1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<bool> DupRet( 98 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 99 cl::desc("Duplicate return instructions into unconditional branches")); 100 101 static cl::opt<bool> 102 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 103 cl::desc("Sink common instructions down to the end block")); 104 105 static cl::opt<bool> HoistCondStores( 106 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores if an unconditional store precedes")); 108 109 static cl::opt<bool> MergeCondStores( 110 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 111 cl::desc("Hoist conditional stores even if an unconditional store does not " 112 "precede - hoist multiple conditional stores into a single " 113 "predicated store")); 114 115 static cl::opt<bool> MergeCondStoresAggressively( 116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 117 cl::desc("When merging conditional stores, do so even if the resultant " 118 "basic blocks are unlikely to be if-converted as a result")); 119 120 static cl::opt<bool> SpeculateOneExpensiveInst( 121 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 122 cl::desc("Allow exactly one expensive instruction to be speculatively " 123 "executed")); 124 125 static cl::opt<unsigned> MaxSpeculationDepth( 126 "max-speculation-depth", cl::Hidden, cl::init(10), 127 cl::desc("Limit maximum recursion depth when calculating costs of " 128 "speculatively executed instructions")); 129 130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 131 STATISTIC(NumLinearMaps, 132 "Number of switch instructions turned into linear mapping"); 133 STATISTIC(NumLookupTables, 134 "Number of switch instructions turned into lookup tables"); 135 STATISTIC( 136 NumLookupTablesHoles, 137 "Number of switch instructions turned into lookup tables (holes checked)"); 138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 139 STATISTIC(NumSinkCommons, 140 "Number of common instructions sunk down to the end block"); 141 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 142 143 namespace { 144 145 // The first field contains the value that the switch produces when a certain 146 // case group is selected, and the second field is a vector containing the 147 // cases composing the case group. 148 using SwitchCaseResultVectorTy = 149 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 150 151 // The first field contains the phi node that generates a result of the switch 152 // and the second field contains the value generated for a certain case in the 153 // switch for that PHI. 154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 155 156 /// ValueEqualityComparisonCase - Represents a case of a switch. 157 struct ValueEqualityComparisonCase { 158 ConstantInt *Value; 159 BasicBlock *Dest; 160 161 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 162 : Value(Value), Dest(Dest) {} 163 164 bool operator<(ValueEqualityComparisonCase RHS) const { 165 // Comparing pointers is ok as we only rely on the order for uniquing. 166 return Value < RHS.Value; 167 } 168 169 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 170 }; 171 172 class SimplifyCFGOpt { 173 const TargetTransformInfo &TTI; 174 const DataLayout &DL; 175 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 176 const SimplifyCFGOptions &Options; 177 178 Value *isValueEqualityComparison(TerminatorInst *TI); 179 BasicBlock *GetValueEqualityComparisonCases( 180 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 181 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 182 BasicBlock *Pred, 183 IRBuilder<> &Builder); 184 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 185 IRBuilder<> &Builder); 186 187 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 188 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 189 bool SimplifySingleResume(ResumeInst *RI); 190 bool SimplifyCommonResume(ResumeInst *RI); 191 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 192 bool SimplifyUnreachable(UnreachableInst *UI); 193 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 194 bool SimplifyIndirectBr(IndirectBrInst *IBI); 195 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 198 public: 199 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 200 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 201 const SimplifyCFGOptions &Opts) 202 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 203 204 bool run(BasicBlock *BB); 205 }; 206 207 } // end anonymous namespace 208 209 /// Return true if it is safe to merge these two 210 /// terminator instructions together. 211 static bool 212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 213 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 214 if (SI1 == SI2) 215 return false; // Can't merge with self! 216 217 // It is not safe to merge these two switch instructions if they have a common 218 // successor, and if that successor has a PHI node, and if *that* PHI node has 219 // conflicting incoming values from the two switch blocks. 220 BasicBlock *SI1BB = SI1->getParent(); 221 BasicBlock *SI2BB = SI2->getParent(); 222 223 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 224 bool Fail = false; 225 for (BasicBlock *Succ : successors(SI2BB)) 226 if (SI1Succs.count(Succ)) 227 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 228 PHINode *PN = cast<PHINode>(BBI); 229 if (PN->getIncomingValueForBlock(SI1BB) != 230 PN->getIncomingValueForBlock(SI2BB)) { 231 if (FailBlocks) 232 FailBlocks->insert(Succ); 233 Fail = true; 234 } 235 } 236 237 return !Fail; 238 } 239 240 /// Return true if it is safe and profitable to merge these two terminator 241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 242 /// store all PHI nodes in common successors. 243 static bool 244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 245 Instruction *Cond, 246 SmallVectorImpl<PHINode *> &PhiNodes) { 247 if (SI1 == SI2) 248 return false; // Can't merge with self! 249 assert(SI1->isUnconditional() && SI2->isConditional()); 250 251 // We fold the unconditional branch if we can easily update all PHI nodes in 252 // common successors: 253 // 1> We have a constant incoming value for the conditional branch; 254 // 2> We have "Cond" as the incoming value for the unconditional branch; 255 // 3> SI2->getCondition() and Cond have same operands. 256 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 257 if (!Ci2) 258 return false; 259 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 260 Cond->getOperand(1) == Ci2->getOperand(1)) && 261 !(Cond->getOperand(0) == Ci2->getOperand(1) && 262 Cond->getOperand(1) == Ci2->getOperand(0))) 263 return false; 264 265 BasicBlock *SI1BB = SI1->getParent(); 266 BasicBlock *SI2BB = SI2->getParent(); 267 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 268 for (BasicBlock *Succ : successors(SI2BB)) 269 if (SI1Succs.count(Succ)) 270 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 271 PHINode *PN = cast<PHINode>(BBI); 272 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 273 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 274 return false; 275 PhiNodes.push_back(PN); 276 } 277 return true; 278 } 279 280 /// Update PHI nodes in Succ to indicate that there will now be entries in it 281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 282 /// will be the same as those coming in from ExistPred, an existing predecessor 283 /// of Succ. 284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 285 BasicBlock *ExistPred) { 286 if (!isa<PHINode>(Succ->begin())) 287 return; // Quick exit if nothing to do 288 289 PHINode *PN; 290 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 291 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 292 } 293 294 /// Compute an abstract "cost" of speculating the given instruction, 295 /// which is assumed to be safe to speculate. TCC_Free means cheap, 296 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 297 /// expensive. 298 static unsigned ComputeSpeculationCost(const User *I, 299 const TargetTransformInfo &TTI) { 300 assert(isSafeToSpeculativelyExecute(I) && 301 "Instruction is not safe to speculatively execute!"); 302 return TTI.getUserCost(I); 303 } 304 305 /// If we have a merge point of an "if condition" as accepted above, 306 /// return true if the specified value dominates the block. We 307 /// don't handle the true generality of domination here, just a special case 308 /// which works well enough for us. 309 /// 310 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 311 /// see if V (which must be an instruction) and its recursive operands 312 /// that do not dominate BB have a combined cost lower than CostRemaining and 313 /// are non-trapping. If both are true, the instruction is inserted into the 314 /// set and true is returned. 315 /// 316 /// The cost for most non-trapping instructions is defined as 1 except for 317 /// Select whose cost is 2. 318 /// 319 /// After this function returns, CostRemaining is decreased by the cost of 320 /// V plus its non-dominating operands. If that cost is greater than 321 /// CostRemaining, false is returned and CostRemaining is undefined. 322 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 323 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 324 unsigned &CostRemaining, 325 const TargetTransformInfo &TTI, 326 unsigned Depth = 0) { 327 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 328 // so limit the recursion depth. 329 // TODO: While this recursion limit does prevent pathological behavior, it 330 // would be better to track visited instructions to avoid cycles. 331 if (Depth == MaxSpeculationDepth) 332 return false; 333 334 Instruction *I = dyn_cast<Instruction>(V); 335 if (!I) { 336 // Non-instructions all dominate instructions, but not all constantexprs 337 // can be executed unconditionally. 338 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 339 if (C->canTrap()) 340 return false; 341 return true; 342 } 343 BasicBlock *PBB = I->getParent(); 344 345 // We don't want to allow weird loops that might have the "if condition" in 346 // the bottom of this block. 347 if (PBB == BB) 348 return false; 349 350 // If this instruction is defined in a block that contains an unconditional 351 // branch to BB, then it must be in the 'conditional' part of the "if 352 // statement". If not, it definitely dominates the region. 353 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 354 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 355 return true; 356 357 // If we aren't allowing aggressive promotion anymore, then don't consider 358 // instructions in the 'if region'. 359 if (!AggressiveInsts) 360 return false; 361 362 // If we have seen this instruction before, don't count it again. 363 if (AggressiveInsts->count(I)) 364 return true; 365 366 // Okay, it looks like the instruction IS in the "condition". Check to 367 // see if it's a cheap instruction to unconditionally compute, and if it 368 // only uses stuff defined outside of the condition. If so, hoist it out. 369 if (!isSafeToSpeculativelyExecute(I)) 370 return false; 371 372 unsigned Cost = ComputeSpeculationCost(I, TTI); 373 374 // Allow exactly one instruction to be speculated regardless of its cost 375 // (as long as it is safe to do so). 376 // This is intended to flatten the CFG even if the instruction is a division 377 // or other expensive operation. The speculation of an expensive instruction 378 // is expected to be undone in CodeGenPrepare if the speculation has not 379 // enabled further IR optimizations. 380 if (Cost > CostRemaining && 381 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 382 return false; 383 384 // Avoid unsigned wrap. 385 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 386 387 // Okay, we can only really hoist these out if their operands do 388 // not take us over the cost threshold. 389 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 390 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 391 Depth + 1)) 392 return false; 393 // Okay, it's safe to do this! Remember this instruction. 394 AggressiveInsts->insert(I); 395 return true; 396 } 397 398 /// Extract ConstantInt from value, looking through IntToPtr 399 /// and PointerNullValue. Return NULL if value is not a constant int. 400 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 401 // Normal constant int. 402 ConstantInt *CI = dyn_cast<ConstantInt>(V); 403 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 404 return CI; 405 406 // This is some kind of pointer constant. Turn it into a pointer-sized 407 // ConstantInt if possible. 408 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 409 410 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 411 if (isa<ConstantPointerNull>(V)) 412 return ConstantInt::get(PtrTy, 0); 413 414 // IntToPtr const int. 415 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 416 if (CE->getOpcode() == Instruction::IntToPtr) 417 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 418 // The constant is very likely to have the right type already. 419 if (CI->getType() == PtrTy) 420 return CI; 421 else 422 return cast<ConstantInt>( 423 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 424 } 425 return nullptr; 426 } 427 428 namespace { 429 430 /// Given a chain of or (||) or and (&&) comparison of a value against a 431 /// constant, this will try to recover the information required for a switch 432 /// structure. 433 /// It will depth-first traverse the chain of comparison, seeking for patterns 434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 435 /// representing the different cases for the switch. 436 /// Note that if the chain is composed of '||' it will build the set of elements 437 /// that matches the comparisons (i.e. any of this value validate the chain) 438 /// while for a chain of '&&' it will build the set elements that make the test 439 /// fail. 440 struct ConstantComparesGatherer { 441 const DataLayout &DL; 442 443 /// Value found for the switch comparison 444 Value *CompValue = nullptr; 445 446 /// Extra clause to be checked before the switch 447 Value *Extra = nullptr; 448 449 /// Set of integers to match in switch 450 SmallVector<ConstantInt *, 8> Vals; 451 452 /// Number of comparisons matched in the and/or chain 453 unsigned UsedICmps = 0; 454 455 /// Construct and compute the result for the comparison instruction Cond 456 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 457 gather(Cond); 458 } 459 460 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 461 ConstantComparesGatherer & 462 operator=(const ConstantComparesGatherer &) = delete; 463 464 private: 465 /// Try to set the current value used for the comparison, it succeeds only if 466 /// it wasn't set before or if the new value is the same as the old one 467 bool setValueOnce(Value *NewVal) { 468 if (CompValue && CompValue != NewVal) 469 return false; 470 CompValue = NewVal; 471 return (CompValue != nullptr); 472 } 473 474 /// Try to match Instruction "I" as a comparison against a constant and 475 /// populates the array Vals with the set of values that match (or do not 476 /// match depending on isEQ). 477 /// Return false on failure. On success, the Value the comparison matched 478 /// against is placed in CompValue. 479 /// If CompValue is already set, the function is expected to fail if a match 480 /// is found but the value compared to is different. 481 bool matchInstruction(Instruction *I, bool isEQ) { 482 // If this is an icmp against a constant, handle this as one of the cases. 483 ICmpInst *ICI; 484 ConstantInt *C; 485 if (!((ICI = dyn_cast<ICmpInst>(I)) && 486 (C = GetConstantInt(I->getOperand(1), DL)))) { 487 return false; 488 } 489 490 Value *RHSVal; 491 const APInt *RHSC; 492 493 // Pattern match a special case 494 // (x & ~2^z) == y --> x == y || x == y|2^z 495 // This undoes a transformation done by instcombine to fuse 2 compares. 496 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 497 // It's a little bit hard to see why the following transformations are 498 // correct. Here is a CVC3 program to verify them for 64-bit values: 499 500 /* 501 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 502 x : BITVECTOR(64); 503 y : BITVECTOR(64); 504 z : BITVECTOR(64); 505 mask : BITVECTOR(64) = BVSHL(ONE, z); 506 QUERY( (y & ~mask = y) => 507 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 508 ); 509 QUERY( (y | mask = y) => 510 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 511 ); 512 */ 513 514 // Please note that each pattern must be a dual implication (<--> or 515 // iff). One directional implication can create spurious matches. If the 516 // implication is only one-way, an unsatisfiable condition on the left 517 // side can imply a satisfiable condition on the right side. Dual 518 // implication ensures that satisfiable conditions are transformed to 519 // other satisfiable conditions and unsatisfiable conditions are 520 // transformed to other unsatisfiable conditions. 521 522 // Here is a concrete example of a unsatisfiable condition on the left 523 // implying a satisfiable condition on the right: 524 // 525 // mask = (1 << z) 526 // (x & ~mask) == y --> (x == y || x == (y | mask)) 527 // 528 // Substituting y = 3, z = 0 yields: 529 // (x & -2) == 3 --> (x == 3 || x == 2) 530 531 // Pattern match a special case: 532 /* 533 QUERY( (y & ~mask = y) => 534 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 535 ); 536 */ 537 if (match(ICI->getOperand(0), 538 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 539 APInt Mask = ~*RHSC; 540 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 541 // If we already have a value for the switch, it has to match! 542 if (!setValueOnce(RHSVal)) 543 return false; 544 545 Vals.push_back(C); 546 Vals.push_back( 547 ConstantInt::get(C->getContext(), 548 C->getValue() | Mask)); 549 UsedICmps++; 550 return true; 551 } 552 } 553 554 // Pattern match a special case: 555 /* 556 QUERY( (y | mask = y) => 557 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 558 ); 559 */ 560 if (match(ICI->getOperand(0), 561 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 562 APInt Mask = *RHSC; 563 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 564 // If we already have a value for the switch, it has to match! 565 if (!setValueOnce(RHSVal)) 566 return false; 567 568 Vals.push_back(C); 569 Vals.push_back(ConstantInt::get(C->getContext(), 570 C->getValue() & ~Mask)); 571 UsedICmps++; 572 return true; 573 } 574 } 575 576 // If we already have a value for the switch, it has to match! 577 if (!setValueOnce(ICI->getOperand(0))) 578 return false; 579 580 UsedICmps++; 581 Vals.push_back(C); 582 return ICI->getOperand(0); 583 } 584 585 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 586 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 587 ICI->getPredicate(), C->getValue()); 588 589 // Shift the range if the compare is fed by an add. This is the range 590 // compare idiom as emitted by instcombine. 591 Value *CandidateVal = I->getOperand(0); 592 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 593 Span = Span.subtract(*RHSC); 594 CandidateVal = RHSVal; 595 } 596 597 // If this is an and/!= check, then we are looking to build the set of 598 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 599 // x != 0 && x != 1. 600 if (!isEQ) 601 Span = Span.inverse(); 602 603 // If there are a ton of values, we don't want to make a ginormous switch. 604 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 605 return false; 606 } 607 608 // If we already have a value for the switch, it has to match! 609 if (!setValueOnce(CandidateVal)) 610 return false; 611 612 // Add all values from the range to the set 613 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 614 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 615 616 UsedICmps++; 617 return true; 618 } 619 620 /// Given a potentially 'or'd or 'and'd together collection of icmp 621 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 622 /// the value being compared, and stick the list constants into the Vals 623 /// vector. 624 /// One "Extra" case is allowed to differ from the other. 625 void gather(Value *V) { 626 Instruction *I = dyn_cast<Instruction>(V); 627 bool isEQ = (I->getOpcode() == Instruction::Or); 628 629 // Keep a stack (SmallVector for efficiency) for depth-first traversal 630 SmallVector<Value *, 8> DFT; 631 SmallPtrSet<Value *, 8> Visited; 632 633 // Initialize 634 Visited.insert(V); 635 DFT.push_back(V); 636 637 while (!DFT.empty()) { 638 V = DFT.pop_back_val(); 639 640 if (Instruction *I = dyn_cast<Instruction>(V)) { 641 // If it is a || (or && depending on isEQ), process the operands. 642 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 643 if (Visited.insert(I->getOperand(1)).second) 644 DFT.push_back(I->getOperand(1)); 645 if (Visited.insert(I->getOperand(0)).second) 646 DFT.push_back(I->getOperand(0)); 647 continue; 648 } 649 650 // Try to match the current instruction 651 if (matchInstruction(I, isEQ)) 652 // Match succeed, continue the loop 653 continue; 654 } 655 656 // One element of the sequence of || (or &&) could not be match as a 657 // comparison against the same value as the others. 658 // We allow only one "Extra" case to be checked before the switch 659 if (!Extra) { 660 Extra = V; 661 continue; 662 } 663 // Failed to parse a proper sequence, abort now 664 CompValue = nullptr; 665 break; 666 } 667 } 668 }; 669 670 } // end anonymous namespace 671 672 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 673 Instruction *Cond = nullptr; 674 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 675 Cond = dyn_cast<Instruction>(SI->getCondition()); 676 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 677 if (BI->isConditional()) 678 Cond = dyn_cast<Instruction>(BI->getCondition()); 679 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 680 Cond = dyn_cast<Instruction>(IBI->getAddress()); 681 } 682 683 TI->eraseFromParent(); 684 if (Cond) 685 RecursivelyDeleteTriviallyDeadInstructions(Cond); 686 } 687 688 /// Return true if the specified terminator checks 689 /// to see if a value is equal to constant integer value. 690 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 691 Value *CV = nullptr; 692 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 693 // Do not permit merging of large switch instructions into their 694 // predecessors unless there is only one predecessor. 695 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 696 pred_end(SI->getParent())) <= 697 128) 698 CV = SI->getCondition(); 699 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 700 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 701 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 702 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 703 CV = ICI->getOperand(0); 704 } 705 706 // Unwrap any lossless ptrtoint cast. 707 if (CV) { 708 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 709 Value *Ptr = PTII->getPointerOperand(); 710 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 711 CV = Ptr; 712 } 713 } 714 return CV; 715 } 716 717 /// Given a value comparison instruction, 718 /// decode all of the 'cases' that it represents and return the 'default' block. 719 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 720 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 721 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 722 Cases.reserve(SI->getNumCases()); 723 for (auto Case : SI->cases()) 724 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 725 Case.getCaseSuccessor())); 726 return SI->getDefaultDest(); 727 } 728 729 BranchInst *BI = cast<BranchInst>(TI); 730 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 731 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 732 Cases.push_back(ValueEqualityComparisonCase( 733 GetConstantInt(ICI->getOperand(1), DL), Succ)); 734 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 735 } 736 737 /// Given a vector of bb/value pairs, remove any entries 738 /// in the list that match the specified block. 739 static void 740 EliminateBlockCases(BasicBlock *BB, 741 std::vector<ValueEqualityComparisonCase> &Cases) { 742 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 743 } 744 745 /// Return true if there are any keys in C1 that exist in C2 as well. 746 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 747 std::vector<ValueEqualityComparisonCase> &C2) { 748 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 749 750 // Make V1 be smaller than V2. 751 if (V1->size() > V2->size()) 752 std::swap(V1, V2); 753 754 if (V1->empty()) 755 return false; 756 if (V1->size() == 1) { 757 // Just scan V2. 758 ConstantInt *TheVal = (*V1)[0].Value; 759 for (unsigned i = 0, e = V2->size(); i != e; ++i) 760 if (TheVal == (*V2)[i].Value) 761 return true; 762 } 763 764 // Otherwise, just sort both lists and compare element by element. 765 array_pod_sort(V1->begin(), V1->end()); 766 array_pod_sort(V2->begin(), V2->end()); 767 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 768 while (i1 != e1 && i2 != e2) { 769 if ((*V1)[i1].Value == (*V2)[i2].Value) 770 return true; 771 if ((*V1)[i1].Value < (*V2)[i2].Value) 772 ++i1; 773 else 774 ++i2; 775 } 776 return false; 777 } 778 779 // Set branch weights on SwitchInst. This sets the metadata if there is at 780 // least one non-zero weight. 781 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 782 // Check that there is at least one non-zero weight. Otherwise, pass 783 // nullptr to setMetadata which will erase the existing metadata. 784 MDNode *N = nullptr; 785 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 786 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 787 SI->setMetadata(LLVMContext::MD_prof, N); 788 } 789 790 // Similar to the above, but for branch and select instructions that take 791 // exactly 2 weights. 792 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 793 uint32_t FalseWeight) { 794 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 795 // Check that there is at least one non-zero weight. Otherwise, pass 796 // nullptr to setMetadata which will erase the existing metadata. 797 MDNode *N = nullptr; 798 if (TrueWeight || FalseWeight) 799 N = MDBuilder(I->getParent()->getContext()) 800 .createBranchWeights(TrueWeight, FalseWeight); 801 I->setMetadata(LLVMContext::MD_prof, N); 802 } 803 804 /// If TI is known to be a terminator instruction and its block is known to 805 /// only have a single predecessor block, check to see if that predecessor is 806 /// also a value comparison with the same value, and if that comparison 807 /// determines the outcome of this comparison. If so, simplify TI. This does a 808 /// very limited form of jump threading. 809 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 810 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 811 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 812 if (!PredVal) 813 return false; // Not a value comparison in predecessor. 814 815 Value *ThisVal = isValueEqualityComparison(TI); 816 assert(ThisVal && "This isn't a value comparison!!"); 817 if (ThisVal != PredVal) 818 return false; // Different predicates. 819 820 // TODO: Preserve branch weight metadata, similarly to how 821 // FoldValueComparisonIntoPredecessors preserves it. 822 823 // Find out information about when control will move from Pred to TI's block. 824 std::vector<ValueEqualityComparisonCase> PredCases; 825 BasicBlock *PredDef = 826 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 827 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 828 829 // Find information about how control leaves this block. 830 std::vector<ValueEqualityComparisonCase> ThisCases; 831 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 832 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 833 834 // If TI's block is the default block from Pred's comparison, potentially 835 // simplify TI based on this knowledge. 