
3970     }
3971 
3972     // Sink any remaining PHI nodes directly into UnwindDest.
3973     Instruction *InsertPt = DestEHPad;
3974     for (BasicBlock::iterator I = BB->begin(),
3975                               IE = BB->getFirstNonPHI()->getIterator();
3976          I != IE;) {
3977       // The iterator must be incremented here because the instructions are
3978       // being moved to another block.
3979       PHINode *PN = cast<PHINode>(I++);
3980       if (PN->use_empty())
3981         // If the PHI node has no uses, just leave it.  It will be erased
3982         // when we erase BB below.
3983         continue;
3984 
3985       // Otherwise, sink this PHI node into UnwindDest.
3986       // Any predecessors to UnwindDest which are not already represented
3987       // must be back edges which inherit the value from the path through
3988       // BB.  In this case, the PHI value must reference itself.
3989       for (auto *pred : predecessors(UnwindDest))
3990         if (pred != BB)
3991           PN->addIncoming(PN, pred);
3992       PN->moveBefore(InsertPt);
3993     }
3994   }
3995 
3996   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3997     // The iterator must be updated here because we are removing this pred.
3998     BasicBlock *PredBB = *PI++;
3999     if (UnwindDest == nullptr) {
4000       removeUnwindEdge(PredBB);
4001     } else {
4002       TerminatorInst *TI = PredBB->getTerminator();
4003       TI->replaceUsesOfWith(BB, UnwindDest);
4004     }
4005   }
4006 
4007   // The cleanup pad is now unreachable.  Zap it.
4008   BB->eraseFromParent();
4009   return true;
4010 }
4011 
4012 // Try to merge two cleanuppads together.
4013 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4014   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4015   // with.
4016   BasicBlock *UnwindDest = RI->getUnwindDest();
4017   if (!UnwindDest)
4018     return false;
4019 
4020   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4021   // be safe to merge without code duplication.
4022   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4023     return false;
4024 
4025   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4026   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4027   if (!SuccessorCleanupPad)
4028     return false;
4029 
4030   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4031   // Replace any uses of the successor cleanupad with the predecessor pad
4032   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4033   // funclet bundle operands.
4034   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4035   // Remove the old cleanuppad.
4036   SuccessorCleanupPad->eraseFromParent();
4037   // Now, we simply replace the cleanupret with a branch to the unwind
4038   // destination.
4039   BranchInst::Create(UnwindDest, RI->getParent());
4040   RI->eraseFromParent();
4041 
4042   return true;
4043 }
4044 
4045 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4046   // It is possible to transiantly have an undef cleanuppad operand because we
4047   // have deleted some, but not all, dead blocks.
4048   // Eventually, this block will be deleted.
4049   if (isa<UndefValue>(RI->getOperand(0)))
4050     return false;
4051 
4052   if (mergeCleanupPad(RI))
4053     return true;
4054 
4055   if (removeEmptyCleanup(RI))
4056     return true;
4057 
4058   return false;
4059 }
4060 
4061 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4062   BasicBlock *BB = RI->getParent();
4063   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4064     return false;
4065 
4066   // Find predecessors that end with branches.
4067   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4068   SmallVector<BranchInst *, 8> CondBranchPreds;
4069   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4070     BasicBlock *P = *PI;
4071     TerminatorInst *PTI = P->getTerminator();
4072     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4073       if (BI->isUnconditional())
4074         UncondBranchPreds.push_back(P);
4075       else
4076         CondBranchPreds.push_back(BI);
4077     }
4078   }
4079 
4080   // If we found some, do the transformation!
4081   if (!UncondBranchPreds.empty() && DupRet) {
4082     while (!UncondBranchPreds.empty()) {
4083       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4084       DEBUG(dbgs() << "FOLDING: " << *BB
4085                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4086       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4087     }
4088 
4089     // If we eliminated all predecessors of the block, delete the block now.
4090     if (pred_empty(BB)) {
4091       // We know there are no successors, so just nuke the block.
4092       BB->eraseFromParent();
4093       if (LoopHeaders)
4094         LoopHeaders->erase(BB);
4095     }
4096 
4097     return true;
4098   }
4099 
4100   // Check out all of the conditional branches going to this return
4101   // instruction.  If any of them just select between returns, change the
4102   // branch itself into a select/return pair.
4103   while (!CondBranchPreds.empty()) {
4104     BranchInst *BI = CondBranchPreds.pop_back_val();
4105 
4106     // Check to see if the non-BB successor is also a return block.
4107     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4108         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4109         SimplifyCondBranchToTwoReturns(BI, Builder))
4110       return true;
4111   }
4112   return false;
4113 }
4114 
4115 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4116   BasicBlock *BB = UI->getParent();
4117 
4118   bool Changed = false;
4119 
4120   // If there are any instructions immediately before the unreachable that can
4121   // be removed, do so.
4122   while (UI->getIterator() != BB->begin()) {
4123     BasicBlock::iterator BBI = UI->getIterator();
4124     --BBI;
4125     // Do not delete instructions that can have side effects which might cause
4126     // the unreachable to not be reachable; specifically, calls and volatile
4127     // operations may have this effect.
4128     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4129       break;
4130 
4131     if (BBI->mayHaveSideEffects()) {
4132       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4133         if (SI->isVolatile())
4134           break;
4135       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4136         if (LI->isVolatile())
4137           break;
4138       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4139         if (RMWI->isVolatile())
4140           break;
4141       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4142         if (CXI->isVolatile())
4143           break;
4144       } else if (isa<CatchPadInst>(BBI)) {
4145         // A catchpad may invoke exception object constructors and such, which
4146         // in some languages can be arbitrary code, so be conservative by
4147         // default.
4148         // For CoreCLR, it just involves a type test, so can be removed.
4149         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4150             EHPersonality::CoreCLR)
4151           break;
4152       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4153                  !isa<LandingPadInst>(BBI)) {
4154         break;
4155       }
4156       // Note that deleting LandingPad's here is in fact okay, although it
4157       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4158       // all the predecessors of this block will be the unwind edges of Invokes,
4159       // and we can therefore guarantee this block will be erased.
4160     }
4161 
4162     // Delete this instruction (any uses are guaranteed to be dead)
4163     if (!BBI->use_empty())
4164       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4165     BBI->eraseFromParent();
4166     Changed = true;
4167   }
4168 
4169   // If the unreachable instruction is the first in the block, take a gander
4170   // at all of the predecessors of this instruction, and simplify them.
4171   if (&BB->front() != UI)
4172     return Changed;
4173 
4174   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4175   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4176     TerminatorInst *TI = Preds[i]->getTerminator();
4177     IRBuilder<> Builder(TI);
4178     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4179       if (BI->isUnconditional()) {
4180         if (BI->getSuccessor(0) == BB) {
4181           new UnreachableInst(TI->getContext(), TI);
4182           TI->eraseFromParent();
4183           Changed = true;
4184         }
4185       } else {
4186         if (BI->getSuccessor(0) == BB) {
4187           Builder.CreateBr(BI->getSuccessor(1));
4188           EraseTerminatorInstAndDCECond(BI);
4189         } else if (BI->getSuccessor(1) == BB) {
4190           Builder.CreateBr(BI->getSuccessor(0));
4191           EraseTerminatorInstAndDCECond(BI);
4192           Changed = true;
4193         }
4194       }
4195     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4196       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4197         if (i->getCaseSuccessor() != BB) {
4198           ++i;
4199           continue;
4200         }
4201         BB->removePredecessor(SI->getParent());
4202         i = SI->removeCase(i);
4203         e = SI->case_end();
4204         Changed = true;
4205       }
4206     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4207       if (II->getUnwindDest() == BB) {
4208         removeUnwindEdge(TI->getParent());
4209         Changed = true;
4210       }
4211     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4212       if (CSI->getUnwindDest() == BB) {
4213         removeUnwindEdge(TI->getParent());
4214         Changed = true;
4215         continue;
4216       }
4217 
4218       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4219                                              E = CSI->handler_end();
4220            I != E; ++I) {
4221         if (*I == BB) {
4222           CSI->removeHandler(I);
4223           --I;
4224           --E;
4225           Changed = true;
4226         }
4227       }
4228       if (CSI->getNumHandlers() == 0) {
4229         BasicBlock *CatchSwitchBB = CSI->getParent();
4230         if (CSI->hasUnwindDest()) {
4231           // Redirect preds to the unwind dest
4232           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4233         } else {
4234           // Rewrite all preds to unwind to caller (or from invoke to call).
4235           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4236           for (BasicBlock *EHPred : EHPreds)
4237             removeUnwindEdge(EHPred);
4238         }
4239         // The catchswitch is no longer reachable.
