1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/PseudoProbe.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/SSAUpdater.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
97     cl::init(false),
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool> DupRet(
117     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
118     cl::desc("Duplicate return instructions into unconditional branches"));
119 
120 static cl::opt<bool>
121     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
122                 cl::desc("Hoist common instructions up to the parent block"));
123 
124 static cl::opt<bool>
125     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
126                cl::desc("Sink common instructions down to the end block"));
127 
128 static cl::opt<bool> HoistCondStores(
129     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
130     cl::desc("Hoist conditional stores if an unconditional store precedes"));
131 
132 static cl::opt<bool> MergeCondStores(
133     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
134     cl::desc("Hoist conditional stores even if an unconditional store does not "
135              "precede - hoist multiple conditional stores into a single "
136              "predicated store"));
137 
138 static cl::opt<bool> MergeCondStoresAggressively(
139     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
140     cl::desc("When merging conditional stores, do so even if the resultant "
141              "basic blocks are unlikely to be if-converted as a result"));
142 
143 static cl::opt<bool> SpeculateOneExpensiveInst(
144     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
145     cl::desc("Allow exactly one expensive instruction to be speculatively "
146              "executed"));
147 
148 static cl::opt<unsigned> MaxSpeculationDepth(
149     "max-speculation-depth", cl::Hidden, cl::init(10),
150     cl::desc("Limit maximum recursion depth when calculating costs of "
151              "speculatively executed instructions"));
152 
153 static cl::opt<int>
154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
155                   cl::desc("Max size of a block which is still considered "
156                            "small enough to thread through"));
157 
158 // Two is chosen to allow one negation and a logical combine.
159 static cl::opt<unsigned>
160     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
161                         cl::init(2),
162                         cl::desc("Maximum cost of combining conditions when "
163                                  "folding branches"));
164 
165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
166 STATISTIC(NumLinearMaps,
167           "Number of switch instructions turned into linear mapping");
168 STATISTIC(NumLookupTables,
169           "Number of switch instructions turned into lookup tables");
170 STATISTIC(
171     NumLookupTablesHoles,
172     "Number of switch instructions turned into lookup tables (holes checked)");
173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
174 STATISTIC(NumFoldValueComparisonIntoPredecessors,
175           "Number of value comparisons folded into predecessor basic blocks");
176 STATISTIC(NumFoldBranchToCommonDest,
177           "Number of branches folded into predecessor basic block");
178 STATISTIC(
179     NumHoistCommonCode,
180     "Number of common instruction 'blocks' hoisted up to the begin block");
181 STATISTIC(NumHoistCommonInstrs,
182           "Number of common instructions hoisted up to the begin block");
183 STATISTIC(NumSinkCommonCode,
184           "Number of common instruction 'blocks' sunk down to the end block");
185 STATISTIC(NumSinkCommonInstrs,
186           "Number of common instructions sunk down to the end block");
187 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
188 STATISTIC(NumInvokes,
189           "Number of invokes with empty resume blocks simplified into calls");
190 
191 namespace {
192 
193 // The first field contains the value that the switch produces when a certain
194 // case group is selected, and the second field is a vector containing the
195 // cases composing the case group.
196 using SwitchCaseResultVectorTy =
197     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
198 
199 // The first field contains the phi node that generates a result of the switch
200 // and the second field contains the value generated for a certain case in the
201 // switch for that PHI.
202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
203 
204 /// ValueEqualityComparisonCase - Represents a case of a switch.
205 struct ValueEqualityComparisonCase {
206   ConstantInt *Value;
207   BasicBlock *Dest;
208 
209   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
210       : Value(Value), Dest(Dest) {}
211 
212   bool operator<(ValueEqualityComparisonCase RHS) const {
213     // Comparing pointers is ok as we only rely on the order for uniquing.
214     return Value < RHS.Value;
215   }
216 
217   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
218 };
219 
220 class SimplifyCFGOpt {
221   const TargetTransformInfo &TTI;
222   DomTreeUpdater *DTU;
223   const DataLayout &DL;
224   ArrayRef<WeakVH> LoopHeaders;
225   const SimplifyCFGOptions &Options;
226   bool Resimplify;
227 
228   Value *isValueEqualityComparison(Instruction *TI);
229   BasicBlock *GetValueEqualityComparisonCases(
230       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
231   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
232                                                      BasicBlock *Pred,
233                                                      IRBuilder<> &Builder);
234   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
235                                                     Instruction *PTI,
236                                                     IRBuilder<> &Builder);
237   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
238                                            IRBuilder<> &Builder);
239 
240   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
241   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
242   bool simplifySingleResume(ResumeInst *RI);
243   bool simplifyCommonResume(ResumeInst *RI);
244   bool simplifyCleanupReturn(CleanupReturnInst *RI);
245   bool simplifyUnreachable(UnreachableInst *UI);
246   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
247   bool simplifyIndirectBr(IndirectBrInst *IBI);
248   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
249   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
250   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
251   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
252 
253   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
254                                              IRBuilder<> &Builder);
255 
256   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
257                              bool EqTermsOnly);
258   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
259                               const TargetTransformInfo &TTI);
260   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
261                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
262                                   uint32_t TrueWeight, uint32_t FalseWeight);
263   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
264                                  const DataLayout &DL);
265   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
266   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
267   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
268 
269 public:
270   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
271                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
272                  const SimplifyCFGOptions &Opts)
273       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
274     assert((!DTU || !DTU->hasPostDomTree()) &&
275            "SimplifyCFG is not yet capable of maintaining validity of a "
276            "PostDomTree, so don't ask for it.");
277   }
278 
279   bool simplifyOnce(BasicBlock *BB);
280   bool simplifyOnceImpl(BasicBlock *BB);
281   bool run(BasicBlock *BB);
282 
283   // Helper to set Resimplify and return change indication.
284   bool requestResimplify() {
285     Resimplify = true;
286     return true;
287   }
288 };
289 
290 } // end anonymous namespace
291 
292 /// Return true if it is safe to merge these two
293 /// terminator instructions together.
294 static bool
295 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
296                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
297   if (SI1 == SI2)
298     return false; // Can't merge with self!
299 
300   // It is not safe to merge these two switch instructions if they have a common
301   // successor, and if that successor has a PHI node, and if *that* PHI node has
302   // conflicting incoming values from the two switch blocks.
303   BasicBlock *SI1BB = SI1->getParent();
304   BasicBlock *SI2BB = SI2->getParent();
305 
306   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
307   bool Fail = false;
308   for (BasicBlock *Succ : successors(SI2BB))
309     if (SI1Succs.count(Succ))
310       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
311         PHINode *PN = cast<PHINode>(BBI);
312         if (PN->getIncomingValueForBlock(SI1BB) !=
313             PN->getIncomingValueForBlock(SI2BB)) {
314           if (FailBlocks)
315             FailBlocks->insert(Succ);
316           Fail = true;
317         }
318       }
319 
320   return !Fail;
321 }
322 
323 /// Update PHI nodes in Succ to indicate that there will now be entries in it
324 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
325 /// will be the same as those coming in from ExistPred, an existing predecessor
326 /// of Succ.
327 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
328                                   BasicBlock *ExistPred,
329                                   MemorySSAUpdater *MSSAU = nullptr) {
330   for (PHINode &PN : Succ->phis())
331     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
332   if (MSSAU)
333     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
334       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
335 }
336 
337 /// Compute an abstract "cost" of speculating the given instruction,
338 /// which is assumed to be safe to speculate. TCC_Free means cheap,
339 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
340 /// expensive.
341 static InstructionCost computeSpeculationCost(const User *I,
342                                               const TargetTransformInfo &TTI) {
343   assert(isSafeToSpeculativelyExecute(I) &&
344          "Instruction is not safe to speculatively execute!");
345   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
346 }
347 
348 /// If we have a merge point of an "if condition" as accepted above,
349 /// return true if the specified value dominates the block.  We
350 /// don't handle the true generality of domination here, just a special case
351 /// which works well enough for us.
352 ///
353 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
354 /// see if V (which must be an instruction) and its recursive operands
355 /// that do not dominate BB have a combined cost lower than Budget and
356 /// are non-trapping.  If both are true, the instruction is inserted into the
357 /// set and true is returned.
358 ///
359 /// The cost for most non-trapping instructions is defined as 1 except for
360 /// Select whose cost is 2.
361 ///
362 /// After this function returns, Cost is increased by the cost of
363 /// V plus its non-dominating operands.  If that cost is greater than
364 /// Budget, false is returned and Cost is undefined.
365 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
366                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
367                                 InstructionCost &Cost,
368                                 InstructionCost Budget,
369                                 const TargetTransformInfo &TTI,
370                                 unsigned Depth = 0) {
371   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
372   // so limit the recursion depth.
373   // TODO: While this recursion limit does prevent pathological behavior, it
374   // would be better to track visited instructions to avoid cycles.
375   if (Depth == MaxSpeculationDepth)
376     return false;
377 
378   Instruction *I = dyn_cast<Instruction>(V);
379   if (!I) {
380     // Non-instructions all dominate instructions, but not all constantexprs
381     // can be executed unconditionally.
382     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
383       if (C->canTrap())
384         return false;
385     return true;
386   }
387   BasicBlock *PBB = I->getParent();
388 
389   // We don't want to allow weird loops that might have the "if condition" in
390   // the bottom of this block.
391   if (PBB == BB)
392     return false;
393 
394   // If this instruction is defined in a block that contains an unconditional
395   // branch to BB, then it must be in the 'conditional' part of the "if
396   // statement".  If not, it definitely dominates the region.
397   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
398   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
399     return true;
400 
401   // If we have seen this instruction before, don't count it again.
402   if (AggressiveInsts.count(I))
403     return true;
404 
405   // Okay, it looks like the instruction IS in the "condition".  Check to
406   // see if it's a cheap instruction to unconditionally compute, and if it
407   // only uses stuff defined outside of the condition.  If so, hoist it out.
408   if (!isSafeToSpeculativelyExecute(I))
409     return false;
410 
411   Cost += computeSpeculationCost(I, TTI);
412 
413   // Allow exactly one instruction to be speculated regardless of its cost
414   // (as long as it is safe to do so).
415   // This is intended to flatten the CFG even if the instruction is a division
416   // or other expensive operation. The speculation of an expensive instruction
417   // is expected to be undone in CodeGenPrepare if the speculation has not
418   // enabled further IR optimizations.
419   if (Cost > Budget &&
420       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
421        !Cost.isValid()))
422     return false;
423 
424   // Okay, we can only really hoist these out if their operands do
425   // not take us over the cost threshold.
426   for (Use &Op : I->operands())
427     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
428                              Depth + 1))
429       return false;
430   // Okay, it's safe to do this!  Remember this instruction.
431   AggressiveInsts.insert(I);
432   return true;
433 }
434 
435 /// Extract ConstantInt from value, looking through IntToPtr
436 /// and PointerNullValue. Return NULL if value is not a constant int.
437 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
438   // Normal constant int.
439   ConstantInt *CI = dyn_cast<ConstantInt>(V);
440   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
441     return CI;
442 
443   // This is some kind of pointer constant. Turn it into a pointer-sized
444   // ConstantInt if possible.
445   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
446 
447   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
448   if (isa<ConstantPointerNull>(V))
449     return ConstantInt::get(PtrTy, 0);
450 
451   // IntToPtr const int.
452   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
453     if (CE->getOpcode() == Instruction::IntToPtr)
454       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
455         // The constant is very likely to have the right type already.
456         if (CI->getType() == PtrTy)
457           return CI;
458         else
459           return cast<ConstantInt>(
460               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
461       }
462   return nullptr;
463 }
464 
465 namespace {
466 
467 /// Given a chain of or (||) or and (&&) comparison of a value against a
468 /// constant, this will try to recover the information required for a switch
469 /// structure.
470 /// It will depth-first traverse the chain of comparison, seeking for patterns
471 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
472 /// representing the different cases for the switch.
473 /// Note that if the chain is composed of '||' it will build the set of elements
474 /// that matches the comparisons (i.e. any of this value validate the chain)
475 /// while for a chain of '&&' it will build the set elements that make the test
476 /// fail.
477 struct ConstantComparesGatherer {
478   const DataLayout &DL;
479 
480   /// Value found for the switch comparison
481   Value *CompValue = nullptr;
482 
483   /// Extra clause to be checked before the switch
484   Value *Extra = nullptr;
485 
486   /// Set of integers to match in switch
487   SmallVector<ConstantInt *, 8> Vals;
488 
489   /// Number of comparisons matched in the and/or chain
490   unsigned UsedICmps = 0;
491 
492   /// Construct and compute the result for the comparison instruction Cond
493   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
494     gather(Cond);
495   }
496 
497   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
498   ConstantComparesGatherer &
499   operator=(const ConstantComparesGatherer &) = delete;
500 
501 private:
502   /// Try to set the current value used for the comparison, it succeeds only if
503   /// it wasn't set before or if the new value is the same as the old one
504   bool setValueOnce(Value *NewVal) {
505     if (CompValue && CompValue != NewVal)
506       return false;
507     CompValue = NewVal;
508     return (CompValue != nullptr);
509   }
510 
511   /// Try to match Instruction "I" as a comparison against a constant and
512   /// populates the array Vals with the set of values that match (or do not
513   /// match depending on isEQ).
514   /// Return false on failure. On success, the Value the comparison matched
515   /// against is placed in CompValue.
516   /// If CompValue is already set, the function is expected to fail if a match
517   /// is found but the value compared to is different.
518   bool matchInstruction(Instruction *I, bool isEQ) {
519     // If this is an icmp against a constant, handle this as one of the cases.
520     ICmpInst *ICI;
521     ConstantInt *C;
522     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
523           (C = GetConstantInt(I->getOperand(1), DL)))) {
524       return false;
525     }
526 
527     Value *RHSVal;
528     const APInt *RHSC;
529 
530     // Pattern match a special case
531     // (x & ~2^z) == y --> x == y || x == y|2^z
532     // This undoes a transformation done by instcombine to fuse 2 compares.
533     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
534       // It's a little bit hard to see why the following transformations are
535       // correct. Here is a CVC3 program to verify them for 64-bit values:
536 
537       /*
538          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
539          x    : BITVECTOR(64);
540          y    : BITVECTOR(64);
541          z    : BITVECTOR(64);
542          mask : BITVECTOR(64) = BVSHL(ONE, z);
543          QUERY( (y & ~mask = y) =>
544                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
545          );
546          QUERY( (y |  mask = y) =>
547                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
548          );
549       */
550 
551       // Please note that each pattern must be a dual implication (<--> or
552       // iff). One directional implication can create spurious matches. If the
553       // implication is only one-way, an unsatisfiable condition on the left
554       // side can imply a satisfiable condition on the right side. Dual
555       // implication ensures that satisfiable conditions are transformed to
556       // other satisfiable conditions and unsatisfiable conditions are
557       // transformed to other unsatisfiable conditions.
558 
559       // Here is a concrete example of a unsatisfiable condition on the left
560       // implying a satisfiable condition on the right:
561       //
562       // mask = (1 << z)
563       // (x & ~mask) == y  --> (x == y || x == (y | mask))
564       //
565       // Substituting y = 3, z = 0 yields:
566       // (x & -2) == 3 --> (x == 3 || x == 2)
567 
568       // Pattern match a special case:
569       /*
570         QUERY( (y & ~mask = y) =>
571                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
572         );
573       */
574       if (match(ICI->getOperand(0),
575                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
576         APInt Mask = ~*RHSC;
577         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
578           // If we already have a value for the switch, it has to match!
579           if (!setValueOnce(RHSVal))
580             return false;
581 
582           Vals.push_back(C);
583           Vals.push_back(
584               ConstantInt::get(C->getContext(),
585                                C->getValue() | Mask));
586           UsedICmps++;
587           return true;
588         }
589       }
590 
591       // Pattern match a special case:
592       /*
593         QUERY( (y |  mask = y) =>
594                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
595         );
596       */
597       if (match(ICI->getOperand(0),
598                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
599         APInt Mask = *RHSC;
600         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
601           // If we already have a value for the switch, it has to match!
602           if (!setValueOnce(RHSVal))
603             return false;
604 
605           Vals.push_back(C);
606           Vals.push_back(ConstantInt::get(C->getContext(),
607                                           C->getValue() & ~Mask));
608           UsedICmps++;
609           return true;
610         }
611       }
612 
613       // If we already have a value for the switch, it has to match!
614       if (!setValueOnce(ICI->getOperand(0)))
615         return false;
616 
617       UsedICmps++;
618       Vals.push_back(C);
619       return ICI->getOperand(0);
620     }
621 
622     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
623     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
624         ICI->getPredicate(), C->getValue());
625 
626     // Shift the range if the compare is fed by an add. This is the range
627     // compare idiom as emitted by instcombine.
628     Value *CandidateVal = I->getOperand(0);
629     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
630       Span = Span.subtract(*RHSC);
631       CandidateVal = RHSVal;
632     }
633 
634     // If this is an and/!= check, then we are looking to build the set of
635     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
636     // x != 0 && x != 1.
637     if (!isEQ)
638       Span = Span.inverse();
639 
640     // If there are a ton of values, we don't want to make a ginormous switch.
641     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
642       return false;
643     }
644 
645     // If we already have a value for the switch, it has to match!
646     if (!setValueOnce(CandidateVal))
647       return false;
648 
649     // Add all values from the range to the set
650     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
651       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
652 
653     UsedICmps++;
654     return true;
655   }
656 
657   /// Given a potentially 'or'd or 'and'd together collection of icmp
658   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
659   /// the value being compared, and stick the list constants into the Vals
660   /// vector.
661   /// One "Extra" case is allowed to differ from the other.
662   void gather(Value *V) {
663     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
664 
665     // Keep a stack (SmallVector for efficiency) for depth-first traversal
666     SmallVector<Value *, 8> DFT;
667     SmallPtrSet<Value *, 8> Visited;
668 
669     // Initialize
670     Visited.insert(V);
671     DFT.push_back(V);
672 
673     while (!DFT.empty()) {
674       V = DFT.pop_back_val();
675 
676       if (Instruction *I = dyn_cast<Instruction>(V)) {
677         // If it is a || (or && depending on isEQ), process the operands.
678         Value *Op0, *Op1;
679         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
680                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
681           if (Visited.insert(Op1).second)
682             DFT.push_back(Op1);
683           if (Visited.insert(Op0).second)
684             DFT.push_back(Op0);
685 
686           continue;
687         }
688 
689         // Try to match the current instruction
690         if (matchInstruction(I, isEQ))
691           // Match succeed, continue the loop
692           continue;
693       }
694 
695       // One element of the sequence of || (or &&) could not be match as a
696       // comparison against the same value as the others.
697       // We allow only one "Extra" case to be checked before the switch
698       if (!Extra) {
699         Extra = V;
700         continue;
701       }
702       // Failed to parse a proper sequence, abort now
703       CompValue = nullptr;
704       break;
705     }
706   }
707 };
708 
709 } // end anonymous namespace
710 
711 static void EraseTerminatorAndDCECond(Instruction *TI,
712                                       MemorySSAUpdater *MSSAU = nullptr) {
713   Instruction *Cond = nullptr;
714   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
715     Cond = dyn_cast<Instruction>(SI->getCondition());
716   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
717     if (BI->isConditional())
718       Cond = dyn_cast<Instruction>(BI->getCondition());
719   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
720     Cond = dyn_cast<Instruction>(IBI->getAddress());
721   }
722 
723   TI->eraseFromParent();
724   if (Cond)
725     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
726 }
727 
728 /// Return true if the specified terminator checks
729 /// to see if a value is equal to constant integer value.
730 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
731   Value *CV = nullptr;
732   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
733     // Do not permit merging of large switch instructions into their
734     // predecessors unless there is only one predecessor.
735     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
736       CV = SI->getCondition();
737   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
738     if (BI->isConditional() && BI->getCondition()->hasOneUse())
739       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
740         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
741           CV = ICI->getOperand(0);
742       }
743 
744   // Unwrap any lossless ptrtoint cast.
745   if (CV) {
746     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
747       Value *Ptr = PTII->getPointerOperand();
748       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
749         CV = Ptr;
750     }
751   }
752   return CV;
753 }
754 
755 /// Given a value comparison instruction,
756 /// decode all of the 'cases' that it represents and return the 'default' block.
757 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
758     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
759   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
760     Cases.reserve(SI->getNumCases());
761     for (auto Case : SI->cases())
762       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
763                                                   Case.getCaseSuccessor()));
764     return SI->getDefaultDest();
765   }
766 
767   BranchInst *BI = cast<BranchInst>(TI);
768   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
769   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
770   Cases.push_back(ValueEqualityComparisonCase(
771       GetConstantInt(ICI->getOperand(1), DL), Succ));
772   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
773 }
774 
775 /// Given a vector of bb/value pairs, remove any entries
776 /// in the list that match the specified block.
777 static void
778 EliminateBlockCases(BasicBlock *BB,
779                     std::vector<ValueEqualityComparisonCase> &Cases) {
780   llvm::erase_value(Cases, BB);
781 }
782 
783 /// Return true if there are any keys in C1 that exist in C2 as well.
784 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
785                           std::vector<ValueEqualityComparisonCase> &C2) {
786   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
787 
788   // Make V1 be smaller than V2.
789   if (V1->size() > V2->size())
790     std::swap(V1, V2);
791 
792   if (V1->empty())
793     return false;
794   if (V1->size() == 1) {
795     // Just scan V2.
796     ConstantInt *TheVal = (*V1)[0].Value;
797     for (unsigned i = 0, e = V2->size(); i != e; ++i)
798       if (TheVal == (*V2)[i].Value)
799         return true;
800   }
801 
802   // Otherwise, just sort both lists and compare element by element.
803   array_pod_sort(V1->begin(), V1->end());
804   array_pod_sort(V2->begin(), V2->end());
805   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
806   while (i1 != e1 && i2 != e2) {
807     if ((*V1)[i1].Value == (*V2)[i2].Value)
808       return true;
809     if ((*V1)[i1].Value < (*V2)[i2].Value)
810       ++i1;
811     else
812       ++i2;
813   }
814   return false;
815 }
816 
817 // Set branch weights on SwitchInst. This sets the metadata if there is at
818 // least one non-zero weight.
819 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
820   // Check that there is at least one non-zero weight. Otherwise, pass
821   // nullptr to setMetadata which will erase the existing metadata.
822   MDNode *N = nullptr;
823   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
824     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
825   SI->setMetadata(LLVMContext::MD_prof, N);
826 }
827 
828 // Similar to the above, but for branch and select instructions that take
829 // exactly 2 weights.
830 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
831                              uint32_t FalseWeight) {
832   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
833   // Check that there is at least one non-zero weight. Otherwise, pass
834   // nullptr to setMetadata which will erase the existing metadata.
835   MDNode *N = nullptr;
836   if (TrueWeight || FalseWeight)
837     N = MDBuilder(I->getParent()->getContext())
838             .createBranchWeights(TrueWeight, FalseWeight);
839   I->setMetadata(LLVMContext::MD_prof, N);
840 }
841 
842 /// If TI is known to be a terminator instruction and its block is known to
843 /// only have a single predecessor block, check to see if that predecessor is
844 /// also a value comparison with the same value, and if that comparison
845 /// determines the outcome of this comparison. If so, simplify TI. This does a
846 /// very limited form of jump threading.
847 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
848     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
849   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
850   if (!PredVal)
851     return false; // Not a value comparison in predecessor.
852 
853   Value *ThisVal = isValueEqualityComparison(TI);
854   assert(ThisVal && "This isn't a value comparison!!");
855   if (ThisVal != PredVal)
856     return false; // Different predicates.
857 
858   // TODO: Preserve branch weight metadata, similarly to how
859   // FoldValueComparisonIntoPredecessors preserves it.
860 
861   // Find out information about when control will move from Pred to TI's block.
862   std::vector<ValueEqualityComparisonCase> PredCases;
863   BasicBlock *PredDef =
864       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
865   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
866 
867   // Find information about how control leaves this block.
868   std::vector<ValueEqualityComparisonCase> ThisCases;
869   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
870   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
871 
872   // If TI's block is the default block from Pred's comparison, potentially
873   // simplify TI based on this knowledge.
874   if (PredDef == TI->getParent()) {
875     // If we are here, we know that the value is none of those cases listed in
876     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
877     // can simplify TI.
878     if (!ValuesOverlap(PredCases, ThisCases))
879       return false;
880 
881     if (isa<BranchInst>(TI)) {
882       // Okay, one of the successors of this condbr is dead.  Convert it to a
883       // uncond br.
884       assert(ThisCases.size() == 1 && "Branch can only have one case!");
885       // Insert the new branch.
886       Instruction *NI = Builder.CreateBr(ThisDef);
887       (void)NI;
888 
889       // Remove PHI node entries for the dead edge.
890       ThisCases[0].Dest->removePredecessor(PredDef);
891 
892       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
893                         << "Through successor TI: " << *TI << "Leaving: " << *NI
894                         << "\n");
895 
896       EraseTerminatorAndDCECond(TI);
897 
898       if (DTU)
899         DTU->applyUpdates(
900             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
901 
902       return true;
903     }
904 
905     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
906     // Okay, TI has cases that are statically dead, prune them away.
907     SmallPtrSet<Constant *, 16> DeadCases;
908     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
909       DeadCases.insert(PredCases[i].Value);
910 
911     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
912                       << "Through successor TI: " << *TI);
913 
914     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
915     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
916       --i;
917       auto *Successor = i->getCaseSuccessor();
918       if (DTU)
919         ++NumPerSuccessorCases[Successor];
920       if (DeadCases.count(i->getCaseValue())) {
921         Successor->removePredecessor(PredDef);
922         SI.removeCase(i);
923         if (DTU)
924           --NumPerSuccessorCases[Successor];
925       }
926     }
927 
928     if (DTU) {
929       std::vector<DominatorTree::UpdateType> Updates;
930       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
931         if (I.second == 0)
932           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
933       DTU->applyUpdates(Updates);
934     }
935 
936     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
937     return true;
938   }
939 
940   // Otherwise, TI's block must correspond to some matched value.  Find out
941   // which value (or set of values) this is.
942   ConstantInt *TIV = nullptr;
943   BasicBlock *TIBB = TI->getParent();
944   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
945     if (PredCases[i].Dest == TIBB) {
946       if (TIV)
947         return false; // Cannot handle multiple values coming to this block.
948       TIV = PredCases[i].Value;
949     }
950   assert(TIV && "No edge from pred to succ?");
951 
952   // Okay, we found the one constant that our value can be if we get into TI's
953   // BB.  Find out which successor will unconditionally be branched to.
954   BasicBlock *TheRealDest = nullptr;
955   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
956     if (ThisCases[i].Value == TIV) {
957       TheRealDest = ThisCases[i].Dest;
958       break;
959     }
960 
961   // If not handled by any explicit cases, it is handled by the default case.
962   if (!TheRealDest)
963     TheRealDest = ThisDef;
964 
965   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
966 
967   // Remove PHI node entries for dead edges.