836 if (PredDef == TI->getParent()) { 837 // If we are here, we know that the value is none of those cases listed in 838 // PredCases. If there are any cases in ThisCases that are in PredCases, we 839 // can simplify TI. 840 if (!ValuesOverlap(PredCases, ThisCases)) 841 return false; 842 843 if (isa<BranchInst>(TI)) { 844 // Okay, one of the successors of this condbr is dead. Convert it to a 845 // uncond br. 846 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 847 // Insert the new branch. 848 Instruction *NI = Builder.CreateBr(ThisDef); 849 (void)NI; 850 851 // Remove PHI node entries for the dead edge. 852 ThisCases[0].Dest->removePredecessor(TI->getParent()); 853 854 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 855 << "Through successor TI: " << *TI << "Leaving: " << *NI 856 << "\n"); 857 858 EraseTerminatorInstAndDCECond(TI); 859 return true; 860 } 861 862 SwitchInst *SI = cast<SwitchInst>(TI); 863 // Okay, TI has cases that are statically dead, prune them away. 864 SmallPtrSet<Constant *, 16> DeadCases; 865 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 866 DeadCases.insert(PredCases[i].Value); 867 868 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 869 << "Through successor TI: " << *TI); 870 871 // Collect branch weights into a vector. 872 SmallVector<uint32_t, 8> Weights; 873 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 874 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 875 if (HasWeight) 876 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 877 ++MD_i) { 878 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 879 Weights.push_back(CI->getValue().getZExtValue()); 880 } 881 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 882 --i; 883 if (DeadCases.count(i->getCaseValue())) { 884 if (HasWeight) { 885 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 886 Weights.pop_back(); 887 } 888 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 889 SI->removeCase(i); 890 } 891 } 892 if (HasWeight && Weights.size() >= 2) 893 setBranchWeights(SI, Weights); 894 895 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 896 return true; 897 } 898 899 // Otherwise, TI's block must correspond to some matched value. Find out 900 // which value (or set of values) this is. 901 ConstantInt *TIV = nullptr; 902 BasicBlock *TIBB = TI->getParent(); 903 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 904 if (PredCases[i].Dest == TIBB) { 905 if (TIV) 906 return false; // Cannot handle multiple values coming to this block. 907 TIV = PredCases[i].Value; 908 } 909 assert(TIV && "No edge from pred to succ?"); 910 911 // Okay, we found the one constant that our value can be if we get into TI's 912 // BB. Find out which successor will unconditionally be branched to. 913 BasicBlock *TheRealDest = nullptr; 914 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 915 if (ThisCases[i].Value == TIV) { 916 TheRealDest = ThisCases[i].Dest; 917 break; 918 } 919 920 // If not handled by any explicit cases, it is handled by the default case. 921 if (!TheRealDest) 922 TheRealDest = ThisDef; 923 924 // Remove PHI node entries for dead edges. 925 BasicBlock *CheckEdge = TheRealDest; 926 for (BasicBlock *Succ : successors(TIBB)) 927 if (Succ != CheckEdge) 928 Succ->removePredecessor(TIBB); 929 else 930 CheckEdge = nullptr; 931 932 // Insert the new branch. 933 Instruction *NI = Builder.CreateBr(TheRealDest); 934 (void)NI; 935 936 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 937 << "Through successor TI: " << *TI << "Leaving: " << *NI 938 << "\n"); 939 940 EraseTerminatorInstAndDCECond(TI); 941 return true; 942 } 943 944 namespace { 945 946 /// This class implements a stable ordering of constant 947 /// integers that does not depend on their address. This is important for 948 /// applications that sort ConstantInt's to ensure uniqueness. 949 struct ConstantIntOrdering { 950 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 951 return LHS->getValue().ult(RHS->getValue()); 952 } 953 }; 954 955 } // end anonymous namespace 956 957 static int ConstantIntSortPredicate(ConstantInt *const *P1, 958 ConstantInt *const *P2) { 959 const ConstantInt *LHS = *P1; 960 const ConstantInt *RHS = *P2; 961 if (LHS == RHS) 962 return 0; 963 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 964 } 965 966 static inline bool HasBranchWeights(const Instruction *I) { 967 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 968 if (ProfMD && ProfMD->getOperand(0)) 969 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 970 return MDS->getString().equals("branch_weights"); 971 972 return false; 973 } 974 975 /// Get Weights of a given TerminatorInst, the default weight is at the front 976 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 977 /// metadata. 978 static void GetBranchWeights(TerminatorInst *TI, 979 SmallVectorImpl<uint64_t> &Weights) { 980 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 981 assert(MD); 982 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 983 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 984 Weights.push_back(CI->getValue().getZExtValue()); 985 } 986 987 // If TI is a conditional eq, the default case is the false case, 988 // and the corresponding branch-weight data is at index 2. We swap the 989 // default weight to be the first entry. 990 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 991 assert(Weights.size() == 2); 992 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 993 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 994 std::swap(Weights.front(), Weights.back()); 995 } 996 } 997 998 /// Keep halving the weights until all can fit in uint32_t. 999 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1000 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1001 if (Max > UINT_MAX) { 1002 unsigned Offset = 32 - countLeadingZeros(Max); 1003 for (uint64_t &I : Weights) 1004 I >>= Offset; 1005 } 1006 } 1007 1008 /// The specified terminator is a value equality comparison instruction 1009 /// (either a switch or a branch on "X == c"). 1010 /// See if any of the predecessors of the terminator block are value comparisons 1011 /// on the same value. If so, and if safe to do so, fold them together. 1012 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 1013 IRBuilder<> &Builder) { 1014 BasicBlock *BB = TI->getParent(); 1015 Value *CV = isValueEqualityComparison(TI); // CondVal 1016 assert(CV && "Not a comparison?"); 1017 bool Changed = false; 1018 1019 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1020 while (!Preds.empty()) { 1021 BasicBlock *Pred = Preds.pop_back_val(); 1022 1023 // See if the predecessor is a comparison with the same value. 1024 TerminatorInst *PTI = Pred->getTerminator(); 1025 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1026 1027 if (PCV == CV && TI != PTI) { 1028 SmallSetVector<BasicBlock*, 4> FailBlocks; 1029 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1030 for (auto *Succ : FailBlocks) { 1031 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1032 return false; 1033 } 1034 } 1035 1036 // Figure out which 'cases' to copy from SI to PSI. 1037 std::vector<ValueEqualityComparisonCase> BBCases; 1038 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1039 1040 std::vector<ValueEqualityComparisonCase> PredCases; 1041 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1042 1043 // Based on whether the default edge from PTI goes to BB or not, fill in 1044 // PredCases and PredDefault with the new switch cases we would like to 1045 // build. 1046 SmallVector<BasicBlock *, 8> NewSuccessors; 1047 1048 // Update the branch weight metadata along the way 1049 SmallVector<uint64_t, 8> Weights; 1050 bool PredHasWeights = HasBranchWeights(PTI); 1051 bool SuccHasWeights = HasBranchWeights(TI); 1052 1053 if (PredHasWeights) { 1054 GetBranchWeights(PTI, Weights); 1055 // branch-weight metadata is inconsistent here. 1056 if (Weights.size() != 1 + PredCases.size()) 1057 PredHasWeights = SuccHasWeights = false; 1058 } else if (SuccHasWeights) 1059 // If there are no predecessor weights but there are successor weights, 1060 // populate Weights with 1, which will later be scaled to the sum of 1061 // successor's weights 1062 Weights.assign(1 + PredCases.size(), 1); 1063 1064 SmallVector<uint64_t, 8> SuccWeights; 1065 if (SuccHasWeights) { 1066 GetBranchWeights(TI, SuccWeights); 1067 // branch-weight metadata is inconsistent here. 1068 if (SuccWeights.size() != 1 + BBCases.size()) 1069 PredHasWeights = SuccHasWeights = false; 1070 } else if (PredHasWeights) 1071 SuccWeights.assign(1 + BBCases.size(), 1); 1072 1073 if (PredDefault == BB) { 1074 // If this is the default destination from PTI, only the edges in TI 1075 // that don't occur in PTI, or that branch to BB will be activated. 1076 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1077 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1078 if (PredCases[i].Dest != BB) 1079 PTIHandled.insert(PredCases[i].Value); 1080 else { 1081 // The default destination is BB, we don't need explicit targets. 1082 std::swap(PredCases[i], PredCases.back()); 1083 1084 if (PredHasWeights || SuccHasWeights) { 1085 // Increase weight for the default case. 1086 Weights[0] += Weights[i + 1]; 1087 std::swap(Weights[i + 1], Weights.back()); 1088 Weights.pop_back(); 1089 } 1090 1091 PredCases.pop_back(); 1092 --i; 1093 --e; 1094 } 1095 1096 // Reconstruct the new switch statement we will be building. 1097 if (PredDefault != BBDefault) { 1098 PredDefault->removePredecessor(Pred); 1099 PredDefault = BBDefault; 1100 NewSuccessors.push_back(BBDefault); 1101 } 1102 1103 unsigned CasesFromPred = Weights.size(); 1104 uint64_t ValidTotalSuccWeight = 0; 1105 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1106 if (!PTIHandled.count(BBCases[i].Value) && 1107 BBCases[i].Dest != BBDefault) { 1108 PredCases.push_back(BBCases[i]); 1109 NewSuccessors.push_back(BBCases[i].Dest); 1110 if (SuccHasWeights || PredHasWeights) { 1111 // The default weight is at index 0, so weight for the ith case 1112 // should be at index i+1. Scale the cases from successor by 1113 // PredDefaultWeight (Weights[0]). 1114 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1115 ValidTotalSuccWeight += SuccWeights[i + 1]; 1116 } 1117 } 1118 1119 if (SuccHasWeights || PredHasWeights) { 1120 ValidTotalSuccWeight += SuccWeights[0]; 1121 // Scale the cases from predecessor by ValidTotalSuccWeight. 1122 for (unsigned i = 1; i < CasesFromPred; ++i) 1123 Weights[i] *= ValidTotalSuccWeight; 1124 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1125 Weights[0] *= SuccWeights[0]; 1126 } 1127 } else { 1128 // If this is not the default destination from PSI, only the edges 1129 // in SI that occur in PSI with a destination of BB will be 1130 // activated. 1131 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1132 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1133 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1134 if (PredCases[i].Dest == BB) { 1135 PTIHandled.insert(PredCases[i].Value); 1136 1137 if (PredHasWeights || SuccHasWeights) { 1138 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1139 std::swap(Weights[i + 1], Weights.back()); 1140 Weights.pop_back(); 1141 } 1142 1143 std::swap(PredCases[i], PredCases.back()); 1144 PredCases.pop_back(); 1145 --i; 1146 --e; 1147 } 1148 1149 // Okay, now we know which constants were sent to BB from the 1150 // predecessor. Figure out where they will all go now. 1151 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1152 if (PTIHandled.count(BBCases[i].Value)) { 1153 // If this is one we are capable of getting... 1154 if (PredHasWeights || SuccHasWeights) 1155 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1156 PredCases.push_back(BBCases[i]); 1157 NewSuccessors.push_back(BBCases[i].Dest); 1158 PTIHandled.erase( 1159 BBCases[i].Value); // This constant is taken care of 1160 } 1161 1162 // If there are any constants vectored to BB that TI doesn't handle, 1163 // they must go to the default destination of TI. 1164 for (ConstantInt *I : PTIHandled) { 1165 if (PredHasWeights || SuccHasWeights) 1166 Weights.push_back(WeightsForHandled[I]); 1167 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1168 NewSuccessors.push_back(BBDefault); 1169 } 1170 } 1171 1172 // Okay, at this point, we know which new successor Pred will get. Make 1173 // sure we update the number of entries in the PHI nodes for these 1174 // successors. 1175 for (BasicBlock *NewSuccessor : NewSuccessors) 1176 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1177 1178 Builder.SetInsertPoint(PTI); 1179 // Convert pointer to int before we switch. 1180 if (CV->getType()->isPointerTy()) { 1181 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1182 "magicptr"); 1183 } 1184 1185 // Now that the successors are updated, create the new Switch instruction. 1186 SwitchInst *NewSI = 1187 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1188 NewSI->setDebugLoc(PTI->getDebugLoc()); 1189 for (ValueEqualityComparisonCase &V : PredCases) 1190 NewSI->addCase(V.Value, V.Dest); 1191 1192 if (PredHasWeights || SuccHasWeights) { 1193 // Halve the weights if any of them cannot fit in an uint32_t 1194 FitWeights(Weights); 1195 1196 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1197 1198 setBranchWeights(NewSI, MDWeights); 1199 } 1200 1201 EraseTerminatorInstAndDCECond(PTI); 1202 1203 // Okay, last check. If BB is still a successor of PSI, then we must 1204 // have an infinite loop case. If so, add an infinitely looping block 1205 // to handle the case to preserve the behavior of the code. 1206 BasicBlock *InfLoopBlock = nullptr; 1207 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1208 if (NewSI->getSuccessor(i) == BB) { 1209 if (!InfLoopBlock) { 1210 // Insert it at the end of the function, because it's either code, 1211 // or it won't matter if it's hot. :) 1212 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1213 BB->getParent()); 1214 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1215 } 1216 NewSI->setSuccessor(i, InfLoopBlock); 1217 } 1218 1219 Changed = true; 1220 } 1221 } 1222 return Changed; 1223 } 1224 1225 // If we would need to insert a select that uses the value of this invoke 1226 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1227 // can't hoist the invoke, as there is nowhere to put the select in this case. 1228 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1229 Instruction *I1, Instruction *I2) { 1230 for (BasicBlock *Succ : successors(BB1)) { 1231 PHINode *PN; 1232 for (BasicBlock::iterator BBI = Succ->begin(); 1233 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1234 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1235 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1236 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1237 return false; 1238 } 1239 } 1240 } 1241 return true; 1242 } 1243 1244 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1245 1246 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1247 /// in the two blocks up into the branch block. The caller of this function 1248 /// guarantees that BI's block dominates BB1 and BB2. 1249 static bool HoistThenElseCodeToIf(BranchInst *BI, 1250 const TargetTransformInfo &TTI) { 1251 // This does very trivial matching, with limited scanning, to find identical 1252 // instructions in the two blocks. In particular, we don't want to get into 1253 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1254 // such, we currently just scan for obviously identical instructions in an 1255 // identical order. 1256 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1257 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1258 1259 BasicBlock::iterator BB1_Itr = BB1->begin(); 1260 BasicBlock::iterator BB2_Itr = BB2->begin(); 1261 1262 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1263 // Skip debug info if it is not identical. 1264 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1265 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1266 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1267 while (isa<DbgInfoIntrinsic>(I1)) 1268 I1 = &*BB1_Itr++; 1269 while (isa<DbgInfoIntrinsic>(I2)) 1270 I2 = &*BB2_Itr++; 1271 } 1272 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1273 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1274 return false; 1275 1276 BasicBlock *BIParent = BI->getParent(); 1277 1278 bool Changed = false; 1279 do { 1280 // If we are hoisting the terminator instruction, don't move one (making a 1281 // broken BB), instead clone it, and remove BI. 1282 if (isa<TerminatorInst>(I1)) 1283 goto HoistTerminator; 1284 1285 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1286 return Changed; 1287 1288 // For a normal instruction, we just move one to right before the branch, 1289 // then replace all uses of the other with the first. Finally, we remove 1290 // the now redundant second instruction. 1291 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1292 if (!I2->use_empty()) 1293 I2->replaceAllUsesWith(I1); 1294 I1->andIRFlags(I2); 1295 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1296 LLVMContext::MD_range, 1297 LLVMContext::MD_fpmath, 1298 LLVMContext::MD_invariant_load, 1299 LLVMContext::MD_nonnull, 1300 LLVMContext::MD_invariant_group, 1301 LLVMContext::MD_align, 1302 LLVMContext::MD_dereferenceable, 1303 LLVMContext::MD_dereferenceable_or_null, 1304 LLVMContext::MD_mem_parallel_loop_access}; 1305 combineMetadata(I1, I2, KnownIDs); 1306 1307 // I1 and I2 are being combined into a single instruction. Its debug 1308 // location is the merged locations of the original instructions. 1309 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1310 1311 I2->eraseFromParent(); 1312 Changed = true; 1313 1314 I1 = &*BB1_Itr++; 1315 I2 = &*BB2_Itr++; 1316 // Skip debug info if it is not identical. 1317 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1318 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1319 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1320 while (isa<DbgInfoIntrinsic>(I1)) 1321 I1 = &*BB1_Itr++; 1322 while (isa<DbgInfoIntrinsic>(I2)) 1323 I2 = &*BB2_Itr++; 1324 } 1325 } while (I1->isIdenticalToWhenDefined(I2)); 1326 1327 return true; 1328 1329 HoistTerminator: 1330 // It may not be possible to hoist an invoke. 1331 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1332 return Changed; 1333 1334 for (BasicBlock *Succ : successors(BB1)) { 1335 PHINode *PN; 1336 for (BasicBlock::iterator BBI = Succ->begin(); 1337 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1338 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1339 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1340 if (BB1V == BB2V) 1341 continue; 1342 1343 // Check for passingValueIsAlwaysUndefined here because we would rather 1344 // eliminate undefined control flow then converting it to a select. 1345 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1346 passingValueIsAlwaysUndefined(BB2V, PN)) 1347 return Changed; 1348 1349 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1350 return Changed; 1351 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1352 return Changed; 1353 } 1354 } 1355 1356 // Okay, it is safe to hoist the terminator. 1357 Instruction *NT = I1->clone(); 1358 BIParent->getInstList().insert(BI->getIterator(), NT); 1359 if (!NT->getType()->isVoidTy()) { 1360 I1->replaceAllUsesWith(NT); 1361 I2->replaceAllUsesWith(NT); 1362 NT->takeName(I1); 1363 } 1364 1365 IRBuilder<NoFolder> Builder(NT); 1366 // Hoisting one of the terminators from our successor is a great thing. 1367 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1368 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1369 // nodes, so we insert select instruction to compute the final result. 1370 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1371 for (BasicBlock *Succ : successors(BB1)) { 1372 PHINode *PN; 1373 for (BasicBlock::iterator BBI = Succ->begin(); 1374 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1375 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1376 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1377 if (BB1V == BB2V) 1378 continue; 1379 1380 // These values do not agree. Insert a select instruction before NT 1381 // that determines the right value. 1382 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1383 if (!SI) 1384 SI = cast<SelectInst>( 1385 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1386 BB1V->getName() + "." + BB2V->getName(), BI)); 1387 1388 // Make the PHI node use the select for all incoming values for BB1/BB2 1389 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1390 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1391 PN->setIncomingValue(i, SI); 1392 } 1393 } 1394 1395 // Update any PHI nodes in our new successors. 1396 for (BasicBlock *Succ : successors(BB1)) 1397 AddPredecessorToBlock(Succ, BIParent, BB1); 1398 1399 EraseTerminatorInstAndDCECond(BI); 1400 return true; 1401 } 1402 1403 // All instructions in Insts belong to different blocks that all unconditionally 1404 // branch to a common successor. Analyze each instruction and return true if it 1405 // would be possible to sink them into their successor, creating one common 1406 // instruction instead. For every value that would be required to be provided by 1407 // PHI node (because an operand varies in each input block), add to PHIOperands. 1408 static bool canSinkInstructions( 1409 ArrayRef<Instruction *> Insts, 1410 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1411 // Prune out obviously bad instructions to move. Any non-store instruction 1412 // must have exactly one use, and we check later that use is by a single, 1413 // common PHI instruction in the successor. 1414 for (auto *I : Insts) { 1415 // These instructions may change or break semantics if moved. 1416 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1417 I->getType()->isTokenTy()) 1418 return false; 1419 1420 // Conservatively return false if I is an inline-asm instruction. Sinking 1421 // and merging inline-asm instructions can potentially create arguments 1422 // that cannot satisfy the inline-asm constraints. 1423 if (const auto *C = dyn_cast<CallInst>(I)) 1424 if (C->isInlineAsm()) 1425 return false; 1426 1427 // Everything must have only one use too, apart from stores which 1428 // have no uses. 1429 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1430 return false; 1431 } 1432 1433 const Instruction *I0 = Insts.front(); 1434 for (auto *I : Insts) 1435 if (!I->isSameOperationAs(I0)) 1436 return false; 1437 1438 // All instructions in Insts are known to be the same opcode. If they aren't 1439 // stores, check the only user of each is a PHI or in the same block as the 1440 // instruction, because if a user is in the same block as an instruction 1441 // we're contemplating sinking, it must already be determined to be sinkable. 1442 if (!isa<StoreInst>(I0)) { 1443 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1444 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1445 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1446 auto *U = cast<Instruction>(*I->user_begin()); 1447 return (PNUse && 1448 PNUse->getParent() == Succ && 1449 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1450 U->getParent() == I->getParent(); 1451 })) 1452 return false; 1453 } 1454 1455 // Because SROA can't handle speculating stores of selects, try not 1456 // to sink loads or stores of allocas when we'd have to create a PHI for 1457 // the address operand. Also, because it is likely that loads or stores 1458 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1459 // This can cause code churn which can have unintended consequences down 1460 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1461 // FIXME: This is a workaround for a deficiency in SROA - see 1462 // https://llvm.org/bugs/show_bug.cgi?id=30188 1463 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1464 return isa<AllocaInst>(I->getOperand(1)); 1465 })) 1466 return false; 1467 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1468 return isa<AllocaInst>(I->getOperand(0)); 1469 })) 1470 return false; 1471 1472 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1473 if (I0->getOperand(OI)->getType()->isTokenTy()) 1474 // Don't touch any operand of token type. 1475 return false; 1476 1477 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1478 assert(I->getNumOperands() == I0->getNumOperands()); 1479 return I->getOperand(OI) == I0->getOperand(OI); 1480 }; 1481 if (!all_of(Insts, SameAsI0)) { 1482 if (!canReplaceOperandWithVariable(I0, OI)) 1483 // We can't create a PHI from this GEP. 1484 return false; 1485 // Don't create indirect calls! The called value is the final operand. 1486 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1487 // FIXME: if the call was *already* indirect, we should do this. 1488 return false; 1489 } 1490 for (auto *I : Insts) 1491 PHIOperands[I].push_back(I->getOperand(OI)); 1492 } 1493 } 1494 return true; 1495 } 1496 1497 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1498 // instruction of every block in Blocks to their common successor, commoning 1499 // into one instruction. 1500 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1501 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1502 1503 // canSinkLastInstruction returning true guarantees that every block has at 1504 // least one non-terminator instruction. 1505 SmallVector<Instruction*,4> Insts; 1506 for (auto *BB : Blocks) { 1507 Instruction *I = BB->getTerminator(); 1508 do { 1509 I = I->getPrevNode(); 1510 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1511 if (!isa<DbgInfoIntrinsic>(I)) 1512 Insts.push_back(I); 1513 } 1514 1515 // The only checking we need to do now is that all users of all instructions 1516 // are the same PHI node. canSinkLastInstruction should have checked this but 1517 // it is slightly over-aggressive - it gets confused by commutative instructions 1518 // so double-check it here. 1519 Instruction *I0 = Insts.front(); 1520 if (!isa<StoreInst>(I0)) { 1521 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1522 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1523 auto *U = cast<Instruction>(*I->user_begin()); 1524 return U == PNUse; 1525 })) 1526 return false; 1527 } 1528 1529 // We don't need to do any more checking here; canSinkLastInstruction should 1530 // have done it all for us. 1531 SmallVector<Value*, 4> NewOperands; 1532 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1533 // This check is different to that in canSinkLastInstruction. There, we 1534 // cared about the global view once simplifycfg (and instcombine) have 1535 // completed - it takes into account PHIs that become trivially 1536 // simplifiable. However here we need a more local view; if an operand 1537 // differs we create a PHI and rely on instcombine to clean up the very 1538 // small mess we may make. 1539 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1540 return I->getOperand(O) != I0->getOperand(O); 1541 }); 1542 if (!NeedPHI) { 1543 NewOperands.push_back(I0->getOperand(O)); 1544 continue; 1545 } 1546 1547 // Create a new PHI in the successor block and populate it. 1548 auto *Op = I0->getOperand(O); 1549 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1550 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1551 Op->getName() + ".sink", &BBEnd->front()); 1552 for (auto *I : Insts) 1553 PN->addIncoming(I->getOperand(O), I->getParent()); 1554 NewOperands.push_back(PN); 1555 } 1556 1557 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1558 // and move it to the start of the successor block. 1559 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1560 I0->getOperandUse(O).set(NewOperands[O]); 1561 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1562 1563 // Update metadata and IR flags, and merge debug locations. 1564 for (auto *I : Insts) 1565 if (I != I0) { 1566 // The debug location for the "common" instruction is the merged locations 1567 // of all the commoned instructions. We start with the original location 1568 // of the "common" instruction and iteratively merge each location in the 1569 // loop below. 