4240         new UnreachableInst(CSI->getContext(), CSI);
4241         CSI->eraseFromParent();
4242         Changed = true;
4243       }
4244     } else if (isa<CleanupReturnInst>(TI)) {
4245       new UnreachableInst(TI->getContext(), TI);
4246       TI->eraseFromParent();
4247       Changed = true;
4248     }
4249   }
4250 
4251   // If this block is now dead, remove it.
4252   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4253     // We know there are no successors, so just nuke the block.
4254     BB->eraseFromParent();
4255     if (LoopHeaders)
4256       LoopHeaders->erase(BB);
4257     return true;
4258   }
4259 
4260   return Changed;
4261 }
4262 
4263 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4264   assert(Cases.size() >= 1);
4265 
4266   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4267   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4268     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4269       return false;
4270   }
4271   return true;
4272 }
4273 
4274 /// Turn a switch with two reachable destinations into an integer range
4275 /// comparison and branch.
4276 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4277   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4278 
4279   bool HasDefault =
4280       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4281 
4282   // Partition the cases into two sets with different destinations.
4283   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4284   BasicBlock *DestB = nullptr;
4285   SmallVector<ConstantInt *, 16> CasesA;
4286   SmallVector<ConstantInt *, 16> CasesB;
4287 
4288   for (auto Case : SI->cases()) {
4289     BasicBlock *Dest = Case.getCaseSuccessor();
4290     if (!DestA)
4291       DestA = Dest;
4292     if (Dest == DestA) {
4293       CasesA.push_back(Case.getCaseValue());
4294       continue;
4295     }
4296     if (!DestB)
4297       DestB = Dest;
4298     if (Dest == DestB) {
4299       CasesB.push_back(Case.getCaseValue());
4300       continue;
4301     }
4302     return false; // More than two destinations.
4303   }
4304 
4305   assert(DestA && DestB &&
4306          "Single-destination switch should have been folded.");
4307   assert(DestA != DestB);
4308   assert(DestB != SI->getDefaultDest());
4309   assert(!CasesB.empty() && "There must be non-default cases.");
4310   assert(!CasesA.empty() || HasDefault);
4311 
4312   // Figure out if one of the sets of cases form a contiguous range.
4313   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4314   BasicBlock *ContiguousDest = nullptr;
4315   BasicBlock *OtherDest = nullptr;
4316   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4317     ContiguousCases = &CasesA;
4318     ContiguousDest = DestA;
4319     OtherDest = DestB;
4320   } else if (CasesAreContiguous(CasesB)) {
4321     ContiguousCases = &CasesB;
4322     ContiguousDest = DestB;
4323     OtherDest = DestA;
4324   } else
4325     return false;
4326 
4327   // Start building the compare and branch.
4328 
4329   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4330   Constant *NumCases =
4331       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4332 
4333   Value *Sub = SI->getCondition();
4334   if (!Offset->isNullValue())
4335     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4336 
4337   Value *Cmp;
4338   // If NumCases overflowed, then all possible values jump to the successor.
4339   if (NumCases->isNullValue() && !ContiguousCases->empty())
4340     Cmp = ConstantInt::getTrue(SI->getContext());
4341   else
4342     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4343   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4344 
4345   // Update weight for the newly-created conditional branch.
4346   if (HasBranchWeights(SI)) {
4347     SmallVector<uint64_t, 8> Weights;
4348     GetBranchWeights(SI, Weights);
4349     if (Weights.size() == 1 + SI->getNumCases()) {
4350       uint64_t TrueWeight = 0;
4351       uint64_t FalseWeight = 0;
4352       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4353         if (SI->getSuccessor(I) == ContiguousDest)
4354           TrueWeight += Weights[I];
4355         else
4356           FalseWeight += Weights[I];
4357       }
4358       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4359         TrueWeight /= 2;
4360         FalseWeight /= 2;
4361       }
4362       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4363     }
4364   }
4365 
4366   // Prune obsolete incoming values off the successors' PHI nodes.
4367   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4368     unsigned PreviousEdges = ContiguousCases->size();
4369     if (ContiguousDest == SI->getDefaultDest())
4370       ++PreviousEdges;
4371     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4372       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4373   }
4374   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4375     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4376     if (OtherDest == SI->getDefaultDest())
4377       ++PreviousEdges;
4378     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4379       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4380   }
4381 
4382   // Drop the switch.
4383   SI->eraseFromParent();
4384 
4385   return true;
4386 }
4387 
4388 /// Compute masked bits for the condition of a switch
4389 /// and use it to remove dead cases.
4390 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4391                                      const DataLayout &DL) {
4392   Value *Cond = SI->getCondition();
4393   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4394   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4395 
4396   // We can also eliminate cases by determining that their values are outside of
4397   // the limited range of the condition based on how many significant (non-sign)
4398   // bits are in the condition value.
4399   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4400   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4401 
4402   // Gather dead cases.
4403   SmallVector<ConstantInt *, 8> DeadCases;
4404   for (auto &Case : SI->cases()) {
4405     const APInt &CaseVal = Case.getCaseValue()->getValue();
4406     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4407         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4408       DeadCases.push_back(Case.getCaseValue());
4409       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4410     }
4411   }
4412 
4413   // If we can prove that the cases must cover all possible values, the
4414   // default destination becomes dead and we can remove it.  If we know some
4415   // of the bits in the value, we can use that to more precisely compute the
4416   // number of possible unique case values.
4417   bool HasDefault =
4418       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4419   const unsigned NumUnknownBits =
4420       Bits - (Known.Zero | Known.One).countPopulation();
4421   assert(NumUnknownBits <= Bits);
4422   if (HasDefault && DeadCases.empty() &&
4423       NumUnknownBits < 64 /* avoid overflow */ &&
4424       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4425     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4426     BasicBlock *NewDefault =
4427         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4428     SI->setDefaultDest(&*NewDefault);
4429     SplitBlock(&*NewDefault, &NewDefault->front());
4430     auto *OldTI = NewDefault->getTerminator();
4431     new UnreachableInst(SI->getContext(), OldTI);
4432     EraseTerminatorInstAndDCECond(OldTI);
4433     return true;
4434   }
4435 
4436   SmallVector<uint64_t, 8> Weights;
4437   bool HasWeight = HasBranchWeights(SI);
4438   if (HasWeight) {
4439     GetBranchWeights(SI, Weights);
4440     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4441   }
4442 
4443   // Remove dead cases from the switch.
4444   for (ConstantInt *DeadCase : DeadCases) {
4445     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4446     assert(CaseI != SI->case_default() &&
4447            "Case was not found. Probably mistake in DeadCases forming.");
4448     if (HasWeight) {
4449       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4450       Weights.pop_back();
4451     }
4452 
4453     // Prune unused values from PHI nodes.
4454     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4455     SI->removeCase(CaseI);
4456   }
4457   if (HasWeight && Weights.size() >= 2) {
4458     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4459     setBranchWeights(SI, MDWeights);
4460   }
4461 
4462   return !DeadCases.empty();
4463 }
4464 
4465 /// If BB would be eligible for simplification by
4466 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4467 /// by an unconditional branch), look at the phi node for BB in the successor
4468 /// block and see if the incoming value is equal to CaseValue. If so, return
4469 /// the phi node, and set PhiIndex to BB's index in the phi node.
4470 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4471                                               BasicBlock *BB, int *PhiIndex) {
4472   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4473     return nullptr; // BB must be empty to be a candidate for simplification.
4474   if (!BB->getSinglePredecessor())
4475     return nullptr; // BB must be dominated by the switch.
4476 
4477   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4478   if (!Branch || !Branch->isUnconditional())
4479     return nullptr; // Terminator must be unconditional branch.
4480 
4481   BasicBlock *Succ = Branch->getSuccessor(0);
4482 
4483   for (PHINode &PHI : Succ->phis()) {
4484     int Idx = PHI.getBasicBlockIndex(BB);
4485     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4486 
4487     Value *InValue = PHI.getIncomingValue(Idx);
4488     if (InValue != CaseValue)
4489       continue;
4490 
4491     *PhiIndex = Idx;
4492     return &PHI;
4493   }
4494 
4495   return nullptr;
4496 }
4497 
4498 /// Try to forward the condition of a switch instruction to a phi node
4499 /// dominated by the switch, if that would mean that some of the destination
4500 /// blocks of the switch can be folded away. Return true if a change is made.
4501 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4502   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4503 
4504   ForwardingNodesMap ForwardingNodes;
4505   BasicBlock *SwitchBlock = SI->getParent();
4506   bool Changed = false;
4507   for (auto &Case : SI->cases()) {
4508     ConstantInt *CaseValue = Case.getCaseValue();
4509     BasicBlock *CaseDest = Case.getCaseSuccessor();
4510 
4511     // Replace phi operands in successor blocks that are using the constant case
4512     // value rather than the switch condition variable:
4513     //   switchbb:
4514     //   switch i32 %x, label %default [
4515     //     i32 17, label %succ
4516     //   ...
