1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/MemorySSA.h" 31 #include "llvm/Analysis/MemorySSAUpdater.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/NoFolder.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/PatternMatch.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <climits> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <set> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 using namespace PatternMatch; 86 87 #define DEBUG_TYPE "simplifycfg" 88 89 // Chosen as 2 so as to be cheap, but still to have enough power to fold 90 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 91 // To catch this, we need to fold a compare and a select, hence '2' being the 92 // minimum reasonable default. 93 static cl::opt<unsigned> PHINodeFoldingThreshold( 94 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 95 cl::desc( 96 "Control the amount of phi node folding to perform (default = 2)")); 97 98 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 99 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 100 cl::desc("Control the maximal total instruction cost that we are willing " 101 "to speculatively execute to fold a 2-entry PHI node into a " 102 "select (default = 4)")); 103 104 static cl::opt<bool> DupRet( 105 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 106 cl::desc("Duplicate return instructions into unconditional branches")); 107 108 static cl::opt<bool> 109 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 110 cl::desc("Hoist common instructions up to the parent block")); 111 112 static cl::opt<bool> 113 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 114 cl::desc("Sink common instructions down to the end block")); 115 116 static cl::opt<bool> HoistCondStores( 117 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 118 cl::desc("Hoist conditional stores if an unconditional store precedes")); 119 120 static cl::opt<bool> MergeCondStores( 121 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 122 cl::desc("Hoist conditional stores even if an unconditional store does not " 123 "precede - hoist multiple conditional stores into a single " 124 "predicated store")); 125 126 static cl::opt<bool> MergeCondStoresAggressively( 127 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 128 cl::desc("When merging conditional stores, do so even if the resultant " 129 "basic blocks are unlikely to be if-converted as a result")); 130 131 static cl::opt<bool> SpeculateOneExpensiveInst( 132 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 133 cl::desc("Allow exactly one expensive instruction to be speculatively " 134 "executed")); 135 136 static cl::opt<unsigned> MaxSpeculationDepth( 137 "max-speculation-depth", cl::Hidden, cl::init(10), 138 cl::desc("Limit maximum recursion depth when calculating costs of " 139 "speculatively executed instructions")); 140 141 static cl::opt<int> 142 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 143 cl::desc("Max size of a block which is still considered " 144 "small enough to thread through")); 145 146 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 147 STATISTIC(NumLinearMaps, 148 "Number of switch instructions turned into linear mapping"); 149 STATISTIC(NumLookupTables, 150 "Number of switch instructions turned into lookup tables"); 151 STATISTIC( 152 NumLookupTablesHoles, 153 "Number of switch instructions turned into lookup tables (holes checked)"); 154 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 155 STATISTIC( 156 NumHoistCommonCode, 157 "Number of common instruction 'blocks' hoisted up to the begin block"); 158 STATISTIC(NumHoistCommonInstrs, 159 "Number of common instructions hoisted up to the begin block"); 160 STATISTIC(NumSinkCommonCode, 161 "Number of common instruction 'blocks' sunk down to the end block"); 162 STATISTIC(NumSinkCommonInstrs, 163 "Number of common instructions sunk down to the end block"); 164 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 165 STATISTIC(NumInvokes, 166 "Number of invokes with empty resume blocks simplified into calls"); 167 168 namespace { 169 170 // The first field contains the value that the switch produces when a certain 171 // case group is selected, and the second field is a vector containing the 172 // cases composing the case group. 173 using SwitchCaseResultVectorTy = 174 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 175 176 // The first field contains the phi node that generates a result of the switch 177 // and the second field contains the value generated for a certain case in the 178 // switch for that PHI. 179 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 180 181 /// ValueEqualityComparisonCase - Represents a case of a switch. 182 struct ValueEqualityComparisonCase { 183 ConstantInt *Value; 184 BasicBlock *Dest; 185 186 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 187 : Value(Value), Dest(Dest) {} 188 189 bool operator<(ValueEqualityComparisonCase RHS) const { 190 // Comparing pointers is ok as we only rely on the order for uniquing. 191 return Value < RHS.Value; 192 } 193 194 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 195 }; 196 197 class SimplifyCFGOpt { 198 const TargetTransformInfo &TTI; 199 const DataLayout &DL; 200 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 201 const SimplifyCFGOptions &Options; 202 bool Resimplify; 203 204 Value *isValueEqualityComparison(Instruction *TI); 205 BasicBlock *GetValueEqualityComparisonCases( 206 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 207 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 208 BasicBlock *Pred, 209 IRBuilder<> &Builder); 210 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 211 IRBuilder<> &Builder); 212 213 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 214 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 215 bool simplifySingleResume(ResumeInst *RI); 216 bool simplifyCommonResume(ResumeInst *RI); 217 bool simplifyCleanupReturn(CleanupReturnInst *RI); 218 bool simplifyUnreachable(UnreachableInst *UI); 219 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 220 bool simplifyIndirectBr(IndirectBrInst *IBI); 221 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 222 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 223 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 224 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 225 226 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 227 IRBuilder<> &Builder); 228 229 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 230 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 231 const TargetTransformInfo &TTI); 232 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 233 BasicBlock *TrueBB, BasicBlock *FalseBB, 234 uint32_t TrueWeight, uint32_t FalseWeight); 235 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 236 const DataLayout &DL); 237 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 238 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 239 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 240 241 public: 242 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 243 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 244 const SimplifyCFGOptions &Opts) 245 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 246 247 bool run(BasicBlock *BB); 248 bool simplifyOnce(BasicBlock *BB); 249 250 // Helper to set Resimplify and return change indication. 251 bool requestResimplify() { 252 Resimplify = true; 253 return true; 254 } 255 }; 256 257 } // end anonymous namespace 258 259 /// Return true if it is safe to merge these two 260 /// terminator instructions together. 261 static bool 262 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 263 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 264 if (SI1 == SI2) 265 return false; // Can't merge with self! 266 267 // It is not safe to merge these two switch instructions if they have a common 268 // successor, and if that successor has a PHI node, and if *that* PHI node has 269 // conflicting incoming values from the two switch blocks. 270 BasicBlock *SI1BB = SI1->getParent(); 271 BasicBlock *SI2BB = SI2->getParent(); 272 273 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 274 bool Fail = false; 275 for (BasicBlock *Succ : successors(SI2BB)) 276 if (SI1Succs.count(Succ)) 277 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 278 PHINode *PN = cast<PHINode>(BBI); 279 if (PN->getIncomingValueForBlock(SI1BB) != 280 PN->getIncomingValueForBlock(SI2BB)) { 281 if (FailBlocks) 282 FailBlocks->insert(Succ); 283 Fail = true; 284 } 285 } 286 287 return !Fail; 288 } 289 290 /// Return true if it is safe and profitable to merge these two terminator 291 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 292 /// store all PHI nodes in common successors. 293 static bool 294 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 295 Instruction *Cond, 296 SmallVectorImpl<PHINode *> &PhiNodes) { 297 if (SI1 == SI2) 298 return false; // Can't merge with self! 299 assert(SI1->isUnconditional() && SI2->isConditional()); 300 301 // We fold the unconditional branch if we can easily update all PHI nodes in 302 // common successors: 303 // 1> We have a constant incoming value for the conditional branch; 304 // 2> We have "Cond" as the incoming value for the unconditional branch; 305 // 3> SI2->getCondition() and Cond have same operands. 306 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 307 if (!Ci2) 308 return false; 309 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 310 Cond->getOperand(1) == Ci2->getOperand(1)) && 311 !(Cond->getOperand(0) == Ci2->getOperand(1) && 312 Cond->getOperand(1) == Ci2->getOperand(0))) 313 return false; 314 315 BasicBlock *SI1BB = SI1->getParent(); 316 BasicBlock *SI2BB = SI2->getParent(); 317 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 318 for (BasicBlock *Succ : successors(SI2BB)) 319 if (SI1Succs.count(Succ)) 320 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 321 PHINode *PN = cast<PHINode>(BBI); 322 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 323 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 324 return false; 325 PhiNodes.push_back(PN); 326 } 327 return true; 328 } 329 330 /// Update PHI nodes in Succ to indicate that there will now be entries in it 331 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 332 /// will be the same as those coming in from ExistPred, an existing predecessor 333 /// of Succ. 334 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 335 BasicBlock *ExistPred, 336 MemorySSAUpdater *MSSAU = nullptr) { 337 for (PHINode &PN : Succ->phis()) 338 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 339 if (MSSAU) 340 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 341 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 342 } 343 344 /// Compute an abstract "cost" of speculating the given instruction, 345 /// which is assumed to be safe to speculate. TCC_Free means cheap, 346 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 347 /// expensive. 348 static unsigned ComputeSpeculationCost(const User *I, 349 const TargetTransformInfo &TTI) { 350 assert(isSafeToSpeculativelyExecute(I) && 351 "Instruction is not safe to speculatively execute!"); 352 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 353 } 354 355 /// If we have a merge point of an "if condition" as accepted above, 356 /// return true if the specified value dominates the block. We 357 /// don't handle the true generality of domination here, just a special case 358 /// which works well enough for us. 359 /// 360 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 361 /// see if V (which must be an instruction) and its recursive operands 362 /// that do not dominate BB have a combined cost lower than CostRemaining and 363 /// are non-trapping. If both are true, the instruction is inserted into the 364 /// set and true is returned. 365 /// 366 /// The cost for most non-trapping instructions is defined as 1 except for 367 /// Select whose cost is 2. 368 /// 369 /// After this function returns, CostRemaining is decreased by the cost of 370 /// V plus its non-dominating operands. If that cost is greater than 371 /// CostRemaining, false is returned and CostRemaining is undefined. 372 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 373 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 374 int &BudgetRemaining, 375 const TargetTransformInfo &TTI, 376 unsigned Depth = 0) { 377 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 378 // so limit the recursion depth. 379 // TODO: While this recursion limit does prevent pathological behavior, it 380 // would be better to track visited instructions to avoid cycles. 381 if (Depth == MaxSpeculationDepth) 382 return false; 383 384 Instruction *I = dyn_cast<Instruction>(V); 385 if (!I) { 386 // Non-instructions all dominate instructions, but not all constantexprs 387 // can be executed unconditionally. 388 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 389 if (C->canTrap()) 390 return false; 391 return true; 392 } 393 BasicBlock *PBB = I->getParent(); 394 395 // We don't want to allow weird loops that might have the "if condition" in 396 // the bottom of this block. 397 if (PBB == BB) 398 return false; 399 400 // If this instruction is defined in a block that contains an unconditional 401 // branch to BB, then it must be in the 'conditional' part of the "if 402 // statement". If not, it definitely dominates the region. 403 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 404 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 405 return true; 406 407 // If we have seen this instruction before, don't count it again. 408 if (AggressiveInsts.count(I)) 409 return true; 410 411 // Okay, it looks like the instruction IS in the "condition". Check to 412 // see if it's a cheap instruction to unconditionally compute, and if it 413 // only uses stuff defined outside of the condition. If so, hoist it out. 414 if (!isSafeToSpeculativelyExecute(I)) 415 return false; 416 417 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 418 419 // Allow exactly one instruction to be speculated regardless of its cost 420 // (as long as it is safe to do so). 421 // This is intended to flatten the CFG even if the instruction is a division 422 // or other expensive operation. The speculation of an expensive instruction 423 // is expected to be undone in CodeGenPrepare if the speculation has not 424 // enabled further IR optimizations. 425 if (BudgetRemaining < 0 && 426 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 427 return false; 428 429 // Okay, we can only really hoist these out if their operands do 430 // not take us over the cost threshold. 431 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 432 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 433 Depth + 1)) 434 return false; 435 // Okay, it's safe to do this! Remember this instruction. 436 AggressiveInsts.insert(I); 437 return true; 438 } 439 440 /// Extract ConstantInt from value, looking through IntToPtr 441 /// and PointerNullValue. Return NULL if value is not a constant int. 442 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 443 // Normal constant int. 444 ConstantInt *CI = dyn_cast<ConstantInt>(V); 445 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 446 return CI; 447 448 // This is some kind of pointer constant. Turn it into a pointer-sized 449 // ConstantInt if possible. 450 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 451 452 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 453 if (isa<ConstantPointerNull>(V)) 454 return ConstantInt::get(PtrTy, 0); 455 456 // IntToPtr const int. 457 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 458 if (CE->getOpcode() == Instruction::IntToPtr) 459 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 460 // The constant is very likely to have the right type already. 461 if (CI->getType() == PtrTy) 462 return CI; 463 else 464 return cast<ConstantInt>( 465 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 466 } 467 return nullptr; 468 } 469 470 namespace { 471 472 /// Given a chain of or (||) or and (&&) comparison of a value against a 473 /// constant, this will try to recover the information required for a switch 474 /// structure. 475 /// It will depth-first traverse the chain of comparison, seeking for patterns 476 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 477 /// representing the different cases for the switch. 478 /// Note that if the chain is composed of '||' it will build the set of elements 479 /// that matches the comparisons (i.e. any of this value validate the chain) 480 /// while for a chain of '&&' it will build the set elements that make the test 481 /// fail. 482 struct ConstantComparesGatherer { 483 const DataLayout &DL; 484 485 /// Value found for the switch comparison 486 Value *CompValue = nullptr; 487 488 /// Extra clause to be checked before the switch 489 Value *Extra = nullptr; 490 491 /// Set of integers to match in switch 492 SmallVector<ConstantInt *, 8> Vals; 493 494 /// Number of comparisons matched in the and/or chain 495 unsigned UsedICmps = 0; 496 497 /// Construct and compute the result for the comparison instruction Cond 498 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 499 gather(Cond); 500 } 501 502 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 503 ConstantComparesGatherer & 504 operator=(const ConstantComparesGatherer &) = delete; 505 506 private: 507 /// Try to set the current value used for the comparison, it succeeds only if 508 /// it wasn't set before or if the new value is the same as the old one 509 bool setValueOnce(Value *NewVal) { 510 if (CompValue && CompValue != NewVal) 511 return false; 512 CompValue = NewVal; 513 return (CompValue != nullptr); 514 } 515 516 /// Try to match Instruction "I" as a comparison against a constant and 517 /// populates the array Vals with the set of values that match (or do not 518 /// match depending on isEQ). 519 /// Return false on failure. On success, the Value the comparison matched 520 /// against is placed in CompValue. 521 /// If CompValue is already set, the function is expected to fail if a match 522 /// is found but the value compared to is different. 523 bool matchInstruction(Instruction *I, bool isEQ) { 524 // If this is an icmp against a constant, handle this as one of the cases. 525 ICmpInst *ICI; 526 ConstantInt *C; 527 if (!((ICI = dyn_cast<ICmpInst>(I)) && 528 (C = GetConstantInt(I->getOperand(1), DL)))) { 529 return false; 530 } 531 532 Value *RHSVal; 533 const APInt *RHSC; 534 535 // Pattern match a special case 536 // (x & ~2^z) == y --> x == y || x == y|2^z 537 // This undoes a transformation done by instcombine to fuse 2 compares. 538 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 539 // It's a little bit hard to see why the following transformations are 540 // correct. Here is a CVC3 program to verify them for 64-bit values: 541 542 /* 543 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 544 x : BITVECTOR(64); 545 y : BITVECTOR(64); 546 z : BITVECTOR(64); 547 mask : BITVECTOR(64) = BVSHL(ONE, z); 548 QUERY( (y & ~mask = y) => 549 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 550 ); 551 QUERY( (y | mask = y) => 552 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 553 ); 554 */ 555 556 // Please note that each pattern must be a dual implication (<--> or 557 // iff). One directional implication can create spurious matches. If the 558 // implication is only one-way, an unsatisfiable condition on the left 559 // side can imply a satisfiable condition on the right side. Dual 560 // implication ensures that satisfiable conditions are transformed to 561 // other satisfiable conditions and unsatisfiable conditions are 562 // transformed to other unsatisfiable conditions. 563 564 // Here is a concrete example of a unsatisfiable condition on the left 565 // implying a satisfiable condition on the right: 566 // 567 // mask = (1 << z) 568 // (x & ~mask) == y --> (x == y || x == (y | mask)) 569 // 570 // Substituting y = 3, z = 0 yields: 571 // (x & -2) == 3 --> (x == 3 || x == 2) 572 573 // Pattern match a special case: 574 /* 575 QUERY( (y & ~mask = y) => 576 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 577 ); 578 */ 579 if (match(ICI->getOperand(0), 580 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 581 APInt Mask = ~*RHSC; 582 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 583 // If we already have a value for the switch, it has to match! 584 if (!setValueOnce(RHSVal)) 585 return false; 586 587 Vals.push_back(C); 588 Vals.push_back( 589 ConstantInt::get(C->getContext(), 590 C->getValue() | Mask)); 591 UsedICmps++; 592 return true; 593 } 594 } 595 596 // Pattern match a special case: 597 /* 598 QUERY( (y | mask = y) => 599 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 600 ); 601 */ 602 if (match(ICI->getOperand(0), 603 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 604 APInt Mask = *RHSC; 605 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 606 // If we already have a value for the switch, it has to match! 607 if (!setValueOnce(RHSVal)) 608 return false; 609 610 Vals.push_back(C); 611 Vals.push_back(ConstantInt::get(C->getContext(), 612 C->getValue() & ~Mask)); 613 UsedICmps++; 614 return true; 615 } 616 } 617 618 // If we already have a value for the switch, it has to match! 619 if (!setValueOnce(ICI->getOperand(0))) 620 return false; 621 622 UsedICmps++; 623 Vals.push_back(C); 624 return ICI->getOperand(0); 625 } 626 627 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 628 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 629 ICI->getPredicate(), C->getValue()); 630 631 // Shift the range if the compare is fed by an add. This is the range 632 // compare idiom as emitted by instcombine. 633 Value *CandidateVal = I->getOperand(0); 634 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 635 Span = Span.subtract(*RHSC); 636 CandidateVal = RHSVal; 637 } 638 639 // If this is an and/!= check, then we are looking to build the set of 640 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 641 // x != 0 && x != 1. 642 if (!isEQ) 643 Span = Span.inverse(); 644 645 // If there are a ton of values, we don't want to make a ginormous switch. 646 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 647 return false; 648 } 649 650 // If we already have a value for the switch, it has to match! 651 if (!setValueOnce(CandidateVal)) 652 return false; 653 654 // Add all values from the range to the set 655 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 656 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 657 658 UsedICmps++; 659 return true; 660 } 661 662 /// Given a potentially 'or'd or 'and'd together collection of icmp 663 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 664 /// the value being compared, and stick the list constants into the Vals 665 /// vector. 666 /// One "Extra" case is allowed to differ from the other. 667 void gather(Value *V) { 668 bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or); 669 670 // Keep a stack (SmallVector for efficiency) for depth-first traversal 671 SmallVector<Value *, 8> DFT; 672 SmallPtrSet<Value *, 8> Visited; 673 674 // Initialize 675 Visited.insert(V); 676 DFT.push_back(V); 677 678 while (!DFT.empty()) { 679 V = DFT.pop_back_val(); 680 681 if (Instruction *I = dyn_cast<Instruction>(V)) { 682 // If it is a || (or && depending on isEQ), process the operands. 683 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 684 if (Visited.insert(I->getOperand(1)).second) 685 DFT.push_back(I->getOperand(1)); 686 if (Visited.insert(I->getOperand(0)).second) 687 DFT.push_back(I->getOperand(0)); 688 continue; 689 } 690 691 // Try to match the current instruction 692 if (matchInstruction(I, isEQ)) 693 // Match succeed, continue the loop 694 continue; 695 } 696 697 // One element of the sequence of || (or &&) could not be match as a 698 // comparison against the same value as the others. 699 // We allow only one "Extra" case to be checked before the switch 700 if (!Extra) { 701 Extra = V; 702 continue; 703 } 704 // Failed to parse a proper sequence, abort now 705 CompValue = nullptr; 706 break; 707 } 708 } 709 }; 710 711 } // end anonymous namespace 712 713 static void EraseTerminatorAndDCECond(Instruction *TI, 714 MemorySSAUpdater *MSSAU = nullptr) { 715 Instruction *Cond = nullptr; 716 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 717 Cond = dyn_cast<Instruction>(SI->getCondition()); 718 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 719 if (BI->isConditional()) 720 Cond = dyn_cast<Instruction>(BI->getCondition()); 721 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 722 Cond = dyn_cast<Instruction>(IBI->getAddress()); 723 } 724 725 TI->eraseFromParent(); 726 if (Cond) 727 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 728 } 729 730 /// Return true if the specified terminator checks 731 /// to see if a value is equal to constant integer value. 732 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 733 Value *CV = nullptr; 734 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 735 // Do not permit merging of large switch instructions into their 736 // predecessors unless there is only one predecessor. 737 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 738 CV = SI->getCondition(); 739 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 740 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 741 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 742 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 743 CV = ICI->getOperand(0); 744 } 745 746 // Unwrap any lossless ptrtoint cast. 747 if (CV) { 748 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 749 Value *Ptr = PTII->getPointerOperand(); 750 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 751 CV = Ptr; 752 } 753 } 754 return CV; 755 } 756 757 /// Given a value comparison instruction, 758 /// decode all of the 'cases' that it represents and return the 'default' block. 759 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 760 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 761 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 762 Cases.reserve(SI->getNumCases()); 763 for (auto Case : SI->cases()) 764 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 765 Case.getCaseSuccessor())); 766 return SI->getDefaultDest(); 767 } 768 769 BranchInst *BI = cast<BranchInst>(TI); 770 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 771 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 772 Cases.push_back(ValueEqualityComparisonCase( 773 GetConstantInt(ICI->getOperand(1), DL), Succ)); 774 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 775 } 776 777 /// Given a vector of bb/value pairs, remove any entries 778 /// in the list that match the specified block. 779 static void 780 EliminateBlockCases(BasicBlock *BB, 781 std::vector<ValueEqualityComparisonCase> &Cases) { 782 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 783 } 784 785 /// Return true if there are any keys in C1 that exist in C2 as well. 786 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 787 std::vector<ValueEqualityComparisonCase> &C2) { 788 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 789 790 // Make V1 be smaller than V2. 791 if (V1->size() > V2->size()) 792 std::swap(V1, V2); 793 794 if (V1->empty()) 795 return false; 796 if (V1->size() == 1) { 797 // Just scan V2. 798 ConstantInt *TheVal = (*V1)[0].Value; 799 for (unsigned i = 0, e = V2->size(); i != e; ++i) 800 if (TheVal == (*V2)[i].Value) 801 return true; 802 } 803 804 // Otherwise, just sort both lists and compare element by element. 805 array_pod_sort(V1->begin(), V1->end()); 806 array_pod_sort(V2->begin(), V2->end()); 807 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 808 while (i1 != e1 && i2 != e2) { 809 if ((*V1)[i1].Value == (*V2)[i2].Value) 810 return true; 811 if ((*V1)[i1].Value < (*V2)[i2].Value) 812 ++i1; 813 else 814 ++i2; 815 } 816 return false; 817 } 818 819 // Set branch weights on SwitchInst. This sets the metadata if there is at 820 // least one non-zero weight. 821 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 822 // Check that there is at least one non-zero weight. Otherwise, pass 823 // nullptr to setMetadata which will erase the existing metadata. 824 MDNode *N = nullptr; 825 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 826 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 827 SI->setMetadata(LLVMContext::MD_prof, N); 828 } 829 830 // Similar to the above, but for branch and select instructions that take 831 // exactly 2 weights. 832 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 833 uint32_t FalseWeight) { 834 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 835 // Check that there is at least one non-zero weight. Otherwise, pass 836 // nullptr to setMetadata which will erase the existing metadata. 837 MDNode *N = nullptr; 838 if (TrueWeight || FalseWeight) 839 N = MDBuilder(I->getParent()->getContext()) 840 .createBranchWeights(TrueWeight, FalseWeight); 841 I->setMetadata(LLVMContext::MD_prof, N); 842 } 843 844 /// If TI is known to be a terminator instruction and its block is known to 845 /// only have a single predecessor block, check to see if that predecessor is 846 /// also a value comparison with the same value, and if that comparison 847 /// determines the outcome of this comparison. If so, simplify TI. This does a 848 /// very limited form of jump threading. 