1570 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1571 // However, as N-way merge for CallInst is rare, so we use simplified API 1572 // instead of using complex API for N-way merge. 1573 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1574 combineMetadataForCSE(I0, I); 1575 I0->andIRFlags(I); 1576 } 1577 1578 if (!isa<StoreInst>(I0)) { 1579 // canSinkLastInstruction checked that all instructions were used by 1580 // one and only one PHI node. Find that now, RAUW it to our common 1581 // instruction and nuke it. 1582 assert(I0->hasOneUse()); 1583 auto *PN = cast<PHINode>(*I0->user_begin()); 1584 PN->replaceAllUsesWith(I0); 1585 PN->eraseFromParent(); 1586 } 1587 1588 // Finally nuke all instructions apart from the common instruction. 1589 for (auto *I : Insts) 1590 if (I != I0) 1591 I->eraseFromParent(); 1592 1593 return true; 1594 } 1595 1596 namespace { 1597 1598 // LockstepReverseIterator - Iterates through instructions 1599 // in a set of blocks in reverse order from the first non-terminator. 1600 // For example (assume all blocks have size n): 1601 // LockstepReverseIterator I([B1, B2, B3]); 1602 // *I-- = [B1[n], B2[n], B3[n]]; 1603 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1604 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1605 // ... 1606 class LockstepReverseIterator { 1607 ArrayRef<BasicBlock*> Blocks; 1608 SmallVector<Instruction*,4> Insts; 1609 bool Fail; 1610 1611 public: 1612 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1613 reset(); 1614 } 1615 1616 void reset() { 1617 Fail = false; 1618 Insts.clear(); 1619 for (auto *BB : Blocks) { 1620 Instruction *Inst = BB->getTerminator(); 1621 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1622 Inst = Inst->getPrevNode(); 1623 if (!Inst) { 1624 // Block wasn't big enough. 1625 Fail = true; 1626 return; 1627 } 1628 Insts.push_back(Inst); 1629 } 1630 } 1631 1632 bool isValid() const { 1633 return !Fail; 1634 } 1635 1636 void operator--() { 1637 if (Fail) 1638 return; 1639 for (auto *&Inst : Insts) { 1640 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1641 Inst = Inst->getPrevNode(); 1642 // Already at beginning of block. 1643 if (!Inst) { 1644 Fail = true; 1645 return; 1646 } 1647 } 1648 } 1649 1650 ArrayRef<Instruction*> operator * () const { 1651 return Insts; 1652 } 1653 }; 1654 1655 } // end anonymous namespace 1656 1657 /// Given an unconditional branch that goes to BBEnd, 1658 /// check whether BBEnd has only two predecessors and the other predecessor 1659 /// ends with an unconditional branch. If it is true, sink any common code 1660 /// in the two predecessors to BBEnd. 1661 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1662 assert(BI1->isUnconditional()); 1663 BasicBlock *BBEnd = BI1->getSuccessor(0); 1664 1665 // We support two situations: 1666 // (1) all incoming arcs are unconditional 1667 // (2) one incoming arc is conditional 1668 // 1669 // (2) is very common in switch defaults and 1670 // else-if patterns; 1671 // 1672 // if (a) f(1); 1673 // else if (b) f(2); 1674 // 1675 // produces: 1676 // 1677 // [if] 1678 // / \ 1679 // [f(1)] [if] 1680 // | | \ 1681 // | | | 1682 // | [f(2)]| 1683 // \ | / 1684 // [ end ] 1685 // 1686 // [end] has two unconditional predecessor arcs and one conditional. The 1687 // conditional refers to the implicit empty 'else' arc. This conditional 1688 // arc can also be caused by an empty default block in a switch. 1689 // 1690 // In this case, we attempt to sink code from all *unconditional* arcs. 1691 // If we can sink instructions from these arcs (determined during the scan 1692 // phase below) we insert a common successor for all unconditional arcs and 1693 // connect that to [end], to enable sinking: 1694 // 1695 // [if] 1696 // / \ 1697 // [x(1)] [if] 1698 // | | \ 1699 // | | \ 1700 // | [x(2)] | 1701 // \ / | 1702 // [sink.split] | 1703 // \ / 1704 // [ end ] 1705 // 1706 SmallVector<BasicBlock*,4> UnconditionalPreds; 1707 Instruction *Cond = nullptr; 1708 for (auto *B : predecessors(BBEnd)) { 1709 auto *T = B->getTerminator(); 1710 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1711 UnconditionalPreds.push_back(B); 1712 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1713 Cond = T; 1714 else 1715 return false; 1716 } 1717 if (UnconditionalPreds.size() < 2) 1718 return false; 1719 1720 bool Changed = false; 1721 // We take a two-step approach to tail sinking. First we scan from the end of 1722 // each block upwards in lockstep. If the n'th instruction from the end of each 1723 // block can be sunk, those instructions are added to ValuesToSink and we 1724 // carry on. If we can sink an instruction but need to PHI-merge some operands 1725 // (because they're not identical in each instruction) we add these to 1726 // PHIOperands. 1727 unsigned ScanIdx = 0; 1728 SmallPtrSet<Value*,4> InstructionsToSink; 1729 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1730 LockstepReverseIterator LRI(UnconditionalPreds); 1731 while (LRI.isValid() && 1732 canSinkInstructions(*LRI, PHIOperands)) { 1733 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1734 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1735 ++ScanIdx; 1736 --LRI; 1737 } 1738 1739 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1740 unsigned NumPHIdValues = 0; 1741 for (auto *I : *LRI) 1742 for (auto *V : PHIOperands[I]) 1743 if (InstructionsToSink.count(V) == 0) 1744 ++NumPHIdValues; 1745 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1746 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1747 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1748 NumPHIInsts++; 1749 1750 return NumPHIInsts <= 1; 1751 }; 1752 1753 if (ScanIdx > 0 && Cond) { 1754 // Check if we would actually sink anything first! This mutates the CFG and 1755 // adds an extra block. The goal in doing this is to allow instructions that 1756 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1757 // (such as trunc, add) can be sunk and predicated already. So we check that 1758 // we're going to sink at least one non-speculatable instruction. 1759 LRI.reset(); 1760 unsigned Idx = 0; 1761 bool Profitable = false; 1762 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1763 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1764 Profitable = true; 1765 break; 1766 } 1767 --LRI; 1768 ++Idx; 1769 } 1770 if (!Profitable) 1771 return false; 1772 1773 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1774 // We have a conditional edge and we're going to sink some instructions. 1775 // Insert a new block postdominating all blocks we're going to sink from. 1776 if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds, 1777 ".sink.split")) 1778 // Edges couldn't be split. 1779 return false; 1780 Changed = true; 1781 } 1782 1783 // Now that we've analyzed all potential sinking candidates, perform the 1784 // actual sink. We iteratively sink the last non-terminator of the source 1785 // blocks into their common successor unless doing so would require too 1786 // many PHI instructions to be generated (currently only one PHI is allowed 1787 // per sunk instruction). 1788 // 1789 // We can use InstructionsToSink to discount values needing PHI-merging that will 1790 // actually be sunk in a later iteration. This allows us to be more 1791 // aggressive in what we sink. This does allow a false positive where we 1792 // sink presuming a later value will also be sunk, but stop half way through 1793 // and never actually sink it which means we produce more PHIs than intended. 1794 // This is unlikely in practice though. 1795 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1796 DEBUG(dbgs() << "SINK: Sink: " 1797 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1798 << "\n"); 1799 1800 // Because we've sunk every instruction in turn, the current instruction to 1801 // sink is always at index 0. 1802 LRI.reset(); 1803 if (!ProfitableToSinkInstruction(LRI)) { 1804 // Too many PHIs would be created. 1805 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1806 break; 1807 } 1808 1809 if (!sinkLastInstruction(UnconditionalPreds)) 1810 return Changed; 1811 NumSinkCommons++; 1812 Changed = true; 1813 } 1814 return Changed; 1815 } 1816 1817 /// \brief Determine if we can hoist sink a sole store instruction out of a 1818 /// conditional block. 1819 /// 1820 /// We are looking for code like the following: 1821 /// BrBB: 1822 /// store i32 %add, i32* %arrayidx2 1823 /// ... // No other stores or function calls (we could be calling a memory 1824 /// ... // function). 1825 /// %cmp = icmp ult %x, %y 1826 /// br i1 %cmp, label %EndBB, label %ThenBB 1827 /// ThenBB: 1828 /// store i32 %add5, i32* %arrayidx2 1829 /// br label EndBB 1830 /// EndBB: 1831 /// ... 1832 /// We are going to transform this into: 1833 /// BrBB: 1834 /// store i32 %add, i32* %arrayidx2 1835 /// ... // 1836 /// %cmp = icmp ult %x, %y 1837 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1838 /// store i32 %add.add5, i32* %arrayidx2 1839 /// ... 1840 /// 1841 /// \return The pointer to the value of the previous store if the store can be 1842 /// hoisted into the predecessor block. 0 otherwise. 1843 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1844 BasicBlock *StoreBB, BasicBlock *EndBB) { 1845 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1846 if (!StoreToHoist) 1847 return nullptr; 1848 1849 // Volatile or atomic. 1850 if (!StoreToHoist->isSimple()) 1851 return nullptr; 1852 1853 Value *StorePtr = StoreToHoist->getPointerOperand(); 1854 1855 // Look for a store to the same pointer in BrBB. 1856 unsigned MaxNumInstToLookAt = 9; 1857 for (Instruction &CurI : reverse(*BrBB)) { 1858 if (!MaxNumInstToLookAt) 1859 break; 1860 // Skip debug info. 1861 if (isa<DbgInfoIntrinsic>(CurI)) 1862 continue; 1863 --MaxNumInstToLookAt; 1864 1865 // Could be calling an instruction that affects memory like free(). 1866 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1867 return nullptr; 1868 1869 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1870 // Found the previous store make sure it stores to the same location. 1871 if (SI->getPointerOperand() == StorePtr) 1872 // Found the previous store, return its value operand. 1873 return SI->getValueOperand(); 1874 return nullptr; // Unknown store. 1875 } 1876 } 1877 1878 return nullptr; 1879 } 1880 1881 /// \brief Speculate a conditional basic block flattening the CFG. 1882 /// 1883 /// Note that this is a very risky transform currently. Speculating 1884 /// instructions like this is most often not desirable. Instead, there is an MI 1885 /// pass which can do it with full awareness of the resource constraints. 1886 /// However, some cases are "obvious" and we should do directly. An example of 1887 /// this is speculating a single, reasonably cheap instruction. 1888 /// 1889 /// There is only one distinct advantage to flattening the CFG at the IR level: 1890 /// it makes very common but simplistic optimizations such as are common in 1891 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1892 /// modeling their effects with easier to reason about SSA value graphs. 1893 /// 1894 /// 1895 /// An illustration of this transform is turning this IR: 1896 /// \code 1897 /// BB: 1898 /// %cmp = icmp ult %x, %y 1899 /// br i1 %cmp, label %EndBB, label %ThenBB 1900 /// ThenBB: 1901 /// %sub = sub %x, %y 1902 /// br label BB2 1903 /// EndBB: 1904 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1905 /// ... 1906 /// \endcode 1907 /// 1908 /// Into this IR: 1909 /// \code 1910 /// BB: 1911 /// %cmp = icmp ult %x, %y 1912 /// %sub = sub %x, %y 1913 /// %cond = select i1 %cmp, 0, %sub 1914 /// ... 1915 /// \endcode 1916 /// 1917 /// \returns true if the conditional block is removed. 1918 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1919 const TargetTransformInfo &TTI) { 1920 // Be conservative for now. FP select instruction can often be expensive. 1921 Value *BrCond = BI->getCondition(); 1922 if (isa<FCmpInst>(BrCond)) 1923 return false; 1924 1925 BasicBlock *BB = BI->getParent(); 1926 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1927 1928 // If ThenBB is actually on the false edge of the conditional branch, remember 1929 // to swap the select operands later. 1930 bool Invert = false; 1931 if (ThenBB != BI->getSuccessor(0)) { 1932 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1933 Invert = true; 1934 } 1935 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1936 1937 // Keep a count of how many times instructions are used within CondBB when 1938 // they are candidates for sinking into CondBB. Specifically: 1939 // - They are defined in BB, and 1940 // - They have no side effects, and 1941 // - All of their uses are in CondBB. 1942 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1943 1944 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1945 1946 unsigned SpeculationCost = 0; 1947 Value *SpeculatedStoreValue = nullptr; 1948 StoreInst *SpeculatedStore = nullptr; 1949 for (BasicBlock::iterator BBI = ThenBB->begin(), 1950 BBE = std::prev(ThenBB->end()); 1951 BBI != BBE; ++BBI) { 1952 Instruction *I = &*BBI; 1953 // Skip debug info. 1954 if (isa<DbgInfoIntrinsic>(I)) { 1955 SpeculatedDbgIntrinsics.push_back(I); 1956 continue; 1957 } 1958 1959 // Only speculatively execute a single instruction (not counting the 1960 // terminator) for now. 1961 ++SpeculationCost; 1962 if (SpeculationCost > 1) 1963 return false; 1964 1965 // Don't hoist the instruction if it's unsafe or expensive. 1966 if (!isSafeToSpeculativelyExecute(I) && 1967 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1968 I, BB, ThenBB, EndBB)))) 1969 return false; 1970 if (!SpeculatedStoreValue && 1971 ComputeSpeculationCost(I, TTI) > 1972 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1973 return false; 1974 1975 // Store the store speculation candidate. 1976 if (SpeculatedStoreValue) 1977 SpeculatedStore = cast<StoreInst>(I); 1978 1979 // Do not hoist the instruction if any of its operands are defined but not 1980 // used in BB. The transformation will prevent the operand from 1981 // being sunk into the use block. 1982 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1983 Instruction *OpI = dyn_cast<Instruction>(*i); 1984 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1985 continue; // Not a candidate for sinking. 1986 1987 ++SinkCandidateUseCounts[OpI]; 1988 } 1989 } 1990 1991 // Consider any sink candidates which are only used in CondBB as costs for 1992 // speculation. Note, while we iterate over a DenseMap here, we are summing 1993 // and so iteration order isn't significant. 1994 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1995 I = SinkCandidateUseCounts.begin(), 1996 E = SinkCandidateUseCounts.end(); 1997 I != E; ++I) 1998 if (I->first->getNumUses() == I->second) { 1999 ++SpeculationCost; 2000 if (SpeculationCost > 1) 2001 return false; 2002 } 2003 2004 // Check that the PHI nodes can be converted to selects. 2005 bool HaveRewritablePHIs = false; 2006 for (BasicBlock::iterator I = EndBB->begin(); 2007 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2008 Value *OrigV = PN->getIncomingValueForBlock(BB); 2009 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 2010 2011 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2012 // Skip PHIs which are trivial. 2013 if (ThenV == OrigV) 2014 continue; 2015 2016 // Don't convert to selects if we could remove undefined behavior instead. 2017 if (passingValueIsAlwaysUndefined(OrigV, PN) || 2018 passingValueIsAlwaysUndefined(ThenV, PN)) 2019 return false; 2020 2021 HaveRewritablePHIs = true; 2022 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2023 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2024 if (!OrigCE && !ThenCE) 2025 continue; // Known safe and cheap. 2026 2027 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2028 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2029 return false; 2030 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2031 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2032 unsigned MaxCost = 2033 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2034 if (OrigCost + ThenCost > MaxCost) 2035 return false; 2036 2037 // Account for the cost of an unfolded ConstantExpr which could end up 2038 // getting expanded into Instructions. 2039 // FIXME: This doesn't account for how many operations are combined in the 2040 // constant expression. 2041 ++SpeculationCost; 2042 if (SpeculationCost > 1) 2043 return false; 2044 } 2045 2046 // If there are no PHIs to process, bail early. This helps ensure idempotence 2047 // as well. 2048 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2049 return false; 2050 2051 // If we get here, we can hoist the instruction and if-convert. 2052 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2053 2054 // Insert a select of the value of the speculated store. 2055 if (SpeculatedStoreValue) { 2056 IRBuilder<NoFolder> Builder(BI); 2057 Value *TrueV = SpeculatedStore->getValueOperand(); 2058 Value *FalseV = SpeculatedStoreValue; 2059 if (Invert) 2060 std::swap(TrueV, FalseV); 2061 Value *S = Builder.CreateSelect( 2062 BrCond, TrueV, FalseV, "spec.store.select", BI); 2063 SpeculatedStore->setOperand(0, S); 2064 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2065 SpeculatedStore->getDebugLoc()); 2066 } 2067 2068 // Metadata can be dependent on the condition we are hoisting above. 2069 // Conservatively strip all metadata on the instruction. 2070 for (auto &I : *ThenBB) 2071 I.dropUnknownNonDebugMetadata(); 2072 2073 // Hoist the instructions. 2074 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2075 ThenBB->begin(), std::prev(ThenBB->end())); 2076 2077 // Insert selects and rewrite the PHI operands. 2078 IRBuilder<NoFolder> Builder(BI); 2079 for (BasicBlock::iterator I = EndBB->begin(); 2080 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2081 unsigned OrigI = PN->getBasicBlockIndex(BB); 2082 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 2083 Value *OrigV = PN->getIncomingValue(OrigI); 2084 Value *ThenV = PN->getIncomingValue(ThenI); 2085 2086 // Skip PHIs which are trivial. 2087 if (OrigV == ThenV) 2088 continue; 2089 2090 // Create a select whose true value is the speculatively executed value and 2091 // false value is the preexisting value. Swap them if the branch 2092 // destinations were inverted. 2093 Value *TrueV = ThenV, *FalseV = OrigV; 2094 if (Invert) 2095 std::swap(TrueV, FalseV); 2096 Value *V = Builder.CreateSelect( 2097 BrCond, TrueV, FalseV, "spec.select", BI); 2098 PN->setIncomingValue(OrigI, V); 2099 PN->setIncomingValue(ThenI, V); 2100 } 2101 2102 // Remove speculated dbg intrinsics. 2103 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2104 // dbg value for the different flows and inserting it after the select. 2105 for (Instruction *I : SpeculatedDbgIntrinsics) 2106 I->eraseFromParent(); 2107 2108 ++NumSpeculations; 2109 return true; 2110 } 2111 2112 /// Return true if we can thread a branch across this block. 2113 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2114 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2115 unsigned Size = 0; 2116 2117 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2118 if (isa<DbgInfoIntrinsic>(BBI)) 2119 continue; 2120 if (Size > 10) 2121 return false; // Don't clone large BB's. 2122 ++Size; 2123 2124 // We can only support instructions that do not define values that are 2125 // live outside of the current basic block. 2126 for (User *U : BBI->users()) { 2127 Instruction *UI = cast<Instruction>(U); 2128 if (UI->getParent() != BB || isa<PHINode>(UI)) 2129 return false; 2130 } 2131 2132 // Looks ok, continue checking. 2133 } 2134 2135 return true; 2136 } 2137 2138 /// If we have a conditional branch on a PHI node value that is defined in the 2139 /// same block as the branch and if any PHI entries are constants, thread edges 2140 /// corresponding to that entry to be branches to their ultimate destination. 2141 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2142 AssumptionCache *AC) { 2143 BasicBlock *BB = BI->getParent(); 2144 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2145 // NOTE: we currently cannot transform this case if the PHI node is used 2146 // outside of the block. 2147 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2148 return false; 2149 2150 // Degenerate case of a single entry PHI. 2151 if (PN->getNumIncomingValues() == 1) { 2152 FoldSingleEntryPHINodes(PN->getParent()); 2153 return true; 2154 } 2155 2156 // Now we know that this block has multiple preds and two succs. 2157 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2158 return false; 2159 2160 // Can't fold blocks that contain noduplicate or convergent calls. 2161 if (any_of(*BB, [](const Instruction &I) { 2162 const CallInst *CI = dyn_cast<CallInst>(&I); 2163 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2164 })) 2165 return false; 2166 2167 // Okay, this is a simple enough basic block. See if any phi values are 2168 // constants. 2169 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2170 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2171 if (!CB || !CB->getType()->isIntegerTy(1)) 2172 continue; 2173 2174 // Okay, we now know that all edges from PredBB should be revectored to 2175 // branch to RealDest. 2176 BasicBlock *PredBB = PN->getIncomingBlock(i); 2177 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2178 2179 if (RealDest == BB) 2180 continue; // Skip self loops. 2181 // Skip if the predecessor's terminator is an indirect branch. 2182 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2183 continue; 2184 2185 // The dest block might have PHI nodes, other predecessors and other 2186 // difficult cases. Instead of being smart about this, just insert a new 2187 // block that jumps to the destination block, effectively splitting 2188 // the edge we are about to create. 2189 BasicBlock *EdgeBB = 2190 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2191 RealDest->getParent(), RealDest); 2192 BranchInst::Create(RealDest, EdgeBB); 2193 2194 // Update PHI nodes. 2195 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2196 2197 // BB may have instructions that are being threaded over. Clone these 2198 // instructions into EdgeBB. We know that there will be no uses of the 2199 // cloned instructions outside of EdgeBB. 2200 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2201 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2202 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2203 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2204 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2205 continue; 2206 } 2207 // Clone the instruction. 2208 Instruction *N = BBI->clone(); 2209 if (BBI->hasName()) 2210 N->setName(BBI->getName() + ".c"); 2211 2212 // Update operands due to translation. 2213 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2214 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2215 if (PI != TranslateMap.end()) 2216 *i = PI->second; 2217 } 2218 2219 // Check for trivial simplification. 2220 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2221 if (!BBI->use_empty()) 2222 TranslateMap[&*BBI] = V; 2223 if (!N->mayHaveSideEffects()) { 2224 N->deleteValue(); // Instruction folded away, don't need actual inst 2225 N = nullptr; 2226 } 2227 } else { 2228 if (!BBI->use_empty()) 2229 TranslateMap[&*BBI] = N; 2230 } 2231 // Insert the new instruction into its new home. 2232 if (N) 2233 EdgeBB->getInstList().insert(InsertPt, N); 2234 2235 // Register the new instruction with the assumption cache if necessary. 2236 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2237 if (II->getIntrinsicID() == Intrinsic::assume) 2238 AC->registerAssumption(II); 2239 } 2240 2241 // Loop over all of the edges from PredBB to BB, changing them to branch 2242 // to EdgeBB instead. 2243 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2244 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2245 if (PredBBTI->getSuccessor(i) == BB) { 2246 BB->removePredecessor(PredBB); 2247 PredBBTI->setSuccessor(i, EdgeBB); 2248 } 2249 2250 // Recurse, simplifying any other constants. 2251 return FoldCondBranchOnPHI(BI, DL, AC) | true; 2252 } 2253 2254 return false; 2255 } 2256 2257 /// Given a BB that starts with the specified two-entry PHI node, 2258 /// see if we can eliminate it. 2259 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2260 const DataLayout &DL) { 2261 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2262 // statement", which has a very simple dominance structure. Basically, we 2263 // are trying to find the condition that is being branched on, which 2264 // subsequently causes this merge to happen. We really want control 2265 // dependence information for this check, but simplifycfg can't keep it up 2266 // to date, and this catches most of the cases we care about anyway. 2267 BasicBlock *BB = PN->getParent(); 2268 BasicBlock *IfTrue, *IfFalse; 2269 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2270 if (!IfCond || 2271 // Don't bother if the branch will be constant folded trivially. 2272 isa<ConstantInt>(IfCond)) 2273 return false; 2274 2275 // Okay, we found that we can merge this two-entry phi node into a select. 2276 // Doing so would require us to fold *all* two entry phi nodes in this block. 2277 // At some point this becomes non-profitable (particularly if the target 2278 // doesn't support cmov's). Only do this transformation if there are two or 2279 // fewer PHI nodes in this block. 2280 unsigned NumPhis = 0; 2281 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2282 if (NumPhis > 2) 2283 return false; 2284 2285 // Loop over the PHI's seeing if we can promote them all to select 2286 // instructions. While we are at it, keep track of the instructions 2287 // that need to be moved to the dominating block. 2288 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2289 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2290 MaxCostVal1 = PHINodeFoldingThreshold; 2291 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2292 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2293 2294 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2295 PHINode *PN = cast<PHINode>(II++); 2296 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2297 PN->replaceAllUsesWith(V); 2298 PN->eraseFromParent(); 2299 continue; 2300 } 2301 2302 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2303 MaxCostVal0, TTI) || 2304 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2305 MaxCostVal1, TTI)) 2306 return false; 2307 } 2308 2309 // If we folded the first phi, PN dangles at this point. Refresh it. If 2310 // we ran out of PHIs then we simplified them all. 2311 PN = dyn_cast<PHINode>(BB->begin()); 2312 if (!PN) 2313 return true; 2314 2315 // Don't fold i1 branches on PHIs which contain binary operators. These can 2316 // often be turned into switches and other things. 2317 if (PN->getType()->isIntegerTy(1) && 2318 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2319 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2320 isa<BinaryOperator>(IfCond))) 2321 return false; 2322 2323 // If all PHI nodes are promotable, check to make sure that all instructions 2324 // in the predecessor blocks can be promoted as well. If not, we won't be able 2325 // to get rid of the control flow, so it's not worth promoting to select 2326 // instructions. 2327 BasicBlock *DomBlock = nullptr; 2328 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2329 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2330 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2331 IfBlock1 = nullptr; 2332 } else { 2333 DomBlock = *pred_begin(IfBlock1); 2334 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2335 ++I) 2336 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2337 // This is not an aggressive instruction that we can promote. 