4517     //   succ:
4518     //     %r = phi i32 ... [ 17, %switchbb ] ...
4519     // -->
4520     //     %r = phi i32 ... [ %x, %switchbb ] ...
4521 
4522     for (PHINode &Phi : CaseDest->phis()) {
4523       // This only works if there is exactly 1 incoming edge from the switch to
4524       // a phi. If there is >1, that means multiple cases of the switch map to 1
4525       // value in the phi, and that phi value is not the switch condition. Thus,
4526       // this transform would not make sense (the phi would be invalid because
4527       // a phi can't have different incoming values from the same block).
4528       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4529       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4530           count(Phi.blocks(), SwitchBlock) == 1) {
4531         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4532         Changed = true;
4533       }
4534     }
4535 
4536     // Collect phi nodes that are indirectly using this switch's case constants.
4537     int PhiIdx;
4538     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4539       ForwardingNodes[Phi].push_back(PhiIdx);
4540   }
4541 
4542   for (auto &ForwardingNode : ForwardingNodes) {
4543     PHINode *Phi = ForwardingNode.first;
4544     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4545     if (Indexes.size() < 2)
4546       continue;
4547 
4548     for (int Index : Indexes)
4549       Phi->setIncomingValue(Index, SI->getCondition());
4550     Changed = true;
4551   }
4552 
4553   return Changed;
4554 }
4555 
4556 /// Return true if the backend will be able to handle
4557 /// initializing an array of constants like C.
4558 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4559   if (C->isThreadDependent())
4560     return false;
4561   if (C->isDLLImportDependent())
4562     return false;
4563 
4564   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4565       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4566       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4567     return false;
4568 
4569   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4570     if (!CE->isGEPWithNoNotionalOverIndexing())
4571       return false;
4572     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4573       return false;
4574   }
4575 
4576   if (!TTI.shouldBuildLookupTablesForConstant(C))
4577     return false;
4578 
4579   return true;
4580 }
4581 
4582 /// If V is a Constant, return it. Otherwise, try to look up
4583 /// its constant value in ConstantPool, returning 0 if it's not there.
4584 static Constant *
4585 LookupConstant(Value *V,
4586                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4587   if (Constant *C = dyn_cast<Constant>(V))
4588     return C;
4589   return ConstantPool.lookup(V);
4590 }
4591 
4592 /// Try to fold instruction I into a constant. This works for
4593 /// simple instructions such as binary operations where both operands are
4594 /// constant or can be replaced by constants from the ConstantPool. Returns the
4595 /// resulting constant on success, 0 otherwise.
4596 static Constant *
4597 ConstantFold(Instruction *I, const DataLayout &DL,
4598              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4599   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4600     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4601     if (!A)
4602       return nullptr;
4603     if (A->isAllOnesValue())
4604       return LookupConstant(Select->getTrueValue(), ConstantPool);
4605     if (A->isNullValue())
4606       return LookupConstant(Select->getFalseValue(), ConstantPool);
4607     return nullptr;
4608   }
4609 
4610   SmallVector<Constant *, 4> COps;
4611   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4612     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4613       COps.push_back(A);
4614     else
4615       return nullptr;
4616   }
4617 
4618   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4619     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4620                                            COps[1], DL);
4621   }
4622 
4623   return ConstantFoldInstOperands(I, COps, DL);
4624 }
4625 
4626 /// Try to determine the resulting constant values in phi nodes
4627 /// at the common destination basic block, *CommonDest, for one of the case
4628 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4629 /// case), of a switch instruction SI.
4630 static bool
4631 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4632                BasicBlock **CommonDest,
4633                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4634                const DataLayout &DL, const TargetTransformInfo &TTI) {
4635   // The block from which we enter the common destination.
4636   BasicBlock *Pred = SI->getParent();
4637 
4638   // If CaseDest is empty except for some side-effect free instructions through
4639   // which we can constant-propagate the CaseVal, continue to its successor.
4640   SmallDenseMap<Value *, Constant *> ConstantPool;
4641   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4642   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4643        ++I) {
4644     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4645       // If the terminator is a simple branch, continue to the next block.
4646       if (T->getNumSuccessors() != 1 || T->isExceptional())
4647         return false;
4648       Pred = CaseDest;
4649       CaseDest = T->getSuccessor(0);
4650     } else if (isa<DbgInfoIntrinsic>(I)) {
4651       // Skip debug intrinsic.
4652       continue;
4653     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4654       // Instruction is side-effect free and constant.
4655 
4656       // If the instruction has uses outside this block or a phi node slot for
4657       // the block, it is not safe to bypass the instruction since it would then
4658       // no longer dominate all its uses.
4659       for (auto &Use : I->uses()) {
4660         User *User = Use.getUser();
4661         if (Instruction *I = dyn_cast<Instruction>(User))
4662           if (I->getParent() == CaseDest)
4663             continue;
4664         if (PHINode *Phi = dyn_cast<PHINode>(User))
4665           if (Phi->getIncomingBlock(Use) == CaseDest)
4666             continue;
4667         return false;
4668       }
4669 
4670       ConstantPool.insert(std::make_pair(&*I, C));
4671     } else {
4672       break;
4673     }
4674   }
4675 
4676   // If we did not have a CommonDest before, use the current one.
4677   if (!*CommonDest)
4678     *CommonDest = CaseDest;
4679   // If the destination isn't the common one, abort.
4680   if (CaseDest != *CommonDest)
4681     return false;
4682 
4683   // Get the values for this case from phi nodes in the destination block.
4684   for (PHINode &PHI : (*CommonDest)->phis()) {
4685     int Idx = PHI.getBasicBlockIndex(Pred);
4686     if (Idx == -1)
4687       continue;
4688 
4689     Constant *ConstVal =
4690         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4691     if (!ConstVal)
4692       return false;
4693 
4694     // Be conservative about which kinds of constants we support.
4695     if (!ValidLookupTableConstant(ConstVal, TTI))
4696       return false;
4697 
4698     Res.push_back(std::make_pair(&PHI, ConstVal));
4699   }
4700 
4701   return Res.size() > 0;
4702 }
4703 
4704 // Helper function used to add CaseVal to the list of cases that generate
4705 // Result. Returns the updated number of cases that generate this result.
4706 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4707                                  SwitchCaseResultVectorTy &UniqueResults,
4708                                  Constant *Result) {
4709   for (auto &I : UniqueResults) {
4710     if (I.first == Result) {
4711       I.second.push_back(CaseVal);
4712       return I.second.size();
4713     }
4714   }
4715   UniqueResults.push_back(
4716       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4717   return 1;
4718 }
4719 
4720 // Helper function that initializes a map containing
4721 // results for the PHI node of the common destination block for a switch
4722 // instruction. Returns false if multiple PHI nodes have been found or if
4723 // there is not a common destination block for the switch.
4724 static bool
4725 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4726                       SwitchCaseResultVectorTy &UniqueResults,
4727                       Constant *&DefaultResult, const DataLayout &DL,
4728                       const TargetTransformInfo &TTI,
4729                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4730   for (auto &I : SI->cases()) {
4731     ConstantInt *CaseVal = I.getCaseValue();
4732 
4733     // Resulting value at phi nodes for this case value.
4734     SwitchCaseResultsTy Results;
4735     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4736                         DL, TTI))
4737       return false;
4738 
4739     // Only one value per case is permitted.
4740     if (Results.size() > 1)
4741       return false;
4742 
4743     // Add the case->result mapping to UniqueResults.
4744     const uintptr_t NumCasesForResult =
4745         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4746 
4747     // Early out if there are too many cases for this result.
4748     if (NumCasesForResult > MaxCasesPerResult)
4749       return false;
4750 
4751     // Early out if there are too many unique results.
4752     if (UniqueResults.size() > MaxUniqueResults)
4753       return false;
4754 
4755     // Check the PHI consistency.
4756     if (!PHI)
4757       PHI = Results[0].first;
4758     else if (PHI != Results[0].first)
4759       return false;
4760   }
4761   // Find the default result value.
4762   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4763   BasicBlock *DefaultDest = SI->getDefaultDest();
4764   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4765                  DL, TTI);
4766   // If the default value is not found abort unless the default destination
4767   // is unreachable.
4768   DefaultResult =
4769       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4770   if ((!DefaultResult &&
4771        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4772     return false;
4773 
4774   return true;
4775 }
4776 
4777 // Helper function that checks if it is possible to transform a switch with only
4778 // two cases (or two cases + default) that produces a result into a select.