849 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 850 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 851 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 852 if (!PredVal) 853 return false; // Not a value comparison in predecessor. 854 855 Value *ThisVal = isValueEqualityComparison(TI); 856 assert(ThisVal && "This isn't a value comparison!!"); 857 if (ThisVal != PredVal) 858 return false; // Different predicates. 859 860 // TODO: Preserve branch weight metadata, similarly to how 861 // FoldValueComparisonIntoPredecessors preserves it. 862 863 // Find out information about when control will move from Pred to TI's block. 864 std::vector<ValueEqualityComparisonCase> PredCases; 865 BasicBlock *PredDef = 866 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 867 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 868 869 // Find information about how control leaves this block. 870 std::vector<ValueEqualityComparisonCase> ThisCases; 871 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 872 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 873 874 // If TI's block is the default block from Pred's comparison, potentially 875 // simplify TI based on this knowledge. 876 if (PredDef == TI->getParent()) { 877 // If we are here, we know that the value is none of those cases listed in 878 // PredCases. If there are any cases in ThisCases that are in PredCases, we 879 // can simplify TI. 880 if (!ValuesOverlap(PredCases, ThisCases)) 881 return false; 882 883 if (isa<BranchInst>(TI)) { 884 // Okay, one of the successors of this condbr is dead. Convert it to a 885 // uncond br. 886 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 887 // Insert the new branch. 888 Instruction *NI = Builder.CreateBr(ThisDef); 889 (void)NI; 890 891 // Remove PHI node entries for the dead edge. 892 ThisCases[0].Dest->removePredecessor(TI->getParent()); 893 894 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 895 << "Through successor TI: " << *TI << "Leaving: " << *NI 896 << "\n"); 897 898 EraseTerminatorAndDCECond(TI); 899 return true; 900 } 901 902 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 903 // Okay, TI has cases that are statically dead, prune them away. 904 SmallPtrSet<Constant *, 16> DeadCases; 905 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 906 DeadCases.insert(PredCases[i].Value); 907 908 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 909 << "Through successor TI: " << *TI); 910 911 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 912 --i; 913 if (DeadCases.count(i->getCaseValue())) { 914 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 915 SI.removeCase(i); 916 } 917 } 918 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 919 return true; 920 } 921 922 // Otherwise, TI's block must correspond to some matched value. Find out 923 // which value (or set of values) this is. 924 ConstantInt *TIV = nullptr; 925 BasicBlock *TIBB = TI->getParent(); 926 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 927 if (PredCases[i].Dest == TIBB) { 928 if (TIV) 929 return false; // Cannot handle multiple values coming to this block. 930 TIV = PredCases[i].Value; 931 } 932 assert(TIV && "No edge from pred to succ?"); 933 934 // Okay, we found the one constant that our value can be if we get into TI's 935 // BB. Find out which successor will unconditionally be branched to. 936 BasicBlock *TheRealDest = nullptr; 937 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 938 if (ThisCases[i].Value == TIV) { 939 TheRealDest = ThisCases[i].Dest; 940 break; 941 } 942 943 // If not handled by any explicit cases, it is handled by the default case. 944 if (!TheRealDest) 945 TheRealDest = ThisDef; 946 947 // Remove PHI node entries for dead edges. 948 BasicBlock *CheckEdge = TheRealDest; 949 for (BasicBlock *Succ : successors(TIBB)) 950 if (Succ != CheckEdge) 951 Succ->removePredecessor(TIBB); 952 else 953 CheckEdge = nullptr; 954 955 // Insert the new branch. 956 Instruction *NI = Builder.CreateBr(TheRealDest); 957 (void)NI; 958 959 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 960 << "Through successor TI: " << *TI << "Leaving: " << *NI 961 << "\n"); 962 963 EraseTerminatorAndDCECond(TI); 964 return true; 965 } 966 967 namespace { 968 969 /// This class implements a stable ordering of constant 970 /// integers that does not depend on their address. This is important for 971 /// applications that sort ConstantInt's to ensure uniqueness. 972 struct ConstantIntOrdering { 973 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 974 return LHS->getValue().ult(RHS->getValue()); 975 } 976 }; 977 978 } // end anonymous namespace 979 980 static int ConstantIntSortPredicate(ConstantInt *const *P1, 981 ConstantInt *const *P2) { 982 const ConstantInt *LHS = *P1; 983 const ConstantInt *RHS = *P2; 984 if (LHS == RHS) 985 return 0; 986 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 987 } 988 989 static inline bool HasBranchWeights(const Instruction *I) { 990 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 991 if (ProfMD && ProfMD->getOperand(0)) 992 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 993 return MDS->getString().equals("branch_weights"); 994 995 return false; 996 } 997 998 /// Get Weights of a given terminator, the default weight is at the front 999 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1000 /// metadata. 1001 static void GetBranchWeights(Instruction *TI, 1002 SmallVectorImpl<uint64_t> &Weights) { 1003 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1004 assert(MD); 1005 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1006 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1007 Weights.push_back(CI->getValue().getZExtValue()); 1008 } 1009 1010 // If TI is a conditional eq, the default case is the false case, 1011 // and the corresponding branch-weight data is at index 2. We swap the 1012 // default weight to be the first entry. 1013 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1014 assert(Weights.size() == 2); 1015 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1016 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1017 std::swap(Weights.front(), Weights.back()); 1018 } 1019 } 1020 1021 /// Keep halving the weights until all can fit in uint32_t. 1022 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1023 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1024 if (Max > UINT_MAX) { 1025 unsigned Offset = 32 - countLeadingZeros(Max); 1026 for (uint64_t &I : Weights) 1027 I >>= Offset; 1028 } 1029 } 1030 1031 /// The specified terminator is a value equality comparison instruction 1032 /// (either a switch or a branch on "X == c"). 1033 /// See if any of the predecessors of the terminator block are value comparisons 1034 /// on the same value. If so, and if safe to do so, fold them together. 1035 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1036 IRBuilder<> &Builder) { 1037 BasicBlock *BB = TI->getParent(); 1038 Value *CV = isValueEqualityComparison(TI); // CondVal 1039 assert(CV && "Not a comparison?"); 1040 bool Changed = false; 1041 1042 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1043 while (!Preds.empty()) { 1044 BasicBlock *Pred = Preds.pop_back_val(); 1045 1046 // See if the predecessor is a comparison with the same value. 1047 Instruction *PTI = Pred->getTerminator(); 1048 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1049 1050 if (PCV == CV && TI != PTI) { 1051 SmallSetVector<BasicBlock*, 4> FailBlocks; 1052 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1053 for (auto *Succ : FailBlocks) { 1054 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1055 return false; 1056 } 1057 } 1058 1059 // Figure out which 'cases' to copy from SI to PSI. 1060 std::vector<ValueEqualityComparisonCase> BBCases; 1061 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1062 1063 std::vector<ValueEqualityComparisonCase> PredCases; 1064 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1065 1066 // Based on whether the default edge from PTI goes to BB or not, fill in 1067 // PredCases and PredDefault with the new switch cases we would like to 1068 // build. 1069 SmallVector<BasicBlock *, 8> NewSuccessors; 1070 1071 // Update the branch weight metadata along the way 1072 SmallVector<uint64_t, 8> Weights; 1073 bool PredHasWeights = HasBranchWeights(PTI); 1074 bool SuccHasWeights = HasBranchWeights(TI); 1075 1076 if (PredHasWeights) { 1077 GetBranchWeights(PTI, Weights); 1078 // branch-weight metadata is inconsistent here. 1079 if (Weights.size() != 1 + PredCases.size()) 1080 PredHasWeights = SuccHasWeights = false; 1081 } else if (SuccHasWeights) 1082 // If there are no predecessor weights but there are successor weights, 1083 // populate Weights with 1, which will later be scaled to the sum of 1084 // successor's weights 1085 Weights.assign(1 + PredCases.size(), 1); 1086 1087 SmallVector<uint64_t, 8> SuccWeights; 1088 if (SuccHasWeights) { 1089 GetBranchWeights(TI, SuccWeights); 1090 // branch-weight metadata is inconsistent here. 1091 if (SuccWeights.size() != 1 + BBCases.size()) 1092 PredHasWeights = SuccHasWeights = false; 1093 } else if (PredHasWeights) 1094 SuccWeights.assign(1 + BBCases.size(), 1); 1095 1096 if (PredDefault == BB) { 1097 // If this is the default destination from PTI, only the edges in TI 1098 // that don't occur in PTI, or that branch to BB will be activated. 1099 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1100 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1101 if (PredCases[i].Dest != BB) 1102 PTIHandled.insert(PredCases[i].Value); 1103 else { 1104 // The default destination is BB, we don't need explicit targets. 1105 std::swap(PredCases[i], PredCases.back()); 1106 1107 if (PredHasWeights || SuccHasWeights) { 1108 // Increase weight for the default case. 1109 Weights[0] += Weights[i + 1]; 1110 std::swap(Weights[i + 1], Weights.back()); 1111 Weights.pop_back(); 1112 } 1113 1114 PredCases.pop_back(); 1115 --i; 1116 --e; 1117 } 1118 1119 // Reconstruct the new switch statement we will be building. 1120 if (PredDefault != BBDefault) { 1121 PredDefault->removePredecessor(Pred); 1122 PredDefault = BBDefault; 1123 NewSuccessors.push_back(BBDefault); 1124 } 1125 1126 unsigned CasesFromPred = Weights.size(); 1127 uint64_t ValidTotalSuccWeight = 0; 1128 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1129 if (!PTIHandled.count(BBCases[i].Value) && 1130 BBCases[i].Dest != BBDefault) { 1131 PredCases.push_back(BBCases[i]); 1132 NewSuccessors.push_back(BBCases[i].Dest); 1133 if (SuccHasWeights || PredHasWeights) { 1134 // The default weight is at index 0, so weight for the ith case 1135 // should be at index i+1. Scale the cases from successor by 1136 // PredDefaultWeight (Weights[0]). 1137 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1138 ValidTotalSuccWeight += SuccWeights[i + 1]; 1139 } 1140 } 1141 1142 if (SuccHasWeights || PredHasWeights) { 1143 ValidTotalSuccWeight += SuccWeights[0]; 1144 // Scale the cases from predecessor by ValidTotalSuccWeight. 1145 for (unsigned i = 1; i < CasesFromPred; ++i) 1146 Weights[i] *= ValidTotalSuccWeight; 1147 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1148 Weights[0] *= SuccWeights[0]; 1149 } 1150 } else { 1151 // If this is not the default destination from PSI, only the edges 1152 // in SI that occur in PSI with a destination of BB will be 1153 // activated. 1154 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1155 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1156 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1157 if (PredCases[i].Dest == BB) { 1158 PTIHandled.insert(PredCases[i].Value); 1159 1160 if (PredHasWeights || SuccHasWeights) { 1161 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1162 std::swap(Weights[i + 1], Weights.back()); 1163 Weights.pop_back(); 1164 } 1165 1166 std::swap(PredCases[i], PredCases.back()); 1167 PredCases.pop_back(); 1168 --i; 1169 --e; 1170 } 1171 1172 // Okay, now we know which constants were sent to BB from the 1173 // predecessor. Figure out where they will all go now. 1174 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1175 if (PTIHandled.count(BBCases[i].Value)) { 1176 // If this is one we are capable of getting... 1177 if (PredHasWeights || SuccHasWeights) 1178 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1179 PredCases.push_back(BBCases[i]); 1180 NewSuccessors.push_back(BBCases[i].Dest); 1181 PTIHandled.erase( 1182 BBCases[i].Value); // This constant is taken care of 1183 } 1184 1185 // If there are any constants vectored to BB that TI doesn't handle, 1186 // they must go to the default destination of TI. 1187 for (ConstantInt *I : PTIHandled) { 1188 if (PredHasWeights || SuccHasWeights) 1189 Weights.push_back(WeightsForHandled[I]); 1190 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1191 NewSuccessors.push_back(BBDefault); 1192 } 1193 } 1194 1195 // Okay, at this point, we know which new successor Pred will get. Make 1196 // sure we update the number of entries in the PHI nodes for these 1197 // successors. 1198 for (BasicBlock *NewSuccessor : NewSuccessors) 1199 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1200 1201 Builder.SetInsertPoint(PTI); 1202 // Convert pointer to int before we switch. 1203 if (CV->getType()->isPointerTy()) { 1204 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1205 "magicptr"); 1206 } 1207 1208 // Now that the successors are updated, create the new Switch instruction. 1209 SwitchInst *NewSI = 1210 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1211 NewSI->setDebugLoc(PTI->getDebugLoc()); 1212 for (ValueEqualityComparisonCase &V : PredCases) 1213 NewSI->addCase(V.Value, V.Dest); 1214 1215 if (PredHasWeights || SuccHasWeights) { 1216 // Halve the weights if any of them cannot fit in an uint32_t 1217 FitWeights(Weights); 1218 1219 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1220 1221 setBranchWeights(NewSI, MDWeights); 1222 } 1223 1224 EraseTerminatorAndDCECond(PTI); 1225 1226 // Okay, last check. If BB is still a successor of PSI, then we must 1227 // have an infinite loop case. If so, add an infinitely looping block 1228 // to handle the case to preserve the behavior of the code. 1229 BasicBlock *InfLoopBlock = nullptr; 1230 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1231 if (NewSI->getSuccessor(i) == BB) { 1232 if (!InfLoopBlock) { 1233 // Insert it at the end of the function, because it's either code, 1234 // or it won't matter if it's hot. :) 1235 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1236 BB->getParent()); 1237 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1238 } 1239 NewSI->setSuccessor(i, InfLoopBlock); 1240 } 1241 1242 Changed = true; 1243 } 1244 } 1245 return Changed; 1246 } 1247 1248 // If we would need to insert a select that uses the value of this invoke 1249 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1250 // can't hoist the invoke, as there is nowhere to put the select in this case. 1251 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1252 Instruction *I1, Instruction *I2) { 1253 for (BasicBlock *Succ : successors(BB1)) { 1254 for (const PHINode &PN : Succ->phis()) { 1255 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1256 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1257 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1258 return false; 1259 } 1260 } 1261 } 1262 return true; 1263 } 1264 1265 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1266 1267 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1268 /// in the two blocks up into the branch block. The caller of this function 1269 /// guarantees that BI's block dominates BB1 and BB2. 1270 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1271 const TargetTransformInfo &TTI) { 1272 // This does very trivial matching, with limited scanning, to find identical 1273 // instructions in the two blocks. In particular, we don't want to get into 1274 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1275 // such, we currently just scan for obviously identical instructions in an 1276 // identical order. 1277 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1278 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1279 1280 BasicBlock::iterator BB1_Itr = BB1->begin(); 1281 BasicBlock::iterator BB2_Itr = BB2->begin(); 1282 1283 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1284 // Skip debug info if it is not identical. 1285 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1286 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1287 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1288 while (isa<DbgInfoIntrinsic>(I1)) 1289 I1 = &*BB1_Itr++; 1290 while (isa<DbgInfoIntrinsic>(I2)) 1291 I2 = &*BB2_Itr++; 1292 } 1293 // FIXME: Can we define a safety predicate for CallBr? 1294 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1295 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1296 isa<CallBrInst>(I1)) 1297 return false; 1298 1299 BasicBlock *BIParent = BI->getParent(); 1300 1301 bool Changed = false; 1302 1303 auto _ = make_scope_exit([&]() { 1304 if (Changed) 1305 ++NumHoistCommonCode; 1306 }); 1307 1308 do { 1309 // If we are hoisting the terminator instruction, don't move one (making a 1310 // broken BB), instead clone it, and remove BI. 1311 if (I1->isTerminator()) 1312 goto HoistTerminator; 1313 1314 // If we're going to hoist a call, make sure that the two instructions we're 1315 // commoning/hoisting are both marked with musttail, or neither of them is 1316 // marked as such. Otherwise, we might end up in a situation where we hoist 1317 // from a block where the terminator is a `ret` to a block where the terminator 1318 // is a `br`, and `musttail` calls expect to be followed by a return. 1319 auto *C1 = dyn_cast<CallInst>(I1); 1320 auto *C2 = dyn_cast<CallInst>(I2); 1321 if (C1 && C2) 1322 if (C1->isMustTailCall() != C2->isMustTailCall()) 1323 return Changed; 1324 1325 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1326 return Changed; 1327 1328 // If any of the two call sites has nomerge attribute, stop hoisting. 1329 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1330 if (CB1->cannotMerge()) 1331 return Changed; 1332 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1333 if (CB2->cannotMerge()) 1334 return Changed; 1335 1336 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1337 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1338 // The debug location is an integral part of a debug info intrinsic 1339 // and can't be separated from it or replaced. Instead of attempting 1340 // to merge locations, simply hoist both copies of the intrinsic. 1341 BIParent->getInstList().splice(BI->getIterator(), 1342 BB1->getInstList(), I1); 1343 BIParent->getInstList().splice(BI->getIterator(), 1344 BB2->getInstList(), I2); 1345 Changed = true; 1346 } else { 1347 // For a normal instruction, we just move one to right before the branch, 1348 // then replace all uses of the other with the first. Finally, we remove 1349 // the now redundant second instruction. 1350 BIParent->getInstList().splice(BI->getIterator(), 1351 BB1->getInstList(), I1); 1352 if (!I2->use_empty()) 1353 I2->replaceAllUsesWith(I1); 1354 I1->andIRFlags(I2); 1355 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1356 LLVMContext::MD_range, 1357 LLVMContext::MD_fpmath, 1358 LLVMContext::MD_invariant_load, 1359 LLVMContext::MD_nonnull, 1360 LLVMContext::MD_invariant_group, 1361 LLVMContext::MD_align, 1362 LLVMContext::MD_dereferenceable, 1363 LLVMContext::MD_dereferenceable_or_null, 1364 LLVMContext::MD_mem_parallel_loop_access, 1365 LLVMContext::MD_access_group, 1366 LLVMContext::MD_preserve_access_index}; 1367 combineMetadata(I1, I2, KnownIDs, true); 1368 1369 // I1 and I2 are being combined into a single instruction. Its debug 1370 // location is the merged locations of the original instructions. 1371 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1372 1373 I2->eraseFromParent(); 1374 Changed = true; 1375 } 1376 ++NumHoistCommonInstrs; 1377 1378 I1 = &*BB1_Itr++; 1379 I2 = &*BB2_Itr++; 1380 // Skip debug info if it is not identical. 1381 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1382 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1383 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1384 while (isa<DbgInfoIntrinsic>(I1)) 1385 I1 = &*BB1_Itr++; 1386 while (isa<DbgInfoIntrinsic>(I2)) 1387 I2 = &*BB2_Itr++; 1388 } 1389 } while (I1->isIdenticalToWhenDefined(I2)); 1390 1391 return true; 1392 1393 HoistTerminator: 1394 // It may not be possible to hoist an invoke. 1395 // FIXME: Can we define a safety predicate for CallBr? 1396 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1397 return Changed; 1398 1399 // TODO: callbr hoisting currently disabled pending further study. 1400 if (isa<CallBrInst>(I1)) 1401 return Changed; 1402 1403 for (BasicBlock *Succ : successors(BB1)) { 1404 for (PHINode &PN : Succ->phis()) { 1405 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1406 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1407 if (BB1V == BB2V) 1408 continue; 1409 1410 // Check for passingValueIsAlwaysUndefined here because we would rather 1411 // eliminate undefined control flow then converting it to a select. 1412 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1413 passingValueIsAlwaysUndefined(BB2V, &PN)) 1414 return Changed; 1415 1416 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1417 return Changed; 1418 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1419 return Changed; 1420 } 1421 } 1422 1423 // Okay, it is safe to hoist the terminator. 1424 Instruction *NT = I1->clone(); 1425 BIParent->getInstList().insert(BI->getIterator(), NT); 1426 if (!NT->getType()->isVoidTy()) { 1427 I1->replaceAllUsesWith(NT); 1428 I2->replaceAllUsesWith(NT); 1429 NT->takeName(I1); 1430 } 1431 Changed = true; 1432 ++NumHoistCommonInstrs; 1433 1434 // Ensure terminator gets a debug location, even an unknown one, in case 1435 // it involves inlinable calls. 1436 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1437 1438 // PHIs created below will adopt NT's merged DebugLoc. 1439 IRBuilder<NoFolder> Builder(NT); 1440 1441 // Hoisting one of the terminators from our successor is a great thing. 1442 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1443 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1444 // nodes, so we insert select instruction to compute the final result. 1445 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1446 for (BasicBlock *Succ : successors(BB1)) { 1447 for (PHINode &PN : Succ->phis()) { 1448 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1449 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1450 if (BB1V == BB2V) 1451 continue; 1452 1453 // These values do not agree. Insert a select instruction before NT 1454 // that determines the right value. 1455 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1456 if (!SI) { 1457 // Propagate fast-math-flags from phi node to its replacement select. 1458 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1459 if (isa<FPMathOperator>(PN)) 1460 Builder.setFastMathFlags(PN.getFastMathFlags()); 1461 1462 SI = cast<SelectInst>( 1463 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1464 BB1V->getName() + "." + BB2V->getName(), BI)); 1465 } 1466 1467 // Make the PHI node use the select for all incoming values for BB1/BB2 1468 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1469 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1470 PN.setIncomingValue(i, SI); 1471 } 1472 } 1473 1474 // Update any PHI nodes in our new successors. 1475 for (BasicBlock *Succ : successors(BB1)) 1476 AddPredecessorToBlock(Succ, BIParent, BB1); 1477 1478 EraseTerminatorAndDCECond(BI); 1479 return Changed; 1480 } 1481 1482 // Check lifetime markers. 1483 static bool isLifeTimeMarker(const Instruction *I) { 1484 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1485 switch (II->getIntrinsicID()) { 1486 default: 1487 break; 1488 case Intrinsic::lifetime_start: 1489 case Intrinsic::lifetime_end: 1490 return true; 1491 } 1492 } 1493 return false; 1494 } 1495 1496 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1497 // into variables. 1498 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1499 int OpIdx) { 1500 return !isa<IntrinsicInst>(I); 1501 } 1502 1503 // All instructions in Insts belong to different blocks that all unconditionally 1504 // branch to a common successor. Analyze each instruction and return true if it 1505 // would be possible to sink them into their successor, creating one common 1506 // instruction instead. For every value that would be required to be provided by 1507 // PHI node (because an operand varies in each input block), add to PHIOperands. 1508 static bool canSinkInstructions( 1509 ArrayRef<Instruction *> Insts, 1510 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1511 // Prune out obviously bad instructions to move. Each instruction must have 1512 // exactly zero or one use, and we check later that use is by a single, common 1513 // PHI instruction in the successor. 1514 bool HasUse = !Insts.front()->user_empty(); 1515 for (auto *I : Insts) { 1516 // These instructions may change or break semantics if moved. 1517 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1518 I->getType()->isTokenTy()) 1519 return false; 1520 1521 // Conservatively return false if I is an inline-asm instruction. Sinking 1522 // and merging inline-asm instructions can potentially create arguments 1523 // that cannot satisfy the inline-asm constraints. 1524 // If the instruction has nomerge attribute, return false. 1525 if (const auto *C = dyn_cast<CallBase>(I)) 1526 if (C->isInlineAsm() || C->cannotMerge()) 1527 return false; 1528 1529 // Each instruction must have zero or one use. 1530 if (HasUse && !I->hasOneUse()) 1531 return false; 1532 if (!HasUse && !I->user_empty()) 1533 return false; 1534 } 1535 1536 const Instruction *I0 = Insts.front(); 1537 for (auto *I : Insts) 1538 if (!I->isSameOperationAs(I0)) 1539 return false; 1540 1541 // All instructions in Insts are known to be the same opcode. If they have a 1542 // use, check that the only user is a PHI or in the same block as the 1543 // instruction, because if a user is in the same block as an instruction we're 1544 // contemplating sinking, it must already be determined to be sinkable. 1545 if (HasUse) { 1546 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1547 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1548 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1549 auto *U = cast<Instruction>(*I->user_begin()); 1550 return (PNUse && 1551 PNUse->getParent() == Succ && 1552 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1553 U->getParent() == I->getParent(); 1554 })) 1555 return false; 1556 } 1557 1558 // Because SROA can't handle speculating stores of selects, try not to sink 1559 // loads, stores or lifetime markers of allocas when we'd have to create a 1560 // PHI for the address operand. Also, because it is likely that loads or 1561 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1562 // them. 1563 // This can cause code churn which can have unintended consequences down 1564 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1565 // FIXME: This is a workaround for a deficiency in SROA - see 1566 // https://llvm.org/bugs/show_bug.cgi?id=30188 1567 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1568 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1569 })) 1570 return false; 1571 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1572 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1573 })) 1574 return false; 1575 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1576 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1577 })) 1578 return false; 1579 1580 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1581 Value *Op = I0->getOperand(OI); 1582 if (Op->getType()->isTokenTy()) 1583 // Don't touch any operand of token type. 1584 return false; 1585 1586 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1587 assert(I->getNumOperands() == I0->getNumOperands()); 1588 return I->getOperand(OI) == I0->getOperand(OI); 1589 }; 1590 if (!all_of(Insts, SameAsI0)) { 1591 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1592 !canReplaceOperandWithVariable(I0, OI)) 1593 // We can't create a PHI from this GEP. 1594 return false; 1595 // Don't create indirect calls! The called value is the final operand. 1596 if (isa<CallBase>(I0) && OI == OE - 1) { 1597 // FIXME: if the call was *already* indirect, we should do this. 1598 return false; 1599 } 1600 for (auto *I : Insts) 1601 PHIOperands[I].push_back(I->getOperand(OI)); 1602 } 1603 } 1604 return true; 1605 } 1606 1607 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1608 // instruction of every block in Blocks to their common successor, commoning 1609 // into one instruction. 1610 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1611 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1612 1613 // canSinkLastInstruction returning true guarantees that every block has at 1614 // least one non-terminator instruction. 