2338 // Because of this, we won't be able to get rid of the control flow, so 2339 // the xform is not worth it. 2340 return false; 2341 } 2342 } 2343 2344 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2345 IfBlock2 = nullptr; 2346 } else { 2347 DomBlock = *pred_begin(IfBlock2); 2348 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2349 ++I) 2350 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2351 // This is not an aggressive instruction that we can promote. 2352 // Because of this, we won't be able to get rid of the control flow, so 2353 // the xform is not worth it. 2354 return false; 2355 } 2356 } 2357 2358 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2359 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2360 2361 // If we can still promote the PHI nodes after this gauntlet of tests, 2362 // do all of the PHI's now. 2363 Instruction *InsertPt = DomBlock->getTerminator(); 2364 IRBuilder<NoFolder> Builder(InsertPt); 2365 2366 // Move all 'aggressive' instructions, which are defined in the 2367 // conditional parts of the if's up to the dominating block. 2368 if (IfBlock1) { 2369 for (auto &I : *IfBlock1) 2370 I.dropUnknownNonDebugMetadata(); 2371 DomBlock->getInstList().splice(InsertPt->getIterator(), 2372 IfBlock1->getInstList(), IfBlock1->begin(), 2373 IfBlock1->getTerminator()->getIterator()); 2374 } 2375 if (IfBlock2) { 2376 for (auto &I : *IfBlock2) 2377 I.dropUnknownNonDebugMetadata(); 2378 DomBlock->getInstList().splice(InsertPt->getIterator(), 2379 IfBlock2->getInstList(), IfBlock2->begin(), 2380 IfBlock2->getTerminator()->getIterator()); 2381 } 2382 2383 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2384 // Change the PHI node into a select instruction. 2385 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2386 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2387 2388 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2389 PN->replaceAllUsesWith(Sel); 2390 Sel->takeName(PN); 2391 PN->eraseFromParent(); 2392 } 2393 2394 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2395 // has been flattened. Change DomBlock to jump directly to our new block to 2396 // avoid other simplifycfg's kicking in on the diamond. 2397 TerminatorInst *OldTI = DomBlock->getTerminator(); 2398 Builder.SetInsertPoint(OldTI); 2399 Builder.CreateBr(BB); 2400 OldTI->eraseFromParent(); 2401 return true; 2402 } 2403 2404 /// If we found a conditional branch that goes to two returning blocks, 2405 /// try to merge them together into one return, 2406 /// introducing a select if the return values disagree. 2407 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2408 IRBuilder<> &Builder) { 2409 assert(BI->isConditional() && "Must be a conditional branch"); 2410 BasicBlock *TrueSucc = BI->getSuccessor(0); 2411 BasicBlock *FalseSucc = BI->getSuccessor(1); 2412 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2413 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2414 2415 // Check to ensure both blocks are empty (just a return) or optionally empty 2416 // with PHI nodes. If there are other instructions, merging would cause extra 2417 // computation on one path or the other. 2418 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2419 return false; 2420 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2421 return false; 2422 2423 Builder.SetInsertPoint(BI); 2424 // Okay, we found a branch that is going to two return nodes. If 2425 // there is no return value for this function, just change the 2426 // branch into a return. 2427 if (FalseRet->getNumOperands() == 0) { 2428 TrueSucc->removePredecessor(BI->getParent()); 2429 FalseSucc->removePredecessor(BI->getParent()); 2430 Builder.CreateRetVoid(); 2431 EraseTerminatorInstAndDCECond(BI); 2432 return true; 2433 } 2434 2435 // Otherwise, figure out what the true and false return values are 2436 // so we can insert a new select instruction. 2437 Value *TrueValue = TrueRet->getReturnValue(); 2438 Value *FalseValue = FalseRet->getReturnValue(); 2439 2440 // Unwrap any PHI nodes in the return blocks. 2441 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2442 if (TVPN->getParent() == TrueSucc) 2443 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2444 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2445 if (FVPN->getParent() == FalseSucc) 2446 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2447 2448 // In order for this transformation to be safe, we must be able to 2449 // unconditionally execute both operands to the return. This is 2450 // normally the case, but we could have a potentially-trapping 2451 // constant expression that prevents this transformation from being 2452 // safe. 2453 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2454 if (TCV->canTrap()) 2455 return false; 2456 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2457 if (FCV->canTrap()) 2458 return false; 2459 2460 // Okay, we collected all the mapped values and checked them for sanity, and 2461 // defined to really do this transformation. First, update the CFG. 2462 TrueSucc->removePredecessor(BI->getParent()); 2463 FalseSucc->removePredecessor(BI->getParent()); 2464 2465 // Insert select instructions where needed. 2466 Value *BrCond = BI->getCondition(); 2467 if (TrueValue) { 2468 // Insert a select if the results differ. 2469 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2470 } else if (isa<UndefValue>(TrueValue)) { 2471 TrueValue = FalseValue; 2472 } else { 2473 TrueValue = 2474 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2475 } 2476 } 2477 2478 Value *RI = 2479 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2480 2481 (void)RI; 2482 2483 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2484 << "\n " << *BI << "NewRet = " << *RI 2485 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2486 2487 EraseTerminatorInstAndDCECond(BI); 2488 2489 return true; 2490 } 2491 2492 /// Return true if the given instruction is available 2493 /// in its predecessor block. If yes, the instruction will be removed. 2494 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2495 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2496 return false; 2497 for (Instruction &I : *PB) { 2498 Instruction *PBI = &I; 2499 // Check whether Inst and PBI generate the same value. 2500 if (Inst->isIdenticalTo(PBI)) { 2501 Inst->replaceAllUsesWith(PBI); 2502 Inst->eraseFromParent(); 2503 return true; 2504 } 2505 } 2506 return false; 2507 } 2508 2509 /// Return true if either PBI or BI has branch weight available, and store 2510 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2511 /// not have branch weight, use 1:1 as its weight. 2512 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2513 uint64_t &PredTrueWeight, 2514 uint64_t &PredFalseWeight, 2515 uint64_t &SuccTrueWeight, 2516 uint64_t &SuccFalseWeight) { 2517 bool PredHasWeights = 2518 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2519 bool SuccHasWeights = 2520 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2521 if (PredHasWeights || SuccHasWeights) { 2522 if (!PredHasWeights) 2523 PredTrueWeight = PredFalseWeight = 1; 2524 if (!SuccHasWeights) 2525 SuccTrueWeight = SuccFalseWeight = 1; 2526 return true; 2527 } else { 2528 return false; 2529 } 2530 } 2531 2532 /// If this basic block is simple enough, and if a predecessor branches to us 2533 /// and one of our successors, fold the block into the predecessor and use 2534 /// logical operations to pick the right destination. 2535 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2536 BasicBlock *BB = BI->getParent(); 2537 2538 Instruction *Cond = nullptr; 2539 if (BI->isConditional()) 2540 Cond = dyn_cast<Instruction>(BI->getCondition()); 2541 else { 2542 // For unconditional branch, check for a simple CFG pattern, where 2543 // BB has a single predecessor and BB's successor is also its predecessor's 2544 // successor. If such pattern exists, check for CSE between BB and its 2545 // predecessor. 2546 if (BasicBlock *PB = BB->getSinglePredecessor()) 2547 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2548 if (PBI->isConditional() && 2549 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2550 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2551 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2552 Instruction *Curr = &*I++; 2553 if (isa<CmpInst>(Curr)) { 2554 Cond = Curr; 2555 break; 2556 } 2557 // Quit if we can't remove this instruction. 2558 if (!checkCSEInPredecessor(Curr, PB)) 2559 return false; 2560 } 2561 } 2562 2563 if (!Cond) 2564 return false; 2565 } 2566 2567 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2568 Cond->getParent() != BB || !Cond->hasOneUse()) 2569 return false; 2570 2571 // Make sure the instruction after the condition is the cond branch. 2572 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2573 2574 // Ignore dbg intrinsics. 2575 while (isa<DbgInfoIntrinsic>(CondIt)) 2576 ++CondIt; 2577 2578 if (&*CondIt != BI) 2579 return false; 2580 2581 // Only allow this transformation if computing the condition doesn't involve 2582 // too many instructions and these involved instructions can be executed 2583 // unconditionally. We denote all involved instructions except the condition 2584 // as "bonus instructions", and only allow this transformation when the 2585 // number of the bonus instructions does not exceed a certain threshold. 2586 unsigned NumBonusInsts = 0; 2587 for (auto I = BB->begin(); Cond != &*I; ++I) { 2588 // Ignore dbg intrinsics. 2589 if (isa<DbgInfoIntrinsic>(I)) 2590 continue; 2591 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2592 return false; 2593 // I has only one use and can be executed unconditionally. 2594 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2595 if (User == nullptr || User->getParent() != BB) 2596 return false; 2597 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2598 // to use any other instruction, User must be an instruction between next(I) 2599 // and Cond. 2600 ++NumBonusInsts; 2601 // Early exits once we reach the limit. 2602 if (NumBonusInsts > BonusInstThreshold) 2603 return false; 2604 } 2605 2606 // Cond is known to be a compare or binary operator. Check to make sure that 2607 // neither operand is a potentially-trapping constant expression. 2608 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2609 if (CE->canTrap()) 2610 return false; 2611 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2612 if (CE->canTrap()) 2613 return false; 2614 2615 // Finally, don't infinitely unroll conditional loops. 2616 BasicBlock *TrueDest = BI->getSuccessor(0); 2617 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2618 if (TrueDest == BB || FalseDest == BB) 2619 return false; 2620 2621 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2622 BasicBlock *PredBlock = *PI; 2623 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2624 2625 // Check that we have two conditional branches. If there is a PHI node in 2626 // the common successor, verify that the same value flows in from both 2627 // blocks. 2628 SmallVector<PHINode *, 4> PHIs; 2629 if (!PBI || PBI->isUnconditional() || 2630 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2631 (!BI->isConditional() && 2632 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2633 continue; 2634 2635 // Determine if the two branches share a common destination. 2636 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2637 bool InvertPredCond = false; 2638 2639 if (BI->isConditional()) { 2640 if (PBI->getSuccessor(0) == TrueDest) { 2641 Opc = Instruction::Or; 2642 } else if (PBI->getSuccessor(1) == FalseDest) { 2643 Opc = Instruction::And; 2644 } else if (PBI->getSuccessor(0) == FalseDest) { 2645 Opc = Instruction::And; 2646 InvertPredCond = true; 2647 } else if (PBI->getSuccessor(1) == TrueDest) { 2648 Opc = Instruction::Or; 2649 InvertPredCond = true; 2650 } else { 2651 continue; 2652 } 2653 } else { 2654 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2655 continue; 2656 } 2657 2658 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2659 IRBuilder<> Builder(PBI); 2660 2661 // If we need to invert the condition in the pred block to match, do so now. 2662 if (InvertPredCond) { 2663 Value *NewCond = PBI->getCondition(); 2664 2665 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2666 CmpInst *CI = cast<CmpInst>(NewCond); 2667 CI->setPredicate(CI->getInversePredicate()); 2668 } else { 2669 NewCond = 2670 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2671 } 2672 2673 PBI->setCondition(NewCond); 2674 PBI->swapSuccessors(); 2675 } 2676 2677 // If we have bonus instructions, clone them into the predecessor block. 2678 // Note that there may be multiple predecessor blocks, so we cannot move 2679 // bonus instructions to a predecessor block. 2680 ValueToValueMapTy VMap; // maps original values to cloned values 2681 // We already make sure Cond is the last instruction before BI. Therefore, 2682 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2683 // instructions. 2684 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2685 if (isa<DbgInfoIntrinsic>(BonusInst)) 2686 continue; 2687 Instruction *NewBonusInst = BonusInst->clone(); 2688 RemapInstruction(NewBonusInst, VMap, 2689 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2690 VMap[&*BonusInst] = NewBonusInst; 2691 2692 // If we moved a load, we cannot any longer claim any knowledge about 2693 // its potential value. The previous information might have been valid 2694 // only given the branch precondition. 2695 // For an analogous reason, we must also drop all the metadata whose 2696 // semantics we don't understand. 2697 NewBonusInst->dropUnknownNonDebugMetadata(); 2698 2699 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2700 NewBonusInst->takeName(&*BonusInst); 2701 BonusInst->setName(BonusInst->getName() + ".old"); 2702 } 2703 2704 // Clone Cond into the predecessor basic block, and or/and the 2705 // two conditions together. 2706 Instruction *New = Cond->clone(); 2707 RemapInstruction(New, VMap, 2708 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2709 PredBlock->getInstList().insert(PBI->getIterator(), New); 2710 New->takeName(Cond); 2711 Cond->setName(New->getName() + ".old"); 2712 2713 if (BI->isConditional()) { 2714 Instruction *NewCond = cast<Instruction>( 2715 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2716 PBI->setCondition(NewCond); 2717 2718 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2719 bool HasWeights = 2720 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2721 SuccTrueWeight, SuccFalseWeight); 2722 SmallVector<uint64_t, 8> NewWeights; 2723 2724 if (PBI->getSuccessor(0) == BB) { 2725 if (HasWeights) { 2726 // PBI: br i1 %x, BB, FalseDest 2727 // BI: br i1 %y, TrueDest, FalseDest 2728 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2729 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2730 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2731 // TrueWeight for PBI * FalseWeight for BI. 2732 // We assume that total weights of a BranchInst can fit into 32 bits. 2733 // Therefore, we will not have overflow using 64-bit arithmetic. 2734 NewWeights.push_back(PredFalseWeight * 2735 (SuccFalseWeight + SuccTrueWeight) + 2736 PredTrueWeight * SuccFalseWeight); 2737 } 2738 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2739 PBI->setSuccessor(0, TrueDest); 2740 } 2741 if (PBI->getSuccessor(1) == BB) { 2742 if (HasWeights) { 2743 // PBI: br i1 %x, TrueDest, BB 2744 // BI: br i1 %y, TrueDest, FalseDest 2745 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2746 // FalseWeight for PBI * TrueWeight for BI. 2747 NewWeights.push_back(PredTrueWeight * 2748 (SuccFalseWeight + SuccTrueWeight) + 2749 PredFalseWeight * SuccTrueWeight); 2750 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2751 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2752 } 2753 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2754 PBI->setSuccessor(1, FalseDest); 2755 } 2756 if (NewWeights.size() == 2) { 2757 // Halve the weights if any of them cannot fit in an uint32_t 2758 FitWeights(NewWeights); 2759 2760 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2761 NewWeights.end()); 2762 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2763 } else 2764 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2765 } else { 2766 // Update PHI nodes in the common successors. 2767 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2768 ConstantInt *PBI_C = cast<ConstantInt>( 2769 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2770 assert(PBI_C->getType()->isIntegerTy(1)); 2771 Instruction *MergedCond = nullptr; 2772 if (PBI->getSuccessor(0) == TrueDest) { 2773 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2774 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2775 // is false: !PBI_Cond and BI_Value 2776 Instruction *NotCond = cast<Instruction>( 2777 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2778 MergedCond = cast<Instruction>( 2779 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2780 if (PBI_C->isOne()) 2781 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2782 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2783 } else { 2784 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2785 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2786 // is false: PBI_Cond and BI_Value 2787 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2788 Instruction::And, PBI->getCondition(), New, "and.cond")); 2789 if (PBI_C->isOne()) { 2790 Instruction *NotCond = cast<Instruction>( 2791 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2792 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2793 Instruction::Or, NotCond, MergedCond, "or.cond")); 2794 } 2795 } 2796 // Update PHI Node. 2797 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2798 MergedCond); 2799 } 2800 // Change PBI from Conditional to Unconditional. 2801 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2802 EraseTerminatorInstAndDCECond(PBI); 2803 PBI = New_PBI; 2804 } 2805 2806 // If BI was a loop latch, it may have had associated loop metadata. 2807 // We need to copy it to the new latch, that is, PBI. 2808 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2809 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2810 2811 // TODO: If BB is reachable from all paths through PredBlock, then we 2812 // could replace PBI's branch probabilities with BI's. 2813 2814 // Copy any debug value intrinsics into the end of PredBlock. 2815 for (Instruction &I : *BB) 2816 if (isa<DbgInfoIntrinsic>(I)) 2817 I.clone()->insertBefore(PBI); 2818 2819 return true; 2820 } 2821 return false; 2822 } 2823 2824 // If there is only one store in BB1 and BB2, return it, otherwise return 2825 // nullptr. 2826 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2827 StoreInst *S = nullptr; 2828 for (auto *BB : {BB1, BB2}) { 2829 if (!BB) 2830 continue; 2831 for (auto &I : *BB) 2832 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2833 if (S) 2834 // Multiple stores seen. 2835 return nullptr; 2836 else 2837 S = SI; 2838 } 2839 } 2840 return S; 2841 } 2842 2843 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2844 Value *AlternativeV = nullptr) { 2845 // PHI is going to be a PHI node that allows the value V that is defined in 2846 // BB to be referenced in BB's only successor. 2847 // 2848 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2849 // doesn't matter to us what the other operand is (it'll never get used). We 2850 // could just create a new PHI with an undef incoming value, but that could 2851 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2852 // other PHI. So here we directly look for some PHI in BB's successor with V 2853 // as an incoming operand. If we find one, we use it, else we create a new 2854 // one. 2855 // 2856 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2857 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2858 // where OtherBB is the single other predecessor of BB's only successor. 2859 PHINode *PHI = nullptr; 2860 BasicBlock *Succ = BB->getSingleSuccessor(); 2861 2862 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2863 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2864 PHI = cast<PHINode>(I); 2865 if (!AlternativeV) 2866 break; 2867 2868 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2869 auto PredI = pred_begin(Succ); 2870 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2871 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2872 break; 2873 PHI = nullptr; 2874 } 2875 if (PHI) 2876 return PHI; 2877 2878 // If V is not an instruction defined in BB, just return it. 2879 if (!AlternativeV && 2880 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2881 return V; 2882 2883 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2884 PHI->addIncoming(V, BB); 2885 for (BasicBlock *PredBB : predecessors(Succ)) 2886 if (PredBB != BB) 2887 PHI->addIncoming( 2888 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2889 return PHI; 2890 } 2891 2892 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2893 BasicBlock *QTB, BasicBlock *QFB, 2894 BasicBlock *PostBB, Value *Address, 2895 bool InvertPCond, bool InvertQCond, 2896 const DataLayout &DL) { 2897 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2898 return Operator::getOpcode(&I) == Instruction::BitCast && 2899 I.getType()->isPointerTy(); 2900 }; 2901 2902 // If we're not in aggressive mode, we only optimize if we have some 2903 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2904 auto IsWorthwhile = [&](BasicBlock *BB) { 2905 if (!BB) 2906 return true; 2907 // Heuristic: if the block can be if-converted/phi-folded and the 2908 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2909 // thread this store. 2910 unsigned N = 0; 2911 for (auto &I : *BB) { 2912 // Cheap instructions viable for folding. 2913 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2914 isa<StoreInst>(I)) 2915 ++N; 2916 // Free instructions. 2917 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2918 IsaBitcastOfPointerType(I)) 2919 continue; 2920 else 2921 return false; 2922 } 2923 // The store we want to merge is counted in N, so add 1 to make sure 2924 // we're counting the instructions that would be left. 2925 return N <= (PHINodeFoldingThreshold + 1); 2926 }; 2927 2928 if (!MergeCondStoresAggressively && 2929 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2930 !IsWorthwhile(QFB))) 2931 return false; 2932 2933 // For every pointer, there must be exactly two stores, one coming from 2934 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2935 // store (to any address) in PTB,PFB or QTB,QFB. 2936 // FIXME: We could relax this restriction with a bit more work and performance 2937 // testing. 2938 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2939 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2940 if (!PStore || !QStore) 2941 return false; 2942 2943 // Now check the stores are compatible. 2944 if (!QStore->isUnordered() || !PStore->isUnordered()) 2945 return false; 2946 2947 // Check that sinking the store won't cause program behavior changes. Sinking 2948 // the store out of the Q blocks won't change any behavior as we're sinking 2949 // from a block to its unconditional successor. But we're moving a store from 2950 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2951 // So we need to check that there are no aliasing loads or stores in 2952 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2953 // operations between PStore and the end of its parent block. 2954 // 2955 // The ideal way to do this is to query AliasAnalysis, but we don't 2956 // preserve AA currently so that is dangerous. Be super safe and just 2957 // check there are no other memory operations at all. 2958 for (auto &I : *QFB->getSinglePredecessor()) 2959 if (I.mayReadOrWriteMemory()) 2960 return false; 2961 for (auto &I : *QFB) 2962 if (&I != QStore && I.mayReadOrWriteMemory()) 2963 return false; 2964 if (QTB) 2965 for (auto &I : *QTB) 2966 if (&I != QStore && I.mayReadOrWriteMemory()) 2967 return false; 2968 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2969 I != E; ++I) 2970 if (&*I != PStore && I->mayReadOrWriteMemory()) 2971 return false; 2972 2973 // OK, we're going to sink the stores to PostBB. The store has to be 2974 // conditional though, so first create the predicate. 2975 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2976 ->getCondition(); 2977 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2978 ->getCondition(); 2979 2980 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2981 PStore->getParent()); 2982 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2983 QStore->getParent(), PPHI); 2984 2985 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2986 2987 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2988 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2989 2990 if (InvertPCond) 2991 PPred = QB.CreateNot(PPred); 2992 if (InvertQCond) 2993 QPred = QB.CreateNot(QPred); 2994 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2995 2996 auto *T = 2997 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2998 QB.SetInsertPoint(T); 2999 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3000 AAMDNodes AAMD; 3001 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3002 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3003 SI->setAAMetadata(AAMD); 3004 unsigned PAlignment = PStore->getAlignment(); 3005 unsigned QAlignment = QStore->getAlignment(); 3006 unsigned TypeAlignment = 3007 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3008 unsigned MinAlignment; 3009 unsigned MaxAlignment; 3010 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3011 // Choose the minimum alignment. If we could prove both stores execute, we 3012 // could use biggest one. In this case, though, we only know that one of the 3013 // stores executes. And we don't know it's safe to take the alignment from a 3014 // store that doesn't execute. 3015 if (MinAlignment != 0) { 3016 // Choose the minimum of all non-zero alignments. 3017 SI->setAlignment(MinAlignment); 3018 } else if (MaxAlignment != 0) { 3019 // Choose the minimal alignment between the non-zero alignment and the ABI 3020 // default alignment for the type of the stored value. 3021 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3022 } else { 3023 // If both alignments are zero, use ABI default alignment for the type of 3024 // the stored value. 3025 SI->setAlignment(TypeAlignment); 3026 } 3027 3028 QStore->eraseFromParent(); 3029 PStore->eraseFromParent(); 3030 3031 return true; 3032 } 3033 3034 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3035 const DataLayout &DL) { 3036 // The intention here is to find diamonds or triangles (see below) where each 3037 // conditional block contains a store to the same address. Both of these 3038 // stores are conditional, so they can't be unconditionally sunk. But it may 3039 // be profitable to speculatively sink the stores into one merged store at the 3040 // end, and predicate the merged store on the union of the two conditions of 3041 // PBI and QBI. 3042 // 3043 // This can reduce the number of stores executed if both of the conditions are 3044 // true, and can allow the blocks to become small enough to be if-converted. 3045 // This optimization will also chain, so that ladders of test-and-set 3046 // sequences can be if-converted away. 3047 // 3048 // We only deal with simple diamonds or triangles: 3049 // 3050 // PBI or PBI or a combination of the two 3051 // / \ | \ 3052 // PTB PFB | PFB 3053 // \ / | / 3054 // QBI QBI 3055 // / \ | \ 3056 // QTB QFB | QFB 3057 // \ / | / 3058 // PostBB PostBB 3059 // 3060 // We model triangles as a type of diamond with a nullptr "true" block. 3061 // Triangles are canonicalized so that the fallthrough edge is represented by 3062 // a true condition, as in the diagram above. 3063 BasicBlock *PTB = PBI->getSuccessor(0); 3064 BasicBlock *PFB = PBI->getSuccessor(1); 3065 BasicBlock *QTB = QBI->getSuccessor(0); 3066 BasicBlock *QFB = QBI->getSuccessor(1); 3067 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3068 3069 // Make sure we have a good guess for PostBB. If QTB's only successor is 3070 // QFB, then QFB is a better PostBB. 