4779 // Example:
4780 // switch (a) {
4781 //   case 10:                %0 = icmp eq i32 %a, 10
4782 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4783 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4784 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4785 //   default:
4786 //     return 4;
4787 // }
4788 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4789                                    Constant *DefaultResult, Value *Condition,
4790                                    IRBuilder<> &Builder) {
4791   assert(ResultVector.size() == 2 &&
4792          "We should have exactly two unique results at this point");
4793   // If we are selecting between only two cases transform into a simple
4794   // select or a two-way select if default is possible.
4795   if (ResultVector[0].second.size() == 1 &&
4796       ResultVector[1].second.size() == 1) {
4797     ConstantInt *const FirstCase = ResultVector[0].second[0];
4798     ConstantInt *const SecondCase = ResultVector[1].second[0];
4799 
4800     bool DefaultCanTrigger = DefaultResult;
4801     Value *SelectValue = ResultVector[1].first;
4802     if (DefaultCanTrigger) {
4803       Value *const ValueCompare =
4804           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4805       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4806                                          DefaultResult, "switch.select");
4807     }
4808     Value *const ValueCompare =
4809         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4810     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4811                                 SelectValue, "switch.select");
4812   }
4813 
4814   return nullptr;
4815 }
4816 
4817 // Helper function to cleanup a switch instruction that has been converted into
4818 // a select, fixing up PHI nodes and basic blocks.
4819 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4820                                               Value *SelectValue,
4821                                               IRBuilder<> &Builder) {
4822   BasicBlock *SelectBB = SI->getParent();
4823   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4824     PHI->removeIncomingValue(SelectBB);
4825   PHI->addIncoming(SelectValue, SelectBB);
4826 
4827   Builder.CreateBr(PHI->getParent());
4828 
4829   // Remove the switch.
4830   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4831     BasicBlock *Succ = SI->getSuccessor(i);
4832 
4833     if (Succ == PHI->getParent())
4834       continue;
4835     Succ->removePredecessor(SelectBB);
4836   }
4837   SI->eraseFromParent();
4838 }
4839 
4840 /// If the switch is only used to initialize one or more
4841 /// phi nodes in a common successor block with only two different
4842 /// constant values, replace the switch with select.
4843 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4844                            const DataLayout &DL,
4845                            const TargetTransformInfo &TTI) {
4846   Value *const Cond = SI->getCondition();
4847   PHINode *PHI = nullptr;
4848   BasicBlock *CommonDest = nullptr;
4849   Constant *DefaultResult;
4850   SwitchCaseResultVectorTy UniqueResults;
4851   // Collect all the cases that will deliver the same value from the switch.
4852   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4853                              DL, TTI, 2, 1))
4854     return false;
4855   // Selects choose between maximum two values.
4856   if (UniqueResults.size() != 2)
4857     return false;
4858   assert(PHI != nullptr && "PHI for value select not found");
4859 
4860   Builder.SetInsertPoint(SI);
4861   Value *SelectValue =
4862       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4863   if (SelectValue) {
4864     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4865     return true;
4866   }
4867   // The switch couldn't be converted into a select.
4868   return false;
4869 }
4870 
4871 namespace {
4872 
4873 /// This class represents a lookup table that can be used to replace a switch.
4874 class SwitchLookupTable {
4875 public:
4876   /// Create a lookup table to use as a switch replacement with the contents
4877   /// of Values, using DefaultValue to fill any holes in the table.
4878   SwitchLookupTable(
4879       Module &M, uint64_t TableSize, ConstantInt *Offset,
4880       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4881       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4882 
4883   /// Build instructions with Builder to retrieve the value at
4884   /// the position given by Index in the lookup table.
4885   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4886 
4887   /// Return true if a table with TableSize elements of
4888   /// type ElementType would fit in a target-legal register.
4889   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4890                                  Type *ElementType);
4891 
4892 private:
4893   // Depending on the contents of the table, it can be represented in
4894   // different ways.
4895   enum {
4896     // For tables where each element contains the same value, we just have to
4897     // store that single value and return it for each lookup.
4898     SingleValueKind,
4899 
4900     // For tables where there is a linear relationship between table index
4901     // and values. We calculate the result with a simple multiplication
4902     // and addition instead of a table lookup.
4903     LinearMapKind,
4904 
4905     // For small tables with integer elements, we can pack them into a bitmap
4906     // that fits into a target-legal register. Values are retrieved by
4907     // shift and mask operations.
4908     BitMapKind,
4909 
4910     // The table is stored as an array of values. Values are retrieved by load
4911     // instructions from the table.
4912     ArrayKind
4913   } Kind;
4914 
4915   // For SingleValueKind, this is the single value.
4916   Constant *SingleValue = nullptr;
4917 
4918   // For BitMapKind, this is the bitmap.
4919   ConstantInt *BitMap = nullptr;
4920   IntegerType *BitMapElementTy = nullptr;
4921 
4922   // For LinearMapKind, these are the constants used to derive the value.
4923   ConstantInt *LinearOffset = nullptr;
4924   ConstantInt *LinearMultiplier = nullptr;
4925 
4926   // For ArrayKind, this is the array.
4927   GlobalVariable *Array = nullptr;
4928 };
4929 
4930 } // end anonymous namespace
4931 
4932 SwitchLookupTable::SwitchLookupTable(
4933     Module &M, uint64_t TableSize, ConstantInt *Offset,
4934     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4935     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4936   assert(Values.size() && "Can't build lookup table without values!");
4937   assert(TableSize >= Values.size() && "Can't fit values in table!");
4938 
4939   // If all values in the table are equal, this is that value.
4940   SingleValue = Values.begin()->second;
4941 
4942   Type *ValueType = Values.begin()->second->getType();
4943 
4944   // Build up the table contents.
4945   SmallVector<Constant *, 64> TableContents(TableSize);
4946   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4947     ConstantInt *CaseVal = Values[I].first;
4948     Constant *CaseRes = Values[I].second;
4949     assert(CaseRes->getType() == ValueType);
4950 
4951     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4952     TableContents[Idx] = CaseRes;
4953 
4954     if (CaseRes != SingleValue)
4955       SingleValue = nullptr;
4956   }
4957 
4958   // Fill in any holes in the table with the default result.
4959   if (Values.size() < TableSize) {
4960     assert(DefaultValue &&
4961            "Need a default value to fill the lookup table holes.");
4962     assert(DefaultValue->getType() == ValueType);
4963     for (uint64_t I = 0; I < TableSize; ++I) {
4964       if (!TableContents[I])
4965         TableContents[I] = DefaultValue;
4966     }
4967 
4968     if (DefaultValue != SingleValue)
4969       SingleValue = nullptr;
4970   }
4971 
4972   // If each element in the table contains the same value, we only need to store
4973   // that single value.
4974   if (SingleValue) {
4975     Kind = SingleValueKind;
4976     return;
4977   }
4978 
4979   // Check if we can derive the value with a linear transformation from the
4980   // table index.
4981   if (isa<IntegerType>(ValueType)) {
4982     bool LinearMappingPossible = true;
4983     APInt PrevVal;
4984     APInt DistToPrev;
4985     assert(TableSize >= 2 && "Should be a SingleValue table.");
4986     // Check if there is the same distance between two consecutive values.
4987     for (uint64_t I = 0; I < TableSize; ++I) {
4988       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4989       if (!ConstVal) {
4990         // This is an undef. We could deal with it, but undefs in lookup tables
4991         // are very seldom. It's probably not worth the additional complexity.
4992         LinearMappingPossible = false;
4993         break;
4994       }
4995       const APInt &Val = ConstVal->getValue();
4996       if (I != 0) {
4997         APInt Dist = Val - PrevVal;
4998         if (I == 1) {
4999           DistToPrev = Dist;
5000         } else if (Dist != DistToPrev) {
5001           LinearMappingPossible = false;
5002           break;
5003         }
5004       }
5005       PrevVal = Val;
5006     }
5007     if (LinearMappingPossible) {
5008       LinearOffset = cast<ConstantInt>(TableContents[0]);
5009       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5010       Kind = LinearMapKind;
5011       ++NumLinearMaps;
5012       return;
5013     }
5014   }
5015 
5016   // If the type is integer and the table fits in a register, build a bitmap.
5017   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5018     IntegerType *IT = cast<IntegerType>(ValueType);
5019     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5020     for (uint64_t I = TableSize; I > 0; --I) {
5021       TableInt <<= IT->getBitWidth();
5022       // Insert values into the bitmap. Undef values are set to zero.
