1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/CallSite.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/NoFolder.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/PatternMatch.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<bool> DupRet( 98 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 99 cl::desc("Duplicate return instructions into unconditional branches")); 100 101 static cl::opt<bool> 102 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 103 cl::desc("Sink common instructions down to the end block")); 104 105 static cl::opt<bool> HoistCondStores( 106 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores if an unconditional store precedes")); 108 109 static cl::opt<bool> MergeCondStores( 110 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 111 cl::desc("Hoist conditional stores even if an unconditional store does not " 112 "precede - hoist multiple conditional stores into a single " 113 "predicated store")); 114 115 static cl::opt<bool> MergeCondStoresAggressively( 116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 117 cl::desc("When merging conditional stores, do so even if the resultant " 118 "basic blocks are unlikely to be if-converted as a result")); 119 120 static cl::opt<bool> SpeculateOneExpensiveInst( 121 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 122 cl::desc("Allow exactly one expensive instruction to be speculatively " 123 "executed")); 124 125 static cl::opt<unsigned> MaxSpeculationDepth( 126 "max-speculation-depth", cl::Hidden, cl::init(10), 127 cl::desc("Limit maximum recursion depth when calculating costs of " 128 "speculatively executed instructions")); 129 130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 131 STATISTIC(NumLinearMaps, 132 "Number of switch instructions turned into linear mapping"); 133 STATISTIC(NumLookupTables, 134 "Number of switch instructions turned into lookup tables"); 135 STATISTIC( 136 NumLookupTablesHoles, 137 "Number of switch instructions turned into lookup tables (holes checked)"); 138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 139 STATISTIC(NumSinkCommons, 140 "Number of common instructions sunk down to the end block"); 141 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 142 143 namespace { 144 145 // The first field contains the value that the switch produces when a certain 146 // case group is selected, and the second field is a vector containing the 147 // cases composing the case group. 148 using SwitchCaseResultVectorTy = 149 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 150 151 // The first field contains the phi node that generates a result of the switch 152 // and the second field contains the value generated for a certain case in the 153 // switch for that PHI. 154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 155 156 /// ValueEqualityComparisonCase - Represents a case of a switch. 157 struct ValueEqualityComparisonCase { 158 ConstantInt *Value; 159 BasicBlock *Dest; 160 161 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 162 : Value(Value), Dest(Dest) {} 163 164 bool operator<(ValueEqualityComparisonCase RHS) const { 165 // Comparing pointers is ok as we only rely on the order for uniquing. 166 return Value < RHS.Value; 167 } 168 169 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 170 }; 171 172 class SimplifyCFGOpt { 173 const TargetTransformInfo &TTI; 174 const DataLayout &DL; 175 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 176 const SimplifyCFGOptions &Options; 177 178 Value *isValueEqualityComparison(TerminatorInst *TI); 179 BasicBlock *GetValueEqualityComparisonCases( 180 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 181 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 182 BasicBlock *Pred, 183 IRBuilder<> &Builder); 184 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 185 IRBuilder<> &Builder); 186 187 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 188 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 189 bool SimplifySingleResume(ResumeInst *RI); 190 bool SimplifyCommonResume(ResumeInst *RI); 191 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 192 bool SimplifyUnreachable(UnreachableInst *UI); 193 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 194 bool SimplifyIndirectBr(IndirectBrInst *IBI); 195 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 198 public: 199 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 200 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 201 const SimplifyCFGOptions &Opts) 202 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 203 204 bool run(BasicBlock *BB); 205 }; 206 207 } // end anonymous namespace 208 209 /// Return true if it is safe to merge these two 210 /// terminator instructions together. 211 static bool 212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 213 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 214 if (SI1 == SI2) 215 return false; // Can't merge with self! 216 217 // It is not safe to merge these two switch instructions if they have a common 218 // successor, and if that successor has a PHI node, and if *that* PHI node has 219 // conflicting incoming values from the two switch blocks. 220 BasicBlock *SI1BB = SI1->getParent(); 221 BasicBlock *SI2BB = SI2->getParent(); 222 223 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 224 bool Fail = false; 225 for (BasicBlock *Succ : successors(SI2BB)) 226 if (SI1Succs.count(Succ)) 227 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 228 PHINode *PN = cast<PHINode>(BBI); 229 if (PN->getIncomingValueForBlock(SI1BB) != 230 PN->getIncomingValueForBlock(SI2BB)) { 231 if (FailBlocks) 232 FailBlocks->insert(Succ); 233 Fail = true; 234 } 235 } 236 237 return !Fail; 238 } 239 240 /// Return true if it is safe and profitable to merge these two terminator 241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 242 /// store all PHI nodes in common successors. 243 static bool 244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 245 Instruction *Cond, 246 SmallVectorImpl<PHINode *> &PhiNodes) { 247 if (SI1 == SI2) 248 return false; // Can't merge with self! 249 assert(SI1->isUnconditional() && SI2->isConditional()); 250 251 // We fold the unconditional branch if we can easily update all PHI nodes in 252 // common successors: 253 // 1> We have a constant incoming value for the conditional branch; 254 // 2> We have "Cond" as the incoming value for the unconditional branch; 255 // 3> SI2->getCondition() and Cond have same operands. 256 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 257 if (!Ci2) 258 return false; 259 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 260 Cond->getOperand(1) == Ci2->getOperand(1)) && 261 !(Cond->getOperand(0) == Ci2->getOperand(1) && 262 Cond->getOperand(1) == Ci2->getOperand(0))) 263 return false; 264 265 BasicBlock *SI1BB = SI1->getParent(); 266 BasicBlock *SI2BB = SI2->getParent(); 267 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 268 for (BasicBlock *Succ : successors(SI2BB)) 269 if (SI1Succs.count(Succ)) 270 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 271 PHINode *PN = cast<PHINode>(BBI); 272 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 273 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 274 return false; 275 PhiNodes.push_back(PN); 276 } 277 return true; 278 } 279 280 /// Update PHI nodes in Succ to indicate that there will now be entries in it 281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 282 /// will be the same as those coming in from ExistPred, an existing predecessor 283 /// of Succ. 284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 285 BasicBlock *ExistPred) { 286 for (PHINode &PN : Succ->phis()) 287 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 288 } 289 290 /// Compute an abstract "cost" of speculating the given instruction, 291 /// which is assumed to be safe to speculate. TCC_Free means cheap, 292 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 293 /// expensive. 294 static unsigned ComputeSpeculationCost(const User *I, 295 const TargetTransformInfo &TTI) { 296 assert(isSafeToSpeculativelyExecute(I) && 297 "Instruction is not safe to speculatively execute!"); 298 return TTI.getUserCost(I); 299 } 300 301 /// If we have a merge point of an "if condition" as accepted above, 302 /// return true if the specified value dominates the block. We 303 /// don't handle the true generality of domination here, just a special case 304 /// which works well enough for us. 305 /// 306 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 307 /// see if V (which must be an instruction) and its recursive operands 308 /// that do not dominate BB have a combined cost lower than CostRemaining and 309 /// are non-trapping. If both are true, the instruction is inserted into the 310 /// set and true is returned. 311 /// 312 /// The cost for most non-trapping instructions is defined as 1 except for 313 /// Select whose cost is 2. 314 /// 315 /// After this function returns, CostRemaining is decreased by the cost of 316 /// V plus its non-dominating operands. If that cost is greater than 317 /// CostRemaining, false is returned and CostRemaining is undefined. 318 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 319 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 320 unsigned &CostRemaining, 321 const TargetTransformInfo &TTI, 322 unsigned Depth = 0) { 323 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 324 // so limit the recursion depth. 325 // TODO: While this recursion limit does prevent pathological behavior, it 326 // would be better to track visited instructions to avoid cycles. 327 if (Depth == MaxSpeculationDepth) 328 return false; 329 330 Instruction *I = dyn_cast<Instruction>(V); 331 if (!I) { 332 // Non-instructions all dominate instructions, but not all constantexprs 333 // can be executed unconditionally. 334 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 335 if (C->canTrap()) 336 return false; 337 return true; 338 } 339 BasicBlock *PBB = I->getParent(); 340 341 // We don't want to allow weird loops that might have the "if condition" in 342 // the bottom of this block. 343 if (PBB == BB) 344 return false; 345 346 // If this instruction is defined in a block that contains an unconditional 347 // branch to BB, then it must be in the 'conditional' part of the "if 348 // statement". If not, it definitely dominates the region. 349 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 350 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 351 return true; 352 353 // If we aren't allowing aggressive promotion anymore, then don't consider 354 // instructions in the 'if region'. 355 if (!AggressiveInsts) 356 return false; 357 358 // If we have seen this instruction before, don't count it again. 359 if (AggressiveInsts->count(I)) 360 return true; 361 362 // Okay, it looks like the instruction IS in the "condition". Check to 363 // see if it's a cheap instruction to unconditionally compute, and if it 364 // only uses stuff defined outside of the condition. If so, hoist it out. 365 if (!isSafeToSpeculativelyExecute(I)) 366 return false; 367 368 unsigned Cost = ComputeSpeculationCost(I, TTI); 369 370 // Allow exactly one instruction to be speculated regardless of its cost 371 // (as long as it is safe to do so). 372 // This is intended to flatten the CFG even if the instruction is a division 373 // or other expensive operation. The speculation of an expensive instruction 374 // is expected to be undone in CodeGenPrepare if the speculation has not 375 // enabled further IR optimizations. 376 if (Cost > CostRemaining && 377 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 378 return false; 379 380 // Avoid unsigned wrap. 381 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 382 383 // Okay, we can only really hoist these out if their operands do 384 // not take us over the cost threshold. 385 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 386 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 387 Depth + 1)) 388 return false; 389 // Okay, it's safe to do this! Remember this instruction. 390 AggressiveInsts->insert(I); 391 return true; 392 } 393 394 /// Extract ConstantInt from value, looking through IntToPtr 395 /// and PointerNullValue. Return NULL if value is not a constant int. 396 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 397 // Normal constant int. 398 ConstantInt *CI = dyn_cast<ConstantInt>(V); 399 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 400 return CI; 401 402 // This is some kind of pointer constant. Turn it into a pointer-sized 403 // ConstantInt if possible. 404 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 405 406 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 407 if (isa<ConstantPointerNull>(V)) 408 return ConstantInt::get(PtrTy, 0); 409 410 // IntToPtr const int. 411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 412 if (CE->getOpcode() == Instruction::IntToPtr) 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 414 // The constant is very likely to have the right type already. 415 if (CI->getType() == PtrTy) 416 return CI; 417 else 418 return cast<ConstantInt>( 419 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 420 } 421 return nullptr; 422 } 423 424 namespace { 425 426 /// Given a chain of or (||) or and (&&) comparison of a value against a 427 /// constant, this will try to recover the information required for a switch 428 /// structure. 429 /// It will depth-first traverse the chain of comparison, seeking for patterns 430 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 431 /// representing the different cases for the switch. 432 /// Note that if the chain is composed of '||' it will build the set of elements 433 /// that matches the comparisons (i.e. any of this value validate the chain) 434 /// while for a chain of '&&' it will build the set elements that make the test 435 /// fail. 436 struct ConstantComparesGatherer { 437 const DataLayout &DL; 438 439 /// Value found for the switch comparison 440 Value *CompValue = nullptr; 441 442 /// Extra clause to be checked before the switch 443 Value *Extra = nullptr; 444 445 /// Set of integers to match in switch 446 SmallVector<ConstantInt *, 8> Vals; 447 448 /// Number of comparisons matched in the and/or chain 449 unsigned UsedICmps = 0; 450 451 /// Construct and compute the result for the comparison instruction Cond 452 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 453 gather(Cond); 454 } 455 456 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 457 ConstantComparesGatherer & 458 operator=(const ConstantComparesGatherer &) = delete; 459 460 private: 461 /// Try to set the current value used for the comparison, it succeeds only if 462 /// it wasn't set before or if the new value is the same as the old one 463 bool setValueOnce(Value *NewVal) { 464 if (CompValue && CompValue != NewVal) 465 return false; 466 CompValue = NewVal; 467 return (CompValue != nullptr); 468 } 469 470 /// Try to match Instruction "I" as a comparison against a constant and 471 /// populates the array Vals with the set of values that match (or do not 472 /// match depending on isEQ). 473 /// Return false on failure. On success, the Value the comparison matched 474 /// against is placed in CompValue. 475 /// If CompValue is already set, the function is expected to fail if a match 476 /// is found but the value compared to is different. 477 bool matchInstruction(Instruction *I, bool isEQ) { 478 // If this is an icmp against a constant, handle this as one of the cases. 479 ICmpInst *ICI; 480 ConstantInt *C; 481 if (!((ICI = dyn_cast<ICmpInst>(I)) && 482 (C = GetConstantInt(I->getOperand(1), DL)))) { 483 return false; 484 } 485 486 Value *RHSVal; 487 const APInt *RHSC; 488 489 // Pattern match a special case 490 // (x & ~2^z) == y --> x == y || x == y|2^z 491 // This undoes a transformation done by instcombine to fuse 2 compares. 492 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 493 // It's a little bit hard to see why the following transformations are 494 // correct. Here is a CVC3 program to verify them for 64-bit values: 495 496 /* 497 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 498 x : BITVECTOR(64); 499 y : BITVECTOR(64); 500 z : BITVECTOR(64); 501 mask : BITVECTOR(64) = BVSHL(ONE, z); 502 QUERY( (y & ~mask = y) => 503 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 504 ); 505 QUERY( (y | mask = y) => 506 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 507 ); 508 */ 509 510 // Please note that each pattern must be a dual implication (<--> or 511 // iff). One directional implication can create spurious matches. If the 512 // implication is only one-way, an unsatisfiable condition on the left 513 // side can imply a satisfiable condition on the right side. Dual 514 // implication ensures that satisfiable conditions are transformed to 515 // other satisfiable conditions and unsatisfiable conditions are 516 // transformed to other unsatisfiable conditions. 517 518 // Here is a concrete example of a unsatisfiable condition on the left 519 // implying a satisfiable condition on the right: 520 // 521 // mask = (1 << z) 522 // (x & ~mask) == y --> (x == y || x == (y | mask)) 523 // 524 // Substituting y = 3, z = 0 yields: 525 // (x & -2) == 3 --> (x == 3 || x == 2) 526 527 // Pattern match a special case: 528 /* 529 QUERY( (y & ~mask = y) => 530 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 531 ); 532 */ 533 if (match(ICI->getOperand(0), 534 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 535 APInt Mask = ~*RHSC; 536 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 537 // If we already have a value for the switch, it has to match! 538 if (!setValueOnce(RHSVal)) 539 return false; 540 541 Vals.push_back(C); 542 Vals.push_back( 543 ConstantInt::get(C->getContext(), 544 C->getValue() | Mask)); 545 UsedICmps++; 546 return true; 547 } 548 } 549 550 // Pattern match a special case: 551 /* 552 QUERY( (y | mask = y) => 553 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 554 ); 555 */ 556 if (match(ICI->getOperand(0), 557 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 558 APInt Mask = *RHSC; 559 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 560 // If we already have a value for the switch, it has to match! 561 if (!setValueOnce(RHSVal)) 562 return false; 563 564 Vals.push_back(C); 565 Vals.push_back(ConstantInt::get(C->getContext(), 566 C->getValue() & ~Mask)); 567 UsedICmps++; 568 return true; 569 } 570 } 571 572 // If we already have a value for the switch, it has to match! 573 if (!setValueOnce(ICI->getOperand(0))) 574 return false; 575 576 UsedICmps++; 577 Vals.push_back(C); 578 return ICI->getOperand(0); 579 } 580 581 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 582 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 583 ICI->getPredicate(), C->getValue()); 584 585 // Shift the range if the compare is fed by an add. This is the range 586 // compare idiom as emitted by instcombine. 587 Value *CandidateVal = I->getOperand(0); 588 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 589 Span = Span.subtract(*RHSC); 590 CandidateVal = RHSVal; 591 } 592 593 // If this is an and/!= check, then we are looking to build the set of 594 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 595 // x != 0 && x != 1. 596 if (!isEQ) 597 Span = Span.inverse(); 598 599 // If there are a ton of values, we don't want to make a ginormous switch. 600 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 601 return false; 602 } 603 604 // If we already have a value for the switch, it has to match! 605 if (!setValueOnce(CandidateVal)) 606 return false; 607 608 // Add all values from the range to the set 609 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 610 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 611 612 UsedICmps++; 613 return true; 614 } 615 616 /// Given a potentially 'or'd or 'and'd together collection of icmp 617 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 618 /// the value being compared, and stick the list constants into the Vals 619 /// vector. 620 /// One "Extra" case is allowed to differ from the other. 621 void gather(Value *V) { 622 Instruction *I = dyn_cast<Instruction>(V); 623 bool isEQ = (I->getOpcode() == Instruction::Or); 624 625 // Keep a stack (SmallVector for efficiency) for depth-first traversal 626 SmallVector<Value *, 8> DFT; 627 SmallPtrSet<Value *, 8> Visited; 628 629 // Initialize 630 Visited.insert(V); 631 DFT.push_back(V); 632 633 while (!DFT.empty()) { 634 V = DFT.pop_back_val(); 635 636 if (Instruction *I = dyn_cast<Instruction>(V)) { 637 // If it is a || (or && depending on isEQ), process the operands. 638 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 639 if (Visited.insert(I->getOperand(1)).second) 640 DFT.push_back(I->getOperand(1)); 641 if (Visited.insert(I->getOperand(0)).second) 642 DFT.push_back(I->getOperand(0)); 643 continue; 644 } 645 646 // Try to match the current instruction 647 if (matchInstruction(I, isEQ)) 648 // Match succeed, continue the loop 649 continue; 650 } 651 652 // One element of the sequence of || (or &&) could not be match as a 653 // comparison against the same value as the others. 654 // We allow only one "Extra" case to be checked before the switch 655 if (!Extra) { 656 Extra = V; 657 continue; 658 } 659 // Failed to parse a proper sequence, abort now 660 CompValue = nullptr; 661 break; 662 } 663 } 664 }; 665 666 } // end anonymous namespace 667 668 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 669 Instruction *Cond = nullptr; 670 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 671 Cond = dyn_cast<Instruction>(SI->getCondition()); 672 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 673 if (BI->isConditional()) 674 Cond = dyn_cast<Instruction>(BI->getCondition()); 675 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 676 Cond = dyn_cast<Instruction>(IBI->getAddress()); 677 } 678 679 TI->eraseFromParent(); 680 if (Cond) 681 RecursivelyDeleteTriviallyDeadInstructions(Cond); 682 } 683 684 /// Return true if the specified terminator checks 685 /// to see if a value is equal to constant integer value. 686 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 687 Value *CV = nullptr; 688 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 689 // Do not permit merging of large switch instructions into their 690 // predecessors unless there is only one predecessor. 691 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 692 pred_end(SI->getParent())) <= 693 128) 694 CV = SI->getCondition(); 695 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 696 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 697 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 698 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 699 CV = ICI->getOperand(0); 700 } 701 702 // Unwrap any lossless ptrtoint cast. 703 if (CV) { 704 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 705 Value *Ptr = PTII->getPointerOperand(); 706 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 707 CV = Ptr; 708 } 709 } 710 return CV; 711 } 712 713 /// Given a value comparison instruction, 714 /// decode all of the 'cases' that it represents and return the 'default' block. 715 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 716 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 717 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 718 Cases.reserve(SI->getNumCases()); 719 for (auto Case : SI->cases()) 720 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 721 Case.getCaseSuccessor())); 722 return SI->getDefaultDest(); 723 } 724 725 BranchInst *BI = cast<BranchInst>(TI); 726 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 727 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 728 Cases.push_back(ValueEqualityComparisonCase( 729 GetConstantInt(ICI->getOperand(1), DL), Succ)); 730 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 731 } 732 733 /// Given a vector of bb/value pairs, remove any entries 734 /// in the list that match the specified block. 735 static void 736 EliminateBlockCases(BasicBlock *BB, 737 std::vector<ValueEqualityComparisonCase> &Cases) { 738 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 739 } 740 741 /// Return true if there are any keys in C1 that exist in C2 as well. 742 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 743 std::vector<ValueEqualityComparisonCase> &C2) { 744 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 745 746 // Make V1 be smaller than V2. 747 if (V1->size() > V2->size()) 748 std::swap(V1, V2); 749 750 if (V1->empty()) 751 return false; 752 if (V1->size() == 1) { 753 // Just scan V2. 754 ConstantInt *TheVal = (*V1)[0].Value; 755 for (unsigned i = 0, e = V2->size(); i != e; ++i) 756 if (TheVal == (*V2)[i].Value) 757 return true; 758 } 759 760 // Otherwise, just sort both lists and compare element by element. 761 array_pod_sort(V1->begin(), V1->end()); 762 array_pod_sort(V2->begin(), V2->end()); 763 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 764 while (i1 != e1 && i2 != e2) { 765 if ((*V1)[i1].Value == (*V2)[i2].Value) 766 return true; 767 if ((*V1)[i1].Value < (*V2)[i2].Value) 768 ++i1; 769 else 770 ++i2; 771 } 772 return false; 773 } 774 775 // Set branch weights on SwitchInst. This sets the metadata if there is at 776 // least one non-zero weight. 777 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 778 // Check that there is at least one non-zero weight. Otherwise, pass 779 // nullptr to setMetadata which will erase the existing metadata. 780 MDNode *N = nullptr; 781 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 782 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 783 SI->setMetadata(LLVMContext::MD_prof, N); 784 } 785 786 // Similar to the above, but for branch and select instructions that take 787 // exactly 2 weights. 788 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 789 uint32_t FalseWeight) { 790 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 791 // Check that there is at least one non-zero weight. Otherwise, pass 792 // nullptr to setMetadata which will erase the existing metadata. 793 MDNode *N = nullptr; 794 if (TrueWeight || FalseWeight) 795 N = MDBuilder(I->getParent()->getContext()) 796 .createBranchWeights(TrueWeight, FalseWeight); 797 I->setMetadata(LLVMContext::MD_prof, N); 798 } 799 800 /// If TI is known to be a terminator instruction and its block is known to 801 /// only have a single predecessor block, check to see if that predecessor is 802 /// also a value comparison with the same value, and if that comparison 803 /// determines the outcome of this comparison. If so, simplify TI. This does a 804 /// very limited form of jump threading. 805 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 806 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 807 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 808 if (!PredVal) 809 return false; // Not a value comparison in predecessor. 810 811 Value *ThisVal = isValueEqualityComparison(TI); 812 assert(ThisVal && "This isn't a value comparison!!"); 813 if (ThisVal != PredVal) 814 return false; // Different predicates. 815 816 // TODO: Preserve branch weight metadata, similarly to how 817 // FoldValueComparisonIntoPredecessors preserves it. 818 819 // Find out information about when control will move from Pred to TI's block. 820 std::vector<ValueEqualityComparisonCase> PredCases; 821 BasicBlock *PredDef = 822 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 823 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 824 825 // Find information about how control leaves this block. 826 std::vector<ValueEqualityComparisonCase> ThisCases; 827 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 828 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 829 830 // If TI's block is the default block from Pred's comparison, potentially 831 // simplify TI based on this knowledge. 832 if (PredDef == TI->getParent()) { 833 // If we are here, we know that the value is none of those cases listed in 834 // PredCases. If there are any cases in ThisCases that are in PredCases, we 835 // can simplify TI. 836 if (!ValuesOverlap(PredCases, ThisCases)) 837 return false; 838 839 if (isa<BranchInst>(TI)) { 840 // Okay, one of the successors of this condbr is dead. Convert it to a 841 // uncond br. 842 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 843 // Insert the new branch. 