3071 if (QTB->getSingleSuccessor() == QFB) 3072 PostBB = QFB; 3073 3074 // If we couldn't find a good PostBB, stop. 3075 if (!PostBB) 3076 return false; 3077 3078 bool InvertPCond = false, InvertQCond = false; 3079 // Canonicalize fallthroughs to the true branches. 3080 if (PFB == QBI->getParent()) { 3081 std::swap(PFB, PTB); 3082 InvertPCond = true; 3083 } 3084 if (QFB == PostBB) { 3085 std::swap(QFB, QTB); 3086 InvertQCond = true; 3087 } 3088 3089 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3090 // and QFB may not. Model fallthroughs as a nullptr block. 3091 if (PTB == QBI->getParent()) 3092 PTB = nullptr; 3093 if (QTB == PostBB) 3094 QTB = nullptr; 3095 3096 // Legality bailouts. We must have at least the non-fallthrough blocks and 3097 // the post-dominating block, and the non-fallthroughs must only have one 3098 // predecessor. 3099 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3100 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3101 }; 3102 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3103 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3104 return false; 3105 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3106 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3107 return false; 3108 if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2)) 3109 return false; 3110 3111 // OK, this is a sequence of two diamonds or triangles. 3112 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3113 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3114 for (auto *BB : {PTB, PFB}) { 3115 if (!BB) 3116 continue; 3117 for (auto &I : *BB) 3118 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3119 PStoreAddresses.insert(SI->getPointerOperand()); 3120 } 3121 for (auto *BB : {QTB, QFB}) { 3122 if (!BB) 3123 continue; 3124 for (auto &I : *BB) 3125 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3126 QStoreAddresses.insert(SI->getPointerOperand()); 3127 } 3128 3129 set_intersect(PStoreAddresses, QStoreAddresses); 3130 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3131 // clear what it contains. 3132 auto &CommonAddresses = PStoreAddresses; 3133 3134 bool Changed = false; 3135 for (auto *Address : CommonAddresses) 3136 Changed |= mergeConditionalStoreToAddress( 3137 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3138 return Changed; 3139 } 3140 3141 /// If we have a conditional branch as a predecessor of another block, 3142 /// this function tries to simplify it. We know 3143 /// that PBI and BI are both conditional branches, and BI is in one of the 3144 /// successor blocks of PBI - PBI branches to BI. 3145 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3146 const DataLayout &DL) { 3147 assert(PBI->isConditional() && BI->isConditional()); 3148 BasicBlock *BB = BI->getParent(); 3149 3150 // If this block ends with a branch instruction, and if there is a 3151 // predecessor that ends on a branch of the same condition, make 3152 // this conditional branch redundant. 3153 if (PBI->getCondition() == BI->getCondition() && 3154 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3155 // Okay, the outcome of this conditional branch is statically 3156 // knowable. If this block had a single pred, handle specially. 3157 if (BB->getSinglePredecessor()) { 3158 // Turn this into a branch on constant. 3159 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3160 BI->setCondition( 3161 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3162 return true; // Nuke the branch on constant. 3163 } 3164 3165 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3166 // in the constant and simplify the block result. Subsequent passes of 3167 // simplifycfg will thread the block. 3168 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3169 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3170 PHINode *NewPN = PHINode::Create( 3171 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3172 BI->getCondition()->getName() + ".pr", &BB->front()); 3173 // Okay, we're going to insert the PHI node. Since PBI is not the only 3174 // predecessor, compute the PHI'd conditional value for all of the preds. 3175 // Any predecessor where the condition is not computable we keep symbolic. 3176 for (pred_iterator PI = PB; PI != PE; ++PI) { 3177 BasicBlock *P = *PI; 3178 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3179 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3180 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3181 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3182 NewPN->addIncoming( 3183 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3184 P); 3185 } else { 3186 NewPN->addIncoming(BI->getCondition(), P); 3187 } 3188 } 3189 3190 BI->setCondition(NewPN); 3191 return true; 3192 } 3193 } 3194 3195 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3196 if (CE->canTrap()) 3197 return false; 3198 3199 // If both branches are conditional and both contain stores to the same 3200 // address, remove the stores from the conditionals and create a conditional 3201 // merged store at the end. 3202 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3203 return true; 3204 3205 // If this is a conditional branch in an empty block, and if any 3206 // predecessors are a conditional branch to one of our destinations, 3207 // fold the conditions into logical ops and one cond br. 3208 BasicBlock::iterator BBI = BB->begin(); 3209 // Ignore dbg intrinsics. 3210 while (isa<DbgInfoIntrinsic>(BBI)) 3211 ++BBI; 3212 if (&*BBI != BI) 3213 return false; 3214 3215 int PBIOp, BIOp; 3216 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3217 PBIOp = 0; 3218 BIOp = 0; 3219 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3220 PBIOp = 0; 3221 BIOp = 1; 3222 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3223 PBIOp = 1; 3224 BIOp = 0; 3225 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3226 PBIOp = 1; 3227 BIOp = 1; 3228 } else { 3229 return false; 3230 } 3231 3232 // Check to make sure that the other destination of this branch 3233 // isn't BB itself. If so, this is an infinite loop that will 3234 // keep getting unwound. 3235 if (PBI->getSuccessor(PBIOp) == BB) 3236 return false; 3237 3238 // Do not perform this transformation if it would require 3239 // insertion of a large number of select instructions. For targets 3240 // without predication/cmovs, this is a big pessimization. 3241 3242 // Also do not perform this transformation if any phi node in the common 3243 // destination block can trap when reached by BB or PBB (PR17073). In that 3244 // case, it would be unsafe to hoist the operation into a select instruction. 3245 3246 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3247 unsigned NumPhis = 0; 3248 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3249 ++II, ++NumPhis) { 3250 if (NumPhis > 2) // Disable this xform. 3251 return false; 3252 3253 PHINode *PN = cast<PHINode>(II); 3254 Value *BIV = PN->getIncomingValueForBlock(BB); 3255 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3256 if (CE->canTrap()) 3257 return false; 3258 3259 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3260 Value *PBIV = PN->getIncomingValue(PBBIdx); 3261 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3262 if (CE->canTrap()) 3263 return false; 3264 } 3265 3266 // Finally, if everything is ok, fold the branches to logical ops. 3267 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3268 3269 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3270 << "AND: " << *BI->getParent()); 3271 3272 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3273 // branch in it, where one edge (OtherDest) goes back to itself but the other 3274 // exits. We don't *know* that the program avoids the infinite loop 3275 // (even though that seems likely). If we do this xform naively, we'll end up 3276 // recursively unpeeling the loop. Since we know that (after the xform is 3277 // done) that the block *is* infinite if reached, we just make it an obviously 3278 // infinite loop with no cond branch. 3279 if (OtherDest == BB) { 3280 // Insert it at the end of the function, because it's either code, 3281 // or it won't matter if it's hot. :) 3282 BasicBlock *InfLoopBlock = 3283 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3284 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3285 OtherDest = InfLoopBlock; 3286 } 3287 3288 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3289 3290 // BI may have other predecessors. Because of this, we leave 3291 // it alone, but modify PBI. 3292 3293 // Make sure we get to CommonDest on True&True directions. 3294 Value *PBICond = PBI->getCondition(); 3295 IRBuilder<NoFolder> Builder(PBI); 3296 if (PBIOp) 3297 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3298 3299 Value *BICond = BI->getCondition(); 3300 if (BIOp) 3301 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3302 3303 // Merge the conditions. 3304 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3305 3306 // Modify PBI to branch on the new condition to the new dests. 3307 PBI->setCondition(Cond); 3308 PBI->setSuccessor(0, CommonDest); 3309 PBI->setSuccessor(1, OtherDest); 3310 3311 // Update branch weight for PBI. 3312 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3313 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3314 bool HasWeights = 3315 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3316 SuccTrueWeight, SuccFalseWeight); 3317 if (HasWeights) { 3318 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3319 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3320 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3321 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3322 // The weight to CommonDest should be PredCommon * SuccTotal + 3323 // PredOther * SuccCommon. 3324 // The weight to OtherDest should be PredOther * SuccOther. 3325 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3326 PredOther * SuccCommon, 3327 PredOther * SuccOther}; 3328 // Halve the weights if any of them cannot fit in an uint32_t 3329 FitWeights(NewWeights); 3330 3331 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3332 } 3333 3334 // OtherDest may have phi nodes. If so, add an entry from PBI's 3335 // block that are identical to the entries for BI's block. 3336 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3337 3338 // We know that the CommonDest already had an edge from PBI to 3339 // it. If it has PHIs though, the PHIs may have different 3340 // entries for BB and PBI's BB. If so, insert a select to make 3341 // them agree. 3342 PHINode *PN; 3343 for (BasicBlock::iterator II = CommonDest->begin(); 3344 (PN = dyn_cast<PHINode>(II)); ++II) { 3345 Value *BIV = PN->getIncomingValueForBlock(BB); 3346 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3347 Value *PBIV = PN->getIncomingValue(PBBIdx); 3348 if (BIV != PBIV) { 3349 // Insert a select in PBI to pick the right value. 3350 SelectInst *NV = cast<SelectInst>( 3351 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3352 PN->setIncomingValue(PBBIdx, NV); 3353 // Although the select has the same condition as PBI, the original branch 3354 // weights for PBI do not apply to the new select because the select's 3355 // 'logical' edges are incoming edges of the phi that is eliminated, not 3356 // the outgoing edges of PBI. 3357 if (HasWeights) { 3358 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3359 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3360 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3361 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3362 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3363 // The weight to PredOtherDest should be PredOther * SuccCommon. 3364 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3365 PredOther * SuccCommon}; 3366 3367 FitWeights(NewWeights); 3368 3369 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3370 } 3371 } 3372 } 3373 3374 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3375 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3376 3377 // This basic block is probably dead. We know it has at least 3378 // one fewer predecessor. 3379 return true; 3380 } 3381 3382 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3383 // true or to FalseBB if Cond is false. 3384 // Takes care of updating the successors and removing the old terminator. 3385 // Also makes sure not to introduce new successors by assuming that edges to 3386 // non-successor TrueBBs and FalseBBs aren't reachable. 3387 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3388 BasicBlock *TrueBB, BasicBlock *FalseBB, 3389 uint32_t TrueWeight, 3390 uint32_t FalseWeight) { 3391 // Remove any superfluous successor edges from the CFG. 3392 // First, figure out which successors to preserve. 3393 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3394 // successor. 3395 BasicBlock *KeepEdge1 = TrueBB; 3396 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3397 3398 // Then remove the rest. 3399 for (BasicBlock *Succ : OldTerm->successors()) { 3400 // Make sure only to keep exactly one copy of each edge. 3401 if (Succ == KeepEdge1) 3402 KeepEdge1 = nullptr; 3403 else if (Succ == KeepEdge2) 3404 KeepEdge2 = nullptr; 3405 else 3406 Succ->removePredecessor(OldTerm->getParent(), 3407 /*DontDeleteUselessPHIs=*/true); 3408 } 3409 3410 IRBuilder<> Builder(OldTerm); 3411 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3412 3413 // Insert an appropriate new terminator. 3414 if (!KeepEdge1 && !KeepEdge2) { 3415 if (TrueBB == FalseBB) 3416 // We were only looking for one successor, and it was present. 3417 // Create an unconditional branch to it. 3418 Builder.CreateBr(TrueBB); 3419 else { 3420 // We found both of the successors we were looking for. 3421 // Create a conditional branch sharing the condition of the select. 3422 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3423 if (TrueWeight != FalseWeight) 3424 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3425 } 3426 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3427 // Neither of the selected blocks were successors, so this 3428 // terminator must be unreachable. 3429 new UnreachableInst(OldTerm->getContext(), OldTerm); 3430 } else { 3431 // One of the selected values was a successor, but the other wasn't. 3432 // Insert an unconditional branch to the one that was found; 3433 // the edge to the one that wasn't must be unreachable. 3434 if (!KeepEdge1) 3435 // Only TrueBB was found. 3436 Builder.CreateBr(TrueBB); 3437 else 3438 // Only FalseBB was found. 3439 Builder.CreateBr(FalseBB); 3440 } 3441 3442 EraseTerminatorInstAndDCECond(OldTerm); 3443 return true; 3444 } 3445 3446 // Replaces 3447 // (switch (select cond, X, Y)) on constant X, Y 3448 // with a branch - conditional if X and Y lead to distinct BBs, 3449 // unconditional otherwise. 3450 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3451 // Check for constant integer values in the select. 3452 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3453 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3454 if (!TrueVal || !FalseVal) 3455 return false; 3456 3457 // Find the relevant condition and destinations. 3458 Value *Condition = Select->getCondition(); 3459 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3460 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3461 3462 // Get weight for TrueBB and FalseBB. 3463 uint32_t TrueWeight = 0, FalseWeight = 0; 3464 SmallVector<uint64_t, 8> Weights; 3465 bool HasWeights = HasBranchWeights(SI); 3466 if (HasWeights) { 3467 GetBranchWeights(SI, Weights); 3468 if (Weights.size() == 1 + SI->getNumCases()) { 3469 TrueWeight = 3470 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3471 FalseWeight = 3472 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3473 } 3474 } 3475 3476 // Perform the actual simplification. 3477 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3478 FalseWeight); 3479 } 3480 3481 // Replaces 3482 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3483 // blockaddress(@fn, BlockB))) 3484 // with 3485 // (br cond, BlockA, BlockB). 3486 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3487 // Check that both operands of the select are block addresses. 3488 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3489 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3490 if (!TBA || !FBA) 3491 return false; 3492 3493 // Extract the actual blocks. 3494 BasicBlock *TrueBB = TBA->getBasicBlock(); 3495 BasicBlock *FalseBB = FBA->getBasicBlock(); 3496 3497 // Perform the actual simplification. 3498 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3499 0); 3500 } 3501 3502 /// This is called when we find an icmp instruction 3503 /// (a seteq/setne with a constant) as the only instruction in a 3504 /// block that ends with an uncond branch. We are looking for a very specific 3505 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3506 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3507 /// default value goes to an uncond block with a seteq in it, we get something 3508 /// like: 3509 /// 3510 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3511 /// DEFAULT: 3512 /// %tmp = icmp eq i8 %A, 92 3513 /// br label %end 3514 /// end: 3515 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3516 /// 3517 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3518 /// the PHI, merging the third icmp into the switch. 3519 static bool tryToSimplifyUncondBranchWithICmpInIt( 3520 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3521 const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) { 3522 BasicBlock *BB = ICI->getParent(); 3523 3524 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3525 // complex. 3526 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3527 return false; 3528 3529 Value *V = ICI->getOperand(0); 3530 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3531 3532 // The pattern we're looking for is where our only predecessor is a switch on 3533 // 'V' and this block is the default case for the switch. In this case we can 3534 // fold the compared value into the switch to simplify things. 3535 BasicBlock *Pred = BB->getSinglePredecessor(); 3536 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3537 return false; 3538 3539 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3540 if (SI->getCondition() != V) 3541 return false; 3542 3543 // If BB is reachable on a non-default case, then we simply know the value of 3544 // V in this block. Substitute it and constant fold the icmp instruction 3545 // away. 3546 if (SI->getDefaultDest() != BB) { 3547 ConstantInt *VVal = SI->findCaseDest(BB); 3548 assert(VVal && "Should have a unique destination value"); 3549 ICI->setOperand(0, VVal); 3550 3551 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3552 ICI->replaceAllUsesWith(V); 3553 ICI->eraseFromParent(); 3554 } 3555 // BB is now empty, so it is likely to simplify away. 3556 return simplifyCFG(BB, TTI, Options) | true; 3557 } 3558 3559 // Ok, the block is reachable from the default dest. If the constant we're 3560 // comparing exists in one of the other edges, then we can constant fold ICI 3561 // and zap it. 3562 if (SI->findCaseValue(Cst) != SI->case_default()) { 3563 Value *V; 3564 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3565 V = ConstantInt::getFalse(BB->getContext()); 3566 else 3567 V = ConstantInt::getTrue(BB->getContext()); 3568 3569 ICI->replaceAllUsesWith(V); 3570 ICI->eraseFromParent(); 3571 // BB is now empty, so it is likely to simplify away. 3572 return simplifyCFG(BB, TTI, Options) | true; 3573 } 3574 3575 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3576 // the block. 3577 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3578 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3579 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3580 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3581 return false; 3582 3583 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3584 // true in the PHI. 3585 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3586 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3587 3588 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3589 std::swap(DefaultCst, NewCst); 3590 3591 // Replace ICI (which is used by the PHI for the default value) with true or 3592 // false depending on if it is EQ or NE. 3593 ICI->replaceAllUsesWith(DefaultCst); 3594 ICI->eraseFromParent(); 3595 3596 // Okay, the switch goes to this block on a default value. Add an edge from 3597 // the switch to the merge point on the compared value. 3598 BasicBlock *NewBB = 3599 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3600 SmallVector<uint64_t, 8> Weights; 3601 bool HasWeights = HasBranchWeights(SI); 3602 if (HasWeights) { 3603 GetBranchWeights(SI, Weights); 3604 if (Weights.size() == 1 + SI->getNumCases()) { 3605 // Split weight for default case to case for "Cst". 3606 Weights[0] = (Weights[0] + 1) >> 1; 3607 Weights.push_back(Weights[0]); 3608 3609 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3610 setBranchWeights(SI, MDWeights); 3611 } 3612 } 3613 SI->addCase(Cst, NewBB); 3614 3615 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3616 Builder.SetInsertPoint(NewBB); 3617 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3618 Builder.CreateBr(SuccBlock); 3619 PHIUse->addIncoming(NewCst, NewBB); 3620 return true; 3621 } 3622 3623 /// The specified branch is a conditional branch. 3624 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3625 /// fold it into a switch instruction if so. 3626 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3627 const DataLayout &DL) { 3628 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3629 if (!Cond) 3630 return false; 3631 3632 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3633 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3634 // 'setne's and'ed together, collect them. 3635 3636 // Try to gather values from a chain of and/or to be turned into a switch 3637 ConstantComparesGatherer ConstantCompare(Cond, DL); 3638 // Unpack the result 3639 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3640 Value *CompVal = ConstantCompare.CompValue; 3641 unsigned UsedICmps = ConstantCompare.UsedICmps; 3642 Value *ExtraCase = ConstantCompare.Extra; 3643 3644 // If we didn't have a multiply compared value, fail. 3645 if (!CompVal) 3646 return false; 3647 3648 // Avoid turning single icmps into a switch. 3649 if (UsedICmps <= 1) 3650 return false; 3651 3652 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3653 3654 // There might be duplicate constants in the list, which the switch 3655 // instruction can't handle, remove them now. 3656 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3657 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3658 3659 // If Extra was used, we require at least two switch values to do the 3660 // transformation. A switch with one value is just a conditional branch. 3661 if (ExtraCase && Values.size() < 2) 3662 return false; 3663 3664 // TODO: Preserve branch weight metadata, similarly to how 3665 // FoldValueComparisonIntoPredecessors preserves it. 3666 3667 // Figure out which block is which destination. 3668 BasicBlock *DefaultBB = BI->getSuccessor(1); 3669 BasicBlock *EdgeBB = BI->getSuccessor(0); 3670 if (!TrueWhenEqual) 3671 std::swap(DefaultBB, EdgeBB); 3672 3673 BasicBlock *BB = BI->getParent(); 3674 3675 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3676 << " cases into SWITCH. BB is:\n" 3677 << *BB); 3678 3679 // If there are any extra values that couldn't be folded into the switch 3680 // then we evaluate them with an explicit branch first. Split the block 3681 // right before the condbr to handle it. 3682 if (ExtraCase) { 3683 BasicBlock *NewBB = 3684 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3685 // Remove the uncond branch added to the old block. 3686 TerminatorInst *OldTI = BB->getTerminator(); 3687 Builder.SetInsertPoint(OldTI); 3688 3689 if (TrueWhenEqual) 3690 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3691 else 3692 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3693 3694 OldTI->eraseFromParent(); 3695 3696 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3697 // for the edge we just added. 3698 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3699 3700 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3701 << "\nEXTRABB = " << *BB); 3702 BB = NewBB; 3703 } 3704 3705 Builder.SetInsertPoint(BI); 3706 // Convert pointer to int before we switch. 3707 if (CompVal->getType()->isPointerTy()) { 3708 CompVal = Builder.CreatePtrToInt( 3709 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3710 } 3711 3712 // Create the new switch instruction now. 3713 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3714 3715 // Add all of the 'cases' to the switch instruction. 3716 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3717 New->addCase(Values[i], EdgeBB); 3718 3719 // We added edges from PI to the EdgeBB. As such, if there were any 3720 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3721 // the number of edges added. 3722 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3723 PHINode *PN = cast<PHINode>(BBI); 3724 Value *InVal = PN->getIncomingValueForBlock(BB); 3725 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3726 PN->addIncoming(InVal, BB); 3727 } 3728 3729 // Erase the old branch instruction. 3730 EraseTerminatorInstAndDCECond(BI); 3731 3732 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3733 return true; 3734 } 3735 3736 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3737 if (isa<PHINode>(RI->getValue())) 3738 return SimplifyCommonResume(RI); 3739 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3740 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3741 // The resume must unwind the exception that caused control to branch here. 3742 return SimplifySingleResume(RI); 3743 3744 return false; 3745 } 3746 3747 // Simplify resume that is shared by several landing pads (phi of landing pad). 3748 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3749 BasicBlock *BB = RI->getParent(); 3750 3751 // Check that there are no other instructions except for debug intrinsics 3752 // between the phi of landing pads (RI->getValue()) and resume instruction. 3753 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3754 E = RI->getIterator(); 3755 while (++I != E) 3756 if (!isa<DbgInfoIntrinsic>(I)) 3757 return false; 3758 3759 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3760 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3761 3762 // Check incoming blocks to see if any of them are trivial. 3763 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3764 Idx++) { 3765 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3766 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3767 3768 // If the block has other successors, we can not delete it because 3769 // it has other dependents. 3770 if (IncomingBB->getUniqueSuccessor() != BB) 3771 continue; 3772 3773 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3774 // Not the landing pad that caused the control to branch here. 3775 if (IncomingValue != LandingPad) 3776 continue; 3777 3778 bool isTrivial = true; 3779 3780 I = IncomingBB->getFirstNonPHI()->getIterator(); 3781 E = IncomingBB->getTerminator()->getIterator(); 3782 while (++I != E) 3783 if (!isa<DbgInfoIntrinsic>(I)) { 3784 isTrivial = false; 3785 break; 3786 } 3787 3788 if (isTrivial) 3789 TrivialUnwindBlocks.insert(IncomingBB); 3790 } 3791 3792 // If no trivial unwind blocks, don't do any simplifications. 3793 if (TrivialUnwindBlocks.empty()) 3794 return false; 3795 3796 // Turn all invokes that unwind here into calls. 3797 for (auto *TrivialBB : TrivialUnwindBlocks) { 3798 // Blocks that will be simplified should be removed from the phi node. 3799 // Note there could be multiple edges to the resume block, and we need 3800 // to remove them all. 3801 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3802 BB->removePredecessor(TrivialBB, true); 3803 3804 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3805 PI != PE;) { 3806 BasicBlock *Pred = *PI++; 3807 removeUnwindEdge(Pred); 3808 } 3809 3810 // In each SimplifyCFG run, only the current processed block can be erased. 