968   BasicBlock *CheckEdge = TheRealDest;
969   for (BasicBlock *Succ : successors(TIBB))
970     if (Succ != CheckEdge) {
971       if (Succ != TheRealDest)
972         RemovedSuccs.insert(Succ);
973       Succ->removePredecessor(TIBB);
974     } else
975       CheckEdge = nullptr;
976 
977   // Insert the new branch.
978   Instruction *NI = Builder.CreateBr(TheRealDest);
979   (void)NI;
980 
981   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
982                     << "Through successor TI: " << *TI << "Leaving: " << *NI
983                     << "\n");
984 
985   EraseTerminatorAndDCECond(TI);
986   if (DTU) {
987     SmallVector<DominatorTree::UpdateType, 2> Updates;
988     Updates.reserve(RemovedSuccs.size());
989     for (auto *RemovedSucc : RemovedSuccs)
990       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
991     DTU->applyUpdates(Updates);
992   }
993   return true;
994 }
995 
996 namespace {
997 
998 /// This class implements a stable ordering of constant
999 /// integers that does not depend on their address.  This is important for
1000 /// applications that sort ConstantInt's to ensure uniqueness.
1001 struct ConstantIntOrdering {
1002   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1003     return LHS->getValue().ult(RHS->getValue());
1004   }
1005 };
1006 
1007 } // end anonymous namespace
1008 
1009 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1010                                     ConstantInt *const *P2) {
1011   const ConstantInt *LHS = *P1;
1012   const ConstantInt *RHS = *P2;
1013   if (LHS == RHS)
1014     return 0;
1015   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1016 }
1017 
1018 static inline bool HasBranchWeights(const Instruction *I) {
1019   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1020   if (ProfMD && ProfMD->getOperand(0))
1021     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1022       return MDS->getString().equals("branch_weights");
1023 
1024   return false;
1025 }
1026 
1027 /// Get Weights of a given terminator, the default weight is at the front
1028 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1029 /// metadata.
1030 static void GetBranchWeights(Instruction *TI,
1031                              SmallVectorImpl<uint64_t> &Weights) {
1032   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1033   assert(MD);
1034   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1035     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1036     Weights.push_back(CI->getValue().getZExtValue());
1037   }
1038 
1039   // If TI is a conditional eq, the default case is the false case,
1040   // and the corresponding branch-weight data is at index 2. We swap the
1041   // default weight to be the first entry.
1042   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1043     assert(Weights.size() == 2);
1044     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1045     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1046       std::swap(Weights.front(), Weights.back());
1047   }
1048 }
1049 
1050 /// Keep halving the weights until all can fit in uint32_t.
1051 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1052   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1053   if (Max > UINT_MAX) {
1054     unsigned Offset = 32 - countLeadingZeros(Max);
1055     for (uint64_t &I : Weights)
1056       I >>= Offset;
1057   }
1058 }
1059 
1060 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1061     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1062   Instruction *PTI = PredBlock->getTerminator();
1063 
1064   // If we have bonus instructions, clone them into the predecessor block.
1065   // Note that there may be multiple predecessor blocks, so we cannot move
1066   // bonus instructions to a predecessor block.
1067   for (Instruction &BonusInst : *BB) {
1068     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1069       continue;
1070 
1071     Instruction *NewBonusInst = BonusInst.clone();
1072 
1073     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1074       // Unless the instruction has the same !dbg location as the original
1075       // branch, drop it. When we fold the bonus instructions we want to make
1076       // sure we reset their debug locations in order to avoid stepping on
1077       // dead code caused by folding dead branches.
1078       NewBonusInst->setDebugLoc(DebugLoc());
1079     }
1080 
1081     RemapInstruction(NewBonusInst, VMap,
1082                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1083     VMap[&BonusInst] = NewBonusInst;
1084 
1085     // If we moved a load, we cannot any longer claim any knowledge about
1086     // its potential value. The previous information might have been valid
1087     // only given the branch precondition.
1088     // For an analogous reason, we must also drop all the metadata whose
1089     // semantics we don't understand. We *can* preserve !annotation, because
1090     // it is tied to the instruction itself, not the value or position.
1091     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1092 
1093     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1094     NewBonusInst->takeName(&BonusInst);
1095     BonusInst.setName(NewBonusInst->getName() + ".old");
1096 
1097     // Update (liveout) uses of bonus instructions,
1098     // now that the bonus instruction has been cloned into predecessor.
1099     SSAUpdater SSAUpdate;
1100     SSAUpdate.Initialize(BonusInst.getType(),
1101                          (NewBonusInst->getName() + ".merge").str());
1102     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1103     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1104     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1105       auto *UI = cast<Instruction>(U.getUser());
1106       if (UI->getParent() != PredBlock)
1107         SSAUpdate.RewriteUseAfterInsertions(U);
1108       else // Use is in the same block as, and comes before, NewBonusInst.
1109         SSAUpdate.RewriteUse(U);
1110     }
1111   }
1112 }
1113 
1114 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1115     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1116   BasicBlock *BB = TI->getParent();
1117   BasicBlock *Pred = PTI->getParent();
1118 
1119   SmallVector<DominatorTree::UpdateType, 32> Updates;
1120 
1121   // Figure out which 'cases' to copy from SI to PSI.
1122   std::vector<ValueEqualityComparisonCase> BBCases;
1123   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1124 
1125   std::vector<ValueEqualityComparisonCase> PredCases;
1126   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1127 
1128   // Based on whether the default edge from PTI goes to BB or not, fill in
1129   // PredCases and PredDefault with the new switch cases we would like to
1130   // build.
1131   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1132 
1133   // Update the branch weight metadata along the way
1134   SmallVector<uint64_t, 8> Weights;
1135   bool PredHasWeights = HasBranchWeights(PTI);
1136   bool SuccHasWeights = HasBranchWeights(TI);
1137 
1138   if (PredHasWeights) {
1139     GetBranchWeights(PTI, Weights);
1140     // branch-weight metadata is inconsistent here.
1141     if (Weights.size() != 1 + PredCases.size())
1142       PredHasWeights = SuccHasWeights = false;
1143   } else if (SuccHasWeights)
1144     // If there are no predecessor weights but there are successor weights,
1145     // populate Weights with 1, which will later be scaled to the sum of
1146     // successor's weights
1147     Weights.assign(1 + PredCases.size(), 1);
1148 
1149   SmallVector<uint64_t, 8> SuccWeights;
1150   if (SuccHasWeights) {
1151     GetBranchWeights(TI, SuccWeights);
1152     // branch-weight metadata is inconsistent here.
1153     if (SuccWeights.size() != 1 + BBCases.size())
1154       PredHasWeights = SuccHasWeights = false;
1155   } else if (PredHasWeights)
1156     SuccWeights.assign(1 + BBCases.size(), 1);
1157 
1158   if (PredDefault == BB) {
1159     // If this is the default destination from PTI, only the edges in TI
1160     // that don't occur in PTI, or that branch to BB will be activated.
1161     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1162     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1163       if (PredCases[i].Dest != BB)
1164         PTIHandled.insert(PredCases[i].Value);
1165       else {
1166         // The default destination is BB, we don't need explicit targets.
1167         std::swap(PredCases[i], PredCases.back());
1168 
1169         if (PredHasWeights || SuccHasWeights) {
1170           // Increase weight for the default case.
1171           Weights[0] += Weights[i + 1];
1172           std::swap(Weights[i + 1], Weights.back());
1173           Weights.pop_back();
1174         }
1175 
1176         PredCases.pop_back();
1177         --i;
1178         --e;
1179       }
1180 
1181     // Reconstruct the new switch statement we will be building.
1182     if (PredDefault != BBDefault) {
1183       PredDefault->removePredecessor(Pred);
1184       if (DTU && PredDefault != BB)
1185         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1186       PredDefault = BBDefault;
1187       ++NewSuccessors[BBDefault];
1188     }
1189 
1190     unsigned CasesFromPred = Weights.size();
1191     uint64_t ValidTotalSuccWeight = 0;
1192     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1193       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1194         PredCases.push_back(BBCases[i]);
1195         ++NewSuccessors[BBCases[i].Dest];
1196         if (SuccHasWeights || PredHasWeights) {
1197           // The default weight is at index 0, so weight for the ith case
1198           // should be at index i+1. Scale the cases from successor by
1199           // PredDefaultWeight (Weights[0]).
1200           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1201           ValidTotalSuccWeight += SuccWeights[i + 1];
1202         }
1203       }
1204 
1205     if (SuccHasWeights || PredHasWeights) {
1206       ValidTotalSuccWeight += SuccWeights[0];
1207       // Scale the cases from predecessor by ValidTotalSuccWeight.
1208       for (unsigned i = 1; i < CasesFromPred; ++i)
1209         Weights[i] *= ValidTotalSuccWeight;
1210       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1211       Weights[0] *= SuccWeights[0];
1212     }
1213   } else {
1214     // If this is not the default destination from PSI, only the edges
1215     // in SI that occur in PSI with a destination of BB will be
1216     // activated.
1217     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1218     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1219     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1220       if (PredCases[i].Dest == BB) {
1221         PTIHandled.insert(PredCases[i].Value);
1222 
1223         if (PredHasWeights || SuccHasWeights) {
1224           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1225           std::swap(Weights[i + 1], Weights.back());
1226           Weights.pop_back();
1227         }
1228 
1229         std::swap(PredCases[i], PredCases.back());
1230         PredCases.pop_back();
1231         --i;
1232         --e;
1233       }
1234 
1235     // Okay, now we know which constants were sent to BB from the
1236     // predecessor.  Figure out where they will all go now.
1237     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1238       if (PTIHandled.count(BBCases[i].Value)) {
1239         // If this is one we are capable of getting...
1240         if (PredHasWeights || SuccHasWeights)
1241           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1242         PredCases.push_back(BBCases[i]);
1243         ++NewSuccessors[BBCases[i].Dest];
1244         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1245       }
1246 
1247     // If there are any constants vectored to BB that TI doesn't handle,
1248     // they must go to the default destination of TI.
1249     for (ConstantInt *I : PTIHandled) {
1250       if (PredHasWeights || SuccHasWeights)
1251         Weights.push_back(WeightsForHandled[I]);
1252       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1253       ++NewSuccessors[BBDefault];
1254     }
1255   }
1256 
1257   // Okay, at this point, we know which new successor Pred will get.  Make
1258   // sure we update the number of entries in the PHI nodes for these
1259   // successors.
1260   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1261   if (DTU) {
1262     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1263     Updates.reserve(Updates.size() + NewSuccessors.size());
1264   }
1265   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1266        NewSuccessors) {
1267     for (auto I : seq(0, NewSuccessor.second)) {
1268       (void)I;
1269       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1270     }
1271     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1272       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1273   }
1274 
1275   Builder.SetInsertPoint(PTI);
1276   // Convert pointer to int before we switch.
1277   if (CV->getType()->isPointerTy()) {
1278     CV =
1279         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1280   }
1281 
1282   // Now that the successors are updated, create the new Switch instruction.
1283   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1284   NewSI->setDebugLoc(PTI->getDebugLoc());
1285   for (ValueEqualityComparisonCase &V : PredCases)
1286     NewSI->addCase(V.Value, V.Dest);
1287 
1288   if (PredHasWeights || SuccHasWeights) {
1289     // Halve the weights if any of them cannot fit in an uint32_t
1290     FitWeights(Weights);
1291 
1292     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1293 
1294     setBranchWeights(NewSI, MDWeights);
1295   }
1296 
1297   EraseTerminatorAndDCECond(PTI);
1298 
1299   // Okay, last check.  If BB is still a successor of PSI, then we must
1300   // have an infinite loop case.  If so, add an infinitely looping block
1301   // to handle the case to preserve the behavior of the code.
1302   BasicBlock *InfLoopBlock = nullptr;
1303   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1304     if (NewSI->getSuccessor(i) == BB) {
1305       if (!InfLoopBlock) {
1306         // Insert it at the end of the function, because it's either code,
1307         // or it won't matter if it's hot. :)
1308         InfLoopBlock =
1309             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1310         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1311         if (DTU)
1312           Updates.push_back(
1313               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1314       }
1315       NewSI->setSuccessor(i, InfLoopBlock);
1316     }
1317 
1318   if (DTU) {
1319     if (InfLoopBlock)
1320       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1321 
1322     Updates.push_back({DominatorTree::Delete, Pred, BB});
1323 
1324     DTU->applyUpdates(Updates);
1325   }
1326 
1327   ++NumFoldValueComparisonIntoPredecessors;
1328   return true;
1329 }
1330 
1331 /// The specified terminator is a value equality comparison instruction
1332 /// (either a switch or a branch on "X == c").
1333 /// See if any of the predecessors of the terminator block are value comparisons
1334 /// on the same value.  If so, and if safe to do so, fold them together.
1335 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1336                                                          IRBuilder<> &Builder) {
1337   BasicBlock *BB = TI->getParent();
1338   Value *CV = isValueEqualityComparison(TI); // CondVal
1339   assert(CV && "Not a comparison?");
1340 
1341   bool Changed = false;
1342 
1343   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1344   while (!Preds.empty()) {
1345     BasicBlock *Pred = Preds.pop_back_val();
1346     Instruction *PTI = Pred->getTerminator();
1347 
1348     // Don't try to fold into itself.
1349     if (Pred == BB)
1350       continue;
1351 
1352     // See if the predecessor is a comparison with the same value.
1353     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1354     if (PCV != CV)
1355       continue;
1356 
1357     SmallSetVector<BasicBlock *, 4> FailBlocks;
1358     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1359       for (auto *Succ : FailBlocks) {
1360         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1361           return false;
1362       }
1363     }
1364 
1365     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1366     Changed = true;
1367   }
1368   return Changed;
1369 }
1370 
1371 // If we would need to insert a select that uses the value of this invoke
1372 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1373 // can't hoist the invoke, as there is nowhere to put the select in this case.
1374 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1375                                 Instruction *I1, Instruction *I2) {
1376   for (BasicBlock *Succ : successors(BB1)) {
1377     for (const PHINode &PN : Succ->phis()) {
1378       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1379       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1380       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1381         return false;
1382       }
1383     }
1384   }
1385   return true;
1386 }
1387 
1388 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1389 
1390 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1391 /// in the two blocks up into the branch block. The caller of this function
1392 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1393 /// only perform hoisting in case both blocks only contain a terminator. In that
1394 /// case, only the original BI will be replaced and selects for PHIs are added.
1395 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1396                                            const TargetTransformInfo &TTI,
1397                                            bool EqTermsOnly) {
1398   // This does very trivial matching, with limited scanning, to find identical
1399   // instructions in the two blocks.  In particular, we don't want to get into
1400   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1401   // such, we currently just scan for obviously identical instructions in an
1402   // identical order.
1403   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1404   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1405 
1406   BasicBlock::iterator BB1_Itr = BB1->begin();
1407   BasicBlock::iterator BB2_Itr = BB2->begin();
1408 
1409   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1410   // Skip debug info if it is not identical.
1411   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1412   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1413   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1414     while (isa<DbgInfoIntrinsic>(I1))
1415       I1 = &*BB1_Itr++;
1416     while (isa<DbgInfoIntrinsic>(I2))
1417       I2 = &*BB2_Itr++;
1418   }
1419   // FIXME: Can we define a safety predicate for CallBr?
1420   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1421       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1422       isa<CallBrInst>(I1))
1423     return false;
1424 
1425   BasicBlock *BIParent = BI->getParent();
1426 
1427   bool Changed = false;
1428 
1429   auto _ = make_scope_exit([&]() {
1430     if (Changed)
1431       ++NumHoistCommonCode;
1432   });
1433 
1434   // Check if only hoisting terminators is allowed. This does not add new
1435   // instructions to the hoist location.
1436   if (EqTermsOnly) {
1437     // Skip any debug intrinsics, as they are free to hoist.
1438     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1439     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1440     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1441       return false;
1442     if (!I1NonDbg->isTerminator())
1443       return false;
1444     // Now we know that we only need to hoist debug instrinsics and the
1445     // terminator. Let the loop below handle those 2 cases.
1446   }
1447 
1448   do {
1449     // If we are hoisting the terminator instruction, don't move one (making a
1450     // broken BB), instead clone it, and remove BI.
1451     if (I1->isTerminator())
1452       goto HoistTerminator;
1453 
1454     // If we're going to hoist a call, make sure that the two instructions we're
1455     // commoning/hoisting are both marked with musttail, or neither of them is
1456     // marked as such. Otherwise, we might end up in a situation where we hoist
1457     // from a block where the terminator is a `ret` to a block where the terminator
1458     // is a `br`, and `musttail` calls expect to be followed by a return.
1459     auto *C1 = dyn_cast<CallInst>(I1);
1460     auto *C2 = dyn_cast<CallInst>(I2);
1461     if (C1 && C2)
1462       if (C1->isMustTailCall() != C2->isMustTailCall())
1463         return Changed;
1464 
1465     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1466       return Changed;
1467 
1468     // If any of the two call sites has nomerge attribute, stop hoisting.
1469     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1470       if (CB1->cannotMerge())
1471         return Changed;
1472     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1473       if (CB2->cannotMerge())
1474         return Changed;
1475 
1476     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1477       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1478       // The debug location is an integral part of a debug info intrinsic
1479       // and can't be separated from it or replaced.  Instead of attempting
1480       // to merge locations, simply hoist both copies of the intrinsic.
1481       BIParent->getInstList().splice(BI->getIterator(),
1482                                      BB1->getInstList(), I1);
1483       BIParent->getInstList().splice(BI->getIterator(),
1484                                      BB2->getInstList(), I2);
1485       Changed = true;
1486     } else {
1487       // For a normal instruction, we just move one to right before the branch,
1488       // then replace all uses of the other with the first.  Finally, we remove
1489       // the now redundant second instruction.
1490       BIParent->getInstList().splice(BI->getIterator(),
1491                                      BB1->getInstList(), I1);
1492       if (!I2->use_empty())
1493         I2->replaceAllUsesWith(I1);
1494       I1->andIRFlags(I2);
1495       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1496                              LLVMContext::MD_range,
1497                              LLVMContext::MD_fpmath,
1498                              LLVMContext::MD_invariant_load,
1499                              LLVMContext::MD_nonnull,
1500                              LLVMContext::MD_invariant_group,
1501                              LLVMContext::MD_align,
1502                              LLVMContext::MD_dereferenceable,
1503                              LLVMContext::MD_dereferenceable_or_null,
1504                              LLVMContext::MD_mem_parallel_loop_access,
1505                              LLVMContext::MD_access_group,
1506                              LLVMContext::MD_preserve_access_index};
1507       combineMetadata(I1, I2, KnownIDs, true);
1508 
1509       // I1 and I2 are being combined into a single instruction.  Its debug
1510       // location is the merged locations of the original instructions.
1511       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1512 
1513       I2->eraseFromParent();
1514       Changed = true;
1515     }
1516     ++NumHoistCommonInstrs;
1517 
1518     I1 = &*BB1_Itr++;
1519     I2 = &*BB2_Itr++;
1520     // Skip debug info if it is not identical.
1521     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1522     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1523     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1524       while (isa<DbgInfoIntrinsic>(I1))
1525         I1 = &*BB1_Itr++;
1526       while (isa<DbgInfoIntrinsic>(I2))
1527         I2 = &*BB2_Itr++;
1528     }
1529   } while (I1->isIdenticalToWhenDefined(I2));
1530 
1531   return true;
1532 
1533 HoistTerminator:
1534   // It may not be possible to hoist an invoke.
1535   // FIXME: Can we define a safety predicate for CallBr?
1536   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1537     return Changed;
1538 
1539   // TODO: callbr hoisting currently disabled pending further study.
1540   if (isa<CallBrInst>(I1))
1541     return Changed;
1542 
1543   for (BasicBlock *Succ : successors(BB1)) {
1544     for (PHINode &PN : Succ->phis()) {
1545       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1546       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1547       if (BB1V == BB2V)
1548         continue;
1549 
1550       // Check for passingValueIsAlwaysUndefined here because we would rather
1551       // eliminate undefined control flow then converting it to a select.
1552       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1553           passingValueIsAlwaysUndefined(BB2V, &PN))
1554         return Changed;
1555 
1556       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1557         return Changed;
1558       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1559         return Changed;
1560     }
1561   }
1562 
1563   // Okay, it is safe to hoist the terminator.
1564   Instruction *NT = I1->clone();
1565   BIParent->getInstList().insert(BI->getIterator(), NT);
1566   if (!NT->getType()->isVoidTy()) {
1567     I1->replaceAllUsesWith(NT);
1568     I2->replaceAllUsesWith(NT);
1569     NT->takeName(I1);
1570   }
1571   Changed = true;
1572   ++NumHoistCommonInstrs;
1573 
1574   // Ensure terminator gets a debug location, even an unknown one, in case
1575   // it involves inlinable calls.
1576   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1577 
1578   // PHIs created below will adopt NT's merged DebugLoc.
1579   IRBuilder<NoFolder> Builder(NT);
1580 
1581   // Hoisting one of the terminators from our successor is a great thing.
1582   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1583   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1584   // nodes, so we insert select instruction to compute the final result.
1585   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1586   for (BasicBlock *Succ : successors(BB1)) {
1587     for (PHINode &PN : Succ->phis()) {
1588       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1589       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1590       if (BB1V == BB2V)
1591         continue;
1592 
1593       // These values do not agree.  Insert a select instruction before NT
1594       // that determines the right value.
1595       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1596       if (!SI) {
1597         // Propagate fast-math-flags from phi node to its replacement select.
1598         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1599         if (isa<FPMathOperator>(PN))
1600           Builder.setFastMathFlags(PN.getFastMathFlags());
1601 
1602         SI = cast<SelectInst>(
1603             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1604                                  BB1V->getName() + "." + BB2V->getName(), BI));
1605       }
1606 
1607       // Make the PHI node use the select for all incoming values for BB1/BB2
1608       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1609         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1610           PN.setIncomingValue(i, SI);
1611     }
1612   }
1613 
1614   SmallVector<DominatorTree::UpdateType, 4> Updates;
1615 
1616   // Update any PHI nodes in our new successors.
1617   for (BasicBlock *Succ : successors(BB1)) {
1618     AddPredecessorToBlock(Succ, BIParent, BB1);
1619     if (DTU)
1620       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1621   }
1622 
1623   if (DTU)
1624     for (BasicBlock *Succ : successors(BI))
1625       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1626 
1627   EraseTerminatorAndDCECond(BI);
1628   if (DTU)
1629     DTU->applyUpdates(Updates);
1630   return Changed;
1631 }
1632 
1633 // Check lifetime markers.
1634 static bool isLifeTimeMarker(const Instruction *I) {
1635   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1636     switch (II->getIntrinsicID()) {
1637     default:
1638       break;
1639     case Intrinsic::lifetime_start:
1640     case Intrinsic::lifetime_end:
1641       return true;
1642     }
1643   }
1644   return false;
1645 }
1646 
1647 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1648 // into variables.
1649 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1650                                                 int OpIdx) {
1651   return !isa<IntrinsicInst>(I);
1652 }
1653 
1654 // All instructions in Insts belong to different blocks that all unconditionally
1655 // branch to a common successor. Analyze each instruction and return true if it
1656 // would be possible to sink them into their successor, creating one common
1657 // instruction instead. For every value that would be required to be provided by
1658 // PHI node (because an operand varies in each input block), add to PHIOperands.
1659 static bool canSinkInstructions(
1660     ArrayRef<Instruction *> Insts,
1661     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1662   // Prune out obviously bad instructions to move. Each instruction must have
1663   // exactly zero or one use, and we check later that use is by a single, common
1664   // PHI instruction in the successor.
1665   bool HasUse = !Insts.front()->user_empty();
1666   for (auto *I : Insts) {
1667     // These instructions may change or break semantics if moved.
1668     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1669         I->getType()->isTokenTy())
1670       return false;
1671 
1672     // Do not try to sink an instruction in an infinite loop - it can cause
1673     // this algorithm to infinite loop.
1674     if (I->getParent()->getSingleSuccessor() == I->getParent())
1675       return false;
1676 
1677     // Conservatively return false if I is an inline-asm instruction. Sinking
1678     // and merging inline-asm instructions can potentially create arguments
1679     // that cannot satisfy the inline-asm constraints.
1680     // If the instruction has nomerge attribute, return false.
1681     if (const auto *C = dyn_cast<CallBase>(I))
1682       if (C->isInlineAsm() || C->cannotMerge())
1683         return false;
1684 
1685     // Each instruction must have zero or one use.
1686     if (HasUse && !I->hasOneUse())
1687       return false;
1688     if (!HasUse && !I->user_empty())
1689       return false;
1690   }
1691 
1692   const Instruction *I0 = Insts.front();
1693   for (auto *I : Insts)
1694     if (!I->isSameOperationAs(I0))
1695       return false;
1696 
1697   // All instructions in Insts are known to be the same opcode. If they have a
1698   // use, check that the only user is a PHI or in the same block as the
1699   // instruction, because if a user is in the same block as an instruction we're
1700   // contemplating sinking, it must already be determined to be sinkable.
1701   if (HasUse) {
1702     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1703     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1704     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1705           auto *U = cast<Instruction>(*I->user_begin());
1706           return (PNUse &&
1707                   PNUse->getParent() == Succ &&
1708                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1709                  U->getParent() == I->getParent();
1710         }))
1711       return false;
1712   }
1713 
1714   // Because SROA can't handle speculating stores of selects, try not to sink
1715   // loads, stores or lifetime markers of allocas when we'd have to create a
1716   // PHI for the address operand. Also, because it is likely that loads or
1717   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1718   // them.
1719   // This can cause code churn which can have unintended consequences down
1720   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1721   // FIXME: This is a workaround for a deficiency in SROA - see
1722   // https://llvm.org/bugs/show_bug.cgi?id=30188
1723   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1724         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1725       }))
1726     return false;
1727   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1728         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1729       }))
1730     return false;
1731   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1732         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1733       }))
1734     return false;
1735 
1736   // For calls to be sinkable, they must all be indirect, or have same callee.
1737   // I.e. if we have two direct calls to different callees, we don't want to
1738   // turn that into an indirect call. Likewise, if we have an indirect call,
1739   // and a direct call, we don't actually want to have a single indirect call.
1740   if (isa<CallBase>(I0)) {
1741     auto IsIndirectCall = [](const Instruction *I) {
1742       return cast<CallBase>(I)->isIndirectCall();
1743     };
1744     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1745     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1746     if (HaveIndirectCalls) {
1747       if (!AllCallsAreIndirect)
1748         return false;
1749     } else {
1750       // All callees must be identical.
1751       Value *Callee = nullptr;
1752       for (const Instruction *I : Insts) {
1753         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1754         if (!Callee)
1755           Callee = CurrCallee;
1756         else if (Callee != CurrCallee)
1757           return false;
1758       }
1759     }
1760   }
1761 
1762   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1763     Value *Op = I0->getOperand(OI);
1764     if (Op->getType()->isTokenTy())
1765       // Don't touch any operand of token type.
1766       return false;
1767 
1768     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1769       assert(I->getNumOperands() == I0->getNumOperands());
1770       return I->getOperand(OI) == I0->getOperand(OI);
1771     };
1772     if (!all_of(Insts, SameAsI0)) {
1773       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1774           !canReplaceOperandWithVariable(I0, OI))
1775         // We can't create a PHI from this GEP.