844 Instruction *NI = Builder.CreateBr(ThisDef); 845 (void)NI; 846 847 // Remove PHI node entries for the dead edge. 848 ThisCases[0].Dest->removePredecessor(TI->getParent()); 849 850 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 851 << "Through successor TI: " << *TI << "Leaving: " << *NI 852 << "\n"); 853 854 EraseTerminatorInstAndDCECond(TI); 855 return true; 856 } 857 858 SwitchInst *SI = cast<SwitchInst>(TI); 859 // Okay, TI has cases that are statically dead, prune them away. 860 SmallPtrSet<Constant *, 16> DeadCases; 861 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 862 DeadCases.insert(PredCases[i].Value); 863 864 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 865 << "Through successor TI: " << *TI); 866 867 // Collect branch weights into a vector. 868 SmallVector<uint32_t, 8> Weights; 869 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 870 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 871 if (HasWeight) 872 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 873 ++MD_i) { 874 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 875 Weights.push_back(CI->getValue().getZExtValue()); 876 } 877 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 878 --i; 879 if (DeadCases.count(i->getCaseValue())) { 880 if (HasWeight) { 881 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 882 Weights.pop_back(); 883 } 884 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 885 SI->removeCase(i); 886 } 887 } 888 if (HasWeight && Weights.size() >= 2) 889 setBranchWeights(SI, Weights); 890 891 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 892 return true; 893 } 894 895 // Otherwise, TI's block must correspond to some matched value. Find out 896 // which value (or set of values) this is. 897 ConstantInt *TIV = nullptr; 898 BasicBlock *TIBB = TI->getParent(); 899 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 900 if (PredCases[i].Dest == TIBB) { 901 if (TIV) 902 return false; // Cannot handle multiple values coming to this block. 903 TIV = PredCases[i].Value; 904 } 905 assert(TIV && "No edge from pred to succ?"); 906 907 // Okay, we found the one constant that our value can be if we get into TI's 908 // BB. Find out which successor will unconditionally be branched to. 909 BasicBlock *TheRealDest = nullptr; 910 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 911 if (ThisCases[i].Value == TIV) { 912 TheRealDest = ThisCases[i].Dest; 913 break; 914 } 915 916 // If not handled by any explicit cases, it is handled by the default case. 917 if (!TheRealDest) 918 TheRealDest = ThisDef; 919 920 // Remove PHI node entries for dead edges. 921 BasicBlock *CheckEdge = TheRealDest; 922 for (BasicBlock *Succ : successors(TIBB)) 923 if (Succ != CheckEdge) 924 Succ->removePredecessor(TIBB); 925 else 926 CheckEdge = nullptr; 927 928 // Insert the new branch. 929 Instruction *NI = Builder.CreateBr(TheRealDest); 930 (void)NI; 931 932 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 933 << "Through successor TI: " << *TI << "Leaving: " << *NI 934 << "\n"); 935 936 EraseTerminatorInstAndDCECond(TI); 937 return true; 938 } 939 940 namespace { 941 942 /// This class implements a stable ordering of constant 943 /// integers that does not depend on their address. This is important for 944 /// applications that sort ConstantInt's to ensure uniqueness. 945 struct ConstantIntOrdering { 946 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 947 return LHS->getValue().ult(RHS->getValue()); 948 } 949 }; 950 951 } // end anonymous namespace 952 953 static int ConstantIntSortPredicate(ConstantInt *const *P1, 954 ConstantInt *const *P2) { 955 const ConstantInt *LHS = *P1; 956 const ConstantInt *RHS = *P2; 957 if (LHS == RHS) 958 return 0; 959 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 960 } 961 962 static inline bool HasBranchWeights(const Instruction *I) { 963 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 964 if (ProfMD && ProfMD->getOperand(0)) 965 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 966 return MDS->getString().equals("branch_weights"); 967 968 return false; 969 } 970 971 /// Get Weights of a given TerminatorInst, the default weight is at the front 972 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 973 /// metadata. 974 static void GetBranchWeights(TerminatorInst *TI, 975 SmallVectorImpl<uint64_t> &Weights) { 976 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 977 assert(MD); 978 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 979 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 980 Weights.push_back(CI->getValue().getZExtValue()); 981 } 982 983 // If TI is a conditional eq, the default case is the false case, 984 // and the corresponding branch-weight data is at index 2. We swap the 985 // default weight to be the first entry. 986 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 987 assert(Weights.size() == 2); 988 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 989 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 990 std::swap(Weights.front(), Weights.back()); 991 } 992 } 993 994 /// Keep halving the weights until all can fit in uint32_t. 995 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 996 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 997 if (Max > UINT_MAX) { 998 unsigned Offset = 32 - countLeadingZeros(Max); 999 for (uint64_t &I : Weights) 1000 I >>= Offset; 1001 } 1002 } 1003 1004 /// The specified terminator is a value equality comparison instruction 1005 /// (either a switch or a branch on "X == c"). 1006 /// See if any of the predecessors of the terminator block are value comparisons 1007 /// on the same value. If so, and if safe to do so, fold them together. 1008 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 1009 IRBuilder<> &Builder) { 1010 BasicBlock *BB = TI->getParent(); 1011 Value *CV = isValueEqualityComparison(TI); // CondVal 1012 assert(CV && "Not a comparison?"); 1013 bool Changed = false; 1014 1015 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1016 while (!Preds.empty()) { 1017 BasicBlock *Pred = Preds.pop_back_val(); 1018 1019 // See if the predecessor is a comparison with the same value. 1020 TerminatorInst *PTI = Pred->getTerminator(); 1021 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1022 1023 if (PCV == CV && TI != PTI) { 1024 SmallSetVector<BasicBlock*, 4> FailBlocks; 1025 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1026 for (auto *Succ : FailBlocks) { 1027 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1028 return false; 1029 } 1030 } 1031 1032 // Figure out which 'cases' to copy from SI to PSI. 1033 std::vector<ValueEqualityComparisonCase> BBCases; 1034 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1035 1036 std::vector<ValueEqualityComparisonCase> PredCases; 1037 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1038 1039 // Based on whether the default edge from PTI goes to BB or not, fill in 1040 // PredCases and PredDefault with the new switch cases we would like to 1041 // build. 1042 SmallVector<BasicBlock *, 8> NewSuccessors; 1043 1044 // Update the branch weight metadata along the way 1045 SmallVector<uint64_t, 8> Weights; 1046 bool PredHasWeights = HasBranchWeights(PTI); 1047 bool SuccHasWeights = HasBranchWeights(TI); 1048 1049 if (PredHasWeights) { 1050 GetBranchWeights(PTI, Weights); 1051 // branch-weight metadata is inconsistent here. 1052 if (Weights.size() != 1 + PredCases.size()) 1053 PredHasWeights = SuccHasWeights = false; 1054 } else if (SuccHasWeights) 1055 // If there are no predecessor weights but there are successor weights, 1056 // populate Weights with 1, which will later be scaled to the sum of 1057 // successor's weights 1058 Weights.assign(1 + PredCases.size(), 1); 1059 1060 SmallVector<uint64_t, 8> SuccWeights; 1061 if (SuccHasWeights) { 1062 GetBranchWeights(TI, SuccWeights); 1063 // branch-weight metadata is inconsistent here. 1064 if (SuccWeights.size() != 1 + BBCases.size()) 1065 PredHasWeights = SuccHasWeights = false; 1066 } else if (PredHasWeights) 1067 SuccWeights.assign(1 + BBCases.size(), 1); 1068 1069 if (PredDefault == BB) { 1070 // If this is the default destination from PTI, only the edges in TI 1071 // that don't occur in PTI, or that branch to BB will be activated. 1072 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1073 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1074 if (PredCases[i].Dest != BB) 1075 PTIHandled.insert(PredCases[i].Value); 1076 else { 1077 // The default destination is BB, we don't need explicit targets. 1078 std::swap(PredCases[i], PredCases.back()); 1079 1080 if (PredHasWeights || SuccHasWeights) { 1081 // Increase weight for the default case. 1082 Weights[0] += Weights[i + 1]; 1083 std::swap(Weights[i + 1], Weights.back()); 1084 Weights.pop_back(); 1085 } 1086 1087 PredCases.pop_back(); 1088 --i; 1089 --e; 1090 } 1091 1092 // Reconstruct the new switch statement we will be building. 1093 if (PredDefault != BBDefault) { 1094 PredDefault->removePredecessor(Pred); 1095 PredDefault = BBDefault; 1096 NewSuccessors.push_back(BBDefault); 1097 } 1098 1099 unsigned CasesFromPred = Weights.size(); 1100 uint64_t ValidTotalSuccWeight = 0; 1101 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1102 if (!PTIHandled.count(BBCases[i].Value) && 1103 BBCases[i].Dest != BBDefault) { 1104 PredCases.push_back(BBCases[i]); 1105 NewSuccessors.push_back(BBCases[i].Dest); 1106 if (SuccHasWeights || PredHasWeights) { 1107 // The default weight is at index 0, so weight for the ith case 1108 // should be at index i+1. Scale the cases from successor by 1109 // PredDefaultWeight (Weights[0]). 1110 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1111 ValidTotalSuccWeight += SuccWeights[i + 1]; 1112 } 1113 } 1114 1115 if (SuccHasWeights || PredHasWeights) { 1116 ValidTotalSuccWeight += SuccWeights[0]; 1117 // Scale the cases from predecessor by ValidTotalSuccWeight. 1118 for (unsigned i = 1; i < CasesFromPred; ++i) 1119 Weights[i] *= ValidTotalSuccWeight; 1120 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1121 Weights[0] *= SuccWeights[0]; 1122 } 1123 } else { 1124 // If this is not the default destination from PSI, only the edges 1125 // in SI that occur in PSI with a destination of BB will be 1126 // activated. 1127 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1128 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1129 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1130 if (PredCases[i].Dest == BB) { 1131 PTIHandled.insert(PredCases[i].Value); 1132 1133 if (PredHasWeights || SuccHasWeights) { 1134 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1135 std::swap(Weights[i + 1], Weights.back()); 1136 Weights.pop_back(); 1137 } 1138 1139 std::swap(PredCases[i], PredCases.back()); 1140 PredCases.pop_back(); 1141 --i; 1142 --e; 1143 } 1144 1145 // Okay, now we know which constants were sent to BB from the 1146 // predecessor. Figure out where they will all go now. 1147 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1148 if (PTIHandled.count(BBCases[i].Value)) { 1149 // If this is one we are capable of getting... 1150 if (PredHasWeights || SuccHasWeights) 1151 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1152 PredCases.push_back(BBCases[i]); 1153 NewSuccessors.push_back(BBCases[i].Dest); 1154 PTIHandled.erase( 1155 BBCases[i].Value); // This constant is taken care of 1156 } 1157 1158 // If there are any constants vectored to BB that TI doesn't handle, 1159 // they must go to the default destination of TI. 1160 for (ConstantInt *I : PTIHandled) { 1161 if (PredHasWeights || SuccHasWeights) 1162 Weights.push_back(WeightsForHandled[I]); 1163 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1164 NewSuccessors.push_back(BBDefault); 1165 } 1166 } 1167 1168 // Okay, at this point, we know which new successor Pred will get. Make 1169 // sure we update the number of entries in the PHI nodes for these 1170 // successors. 1171 for (BasicBlock *NewSuccessor : NewSuccessors) 1172 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1173 1174 Builder.SetInsertPoint(PTI); 1175 // Convert pointer to int before we switch. 1176 if (CV->getType()->isPointerTy()) { 1177 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1178 "magicptr"); 1179 } 1180 1181 // Now that the successors are updated, create the new Switch instruction. 1182 SwitchInst *NewSI = 1183 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1184 NewSI->setDebugLoc(PTI->getDebugLoc()); 1185 for (ValueEqualityComparisonCase &V : PredCases) 1186 NewSI->addCase(V.Value, V.Dest); 1187 1188 if (PredHasWeights || SuccHasWeights) { 1189 // Halve the weights if any of them cannot fit in an uint32_t 1190 FitWeights(Weights); 1191 1192 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1193 1194 setBranchWeights(NewSI, MDWeights); 1195 } 1196 1197 EraseTerminatorInstAndDCECond(PTI); 1198 1199 // Okay, last check. If BB is still a successor of PSI, then we must 1200 // have an infinite loop case. If so, add an infinitely looping block 1201 // to handle the case to preserve the behavior of the code. 1202 BasicBlock *InfLoopBlock = nullptr; 1203 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1204 if (NewSI->getSuccessor(i) == BB) { 1205 if (!InfLoopBlock) { 1206 // Insert it at the end of the function, because it's either code, 1207 // or it won't matter if it's hot. :) 1208 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1209 BB->getParent()); 1210 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1211 } 1212 NewSI->setSuccessor(i, InfLoopBlock); 1213 } 1214 1215 Changed = true; 1216 } 1217 } 1218 return Changed; 1219 } 1220 1221 // If we would need to insert a select that uses the value of this invoke 1222 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1223 // can't hoist the invoke, as there is nowhere to put the select in this case. 1224 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1225 Instruction *I1, Instruction *I2) { 1226 for (BasicBlock *Succ : successors(BB1)) { 1227 for (const PHINode &PN : Succ->phis()) { 1228 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1229 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1230 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1231 return false; 1232 } 1233 } 1234 } 1235 return true; 1236 } 1237 1238 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1239 1240 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1241 /// in the two blocks up into the branch block. The caller of this function 1242 /// guarantees that BI's block dominates BB1 and BB2. 1243 static bool HoistThenElseCodeToIf(BranchInst *BI, 1244 const TargetTransformInfo &TTI) { 1245 // This does very trivial matching, with limited scanning, to find identical 1246 // instructions in the two blocks. In particular, we don't want to get into 1247 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1248 // such, we currently just scan for obviously identical instructions in an 1249 // identical order. 1250 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1251 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1252 1253 BasicBlock::iterator BB1_Itr = BB1->begin(); 1254 BasicBlock::iterator BB2_Itr = BB2->begin(); 1255 1256 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1257 // Skip debug info if it is not identical. 1258 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1259 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1260 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1261 while (isa<DbgInfoIntrinsic>(I1)) 1262 I1 = &*BB1_Itr++; 1263 while (isa<DbgInfoIntrinsic>(I2)) 1264 I2 = &*BB2_Itr++; 1265 } 1266 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1267 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1268 return false; 1269 1270 BasicBlock *BIParent = BI->getParent(); 1271 1272 bool Changed = false; 1273 do { 1274 // If we are hoisting the terminator instruction, don't move one (making a 1275 // broken BB), instead clone it, and remove BI. 1276 if (isa<TerminatorInst>(I1)) 1277 goto HoistTerminator; 1278 1279 // If we're going to hoist a call, make sure that the two instructions we're 1280 // commoning/hoisting are both marked with musttail, or neither of them is 1281 // marked as such. Otherwise, we might end up in a situation where we hoist 1282 // from a block where the terminator is a `ret` to a block where the terminator 1283 // is a `br`, and `musttail` calls expect to be followed by a return. 1284 auto *C1 = dyn_cast<CallInst>(I1); 1285 auto *C2 = dyn_cast<CallInst>(I2); 1286 if (C1 && C2) 1287 if (C1->isMustTailCall() != C2->isMustTailCall()) 1288 return Changed; 1289 1290 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1291 return Changed; 1292 1293 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1294 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1295 // The debug location is an integral part of a debug info intrinsic 1296 // and can't be separated from it or replaced. Instead of attempting 1297 // to merge locations, simply hoist both copies of the intrinsic. 1298 BIParent->getInstList().splice(BI->getIterator(), 1299 BB1->getInstList(), I1); 1300 BIParent->getInstList().splice(BI->getIterator(), 1301 BB2->getInstList(), I2); 1302 Changed = true; 1303 } else { 1304 // For a normal instruction, we just move one to right before the branch, 1305 // then replace all uses of the other with the first. Finally, we remove 1306 // the now redundant second instruction. 1307 BIParent->getInstList().splice(BI->getIterator(), 1308 BB1->getInstList(), I1); 1309 if (!I2->use_empty()) 1310 I2->replaceAllUsesWith(I1); 1311 I1->andIRFlags(I2); 1312 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1313 LLVMContext::MD_range, 1314 LLVMContext::MD_fpmath, 1315 LLVMContext::MD_invariant_load, 1316 LLVMContext::MD_nonnull, 1317 LLVMContext::MD_invariant_group, 1318 LLVMContext::MD_align, 1319 LLVMContext::MD_dereferenceable, 1320 LLVMContext::MD_dereferenceable_or_null, 1321 LLVMContext::MD_mem_parallel_loop_access}; 1322 combineMetadata(I1, I2, KnownIDs); 1323 1324 // I1 and I2 are being combined into a single instruction. Its debug 1325 // location is the merged locations of the original instructions. 1326 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1327 1328 I2->eraseFromParent(); 1329 Changed = true; 1330 } 1331 1332 I1 = &*BB1_Itr++; 1333 I2 = &*BB2_Itr++; 1334 // Skip debug info if it is not identical. 1335 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1336 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1337 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1338 while (isa<DbgInfoIntrinsic>(I1)) 1339 I1 = &*BB1_Itr++; 1340 while (isa<DbgInfoIntrinsic>(I2)) 1341 I2 = &*BB2_Itr++; 1342 } 1343 } while (I1->isIdenticalToWhenDefined(I2)); 1344 1345 return true; 1346 1347 HoistTerminator: 1348 // It may not be possible to hoist an invoke. 1349 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1350 return Changed; 1351 1352 for (BasicBlock *Succ : successors(BB1)) { 1353 for (PHINode &PN : Succ->phis()) { 1354 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1355 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1356 if (BB1V == BB2V) 1357 continue; 1358 1359 // Check for passingValueIsAlwaysUndefined here because we would rather 1360 // eliminate undefined control flow then converting it to a select. 1361 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1362 passingValueIsAlwaysUndefined(BB2V, &PN)) 1363 return Changed; 1364 1365 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1366 return Changed; 1367 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1368 return Changed; 1369 } 1370 } 1371 1372 // Okay, it is safe to hoist the terminator. 1373 Instruction *NT = I1->clone(); 1374 BIParent->getInstList().insert(BI->getIterator(), NT); 1375 if (!NT->getType()->isVoidTy()) { 1376 I1->replaceAllUsesWith(NT); 1377 I2->replaceAllUsesWith(NT); 1378 NT->takeName(I1); 1379 } 1380 1381 IRBuilder<NoFolder> Builder(NT); 1382 // Hoisting one of the terminators from our successor is a great thing. 1383 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1384 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1385 // nodes, so we insert select instruction to compute the final result. 1386 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1387 for (BasicBlock *Succ : successors(BB1)) { 1388 for (PHINode &PN : Succ->phis()) { 1389 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1390 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1391 if (BB1V == BB2V) 1392 continue; 1393 1394 // These values do not agree. Insert a select instruction before NT 1395 // that determines the right value. 1396 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1397 if (!SI) 1398 SI = cast<SelectInst>( 1399 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1400 BB1V->getName() + "." + BB2V->getName(), BI)); 1401 1402 // Make the PHI node use the select for all incoming values for BB1/BB2 1403 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1404 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1405 PN.setIncomingValue(i, SI); 1406 } 1407 } 1408 1409 // Update any PHI nodes in our new successors. 1410 for (BasicBlock *Succ : successors(BB1)) 1411 AddPredecessorToBlock(Succ, BIParent, BB1); 1412 1413 EraseTerminatorInstAndDCECond(BI); 1414 return true; 1415 } 1416 1417 // All instructions in Insts belong to different blocks that all unconditionally 1418 // branch to a common successor. Analyze each instruction and return true if it 1419 // would be possible to sink them into their successor, creating one common 1420 // instruction instead. For every value that would be required to be provided by 1421 // PHI node (because an operand varies in each input block), add to PHIOperands. 1422 static bool canSinkInstructions( 1423 ArrayRef<Instruction *> Insts, 1424 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1425 // Prune out obviously bad instructions to move. Any non-store instruction 1426 // must have exactly one use, and we check later that use is by a single, 1427 // common PHI instruction in the successor. 1428 for (auto *I : Insts) { 1429 // These instructions may change or break semantics if moved. 1430 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1431 I->getType()->isTokenTy()) 1432 return false; 1433 1434 // Conservatively return false if I is an inline-asm instruction. Sinking 1435 // and merging inline-asm instructions can potentially create arguments 1436 // that cannot satisfy the inline-asm constraints. 1437 if (const auto *C = dyn_cast<CallInst>(I)) 1438 if (C->isInlineAsm()) 1439 return false; 1440 1441 // Everything must have only one use too, apart from stores which 1442 // have no uses. 1443 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1444 return false; 1445 } 1446 1447 const Instruction *I0 = Insts.front(); 1448 for (auto *I : Insts) 1449 if (!I->isSameOperationAs(I0)) 1450 return false; 1451 1452 // All instructions in Insts are known to be the same opcode. If they aren't 1453 // stores, check the only user of each is a PHI or in the same block as the 1454 // instruction, because if a user is in the same block as an instruction 1455 // we're contemplating sinking, it must already be determined to be sinkable. 1456 if (!isa<StoreInst>(I0)) { 1457 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1458 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1459 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1460 auto *U = cast<Instruction>(*I->user_begin()); 1461 return (PNUse && 1462 PNUse->getParent() == Succ && 1463 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1464 U->getParent() == I->getParent(); 1465 })) 1466 return false; 1467 } 1468 1469 // Because SROA can't handle speculating stores of selects, try not 1470 // to sink loads or stores of allocas when we'd have to create a PHI for 1471 // the address operand. Also, because it is likely that loads or stores 1472 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1473 // This can cause code churn which can have unintended consequences down 1474 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1475 // FIXME: This is a workaround for a deficiency in SROA - see 1476 // https://llvm.org/bugs/show_bug.cgi?id=30188 1477 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1478 return isa<AllocaInst>(I->getOperand(1)); 1479 })) 1480 return false; 1481 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1482 return isa<AllocaInst>(I->getOperand(0)); 1483 })) 1484 return false; 1485 1486 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1487 if (I0->getOperand(OI)->getType()->isTokenTy()) 1488 // Don't touch any operand of token type. 1489 return false; 1490 1491 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1492 assert(I->getNumOperands() == I0->getNumOperands()); 1493 return I->getOperand(OI) == I0->getOperand(OI); 1494 }; 1495 if (!all_of(Insts, SameAsI0)) { 1496 if (!canReplaceOperandWithVariable(I0, OI)) 1497 // We can't create a PHI from this GEP. 1498 return false; 1499 // Don't create indirect calls! The called value is the final operand. 1500 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1501 // FIXME: if the call was *already* indirect, we should do this. 1502 return false; 1503 } 1504 for (auto *I : Insts) 1505 PHIOperands[I].push_back(I->getOperand(OI)); 1506 } 1507 } 1508 return true; 1509 } 1510 1511 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1512 // instruction of every block in Blocks to their common successor, commoning 1513 // into one instruction. 1514 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1515 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1516 1517 // canSinkLastInstruction returning true guarantees that every block has at 1518 // least one non-terminator instruction. 1519 SmallVector<Instruction*,4> Insts; 1520 for (auto *BB : Blocks) { 1521 Instruction *I = BB->getTerminator(); 1522 do { 1523 I = I->getPrevNode(); 1524 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1525 if (!isa<DbgInfoIntrinsic>(I)) 1526 Insts.push_back(I); 1527 } 1528 1529 // The only checking we need to do now is that all users of all instructions 1530 // are the same PHI node. canSinkLastInstruction should have checked this but 1531 // it is slightly over-aggressive - it gets confused by commutative instructions 1532 // so double-check it here. 1533 Instruction *I0 = Insts.front(); 1534 if (!isa<StoreInst>(I0)) { 1535 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1536 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1537 auto *U = cast<Instruction>(*I->user_begin()); 1538 return U == PNUse; 1539 })) 1540 return false; 1541 } 1542 1543 // We don't need to do any more checking here; canSinkLastInstruction should 1544 // have done it all for us. 1545 SmallVector<Value*, 4> NewOperands; 1546 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1547 // This check is different to that in canSinkLastInstruction. There, we 1548 // cared about the global view once simplifycfg (and instcombine) have 1549 // completed - it takes into account PHIs that become trivially 1550 // simplifiable. However here we need a more local view; if an operand 1551 // differs we create a PHI and rely on instcombine to clean up the very 1552 // small mess we may make. 1553 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1554 return I->getOperand(O) != I0->getOperand(O); 1555 }); 1556 if (!NeedPHI) { 1557 NewOperands.push_back(I0->getOperand(O)); 1558 continue; 1559 } 1560 1561 // Create a new PHI in the successor block and populate it. 1562 auto *Op = I0->getOperand(O); 1563 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1564 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1565 Op->getName() + ".sink", &BBEnd->front()); 1566 for (auto *I : Insts) 1567 PN->addIncoming(I->getOperand(O), I->getParent()); 1568 NewOperands.push_back(PN); 1569 } 1570 1571 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1572 // and move it to the start of the successor block. 