1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/MemorySSA.h" 31 #include "llvm/Analysis/MemorySSAUpdater.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/NoFolder.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/PatternMatch.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <climits> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <set> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 using namespace PatternMatch; 86 87 #define DEBUG_TYPE "simplifycfg" 88 89 // Chosen as 2 so as to be cheap, but still to have enough power to fold 90 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 91 // To catch this, we need to fold a compare and a select, hence '2' being the 92 // minimum reasonable default. 93 static cl::opt<unsigned> PHINodeFoldingThreshold( 94 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 95 cl::desc( 96 "Control the amount of phi node folding to perform (default = 2)")); 97 98 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 99 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 100 cl::desc("Control the maximal total instruction cost that we are willing " 101 "to speculatively execute to fold a 2-entry PHI node into a " 102 "select (default = 4)")); 103 104 static cl::opt<bool> DupRet( 105 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 106 cl::desc("Duplicate return instructions into unconditional branches")); 107 108 static cl::opt<bool> 109 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 110 cl::desc("Hoist common instructions up to the parent block")); 111 112 static cl::opt<bool> 113 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 114 cl::desc("Sink common instructions down to the end block")); 115 116 static cl::opt<bool> HoistCondStores( 117 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 118 cl::desc("Hoist conditional stores if an unconditional store precedes")); 119 120 static cl::opt<bool> MergeCondStores( 121 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 122 cl::desc("Hoist conditional stores even if an unconditional store does not " 123 "precede - hoist multiple conditional stores into a single " 124 "predicated store")); 125 126 static cl::opt<bool> MergeCondStoresAggressively( 127 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 128 cl::desc("When merging conditional stores, do so even if the resultant " 129 "basic blocks are unlikely to be if-converted as a result")); 130 131 static cl::opt<bool> SpeculateOneExpensiveInst( 132 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 133 cl::desc("Allow exactly one expensive instruction to be speculatively " 134 "executed")); 135 136 static cl::opt<unsigned> MaxSpeculationDepth( 137 "max-speculation-depth", cl::Hidden, cl::init(10), 138 cl::desc("Limit maximum recursion depth when calculating costs of " 139 "speculatively executed instructions")); 140 141 static cl::opt<int> 142 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 143 cl::desc("Max size of a block which is still considered " 144 "small enough to thread through")); 145 146 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 147 STATISTIC(NumLinearMaps, 148 "Number of switch instructions turned into linear mapping"); 149 STATISTIC(NumLookupTables, 150 "Number of switch instructions turned into lookup tables"); 151 STATISTIC( 152 NumLookupTablesHoles, 153 "Number of switch instructions turned into lookup tables (holes checked)"); 154 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 155 STATISTIC( 156 NumHoistCommonCode, 157 "Number of common instruction 'blocks' hoisted up to the begin block"); 158 STATISTIC(NumHoistCommonInstrs, 159 "Number of common instructions hoisted up to the begin block"); 160 STATISTIC(NumSinkCommonCode, 161 "Number of common instruction 'blocks' sunk down to the end block"); 162 STATISTIC(NumSinkCommonInstrs, 163 "Number of common instructions sunk down to the end block"); 164 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 165 STATISTIC(NumInvokes, 166 "Number of invokes with empty resume blocks simplified into calls"); 167 168 namespace { 169 170 // The first field contains the value that the switch produces when a certain 171 // case group is selected, and the second field is a vector containing the 172 // cases composing the case group. 173 using SwitchCaseResultVectorTy = 174 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 175 176 // The first field contains the phi node that generates a result of the switch 177 // and the second field contains the value generated for a certain case in the 178 // switch for that PHI. 179 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 180 181 /// ValueEqualityComparisonCase - Represents a case of a switch. 182 struct ValueEqualityComparisonCase { 183 ConstantInt *Value; 184 BasicBlock *Dest; 185 186 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 187 : Value(Value), Dest(Dest) {} 188 189 bool operator<(ValueEqualityComparisonCase RHS) const { 190 // Comparing pointers is ok as we only rely on the order for uniquing. 191 return Value < RHS.Value; 192 } 193 194 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 195 }; 196 197 class SimplifyCFGOpt { 198 const TargetTransformInfo &TTI; 199 const DataLayout &DL; 200 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 201 const SimplifyCFGOptions &Options; 202 bool Resimplify; 203 204 Value *isValueEqualityComparison(Instruction *TI); 205 BasicBlock *GetValueEqualityComparisonCases( 206 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 207 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 208 BasicBlock *Pred, 209 IRBuilder<> &Builder); 210 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 211 IRBuilder<> &Builder); 212 213 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 214 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 215 bool simplifySingleResume(ResumeInst *RI); 216 bool simplifyCommonResume(ResumeInst *RI); 217 bool simplifyCleanupReturn(CleanupReturnInst *RI); 218 bool simplifyUnreachable(UnreachableInst *UI); 219 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 220 bool simplifyIndirectBr(IndirectBrInst *IBI); 221 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 222 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 223 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 224 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 225 226 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 227 IRBuilder<> &Builder); 228 229 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 230 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 231 const TargetTransformInfo &TTI); 232 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 233 BasicBlock *TrueBB, BasicBlock *FalseBB, 234 uint32_t TrueWeight, uint32_t FalseWeight); 235 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 236 const DataLayout &DL); 237 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 238 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 239 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 240 241 public: 242 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 243 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 244 const SimplifyCFGOptions &Opts) 245 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 246 247 bool run(BasicBlock *BB); 248 bool simplifyOnce(BasicBlock *BB); 249 250 // Helper to set Resimplify and return change indication. 