5023       if (!isa<UndefValue>(TableContents[I - 1])) {
5024         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5025         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5026       }
5027     }
5028     BitMap = ConstantInt::get(M.getContext(), TableInt);
5029     BitMapElementTy = IT;
5030     Kind = BitMapKind;
5031     ++NumBitMaps;
5032     return;
5033   }
5034 
5035   // Store the table in an array.
5036   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5037   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5038 
5039   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5040                              GlobalVariable::PrivateLinkage, Initializer,
5041                              "switch.table." + FuncName);
5042   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5043   Kind = ArrayKind;
5044 }
5045 
5046 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5047   switch (Kind) {
5048   case SingleValueKind:
5049     return SingleValue;
5050   case LinearMapKind: {
5051     // Derive the result value from the input value.
5052     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5053                                           false, "switch.idx.cast");
5054     if (!LinearMultiplier->isOne())
5055       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5056     if (!LinearOffset->isZero())
5057       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5058     return Result;
5059   }
5060   case BitMapKind: {
5061     // Type of the bitmap (e.g. i59).
5062     IntegerType *MapTy = BitMap->getType();
5063 
5064     // Cast Index to the same type as the bitmap.
5065     // Note: The Index is <= the number of elements in the table, so
5066     // truncating it to the width of the bitmask is safe.
5067     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5068 
5069     // Multiply the shift amount by the element width.
5070     ShiftAmt = Builder.CreateMul(
5071         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5072         "switch.shiftamt");
5073 
5074     // Shift down.
5075     Value *DownShifted =
5076         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5077     // Mask off.
5078     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5079   }
5080   case ArrayKind: {
5081     // Make sure the table index will not overflow when treated as signed.
5082     IntegerType *IT = cast<IntegerType>(Index->getType());
5083     uint64_t TableSize =
5084         Array->getInitializer()->getType()->getArrayNumElements();
5085     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5086       Index = Builder.CreateZExt(
5087           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5088           "switch.tableidx.zext");
5089 
5090     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5091     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5092                                            GEPIndices, "switch.gep");
5093     return Builder.CreateLoad(GEP, "switch.load");
5094   }
5095   }
5096   llvm_unreachable("Unknown lookup table kind!");
5097 }
5098 
5099 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5100                                            uint64_t TableSize,
5101                                            Type *ElementType) {
5102   auto *IT = dyn_cast<IntegerType>(ElementType);
5103   if (!IT)
5104     return false;
5105   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5106   // are <= 15, we could try to narrow the type.
5107 
5108   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5109   if (TableSize >= UINT_MAX / IT->getBitWidth())
5110     return false;
5111   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5112 }
5113 
5114 /// Determine whether a lookup table should be built for this switch, based on
5115 /// the number of cases, size of the table, and the types of the results.
5116 static bool
5117 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5118                        const TargetTransformInfo &TTI, const DataLayout &DL,
5119                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5120   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5121     return false; // TableSize overflowed, or mul below might overflow.
5122 
5123   bool AllTablesFitInRegister = true;
5124   bool HasIllegalType = false;
5125   for (const auto &I : ResultTypes) {
5126     Type *Ty = I.second;
5127 
5128     // Saturate this flag to true.
5129     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5130 
5131     // Saturate this flag to false.
5132     AllTablesFitInRegister =
5133         AllTablesFitInRegister &&
5134         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5135 
5136     // If both flags saturate, we're done. NOTE: This *only* works with
5137     // saturating flags, and all flags have to saturate first due to the
5138     // non-deterministic behavior of iterating over a dense map.
5139     if (HasIllegalType && !AllTablesFitInRegister)
5140       break;
5141   }
5142 
5143   // If each table would fit in a register, we should build it anyway.
5144   if (AllTablesFitInRegister)
5145     return true;
5146 
5147   // Don't build a table that doesn't fit in-register if it has illegal types.
5148   if (HasIllegalType)
5149     return false;
5150 
5151   // The table density should be at least 40%. This is the same criterion as for
5152   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5153   // FIXME: Find the best cut-off.
5154   return SI->getNumCases() * 10 >= TableSize * 4;
5155 }
5156 
5157 /// Try to reuse the switch table index compare. Following pattern:
5158 /// \code
5159 ///     if (idx < tablesize)
5160 ///        r = table[idx]; // table does not contain default_value
5161 ///     else
5162 ///        r = default_value;
5163 ///     if (r != default_value)
5164 ///        ...
5165 /// \endcode
5166 /// Is optimized to:
5167 /// \code
5168 ///     cond = idx < tablesize;
5169 ///     if (cond)
5170 ///        r = table[idx];
5171 ///     else
5172 ///        r = default_value;
5173 ///     if (cond)
5174 ///        ...
5175 /// \endcode
5176 /// Jump threading will then eliminate the second if(cond).
5177 static void reuseTableCompare(
5178     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5179     Constant *DefaultValue,
5180     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5181   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5182   if (!CmpInst)
5183     return;
5184 
5185   // We require that the compare is in the same block as the phi so that jump
5186   // threading can do its work afterwards.
5187   if (CmpInst->getParent() != PhiBlock)
5188     return;
5189 
5190   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5191   if (!CmpOp1)
5192     return;
5193 
5194   Value *RangeCmp = RangeCheckBranch->getCondition();
5195   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5196   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5197 
5198   // Check if the compare with the default value is constant true or false.
5199   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5200                                                  DefaultValue, CmpOp1, true);
5201   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5202     return;
5203 
5204   // Check if the compare with the case values is distinct from the default
5205   // compare result.
5206   for (auto ValuePair : Values) {
5207     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5208                                                 ValuePair.second, CmpOp1, true);
5209     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5210       return;
5211     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5212            "Expect true or false as compare result.");
5213   }
5214 
5215   // Check if the branch instruction dominates the phi node. It's a simple
5216   // dominance check, but sufficient for our needs.
5217   // Although this check is invariant in the calling loops, it's better to do it
5218   // at this late stage. Practically we do it at most once for a switch.
5219   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5220   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5221     BasicBlock *Pred = *PI;
5222     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5223       return;
5224   }
5225 
5226   if (DefaultConst == FalseConst) {
5227     // The compare yields the same result. We can replace it.
5228     CmpInst->replaceAllUsesWith(RangeCmp);
5229     ++NumTableCmpReuses;
5230   } else {
5231     // The compare yields the same result, just inverted. We can replace it.
5232     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5233         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5234         RangeCheckBranch);
5235     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5236     ++NumTableCmpReuses;
5237   }
5238 }
5239 
5240 /// If the switch is only used to initialize one or more phi nodes in a common
5241 /// successor block with different constant values, replace the switch with
5242 /// lookup tables.
5243 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5244                                 const DataLayout &DL,
5245                                 const TargetTransformInfo &TTI) {
5246   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5247 
5248   Function *Fn = SI->getParent()->getParent();
5249   // Only build lookup table when we have a target that supports it or the
5250   // attribute is not set.
5251   if (!TTI.shouldBuildLookupTables() ||
5252       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5253     return false;
5254 
5255   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5256   // split off a dense part and build a lookup table for that.
5257 
5258   // FIXME: This creates arrays of GEPs to constant strings, which means each
5259   // GEP needs a runtime relocation in PIC code. We should just build one big
5260   // string and lookup indices into that.
5261 
5262   // Ignore switches with less than three cases. Lookup tables will not make
5263   // them faster, so we don't analyze them.
5264   if (SI->getNumCases() < 3)
5265     return false;
5266 
5267   // Figure out the corresponding result for each case value and phi node in the
5268   // common destination, as well as the min and max case values.
5269   assert(SI->case_begin() != SI->case_end());
5270   SwitchInst::CaseIt CI = SI->case_begin();
5271   ConstantInt *MinCaseVal = CI->getCaseValue();
5272   ConstantInt *MaxCaseVal = CI->getCaseValue();
5273 
5274   BasicBlock *CommonDest = nullptr;
5275 
5276   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5277   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5278 
5279   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5280   SmallDenseMap<PHINode *, Type *> ResultTypes;
5281   SmallVector<PHINode *, 4> PHIs;
5282 
5283   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5284     ConstantInt *CaseVal = CI->getCaseValue();
5285     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5286       MinCaseVal = CaseVal;
5287     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5288       MaxCaseVal = CaseVal;
5289 
5290     // Resulting value at phi nodes for this case value.
5291     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5292     ResultsTy Results;
5293     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5294                         Results, DL, TTI))
5295       return false;
5296 
5297     // Append the result from this case to the list for each phi.
5298     for (const auto &I : Results) {
5299       PHINode *PHI = I.first;
5300       Constant *Value = I.second;
5301       if (!ResultLists.count(PHI))
5302         PHIs.push_back(PHI);
5303       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5304     }
5305   }
5306 
5307   // Keep track of the result types.