1573 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1574 I0->getOperandUse(O).set(NewOperands[O]); 1575 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1576 1577 // Update metadata and IR flags, and merge debug locations. 1578 for (auto *I : Insts) 1579 if (I != I0) { 1580 // The debug location for the "common" instruction is the merged locations 1581 // of all the commoned instructions. We start with the original location 1582 // of the "common" instruction and iteratively merge each location in the 1583 // loop below. 1584 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1585 // However, as N-way merge for CallInst is rare, so we use simplified API 1586 // instead of using complex API for N-way merge. 1587 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1588 combineMetadataForCSE(I0, I); 1589 I0->andIRFlags(I); 1590 } 1591 1592 if (!isa<StoreInst>(I0)) { 1593 // canSinkLastInstruction checked that all instructions were used by 1594 // one and only one PHI node. Find that now, RAUW it to our common 1595 // instruction and nuke it. 1596 assert(I0->hasOneUse()); 1597 auto *PN = cast<PHINode>(*I0->user_begin()); 1598 PN->replaceAllUsesWith(I0); 1599 PN->eraseFromParent(); 1600 } 1601 1602 // Finally nuke all instructions apart from the common instruction. 1603 for (auto *I : Insts) 1604 if (I != I0) 1605 I->eraseFromParent(); 1606 1607 return true; 1608 } 1609 1610 namespace { 1611 1612 // LockstepReverseIterator - Iterates through instructions 1613 // in a set of blocks in reverse order from the first non-terminator. 1614 // For example (assume all blocks have size n): 1615 // LockstepReverseIterator I([B1, B2, B3]); 1616 // *I-- = [B1[n], B2[n], B3[n]]; 1617 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1618 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1619 // ... 1620 class LockstepReverseIterator { 1621 ArrayRef<BasicBlock*> Blocks; 1622 SmallVector<Instruction*,4> Insts; 1623 bool Fail; 1624 1625 public: 1626 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1627 reset(); 1628 } 1629 1630 void reset() { 1631 Fail = false; 1632 Insts.clear(); 1633 for (auto *BB : Blocks) { 1634 Instruction *Inst = BB->getTerminator(); 1635 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1636 Inst = Inst->getPrevNode(); 1637 if (!Inst) { 1638 // Block wasn't big enough. 1639 Fail = true; 1640 return; 1641 } 1642 Insts.push_back(Inst); 1643 } 1644 } 1645 1646 bool isValid() const { 1647 return !Fail; 1648 } 1649 1650 void operator--() { 1651 if (Fail) 1652 return; 1653 for (auto *&Inst : Insts) { 1654 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1655 Inst = Inst->getPrevNode(); 1656 // Already at beginning of block. 1657 if (!Inst) { 1658 Fail = true; 1659 return; 1660 } 1661 } 1662 } 1663 1664 ArrayRef<Instruction*> operator * () const { 1665 return Insts; 1666 } 1667 }; 1668 1669 } // end anonymous namespace 1670 1671 /// Check whether BB's predecessors end with unconditional branches. If it is 1672 /// true, sink any common code from the predecessors to BB. 1673 /// We also allow one predecessor to end with conditional branch (but no more 1674 /// than one). 1675 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1676 // We support two situations: 1677 // (1) all incoming arcs are unconditional 1678 // (2) one incoming arc is conditional 1679 // 1680 // (2) is very common in switch defaults and 1681 // else-if patterns; 1682 // 1683 // if (a) f(1); 1684 // else if (b) f(2); 1685 // 1686 // produces: 1687 // 1688 // [if] 1689 // / \ 1690 // [f(1)] [if] 1691 // | | \ 1692 // | | | 1693 // | [f(2)]| 1694 // \ | / 1695 // [ end ] 1696 // 1697 // [end] has two unconditional predecessor arcs and one conditional. The 1698 // conditional refers to the implicit empty 'else' arc. This conditional 1699 // arc can also be caused by an empty default block in a switch. 1700 // 1701 // In this case, we attempt to sink code from all *unconditional* arcs. 1702 // If we can sink instructions from these arcs (determined during the scan 1703 // phase below) we insert a common successor for all unconditional arcs and 1704 // connect that to [end], to enable sinking: 1705 // 1706 // [if] 1707 // / \ 1708 // [x(1)] [if] 1709 // | | \ 1710 // | | \ 1711 // | [x(2)] | 1712 // \ / | 1713 // [sink.split] | 1714 // \ / 1715 // [ end ] 1716 // 1717 SmallVector<BasicBlock*,4> UnconditionalPreds; 1718 Instruction *Cond = nullptr; 1719 for (auto *B : predecessors(BB)) { 1720 auto *T = B->getTerminator(); 1721 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1722 UnconditionalPreds.push_back(B); 1723 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1724 Cond = T; 1725 else 1726 return false; 1727 } 1728 if (UnconditionalPreds.size() < 2) 1729 return false; 1730 1731 bool Changed = false; 1732 // We take a two-step approach to tail sinking. First we scan from the end of 1733 // each block upwards in lockstep. If the n'th instruction from the end of each 1734 // block can be sunk, those instructions are added to ValuesToSink and we 1735 // carry on. If we can sink an instruction but need to PHI-merge some operands 1736 // (because they're not identical in each instruction) we add these to 1737 // PHIOperands. 1738 unsigned ScanIdx = 0; 1739 SmallPtrSet<Value*,4> InstructionsToSink; 1740 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1741 LockstepReverseIterator LRI(UnconditionalPreds); 1742 while (LRI.isValid() && 1743 canSinkInstructions(*LRI, PHIOperands)) { 1744 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1745 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1746 ++ScanIdx; 1747 --LRI; 1748 } 1749 1750 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1751 unsigned NumPHIdValues = 0; 1752 for (auto *I : *LRI) 1753 for (auto *V : PHIOperands[I]) 1754 if (InstructionsToSink.count(V) == 0) 1755 ++NumPHIdValues; 1756 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1757 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1758 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1759 NumPHIInsts++; 1760 1761 return NumPHIInsts <= 1; 1762 }; 1763 1764 if (ScanIdx > 0 && Cond) { 1765 // Check if we would actually sink anything first! This mutates the CFG and 1766 // adds an extra block. The goal in doing this is to allow instructions that 1767 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1768 // (such as trunc, add) can be sunk and predicated already. So we check that 1769 // we're going to sink at least one non-speculatable instruction. 1770 LRI.reset(); 1771 unsigned Idx = 0; 1772 bool Profitable = false; 1773 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1774 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1775 Profitable = true; 1776 break; 1777 } 1778 --LRI; 1779 ++Idx; 1780 } 1781 if (!Profitable) 1782 return false; 1783 1784 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1785 // We have a conditional edge and we're going to sink some instructions. 1786 // Insert a new block postdominating all blocks we're going to sink from. 1787 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1788 // Edges couldn't be split. 1789 return false; 1790 Changed = true; 1791 } 1792 1793 // Now that we've analyzed all potential sinking candidates, perform the 1794 // actual sink. We iteratively sink the last non-terminator of the source 1795 // blocks into their common successor unless doing so would require too 1796 // many PHI instructions to be generated (currently only one PHI is allowed 1797 // per sunk instruction). 1798 // 1799 // We can use InstructionsToSink to discount values needing PHI-merging that will 1800 // actually be sunk in a later iteration. This allows us to be more 1801 // aggressive in what we sink. This does allow a false positive where we 1802 // sink presuming a later value will also be sunk, but stop half way through 1803 // and never actually sink it which means we produce more PHIs than intended. 1804 // This is unlikely in practice though. 1805 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1806 DEBUG(dbgs() << "SINK: Sink: " 1807 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1808 << "\n"); 1809 1810 // Because we've sunk every instruction in turn, the current instruction to 1811 // sink is always at index 0. 1812 LRI.reset(); 1813 if (!ProfitableToSinkInstruction(LRI)) { 1814 // Too many PHIs would be created. 1815 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1816 break; 1817 } 1818 1819 if (!sinkLastInstruction(UnconditionalPreds)) 1820 return Changed; 1821 NumSinkCommons++; 1822 Changed = true; 1823 } 1824 return Changed; 1825 } 1826 1827 /// \brief Determine if we can hoist sink a sole store instruction out of a 1828 /// conditional block. 1829 /// 1830 /// We are looking for code like the following: 1831 /// BrBB: 1832 /// store i32 %add, i32* %arrayidx2 1833 /// ... // No other stores or function calls (we could be calling a memory 1834 /// ... // function). 1835 /// %cmp = icmp ult %x, %y 1836 /// br i1 %cmp, label %EndBB, label %ThenBB 1837 /// ThenBB: 1838 /// store i32 %add5, i32* %arrayidx2 1839 /// br label EndBB 1840 /// EndBB: 1841 /// ... 1842 /// We are going to transform this into: 1843 /// BrBB: 1844 /// store i32 %add, i32* %arrayidx2 1845 /// ... // 1846 /// %cmp = icmp ult %x, %y 1847 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1848 /// store i32 %add.add5, i32* %arrayidx2 1849 /// ... 1850 /// 1851 /// \return The pointer to the value of the previous store if the store can be 1852 /// hoisted into the predecessor block. 0 otherwise. 1853 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1854 BasicBlock *StoreBB, BasicBlock *EndBB) { 1855 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1856 if (!StoreToHoist) 1857 return nullptr; 1858 1859 // Volatile or atomic. 1860 if (!StoreToHoist->isSimple()) 1861 return nullptr; 1862 1863 Value *StorePtr = StoreToHoist->getPointerOperand(); 1864 1865 // Look for a store to the same pointer in BrBB. 1866 unsigned MaxNumInstToLookAt = 9; 1867 for (Instruction &CurI : reverse(*BrBB)) { 1868 if (!MaxNumInstToLookAt) 1869 break; 1870 // Skip debug info. 1871 if (isa<DbgInfoIntrinsic>(CurI)) 1872 continue; 1873 --MaxNumInstToLookAt; 1874 1875 // Could be calling an instruction that affects memory like free(). 1876 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1877 return nullptr; 1878 1879 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1880 // Found the previous store make sure it stores to the same location. 1881 if (SI->getPointerOperand() == StorePtr) 1882 // Found the previous store, return its value operand. 1883 return SI->getValueOperand(); 1884 return nullptr; // Unknown store. 1885 } 1886 } 1887 1888 return nullptr; 1889 } 1890 1891 /// \brief Speculate a conditional basic block flattening the CFG. 1892 /// 1893 /// Note that this is a very risky transform currently. Speculating 1894 /// instructions like this is most often not desirable. Instead, there is an MI 1895 /// pass which can do it with full awareness of the resource constraints. 1896 /// However, some cases are "obvious" and we should do directly. An example of 1897 /// this is speculating a single, reasonably cheap instruction. 1898 /// 1899 /// There is only one distinct advantage to flattening the CFG at the IR level: 1900 /// it makes very common but simplistic optimizations such as are common in 1901 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1902 /// modeling their effects with easier to reason about SSA value graphs. 1903 /// 1904 /// 1905 /// An illustration of this transform is turning this IR: 1906 /// \code 1907 /// BB: 1908 /// %cmp = icmp ult %x, %y 1909 /// br i1 %cmp, label %EndBB, label %ThenBB 1910 /// ThenBB: 1911 /// %sub = sub %x, %y 1912 /// br label BB2 1913 /// EndBB: 1914 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1915 /// ... 1916 /// \endcode 1917 /// 1918 /// Into this IR: 1919 /// \code 1920 /// BB: 1921 /// %cmp = icmp ult %x, %y 1922 /// %sub = sub %x, %y 1923 /// %cond = select i1 %cmp, 0, %sub 1924 /// ... 1925 /// \endcode 1926 /// 1927 /// \returns true if the conditional block is removed. 1928 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1929 const TargetTransformInfo &TTI) { 1930 // Be conservative for now. FP select instruction can often be expensive. 1931 Value *BrCond = BI->getCondition(); 1932 if (isa<FCmpInst>(BrCond)) 1933 return false; 1934 1935 BasicBlock *BB = BI->getParent(); 1936 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1937 1938 // If ThenBB is actually on the false edge of the conditional branch, remember 1939 // to swap the select operands later. 1940 bool Invert = false; 1941 if (ThenBB != BI->getSuccessor(0)) { 1942 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1943 Invert = true; 1944 } 1945 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1946 1947 // Keep a count of how many times instructions are used within CondBB when 1948 // they are candidates for sinking into CondBB. Specifically: 1949 // - They are defined in BB, and 1950 // - They have no side effects, and 1951 // - All of their uses are in CondBB. 1952 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1953 1954 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1955 1956 unsigned SpeculationCost = 0; 1957 Value *SpeculatedStoreValue = nullptr; 1958 StoreInst *SpeculatedStore = nullptr; 1959 for (BasicBlock::iterator BBI = ThenBB->begin(), 1960 BBE = std::prev(ThenBB->end()); 1961 BBI != BBE; ++BBI) { 1962 Instruction *I = &*BBI; 1963 // Skip debug info. 1964 if (isa<DbgInfoIntrinsic>(I)) { 1965 SpeculatedDbgIntrinsics.push_back(I); 1966 continue; 1967 } 1968 1969 // Only speculatively execute a single instruction (not counting the 1970 // terminator) for now. 1971 ++SpeculationCost; 1972 if (SpeculationCost > 1) 1973 return false; 1974 1975 // Don't hoist the instruction if it's unsafe or expensive. 1976 if (!isSafeToSpeculativelyExecute(I) && 1977 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1978 I, BB, ThenBB, EndBB)))) 1979 return false; 1980 if (!SpeculatedStoreValue && 1981 ComputeSpeculationCost(I, TTI) > 1982 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1983 return false; 1984 1985 // Store the store speculation candidate. 1986 if (SpeculatedStoreValue) 1987 SpeculatedStore = cast<StoreInst>(I); 1988 1989 // Do not hoist the instruction if any of its operands are defined but not 1990 // used in BB. The transformation will prevent the operand from 1991 // being sunk into the use block. 1992 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1993 Instruction *OpI = dyn_cast<Instruction>(*i); 1994 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1995 continue; // Not a candidate for sinking. 1996 1997 ++SinkCandidateUseCounts[OpI]; 1998 } 1999 } 2000 2001 // Consider any sink candidates which are only used in CondBB as costs for 2002 // speculation. Note, while we iterate over a DenseMap here, we are summing 2003 // and so iteration order isn't significant. 2004 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2005 I = SinkCandidateUseCounts.begin(), 2006 E = SinkCandidateUseCounts.end(); 2007 I != E; ++I) 2008 if (I->first->getNumUses() == I->second) { 2009 ++SpeculationCost; 2010 if (SpeculationCost > 1) 2011 return false; 2012 } 2013 2014 // Check that the PHI nodes can be converted to selects. 2015 bool HaveRewritablePHIs = false; 2016 for (PHINode &PN : EndBB->phis()) { 2017 Value *OrigV = PN.getIncomingValueForBlock(BB); 2018 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2019 2020 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2021 // Skip PHIs which are trivial. 2022 if (ThenV == OrigV) 2023 continue; 2024 2025 // Don't convert to selects if we could remove undefined behavior instead. 2026 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2027 passingValueIsAlwaysUndefined(ThenV, &PN)) 2028 return false; 2029 2030 HaveRewritablePHIs = true; 2031 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2032 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2033 if (!OrigCE && !ThenCE) 2034 continue; // Known safe and cheap. 2035 2036 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2037 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2038 return false; 2039 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2040 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2041 unsigned MaxCost = 2042 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2043 if (OrigCost + ThenCost > MaxCost) 2044 return false; 2045 2046 // Account for the cost of an unfolded ConstantExpr which could end up 2047 // getting expanded into Instructions. 2048 // FIXME: This doesn't account for how many operations are combined in the 2049 // constant expression. 2050 ++SpeculationCost; 2051 if (SpeculationCost > 1) 2052 return false; 2053 } 2054 2055 // If there are no PHIs to process, bail early. This helps ensure idempotence 2056 // as well. 2057 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2058 return false; 2059 2060 // If we get here, we can hoist the instruction and if-convert. 2061 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2062 2063 // Insert a select of the value of the speculated store. 2064 if (SpeculatedStoreValue) { 2065 IRBuilder<NoFolder> Builder(BI); 2066 Value *TrueV = SpeculatedStore->getValueOperand(); 2067 Value *FalseV = SpeculatedStoreValue; 2068 if (Invert) 2069 std::swap(TrueV, FalseV); 2070 Value *S = Builder.CreateSelect( 2071 BrCond, TrueV, FalseV, "spec.store.select", BI); 2072 SpeculatedStore->setOperand(0, S); 2073 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2074 SpeculatedStore->getDebugLoc()); 2075 } 2076 2077 // Metadata can be dependent on the condition we are hoisting above. 2078 // Conservatively strip all metadata on the instruction. 2079 for (auto &I : *ThenBB) 2080 I.dropUnknownNonDebugMetadata(); 2081 2082 // Hoist the instructions. 2083 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2084 ThenBB->begin(), std::prev(ThenBB->end())); 2085 2086 // Insert selects and rewrite the PHI operands. 2087 IRBuilder<NoFolder> Builder(BI); 2088 for (PHINode &PN : EndBB->phis()) { 2089 unsigned OrigI = PN.getBasicBlockIndex(BB); 2090 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2091 Value *OrigV = PN.getIncomingValue(OrigI); 2092 Value *ThenV = PN.getIncomingValue(ThenI); 2093 2094 // Skip PHIs which are trivial. 2095 if (OrigV == ThenV) 2096 continue; 2097 2098 // Create a select whose true value is the speculatively executed value and 2099 // false value is the preexisting value. Swap them if the branch 2100 // destinations were inverted. 2101 Value *TrueV = ThenV, *FalseV = OrigV; 2102 if (Invert) 2103 std::swap(TrueV, FalseV); 2104 Value *V = Builder.CreateSelect( 2105 BrCond, TrueV, FalseV, "spec.select", BI); 2106 PN.setIncomingValue(OrigI, V); 2107 PN.setIncomingValue(ThenI, V); 2108 } 2109 2110 // Remove speculated dbg intrinsics. 2111 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2112 // dbg value for the different flows and inserting it after the select. 2113 for (Instruction *I : SpeculatedDbgIntrinsics) 2114 I->eraseFromParent(); 2115 2116 ++NumSpeculations; 2117 return true; 2118 } 2119 2120 /// Return true if we can thread a branch across this block. 2121 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2122 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2123 unsigned Size = 0; 2124 2125 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2126 if (isa<DbgInfoIntrinsic>(BBI)) 2127 continue; 2128 if (Size > 10) 2129 return false; // Don't clone large BB's. 2130 ++Size; 2131 2132 // We can only support instructions that do not define values that are 2133 // live outside of the current basic block. 2134 for (User *U : BBI->users()) { 2135 Instruction *UI = cast<Instruction>(U); 2136 if (UI->getParent() != BB || isa<PHINode>(UI)) 2137 return false; 2138 } 2139 2140 // Looks ok, continue checking. 2141 } 2142 2143 return true; 2144 } 2145 2146 /// If we have a conditional branch on a PHI node value that is defined in the 2147 /// same block as the branch and if any PHI entries are constants, thread edges 2148 /// corresponding to that entry to be branches to their ultimate destination. 2149 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2150 AssumptionCache *AC) { 2151 BasicBlock *BB = BI->getParent(); 2152 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2153 // NOTE: we currently cannot transform this case if the PHI node is used 2154 // outside of the block. 2155 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2156 return false; 2157 2158 // Degenerate case of a single entry PHI. 2159 if (PN->getNumIncomingValues() == 1) { 2160 FoldSingleEntryPHINodes(PN->getParent()); 2161 return true; 2162 } 2163 2164 // Now we know that this block has multiple preds and two succs. 2165 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2166 return false; 2167 2168 // Can't fold blocks that contain noduplicate or convergent calls. 2169 if (any_of(*BB, [](const Instruction &I) { 2170 const CallInst *CI = dyn_cast<CallInst>(&I); 2171 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2172 })) 2173 return false; 2174 2175 // Okay, this is a simple enough basic block. See if any phi values are 2176 // constants. 2177 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2178 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2179 if (!CB || !CB->getType()->isIntegerTy(1)) 2180 continue; 2181 2182 // Okay, we now know that all edges from PredBB should be revectored to 2183 // branch to RealDest. 2184 BasicBlock *PredBB = PN->getIncomingBlock(i); 2185 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2186 2187 if (RealDest == BB) 2188 continue; // Skip self loops. 2189 // Skip if the predecessor's terminator is an indirect branch. 2190 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2191 continue; 2192 2193 // The dest block might have PHI nodes, other predecessors and other 2194 // difficult cases. Instead of being smart about this, just insert a new 2195 // block that jumps to the destination block, effectively splitting 2196 // the edge we are about to create. 2197 BasicBlock *EdgeBB = 2198 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2199 RealDest->getParent(), RealDest); 2200 BranchInst::Create(RealDest, EdgeBB); 2201 2202 // Update PHI nodes. 2203 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2204 2205 // BB may have instructions that are being threaded over. Clone these 2206 // instructions into EdgeBB. We know that there will be no uses of the 2207 // cloned instructions outside of EdgeBB. 2208 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2209 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2210 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2211 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2212 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2213 continue; 2214 } 2215 // Clone the instruction. 2216 Instruction *N = BBI->clone(); 2217 if (BBI->hasName()) 2218 N->setName(BBI->getName() + ".c"); 2219 2220 // Update operands due to translation. 2221 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2222 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2223 if (PI != TranslateMap.end()) 2224 *i = PI->second; 2225 } 2226 2227 // Check for trivial simplification. 2228 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2229 if (!BBI->use_empty()) 2230 TranslateMap[&*BBI] = V; 2231 if (!N->mayHaveSideEffects()) { 2232 N->deleteValue(); // Instruction folded away, don't need actual inst 2233 N = nullptr; 2234 } 2235 } else { 2236 if (!BBI->use_empty()) 2237 TranslateMap[&*BBI] = N; 2238 } 2239 // Insert the new instruction into its new home. 2240 if (N) 2241 EdgeBB->getInstList().insert(InsertPt, N); 2242 2243 // Register the new instruction with the assumption cache if necessary. 2244 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2245 if (II->getIntrinsicID() == Intrinsic::assume) 2246 AC->registerAssumption(II); 2247 } 2248 2249 // Loop over all of the edges from PredBB to BB, changing them to branch 2250 // to EdgeBB instead. 2251 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2252 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2253 if (PredBBTI->getSuccessor(i) == BB) { 2254 BB->removePredecessor(PredBB); 2255 PredBBTI->setSuccessor(i, EdgeBB); 2256 } 2257 2258 // Recurse, simplifying any other constants. 2259 return FoldCondBranchOnPHI(BI, DL, AC) | true; 2260 } 2261 2262 return false; 2263 } 2264 2265 /// Given a BB that starts with the specified two-entry PHI node, 2266 /// see if we can eliminate it. 2267 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2268 const DataLayout &DL) { 2269 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2270 // statement", which has a very simple dominance structure. Basically, we 2271 // are trying to find the condition that is being branched on, which 2272 // subsequently causes this merge to happen. We really want control 2273 // dependence information for this check, but simplifycfg can't keep it up 2274 // to date, and this catches most of the cases we care about anyway. 2275 BasicBlock *BB = PN->getParent(); 2276 const Function *Fn = BB->getParent(); 2277 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2278 return false; 2279 2280 BasicBlock *IfTrue, *IfFalse; 2281 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2282 if (!IfCond || 2283 // Don't bother if the branch will be constant folded trivially. 2284 isa<ConstantInt>(IfCond)) 2285 return false; 2286 2287 // Okay, we found that we can merge this two-entry phi node into a select. 2288 // Doing so would require us to fold *all* two entry phi nodes in this block. 2289 // At some point this becomes non-profitable (particularly if the target 2290 // doesn't support cmov's). Only do this transformation if there are two or 2291 // fewer PHI nodes in this block. 2292 unsigned NumPhis = 0; 2293 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2294 if (NumPhis > 2) 2295 return false; 2296 2297 // Loop over the PHI's seeing if we can promote them all to select 2298 // instructions. While we are at it, keep track of the instructions 2299 // that need to be moved to the dominating block. 2300 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2301 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2302 MaxCostVal1 = PHINodeFoldingThreshold; 2303 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2304 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2305 2306 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2307 PHINode *PN = cast<PHINode>(II++); 2308 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2309 PN->replaceAllUsesWith(V); 2310 PN->eraseFromParent(); 2311 continue; 2312 } 2313 2314 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2315 MaxCostVal0, TTI) || 2316 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2317 MaxCostVal1, TTI)) 2318 return false; 2319 } 2320 2321 // If we folded the first phi, PN dangles at this point. Refresh it. If 2322 // we ran out of PHIs then we simplified them all. 2323 PN = dyn_cast<PHINode>(BB->begin()); 2324 if (!PN) 2325 return true; 2326 2327 // Don't fold i1 branches on PHIs which contain binary operators. These can 2328 // often be turned into switches and other things. 2329 if (PN->getType()->isIntegerTy(1) && 2330 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2331 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2332 isa<BinaryOperator>(IfCond))) 2333 return false; 2334 2335 // If all PHI nodes are promotable, check to make sure that all instructions 2336 // in the predecessor blocks can be promoted as well. If not, we won't be able 2337 // to get rid of the control flow, so it's not worth promoting to select 2338 // instructions. 2339 BasicBlock *DomBlock = nullptr; 2340 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2341 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2342 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2343 IfBlock1 = nullptr; 2344 } else { 2345 DomBlock = *pred_begin(IfBlock1); 2346 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2347 ++I) 2348 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2349 // This is not an aggressive instruction that we can promote. 