1615 SmallVector<Instruction*,4> Insts; 1616 for (auto *BB : Blocks) { 1617 Instruction *I = BB->getTerminator(); 1618 do { 1619 I = I->getPrevNode(); 1620 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1621 if (!isa<DbgInfoIntrinsic>(I)) 1622 Insts.push_back(I); 1623 } 1624 1625 // The only checking we need to do now is that all users of all instructions 1626 // are the same PHI node. canSinkLastInstruction should have checked this but 1627 // it is slightly over-aggressive - it gets confused by commutative instructions 1628 // so double-check it here. 1629 Instruction *I0 = Insts.front(); 1630 if (!I0->user_empty()) { 1631 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1632 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1633 auto *U = cast<Instruction>(*I->user_begin()); 1634 return U == PNUse; 1635 })) 1636 return false; 1637 } 1638 1639 // We don't need to do any more checking here; canSinkLastInstruction should 1640 // have done it all for us. 1641 SmallVector<Value*, 4> NewOperands; 1642 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1643 // This check is different to that in canSinkLastInstruction. There, we 1644 // cared about the global view once simplifycfg (and instcombine) have 1645 // completed - it takes into account PHIs that become trivially 1646 // simplifiable. However here we need a more local view; if an operand 1647 // differs we create a PHI and rely on instcombine to clean up the very 1648 // small mess we may make. 1649 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1650 return I->getOperand(O) != I0->getOperand(O); 1651 }); 1652 if (!NeedPHI) { 1653 NewOperands.push_back(I0->getOperand(O)); 1654 continue; 1655 } 1656 1657 // Create a new PHI in the successor block and populate it. 1658 auto *Op = I0->getOperand(O); 1659 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1660 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1661 Op->getName() + ".sink", &BBEnd->front()); 1662 for (auto *I : Insts) 1663 PN->addIncoming(I->getOperand(O), I->getParent()); 1664 NewOperands.push_back(PN); 1665 } 1666 1667 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1668 // and move it to the start of the successor block. 1669 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1670 I0->getOperandUse(O).set(NewOperands[O]); 1671 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1672 1673 // Update metadata and IR flags, and merge debug locations. 1674 for (auto *I : Insts) 1675 if (I != I0) { 1676 // The debug location for the "common" instruction is the merged locations 1677 // of all the commoned instructions. We start with the original location 1678 // of the "common" instruction and iteratively merge each location in the 1679 // loop below. 1680 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1681 // However, as N-way merge for CallInst is rare, so we use simplified API 1682 // instead of using complex API for N-way merge. 1683 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1684 combineMetadataForCSE(I0, I, true); 1685 I0->andIRFlags(I); 1686 } 1687 1688 if (!I0->user_empty()) { 1689 // canSinkLastInstruction checked that all instructions were used by 1690 // one and only one PHI node. Find that now, RAUW it to our common 1691 // instruction and nuke it. 1692 auto *PN = cast<PHINode>(*I0->user_begin()); 1693 PN->replaceAllUsesWith(I0); 1694 PN->eraseFromParent(); 1695 } 1696 1697 // Finally nuke all instructions apart from the common instruction. 1698 for (auto *I : Insts) 1699 if (I != I0) 1700 I->eraseFromParent(); 1701 1702 return true; 1703 } 1704 1705 namespace { 1706 1707 // LockstepReverseIterator - Iterates through instructions 1708 // in a set of blocks in reverse order from the first non-terminator. 1709 // For example (assume all blocks have size n): 1710 // LockstepReverseIterator I([B1, B2, B3]); 1711 // *I-- = [B1[n], B2[n], B3[n]]; 1712 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1713 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1714 // ... 1715 class LockstepReverseIterator { 1716 ArrayRef<BasicBlock*> Blocks; 1717 SmallVector<Instruction*,4> Insts; 1718 bool Fail; 1719 1720 public: 1721 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1722 reset(); 1723 } 1724 1725 void reset() { 1726 Fail = false; 1727 Insts.clear(); 1728 for (auto *BB : Blocks) { 1729 Instruction *Inst = BB->getTerminator(); 1730 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1731 Inst = Inst->getPrevNode(); 1732 if (!Inst) { 1733 // Block wasn't big enough. 1734 Fail = true; 1735 return; 1736 } 1737 Insts.push_back(Inst); 1738 } 1739 } 1740 1741 bool isValid() const { 1742 return !Fail; 1743 } 1744 1745 void operator--() { 1746 if (Fail) 1747 return; 1748 for (auto *&Inst : Insts) { 1749 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1750 Inst = Inst->getPrevNode(); 1751 // Already at beginning of block. 1752 if (!Inst) { 1753 Fail = true; 1754 return; 1755 } 1756 } 1757 } 1758 1759 ArrayRef<Instruction*> operator * () const { 1760 return Insts; 1761 } 1762 }; 1763 1764 } // end anonymous namespace 1765 1766 /// Check whether BB's predecessors end with unconditional branches. If it is 1767 /// true, sink any common code from the predecessors to BB. 1768 /// We also allow one predecessor to end with conditional branch (but no more 1769 /// than one). 1770 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1771 // We support two situations: 1772 // (1) all incoming arcs are unconditional 1773 // (2) one incoming arc is conditional 1774 // 1775 // (2) is very common in switch defaults and 1776 // else-if patterns; 1777 // 1778 // if (a) f(1); 1779 // else if (b) f(2); 1780 // 1781 // produces: 1782 // 1783 // [if] 1784 // / \ 1785 // [f(1)] [if] 1786 // | | \ 1787 // | | | 1788 // | [f(2)]| 1789 // \ | / 1790 // [ end ] 1791 // 1792 // [end] has two unconditional predecessor arcs and one conditional. The 1793 // conditional refers to the implicit empty 'else' arc. This conditional 1794 // arc can also be caused by an empty default block in a switch. 1795 // 1796 // In this case, we attempt to sink code from all *unconditional* arcs. 1797 // If we can sink instructions from these arcs (determined during the scan 1798 // phase below) we insert a common successor for all unconditional arcs and 1799 // connect that to [end], to enable sinking: 1800 // 1801 // [if] 1802 // / \ 1803 // [x(1)] [if] 1804 // | | \ 1805 // | | \ 1806 // | [x(2)] | 1807 // \ / | 1808 // [sink.split] | 1809 // \ / 1810 // [ end ] 1811 // 1812 SmallVector<BasicBlock*,4> UnconditionalPreds; 1813 Instruction *Cond = nullptr; 1814 for (auto *B : predecessors(BB)) { 1815 auto *T = B->getTerminator(); 1816 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1817 UnconditionalPreds.push_back(B); 1818 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1819 Cond = T; 1820 else 1821 return false; 1822 } 1823 if (UnconditionalPreds.size() < 2) 1824 return false; 1825 1826 // We take a two-step approach to tail sinking. First we scan from the end of 1827 // each block upwards in lockstep. If the n'th instruction from the end of each 1828 // block can be sunk, those instructions are added to ValuesToSink and we 1829 // carry on. If we can sink an instruction but need to PHI-merge some operands 1830 // (because they're not identical in each instruction) we add these to 1831 // PHIOperands. 1832 unsigned ScanIdx = 0; 1833 SmallPtrSet<Value*,4> InstructionsToSink; 1834 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1835 LockstepReverseIterator LRI(UnconditionalPreds); 1836 while (LRI.isValid() && 1837 canSinkInstructions(*LRI, PHIOperands)) { 1838 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1839 << "\n"); 1840 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1841 ++ScanIdx; 1842 --LRI; 1843 } 1844 1845 // If no instructions can be sunk, early-return. 1846 if (ScanIdx == 0) 1847 return false; 1848 1849 bool Changed = false; 1850 1851 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1852 unsigned NumPHIdValues = 0; 1853 for (auto *I : *LRI) 1854 for (auto *V : PHIOperands[I]) 1855 if (InstructionsToSink.count(V) == 0) 1856 ++NumPHIdValues; 1857 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1858 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1859 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1860 NumPHIInsts++; 1861 1862 return NumPHIInsts <= 1; 1863 }; 1864 1865 if (Cond) { 1866 // Check if we would actually sink anything first! This mutates the CFG and 1867 // adds an extra block. The goal in doing this is to allow instructions that 1868 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1869 // (such as trunc, add) can be sunk and predicated already. So we check that 1870 // we're going to sink at least one non-speculatable instruction. 1871 LRI.reset(); 1872 unsigned Idx = 0; 1873 bool Profitable = false; 1874 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1875 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1876 Profitable = true; 1877 break; 1878 } 1879 --LRI; 1880 ++Idx; 1881 } 1882 if (!Profitable) 1883 return false; 1884 1885 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1886 // We have a conditional edge and we're going to sink some instructions. 1887 // Insert a new block postdominating all blocks we're going to sink from. 1888 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1889 // Edges couldn't be split. 1890 return false; 1891 Changed = true; 1892 } 1893 1894 // Now that we've analyzed all potential sinking candidates, perform the 1895 // actual sink. We iteratively sink the last non-terminator of the source 1896 // blocks into their common successor unless doing so would require too 1897 // many PHI instructions to be generated (currently only one PHI is allowed 1898 // per sunk instruction). 1899 // 1900 // We can use InstructionsToSink to discount values needing PHI-merging that will 1901 // actually be sunk in a later iteration. This allows us to be more 1902 // aggressive in what we sink. This does allow a false positive where we 1903 // sink presuming a later value will also be sunk, but stop half way through 1904 // and never actually sink it which means we produce more PHIs than intended. 1905 // This is unlikely in practice though. 1906 unsigned SinkIdx = 0; 1907 for (; SinkIdx != ScanIdx; ++SinkIdx) { 1908 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1909 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1910 << "\n"); 1911 1912 // Because we've sunk every instruction in turn, the current instruction to 1913 // sink is always at index 0. 1914 LRI.reset(); 1915 if (!ProfitableToSinkInstruction(LRI)) { 1916 // Too many PHIs would be created. 1917 LLVM_DEBUG( 1918 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1919 break; 1920 } 1921 1922 if (!sinkLastInstruction(UnconditionalPreds)) { 1923 LLVM_DEBUG( 1924 dbgs() 1925 << "SINK: stopping here, failed to actually sink instruction!\n"); 1926 break; 1927 } 1928 1929 NumSinkCommonInstrs++; 1930 Changed = true; 1931 } 1932 if (SinkIdx != 0) 1933 ++NumSinkCommonCode; 1934 return Changed; 1935 } 1936 1937 /// Determine if we can hoist sink a sole store instruction out of a 1938 /// conditional block. 1939 /// 1940 /// We are looking for code like the following: 1941 /// BrBB: 1942 /// store i32 %add, i32* %arrayidx2 1943 /// ... // No other stores or function calls (we could be calling a memory 1944 /// ... // function). 1945 /// %cmp = icmp ult %x, %y 1946 /// br i1 %cmp, label %EndBB, label %ThenBB 1947 /// ThenBB: 1948 /// store i32 %add5, i32* %arrayidx2 1949 /// br label EndBB 1950 /// EndBB: 1951 /// ... 1952 /// We are going to transform this into: 1953 /// BrBB: 1954 /// store i32 %add, i32* %arrayidx2 1955 /// ... // 1956 /// %cmp = icmp ult %x, %y 1957 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1958 /// store i32 %add.add5, i32* %arrayidx2 1959 /// ... 1960 /// 1961 /// \return The pointer to the value of the previous store if the store can be 1962 /// hoisted into the predecessor block. 0 otherwise. 1963 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1964 BasicBlock *StoreBB, BasicBlock *EndBB) { 1965 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1966 if (!StoreToHoist) 1967 return nullptr; 1968 1969 // Volatile or atomic. 1970 if (!StoreToHoist->isSimple()) 1971 return nullptr; 1972 1973 Value *StorePtr = StoreToHoist->getPointerOperand(); 1974 1975 // Look for a store to the same pointer in BrBB. 1976 unsigned MaxNumInstToLookAt = 9; 1977 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1978 if (!MaxNumInstToLookAt) 1979 break; 1980 --MaxNumInstToLookAt; 1981 1982 // Could be calling an instruction that affects memory like free(). 1983 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1984 return nullptr; 1985 1986 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1987 // Found the previous store make sure it stores to the same location. 1988 if (SI->getPointerOperand() == StorePtr) 1989 // Found the previous store, return its value operand. 1990 return SI->getValueOperand(); 1991 return nullptr; // Unknown store. 1992 } 1993 } 1994 1995 return nullptr; 1996 } 1997 1998 /// Speculate a conditional basic block flattening the CFG. 1999 /// 2000 /// Note that this is a very risky transform currently. Speculating 2001 /// instructions like this is most often not desirable. Instead, there is an MI 2002 /// pass which can do it with full awareness of the resource constraints. 2003 /// However, some cases are "obvious" and we should do directly. An example of 2004 /// this is speculating a single, reasonably cheap instruction. 2005 /// 2006 /// There is only one distinct advantage to flattening the CFG at the IR level: 2007 /// it makes very common but simplistic optimizations such as are common in 2008 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2009 /// modeling their effects with easier to reason about SSA value graphs. 2010 /// 2011 /// 2012 /// An illustration of this transform is turning this IR: 2013 /// \code 2014 /// BB: 2015 /// %cmp = icmp ult %x, %y 2016 /// br i1 %cmp, label %EndBB, label %ThenBB 2017 /// ThenBB: 2018 /// %sub = sub %x, %y 2019 /// br label BB2 2020 /// EndBB: 2021 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2022 /// ... 2023 /// \endcode 2024 /// 2025 /// Into this IR: 2026 /// \code 2027 /// BB: 2028 /// %cmp = icmp ult %x, %y 2029 /// %sub = sub %x, %y 2030 /// %cond = select i1 %cmp, 0, %sub 2031 /// ... 2032 /// \endcode 2033 /// 2034 /// \returns true if the conditional block is removed. 2035 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2036 const TargetTransformInfo &TTI) { 2037 // Be conservative for now. FP select instruction can often be expensive. 2038 Value *BrCond = BI->getCondition(); 2039 if (isa<FCmpInst>(BrCond)) 2040 return false; 2041 2042 BasicBlock *BB = BI->getParent(); 2043 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2044 2045 // If ThenBB is actually on the false edge of the conditional branch, remember 2046 // to swap the select operands later. 2047 bool Invert = false; 2048 if (ThenBB != BI->getSuccessor(0)) { 2049 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2050 Invert = true; 2051 } 2052 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2053 2054 // Keep a count of how many times instructions are used within ThenBB when 2055 // they are candidates for sinking into ThenBB. Specifically: 2056 // - They are defined in BB, and 2057 // - They have no side effects, and 2058 // - All of their uses are in ThenBB. 2059 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2060 2061 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2062 2063 unsigned SpeculatedInstructions = 0; 2064 Value *SpeculatedStoreValue = nullptr; 2065 StoreInst *SpeculatedStore = nullptr; 2066 for (BasicBlock::iterator BBI = ThenBB->begin(), 2067 BBE = std::prev(ThenBB->end()); 2068 BBI != BBE; ++BBI) { 2069 Instruction *I = &*BBI; 2070 // Skip debug info. 2071 if (isa<DbgInfoIntrinsic>(I)) { 2072 SpeculatedDbgIntrinsics.push_back(I); 2073 continue; 2074 } 2075 2076 // Only speculatively execute a single instruction (not counting the 2077 // terminator) for now. 2078 ++SpeculatedInstructions; 2079 if (SpeculatedInstructions > 1) 2080 return false; 2081 2082 // Don't hoist the instruction if it's unsafe or expensive. 2083 if (!isSafeToSpeculativelyExecute(I) && 2084 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2085 I, BB, ThenBB, EndBB)))) 2086 return false; 2087 if (!SpeculatedStoreValue && 2088 ComputeSpeculationCost(I, TTI) > 2089 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2090 return false; 2091 2092 // Store the store speculation candidate. 2093 if (SpeculatedStoreValue) 2094 SpeculatedStore = cast<StoreInst>(I); 2095 2096 // Do not hoist the instruction if any of its operands are defined but not 2097 // used in BB. The transformation will prevent the operand from 2098 // being sunk into the use block. 2099 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2100 Instruction *OpI = dyn_cast<Instruction>(*i); 2101 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2102 continue; // Not a candidate for sinking. 2103 2104 ++SinkCandidateUseCounts[OpI]; 2105 } 2106 } 2107 2108 // Consider any sink candidates which are only used in ThenBB as costs for 2109 // speculation. Note, while we iterate over a DenseMap here, we are summing 2110 // and so iteration order isn't significant. 2111 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2112 I = SinkCandidateUseCounts.begin(), 2113 E = SinkCandidateUseCounts.end(); 2114 I != E; ++I) 2115 if (I->first->hasNUses(I->second)) { 2116 ++SpeculatedInstructions; 2117 if (SpeculatedInstructions > 1) 2118 return false; 2119 } 2120 2121 // Check that the PHI nodes can be converted to selects. 2122 bool HaveRewritablePHIs = false; 2123 for (PHINode &PN : EndBB->phis()) { 2124 Value *OrigV = PN.getIncomingValueForBlock(BB); 2125 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2126 2127 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2128 // Skip PHIs which are trivial. 2129 if (ThenV == OrigV) 2130 continue; 2131 2132 // Don't convert to selects if we could remove undefined behavior instead. 2133 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2134 passingValueIsAlwaysUndefined(ThenV, &PN)) 2135 return false; 2136 2137 HaveRewritablePHIs = true; 2138 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2139 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2140 if (!OrigCE && !ThenCE) 2141 continue; // Known safe and cheap. 2142 2143 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2144 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2145 return false; 2146 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2147 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2148 unsigned MaxCost = 2149 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2150 if (OrigCost + ThenCost > MaxCost) 2151 return false; 2152 2153 // Account for the cost of an unfolded ConstantExpr which could end up 2154 // getting expanded into Instructions. 2155 // FIXME: This doesn't account for how many operations are combined in the 2156 // constant expression. 2157 ++SpeculatedInstructions; 2158 if (SpeculatedInstructions > 1) 2159 return false; 2160 } 2161 2162 // If there are no PHIs to process, bail early. This helps ensure idempotence 2163 // as well. 2164 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2165 return false; 2166 2167 // If we get here, we can hoist the instruction and if-convert. 2168 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2169 2170 // Insert a select of the value of the speculated store. 2171 if (SpeculatedStoreValue) { 2172 IRBuilder<NoFolder> Builder(BI); 2173 Value *TrueV = SpeculatedStore->getValueOperand(); 2174 Value *FalseV = SpeculatedStoreValue; 2175 if (Invert) 2176 std::swap(TrueV, FalseV); 2177 Value *S = Builder.CreateSelect( 2178 BrCond, TrueV, FalseV, "spec.store.select", BI); 2179 SpeculatedStore->setOperand(0, S); 2180 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2181 SpeculatedStore->getDebugLoc()); 2182 } 2183 2184 // Metadata can be dependent on the condition we are hoisting above. 2185 // Conservatively strip all metadata on the instruction. Drop the debug loc 2186 // to avoid making it appear as if the condition is a constant, which would 2187 // be misleading while debugging. 2188 for (auto &I : *ThenBB) { 2189 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2190 I.setDebugLoc(DebugLoc()); 2191 I.dropUnknownNonDebugMetadata(); 2192 } 2193 2194 // Hoist the instructions. 2195 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2196 ThenBB->begin(), std::prev(ThenBB->end())); 2197 2198 // Insert selects and rewrite the PHI operands. 2199 IRBuilder<NoFolder> Builder(BI); 2200 for (PHINode &PN : EndBB->phis()) { 2201 unsigned OrigI = PN.getBasicBlockIndex(BB); 2202 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2203 Value *OrigV = PN.getIncomingValue(OrigI); 2204 Value *ThenV = PN.getIncomingValue(ThenI); 2205 2206 // Skip PHIs which are trivial. 2207 if (OrigV == ThenV) 2208 continue; 2209 2210 // Create a select whose true value is the speculatively executed value and 2211 // false value is the pre-existing value. Swap them if the branch 2212 // destinations were inverted. 2213 Value *TrueV = ThenV, *FalseV = OrigV; 2214 if (Invert) 2215 std::swap(TrueV, FalseV); 2216 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2217 PN.setIncomingValue(OrigI, V); 2218 PN.setIncomingValue(ThenI, V); 2219 } 2220 2221 // Remove speculated dbg intrinsics. 2222 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2223 // dbg value for the different flows and inserting it after the select. 2224 for (Instruction *I : SpeculatedDbgIntrinsics) 2225 I->eraseFromParent(); 2226 2227 ++NumSpeculations; 2228 return true; 2229 } 2230 2231 /// Return true if we can thread a branch across this block. 2232 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2233 int Size = 0; 2234 2235 for (Instruction &I : BB->instructionsWithoutDebug()) { 2236 if (Size > MaxSmallBlockSize) 2237 return false; // Don't clone large BB's. 2238 2239 // Can't fold blocks that contain noduplicate or convergent calls. 2240 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2241 if (CI->cannotDuplicate() || CI->isConvergent()) 2242 return false; 2243 2244 // We will delete Phis while threading, so Phis should not be accounted in 2245 // block's size 2246 if (!isa<PHINode>(I)) 2247 ++Size; 2248 2249 // We can only support instructions that do not define values that are 2250 // live outside of the current basic block. 2251 for (User *U : I.users()) { 2252 Instruction *UI = cast<Instruction>(U); 2253 if (UI->getParent() != BB || isa<PHINode>(UI)) 2254 return false; 2255 } 2256 2257 // Looks ok, continue checking. 2258 } 2259 2260 return true; 2261 } 2262 2263 /// If we have a conditional branch on a PHI node value that is defined in the 2264 /// same block as the branch and if any PHI entries are constants, thread edges 2265 /// corresponding to that entry to be branches to their ultimate destination. 2266 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2267 AssumptionCache *AC) { 2268 BasicBlock *BB = BI->getParent(); 2269 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2270 // NOTE: we currently cannot transform this case if the PHI node is used 2271 // outside of the block. 2272 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2273 return false; 2274 2275 // Degenerate case of a single entry PHI. 2276 if (PN->getNumIncomingValues() == 1) { 2277 FoldSingleEntryPHINodes(PN->getParent()); 2278 return true; 2279 } 2280 2281 // Now we know that this block has multiple preds and two succs. 2282 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2283 return false; 2284 2285 // Okay, this is a simple enough basic block. See if any phi values are 2286 // constants. 2287 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2288 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2289 if (!CB || !CB->getType()->isIntegerTy(1)) 2290 continue; 2291 2292 // Okay, we now know that all edges from PredBB should be revectored to 2293 // branch to RealDest. 2294 BasicBlock *PredBB = PN->getIncomingBlock(i); 2295 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2296 2297 if (RealDest == BB) 2298 continue; // Skip self loops. 2299 // Skip if the predecessor's terminator is an indirect branch. 2300 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2301 continue; 2302 2303 // The dest block might have PHI nodes, other predecessors and other 2304 // difficult cases. Instead of being smart about this, just insert a new 2305 // block that jumps to the destination block, effectively splitting 2306 // the edge we are about to create. 2307 BasicBlock *EdgeBB = 2308 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2309 RealDest->getParent(), RealDest); 2310 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2311 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2312 2313 // Update PHI nodes. 2314 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2315 2316 // BB may have instructions that are being threaded over. Clone these 2317 // instructions into EdgeBB. We know that there will be no uses of the 2318 // cloned instructions outside of EdgeBB. 2319 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2320 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2321 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2322 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2323 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2324 continue; 2325 } 2326 // Clone the instruction. 2327 Instruction *N = BBI->clone(); 2328 if (BBI->hasName()) 2329 N->setName(BBI->getName() + ".c"); 2330 2331 // Update operands due to translation. 2332 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2333 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2334 if (PI != TranslateMap.end()) 2335 *i = PI->second; 2336 } 2337 2338 // Check for trivial simplification. 2339 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2340 if (!BBI->use_empty()) 2341 TranslateMap[&*BBI] = V; 2342 if (!N->mayHaveSideEffects()) { 2343 N->deleteValue(); // Instruction folded away, don't need actual inst 2344 N = nullptr; 2345 } 2346 } else { 2347 if (!BBI->use_empty()) 2348 TranslateMap[&*BBI] = N; 2349 } 2350 if (N) { 2351 // Insert the new instruction into its new home. 2352 EdgeBB->getInstList().insert(InsertPt, N); 2353 2354 // Register the new instruction with the assumption cache if necessary. 2355 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2356 AC->registerAssumption(cast<IntrinsicInst>(N)); 2357 } 2358 } 2359 2360 // Loop over all of the edges from PredBB to BB, changing them to branch 2361 // to EdgeBB instead. 2362 Instruction *PredBBTI = PredBB->getTerminator(); 2363 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2364 if (PredBBTI->getSuccessor(i) == BB) { 2365 BB->removePredecessor(PredBB); 2366 PredBBTI->setSuccessor(i, EdgeBB); 2367 } 2368 2369 // Recurse, simplifying any other constants. 2370 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2371 } 2372 2373 return false; 2374 } 2375 2376 /// Given a BB that starts with the specified two-entry PHI node, 2377 /// see if we can eliminate it. 2378 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2379 const DataLayout &DL) { 2380 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2381 // statement", which has a very simple dominance structure. Basically, we 2382 // are trying to find the condition that is being branched on, which 2383 // subsequently causes this merge to happen. We really want control 2384 // dependence information for this check, but simplifycfg can't keep it up 2385 // to date, and this catches most of the cases we care about anyway. 2386 BasicBlock *BB = PN->getParent(); 2387 2388 BasicBlock *IfTrue, *IfFalse; 2389 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2390 if (!IfCond || 2391 // Don't bother if the branch will be constant folded trivially. 2392 isa<ConstantInt>(IfCond)) 2393 return false; 2394 2395 // Okay, we found that we can merge this two-entry phi node into a select. 2396 // Doing so would require us to fold *all* two entry phi nodes in this block. 2397 // At some point this becomes non-profitable (particularly if the target 2398 // doesn't support cmov's). Only do this transformation if there are two or 2399 // fewer PHI nodes in this block. 2400 unsigned NumPhis = 0; 2401 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2402 if (NumPhis > 2) 2403 return false; 2404 2405 // Loop over the PHI's seeing if we can promote them all to select 2406 // instructions. While we are at it, keep track of the instructions 2407 // that need to be moved to the dominating block. 