3811 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3812 // of erasing TrivialBB, we only remove the branch to the common resume 3813 // block so that we can later erase the resume block since it has no 3814 // predecessors. 3815 TrivialBB->getTerminator()->eraseFromParent(); 3816 new UnreachableInst(RI->getContext(), TrivialBB); 3817 } 3818 3819 // Delete the resume block if all its predecessors have been removed. 3820 if (pred_empty(BB)) 3821 BB->eraseFromParent(); 3822 3823 return !TrivialUnwindBlocks.empty(); 3824 } 3825 3826 // Simplify resume that is only used by a single (non-phi) landing pad. 3827 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3828 BasicBlock *BB = RI->getParent(); 3829 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3830 assert(RI->getValue() == LPInst && 3831 "Resume must unwind the exception that caused control to here"); 3832 3833 // Check that there are no other instructions except for debug intrinsics. 3834 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3835 while (++I != E) 3836 if (!isa<DbgInfoIntrinsic>(I)) 3837 return false; 3838 3839 // Turn all invokes that unwind here into calls and delete the basic block. 3840 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3841 BasicBlock *Pred = *PI++; 3842 removeUnwindEdge(Pred); 3843 } 3844 3845 // The landingpad is now unreachable. Zap it. 3846 BB->eraseFromParent(); 3847 if (LoopHeaders) 3848 LoopHeaders->erase(BB); 3849 return true; 3850 } 3851 3852 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3853 // If this is a trivial cleanup pad that executes no instructions, it can be 3854 // eliminated. If the cleanup pad continues to the caller, any predecessor 3855 // that is an EH pad will be updated to continue to the caller and any 3856 // predecessor that terminates with an invoke instruction will have its invoke 3857 // instruction converted to a call instruction. If the cleanup pad being 3858 // simplified does not continue to the caller, each predecessor will be 3859 // updated to continue to the unwind destination of the cleanup pad being 3860 // simplified. 3861 BasicBlock *BB = RI->getParent(); 3862 CleanupPadInst *CPInst = RI->getCleanupPad(); 3863 if (CPInst->getParent() != BB) 3864 // This isn't an empty cleanup. 3865 return false; 3866 3867 // We cannot kill the pad if it has multiple uses. This typically arises 3868 // from unreachable basic blocks. 3869 if (!CPInst->hasOneUse()) 3870 return false; 3871 3872 // Check that there are no other instructions except for benign intrinsics. 3873 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3874 while (++I != E) { 3875 auto *II = dyn_cast<IntrinsicInst>(I); 3876 if (!II) 3877 return false; 3878 3879 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3880 switch (IntrinsicID) { 3881 case Intrinsic::dbg_declare: 3882 case Intrinsic::dbg_value: 3883 case Intrinsic::lifetime_end: 3884 break; 3885 default: 3886 return false; 3887 } 3888 } 3889 3890 // If the cleanup return we are simplifying unwinds to the caller, this will 3891 // set UnwindDest to nullptr. 3892 BasicBlock *UnwindDest = RI->getUnwindDest(); 3893 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3894 3895 // We're about to remove BB from the control flow. Before we do, sink any 3896 // PHINodes into the unwind destination. Doing this before changing the 3897 // control flow avoids some potentially slow checks, since we can currently 3898 // be certain that UnwindDest and BB have no common predecessors (since they 3899 // are both EH pads). 3900 if (UnwindDest) { 3901 // First, go through the PHI nodes in UnwindDest and update any nodes that 3902 // reference the block we are removing 3903 for (BasicBlock::iterator I = UnwindDest->begin(), 3904 IE = DestEHPad->getIterator(); 3905 I != IE; ++I) { 3906 PHINode *DestPN = cast<PHINode>(I); 3907 3908 int Idx = DestPN->getBasicBlockIndex(BB); 3909 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3910 assert(Idx != -1); 3911 // This PHI node has an incoming value that corresponds to a control 3912 // path through the cleanup pad we are removing. If the incoming 3913 // value is in the cleanup pad, it must be a PHINode (because we 3914 // verified above that the block is otherwise empty). Otherwise, the 3915 // value is either a constant or a value that dominates the cleanup 3916 // pad being removed. 3917 // 3918 // Because BB and UnwindDest are both EH pads, all of their 3919 // predecessors must unwind to these blocks, and since no instruction 3920 // can have multiple unwind destinations, there will be no overlap in 3921 // incoming blocks between SrcPN and DestPN. 3922 Value *SrcVal = DestPN->getIncomingValue(Idx); 3923 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3924 3925 // Remove the entry for the block we are deleting. 3926 DestPN->removeIncomingValue(Idx, false); 3927 3928 if (SrcPN && SrcPN->getParent() == BB) { 3929 // If the incoming value was a PHI node in the cleanup pad we are 3930 // removing, we need to merge that PHI node's incoming values into 3931 // DestPN. 3932 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3933 SrcIdx != SrcE; ++SrcIdx) { 3934 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3935 SrcPN->getIncomingBlock(SrcIdx)); 3936 } 3937 } else { 3938 // Otherwise, the incoming value came from above BB and 3939 // so we can just reuse it. We must associate all of BB's 3940 // predecessors with this value. 3941 for (auto *pred : predecessors(BB)) { 3942 DestPN->addIncoming(SrcVal, pred); 3943 } 3944 } 3945 } 3946 3947 // Sink any remaining PHI nodes directly into UnwindDest. 3948 Instruction *InsertPt = DestEHPad; 3949 for (BasicBlock::iterator I = BB->begin(), 3950 IE = BB->getFirstNonPHI()->getIterator(); 3951 I != IE;) { 3952 // The iterator must be incremented here because the instructions are 3953 // being moved to another block. 3954 PHINode *PN = cast<PHINode>(I++); 3955 if (PN->use_empty()) 3956 // If the PHI node has no uses, just leave it. It will be erased 3957 // when we erase BB below. 3958 continue; 3959 3960 // Otherwise, sink this PHI node into UnwindDest. 3961 // Any predecessors to UnwindDest which are not already represented 3962 // must be back edges which inherit the value from the path through 3963 // BB. In this case, the PHI value must reference itself. 3964 for (auto *pred : predecessors(UnwindDest)) 3965 if (pred != BB) 3966 PN->addIncoming(PN, pred); 3967 PN->moveBefore(InsertPt); 3968 } 3969 } 3970 3971 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3972 // The iterator must be updated here because we are removing this pred. 3973 BasicBlock *PredBB = *PI++; 3974 if (UnwindDest == nullptr) { 3975 removeUnwindEdge(PredBB); 3976 } else { 3977 TerminatorInst *TI = PredBB->getTerminator(); 3978 TI->replaceUsesOfWith(BB, UnwindDest); 3979 } 3980 } 3981 3982 // The cleanup pad is now unreachable. Zap it. 3983 BB->eraseFromParent(); 3984 return true; 3985 } 3986 3987 // Try to merge two cleanuppads together. 3988 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3989 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3990 // with. 3991 BasicBlock *UnwindDest = RI->getUnwindDest(); 3992 if (!UnwindDest) 3993 return false; 3994 3995 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3996 // be safe to merge without code duplication. 3997 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3998 return false; 3999 4000 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4001 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4002 if (!SuccessorCleanupPad) 4003 return false; 4004 4005 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4006 // Replace any uses of the successor cleanupad with the predecessor pad 4007 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4008 // funclet bundle operands. 4009 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4010 // Remove the old cleanuppad. 4011 SuccessorCleanupPad->eraseFromParent(); 4012 // Now, we simply replace the cleanupret with a branch to the unwind 4013 // destination. 4014 BranchInst::Create(UnwindDest, RI->getParent()); 4015 RI->eraseFromParent(); 4016 4017 return true; 4018 } 4019 4020 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4021 // It is possible to transiantly have an undef cleanuppad operand because we 4022 // have deleted some, but not all, dead blocks. 4023 // Eventually, this block will be deleted. 4024 if (isa<UndefValue>(RI->getOperand(0))) 4025 return false; 4026 4027 if (mergeCleanupPad(RI)) 4028 return true; 4029 4030 if (removeEmptyCleanup(RI)) 4031 return true; 4032 4033 return false; 4034 } 4035 4036 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4037 BasicBlock *BB = RI->getParent(); 4038 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4039 return false; 4040 4041 // Find predecessors that end with branches. 4042 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4043 SmallVector<BranchInst *, 8> CondBranchPreds; 4044 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4045 BasicBlock *P = *PI; 4046 TerminatorInst *PTI = P->getTerminator(); 4047 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4048 if (BI->isUnconditional()) 4049 UncondBranchPreds.push_back(P); 4050 else 4051 CondBranchPreds.push_back(BI); 4052 } 4053 } 4054 4055 // If we found some, do the transformation! 4056 if (!UncondBranchPreds.empty() && DupRet) { 4057 while (!UncondBranchPreds.empty()) { 4058 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4059 DEBUG(dbgs() << "FOLDING: " << *BB 4060 << "INTO UNCOND BRANCH PRED: " << *Pred); 4061 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4062 } 4063 4064 // If we eliminated all predecessors of the block, delete the block now. 4065 if (pred_empty(BB)) { 4066 // We know there are no successors, so just nuke the block. 4067 BB->eraseFromParent(); 4068 if (LoopHeaders) 4069 LoopHeaders->erase(BB); 4070 } 4071 4072 return true; 4073 } 4074 4075 // Check out all of the conditional branches going to this return 4076 // instruction. If any of them just select between returns, change the 4077 // branch itself into a select/return pair. 4078 while (!CondBranchPreds.empty()) { 4079 BranchInst *BI = CondBranchPreds.pop_back_val(); 4080 4081 // Check to see if the non-BB successor is also a return block. 4082 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4083 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4084 SimplifyCondBranchToTwoReturns(BI, Builder)) 4085 return true; 4086 } 4087 return false; 4088 } 4089 4090 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4091 BasicBlock *BB = UI->getParent(); 4092 4093 bool Changed = false; 4094 4095 // If there are any instructions immediately before the unreachable that can 4096 // be removed, do so. 4097 while (UI->getIterator() != BB->begin()) { 4098 BasicBlock::iterator BBI = UI->getIterator(); 4099 --BBI; 4100 // Do not delete instructions that can have side effects which might cause 4101 // the unreachable to not be reachable; specifically, calls and volatile 4102 // operations may have this effect. 4103 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4104 break; 4105 4106 if (BBI->mayHaveSideEffects()) { 4107 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4108 if (SI->isVolatile()) 4109 break; 4110 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4111 if (LI->isVolatile()) 4112 break; 4113 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4114 if (RMWI->isVolatile()) 4115 break; 4116 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4117 if (CXI->isVolatile()) 4118 break; 4119 } else if (isa<CatchPadInst>(BBI)) { 4120 // A catchpad may invoke exception object constructors and such, which 4121 // in some languages can be arbitrary code, so be conservative by 4122 // default. 4123 // For CoreCLR, it just involves a type test, so can be removed. 4124 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4125 EHPersonality::CoreCLR) 4126 break; 4127 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4128 !isa<LandingPadInst>(BBI)) { 4129 break; 4130 } 4131 // Note that deleting LandingPad's here is in fact okay, although it 4132 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4133 // all the predecessors of this block will be the unwind edges of Invokes, 4134 // and we can therefore guarantee this block will be erased. 4135 } 4136 4137 // Delete this instruction (any uses are guaranteed to be dead) 4138 if (!BBI->use_empty()) 4139 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4140 BBI->eraseFromParent(); 4141 Changed = true; 4142 } 4143 4144 // If the unreachable instruction is the first in the block, take a gander 4145 // at all of the predecessors of this instruction, and simplify them. 4146 if (&BB->front() != UI) 4147 return Changed; 4148 4149 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4150 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4151 TerminatorInst *TI = Preds[i]->getTerminator(); 4152 IRBuilder<> Builder(TI); 4153 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4154 if (BI->isUnconditional()) { 4155 if (BI->getSuccessor(0) == BB) { 4156 new UnreachableInst(TI->getContext(), TI); 4157 TI->eraseFromParent(); 4158 Changed = true; 4159 } 4160 } else { 4161 if (BI->getSuccessor(0) == BB) { 4162 Builder.CreateBr(BI->getSuccessor(1)); 4163 EraseTerminatorInstAndDCECond(BI); 4164 } else if (BI->getSuccessor(1) == BB) { 4165 Builder.CreateBr(BI->getSuccessor(0)); 4166 EraseTerminatorInstAndDCECond(BI); 4167 Changed = true; 4168 } 4169 } 4170 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4171 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4172 if (i->getCaseSuccessor() != BB) { 4173 ++i; 4174 continue; 4175 } 4176 BB->removePredecessor(SI->getParent()); 4177 i = SI->removeCase(i); 4178 e = SI->case_end(); 4179 Changed = true; 4180 } 4181 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4182 if (II->getUnwindDest() == BB) { 4183 removeUnwindEdge(TI->getParent()); 4184 Changed = true; 4185 } 4186 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4187 if (CSI->getUnwindDest() == BB) { 4188 removeUnwindEdge(TI->getParent()); 4189 Changed = true; 4190 continue; 4191 } 4192 4193 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4194 E = CSI->handler_end(); 4195 I != E; ++I) { 4196 if (*I == BB) { 4197 CSI->removeHandler(I); 4198 --I; 4199 --E; 4200 Changed = true; 4201 } 4202 } 4203 if (CSI->getNumHandlers() == 0) { 4204 BasicBlock *CatchSwitchBB = CSI->getParent(); 4205 if (CSI->hasUnwindDest()) { 4206 // Redirect preds to the unwind dest 4207 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4208 } else { 4209 // Rewrite all preds to unwind to caller (or from invoke to call). 4210 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4211 for (BasicBlock *EHPred : EHPreds) 4212 removeUnwindEdge(EHPred); 4213 } 4214 // The catchswitch is no longer reachable. 4215 new UnreachableInst(CSI->getContext(), CSI); 4216 CSI->eraseFromParent(); 4217 Changed = true; 4218 } 4219 } else if (isa<CleanupReturnInst>(TI)) { 4220 new UnreachableInst(TI->getContext(), TI); 4221 TI->eraseFromParent(); 4222 Changed = true; 4223 } 4224 } 4225 4226 // If this block is now dead, remove it. 4227 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4228 // We know there are no successors, so just nuke the block. 4229 BB->eraseFromParent(); 4230 if (LoopHeaders) 4231 LoopHeaders->erase(BB); 4232 return true; 4233 } 4234 4235 return Changed; 4236 } 4237 4238 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4239 assert(Cases.size() >= 1); 4240 4241 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4242 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4243 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4244 return false; 4245 } 4246 return true; 4247 } 4248 4249 /// Turn a switch with two reachable destinations into an integer range 4250 /// comparison and branch. 4251 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4252 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4253 4254 bool HasDefault = 4255 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4256 4257 // Partition the cases into two sets with different destinations. 4258 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4259 BasicBlock *DestB = nullptr; 4260 SmallVector<ConstantInt *, 16> CasesA; 4261 SmallVector<ConstantInt *, 16> CasesB; 4262 4263 for (auto Case : SI->cases()) { 4264 BasicBlock *Dest = Case.getCaseSuccessor(); 4265 if (!DestA) 4266 DestA = Dest; 4267 if (Dest == DestA) { 4268 CasesA.push_back(Case.getCaseValue()); 4269 continue; 4270 } 4271 if (!DestB) 4272 DestB = Dest; 4273 if (Dest == DestB) { 4274 CasesB.push_back(Case.getCaseValue()); 4275 continue; 4276 } 4277 return false; // More than two destinations. 4278 } 4279 4280 assert(DestA && DestB && 4281 "Single-destination switch should have been folded."); 4282 assert(DestA != DestB); 4283 assert(DestB != SI->getDefaultDest()); 4284 assert(!CasesB.empty() && "There must be non-default cases."); 4285 assert(!CasesA.empty() || HasDefault); 4286 4287 // Figure out if one of the sets of cases form a contiguous range. 4288 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4289 BasicBlock *ContiguousDest = nullptr; 4290 BasicBlock *OtherDest = nullptr; 4291 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4292 ContiguousCases = &CasesA; 4293 ContiguousDest = DestA; 4294 OtherDest = DestB; 4295 } else if (CasesAreContiguous(CasesB)) { 4296 ContiguousCases = &CasesB; 4297 ContiguousDest = DestB; 4298 OtherDest = DestA; 4299 } else 4300 return false; 4301 4302 // Start building the compare and branch. 4303 4304 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4305 Constant *NumCases = 4306 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4307 4308 Value *Sub = SI->getCondition(); 4309 if (!Offset->isNullValue()) 4310 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4311 4312 Value *Cmp; 4313 // If NumCases overflowed, then all possible values jump to the successor. 4314 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4315 Cmp = ConstantInt::getTrue(SI->getContext()); 4316 else 4317 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4318 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4319 4320 // Update weight for the newly-created conditional branch. 4321 if (HasBranchWeights(SI)) { 4322 SmallVector<uint64_t, 8> Weights; 4323 GetBranchWeights(SI, Weights); 4324 if (Weights.size() == 1 + SI->getNumCases()) { 4325 uint64_t TrueWeight = 0; 4326 uint64_t FalseWeight = 0; 4327 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4328 if (SI->getSuccessor(I) == ContiguousDest) 4329 TrueWeight += Weights[I]; 4330 else 4331 FalseWeight += Weights[I]; 4332 } 4333 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4334 TrueWeight /= 2; 4335 FalseWeight /= 2; 4336 } 4337 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4338 } 4339 } 4340 4341 // Prune obsolete incoming values off the successors' PHI nodes. 4342 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4343 unsigned PreviousEdges = ContiguousCases->size(); 4344 if (ContiguousDest == SI->getDefaultDest()) 4345 ++PreviousEdges; 4346 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4347 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4348 } 4349 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4350 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4351 if (OtherDest == SI->getDefaultDest()) 4352 ++PreviousEdges; 4353 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4354 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4355 } 4356 4357 // Drop the switch. 4358 SI->eraseFromParent(); 4359 4360 return true; 4361 } 4362 4363 /// Compute masked bits for the condition of a switch 4364 /// and use it to remove dead cases. 4365 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4366 const DataLayout &DL) { 4367 Value *Cond = SI->getCondition(); 4368 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4369 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4370 4371 // We can also eliminate cases by determining that their values are outside of 4372 // the limited range of the condition based on how many significant (non-sign) 4373 // bits are in the condition value. 4374 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4375 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4376 4377 // Gather dead cases. 4378 SmallVector<ConstantInt *, 8> DeadCases; 4379 for (auto &Case : SI->cases()) { 4380 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4381 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4382 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4383 DeadCases.push_back(Case.getCaseValue()); 4384 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4385 } 4386 } 4387 4388 // If we can prove that the cases must cover all possible values, the 4389 // default destination becomes dead and we can remove it. If we know some 4390 // of the bits in the value, we can use that to more precisely compute the 4391 // number of possible unique case values. 4392 bool HasDefault = 4393 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4394 const unsigned NumUnknownBits = 4395 Bits - (Known.Zero | Known.One).countPopulation(); 4396 assert(NumUnknownBits <= Bits); 4397 if (HasDefault && DeadCases.empty() && 4398 NumUnknownBits < 64 /* avoid overflow */ && 4399 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4400 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4401 BasicBlock *NewDefault = 4402 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4403 SI->setDefaultDest(&*NewDefault); 4404 SplitBlock(&*NewDefault, &NewDefault->front()); 4405 auto *OldTI = NewDefault->getTerminator(); 4406 new UnreachableInst(SI->getContext(), OldTI); 4407 EraseTerminatorInstAndDCECond(OldTI); 4408 return true; 4409 } 4410 4411 SmallVector<uint64_t, 8> Weights; 4412 bool HasWeight = HasBranchWeights(SI); 4413 if (HasWeight) { 4414 GetBranchWeights(SI, Weights); 4415 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4416 } 4417 4418 // Remove dead cases from the switch. 4419 for (ConstantInt *DeadCase : DeadCases) { 4420 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4421 assert(CaseI != SI->case_default() && 4422 "Case was not found. Probably mistake in DeadCases forming."); 4423 if (HasWeight) { 4424 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4425 Weights.pop_back(); 4426 } 4427 4428 // Prune unused values from PHI nodes. 4429 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4430 SI->removeCase(CaseI); 4431 } 4432 if (HasWeight && Weights.size() >= 2) { 4433 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4434 setBranchWeights(SI, MDWeights); 4435 } 4436 4437 return !DeadCases.empty(); 4438 } 4439 4440 /// If BB would be eligible for simplification by 4441 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4442 /// by an unconditional branch), look at the phi node for BB in the successor 4443 /// block and see if the incoming value is equal to CaseValue. If so, return 4444 /// the phi node, and set PhiIndex to BB's index in the phi node. 4445 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4446 BasicBlock *BB, int *PhiIndex) { 4447 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4448 return nullptr; // BB must be empty to be a candidate for simplification. 4449 if (!BB->getSinglePredecessor()) 4450 return nullptr; // BB must be dominated by the switch. 4451 4452 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4453 if (!Branch || !Branch->isUnconditional()) 4454 return nullptr; // Terminator must be unconditional branch. 4455 4456 BasicBlock *Succ = Branch->getSuccessor(0); 4457 4458 BasicBlock::iterator I = Succ->begin(); 4459 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4460 int Idx = PHI->getBasicBlockIndex(BB); 4461 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4462 4463 Value *InValue = PHI->getIncomingValue(Idx); 4464 if (InValue != CaseValue) 4465 continue; 4466 4467 *PhiIndex = Idx; 4468 return PHI; 4469 } 4470 4471 return nullptr; 4472 } 4473 4474 /// Try to forward the condition of a switch instruction to a phi node 4475 /// dominated by the switch, if that would mean that some of the destination 4476 /// blocks of the switch can be folded away. Return true if a change is made. 4477 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4478 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4479 4480 ForwardingNodesMap ForwardingNodes; 4481 BasicBlock *SwitchBlock = SI->getParent(); 4482 bool Changed = false; 4483 for (auto &Case : SI->cases()) { 4484 ConstantInt *CaseValue = Case.getCaseValue(); 4485 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4486 4487 // Replace phi operands in successor blocks that are using the constant case 4488 // value rather than the switch condition variable: 4489 // switchbb: 4490 // switch i32 %x, label %default [ 4491 // i32 17, label %succ 4492 // ... 4493 // succ: 4494 // %r = phi i32 ... [ 17, %switchbb ] ... 4495 // --> 4496 // %r = phi i32 ... [ %x, %switchbb ] ... 4497 4498 for (Instruction &InstInCaseDest : *CaseDest) { 4499 auto *Phi = dyn_cast<PHINode>(&InstInCaseDest); 4500 if (!Phi) break; 4501 4502 // This only works if there is exactly 1 incoming edge from the switch to 4503 // a phi. If there is >1, that means multiple cases of the switch map to 1 4504 // value in the phi, and that phi value is not the switch condition. Thus, 4505 // this transform would not make sense (the phi would be invalid because 4506 // a phi can't have different incoming values from the same block). 4507 int SwitchBBIdx = Phi->getBasicBlockIndex(SwitchBlock); 4508 if (Phi->getIncomingValue(SwitchBBIdx) == CaseValue && 4509 count(Phi->blocks(), SwitchBlock) == 1) { 4510 Phi->setIncomingValue(SwitchBBIdx, SI->getCondition()); 4511 Changed = true; 4512 } 4513 } 4514 4515 // Collect phi nodes that are indirectly using this switch's case constants. 4516 int PhiIdx; 4517 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4518 ForwardingNodes[Phi].push_back(PhiIdx); 4519 } 4520 4521 for (auto &ForwardingNode : ForwardingNodes) { 4522 PHINode *Phi = ForwardingNode.first; 4523 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4524 if (Indexes.size() < 2) 4525 continue; 4526 4527 for (int Index : Indexes) 4528 Phi->setIncomingValue(Index, SI->getCondition()); 4529 Changed = true; 4530 } 4531 4532 return Changed; 4533 } 4534 4535 /// Return true if the backend will be able to handle 4536 /// initializing an array of constants like C. 4537 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4538 if (C->isThreadDependent()) 4539 return false; 4540 if (C->isDLLImportDependent()) 4541 return false; 4542 4543 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4544 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4545 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4546 return false; 4547 4548 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4549 if (!CE->isGEPWithNoNotionalOverIndexing()) 4550 return false; 4551 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4552 return false; 4553 } 4554 4555 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4556 return false; 4557 4558 return true; 4559 } 4560 4561 /// If V is a Constant, return it. Otherwise, try to look up 4562 /// its constant value in ConstantPool, returning 0 if it's not there. 4563 static Constant * 4564 LookupConstant(Value *V, 4565 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4566 if (Constant *C = dyn_cast<Constant>(V)) 4567 return C; 4568 return ConstantPool.lookup(V); 4569 } 4570 4571 /// Try to fold instruction I into a constant. This works for 4572 /// simple instructions such as binary operations where both operands are 4573 /// constant or can be replaced by constants from the ConstantPool. Returns the 4574 /// resulting constant on success, 0 otherwise. 