2350 // Because of this, we won't be able to get rid of the control flow, so 2351 // the xform is not worth it. 2352 return false; 2353 } 2354 } 2355 2356 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2357 IfBlock2 = nullptr; 2358 } else { 2359 DomBlock = *pred_begin(IfBlock2); 2360 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2361 ++I) 2362 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2363 // This is not an aggressive instruction that we can promote. 2364 // Because of this, we won't be able to get rid of the control flow, so 2365 // the xform is not worth it. 2366 return false; 2367 } 2368 } 2369 2370 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2371 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2372 2373 // If we can still promote the PHI nodes after this gauntlet of tests, 2374 // do all of the PHI's now. 2375 Instruction *InsertPt = DomBlock->getTerminator(); 2376 IRBuilder<NoFolder> Builder(InsertPt); 2377 2378 // Move all 'aggressive' instructions, which are defined in the 2379 // conditional parts of the if's up to the dominating block. 2380 if (IfBlock1) { 2381 for (auto &I : *IfBlock1) 2382 I.dropUnknownNonDebugMetadata(); 2383 DomBlock->getInstList().splice(InsertPt->getIterator(), 2384 IfBlock1->getInstList(), IfBlock1->begin(), 2385 IfBlock1->getTerminator()->getIterator()); 2386 } 2387 if (IfBlock2) { 2388 for (auto &I : *IfBlock2) 2389 I.dropUnknownNonDebugMetadata(); 2390 DomBlock->getInstList().splice(InsertPt->getIterator(), 2391 IfBlock2->getInstList(), IfBlock2->begin(), 2392 IfBlock2->getTerminator()->getIterator()); 2393 } 2394 2395 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2396 // Change the PHI node into a select instruction. 2397 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2398 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2399 2400 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2401 PN->replaceAllUsesWith(Sel); 2402 Sel->takeName(PN); 2403 PN->eraseFromParent(); 2404 } 2405 2406 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2407 // has been flattened. Change DomBlock to jump directly to our new block to 2408 // avoid other simplifycfg's kicking in on the diamond. 2409 TerminatorInst *OldTI = DomBlock->getTerminator(); 2410 Builder.SetInsertPoint(OldTI); 2411 Builder.CreateBr(BB); 2412 OldTI->eraseFromParent(); 2413 return true; 2414 } 2415 2416 /// If we found a conditional branch that goes to two returning blocks, 2417 /// try to merge them together into one return, 2418 /// introducing a select if the return values disagree. 2419 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2420 IRBuilder<> &Builder) { 2421 assert(BI->isConditional() && "Must be a conditional branch"); 2422 BasicBlock *TrueSucc = BI->getSuccessor(0); 2423 BasicBlock *FalseSucc = BI->getSuccessor(1); 2424 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2425 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2426 2427 // Check to ensure both blocks are empty (just a return) or optionally empty 2428 // with PHI nodes. If there are other instructions, merging would cause extra 2429 // computation on one path or the other. 2430 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2431 return false; 2432 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2433 return false; 2434 2435 Builder.SetInsertPoint(BI); 2436 // Okay, we found a branch that is going to two return nodes. If 2437 // there is no return value for this function, just change the 2438 // branch into a return. 2439 if (FalseRet->getNumOperands() == 0) { 2440 TrueSucc->removePredecessor(BI->getParent()); 2441 FalseSucc->removePredecessor(BI->getParent()); 2442 Builder.CreateRetVoid(); 2443 EraseTerminatorInstAndDCECond(BI); 2444 return true; 2445 } 2446 2447 // Otherwise, figure out what the true and false return values are 2448 // so we can insert a new select instruction. 2449 Value *TrueValue = TrueRet->getReturnValue(); 2450 Value *FalseValue = FalseRet->getReturnValue(); 2451 2452 // Unwrap any PHI nodes in the return blocks. 2453 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2454 if (TVPN->getParent() == TrueSucc) 2455 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2456 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2457 if (FVPN->getParent() == FalseSucc) 2458 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2459 2460 // In order for this transformation to be safe, we must be able to 2461 // unconditionally execute both operands to the return. This is 2462 // normally the case, but we could have a potentially-trapping 2463 // constant expression that prevents this transformation from being 2464 // safe. 2465 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2466 if (TCV->canTrap()) 2467 return false; 2468 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2469 if (FCV->canTrap()) 2470 return false; 2471 2472 // Okay, we collected all the mapped values and checked them for sanity, and 2473 // defined to really do this transformation. First, update the CFG. 2474 TrueSucc->removePredecessor(BI->getParent()); 2475 FalseSucc->removePredecessor(BI->getParent()); 2476 2477 // Insert select instructions where needed. 2478 Value *BrCond = BI->getCondition(); 2479 if (TrueValue) { 2480 // Insert a select if the results differ. 2481 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2482 } else if (isa<UndefValue>(TrueValue)) { 2483 TrueValue = FalseValue; 2484 } else { 2485 TrueValue = 2486 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2487 } 2488 } 2489 2490 Value *RI = 2491 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2492 2493 (void)RI; 2494 2495 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2496 << "\n " << *BI << "NewRet = " << *RI 2497 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2498 2499 EraseTerminatorInstAndDCECond(BI); 2500 2501 return true; 2502 } 2503 2504 /// Return true if the given instruction is available 2505 /// in its predecessor block. If yes, the instruction will be removed. 2506 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2507 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2508 return false; 2509 for (Instruction &I : *PB) { 2510 Instruction *PBI = &I; 2511 // Check whether Inst and PBI generate the same value. 2512 if (Inst->isIdenticalTo(PBI)) { 2513 Inst->replaceAllUsesWith(PBI); 2514 Inst->eraseFromParent(); 2515 return true; 2516 } 2517 } 2518 return false; 2519 } 2520 2521 /// Return true if either PBI or BI has branch weight available, and store 2522 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2523 /// not have branch weight, use 1:1 as its weight. 2524 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2525 uint64_t &PredTrueWeight, 2526 uint64_t &PredFalseWeight, 2527 uint64_t &SuccTrueWeight, 2528 uint64_t &SuccFalseWeight) { 2529 bool PredHasWeights = 2530 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2531 bool SuccHasWeights = 2532 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2533 if (PredHasWeights || SuccHasWeights) { 2534 if (!PredHasWeights) 2535 PredTrueWeight = PredFalseWeight = 1; 2536 if (!SuccHasWeights) 2537 SuccTrueWeight = SuccFalseWeight = 1; 2538 return true; 2539 } else { 2540 return false; 2541 } 2542 } 2543 2544 /// If this basic block is simple enough, and if a predecessor branches to us 2545 /// and one of our successors, fold the block into the predecessor and use 2546 /// logical operations to pick the right destination. 2547 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2548 BasicBlock *BB = BI->getParent(); 2549 2550 Instruction *Cond = nullptr; 2551 if (BI->isConditional()) 2552 Cond = dyn_cast<Instruction>(BI->getCondition()); 2553 else { 2554 // For unconditional branch, check for a simple CFG pattern, where 2555 // BB has a single predecessor and BB's successor is also its predecessor's 2556 // successor. If such pattern exists, check for CSE between BB and its 2557 // predecessor. 2558 if (BasicBlock *PB = BB->getSinglePredecessor()) 2559 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2560 if (PBI->isConditional() && 2561 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2562 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2563 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2564 Instruction *Curr = &*I++; 2565 if (isa<CmpInst>(Curr)) { 2566 Cond = Curr; 2567 break; 2568 } 2569 // Quit if we can't remove this instruction. 2570 if (!checkCSEInPredecessor(Curr, PB)) 2571 return false; 2572 } 2573 } 2574 2575 if (!Cond) 2576 return false; 2577 } 2578 2579 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2580 Cond->getParent() != BB || !Cond->hasOneUse()) 2581 return false; 2582 2583 // Make sure the instruction after the condition is the cond branch. 2584 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2585 2586 // Ignore dbg intrinsics. 2587 while (isa<DbgInfoIntrinsic>(CondIt)) 2588 ++CondIt; 2589 2590 if (&*CondIt != BI) 2591 return false; 2592 2593 // Only allow this transformation if computing the condition doesn't involve 2594 // too many instructions and these involved instructions can be executed 2595 // unconditionally. We denote all involved instructions except the condition 2596 // as "bonus instructions", and only allow this transformation when the 2597 // number of the bonus instructions does not exceed a certain threshold. 2598 unsigned NumBonusInsts = 0; 2599 for (auto I = BB->begin(); Cond != &*I; ++I) { 2600 // Ignore dbg intrinsics. 2601 if (isa<DbgInfoIntrinsic>(I)) 2602 continue; 2603 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2604 return false; 2605 // I has only one use and can be executed unconditionally. 2606 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2607 if (User == nullptr || User->getParent() != BB) 2608 return false; 2609 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2610 // to use any other instruction, User must be an instruction between next(I) 2611 // and Cond. 2612 ++NumBonusInsts; 2613 // Early exits once we reach the limit. 2614 if (NumBonusInsts > BonusInstThreshold) 2615 return false; 2616 } 2617 2618 // Cond is known to be a compare or binary operator. Check to make sure that 2619 // neither operand is a potentially-trapping constant expression. 2620 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2621 if (CE->canTrap()) 2622 return false; 2623 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2624 if (CE->canTrap()) 2625 return false; 2626 2627 // Finally, don't infinitely unroll conditional loops. 2628 BasicBlock *TrueDest = BI->getSuccessor(0); 2629 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2630 if (TrueDest == BB || FalseDest == BB) 2631 return false; 2632 2633 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2634 BasicBlock *PredBlock = *PI; 2635 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2636 2637 // Check that we have two conditional branches. If there is a PHI node in 2638 // the common successor, verify that the same value flows in from both 2639 // blocks. 2640 SmallVector<PHINode *, 4> PHIs; 2641 if (!PBI || PBI->isUnconditional() || 2642 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2643 (!BI->isConditional() && 2644 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2645 continue; 2646 2647 // Determine if the two branches share a common destination. 2648 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2649 bool InvertPredCond = false; 2650 2651 if (BI->isConditional()) { 2652 if (PBI->getSuccessor(0) == TrueDest) { 2653 Opc = Instruction::Or; 2654 } else if (PBI->getSuccessor(1) == FalseDest) { 2655 Opc = Instruction::And; 2656 } else if (PBI->getSuccessor(0) == FalseDest) { 2657 Opc = Instruction::And; 2658 InvertPredCond = true; 2659 } else if (PBI->getSuccessor(1) == TrueDest) { 2660 Opc = Instruction::Or; 2661 InvertPredCond = true; 2662 } else { 2663 continue; 2664 } 2665 } else { 2666 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2667 continue; 2668 } 2669 2670 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2671 IRBuilder<> Builder(PBI); 2672 2673 // If we need to invert the condition in the pred block to match, do so now. 2674 if (InvertPredCond) { 2675 Value *NewCond = PBI->getCondition(); 2676 2677 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2678 CmpInst *CI = cast<CmpInst>(NewCond); 2679 CI->setPredicate(CI->getInversePredicate()); 2680 } else { 2681 NewCond = 2682 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2683 } 2684 2685 PBI->setCondition(NewCond); 2686 PBI->swapSuccessors(); 2687 } 2688 2689 // If we have bonus instructions, clone them into the predecessor block. 2690 // Note that there may be multiple predecessor blocks, so we cannot move 2691 // bonus instructions to a predecessor block. 2692 ValueToValueMapTy VMap; // maps original values to cloned values 2693 // We already make sure Cond is the last instruction before BI. Therefore, 2694 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2695 // instructions. 2696 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2697 if (isa<DbgInfoIntrinsic>(BonusInst)) 2698 continue; 2699 Instruction *NewBonusInst = BonusInst->clone(); 2700 RemapInstruction(NewBonusInst, VMap, 2701 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2702 VMap[&*BonusInst] = NewBonusInst; 2703 2704 // If we moved a load, we cannot any longer claim any knowledge about 2705 // its potential value. The previous information might have been valid 2706 // only given the branch precondition. 2707 // For an analogous reason, we must also drop all the metadata whose 2708 // semantics we don't understand. 2709 NewBonusInst->dropUnknownNonDebugMetadata(); 2710 2711 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2712 NewBonusInst->takeName(&*BonusInst); 2713 BonusInst->setName(BonusInst->getName() + ".old"); 2714 } 2715 2716 // Clone Cond into the predecessor basic block, and or/and the 2717 // two conditions together. 2718 Instruction *New = Cond->clone(); 2719 RemapInstruction(New, VMap, 2720 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2721 PredBlock->getInstList().insert(PBI->getIterator(), New); 2722 New->takeName(Cond); 2723 Cond->setName(New->getName() + ".old"); 2724 2725 if (BI->isConditional()) { 2726 Instruction *NewCond = cast<Instruction>( 2727 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2728 PBI->setCondition(NewCond); 2729 2730 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2731 bool HasWeights = 2732 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2733 SuccTrueWeight, SuccFalseWeight); 2734 SmallVector<uint64_t, 8> NewWeights; 2735 2736 if (PBI->getSuccessor(0) == BB) { 2737 if (HasWeights) { 2738 // PBI: br i1 %x, BB, FalseDest 2739 // BI: br i1 %y, TrueDest, FalseDest 2740 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2741 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2742 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2743 // TrueWeight for PBI * FalseWeight for BI. 2744 // We assume that total weights of a BranchInst can fit into 32 bits. 2745 // Therefore, we will not have overflow using 64-bit arithmetic. 2746 NewWeights.push_back(PredFalseWeight * 2747 (SuccFalseWeight + SuccTrueWeight) + 2748 PredTrueWeight * SuccFalseWeight); 2749 } 2750 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2751 PBI->setSuccessor(0, TrueDest); 2752 } 2753 if (PBI->getSuccessor(1) == BB) { 2754 if (HasWeights) { 2755 // PBI: br i1 %x, TrueDest, BB 2756 // BI: br i1 %y, TrueDest, FalseDest 2757 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2758 // FalseWeight for PBI * TrueWeight for BI. 2759 NewWeights.push_back(PredTrueWeight * 2760 (SuccFalseWeight + SuccTrueWeight) + 2761 PredFalseWeight * SuccTrueWeight); 2762 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2763 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2764 } 2765 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2766 PBI->setSuccessor(1, FalseDest); 2767 } 2768 if (NewWeights.size() == 2) { 2769 // Halve the weights if any of them cannot fit in an uint32_t 2770 FitWeights(NewWeights); 2771 2772 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2773 NewWeights.end()); 2774 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2775 } else 2776 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2777 } else { 2778 // Update PHI nodes in the common successors. 2779 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2780 ConstantInt *PBI_C = cast<ConstantInt>( 2781 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2782 assert(PBI_C->getType()->isIntegerTy(1)); 2783 Instruction *MergedCond = nullptr; 2784 if (PBI->getSuccessor(0) == TrueDest) { 2785 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2786 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2787 // is false: !PBI_Cond and BI_Value 2788 Instruction *NotCond = cast<Instruction>( 2789 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2790 MergedCond = cast<Instruction>( 2791 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2792 if (PBI_C->isOne()) 2793 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2794 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2795 } else { 2796 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2797 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2798 // is false: PBI_Cond and BI_Value 2799 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2800 Instruction::And, PBI->getCondition(), New, "and.cond")); 2801 if (PBI_C->isOne()) { 2802 Instruction *NotCond = cast<Instruction>( 2803 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2804 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2805 Instruction::Or, NotCond, MergedCond, "or.cond")); 2806 } 2807 } 2808 // Update PHI Node. 2809 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2810 MergedCond); 2811 } 2812 // Change PBI from Conditional to Unconditional. 2813 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2814 EraseTerminatorInstAndDCECond(PBI); 2815 PBI = New_PBI; 2816 } 2817 2818 // If BI was a loop latch, it may have had associated loop metadata. 2819 // We need to copy it to the new latch, that is, PBI. 2820 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2821 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2822 2823 // TODO: If BB is reachable from all paths through PredBlock, then we 2824 // could replace PBI's branch probabilities with BI's. 2825 2826 // Copy any debug value intrinsics into the end of PredBlock. 2827 for (Instruction &I : *BB) 2828 if (isa<DbgInfoIntrinsic>(I)) 2829 I.clone()->insertBefore(PBI); 2830 2831 return true; 2832 } 2833 return false; 2834 } 2835 2836 // If there is only one store in BB1 and BB2, return it, otherwise return 2837 // nullptr. 2838 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2839 StoreInst *S = nullptr; 2840 for (auto *BB : {BB1, BB2}) { 2841 if (!BB) 2842 continue; 2843 for (auto &I : *BB) 2844 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2845 if (S) 2846 // Multiple stores seen. 2847 return nullptr; 2848 else 2849 S = SI; 2850 } 2851 } 2852 return S; 2853 } 2854 2855 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2856 Value *AlternativeV = nullptr) { 2857 // PHI is going to be a PHI node that allows the value V that is defined in 2858 // BB to be referenced in BB's only successor. 2859 // 2860 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2861 // doesn't matter to us what the other operand is (it'll never get used). We 2862 // could just create a new PHI with an undef incoming value, but that could 2863 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2864 // other PHI. So here we directly look for some PHI in BB's successor with V 2865 // as an incoming operand. If we find one, we use it, else we create a new 2866 // one. 2867 // 2868 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2869 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2870 // where OtherBB is the single other predecessor of BB's only successor. 2871 PHINode *PHI = nullptr; 2872 BasicBlock *Succ = BB->getSingleSuccessor(); 2873 2874 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2875 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2876 PHI = cast<PHINode>(I); 2877 if (!AlternativeV) 2878 break; 2879 2880 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2881 auto PredI = pred_begin(Succ); 2882 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2883 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2884 break; 2885 PHI = nullptr; 2886 } 2887 if (PHI) 2888 return PHI; 2889 2890 // If V is not an instruction defined in BB, just return it. 2891 if (!AlternativeV && 2892 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2893 return V; 2894 2895 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2896 PHI->addIncoming(V, BB); 2897 for (BasicBlock *PredBB : predecessors(Succ)) 2898 if (PredBB != BB) 2899 PHI->addIncoming( 2900 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2901 return PHI; 2902 } 2903 2904 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2905 BasicBlock *QTB, BasicBlock *QFB, 2906 BasicBlock *PostBB, Value *Address, 2907 bool InvertPCond, bool InvertQCond, 2908 const DataLayout &DL) { 2909 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2910 return Operator::getOpcode(&I) == Instruction::BitCast && 2911 I.getType()->isPointerTy(); 2912 }; 2913 2914 // If we're not in aggressive mode, we only optimize if we have some 2915 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2916 auto IsWorthwhile = [&](BasicBlock *BB) { 2917 if (!BB) 2918 return true; 2919 // Heuristic: if the block can be if-converted/phi-folded and the 2920 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2921 // thread this store. 2922 unsigned N = 0; 2923 for (auto &I : *BB) { 2924 // Cheap instructions viable for folding. 2925 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2926 isa<StoreInst>(I)) 2927 ++N; 2928 // Free instructions. 2929 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2930 IsaBitcastOfPointerType(I)) 2931 continue; 2932 else 2933 return false; 2934 } 2935 // The store we want to merge is counted in N, so add 1 to make sure 2936 // we're counting the instructions that would be left. 2937 return N <= (PHINodeFoldingThreshold + 1); 2938 }; 2939 2940 if (!MergeCondStoresAggressively && 2941 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2942 !IsWorthwhile(QFB))) 2943 return false; 2944 2945 // For every pointer, there must be exactly two stores, one coming from 2946 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2947 // store (to any address) in PTB,PFB or QTB,QFB. 2948 // FIXME: We could relax this restriction with a bit more work and performance 2949 // testing. 2950 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2951 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2952 if (!PStore || !QStore) 2953 return false; 2954 2955 // Now check the stores are compatible. 2956 if (!QStore->isUnordered() || !PStore->isUnordered()) 2957 return false; 2958 2959 // Check that sinking the store won't cause program behavior changes. Sinking 2960 // the store out of the Q blocks won't change any behavior as we're sinking 2961 // from a block to its unconditional successor. But we're moving a store from 2962 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2963 // So we need to check that there are no aliasing loads or stores in 2964 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2965 // operations between PStore and the end of its parent block. 2966 // 2967 // The ideal way to do this is to query AliasAnalysis, but we don't 2968 // preserve AA currently so that is dangerous. Be super safe and just 2969 // check there are no other memory operations at all. 2970 for (auto &I : *QFB->getSinglePredecessor()) 2971 if (I.mayReadOrWriteMemory()) 2972 return false; 2973 for (auto &I : *QFB) 2974 if (&I != QStore && I.mayReadOrWriteMemory()) 2975 return false; 2976 if (QTB) 2977 for (auto &I : *QTB) 2978 if (&I != QStore && I.mayReadOrWriteMemory()) 2979 return false; 2980 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2981 I != E; ++I) 2982 if (&*I != PStore && I->mayReadOrWriteMemory()) 2983 return false; 2984 2985 // If PostBB has more than two predecessors, we need to split it so we can 2986 // sink the store. 2987 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2988 // We know that QFB's only successor is PostBB. And QFB has a single 2989 // predecessor. If QTB exists, then its only successor is also PostBB. 2990 // If QTB does not exist, then QFB's only predecessor has a conditional 2991 // branch to QFB and PostBB. 2992 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 2993 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 2994 "condstore.split"); 2995 if (!NewBB) 2996 return false; 2997 PostBB = NewBB; 2998 } 2999 3000 // OK, we're going to sink the stores to PostBB. The store has to be 3001 // conditional though, so first create the predicate. 3002 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3003 ->getCondition(); 3004 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3005 ->getCondition(); 3006 3007 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3008 PStore->getParent()); 3009 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3010 QStore->getParent(), PPHI); 3011 3012 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3013 3014 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3015 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3016 3017 if (InvertPCond) 3018 PPred = QB.CreateNot(PPred); 3019 if (InvertQCond) 3020 QPred = QB.CreateNot(QPred); 3021 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3022 3023 auto *T = 3024 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3025 QB.SetInsertPoint(T); 3026 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3027 AAMDNodes AAMD; 3028 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3029 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3030 SI->setAAMetadata(AAMD); 3031 unsigned PAlignment = PStore->getAlignment(); 3032 unsigned QAlignment = QStore->getAlignment(); 3033 unsigned TypeAlignment = 3034 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3035 unsigned MinAlignment; 3036 unsigned MaxAlignment; 3037 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3038 // Choose the minimum alignment. If we could prove both stores execute, we 3039 // could use biggest one. In this case, though, we only know that one of the 3040 // stores executes. And we don't know it's safe to take the alignment from a 3041 // store that doesn't execute. 3042 if (MinAlignment != 0) { 3043 // Choose the minimum of all non-zero alignments. 3044 SI->setAlignment(MinAlignment); 3045 } else if (MaxAlignment != 0) { 3046 // Choose the minimal alignment between the non-zero alignment and the ABI 3047 // default alignment for the type of the stored value. 3048 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3049 } else { 3050 // If both alignments are zero, use ABI default alignment for the type of 3051 // the stored value. 3052 SI->setAlignment(TypeAlignment); 3053 } 3054 3055 QStore->eraseFromParent(); 3056 PStore->eraseFromParent(); 3057 3058 return true; 3059 } 3060 3061 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3062 const DataLayout &DL) { 3063 // The intention here is to find diamonds or triangles (see below) where each 3064 // conditional block contains a store to the same address. Both of these 3065 // stores are conditional, so they can't be unconditionally sunk. But it may 3066 // be profitable to speculatively sink the stores into one merged store at the 3067 // end, and predicate the merged store on the union of the two conditions of 3068 // PBI and QBI. 3069 // 3070 // This can reduce the number of stores executed if both of the conditions are 3071 // true, and can allow the blocks to become small enough to be if-converted. 3072 // This optimization will also chain, so that ladders of test-and-set 3073 // sequences can be if-converted away. 3074 // 3075 // We only deal with simple diamonds or triangles: 3076 // 3077 // PBI or PBI or a combination of the two 3078 // / \ | \ 3079 // PTB PFB | PFB 3080 // \ / | / 3081 // QBI QBI 3082 // / \ | \ 3083 // QTB QFB | QFB 3084 // \ / | / 3085 // PostBB PostBB 3086 // 3087 // We model triangles as a type of diamond with a nullptr "true" block. 3088 // Triangles are canonicalized so that the fallthrough edge is represented by 3089 // a true condition, as in the diagram above. 