2408 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2409 int BudgetRemaining = 2410 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2411 2412 bool Changed = false; 2413 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2414 PHINode *PN = cast<PHINode>(II++); 2415 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2416 PN->replaceAllUsesWith(V); 2417 PN->eraseFromParent(); 2418 Changed = true; 2419 continue; 2420 } 2421 2422 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2423 BudgetRemaining, TTI) || 2424 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2425 BudgetRemaining, TTI)) 2426 return Changed; 2427 } 2428 2429 // If we folded the first phi, PN dangles at this point. Refresh it. If 2430 // we ran out of PHIs then we simplified them all. 2431 PN = dyn_cast<PHINode>(BB->begin()); 2432 if (!PN) 2433 return true; 2434 2435 // Return true if at least one of these is a 'not', and another is either 2436 // a 'not' too, or a constant. 2437 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2438 if (!match(V0, m_Not(m_Value()))) 2439 std::swap(V0, V1); 2440 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2441 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2442 }; 2443 2444 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2445 // of the incoming values is an 'not' and another one is freely invertible. 2446 // These can often be turned into switches and other things. 2447 if (PN->getType()->isIntegerTy(1) && 2448 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2449 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2450 isa<BinaryOperator>(IfCond)) && 2451 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2452 PN->getIncomingValue(1))) 2453 return Changed; 2454 2455 // If all PHI nodes are promotable, check to make sure that all instructions 2456 // in the predecessor blocks can be promoted as well. If not, we won't be able 2457 // to get rid of the control flow, so it's not worth promoting to select 2458 // instructions. 2459 BasicBlock *DomBlock = nullptr; 2460 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2461 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2462 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2463 IfBlock1 = nullptr; 2464 } else { 2465 DomBlock = *pred_begin(IfBlock1); 2466 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2467 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2468 // This is not an aggressive instruction that we can promote. 2469 // Because of this, we won't be able to get rid of the control flow, so 2470 // the xform is not worth it. 2471 return Changed; 2472 } 2473 } 2474 2475 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2476 IfBlock2 = nullptr; 2477 } else { 2478 DomBlock = *pred_begin(IfBlock2); 2479 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2480 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2481 // This is not an aggressive instruction that we can promote. 2482 // Because of this, we won't be able to get rid of the control flow, so 2483 // the xform is not worth it. 2484 return Changed; 2485 } 2486 } 2487 assert(DomBlock && "Failed to find root DomBlock"); 2488 2489 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2490 << " T: " << IfTrue->getName() 2491 << " F: " << IfFalse->getName() << "\n"); 2492 2493 // If we can still promote the PHI nodes after this gauntlet of tests, 2494 // do all of the PHI's now. 2495 Instruction *InsertPt = DomBlock->getTerminator(); 2496 IRBuilder<NoFolder> Builder(InsertPt); 2497 2498 // Move all 'aggressive' instructions, which are defined in the 2499 // conditional parts of the if's up to the dominating block. 2500 if (IfBlock1) 2501 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2502 if (IfBlock2) 2503 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2504 2505 // Propagate fast-math-flags from phi nodes to replacement selects. 2506 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2507 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2508 if (isa<FPMathOperator>(PN)) 2509 Builder.setFastMathFlags(PN->getFastMathFlags()); 2510 2511 // Change the PHI node into a select instruction. 2512 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2513 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2514 2515 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2516 PN->replaceAllUsesWith(Sel); 2517 Sel->takeName(PN); 2518 PN->eraseFromParent(); 2519 } 2520 2521 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2522 // has been flattened. Change DomBlock to jump directly to our new block to 2523 // avoid other simplifycfg's kicking in on the diamond. 2524 Instruction *OldTI = DomBlock->getTerminator(); 2525 Builder.SetInsertPoint(OldTI); 2526 Builder.CreateBr(BB); 2527 OldTI->eraseFromParent(); 2528 return true; 2529 } 2530 2531 /// If we found a conditional branch that goes to two returning blocks, 2532 /// try to merge them together into one return, 2533 /// introducing a select if the return values disagree. 2534 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2535 IRBuilder<> &Builder) { 2536 assert(BI->isConditional() && "Must be a conditional branch"); 2537 BasicBlock *TrueSucc = BI->getSuccessor(0); 2538 BasicBlock *FalseSucc = BI->getSuccessor(1); 2539 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2540 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2541 2542 // Check to ensure both blocks are empty (just a return) or optionally empty 2543 // with PHI nodes. If there are other instructions, merging would cause extra 2544 // computation on one path or the other. 2545 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2546 return false; 2547 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2548 return false; 2549 2550 Builder.SetInsertPoint(BI); 2551 // Okay, we found a branch that is going to two return nodes. If 2552 // there is no return value for this function, just change the 2553 // branch into a return. 2554 if (FalseRet->getNumOperands() == 0) { 2555 TrueSucc->removePredecessor(BI->getParent()); 2556 FalseSucc->removePredecessor(BI->getParent()); 2557 Builder.CreateRetVoid(); 2558 EraseTerminatorAndDCECond(BI); 2559 return true; 2560 } 2561 2562 // Otherwise, figure out what the true and false return values are 2563 // so we can insert a new select instruction. 2564 Value *TrueValue = TrueRet->getReturnValue(); 2565 Value *FalseValue = FalseRet->getReturnValue(); 2566 2567 // Unwrap any PHI nodes in the return blocks. 2568 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2569 if (TVPN->getParent() == TrueSucc) 2570 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2571 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2572 if (FVPN->getParent() == FalseSucc) 2573 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2574 2575 // In order for this transformation to be safe, we must be able to 2576 // unconditionally execute both operands to the return. This is 2577 // normally the case, but we could have a potentially-trapping 2578 // constant expression that prevents this transformation from being 2579 // safe. 2580 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2581 if (TCV->canTrap()) 2582 return false; 2583 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2584 if (FCV->canTrap()) 2585 return false; 2586 2587 // Okay, we collected all the mapped values and checked them for sanity, and 2588 // defined to really do this transformation. First, update the CFG. 2589 TrueSucc->removePredecessor(BI->getParent()); 2590 FalseSucc->removePredecessor(BI->getParent()); 2591 2592 // Insert select instructions where needed. 2593 Value *BrCond = BI->getCondition(); 2594 if (TrueValue) { 2595 // Insert a select if the results differ. 2596 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2597 } else if (isa<UndefValue>(TrueValue)) { 2598 TrueValue = FalseValue; 2599 } else { 2600 TrueValue = 2601 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2602 } 2603 } 2604 2605 Value *RI = 2606 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2607 2608 (void)RI; 2609 2610 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2611 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2612 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2613 2614 EraseTerminatorAndDCECond(BI); 2615 2616 return true; 2617 } 2618 2619 /// Return true if the given instruction is available 2620 /// in its predecessor block. If yes, the instruction will be removed. 2621 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2622 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2623 return false; 2624 for (Instruction &I : *PB) { 2625 Instruction *PBI = &I; 2626 // Check whether Inst and PBI generate the same value. 2627 if (Inst->isIdenticalTo(PBI)) { 2628 Inst->replaceAllUsesWith(PBI); 2629 Inst->eraseFromParent(); 2630 return true; 2631 } 2632 } 2633 return false; 2634 } 2635 2636 /// Return true if either PBI or BI has branch weight available, and store 2637 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2638 /// not have branch weight, use 1:1 as its weight. 2639 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2640 uint64_t &PredTrueWeight, 2641 uint64_t &PredFalseWeight, 2642 uint64_t &SuccTrueWeight, 2643 uint64_t &SuccFalseWeight) { 2644 bool PredHasWeights = 2645 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2646 bool SuccHasWeights = 2647 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2648 if (PredHasWeights || SuccHasWeights) { 2649 if (!PredHasWeights) 2650 PredTrueWeight = PredFalseWeight = 1; 2651 if (!SuccHasWeights) 2652 SuccTrueWeight = SuccFalseWeight = 1; 2653 return true; 2654 } else { 2655 return false; 2656 } 2657 } 2658 2659 /// If this basic block is simple enough, and if a predecessor branches to us 2660 /// and one of our successors, fold the block into the predecessor and use 2661 /// logical operations to pick the right destination. 2662 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2663 unsigned BonusInstThreshold) { 2664 BasicBlock *BB = BI->getParent(); 2665 2666 const unsigned PredCount = pred_size(BB); 2667 2668 bool Changed = false; 2669 2670 Instruction *Cond = nullptr; 2671 if (BI->isConditional()) 2672 Cond = dyn_cast<Instruction>(BI->getCondition()); 2673 else { 2674 // For unconditional branch, check for a simple CFG pattern, where 2675 // BB has a single predecessor and BB's successor is also its predecessor's 2676 // successor. If such pattern exists, check for CSE between BB and its 2677 // predecessor. 2678 if (BasicBlock *PB = BB->getSinglePredecessor()) 2679 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2680 if (PBI->isConditional() && 2681 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2682 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2683 for (auto I = BB->instructionsWithoutDebug().begin(), 2684 E = BB->instructionsWithoutDebug().end(); 2685 I != E;) { 2686 Instruction *Curr = &*I++; 2687 if (isa<CmpInst>(Curr)) { 2688 Cond = Curr; 2689 break; 2690 } 2691 // Quit if we can't remove this instruction. 2692 if (!tryCSEWithPredecessor(Curr, PB)) 2693 return Changed; 2694 Changed = true; 2695 } 2696 } 2697 2698 if (!Cond) 2699 return Changed; 2700 } 2701 2702 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2703 Cond->getParent() != BB || !Cond->hasOneUse()) 2704 return Changed; 2705 2706 // Make sure the instruction after the condition is the cond branch. 2707 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2708 2709 // Ignore dbg intrinsics. 2710 while (isa<DbgInfoIntrinsic>(CondIt)) 2711 ++CondIt; 2712 2713 if (&*CondIt != BI) 2714 return Changed; 2715 2716 // Only allow this transformation if computing the condition doesn't involve 2717 // too many instructions and these involved instructions can be executed 2718 // unconditionally. We denote all involved instructions except the condition 2719 // as "bonus instructions", and only allow this transformation when the 2720 // number of the bonus instructions we'll need to create when cloning into 2721 // each predecessor does not exceed a certain threshold. 2722 unsigned NumBonusInsts = 0; 2723 for (auto I = BB->begin(); Cond != &*I; ++I) { 2724 // Ignore dbg intrinsics. 2725 if (isa<DbgInfoIntrinsic>(I)) 2726 continue; 2727 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2728 return Changed; 2729 // I has only one use and can be executed unconditionally. 2730 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2731 if (User == nullptr || User->getParent() != BB) 2732 return Changed; 2733 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2734 // to use any other instruction, User must be an instruction between next(I) 2735 // and Cond. 2736 2737 // Account for the cost of duplicating this instruction into each 2738 // predecessor. 2739 NumBonusInsts += PredCount; 2740 // Early exits once we reach the limit. 2741 if (NumBonusInsts > BonusInstThreshold) 2742 return Changed; 2743 } 2744 2745 // Cond is known to be a compare or binary operator. Check to make sure that 2746 // neither operand is a potentially-trapping constant expression. 2747 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2748 if (CE->canTrap()) 2749 return Changed; 2750 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2751 if (CE->canTrap()) 2752 return Changed; 2753 2754 // Finally, don't infinitely unroll conditional loops. 2755 BasicBlock *TrueDest = BI->getSuccessor(0); 2756 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2757 if (TrueDest == BB || FalseDest == BB) 2758 return Changed; 2759 2760 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2761 BasicBlock *PredBlock = *PI; 2762 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2763 2764 // Check that we have two conditional branches. If there is a PHI node in 2765 // the common successor, verify that the same value flows in from both 2766 // blocks. 2767 SmallVector<PHINode *, 4> PHIs; 2768 if (!PBI || PBI->isUnconditional() || 2769 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2770 (!BI->isConditional() && 2771 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2772 continue; 2773 2774 // Determine if the two branches share a common destination. 2775 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2776 bool InvertPredCond = false; 2777 2778 if (BI->isConditional()) { 2779 if (PBI->getSuccessor(0) == TrueDest) { 2780 Opc = Instruction::Or; 2781 } else if (PBI->getSuccessor(1) == FalseDest) { 2782 Opc = Instruction::And; 2783 } else if (PBI->getSuccessor(0) == FalseDest) { 2784 Opc = Instruction::And; 2785 InvertPredCond = true; 2786 } else if (PBI->getSuccessor(1) == TrueDest) { 2787 Opc = Instruction::Or; 2788 InvertPredCond = true; 2789 } else { 2790 continue; 2791 } 2792 } else { 2793 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2794 continue; 2795 } 2796 2797 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2798 Changed = true; 2799 2800 IRBuilder<> Builder(PBI); 2801 2802 // If we need to invert the condition in the pred block to match, do so now. 2803 if (InvertPredCond) { 2804 Value *NewCond = PBI->getCondition(); 2805 2806 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2807 CmpInst *CI = cast<CmpInst>(NewCond); 2808 CI->setPredicate(CI->getInversePredicate()); 2809 } else { 2810 NewCond = 2811 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2812 } 2813 2814 PBI->setCondition(NewCond); 2815 PBI->swapSuccessors(); 2816 } 2817 2818 // If we have bonus instructions, clone them into the predecessor block. 2819 // Note that there may be multiple predecessor blocks, so we cannot move 2820 // bonus instructions to a predecessor block. 2821 ValueToValueMapTy VMap; // maps original values to cloned values 2822 // We already make sure Cond is the last instruction before BI. Therefore, 2823 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2824 // instructions. 2825 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2826 if (isa<DbgInfoIntrinsic>(BonusInst)) 2827 continue; 2828 Instruction *NewBonusInst = BonusInst->clone(); 2829 2830 // When we fold the bonus instructions we want to make sure we 2831 // reset their debug locations in order to avoid stepping on dead 2832 // code caused by folding dead branches. 2833 NewBonusInst->setDebugLoc(DebugLoc()); 2834 2835 RemapInstruction(NewBonusInst, VMap, 2836 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2837 VMap[&*BonusInst] = NewBonusInst; 2838 2839 // If we moved a load, we cannot any longer claim any knowledge about 2840 // its potential value. The previous information might have been valid 2841 // only given the branch precondition. 2842 // For an analogous reason, we must also drop all the metadata whose 2843 // semantics we don't understand. 2844 NewBonusInst->dropUnknownNonDebugMetadata(); 2845 2846 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2847 NewBonusInst->takeName(&*BonusInst); 2848 BonusInst->setName(BonusInst->getName() + ".old"); 2849 } 2850 2851 // Clone Cond into the predecessor basic block, and or/and the 2852 // two conditions together. 2853 Instruction *CondInPred = Cond->clone(); 2854 2855 // Reset the condition debug location to avoid jumping on dead code 2856 // as the result of folding dead branches. 2857 CondInPred->setDebugLoc(DebugLoc()); 2858 2859 RemapInstruction(CondInPred, VMap, 2860 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2861 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2862 CondInPred->takeName(Cond); 2863 Cond->setName(CondInPred->getName() + ".old"); 2864 2865 if (BI->isConditional()) { 2866 Instruction *NewCond = cast<Instruction>( 2867 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2868 PBI->setCondition(NewCond); 2869 2870 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2871 bool HasWeights = 2872 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2873 SuccTrueWeight, SuccFalseWeight); 2874 SmallVector<uint64_t, 8> NewWeights; 2875 2876 if (PBI->getSuccessor(0) == BB) { 2877 if (HasWeights) { 2878 // PBI: br i1 %x, BB, FalseDest 2879 // BI: br i1 %y, TrueDest, FalseDest 2880 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2881 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2882 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2883 // TrueWeight for PBI * FalseWeight for BI. 2884 // We assume that total weights of a BranchInst can fit into 32 bits. 2885 // Therefore, we will not have overflow using 64-bit arithmetic. 2886 NewWeights.push_back(PredFalseWeight * 2887 (SuccFalseWeight + SuccTrueWeight) + 2888 PredTrueWeight * SuccFalseWeight); 2889 } 2890 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU); 2891 PBI->setSuccessor(0, TrueDest); 2892 } 2893 if (PBI->getSuccessor(1) == BB) { 2894 if (HasWeights) { 2895 // PBI: br i1 %x, TrueDest, BB 2896 // BI: br i1 %y, TrueDest, FalseDest 2897 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2898 // FalseWeight for PBI * TrueWeight for BI. 2899 NewWeights.push_back(PredTrueWeight * 2900 (SuccFalseWeight + SuccTrueWeight) + 2901 PredFalseWeight * SuccTrueWeight); 2902 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2903 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2904 } 2905 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU); 2906 PBI->setSuccessor(1, FalseDest); 2907 } 2908 if (NewWeights.size() == 2) { 2909 // Halve the weights if any of them cannot fit in an uint32_t 2910 FitWeights(NewWeights); 2911 2912 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2913 NewWeights.end()); 2914 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2915 } else 2916 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2917 } else { 2918 // Update PHI nodes in the common successors. 2919 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2920 ConstantInt *PBI_C = cast<ConstantInt>( 2921 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2922 assert(PBI_C->getType()->isIntegerTy(1)); 2923 Instruction *MergedCond = nullptr; 2924 if (PBI->getSuccessor(0) == TrueDest) { 2925 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2926 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2927 // is false: !PBI_Cond and BI_Value 2928 Instruction *NotCond = cast<Instruction>( 2929 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2930 MergedCond = cast<Instruction>( 2931 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2932 "and.cond")); 2933 if (PBI_C->isOne()) 2934 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2935 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2936 } else { 2937 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2938 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2939 // is false: PBI_Cond and BI_Value 2940 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2941 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2942 if (PBI_C->isOne()) { 2943 Instruction *NotCond = cast<Instruction>( 2944 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2945 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2946 Instruction::Or, NotCond, MergedCond, "or.cond")); 2947 } 2948 } 2949 // Update PHI Node. 2950 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 2951 } 2952 2953 // PBI is changed to branch to TrueDest below. Remove itself from 2954 // potential phis from all other successors. 2955 if (MSSAU) 2956 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 2957 2958 // Change PBI from Conditional to Unconditional. 2959 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2960 EraseTerminatorAndDCECond(PBI, MSSAU); 2961 PBI = New_PBI; 2962 } 2963 2964 // If BI was a loop latch, it may have had associated loop metadata. 2965 // We need to copy it to the new latch, that is, PBI. 2966 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2967 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2968 2969 // TODO: If BB is reachable from all paths through PredBlock, then we 2970 // could replace PBI's branch probabilities with BI's. 2971 2972 // Copy any debug value intrinsics into the end of PredBlock. 2973 for (Instruction &I : *BB) { 2974 if (isa<DbgInfoIntrinsic>(I)) { 2975 Instruction *NewI = I.clone(); 2976 RemapInstruction(NewI, VMap, 2977 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2978 NewI->insertBefore(PBI); 2979 } 2980 } 2981 2982 return Changed; 2983 } 2984 return Changed; 2985 } 2986 2987 // If there is only one store in BB1 and BB2, return it, otherwise return 2988 // nullptr. 2989 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2990 StoreInst *S = nullptr; 2991 for (auto *BB : {BB1, BB2}) { 2992 if (!BB) 2993 continue; 2994 for (auto &I : *BB) 2995 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2996 if (S) 2997 // Multiple stores seen. 2998 return nullptr; 2999 else 3000 S = SI; 3001 } 3002 } 3003 return S; 3004 } 3005 3006 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3007 Value *AlternativeV = nullptr) { 3008 // PHI is going to be a PHI node that allows the value V that is defined in 3009 // BB to be referenced in BB's only successor. 3010 // 3011 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3012 // doesn't matter to us what the other operand is (it'll never get used). We 3013 // could just create a new PHI with an undef incoming value, but that could 3014 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3015 // other PHI. So here we directly look for some PHI in BB's successor with V 3016 // as an incoming operand. If we find one, we use it, else we create a new 3017 // one. 3018 // 3019 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3020 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3021 // where OtherBB is the single other predecessor of BB's only successor. 3022 PHINode *PHI = nullptr; 3023 BasicBlock *Succ = BB->getSingleSuccessor(); 3024 3025 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3026 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3027 PHI = cast<PHINode>(I); 3028 if (!AlternativeV) 3029 break; 3030 3031 assert(Succ->hasNPredecessors(2)); 3032 auto PredI = pred_begin(Succ); 3033 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3034 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3035 break; 3036 PHI = nullptr; 3037 } 3038 if (PHI) 3039 return PHI; 3040 3041 // If V is not an instruction defined in BB, just return it. 3042 if (!AlternativeV && 3043 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3044 return V; 3045 3046 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3047 PHI->addIncoming(V, BB); 3048 for (BasicBlock *PredBB : predecessors(Succ)) 3049 if (PredBB != BB) 3050 PHI->addIncoming( 3051 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3052 return PHI; 3053 } 3054 3055 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 3056 BasicBlock *QTB, BasicBlock *QFB, 3057 BasicBlock *PostBB, Value *Address, 3058 bool InvertPCond, bool InvertQCond, 3059 const DataLayout &DL, 3060 const TargetTransformInfo &TTI) { 3061 // For every pointer, there must be exactly two stores, one coming from 3062 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3063 // store (to any address) in PTB,PFB or QTB,QFB. 3064 // FIXME: We could relax this restriction with a bit more work and performance 3065 // testing. 3066 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3067 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3068 if (!PStore || !QStore) 3069 return false; 3070 3071 // Now check the stores are compatible. 3072 if (!QStore->isUnordered() || !PStore->isUnordered()) 3073 return false; 3074 3075 // Check that sinking the store won't cause program behavior changes. Sinking 3076 // the store out of the Q blocks won't change any behavior as we're sinking 3077 // from a block to its unconditional successor. But we're moving a store from 3078 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3079 // So we need to check that there are no aliasing loads or stores in 3080 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3081 // operations between PStore and the end of its parent block. 3082 // 3083 // The ideal way to do this is to query AliasAnalysis, but we don't 3084 // preserve AA currently so that is dangerous. Be super safe and just 3085 // check there are no other memory operations at all. 3086 for (auto &I : *QFB->getSinglePredecessor()) 3087 if (I.mayReadOrWriteMemory()) 3088 return false; 3089 for (auto &I : *QFB) 3090 if (&I != QStore && I.mayReadOrWriteMemory()) 3091 return false; 3092 if (QTB) 3093 for (auto &I : *QTB) 3094 if (&I != QStore && I.mayReadOrWriteMemory()) 3095 return false; 3096 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3097 I != E; ++I) 3098 if (&*I != PStore && I->mayReadOrWriteMemory()) 3099 return false; 3100 3101 // If we're not in aggressive mode, we only optimize if we have some 3102 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3103 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3104 if (!BB) 3105 return true; 3106 // Heuristic: if the block can be if-converted/phi-folded and the 3107 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3108 // thread this store. 3109 int BudgetRemaining = 3110 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3111 for (auto &I : BB->instructionsWithoutDebug()) { 3112 // Consider terminator instruction to be free. 3113 if (I.isTerminator()) 3114 continue; 3115 // If this is one the stores that we want to speculate out of this BB, 3116 // then don't count it's cost, consider it to be free. 3117 if (auto *S = dyn_cast<StoreInst>(&I)) 3118 if (llvm::find(FreeStores, S)) 3119 continue; 3120 // Else, we have a white-list of instructions that we are ak speculating. 3121 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3122 return false; // Not in white-list - not worthwhile folding. 3123 // And finally, if this is a non-free instruction that we are okay 3124 // speculating, ensure that we consider the speculation budget. 3125 BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3126 if (BudgetRemaining < 0) 3127 return false; // Eagerly refuse to fold as soon as we're out of budget. 3128 } 3129 assert(BudgetRemaining >= 0 && 3130 "When we run out of budget we will eagerly return from within the " 3131 "per-instruction loop."); 3132 return true; 3133 }; 3134 3135 const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore}; 3136 if (!MergeCondStoresAggressively && 3137 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3138 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3139 return false; 3140 3141 // If PostBB has more than two predecessors, we need to split it so we can 3142 // sink the store. 3143 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3144 // We know that QFB's only successor is PostBB. And QFB has a single 3145 // predecessor. If QTB exists, then its only successor is also PostBB. 3146 // If QTB does not exist, then QFB's only predecessor has a conditional 3147 // branch to QFB and PostBB. 3148 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3149 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3150 "condstore.split"); 3151 if (!NewBB) 3152 return false; 3153 PostBB = NewBB; 3154 } 3155 3156 // OK, we're going to sink the stores to PostBB. The store has to be 3157 // conditional though, so first create the predicate. 