1776         return false;
1777       for (auto *I : Insts)
1778         PHIOperands[I].push_back(I->getOperand(OI));
1779     }
1780   }
1781   return true;
1782 }
1783 
1784 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1785 // instruction of every block in Blocks to their common successor, commoning
1786 // into one instruction.
1787 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1788   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1789 
1790   // canSinkInstructions returning true guarantees that every block has at
1791   // least one non-terminator instruction.
1792   SmallVector<Instruction*,4> Insts;
1793   for (auto *BB : Blocks) {
1794     Instruction *I = BB->getTerminator();
1795     do {
1796       I = I->getPrevNode();
1797     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1798     if (!isa<DbgInfoIntrinsic>(I))
1799       Insts.push_back(I);
1800   }
1801 
1802   // The only checking we need to do now is that all users of all instructions
1803   // are the same PHI node. canSinkInstructions should have checked this but
1804   // it is slightly over-aggressive - it gets confused by commutative
1805   // instructions so double-check it here.
1806   Instruction *I0 = Insts.front();
1807   if (!I0->user_empty()) {
1808     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1809     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1810           auto *U = cast<Instruction>(*I->user_begin());
1811           return U == PNUse;
1812         }))
1813       return false;
1814   }
1815 
1816   // We don't need to do any more checking here; canSinkInstructions should
1817   // have done it all for us.
1818   SmallVector<Value*, 4> NewOperands;
1819   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1820     // This check is different to that in canSinkInstructions. There, we
1821     // cared about the global view once simplifycfg (and instcombine) have
1822     // completed - it takes into account PHIs that become trivially
1823     // simplifiable.  However here we need a more local view; if an operand
1824     // differs we create a PHI and rely on instcombine to clean up the very
1825     // small mess we may make.
1826     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1827       return I->getOperand(O) != I0->getOperand(O);
1828     });
1829     if (!NeedPHI) {
1830       NewOperands.push_back(I0->getOperand(O));
1831       continue;
1832     }
1833 
1834     // Create a new PHI in the successor block and populate it.
1835     auto *Op = I0->getOperand(O);
1836     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1837     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1838                                Op->getName() + ".sink", &BBEnd->front());
1839     for (auto *I : Insts)
1840       PN->addIncoming(I->getOperand(O), I->getParent());
1841     NewOperands.push_back(PN);
1842   }
1843 
1844   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1845   // and move it to the start of the successor block.
1846   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1847     I0->getOperandUse(O).set(NewOperands[O]);
1848   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1849 
1850   // Update metadata and IR flags, and merge debug locations.
1851   for (auto *I : Insts)
1852     if (I != I0) {
1853       // The debug location for the "common" instruction is the merged locations
1854       // of all the commoned instructions.  We start with the original location
1855       // of the "common" instruction and iteratively merge each location in the
1856       // loop below.
1857       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1858       // However, as N-way merge for CallInst is rare, so we use simplified API
1859       // instead of using complex API for N-way merge.
1860       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1861       combineMetadataForCSE(I0, I, true);
1862       I0->andIRFlags(I);
1863     }
1864 
1865   if (!I0->user_empty()) {
1866     // canSinkLastInstruction checked that all instructions were used by
1867     // one and only one PHI node. Find that now, RAUW it to our common
1868     // instruction and nuke it.
1869     auto *PN = cast<PHINode>(*I0->user_begin());
1870     PN->replaceAllUsesWith(I0);
1871     PN->eraseFromParent();
1872   }
1873 
1874   // Finally nuke all instructions apart from the common instruction.
1875   for (auto *I : Insts)
1876     if (I != I0)
1877       I->eraseFromParent();
1878 
1879   return true;
1880 }
1881 
1882 namespace {
1883 
1884   // LockstepReverseIterator - Iterates through instructions
1885   // in a set of blocks in reverse order from the first non-terminator.
1886   // For example (assume all blocks have size n):
1887   //   LockstepReverseIterator I([B1, B2, B3]);
1888   //   *I-- = [B1[n], B2[n], B3[n]];
1889   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1890   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1891   //   ...
1892   class LockstepReverseIterator {
1893     ArrayRef<BasicBlock*> Blocks;
1894     SmallVector<Instruction*,4> Insts;
1895     bool Fail;
1896 
1897   public:
1898     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1899       reset();
1900     }
1901 
1902     void reset() {
1903       Fail = false;
1904       Insts.clear();
1905       for (auto *BB : Blocks) {
1906         Instruction *Inst = BB->getTerminator();
1907         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1908           Inst = Inst->getPrevNode();
1909         if (!Inst) {
1910           // Block wasn't big enough.
1911           Fail = true;
1912           return;
1913         }
1914         Insts.push_back(Inst);
1915       }
1916     }
1917 
1918     bool isValid() const {
1919       return !Fail;
1920     }
1921 
1922     void operator--() {
1923       if (Fail)
1924         return;
1925       for (auto *&Inst : Insts) {
1926         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1927           Inst = Inst->getPrevNode();
1928         // Already at beginning of block.
1929         if (!Inst) {
1930           Fail = true;
1931           return;
1932         }
1933       }
1934     }
1935 
1936     void operator++() {
1937       if (Fail)
1938         return;
1939       for (auto *&Inst : Insts) {
1940         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1941           Inst = Inst->getNextNode();
1942         // Already at end of block.
1943         if (!Inst) {
1944           Fail = true;
1945           return;
1946         }
1947       }
1948     }
1949 
1950     ArrayRef<Instruction*> operator * () const {
1951       return Insts;
1952     }
1953   };
1954 
1955 } // end anonymous namespace
1956 
1957 /// Check whether BB's predecessors end with unconditional branches. If it is
1958 /// true, sink any common code from the predecessors to BB.
1959 /// We also allow one predecessor to end with conditional branch (but no more
1960 /// than one).
1961 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1962                                            DomTreeUpdater *DTU) {
1963   // We support two situations:
1964   //   (1) all incoming arcs are unconditional
1965   //   (2) one incoming arc is conditional
1966   //
1967   // (2) is very common in switch defaults and
1968   // else-if patterns;
1969   //
1970   //   if (a) f(1);
1971   //   else if (b) f(2);
1972   //
1973   // produces:
1974   //
1975   //       [if]
1976   //      /    \
1977   //    [f(1)] [if]
1978   //      |     | \
1979   //      |     |  |
1980   //      |  [f(2)]|
1981   //       \    | /
1982   //        [ end ]
1983   //
1984   // [end] has two unconditional predecessor arcs and one conditional. The
1985   // conditional refers to the implicit empty 'else' arc. This conditional
1986   // arc can also be caused by an empty default block in a switch.
1987   //
1988   // In this case, we attempt to sink code from all *unconditional* arcs.
1989   // If we can sink instructions from these arcs (determined during the scan
1990   // phase below) we insert a common successor for all unconditional arcs and
1991   // connect that to [end], to enable sinking:
1992   //
1993   //       [if]
1994   //      /    \
1995   //    [x(1)] [if]
1996   //      |     | \
1997   //      |     |  \
1998   //      |  [x(2)] |
1999   //       \   /    |
2000   //   [sink.split] |
2001   //         \     /
2002   //         [ end ]
2003   //
2004   SmallVector<BasicBlock*,4> UnconditionalPreds;
2005   bool HaveNonUnconditionalPredecessors = false;
2006   for (auto *PredBB : predecessors(BB)) {
2007     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2008     if (PredBr && PredBr->isUnconditional())
2009       UnconditionalPreds.push_back(PredBB);
2010     else
2011       HaveNonUnconditionalPredecessors = true;
2012   }
2013   if (UnconditionalPreds.size() < 2)
2014     return false;
2015 
2016   // We take a two-step approach to tail sinking. First we scan from the end of
2017   // each block upwards in lockstep. If the n'th instruction from the end of each
2018   // block can be sunk, those instructions are added to ValuesToSink and we
2019   // carry on. If we can sink an instruction but need to PHI-merge some operands
2020   // (because they're not identical in each instruction) we add these to
2021   // PHIOperands.
2022   int ScanIdx = 0;
2023   SmallPtrSet<Value*,4> InstructionsToSink;
2024   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2025   LockstepReverseIterator LRI(UnconditionalPreds);
2026   while (LRI.isValid() &&
2027          canSinkInstructions(*LRI, PHIOperands)) {
2028     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2029                       << "\n");
2030     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2031     ++ScanIdx;
2032     --LRI;
2033   }
2034 
2035   // If no instructions can be sunk, early-return.
2036   if (ScanIdx == 0)
2037     return false;
2038 
2039   // Okay, we *could* sink last ScanIdx instructions. But how many can we
2040   // actually sink before encountering instruction that is unprofitable to sink?
2041   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2042     unsigned NumPHIdValues = 0;
2043     for (auto *I : *LRI)
2044       for (auto *V : PHIOperands[I]) {
2045         if (InstructionsToSink.count(V) == 0)
2046           ++NumPHIdValues;
2047         // FIXME: this check is overly optimistic. We may end up not sinking
2048         // said instruction, due to the very same profitability check.
2049         // See @creating_too_many_phis in sink-common-code.ll.
2050       }
2051     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2052     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2053     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2054         NumPHIInsts++;
2055 
2056     return NumPHIInsts <= 1;
2057   };
2058 
2059   // If no instructions can be sunk, early-return.
2060   if (ScanIdx == 0)
2061     return false;
2062 
2063   // We've determined that we are going to sink last ScanIdx instructions,
2064   // and recorded them in InstructionsToSink. Now, some instructions may be
2065   // unprofitable to sink. But that determination depends on the instructions
2066   // that we are going to sink.
2067 
2068   // First, forward scan: find the first instruction unprofitable to sink,
2069   // recording all the ones that are profitable to sink.
2070   // FIXME: would it be better, after we detect that not all are profitable.
2071   // to either record the profitable ones, or erase the unprofitable ones?
2072   // Maybe we need to choose (at runtime) the one that will touch least instrs?
2073   LRI.reset();
2074   int Idx = 0;
2075   SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2076   while (Idx < ScanIdx) {
2077     if (!ProfitableToSinkInstruction(LRI)) {
2078       // Too many PHIs would be created.
2079       LLVM_DEBUG(
2080           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2081       break;
2082     }
2083     InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2084     --LRI;
2085     ++Idx;
2086   }
2087 
2088   // If no instructions can be sunk, early-return.
2089   if (Idx == 0)
2090     return false;
2091 
2092   // Did we determine that (only) some instructions are unprofitable to sink?
2093   if (Idx < ScanIdx) {
2094     // Okay, some instructions are unprofitable.
2095     ScanIdx = Idx;
2096     InstructionsToSink = InstructionsProfitableToSink;
2097 
2098     // But, that may make other instructions unprofitable, too.
2099     // So, do a backward scan, do any earlier instructions become unprofitable?
2100     assert(!ProfitableToSinkInstruction(LRI) &&
2101            "We already know that the last instruction is unprofitable to sink");
2102     ++LRI;
2103     --Idx;
2104     while (Idx >= 0) {
2105       // If we detect that an instruction becomes unprofitable to sink,
2106       // all earlier instructions won't be sunk either,
2107       // so preemptively keep InstructionsProfitableToSink in sync.
2108       // FIXME: is this the most performant approach?
2109       for (auto *I : *LRI)
2110         InstructionsProfitableToSink.erase(I);
2111       if (!ProfitableToSinkInstruction(LRI)) {
2112         // Everything starting with this instruction won't be sunk.
2113         ScanIdx = Idx;
2114         InstructionsToSink = InstructionsProfitableToSink;
2115       }
2116       ++LRI;
2117       --Idx;
2118     }
2119   }
2120 
2121   // If no instructions can be sunk, early-return.
2122   if (ScanIdx == 0)
2123     return false;
2124 
2125   bool Changed = false;
2126 
2127   if (HaveNonUnconditionalPredecessors) {
2128     // It is always legal to sink common instructions from unconditional
2129     // predecessors. However, if not all predecessors are unconditional,
2130     // this transformation might be pessimizing. So as a rule of thumb,
2131     // don't do it unless we'd sink at least one non-speculatable instruction.
2132     // See https://bugs.llvm.org/show_bug.cgi?id=30244
2133     LRI.reset();
2134     int Idx = 0;
2135     bool Profitable = false;
2136     while (Idx < ScanIdx) {
2137       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2138         Profitable = true;
2139         break;
2140       }
2141       --LRI;
2142       ++Idx;
2143     }
2144     if (!Profitable)
2145       return false;
2146 
2147     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2148     // We have a conditional edge and we're going to sink some instructions.
2149     // Insert a new block postdominating all blocks we're going to sink from.
2150     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2151       // Edges couldn't be split.
2152       return false;
2153     Changed = true;
2154   }
2155 
2156   // Now that we've analyzed all potential sinking candidates, perform the
2157   // actual sink. We iteratively sink the last non-terminator of the source
2158   // blocks into their common successor unless doing so would require too
2159   // many PHI instructions to be generated (currently only one PHI is allowed
2160   // per sunk instruction).
2161   //
2162   // We can use InstructionsToSink to discount values needing PHI-merging that will
2163   // actually be sunk in a later iteration. This allows us to be more
2164   // aggressive in what we sink. This does allow a false positive where we
2165   // sink presuming a later value will also be sunk, but stop half way through
2166   // and never actually sink it which means we produce more PHIs than intended.
2167   // This is unlikely in practice though.
2168   int SinkIdx = 0;
2169   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2170     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2171                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2172                       << "\n");
2173 
2174     // Because we've sunk every instruction in turn, the current instruction to
2175     // sink is always at index 0.
2176     LRI.reset();
2177 
2178     if (!sinkLastInstruction(UnconditionalPreds)) {
2179       LLVM_DEBUG(
2180           dbgs()
2181           << "SINK: stopping here, failed to actually sink instruction!\n");
2182       break;
2183     }
2184 
2185     NumSinkCommonInstrs++;
2186     Changed = true;
2187   }
2188   if (SinkIdx != 0)
2189     ++NumSinkCommonCode;
2190   return Changed;
2191 }
2192 
2193 /// Determine if we can hoist sink a sole store instruction out of a
2194 /// conditional block.
2195 ///
2196 /// We are looking for code like the following:
2197 ///   BrBB:
2198 ///     store i32 %add, i32* %arrayidx2
2199 ///     ... // No other stores or function calls (we could be calling a memory
2200 ///     ... // function).
2201 ///     %cmp = icmp ult %x, %y
2202 ///     br i1 %cmp, label %EndBB, label %ThenBB
2203 ///   ThenBB:
2204 ///     store i32 %add5, i32* %arrayidx2
2205 ///     br label EndBB
2206 ///   EndBB:
2207 ///     ...
2208 ///   We are going to transform this into:
2209 ///   BrBB:
2210 ///     store i32 %add, i32* %arrayidx2
2211 ///     ... //
2212 ///     %cmp = icmp ult %x, %y
2213 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2214 ///     store i32 %add.add5, i32* %arrayidx2
2215 ///     ...
2216 ///
2217 /// \return The pointer to the value of the previous store if the store can be
2218 ///         hoisted into the predecessor block. 0 otherwise.
2219 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2220                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2221   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2222   if (!StoreToHoist)
2223     return nullptr;
2224 
2225   // Volatile or atomic.
2226   if (!StoreToHoist->isSimple())
2227     return nullptr;
2228 
2229   Value *StorePtr = StoreToHoist->getPointerOperand();
2230 
2231   // Look for a store to the same pointer in BrBB.
2232   unsigned MaxNumInstToLookAt = 9;
2233   // Skip pseudo probe intrinsic calls which are not really killing any memory
2234   // accesses.
2235   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2236     if (!MaxNumInstToLookAt)
2237       break;
2238     --MaxNumInstToLookAt;
2239 
2240     // Could be calling an instruction that affects memory like free().
2241     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2242       return nullptr;
2243 
2244     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2245       // Found the previous store make sure it stores to the same location.
2246       if (SI->getPointerOperand() == StorePtr)
2247         // Found the previous store, return its value operand.
2248         return SI->getValueOperand();
2249       return nullptr; // Unknown store.
2250     }
2251   }
2252 
2253   return nullptr;
2254 }
2255 
2256 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2257 /// converted to selects.
2258 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2259                                            BasicBlock *EndBB,
2260                                            unsigned &SpeculatedInstructions,
2261                                            InstructionCost &Cost,
2262                                            const TargetTransformInfo &TTI) {
2263   TargetTransformInfo::TargetCostKind CostKind =
2264     BB->getParent()->hasMinSize()
2265     ? TargetTransformInfo::TCK_CodeSize
2266     : TargetTransformInfo::TCK_SizeAndLatency;
2267 
2268   bool HaveRewritablePHIs = false;
2269   for (PHINode &PN : EndBB->phis()) {
2270     Value *OrigV = PN.getIncomingValueForBlock(BB);
2271     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2272 
2273     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2274     // Skip PHIs which are trivial.
2275     if (ThenV == OrigV)
2276       continue;
2277 
2278     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2279                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2280 
2281     // Don't convert to selects if we could remove undefined behavior instead.
2282     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2283         passingValueIsAlwaysUndefined(ThenV, &PN))
2284       return false;
2285 
2286     HaveRewritablePHIs = true;
2287     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2288     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2289     if (!OrigCE && !ThenCE)
2290       continue; // Known safe and cheap.
2291 
2292     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2293         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2294       return false;
2295     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2296     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2297     InstructionCost MaxCost =
2298         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2299     if (OrigCost + ThenCost > MaxCost)
2300       return false;
2301 
2302     // Account for the cost of an unfolded ConstantExpr which could end up
2303     // getting expanded into Instructions.
2304     // FIXME: This doesn't account for how many operations are combined in the
2305     // constant expression.
2306     ++SpeculatedInstructions;
2307     if (SpeculatedInstructions > 1)
2308       return false;
2309   }
2310 
2311   return HaveRewritablePHIs;
2312 }
2313 
2314 /// Speculate a conditional basic block flattening the CFG.
2315 ///
2316 /// Note that this is a very risky transform currently. Speculating
2317 /// instructions like this is most often not desirable. Instead, there is an MI
2318 /// pass which can do it with full awareness of the resource constraints.
2319 /// However, some cases are "obvious" and we should do directly. An example of
2320 /// this is speculating a single, reasonably cheap instruction.
2321 ///
2322 /// There is only one distinct advantage to flattening the CFG at the IR level:
2323 /// it makes very common but simplistic optimizations such as are common in
2324 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2325 /// modeling their effects with easier to reason about SSA value graphs.
2326 ///
2327 ///
2328 /// An illustration of this transform is turning this IR:
2329 /// \code
2330 ///   BB:
2331 ///     %cmp = icmp ult %x, %y
2332 ///     br i1 %cmp, label %EndBB, label %ThenBB
2333 ///   ThenBB:
2334 ///     %sub = sub %x, %y
2335 ///     br label BB2
2336 ///   EndBB:
2337 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2338 ///     ...
2339 /// \endcode
2340 ///
2341 /// Into this IR:
2342 /// \code
2343 ///   BB:
2344 ///     %cmp = icmp ult %x, %y
2345 ///     %sub = sub %x, %y
2346 ///     %cond = select i1 %cmp, 0, %sub
2347 ///     ...
2348 /// \endcode
2349 ///
2350 /// \returns true if the conditional block is removed.
2351 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2352                                             const TargetTransformInfo &TTI) {
2353   // Be conservative for now. FP select instruction can often be expensive.
2354   Value *BrCond = BI->getCondition();
2355   if (isa<FCmpInst>(BrCond))
2356     return false;
2357 
2358   BasicBlock *BB = BI->getParent();
2359   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2360   InstructionCost Budget =
2361       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2362 
2363   // If ThenBB is actually on the false edge of the conditional branch, remember
2364   // to swap the select operands later.
2365   bool Invert = false;
2366   if (ThenBB != BI->getSuccessor(0)) {
2367     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2368     Invert = true;
2369   }
2370   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2371 
2372   // Keep a count of how many times instructions are used within ThenBB when
2373   // they are candidates for sinking into ThenBB. Specifically:
2374   // - They are defined in BB, and
2375   // - They have no side effects, and
2376   // - All of their uses are in ThenBB.
2377   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2378 
2379   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2380 
2381   unsigned SpeculatedInstructions = 0;
2382   Value *SpeculatedStoreValue = nullptr;
2383   StoreInst *SpeculatedStore = nullptr;
2384   for (BasicBlock::iterator BBI = ThenBB->begin(),
2385                             BBE = std::prev(ThenBB->end());
2386        BBI != BBE; ++BBI) {
2387     Instruction *I = &*BBI;
2388     // Skip debug info.
2389     if (isa<DbgInfoIntrinsic>(I)) {
2390       SpeculatedDbgIntrinsics.push_back(I);
2391       continue;
2392     }
2393 
2394     // Skip pseudo probes. The consequence is we lose track of the branch
2395     // probability for ThenBB, which is fine since the optimization here takes
2396     // place regardless of the branch probability.
2397     if (isa<PseudoProbeInst>(I)) {
2398       continue;
2399     }
2400 
2401     // Only speculatively execute a single instruction (not counting the
2402     // terminator) for now.
2403     ++SpeculatedInstructions;
2404     if (SpeculatedInstructions > 1)
2405       return false;
2406 
2407     // Don't hoist the instruction if it's unsafe or expensive.
2408     if (!isSafeToSpeculativelyExecute(I) &&
2409         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2410                                   I, BB, ThenBB, EndBB))))
2411       return false;
2412     if (!SpeculatedStoreValue &&
2413         computeSpeculationCost(I, TTI) >
2414             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2415       return false;
2416 
2417     // Store the store speculation candidate.
2418     if (SpeculatedStoreValue)
2419       SpeculatedStore = cast<StoreInst>(I);
2420 
2421     // Do not hoist the instruction if any of its operands are defined but not
2422     // used in BB. The transformation will prevent the operand from
2423     // being sunk into the use block.
2424     for (Use &Op : I->operands()) {
2425       Instruction *OpI = dyn_cast<Instruction>(Op);
2426       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2427         continue; // Not a candidate for sinking.
2428 
2429       ++SinkCandidateUseCounts[OpI];
2430     }
2431   }
2432 
2433   // Consider any sink candidates which are only used in ThenBB as costs for
2434   // speculation. Note, while we iterate over a DenseMap here, we are summing
2435   // and so iteration order isn't significant.
2436   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2437            I = SinkCandidateUseCounts.begin(),
2438            E = SinkCandidateUseCounts.end();
2439        I != E; ++I)
2440     if (I->first->hasNUses(I->second)) {
2441       ++SpeculatedInstructions;
2442       if (SpeculatedInstructions > 1)
2443         return false;
2444     }
2445 
2446   // Check that we can insert the selects and that it's not too expensive to do
2447   // so.
2448   bool Convert = SpeculatedStore != nullptr;
2449   InstructionCost Cost = 0;
2450   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2451                                             SpeculatedInstructions,
2452                                             Cost, TTI);
2453   if (!Convert || Cost > Budget)
2454     return false;
2455 
2456   // If we get here, we can hoist the instruction and if-convert.
2457   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2458 
2459   // Insert a select of the value of the speculated store.
2460   if (SpeculatedStoreValue) {
2461     IRBuilder<NoFolder> Builder(BI);
2462     Value *TrueV = SpeculatedStore->getValueOperand();
2463     Value *FalseV = SpeculatedStoreValue;
2464     if (Invert)
2465       std::swap(TrueV, FalseV);
2466     Value *S = Builder.CreateSelect(
2467         BrCond, TrueV, FalseV, "spec.store.select", BI);
2468     SpeculatedStore->setOperand(0, S);
2469     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2470                                          SpeculatedStore->getDebugLoc());
2471   }
2472 
2473   // A hoisted conditional probe should be treated as dangling so that it will
2474   // not be over-counted when the samples collected on the non-conditional path
2475   // are counted towards the conditional path. We leave it for the counts
2476   // inference algorithm to figure out a proper count for a danglng probe.
2477   moveAndDanglePseudoProbes(ThenBB, BI);
2478 
2479   // Metadata can be dependent on the condition we are hoisting above.
2480   // Conservatively strip all metadata on the instruction. Drop the debug loc
2481   // to avoid making it appear as if the condition is a constant, which would
2482   // be misleading while debugging.
2483   for (auto &I : *ThenBB) {
2484     assert(!isa<PseudoProbeInst>(I) &&
2485            "Should not drop debug info from any pseudo probes.");
2486     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2487       I.setDebugLoc(DebugLoc());
2488     I.dropUnknownNonDebugMetadata();
2489   }
2490 
2491   // Hoist the instructions.
2492   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2493                            ThenBB->begin(), std::prev(ThenBB->end()));
2494 
2495   // Insert selects and rewrite the PHI operands.
2496   IRBuilder<NoFolder> Builder(BI);
2497   for (PHINode &PN : EndBB->phis()) {
2498     unsigned OrigI = PN.getBasicBlockIndex(BB);
2499     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2500     Value *OrigV = PN.getIncomingValue(OrigI);
2501     Value *ThenV = PN.getIncomingValue(ThenI);
2502 
2503     // Skip PHIs which are trivial.
2504     if (OrigV == ThenV)
2505       continue;
2506 
2507     // Create a select whose true value is the speculatively executed value and
2508     // false value is the pre-existing value. Swap them if the branch
2509     // destinations were inverted.
2510     Value *TrueV = ThenV, *FalseV = OrigV;
2511     if (Invert)
2512       std::swap(TrueV, FalseV);
2513     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2514     PN.setIncomingValue(OrigI, V);
2515     PN.setIncomingValue(ThenI, V);
2516   }
2517 
2518   // Remove speculated dbg intrinsics.
2519   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2520   // dbg value for the different flows and inserting it after the select.
2521   for (Instruction *I : SpeculatedDbgIntrinsics)
2522     I->eraseFromParent();
2523 
2524   ++NumSpeculations;
2525   return true;
2526 }
2527 
2528 /// Return true if we can thread a branch across this block.
2529 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2530   int Size = 0;
2531 
2532   for (Instruction &I : BB->instructionsWithoutDebug()) {
2533     if (Size > MaxSmallBlockSize)
2534       return false; // Don't clone large BB's.
2535 
2536     // Can't fold blocks that contain noduplicate or convergent calls.
2537     if (CallInst *CI = dyn_cast<CallInst>(&I))
2538       if (CI->cannotDuplicate() || CI->isConvergent())
2539         return false;
2540 
2541     // We will delete Phis while threading, so Phis should not be accounted in
2542     // block's size
2543     if (!isa<PHINode>(I))
2544       ++Size;
2545 
2546     // We can only support instructions that do not define values that are
2547     // live outside of the current basic block.
2548     for (User *U : I.users()) {
2549       Instruction *UI = cast<Instruction>(U);
2550       if (UI->getParent() != BB || isa<PHINode>(UI))
2551         return false;
2552     }
2553 
2554     // Looks ok, continue checking.
2555   }
2556 
2557   return true;
2558 }
2559 
2560 /// If we have a conditional branch on a PHI node value that is defined in the
2561 /// same block as the branch and if any PHI entries are constants, thread edges
2562 /// corresponding to that entry to be branches to their ultimate destination.