3090 BasicBlock *PTB = PBI->getSuccessor(0); 3091 BasicBlock *PFB = PBI->getSuccessor(1); 3092 BasicBlock *QTB = QBI->getSuccessor(0); 3093 BasicBlock *QFB = QBI->getSuccessor(1); 3094 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3095 3096 // Make sure we have a good guess for PostBB. If QTB's only successor is 3097 // QFB, then QFB is a better PostBB. 3098 if (QTB->getSingleSuccessor() == QFB) 3099 PostBB = QFB; 3100 3101 // If we couldn't find a good PostBB, stop. 3102 if (!PostBB) 3103 return false; 3104 3105 bool InvertPCond = false, InvertQCond = false; 3106 // Canonicalize fallthroughs to the true branches. 3107 if (PFB == QBI->getParent()) { 3108 std::swap(PFB, PTB); 3109 InvertPCond = true; 3110 } 3111 if (QFB == PostBB) { 3112 std::swap(QFB, QTB); 3113 InvertQCond = true; 3114 } 3115 3116 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3117 // and QFB may not. Model fallthroughs as a nullptr block. 3118 if (PTB == QBI->getParent()) 3119 PTB = nullptr; 3120 if (QTB == PostBB) 3121 QTB = nullptr; 3122 3123 // Legality bailouts. We must have at least the non-fallthrough blocks and 3124 // the post-dominating block, and the non-fallthroughs must only have one 3125 // predecessor. 3126 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3127 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3128 }; 3129 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3130 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3131 return false; 3132 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3133 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3134 return false; 3135 if (!QBI->getParent()->hasNUses(2)) 3136 return false; 3137 3138 // OK, this is a sequence of two diamonds or triangles. 3139 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3140 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3141 for (auto *BB : {PTB, PFB}) { 3142 if (!BB) 3143 continue; 3144 for (auto &I : *BB) 3145 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3146 PStoreAddresses.insert(SI->getPointerOperand()); 3147 } 3148 for (auto *BB : {QTB, QFB}) { 3149 if (!BB) 3150 continue; 3151 for (auto &I : *BB) 3152 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3153 QStoreAddresses.insert(SI->getPointerOperand()); 3154 } 3155 3156 set_intersect(PStoreAddresses, QStoreAddresses); 3157 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3158 // clear what it contains. 3159 auto &CommonAddresses = PStoreAddresses; 3160 3161 bool Changed = false; 3162 for (auto *Address : CommonAddresses) 3163 Changed |= mergeConditionalStoreToAddress( 3164 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3165 return Changed; 3166 } 3167 3168 /// If we have a conditional branch as a predecessor of another block, 3169 /// this function tries to simplify it. We know 3170 /// that PBI and BI are both conditional branches, and BI is in one of the 3171 /// successor blocks of PBI - PBI branches to BI. 3172 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3173 const DataLayout &DL) { 3174 assert(PBI->isConditional() && BI->isConditional()); 3175 BasicBlock *BB = BI->getParent(); 3176 3177 // If this block ends with a branch instruction, and if there is a 3178 // predecessor that ends on a branch of the same condition, make 3179 // this conditional branch redundant. 3180 if (PBI->getCondition() == BI->getCondition() && 3181 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3182 // Okay, the outcome of this conditional branch is statically 3183 // knowable. If this block had a single pred, handle specially. 3184 if (BB->getSinglePredecessor()) { 3185 // Turn this into a branch on constant. 3186 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3187 BI->setCondition( 3188 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3189 return true; // Nuke the branch on constant. 3190 } 3191 3192 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3193 // in the constant and simplify the block result. Subsequent passes of 3194 // simplifycfg will thread the block. 3195 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3196 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3197 PHINode *NewPN = PHINode::Create( 3198 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3199 BI->getCondition()->getName() + ".pr", &BB->front()); 3200 // Okay, we're going to insert the PHI node. Since PBI is not the only 3201 // predecessor, compute the PHI'd conditional value for all of the preds. 3202 // Any predecessor where the condition is not computable we keep symbolic. 3203 for (pred_iterator PI = PB; PI != PE; ++PI) { 3204 BasicBlock *P = *PI; 3205 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3206 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3207 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3208 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3209 NewPN->addIncoming( 3210 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3211 P); 3212 } else { 3213 NewPN->addIncoming(BI->getCondition(), P); 3214 } 3215 } 3216 3217 BI->setCondition(NewPN); 3218 return true; 3219 } 3220 } 3221 3222 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3223 if (CE->canTrap()) 3224 return false; 3225 3226 // If both branches are conditional and both contain stores to the same 3227 // address, remove the stores from the conditionals and create a conditional 3228 // merged store at the end. 3229 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3230 return true; 3231 3232 // If this is a conditional branch in an empty block, and if any 3233 // predecessors are a conditional branch to one of our destinations, 3234 // fold the conditions into logical ops and one cond br. 3235 BasicBlock::iterator BBI = BB->begin(); 3236 // Ignore dbg intrinsics. 3237 while (isa<DbgInfoIntrinsic>(BBI)) 3238 ++BBI; 3239 if (&*BBI != BI) 3240 return false; 3241 3242 int PBIOp, BIOp; 3243 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3244 PBIOp = 0; 3245 BIOp = 0; 3246 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3247 PBIOp = 0; 3248 BIOp = 1; 3249 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3250 PBIOp = 1; 3251 BIOp = 0; 3252 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3253 PBIOp = 1; 3254 BIOp = 1; 3255 } else { 3256 return false; 3257 } 3258 3259 // Check to make sure that the other destination of this branch 3260 // isn't BB itself. If so, this is an infinite loop that will 3261 // keep getting unwound. 3262 if (PBI->getSuccessor(PBIOp) == BB) 3263 return false; 3264 3265 // Do not perform this transformation if it would require 3266 // insertion of a large number of select instructions. For targets 3267 // without predication/cmovs, this is a big pessimization. 3268 3269 // Also do not perform this transformation if any phi node in the common 3270 // destination block can trap when reached by BB or PBB (PR17073). In that 3271 // case, it would be unsafe to hoist the operation into a select instruction. 3272 3273 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3274 unsigned NumPhis = 0; 3275 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3276 ++II, ++NumPhis) { 3277 if (NumPhis > 2) // Disable this xform. 3278 return false; 3279 3280 PHINode *PN = cast<PHINode>(II); 3281 Value *BIV = PN->getIncomingValueForBlock(BB); 3282 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3283 if (CE->canTrap()) 3284 return false; 3285 3286 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3287 Value *PBIV = PN->getIncomingValue(PBBIdx); 3288 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3289 if (CE->canTrap()) 3290 return false; 3291 } 3292 3293 // Finally, if everything is ok, fold the branches to logical ops. 3294 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3295 3296 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3297 << "AND: " << *BI->getParent()); 3298 3299 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3300 // branch in it, where one edge (OtherDest) goes back to itself but the other 3301 // exits. We don't *know* that the program avoids the infinite loop 3302 // (even though that seems likely). If we do this xform naively, we'll end up 3303 // recursively unpeeling the loop. Since we know that (after the xform is 3304 // done) that the block *is* infinite if reached, we just make it an obviously 3305 // infinite loop with no cond branch. 3306 if (OtherDest == BB) { 3307 // Insert it at the end of the function, because it's either code, 3308 // or it won't matter if it's hot. :) 3309 BasicBlock *InfLoopBlock = 3310 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3311 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3312 OtherDest = InfLoopBlock; 3313 } 3314 3315 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3316 3317 // BI may have other predecessors. Because of this, we leave 3318 // it alone, but modify PBI. 3319 3320 // Make sure we get to CommonDest on True&True directions. 3321 Value *PBICond = PBI->getCondition(); 3322 IRBuilder<NoFolder> Builder(PBI); 3323 if (PBIOp) 3324 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3325 3326 Value *BICond = BI->getCondition(); 3327 if (BIOp) 3328 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3329 3330 // Merge the conditions. 3331 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3332 3333 // Modify PBI to branch on the new condition to the new dests. 3334 PBI->setCondition(Cond); 3335 PBI->setSuccessor(0, CommonDest); 3336 PBI->setSuccessor(1, OtherDest); 3337 3338 // Update branch weight for PBI. 3339 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3340 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3341 bool HasWeights = 3342 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3343 SuccTrueWeight, SuccFalseWeight); 3344 if (HasWeights) { 3345 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3346 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3347 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3348 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3349 // The weight to CommonDest should be PredCommon * SuccTotal + 3350 // PredOther * SuccCommon. 3351 // The weight to OtherDest should be PredOther * SuccOther. 3352 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3353 PredOther * SuccCommon, 3354 PredOther * SuccOther}; 3355 // Halve the weights if any of them cannot fit in an uint32_t 3356 FitWeights(NewWeights); 3357 3358 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3359 } 3360 3361 // OtherDest may have phi nodes. If so, add an entry from PBI's 3362 // block that are identical to the entries for BI's block. 3363 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3364 3365 // We know that the CommonDest already had an edge from PBI to 3366 // it. If it has PHIs though, the PHIs may have different 3367 // entries for BB and PBI's BB. If so, insert a select to make 3368 // them agree. 3369 for (PHINode &PN : CommonDest->phis()) { 3370 Value *BIV = PN.getIncomingValueForBlock(BB); 3371 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3372 Value *PBIV = PN.getIncomingValue(PBBIdx); 3373 if (BIV != PBIV) { 3374 // Insert a select in PBI to pick the right value. 3375 SelectInst *NV = cast<SelectInst>( 3376 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3377 PN.setIncomingValue(PBBIdx, NV); 3378 // Although the select has the same condition as PBI, the original branch 3379 // weights for PBI do not apply to the new select because the select's 3380 // 'logical' edges are incoming edges of the phi that is eliminated, not 3381 // the outgoing edges of PBI. 3382 if (HasWeights) { 3383 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3384 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3385 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3386 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3387 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3388 // The weight to PredOtherDest should be PredOther * SuccCommon. 3389 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3390 PredOther * SuccCommon}; 3391 3392 FitWeights(NewWeights); 3393 3394 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3395 } 3396 } 3397 } 3398 3399 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3400 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3401 3402 // This basic block is probably dead. We know it has at least 3403 // one fewer predecessor. 3404 return true; 3405 } 3406 3407 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3408 // true or to FalseBB if Cond is false. 3409 // Takes care of updating the successors and removing the old terminator. 3410 // Also makes sure not to introduce new successors by assuming that edges to 3411 // non-successor TrueBBs and FalseBBs aren't reachable. 3412 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3413 BasicBlock *TrueBB, BasicBlock *FalseBB, 3414 uint32_t TrueWeight, 3415 uint32_t FalseWeight) { 3416 // Remove any superfluous successor edges from the CFG. 3417 // First, figure out which successors to preserve. 3418 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3419 // successor. 3420 BasicBlock *KeepEdge1 = TrueBB; 3421 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3422 3423 // Then remove the rest. 3424 for (BasicBlock *Succ : OldTerm->successors()) { 3425 // Make sure only to keep exactly one copy of each edge. 3426 if (Succ == KeepEdge1) 3427 KeepEdge1 = nullptr; 3428 else if (Succ == KeepEdge2) 3429 KeepEdge2 = nullptr; 3430 else 3431 Succ->removePredecessor(OldTerm->getParent(), 3432 /*DontDeleteUselessPHIs=*/true); 3433 } 3434 3435 IRBuilder<> Builder(OldTerm); 3436 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3437 3438 // Insert an appropriate new terminator. 3439 if (!KeepEdge1 && !KeepEdge2) { 3440 if (TrueBB == FalseBB) 3441 // We were only looking for one successor, and it was present. 3442 // Create an unconditional branch to it. 3443 Builder.CreateBr(TrueBB); 3444 else { 3445 // We found both of the successors we were looking for. 3446 // Create a conditional branch sharing the condition of the select. 3447 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3448 if (TrueWeight != FalseWeight) 3449 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3450 } 3451 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3452 // Neither of the selected blocks were successors, so this 3453 // terminator must be unreachable. 3454 new UnreachableInst(OldTerm->getContext(), OldTerm); 3455 } else { 3456 // One of the selected values was a successor, but the other wasn't. 3457 // Insert an unconditional branch to the one that was found; 3458 // the edge to the one that wasn't must be unreachable. 3459 if (!KeepEdge1) 3460 // Only TrueBB was found. 3461 Builder.CreateBr(TrueBB); 3462 else 3463 // Only FalseBB was found. 3464 Builder.CreateBr(FalseBB); 3465 } 3466 3467 EraseTerminatorInstAndDCECond(OldTerm); 3468 return true; 3469 } 3470 3471 // Replaces 3472 // (switch (select cond, X, Y)) on constant X, Y 3473 // with a branch - conditional if X and Y lead to distinct BBs, 3474 // unconditional otherwise. 3475 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3476 // Check for constant integer values in the select. 3477 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3478 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3479 if (!TrueVal || !FalseVal) 3480 return false; 3481 3482 // Find the relevant condition and destinations. 3483 Value *Condition = Select->getCondition(); 3484 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3485 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3486 3487 // Get weight for TrueBB and FalseBB. 3488 uint32_t TrueWeight = 0, FalseWeight = 0; 3489 SmallVector<uint64_t, 8> Weights; 3490 bool HasWeights = HasBranchWeights(SI); 3491 if (HasWeights) { 3492 GetBranchWeights(SI, Weights); 3493 if (Weights.size() == 1 + SI->getNumCases()) { 3494 TrueWeight = 3495 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3496 FalseWeight = 3497 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3498 } 3499 } 3500 3501 // Perform the actual simplification. 3502 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3503 FalseWeight); 3504 } 3505 3506 // Replaces 3507 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3508 // blockaddress(@fn, BlockB))) 3509 // with 3510 // (br cond, BlockA, BlockB). 3511 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3512 // Check that both operands of the select are block addresses. 3513 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3514 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3515 if (!TBA || !FBA) 3516 return false; 3517 3518 // Extract the actual blocks. 3519 BasicBlock *TrueBB = TBA->getBasicBlock(); 3520 BasicBlock *FalseBB = FBA->getBasicBlock(); 3521 3522 // Perform the actual simplification. 3523 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3524 0); 3525 } 3526 3527 /// This is called when we find an icmp instruction 3528 /// (a seteq/setne with a constant) as the only instruction in a 3529 /// block that ends with an uncond branch. We are looking for a very specific 3530 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3531 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3532 /// default value goes to an uncond block with a seteq in it, we get something 3533 /// like: 3534 /// 3535 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3536 /// DEFAULT: 3537 /// %tmp = icmp eq i8 %A, 92 3538 /// br label %end 3539 /// end: 3540 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3541 /// 3542 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3543 /// the PHI, merging the third icmp into the switch. 3544 static bool tryToSimplifyUncondBranchWithICmpInIt( 3545 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3546 const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) { 3547 BasicBlock *BB = ICI->getParent(); 3548 3549 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3550 // complex. 3551 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3552 return false; 3553 3554 Value *V = ICI->getOperand(0); 3555 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3556 3557 // The pattern we're looking for is where our only predecessor is a switch on 3558 // 'V' and this block is the default case for the switch. In this case we can 3559 // fold the compared value into the switch to simplify things. 3560 BasicBlock *Pred = BB->getSinglePredecessor(); 3561 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3562 return false; 3563 3564 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3565 if (SI->getCondition() != V) 3566 return false; 3567 3568 // If BB is reachable on a non-default case, then we simply know the value of 3569 // V in this block. Substitute it and constant fold the icmp instruction 3570 // away. 3571 if (SI->getDefaultDest() != BB) { 3572 ConstantInt *VVal = SI->findCaseDest(BB); 3573 assert(VVal && "Should have a unique destination value"); 3574 ICI->setOperand(0, VVal); 3575 3576 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3577 ICI->replaceAllUsesWith(V); 3578 ICI->eraseFromParent(); 3579 } 3580 // BB is now empty, so it is likely to simplify away. 3581 return simplifyCFG(BB, TTI, Options) | true; 3582 } 3583 3584 // Ok, the block is reachable from the default dest. If the constant we're 3585 // comparing exists in one of the other edges, then we can constant fold ICI 3586 // and zap it. 3587 if (SI->findCaseValue(Cst) != SI->case_default()) { 3588 Value *V; 3589 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3590 V = ConstantInt::getFalse(BB->getContext()); 3591 else 3592 V = ConstantInt::getTrue(BB->getContext()); 3593 3594 ICI->replaceAllUsesWith(V); 3595 ICI->eraseFromParent(); 3596 // BB is now empty, so it is likely to simplify away. 3597 return simplifyCFG(BB, TTI, Options) | true; 3598 } 3599 3600 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3601 // the block. 3602 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3603 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3604 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3605 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3606 return false; 3607 3608 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3609 // true in the PHI. 3610 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3611 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3612 3613 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3614 std::swap(DefaultCst, NewCst); 3615 3616 // Replace ICI (which is used by the PHI for the default value) with true or 3617 // false depending on if it is EQ or NE. 3618 ICI->replaceAllUsesWith(DefaultCst); 3619 ICI->eraseFromParent(); 3620 3621 // Okay, the switch goes to this block on a default value. Add an edge from 3622 // the switch to the merge point on the compared value. 3623 BasicBlock *NewBB = 3624 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3625 SmallVector<uint64_t, 8> Weights; 3626 bool HasWeights = HasBranchWeights(SI); 3627 if (HasWeights) { 3628 GetBranchWeights(SI, Weights); 3629 if (Weights.size() == 1 + SI->getNumCases()) { 3630 // Split weight for default case to case for "Cst". 3631 Weights[0] = (Weights[0] + 1) >> 1; 3632 Weights.push_back(Weights[0]); 3633 3634 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3635 setBranchWeights(SI, MDWeights); 3636 } 3637 } 3638 SI->addCase(Cst, NewBB); 3639 3640 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3641 Builder.SetInsertPoint(NewBB); 3642 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3643 Builder.CreateBr(SuccBlock); 3644 PHIUse->addIncoming(NewCst, NewBB); 3645 return true; 3646 } 3647 3648 /// The specified branch is a conditional branch. 3649 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3650 /// fold it into a switch instruction if so. 3651 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3652 const DataLayout &DL) { 3653 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3654 if (!Cond) 3655 return false; 3656 3657 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3658 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3659 // 'setne's and'ed together, collect them. 3660 3661 // Try to gather values from a chain of and/or to be turned into a switch 3662 ConstantComparesGatherer ConstantCompare(Cond, DL); 3663 // Unpack the result 3664 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3665 Value *CompVal = ConstantCompare.CompValue; 3666 unsigned UsedICmps = ConstantCompare.UsedICmps; 3667 Value *ExtraCase = ConstantCompare.Extra; 3668 3669 // If we didn't have a multiply compared value, fail. 3670 if (!CompVal) 3671 return false; 3672 3673 // Avoid turning single icmps into a switch. 3674 if (UsedICmps <= 1) 3675 return false; 3676 3677 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3678 3679 // There might be duplicate constants in the list, which the switch 3680 // instruction can't handle, remove them now. 3681 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3682 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3683 3684 // If Extra was used, we require at least two switch values to do the 3685 // transformation. A switch with one value is just a conditional branch. 3686 if (ExtraCase && Values.size() < 2) 3687 return false; 3688 3689 // TODO: Preserve branch weight metadata, similarly to how 3690 // FoldValueComparisonIntoPredecessors preserves it. 3691 3692 // Figure out which block is which destination. 3693 BasicBlock *DefaultBB = BI->getSuccessor(1); 3694 BasicBlock *EdgeBB = BI->getSuccessor(0); 3695 if (!TrueWhenEqual) 3696 std::swap(DefaultBB, EdgeBB); 3697 3698 BasicBlock *BB = BI->getParent(); 3699 3700 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3701 << " cases into SWITCH. BB is:\n" 3702 << *BB); 3703 3704 // If there are any extra values that couldn't be folded into the switch 3705 // then we evaluate them with an explicit branch first. Split the block 3706 // right before the condbr to handle it. 3707 if (ExtraCase) { 3708 BasicBlock *NewBB = 3709 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3710 // Remove the uncond branch added to the old block. 3711 TerminatorInst *OldTI = BB->getTerminator(); 3712 Builder.SetInsertPoint(OldTI); 3713 3714 if (TrueWhenEqual) 3715 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3716 else 3717 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3718 3719 OldTI->eraseFromParent(); 3720 3721 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3722 // for the edge we just added. 3723 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3724 3725 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3726 << "\nEXTRABB = " << *BB); 3727 BB = NewBB; 3728 } 3729 3730 Builder.SetInsertPoint(BI); 3731 // Convert pointer to int before we switch. 3732 if (CompVal->getType()->isPointerTy()) { 3733 CompVal = Builder.CreatePtrToInt( 3734 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3735 } 3736 3737 // Create the new switch instruction now. 3738 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3739 3740 // Add all of the 'cases' to the switch instruction. 3741 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3742 New->addCase(Values[i], EdgeBB); 3743 3744 // We added edges from PI to the EdgeBB. As such, if there were any 3745 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3746 // the number of edges added. 3747 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3748 PHINode *PN = cast<PHINode>(BBI); 3749 Value *InVal = PN->getIncomingValueForBlock(BB); 3750 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3751 PN->addIncoming(InVal, BB); 3752 } 3753 3754 // Erase the old branch instruction. 3755 EraseTerminatorInstAndDCECond(BI); 3756 3757 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3758 return true; 3759 } 3760 3761 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3762 if (isa<PHINode>(RI->getValue())) 3763 return SimplifyCommonResume(RI); 3764 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3765 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3766 // The resume must unwind the exception that caused control to branch here. 3767 return SimplifySingleResume(RI); 3768 3769 return false; 3770 } 3771 3772 // Simplify resume that is shared by several landing pads (phi of landing pad). 3773 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3774 BasicBlock *BB = RI->getParent(); 3775 3776 // Check that there are no other instructions except for debug intrinsics 3777 // between the phi of landing pads (RI->getValue()) and resume instruction. 3778 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3779 E = RI->getIterator(); 3780 while (++I != E) 3781 if (!isa<DbgInfoIntrinsic>(I)) 3782 return false; 3783 3784 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3785 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3786 3787 // Check incoming blocks to see if any of them are trivial. 3788 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3789 Idx++) { 3790 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3791 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3792 3793 // If the block has other successors, we can not delete it because 3794 // it has other dependents. 3795 if (IncomingBB->getUniqueSuccessor() != BB) 3796 continue; 3797 3798 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3799 // Not the landing pad that caused the control to branch here. 3800 if (IncomingValue != LandingPad) 3801 continue; 3802 3803 bool isTrivial = true; 3804 3805 I = IncomingBB->getFirstNonPHI()->getIterator(); 3806 E = IncomingBB->getTerminator()->getIterator(); 3807 while (++I != E) 3808 if (!isa<DbgInfoIntrinsic>(I)) { 3809 isTrivial = false; 3810 break; 3811 } 3812 3813 if (isTrivial) 3814 TrivialUnwindBlocks.insert(IncomingBB); 3815 } 3816 3817 // If no trivial unwind blocks, don't do any simplifications. 3818 if (TrivialUnwindBlocks.empty()) 3819 return false; 3820 3821 // Turn all invokes that unwind here into calls. 3822 for (auto *TrivialBB : TrivialUnwindBlocks) { 3823 // Blocks that will be simplified should be removed from the phi node. 3824 // Note there could be multiple edges to the resume block, and we need 3825 // to remove them all. 3826 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3827 BB->removePredecessor(TrivialBB, true); 3828 3829 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3830 PI != PE;) { 3831 BasicBlock *Pred = *PI++; 3832 removeUnwindEdge(Pred); 3833 } 3834 3835 // In each SimplifyCFG run, only the current processed block can be erased. 