3158 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3159 ->getCondition(); 3160 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3161 ->getCondition(); 3162 3163 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3164 PStore->getParent()); 3165 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3166 QStore->getParent(), PPHI); 3167 3168 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3169 3170 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3171 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3172 3173 if (InvertPCond) 3174 PPred = QB.CreateNot(PPred); 3175 if (InvertQCond) 3176 QPred = QB.CreateNot(QPred); 3177 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3178 3179 auto *T = 3180 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3181 QB.SetInsertPoint(T); 3182 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3183 AAMDNodes AAMD; 3184 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3185 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3186 SI->setAAMetadata(AAMD); 3187 // Choose the minimum alignment. If we could prove both stores execute, we 3188 // could use biggest one. In this case, though, we only know that one of the 3189 // stores executes. And we don't know it's safe to take the alignment from a 3190 // store that doesn't execute. 3191 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3192 3193 QStore->eraseFromParent(); 3194 PStore->eraseFromParent(); 3195 3196 return true; 3197 } 3198 3199 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3200 const DataLayout &DL, 3201 const TargetTransformInfo &TTI) { 3202 // The intention here is to find diamonds or triangles (see below) where each 3203 // conditional block contains a store to the same address. Both of these 3204 // stores are conditional, so they can't be unconditionally sunk. But it may 3205 // be profitable to speculatively sink the stores into one merged store at the 3206 // end, and predicate the merged store on the union of the two conditions of 3207 // PBI and QBI. 3208 // 3209 // This can reduce the number of stores executed if both of the conditions are 3210 // true, and can allow the blocks to become small enough to be if-converted. 3211 // This optimization will also chain, so that ladders of test-and-set 3212 // sequences can be if-converted away. 3213 // 3214 // We only deal with simple diamonds or triangles: 3215 // 3216 // PBI or PBI or a combination of the two 3217 // / \ | \ 3218 // PTB PFB | PFB 3219 // \ / | / 3220 // QBI QBI 3221 // / \ | \ 3222 // QTB QFB | QFB 3223 // \ / | / 3224 // PostBB PostBB 3225 // 3226 // We model triangles as a type of diamond with a nullptr "true" block. 3227 // Triangles are canonicalized so that the fallthrough edge is represented by 3228 // a true condition, as in the diagram above. 3229 BasicBlock *PTB = PBI->getSuccessor(0); 3230 BasicBlock *PFB = PBI->getSuccessor(1); 3231 BasicBlock *QTB = QBI->getSuccessor(0); 3232 BasicBlock *QFB = QBI->getSuccessor(1); 3233 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3234 3235 // Make sure we have a good guess for PostBB. If QTB's only successor is 3236 // QFB, then QFB is a better PostBB. 3237 if (QTB->getSingleSuccessor() == QFB) 3238 PostBB = QFB; 3239 3240 // If we couldn't find a good PostBB, stop. 3241 if (!PostBB) 3242 return false; 3243 3244 bool InvertPCond = false, InvertQCond = false; 3245 // Canonicalize fallthroughs to the true branches. 3246 if (PFB == QBI->getParent()) { 3247 std::swap(PFB, PTB); 3248 InvertPCond = true; 3249 } 3250 if (QFB == PostBB) { 3251 std::swap(QFB, QTB); 3252 InvertQCond = true; 3253 } 3254 3255 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3256 // and QFB may not. Model fallthroughs as a nullptr block. 3257 if (PTB == QBI->getParent()) 3258 PTB = nullptr; 3259 if (QTB == PostBB) 3260 QTB = nullptr; 3261 3262 // Legality bailouts. We must have at least the non-fallthrough blocks and 3263 // the post-dominating block, and the non-fallthroughs must only have one 3264 // predecessor. 3265 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3266 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3267 }; 3268 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3269 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3270 return false; 3271 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3272 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3273 return false; 3274 if (!QBI->getParent()->hasNUses(2)) 3275 return false; 3276 3277 // OK, this is a sequence of two diamonds or triangles. 3278 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3279 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3280 for (auto *BB : {PTB, PFB}) { 3281 if (!BB) 3282 continue; 3283 for (auto &I : *BB) 3284 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3285 PStoreAddresses.insert(SI->getPointerOperand()); 3286 } 3287 for (auto *BB : {QTB, QFB}) { 3288 if (!BB) 3289 continue; 3290 for (auto &I : *BB) 3291 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3292 QStoreAddresses.insert(SI->getPointerOperand()); 3293 } 3294 3295 set_intersect(PStoreAddresses, QStoreAddresses); 3296 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3297 // clear what it contains. 3298 auto &CommonAddresses = PStoreAddresses; 3299 3300 bool Changed = false; 3301 for (auto *Address : CommonAddresses) 3302 Changed |= mergeConditionalStoreToAddress( 3303 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI); 3304 return Changed; 3305 } 3306 3307 3308 /// If the previous block ended with a widenable branch, determine if reusing 3309 /// the target block is profitable and legal. This will have the effect of 3310 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3311 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 3312 // TODO: This can be generalized in two important ways: 3313 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3314 // values from the PBI edge. 3315 // 2) We can sink side effecting instructions into BI's fallthrough 3316 // successor provided they doesn't contribute to computation of 3317 // BI's condition. 3318 Value *CondWB, *WC; 3319 BasicBlock *IfTrueBB, *IfFalseBB; 3320 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3321 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3322 return false; 3323 if (!IfFalseBB->phis().empty()) 3324 return false; // TODO 3325 // Use lambda to lazily compute expensive condition after cheap ones. 3326 auto NoSideEffects = [](BasicBlock &BB) { 3327 return !llvm::any_of(BB, [](const Instruction &I) { 3328 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3329 }); 3330 }; 3331 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3332 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3333 NoSideEffects(*BI->getParent())) { 3334 BI->getSuccessor(1)->removePredecessor(BI->getParent()); 3335 BI->setSuccessor(1, IfFalseBB); 3336 return true; 3337 } 3338 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3339 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3340 NoSideEffects(*BI->getParent())) { 3341 BI->getSuccessor(0)->removePredecessor(BI->getParent()); 3342 BI->setSuccessor(0, IfFalseBB); 3343 return true; 3344 } 3345 return false; 3346 } 3347 3348 /// If we have a conditional branch as a predecessor of another block, 3349 /// this function tries to simplify it. We know 3350 /// that PBI and BI are both conditional branches, and BI is in one of the 3351 /// successor blocks of PBI - PBI branches to BI. 3352 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3353 const DataLayout &DL, 3354 const TargetTransformInfo &TTI) { 3355 assert(PBI->isConditional() && BI->isConditional()); 3356 BasicBlock *BB = BI->getParent(); 3357 3358 // If this block ends with a branch instruction, and if there is a 3359 // predecessor that ends on a branch of the same condition, make 3360 // this conditional branch redundant. 3361 if (PBI->getCondition() == BI->getCondition() && 3362 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3363 // Okay, the outcome of this conditional branch is statically 3364 // knowable. If this block had a single pred, handle specially. 3365 if (BB->getSinglePredecessor()) { 3366 // Turn this into a branch on constant. 3367 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3368 BI->setCondition( 3369 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3370 return true; // Nuke the branch on constant. 3371 } 3372 3373 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3374 // in the constant and simplify the block result. Subsequent passes of 3375 // simplifycfg will thread the block. 3376 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3377 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3378 PHINode *NewPN = PHINode::Create( 3379 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3380 BI->getCondition()->getName() + ".pr", &BB->front()); 3381 // Okay, we're going to insert the PHI node. Since PBI is not the only 3382 // predecessor, compute the PHI'd conditional value for all of the preds. 3383 // Any predecessor where the condition is not computable we keep symbolic. 3384 for (pred_iterator PI = PB; PI != PE; ++PI) { 3385 BasicBlock *P = *PI; 3386 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3387 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3388 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3389 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3390 NewPN->addIncoming( 3391 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3392 P); 3393 } else { 3394 NewPN->addIncoming(BI->getCondition(), P); 3395 } 3396 } 3397 3398 BI->setCondition(NewPN); 3399 return true; 3400 } 3401 } 3402 3403 // If the previous block ended with a widenable branch, determine if reusing 3404 // the target block is profitable and legal. This will have the effect of 3405 // "widening" PBI, but doesn't require us to reason about hosting safety. 3406 if (tryWidenCondBranchToCondBranch(PBI, BI)) 3407 return true; 3408 3409 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3410 if (CE->canTrap()) 3411 return false; 3412 3413 // If both branches are conditional and both contain stores to the same 3414 // address, remove the stores from the conditionals and create a conditional 3415 // merged store at the end. 3416 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI)) 3417 return true; 3418 3419 // If this is a conditional branch in an empty block, and if any 3420 // predecessors are a conditional branch to one of our destinations, 3421 // fold the conditions into logical ops and one cond br. 3422 3423 // Ignore dbg intrinsics. 3424 if (&*BB->instructionsWithoutDebug().begin() != BI) 3425 return false; 3426 3427 int PBIOp, BIOp; 3428 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3429 PBIOp = 0; 3430 BIOp = 0; 3431 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3432 PBIOp = 0; 3433 BIOp = 1; 3434 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3435 PBIOp = 1; 3436 BIOp = 0; 3437 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3438 PBIOp = 1; 3439 BIOp = 1; 3440 } else { 3441 return false; 3442 } 3443 3444 // Check to make sure that the other destination of this branch 3445 // isn't BB itself. If so, this is an infinite loop that will 3446 // keep getting unwound. 3447 if (PBI->getSuccessor(PBIOp) == BB) 3448 return false; 3449 3450 // Do not perform this transformation if it would require 3451 // insertion of a large number of select instructions. For targets 3452 // without predication/cmovs, this is a big pessimization. 3453 3454 // Also do not perform this transformation if any phi node in the common 3455 // destination block can trap when reached by BB or PBB (PR17073). In that 3456 // case, it would be unsafe to hoist the operation into a select instruction. 3457 3458 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3459 unsigned NumPhis = 0; 3460 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3461 ++II, ++NumPhis) { 3462 if (NumPhis > 2) // Disable this xform. 3463 return false; 3464 3465 PHINode *PN = cast<PHINode>(II); 3466 Value *BIV = PN->getIncomingValueForBlock(BB); 3467 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3468 if (CE->canTrap()) 3469 return false; 3470 3471 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3472 Value *PBIV = PN->getIncomingValue(PBBIdx); 3473 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3474 if (CE->canTrap()) 3475 return false; 3476 } 3477 3478 // Finally, if everything is ok, fold the branches to logical ops. 3479 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3480 3481 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3482 << "AND: " << *BI->getParent()); 3483 3484 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3485 // branch in it, where one edge (OtherDest) goes back to itself but the other 3486 // exits. We don't *know* that the program avoids the infinite loop 3487 // (even though that seems likely). If we do this xform naively, we'll end up 3488 // recursively unpeeling the loop. Since we know that (after the xform is 3489 // done) that the block *is* infinite if reached, we just make it an obviously 3490 // infinite loop with no cond branch. 3491 if (OtherDest == BB) { 3492 // Insert it at the end of the function, because it's either code, 3493 // or it won't matter if it's hot. :) 3494 BasicBlock *InfLoopBlock = 3495 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3496 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3497 OtherDest = InfLoopBlock; 3498 } 3499 3500 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3501 3502 // BI may have other predecessors. Because of this, we leave 3503 // it alone, but modify PBI. 3504 3505 // Make sure we get to CommonDest on True&True directions. 3506 Value *PBICond = PBI->getCondition(); 3507 IRBuilder<NoFolder> Builder(PBI); 3508 if (PBIOp) 3509 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3510 3511 Value *BICond = BI->getCondition(); 3512 if (BIOp) 3513 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3514 3515 // Merge the conditions. 3516 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3517 3518 // Modify PBI to branch on the new condition to the new dests. 3519 PBI->setCondition(Cond); 3520 PBI->setSuccessor(0, CommonDest); 3521 PBI->setSuccessor(1, OtherDest); 3522 3523 // Update branch weight for PBI. 3524 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3525 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3526 bool HasWeights = 3527 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3528 SuccTrueWeight, SuccFalseWeight); 3529 if (HasWeights) { 3530 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3531 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3532 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3533 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3534 // The weight to CommonDest should be PredCommon * SuccTotal + 3535 // PredOther * SuccCommon. 3536 // The weight to OtherDest should be PredOther * SuccOther. 3537 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3538 PredOther * SuccCommon, 3539 PredOther * SuccOther}; 3540 // Halve the weights if any of them cannot fit in an uint32_t 3541 FitWeights(NewWeights); 3542 3543 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3544 } 3545 3546 // OtherDest may have phi nodes. If so, add an entry from PBI's 3547 // block that are identical to the entries for BI's block. 3548 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3549 3550 // We know that the CommonDest already had an edge from PBI to 3551 // it. If it has PHIs though, the PHIs may have different 3552 // entries for BB and PBI's BB. If so, insert a select to make 3553 // them agree. 3554 for (PHINode &PN : CommonDest->phis()) { 3555 Value *BIV = PN.getIncomingValueForBlock(BB); 3556 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3557 Value *PBIV = PN.getIncomingValue(PBBIdx); 3558 if (BIV != PBIV) { 3559 // Insert a select in PBI to pick the right value. 3560 SelectInst *NV = cast<SelectInst>( 3561 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3562 PN.setIncomingValue(PBBIdx, NV); 3563 // Although the select has the same condition as PBI, the original branch 3564 // weights for PBI do not apply to the new select because the select's 3565 // 'logical' edges are incoming edges of the phi that is eliminated, not 3566 // the outgoing edges of PBI. 3567 if (HasWeights) { 3568 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3569 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3570 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3571 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3572 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3573 // The weight to PredOtherDest should be PredOther * SuccCommon. 3574 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3575 PredOther * SuccCommon}; 3576 3577 FitWeights(NewWeights); 3578 3579 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3580 } 3581 } 3582 } 3583 3584 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3585 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3586 3587 // This basic block is probably dead. We know it has at least 3588 // one fewer predecessor. 3589 return true; 3590 } 3591 3592 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3593 // true or to FalseBB if Cond is false. 3594 // Takes care of updating the successors and removing the old terminator. 3595 // Also makes sure not to introduce new successors by assuming that edges to 3596 // non-successor TrueBBs and FalseBBs aren't reachable. 3597 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3598 Value *Cond, BasicBlock *TrueBB, 3599 BasicBlock *FalseBB, 3600 uint32_t TrueWeight, 3601 uint32_t FalseWeight) { 3602 // Remove any superfluous successor edges from the CFG. 3603 // First, figure out which successors to preserve. 3604 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3605 // successor. 3606 BasicBlock *KeepEdge1 = TrueBB; 3607 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3608 3609 // Then remove the rest. 3610 for (BasicBlock *Succ : successors(OldTerm)) { 3611 // Make sure only to keep exactly one copy of each edge. 3612 if (Succ == KeepEdge1) 3613 KeepEdge1 = nullptr; 3614 else if (Succ == KeepEdge2) 3615 KeepEdge2 = nullptr; 3616 else 3617 Succ->removePredecessor(OldTerm->getParent(), 3618 /*KeepOneInputPHIs=*/true); 3619 } 3620 3621 IRBuilder<> Builder(OldTerm); 3622 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3623 3624 // Insert an appropriate new terminator. 3625 if (!KeepEdge1 && !KeepEdge2) { 3626 if (TrueBB == FalseBB) 3627 // We were only looking for one successor, and it was present. 3628 // Create an unconditional branch to it. 3629 Builder.CreateBr(TrueBB); 3630 else { 3631 // We found both of the successors we were looking for. 3632 // Create a conditional branch sharing the condition of the select. 3633 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3634 if (TrueWeight != FalseWeight) 3635 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3636 } 3637 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3638 // Neither of the selected blocks were successors, so this 3639 // terminator must be unreachable. 3640 new UnreachableInst(OldTerm->getContext(), OldTerm); 3641 } else { 3642 // One of the selected values was a successor, but the other wasn't. 3643 // Insert an unconditional branch to the one that was found; 3644 // the edge to the one that wasn't must be unreachable. 3645 if (!KeepEdge1) 3646 // Only TrueBB was found. 3647 Builder.CreateBr(TrueBB); 3648 else 3649 // Only FalseBB was found. 3650 Builder.CreateBr(FalseBB); 3651 } 3652 3653 EraseTerminatorAndDCECond(OldTerm); 3654 return true; 3655 } 3656 3657 // Replaces 3658 // (switch (select cond, X, Y)) on constant X, Y 3659 // with a branch - conditional if X and Y lead to distinct BBs, 3660 // unconditional otherwise. 3661 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3662 SelectInst *Select) { 3663 // Check for constant integer values in the select. 3664 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3665 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3666 if (!TrueVal || !FalseVal) 3667 return false; 3668 3669 // Find the relevant condition and destinations. 3670 Value *Condition = Select->getCondition(); 3671 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3672 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3673 3674 // Get weight for TrueBB and FalseBB. 3675 uint32_t TrueWeight = 0, FalseWeight = 0; 3676 SmallVector<uint64_t, 8> Weights; 3677 bool HasWeights = HasBranchWeights(SI); 3678 if (HasWeights) { 3679 GetBranchWeights(SI, Weights); 3680 if (Weights.size() == 1 + SI->getNumCases()) { 3681 TrueWeight = 3682 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3683 FalseWeight = 3684 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3685 } 3686 } 3687 3688 // Perform the actual simplification. 3689 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3690 FalseWeight); 3691 } 3692 3693 // Replaces 3694 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3695 // blockaddress(@fn, BlockB))) 3696 // with 3697 // (br cond, BlockA, BlockB). 3698 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3699 SelectInst *SI) { 3700 // Check that both operands of the select are block addresses. 3701 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3702 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3703 if (!TBA || !FBA) 3704 return false; 3705 3706 // Extract the actual blocks. 3707 BasicBlock *TrueBB = TBA->getBasicBlock(); 3708 BasicBlock *FalseBB = FBA->getBasicBlock(); 3709 3710 // Perform the actual simplification. 3711 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3712 0); 3713 } 3714 3715 /// This is called when we find an icmp instruction 3716 /// (a seteq/setne with a constant) as the only instruction in a 3717 /// block that ends with an uncond branch. We are looking for a very specific 3718 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3719 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3720 /// default value goes to an uncond block with a seteq in it, we get something 3721 /// like: 3722 /// 3723 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3724 /// DEFAULT: 3725 /// %tmp = icmp eq i8 %A, 92 3726 /// br label %end 3727 /// end: 3728 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3729 /// 3730 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3731 /// the PHI, merging the third icmp into the switch. 3732 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3733 ICmpInst *ICI, IRBuilder<> &Builder) { 3734 BasicBlock *BB = ICI->getParent(); 3735 3736 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3737 // complex. 3738 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3739 return false; 3740 3741 Value *V = ICI->getOperand(0); 3742 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3743 3744 // The pattern we're looking for is where our only predecessor is a switch on 3745 // 'V' and this block is the default case for the switch. In this case we can 3746 // fold the compared value into the switch to simplify things. 3747 BasicBlock *Pred = BB->getSinglePredecessor(); 3748 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3749 return false; 3750 3751 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3752 if (SI->getCondition() != V) 3753 return false; 3754 3755 // If BB is reachable on a non-default case, then we simply know the value of 3756 // V in this block. Substitute it and constant fold the icmp instruction 3757 // away. 3758 if (SI->getDefaultDest() != BB) { 3759 ConstantInt *VVal = SI->findCaseDest(BB); 3760 assert(VVal && "Should have a unique destination value"); 3761 ICI->setOperand(0, VVal); 3762 3763 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3764 ICI->replaceAllUsesWith(V); 3765 ICI->eraseFromParent(); 3766 } 3767 // BB is now empty, so it is likely to simplify away. 3768 return requestResimplify(); 3769 } 3770 3771 // Ok, the block is reachable from the default dest. If the constant we're 3772 // comparing exists in one of the other edges, then we can constant fold ICI 3773 // and zap it. 3774 if (SI->findCaseValue(Cst) != SI->case_default()) { 3775 Value *V; 3776 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3777 V = ConstantInt::getFalse(BB->getContext()); 3778 else 3779 V = ConstantInt::getTrue(BB->getContext()); 3780 3781 ICI->replaceAllUsesWith(V); 3782 ICI->eraseFromParent(); 3783 // BB is now empty, so it is likely to simplify away. 3784 return requestResimplify(); 3785 } 3786 3787 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3788 // the block. 3789 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3790 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3791 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3792 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3793 return false; 3794 3795 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3796 // true in the PHI. 3797 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3798 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3799 3800 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3801 std::swap(DefaultCst, NewCst); 3802 3803 // Replace ICI (which is used by the PHI for the default value) with true or 3804 // false depending on if it is EQ or NE. 3805 ICI->replaceAllUsesWith(DefaultCst); 3806 ICI->eraseFromParent(); 3807 3808 // Okay, the switch goes to this block on a default value. Add an edge from 3809 // the switch to the merge point on the compared value. 3810 BasicBlock *NewBB = 3811 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3812 { 3813 SwitchInstProfUpdateWrapper SIW(*SI); 3814 auto W0 = SIW.getSuccessorWeight(0); 3815 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3816 if (W0) { 3817 NewW = ((uint64_t(*W0) + 1) >> 1); 3818 SIW.setSuccessorWeight(0, *NewW); 3819 } 3820 SIW.addCase(Cst, NewBB, NewW); 3821 } 3822 3823 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3824 Builder.SetInsertPoint(NewBB); 3825 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3826 Builder.CreateBr(SuccBlock); 3827 PHIUse->addIncoming(NewCst, NewBB); 3828 return true; 3829 } 3830 3831 /// The specified branch is a conditional branch. 3832 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3833 /// fold it into a switch instruction if so. 3834 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3835 IRBuilder<> &Builder, 3836 const DataLayout &DL) { 3837 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3838 if (!Cond) 3839 return false; 3840 3841 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3842 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3843 // 'setne's and'ed together, collect them. 3844 3845 // Try to gather values from a chain of and/or to be turned into a switch 3846 ConstantComparesGatherer ConstantCompare(Cond, DL); 3847 // Unpack the result 3848 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3849 Value *CompVal = ConstantCompare.CompValue; 3850 unsigned UsedICmps = ConstantCompare.UsedICmps; 3851 Value *ExtraCase = ConstantCompare.Extra; 3852 3853 // If we didn't have a multiply compared value, fail. 3854 if (!CompVal) 3855 return false; 3856 3857 // Avoid turning single icmps into a switch. 3858 if (UsedICmps <= 1) 3859 return false; 3860 3861 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3862 3863 // There might be duplicate constants in the list, which the switch 3864 // instruction can't handle, remove them now. 3865 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3866 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3867 3868 // If Extra was used, we require at least two switch values to do the 3869 // transformation. A switch with one value is just a conditional branch. 3870 if (ExtraCase && Values.size() < 2) 3871 return false; 3872 3873 // TODO: Preserve branch weight metadata, similarly to how 3874 // FoldValueComparisonIntoPredecessors preserves it. 3875 3876 // Figure out which block is which destination. 3877 BasicBlock *DefaultBB = BI->getSuccessor(1); 3878 BasicBlock *EdgeBB = BI->getSuccessor(0); 3879 if (!TrueWhenEqual) 3880 std::swap(DefaultBB, EdgeBB); 3881 3882 BasicBlock *BB = BI->getParent(); 3883 3884 // MSAN does not like undefs as branch condition which can be introduced 3885 // with "explicit branch". 3886 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 3887 return false; 3888 3889 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3890 << " cases into SWITCH. BB is:\n" 3891 << *BB); 3892 3893 // If there are any extra values that couldn't be folded into the switch 3894 // then we evaluate them with an explicit branch first. Split the block 3895 // right before the condbr to handle it. 3896 if (ExtraCase) { 3897 BasicBlock *NewBB = 3898 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3899 // Remove the uncond branch added to the old block. 3900 Instruction *OldTI = BB->getTerminator(); 3901 Builder.SetInsertPoint(OldTI); 3902 3903 if (TrueWhenEqual) 3904 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3905 else 3906 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3907 3908 OldTI->eraseFromParent(); 3909 3910 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3911 // for the edge we just added. 3912 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3913 3914 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3915 << "\nEXTRABB = " << *BB); 3916 BB = NewBB; 3917 } 3918 3919 Builder.SetInsertPoint(BI); 3920 // Convert pointer to int before we switch. 3921 if (CompVal->getType()->isPointerTy()) { 3922 CompVal = Builder.CreatePtrToInt( 3923 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3924 } 3925 3926 // Create the new switch instruction now. 3927 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3928 3929 // Add all of the 'cases' to the switch instruction. 