2563 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2564                                 const DataLayout &DL, AssumptionCache *AC) {
2565   BasicBlock *BB = BI->getParent();
2566   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2567   // NOTE: we currently cannot transform this case if the PHI node is used
2568   // outside of the block.
2569   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2570     return false;
2571 
2572   // Degenerate case of a single entry PHI.
2573   if (PN->getNumIncomingValues() == 1) {
2574     FoldSingleEntryPHINodes(PN->getParent());
2575     return true;
2576   }
2577 
2578   // Now we know that this block has multiple preds and two succs.
2579   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2580     return false;
2581 
2582   // Okay, this is a simple enough basic block.  See if any phi values are
2583   // constants.
2584   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2585     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2586     if (!CB || !CB->getType()->isIntegerTy(1))
2587       continue;
2588 
2589     // Okay, we now know that all edges from PredBB should be revectored to
2590     // branch to RealDest.
2591     BasicBlock *PredBB = PN->getIncomingBlock(i);
2592     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2593 
2594     if (RealDest == BB)
2595       continue; // Skip self loops.
2596     // Skip if the predecessor's terminator is an indirect branch.
2597     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2598       continue;
2599 
2600     SmallVector<DominatorTree::UpdateType, 3> Updates;
2601 
2602     // The dest block might have PHI nodes, other predecessors and other
2603     // difficult cases.  Instead of being smart about this, just insert a new
2604     // block that jumps to the destination block, effectively splitting
2605     // the edge we are about to create.
2606     BasicBlock *EdgeBB =
2607         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2608                            RealDest->getParent(), RealDest);
2609     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2610     if (DTU)
2611       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2612     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2613 
2614     // Update PHI nodes.
2615     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2616 
2617     // BB may have instructions that are being threaded over.  Clone these
2618     // instructions into EdgeBB.  We know that there will be no uses of the
2619     // cloned instructions outside of EdgeBB.
2620     BasicBlock::iterator InsertPt = EdgeBB->begin();
2621     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2622     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2623       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2624         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2625         continue;
2626       }
2627       // Clone the instruction.
2628       Instruction *N = BBI->clone();
2629       if (BBI->hasName())
2630         N->setName(BBI->getName() + ".c");
2631 
2632       // Update operands due to translation.
2633       for (Use &Op : N->operands()) {
2634         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2635         if (PI != TranslateMap.end())
2636           Op = PI->second;
2637       }
2638 
2639       // Check for trivial simplification.
2640       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2641         if (!BBI->use_empty())
2642           TranslateMap[&*BBI] = V;
2643         if (!N->mayHaveSideEffects()) {
2644           N->deleteValue(); // Instruction folded away, don't need actual inst
2645           N = nullptr;
2646         }
2647       } else {
2648         if (!BBI->use_empty())
2649           TranslateMap[&*BBI] = N;
2650       }
2651       if (N) {
2652         // Insert the new instruction into its new home.
2653         EdgeBB->getInstList().insert(InsertPt, N);
2654 
2655         // Register the new instruction with the assumption cache if necessary.
2656         if (auto *Assume = dyn_cast<AssumeInst>(N))
2657           if (AC)
2658             AC->registerAssumption(Assume);
2659       }
2660     }
2661 
2662     // Loop over all of the edges from PredBB to BB, changing them to branch
2663     // to EdgeBB instead.
2664     Instruction *PredBBTI = PredBB->getTerminator();
2665     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2666       if (PredBBTI->getSuccessor(i) == BB) {
2667         BB->removePredecessor(PredBB);
2668         PredBBTI->setSuccessor(i, EdgeBB);
2669       }
2670 
2671     if (DTU) {
2672       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2673       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2674 
2675       DTU->applyUpdates(Updates);
2676     }
2677 
2678     // Recurse, simplifying any other constants.
2679     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2680   }
2681 
2682   return false;
2683 }
2684 
2685 /// Given a BB that starts with the specified two-entry PHI node,
2686 /// see if we can eliminate it.
2687 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2688                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2689   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2690   // statement", which has a very simple dominance structure.  Basically, we
2691   // are trying to find the condition that is being branched on, which
2692   // subsequently causes this merge to happen.  We really want control
2693   // dependence information for this check, but simplifycfg can't keep it up
2694   // to date, and this catches most of the cases we care about anyway.
2695   BasicBlock *BB = PN->getParent();
2696 
2697   BasicBlock *IfTrue, *IfFalse;
2698   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2699   if (!IfCond ||
2700       // Don't bother if the branch will be constant folded trivially.
2701       isa<ConstantInt>(IfCond))
2702     return false;
2703 
2704   // Okay, we found that we can merge this two-entry phi node into a select.
2705   // Doing so would require us to fold *all* two entry phi nodes in this block.
2706   // At some point this becomes non-profitable (particularly if the target
2707   // doesn't support cmov's).  Only do this transformation if there are two or
2708   // fewer PHI nodes in this block.
2709   unsigned NumPhis = 0;
2710   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2711     if (NumPhis > 2)
2712       return false;
2713 
2714   // Loop over the PHI's seeing if we can promote them all to select
2715   // instructions.  While we are at it, keep track of the instructions
2716   // that need to be moved to the dominating block.
2717   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2718   InstructionCost Cost = 0;
2719   InstructionCost Budget =
2720       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2721 
2722   bool Changed = false;
2723   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2724     PHINode *PN = cast<PHINode>(II++);
2725     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2726       PN->replaceAllUsesWith(V);
2727       PN->eraseFromParent();
2728       Changed = true;
2729       continue;
2730     }
2731 
2732     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2733                              Cost, Budget, TTI) ||
2734         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2735                              Cost, Budget, TTI))
2736       return Changed;
2737   }
2738 
2739   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2740   // we ran out of PHIs then we simplified them all.
2741   PN = dyn_cast<PHINode>(BB->begin());
2742   if (!PN)
2743     return true;
2744 
2745   // Return true if at least one of these is a 'not', and another is either
2746   // a 'not' too, or a constant.
2747   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2748     if (!match(V0, m_Not(m_Value())))
2749       std::swap(V0, V1);
2750     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2751     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2752   };
2753 
2754   // Don't fold i1 branches on PHIs which contain binary operators or
2755   // select form of or/ands, unless one of the incoming values is an 'not' and
2756   // another one is freely invertible.
2757   // These can often be turned into switches and other things.
2758   auto IsBinOpOrAnd = [](Value *V) {
2759     return match(
2760         V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr())));
2761   };
2762   if (PN->getType()->isIntegerTy(1) &&
2763       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2764        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2765       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2766                                  PN->getIncomingValue(1)))
2767     return Changed;
2768 
2769   // If all PHI nodes are promotable, check to make sure that all instructions
2770   // in the predecessor blocks can be promoted as well. If not, we won't be able
2771   // to get rid of the control flow, so it's not worth promoting to select
2772   // instructions.
2773   BasicBlock *DomBlock = nullptr;
2774   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2775   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2776   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2777     IfBlock1 = nullptr;
2778   } else {
2779     DomBlock = *pred_begin(IfBlock1);
2780     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2781       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2782           !isa<PseudoProbeInst>(I)) {
2783         // This is not an aggressive instruction that we can promote.
2784         // Because of this, we won't be able to get rid of the control flow, so
2785         // the xform is not worth it.
2786         return Changed;
2787       }
2788   }
2789 
2790   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2791     IfBlock2 = nullptr;
2792   } else {
2793     DomBlock = *pred_begin(IfBlock2);
2794     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2795       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2796           !isa<PseudoProbeInst>(I)) {
2797         // This is not an aggressive instruction that we can promote.
2798         // Because of this, we won't be able to get rid of the control flow, so
2799         // the xform is not worth it.
2800         return Changed;
2801       }
2802   }
2803   assert(DomBlock && "Failed to find root DomBlock");
2804 
2805   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2806                     << "  T: " << IfTrue->getName()
2807                     << "  F: " << IfFalse->getName() << "\n");
2808 
2809   // If we can still promote the PHI nodes after this gauntlet of tests,
2810   // do all of the PHI's now.
2811   Instruction *InsertPt = DomBlock->getTerminator();
2812   IRBuilder<NoFolder> Builder(InsertPt);
2813 
2814   // Move all 'aggressive' instructions, which are defined in the
2815   // conditional parts of the if's up to the dominating block.
2816   if (IfBlock1)
2817     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2818   if (IfBlock2)
2819     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2820 
2821   // Propagate fast-math-flags from phi nodes to replacement selects.
2822   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2823   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2824     if (isa<FPMathOperator>(PN))
2825       Builder.setFastMathFlags(PN->getFastMathFlags());
2826 
2827     // Change the PHI node into a select instruction.
2828     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2829     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2830 
2831     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2832     PN->replaceAllUsesWith(Sel);
2833     Sel->takeName(PN);
2834     PN->eraseFromParent();
2835   }
2836 
2837   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2838   // has been flattened.  Change DomBlock to jump directly to our new block to
2839   // avoid other simplifycfg's kicking in on the diamond.
2840   Instruction *OldTI = DomBlock->getTerminator();
2841   Builder.SetInsertPoint(OldTI);
2842   Builder.CreateBr(BB);
2843 
2844   SmallVector<DominatorTree::UpdateType, 3> Updates;
2845   if (DTU) {
2846     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2847     for (auto *Successor : successors(DomBlock))
2848       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2849   }
2850 
2851   OldTI->eraseFromParent();
2852   if (DTU)
2853     DTU->applyUpdates(Updates);
2854 
2855   return true;
2856 }
2857 
2858 /// If we found a conditional branch that goes to two returning blocks,
2859 /// try to merge them together into one return,
2860 /// introducing a select if the return values disagree.
2861 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2862                                                     IRBuilder<> &Builder) {
2863   auto *BB = BI->getParent();
2864   assert(BI->isConditional() && "Must be a conditional branch");
2865   BasicBlock *TrueSucc = BI->getSuccessor(0);
2866   BasicBlock *FalseSucc = BI->getSuccessor(1);
2867   // NOTE: destinations may match, this could be degenerate uncond branch.
2868   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2869   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2870 
2871   // Check to ensure both blocks are empty (just a return) or optionally empty
2872   // with PHI nodes.  If there are other instructions, merging would cause extra
2873   // computation on one path or the other.
2874   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2875     return false;
2876   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2877     return false;
2878 
2879   Builder.SetInsertPoint(BI);
2880   // Okay, we found a branch that is going to two return nodes.  If
2881   // there is no return value for this function, just change the
2882   // branch into a return.
2883   if (FalseRet->getNumOperands() == 0) {
2884     TrueSucc->removePredecessor(BB);
2885     FalseSucc->removePredecessor(BB);
2886     Builder.CreateRetVoid();
2887     EraseTerminatorAndDCECond(BI);
2888     if (DTU) {
2889       SmallVector<DominatorTree::UpdateType, 2> Updates;
2890       Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2891       if (TrueSucc != FalseSucc)
2892         Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2893       DTU->applyUpdates(Updates);
2894     }
2895     return true;
2896   }
2897 
2898   // Otherwise, figure out what the true and false return values are
2899   // so we can insert a new select instruction.
2900   Value *TrueValue = TrueRet->getReturnValue();
2901   Value *FalseValue = FalseRet->getReturnValue();
2902 
2903   // Unwrap any PHI nodes in the return blocks.
2904   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2905     if (TVPN->getParent() == TrueSucc)
2906       TrueValue = TVPN->getIncomingValueForBlock(BB);
2907   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2908     if (FVPN->getParent() == FalseSucc)
2909       FalseValue = FVPN->getIncomingValueForBlock(BB);
2910 
2911   // In order for this transformation to be safe, we must be able to
2912   // unconditionally execute both operands to the return.  This is
2913   // normally the case, but we could have a potentially-trapping
2914   // constant expression that prevents this transformation from being
2915   // safe.
2916   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2917     if (TCV->canTrap())
2918       return false;
2919   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2920     if (FCV->canTrap())
2921       return false;
2922 
2923   // Okay, we collected all the mapped values and checked them for sanity, and
2924   // defined to really do this transformation.  First, update the CFG.
2925   TrueSucc->removePredecessor(BB);
2926   FalseSucc->removePredecessor(BB);
2927 
2928   // Insert select instructions where needed.
2929   Value *BrCond = BI->getCondition();
2930   if (TrueValue) {
2931     // Insert a select if the results differ.
2932     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2933     } else if (isa<UndefValue>(TrueValue)) {
2934       TrueValue = FalseValue;
2935     } else {
2936       TrueValue =
2937           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2938     }
2939   }
2940 
2941   Value *RI =
2942       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2943 
2944   (void)RI;
2945 
2946   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2947                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2948                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2949 
2950   EraseTerminatorAndDCECond(BI);
2951   if (DTU) {
2952     SmallVector<DominatorTree::UpdateType, 2> Updates;
2953     Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2954     if (TrueSucc != FalseSucc)
2955       Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2956     DTU->applyUpdates(Updates);
2957   }
2958 
2959   return true;
2960 }
2961 
2962 /// Return true if either PBI or BI has branch weight available, and store
2963 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2964 /// not have branch weight, use 1:1 as its weight.
2965 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2966                                    uint64_t &PredTrueWeight,
2967                                    uint64_t &PredFalseWeight,
2968                                    uint64_t &SuccTrueWeight,
2969                                    uint64_t &SuccFalseWeight) {
2970   bool PredHasWeights =
2971       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2972   bool SuccHasWeights =
2973       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2974   if (PredHasWeights || SuccHasWeights) {
2975     if (!PredHasWeights)
2976       PredTrueWeight = PredFalseWeight = 1;
2977     if (!SuccHasWeights)
2978       SuccTrueWeight = SuccFalseWeight = 1;
2979     return true;
2980   } else {
2981     return false;
2982   }
2983 }
2984 
2985 /// Determine if the two branches share a common destination and deduce a glue
2986 /// that joins the branches' conditions to arrive at the common destination if
2987 /// that would be profitable.
2988 static Optional<std::pair<Instruction::BinaryOps, bool>>
2989 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
2990                                           const TargetTransformInfo *TTI) {
2991   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2992          "Both blocks must end with a conditional branches.");
2993   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2994          "PredBB must be a predecessor of BB.");
2995 
2996   // We have the potential to fold the conditions together, but if the
2997   // predecessor branch is predictable, we may not want to merge them.
2998   uint64_t PTWeight, PFWeight;
2999   BranchProbability PBITrueProb, Likely;
3000   if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) &&
3001       (PTWeight + PFWeight) != 0) {
3002     PBITrueProb =
3003         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3004     Likely = TTI->getPredictableBranchThreshold();
3005   }
3006 
3007   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3008     // Speculate the 2nd condition unless the 1st is probably true.
3009     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3010       return {{Instruction::Or, false}};
3011   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3012     // Speculate the 2nd condition unless the 1st is probably false.
3013     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3014       return {{Instruction::And, false}};
3015   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3016     // Speculate the 2nd condition unless the 1st is probably true.
3017     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3018       return {{Instruction::And, true}};
3019   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3020     // Speculate the 2nd condition unless the 1st is probably false.
3021     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3022       return {{Instruction::Or, true}};
3023   }
3024   return None;
3025 }
3026 
3027 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3028                                              DomTreeUpdater *DTU,
3029                                              MemorySSAUpdater *MSSAU,
3030                                              const TargetTransformInfo *TTI) {
3031   BasicBlock *BB = BI->getParent();
3032   BasicBlock *PredBlock = PBI->getParent();
3033 
3034   // Determine if the two branches share a common destination.
3035   Instruction::BinaryOps Opc;
3036   bool InvertPredCond;
3037   std::tie(Opc, InvertPredCond) =
3038       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3039 
3040   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3041 
3042   IRBuilder<> Builder(PBI);
3043   // The builder is used to create instructions to eliminate the branch in BB.
3044   // If BB's terminator has !annotation metadata, add it to the new
3045   // instructions.
3046   Builder.CollectMetadataToCopy(BB->getTerminator(),
3047                                 {LLVMContext::MD_annotation});
3048 
3049   // If we need to invert the condition in the pred block to match, do so now.
3050   if (InvertPredCond) {
3051     Value *NewCond = PBI->getCondition();
3052     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3053       CmpInst *CI = cast<CmpInst>(NewCond);
3054       CI->setPredicate(CI->getInversePredicate());
3055     } else {
3056       NewCond =
3057           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3058     }
3059 
3060     PBI->setCondition(NewCond);
3061     PBI->swapSuccessors();
3062   }
3063 
3064   BasicBlock *UniqueSucc =
3065       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3066 
3067   // Before cloning instructions, notify the successor basic block that it
3068   // is about to have a new predecessor. This will update PHI nodes,
3069   // which will allow us to update live-out uses of bonus instructions.
3070   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3071 
3072   // Try to update branch weights.
3073   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3074   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3075                              SuccTrueWeight, SuccFalseWeight)) {
3076     SmallVector<uint64_t, 8> NewWeights;
3077 
3078     if (PBI->getSuccessor(0) == BB) {
3079       // PBI: br i1 %x, BB, FalseDest
3080       // BI:  br i1 %y, UniqueSucc, FalseDest
3081       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3082       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3083       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3084       //               TrueWeight for PBI * FalseWeight for BI.
3085       // We assume that total weights of a BranchInst can fit into 32 bits.
3086       // Therefore, we will not have overflow using 64-bit arithmetic.
3087       NewWeights.push_back(PredFalseWeight *
3088                                (SuccFalseWeight + SuccTrueWeight) +
3089                            PredTrueWeight * SuccFalseWeight);
3090     } else {
3091       // PBI: br i1 %x, TrueDest, BB
3092       // BI:  br i1 %y, TrueDest, UniqueSucc
3093       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3094       //              FalseWeight for PBI * TrueWeight for BI.
3095       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3096                            PredFalseWeight * SuccTrueWeight);
3097       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3098       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3099     }
3100 
3101     // Halve the weights if any of them cannot fit in an uint32_t
3102     FitWeights(NewWeights);
3103 
3104     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3105     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3106 
3107     // TODO: If BB is reachable from all paths through PredBlock, then we
3108     // could replace PBI's branch probabilities with BI's.
3109   } else
3110     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3111 
3112   // Now, update the CFG.
3113   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3114 
3115   if (DTU)
3116     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3117                        {DominatorTree::Delete, PredBlock, BB}});
3118 
3119   // If BI was a loop latch, it may have had associated loop metadata.
3120   // We need to copy it to the new latch, that is, PBI.
3121   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3122     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3123 
3124   ValueToValueMapTy VMap; // maps original values to cloned values
3125   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3126 
3127   // Now that the Cond was cloned into the predecessor basic block,
3128   // or/and the two conditions together.
3129   Value *NewCond = nullptr;
3130   Value *BICond = VMap[BI->getCondition()];
3131 
3132   if (impliesPoison(BICond, PBI->getCondition()))
3133     NewCond = Builder.CreateBinOp(Opc, PBI->getCondition(), BICond, "or.cond");
3134   else
3135     NewCond =
3136         Opc == Instruction::And
3137             ? Builder.CreateLogicalAnd(PBI->getCondition(), BICond, "or.cond")
3138             : Builder.CreateLogicalOr(PBI->getCondition(), BICond, "or.cond");
3139   PBI->setCondition(NewCond);
3140 
3141   // Copy any debug value intrinsics into the end of PredBlock.
3142   for (Instruction &I : *BB) {
3143     if (isa<DbgInfoIntrinsic>(I)) {
3144       Instruction *NewI = I.clone();
3145       RemapInstruction(NewI, VMap,
3146                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3147       NewI->insertBefore(PBI);
3148     }
3149   }
3150 
3151   ++NumFoldBranchToCommonDest;
3152   return true;
3153 }
3154 
3155 /// If this basic block is simple enough, and if a predecessor branches to us
3156 /// and one of our successors, fold the block into the predecessor and use
3157 /// logical operations to pick the right destination.
3158 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3159                                   MemorySSAUpdater *MSSAU,
3160                                   const TargetTransformInfo *TTI,
3161                                   unsigned BonusInstThreshold) {
3162   // If this block ends with an unconditional branch,
3163   // let SpeculativelyExecuteBB() deal with it.
3164   if (!BI->isConditional())
3165     return false;
3166 
3167   BasicBlock *BB = BI->getParent();
3168 
3169   bool Changed = false;
3170 
3171   TargetTransformInfo::TargetCostKind CostKind =
3172     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3173                                   : TargetTransformInfo::TCK_SizeAndLatency;
3174 
3175   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3176 
3177   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3178       Cond->getParent() != BB || !Cond->hasOneUse())
3179     return Changed;
3180 
3181   // Cond is known to be a compare or binary operator.  Check to make sure that
3182   // neither operand is a potentially-trapping constant expression.
3183   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3184     if (CE->canTrap())
3185       return Changed;
3186   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3187     if (CE->canTrap())
3188       return Changed;
3189 
3190   // Finally, don't infinitely unroll conditional loops.
3191   if (is_contained(successors(BB), BB))
3192     return Changed;
3193 
3194   // With which predecessors will we want to deal with?
3195   SmallVector<BasicBlock *, 8> Preds;
3196   for (BasicBlock *PredBlock : predecessors(BB)) {
3197     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3198 
3199     // Check that we have two conditional branches.  If there is a PHI node in
3200     // the common successor, verify that the same value flows in from both
3201     // blocks.
3202     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3203       continue;
3204 
3205     // Determine if the two branches share a common destination.
3206     Instruction::BinaryOps Opc;
3207     bool InvertPredCond;
3208     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3209       std::tie(Opc, InvertPredCond) = *Recipe;
3210     else
3211       continue;
3212 
3213     // Check the cost of inserting the necessary logic before performing the
3214     // transformation.
3215     if (TTI) {
3216       Type *Ty = BI->getCondition()->getType();
3217       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3218       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3219           !isa<CmpInst>(PBI->getCondition())))
3220         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3221 
3222       if (Cost > BranchFoldThreshold)
3223         continue;
3224     }
3225 
3226     // Ok, we do want to deal with this predecessor. Record it.
3227     Preds.emplace_back(PredBlock);
3228   }
3229 
3230   // If there aren't any predecessors into which we can fold,
3231   // don't bother checking the cost.
3232   if (Preds.empty())
3233     return Changed;
3234 
3235   // Only allow this transformation if computing the condition doesn't involve
3236   // too many instructions and these involved instructions can be executed
3237   // unconditionally. We denote all involved instructions except the condition
3238   // as "bonus instructions", and only allow this transformation when the
3239   // number of the bonus instructions we'll need to create when cloning into
3240   // each predecessor does not exceed a certain threshold.
3241   unsigned NumBonusInsts = 0;
3242   const unsigned PredCount = Preds.size();
3243   for (Instruction &I : *BB) {
3244     // Don't check the branch condition comparison itself.
3245     if (&I == Cond)
3246       continue;
3247     // Ignore dbg intrinsics, and the terminator.
3248     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3249       continue;
3250     // I must be safe to execute unconditionally.
3251     if (!isSafeToSpeculativelyExecute(&I))
3252       return Changed;
3253 
3254     // Account for the cost of duplicating this instruction into each
3255     // predecessor.
3256     NumBonusInsts += PredCount;
3257     // Early exits once we reach the limit.
3258     if (NumBonusInsts > BonusInstThreshold)
3259       return Changed;
3260   }
3261 
3262   // Ok, we have the budget. Perform the transformation.
3263   for (BasicBlock *PredBlock : Preds) {
3264     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3265     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3266   }
3267   return Changed;
3268 }
3269 
3270 // If there is only one store in BB1 and BB2, return it, otherwise return
3271 // nullptr.
3272 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3273   StoreInst *S = nullptr;
3274   for (auto *BB : {BB1, BB2}) {
3275     if (!BB)
3276       continue;
3277     for (auto &I : *BB)
3278       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3279         if (S)
3280           // Multiple stores seen.
3281           return nullptr;
3282         else
3283           S = SI;
3284       }
3285   }
3286   return S;
3287 }
3288 
3289 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3290                                               Value *AlternativeV = nullptr) {
3291   // PHI is going to be a PHI node that allows the value V that is defined in
3292   // BB to be referenced in BB's only successor.
3293   //
3294   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3295   // doesn't matter to us what the other operand is (it'll never get used). We
3296   // could just create a new PHI with an undef incoming value, but that could
3297   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3298   // other PHI. So here we directly look for some PHI in BB's successor with V
3299   // as an incoming operand. If we find one, we use it, else we create a new
3300   // one.
3301   //
3302   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3303   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3304   // where OtherBB is the single other predecessor of BB's only successor.
3305   PHINode *PHI = nullptr;
3306   BasicBlock *Succ = BB->getSingleSuccessor();
3307 
3308   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3309     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3310       PHI = cast<PHINode>(I);
3311       if (!AlternativeV)
3312         break;
3313 
3314       assert(Succ->hasNPredecessors(2));
3315       auto PredI = pred_begin(Succ);
3316       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3317       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3318         break;
3319       PHI = nullptr;
3320     }
3321   if (PHI)
3322     return PHI;
3323 
3324   // If V is not an instruction defined in BB, just return it.
3325   if (!AlternativeV &&
3326       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3327     return V;
3328 
3329   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3330   PHI->addIncoming(V, BB);
3331   for (BasicBlock *PredBB : predecessors(Succ))
3332     if (PredBB != BB)
3333       PHI->addIncoming(
3334           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3335   return PHI;
3336 }
3337 
3338 static bool mergeConditionalStoreToAddress(
3339     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3340     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3341     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3342   // For every pointer, there must be exactly two stores, one coming from
3343   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3344   // store (to any address) in PTB,PFB or QTB,QFB.
3345   // FIXME: We could relax this restriction with a bit more work and performance
3346   // testing.
3347   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3348   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3349   if (!PStore || !QStore)
3350     return false;
3351 
3352   // Now check the stores are compatible.
3353   if (!QStore->isUnordered() || !PStore->isUnordered())
3354     return false;
3355 
3356   // Check that sinking the store won't cause program behavior changes. Sinking
3357   // the store out of the Q blocks won't change any behavior as we're sinking
3358   // from a block to its unconditional successor. But we're moving a store from
3359   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3360   // So we need to check that there are no aliasing loads or stores in
3361   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3362   // operations between PStore and the end of its parent block.
3363   //
3364   // The ideal way to do this is to query AliasAnalysis, but we don't
3365   // preserve AA currently so that is dangerous. Be super safe and just
3366   // check there are no other memory operations at all.
3367   for (auto &I : *QFB->getSinglePredecessor())
3368     if (I.mayReadOrWriteMemory())
3369       return false;
3370   for (auto &I : *QFB)
3371     if (&I != QStore && I.mayReadOrWriteMemory())
3372       return false;
3373   if (QTB)
3374     for (auto &I : *QTB)
3375       if (&I != QStore && I.mayReadOrWriteMemory())
3376         return false;
3377   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3378        I != E; ++I)
3379     if (&*I != PStore && I->mayReadOrWriteMemory())
3380       return false;
3381 
3382   // If we're not in aggressive mode, we only optimize if we have some
3383   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3384   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3385     if (!BB)
3386       return true;
3387     // Heuristic: if the block can be if-converted/phi-folded and the
3388     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3389     // thread this store.