3836 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3837 // of erasing TrivialBB, we only remove the branch to the common resume 3838 // block so that we can later erase the resume block since it has no 3839 // predecessors. 3840 TrivialBB->getTerminator()->eraseFromParent(); 3841 new UnreachableInst(RI->getContext(), TrivialBB); 3842 } 3843 3844 // Delete the resume block if all its predecessors have been removed. 3845 if (pred_empty(BB)) 3846 BB->eraseFromParent(); 3847 3848 return !TrivialUnwindBlocks.empty(); 3849 } 3850 3851 // Simplify resume that is only used by a single (non-phi) landing pad. 3852 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3853 BasicBlock *BB = RI->getParent(); 3854 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3855 assert(RI->getValue() == LPInst && 3856 "Resume must unwind the exception that caused control to here"); 3857 3858 // Check that there are no other instructions except for debug intrinsics. 3859 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3860 while (++I != E) 3861 if (!isa<DbgInfoIntrinsic>(I)) 3862 return false; 3863 3864 // Turn all invokes that unwind here into calls and delete the basic block. 3865 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3866 BasicBlock *Pred = *PI++; 3867 removeUnwindEdge(Pred); 3868 } 3869 3870 // The landingpad is now unreachable. Zap it. 3871 BB->eraseFromParent(); 3872 if (LoopHeaders) 3873 LoopHeaders->erase(BB); 3874 return true; 3875 } 3876 3877 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3878 // If this is a trivial cleanup pad that executes no instructions, it can be 3879 // eliminated. If the cleanup pad continues to the caller, any predecessor 3880 // that is an EH pad will be updated to continue to the caller and any 3881 // predecessor that terminates with an invoke instruction will have its invoke 3882 // instruction converted to a call instruction. If the cleanup pad being 3883 // simplified does not continue to the caller, each predecessor will be 3884 // updated to continue to the unwind destination of the cleanup pad being 3885 // simplified. 3886 BasicBlock *BB = RI->getParent(); 3887 CleanupPadInst *CPInst = RI->getCleanupPad(); 3888 if (CPInst->getParent() != BB) 3889 // This isn't an empty cleanup. 3890 return false; 3891 3892 // We cannot kill the pad if it has multiple uses. This typically arises 3893 // from unreachable basic blocks. 3894 if (!CPInst->hasOneUse()) 3895 return false; 3896 3897 // Check that there are no other instructions except for benign intrinsics. 3898 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3899 while (++I != E) { 3900 auto *II = dyn_cast<IntrinsicInst>(I); 3901 if (!II) 3902 return false; 3903 3904 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3905 switch (IntrinsicID) { 3906 case Intrinsic::dbg_declare: 3907 case Intrinsic::dbg_value: 3908 case Intrinsic::lifetime_end: 3909 break; 3910 default: 3911 return false; 3912 } 3913 } 3914 3915 // If the cleanup return we are simplifying unwinds to the caller, this will 3916 // set UnwindDest to nullptr. 3917 BasicBlock *UnwindDest = RI->getUnwindDest(); 3918 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3919 3920 // We're about to remove BB from the control flow. Before we do, sink any 3921 // PHINodes into the unwind destination. Doing this before changing the 3922 // control flow avoids some potentially slow checks, since we can currently 3923 // be certain that UnwindDest and BB have no common predecessors (since they 3924 // are both EH pads). 3925 if (UnwindDest) { 3926 // First, go through the PHI nodes in UnwindDest and update any nodes that 3927 // reference the block we are removing 3928 for (BasicBlock::iterator I = UnwindDest->begin(), 3929 IE = DestEHPad->getIterator(); 3930 I != IE; ++I) { 3931 PHINode *DestPN = cast<PHINode>(I); 3932 3933 int Idx = DestPN->getBasicBlockIndex(BB); 3934 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3935 assert(Idx != -1); 3936 // This PHI node has an incoming value that corresponds to a control 3937 // path through the cleanup pad we are removing. If the incoming 3938 // value is in the cleanup pad, it must be a PHINode (because we 3939 // verified above that the block is otherwise empty). Otherwise, the 3940 // value is either a constant or a value that dominates the cleanup 3941 // pad being removed. 3942 // 3943 // Because BB and UnwindDest are both EH pads, all of their 3944 // predecessors must unwind to these blocks, and since no instruction 3945 // can have multiple unwind destinations, there will be no overlap in 3946 // incoming blocks between SrcPN and DestPN. 3947 Value *SrcVal = DestPN->getIncomingValue(Idx); 3948 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3949 3950 // Remove the entry for the block we are deleting. 3951 DestPN->removeIncomingValue(Idx, false); 3952 3953 if (SrcPN && SrcPN->getParent() == BB) { 3954 // If the incoming value was a PHI node in the cleanup pad we are 3955 // removing, we need to merge that PHI node's incoming values into 3956 // DestPN. 3957 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3958 SrcIdx != SrcE; ++SrcIdx) { 3959 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3960 SrcPN->getIncomingBlock(SrcIdx)); 3961 } 3962 } else { 3963 // Otherwise, the incoming value came from above BB and 3964 // so we can just reuse it. We must associate all of BB's 3965 // predecessors with this value. 3966 for (auto *pred : predecessors(BB)) { 3967 DestPN->addIncoming(SrcVal, pred); 3968 } 3969 } 3970 } 3971 3972 // Sink any remaining PHI nodes directly into UnwindDest. 3973 Instruction *InsertPt = DestEHPad; 3974 for (BasicBlock::iterator I = BB->begin(), 3975 IE = BB->getFirstNonPHI()->getIterator(); 3976 I != IE;) { 3977 // The iterator must be incremented here because the instructions are 3978 // being moved to another block. 3979 PHINode *PN = cast<PHINode>(I++); 3980 if (PN->use_empty()) 3981 // If the PHI node has no uses, just leave it. It will be erased 3982 // when we erase BB below. 3983 continue; 3984 3985 // Otherwise, sink this PHI node into UnwindDest. 3986 // Any predecessors to UnwindDest which are not already represented 3987 // must be back edges which inherit the value from the path through 3988 // BB. In this case, the PHI value must reference itself. 3989 for (auto *pred : predecessors(UnwindDest)) 3990 if (pred != BB) 3991 PN->addIncoming(PN, pred); 3992 PN->moveBefore(InsertPt); 3993 } 3994 } 3995 3996 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3997 // The iterator must be updated here because we are removing this pred. 3998 BasicBlock *PredBB = *PI++; 3999 if (UnwindDest == nullptr) { 4000 removeUnwindEdge(PredBB); 4001 } else { 4002 TerminatorInst *TI = PredBB->getTerminator(); 4003 TI->replaceUsesOfWith(BB, UnwindDest); 4004 } 4005 } 4006 4007 // The cleanup pad is now unreachable. Zap it. 4008 BB->eraseFromParent(); 4009 return true; 4010 } 4011 4012 // Try to merge two cleanuppads together. 4013 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4014 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4015 // with. 4016 BasicBlock *UnwindDest = RI->getUnwindDest(); 4017 if (!UnwindDest) 4018 return false; 4019 4020 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4021 // be safe to merge without code duplication. 4022 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4023 return false; 4024 4025 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4026 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4027 if (!SuccessorCleanupPad) 4028 return false; 4029 4030 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4031 // Replace any uses of the successor cleanupad with the predecessor pad 4032 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4033 // funclet bundle operands. 4034 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4035 // Remove the old cleanuppad. 4036 SuccessorCleanupPad->eraseFromParent(); 4037 // Now, we simply replace the cleanupret with a branch to the unwind 4038 // destination. 4039 BranchInst::Create(UnwindDest, RI->getParent()); 4040 RI->eraseFromParent(); 4041 4042 return true; 4043 } 4044 4045 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4046 // It is possible to transiantly have an undef cleanuppad operand because we 4047 // have deleted some, but not all, dead blocks. 4048 // Eventually, this block will be deleted. 4049 if (isa<UndefValue>(RI->getOperand(0))) 4050 return false; 4051 4052 if (mergeCleanupPad(RI)) 4053 return true; 4054 4055 if (removeEmptyCleanup(RI)) 4056 return true; 4057 4058 return false; 4059 } 4060 4061 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4062 BasicBlock *BB = RI->getParent(); 4063 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4064 return false; 4065 4066 // Find predecessors that end with branches. 4067 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4068 SmallVector<BranchInst *, 8> CondBranchPreds; 4069 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4070 BasicBlock *P = *PI; 4071 TerminatorInst *PTI = P->getTerminator(); 4072 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4073 if (BI->isUnconditional()) 4074 UncondBranchPreds.push_back(P); 4075 else 4076 CondBranchPreds.push_back(BI); 4077 } 4078 } 4079 4080 // If we found some, do the transformation! 4081 if (!UncondBranchPreds.empty() && DupRet) { 4082 while (!UncondBranchPreds.empty()) { 4083 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4084 DEBUG(dbgs() << "FOLDING: " << *BB 4085 << "INTO UNCOND BRANCH PRED: " << *Pred); 4086 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4087 } 4088 4089 // If we eliminated all predecessors of the block, delete the block now. 4090 if (pred_empty(BB)) { 4091 // We know there are no successors, so just nuke the block. 4092 BB->eraseFromParent(); 4093 if (LoopHeaders) 4094 LoopHeaders->erase(BB); 4095 } 4096 4097 return true; 4098 } 4099 4100 // Check out all of the conditional branches going to this return 4101 // instruction. If any of them just select between returns, change the 4102 // branch itself into a select/return pair. 4103 while (!CondBranchPreds.empty()) { 4104 BranchInst *BI = CondBranchPreds.pop_back_val(); 4105 4106 // Check to see if the non-BB successor is also a return block. 4107 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4108 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4109 SimplifyCondBranchToTwoReturns(BI, Builder)) 4110 return true; 4111 } 4112 return false; 4113 } 4114 4115 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4116 BasicBlock *BB = UI->getParent(); 4117 4118 bool Changed = false; 4119 4120 // If there are any instructions immediately before the unreachable that can 4121 // be removed, do so. 4122 while (UI->getIterator() != BB->begin()) { 4123 BasicBlock::iterator BBI = UI->getIterator(); 4124 --BBI; 4125 // Do not delete instructions that can have side effects which might cause 4126 // the unreachable to not be reachable; specifically, calls and volatile 4127 // operations may have this effect. 4128 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4129 break; 4130 4131 if (BBI->mayHaveSideEffects()) { 4132 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4133 if (SI->isVolatile()) 4134 break; 4135 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4136 if (LI->isVolatile()) 4137 break; 4138 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4139 if (RMWI->isVolatile()) 4140 break; 4141 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4142 if (CXI->isVolatile()) 4143 break; 4144 } else if (isa<CatchPadInst>(BBI)) { 4145 // A catchpad may invoke exception object constructors and such, which 4146 // in some languages can be arbitrary code, so be conservative by 4147 // default. 4148 // For CoreCLR, it just involves a type test, so can be removed. 4149 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4150 EHPersonality::CoreCLR) 4151 break; 4152 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4153 !isa<LandingPadInst>(BBI)) { 4154 break; 4155 } 4156 // Note that deleting LandingPad's here is in fact okay, although it 4157 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4158 // all the predecessors of this block will be the unwind edges of Invokes, 4159 // and we can therefore guarantee this block will be erased. 4160 } 4161 4162 // Delete this instruction (any uses are guaranteed to be dead) 4163 if (!BBI->use_empty()) 4164 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4165 BBI->eraseFromParent(); 4166 Changed = true; 4167 } 4168 4169 // If the unreachable instruction is the first in the block, take a gander 4170 // at all of the predecessors of this instruction, and simplify them. 4171 if (&BB->front() != UI) 4172 return Changed; 4173 4174 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4175 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4176 TerminatorInst *TI = Preds[i]->getTerminator(); 4177 IRBuilder<> Builder(TI); 4178 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4179 if (BI->isUnconditional()) { 4180 if (BI->getSuccessor(0) == BB) { 4181 new UnreachableInst(TI->getContext(), TI); 4182 TI->eraseFromParent(); 4183 Changed = true; 4184 } 4185 } else { 4186 if (BI->getSuccessor(0) == BB) { 4187 Builder.CreateBr(BI->getSuccessor(1)); 4188 EraseTerminatorInstAndDCECond(BI); 4189 } else if (BI->getSuccessor(1) == BB) { 4190 Builder.CreateBr(BI->getSuccessor(0)); 4191 EraseTerminatorInstAndDCECond(BI); 4192 Changed = true; 4193 } 4194 } 4195 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4196 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4197 if (i->getCaseSuccessor() != BB) { 4198 ++i; 4199 continue; 4200 } 4201 BB->removePredecessor(SI->getParent()); 4202 i = SI->removeCase(i); 4203 e = SI->case_end(); 4204 Changed = true; 4205 } 4206 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4207 if (II->getUnwindDest() == BB) { 4208 removeUnwindEdge(TI->getParent()); 4209 Changed = true; 4210 } 4211 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4212 if (CSI->getUnwindDest() == BB) { 4213 removeUnwindEdge(TI->getParent()); 4214 Changed = true; 4215 continue; 4216 } 4217 4218 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4219 E = CSI->handler_end(); 4220 I != E; ++I) { 4221 if (*I == BB) { 4222 CSI->removeHandler(I); 4223 --I; 4224 --E; 4225 Changed = true; 4226 } 4227 } 4228 if (CSI->getNumHandlers() == 0) { 4229 BasicBlock *CatchSwitchBB = CSI->getParent(); 4230 if (CSI->hasUnwindDest()) { 4231 // Redirect preds to the unwind dest 4232 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4233 } else { 4234 // Rewrite all preds to unwind to caller (or from invoke to call). 4235 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4236 for (BasicBlock *EHPred : EHPreds) 4237 removeUnwindEdge(EHPred); 4238 } 4239 // The catchswitch is no longer reachable. 4240 new UnreachableInst(CSI->getContext(), CSI); 4241 CSI->eraseFromParent(); 4242 Changed = true; 4243 } 4244 } else if (isa<CleanupReturnInst>(TI)) { 4245 new UnreachableInst(TI->getContext(), TI); 4246 TI->eraseFromParent(); 4247 Changed = true; 4248 } 4249 } 4250 4251 // If this block is now dead, remove it. 4252 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4253 // We know there are no successors, so just nuke the block. 4254 BB->eraseFromParent(); 4255 if (LoopHeaders) 4256 LoopHeaders->erase(BB); 4257 return true; 4258 } 4259 4260 return Changed; 4261 } 4262 4263 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4264 assert(Cases.size() >= 1); 4265 4266 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4267 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4268 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4269 return false; 4270 } 4271 return true; 4272 } 4273 4274 /// Turn a switch with two reachable destinations into an integer range 4275 /// comparison and branch. 4276 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4277 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4278 4279 bool HasDefault = 4280 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4281 4282 // Partition the cases into two sets with different destinations. 4283 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4284 BasicBlock *DestB = nullptr; 4285 SmallVector<ConstantInt *, 16> CasesA; 4286 SmallVector<ConstantInt *, 16> CasesB; 4287 4288 for (auto Case : SI->cases()) { 4289 BasicBlock *Dest = Case.getCaseSuccessor(); 4290 if (!DestA) 4291 DestA = Dest; 4292 if (Dest == DestA) { 4293 CasesA.push_back(Case.getCaseValue()); 4294 continue; 4295 } 4296 if (!DestB) 4297 DestB = Dest; 4298 if (Dest == DestB) { 4299 CasesB.push_back(Case.getCaseValue()); 4300 continue; 4301 } 4302 return false; // More than two destinations. 4303 } 4304 4305 assert(DestA && DestB && 4306 "Single-destination switch should have been folded."); 4307 assert(DestA != DestB); 4308 assert(DestB != SI->getDefaultDest()); 4309 assert(!CasesB.empty() && "There must be non-default cases."); 4310 assert(!CasesA.empty() || HasDefault); 4311 4312 // Figure out if one of the sets of cases form a contiguous range. 4313 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4314 BasicBlock *ContiguousDest = nullptr; 4315 BasicBlock *OtherDest = nullptr; 4316 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4317 ContiguousCases = &CasesA; 4318 ContiguousDest = DestA; 4319 OtherDest = DestB; 4320 } else if (CasesAreContiguous(CasesB)) { 4321 ContiguousCases = &CasesB; 4322 ContiguousDest = DestB; 4323 OtherDest = DestA; 4324 } else 4325 return false; 4326 4327 // Start building the compare and branch. 4328 4329 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4330 Constant *NumCases = 4331 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4332 4333 Value *Sub = SI->getCondition(); 4334 if (!Offset->isNullValue()) 4335 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4336 4337 Value *Cmp; 4338 // If NumCases overflowed, then all possible values jump to the successor. 4339 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4340 Cmp = ConstantInt::getTrue(SI->getContext()); 4341 else 4342 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4343 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4344 4345 // Update weight for the newly-created conditional branch. 4346 if (HasBranchWeights(SI)) { 4347 SmallVector<uint64_t, 8> Weights; 4348 GetBranchWeights(SI, Weights); 4349 if (Weights.size() == 1 + SI->getNumCases()) { 4350 uint64_t TrueWeight = 0; 4351 uint64_t FalseWeight = 0; 4352 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4353 if (SI->getSuccessor(I) == ContiguousDest) 4354 TrueWeight += Weights[I]; 4355 else 4356 FalseWeight += Weights[I]; 4357 } 4358 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4359 TrueWeight /= 2; 4360 FalseWeight /= 2; 4361 } 4362 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4363 } 4364 } 4365 4366 // Prune obsolete incoming values off the successors' PHI nodes. 4367 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4368 unsigned PreviousEdges = ContiguousCases->size(); 4369 if (ContiguousDest == SI->getDefaultDest()) 4370 ++PreviousEdges; 4371 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4372 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4373 } 4374 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4375 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4376 if (OtherDest == SI->getDefaultDest()) 4377 ++PreviousEdges; 4378 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4379 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4380 } 4381 4382 // Drop the switch. 4383 SI->eraseFromParent(); 4384 4385 return true; 4386 } 4387 4388 /// Compute masked bits for the condition of a switch 4389 /// and use it to remove dead cases. 4390 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4391 const DataLayout &DL) { 4392 Value *Cond = SI->getCondition(); 4393 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4394 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4395 4396 // We can also eliminate cases by determining that their values are outside of 4397 // the limited range of the condition based on how many significant (non-sign) 4398 // bits are in the condition value. 4399 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4400 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4401 4402 // Gather dead cases. 4403 SmallVector<ConstantInt *, 8> DeadCases; 4404 for (auto &Case : SI->cases()) { 4405 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4406 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4407 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4408 DeadCases.push_back(Case.getCaseValue()); 4409 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4410 } 4411 } 4412 4413 // If we can prove that the cases must cover all possible values, the 4414 // default destination becomes dead and we can remove it. If we know some 4415 // of the bits in the value, we can use that to more precisely compute the 4416 // number of possible unique case values. 4417 bool HasDefault = 4418 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4419 const unsigned NumUnknownBits = 4420 Bits - (Known.Zero | Known.One).countPopulation(); 4421 assert(NumUnknownBits <= Bits); 4422 if (HasDefault && DeadCases.empty() && 4423 NumUnknownBits < 64 /* avoid overflow */ && 4424 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4425 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4426 BasicBlock *NewDefault = 4427 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4428 SI->setDefaultDest(&*NewDefault); 4429 SplitBlock(&*NewDefault, &NewDefault->front()); 4430 auto *OldTI = NewDefault->getTerminator(); 4431 new UnreachableInst(SI->getContext(), OldTI); 4432 EraseTerminatorInstAndDCECond(OldTI); 4433 return true; 4434 } 4435 4436 SmallVector<uint64_t, 8> Weights; 4437 bool HasWeight = HasBranchWeights(SI); 4438 if (HasWeight) { 4439 GetBranchWeights(SI, Weights); 4440 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4441 } 4442 4443 // Remove dead cases from the switch. 4444 for (ConstantInt *DeadCase : DeadCases) { 4445 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4446 assert(CaseI != SI->case_default() && 4447 "Case was not found. Probably mistake in DeadCases forming."); 4448 if (HasWeight) { 4449 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4450 Weights.pop_back(); 4451 } 4452 4453 // Prune unused values from PHI nodes. 4454 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4455 SI->removeCase(CaseI); 4456 } 4457 if (HasWeight && Weights.size() >= 2) { 4458 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4459 setBranchWeights(SI, MDWeights); 4460 } 4461 4462 return !DeadCases.empty(); 4463 } 4464 4465 /// If BB would be eligible for simplification by 4466 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4467 /// by an unconditional branch), look at the phi node for BB in the successor 4468 /// block and see if the incoming value is equal to CaseValue. If so, return 4469 /// the phi node, and set PhiIndex to BB's index in the phi node. 4470 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4471 BasicBlock *BB, int *PhiIndex) { 4472 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4473 return nullptr; // BB must be empty to be a candidate for simplification. 4474 if (!BB->getSinglePredecessor()) 4475 return nullptr; // BB must be dominated by the switch. 4476 4477 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4478 if (!Branch || !Branch->isUnconditional()) 4479 return nullptr; // Terminator must be unconditional branch. 4480 4481 BasicBlock *Succ = Branch->getSuccessor(0); 4482 4483 for (PHINode &PHI : Succ->phis()) { 4484 int Idx = PHI.getBasicBlockIndex(BB); 4485 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4486 4487 Value *InValue = PHI.getIncomingValue(Idx); 4488 if (InValue != CaseValue) 4489 continue; 4490 4491 *PhiIndex = Idx; 4492 return &PHI; 4493 } 4494 4495 return nullptr; 4496 } 4497 4498 /// Try to forward the condition of a switch instruction to a phi node 4499 /// dominated by the switch, if that would mean that some of the destination 4500 /// blocks of the switch can be folded away. Return true if a change is made. 4501 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4502 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4503 4504 ForwardingNodesMap ForwardingNodes; 4505 BasicBlock *SwitchBlock = SI->getParent(); 4506 bool Changed = false; 4507 for (auto &Case : SI->cases()) { 4508 ConstantInt *CaseValue = Case.getCaseValue(); 4509 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4510 4511 // Replace phi operands in successor blocks that are using the constant case 4512 // value rather than the switch condition variable: 4513 // switchbb: 4514 // switch i32 %x, label %default [ 4515 // i32 17, label %succ 4516 // ... 4517 // succ: 4518 // %r = phi i32 ... [ 17, %switchbb ] ... 4519 // --> 4520 // %r = phi i32 ... [ %x, %switchbb ] ... 4521 4522 for (PHINode &Phi : CaseDest->phis()) { 4523 // This only works if there is exactly 1 incoming edge from the switch to 4524 // a phi. If there is >1, that means multiple cases of the switch map to 1 4525 // value in the phi, and that phi value is not the switch condition. Thus, 4526 // this transform would not make sense (the phi would be invalid because 4527 // a phi can't have different incoming values from the same block). 4528 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4529 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4530 count(Phi.blocks(), SwitchBlock) == 1) { 4531 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4532 Changed = true; 4533 } 4534 } 4535 4536 // Collect phi nodes that are indirectly using this switch's case constants. 4537 int PhiIdx; 4538 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4539 ForwardingNodes[Phi].push_back(PhiIdx); 4540 } 4541 4542 for (auto &ForwardingNode : ForwardingNodes) { 4543 PHINode *Phi = ForwardingNode.first; 4544 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4545 if (Indexes.size() < 2) 4546 continue; 4547 4548 for (int Index : Indexes) 4549 Phi->setIncomingValue(Index, SI->getCondition()); 4550 Changed = true; 4551 } 4552 4553 return Changed; 4554 } 4555 4556 /// Return true if the backend will be able to handle 4557 /// initializing an array of constants like C. 4558 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4559 if (C->isThreadDependent()) 4560 return false; 4561 if (C->isDLLImportDependent()) 4562 return false; 4563 4564 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4565 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4566 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4567 return false; 4568 4569 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4570 if (!CE->isGEPWithNoNotionalOverIndexing()) 4571 return false; 4572 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4573 return false; 4574 } 4575 4576 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4577 return false; 4578 4579 return true; 4580 } 4581 4582 /// If V is a Constant, return it. Otherwise, try to look up 4583 /// its constant value in ConstantPool, returning 0 if it's not there. 4584 static Constant * 4585 LookupConstant(Value *V, 4586 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4587 if (Constant *C = dyn_cast<Constant>(V)) 4588 return C; 4589 return ConstantPool.lookup(V); 4590 } 4591 4592 /// Try to fold instruction I into a constant. This works for 4593 /// simple instructions such as binary operations where both operands are 4594 /// constant or can be replaced by constants from the ConstantPool. Returns the 4595 /// resulting constant on success, 0 otherwise. 