3930 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3931 New->addCase(Values[i], EdgeBB); 3932 3933 // We added edges from PI to the EdgeBB. As such, if there were any 3934 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3935 // the number of edges added. 3936 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3937 PHINode *PN = cast<PHINode>(BBI); 3938 Value *InVal = PN->getIncomingValueForBlock(BB); 3939 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3940 PN->addIncoming(InVal, BB); 3941 } 3942 3943 // Erase the old branch instruction. 3944 EraseTerminatorAndDCECond(BI); 3945 3946 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3947 return true; 3948 } 3949 3950 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3951 if (isa<PHINode>(RI->getValue())) 3952 return simplifyCommonResume(RI); 3953 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3954 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3955 // The resume must unwind the exception that caused control to branch here. 3956 return simplifySingleResume(RI); 3957 3958 return false; 3959 } 3960 3961 // Check if cleanup block is empty 3962 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 3963 for (Instruction &I : R) { 3964 auto *II = dyn_cast<IntrinsicInst>(&I); 3965 if (!II) 3966 return false; 3967 3968 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3969 switch (IntrinsicID) { 3970 case Intrinsic::dbg_declare: 3971 case Intrinsic::dbg_value: 3972 case Intrinsic::dbg_label: 3973 case Intrinsic::lifetime_end: 3974 break; 3975 default: 3976 return false; 3977 } 3978 } 3979 return true; 3980 } 3981 3982 // Simplify resume that is shared by several landing pads (phi of landing pad). 3983 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 3984 BasicBlock *BB = RI->getParent(); 3985 3986 // Check that there are no other instructions except for debug and lifetime 3987 // intrinsics between the phi's and resume instruction. 3988 if (!isCleanupBlockEmpty( 3989 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 3990 return false; 3991 3992 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3993 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3994 3995 // Check incoming blocks to see if any of them are trivial. 3996 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3997 Idx++) { 3998 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3999 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4000 4001 // If the block has other successors, we can not delete it because 4002 // it has other dependents. 4003 if (IncomingBB->getUniqueSuccessor() != BB) 4004 continue; 4005 4006 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4007 // Not the landing pad that caused the control to branch here. 4008 if (IncomingValue != LandingPad) 4009 continue; 4010 4011 if (isCleanupBlockEmpty( 4012 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4013 TrivialUnwindBlocks.insert(IncomingBB); 4014 } 4015 4016 // If no trivial unwind blocks, don't do any simplifications. 4017 if (TrivialUnwindBlocks.empty()) 4018 return false; 4019 4020 // Turn all invokes that unwind here into calls. 4021 for (auto *TrivialBB : TrivialUnwindBlocks) { 4022 // Blocks that will be simplified should be removed from the phi node. 4023 // Note there could be multiple edges to the resume block, and we need 4024 // to remove them all. 4025 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4026 BB->removePredecessor(TrivialBB, true); 4027 4028 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 4029 PI != PE;) { 4030 BasicBlock *Pred = *PI++; 4031 removeUnwindEdge(Pred); 4032 ++NumInvokes; 4033 } 4034 4035 // In each SimplifyCFG run, only the current processed block can be erased. 4036 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4037 // of erasing TrivialBB, we only remove the branch to the common resume 4038 // block so that we can later erase the resume block since it has no 4039 // predecessors. 4040 TrivialBB->getTerminator()->eraseFromParent(); 4041 new UnreachableInst(RI->getContext(), TrivialBB); 4042 } 4043 4044 // Delete the resume block if all its predecessors have been removed. 4045 if (pred_empty(BB)) 4046 BB->eraseFromParent(); 4047 4048 return !TrivialUnwindBlocks.empty(); 4049 } 4050 4051 // Simplify resume that is only used by a single (non-phi) landing pad. 4052 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4053 BasicBlock *BB = RI->getParent(); 4054 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4055 assert(RI->getValue() == LPInst && 4056 "Resume must unwind the exception that caused control to here"); 4057 4058 // Check that there are no other instructions except for debug intrinsics. 4059 if (!isCleanupBlockEmpty( 4060 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4061 return false; 4062 4063 // Turn all invokes that unwind here into calls and delete the basic block. 4064 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4065 BasicBlock *Pred = *PI++; 4066 removeUnwindEdge(Pred); 4067 ++NumInvokes; 4068 } 4069 4070 // The landingpad is now unreachable. Zap it. 4071 if (LoopHeaders) 4072 LoopHeaders->erase(BB); 4073 BB->eraseFromParent(); 4074 return true; 4075 } 4076 4077 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 4078 // If this is a trivial cleanup pad that executes no instructions, it can be 4079 // eliminated. If the cleanup pad continues to the caller, any predecessor 4080 // that is an EH pad will be updated to continue to the caller and any 4081 // predecessor that terminates with an invoke instruction will have its invoke 4082 // instruction converted to a call instruction. If the cleanup pad being 4083 // simplified does not continue to the caller, each predecessor will be 4084 // updated to continue to the unwind destination of the cleanup pad being 4085 // simplified. 4086 BasicBlock *BB = RI->getParent(); 4087 CleanupPadInst *CPInst = RI->getCleanupPad(); 4088 if (CPInst->getParent() != BB) 4089 // This isn't an empty cleanup. 4090 return false; 4091 4092 // We cannot kill the pad if it has multiple uses. This typically arises 4093 // from unreachable basic blocks. 4094 if (!CPInst->hasOneUse()) 4095 return false; 4096 4097 // Check that there are no other instructions except for benign intrinsics. 4098 if (!isCleanupBlockEmpty( 4099 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4100 return false; 4101 4102 // If the cleanup return we are simplifying unwinds to the caller, this will 4103 // set UnwindDest to nullptr. 4104 BasicBlock *UnwindDest = RI->getUnwindDest(); 4105 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4106 4107 // We're about to remove BB from the control flow. Before we do, sink any 4108 // PHINodes into the unwind destination. Doing this before changing the 4109 // control flow avoids some potentially slow checks, since we can currently 4110 // be certain that UnwindDest and BB have no common predecessors (since they 4111 // are both EH pads). 4112 if (UnwindDest) { 4113 // First, go through the PHI nodes in UnwindDest and update any nodes that 4114 // reference the block we are removing 4115 for (BasicBlock::iterator I = UnwindDest->begin(), 4116 IE = DestEHPad->getIterator(); 4117 I != IE; ++I) { 4118 PHINode *DestPN = cast<PHINode>(I); 4119 4120 int Idx = DestPN->getBasicBlockIndex(BB); 4121 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4122 assert(Idx != -1); 4123 // This PHI node has an incoming value that corresponds to a control 4124 // path through the cleanup pad we are removing. If the incoming 4125 // value is in the cleanup pad, it must be a PHINode (because we 4126 // verified above that the block is otherwise empty). Otherwise, the 4127 // value is either a constant or a value that dominates the cleanup 4128 // pad being removed. 4129 // 4130 // Because BB and UnwindDest are both EH pads, all of their 4131 // predecessors must unwind to these blocks, and since no instruction 4132 // can have multiple unwind destinations, there will be no overlap in 4133 // incoming blocks between SrcPN and DestPN. 4134 Value *SrcVal = DestPN->getIncomingValue(Idx); 4135 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4136 4137 // Remove the entry for the block we are deleting. 4138 DestPN->removeIncomingValue(Idx, false); 4139 4140 if (SrcPN && SrcPN->getParent() == BB) { 4141 // If the incoming value was a PHI node in the cleanup pad we are 4142 // removing, we need to merge that PHI node's incoming values into 4143 // DestPN. 4144 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4145 SrcIdx != SrcE; ++SrcIdx) { 4146 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4147 SrcPN->getIncomingBlock(SrcIdx)); 4148 } 4149 } else { 4150 // Otherwise, the incoming value came from above BB and 4151 // so we can just reuse it. We must associate all of BB's 4152 // predecessors with this value. 4153 for (auto *pred : predecessors(BB)) { 4154 DestPN->addIncoming(SrcVal, pred); 4155 } 4156 } 4157 } 4158 4159 // Sink any remaining PHI nodes directly into UnwindDest. 4160 Instruction *InsertPt = DestEHPad; 4161 for (BasicBlock::iterator I = BB->begin(), 4162 IE = BB->getFirstNonPHI()->getIterator(); 4163 I != IE;) { 4164 // The iterator must be incremented here because the instructions are 4165 // being moved to another block. 4166 PHINode *PN = cast<PHINode>(I++); 4167 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4168 // If the PHI node has no uses or all of its uses are in this basic 4169 // block (meaning they are debug or lifetime intrinsics), just leave 4170 // it. It will be erased when we erase BB below. 4171 continue; 4172 4173 // Otherwise, sink this PHI node into UnwindDest. 4174 // Any predecessors to UnwindDest which are not already represented 4175 // must be back edges which inherit the value from the path through 4176 // BB. In this case, the PHI value must reference itself. 4177 for (auto *pred : predecessors(UnwindDest)) 4178 if (pred != BB) 4179 PN->addIncoming(PN, pred); 4180 PN->moveBefore(InsertPt); 4181 } 4182 } 4183 4184 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4185 // The iterator must be updated here because we are removing this pred. 4186 BasicBlock *PredBB = *PI++; 4187 if (UnwindDest == nullptr) { 4188 removeUnwindEdge(PredBB); 4189 ++NumInvokes; 4190 } else { 4191 Instruction *TI = PredBB->getTerminator(); 4192 TI->replaceUsesOfWith(BB, UnwindDest); 4193 } 4194 } 4195 4196 // The cleanup pad is now unreachable. Zap it. 4197 BB->eraseFromParent(); 4198 return true; 4199 } 4200 4201 // Try to merge two cleanuppads together. 4202 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4203 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4204 // with. 4205 BasicBlock *UnwindDest = RI->getUnwindDest(); 4206 if (!UnwindDest) 4207 return false; 4208 4209 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4210 // be safe to merge without code duplication. 4211 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4212 return false; 4213 4214 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4215 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4216 if (!SuccessorCleanupPad) 4217 return false; 4218 4219 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4220 // Replace any uses of the successor cleanupad with the predecessor pad 4221 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4222 // funclet bundle operands. 4223 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4224 // Remove the old cleanuppad. 4225 SuccessorCleanupPad->eraseFromParent(); 4226 // Now, we simply replace the cleanupret with a branch to the unwind 4227 // destination. 4228 BranchInst::Create(UnwindDest, RI->getParent()); 4229 RI->eraseFromParent(); 4230 4231 return true; 4232 } 4233 4234 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4235 // It is possible to transiantly have an undef cleanuppad operand because we 4236 // have deleted some, but not all, dead blocks. 4237 // Eventually, this block will be deleted. 4238 if (isa<UndefValue>(RI->getOperand(0))) 4239 return false; 4240 4241 if (mergeCleanupPad(RI)) 4242 return true; 4243 4244 if (removeEmptyCleanup(RI)) 4245 return true; 4246 4247 return false; 4248 } 4249 4250 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4251 BasicBlock *BB = RI->getParent(); 4252 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4253 return false; 4254 4255 // Find predecessors that end with branches. 4256 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4257 SmallVector<BranchInst *, 8> CondBranchPreds; 4258 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4259 BasicBlock *P = *PI; 4260 Instruction *PTI = P->getTerminator(); 4261 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4262 if (BI->isUnconditional()) 4263 UncondBranchPreds.push_back(P); 4264 else 4265 CondBranchPreds.push_back(BI); 4266 } 4267 } 4268 4269 // If we found some, do the transformation! 4270 if (!UncondBranchPreds.empty() && DupRet) { 4271 while (!UncondBranchPreds.empty()) { 4272 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4273 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4274 << "INTO UNCOND BRANCH PRED: " << *Pred); 4275 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4276 } 4277 4278 // If we eliminated all predecessors of the block, delete the block now. 4279 if (pred_empty(BB)) { 4280 // We know there are no successors, so just nuke the block. 4281 if (LoopHeaders) 4282 LoopHeaders->erase(BB); 4283 BB->eraseFromParent(); 4284 } 4285 4286 return true; 4287 } 4288 4289 // Check out all of the conditional branches going to this return 4290 // instruction. If any of them just select between returns, change the 4291 // branch itself into a select/return pair. 4292 while (!CondBranchPreds.empty()) { 4293 BranchInst *BI = CondBranchPreds.pop_back_val(); 4294 4295 // Check to see if the non-BB successor is also a return block. 4296 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4297 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4298 SimplifyCondBranchToTwoReturns(BI, Builder)) 4299 return true; 4300 } 4301 return false; 4302 } 4303 4304 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4305 BasicBlock *BB = UI->getParent(); 4306 4307 bool Changed = false; 4308 4309 // If there are any instructions immediately before the unreachable that can 4310 // be removed, do so. 4311 while (UI->getIterator() != BB->begin()) { 4312 BasicBlock::iterator BBI = UI->getIterator(); 4313 --BBI; 4314 // Do not delete instructions that can have side effects which might cause 4315 // the unreachable to not be reachable; specifically, calls and volatile 4316 // operations may have this effect. 4317 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4318 break; 4319 4320 if (BBI->mayHaveSideEffects()) { 4321 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4322 if (SI->isVolatile()) 4323 break; 4324 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4325 if (LI->isVolatile()) 4326 break; 4327 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4328 if (RMWI->isVolatile()) 4329 break; 4330 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4331 if (CXI->isVolatile()) 4332 break; 4333 } else if (isa<CatchPadInst>(BBI)) { 4334 // A catchpad may invoke exception object constructors and such, which 4335 // in some languages can be arbitrary code, so be conservative by 4336 // default. 4337 // For CoreCLR, it just involves a type test, so can be removed. 4338 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4339 EHPersonality::CoreCLR) 4340 break; 4341 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4342 !isa<LandingPadInst>(BBI)) { 4343 break; 4344 } 4345 // Note that deleting LandingPad's here is in fact okay, although it 4346 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4347 // all the predecessors of this block will be the unwind edges of Invokes, 4348 // and we can therefore guarantee this block will be erased. 4349 } 4350 4351 // Delete this instruction (any uses are guaranteed to be dead) 4352 if (!BBI->use_empty()) 4353 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4354 BBI->eraseFromParent(); 4355 Changed = true; 4356 } 4357 4358 // If the unreachable instruction is the first in the block, take a gander 4359 // at all of the predecessors of this instruction, and simplify them. 4360 if (&BB->front() != UI) 4361 return Changed; 4362 4363 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4364 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4365 Instruction *TI = Preds[i]->getTerminator(); 4366 IRBuilder<> Builder(TI); 4367 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4368 if (BI->isUnconditional()) { 4369 assert(BI->getSuccessor(0) == BB && "Incorrect CFG"); 4370 new UnreachableInst(TI->getContext(), TI); 4371 TI->eraseFromParent(); 4372 Changed = true; 4373 } else { 4374 Value* Cond = BI->getCondition(); 4375 if (BI->getSuccessor(0) == BB) { 4376 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4377 Builder.CreateBr(BI->getSuccessor(1)); 4378 } else { 4379 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4380 Builder.CreateAssumption(Cond); 4381 Builder.CreateBr(BI->getSuccessor(0)); 4382 } 4383 EraseTerminatorAndDCECond(BI); 4384 Changed = true; 4385 } 4386 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4387 SwitchInstProfUpdateWrapper SU(*SI); 4388 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4389 if (i->getCaseSuccessor() != BB) { 4390 ++i; 4391 continue; 4392 } 4393 BB->removePredecessor(SU->getParent()); 4394 i = SU.removeCase(i); 4395 e = SU->case_end(); 4396 Changed = true; 4397 } 4398 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4399 if (II->getUnwindDest() == BB) { 4400 removeUnwindEdge(TI->getParent()); 4401 Changed = true; 4402 } 4403 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4404 if (CSI->getUnwindDest() == BB) { 4405 removeUnwindEdge(TI->getParent()); 4406 Changed = true; 4407 continue; 4408 } 4409 4410 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4411 E = CSI->handler_end(); 4412 I != E; ++I) { 4413 if (*I == BB) { 4414 CSI->removeHandler(I); 4415 --I; 4416 --E; 4417 Changed = true; 4418 } 4419 } 4420 if (CSI->getNumHandlers() == 0) { 4421 BasicBlock *CatchSwitchBB = CSI->getParent(); 4422 if (CSI->hasUnwindDest()) { 4423 // Redirect preds to the unwind dest 4424 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4425 } else { 4426 // Rewrite all preds to unwind to caller (or from invoke to call). 4427 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4428 for (BasicBlock *EHPred : EHPreds) 4429 removeUnwindEdge(EHPred); 4430 } 4431 // The catchswitch is no longer reachable. 4432 new UnreachableInst(CSI->getContext(), CSI); 4433 CSI->eraseFromParent(); 4434 Changed = true; 4435 } 4436 } else if (isa<CleanupReturnInst>(TI)) { 4437 new UnreachableInst(TI->getContext(), TI); 4438 TI->eraseFromParent(); 4439 Changed = true; 4440 } 4441 } 4442 4443 // If this block is now dead, remove it. 4444 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4445 // We know there are no successors, so just nuke the block. 4446 if (LoopHeaders) 4447 LoopHeaders->erase(BB); 4448 BB->eraseFromParent(); 4449 return true; 4450 } 4451 4452 return Changed; 4453 } 4454 4455 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4456 assert(Cases.size() >= 1); 4457 4458 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4459 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4460 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4461 return false; 4462 } 4463 return true; 4464 } 4465 4466 static void createUnreachableSwitchDefault(SwitchInst *Switch) { 4467 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4468 BasicBlock *NewDefaultBlock = 4469 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), ""); 4470 Switch->setDefaultDest(&*NewDefaultBlock); 4471 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front()); 4472 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4473 new UnreachableInst(Switch->getContext(), NewTerminator); 4474 EraseTerminatorAndDCECond(NewTerminator); 4475 } 4476 4477 /// Turn a switch with two reachable destinations into an integer range 4478 /// comparison and branch. 4479 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4480 IRBuilder<> &Builder) { 4481 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4482 4483 bool HasDefault = 4484 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4485 4486 // Partition the cases into two sets with different destinations. 4487 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4488 BasicBlock *DestB = nullptr; 4489 SmallVector<ConstantInt *, 16> CasesA; 4490 SmallVector<ConstantInt *, 16> CasesB; 4491 4492 for (auto Case : SI->cases()) { 4493 BasicBlock *Dest = Case.getCaseSuccessor(); 4494 if (!DestA) 4495 DestA = Dest; 4496 if (Dest == DestA) { 4497 CasesA.push_back(Case.getCaseValue()); 4498 continue; 4499 } 4500 if (!DestB) 4501 DestB = Dest; 4502 if (Dest == DestB) { 4503 CasesB.push_back(Case.getCaseValue()); 4504 continue; 4505 } 4506 return false; // More than two destinations. 4507 } 4508 4509 assert(DestA && DestB && 4510 "Single-destination switch should have been folded."); 4511 assert(DestA != DestB); 4512 assert(DestB != SI->getDefaultDest()); 4513 assert(!CasesB.empty() && "There must be non-default cases."); 4514 assert(!CasesA.empty() || HasDefault); 4515 4516 // Figure out if one of the sets of cases form a contiguous range. 4517 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4518 BasicBlock *ContiguousDest = nullptr; 4519 BasicBlock *OtherDest = nullptr; 4520 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4521 ContiguousCases = &CasesA; 4522 ContiguousDest = DestA; 4523 OtherDest = DestB; 4524 } else if (CasesAreContiguous(CasesB)) { 4525 ContiguousCases = &CasesB; 4526 ContiguousDest = DestB; 4527 OtherDest = DestA; 4528 } else 4529 return false; 4530 4531 // Start building the compare and branch. 4532 4533 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4534 Constant *NumCases = 4535 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4536 4537 Value *Sub = SI->getCondition(); 4538 if (!Offset->isNullValue()) 4539 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4540 4541 Value *Cmp; 4542 // If NumCases overflowed, then all possible values jump to the successor. 4543 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4544 Cmp = ConstantInt::getTrue(SI->getContext()); 4545 else 4546 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4547 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4548 4549 // Update weight for the newly-created conditional branch. 4550 if (HasBranchWeights(SI)) { 4551 SmallVector<uint64_t, 8> Weights; 4552 GetBranchWeights(SI, Weights); 4553 if (Weights.size() == 1 + SI->getNumCases()) { 4554 uint64_t TrueWeight = 0; 4555 uint64_t FalseWeight = 0; 4556 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4557 if (SI->getSuccessor(I) == ContiguousDest) 4558 TrueWeight += Weights[I]; 4559 else 4560 FalseWeight += Weights[I]; 4561 } 4562 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4563 TrueWeight /= 2; 4564 FalseWeight /= 2; 4565 } 4566 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4567 } 4568 } 4569 4570 // Prune obsolete incoming values off the successors' PHI nodes. 4571 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4572 unsigned PreviousEdges = ContiguousCases->size(); 4573 if (ContiguousDest == SI->getDefaultDest()) 4574 ++PreviousEdges; 4575 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4576 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4577 } 4578 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4579 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4580 if (OtherDest == SI->getDefaultDest()) 4581 ++PreviousEdges; 4582 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4583 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4584 } 4585 4586 // Clean up the default block - it may have phis or other instructions before 4587 // the unreachable terminator. 4588 if (!HasDefault) 4589 createUnreachableSwitchDefault(SI); 4590 4591 // Drop the switch. 4592 SI->eraseFromParent(); 4593 4594 return true; 4595 } 4596 4597 /// Compute masked bits for the condition of a switch 4598 /// and use it to remove dead cases. 4599 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4600 const DataLayout &DL) { 4601 Value *Cond = SI->getCondition(); 4602 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4603 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4604 4605 // We can also eliminate cases by determining that their values are outside of 4606 // the limited range of the condition based on how many significant (non-sign) 4607 // bits are in the condition value. 4608 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4609 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4610 4611 // Gather dead cases. 4612 SmallVector<ConstantInt *, 8> DeadCases; 4613 for (auto &Case : SI->cases()) { 4614 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4615 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4616 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4617 DeadCases.push_back(Case.getCaseValue()); 4618 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4619 << " is dead.\n"); 4620 } 4621 } 4622 4623 // If we can prove that the cases must cover all possible values, the 4624 // default destination becomes dead and we can remove it. If we know some 4625 // of the bits in the value, we can use that to more precisely compute the 4626 // number of possible unique case values. 4627 bool HasDefault = 4628 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4629 const unsigned NumUnknownBits = 4630 Bits - (Known.Zero | Known.One).countPopulation(); 4631 assert(NumUnknownBits <= Bits); 4632 if (HasDefault && DeadCases.empty() && 4633 NumUnknownBits < 64 /* avoid overflow */ && 4634 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4635 createUnreachableSwitchDefault(SI); 4636 return true; 4637 } 4638 4639 if (DeadCases.empty()) 4640 return false; 4641 4642 SwitchInstProfUpdateWrapper SIW(*SI); 4643 for (ConstantInt *DeadCase : DeadCases) { 4644 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4645 assert(CaseI != SI->case_default() && 4646 "Case was not found. Probably mistake in DeadCases forming."); 4647 // Prune unused values from PHI nodes. 4648 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4649 SIW.removeCase(CaseI); 4650 } 4651 4652 return true; 4653 } 4654 4655 /// If BB would be eligible for simplification by 4656 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4657 /// by an unconditional branch), look at the phi node for BB in the successor 4658 /// block and see if the incoming value is equal to CaseValue. If so, return 4659 /// the phi node, and set PhiIndex to BB's index in the phi node. 4660 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4661 BasicBlock *BB, int *PhiIndex) { 4662 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4663 return nullptr; // BB must be empty to be a candidate for simplification. 4664 if (!BB->getSinglePredecessor()) 4665 return nullptr; // BB must be dominated by the switch. 4666 4667 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4668 if (!Branch || !Branch->isUnconditional()) 4669 return nullptr; // Terminator must be unconditional branch. 4670 4671 BasicBlock *Succ = Branch->getSuccessor(0); 4672 4673 for (PHINode &PHI : Succ->phis()) { 4674 int Idx = PHI.getBasicBlockIndex(BB); 4675 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4676 4677 Value *InValue = PHI.getIncomingValue(Idx); 4678 if (InValue != CaseValue) 4679 continue; 4680 4681 *PhiIndex = Idx; 4682 return &PHI; 4683 } 4684 4685 return nullptr; 4686 } 4687 4688 /// Try to forward the condition of a switch instruction to a phi node 4689 /// dominated by the switch, if that would mean that some of the destination 4690 /// blocks of the switch can be folded away. Return true if a change is made. 4691 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4692 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4693 4694 ForwardingNodesMap ForwardingNodes; 4695 BasicBlock *SwitchBlock = SI->getParent(); 4696 bool Changed = false; 4697 for (auto &Case : SI->cases()) { 4698 ConstantInt *CaseValue = Case.getCaseValue(); 4699 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4700 4701 // Replace phi operands in successor blocks that are using the constant case 4702 // value rather than the switch condition variable: 4703 // switchbb: 4704 // switch i32 %x, label %default [ 4705 // i32 17, label %succ 4706 // ... 4707 // succ: 4708 // %r = phi i32 ... [ 17, %switchbb ] ... 4709 // --> 4710 // %r = phi i32 ... [ %x, %switchbb ] ... 4711 4712 for (PHINode &Phi : CaseDest->phis()) { 4713 // This only works if there is exactly 1 incoming edge from the switch to 4714 // a phi. If there is >1, that means multiple cases of the switch map to 1 4715 // value in the phi, and that phi value is not the switch condition. Thus, 4716 // this transform would not make sense (the phi would be invalid because 4717 // a phi can't have different incoming values from the same block). 