3390     InstructionCost Cost = 0;
3391     InstructionCost Budget =
3392         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3393     for (auto &I : BB->instructionsWithoutDebug()) {
3394       // Consider terminator instruction to be free.
3395       if (I.isTerminator())
3396         continue;
3397       // If this is one the stores that we want to speculate out of this BB,
3398       // then don't count it's cost, consider it to be free.
3399       if (auto *S = dyn_cast<StoreInst>(&I))
3400         if (llvm::find(FreeStores, S))
3401           continue;
3402       // Else, we have a white-list of instructions that we are ak speculating.
3403       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3404         return false; // Not in white-list - not worthwhile folding.
3405       // And finally, if this is a non-free instruction that we are okay
3406       // speculating, ensure that we consider the speculation budget.
3407       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3408       if (Cost > Budget)
3409         return false; // Eagerly refuse to fold as soon as we're out of budget.
3410     }
3411     assert(Cost <= Budget &&
3412            "When we run out of budget we will eagerly return from within the "
3413            "per-instruction loop.");
3414     return true;
3415   };
3416 
3417   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3418   if (!MergeCondStoresAggressively &&
3419       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3420        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3421     return false;
3422 
3423   // If PostBB has more than two predecessors, we need to split it so we can
3424   // sink the store.
3425   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3426     // We know that QFB's only successor is PostBB. And QFB has a single
3427     // predecessor. If QTB exists, then its only successor is also PostBB.
3428     // If QTB does not exist, then QFB's only predecessor has a conditional
3429     // branch to QFB and PostBB.
3430     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3431     BasicBlock *NewBB =
3432         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3433     if (!NewBB)
3434       return false;
3435     PostBB = NewBB;
3436   }
3437 
3438   // OK, we're going to sink the stores to PostBB. The store has to be
3439   // conditional though, so first create the predicate.
3440   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3441                      ->getCondition();
3442   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3443                      ->getCondition();
3444 
3445   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3446                                                 PStore->getParent());
3447   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3448                                                 QStore->getParent(), PPHI);
3449 
3450   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3451 
3452   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3453   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3454 
3455   if (InvertPCond)
3456     PPred = QB.CreateNot(PPred);
3457   if (InvertQCond)
3458     QPred = QB.CreateNot(QPred);
3459   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3460 
3461   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3462                                       /*Unreachable=*/false,
3463                                       /*BranchWeights=*/nullptr, DTU);
3464   QB.SetInsertPoint(T);
3465   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3466   AAMDNodes AAMD;
3467   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3468   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3469   SI->setAAMetadata(AAMD);
3470   // Choose the minimum alignment. If we could prove both stores execute, we
3471   // could use biggest one.  In this case, though, we only know that one of the
3472   // stores executes.  And we don't know it's safe to take the alignment from a
3473   // store that doesn't execute.
3474   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3475 
3476   QStore->eraseFromParent();
3477   PStore->eraseFromParent();
3478 
3479   return true;
3480 }
3481 
3482 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3483                                    DomTreeUpdater *DTU, const DataLayout &DL,
3484                                    const TargetTransformInfo &TTI) {
3485   // The intention here is to find diamonds or triangles (see below) where each
3486   // conditional block contains a store to the same address. Both of these
3487   // stores are conditional, so they can't be unconditionally sunk. But it may
3488   // be profitable to speculatively sink the stores into one merged store at the
3489   // end, and predicate the merged store on the union of the two conditions of
3490   // PBI and QBI.
3491   //
3492   // This can reduce the number of stores executed if both of the conditions are
3493   // true, and can allow the blocks to become small enough to be if-converted.
3494   // This optimization will also chain, so that ladders of test-and-set
3495   // sequences can be if-converted away.
3496   //
3497   // We only deal with simple diamonds or triangles:
3498   //
3499   //     PBI       or      PBI        or a combination of the two
3500   //    /   \               | \
3501   //   PTB  PFB             |  PFB
3502   //    \   /               | /
3503   //     QBI                QBI
3504   //    /  \                | \
3505   //   QTB  QFB             |  QFB
3506   //    \  /                | /
3507   //    PostBB            PostBB
3508   //
3509   // We model triangles as a type of diamond with a nullptr "true" block.
3510   // Triangles are canonicalized so that the fallthrough edge is represented by
3511   // a true condition, as in the diagram above.
3512   BasicBlock *PTB = PBI->getSuccessor(0);
3513   BasicBlock *PFB = PBI->getSuccessor(1);
3514   BasicBlock *QTB = QBI->getSuccessor(0);
3515   BasicBlock *QFB = QBI->getSuccessor(1);
3516   BasicBlock *PostBB = QFB->getSingleSuccessor();
3517 
3518   // Make sure we have a good guess for PostBB. If QTB's only successor is
3519   // QFB, then QFB is a better PostBB.
3520   if (QTB->getSingleSuccessor() == QFB)
3521     PostBB = QFB;
3522 
3523   // If we couldn't find a good PostBB, stop.
3524   if (!PostBB)
3525     return false;
3526 
3527   bool InvertPCond = false, InvertQCond = false;
3528   // Canonicalize fallthroughs to the true branches.
3529   if (PFB == QBI->getParent()) {
3530     std::swap(PFB, PTB);
3531     InvertPCond = true;
3532   }
3533   if (QFB == PostBB) {
3534     std::swap(QFB, QTB);
3535     InvertQCond = true;
3536   }
3537 
3538   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3539   // and QFB may not. Model fallthroughs as a nullptr block.
3540   if (PTB == QBI->getParent())
3541     PTB = nullptr;
3542   if (QTB == PostBB)
3543     QTB = nullptr;
3544 
3545   // Legality bailouts. We must have at least the non-fallthrough blocks and
3546   // the post-dominating block, and the non-fallthroughs must only have one
3547   // predecessor.
3548   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3549     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3550   };
3551   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3552       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3553     return false;
3554   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3555       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3556     return false;
3557   if (!QBI->getParent()->hasNUses(2))
3558     return false;
3559 
3560   // OK, this is a sequence of two diamonds or triangles.
3561   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3562   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3563   for (auto *BB : {PTB, PFB}) {
3564     if (!BB)
3565       continue;
3566     for (auto &I : *BB)
3567       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3568         PStoreAddresses.insert(SI->getPointerOperand());
3569   }
3570   for (auto *BB : {QTB, QFB}) {
3571     if (!BB)
3572       continue;
3573     for (auto &I : *BB)
3574       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3575         QStoreAddresses.insert(SI->getPointerOperand());
3576   }
3577 
3578   set_intersect(PStoreAddresses, QStoreAddresses);
3579   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3580   // clear what it contains.
3581   auto &CommonAddresses = PStoreAddresses;
3582 
3583   bool Changed = false;
3584   for (auto *Address : CommonAddresses)
3585     Changed |=
3586         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3587                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3588   return Changed;
3589 }
3590 
3591 /// If the previous block ended with a widenable branch, determine if reusing
3592 /// the target block is profitable and legal.  This will have the effect of
3593 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3594 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3595                                            DomTreeUpdater *DTU) {
3596   // TODO: This can be generalized in two important ways:
3597   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3598   //    values from the PBI edge.
3599   // 2) We can sink side effecting instructions into BI's fallthrough
3600   //    successor provided they doesn't contribute to computation of
3601   //    BI's condition.
3602   Value *CondWB, *WC;
3603   BasicBlock *IfTrueBB, *IfFalseBB;
3604   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3605       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3606     return false;
3607   if (!IfFalseBB->phis().empty())
3608     return false; // TODO
3609   // Use lambda to lazily compute expensive condition after cheap ones.
3610   auto NoSideEffects = [](BasicBlock &BB) {
3611     return !llvm::any_of(BB, [](const Instruction &I) {
3612         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3613       });
3614   };
3615   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3616       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3617       NoSideEffects(*BI->getParent())) {
3618     auto *OldSuccessor = BI->getSuccessor(1);
3619     OldSuccessor->removePredecessor(BI->getParent());
3620     BI->setSuccessor(1, IfFalseBB);
3621     if (DTU)
3622       DTU->applyUpdates(
3623           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3624            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3625     return true;
3626   }
3627   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3628       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3629       NoSideEffects(*BI->getParent())) {
3630     auto *OldSuccessor = BI->getSuccessor(0);
3631     OldSuccessor->removePredecessor(BI->getParent());
3632     BI->setSuccessor(0, IfFalseBB);
3633     if (DTU)
3634       DTU->applyUpdates(
3635           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3636            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3637     return true;
3638   }
3639   return false;
3640 }
3641 
3642 /// If we have a conditional branch as a predecessor of another block,
3643 /// this function tries to simplify it.  We know
3644 /// that PBI and BI are both conditional branches, and BI is in one of the
3645 /// successor blocks of PBI - PBI branches to BI.
3646 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3647                                            DomTreeUpdater *DTU,
3648                                            const DataLayout &DL,
3649                                            const TargetTransformInfo &TTI) {
3650   assert(PBI->isConditional() && BI->isConditional());
3651   BasicBlock *BB = BI->getParent();
3652 
3653   // If this block ends with a branch instruction, and if there is a
3654   // predecessor that ends on a branch of the same condition, make
3655   // this conditional branch redundant.
3656   if (PBI->getCondition() == BI->getCondition() &&
3657       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3658     // Okay, the outcome of this conditional branch is statically
3659     // knowable.  If this block had a single pred, handle specially.
3660     if (BB->getSinglePredecessor()) {
3661       // Turn this into a branch on constant.
3662       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3663       BI->setCondition(
3664           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3665       return true; // Nuke the branch on constant.
3666     }
3667 
3668     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3669     // in the constant and simplify the block result.  Subsequent passes of
3670     // simplifycfg will thread the block.
3671     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3672       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3673       PHINode *NewPN = PHINode::Create(
3674           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3675           BI->getCondition()->getName() + ".pr", &BB->front());
3676       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3677       // predecessor, compute the PHI'd conditional value for all of the preds.
3678       // Any predecessor where the condition is not computable we keep symbolic.
3679       for (pred_iterator PI = PB; PI != PE; ++PI) {
3680         BasicBlock *P = *PI;
3681         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3682             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3683             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3684           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3685           NewPN->addIncoming(
3686               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3687               P);
3688         } else {
3689           NewPN->addIncoming(BI->getCondition(), P);
3690         }
3691       }
3692 
3693       BI->setCondition(NewPN);
3694       return true;
3695     }
3696   }
3697 
3698   // If the previous block ended with a widenable branch, determine if reusing
3699   // the target block is profitable and legal.  This will have the effect of
3700   // "widening" PBI, but doesn't require us to reason about hosting safety.
3701   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3702     return true;
3703 
3704   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3705     if (CE->canTrap())
3706       return false;
3707 
3708   // If both branches are conditional and both contain stores to the same
3709   // address, remove the stores from the conditionals and create a conditional
3710   // merged store at the end.
3711   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3712     return true;
3713 
3714   // If this is a conditional branch in an empty block, and if any
3715   // predecessors are a conditional branch to one of our destinations,
3716   // fold the conditions into logical ops and one cond br.
3717 
3718   // Ignore dbg intrinsics.
3719   if (&*BB->instructionsWithoutDebug().begin() != BI)
3720     return false;
3721 
3722   int PBIOp, BIOp;
3723   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3724     PBIOp = 0;
3725     BIOp = 0;
3726   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3727     PBIOp = 0;
3728     BIOp = 1;
3729   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3730     PBIOp = 1;
3731     BIOp = 0;
3732   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3733     PBIOp = 1;
3734     BIOp = 1;
3735   } else {
3736     return false;
3737   }
3738 
3739   // Check to make sure that the other destination of this branch
3740   // isn't BB itself.  If so, this is an infinite loop that will
3741   // keep getting unwound.
3742   if (PBI->getSuccessor(PBIOp) == BB)
3743     return false;
3744 
3745   // Do not perform this transformation if it would require
3746   // insertion of a large number of select instructions. For targets
3747   // without predication/cmovs, this is a big pessimization.
3748 
3749   // Also do not perform this transformation if any phi node in the common
3750   // destination block can trap when reached by BB or PBB (PR17073). In that
3751   // case, it would be unsafe to hoist the operation into a select instruction.
3752 
3753   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3754   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3755   unsigned NumPhis = 0;
3756   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3757        ++II, ++NumPhis) {
3758     if (NumPhis > 2) // Disable this xform.
3759       return false;
3760 
3761     PHINode *PN = cast<PHINode>(II);
3762     Value *BIV = PN->getIncomingValueForBlock(BB);
3763     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3764       if (CE->canTrap())
3765         return false;
3766 
3767     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3768     Value *PBIV = PN->getIncomingValue(PBBIdx);
3769     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3770       if (CE->canTrap())
3771         return false;
3772   }
3773 
3774   // Finally, if everything is ok, fold the branches to logical ops.
3775   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3776 
3777   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3778                     << "AND: " << *BI->getParent());
3779 
3780   SmallVector<DominatorTree::UpdateType, 5> Updates;
3781 
3782   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3783   // branch in it, where one edge (OtherDest) goes back to itself but the other
3784   // exits.  We don't *know* that the program avoids the infinite loop
3785   // (even though that seems likely).  If we do this xform naively, we'll end up
3786   // recursively unpeeling the loop.  Since we know that (after the xform is
3787   // done) that the block *is* infinite if reached, we just make it an obviously
3788   // infinite loop with no cond branch.
3789   if (OtherDest == BB) {
3790     // Insert it at the end of the function, because it's either code,
3791     // or it won't matter if it's hot. :)
3792     BasicBlock *InfLoopBlock =
3793         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3794     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3795     if (DTU)
3796       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3797     OtherDest = InfLoopBlock;
3798   }
3799 
3800   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3801 
3802   // BI may have other predecessors.  Because of this, we leave
3803   // it alone, but modify PBI.
3804 
3805   // Make sure we get to CommonDest on True&True directions.
3806   Value *PBICond = PBI->getCondition();
3807   IRBuilder<NoFolder> Builder(PBI);
3808   if (PBIOp)
3809     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3810 
3811   Value *BICond = BI->getCondition();
3812   if (BIOp)
3813     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3814 
3815   // Merge the conditions.
3816   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3817 
3818   // Modify PBI to branch on the new condition to the new dests.
3819   PBI->setCondition(Cond);
3820   PBI->setSuccessor(0, CommonDest);
3821   PBI->setSuccessor(1, OtherDest);
3822 
3823   if (DTU) {
3824     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3825     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3826 
3827     DTU->applyUpdates(Updates);
3828   }
3829 
3830   // Update branch weight for PBI.
3831   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3832   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3833   bool HasWeights =
3834       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3835                              SuccTrueWeight, SuccFalseWeight);
3836   if (HasWeights) {
3837     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3838     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3839     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3840     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3841     // The weight to CommonDest should be PredCommon * SuccTotal +
3842     //                                    PredOther * SuccCommon.
3843     // The weight to OtherDest should be PredOther * SuccOther.
3844     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3845                                   PredOther * SuccCommon,
3846                               PredOther * SuccOther};
3847     // Halve the weights if any of them cannot fit in an uint32_t
3848     FitWeights(NewWeights);
3849 
3850     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3851   }
3852 
3853   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3854   // block that are identical to the entries for BI's block.
3855   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3856 
3857   // We know that the CommonDest already had an edge from PBI to
3858   // it.  If it has PHIs though, the PHIs may have different
3859   // entries for BB and PBI's BB.  If so, insert a select to make
3860   // them agree.
3861   for (PHINode &PN : CommonDest->phis()) {
3862     Value *BIV = PN.getIncomingValueForBlock(BB);
3863     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3864     Value *PBIV = PN.getIncomingValue(PBBIdx);
3865     if (BIV != PBIV) {
3866       // Insert a select in PBI to pick the right value.
3867       SelectInst *NV = cast<SelectInst>(
3868           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3869       PN.setIncomingValue(PBBIdx, NV);
3870       // Although the select has the same condition as PBI, the original branch
3871       // weights for PBI do not apply to the new select because the select's
3872       // 'logical' edges are incoming edges of the phi that is eliminated, not
3873       // the outgoing edges of PBI.
3874       if (HasWeights) {
3875         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3876         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3877         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3878         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3879         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3880         // The weight to PredOtherDest should be PredOther * SuccCommon.
3881         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3882                                   PredOther * SuccCommon};
3883 
3884         FitWeights(NewWeights);
3885 
3886         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3887       }
3888     }
3889   }
3890 
3891   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3892   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3893 
3894   // This basic block is probably dead.  We know it has at least
3895   // one fewer predecessor.
3896   return true;
3897 }
3898 
3899 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3900 // true or to FalseBB if Cond is false.
3901 // Takes care of updating the successors and removing the old terminator.
3902 // Also makes sure not to introduce new successors by assuming that edges to
3903 // non-successor TrueBBs and FalseBBs aren't reachable.
3904 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3905                                                 Value *Cond, BasicBlock *TrueBB,
3906                                                 BasicBlock *FalseBB,
3907                                                 uint32_t TrueWeight,
3908                                                 uint32_t FalseWeight) {
3909   auto *BB = OldTerm->getParent();
3910   // Remove any superfluous successor edges from the CFG.
3911   // First, figure out which successors to preserve.
3912   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3913   // successor.
3914   BasicBlock *KeepEdge1 = TrueBB;
3915   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3916 
3917   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3918 
3919   // Then remove the rest.
3920   for (BasicBlock *Succ : successors(OldTerm)) {
3921     // Make sure only to keep exactly one copy of each edge.
3922     if (Succ == KeepEdge1)
3923       KeepEdge1 = nullptr;
3924     else if (Succ == KeepEdge2)
3925       KeepEdge2 = nullptr;
3926     else {
3927       Succ->removePredecessor(BB,
3928                               /*KeepOneInputPHIs=*/true);
3929 
3930       if (Succ != TrueBB && Succ != FalseBB)
3931         RemovedSuccessors.insert(Succ);
3932     }
3933   }
3934 
3935   IRBuilder<> Builder(OldTerm);
3936   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3937 
3938   // Insert an appropriate new terminator.
3939   if (!KeepEdge1 && !KeepEdge2) {
3940     if (TrueBB == FalseBB) {
3941       // We were only looking for one successor, and it was present.
3942       // Create an unconditional branch to it.
3943       Builder.CreateBr(TrueBB);
3944     } else {
3945       // We found both of the successors we were looking for.
3946       // Create a conditional branch sharing the condition of the select.
3947       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3948       if (TrueWeight != FalseWeight)
3949         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3950     }
3951   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3952     // Neither of the selected blocks were successors, so this
3953     // terminator must be unreachable.
3954     new UnreachableInst(OldTerm->getContext(), OldTerm);
3955   } else {
3956     // One of the selected values was a successor, but the other wasn't.
3957     // Insert an unconditional branch to the one that was found;
3958     // the edge to the one that wasn't must be unreachable.
3959     if (!KeepEdge1) {
3960       // Only TrueBB was found.
3961       Builder.CreateBr(TrueBB);
3962     } else {
3963       // Only FalseBB was found.
3964       Builder.CreateBr(FalseBB);
3965     }
3966   }
3967 
3968   EraseTerminatorAndDCECond(OldTerm);
3969 
3970   if (DTU) {
3971     SmallVector<DominatorTree::UpdateType, 2> Updates;
3972     Updates.reserve(RemovedSuccessors.size());
3973     for (auto *RemovedSuccessor : RemovedSuccessors)
3974       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3975     DTU->applyUpdates(Updates);
3976   }
3977 
3978   return true;
3979 }
3980 
3981 // Replaces
3982 //   (switch (select cond, X, Y)) on constant X, Y
3983 // with a branch - conditional if X and Y lead to distinct BBs,
3984 // unconditional otherwise.
3985 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3986                                             SelectInst *Select) {
3987   // Check for constant integer values in the select.
3988   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3989   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3990   if (!TrueVal || !FalseVal)
3991     return false;
3992 
3993   // Find the relevant condition and destinations.
3994   Value *Condition = Select->getCondition();
3995   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3996   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3997 
3998   // Get weight for TrueBB and FalseBB.
3999   uint32_t TrueWeight = 0, FalseWeight = 0;
4000   SmallVector<uint64_t, 8> Weights;
4001   bool HasWeights = HasBranchWeights(SI);
4002   if (HasWeights) {
4003     GetBranchWeights(SI, Weights);
4004     if (Weights.size() == 1 + SI->getNumCases()) {
4005       TrueWeight =
4006           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4007       FalseWeight =
4008           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4009     }
4010   }
4011 
4012   // Perform the actual simplification.
4013   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4014                                     FalseWeight);
4015 }
4016 
4017 // Replaces
4018 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4019 //                             blockaddress(@fn, BlockB)))
4020 // with
4021 //   (br cond, BlockA, BlockB).
4022 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4023                                                 SelectInst *SI) {
4024   // Check that both operands of the select are block addresses.
4025   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4026   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4027   if (!TBA || !FBA)
4028     return false;
4029 
4030   // Extract the actual blocks.
4031   BasicBlock *TrueBB = TBA->getBasicBlock();
4032   BasicBlock *FalseBB = FBA->getBasicBlock();
4033 
4034   // Perform the actual simplification.
4035   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4036                                     0);
4037 }
4038 
4039 /// This is called when we find an icmp instruction
4040 /// (a seteq/setne with a constant) as the only instruction in a
4041 /// block that ends with an uncond branch.  We are looking for a very specific
4042 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4043 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4044 /// default value goes to an uncond block with a seteq in it, we get something
4045 /// like:
4046 ///
4047 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4048 /// DEFAULT:
4049 ///   %tmp = icmp eq i8 %A, 92
4050 ///   br label %end
4051 /// end:
4052 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4053 ///
4054 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4055 /// the PHI, merging the third icmp into the switch.
4056 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4057     ICmpInst *ICI, IRBuilder<> &Builder) {
4058   BasicBlock *BB = ICI->getParent();
4059 
4060   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4061   // complex.
4062   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4063     return false;
4064 
4065   Value *V = ICI->getOperand(0);
4066   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4067 
4068   // The pattern we're looking for is where our only predecessor is a switch on
4069   // 'V' and this block is the default case for the switch.  In this case we can
4070   // fold the compared value into the switch to simplify things.
4071   BasicBlock *Pred = BB->getSinglePredecessor();
4072   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4073     return false;
4074 
4075   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4076   if (SI->getCondition() != V)
4077     return false;
4078 
4079   // If BB is reachable on a non-default case, then we simply know the value of
4080   // V in this block.  Substitute it and constant fold the icmp instruction
4081   // away.
4082   if (SI->getDefaultDest() != BB) {
4083     ConstantInt *VVal = SI->findCaseDest(BB);
4084     assert(VVal && "Should have a unique destination value");
4085     ICI->setOperand(0, VVal);
4086 
4087     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4088       ICI->replaceAllUsesWith(V);
4089       ICI->eraseFromParent();
4090     }
4091     // BB is now empty, so it is likely to simplify away.
4092     return requestResimplify();
4093   }
4094 
4095   // Ok, the block is reachable from the default dest.  If the constant we're
4096   // comparing exists in one of the other edges, then we can constant fold ICI
4097   // and zap it.
4098   if (SI->findCaseValue(Cst) != SI->case_default()) {
4099     Value *V;
4100     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4101       V = ConstantInt::getFalse(BB->getContext());
4102     else
4103       V = ConstantInt::getTrue(BB->getContext());
4104 
4105     ICI->replaceAllUsesWith(V);
4106     ICI->eraseFromParent();
4107     // BB is now empty, so it is likely to simplify away.
4108     return requestResimplify();
4109   }
4110 
4111   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4112   // the block.
4113   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4114   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4115   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4116       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4117     return false;
4118 
4119   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4120   // true in the PHI.
4121   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4122   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4123 
4124   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4125     std::swap(DefaultCst, NewCst);
4126 
4127   // Replace ICI (which is used by the PHI for the default value) with true or
4128   // false depending on if it is EQ or NE.
4129   ICI->replaceAllUsesWith(DefaultCst);
4130   ICI->eraseFromParent();
4131 
4132   SmallVector<DominatorTree::UpdateType, 2> Updates;
4133 
4134   // Okay, the switch goes to this block on a default value.  Add an edge from
4135   // the switch to the merge point on the compared value.
4136   BasicBlock *NewBB =
4137       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4138   {
4139     SwitchInstProfUpdateWrapper SIW(*SI);
4140     auto W0 = SIW.getSuccessorWeight(0);
4141     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4142     if (W0) {
4143       NewW = ((uint64_t(*W0) + 1) >> 1);
4144       SIW.setSuccessorWeight(0, *NewW);
4145     }
4146     SIW.addCase(Cst, NewBB, NewW);
4147     if (DTU)
4148       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4149   }
4150 
4151   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4152   Builder.SetInsertPoint(NewBB);
4153   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4154   Builder.CreateBr(SuccBlock);
4155   PHIUse->addIncoming(NewCst, NewBB);
4156   if (DTU) {
4157     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4158     DTU->applyUpdates(Updates);
4159   }
4160   return true;
4161 }
4162 
4163 /// The specified branch is a conditional branch.
4164 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4165 /// fold it into a switch instruction if so.
4166 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4167                                                IRBuilder<> &Builder,
4168                                                const DataLayout &DL) {
4169   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4170   if (!Cond)
4171     return false;
4172 
4173   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4174   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4175   // 'setne's and'ed together, collect them.
4176 
4177   // Try to gather values from a chain of and/or to be turned into a switch
4178   ConstantComparesGatherer ConstantCompare(Cond, DL);
4179   // Unpack the result
4180   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4181   Value *CompVal = ConstantCompare.CompValue;
4182   unsigned UsedICmps = ConstantCompare.UsedICmps;
4183   Value *ExtraCase = ConstantCompare.Extra;
4184 
4185   // If we didn't have a multiply compared value, fail.
4186   if (!CompVal)
4187     return false;
4188 
4189   // Avoid turning single icmps into a switch.
4190   if (UsedICmps <= 1)
4191     return false;
4192 
4193   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4194 
4195   // There might be duplicate constants in the list, which the switch
4196   // instruction can't handle, remove them now.
4197   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4198   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4199 
4200   // If Extra was used, we require at least two switch values to do the
4201   // transformation.  A switch with one value is just a conditional branch.
4202   if (ExtraCase && Values.size() < 2)
4203     return false;
4204 
4205   // TODO: Preserve branch weight metadata, similarly to how
4206   // FoldValueComparisonIntoPredecessors preserves it.
4207 
4208   // Figure out which block is which destination.
4209   BasicBlock *DefaultBB = BI->getSuccessor(1);
4210   BasicBlock *EdgeBB = BI->getSuccessor(0);
4211   if (!TrueWhenEqual)
4212     std::swap(DefaultBB, EdgeBB);
4213 
4214   BasicBlock *BB = BI->getParent();
4215 
4216   // MSAN does not like undefs as branch condition which can be introduced
4217   // with "explicit branch".