4596 static Constant * 4597 ConstantFold(Instruction *I, const DataLayout &DL, 4598 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4599 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4600 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4601 if (!A) 4602 return nullptr; 4603 if (A->isAllOnesValue()) 4604 return LookupConstant(Select->getTrueValue(), ConstantPool); 4605 if (A->isNullValue()) 4606 return LookupConstant(Select->getFalseValue(), ConstantPool); 4607 return nullptr; 4608 } 4609 4610 SmallVector<Constant *, 4> COps; 4611 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4612 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4613 COps.push_back(A); 4614 else 4615 return nullptr; 4616 } 4617 4618 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4619 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4620 COps[1], DL); 4621 } 4622 4623 return ConstantFoldInstOperands(I, COps, DL); 4624 } 4625 4626 /// Try to determine the resulting constant values in phi nodes 4627 /// at the common destination basic block, *CommonDest, for one of the case 4628 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4629 /// case), of a switch instruction SI. 4630 static bool 4631 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4632 BasicBlock **CommonDest, 4633 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4634 const DataLayout &DL, const TargetTransformInfo &TTI) { 4635 // The block from which we enter the common destination. 4636 BasicBlock *Pred = SI->getParent(); 4637 4638 // If CaseDest is empty except for some side-effect free instructions through 4639 // which we can constant-propagate the CaseVal, continue to its successor. 4640 SmallDenseMap<Value *, Constant *> ConstantPool; 4641 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4642 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4643 ++I) { 4644 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4645 // If the terminator is a simple branch, continue to the next block. 4646 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4647 return false; 4648 Pred = CaseDest; 4649 CaseDest = T->getSuccessor(0); 4650 } else if (isa<DbgInfoIntrinsic>(I)) { 4651 // Skip debug intrinsic. 4652 continue; 4653 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4654 // Instruction is side-effect free and constant. 4655 4656 // If the instruction has uses outside this block or a phi node slot for 4657 // the block, it is not safe to bypass the instruction since it would then 4658 // no longer dominate all its uses. 4659 for (auto &Use : I->uses()) { 4660 User *User = Use.getUser(); 4661 if (Instruction *I = dyn_cast<Instruction>(User)) 4662 if (I->getParent() == CaseDest) 4663 continue; 4664 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4665 if (Phi->getIncomingBlock(Use) == CaseDest) 4666 continue; 4667 return false; 4668 } 4669 4670 ConstantPool.insert(std::make_pair(&*I, C)); 4671 } else { 4672 break; 4673 } 4674 } 4675 4676 // If we did not have a CommonDest before, use the current one. 4677 if (!*CommonDest) 4678 *CommonDest = CaseDest; 4679 // If the destination isn't the common one, abort. 4680 if (CaseDest != *CommonDest) 4681 return false; 4682 4683 // Get the values for this case from phi nodes in the destination block. 4684 for (PHINode &PHI : (*CommonDest)->phis()) { 4685 int Idx = PHI.getBasicBlockIndex(Pred); 4686 if (Idx == -1) 4687 continue; 4688 4689 Constant *ConstVal = 4690 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4691 if (!ConstVal) 4692 return false; 4693 4694 // Be conservative about which kinds of constants we support. 4695 if (!ValidLookupTableConstant(ConstVal, TTI)) 4696 return false; 4697 4698 Res.push_back(std::make_pair(&PHI, ConstVal)); 4699 } 4700 4701 return Res.size() > 0; 4702 } 4703 4704 // Helper function used to add CaseVal to the list of cases that generate 4705 // Result. Returns the updated number of cases that generate this result. 4706 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4707 SwitchCaseResultVectorTy &UniqueResults, 4708 Constant *Result) { 4709 for (auto &I : UniqueResults) { 4710 if (I.first == Result) { 4711 I.second.push_back(CaseVal); 4712 return I.second.size(); 4713 } 4714 } 4715 UniqueResults.push_back( 4716 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4717 return 1; 4718 } 4719 4720 // Helper function that initializes a map containing 4721 // results for the PHI node of the common destination block for a switch 4722 // instruction. Returns false if multiple PHI nodes have been found or if 4723 // there is not a common destination block for the switch. 4724 static bool 4725 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4726 SwitchCaseResultVectorTy &UniqueResults, 4727 Constant *&DefaultResult, const DataLayout &DL, 4728 const TargetTransformInfo &TTI, 4729 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4730 for (auto &I : SI->cases()) { 4731 ConstantInt *CaseVal = I.getCaseValue(); 4732 4733 // Resulting value at phi nodes for this case value. 4734 SwitchCaseResultsTy Results; 4735 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4736 DL, TTI)) 4737 return false; 4738 4739 // Only one value per case is permitted. 4740 if (Results.size() > 1) 4741 return false; 4742 4743 // Add the case->result mapping to UniqueResults. 4744 const uintptr_t NumCasesForResult = 4745 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4746 4747 // Early out if there are too many cases for this result. 4748 if (NumCasesForResult > MaxCasesPerResult) 4749 return false; 4750 4751 // Early out if there are too many unique results. 4752 if (UniqueResults.size() > MaxUniqueResults) 4753 return false; 4754 4755 // Check the PHI consistency. 4756 if (!PHI) 4757 PHI = Results[0].first; 4758 else if (PHI != Results[0].first) 4759 return false; 4760 } 4761 // Find the default result value. 4762 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4763 BasicBlock *DefaultDest = SI->getDefaultDest(); 4764 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4765 DL, TTI); 4766 // If the default value is not found abort unless the default destination 4767 // is unreachable. 4768 DefaultResult = 4769 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4770 if ((!DefaultResult && 4771 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4772 return false; 4773 4774 return true; 4775 } 4776 4777 // Helper function that checks if it is possible to transform a switch with only 4778 // two cases (or two cases + default) that produces a result into a select. 4779 // Example: 4780 // switch (a) { 4781 // case 10: %0 = icmp eq i32 %a, 10 4782 // return 10; %1 = select i1 %0, i32 10, i32 4 4783 // case 20: ----> %2 = icmp eq i32 %a, 20 4784 // return 2; %3 = select i1 %2, i32 2, i32 %1 4785 // default: 4786 // return 4; 4787 // } 4788 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4789 Constant *DefaultResult, Value *Condition, 4790 IRBuilder<> &Builder) { 4791 assert(ResultVector.size() == 2 && 4792 "We should have exactly two unique results at this point"); 4793 // If we are selecting between only two cases transform into a simple 4794 // select or a two-way select if default is possible. 4795 if (ResultVector[0].second.size() == 1 && 4796 ResultVector[1].second.size() == 1) { 4797 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4798 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4799 4800 bool DefaultCanTrigger = DefaultResult; 4801 Value *SelectValue = ResultVector[1].first; 4802 if (DefaultCanTrigger) { 4803 Value *const ValueCompare = 4804 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4805 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4806 DefaultResult, "switch.select"); 4807 } 4808 Value *const ValueCompare = 4809 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4810 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4811 SelectValue, "switch.select"); 4812 } 4813 4814 return nullptr; 4815 } 4816 4817 // Helper function to cleanup a switch instruction that has been converted into 4818 // a select, fixing up PHI nodes and basic blocks. 4819 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4820 Value *SelectValue, 4821 IRBuilder<> &Builder) { 4822 BasicBlock *SelectBB = SI->getParent(); 4823 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4824 PHI->removeIncomingValue(SelectBB); 4825 PHI->addIncoming(SelectValue, SelectBB); 4826 4827 Builder.CreateBr(PHI->getParent()); 4828 4829 // Remove the switch. 4830 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4831 BasicBlock *Succ = SI->getSuccessor(i); 4832 4833 if (Succ == PHI->getParent()) 4834 continue; 4835 Succ->removePredecessor(SelectBB); 4836 } 4837 SI->eraseFromParent(); 4838 } 4839 4840 /// If the switch is only used to initialize one or more 4841 /// phi nodes in a common successor block with only two different 4842 /// constant values, replace the switch with select. 4843 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4844 const DataLayout &DL, 4845 const TargetTransformInfo &TTI) { 4846 Value *const Cond = SI->getCondition(); 4847 PHINode *PHI = nullptr; 4848 BasicBlock *CommonDest = nullptr; 4849 Constant *DefaultResult; 4850 SwitchCaseResultVectorTy UniqueResults; 4851 // Collect all the cases that will deliver the same value from the switch. 4852 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4853 DL, TTI, 2, 1)) 4854 return false; 4855 // Selects choose between maximum two values. 4856 if (UniqueResults.size() != 2) 4857 return false; 4858 assert(PHI != nullptr && "PHI for value select not found"); 4859 4860 Builder.SetInsertPoint(SI); 4861 Value *SelectValue = 4862 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4863 if (SelectValue) { 4864 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4865 return true; 4866 } 4867 // The switch couldn't be converted into a select. 4868 return false; 4869 } 4870 4871 namespace { 4872 4873 /// This class represents a lookup table that can be used to replace a switch. 4874 class SwitchLookupTable { 4875 public: 4876 /// Create a lookup table to use as a switch replacement with the contents 4877 /// of Values, using DefaultValue to fill any holes in the table. 4878 SwitchLookupTable( 4879 Module &M, uint64_t TableSize, ConstantInt *Offset, 4880 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4881 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4882 4883 /// Build instructions with Builder to retrieve the value at 4884 /// the position given by Index in the lookup table. 4885 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4886 4887 /// Return true if a table with TableSize elements of 4888 /// type ElementType would fit in a target-legal register. 4889 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4890 Type *ElementType); 4891 4892 private: 4893 // Depending on the contents of the table, it can be represented in 4894 // different ways. 4895 enum { 4896 // For tables where each element contains the same value, we just have to 4897 // store that single value and return it for each lookup. 4898 SingleValueKind, 4899 4900 // For tables where there is a linear relationship between table index 4901 // and values. We calculate the result with a simple multiplication 4902 // and addition instead of a table lookup. 4903 LinearMapKind, 4904 4905 // For small tables with integer elements, we can pack them into a bitmap 4906 // that fits into a target-legal register. Values are retrieved by 4907 // shift and mask operations. 4908 BitMapKind, 4909 4910 // The table is stored as an array of values. Values are retrieved by load 4911 // instructions from the table. 4912 ArrayKind 4913 } Kind; 4914 4915 // For SingleValueKind, this is the single value. 4916 Constant *SingleValue = nullptr; 4917 4918 // For BitMapKind, this is the bitmap. 4919 ConstantInt *BitMap = nullptr; 4920 IntegerType *BitMapElementTy = nullptr; 4921 4922 // For LinearMapKind, these are the constants used to derive the value. 4923 ConstantInt *LinearOffset = nullptr; 4924 ConstantInt *LinearMultiplier = nullptr; 4925 4926 // For ArrayKind, this is the array. 4927 GlobalVariable *Array = nullptr; 4928 }; 4929 4930 } // end anonymous namespace 4931 4932 SwitchLookupTable::SwitchLookupTable( 4933 Module &M, uint64_t TableSize, ConstantInt *Offset, 4934 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4935 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4936 assert(Values.size() && "Can't build lookup table without values!"); 4937 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4938 4939 // If all values in the table are equal, this is that value. 4940 SingleValue = Values.begin()->second; 4941 4942 Type *ValueType = Values.begin()->second->getType(); 4943 4944 // Build up the table contents. 4945 SmallVector<Constant *, 64> TableContents(TableSize); 4946 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4947 ConstantInt *CaseVal = Values[I].first; 4948 Constant *CaseRes = Values[I].second; 4949 assert(CaseRes->getType() == ValueType); 4950 4951 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4952 TableContents[Idx] = CaseRes; 4953 4954 if (CaseRes != SingleValue) 4955 SingleValue = nullptr; 4956 } 4957 4958 // Fill in any holes in the table with the default result. 4959 if (Values.size() < TableSize) { 4960 assert(DefaultValue && 4961 "Need a default value to fill the lookup table holes."); 4962 assert(DefaultValue->getType() == ValueType); 4963 for (uint64_t I = 0; I < TableSize; ++I) { 4964 if (!TableContents[I]) 4965 TableContents[I] = DefaultValue; 4966 } 4967 4968 if (DefaultValue != SingleValue) 4969 SingleValue = nullptr; 4970 } 4971 4972 // If each element in the table contains the same value, we only need to store 4973 // that single value. 4974 if (SingleValue) { 4975 Kind = SingleValueKind; 4976 return; 4977 } 4978 4979 // Check if we can derive the value with a linear transformation from the 4980 // table index. 4981 if (isa<IntegerType>(ValueType)) { 4982 bool LinearMappingPossible = true; 4983 APInt PrevVal; 4984 APInt DistToPrev; 4985 assert(TableSize >= 2 && "Should be a SingleValue table."); 4986 // Check if there is the same distance between two consecutive values. 4987 for (uint64_t I = 0; I < TableSize; ++I) { 4988 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4989 if (!ConstVal) { 4990 // This is an undef. We could deal with it, but undefs in lookup tables 4991 // are very seldom. It's probably not worth the additional complexity. 4992 LinearMappingPossible = false; 4993 break; 4994 } 4995 const APInt &Val = ConstVal->getValue(); 4996 if (I != 0) { 4997 APInt Dist = Val - PrevVal; 4998 if (I == 1) { 4999 DistToPrev = Dist; 5000 } else if (Dist != DistToPrev) { 5001 LinearMappingPossible = false; 5002 break; 5003 } 5004 } 5005 PrevVal = Val; 5006 } 5007 if (LinearMappingPossible) { 5008 LinearOffset = cast<ConstantInt>(TableContents[0]); 5009 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5010 Kind = LinearMapKind; 5011 ++NumLinearMaps; 5012 return; 5013 } 5014 } 5015 5016 // If the type is integer and the table fits in a register, build a bitmap. 5017 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5018 IntegerType *IT = cast<IntegerType>(ValueType); 5019 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5020 for (uint64_t I = TableSize; I > 0; --I) { 5021 TableInt <<= IT->getBitWidth(); 5022 // Insert values into the bitmap. Undef values are set to zero. 5023 if (!isa<UndefValue>(TableContents[I - 1])) { 5024 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5025 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5026 } 5027 } 5028 BitMap = ConstantInt::get(M.getContext(), TableInt); 5029 BitMapElementTy = IT; 5030 Kind = BitMapKind; 5031 ++NumBitMaps; 5032 return; 5033 } 5034 5035 // Store the table in an array. 5036 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5037 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5038 5039 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5040 GlobalVariable::PrivateLinkage, Initializer, 5041 "switch.table." + FuncName); 5042 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5043 Kind = ArrayKind; 5044 } 5045 5046 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5047 switch (Kind) { 5048 case SingleValueKind: 5049 return SingleValue; 5050 case LinearMapKind: { 5051 // Derive the result value from the input value. 5052 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5053 false, "switch.idx.cast"); 5054 if (!LinearMultiplier->isOne()) 5055 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5056 if (!LinearOffset->isZero()) 5057 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5058 return Result; 5059 } 5060 case BitMapKind: { 5061 // Type of the bitmap (e.g. i59). 5062 IntegerType *MapTy = BitMap->getType(); 5063 5064 // Cast Index to the same type as the bitmap. 5065 // Note: The Index is <= the number of elements in the table, so 5066 // truncating it to the width of the bitmask is safe. 5067 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5068 5069 // Multiply the shift amount by the element width. 5070 ShiftAmt = Builder.CreateMul( 5071 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5072 "switch.shiftamt"); 5073 5074 // Shift down. 5075 Value *DownShifted = 5076 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5077 // Mask off. 5078 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5079 } 5080 case ArrayKind: { 5081 // Make sure the table index will not overflow when treated as signed. 5082 IntegerType *IT = cast<IntegerType>(Index->getType()); 5083 uint64_t TableSize = 5084 Array->getInitializer()->getType()->getArrayNumElements(); 5085 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5086 Index = Builder.CreateZExt( 5087 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5088 "switch.tableidx.zext"); 5089 5090 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5091 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5092 GEPIndices, "switch.gep"); 5093 return Builder.CreateLoad(GEP, "switch.load"); 5094 } 5095 } 5096 llvm_unreachable("Unknown lookup table kind!"); 5097 } 5098 5099 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5100 uint64_t TableSize, 5101 Type *ElementType) { 5102 auto *IT = dyn_cast<IntegerType>(ElementType); 5103 if (!IT) 5104 return false; 5105 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5106 // are <= 15, we could try to narrow the type. 5107 5108 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5109 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5110 return false; 5111 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5112 } 5113 5114 /// Determine whether a lookup table should be built for this switch, based on 5115 /// the number of cases, size of the table, and the types of the results. 5116 static bool 5117 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5118 const TargetTransformInfo &TTI, const DataLayout &DL, 5119 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5120 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5121 return false; // TableSize overflowed, or mul below might overflow. 5122 5123 bool AllTablesFitInRegister = true; 5124 bool HasIllegalType = false; 5125 for (const auto &I : ResultTypes) { 5126 Type *Ty = I.second; 5127 5128 // Saturate this flag to true. 5129 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5130 5131 // Saturate this flag to false. 5132 AllTablesFitInRegister = 5133 AllTablesFitInRegister && 5134 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5135 5136 // If both flags saturate, we're done. NOTE: This *only* works with 5137 // saturating flags, and all flags have to saturate first due to the 5138 // non-deterministic behavior of iterating over a dense map. 5139 if (HasIllegalType && !AllTablesFitInRegister) 5140 break; 5141 } 5142 5143 // If each table would fit in a register, we should build it anyway. 5144 if (AllTablesFitInRegister) 5145 return true; 5146 5147 // Don't build a table that doesn't fit in-register if it has illegal types. 5148 if (HasIllegalType) 5149 return false; 5150 5151 // The table density should be at least 40%. This is the same criterion as for 5152 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5153 // FIXME: Find the best cut-off. 5154 return SI->getNumCases() * 10 >= TableSize * 4; 5155 } 5156 5157 /// Try to reuse the switch table index compare. Following pattern: 5158 /// \code 5159 /// if (idx < tablesize) 5160 /// r = table[idx]; // table does not contain default_value 5161 /// else 5162 /// r = default_value; 5163 /// if (r != default_value) 5164 /// ... 5165 /// \endcode 5166 /// Is optimized to: 5167 /// \code 5168 /// cond = idx < tablesize; 5169 /// if (cond) 5170 /// r = table[idx]; 5171 /// else 5172 /// r = default_value; 5173 /// if (cond) 5174 /// ... 5175 /// \endcode 5176 /// Jump threading will then eliminate the second if(cond). 5177 static void reuseTableCompare( 5178 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5179 Constant *DefaultValue, 5180 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5181 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5182 if (!CmpInst) 5183 return; 5184 5185 // We require that the compare is in the same block as the phi so that jump 5186 // threading can do its work afterwards. 5187 if (CmpInst->getParent() != PhiBlock) 5188 return; 5189 5190 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5191 if (!CmpOp1) 5192 return; 5193 5194 Value *RangeCmp = RangeCheckBranch->getCondition(); 5195 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5196 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5197 5198 // Check if the compare with the default value is constant true or false. 5199 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5200 DefaultValue, CmpOp1, true); 5201 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5202 return; 5203 5204 // Check if the compare with the case values is distinct from the default 5205 // compare result. 5206 for (auto ValuePair : Values) { 5207 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5208 ValuePair.second, CmpOp1, true); 5209 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5210 return; 5211 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5212 "Expect true or false as compare result."); 5213 } 5214 5215 // Check if the branch instruction dominates the phi node. It's a simple 5216 // dominance check, but sufficient for our needs. 5217 // Although this check is invariant in the calling loops, it's better to do it 5218 // at this late stage. Practically we do it at most once for a switch. 5219 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5220 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5221 BasicBlock *Pred = *PI; 5222 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5223 return; 5224 } 5225 5226 if (DefaultConst == FalseConst) { 5227 // The compare yields the same result. We can replace it. 5228 CmpInst->replaceAllUsesWith(RangeCmp); 5229 ++NumTableCmpReuses; 5230 } else { 5231 // The compare yields the same result, just inverted. We can replace it. 5232 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5233 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5234 RangeCheckBranch); 5235 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5236 ++NumTableCmpReuses; 5237 } 5238 } 5239 5240 /// If the switch is only used to initialize one or more phi nodes in a common 5241 /// successor block with different constant values, replace the switch with 5242 /// lookup tables. 5243 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5244 const DataLayout &DL, 5245 const TargetTransformInfo &TTI) { 5246 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5247 5248 Function *Fn = SI->getParent()->getParent(); 5249 // Only build lookup table when we have a target that supports it or the 5250 // attribute is not set. 5251 if (!TTI.shouldBuildLookupTables() || 5252 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5253 return false; 5254 5255 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5256 // split off a dense part and build a lookup table for that. 5257 5258 // FIXME: This creates arrays of GEPs to constant strings, which means each 5259 // GEP needs a runtime relocation in PIC code. We should just build one big 5260 // string and lookup indices into that. 5261 5262 // Ignore switches with less than three cases. Lookup tables will not make 5263 // them faster, so we don't analyze them. 5264 if (SI->getNumCases() < 3) 5265 return false; 5266 5267 // Figure out the corresponding result for each case value and phi node in the 5268 // common destination, as well as the min and max case values. 5269 assert(SI->case_begin() != SI->case_end()); 5270 SwitchInst::CaseIt CI = SI->case_begin(); 5271 ConstantInt *MinCaseVal = CI->getCaseValue(); 5272 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5273 5274 BasicBlock *CommonDest = nullptr; 5275 5276 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5277 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5278 5279 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5280 SmallDenseMap<PHINode *, Type *> ResultTypes; 5281 SmallVector<PHINode *, 4> PHIs; 5282 5283 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5284 ConstantInt *CaseVal = CI->getCaseValue(); 5285 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5286 MinCaseVal = CaseVal; 5287 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5288 MaxCaseVal = CaseVal; 5289 5290 // Resulting value at phi nodes for this case value. 5291 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5292 ResultsTy Results; 5293 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5294 Results, DL, TTI)) 5295 return false; 5296 5297 // Append the result from this case to the list for each phi. 5298 for (const auto &I : Results) { 5299 PHINode *PHI = I.first; 5300 Constant *Value = I.second; 5301 if (!ResultLists.count(PHI)) 5302 PHIs.push_back(PHI); 5303 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5304 } 5305 } 5306 5307 // Keep track of the result types. 5308 for (PHINode *PHI : PHIs) { 5309 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5310 } 5311 5312 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5313 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5314 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5315 bool TableHasHoles = (NumResults < TableSize); 5316 5317 // If the table has holes, we need a constant result for the default case 5318 // or a bitmask that fits in a register. 5319 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5320 bool HasDefaultResults = 5321 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5322 DefaultResultsList, DL, TTI); 5323 5324 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5325 if (NeedMask) { 5326 // As an extra penalty for the validity test we require more cases. 5327 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5328 return false; 5329 if (!DL.fitsInLegalInteger(TableSize)) 5330 return false; 5331 } 5332 5333 for (const auto &I : DefaultResultsList) { 5334 PHINode *PHI = I.first; 5335 Constant *Result = I.second; 5336 DefaultResults[PHI] = Result; 5337 } 5338 5339 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5340 return false; 5341 5342 // Create the BB that does the lookups. 5343 Module &Mod = *CommonDest->getParent()->getParent(); 5344 BasicBlock *LookupBB = BasicBlock::Create( 5345 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5346 5347 // Compute the table index value. 5348 Builder.SetInsertPoint(SI); 5349 Value *TableIndex; 5350 if (MinCaseVal->isNullValue()) 5351 TableIndex = SI->getCondition(); 5352 else 5353 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5354 "switch.tableidx"); 5355 5356 // Compute the maximum table size representable by the integer type we are 5357 // switching upon. 5358 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5359 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5360 assert(MaxTableSize >= TableSize && 5361 "It is impossible for a switch to have more entries than the max " 5362 "representable value of its input integer type's size."); 5363 5364 // If the default destination is unreachable, or if the lookup table covers 5365 // all values of the conditional variable, branch directly to the lookup table 5366 // BB. Otherwise, check that the condition is within the case range. 