5308   for (PHINode *PHI : PHIs) {
5309     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5310   }
5311 
5312   uint64_t NumResults = ResultLists[PHIs[0]].size();
5313   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5314   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5315   bool TableHasHoles = (NumResults < TableSize);
5316 
5317   // If the table has holes, we need a constant result for the default case
5318   // or a bitmask that fits in a register.
5319   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5320   bool HasDefaultResults =
5321       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5322                      DefaultResultsList, DL, TTI);
5323 
5324   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5325   if (NeedMask) {
5326     // As an extra penalty for the validity test we require more cases.
5327     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5328       return false;
5329     if (!DL.fitsInLegalInteger(TableSize))
5330       return false;
5331   }
5332 
5333   for (const auto &I : DefaultResultsList) {
5334     PHINode *PHI = I.first;
5335     Constant *Result = I.second;
5336     DefaultResults[PHI] = Result;
5337   }
5338 
5339   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5340     return false;
5341 
5342   // Create the BB that does the lookups.
5343   Module &Mod = *CommonDest->getParent()->getParent();
5344   BasicBlock *LookupBB = BasicBlock::Create(
5345       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5346 
5347   // Compute the table index value.
5348   Builder.SetInsertPoint(SI);
5349   Value *TableIndex;
5350   if (MinCaseVal->isNullValue())
5351     TableIndex = SI->getCondition();
5352   else
5353     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5354                                    "switch.tableidx");
5355 
5356   // Compute the maximum table size representable by the integer type we are
5357   // switching upon.
5358   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5359   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5360   assert(MaxTableSize >= TableSize &&
5361          "It is impossible for a switch to have more entries than the max "
5362          "representable value of its input integer type's size.");
5363 
5364   // If the default destination is unreachable, or if the lookup table covers
5365   // all values of the conditional variable, branch directly to the lookup table
5366   // BB. Otherwise, check that the condition is within the case range.
5367   const bool DefaultIsReachable =
5368       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5369   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5370   BranchInst *RangeCheckBranch = nullptr;
5371 
5372   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5373     Builder.CreateBr(LookupBB);
5374     // Note: We call removeProdecessor later since we need to be able to get the
5375     // PHI value for the default case in case we're using a bit mask.
5376   } else {
5377     Value *Cmp = Builder.CreateICmpULT(
5378         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5379     RangeCheckBranch =
5380         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5381   }
5382 
5383   // Populate the BB that does the lookups.
5384   Builder.SetInsertPoint(LookupBB);
5385 
5386   if (NeedMask) {
5387     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5388     // re-purposed to do the hole check, and we create a new LookupBB.
5389     BasicBlock *MaskBB = LookupBB;
5390     MaskBB->setName("switch.hole_check");
5391     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5392                                   CommonDest->getParent(), CommonDest);
5393 
5394     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5395     // unnecessary illegal types.
5396     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5397     APInt MaskInt(TableSizePowOf2, 0);
5398     APInt One(TableSizePowOf2, 1);
5399     // Build bitmask; fill in a 1 bit for every case.
5400     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5401     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5402       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5403                          .getLimitedValue();
5404       MaskInt |= One << Idx;
5405     }
5406     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5407 
5408     // Get the TableIndex'th bit of the bitmask.
5409     // If this bit is 0 (meaning hole) jump to the default destination,
5410     // else continue with table lookup.
5411     IntegerType *MapTy = TableMask->getType();
5412     Value *MaskIndex =
5413         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5414     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5415     Value *LoBit = Builder.CreateTrunc(
5416         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5417     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5418 
5419     Builder.SetInsertPoint(LookupBB);
5420     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5421   }
5422 
5423   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5424     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5425     // do not delete PHINodes here.
5426     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5427                                             /*DontDeleteUselessPHIs=*/true);
5428   }
5429 
5430   bool ReturnedEarly = false;
5431   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5432     PHINode *PHI = PHIs[I];
5433     const ResultListTy &ResultList = ResultLists[PHI];
5434 
5435     // If using a bitmask, use any value to fill the lookup table holes.
5436     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5437     StringRef FuncName = Fn->getName();
5438     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5439                             FuncName);
5440 
5441     Value *Result = Table.BuildLookup(TableIndex, Builder);
5442 
5443     // If the result is used to return immediately from the function, we want to
5444     // do that right here.
5445     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5446         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5447       Builder.CreateRet(Result);
5448       ReturnedEarly = true;
5449       break;
5450     }
5451 
5452     // Do a small peephole optimization: re-use the switch table compare if
5453     // possible.
5454     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5455       BasicBlock *PhiBlock = PHI->getParent();
5456       // Search for compare instructions which use the phi.
5457       for (auto *User : PHI->users()) {
5458         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5459       }
5460     }
5461 
5462     PHI->addIncoming(Result, LookupBB);
5463   }
5464 
5465   if (!ReturnedEarly)
5466     Builder.CreateBr(CommonDest);
5467 
5468   // Remove the switch.
5469   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5470     BasicBlock *Succ = SI->getSuccessor(i);
5471 
5472     if (Succ == SI->getDefaultDest())
5473       continue;
5474     Succ->removePredecessor(SI->getParent());
5475   }
5476   SI->eraseFromParent();
5477 
5478   ++NumLookupTables;
5479   if (NeedMask)
5480     ++NumLookupTablesHoles;
5481   return true;
5482 }
5483 
5484 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5485   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5486   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5487   uint64_t Range = Diff + 1;
5488   uint64_t NumCases = Values.size();
5489   // 40% is the default density for building a jump table in optsize/minsize mode.
5490   uint64_t MinDensity = 40;
5491 
5492   return NumCases * 100 >= Range * MinDensity;
5493 }
5494 
5495 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5496 /// of cases.
5497 ///
5498 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5499 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5500 ///
5501 /// This converts a sparse switch into a dense switch which allows better
5502 /// lowering and could also allow transforming into a lookup table.
5503 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5504                               const DataLayout &DL,
5505                               const TargetTransformInfo &TTI) {
5506   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5507   if (CondTy->getIntegerBitWidth() > 64 ||
5508       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5509     return false;
5510   // Only bother with this optimization if there are more than 3 switch cases;
5511   // SDAG will only bother creating jump tables for 4 or more cases.
5512   if (SI->getNumCases() < 4)
5513     return false;
5514 
5515   // This transform is agnostic to the signedness of the input or case values. We
5516   // can treat the case values as signed or unsigned. We can optimize more common
5517   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5518   // as signed.
5519   SmallVector<int64_t,4> Values;
5520   for (auto &C : SI->cases())
5521     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5522   std::sort(Values.begin(), Values.end());
5523 
5524   // If the switch is already dense, there's nothing useful to do here.
5525   if (isSwitchDense(Values))
5526     return false;
5527 
5528   // First, transform the values such that they start at zero and ascend.
5529   int64_t Base = Values[0];
5530   for (auto &V : Values)
5531     V -= (uint64_t)(Base);
5532 
5533   // Now we have signed numbers that have been shifted so that, given enough
5534   // precision, there are no negative values. Since the rest of the transform
5535   // is bitwise only, we switch now to an unsigned representation.
5536   uint64_t GCD = 0;
5537   for (auto &V : Values)
5538     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5539 
5540   // This transform can be done speculatively because it is so cheap - it results
5541   // in a single rotate operation being inserted. This can only happen if the
5542   // factor extracted is a power of 2.
5543   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5544   // inverse of GCD and then perform this transform.
5545   // FIXME: It's possible that optimizing a switch on powers of two might also
5546   // be beneficial - flag values are often powers of two and we could use a CLZ
5547   // as the key function.
5548   if (GCD <= 1 || !isPowerOf2_64(GCD))
5549     // No common divisor found or too expensive to compute key function.
5550     return false;
5551 
5552   unsigned Shift = Log2_64(GCD);
5553   for (auto &V : Values)
5554     V = (int64_t)((uint64_t)V >> Shift);
5555 
5556   if (!isSwitchDense(Values))
5557     // Transform didn't create a dense switch.
5558     return false;
5559 
5560   // The obvious transform is to shift the switch condition right and emit a
5561   // check that the condition actually cleanly divided by GCD, i.e.
5562   //   C & (1 << Shift - 1) == 0
5563   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5564   //
5565   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5566   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5567   // are nonzero then the switch condition will be very large and will hit the
5568   // default case.
5569 
5570   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5571   Builder.SetInsertPoint(SI);
5572   auto *ShiftC = ConstantInt::get(Ty, Shift);
5573   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5574   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5575   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5576   auto *Rot = Builder.CreateOr(LShr, Shl);
5577   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5578 
5579   for (auto Case : SI->cases()) {
5580     auto *Orig = Case.getCaseValue();
5581     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5582     Case.setValue(
5583         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5584   }
5585   return true;
5586 }
5587 
5588 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5589   BasicBlock *BB = SI->getParent();
5590 
5591   if (isValueEqualityComparison(SI)) {
5592     // If we only have one predecessor, and if it is a branch on this value,
5593     // see if that predecessor totally determines the outcome of this switch.