4218   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4219     return false;
4220 
4221   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4222                     << " cases into SWITCH.  BB is:\n"
4223                     << *BB);
4224 
4225   SmallVector<DominatorTree::UpdateType, 2> Updates;
4226 
4227   // If there are any extra values that couldn't be folded into the switch
4228   // then we evaluate them with an explicit branch first. Split the block
4229   // right before the condbr to handle it.
4230   if (ExtraCase) {
4231     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4232                                    /*MSSAU=*/nullptr, "switch.early.test");
4233 
4234     // Remove the uncond branch added to the old block.
4235     Instruction *OldTI = BB->getTerminator();
4236     Builder.SetInsertPoint(OldTI);
4237 
4238     if (TrueWhenEqual)
4239       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4240     else
4241       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4242 
4243     OldTI->eraseFromParent();
4244 
4245     if (DTU)
4246       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4247 
4248     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4249     // for the edge we just added.
4250     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4251 
4252     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4253                       << "\nEXTRABB = " << *BB);
4254     BB = NewBB;
4255   }
4256 
4257   Builder.SetInsertPoint(BI);
4258   // Convert pointer to int before we switch.
4259   if (CompVal->getType()->isPointerTy()) {
4260     CompVal = Builder.CreatePtrToInt(
4261         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4262   }
4263 
4264   // Create the new switch instruction now.
4265   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4266 
4267   // Add all of the 'cases' to the switch instruction.
4268   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4269     New->addCase(Values[i], EdgeBB);
4270 
4271   // We added edges from PI to the EdgeBB.  As such, if there were any
4272   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4273   // the number of edges added.
4274   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4275     PHINode *PN = cast<PHINode>(BBI);
4276     Value *InVal = PN->getIncomingValueForBlock(BB);
4277     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4278       PN->addIncoming(InVal, BB);
4279   }
4280 
4281   // Erase the old branch instruction.
4282   EraseTerminatorAndDCECond(BI);
4283   if (DTU)
4284     DTU->applyUpdates(Updates);
4285 
4286   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4287   return true;
4288 }
4289 
4290 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4291   if (isa<PHINode>(RI->getValue()))
4292     return simplifyCommonResume(RI);
4293   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4294            RI->getValue() == RI->getParent()->getFirstNonPHI())
4295     // The resume must unwind the exception that caused control to branch here.
4296     return simplifySingleResume(RI);
4297 
4298   return false;
4299 }
4300 
4301 // Check if cleanup block is empty
4302 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4303   for (Instruction &I : R) {
4304     auto *II = dyn_cast<IntrinsicInst>(&I);
4305     if (!II)
4306       return false;
4307 
4308     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4309     switch (IntrinsicID) {
4310     case Intrinsic::dbg_declare:
4311     case Intrinsic::dbg_value:
4312     case Intrinsic::dbg_label:
4313     case Intrinsic::lifetime_end:
4314       break;
4315     default:
4316       return false;
4317     }
4318   }
4319   return true;
4320 }
4321 
4322 // Simplify resume that is shared by several landing pads (phi of landing pad).
4323 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4324   BasicBlock *BB = RI->getParent();
4325 
4326   // Check that there are no other instructions except for debug and lifetime
4327   // intrinsics between the phi's and resume instruction.
4328   if (!isCleanupBlockEmpty(
4329           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4330     return false;
4331 
4332   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4333   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4334 
4335   // Check incoming blocks to see if any of them are trivial.
4336   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4337        Idx++) {
4338     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4339     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4340 
4341     // If the block has other successors, we can not delete it because
4342     // it has other dependents.
4343     if (IncomingBB->getUniqueSuccessor() != BB)
4344       continue;
4345 
4346     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4347     // Not the landing pad that caused the control to branch here.
4348     if (IncomingValue != LandingPad)
4349       continue;
4350 
4351     if (isCleanupBlockEmpty(
4352             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4353       TrivialUnwindBlocks.insert(IncomingBB);
4354   }
4355 
4356   // If no trivial unwind blocks, don't do any simplifications.
4357   if (TrivialUnwindBlocks.empty())
4358     return false;
4359 
4360   // Turn all invokes that unwind here into calls.
4361   for (auto *TrivialBB : TrivialUnwindBlocks) {
4362     // Blocks that will be simplified should be removed from the phi node.
4363     // Note there could be multiple edges to the resume block, and we need
4364     // to remove them all.
4365     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4366       BB->removePredecessor(TrivialBB, true);
4367 
4368     for (BasicBlock *Pred :
4369          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4370       removeUnwindEdge(Pred, DTU);
4371       ++NumInvokes;
4372     }
4373 
4374     // In each SimplifyCFG run, only the current processed block can be erased.
4375     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4376     // of erasing TrivialBB, we only remove the branch to the common resume
4377     // block so that we can later erase the resume block since it has no
4378     // predecessors.
4379     TrivialBB->getTerminator()->eraseFromParent();
4380     new UnreachableInst(RI->getContext(), TrivialBB);
4381     if (DTU)
4382       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4383   }
4384 
4385   // Delete the resume block if all its predecessors have been removed.
4386   if (pred_empty(BB)) {
4387     if (DTU)
4388       DTU->deleteBB(BB);
4389     else
4390       BB->eraseFromParent();
4391   }
4392 
4393   return !TrivialUnwindBlocks.empty();
4394 }
4395 
4396 // Simplify resume that is only used by a single (non-phi) landing pad.
4397 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4398   BasicBlock *BB = RI->getParent();
4399   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4400   assert(RI->getValue() == LPInst &&
4401          "Resume must unwind the exception that caused control to here");
4402 
4403   // Check that there are no other instructions except for debug intrinsics.
4404   if (!isCleanupBlockEmpty(
4405           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4406     return false;
4407 
4408   // Turn all invokes that unwind here into calls and delete the basic block.
4409   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4410     removeUnwindEdge(Pred, DTU);
4411     ++NumInvokes;
4412   }
4413 
4414   // The landingpad is now unreachable.  Zap it.
4415   if (DTU)
4416     DTU->deleteBB(BB);
4417   else
4418     BB->eraseFromParent();
4419   return true;
4420 }
4421 
4422 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4423   // If this is a trivial cleanup pad that executes no instructions, it can be
4424   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4425   // that is an EH pad will be updated to continue to the caller and any
4426   // predecessor that terminates with an invoke instruction will have its invoke
4427   // instruction converted to a call instruction.  If the cleanup pad being
4428   // simplified does not continue to the caller, each predecessor will be
4429   // updated to continue to the unwind destination of the cleanup pad being
4430   // simplified.
4431   BasicBlock *BB = RI->getParent();
4432   CleanupPadInst *CPInst = RI->getCleanupPad();
4433   if (CPInst->getParent() != BB)
4434     // This isn't an empty cleanup.
4435     return false;
4436 
4437   // We cannot kill the pad if it has multiple uses.  This typically arises
4438   // from unreachable basic blocks.
4439   if (!CPInst->hasOneUse())
4440     return false;
4441 
4442   // Check that there are no other instructions except for benign intrinsics.
4443   if (!isCleanupBlockEmpty(
4444           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4445     return false;
4446 
4447   // If the cleanup return we are simplifying unwinds to the caller, this will
4448   // set UnwindDest to nullptr.
4449   BasicBlock *UnwindDest = RI->getUnwindDest();
4450   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4451 
4452   // We're about to remove BB from the control flow.  Before we do, sink any
4453   // PHINodes into the unwind destination.  Doing this before changing the
4454   // control flow avoids some potentially slow checks, since we can currently
4455   // be certain that UnwindDest and BB have no common predecessors (since they
4456   // are both EH pads).
4457   if (UnwindDest) {
4458     // First, go through the PHI nodes in UnwindDest and update any nodes that
4459     // reference the block we are removing
4460     for (BasicBlock::iterator I = UnwindDest->begin(),
4461                               IE = DestEHPad->getIterator();
4462          I != IE; ++I) {
4463       PHINode *DestPN = cast<PHINode>(I);
4464 
4465       int Idx = DestPN->getBasicBlockIndex(BB);
4466       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4467       assert(Idx != -1);
4468       // This PHI node has an incoming value that corresponds to a control
4469       // path through the cleanup pad we are removing.  If the incoming
4470       // value is in the cleanup pad, it must be a PHINode (because we
4471       // verified above that the block is otherwise empty).  Otherwise, the
4472       // value is either a constant or a value that dominates the cleanup
4473       // pad being removed.
4474       //
4475       // Because BB and UnwindDest are both EH pads, all of their
4476       // predecessors must unwind to these blocks, and since no instruction
4477       // can have multiple unwind destinations, there will be no overlap in
4478       // incoming blocks between SrcPN and DestPN.
4479       Value *SrcVal = DestPN->getIncomingValue(Idx);
4480       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4481 
4482       // Remove the entry for the block we are deleting.
4483       DestPN->removeIncomingValue(Idx, false);
4484 
4485       if (SrcPN && SrcPN->getParent() == BB) {
4486         // If the incoming value was a PHI node in the cleanup pad we are
4487         // removing, we need to merge that PHI node's incoming values into
4488         // DestPN.
4489         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4490              SrcIdx != SrcE; ++SrcIdx) {
4491           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4492                               SrcPN->getIncomingBlock(SrcIdx));
4493         }
4494       } else {
4495         // Otherwise, the incoming value came from above BB and
4496         // so we can just reuse it.  We must associate all of BB's
4497         // predecessors with this value.
4498         for (auto *pred : predecessors(BB)) {
4499           DestPN->addIncoming(SrcVal, pred);
4500         }
4501       }
4502     }
4503 
4504     // Sink any remaining PHI nodes directly into UnwindDest.
4505     Instruction *InsertPt = DestEHPad;
4506     for (BasicBlock::iterator I = BB->begin(),
4507                               IE = BB->getFirstNonPHI()->getIterator();
4508          I != IE;) {
4509       // The iterator must be incremented here because the instructions are
4510       // being moved to another block.
4511       PHINode *PN = cast<PHINode>(I++);
4512       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4513         // If the PHI node has no uses or all of its uses are in this basic
4514         // block (meaning they are debug or lifetime intrinsics), just leave
4515         // it.  It will be erased when we erase BB below.
4516         continue;
4517 
4518       // Otherwise, sink this PHI node into UnwindDest.
4519       // Any predecessors to UnwindDest which are not already represented
4520       // must be back edges which inherit the value from the path through
4521       // BB.  In this case, the PHI value must reference itself.
4522       for (auto *pred : predecessors(UnwindDest))
4523         if (pred != BB)
4524           PN->addIncoming(PN, pred);
4525       PN->moveBefore(InsertPt);
4526     }
4527   }
4528 
4529   std::vector<DominatorTree::UpdateType> Updates;
4530 
4531   // We use make_early_inc_range here because we may remove some predecessors.
4532   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4533     if (UnwindDest == nullptr) {
4534       if (DTU) {
4535         DTU->applyUpdates(Updates);
4536         Updates.clear();
4537       }
4538       removeUnwindEdge(PredBB, DTU);
4539       ++NumInvokes;
4540     } else {
4541       Instruction *TI = PredBB->getTerminator();
4542       TI->replaceUsesOfWith(BB, UnwindDest);
4543       if (DTU) {
4544         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4545         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4546       }
4547     }
4548   }
4549 
4550   if (DTU) {
4551     DTU->applyUpdates(Updates);
4552     DTU->deleteBB(BB);
4553   } else
4554     // The cleanup pad is now unreachable.  Zap it.
4555     BB->eraseFromParent();
4556 
4557   return true;
4558 }
4559 
4560 // Try to merge two cleanuppads together.
4561 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4562   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4563   // with.
4564   BasicBlock *UnwindDest = RI->getUnwindDest();
4565   if (!UnwindDest)
4566     return false;
4567 
4568   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4569   // be safe to merge without code duplication.
4570   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4571     return false;
4572 
4573   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4574   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4575   if (!SuccessorCleanupPad)
4576     return false;
4577 
4578   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4579   // Replace any uses of the successor cleanupad with the predecessor pad
4580   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4581   // funclet bundle operands.
4582   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4583   // Remove the old cleanuppad.
4584   SuccessorCleanupPad->eraseFromParent();
4585   // Now, we simply replace the cleanupret with a branch to the unwind
4586   // destination.
4587   BranchInst::Create(UnwindDest, RI->getParent());
4588   RI->eraseFromParent();
4589 
4590   return true;
4591 }
4592 
4593 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4594   // It is possible to transiantly have an undef cleanuppad operand because we
4595   // have deleted some, but not all, dead blocks.
4596   // Eventually, this block will be deleted.
4597   if (isa<UndefValue>(RI->getOperand(0)))
4598     return false;
4599 
4600   if (mergeCleanupPad(RI))
4601     return true;
4602 
4603   if (removeEmptyCleanup(RI, DTU))
4604     return true;
4605 
4606   return false;
4607 }
4608 
4609 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4610   BasicBlock *BB = RI->getParent();
4611   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4612     return false;
4613 
4614   // Find predecessors that end with branches.
4615   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4616   SmallVector<BranchInst *, 8> CondBranchPreds;
4617   for (BasicBlock *P : predecessors(BB)) {
4618     Instruction *PTI = P->getTerminator();
4619     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4620       if (BI->isUnconditional())
4621         UncondBranchPreds.push_back(P);
4622       else
4623         CondBranchPreds.push_back(BI);
4624     }
4625   }
4626 
4627   // If we found some, do the transformation!
4628   if (!UncondBranchPreds.empty() && DupRet) {
4629     while (!UncondBranchPreds.empty()) {
4630       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4631       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4632                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4633       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4634     }
4635 
4636     // If we eliminated all predecessors of the block, delete the block now.
4637     if (pred_empty(BB)) {
4638       // We know there are no successors, so just nuke the block.
4639       if (DTU)
4640         DTU->deleteBB(BB);
4641       else
4642         BB->eraseFromParent();
4643     }
4644 
4645     return true;
4646   }
4647 
4648   // Check out all of the conditional branches going to this return
4649   // instruction.  If any of them just select between returns, change the
4650   // branch itself into a select/return pair.
4651   while (!CondBranchPreds.empty()) {
4652     BranchInst *BI = CondBranchPreds.pop_back_val();
4653 
4654     // Check to see if the non-BB successor is also a return block.
4655     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4656         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4657         SimplifyCondBranchToTwoReturns(BI, Builder))
4658       return true;
4659   }
4660   return false;
4661 }
4662 
4663 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4664   BasicBlock *BB = UI->getParent();
4665 
4666   bool Changed = false;
4667 
4668   // If there are any instructions immediately before the unreachable that can
4669   // be removed, do so.
4670   while (UI->getIterator() != BB->begin()) {
4671     BasicBlock::iterator BBI = UI->getIterator();
4672     --BBI;
4673     // Do not delete instructions that can have side effects which might cause
4674     // the unreachable to not be reachable; specifically, calls and volatile
4675     // operations may have this effect.
4676     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4677       break;
4678 
4679     if (BBI->mayHaveSideEffects()) {
4680       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4681         if (SI->isVolatile())
4682           break;
4683       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4684         if (LI->isVolatile())
4685           break;
4686       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4687         if (RMWI->isVolatile())
4688           break;
4689       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4690         if (CXI->isVolatile())
4691           break;
4692       } else if (isa<CatchPadInst>(BBI)) {
4693         // A catchpad may invoke exception object constructors and such, which
4694         // in some languages can be arbitrary code, so be conservative by
4695         // default.
4696         // For CoreCLR, it just involves a type test, so can be removed.
4697         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4698             EHPersonality::CoreCLR)
4699           break;
4700       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4701                  !isa<LandingPadInst>(BBI)) {
4702         break;
4703       }
4704       // Note that deleting LandingPad's here is in fact okay, although it
4705       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4706       // all the predecessors of this block will be the unwind edges of Invokes,
4707       // and we can therefore guarantee this block will be erased.
4708     }
4709 
4710     // Delete this instruction (any uses are guaranteed to be dead)
4711     if (!BBI->use_empty())
4712       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4713     BBI->eraseFromParent();
4714     Changed = true;
4715   }
4716 
4717   // If the unreachable instruction is the first in the block, take a gander
4718   // at all of the predecessors of this instruction, and simplify them.
4719   if (&BB->front() != UI)
4720     return Changed;
4721 
4722   std::vector<DominatorTree::UpdateType> Updates;
4723 
4724   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4725   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4726     auto *Predecessor = Preds[i];
4727     Instruction *TI = Predecessor->getTerminator();
4728     IRBuilder<> Builder(TI);
4729     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4730       // We could either have a proper unconditional branch,
4731       // or a degenerate conditional branch with matching destinations.
4732       if (all_of(BI->successors(),
4733                  [BB](auto *Successor) { return Successor == BB; })) {
4734         new UnreachableInst(TI->getContext(), TI);
4735         TI->eraseFromParent();
4736         Changed = true;
4737       } else {
4738         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4739         Value* Cond = BI->getCondition();
4740         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4741                "The destinations are guaranteed to be different here.");
4742         if (BI->getSuccessor(0) == BB) {
4743           Builder.CreateAssumption(Builder.CreateNot(Cond));
4744           Builder.CreateBr(BI->getSuccessor(1));
4745         } else {
4746           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4747           Builder.CreateAssumption(Cond);
4748           Builder.CreateBr(BI->getSuccessor(0));
4749         }
4750         EraseTerminatorAndDCECond(BI);
4751         Changed = true;
4752       }
4753       if (DTU)
4754         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4755     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4756       SwitchInstProfUpdateWrapper SU(*SI);
4757       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4758         if (i->getCaseSuccessor() != BB) {
4759           ++i;
4760           continue;
4761         }
4762         BB->removePredecessor(SU->getParent());
4763         i = SU.removeCase(i);
4764         e = SU->case_end();
4765         Changed = true;
4766       }
4767       // Note that the default destination can't be removed!
4768       if (DTU && SI->getDefaultDest() != BB)
4769         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4770     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4771       if (II->getUnwindDest() == BB) {
4772         if (DTU) {
4773           DTU->applyUpdates(Updates);
4774           Updates.clear();
4775         }
4776         removeUnwindEdge(TI->getParent(), DTU);
4777         Changed = true;
4778       }
4779     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4780       if (CSI->getUnwindDest() == BB) {
4781         if (DTU) {
4782           DTU->applyUpdates(Updates);
4783           Updates.clear();
4784         }
4785         removeUnwindEdge(TI->getParent(), DTU);
4786         Changed = true;
4787         continue;
4788       }
4789 
4790       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4791                                              E = CSI->handler_end();
4792            I != E; ++I) {
4793         if (*I == BB) {
4794           CSI->removeHandler(I);
4795           --I;
4796           --E;
4797           Changed = true;
4798         }
4799       }
4800       if (DTU)
4801         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4802       if (CSI->getNumHandlers() == 0) {
4803         if (CSI->hasUnwindDest()) {
4804           // Redirect all predecessors of the block containing CatchSwitchInst
4805           // to instead branch to the CatchSwitchInst's unwind destination.
4806           if (DTU) {
4807             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4808               Updates.push_back({DominatorTree::Insert,
4809                                  PredecessorOfPredecessor,
4810                                  CSI->getUnwindDest()});
4811               Updates.push_back({DominatorTree::Delete,
4812                                  PredecessorOfPredecessor, Predecessor});
4813             }
4814           }
4815           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4816         } else {
4817           // Rewrite all preds to unwind to caller (or from invoke to call).
4818           if (DTU) {
4819             DTU->applyUpdates(Updates);
4820             Updates.clear();
4821           }
4822           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4823           for (BasicBlock *EHPred : EHPreds)
4824             removeUnwindEdge(EHPred, DTU);
4825         }
4826         // The catchswitch is no longer reachable.
4827         new UnreachableInst(CSI->getContext(), CSI);
4828         CSI->eraseFromParent();
4829         Changed = true;
4830       }
4831     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4832       (void)CRI;
4833       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4834              "Expected to always have an unwind to BB.");
4835       if (DTU)
4836         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4837       new UnreachableInst(TI->getContext(), TI);
4838       TI->eraseFromParent();
4839       Changed = true;
4840     }
4841   }
4842 
4843   if (DTU)
4844     DTU->applyUpdates(Updates);
4845 
4846   // If this block is now dead, remove it.
4847   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4848     // We know there are no successors, so just nuke the block.
4849     if (DTU)
4850       DTU->deleteBB(BB);
4851     else
4852       BB->eraseFromParent();
4853     return true;
4854   }
4855 
4856   return Changed;
4857 }
4858 
4859 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4860   assert(Cases.size() >= 1);
4861 
4862   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4863   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4864     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4865       return false;
4866   }
4867   return true;
4868 }
4869 
4870 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4871                                            DomTreeUpdater *DTU) {
4872   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4873   auto *BB = Switch->getParent();
4874   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4875       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4876   auto *OrigDefaultBlock = Switch->getDefaultDest();
4877   Switch->setDefaultDest(&*NewDefaultBlock);
4878   if (DTU)
4879     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4880                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4881   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4882   SmallVector<DominatorTree::UpdateType, 2> Updates;
4883   if (DTU)
4884     for (auto *Successor : successors(NewDefaultBlock))
4885       Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4886   auto *NewTerminator = NewDefaultBlock->getTerminator();
4887   new UnreachableInst(Switch->getContext(), NewTerminator);
4888   EraseTerminatorAndDCECond(NewTerminator);
4889   if (DTU)
4890     DTU->applyUpdates(Updates);
4891 }
4892 
4893 /// Turn a switch with two reachable destinations into an integer range
4894 /// comparison and branch.
4895 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4896                                              IRBuilder<> &Builder) {
4897   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4898 
4899   bool HasDefault =
4900       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4901 
4902   auto *BB = SI->getParent();
4903 
4904   // Partition the cases into two sets with different destinations.
4905   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4906   BasicBlock *DestB = nullptr;
4907   SmallVector<ConstantInt *, 16> CasesA;
4908   SmallVector<ConstantInt *, 16> CasesB;
4909 
4910   for (auto Case : SI->cases()) {
4911     BasicBlock *Dest = Case.getCaseSuccessor();
4912     if (!DestA)
4913       DestA = Dest;
4914     if (Dest == DestA) {
4915       CasesA.push_back(Case.getCaseValue());
4916       continue;
4917     }
4918     if (!DestB)
4919       DestB = Dest;
4920     if (Dest == DestB) {
4921       CasesB.push_back(Case.getCaseValue());
4922       continue;
4923     }
4924     return false; // More than two destinations.
4925   }
4926 
4927   assert(DestA && DestB &&
4928          "Single-destination switch should have been folded.");
4929   assert(DestA != DestB);
4930   assert(DestB != SI->getDefaultDest());
4931   assert(!CasesB.empty() && "There must be non-default cases.");
4932   assert(!CasesA.empty() || HasDefault);
4933 
4934   // Figure out if one of the sets of cases form a contiguous range.
4935   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4936   BasicBlock *ContiguousDest = nullptr;
4937   BasicBlock *OtherDest = nullptr;
4938   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4939     ContiguousCases = &CasesA;
4940     ContiguousDest = DestA;
4941     OtherDest = DestB;
4942   } else if (CasesAreContiguous(CasesB)) {
4943     ContiguousCases = &CasesB;
4944     ContiguousDest = DestB;
4945     OtherDest = DestA;
4946   } else
4947     return false;
4948 
4949   // Start building the compare and branch.
4950 
4951   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4952   Constant *NumCases =
4953       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4954 
4955   Value *Sub = SI->getCondition();
4956   if (!Offset->isNullValue())
4957     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4958 
4959   Value *Cmp;
4960   // If NumCases overflowed, then all possible values jump to the successor.
4961   if (NumCases->isNullValue() && !ContiguousCases->empty())
4962     Cmp = ConstantInt::getTrue(SI->getContext());
4963   else
4964     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4965   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4966 
4967   // Update weight for the newly-created conditional branch.
4968   if (HasBranchWeights(SI)) {
4969     SmallVector<uint64_t, 8> Weights;
4970     GetBranchWeights(SI, Weights);
4971     if (Weights.size() == 1 + SI->getNumCases()) {
4972       uint64_t TrueWeight = 0;
4973       uint64_t FalseWeight = 0;
4974       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4975         if (SI->getSuccessor(I) == ContiguousDest)
4976           TrueWeight += Weights[I];
4977         else
4978           FalseWeight += Weights[I];
4979       }
4980       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4981         TrueWeight /= 2;
4982         FalseWeight /= 2;
4983       }
4984       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4985     }
4986   }
4987 
4988   // Prune obsolete incoming values off the successors' PHI nodes.
4989   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4990     unsigned PreviousEdges = ContiguousCases->size();
4991     if (ContiguousDest == SI->getDefaultDest())
4992       ++PreviousEdges;
4993     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4994       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4995   }
4996   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4997     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4998     if (OtherDest == SI->getDefaultDest())
4999       ++PreviousEdges;
5000     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5001       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5002   }
5003 
5004   // Clean up the default block - it may have phis or other instructions before
5005   // the unreachable terminator.
5006   if (!HasDefault)
5007     createUnreachableSwitchDefault(SI, DTU);
5008 
5009   auto *UnreachableDefault = SI->getDefaultDest();
5010 
5011   // Drop the switch.
5012   SI->eraseFromParent();
5013 
5014   if (!HasDefault && DTU)
5015     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5016 
5017   return true;
5018 }
5019 
5020 /// Compute masked bits for the condition of a switch
5021 /// and use it to remove dead cases.
5022 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5023                                      AssumptionCache *AC,
5024                                      const DataLayout &DL) {
5025   Value *Cond = SI->getCondition();
5026   unsigned Bits = Cond->getType()->getIntegerBitWidth();
5027   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5028 
5029   // We can also eliminate cases by determining that their values are outside of
5030   // the limited range of the condition based on how many significant (non-sign)
5031   // bits are in the condition value.
5032   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
5033   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
5034 
5035   // Gather dead cases.
5036   SmallVector<ConstantInt *, 8> DeadCases;
5037   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5038   for (auto &Case : SI->cases()) {
5039     auto *Successor = Case.getCaseSuccessor();
5040     if (DTU)
5041       ++NumPerSuccessorCases[Successor];
5042     const APInt &CaseVal = Case.getCaseValue()->getValue();
5043     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5044         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5045       DeadCases.push_back(Case.getCaseValue());
5046       if (DTU)
5047         --NumPerSuccessorCases[Successor];
5048       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5049                         << " is dead.\n");
5050     }
5051   }
5052 
5053   // If we can prove that the cases must cover all possible values, the
5054   // default destination becomes dead and we can remove it.  If we know some
5055   // of the bits in the value, we can use that to more precisely compute the
5056   // number of possible unique case values.
5057   bool HasDefault =
5058       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5059   const unsigned NumUnknownBits =
5060       Bits - (Known.Zero | Known.One).countPopulation();
5061   assert(NumUnknownBits <= Bits);
5062   if (HasDefault && DeadCases.empty() &&
5063       NumUnknownBits < 64 /* avoid overflow */ &&
5064       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5065     createUnreachableSwitchDefault(SI, DTU);
5066     return true;
5067   }
5068 
5069   if (DeadCases.empty())
5070     return false;
5071 
5072   SwitchInstProfUpdateWrapper SIW(*SI);
5073   for (ConstantInt *DeadCase : DeadCases) {
5074     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5075     assert(CaseI != SI->case_default() &&
5076            "Case was not found. Probably mistake in DeadCases forming.");
5077     // Prune unused values from PHI nodes.