4718 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4719 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4720 count(Phi.blocks(), SwitchBlock) == 1) { 4721 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4722 Changed = true; 4723 } 4724 } 4725 4726 // Collect phi nodes that are indirectly using this switch's case constants. 4727 int PhiIdx; 4728 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4729 ForwardingNodes[Phi].push_back(PhiIdx); 4730 } 4731 4732 for (auto &ForwardingNode : ForwardingNodes) { 4733 PHINode *Phi = ForwardingNode.first; 4734 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4735 if (Indexes.size() < 2) 4736 continue; 4737 4738 for (int Index : Indexes) 4739 Phi->setIncomingValue(Index, SI->getCondition()); 4740 Changed = true; 4741 } 4742 4743 return Changed; 4744 } 4745 4746 /// Return true if the backend will be able to handle 4747 /// initializing an array of constants like C. 4748 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4749 if (C->isThreadDependent()) 4750 return false; 4751 if (C->isDLLImportDependent()) 4752 return false; 4753 4754 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4755 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4756 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4757 return false; 4758 4759 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4760 if (!CE->isGEPWithNoNotionalOverIndexing()) 4761 return false; 4762 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4763 return false; 4764 } 4765 4766 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4767 return false; 4768 4769 return true; 4770 } 4771 4772 /// If V is a Constant, return it. Otherwise, try to look up 4773 /// its constant value in ConstantPool, returning 0 if it's not there. 4774 static Constant * 4775 LookupConstant(Value *V, 4776 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4777 if (Constant *C = dyn_cast<Constant>(V)) 4778 return C; 4779 return ConstantPool.lookup(V); 4780 } 4781 4782 /// Try to fold instruction I into a constant. This works for 4783 /// simple instructions such as binary operations where both operands are 4784 /// constant or can be replaced by constants from the ConstantPool. Returns the 4785 /// resulting constant on success, 0 otherwise. 4786 static Constant * 4787 ConstantFold(Instruction *I, const DataLayout &DL, 4788 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4789 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4790 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4791 if (!A) 4792 return nullptr; 4793 if (A->isAllOnesValue()) 4794 return LookupConstant(Select->getTrueValue(), ConstantPool); 4795 if (A->isNullValue()) 4796 return LookupConstant(Select->getFalseValue(), ConstantPool); 4797 return nullptr; 4798 } 4799 4800 SmallVector<Constant *, 4> COps; 4801 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4802 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4803 COps.push_back(A); 4804 else 4805 return nullptr; 4806 } 4807 4808 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4809 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4810 COps[1], DL); 4811 } 4812 4813 return ConstantFoldInstOperands(I, COps, DL); 4814 } 4815 4816 /// Try to determine the resulting constant values in phi nodes 4817 /// at the common destination basic block, *CommonDest, for one of the case 4818 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4819 /// case), of a switch instruction SI. 4820 static bool 4821 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4822 BasicBlock **CommonDest, 4823 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4824 const DataLayout &DL, const TargetTransformInfo &TTI) { 4825 // The block from which we enter the common destination. 4826 BasicBlock *Pred = SI->getParent(); 4827 4828 // If CaseDest is empty except for some side-effect free instructions through 4829 // which we can constant-propagate the CaseVal, continue to its successor. 4830 SmallDenseMap<Value *, Constant *> ConstantPool; 4831 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4832 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4833 if (I.isTerminator()) { 4834 // If the terminator is a simple branch, continue to the next block. 4835 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4836 return false; 4837 Pred = CaseDest; 4838 CaseDest = I.getSuccessor(0); 4839 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4840 // Instruction is side-effect free and constant. 4841 4842 // If the instruction has uses outside this block or a phi node slot for 4843 // the block, it is not safe to bypass the instruction since it would then 4844 // no longer dominate all its uses. 4845 for (auto &Use : I.uses()) { 4846 User *User = Use.getUser(); 4847 if (Instruction *I = dyn_cast<Instruction>(User)) 4848 if (I->getParent() == CaseDest) 4849 continue; 4850 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4851 if (Phi->getIncomingBlock(Use) == CaseDest) 4852 continue; 4853 return false; 4854 } 4855 4856 ConstantPool.insert(std::make_pair(&I, C)); 4857 } else { 4858 break; 4859 } 4860 } 4861 4862 // If we did not have a CommonDest before, use the current one. 4863 if (!*CommonDest) 4864 *CommonDest = CaseDest; 4865 // If the destination isn't the common one, abort. 4866 if (CaseDest != *CommonDest) 4867 return false; 4868 4869 // Get the values for this case from phi nodes in the destination block. 4870 for (PHINode &PHI : (*CommonDest)->phis()) { 4871 int Idx = PHI.getBasicBlockIndex(Pred); 4872 if (Idx == -1) 4873 continue; 4874 4875 Constant *ConstVal = 4876 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4877 if (!ConstVal) 4878 return false; 4879 4880 // Be conservative about which kinds of constants we support. 4881 if (!ValidLookupTableConstant(ConstVal, TTI)) 4882 return false; 4883 4884 Res.push_back(std::make_pair(&PHI, ConstVal)); 4885 } 4886 4887 return Res.size() > 0; 4888 } 4889 4890 // Helper function used to add CaseVal to the list of cases that generate 4891 // Result. Returns the updated number of cases that generate this result. 4892 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4893 SwitchCaseResultVectorTy &UniqueResults, 4894 Constant *Result) { 4895 for (auto &I : UniqueResults) { 4896 if (I.first == Result) { 4897 I.second.push_back(CaseVal); 4898 return I.second.size(); 4899 } 4900 } 4901 UniqueResults.push_back( 4902 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4903 return 1; 4904 } 4905 4906 // Helper function that initializes a map containing 4907 // results for the PHI node of the common destination block for a switch 4908 // instruction. Returns false if multiple PHI nodes have been found or if 4909 // there is not a common destination block for the switch. 4910 static bool 4911 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4912 SwitchCaseResultVectorTy &UniqueResults, 4913 Constant *&DefaultResult, const DataLayout &DL, 4914 const TargetTransformInfo &TTI, 4915 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4916 for (auto &I : SI->cases()) { 4917 ConstantInt *CaseVal = I.getCaseValue(); 4918 4919 // Resulting value at phi nodes for this case value. 4920 SwitchCaseResultsTy Results; 4921 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4922 DL, TTI)) 4923 return false; 4924 4925 // Only one value per case is permitted. 4926 if (Results.size() > 1) 4927 return false; 4928 4929 // Add the case->result mapping to UniqueResults. 4930 const uintptr_t NumCasesForResult = 4931 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4932 4933 // Early out if there are too many cases for this result. 4934 if (NumCasesForResult > MaxCasesPerResult) 4935 return false; 4936 4937 // Early out if there are too many unique results. 4938 if (UniqueResults.size() > MaxUniqueResults) 4939 return false; 4940 4941 // Check the PHI consistency. 4942 if (!PHI) 4943 PHI = Results[0].first; 4944 else if (PHI != Results[0].first) 4945 return false; 4946 } 4947 // Find the default result value. 4948 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4949 BasicBlock *DefaultDest = SI->getDefaultDest(); 4950 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4951 DL, TTI); 4952 // If the default value is not found abort unless the default destination 4953 // is unreachable. 4954 DefaultResult = 4955 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4956 if ((!DefaultResult && 4957 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4958 return false; 4959 4960 return true; 4961 } 4962 4963 // Helper function that checks if it is possible to transform a switch with only 4964 // two cases (or two cases + default) that produces a result into a select. 4965 // Example: 4966 // switch (a) { 4967 // case 10: %0 = icmp eq i32 %a, 10 4968 // return 10; %1 = select i1 %0, i32 10, i32 4 4969 // case 20: ----> %2 = icmp eq i32 %a, 20 4970 // return 2; %3 = select i1 %2, i32 2, i32 %1 4971 // default: 4972 // return 4; 4973 // } 4974 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4975 Constant *DefaultResult, Value *Condition, 4976 IRBuilder<> &Builder) { 4977 assert(ResultVector.size() == 2 && 4978 "We should have exactly two unique results at this point"); 4979 // If we are selecting between only two cases transform into a simple 4980 // select or a two-way select if default is possible. 4981 if (ResultVector[0].second.size() == 1 && 4982 ResultVector[1].second.size() == 1) { 4983 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4984 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4985 4986 bool DefaultCanTrigger = DefaultResult; 4987 Value *SelectValue = ResultVector[1].first; 4988 if (DefaultCanTrigger) { 4989 Value *const ValueCompare = 4990 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4991 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4992 DefaultResult, "switch.select"); 4993 } 4994 Value *const ValueCompare = 4995 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4996 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4997 SelectValue, "switch.select"); 4998 } 4999 5000 return nullptr; 5001 } 5002 5003 // Helper function to cleanup a switch instruction that has been converted into 5004 // a select, fixing up PHI nodes and basic blocks. 5005 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5006 Value *SelectValue, 5007 IRBuilder<> &Builder) { 5008 BasicBlock *SelectBB = SI->getParent(); 5009 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5010 PHI->removeIncomingValue(SelectBB); 5011 PHI->addIncoming(SelectValue, SelectBB); 5012 5013 Builder.CreateBr(PHI->getParent()); 5014 5015 // Remove the switch. 5016 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5017 BasicBlock *Succ = SI->getSuccessor(i); 5018 5019 if (Succ == PHI->getParent()) 5020 continue; 5021 Succ->removePredecessor(SelectBB); 5022 } 5023 SI->eraseFromParent(); 5024 } 5025 5026 /// If the switch is only used to initialize one or more 5027 /// phi nodes in a common successor block with only two different 5028 /// constant values, replace the switch with select. 5029 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5030 const DataLayout &DL, 5031 const TargetTransformInfo &TTI) { 5032 Value *const Cond = SI->getCondition(); 5033 PHINode *PHI = nullptr; 5034 BasicBlock *CommonDest = nullptr; 5035 Constant *DefaultResult; 5036 SwitchCaseResultVectorTy UniqueResults; 5037 // Collect all the cases that will deliver the same value from the switch. 5038 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5039 DL, TTI, 2, 1)) 5040 return false; 5041 // Selects choose between maximum two values. 5042 if (UniqueResults.size() != 2) 5043 return false; 5044 assert(PHI != nullptr && "PHI for value select not found"); 5045 5046 Builder.SetInsertPoint(SI); 5047 Value *SelectValue = 5048 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5049 if (SelectValue) { 5050 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 5051 return true; 5052 } 5053 // The switch couldn't be converted into a select. 5054 return false; 5055 } 5056 5057 namespace { 5058 5059 /// This class represents a lookup table that can be used to replace a switch. 5060 class SwitchLookupTable { 5061 public: 5062 /// Create a lookup table to use as a switch replacement with the contents 5063 /// of Values, using DefaultValue to fill any holes in the table. 5064 SwitchLookupTable( 5065 Module &M, uint64_t TableSize, ConstantInt *Offset, 5066 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5067 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5068 5069 /// Build instructions with Builder to retrieve the value at 5070 /// the position given by Index in the lookup table. 5071 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5072 5073 /// Return true if a table with TableSize elements of 5074 /// type ElementType would fit in a target-legal register. 5075 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5076 Type *ElementType); 5077 5078 private: 5079 // Depending on the contents of the table, it can be represented in 5080 // different ways. 5081 enum { 5082 // For tables where each element contains the same value, we just have to 5083 // store that single value and return it for each lookup. 5084 SingleValueKind, 5085 5086 // For tables where there is a linear relationship between table index 5087 // and values. We calculate the result with a simple multiplication 5088 // and addition instead of a table lookup. 5089 LinearMapKind, 5090 5091 // For small tables with integer elements, we can pack them into a bitmap 5092 // that fits into a target-legal register. Values are retrieved by 5093 // shift and mask operations. 5094 BitMapKind, 5095 5096 // The table is stored as an array of values. Values are retrieved by load 5097 // instructions from the table. 5098 ArrayKind 5099 } Kind; 5100 5101 // For SingleValueKind, this is the single value. 5102 Constant *SingleValue = nullptr; 5103 5104 // For BitMapKind, this is the bitmap. 5105 ConstantInt *BitMap = nullptr; 5106 IntegerType *BitMapElementTy = nullptr; 5107 5108 // For LinearMapKind, these are the constants used to derive the value. 5109 ConstantInt *LinearOffset = nullptr; 5110 ConstantInt *LinearMultiplier = nullptr; 5111 5112 // For ArrayKind, this is the array. 5113 GlobalVariable *Array = nullptr; 5114 }; 5115 5116 } // end anonymous namespace 5117 5118 SwitchLookupTable::SwitchLookupTable( 5119 Module &M, uint64_t TableSize, ConstantInt *Offset, 5120 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5121 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5122 assert(Values.size() && "Can't build lookup table without values!"); 5123 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5124 5125 // If all values in the table are equal, this is that value. 5126 SingleValue = Values.begin()->second; 5127 5128 Type *ValueType = Values.begin()->second->getType(); 5129 5130 // Build up the table contents. 5131 SmallVector<Constant *, 64> TableContents(TableSize); 5132 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5133 ConstantInt *CaseVal = Values[I].first; 5134 Constant *CaseRes = Values[I].second; 5135 assert(CaseRes->getType() == ValueType); 5136 5137 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5138 TableContents[Idx] = CaseRes; 5139 5140 if (CaseRes != SingleValue) 5141 SingleValue = nullptr; 5142 } 5143 5144 // Fill in any holes in the table with the default result. 5145 if (Values.size() < TableSize) { 5146 assert(DefaultValue && 5147 "Need a default value to fill the lookup table holes."); 5148 assert(DefaultValue->getType() == ValueType); 5149 for (uint64_t I = 0; I < TableSize; ++I) { 5150 if (!TableContents[I]) 5151 TableContents[I] = DefaultValue; 5152 } 5153 5154 if (DefaultValue != SingleValue) 5155 SingleValue = nullptr; 5156 } 5157 5158 // If each element in the table contains the same value, we only need to store 5159 // that single value. 5160 if (SingleValue) { 5161 Kind = SingleValueKind; 5162 return; 5163 } 5164 5165 // Check if we can derive the value with a linear transformation from the 5166 // table index. 5167 if (isa<IntegerType>(ValueType)) { 5168 bool LinearMappingPossible = true; 5169 APInt PrevVal; 5170 APInt DistToPrev; 5171 assert(TableSize >= 2 && "Should be a SingleValue table."); 5172 // Check if there is the same distance between two consecutive values. 5173 for (uint64_t I = 0; I < TableSize; ++I) { 5174 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5175 if (!ConstVal) { 5176 // This is an undef. We could deal with it, but undefs in lookup tables 5177 // are very seldom. It's probably not worth the additional complexity. 5178 LinearMappingPossible = false; 5179 break; 5180 } 5181 const APInt &Val = ConstVal->getValue(); 5182 if (I != 0) { 5183 APInt Dist = Val - PrevVal; 5184 if (I == 1) { 5185 DistToPrev = Dist; 5186 } else if (Dist != DistToPrev) { 5187 LinearMappingPossible = false; 5188 break; 5189 } 5190 } 5191 PrevVal = Val; 5192 } 5193 if (LinearMappingPossible) { 5194 LinearOffset = cast<ConstantInt>(TableContents[0]); 5195 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5196 Kind = LinearMapKind; 5197 ++NumLinearMaps; 5198 return; 5199 } 5200 } 5201 5202 // If the type is integer and the table fits in a register, build a bitmap. 5203 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5204 IntegerType *IT = cast<IntegerType>(ValueType); 5205 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5206 for (uint64_t I = TableSize; I > 0; --I) { 5207 TableInt <<= IT->getBitWidth(); 5208 // Insert values into the bitmap. Undef values are set to zero. 5209 if (!isa<UndefValue>(TableContents[I - 1])) { 5210 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5211 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5212 } 5213 } 5214 BitMap = ConstantInt::get(M.getContext(), TableInt); 5215 BitMapElementTy = IT; 5216 Kind = BitMapKind; 5217 ++NumBitMaps; 5218 return; 5219 } 5220 5221 // Store the table in an array. 5222 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5223 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5224 5225 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5226 GlobalVariable::PrivateLinkage, Initializer, 5227 "switch.table." + FuncName); 5228 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5229 // Set the alignment to that of an array items. We will be only loading one 5230 // value out of it. 5231 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5232 Kind = ArrayKind; 5233 } 5234 5235 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5236 switch (Kind) { 5237 case SingleValueKind: 5238 return SingleValue; 5239 case LinearMapKind: { 5240 // Derive the result value from the input value. 5241 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5242 false, "switch.idx.cast"); 5243 if (!LinearMultiplier->isOne()) 5244 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5245 if (!LinearOffset->isZero()) 5246 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5247 return Result; 5248 } 5249 case BitMapKind: { 5250 // Type of the bitmap (e.g. i59). 5251 IntegerType *MapTy = BitMap->getType(); 5252 5253 // Cast Index to the same type as the bitmap. 5254 // Note: The Index is <= the number of elements in the table, so 5255 // truncating it to the width of the bitmask is safe. 5256 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5257 5258 // Multiply the shift amount by the element width. 5259 ShiftAmt = Builder.CreateMul( 5260 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5261 "switch.shiftamt"); 5262 5263 // Shift down. 5264 Value *DownShifted = 5265 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5266 // Mask off. 5267 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5268 } 5269 case ArrayKind: { 5270 // Make sure the table index will not overflow when treated as signed. 5271 IntegerType *IT = cast<IntegerType>(Index->getType()); 5272 uint64_t TableSize = 5273 Array->getInitializer()->getType()->getArrayNumElements(); 5274 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5275 Index = Builder.CreateZExt( 5276 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5277 "switch.tableidx.zext"); 5278 5279 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5280 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5281 GEPIndices, "switch.gep"); 5282 return Builder.CreateLoad( 5283 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5284 "switch.load"); 5285 } 5286 } 5287 llvm_unreachable("Unknown lookup table kind!"); 5288 } 5289 5290 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5291 uint64_t TableSize, 5292 Type *ElementType) { 5293 auto *IT = dyn_cast<IntegerType>(ElementType); 5294 if (!IT) 5295 return false; 5296 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5297 // are <= 15, we could try to narrow the type. 5298 5299 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5300 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5301 return false; 5302 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5303 } 5304 5305 /// Determine whether a lookup table should be built for this switch, based on 5306 /// the number of cases, size of the table, and the types of the results. 5307 static bool 5308 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5309 const TargetTransformInfo &TTI, const DataLayout &DL, 5310 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5311 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5312 return false; // TableSize overflowed, or mul below might overflow. 5313 5314 bool AllTablesFitInRegister = true; 5315 bool HasIllegalType = false; 5316 for (const auto &I : ResultTypes) { 5317 Type *Ty = I.second; 5318 5319 // Saturate this flag to true. 5320 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5321 5322 // Saturate this flag to false. 5323 AllTablesFitInRegister = 5324 AllTablesFitInRegister && 5325 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5326 5327 // If both flags saturate, we're done. NOTE: This *only* works with 5328 // saturating flags, and all flags have to saturate first due to the 5329 // non-deterministic behavior of iterating over a dense map. 5330 if (HasIllegalType && !AllTablesFitInRegister) 5331 break; 5332 } 5333 5334 // If each table would fit in a register, we should build it anyway. 5335 if (AllTablesFitInRegister) 5336 return true; 5337 5338 // Don't build a table that doesn't fit in-register if it has illegal types. 5339 if (HasIllegalType) 5340 return false; 5341 5342 // The table density should be at least 40%. This is the same criterion as for 5343 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5344 // FIXME: Find the best cut-off. 5345 return SI->getNumCases() * 10 >= TableSize * 4; 5346 } 5347 5348 /// Try to reuse the switch table index compare. Following pattern: 5349 /// \code 5350 /// if (idx < tablesize) 5351 /// r = table[idx]; // table does not contain default_value 5352 /// else 5353 /// r = default_value; 5354 /// if (r != default_value) 5355 /// ... 5356 /// \endcode 5357 /// Is optimized to: 5358 /// \code 5359 /// cond = idx < tablesize; 5360 /// if (cond) 5361 /// r = table[idx]; 5362 /// else 5363 /// r = default_value; 5364 /// if (cond) 5365 /// ... 5366 /// \endcode 5367 /// Jump threading will then eliminate the second if(cond). 5368 static void reuseTableCompare( 5369 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5370 Constant *DefaultValue, 5371 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5372 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5373 if (!CmpInst) 5374 return; 5375 5376 // We require that the compare is in the same block as the phi so that jump 5377 // threading can do its work afterwards. 5378 if (CmpInst->getParent() != PhiBlock) 5379 return; 5380 5381 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5382 if (!CmpOp1) 5383 return; 5384 5385 Value *RangeCmp = RangeCheckBranch->getCondition(); 5386 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5387 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5388 5389 // Check if the compare with the default value is constant true or false. 5390 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5391 DefaultValue, CmpOp1, true); 5392 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5393 return; 5394 5395 // Check if the compare with the case values is distinct from the default 5396 // compare result. 5397 for (auto ValuePair : Values) { 5398 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5399 ValuePair.second, CmpOp1, true); 5400 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5401 return; 5402 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5403 "Expect true or false as compare result."); 5404 } 5405 5406 // Check if the branch instruction dominates the phi node. It's a simple 5407 // dominance check, but sufficient for our needs. 5408 // Although this check is invariant in the calling loops, it's better to do it 5409 // at this late stage. Practically we do it at most once for a switch. 5410 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5411 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5412 BasicBlock *Pred = *PI; 5413 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5414 return; 5415 } 5416 5417 if (DefaultConst == FalseConst) { 5418 // The compare yields the same result. We can replace it. 5419 CmpInst->replaceAllUsesWith(RangeCmp); 5420 ++NumTableCmpReuses; 5421 } else { 5422 // The compare yields the same result, just inverted. We can replace it. 5423 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5424 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5425 RangeCheckBranch); 5426 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5427 ++NumTableCmpReuses; 5428 } 5429 } 5430 5431 /// If the switch is only used to initialize one or more phi nodes in a common 5432 /// successor block with different constant values, replace the switch with 5433 /// lookup tables. 5434 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5435 const DataLayout &DL, 5436 const TargetTransformInfo &TTI) { 5437 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5438 5439 Function *Fn = SI->getParent()->getParent(); 5440 // Only build lookup table when we have a target that supports it or the 5441 // attribute is not set. 5442 if (!TTI.shouldBuildLookupTables() || 5443 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5444 return false; 5445 5446 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5447 // split off a dense part and build a lookup table for that. 5448 5449 // FIXME: This creates arrays of GEPs to constant strings, which means each 5450 // GEP needs a runtime relocation in PIC code. We should just build one big 5451 // string and lookup indices into that. 5452 5453 // Ignore switches with less than three cases. Lookup tables will not make 5454 // them faster, so we don't analyze them. 5455 if (SI->getNumCases() < 3) 5456 return false; 5457 5458 // Figure out the corresponding result for each case value and phi node in the 5459 // common destination, as well as the min and max case values. 5460 assert(!SI->cases().empty()); 5461 SwitchInst::CaseIt CI = SI->case_begin(); 5462 ConstantInt *MinCaseVal = CI->getCaseValue(); 5463 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5464 5465 BasicBlock *CommonDest = nullptr; 5466 5467 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5468 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5469 5470 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5471 SmallDenseMap<PHINode *, Type *> ResultTypes; 5472 SmallVector<PHINode *, 4> PHIs; 5473 5474 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5475 ConstantInt *CaseVal = CI->getCaseValue(); 5476 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5477 MinCaseVal = CaseVal; 5478 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5479 MaxCaseVal = CaseVal; 5480 5481 // Resulting value at phi nodes for this case value. 5482 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5483 ResultsTy Results; 5484 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5485 Results, DL, TTI)) 5486 return false; 5487 5488 // Append the result from this case to the list for each phi. 5489 for (const auto &I : Results) { 5490 PHINode *PHI = I.first; 5491 Constant *Value = I.second; 5492 if (!ResultLists.count(PHI)) 5493 PHIs.push_back(PHI); 5494 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5495 } 5496 } 5497 5498 // Keep track of the result types. 5499 for (PHINode *PHI : PHIs) { 5500 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5501 } 5502 5503 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5504 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5505 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5506 bool TableHasHoles = (NumResults < TableSize); 5507 5508 // If the table has holes, we need a constant result for the default case 5509 // or a bitmask that fits in a register. 5510 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5511 bool HasDefaultResults = 5512 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5513 DefaultResultsList, DL, TTI); 5514 5515 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5516 if (NeedMask) { 5517 // As an extra penalty for the validity test we require more cases. 