4575 static Constant * 4576 ConstantFold(Instruction *I, const DataLayout &DL, 4577 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4578 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4579 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4580 if (!A) 4581 return nullptr; 4582 if (A->isAllOnesValue()) 4583 return LookupConstant(Select->getTrueValue(), ConstantPool); 4584 if (A->isNullValue()) 4585 return LookupConstant(Select->getFalseValue(), ConstantPool); 4586 return nullptr; 4587 } 4588 4589 SmallVector<Constant *, 4> COps; 4590 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4591 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4592 COps.push_back(A); 4593 else 4594 return nullptr; 4595 } 4596 4597 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4598 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4599 COps[1], DL); 4600 } 4601 4602 return ConstantFoldInstOperands(I, COps, DL); 4603 } 4604 4605 /// Try to determine the resulting constant values in phi nodes 4606 /// at the common destination basic block, *CommonDest, for one of the case 4607 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4608 /// case), of a switch instruction SI. 4609 static bool 4610 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4611 BasicBlock **CommonDest, 4612 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4613 const DataLayout &DL, const TargetTransformInfo &TTI) { 4614 // The block from which we enter the common destination. 4615 BasicBlock *Pred = SI->getParent(); 4616 4617 // If CaseDest is empty except for some side-effect free instructions through 4618 // which we can constant-propagate the CaseVal, continue to its successor. 4619 SmallDenseMap<Value *, Constant *> ConstantPool; 4620 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4621 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4622 ++I) { 4623 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4624 // If the terminator is a simple branch, continue to the next block. 4625 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4626 return false; 4627 Pred = CaseDest; 4628 CaseDest = T->getSuccessor(0); 4629 } else if (isa<DbgInfoIntrinsic>(I)) { 4630 // Skip debug intrinsic. 4631 continue; 4632 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4633 // Instruction is side-effect free and constant. 4634 4635 // If the instruction has uses outside this block or a phi node slot for 4636 // the block, it is not safe to bypass the instruction since it would then 4637 // no longer dominate all its uses. 4638 for (auto &Use : I->uses()) { 4639 User *User = Use.getUser(); 4640 if (Instruction *I = dyn_cast<Instruction>(User)) 4641 if (I->getParent() == CaseDest) 4642 continue; 4643 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4644 if (Phi->getIncomingBlock(Use) == CaseDest) 4645 continue; 4646 return false; 4647 } 4648 4649 ConstantPool.insert(std::make_pair(&*I, C)); 4650 } else { 4651 break; 4652 } 4653 } 4654 4655 // If we did not have a CommonDest before, use the current one. 4656 if (!*CommonDest) 4657 *CommonDest = CaseDest; 4658 // If the destination isn't the common one, abort. 4659 if (CaseDest != *CommonDest) 4660 return false; 4661 4662 // Get the values for this case from phi nodes in the destination block. 4663 BasicBlock::iterator I = (*CommonDest)->begin(); 4664 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4665 int Idx = PHI->getBasicBlockIndex(Pred); 4666 if (Idx == -1) 4667 continue; 4668 4669 Constant *ConstVal = 4670 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4671 if (!ConstVal) 4672 return false; 4673 4674 // Be conservative about which kinds of constants we support. 4675 if (!ValidLookupTableConstant(ConstVal, TTI)) 4676 return false; 4677 4678 Res.push_back(std::make_pair(PHI, ConstVal)); 4679 } 4680 4681 return Res.size() > 0; 4682 } 4683 4684 // Helper function used to add CaseVal to the list of cases that generate 4685 // Result. 4686 static void MapCaseToResult(ConstantInt *CaseVal, 4687 SwitchCaseResultVectorTy &UniqueResults, 4688 Constant *Result) { 4689 for (auto &I : UniqueResults) { 4690 if (I.first == Result) { 4691 I.second.push_back(CaseVal); 4692 return; 4693 } 4694 } 4695 UniqueResults.push_back( 4696 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4697 } 4698 4699 // Helper function that initializes a map containing 4700 // results for the PHI node of the common destination block for a switch 4701 // instruction. Returns false if multiple PHI nodes have been found or if 4702 // there is not a common destination block for the switch. 4703 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4704 BasicBlock *&CommonDest, 4705 SwitchCaseResultVectorTy &UniqueResults, 4706 Constant *&DefaultResult, 4707 const DataLayout &DL, 4708 const TargetTransformInfo &TTI) { 4709 for (auto &I : SI->cases()) { 4710 ConstantInt *CaseVal = I.getCaseValue(); 4711 4712 // Resulting value at phi nodes for this case value. 4713 SwitchCaseResultsTy Results; 4714 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4715 DL, TTI)) 4716 return false; 4717 4718 // Only one value per case is permitted 4719 if (Results.size() > 1) 4720 return false; 4721 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4722 4723 // Check the PHI consistency. 4724 if (!PHI) 4725 PHI = Results[0].first; 4726 else if (PHI != Results[0].first) 4727 return false; 4728 } 4729 // Find the default result value. 4730 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4731 BasicBlock *DefaultDest = SI->getDefaultDest(); 4732 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4733 DL, TTI); 4734 // If the default value is not found abort unless the default destination 4735 // is unreachable. 4736 DefaultResult = 4737 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4738 if ((!DefaultResult && 4739 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4740 return false; 4741 4742 return true; 4743 } 4744 4745 // Helper function that checks if it is possible to transform a switch with only 4746 // two cases (or two cases + default) that produces a result into a select. 4747 // Example: 4748 // switch (a) { 4749 // case 10: %0 = icmp eq i32 %a, 10 4750 // return 10; %1 = select i1 %0, i32 10, i32 4 4751 // case 20: ----> %2 = icmp eq i32 %a, 20 4752 // return 2; %3 = select i1 %2, i32 2, i32 %1 4753 // default: 4754 // return 4; 4755 // } 4756 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4757 Constant *DefaultResult, Value *Condition, 4758 IRBuilder<> &Builder) { 4759 assert(ResultVector.size() == 2 && 4760 "We should have exactly two unique results at this point"); 4761 // If we are selecting between only two cases transform into a simple 4762 // select or a two-way select if default is possible. 4763 if (ResultVector[0].second.size() == 1 && 4764 ResultVector[1].second.size() == 1) { 4765 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4766 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4767 4768 bool DefaultCanTrigger = DefaultResult; 4769 Value *SelectValue = ResultVector[1].first; 4770 if (DefaultCanTrigger) { 4771 Value *const ValueCompare = 4772 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4773 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4774 DefaultResult, "switch.select"); 4775 } 4776 Value *const ValueCompare = 4777 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4778 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4779 SelectValue, "switch.select"); 4780 } 4781 4782 return nullptr; 4783 } 4784 4785 // Helper function to cleanup a switch instruction that has been converted into 4786 // a select, fixing up PHI nodes and basic blocks. 4787 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4788 Value *SelectValue, 4789 IRBuilder<> &Builder) { 4790 BasicBlock *SelectBB = SI->getParent(); 4791 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4792 PHI->removeIncomingValue(SelectBB); 4793 PHI->addIncoming(SelectValue, SelectBB); 4794 4795 Builder.CreateBr(PHI->getParent()); 4796 4797 // Remove the switch. 4798 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4799 BasicBlock *Succ = SI->getSuccessor(i); 4800 4801 if (Succ == PHI->getParent()) 4802 continue; 4803 Succ->removePredecessor(SelectBB); 4804 } 4805 SI->eraseFromParent(); 4806 } 4807 4808 /// If the switch is only used to initialize one or more 4809 /// phi nodes in a common successor block with only two different 4810 /// constant values, replace the switch with select. 4811 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4812 const DataLayout &DL, 4813 const TargetTransformInfo &TTI) { 4814 Value *const Cond = SI->getCondition(); 4815 PHINode *PHI = nullptr; 4816 BasicBlock *CommonDest = nullptr; 4817 Constant *DefaultResult; 4818 SwitchCaseResultVectorTy UniqueResults; 4819 // Collect all the cases that will deliver the same value from the switch. 4820 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4821 DL, TTI)) 4822 return false; 4823 // Selects choose between maximum two values. 4824 if (UniqueResults.size() != 2) 4825 return false; 4826 assert(PHI != nullptr && "PHI for value select not found"); 4827 4828 Builder.SetInsertPoint(SI); 4829 Value *SelectValue = 4830 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4831 if (SelectValue) { 4832 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4833 return true; 4834 } 4835 // The switch couldn't be converted into a select. 4836 return false; 4837 } 4838 4839 namespace { 4840 4841 /// This class represents a lookup table that can be used to replace a switch. 4842 class SwitchLookupTable { 4843 public: 4844 /// Create a lookup table to use as a switch replacement with the contents 4845 /// of Values, using DefaultValue to fill any holes in the table. 4846 SwitchLookupTable( 4847 Module &M, uint64_t TableSize, ConstantInt *Offset, 4848 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4849 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4850 4851 /// Build instructions with Builder to retrieve the value at 4852 /// the position given by Index in the lookup table. 4853 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4854 4855 /// Return true if a table with TableSize elements of 4856 /// type ElementType would fit in a target-legal register. 4857 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4858 Type *ElementType); 4859 4860 private: 4861 // Depending on the contents of the table, it can be represented in 4862 // different ways. 4863 enum { 4864 // For tables where each element contains the same value, we just have to 4865 // store that single value and return it for each lookup. 4866 SingleValueKind, 4867 4868 // For tables where there is a linear relationship between table index 4869 // and values. We calculate the result with a simple multiplication 4870 // and addition instead of a table lookup. 4871 LinearMapKind, 4872 4873 // For small tables with integer elements, we can pack them into a bitmap 4874 // that fits into a target-legal register. Values are retrieved by 4875 // shift and mask operations. 4876 BitMapKind, 4877 4878 // The table is stored as an array of values. Values are retrieved by load 4879 // instructions from the table. 4880 ArrayKind 4881 } Kind; 4882 4883 // For SingleValueKind, this is the single value. 4884 Constant *SingleValue = nullptr; 4885 4886 // For BitMapKind, this is the bitmap. 4887 ConstantInt *BitMap = nullptr; 4888 IntegerType *BitMapElementTy = nullptr; 4889 4890 // For LinearMapKind, these are the constants used to derive the value. 4891 ConstantInt *LinearOffset = nullptr; 4892 ConstantInt *LinearMultiplier = nullptr; 4893 4894 // For ArrayKind, this is the array. 4895 GlobalVariable *Array = nullptr; 4896 }; 4897 4898 } // end anonymous namespace 4899 4900 SwitchLookupTable::SwitchLookupTable( 4901 Module &M, uint64_t TableSize, ConstantInt *Offset, 4902 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4903 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4904 assert(Values.size() && "Can't build lookup table without values!"); 4905 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4906 4907 // If all values in the table are equal, this is that value. 4908 SingleValue = Values.begin()->second; 4909 4910 Type *ValueType = Values.begin()->second->getType(); 4911 4912 // Build up the table contents. 4913 SmallVector<Constant *, 64> TableContents(TableSize); 4914 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4915 ConstantInt *CaseVal = Values[I].first; 4916 Constant *CaseRes = Values[I].second; 4917 assert(CaseRes->getType() == ValueType); 4918 4919 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4920 TableContents[Idx] = CaseRes; 4921 4922 if (CaseRes != SingleValue) 4923 SingleValue = nullptr; 4924 } 4925 4926 // Fill in any holes in the table with the default result. 4927 if (Values.size() < TableSize) { 4928 assert(DefaultValue && 4929 "Need a default value to fill the lookup table holes."); 4930 assert(DefaultValue->getType() == ValueType); 4931 for (uint64_t I = 0; I < TableSize; ++I) { 4932 if (!TableContents[I]) 4933 TableContents[I] = DefaultValue; 4934 } 4935 4936 if (DefaultValue != SingleValue) 4937 SingleValue = nullptr; 4938 } 4939 4940 // If each element in the table contains the same value, we only need to store 4941 // that single value. 4942 if (SingleValue) { 4943 Kind = SingleValueKind; 4944 return; 4945 } 4946 4947 // Check if we can derive the value with a linear transformation from the 4948 // table index. 4949 if (isa<IntegerType>(ValueType)) { 4950 bool LinearMappingPossible = true; 4951 APInt PrevVal; 4952 APInt DistToPrev; 4953 assert(TableSize >= 2 && "Should be a SingleValue table."); 4954 // Check if there is the same distance between two consecutive values. 4955 for (uint64_t I = 0; I < TableSize; ++I) { 4956 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4957 if (!ConstVal) { 4958 // This is an undef. We could deal with it, but undefs in lookup tables 4959 // are very seldom. It's probably not worth the additional complexity. 4960 LinearMappingPossible = false; 4961 break; 4962 } 4963 const APInt &Val = ConstVal->getValue(); 4964 if (I != 0) { 4965 APInt Dist = Val - PrevVal; 4966 if (I == 1) { 4967 DistToPrev = Dist; 4968 } else if (Dist != DistToPrev) { 4969 LinearMappingPossible = false; 4970 break; 4971 } 4972 } 4973 PrevVal = Val; 4974 } 4975 if (LinearMappingPossible) { 4976 LinearOffset = cast<ConstantInt>(TableContents[0]); 4977 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4978 Kind = LinearMapKind; 4979 ++NumLinearMaps; 4980 return; 4981 } 4982 } 4983 4984 // If the type is integer and the table fits in a register, build a bitmap. 4985 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4986 IntegerType *IT = cast<IntegerType>(ValueType); 4987 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4988 for (uint64_t I = TableSize; I > 0; --I) { 4989 TableInt <<= IT->getBitWidth(); 4990 // Insert values into the bitmap. Undef values are set to zero. 4991 if (!isa<UndefValue>(TableContents[I - 1])) { 4992 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4993 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4994 } 4995 } 4996 BitMap = ConstantInt::get(M.getContext(), TableInt); 4997 BitMapElementTy = IT; 4998 Kind = BitMapKind; 4999 ++NumBitMaps; 5000 return; 5001 } 5002 5003 // Store the table in an array. 5004 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5005 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5006 5007 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5008 GlobalVariable::PrivateLinkage, Initializer, 5009 "switch.table." + FuncName); 5010 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5011 Kind = ArrayKind; 5012 } 5013 5014 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5015 switch (Kind) { 5016 case SingleValueKind: 5017 return SingleValue; 5018 case LinearMapKind: { 5019 // Derive the result value from the input value. 5020 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5021 false, "switch.idx.cast"); 5022 if (!LinearMultiplier->isOne()) 5023 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5024 if (!LinearOffset->isZero()) 5025 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5026 return Result; 5027 } 5028 case BitMapKind: { 5029 // Type of the bitmap (e.g. i59). 5030 IntegerType *MapTy = BitMap->getType(); 5031 5032 // Cast Index to the same type as the bitmap. 5033 // Note: The Index is <= the number of elements in the table, so 5034 // truncating it to the width of the bitmask is safe. 5035 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5036 5037 // Multiply the shift amount by the element width. 5038 ShiftAmt = Builder.CreateMul( 5039 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5040 "switch.shiftamt"); 5041 5042 // Shift down. 5043 Value *DownShifted = 5044 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5045 // Mask off. 5046 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5047 } 5048 case ArrayKind: { 5049 // Make sure the table index will not overflow when treated as signed. 5050 IntegerType *IT = cast<IntegerType>(Index->getType()); 5051 uint64_t TableSize = 5052 Array->getInitializer()->getType()->getArrayNumElements(); 5053 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5054 Index = Builder.CreateZExt( 5055 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5056 "switch.tableidx.zext"); 5057 5058 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5059 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5060 GEPIndices, "switch.gep"); 5061 return Builder.CreateLoad(GEP, "switch.load"); 5062 } 5063 } 5064 llvm_unreachable("Unknown lookup table kind!"); 5065 } 5066 5067 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5068 uint64_t TableSize, 5069 Type *ElementType) { 5070 auto *IT = dyn_cast<IntegerType>(ElementType); 5071 if (!IT) 5072 return false; 5073 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5074 // are <= 15, we could try to narrow the type. 5075 5076 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5077 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5078 return false; 5079 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5080 } 5081 5082 /// Determine whether a lookup table should be built for this switch, based on 5083 /// the number of cases, size of the table, and the types of the results. 5084 static bool 5085 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5086 const TargetTransformInfo &TTI, const DataLayout &DL, 5087 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5088 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5089 return false; // TableSize overflowed, or mul below might overflow. 5090 5091 bool AllTablesFitInRegister = true; 5092 bool HasIllegalType = false; 5093 for (const auto &I : ResultTypes) { 5094 Type *Ty = I.second; 5095 5096 // Saturate this flag to true. 5097 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5098 5099 // Saturate this flag to false. 5100 AllTablesFitInRegister = 5101 AllTablesFitInRegister && 5102 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5103 5104 // If both flags saturate, we're done. NOTE: This *only* works with 5105 // saturating flags, and all flags have to saturate first due to the 5106 // non-deterministic behavior of iterating over a dense map. 5107 if (HasIllegalType && !AllTablesFitInRegister) 5108 break; 5109 } 5110 5111 // If each table would fit in a register, we should build it anyway. 5112 if (AllTablesFitInRegister) 5113 return true; 5114 5115 // Don't build a table that doesn't fit in-register if it has illegal types. 5116 if (HasIllegalType) 5117 return false; 5118 5119 // The table density should be at least 40%. This is the same criterion as for 5120 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5121 // FIXME: Find the best cut-off. 5122 return SI->getNumCases() * 10 >= TableSize * 4; 5123 } 5124 5125 /// Try to reuse the switch table index compare. Following pattern: 5126 /// \code 5127 /// if (idx < tablesize) 5128 /// r = table[idx]; // table does not contain default_value 5129 /// else 5130 /// r = default_value; 5131 /// if (r != default_value) 5132 /// ... 5133 /// \endcode 5134 /// Is optimized to: 5135 /// \code 5136 /// cond = idx < tablesize; 5137 /// if (cond) 5138 /// r = table[idx]; 5139 /// else 5140 /// r = default_value; 5141 /// if (cond) 5142 /// ... 5143 /// \endcode 5144 /// Jump threading will then eliminate the second if(cond). 5145 static void reuseTableCompare( 5146 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5147 Constant *DefaultValue, 5148 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5149 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5150 if (!CmpInst) 5151 return; 5152 5153 // We require that the compare is in the same block as the phi so that jump 5154 // threading can do its work afterwards. 5155 if (CmpInst->getParent() != PhiBlock) 5156 return; 5157 5158 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5159 if (!CmpOp1) 5160 return; 5161 5162 Value *RangeCmp = RangeCheckBranch->getCondition(); 5163 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5164 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5165 5166 // Check if the compare with the default value is constant true or false. 5167 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5168 DefaultValue, CmpOp1, true); 5169 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5170 return; 5171 5172 // Check if the compare with the case values is distinct from the default 5173 // compare result. 5174 for (auto ValuePair : Values) { 5175 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5176 ValuePair.second, CmpOp1, true); 5177 if (!CaseConst || CaseConst == DefaultConst) 5178 return; 5179 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5180 "Expect true or false as compare result."); 5181 } 5182 5183 // Check if the branch instruction dominates the phi node. It's a simple 5184 // dominance check, but sufficient for our needs. 5185 // Although this check is invariant in the calling loops, it's better to do it 5186 // at this late stage. Practically we do it at most once for a switch. 5187 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5188 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5189 BasicBlock *Pred = *PI; 5190 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5191 return; 5192 } 5193 5194 if (DefaultConst == FalseConst) { 5195 // The compare yields the same result. We can replace it. 5196 CmpInst->replaceAllUsesWith(RangeCmp); 5197 ++NumTableCmpReuses; 5198 } else { 5199 // The compare yields the same result, just inverted. We can replace it. 5200 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5201 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5202 RangeCheckBranch); 5203 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5204 ++NumTableCmpReuses; 5205 } 5206 } 5207 5208 /// If the switch is only used to initialize one or more phi nodes in a common 5209 /// successor block with different constant values, replace the switch with 5210 /// lookup tables. 5211 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5212 const DataLayout &DL, 5213 const TargetTransformInfo &TTI) { 5214 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5215 5216 Function *Fn = SI->getParent()->getParent(); 5217 // Only build lookup table when we have a target that supports it or the 5218 // attribute is not set. 5219 if (!TTI.shouldBuildLookupTables() || 5220 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5221 return false; 5222 5223 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5224 // split off a dense part and build a lookup table for that. 5225 5226 // FIXME: This creates arrays of GEPs to constant strings, which means each 5227 // GEP needs a runtime relocation in PIC code. We should just build one big 5228 // string and lookup indices into that. 5229 5230 // Ignore switches with less than three cases. Lookup tables will not make 5231 // them faster, so we don't analyze them. 5232 if (SI->getNumCases() < 3) 5233 return false; 5234 5235 // Figure out the corresponding result for each case value and phi node in the 5236 // common destination, as well as the min and max case values. 5237 assert(SI->case_begin() != SI->case_end()); 5238 SwitchInst::CaseIt CI = SI->case_begin(); 5239 ConstantInt *MinCaseVal = CI->getCaseValue(); 5240 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5241 5242 BasicBlock *CommonDest = nullptr; 5243 5244 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5245 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5246 5247 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5248 SmallDenseMap<PHINode *, Type *> ResultTypes; 5249 SmallVector<PHINode *, 4> PHIs; 5250 5251 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5252 ConstantInt *CaseVal = CI->getCaseValue(); 5253 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5254 MinCaseVal = CaseVal; 5255 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5256 MaxCaseVal = CaseVal; 5257 5258 // Resulting value at phi nodes for this case value. 5259 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5260 ResultsTy Results; 5261 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5262 Results, DL, TTI)) 5263 return false; 5264 5265 // Append the result from this case to the list for each phi. 5266 for (const auto &I : Results) { 5267 PHINode *PHI = I.first; 5268 Constant *Value = I.second; 5269 if (!ResultLists.count(PHI)) 5270 PHIs.push_back(PHI); 5271 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5272 } 5273 } 5274 5275 // Keep track of the result types. 5276 for (PHINode *PHI : PHIs) { 5277 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5278 } 5279 5280 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5281 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5282 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5283 bool TableHasHoles = (NumResults < TableSize); 5284 5285 // If the table has holes, we need a constant result for the default case 5286 // or a bitmask that fits in a register. 5287 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5288 bool HasDefaultResults = 5289 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5290 DefaultResultsList, DL, TTI); 5291 5292 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5293 if (NeedMask) { 5294 // As an extra penalty for the validity test we require more cases. 5295 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5296 return false; 5297 if (!DL.fitsInLegalInteger(TableSize)) 5298 return false; 5299 } 5300 5301 for (const auto &I : DefaultResultsList) { 5302 PHINode *PHI = I.first; 5303 Constant *Result = I.second; 5304 DefaultResults[PHI] = Result; 5305 } 5306 5307 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5308 return false; 5309 5310 // Create the BB that does the lookups. 5311 Module &Mod = *CommonDest->getParent()->getParent(); 5312 BasicBlock *LookupBB = BasicBlock::Create( 5313 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5314 5315 // Compute the table index value. 5316 Builder.SetInsertPoint(SI); 5317 Value *TableIndex; 5318 if (MinCaseVal->isNullValue()) 5319 TableIndex = SI->getCondition(); 5320 else 5321 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5322 "switch.tableidx"); 5323 5324 // Compute the maximum table size representable by the integer type we are 5325 // switching upon. 5326 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5327 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5328 assert(MaxTableSize >= TableSize && 5329 "It is impossible for a switch to have more entries than the max " 5330 "representable value of its input integer type's size."); 5331 5332 // If the default destination is unreachable, or if the lookup table covers 5333 // all values of the conditional variable, branch directly to the lookup table 5334 // BB. Otherwise, check that the condition is within the case range. 