5078     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5079     SIW.removeCase(CaseI);
5080   }
5081 
5082   if (DTU) {
5083     std::vector<DominatorTree::UpdateType> Updates;
5084     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
5085       if (I.second == 0)
5086         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
5087     DTU->applyUpdates(Updates);
5088   }
5089 
5090   return true;
5091 }
5092 
5093 /// If BB would be eligible for simplification by
5094 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5095 /// by an unconditional branch), look at the phi node for BB in the successor
5096 /// block and see if the incoming value is equal to CaseValue. If so, return
5097 /// the phi node, and set PhiIndex to BB's index in the phi node.
5098 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5099                                               BasicBlock *BB, int *PhiIndex) {
5100   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5101     return nullptr; // BB must be empty to be a candidate for simplification.
5102   if (!BB->getSinglePredecessor())
5103     return nullptr; // BB must be dominated by the switch.
5104 
5105   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5106   if (!Branch || !Branch->isUnconditional())
5107     return nullptr; // Terminator must be unconditional branch.
5108 
5109   BasicBlock *Succ = Branch->getSuccessor(0);
5110 
5111   for (PHINode &PHI : Succ->phis()) {
5112     int Idx = PHI.getBasicBlockIndex(BB);
5113     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5114 
5115     Value *InValue = PHI.getIncomingValue(Idx);
5116     if (InValue != CaseValue)
5117       continue;
5118 
5119     *PhiIndex = Idx;
5120     return &PHI;
5121   }
5122 
5123   return nullptr;
5124 }
5125 
5126 /// Try to forward the condition of a switch instruction to a phi node
5127 /// dominated by the switch, if that would mean that some of the destination
5128 /// blocks of the switch can be folded away. Return true if a change is made.
5129 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5130   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5131 
5132   ForwardingNodesMap ForwardingNodes;
5133   BasicBlock *SwitchBlock = SI->getParent();
5134   bool Changed = false;
5135   for (auto &Case : SI->cases()) {
5136     ConstantInt *CaseValue = Case.getCaseValue();
5137     BasicBlock *CaseDest = Case.getCaseSuccessor();
5138 
5139     // Replace phi operands in successor blocks that are using the constant case
5140     // value rather than the switch condition variable:
5141     //   switchbb:
5142     //   switch i32 %x, label %default [
5143     //     i32 17, label %succ
5144     //   ...
5145     //   succ:
5146     //     %r = phi i32 ... [ 17, %switchbb ] ...
5147     // -->
5148     //     %r = phi i32 ... [ %x, %switchbb ] ...
5149 
5150     for (PHINode &Phi : CaseDest->phis()) {
5151       // This only works if there is exactly 1 incoming edge from the switch to
5152       // a phi. If there is >1, that means multiple cases of the switch map to 1
5153       // value in the phi, and that phi value is not the switch condition. Thus,
5154       // this transform would not make sense (the phi would be invalid because
5155       // a phi can't have different incoming values from the same block).
5156       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5157       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5158           count(Phi.blocks(), SwitchBlock) == 1) {
5159         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5160         Changed = true;
5161       }
5162     }
5163 
5164     // Collect phi nodes that are indirectly using this switch's case constants.
5165     int PhiIdx;
5166     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5167       ForwardingNodes[Phi].push_back(PhiIdx);
5168   }
5169 
5170   for (auto &ForwardingNode : ForwardingNodes) {
5171     PHINode *Phi = ForwardingNode.first;
5172     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5173     if (Indexes.size() < 2)
5174       continue;
5175 
5176     for (int Index : Indexes)
5177       Phi->setIncomingValue(Index, SI->getCondition());
5178     Changed = true;
5179   }
5180 
5181   return Changed;
5182 }
5183 
5184 /// Return true if the backend will be able to handle
5185 /// initializing an array of constants like C.
5186 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5187   if (C->isThreadDependent())
5188     return false;
5189   if (C->isDLLImportDependent())
5190     return false;
5191 
5192   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5193       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5194       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5195     return false;
5196 
5197   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5198     if (!CE->isGEPWithNoNotionalOverIndexing())
5199       return false;
5200     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5201       return false;
5202   }
5203 
5204   if (!TTI.shouldBuildLookupTablesForConstant(C))
5205     return false;
5206 
5207   return true;
5208 }
5209 
5210 /// If V is a Constant, return it. Otherwise, try to look up
5211 /// its constant value in ConstantPool, returning 0 if it's not there.
5212 static Constant *
5213 LookupConstant(Value *V,
5214                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5215   if (Constant *C = dyn_cast<Constant>(V))
5216     return C;
5217   return ConstantPool.lookup(V);
5218 }
5219 
5220 /// Try to fold instruction I into a constant. This works for
5221 /// simple instructions such as binary operations where both operands are
5222 /// constant or can be replaced by constants from the ConstantPool. Returns the
5223 /// resulting constant on success, 0 otherwise.
5224 static Constant *
5225 ConstantFold(Instruction *I, const DataLayout &DL,
5226              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5227   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5228     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5229     if (!A)
5230       return nullptr;
5231     if (A->isAllOnesValue())
5232       return LookupConstant(Select->getTrueValue(), ConstantPool);
5233     if (A->isNullValue())
5234       return LookupConstant(Select->getFalseValue(), ConstantPool);
5235     return nullptr;
5236   }
5237 
5238   SmallVector<Constant *, 4> COps;
5239   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5240     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5241       COps.push_back(A);
5242     else
5243       return nullptr;
5244   }
5245 
5246   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5247     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5248                                            COps[1], DL);
5249   }
5250 
5251   return ConstantFoldInstOperands(I, COps, DL);
5252 }
5253 
5254 /// Try to determine the resulting constant values in phi nodes
5255 /// at the common destination basic block, *CommonDest, for one of the case
5256 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5257 /// case), of a switch instruction SI.
5258 static bool
5259 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5260                BasicBlock **CommonDest,
5261                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5262                const DataLayout &DL, const TargetTransformInfo &TTI) {
5263   // The block from which we enter the common destination.
5264   BasicBlock *Pred = SI->getParent();
5265 
5266   // If CaseDest is empty except for some side-effect free instructions through
5267   // which we can constant-propagate the CaseVal, continue to its successor.
5268   SmallDenseMap<Value *, Constant *> ConstantPool;
5269   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5270   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5271     if (I.isTerminator()) {
5272       // If the terminator is a simple branch, continue to the next block.
5273       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5274         return false;
5275       Pred = CaseDest;
5276       CaseDest = I.getSuccessor(0);
5277     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5278       // Instruction is side-effect free and constant.
5279 
5280       // If the instruction has uses outside this block or a phi node slot for
5281       // the block, it is not safe to bypass the instruction since it would then
5282       // no longer dominate all its uses.
5283       for (auto &Use : I.uses()) {
5284         User *User = Use.getUser();
5285         if (Instruction *I = dyn_cast<Instruction>(User))
5286           if (I->getParent() == CaseDest)
5287             continue;
5288         if (PHINode *Phi = dyn_cast<PHINode>(User))
5289           if (Phi->getIncomingBlock(Use) == CaseDest)
5290             continue;
5291         return false;
5292       }
5293 
5294       ConstantPool.insert(std::make_pair(&I, C));
5295     } else {
5296       break;
5297     }
5298   }
5299 
5300   // If we did not have a CommonDest before, use the current one.
5301   if (!*CommonDest)
5302     *CommonDest = CaseDest;
5303   // If the destination isn't the common one, abort.
5304   if (CaseDest != *CommonDest)
5305     return false;
5306 
5307   // Get the values for this case from phi nodes in the destination block.
5308   for (PHINode &PHI : (*CommonDest)->phis()) {
5309     int Idx = PHI.getBasicBlockIndex(Pred);
5310     if (Idx == -1)
5311       continue;
5312 
5313     Constant *ConstVal =
5314         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5315     if (!ConstVal)
5316       return false;
5317 
5318     // Be conservative about which kinds of constants we support.
5319     if (!ValidLookupTableConstant(ConstVal, TTI))
5320       return false;
5321 
5322     Res.push_back(std::make_pair(&PHI, ConstVal));
5323   }
5324 
5325   return Res.size() > 0;
5326 }
5327 
5328 // Helper function used to add CaseVal to the list of cases that generate
5329 // Result. Returns the updated number of cases that generate this result.
5330 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5331                                  SwitchCaseResultVectorTy &UniqueResults,
5332                                  Constant *Result) {
5333   for (auto &I : UniqueResults) {
5334     if (I.first == Result) {
5335       I.second.push_back(CaseVal);
5336       return I.second.size();
5337     }
5338   }
5339   UniqueResults.push_back(
5340       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5341   return 1;
5342 }
5343 
5344 // Helper function that initializes a map containing
5345 // results for the PHI node of the common destination block for a switch
5346 // instruction. Returns false if multiple PHI nodes have been found or if
5347 // there is not a common destination block for the switch.
5348 static bool
5349 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5350                       SwitchCaseResultVectorTy &UniqueResults,
5351                       Constant *&DefaultResult, const DataLayout &DL,
5352                       const TargetTransformInfo &TTI,
5353                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5354   for (auto &I : SI->cases()) {
5355     ConstantInt *CaseVal = I.getCaseValue();
5356 
5357     // Resulting value at phi nodes for this case value.
5358     SwitchCaseResultsTy Results;
5359     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5360                         DL, TTI))
5361       return false;
5362 
5363     // Only one value per case is permitted.
5364     if (Results.size() > 1)
5365       return false;
5366 
5367     // Add the case->result mapping to UniqueResults.
5368     const uintptr_t NumCasesForResult =
5369         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5370 
5371     // Early out if there are too many cases for this result.
5372     if (NumCasesForResult > MaxCasesPerResult)
5373       return false;
5374 
5375     // Early out if there are too many unique results.
5376     if (UniqueResults.size() > MaxUniqueResults)
5377       return false;
5378 
5379     // Check the PHI consistency.
5380     if (!PHI)
5381       PHI = Results[0].first;
5382     else if (PHI != Results[0].first)
5383       return false;
5384   }
5385   // Find the default result value.
5386   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5387   BasicBlock *DefaultDest = SI->getDefaultDest();
5388   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5389                  DL, TTI);
5390   // If the default value is not found abort unless the default destination
5391   // is unreachable.
5392   DefaultResult =
5393       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5394   if ((!DefaultResult &&
5395        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5396     return false;
5397 
5398   return true;
5399 }
5400 
5401 // Helper function that checks if it is possible to transform a switch with only
5402 // two cases (or two cases + default) that produces a result into a select.
5403 // Example:
5404 // switch (a) {
5405 //   case 10:                %0 = icmp eq i32 %a, 10
5406 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5407 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5408 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5409 //   default:
5410 //     return 4;
5411 // }
5412 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5413                                    Constant *DefaultResult, Value *Condition,
5414                                    IRBuilder<> &Builder) {
5415   // If we are selecting between only two cases transform into a simple
5416   // select or a two-way select if default is possible.
5417   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5418       ResultVector[1].second.size() == 1) {
5419     ConstantInt *const FirstCase = ResultVector[0].second[0];
5420     ConstantInt *const SecondCase = ResultVector[1].second[0];
5421 
5422     bool DefaultCanTrigger = DefaultResult;
5423     Value *SelectValue = ResultVector[1].first;
5424     if (DefaultCanTrigger) {
5425       Value *const ValueCompare =
5426           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5427       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5428                                          DefaultResult, "switch.select");
5429     }
5430     Value *const ValueCompare =
5431         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5432     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5433                                 SelectValue, "switch.select");
5434   }
5435 
5436   // Handle the degenerate case where two cases have the same value.
5437   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5438       DefaultResult) {
5439     Value *Cmp1 = Builder.CreateICmpEQ(
5440         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5441     Value *Cmp2 = Builder.CreateICmpEQ(
5442         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5443     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5444     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5445   }
5446 
5447   return nullptr;
5448 }
5449 
5450 // Helper function to cleanup a switch instruction that has been converted into
5451 // a select, fixing up PHI nodes and basic blocks.
5452 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5453                                               Value *SelectValue,
5454                                               IRBuilder<> &Builder,
5455                                               DomTreeUpdater *DTU) {
5456   std::vector<DominatorTree::UpdateType> Updates;
5457 
5458   BasicBlock *SelectBB = SI->getParent();
5459   BasicBlock *DestBB = PHI->getParent();
5460 
5461   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5462     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5463   Builder.CreateBr(DestBB);
5464 
5465   // Remove the switch.
5466 
5467   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5468     PHI->removeIncomingValue(SelectBB);
5469   PHI->addIncoming(SelectValue, SelectBB);
5470 
5471   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5472   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5473     BasicBlock *Succ = SI->getSuccessor(i);
5474 
5475     if (Succ == DestBB)
5476       continue;
5477     Succ->removePredecessor(SelectBB);
5478     if (DTU && RemovedSuccessors.insert(Succ).second)
5479       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5480   }
5481   SI->eraseFromParent();
5482   if (DTU)
5483     DTU->applyUpdates(Updates);
5484 }
5485 
5486 /// If the switch is only used to initialize one or more
5487 /// phi nodes in a common successor block with only two different
5488 /// constant values, replace the switch with select.
5489 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5490                            DomTreeUpdater *DTU, const DataLayout &DL,
5491                            const TargetTransformInfo &TTI) {
5492   Value *const Cond = SI->getCondition();
5493   PHINode *PHI = nullptr;
5494   BasicBlock *CommonDest = nullptr;
5495   Constant *DefaultResult;
5496   SwitchCaseResultVectorTy UniqueResults;
5497   // Collect all the cases that will deliver the same value from the switch.
5498   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5499                              DL, TTI, /*MaxUniqueResults*/2,
5500                              /*MaxCasesPerResult*/2))
5501     return false;
5502   assert(PHI != nullptr && "PHI for value select not found");
5503 
5504   Builder.SetInsertPoint(SI);
5505   Value *SelectValue =
5506       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5507   if (SelectValue) {
5508     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5509     return true;
5510   }
5511   // The switch couldn't be converted into a select.
5512   return false;
5513 }
5514 
5515 namespace {
5516 
5517 /// This class represents a lookup table that can be used to replace a switch.
5518 class SwitchLookupTable {
5519 public:
5520   /// Create a lookup table to use as a switch replacement with the contents
5521   /// of Values, using DefaultValue to fill any holes in the table.
5522   SwitchLookupTable(
5523       Module &M, uint64_t TableSize, ConstantInt *Offset,
5524       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5525       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5526 
5527   /// Build instructions with Builder to retrieve the value at
5528   /// the position given by Index in the lookup table.
5529   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5530 
5531   /// Return true if a table with TableSize elements of
5532   /// type ElementType would fit in a target-legal register.
5533   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5534                                  Type *ElementType);
5535 
5536 private:
5537   // Depending on the contents of the table, it can be represented in
5538   // different ways.
5539   enum {
5540     // For tables where each element contains the same value, we just have to
5541     // store that single value and return it for each lookup.
5542     SingleValueKind,
5543 
5544     // For tables where there is a linear relationship between table index
5545     // and values. We calculate the result with a simple multiplication
5546     // and addition instead of a table lookup.
5547     LinearMapKind,
5548 
5549     // For small tables with integer elements, we can pack them into a bitmap
5550     // that fits into a target-legal register. Values are retrieved by
5551     // shift and mask operations.
5552     BitMapKind,
5553 
5554     // The table is stored as an array of values. Values are retrieved by load
5555     // instructions from the table.
5556     ArrayKind
5557   } Kind;
5558 
5559   // For SingleValueKind, this is the single value.
5560   Constant *SingleValue = nullptr;
5561 
5562   // For BitMapKind, this is the bitmap.
5563   ConstantInt *BitMap = nullptr;
5564   IntegerType *BitMapElementTy = nullptr;
5565 
5566   // For LinearMapKind, these are the constants used to derive the value.
5567   ConstantInt *LinearOffset = nullptr;
5568   ConstantInt *LinearMultiplier = nullptr;
5569 
5570   // For ArrayKind, this is the array.
5571   GlobalVariable *Array = nullptr;
5572 };
5573 
5574 } // end anonymous namespace
5575 
5576 SwitchLookupTable::SwitchLookupTable(
5577     Module &M, uint64_t TableSize, ConstantInt *Offset,
5578     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5579     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5580   assert(Values.size() && "Can't build lookup table without values!");
5581   assert(TableSize >= Values.size() && "Can't fit values in table!");
5582 
5583   // If all values in the table are equal, this is that value.
5584   SingleValue = Values.begin()->second;
5585 
5586   Type *ValueType = Values.begin()->second->getType();
5587 
5588   // Build up the table contents.
5589   SmallVector<Constant *, 64> TableContents(TableSize);
5590   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5591     ConstantInt *CaseVal = Values[I].first;
5592     Constant *CaseRes = Values[I].second;
5593     assert(CaseRes->getType() == ValueType);
5594 
5595     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5596     TableContents[Idx] = CaseRes;
5597 
5598     if (CaseRes != SingleValue)
5599       SingleValue = nullptr;
5600   }
5601 
5602   // Fill in any holes in the table with the default result.
5603   if (Values.size() < TableSize) {
5604     assert(DefaultValue &&
5605            "Need a default value to fill the lookup table holes.");
5606     assert(DefaultValue->getType() == ValueType);
5607     for (uint64_t I = 0; I < TableSize; ++I) {
5608       if (!TableContents[I])
5609         TableContents[I] = DefaultValue;
5610     }
5611 
5612     if (DefaultValue != SingleValue)
5613       SingleValue = nullptr;
5614   }
5615 
5616   // If each element in the table contains the same value, we only need to store
5617   // that single value.
5618   if (SingleValue) {
5619     Kind = SingleValueKind;
5620     return;
5621   }
5622 
5623   // Check if we can derive the value with a linear transformation from the
5624   // table index.
5625   if (isa<IntegerType>(ValueType)) {
5626     bool LinearMappingPossible = true;
5627     APInt PrevVal;
5628     APInt DistToPrev;
5629     assert(TableSize >= 2 && "Should be a SingleValue table.");
5630     // Check if there is the same distance between two consecutive values.
5631     for (uint64_t I = 0; I < TableSize; ++I) {
5632       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5633       if (!ConstVal) {
5634         // This is an undef. We could deal with it, but undefs in lookup tables
5635         // are very seldom. It's probably not worth the additional complexity.
5636         LinearMappingPossible = false;
5637         break;
5638       }
5639       const APInt &Val = ConstVal->getValue();
5640       if (I != 0) {
5641         APInt Dist = Val - PrevVal;
5642         if (I == 1) {
5643           DistToPrev = Dist;
5644         } else if (Dist != DistToPrev) {
5645           LinearMappingPossible = false;
5646           break;
5647         }
5648       }
5649       PrevVal = Val;
5650     }
5651     if (LinearMappingPossible) {
5652       LinearOffset = cast<ConstantInt>(TableContents[0]);
5653       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5654       Kind = LinearMapKind;
5655       ++NumLinearMaps;
5656       return;
5657     }
5658   }
5659 
5660   // If the type is integer and the table fits in a register, build a bitmap.
5661   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5662     IntegerType *IT = cast<IntegerType>(ValueType);
5663     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5664     for (uint64_t I = TableSize; I > 0; --I) {
5665       TableInt <<= IT->getBitWidth();
5666       // Insert values into the bitmap. Undef values are set to zero.
5667       if (!isa<UndefValue>(TableContents[I - 1])) {
5668         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5669         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5670       }
5671     }
5672     BitMap = ConstantInt::get(M.getContext(), TableInt);
5673     BitMapElementTy = IT;
5674     Kind = BitMapKind;
5675     ++NumBitMaps;
5676     return;
5677   }
5678 
5679   // Store the table in an array.
5680   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5681   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5682 
5683   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5684                              GlobalVariable::PrivateLinkage, Initializer,
5685                              "switch.table." + FuncName);
5686   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5687   // Set the alignment to that of an array items. We will be only loading one
5688   // value out of it.
5689   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5690   Kind = ArrayKind;
5691 }
5692 
5693 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5694   switch (Kind) {
5695   case SingleValueKind:
5696     return SingleValue;
5697   case LinearMapKind: {
5698     // Derive the result value from the input value.
5699     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5700                                           false, "switch.idx.cast");
5701     if (!LinearMultiplier->isOne())
5702       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5703     if (!LinearOffset->isZero())
5704       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5705     return Result;
5706   }
5707   case BitMapKind: {
5708     // Type of the bitmap (e.g. i59).
5709     IntegerType *MapTy = BitMap->getType();
5710 
5711     // Cast Index to the same type as the bitmap.
5712     // Note: The Index is <= the number of elements in the table, so
5713     // truncating it to the width of the bitmask is safe.
5714     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5715 
5716     // Multiply the shift amount by the element width.
5717     ShiftAmt = Builder.CreateMul(
5718         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5719         "switch.shiftamt");
5720 
5721     // Shift down.
5722     Value *DownShifted =
5723         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5724     // Mask off.
5725     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5726   }
5727   case ArrayKind: {
5728     // Make sure the table index will not overflow when treated as signed.
5729     IntegerType *IT = cast<IntegerType>(Index->getType());
5730     uint64_t TableSize =
5731         Array->getInitializer()->getType()->getArrayNumElements();
5732     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5733       Index = Builder.CreateZExt(
5734           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5735           "switch.tableidx.zext");
5736 
5737     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5738     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5739                                            GEPIndices, "switch.gep");
5740     return Builder.CreateLoad(
5741         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5742         "switch.load");
5743   }
5744   }
5745   llvm_unreachable("Unknown lookup table kind!");
5746 }
5747 
5748 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5749                                            uint64_t TableSize,
5750                                            Type *ElementType) {
5751   auto *IT = dyn_cast<IntegerType>(ElementType);
5752   if (!IT)
5753     return false;
5754   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5755   // are <= 15, we could try to narrow the type.
5756 
5757   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5758   if (TableSize >= UINT_MAX / IT->getBitWidth())
5759     return false;
5760   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5761 }
5762 
5763 /// Determine whether a lookup table should be built for this switch, based on
5764 /// the number of cases, size of the table, and the types of the results.
5765 static bool
5766 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5767                        const TargetTransformInfo &TTI, const DataLayout &DL,
5768                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5769   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5770     return false; // TableSize overflowed, or mul below might overflow.
5771 
5772   bool AllTablesFitInRegister = true;
5773   bool HasIllegalType = false;
5774   for (const auto &I : ResultTypes) {
5775     Type *Ty = I.second;
5776 
5777     // Saturate this flag to true.
5778     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5779 
5780     // Saturate this flag to false.
5781     AllTablesFitInRegister =
5782         AllTablesFitInRegister &&
5783         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5784 
5785     // If both flags saturate, we're done. NOTE: This *only* works with
5786     // saturating flags, and all flags have to saturate first due to the
5787     // non-deterministic behavior of iterating over a dense map.
5788     if (HasIllegalType && !AllTablesFitInRegister)
5789       break;
5790   }
5791 
5792   // If each table would fit in a register, we should build it anyway.
5793   if (AllTablesFitInRegister)
5794     return true;
5795 
5796   // Don't build a table that doesn't fit in-register if it has illegal types.
5797   if (HasIllegalType)
5798     return false;
5799 
5800   // The table density should be at least 40%. This is the same criterion as for
5801   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5802   // FIXME: Find the best cut-off.
5803   return SI->getNumCases() * 10 >= TableSize * 4;
5804 }
5805 
5806 /// Try to reuse the switch table index compare. Following pattern:
5807 /// \code
5808 ///     if (idx < tablesize)
5809 ///        r = table[idx]; // table does not contain default_value
5810 ///     else
5811 ///        r = default_value;
5812 ///     if (r != default_value)
5813 ///        ...
5814 /// \endcode
5815 /// Is optimized to:
5816 /// \code
5817 ///     cond = idx < tablesize;
5818 ///     if (cond)
5819 ///        r = table[idx];
5820 ///     else
5821 ///        r = default_value;
5822 ///     if (cond)
5823 ///        ...
5824 /// \endcode
5825 /// Jump threading will then eliminate the second if(cond).
5826 static void reuseTableCompare(
5827     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5828     Constant *DefaultValue,
5829     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5830   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5831   if (!CmpInst)
5832     return;
5833 
5834   // We require that the compare is in the same block as the phi so that jump
5835   // threading can do its work afterwards.
5836   if (CmpInst->getParent() != PhiBlock)
5837     return;
5838 
5839   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5840   if (!CmpOp1)
5841     return;
5842 
5843   Value *RangeCmp = RangeCheckBranch->getCondition();
5844   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5845   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5846 
5847   // Check if the compare with the default value is constant true or false.
5848   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5849                                                  DefaultValue, CmpOp1, true);
5850   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5851     return;
5852 
5853   // Check if the compare with the case values is distinct from the default
5854   // compare result.
5855   for (auto ValuePair : Values) {
5856     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5857                                                 ValuePair.second, CmpOp1, true);
5858     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5859       return;
5860     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5861            "Expect true or false as compare result.");
5862   }
5863 
5864   // Check if the branch instruction dominates the phi node. It's a simple
5865   // dominance check, but sufficient for our needs.
5866   // Although this check is invariant in the calling loops, it's better to do it
5867   // at this late stage. Practically we do it at most once for a switch.
5868   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5869   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5870     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5871       return;
5872   }
5873 
5874   if (DefaultConst == FalseConst) {
5875     // The compare yields the same result. We can replace it.
5876     CmpInst->replaceAllUsesWith(RangeCmp);
5877     ++NumTableCmpReuses;
5878   } else {
5879     // The compare yields the same result, just inverted. We can replace it.
5880     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5881         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5882         RangeCheckBranch);
5883     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5884     ++NumTableCmpReuses;
5885   }
5886 }
5887 
5888 /// If the switch is only used to initialize one or more phi nodes in a common
5889 /// successor block with different constant values, replace the switch with
5890 /// lookup tables.
5891 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5892                                 DomTreeUpdater *DTU, const DataLayout &DL,
5893                                 const TargetTransformInfo &TTI) {
5894   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5895 
5896   BasicBlock *BB = SI->getParent();
5897   Function *Fn = BB->getParent();
5898   // Only build lookup table when we have a target that supports it or the
5899   // attribute is not set.
5900   if (!TTI.shouldBuildLookupTables() ||
5901       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5902     return false;
5903 
5904   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5905   // split off a dense part and build a lookup table for that.
5906 
5907   // FIXME: This creates arrays of GEPs to constant strings, which means each
5908   // GEP needs a runtime relocation in PIC code. We should just build one big
5909   // string and lookup indices into that.
5910 
5911   // Ignore switches with less than three cases. Lookup tables will not make
5912   // them faster, so we don't analyze them.
5913   if (SI->getNumCases() < 3)
5914     return false;
5915 
5916   // Figure out the corresponding result for each case value and phi node in the
5917   // common destination, as well as the min and max case values.