5594     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5595       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5596         return simplifyCFG(BB, TTI, Options) | true;
5597 
5598     Value *Cond = SI->getCondition();
5599     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5600       if (SimplifySwitchOnSelect(SI, Select))
5601         return simplifyCFG(BB, TTI, Options) | true;
5602 
5603     // If the block only contains the switch, see if we can fold the block
5604     // away into any preds.
5605     BasicBlock::iterator BBI = BB->begin();
5606     // Ignore dbg intrinsics.
5607     while (isa<DbgInfoIntrinsic>(BBI))
5608       ++BBI;
5609     if (SI == &*BBI)
5610       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5611         return simplifyCFG(BB, TTI, Options) | true;
5612   }
5613 
5614   // Try to transform the switch into an icmp and a branch.
5615   if (TurnSwitchRangeIntoICmp(SI, Builder))
5616     return simplifyCFG(BB, TTI, Options) | true;
5617 
5618   // Remove unreachable cases.
5619   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5620     return simplifyCFG(BB, TTI, Options) | true;
5621 
5622   if (switchToSelect(SI, Builder, DL, TTI))
5623     return simplifyCFG(BB, TTI, Options) | true;
5624 
5625   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5626     return simplifyCFG(BB, TTI, Options) | true;
5627 
5628   // The conversion from switch to lookup tables results in difficult-to-analyze
5629   // code and makes pruning branches much harder. This is a problem if the
5630   // switch expression itself can still be restricted as a result of inlining or
5631   // CVP. Therefore, only apply this transformation during late stages of the
5632   // optimisation pipeline.
5633   if (Options.ConvertSwitchToLookupTable &&
5634       SwitchToLookupTable(SI, Builder, DL, TTI))
5635     return simplifyCFG(BB, TTI, Options) | true;
5636 
5637   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5638     return simplifyCFG(BB, TTI, Options) | true;
5639 
5640   return false;
5641 }
5642 
5643 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5644   BasicBlock *BB = IBI->getParent();
5645   bool Changed = false;
5646 
5647   // Eliminate redundant destinations.
5648   SmallPtrSet<Value *, 8> Succs;
5649   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5650     BasicBlock *Dest = IBI->getDestination(i);
5651     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5652       Dest->removePredecessor(BB);
5653       IBI->removeDestination(i);
5654       --i;
5655       --e;
5656       Changed = true;
5657     }
5658   }
5659 
5660   if (IBI->getNumDestinations() == 0) {
5661     // If the indirectbr has no successors, change it to unreachable.
5662     new UnreachableInst(IBI->getContext(), IBI);
5663     EraseTerminatorInstAndDCECond(IBI);
5664     return true;
5665   }
5666 
5667   if (IBI->getNumDestinations() == 1) {
5668     // If the indirectbr has one successor, change it to a direct branch.
5669     BranchInst::Create(IBI->getDestination(0), IBI);
5670     EraseTerminatorInstAndDCECond(IBI);
5671     return true;
5672   }
5673 
5674   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5675     if (SimplifyIndirectBrOnSelect(IBI, SI))
5676       return simplifyCFG(BB, TTI, Options) | true;
5677   }
5678   return Changed;
5679 }
5680 
5681 /// Given an block with only a single landing pad and a unconditional branch
5682 /// try to find another basic block which this one can be merged with.  This
5683 /// handles cases where we have multiple invokes with unique landing pads, but
5684 /// a shared handler.
5685 ///
5686 /// We specifically choose to not worry about merging non-empty blocks
5687 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5688 /// practice, the optimizer produces empty landing pad blocks quite frequently
5689 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5690 /// sinking in this file)
5691 ///
5692 /// This is primarily a code size optimization.  We need to avoid performing
5693 /// any transform which might inhibit optimization (such as our ability to
5694 /// specialize a particular handler via tail commoning).  We do this by not
5695 /// merging any blocks which require us to introduce a phi.  Since the same
5696 /// values are flowing through both blocks, we don't loose any ability to
5697 /// specialize.  If anything, we make such specialization more likely.
5698 ///
5699 /// TODO - This transformation could remove entries from a phi in the target
5700 /// block when the inputs in the phi are the same for the two blocks being
5701 /// merged.  In some cases, this could result in removal of the PHI entirely.
5702 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5703                                  BasicBlock *BB) {
5704   auto Succ = BB->getUniqueSuccessor();
5705   assert(Succ);
5706   // If there's a phi in the successor block, we'd likely have to introduce
5707   // a phi into the merged landing pad block.
5708   if (isa<PHINode>(*Succ->begin()))
5709     return false;
5710 
5711   for (BasicBlock *OtherPred : predecessors(Succ)) {
5712     if (BB == OtherPred)
5713       continue;
5714     BasicBlock::iterator I = OtherPred->begin();
5715     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5716     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5717       continue;
5718     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5719       ;
5720     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5721     if (!BI2 || !BI2->isIdenticalTo(BI))
5722       continue;
5723 
5724     // We've found an identical block.  Update our predecessors to take that
5725     // path instead and make ourselves dead.
5726     SmallSet<BasicBlock *, 16> Preds;
5727     Preds.insert(pred_begin(BB), pred_end(BB));
5728     for (BasicBlock *Pred : Preds) {
5729       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5730       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5731              "unexpected successor");
5732       II->setUnwindDest(OtherPred);
5733     }
5734 
5735     // The debug info in OtherPred doesn't cover the merged control flow that
5736     // used to go through BB.  We need to delete it or update it.
5737     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5738       Instruction &Inst = *I;
5739       I++;
5740       if (isa<DbgInfoIntrinsic>(Inst))
5741         Inst.eraseFromParent();
5742     }
5743 
5744     SmallSet<BasicBlock *, 16> Succs;
5745     Succs.insert(succ_begin(BB), succ_end(BB));
5746     for (BasicBlock *Succ : Succs) {
5747       Succ->removePredecessor(BB);
5748     }
5749 
5750     IRBuilder<> Builder(BI);
5751     Builder.CreateUnreachable();
5752     BI->eraseFromParent();
5753     return true;
5754   }
5755   return false;
5756 }
5757 
5758 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5759                                           IRBuilder<> &Builder) {
5760   BasicBlock *BB = BI->getParent();
5761   BasicBlock *Succ = BI->getSuccessor(0);
5762 
5763   // If the Terminator is the only non-phi instruction, simplify the block.
5764   // If LoopHeader is provided, check if the block or its successor is a loop
5765   // header. (This is for early invocations before loop simplify and
5766   // vectorization to keep canonical loop forms for nested loops. These blocks
5767   // can be eliminated when the pass is invoked later in the back-end.)
5768   // Note that if BB has only one predecessor then we do not introduce new
5769   // backedge, so we can eliminate BB.
5770   bool NeedCanonicalLoop =
5771       Options.NeedCanonicalLoop &&
5772       (LoopHeaders && std::distance(pred_begin(BB), pred_end(BB)) > 1 &&
5773        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5774   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5775   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5776       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5777     return true;
5778 
5779   // If the only instruction in the block is a seteq/setne comparison against a
5780   // constant, try to simplify the block.
5781   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5782     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5783       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5784         ;
5785       if (I->isTerminator() &&
5786           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options))
5787         return true;
5788     }
5789 
5790   // See if we can merge an empty landing pad block with another which is
5791   // equivalent.
5792   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5793     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5794       ;
5795     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5796       return true;
5797   }
5798 
5799   // If this basic block is ONLY a compare and a branch, and if a predecessor
5800   // branches to us and our successor, fold the comparison into the
5801   // predecessor and use logical operations to update the incoming value
5802   // for PHI nodes in common successor.
5803   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5804     return simplifyCFG(BB, TTI, Options) | true;
5805   return false;
5806 }
5807 
5808 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5809   BasicBlock *PredPred = nullptr;
5810   for (auto *P : predecessors(BB)) {
5811     BasicBlock *PPred = P->getSinglePredecessor();
5812     if (!PPred || (PredPred && PredPred != PPred))
5813       return nullptr;
5814     PredPred = PPred;
5815   }
5816   return PredPred;
5817 }
5818 
5819 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5820   BasicBlock *BB = BI->getParent();
5821   const Function *Fn = BB->getParent();
5822   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5823     return false;
5824 
5825   // Conditional branch
5826   if (isValueEqualityComparison(BI)) {
5827     // If we only have one predecessor, and if it is a branch on this value,
5828     // see if that predecessor totally determines the outcome of this
5829     // switch.