5335 const bool DefaultIsReachable = 5336 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5337 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5338 BranchInst *RangeCheckBranch = nullptr; 5339 5340 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5341 Builder.CreateBr(LookupBB); 5342 // Note: We call removeProdecessor later since we need to be able to get the 5343 // PHI value for the default case in case we're using a bit mask. 5344 } else { 5345 Value *Cmp = Builder.CreateICmpULT( 5346 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5347 RangeCheckBranch = 5348 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5349 } 5350 5351 // Populate the BB that does the lookups. 5352 Builder.SetInsertPoint(LookupBB); 5353 5354 if (NeedMask) { 5355 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5356 // re-purposed to do the hole check, and we create a new LookupBB. 5357 BasicBlock *MaskBB = LookupBB; 5358 MaskBB->setName("switch.hole_check"); 5359 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5360 CommonDest->getParent(), CommonDest); 5361 5362 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5363 // unnecessary illegal types. 5364 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5365 APInt MaskInt(TableSizePowOf2, 0); 5366 APInt One(TableSizePowOf2, 1); 5367 // Build bitmask; fill in a 1 bit for every case. 5368 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5369 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5370 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5371 .getLimitedValue(); 5372 MaskInt |= One << Idx; 5373 } 5374 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5375 5376 // Get the TableIndex'th bit of the bitmask. 5377 // If this bit is 0 (meaning hole) jump to the default destination, 5378 // else continue with table lookup. 5379 IntegerType *MapTy = TableMask->getType(); 5380 Value *MaskIndex = 5381 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5382 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5383 Value *LoBit = Builder.CreateTrunc( 5384 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5385 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5386 5387 Builder.SetInsertPoint(LookupBB); 5388 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5389 } 5390 5391 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5392 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5393 // do not delete PHINodes here. 5394 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5395 /*DontDeleteUselessPHIs=*/true); 5396 } 5397 5398 bool ReturnedEarly = false; 5399 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5400 PHINode *PHI = PHIs[I]; 5401 const ResultListTy &ResultList = ResultLists[PHI]; 5402 5403 // If using a bitmask, use any value to fill the lookup table holes. 5404 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5405 StringRef FuncName = Fn->getName(); 5406 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5407 FuncName); 5408 5409 Value *Result = Table.BuildLookup(TableIndex, Builder); 5410 5411 // If the result is used to return immediately from the function, we want to 5412 // do that right here. 5413 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5414 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5415 Builder.CreateRet(Result); 5416 ReturnedEarly = true; 5417 break; 5418 } 5419 5420 // Do a small peephole optimization: re-use the switch table compare if 5421 // possible. 5422 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5423 BasicBlock *PhiBlock = PHI->getParent(); 5424 // Search for compare instructions which use the phi. 5425 for (auto *User : PHI->users()) { 5426 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5427 } 5428 } 5429 5430 PHI->addIncoming(Result, LookupBB); 5431 } 5432 5433 if (!ReturnedEarly) 5434 Builder.CreateBr(CommonDest); 5435 5436 // Remove the switch. 5437 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5438 BasicBlock *Succ = SI->getSuccessor(i); 5439 5440 if (Succ == SI->getDefaultDest()) 5441 continue; 5442 Succ->removePredecessor(SI->getParent()); 5443 } 5444 SI->eraseFromParent(); 5445 5446 ++NumLookupTables; 5447 if (NeedMask) 5448 ++NumLookupTablesHoles; 5449 return true; 5450 } 5451 5452 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5453 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5454 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5455 uint64_t Range = Diff + 1; 5456 uint64_t NumCases = Values.size(); 5457 // 40% is the default density for building a jump table in optsize/minsize mode. 5458 uint64_t MinDensity = 40; 5459 5460 return NumCases * 100 >= Range * MinDensity; 5461 } 5462 5463 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5464 /// of cases. 5465 /// 5466 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5467 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5468 /// 5469 /// This converts a sparse switch into a dense switch which allows better 5470 /// lowering and could also allow transforming into a lookup table. 5471 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5472 const DataLayout &DL, 5473 const TargetTransformInfo &TTI) { 5474 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5475 if (CondTy->getIntegerBitWidth() > 64 || 5476 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5477 return false; 5478 // Only bother with this optimization if there are more than 3 switch cases; 5479 // SDAG will only bother creating jump tables for 4 or more cases. 5480 if (SI->getNumCases() < 4) 5481 return false; 5482 5483 // This transform is agnostic to the signedness of the input or case values. We 5484 // can treat the case values as signed or unsigned. We can optimize more common 5485 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5486 // as signed. 5487 SmallVector<int64_t,4> Values; 5488 for (auto &C : SI->cases()) 5489 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5490 std::sort(Values.begin(), Values.end()); 5491 5492 // If the switch is already dense, there's nothing useful to do here. 5493 if (isSwitchDense(Values)) 5494 return false; 5495 5496 // First, transform the values such that they start at zero and ascend. 5497 int64_t Base = Values[0]; 5498 for (auto &V : Values) 5499 V -= (uint64_t)(Base); 5500 5501 // Now we have signed numbers that have been shifted so that, given enough 5502 // precision, there are no negative values. Since the rest of the transform 5503 // is bitwise only, we switch now to an unsigned representation. 5504 uint64_t GCD = 0; 5505 for (auto &V : Values) 5506 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5507 5508 // This transform can be done speculatively because it is so cheap - it results 5509 // in a single rotate operation being inserted. This can only happen if the 5510 // factor extracted is a power of 2. 5511 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5512 // inverse of GCD and then perform this transform. 5513 // FIXME: It's possible that optimizing a switch on powers of two might also 5514 // be beneficial - flag values are often powers of two and we could use a CLZ 5515 // as the key function. 5516 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5517 // No common divisor found or too expensive to compute key function. 5518 return false; 5519 5520 unsigned Shift = Log2_64(GCD); 5521 for (auto &V : Values) 5522 V = (int64_t)((uint64_t)V >> Shift); 5523 5524 if (!isSwitchDense(Values)) 5525 // Transform didn't create a dense switch. 5526 return false; 5527 5528 // The obvious transform is to shift the switch condition right and emit a 5529 // check that the condition actually cleanly divided by GCD, i.e. 5530 // C & (1 << Shift - 1) == 0 5531 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5532 // 5533 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5534 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5535 // are nonzero then the switch condition will be very large and will hit the 5536 // default case. 5537 5538 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5539 Builder.SetInsertPoint(SI); 5540 auto *ShiftC = ConstantInt::get(Ty, Shift); 5541 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5542 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5543 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5544 auto *Rot = Builder.CreateOr(LShr, Shl); 5545 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5546 5547 for (auto Case : SI->cases()) { 5548 auto *Orig = Case.getCaseValue(); 5549 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5550 Case.setValue( 5551 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5552 } 5553 return true; 5554 } 5555 5556 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5557 BasicBlock *BB = SI->getParent(); 5558 5559 if (isValueEqualityComparison(SI)) { 5560 // If we only have one predecessor, and if it is a branch on this value, 5561 // see if that predecessor totally determines the outcome of this switch. 5562 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5563 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5564 return simplifyCFG(BB, TTI, Options) | true; 5565 5566 Value *Cond = SI->getCondition(); 5567 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5568 if (SimplifySwitchOnSelect(SI, Select)) 5569 return simplifyCFG(BB, TTI, Options) | true; 5570 5571 // If the block only contains the switch, see if we can fold the block 5572 // away into any preds. 5573 BasicBlock::iterator BBI = BB->begin(); 5574 // Ignore dbg intrinsics. 5575 while (isa<DbgInfoIntrinsic>(BBI)) 5576 ++BBI; 5577 if (SI == &*BBI) 5578 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5579 return simplifyCFG(BB, TTI, Options) | true; 5580 } 5581 5582 // Try to transform the switch into an icmp and a branch. 5583 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5584 return simplifyCFG(BB, TTI, Options) | true; 5585 5586 // Remove unreachable cases. 5587 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5588 return simplifyCFG(BB, TTI, Options) | true; 5589 5590 if (switchToSelect(SI, Builder, DL, TTI)) 5591 return simplifyCFG(BB, TTI, Options) | true; 5592 5593 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5594 return simplifyCFG(BB, TTI, Options) | true; 5595 5596 // The conversion from switch to lookup tables results in difficult-to-analyze 5597 // code and makes pruning branches much harder. This is a problem if the 5598 // switch expression itself can still be restricted as a result of inlining or 5599 // CVP. Therefore, only apply this transformation during late stages of the 5600 // optimisation pipeline. 5601 if (Options.ConvertSwitchToLookupTable && 5602 SwitchToLookupTable(SI, Builder, DL, TTI)) 5603 return simplifyCFG(BB, TTI, Options) | true; 5604 5605 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5606 return simplifyCFG(BB, TTI, Options) | true; 5607 5608 return false; 5609 } 5610 5611 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5612 BasicBlock *BB = IBI->getParent(); 5613 bool Changed = false; 5614 5615 // Eliminate redundant destinations. 5616 SmallPtrSet<Value *, 8> Succs; 5617 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5618 BasicBlock *Dest = IBI->getDestination(i); 5619 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5620 Dest->removePredecessor(BB); 5621 IBI->removeDestination(i); 5622 --i; 5623 --e; 5624 Changed = true; 5625 } 5626 } 5627 5628 if (IBI->getNumDestinations() == 0) { 5629 // If the indirectbr has no successors, change it to unreachable. 5630 new UnreachableInst(IBI->getContext(), IBI); 5631 EraseTerminatorInstAndDCECond(IBI); 5632 return true; 5633 } 5634 5635 if (IBI->getNumDestinations() == 1) { 5636 // If the indirectbr has one successor, change it to a direct branch. 5637 BranchInst::Create(IBI->getDestination(0), IBI); 5638 EraseTerminatorInstAndDCECond(IBI); 5639 return true; 5640 } 5641 5642 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5643 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5644 return simplifyCFG(BB, TTI, Options) | true; 5645 } 5646 return Changed; 5647 } 5648 5649 /// Given an block with only a single landing pad and a unconditional branch 5650 /// try to find another basic block which this one can be merged with. This 5651 /// handles cases where we have multiple invokes with unique landing pads, but 5652 /// a shared handler. 5653 /// 5654 /// We specifically choose to not worry about merging non-empty blocks 5655 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5656 /// practice, the optimizer produces empty landing pad blocks quite frequently 5657 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5658 /// sinking in this file) 5659 /// 5660 /// This is primarily a code size optimization. We need to avoid performing 5661 /// any transform which might inhibit optimization (such as our ability to 5662 /// specialize a particular handler via tail commoning). We do this by not 5663 /// merging any blocks which require us to introduce a phi. Since the same 5664 /// values are flowing through both blocks, we don't loose any ability to 5665 /// specialize. If anything, we make such specialization more likely. 5666 /// 5667 /// TODO - This transformation could remove entries from a phi in the target 5668 /// block when the inputs in the phi are the same for the two blocks being 5669 /// merged. In some cases, this could result in removal of the PHI entirely. 5670 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5671 BasicBlock *BB) { 5672 auto Succ = BB->getUniqueSuccessor(); 5673 assert(Succ); 5674 // If there's a phi in the successor block, we'd likely have to introduce 5675 // a phi into the merged landing pad block. 5676 if (isa<PHINode>(*Succ->begin())) 5677 return false; 5678 5679 for (BasicBlock *OtherPred : predecessors(Succ)) { 5680 if (BB == OtherPred) 5681 continue; 5682 BasicBlock::iterator I = OtherPred->begin(); 5683 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5684 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5685 continue; 5686 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5687 ; 5688 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5689 if (!BI2 || !BI2->isIdenticalTo(BI)) 5690 continue; 5691 5692 // We've found an identical block. Update our predecessors to take that 5693 // path instead and make ourselves dead. 5694 SmallSet<BasicBlock *, 16> Preds; 5695 Preds.insert(pred_begin(BB), pred_end(BB)); 5696 for (BasicBlock *Pred : Preds) { 5697 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5698 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5699 "unexpected successor"); 5700 II->setUnwindDest(OtherPred); 5701 } 5702 5703 // The debug info in OtherPred doesn't cover the merged control flow that 5704 // used to go through BB. We need to delete it or update it. 5705 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5706 Instruction &Inst = *I; 5707 I++; 5708 if (isa<DbgInfoIntrinsic>(Inst)) 5709 Inst.eraseFromParent(); 5710 } 5711 5712 SmallSet<BasicBlock *, 16> Succs; 5713 Succs.insert(succ_begin(BB), succ_end(BB)); 5714 for (BasicBlock *Succ : Succs) { 5715 Succ->removePredecessor(BB); 5716 } 5717 5718 IRBuilder<> Builder(BI); 5719 Builder.CreateUnreachable(); 5720 BI->eraseFromParent(); 5721 return true; 5722 } 5723 return false; 5724 } 5725 5726 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5727 IRBuilder<> &Builder) { 5728 BasicBlock *BB = BI->getParent(); 5729 BasicBlock *Succ = BI->getSuccessor(0); 5730 5731 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5732 return true; 5733 5734 // If the Terminator is the only non-phi instruction, simplify the block. 5735 // If LoopHeader is provided, check if the block or its successor is a loop 5736 // header. (This is for early invocations before loop simplify and 5737 // vectorization to keep canonical loop forms for nested loops. These blocks 5738 // can be eliminated when the pass is invoked later in the back-end.) 5739 bool NeedCanonicalLoop = 5740 Options.NeedCanonicalLoop && 5741 (LoopHeaders && (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5742 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5743 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5744 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5745 return true; 5746 5747 // If the only instruction in the block is a seteq/setne comparison against a 5748 // constant, try to simplify the block. 5749 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5750 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5751 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5752 ; 5753 if (I->isTerminator() && 5754 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options)) 5755 return true; 5756 } 5757 5758 // See if we can merge an empty landing pad block with another which is 5759 // equivalent. 5760 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5761 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5762 ; 5763 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5764 return true; 5765 } 5766 5767 // If this basic block is ONLY a compare and a branch, and if a predecessor 5768 // branches to us and our successor, fold the comparison into the 5769 // predecessor and use logical operations to update the incoming value 5770 // for PHI nodes in common successor. 5771 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5772 return simplifyCFG(BB, TTI, Options) | true; 5773 return false; 5774 } 5775 5776 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5777 BasicBlock *PredPred = nullptr; 5778 for (auto *P : predecessors(BB)) { 5779 BasicBlock *PPred = P->getSinglePredecessor(); 5780 if (!PPred || (PredPred && PredPred != PPred)) 5781 return nullptr; 5782 PredPred = PPred; 5783 } 5784 return PredPred; 5785 } 5786 5787 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5788 BasicBlock *BB = BI->getParent(); 5789 5790 // Conditional branch 5791 if (isValueEqualityComparison(BI)) { 5792 // If we only have one predecessor, and if it is a branch on this value, 5793 // see if that predecessor totally determines the outcome of this 5794 // switch. 5795 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5796 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5797 return simplifyCFG(BB, TTI, Options) | true; 5798 5799 // This block must be empty, except for the setcond inst, if it exists. 5800 // Ignore dbg intrinsics. 5801 BasicBlock::iterator I = BB->begin(); 5802 // Ignore dbg intrinsics. 5803 while (isa<DbgInfoIntrinsic>(I)) 5804 ++I; 5805 if (&*I == BI) { 5806 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5807 return simplifyCFG(BB, TTI, Options) | true; 5808 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5809 ++I; 5810 // Ignore dbg intrinsics. 5811 while (isa<DbgInfoIntrinsic>(I)) 5812 ++I; 5813 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5814 return simplifyCFG(BB, TTI, Options) | true; 5815 } 5816 } 5817 5818 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5819 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5820 return true; 5821 5822 // If this basic block has a single dominating predecessor block and the 5823 // dominating block's condition implies BI's condition, we know the direction 5824 // of the BI branch. 5825 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5826 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5827 if (PBI && PBI->isConditional() && 5828 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 5829 assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB); 5830 bool CondIsTrue = PBI->getSuccessor(0) == BB; 5831 Optional<bool> Implication = isImpliedCondition( 5832 PBI->getCondition(), BI->getCondition(), DL, CondIsTrue); 5833 if (Implication) { 5834 // Turn this into a branch on constant. 5835 auto *OldCond = BI->getCondition(); 5836 ConstantInt *CI = *Implication 5837 ? ConstantInt::getTrue(BB->getContext()) 5838 : ConstantInt::getFalse(BB->getContext()); 5839 BI->setCondition(CI); 5840 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5841 return simplifyCFG(BB, TTI, Options) | true; 5842 } 5843 } 5844 } 5845 5846 // If this basic block is ONLY a compare and a branch, and if a predecessor 5847 // branches to us and one of our successors, fold the comparison into the 5848 // predecessor and use logical operations to pick the right destination. 5849 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5850 return simplifyCFG(BB, TTI, Options) | true; 5851 5852 // We have a conditional branch to two blocks that are only reachable 5853 // from BI. We know that the condbr dominates the two blocks, so see if 5854 // there is any identical code in the "then" and "else" blocks. If so, we 5855 // can hoist it up to the branching block. 5856 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5857 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5858 if (HoistThenElseCodeToIf(BI, TTI)) 5859 return simplifyCFG(BB, TTI, Options) | true; 5860 } else { 5861 // If Successor #1 has multiple preds, we may be able to conditionally 5862 // execute Successor #0 if it branches to Successor #1. 5863 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5864 if (Succ0TI->getNumSuccessors() == 1 && 5865 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5866 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5867 return simplifyCFG(BB, TTI, Options) | true; 5868 } 5869 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5870 // If Successor #0 has multiple preds, we may be able to conditionally 5871 // execute Successor #1 if it branches to Successor #0. 5872 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5873 if (Succ1TI->getNumSuccessors() == 1 && 5874 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5875 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5876 return simplifyCFG(BB, TTI, Options) | true; 5877 } 5878 5879 // If this is a branch on a phi node in the current block, thread control 5880 // through this block if any PHI node entries are constants. 5881 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5882 if (PN->getParent() == BI->getParent()) 5883 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5884 return simplifyCFG(BB, TTI, Options) | true; 5885 5886 // Scan predecessor blocks for conditional branches. 5887 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5888 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5889 if (PBI != BI && PBI->isConditional()) 5890 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5891 return simplifyCFG(BB, TTI, Options) | true; 5892 5893 // Look for diamond patterns. 5894 if (MergeCondStores) 5895 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5896 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5897 if (PBI != BI && PBI->isConditional()) 5898 if (mergeConditionalStores(PBI, BI, DL)) 5899 return simplifyCFG(BB, TTI, Options) | true; 5900 5901 return false; 5902 } 5903 5904 /// Check if passing a value to an instruction will cause undefined behavior. 5905 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5906 Constant *C = dyn_cast<Constant>(V); 5907 if (!C) 5908 return false; 5909 5910 if (I->use_empty()) 5911 return false; 5912 5913 if (C->isNullValue() || isa<UndefValue>(C)) { 5914 // Only look at the first use, avoid hurting compile time with long uselists 5915 User *Use = *I->user_begin(); 5916 5917 // Now make sure that there are no instructions in between that can alter 5918 // control flow (eg. calls) 5919 for (BasicBlock::iterator 5920 i = ++BasicBlock::iterator(I), 5921 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5922 i != UI; ++i) 5923 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5924 return false; 5925 5926 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5927 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5928 if (GEP->getPointerOperand() == I) 5929 return passingValueIsAlwaysUndefined(V, GEP); 5930 5931 // Look through bitcasts. 5932 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5933 return passingValueIsAlwaysUndefined(V, BC); 5934 5935 // Load from null is undefined. 5936 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5937 if (!LI->isVolatile()) 5938 return LI->getPointerAddressSpace() == 0; 5939 5940 // Store to null is undefined. 5941 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5942 if (!SI->isVolatile()) 5943 return SI->getPointerAddressSpace() == 0 && 5944 SI->getPointerOperand() == I; 5945 5946 // A call to null is undefined. 5947 if (auto CS = CallSite(Use)) 5948 return CS.getCalledValue() == I; 5949 } 5950 return false; 5951 } 5952 5953 /// If BB has an incoming value that will always trigger undefined behavior 5954 /// (eg. null pointer dereference), remove the branch leading here. 5955 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5956 for (BasicBlock::iterator i = BB->begin(); 5957 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5958 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5959 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5960 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5961 IRBuilder<> Builder(T); 5962 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5963 BB->removePredecessor(PHI->getIncomingBlock(i)); 5964 // Turn uncoditional branches into unreachables and remove the dead 5965 // destination from conditional branches. 5966 if (BI->isUnconditional()) 5967 Builder.CreateUnreachable(); 5968 else 5969 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5970 : BI->getSuccessor(0)); 5971 BI->eraseFromParent(); 5972 return true; 5973 } 5974 // TODO: SwitchInst. 5975 } 5976 5977 return false; 5978 } 5979 5980 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5981 bool Changed = false; 5982 5983 assert(BB && BB->getParent() && "Block not embedded in function!"); 5984 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5985 5986 // Remove basic blocks that have no predecessors (except the entry block)... 5987 // or that just have themself as a predecessor. These are unreachable. 5988 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5989 BB->getSinglePredecessor() == BB) { 5990 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5991 DeleteDeadBlock(BB); 5992 return true; 5993 } 5994 5995 // Check to see if we can constant propagate this terminator instruction 5996 // away... 5997 Changed |= ConstantFoldTerminator(BB, true); 5998 5999 // Check for and eliminate duplicate PHI nodes in this block. 6000 Changed |= EliminateDuplicatePHINodes(BB); 6001 6002 // Check for and remove branches that will always cause undefined behavior. 6003 Changed |= removeUndefIntroducingPredecessor(BB); 6004 6005 // Merge basic blocks into their predecessor if there is only one distinct 6006 // pred, and if there is only one distinct successor of the predecessor, and 6007 // if there are no PHI nodes. 6008 if (MergeBlockIntoPredecessor(BB)) 6009 return true; 6010 6011 IRBuilder<> Builder(BB); 6012 6013 // If there is a trivial two-entry PHI node in this basic block, and we can 6014 // eliminate it, do so now. 6015 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6016 if (PN->getNumIncomingValues() == 2) 6017 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6018 6019 Builder.SetInsertPoint(BB->getTerminator()); 6020 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6021 if (BI->isUnconditional()) { 6022 if (SimplifyUncondBranch(BI, Builder)) 6023 return true; 6024 } else { 6025 if (SimplifyCondBranch(BI, Builder)) 6026 return true; 6027 } 6028 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6029 if (SimplifyReturn(RI, Builder)) 6030 return true; 6031 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6032 if (SimplifyResume(RI, Builder)) 6033 return true; 6034 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6035 if (SimplifyCleanupReturn(RI)) 6036 return true; 6037 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6038 if (SimplifySwitch(SI, Builder)) 6039 return true; 6040 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6041 if (SimplifyUnreachable(UI)) 6042 return true; 6043 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6044 if (SimplifyIndirectBr(IBI)) 6045 return true; 6046 } 6047 6048 return Changed; 6049 } 6050 6051 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6052 const SimplifyCFGOptions &Options, 6053 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6054 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6055 Options) 6056 .run(BB); 6057 } 6058