5918   assert(!SI->cases().empty());
5919   SwitchInst::CaseIt CI = SI->case_begin();
5920   ConstantInt *MinCaseVal = CI->getCaseValue();
5921   ConstantInt *MaxCaseVal = CI->getCaseValue();
5922 
5923   BasicBlock *CommonDest = nullptr;
5924 
5925   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5926   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5927 
5928   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5929   SmallDenseMap<PHINode *, Type *> ResultTypes;
5930   SmallVector<PHINode *, 4> PHIs;
5931 
5932   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5933     ConstantInt *CaseVal = CI->getCaseValue();
5934     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5935       MinCaseVal = CaseVal;
5936     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5937       MaxCaseVal = CaseVal;
5938 
5939     // Resulting value at phi nodes for this case value.
5940     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5941     ResultsTy Results;
5942     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5943                         Results, DL, TTI))
5944       return false;
5945 
5946     // Append the result from this case to the list for each phi.
5947     for (const auto &I : Results) {
5948       PHINode *PHI = I.first;
5949       Constant *Value = I.second;
5950       if (!ResultLists.count(PHI))
5951         PHIs.push_back(PHI);
5952       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5953     }
5954   }
5955 
5956   // Keep track of the result types.
5957   for (PHINode *PHI : PHIs) {
5958     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5959   }
5960 
5961   uint64_t NumResults = ResultLists[PHIs[0]].size();
5962   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5963   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5964   bool TableHasHoles = (NumResults < TableSize);
5965 
5966   // If the table has holes, we need a constant result for the default case
5967   // or a bitmask that fits in a register.
5968   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5969   bool HasDefaultResults =
5970       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5971                      DefaultResultsList, DL, TTI);
5972 
5973   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5974   if (NeedMask) {
5975     // As an extra penalty for the validity test we require more cases.
5976     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5977       return false;
5978     if (!DL.fitsInLegalInteger(TableSize))
5979       return false;
5980   }
5981 
5982   for (const auto &I : DefaultResultsList) {
5983     PHINode *PHI = I.first;
5984     Constant *Result = I.second;
5985     DefaultResults[PHI] = Result;
5986   }
5987 
5988   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5989     return false;
5990 
5991   std::vector<DominatorTree::UpdateType> Updates;
5992 
5993   // Create the BB that does the lookups.
5994   Module &Mod = *CommonDest->getParent()->getParent();
5995   BasicBlock *LookupBB = BasicBlock::Create(
5996       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5997 
5998   // Compute the table index value.
5999   Builder.SetInsertPoint(SI);
6000   Value *TableIndex;
6001   if (MinCaseVal->isNullValue())
6002     TableIndex = SI->getCondition();
6003   else
6004     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
6005                                    "switch.tableidx");
6006 
6007   // Compute the maximum table size representable by the integer type we are
6008   // switching upon.
6009   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6010   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6011   assert(MaxTableSize >= TableSize &&
6012          "It is impossible for a switch to have more entries than the max "
6013          "representable value of its input integer type's size.");
6014 
6015   // If the default destination is unreachable, or if the lookup table covers
6016   // all values of the conditional variable, branch directly to the lookup table
6017   // BB. Otherwise, check that the condition is within the case range.
6018   const bool DefaultIsReachable =
6019       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6020   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6021   BranchInst *RangeCheckBranch = nullptr;
6022 
6023   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6024     Builder.CreateBr(LookupBB);
6025     if (DTU)
6026       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6027     // Note: We call removeProdecessor later since we need to be able to get the
6028     // PHI value for the default case in case we're using a bit mask.
6029   } else {
6030     Value *Cmp = Builder.CreateICmpULT(
6031         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6032     RangeCheckBranch =
6033         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6034     if (DTU)
6035       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6036   }
6037 
6038   // Populate the BB that does the lookups.
6039   Builder.SetInsertPoint(LookupBB);
6040 
6041   if (NeedMask) {
6042     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6043     // re-purposed to do the hole check, and we create a new LookupBB.
6044     BasicBlock *MaskBB = LookupBB;
6045     MaskBB->setName("switch.hole_check");
6046     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6047                                   CommonDest->getParent(), CommonDest);
6048 
6049     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6050     // unnecessary illegal types.
6051     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6052     APInt MaskInt(TableSizePowOf2, 0);
6053     APInt One(TableSizePowOf2, 1);
6054     // Build bitmask; fill in a 1 bit for every case.
6055     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6056     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6057       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
6058                          .getLimitedValue();
6059       MaskInt |= One << Idx;
6060     }
6061     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6062 
6063     // Get the TableIndex'th bit of the bitmask.
6064     // If this bit is 0 (meaning hole) jump to the default destination,
6065     // else continue with table lookup.
6066     IntegerType *MapTy = TableMask->getType();
6067     Value *MaskIndex =
6068         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6069     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6070     Value *LoBit = Builder.CreateTrunc(
6071         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6072     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6073     if (DTU) {
6074       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6075       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6076     }
6077     Builder.SetInsertPoint(LookupBB);
6078     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6079   }
6080 
6081   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6082     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6083     // do not delete PHINodes here.
6084     SI->getDefaultDest()->removePredecessor(BB,
6085                                             /*KeepOneInputPHIs=*/true);
6086     if (DTU)
6087       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6088   }
6089 
6090   bool ReturnedEarly = false;
6091   for (PHINode *PHI : PHIs) {
6092     const ResultListTy &ResultList = ResultLists[PHI];
6093 
6094     // If using a bitmask, use any value to fill the lookup table holes.
6095     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6096     StringRef FuncName = Fn->getName();
6097     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6098                             FuncName);
6099 
6100     Value *Result = Table.BuildLookup(TableIndex, Builder);
6101 
6102     // If the result is used to return immediately from the function, we want to
6103     // do that right here.
6104     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
6105         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
6106       Builder.CreateRet(Result);
6107       ReturnedEarly = true;
6108       break;
6109     }
6110 
6111     // Do a small peephole optimization: re-use the switch table compare if
6112     // possible.
6113     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6114       BasicBlock *PhiBlock = PHI->getParent();
6115       // Search for compare instructions which use the phi.
6116       for (auto *User : PHI->users()) {
6117         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6118       }
6119     }
6120 
6121     PHI->addIncoming(Result, LookupBB);
6122   }
6123 
6124   if (!ReturnedEarly) {
6125     Builder.CreateBr(CommonDest);
6126     if (DTU)
6127       Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6128   }
6129 
6130   // Remove the switch.
6131   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6132   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6133     BasicBlock *Succ = SI->getSuccessor(i);
6134 
6135     if (Succ == SI->getDefaultDest())
6136       continue;
6137     Succ->removePredecessor(BB);
6138     RemovedSuccessors.insert(Succ);
6139   }
6140   SI->eraseFromParent();
6141 
6142   if (DTU) {
6143     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6144       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6145     DTU->applyUpdates(Updates);
6146   }
6147 
6148   ++NumLookupTables;
6149   if (NeedMask)
6150     ++NumLookupTablesHoles;
6151   return true;
6152 }
6153 
6154 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6155   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6156   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6157   uint64_t Range = Diff + 1;
6158   uint64_t NumCases = Values.size();
6159   // 40% is the default density for building a jump table in optsize/minsize mode.
6160   uint64_t MinDensity = 40;
6161 
6162   return NumCases * 100 >= Range * MinDensity;
6163 }
6164 
6165 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6166 /// of cases.
6167 ///
6168 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6169 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6170 ///
6171 /// This converts a sparse switch into a dense switch which allows better
6172 /// lowering and could also allow transforming into a lookup table.
6173 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6174                               const DataLayout &DL,
6175                               const TargetTransformInfo &TTI) {
6176   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6177   if (CondTy->getIntegerBitWidth() > 64 ||
6178       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6179     return false;
6180   // Only bother with this optimization if there are more than 3 switch cases;
6181   // SDAG will only bother creating jump tables for 4 or more cases.
6182   if (SI->getNumCases() < 4)
6183     return false;
6184 
6185   // This transform is agnostic to the signedness of the input or case values. We
6186   // can treat the case values as signed or unsigned. We can optimize more common
6187   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6188   // as signed.
6189   SmallVector<int64_t,4> Values;
6190   for (auto &C : SI->cases())
6191     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6192   llvm::sort(Values);
6193 
6194   // If the switch is already dense, there's nothing useful to do here.
6195   if (isSwitchDense(Values))
6196     return false;
6197 
6198   // First, transform the values such that they start at zero and ascend.
6199   int64_t Base = Values[0];
6200   for (auto &V : Values)
6201     V -= (uint64_t)(Base);
6202 
6203   // Now we have signed numbers that have been shifted so that, given enough
6204   // precision, there are no negative values. Since the rest of the transform
6205   // is bitwise only, we switch now to an unsigned representation.
6206 
6207   // This transform can be done speculatively because it is so cheap - it
6208   // results in a single rotate operation being inserted.
6209   // FIXME: It's possible that optimizing a switch on powers of two might also
6210   // be beneficial - flag values are often powers of two and we could use a CLZ
6211   // as the key function.
6212 
6213   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6214   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6215   // less than 64.
6216   unsigned Shift = 64;
6217   for (auto &V : Values)
6218     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6219   assert(Shift < 64);
6220   if (Shift > 0)
6221     for (auto &V : Values)
6222       V = (int64_t)((uint64_t)V >> Shift);
6223 
6224   if (!isSwitchDense(Values))
6225     // Transform didn't create a dense switch.
6226     return false;
6227 
6228   // The obvious transform is to shift the switch condition right and emit a
6229   // check that the condition actually cleanly divided by GCD, i.e.
6230   //   C & (1 << Shift - 1) == 0
6231   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6232   //
6233   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6234   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6235   // are nonzero then the switch condition will be very large and will hit the
6236   // default case.
6237 
6238   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6239   Builder.SetInsertPoint(SI);
6240   auto *ShiftC = ConstantInt::get(Ty, Shift);
6241   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6242   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6243   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6244   auto *Rot = Builder.CreateOr(LShr, Shl);
6245   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6246 
6247   for (auto Case : SI->cases()) {
6248     auto *Orig = Case.getCaseValue();
6249     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6250     Case.setValue(
6251         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6252   }
6253   return true;
6254 }
6255 
6256 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6257   BasicBlock *BB = SI->getParent();
6258 
6259   if (isValueEqualityComparison(SI)) {
6260     // If we only have one predecessor, and if it is a branch on this value,
6261     // see if that predecessor totally determines the outcome of this switch.
6262     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6263       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6264         return requestResimplify();
6265 
6266     Value *Cond = SI->getCondition();
6267     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6268       if (SimplifySwitchOnSelect(SI, Select))
6269         return requestResimplify();
6270 
6271     // If the block only contains the switch, see if we can fold the block
6272     // away into any preds.
6273     if (SI == &*BB->instructionsWithoutDebug().begin())
6274       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6275         return requestResimplify();
6276   }
6277 
6278   // Try to transform the switch into an icmp and a branch.
6279   if (TurnSwitchRangeIntoICmp(SI, Builder))
6280     return requestResimplify();
6281 
6282   // Remove unreachable cases.
6283   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6284     return requestResimplify();
6285 
6286   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6287     return requestResimplify();
6288 
6289   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6290     return requestResimplify();
6291 
6292   // The conversion from switch to lookup tables results in difficult-to-analyze
6293   // code and makes pruning branches much harder. This is a problem if the
6294   // switch expression itself can still be restricted as a result of inlining or
6295   // CVP. Therefore, only apply this transformation during late stages of the
6296   // optimisation pipeline.
6297   if (Options.ConvertSwitchToLookupTable &&
6298       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6299     return requestResimplify();
6300 
6301   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6302     return requestResimplify();
6303 
6304   return false;
6305 }
6306 
6307 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6308   BasicBlock *BB = IBI->getParent();
6309   bool Changed = false;
6310 
6311   // Eliminate redundant destinations.
6312   SmallPtrSet<Value *, 8> Succs;
6313   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6314   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6315     BasicBlock *Dest = IBI->getDestination(i);
6316     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6317       if (!Dest->hasAddressTaken())
6318         RemovedSuccs.insert(Dest);
6319       Dest->removePredecessor(BB);
6320       IBI->removeDestination(i);
6321       --i;
6322       --e;
6323       Changed = true;
6324     }
6325   }
6326 
6327   if (DTU) {
6328     std::vector<DominatorTree::UpdateType> Updates;
6329     Updates.reserve(RemovedSuccs.size());
6330     for (auto *RemovedSucc : RemovedSuccs)
6331       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6332     DTU->applyUpdates(Updates);
6333   }
6334 
6335   if (IBI->getNumDestinations() == 0) {
6336     // If the indirectbr has no successors, change it to unreachable.
6337     new UnreachableInst(IBI->getContext(), IBI);
6338     EraseTerminatorAndDCECond(IBI);
6339     return true;
6340   }
6341 
6342   if (IBI->getNumDestinations() == 1) {
6343     // If the indirectbr has one successor, change it to a direct branch.
6344     BranchInst::Create(IBI->getDestination(0), IBI);
6345     EraseTerminatorAndDCECond(IBI);
6346     return true;
6347   }
6348 
6349   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6350     if (SimplifyIndirectBrOnSelect(IBI, SI))
6351       return requestResimplify();
6352   }
6353   return Changed;
6354 }
6355 
6356 /// Given an block with only a single landing pad and a unconditional branch
6357 /// try to find another basic block which this one can be merged with.  This
6358 /// handles cases where we have multiple invokes with unique landing pads, but
6359 /// a shared handler.
6360 ///
6361 /// We specifically choose to not worry about merging non-empty blocks
6362 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6363 /// practice, the optimizer produces empty landing pad blocks quite frequently
6364 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6365 /// sinking in this file)
6366 ///
6367 /// This is primarily a code size optimization.  We need to avoid performing
6368 /// any transform which might inhibit optimization (such as our ability to
6369 /// specialize a particular handler via tail commoning).  We do this by not
6370 /// merging any blocks which require us to introduce a phi.  Since the same
6371 /// values are flowing through both blocks, we don't lose any ability to
6372 /// specialize.  If anything, we make such specialization more likely.
6373 ///
6374 /// TODO - This transformation could remove entries from a phi in the target
6375 /// block when the inputs in the phi are the same for the two blocks being
6376 /// merged.  In some cases, this could result in removal of the PHI entirely.
6377 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6378                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6379   auto Succ = BB->getUniqueSuccessor();
6380   assert(Succ);
6381   // If there's a phi in the successor block, we'd likely have to introduce
6382   // a phi into the merged landing pad block.
6383   if (isa<PHINode>(*Succ->begin()))
6384     return false;
6385 
6386   for (BasicBlock *OtherPred : predecessors(Succ)) {
6387     if (BB == OtherPred)
6388       continue;
6389     BasicBlock::iterator I = OtherPred->begin();
6390     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6391     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6392       continue;
6393     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6394       ;
6395     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6396     if (!BI2 || !BI2->isIdenticalTo(BI))
6397       continue;
6398 
6399     std::vector<DominatorTree::UpdateType> Updates;
6400 
6401     // We've found an identical block.  Update our predecessors to take that
6402     // path instead and make ourselves dead.
6403     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6404     for (BasicBlock *Pred : Preds) {
6405       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6406       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6407              "unexpected successor");
6408       II->setUnwindDest(OtherPred);
6409       if (DTU) {
6410         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6411         Updates.push_back({DominatorTree::Delete, Pred, BB});
6412       }
6413     }
6414 
6415     // The debug info in OtherPred doesn't cover the merged control flow that
6416     // used to go through BB.  We need to delete it or update it.
6417     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6418       Instruction &Inst = *I;
6419       I++;
6420       if (isa<DbgInfoIntrinsic>(Inst))
6421         Inst.eraseFromParent();
6422     }
6423 
6424     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6425     for (BasicBlock *Succ : Succs) {
6426       Succ->removePredecessor(BB);
6427       if (DTU)
6428         Updates.push_back({DominatorTree::Delete, BB, Succ});
6429     }
6430 
6431     IRBuilder<> Builder(BI);
6432     Builder.CreateUnreachable();
6433     BI->eraseFromParent();
6434     if (DTU)
6435       DTU->applyUpdates(Updates);
6436     return true;
6437   }
6438   return false;
6439 }
6440 
6441 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6442   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6443                                    : simplifyCondBranch(Branch, Builder);
6444 }
6445 
6446 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6447                                           IRBuilder<> &Builder) {
6448   BasicBlock *BB = BI->getParent();
6449   BasicBlock *Succ = BI->getSuccessor(0);
6450 
6451   // If the Terminator is the only non-phi instruction, simplify the block.
6452   // If LoopHeader is provided, check if the block or its successor is a loop
6453   // header. (This is for early invocations before loop simplify and
6454   // vectorization to keep canonical loop forms for nested loops. These blocks
6455   // can be eliminated when the pass is invoked later in the back-end.)
6456   // Note that if BB has only one predecessor then we do not introduce new
6457   // backedge, so we can eliminate BB.
6458   bool NeedCanonicalLoop =
6459       Options.NeedCanonicalLoop &&
6460       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6461        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6462   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6463   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6464       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6465     return true;
6466 
6467   // If the only instruction in the block is a seteq/setne comparison against a
6468   // constant, try to simplify the block.
6469   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6470     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6471       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6472         ;
6473       if (I->isTerminator() &&
6474           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6475         return true;
6476     }
6477 
6478   // See if we can merge an empty landing pad block with another which is
6479   // equivalent.
6480   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6481     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6482       ;
6483     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6484       return true;
6485   }
6486 
6487   // If this basic block is ONLY a compare and a branch, and if a predecessor
6488   // branches to us and our successor, fold the comparison into the
6489   // predecessor and use logical operations to update the incoming value
6490   // for PHI nodes in common successor.
6491   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6492                              Options.BonusInstThreshold))
6493     return requestResimplify();
6494   return false;
6495 }
6496 
6497 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6498   BasicBlock *PredPred = nullptr;
6499   for (auto *P : predecessors(BB)) {
6500     BasicBlock *PPred = P->getSinglePredecessor();
6501     if (!PPred || (PredPred && PredPred != PPred))
6502       return nullptr;
6503     PredPred = PPred;
6504   }
6505   return PredPred;
6506 }
6507 
6508 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6509   BasicBlock *BB = BI->getParent();
6510   if (!Options.SimplifyCondBranch)
6511     return false;
6512 
6513   // Conditional branch
6514   if (isValueEqualityComparison(BI)) {
6515     // If we only have one predecessor, and if it is a branch on this value,
6516     // see if that predecessor totally determines the outcome of this
6517     // switch.
6518     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6519       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6520         return requestResimplify();
6521 
6522     // This block must be empty, except for the setcond inst, if it exists.
6523     // Ignore dbg and pseudo intrinsics.
6524     auto I = BB->instructionsWithoutDebug(true).begin();
6525     if (&*I == BI) {
6526       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6527         return requestResimplify();
6528     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6529       ++I;
6530       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6531         return requestResimplify();
6532     }
6533   }
6534 
6535   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6536   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6537     return true;
6538 
6539   // If this basic block has dominating predecessor blocks and the dominating
6540   // blocks' conditions imply BI's condition, we know the direction of BI.
6541   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6542   if (Imp) {
6543     // Turn this into a branch on constant.
6544     auto *OldCond = BI->getCondition();
6545     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6546                              : ConstantInt::getFalse(BB->getContext());
6547     BI->setCondition(TorF);
6548     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6549     return requestResimplify();
6550   }
6551 
6552   // If this basic block is ONLY a compare and a branch, and if a predecessor
6553   // branches to us and one of our successors, fold the comparison into the
6554   // predecessor and use logical operations to pick the right destination.
6555   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6556                              Options.BonusInstThreshold))
6557     return requestResimplify();
6558 
6559   // We have a conditional branch to two blocks that are only reachable
6560   // from BI.  We know that the condbr dominates the two blocks, so see if
6561   // there is any identical code in the "then" and "else" blocks.  If so, we
6562   // can hoist it up to the branching block.
6563   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6564     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6565       if (HoistCommon &&
6566           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6567         return requestResimplify();
6568     } else {
6569       // If Successor #1 has multiple preds, we may be able to conditionally
6570       // execute Successor #0 if it branches to Successor #1.
6571       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6572       if (Succ0TI->getNumSuccessors() == 1 &&
6573           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6574         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6575           return requestResimplify();
6576     }
6577   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6578     // If Successor #0 has multiple preds, we may be able to conditionally
6579     // execute Successor #1 if it branches to Successor #0.
6580     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6581     if (Succ1TI->getNumSuccessors() == 1 &&
6582         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6583       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6584         return requestResimplify();
6585   }
6586 
6587   // If this is a branch on a phi node in the current block, thread control
6588   // through this block if any PHI node entries are constants.
6589   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6590     if (PN->getParent() == BI->getParent())
6591       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6592         return requestResimplify();
6593 
6594   // Scan predecessor blocks for conditional branches.
6595   for (BasicBlock *Pred : predecessors(BB))
6596     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6597       if (PBI != BI && PBI->isConditional())
6598         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6599           return requestResimplify();
6600 
6601   // Look for diamond patterns.
6602   if (MergeCondStores)
6603     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6604       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6605         if (PBI != BI && PBI->isConditional())
6606           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6607             return requestResimplify();
6608 
6609   return false;
6610 }
6611 
6612 /// Check if passing a value to an instruction will cause undefined behavior.
6613 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6614   Constant *C = dyn_cast<Constant>(V);
6615   if (!C)
6616     return false;
6617 
6618   if (I->use_empty())
6619     return false;
6620 
6621   if (C->isNullValue() || isa<UndefValue>(C)) {
6622     // Only look at the first use, avoid hurting compile time with long uselists
6623     User *Use = *I->user_begin();
6624 
6625     // Now make sure that there are no instructions in between that can alter
6626     // control flow (eg. calls)
6627     for (BasicBlock::iterator
6628              i = ++BasicBlock::iterator(I),
6629              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6630          i != UI; ++i)
6631       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6632         return false;
6633 
6634     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6635     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6636       if (GEP->getPointerOperand() == I) {
6637         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6638           PtrValueMayBeModified = true;
6639         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6640       }
6641 
6642     // Look through bitcasts.
6643     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6644       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6645 
6646     // Load from null is undefined.
6647     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6648       if (!LI->isVolatile())
6649         return !NullPointerIsDefined(LI->getFunction(),
6650                                      LI->getPointerAddressSpace());
6651 
6652     // Store to null is undefined.
6653     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6654       if (!SI->isVolatile())
6655         return (!NullPointerIsDefined(SI->getFunction(),
6656                                       SI->getPointerAddressSpace())) &&
6657                SI->getPointerOperand() == I;
6658 
6659     if (auto *CB = dyn_cast<CallBase>(Use)) {
6660       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6661         return false;
6662       // A call to null is undefined.
6663       if (CB->getCalledOperand() == I)
6664         return true;
6665 
6666       if (C->isNullValue()) {
6667         for (const llvm::Use &Arg : CB->args())
6668           if (Arg == I) {
6669             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6670             if (CB->isPassingUndefUB(ArgIdx) &&
6671                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6672               // Passing null to a nonnnull+noundef argument is undefined.
6673               return !PtrValueMayBeModified;
6674             }
6675           }
6676       } else if (isa<UndefValue>(C)) {
6677         // Passing undef to a noundef argument is undefined.
6678         for (const llvm::Use &Arg : CB->args())
6679           if (Arg == I) {
6680             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6681             if (CB->isPassingUndefUB(ArgIdx)) {
6682               // Passing undef to a noundef argument is undefined.
6683               return true;
6684             }
6685           }
6686       }
6687     }
6688   }
6689   return false;
6690 }
6691 
6692 /// If BB has an incoming value that will always trigger undefined behavior
6693 /// (eg. null pointer dereference), remove the branch leading here.
6694 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6695                                               DomTreeUpdater *DTU) {
6696   for (PHINode &PHI : BB->phis())
6697     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6698       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6699         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6700         Instruction *T = Predecessor->getTerminator();
6701         IRBuilder<> Builder(T);
6702         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6703           BB->removePredecessor(Predecessor);
6704           // Turn uncoditional branches into unreachables and remove the dead
6705           // destination from conditional branches.
6706           if (BI->isUnconditional())
6707             Builder.CreateUnreachable();
6708           else
6709             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6710                                                        : BI->getSuccessor(0));
6711           BI->eraseFromParent();
6712           if (DTU)
6713             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6714           return true;
6715         }
6716         // TODO: SwitchInst.
6717       }
6718 
6719   return false;
6720 }
6721 
6722 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6723   bool Changed = false;
6724 
6725   assert(BB && BB->getParent() && "Block not embedded in function!");
6726   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6727 
6728   // Remove basic blocks that have no predecessors (except the entry block)...
6729   // or that just have themself as a predecessor.  These are unreachable.
6730   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6731       BB->getSinglePredecessor() == BB) {
6732     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6733     DeleteDeadBlock(BB, DTU);
6734     return true;
6735   }
6736 
6737   // Check to see if we can constant propagate this terminator instruction
6738   // away...
6739   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6740                                     /*TLI=*/nullptr, DTU);
6741 
6742   // Check for and eliminate duplicate PHI nodes in this block.
6743   Changed |= EliminateDuplicatePHINodes(BB);
6744 
6745   // Check for and remove branches that will always cause undefined behavior.
6746   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6747 
6748   // Merge basic blocks into their predecessor if there is only one distinct
6749   // pred, and if there is only one distinct successor of the predecessor, and
6750   // if there are no PHI nodes.
6751   if (MergeBlockIntoPredecessor(BB, DTU))
6752     return true;
6753 
6754   if (SinkCommon && Options.SinkCommonInsts)
6755     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6756 
6757   IRBuilder<> Builder(BB);
6758 
6759   if (Options.FoldTwoEntryPHINode) {
6760     // If there is a trivial two-entry PHI node in this basic block, and we can
6761     // eliminate it, do so now.
6762     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6763       if (PN->getNumIncomingValues() == 2)
6764         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6765   }
6766 
6767   Instruction *Terminator = BB->getTerminator();
6768   Builder.SetInsertPoint(Terminator);
6769   switch (Terminator->getOpcode()) {
6770   case Instruction::Br:
6771     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6772     break;
6773   case Instruction::Ret:
6774     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6775     break;
6776   case Instruction::Resume:
6777     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6778     break;
6779   case Instruction::CleanupRet:
6780     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6781     break;
6782   case Instruction::Switch:
6783     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6784     break;
6785   case Instruction::Unreachable:
6786     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6787     break;
6788   case Instruction::IndirectBr:
6789     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6790     break;
6791   }
6792 
6793   return Changed;
6794 }
6795 
6796 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6797   bool Changed = simplifyOnceImpl(BB);
6798 
6799   return Changed;
6800 }
6801 
6802 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6803   bool Changed = false;
6804 
6805   // Repeated simplify BB as long as resimplification is requested.
6806   do {
6807     Resimplify = false;
6808 
6809     // Perform one round of simplifcation. Resimplify flag will be set if
6810     // another iteration is requested.
6811     Changed |= simplifyOnce(BB);
6812   } while (Resimplify);
6813 
6814   return Changed;
6815 }
6816 
6817 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6818                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6819                        ArrayRef<WeakVH> LoopHeaders) {
6820   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6821                         Options)
6822       .run(BB);
6823 }
6824