5518 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5519 return false; 5520 if (!DL.fitsInLegalInteger(TableSize)) 5521 return false; 5522 } 5523 5524 for (const auto &I : DefaultResultsList) { 5525 PHINode *PHI = I.first; 5526 Constant *Result = I.second; 5527 DefaultResults[PHI] = Result; 5528 } 5529 5530 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5531 return false; 5532 5533 // Create the BB that does the lookups. 5534 Module &Mod = *CommonDest->getParent()->getParent(); 5535 BasicBlock *LookupBB = BasicBlock::Create( 5536 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5537 5538 // Compute the table index value. 5539 Builder.SetInsertPoint(SI); 5540 Value *TableIndex; 5541 if (MinCaseVal->isNullValue()) 5542 TableIndex = SI->getCondition(); 5543 else 5544 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5545 "switch.tableidx"); 5546 5547 // Compute the maximum table size representable by the integer type we are 5548 // switching upon. 5549 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5550 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5551 assert(MaxTableSize >= TableSize && 5552 "It is impossible for a switch to have more entries than the max " 5553 "representable value of its input integer type's size."); 5554 5555 // If the default destination is unreachable, or if the lookup table covers 5556 // all values of the conditional variable, branch directly to the lookup table 5557 // BB. Otherwise, check that the condition is within the case range. 5558 const bool DefaultIsReachable = 5559 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5560 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5561 BranchInst *RangeCheckBranch = nullptr; 5562 5563 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5564 Builder.CreateBr(LookupBB); 5565 // Note: We call removeProdecessor later since we need to be able to get the 5566 // PHI value for the default case in case we're using a bit mask. 5567 } else { 5568 Value *Cmp = Builder.CreateICmpULT( 5569 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5570 RangeCheckBranch = 5571 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5572 } 5573 5574 // Populate the BB that does the lookups. 5575 Builder.SetInsertPoint(LookupBB); 5576 5577 if (NeedMask) { 5578 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5579 // re-purposed to do the hole check, and we create a new LookupBB. 5580 BasicBlock *MaskBB = LookupBB; 5581 MaskBB->setName("switch.hole_check"); 5582 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5583 CommonDest->getParent(), CommonDest); 5584 5585 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5586 // unnecessary illegal types. 5587 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5588 APInt MaskInt(TableSizePowOf2, 0); 5589 APInt One(TableSizePowOf2, 1); 5590 // Build bitmask; fill in a 1 bit for every case. 5591 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5592 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5593 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5594 .getLimitedValue(); 5595 MaskInt |= One << Idx; 5596 } 5597 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5598 5599 // Get the TableIndex'th bit of the bitmask. 5600 // If this bit is 0 (meaning hole) jump to the default destination, 5601 // else continue with table lookup. 5602 IntegerType *MapTy = TableMask->getType(); 5603 Value *MaskIndex = 5604 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5605 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5606 Value *LoBit = Builder.CreateTrunc( 5607 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5608 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5609 5610 Builder.SetInsertPoint(LookupBB); 5611 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5612 } 5613 5614 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5615 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5616 // do not delete PHINodes here. 5617 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5618 /*KeepOneInputPHIs=*/true); 5619 } 5620 5621 bool ReturnedEarly = false; 5622 for (PHINode *PHI : PHIs) { 5623 const ResultListTy &ResultList = ResultLists[PHI]; 5624 5625 // If using a bitmask, use any value to fill the lookup table holes. 5626 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5627 StringRef FuncName = Fn->getName(); 5628 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5629 FuncName); 5630 5631 Value *Result = Table.BuildLookup(TableIndex, Builder); 5632 5633 // If the result is used to return immediately from the function, we want to 5634 // do that right here. 5635 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5636 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5637 Builder.CreateRet(Result); 5638 ReturnedEarly = true; 5639 break; 5640 } 5641 5642 // Do a small peephole optimization: re-use the switch table compare if 5643 // possible. 5644 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5645 BasicBlock *PhiBlock = PHI->getParent(); 5646 // Search for compare instructions which use the phi. 5647 for (auto *User : PHI->users()) { 5648 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5649 } 5650 } 5651 5652 PHI->addIncoming(Result, LookupBB); 5653 } 5654 5655 if (!ReturnedEarly) 5656 Builder.CreateBr(CommonDest); 5657 5658 // Remove the switch. 5659 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5660 BasicBlock *Succ = SI->getSuccessor(i); 5661 5662 if (Succ == SI->getDefaultDest()) 5663 continue; 5664 Succ->removePredecessor(SI->getParent()); 5665 } 5666 SI->eraseFromParent(); 5667 5668 ++NumLookupTables; 5669 if (NeedMask) 5670 ++NumLookupTablesHoles; 5671 return true; 5672 } 5673 5674 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5675 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5676 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5677 uint64_t Range = Diff + 1; 5678 uint64_t NumCases = Values.size(); 5679 // 40% is the default density for building a jump table in optsize/minsize mode. 5680 uint64_t MinDensity = 40; 5681 5682 return NumCases * 100 >= Range * MinDensity; 5683 } 5684 5685 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5686 /// of cases. 5687 /// 5688 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5689 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5690 /// 5691 /// This converts a sparse switch into a dense switch which allows better 5692 /// lowering and could also allow transforming into a lookup table. 5693 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5694 const DataLayout &DL, 5695 const TargetTransformInfo &TTI) { 5696 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5697 if (CondTy->getIntegerBitWidth() > 64 || 5698 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5699 return false; 5700 // Only bother with this optimization if there are more than 3 switch cases; 5701 // SDAG will only bother creating jump tables for 4 or more cases. 5702 if (SI->getNumCases() < 4) 5703 return false; 5704 5705 // This transform is agnostic to the signedness of the input or case values. We 5706 // can treat the case values as signed or unsigned. We can optimize more common 5707 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5708 // as signed. 5709 SmallVector<int64_t,4> Values; 5710 for (auto &C : SI->cases()) 5711 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5712 llvm::sort(Values); 5713 5714 // If the switch is already dense, there's nothing useful to do here. 5715 if (isSwitchDense(Values)) 5716 return false; 5717 5718 // First, transform the values such that they start at zero and ascend. 5719 int64_t Base = Values[0]; 5720 for (auto &V : Values) 5721 V -= (uint64_t)(Base); 5722 5723 // Now we have signed numbers that have been shifted so that, given enough 5724 // precision, there are no negative values. Since the rest of the transform 5725 // is bitwise only, we switch now to an unsigned representation. 5726 5727 // This transform can be done speculatively because it is so cheap - it 5728 // results in a single rotate operation being inserted. 5729 // FIXME: It's possible that optimizing a switch on powers of two might also 5730 // be beneficial - flag values are often powers of two and we could use a CLZ 5731 // as the key function. 5732 5733 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5734 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5735 // less than 64. 5736 unsigned Shift = 64; 5737 for (auto &V : Values) 5738 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5739 assert(Shift < 64); 5740 if (Shift > 0) 5741 for (auto &V : Values) 5742 V = (int64_t)((uint64_t)V >> Shift); 5743 5744 if (!isSwitchDense(Values)) 5745 // Transform didn't create a dense switch. 5746 return false; 5747 5748 // The obvious transform is to shift the switch condition right and emit a 5749 // check that the condition actually cleanly divided by GCD, i.e. 5750 // C & (1 << Shift - 1) == 0 5751 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5752 // 5753 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5754 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5755 // are nonzero then the switch condition will be very large and will hit the 5756 // default case. 5757 5758 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5759 Builder.SetInsertPoint(SI); 5760 auto *ShiftC = ConstantInt::get(Ty, Shift); 5761 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5762 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5763 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5764 auto *Rot = Builder.CreateOr(LShr, Shl); 5765 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5766 5767 for (auto Case : SI->cases()) { 5768 auto *Orig = Case.getCaseValue(); 5769 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5770 Case.setValue( 5771 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5772 } 5773 return true; 5774 } 5775 5776 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5777 BasicBlock *BB = SI->getParent(); 5778 5779 if (isValueEqualityComparison(SI)) { 5780 // If we only have one predecessor, and if it is a branch on this value, 5781 // see if that predecessor totally determines the outcome of this switch. 5782 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5783 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5784 return requestResimplify(); 5785 5786 Value *Cond = SI->getCondition(); 5787 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5788 if (SimplifySwitchOnSelect(SI, Select)) 5789 return requestResimplify(); 5790 5791 // If the block only contains the switch, see if we can fold the block 5792 // away into any preds. 5793 if (SI == &*BB->instructionsWithoutDebug().begin()) 5794 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5795 return requestResimplify(); 5796 } 5797 5798 // Try to transform the switch into an icmp and a branch. 5799 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5800 return requestResimplify(); 5801 5802 // Remove unreachable cases. 5803 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5804 return requestResimplify(); 5805 5806 if (switchToSelect(SI, Builder, DL, TTI)) 5807 return requestResimplify(); 5808 5809 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5810 return requestResimplify(); 5811 5812 // The conversion from switch to lookup tables results in difficult-to-analyze 5813 // code and makes pruning branches much harder. This is a problem if the 5814 // switch expression itself can still be restricted as a result of inlining or 5815 // CVP. Therefore, only apply this transformation during late stages of the 5816 // optimisation pipeline. 5817 if (Options.ConvertSwitchToLookupTable && 5818 SwitchToLookupTable(SI, Builder, DL, TTI)) 5819 return requestResimplify(); 5820 5821 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5822 return requestResimplify(); 5823 5824 return false; 5825 } 5826 5827 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 5828 BasicBlock *BB = IBI->getParent(); 5829 bool Changed = false; 5830 5831 // Eliminate redundant destinations. 5832 SmallPtrSet<Value *, 8> Succs; 5833 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5834 BasicBlock *Dest = IBI->getDestination(i); 5835 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5836 Dest->removePredecessor(BB); 5837 IBI->removeDestination(i); 5838 --i; 5839 --e; 5840 Changed = true; 5841 } 5842 } 5843 5844 if (IBI->getNumDestinations() == 0) { 5845 // If the indirectbr has no successors, change it to unreachable. 5846 new UnreachableInst(IBI->getContext(), IBI); 5847 EraseTerminatorAndDCECond(IBI); 5848 return true; 5849 } 5850 5851 if (IBI->getNumDestinations() == 1) { 5852 // If the indirectbr has one successor, change it to a direct branch. 5853 BranchInst::Create(IBI->getDestination(0), IBI); 5854 EraseTerminatorAndDCECond(IBI); 5855 return true; 5856 } 5857 5858 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5859 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5860 return requestResimplify(); 5861 } 5862 return Changed; 5863 } 5864 5865 /// Given an block with only a single landing pad and a unconditional branch 5866 /// try to find another basic block which this one can be merged with. This 5867 /// handles cases where we have multiple invokes with unique landing pads, but 5868 /// a shared handler. 5869 /// 5870 /// We specifically choose to not worry about merging non-empty blocks 5871 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5872 /// practice, the optimizer produces empty landing pad blocks quite frequently 5873 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5874 /// sinking in this file) 5875 /// 5876 /// This is primarily a code size optimization. We need to avoid performing 5877 /// any transform which might inhibit optimization (such as our ability to 5878 /// specialize a particular handler via tail commoning). We do this by not 5879 /// merging any blocks which require us to introduce a phi. Since the same 5880 /// values are flowing through both blocks, we don't lose any ability to 5881 /// specialize. If anything, we make such specialization more likely. 5882 /// 5883 /// TODO - This transformation could remove entries from a phi in the target 5884 /// block when the inputs in the phi are the same for the two blocks being 5885 /// merged. In some cases, this could result in removal of the PHI entirely. 5886 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5887 BasicBlock *BB) { 5888 auto Succ = BB->getUniqueSuccessor(); 5889 assert(Succ); 5890 // If there's a phi in the successor block, we'd likely have to introduce 5891 // a phi into the merged landing pad block. 5892 if (isa<PHINode>(*Succ->begin())) 5893 return false; 5894 5895 for (BasicBlock *OtherPred : predecessors(Succ)) { 5896 if (BB == OtherPred) 5897 continue; 5898 BasicBlock::iterator I = OtherPred->begin(); 5899 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5900 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5901 continue; 5902 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5903 ; 5904 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5905 if (!BI2 || !BI2->isIdenticalTo(BI)) 5906 continue; 5907 5908 // We've found an identical block. Update our predecessors to take that 5909 // path instead and make ourselves dead. 5910 SmallPtrSet<BasicBlock *, 16> Preds; 5911 Preds.insert(pred_begin(BB), pred_end(BB)); 5912 for (BasicBlock *Pred : Preds) { 5913 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5914 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5915 "unexpected successor"); 5916 II->setUnwindDest(OtherPred); 5917 } 5918 5919 // The debug info in OtherPred doesn't cover the merged control flow that 5920 // used to go through BB. We need to delete it or update it. 5921 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5922 Instruction &Inst = *I; 5923 I++; 5924 if (isa<DbgInfoIntrinsic>(Inst)) 5925 Inst.eraseFromParent(); 5926 } 5927 5928 SmallPtrSet<BasicBlock *, 16> Succs; 5929 Succs.insert(succ_begin(BB), succ_end(BB)); 5930 for (BasicBlock *Succ : Succs) { 5931 Succ->removePredecessor(BB); 5932 } 5933 5934 IRBuilder<> Builder(BI); 5935 Builder.CreateUnreachable(); 5936 BI->eraseFromParent(); 5937 return true; 5938 } 5939 return false; 5940 } 5941 5942 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 5943 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 5944 : simplifyCondBranch(Branch, Builder); 5945 } 5946 5947 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 5948 IRBuilder<> &Builder) { 5949 BasicBlock *BB = BI->getParent(); 5950 BasicBlock *Succ = BI->getSuccessor(0); 5951 5952 // If the Terminator is the only non-phi instruction, simplify the block. 5953 // If LoopHeader is provided, check if the block or its successor is a loop 5954 // header. (This is for early invocations before loop simplify and 5955 // vectorization to keep canonical loop forms for nested loops. These blocks 5956 // can be eliminated when the pass is invoked later in the back-end.) 5957 // Note that if BB has only one predecessor then we do not introduce new 5958 // backedge, so we can eliminate BB. 5959 bool NeedCanonicalLoop = 5960 Options.NeedCanonicalLoop && 5961 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5962 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5963 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5964 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5965 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5966 return true; 5967 5968 // If the only instruction in the block is a seteq/setne comparison against a 5969 // constant, try to simplify the block. 5970 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5971 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5972 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5973 ; 5974 if (I->isTerminator() && 5975 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5976 return true; 5977 } 5978 5979 // See if we can merge an empty landing pad block with another which is 5980 // equivalent. 5981 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5982 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5983 ; 5984 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5985 return true; 5986 } 5987 5988 // If this basic block is ONLY a compare and a branch, and if a predecessor 5989 // branches to us and our successor, fold the comparison into the 5990 // predecessor and use logical operations to update the incoming value 5991 // for PHI nodes in common successor. 5992 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5993 return requestResimplify(); 5994 return false; 5995 } 5996 5997 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5998 BasicBlock *PredPred = nullptr; 5999 for (auto *P : predecessors(BB)) { 6000 BasicBlock *PPred = P->getSinglePredecessor(); 6001 if (!PPred || (PredPred && PredPred != PPred)) 6002 return nullptr; 6003 PredPred = PPred; 6004 } 6005 return PredPred; 6006 } 6007 6008 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6009 BasicBlock *BB = BI->getParent(); 6010 if (!Options.SimplifyCondBranch) 6011 return false; 6012 6013 // Conditional branch 6014 if (isValueEqualityComparison(BI)) { 6015 // If we only have one predecessor, and if it is a branch on this value, 6016 // see if that predecessor totally determines the outcome of this 6017 // switch. 6018 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6019 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6020 return requestResimplify(); 6021 6022 // This block must be empty, except for the setcond inst, if it exists. 6023 // Ignore dbg intrinsics. 6024 auto I = BB->instructionsWithoutDebug().begin(); 6025 if (&*I == BI) { 6026 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6027 return requestResimplify(); 6028 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6029 ++I; 6030 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6031 return requestResimplify(); 6032 } 6033 } 6034 6035 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6036 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6037 return true; 6038 6039 // If this basic block has dominating predecessor blocks and the dominating 6040 // blocks' conditions imply BI's condition, we know the direction of BI. 6041 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6042 if (Imp) { 6043 // Turn this into a branch on constant. 6044 auto *OldCond = BI->getCondition(); 6045 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6046 : ConstantInt::getFalse(BB->getContext()); 6047 BI->setCondition(TorF); 6048 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6049 return requestResimplify(); 6050 } 6051 6052 // If this basic block is ONLY a compare and a branch, and if a predecessor 6053 // branches to us and one of our successors, fold the comparison into the 6054 // predecessor and use logical operations to pick the right destination. 6055 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 6056 return requestResimplify(); 6057 6058 // We have a conditional branch to two blocks that are only reachable 6059 // from BI. We know that the condbr dominates the two blocks, so see if 6060 // there is any identical code in the "then" and "else" blocks. If so, we 6061 // can hoist it up to the branching block. 6062 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6063 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6064 if (HoistCommon && Options.HoistCommonInsts) 6065 if (HoistThenElseCodeToIf(BI, TTI)) 6066 return requestResimplify(); 6067 } else { 6068 // If Successor #1 has multiple preds, we may be able to conditionally 6069 // execute Successor #0 if it branches to Successor #1. 6070 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6071 if (Succ0TI->getNumSuccessors() == 1 && 6072 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6073 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6074 return requestResimplify(); 6075 } 6076 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6077 // If Successor #0 has multiple preds, we may be able to conditionally 6078 // execute Successor #1 if it branches to Successor #0. 6079 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6080 if (Succ1TI->getNumSuccessors() == 1 && 6081 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6082 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6083 return requestResimplify(); 6084 } 6085 6086 // If this is a branch on a phi node in the current block, thread control 6087 // through this block if any PHI node entries are constants. 6088 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6089 if (PN->getParent() == BI->getParent()) 6090 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 6091 return requestResimplify(); 6092 6093 // Scan predecessor blocks for conditional branches. 6094 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6095 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6096 if (PBI != BI && PBI->isConditional()) 6097 if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI)) 6098 return requestResimplify(); 6099 6100 // Look for diamond patterns. 6101 if (MergeCondStores) 6102 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6103 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6104 if (PBI != BI && PBI->isConditional()) 6105 if (mergeConditionalStores(PBI, BI, DL, TTI)) 6106 return requestResimplify(); 6107 6108 return false; 6109 } 6110 6111 /// Check if passing a value to an instruction will cause undefined behavior. 6112 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 6113 Constant *C = dyn_cast<Constant>(V); 6114 if (!C) 6115 return false; 6116 6117 if (I->use_empty()) 6118 return false; 6119 6120 if (C->isNullValue() || isa<UndefValue>(C)) { 6121 // Only look at the first use, avoid hurting compile time with long uselists 6122 User *Use = *I->user_begin(); 6123 6124 // Now make sure that there are no instructions in between that can alter 6125 // control flow (eg. calls) 6126 for (BasicBlock::iterator 6127 i = ++BasicBlock::iterator(I), 6128 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6129 i != UI; ++i) 6130 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6131 return false; 6132 6133 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6134 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6135 if (GEP->getPointerOperand() == I) 6136 return passingValueIsAlwaysUndefined(V, GEP); 6137 6138 // Look through bitcasts. 6139 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6140 return passingValueIsAlwaysUndefined(V, BC); 6141 6142 // Load from null is undefined. 6143 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6144 if (!LI->isVolatile()) 6145 return !NullPointerIsDefined(LI->getFunction(), 6146 LI->getPointerAddressSpace()); 6147 6148 // Store to null is undefined. 6149 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6150 if (!SI->isVolatile()) 6151 return (!NullPointerIsDefined(SI->getFunction(), 6152 SI->getPointerAddressSpace())) && 6153 SI->getPointerOperand() == I; 6154 6155 // A call to null is undefined. 6156 if (auto *CB = dyn_cast<CallBase>(Use)) 6157 return !NullPointerIsDefined(CB->getFunction()) && 6158 CB->getCalledOperand() == I; 6159 } 6160 return false; 6161 } 6162 6163 /// If BB has an incoming value that will always trigger undefined behavior 6164 /// (eg. null pointer dereference), remove the branch leading here. 6165 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 6166 for (PHINode &PHI : BB->phis()) 6167 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6168 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6169 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6170 IRBuilder<> Builder(T); 6171 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6172 BB->removePredecessor(PHI.getIncomingBlock(i)); 6173 // Turn uncoditional branches into unreachables and remove the dead 6174 // destination from conditional branches. 6175 if (BI->isUnconditional()) 6176 Builder.CreateUnreachable(); 6177 else 6178 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6179 : BI->getSuccessor(0)); 6180 BI->eraseFromParent(); 6181 return true; 6182 } 6183 // TODO: SwitchInst. 6184 } 6185 6186 return false; 6187 } 6188 6189 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6190 bool Changed = false; 6191 6192 assert(BB && BB->getParent() && "Block not embedded in function!"); 6193 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6194 6195 // Remove basic blocks that have no predecessors (except the entry block)... 6196 // or that just have themself as a predecessor. These are unreachable. 6197 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6198 BB->getSinglePredecessor() == BB) { 6199 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6200 DeleteDeadBlock(BB); 6201 return true; 6202 } 6203 6204 // Check to see if we can constant propagate this terminator instruction 6205 // away... 6206 Changed |= ConstantFoldTerminator(BB, true); 6207 6208 // Check for and eliminate duplicate PHI nodes in this block. 6209 Changed |= EliminateDuplicatePHINodes(BB); 6210 6211 // Check for and remove branches that will always cause undefined behavior. 6212 Changed |= removeUndefIntroducingPredecessor(BB); 6213 6214 // Merge basic blocks into their predecessor if there is only one distinct 6215 // pred, and if there is only one distinct successor of the predecessor, and 6216 // if there are no PHI nodes. 6217 if (MergeBlockIntoPredecessor(BB)) 6218 return true; 6219 6220 if (SinkCommon && Options.SinkCommonInsts) 6221 Changed |= SinkCommonCodeFromPredecessors(BB); 6222 6223 IRBuilder<> Builder(BB); 6224 6225 if (Options.FoldTwoEntryPHINode) { 6226 // If there is a trivial two-entry PHI node in this basic block, and we can 6227 // eliminate it, do so now. 6228 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6229 if (PN->getNumIncomingValues() == 2) 6230 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6231 } 6232 6233 Instruction *Terminator = BB->getTerminator(); 6234 Builder.SetInsertPoint(Terminator); 6235 switch (Terminator->getOpcode()) { 6236 case Instruction::Br: 6237 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6238 break; 6239 case Instruction::Ret: 6240 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6241 break; 6242 case Instruction::Resume: 6243 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6244 break; 6245 case Instruction::CleanupRet: 6246 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6247 break; 6248 case Instruction::Switch: 6249 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6250 break; 6251 case Instruction::Unreachable: 6252 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6253 break; 6254 case Instruction::IndirectBr: 6255 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6256 break; 6257 } 6258 6259 return Changed; 6260 } 6261 6262 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6263 bool Changed = false; 6264 6265 // Repeated simplify BB as long as resimplification is requested. 6266 do { 6267 Resimplify = false; 6268 6269 // Perform one round of simplifcation. Resimplify flag will be set if 6270 // another iteration is requested. 6271 Changed |= simplifyOnce(BB); 6272 } while (Resimplify); 6273 6274 return Changed; 6275 } 6276 6277 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6278 const SimplifyCFGOptions &Options, 6279 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6280 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6281 Options) 6282 .run(BB); 6283 } 6284