5367 const bool DefaultIsReachable = 5368 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5369 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5370 BranchInst *RangeCheckBranch = nullptr; 5371 5372 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5373 Builder.CreateBr(LookupBB); 5374 // Note: We call removeProdecessor later since we need to be able to get the 5375 // PHI value for the default case in case we're using a bit mask. 5376 } else { 5377 Value *Cmp = Builder.CreateICmpULT( 5378 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5379 RangeCheckBranch = 5380 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5381 } 5382 5383 // Populate the BB that does the lookups. 5384 Builder.SetInsertPoint(LookupBB); 5385 5386 if (NeedMask) { 5387 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5388 // re-purposed to do the hole check, and we create a new LookupBB. 5389 BasicBlock *MaskBB = LookupBB; 5390 MaskBB->setName("switch.hole_check"); 5391 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5392 CommonDest->getParent(), CommonDest); 5393 5394 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5395 // unnecessary illegal types. 5396 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5397 APInt MaskInt(TableSizePowOf2, 0); 5398 APInt One(TableSizePowOf2, 1); 5399 // Build bitmask; fill in a 1 bit for every case. 5400 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5401 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5402 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5403 .getLimitedValue(); 5404 MaskInt |= One << Idx; 5405 } 5406 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5407 5408 // Get the TableIndex'th bit of the bitmask. 5409 // If this bit is 0 (meaning hole) jump to the default destination, 5410 // else continue with table lookup. 5411 IntegerType *MapTy = TableMask->getType(); 5412 Value *MaskIndex = 5413 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5414 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5415 Value *LoBit = Builder.CreateTrunc( 5416 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5417 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5418 5419 Builder.SetInsertPoint(LookupBB); 5420 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5421 } 5422 5423 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5424 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5425 // do not delete PHINodes here. 5426 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5427 /*DontDeleteUselessPHIs=*/true); 5428 } 5429 5430 bool ReturnedEarly = false; 5431 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5432 PHINode *PHI = PHIs[I]; 5433 const ResultListTy &ResultList = ResultLists[PHI]; 5434 5435 // If using a bitmask, use any value to fill the lookup table holes. 5436 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5437 StringRef FuncName = Fn->getName(); 5438 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5439 FuncName); 5440 5441 Value *Result = Table.BuildLookup(TableIndex, Builder); 5442 5443 // If the result is used to return immediately from the function, we want to 5444 // do that right here. 5445 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5446 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5447 Builder.CreateRet(Result); 5448 ReturnedEarly = true; 5449 break; 5450 } 5451 5452 // Do a small peephole optimization: re-use the switch table compare if 5453 // possible. 5454 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5455 BasicBlock *PhiBlock = PHI->getParent(); 5456 // Search for compare instructions which use the phi. 5457 for (auto *User : PHI->users()) { 5458 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5459 } 5460 } 5461 5462 PHI->addIncoming(Result, LookupBB); 5463 } 5464 5465 if (!ReturnedEarly) 5466 Builder.CreateBr(CommonDest); 5467 5468 // Remove the switch. 5469 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5470 BasicBlock *Succ = SI->getSuccessor(i); 5471 5472 if (Succ == SI->getDefaultDest()) 5473 continue; 5474 Succ->removePredecessor(SI->getParent()); 5475 } 5476 SI->eraseFromParent(); 5477 5478 ++NumLookupTables; 5479 if (NeedMask) 5480 ++NumLookupTablesHoles; 5481 return true; 5482 } 5483 5484 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5485 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5486 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5487 uint64_t Range = Diff + 1; 5488 uint64_t NumCases = Values.size(); 5489 // 40% is the default density for building a jump table in optsize/minsize mode. 5490 uint64_t MinDensity = 40; 5491 5492 return NumCases * 100 >= Range * MinDensity; 5493 } 5494 5495 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5496 /// of cases. 5497 /// 5498 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5499 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5500 /// 5501 /// This converts a sparse switch into a dense switch which allows better 5502 /// lowering and could also allow transforming into a lookup table. 5503 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5504 const DataLayout &DL, 5505 const TargetTransformInfo &TTI) { 5506 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5507 if (CondTy->getIntegerBitWidth() > 64 || 5508 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5509 return false; 5510 // Only bother with this optimization if there are more than 3 switch cases; 5511 // SDAG will only bother creating jump tables for 4 or more cases. 5512 if (SI->getNumCases() < 4) 5513 return false; 5514 5515 // This transform is agnostic to the signedness of the input or case values. We 5516 // can treat the case values as signed or unsigned. We can optimize more common 5517 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5518 // as signed. 5519 SmallVector<int64_t,4> Values; 5520 for (auto &C : SI->cases()) 5521 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5522 std::sort(Values.begin(), Values.end()); 5523 5524 // If the switch is already dense, there's nothing useful to do here. 5525 if (isSwitchDense(Values)) 5526 return false; 5527 5528 // First, transform the values such that they start at zero and ascend. 5529 int64_t Base = Values[0]; 5530 for (auto &V : Values) 5531 V -= (uint64_t)(Base); 5532 5533 // Now we have signed numbers that have been shifted so that, given enough 5534 // precision, there are no negative values. Since the rest of the transform 5535 // is bitwise only, we switch now to an unsigned representation. 5536 uint64_t GCD = 0; 5537 for (auto &V : Values) 5538 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5539 5540 // This transform can be done speculatively because it is so cheap - it results 5541 // in a single rotate operation being inserted. This can only happen if the 5542 // factor extracted is a power of 2. 5543 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5544 // inverse of GCD and then perform this transform. 5545 // FIXME: It's possible that optimizing a switch on powers of two might also 5546 // be beneficial - flag values are often powers of two and we could use a CLZ 5547 // as the key function. 5548 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5549 // No common divisor found or too expensive to compute key function. 5550 return false; 5551 5552 unsigned Shift = Log2_64(GCD); 5553 for (auto &V : Values) 5554 V = (int64_t)((uint64_t)V >> Shift); 5555 5556 if (!isSwitchDense(Values)) 5557 // Transform didn't create a dense switch. 5558 return false; 5559 5560 // The obvious transform is to shift the switch condition right and emit a 5561 // check that the condition actually cleanly divided by GCD, i.e. 5562 // C & (1 << Shift - 1) == 0 5563 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5564 // 5565 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5566 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5567 // are nonzero then the switch condition will be very large and will hit the 5568 // default case. 5569 5570 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5571 Builder.SetInsertPoint(SI); 5572 auto *ShiftC = ConstantInt::get(Ty, Shift); 5573 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5574 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5575 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5576 auto *Rot = Builder.CreateOr(LShr, Shl); 5577 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5578 5579 for (auto Case : SI->cases()) { 5580 auto *Orig = Case.getCaseValue(); 5581 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5582 Case.setValue( 5583 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5584 } 5585 return true; 5586 } 5587 5588 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5589 BasicBlock *BB = SI->getParent(); 5590 5591 if (isValueEqualityComparison(SI)) { 5592 // If we only have one predecessor, and if it is a branch on this value, 5593 // see if that predecessor totally determines the outcome of this switch. 5594 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5595 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5596 return simplifyCFG(BB, TTI, Options) | true; 5597 5598 Value *Cond = SI->getCondition(); 5599 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5600 if (SimplifySwitchOnSelect(SI, Select)) 5601 return simplifyCFG(BB, TTI, Options) | true; 5602 5603 // If the block only contains the switch, see if we can fold the block 5604 // away into any preds. 5605 BasicBlock::iterator BBI = BB->begin(); 5606 // Ignore dbg intrinsics. 5607 while (isa<DbgInfoIntrinsic>(BBI)) 5608 ++BBI; 5609 if (SI == &*BBI) 5610 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5611 return simplifyCFG(BB, TTI, Options) | true; 5612 } 5613 5614 // Try to transform the switch into an icmp and a branch. 5615 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5616 return simplifyCFG(BB, TTI, Options) | true; 5617 5618 // Remove unreachable cases. 5619 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5620 return simplifyCFG(BB, TTI, Options) | true; 5621 5622 if (switchToSelect(SI, Builder, DL, TTI)) 5623 return simplifyCFG(BB, TTI, Options) | true; 5624 5625 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5626 return simplifyCFG(BB, TTI, Options) | true; 5627 5628 // The conversion from switch to lookup tables results in difficult-to-analyze 5629 // code and makes pruning branches much harder. This is a problem if the 5630 // switch expression itself can still be restricted as a result of inlining or 5631 // CVP. Therefore, only apply this transformation during late stages of the 5632 // optimisation pipeline. 5633 if (Options.ConvertSwitchToLookupTable && 5634 SwitchToLookupTable(SI, Builder, DL, TTI)) 5635 return simplifyCFG(BB, TTI, Options) | true; 5636 5637 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5638 return simplifyCFG(BB, TTI, Options) | true; 5639 5640 return false; 5641 } 5642 5643 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5644 BasicBlock *BB = IBI->getParent(); 5645 bool Changed = false; 5646 5647 // Eliminate redundant destinations. 5648 SmallPtrSet<Value *, 8> Succs; 5649 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5650 BasicBlock *Dest = IBI->getDestination(i); 5651 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5652 Dest->removePredecessor(BB); 5653 IBI->removeDestination(i); 5654 --i; 5655 --e; 5656 Changed = true; 5657 } 5658 } 5659 5660 if (IBI->getNumDestinations() == 0) { 5661 // If the indirectbr has no successors, change it to unreachable. 5662 new UnreachableInst(IBI->getContext(), IBI); 5663 EraseTerminatorInstAndDCECond(IBI); 5664 return true; 5665 } 5666 5667 if (IBI->getNumDestinations() == 1) { 5668 // If the indirectbr has one successor, change it to a direct branch. 5669 BranchInst::Create(IBI->getDestination(0), IBI); 5670 EraseTerminatorInstAndDCECond(IBI); 5671 return true; 5672 } 5673 5674 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5675 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5676 return simplifyCFG(BB, TTI, Options) | true; 5677 } 5678 return Changed; 5679 } 5680 5681 /// Given an block with only a single landing pad and a unconditional branch 5682 /// try to find another basic block which this one can be merged with. This 5683 /// handles cases where we have multiple invokes with unique landing pads, but 5684 /// a shared handler. 5685 /// 5686 /// We specifically choose to not worry about merging non-empty blocks 5687 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5688 /// practice, the optimizer produces empty landing pad blocks quite frequently 5689 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5690 /// sinking in this file) 5691 /// 5692 /// This is primarily a code size optimization. We need to avoid performing 5693 /// any transform which might inhibit optimization (such as our ability to 5694 /// specialize a particular handler via tail commoning). We do this by not 5695 /// merging any blocks which require us to introduce a phi. Since the same 5696 /// values are flowing through both blocks, we don't loose any ability to 5697 /// specialize. If anything, we make such specialization more likely. 5698 /// 5699 /// TODO - This transformation could remove entries from a phi in the target 5700 /// block when the inputs in the phi are the same for the two blocks being 5701 /// merged. In some cases, this could result in removal of the PHI entirely. 5702 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5703 BasicBlock *BB) { 5704 auto Succ = BB->getUniqueSuccessor(); 5705 assert(Succ); 5706 // If there's a phi in the successor block, we'd likely have to introduce 5707 // a phi into the merged landing pad block. 5708 if (isa<PHINode>(*Succ->begin())) 5709 return false; 5710 5711 for (BasicBlock *OtherPred : predecessors(Succ)) { 5712 if (BB == OtherPred) 5713 continue; 5714 BasicBlock::iterator I = OtherPred->begin(); 5715 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5716 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5717 continue; 5718 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5719 ; 5720 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5721 if (!BI2 || !BI2->isIdenticalTo(BI)) 5722 continue; 5723 5724 // We've found an identical block. Update our predecessors to take that 5725 // path instead and make ourselves dead. 5726 SmallSet<BasicBlock *, 16> Preds; 5727 Preds.insert(pred_begin(BB), pred_end(BB)); 5728 for (BasicBlock *Pred : Preds) { 5729 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5730 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5731 "unexpected successor"); 5732 II->setUnwindDest(OtherPred); 5733 } 5734 5735 // The debug info in OtherPred doesn't cover the merged control flow that 5736 // used to go through BB. We need to delete it or update it. 5737 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5738 Instruction &Inst = *I; 5739 I++; 5740 if (isa<DbgInfoIntrinsic>(Inst)) 5741 Inst.eraseFromParent(); 5742 } 5743 5744 SmallSet<BasicBlock *, 16> Succs; 5745 Succs.insert(succ_begin(BB), succ_end(BB)); 5746 for (BasicBlock *Succ : Succs) { 5747 Succ->removePredecessor(BB); 5748 } 5749 5750 IRBuilder<> Builder(BI); 5751 Builder.CreateUnreachable(); 5752 BI->eraseFromParent(); 5753 return true; 5754 } 5755 return false; 5756 } 5757 5758 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5759 IRBuilder<> &Builder) { 5760 BasicBlock *BB = BI->getParent(); 5761 BasicBlock *Succ = BI->getSuccessor(0); 5762 5763 // If the Terminator is the only non-phi instruction, simplify the block. 5764 // If LoopHeader is provided, check if the block or its successor is a loop 5765 // header. (This is for early invocations before loop simplify and 5766 // vectorization to keep canonical loop forms for nested loops. These blocks 5767 // can be eliminated when the pass is invoked later in the back-end.) 5768 // Note that if BB has only one predecessor then we do not introduce new 5769 // backedge, so we can eliminate BB. 5770 bool NeedCanonicalLoop = 5771 Options.NeedCanonicalLoop && 5772 (LoopHeaders && std::distance(pred_begin(BB), pred_end(BB)) > 1 && 5773 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5774 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5775 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5776 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5777 return true; 5778 5779 // If the only instruction in the block is a seteq/setne comparison against a 5780 // constant, try to simplify the block. 5781 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5782 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5783 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5784 ; 5785 if (I->isTerminator() && 5786 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options)) 5787 return true; 5788 } 5789 5790 // See if we can merge an empty landing pad block with another which is 5791 // equivalent. 5792 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5793 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5794 ; 5795 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5796 return true; 5797 } 5798 5799 // If this basic block is ONLY a compare and a branch, and if a predecessor 5800 // branches to us and our successor, fold the comparison into the 5801 // predecessor and use logical operations to update the incoming value 5802 // for PHI nodes in common successor. 5803 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5804 return simplifyCFG(BB, TTI, Options) | true; 5805 return false; 5806 } 5807 5808 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5809 BasicBlock *PredPred = nullptr; 5810 for (auto *P : predecessors(BB)) { 5811 BasicBlock *PPred = P->getSinglePredecessor(); 5812 if (!PPred || (PredPred && PredPred != PPred)) 5813 return nullptr; 5814 PredPred = PPred; 5815 } 5816 return PredPred; 5817 } 5818 5819 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5820 BasicBlock *BB = BI->getParent(); 5821 const Function *Fn = BB->getParent(); 5822 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5823 return false; 5824 5825 // Conditional branch 5826 if (isValueEqualityComparison(BI)) { 5827 // If we only have one predecessor, and if it is a branch on this value, 5828 // see if that predecessor totally determines the outcome of this 5829 // switch. 5830 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5831 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5832 return simplifyCFG(BB, TTI, Options) | true; 5833 5834 // This block must be empty, except for the setcond inst, if it exists. 5835 // Ignore dbg intrinsics. 5836 BasicBlock::iterator I = BB->begin(); 5837 // Ignore dbg intrinsics. 5838 while (isa<DbgInfoIntrinsic>(I)) 5839 ++I; 5840 if (&*I == BI) { 5841 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5842 return simplifyCFG(BB, TTI, Options) | true; 5843 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5844 ++I; 5845 // Ignore dbg intrinsics. 5846 while (isa<DbgInfoIntrinsic>(I)) 5847 ++I; 5848 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5849 return simplifyCFG(BB, TTI, Options) | true; 5850 } 5851 } 5852 5853 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5854 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5855 return true; 5856 5857 // If this basic block has a single dominating predecessor block and the 5858 // dominating block's condition implies BI's condition, we know the direction 5859 // of the BI branch. 5860 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5861 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5862 if (PBI && PBI->isConditional() && 5863 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 5864 assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB); 5865 bool CondIsTrue = PBI->getSuccessor(0) == BB; 5866 Optional<bool> Implication = isImpliedCondition( 5867 PBI->getCondition(), BI->getCondition(), DL, CondIsTrue); 5868 if (Implication) { 5869 // Turn this into a branch on constant. 5870 auto *OldCond = BI->getCondition(); 5871 ConstantInt *CI = *Implication 5872 ? ConstantInt::getTrue(BB->getContext()) 5873 : ConstantInt::getFalse(BB->getContext()); 5874 BI->setCondition(CI); 5875 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5876 return simplifyCFG(BB, TTI, Options) | true; 5877 } 5878 } 5879 } 5880 5881 // If this basic block is ONLY a compare and a branch, and if a predecessor 5882 // branches to us and one of our successors, fold the comparison into the 5883 // predecessor and use logical operations to pick the right destination. 5884 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5885 return simplifyCFG(BB, TTI, Options) | true; 5886 5887 // We have a conditional branch to two blocks that are only reachable 5888 // from BI. We know that the condbr dominates the two blocks, so see if 5889 // there is any identical code in the "then" and "else" blocks. If so, we 5890 // can hoist it up to the branching block. 5891 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5892 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5893 if (HoistThenElseCodeToIf(BI, TTI)) 5894 return simplifyCFG(BB, TTI, Options) | true; 5895 } else { 5896 // If Successor #1 has multiple preds, we may be able to conditionally 5897 // execute Successor #0 if it branches to Successor #1. 5898 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5899 if (Succ0TI->getNumSuccessors() == 1 && 5900 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5901 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5902 return simplifyCFG(BB, TTI, Options) | true; 5903 } 5904 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5905 // If Successor #0 has multiple preds, we may be able to conditionally 5906 // execute Successor #1 if it branches to Successor #0. 5907 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5908 if (Succ1TI->getNumSuccessors() == 1 && 5909 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5910 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5911 return simplifyCFG(BB, TTI, Options) | true; 5912 } 5913 5914 // If this is a branch on a phi node in the current block, thread control 5915 // through this block if any PHI node entries are constants. 5916 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5917 if (PN->getParent() == BI->getParent()) 5918 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5919 return simplifyCFG(BB, TTI, Options) | true; 5920 5921 // Scan predecessor blocks for conditional branches. 5922 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5923 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5924 if (PBI != BI && PBI->isConditional()) 5925 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5926 return simplifyCFG(BB, TTI, Options) | true; 5927 5928 // Look for diamond patterns. 5929 if (MergeCondStores) 5930 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5931 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5932 if (PBI != BI && PBI->isConditional()) 5933 if (mergeConditionalStores(PBI, BI, DL)) 5934 return simplifyCFG(BB, TTI, Options) | true; 5935 5936 return false; 5937 } 5938 5939 /// Check if passing a value to an instruction will cause undefined behavior. 5940 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5941 Constant *C = dyn_cast<Constant>(V); 5942 if (!C) 5943 return false; 5944 5945 if (I->use_empty()) 5946 return false; 5947 5948 if (C->isNullValue() || isa<UndefValue>(C)) { 5949 // Only look at the first use, avoid hurting compile time with long uselists 5950 User *Use = *I->user_begin(); 5951 5952 // Now make sure that there are no instructions in between that can alter 5953 // control flow (eg. calls) 5954 for (BasicBlock::iterator 5955 i = ++BasicBlock::iterator(I), 5956 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5957 i != UI; ++i) 5958 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5959 return false; 5960 5961 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5962 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5963 if (GEP->getPointerOperand() == I) 5964 return passingValueIsAlwaysUndefined(V, GEP); 5965 5966 // Look through bitcasts. 5967 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5968 return passingValueIsAlwaysUndefined(V, BC); 5969 5970 // Load from null is undefined. 5971 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5972 if (!LI->isVolatile()) 5973 return LI->getPointerAddressSpace() == 0; 5974 5975 // Store to null is undefined. 5976 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5977 if (!SI->isVolatile()) 5978 return SI->getPointerAddressSpace() == 0 && 5979 SI->getPointerOperand() == I; 5980 5981 // A call to null is undefined. 5982 if (auto CS = CallSite(Use)) 5983 return CS.getCalledValue() == I; 5984 } 5985 return false; 5986 } 5987 5988 /// If BB has an incoming value that will always trigger undefined behavior 5989 /// (eg. null pointer dereference), remove the branch leading here. 5990 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5991 for (PHINode &PHI : BB->phis()) 5992 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5993 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5994 TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator(); 5995 IRBuilder<> Builder(T); 5996 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5997 BB->removePredecessor(PHI.getIncomingBlock(i)); 5998 // Turn uncoditional branches into unreachables and remove the dead 5999 // destination from conditional branches. 6000 if (BI->isUnconditional()) 6001 Builder.CreateUnreachable(); 6002 else 6003 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6004 : BI->getSuccessor(0)); 6005 BI->eraseFromParent(); 6006 return true; 6007 } 6008 // TODO: SwitchInst. 6009 } 6010 6011 return false; 6012 } 6013 6014 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6015 bool Changed = false; 6016 6017 assert(BB && BB->getParent() && "Block not embedded in function!"); 6018 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6019 6020 // Remove basic blocks that have no predecessors (except the entry block)... 6021 // or that just have themself as a predecessor. These are unreachable. 6022 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6023 BB->getSinglePredecessor() == BB) { 6024 DEBUG(dbgs() << "Removing BB: \n" << *BB); 6025 DeleteDeadBlock(BB); 6026 return true; 6027 } 6028 6029 // Check to see if we can constant propagate this terminator instruction 6030 // away... 6031 Changed |= ConstantFoldTerminator(BB, true); 6032 6033 // Check for and eliminate duplicate PHI nodes in this block. 6034 Changed |= EliminateDuplicatePHINodes(BB); 6035 6036 // Check for and remove branches that will always cause undefined behavior. 6037 Changed |= removeUndefIntroducingPredecessor(BB); 6038 6039 // Merge basic blocks into their predecessor if there is only one distinct 6040 // pred, and if there is only one distinct successor of the predecessor, and 6041 // if there are no PHI nodes. 6042 if (MergeBlockIntoPredecessor(BB)) 6043 return true; 6044 6045 if (SinkCommon && Options.SinkCommonInsts) 6046 Changed |= SinkCommonCodeFromPredecessors(BB); 6047 6048 IRBuilder<> Builder(BB); 6049 6050 // If there is a trivial two-entry PHI node in this basic block, and we can 6051 // eliminate it, do so now. 6052 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6053 if (PN->getNumIncomingValues() == 2) 6054 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6055 6056 Builder.SetInsertPoint(BB->getTerminator()); 6057 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6058 if (BI->isUnconditional()) { 6059 if (SimplifyUncondBranch(BI, Builder)) 6060 return true; 6061 } else { 6062 if (SimplifyCondBranch(BI, Builder)) 6063 return true; 6064 } 6065 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6066 if (SimplifyReturn(RI, Builder)) 6067 return true; 6068 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6069 if (SimplifyResume(RI, Builder)) 6070 return true; 6071 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6072 if (SimplifyCleanupReturn(RI)) 6073 return true; 6074 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6075 if (SimplifySwitch(SI, Builder)) 6076 return true; 6077 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6078 if (SimplifyUnreachable(UI)) 6079 return true; 6080 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6081 if (SimplifyIndirectBr(IBI)) 6082 return true; 6083 } 6084 6085 return Changed; 6086 } 6087 6088 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6089 const SimplifyCFGOptions &Options, 6090 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6091 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6092 Options) 6093 .run(BB); 6094 } 6095