5830     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5831       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5832         return simplifyCFG(BB, TTI, Options) | true;
5833 
5834     // This block must be empty, except for the setcond inst, if it exists.
5835     // Ignore dbg intrinsics.
5836     BasicBlock::iterator I = BB->begin();
5837     // Ignore dbg intrinsics.
5838     while (isa<DbgInfoIntrinsic>(I))
5839       ++I;
5840     if (&*I == BI) {
5841       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5842         return simplifyCFG(BB, TTI, Options) | true;
5843     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5844       ++I;
5845       // Ignore dbg intrinsics.
5846       while (isa<DbgInfoIntrinsic>(I))
5847         ++I;
5848       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5849         return simplifyCFG(BB, TTI, Options) | true;
5850     }
5851   }
5852 
5853   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5854   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5855     return true;
5856 
5857   // If this basic block has a single dominating predecessor block and the
5858   // dominating block's condition implies BI's condition, we know the direction
5859   // of the BI branch.
5860   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5861     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5862     if (PBI && PBI->isConditional() &&
5863         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5864       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5865       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5866       Optional<bool> Implication = isImpliedCondition(
5867           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5868       if (Implication) {
5869         // Turn this into a branch on constant.
5870         auto *OldCond = BI->getCondition();
5871         ConstantInt *CI = *Implication
5872                               ? ConstantInt::getTrue(BB->getContext())
5873                               : ConstantInt::getFalse(BB->getContext());
5874         BI->setCondition(CI);
5875         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5876         return simplifyCFG(BB, TTI, Options) | true;
5877       }
5878     }
5879   }
5880 
5881   // If this basic block is ONLY a compare and a branch, and if a predecessor
5882   // branches to us and one of our successors, fold the comparison into the
5883   // predecessor and use logical operations to pick the right destination.
5884   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5885     return simplifyCFG(BB, TTI, Options) | true;
5886 
5887   // We have a conditional branch to two blocks that are only reachable
5888   // from BI.  We know that the condbr dominates the two blocks, so see if
5889   // there is any identical code in the "then" and "else" blocks.  If so, we
5890   // can hoist it up to the branching block.
5891   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5892     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5893       if (HoistThenElseCodeToIf(BI, TTI))
5894         return simplifyCFG(BB, TTI, Options) | true;
5895     } else {
5896       // If Successor #1 has multiple preds, we may be able to conditionally
5897       // execute Successor #0 if it branches to Successor #1.
5898       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5899       if (Succ0TI->getNumSuccessors() == 1 &&
5900           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5901         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5902           return simplifyCFG(BB, TTI, Options) | true;
5903     }
5904   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5905     // If Successor #0 has multiple preds, we may be able to conditionally
5906     // execute Successor #1 if it branches to Successor #0.
5907     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5908     if (Succ1TI->getNumSuccessors() == 1 &&
5909         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5910       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5911         return simplifyCFG(BB, TTI, Options) | true;
5912   }
5913 
5914   // If this is a branch on a phi node in the current block, thread control
5915   // through this block if any PHI node entries are constants.
5916   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5917     if (PN->getParent() == BI->getParent())
5918       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5919         return simplifyCFG(BB, TTI, Options) | true;
5920 
5921   // Scan predecessor blocks for conditional branches.
5922   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5923     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5924       if (PBI != BI && PBI->isConditional())
5925         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5926           return simplifyCFG(BB, TTI, Options) | true;
5927 
5928   // Look for diamond patterns.
5929   if (MergeCondStores)
5930     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5931       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5932         if (PBI != BI && PBI->isConditional())
5933           if (mergeConditionalStores(PBI, BI, DL))
5934             return simplifyCFG(BB, TTI, Options) | true;
5935 
5936   return false;
5937 }
5938 
5939 /// Check if passing a value to an instruction will cause undefined behavior.
5940 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5941   Constant *C = dyn_cast<Constant>(V);
5942   if (!C)
5943     return false;
5944 
5945   if (I->use_empty())
5946     return false;
5947 
5948   if (C->isNullValue() || isa<UndefValue>(C)) {
5949     // Only look at the first use, avoid hurting compile time with long uselists
5950     User *Use = *I->user_begin();
5951 
5952     // Now make sure that there are no instructions in between that can alter
5953     // control flow (eg. calls)
5954     for (BasicBlock::iterator
5955              i = ++BasicBlock::iterator(I),
5956              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5957          i != UI; ++i)
5958       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5959         return false;
5960 
5961     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5962     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5963       if (GEP->getPointerOperand() == I)
5964         return passingValueIsAlwaysUndefined(V, GEP);
5965 
5966     // Look through bitcasts.
5967     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5968       return passingValueIsAlwaysUndefined(V, BC);
5969 
5970     // Load from null is undefined.
5971     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5972       if (!LI->isVolatile())
5973         return LI->getPointerAddressSpace() == 0;
5974 
5975     // Store to null is undefined.
5976     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5977       if (!SI->isVolatile())
5978         return SI->getPointerAddressSpace() == 0 &&
5979                SI->getPointerOperand() == I;
5980 
5981     // A call to null is undefined.
5982     if (auto CS = CallSite(Use))
5983       return CS.getCalledValue() == I;
5984   }
5985   return false;
5986 }
5987 
5988 /// If BB has an incoming value that will always trigger undefined behavior
5989 /// (eg. null pointer dereference), remove the branch leading here.
5990 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5991   for (PHINode &PHI : BB->phis())
5992     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5993       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5994         TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator();
5995         IRBuilder<> Builder(T);
5996         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5997           BB->removePredecessor(PHI.getIncomingBlock(i));
5998           // Turn uncoditional branches into unreachables and remove the dead
5999           // destination from conditional branches.
6000           if (BI->isUnconditional())
6001             Builder.CreateUnreachable();
6002           else
6003             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6004                                                        : BI->getSuccessor(0));
6005           BI->eraseFromParent();
6006           return true;
6007         }
6008         // TODO: SwitchInst.
6009       }
6010 
6011   return false;
6012 }
6013 
6014 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6015   bool Changed = false;
6016 
6017   assert(BB && BB->getParent() && "Block not embedded in function!");
6018   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6019 
6020   // Remove basic blocks that have no predecessors (except the entry block)...
6021   // or that just have themself as a predecessor.  These are unreachable.
6022   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6023       BB->getSinglePredecessor() == BB) {
6024     DEBUG(dbgs() << "Removing BB: \n" << *BB);
6025     DeleteDeadBlock(BB);
6026     return true;
6027   }
6028 
6029   // Check to see if we can constant propagate this terminator instruction
6030   // away...
6031   Changed |= ConstantFoldTerminator(BB, true);
6032 
6033   // Check for and eliminate duplicate PHI nodes in this block.
6034   Changed |= EliminateDuplicatePHINodes(BB);
6035 
6036   // Check for and remove branches that will always cause undefined behavior.
6037   Changed |= removeUndefIntroducingPredecessor(BB);
6038 
6039   // Merge basic blocks into their predecessor if there is only one distinct
6040   // pred, and if there is only one distinct successor of the predecessor, and
6041   // if there are no PHI nodes.
6042   if (MergeBlockIntoPredecessor(BB))
6043     return true;
6044 
6045   if (SinkCommon && Options.SinkCommonInsts)
6046     Changed |= SinkCommonCodeFromPredecessors(BB);
6047 
6048   IRBuilder<> Builder(BB);
6049 
6050   // If there is a trivial two-entry PHI node in this basic block, and we can
6051   // eliminate it, do so now.
6052   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6053     if (PN->getNumIncomingValues() == 2)
6054       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6055 
6056   Builder.SetInsertPoint(BB->getTerminator());
6057   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6058     if (BI->isUnconditional()) {
6059       if (SimplifyUncondBranch(BI, Builder))
6060         return true;
6061     } else {
6062       if (SimplifyCondBranch(BI, Builder))
6063         return true;
6064     }
6065   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6066     if (SimplifyReturn(RI, Builder))
6067       return true;
6068   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6069     if (SimplifyResume(RI, Builder))
6070       return true;
6071   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6072     if (SimplifyCleanupReturn(RI))
6073       return true;
6074   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6075     if (SimplifySwitch(SI, Builder))
6076       return true;
6077   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6078     if (SimplifyUnreachable(UI))
6079       return true;
6080   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6081     if (SimplifyIndirectBr(IBI))
6082       return true;
6083   }
6084 
6085   return Changed;
6086 }
6087 
6088 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6089                        const SimplifyCFGOptions &Options,
6090                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6091   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6092                         Options)
6093       .run(BB);
6094 }
6095