251 bool requestResimplify() { 252 Resimplify = true; 253 return true; 254 } 255 }; 256 257 } // end anonymous namespace 258 259 /// Return true if it is safe to merge these two 260 /// terminator instructions together. 261 static bool 262 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 263 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 264 if (SI1 == SI2) 265 return false; // Can't merge with self! 266 267 // It is not safe to merge these two switch instructions if they have a common 268 // successor, and if that successor has a PHI node, and if *that* PHI node has 269 // conflicting incoming values from the two switch blocks. 270 BasicBlock *SI1BB = SI1->getParent(); 271 BasicBlock *SI2BB = SI2->getParent(); 272 273 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 274 bool Fail = false; 275 for (BasicBlock *Succ : successors(SI2BB)) 276 if (SI1Succs.count(Succ)) 277 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 278 PHINode *PN = cast<PHINode>(BBI); 279 if (PN->getIncomingValueForBlock(SI1BB) != 280 PN->getIncomingValueForBlock(SI2BB)) { 281 if (FailBlocks) 282 FailBlocks->insert(Succ); 283 Fail = true; 284 } 285 } 286 287 return !Fail; 288 } 289 290 /// Return true if it is safe and profitable to merge these two terminator 291 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 292 /// store all PHI nodes in common successors. 293 static bool 294 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 295 Instruction *Cond, 296 SmallVectorImpl<PHINode *> &PhiNodes) { 297 if (SI1 == SI2) 298 return false; // Can't merge with self! 299 assert(SI1->isUnconditional() && SI2->isConditional()); 300 301 // We fold the unconditional branch if we can easily update all PHI nodes in 302 // common successors: 303 // 1> We have a constant incoming value for the conditional branch; 304 // 2> We have "Cond" as the incoming value for the unconditional branch; 305 // 3> SI2->getCondition() and Cond have same operands. 306 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 307 if (!Ci2) 308 return false; 309 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 310 Cond->getOperand(1) == Ci2->getOperand(1)) && 311 !(Cond->getOperand(0) == Ci2->getOperand(1) && 312 Cond->getOperand(1) == Ci2->getOperand(0))) 313 return false; 314 315 BasicBlock *SI1BB = SI1->getParent(); 316 BasicBlock *SI2BB = SI2->getParent(); 317 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 318 for (BasicBlock *Succ : successors(SI2BB)) 319 if (SI1Succs.count(Succ)) 320 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 321 PHINode *PN = cast<PHINode>(BBI); 322 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 323 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 324 return false; 325 PhiNodes.push_back(PN); 326 } 327 return true; 328 } 329 330 /// Update PHI nodes in Succ to indicate that there will now be entries in it 331 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 332 /// will be the same as those coming in from ExistPred, an existing predecessor 333 /// of Succ. 334 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 335 BasicBlock *ExistPred, 336 MemorySSAUpdater *MSSAU = nullptr) { 337 for (PHINode &PN : Succ->phis()) 338 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 339 if (MSSAU) 340 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 341 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 342 } 343 344 /// Compute an abstract "cost" of speculating the given instruction, 345 /// which is assumed to be safe to speculate. TCC_Free means cheap, 346 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 347 /// expensive. 348 static unsigned ComputeSpeculationCost(const User *I, 349 const TargetTransformInfo &TTI) { 350 assert(isSafeToSpeculativelyExecute(I) && 351 "Instruction is not safe to speculatively execute!"); 352 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 353 } 354 355 /// If we have a merge point of an "if condition" as accepted above, 356 /// return true if the specified value dominates the block. We 357 /// don't handle the true generality of domination here, just a special case 358 /// which works well enough for us. 359 /// 360 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 361 /// see if V (which must be an instruction) and its recursive operands 362 /// that do not dominate BB have a combined cost lower than CostRemaining and 363 /// are non-trapping. If both are true, the instruction is inserted into the 364 /// set and true is returned. 365 /// 366 /// The cost for most non-trapping instructions is defined as 1 except for 367 /// Select whose cost is 2. 368 /// 369 /// After this function returns, CostRemaining is decreased by the cost of 370 /// V plus its non-dominating operands. If that cost is greater than 371 /// CostRemaining, false is returned and CostRemaining is undefined. 372 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 373 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 374 int &BudgetRemaining, 375 const TargetTransformInfo &TTI, 376 unsigned Depth = 0) { 377 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 378 // so limit the recursion depth. 379 // TODO: While this recursion limit does prevent pathological behavior, it 380 // would be better to track visited instructions to avoid cycles. 381 if (Depth == MaxSpeculationDepth) 382 return false; 383 384 Instruction *I = dyn_cast<Instruction>(V); 385 if (!I) { 386 // Non-instructions all dominate instructions, but not all constantexprs 387 // can be executed unconditionally. 388 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 389 if (C->canTrap()) 390 return false; 391 return true; 392 } 393 BasicBlock *PBB = I->getParent(); 394 395 // We don't want to allow weird loops that might have the "if condition" in 396 // the bottom of this block. 397 if (PBB == BB) 398 return false; 399 400 // If this instruction is defined in a block that contains an unconditional 401 // branch to BB, then it must be in the 'conditional' part of the "if 402 // statement". If not, it definitely dominates the region. 403 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 404 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 405 return true; 406 407 // If we have seen this instruction before, don't count it again. 408 if (AggressiveInsts.count(I)) 409 return true; 410 411 // Okay, it looks like the instruction IS in the "condition". Check to 412 // see if it's a cheap instruction to unconditionally compute, and if it 413 // only uses stuff defined outside of the condition. If so, hoist it out. 414 if (!isSafeToSpeculativelyExecute(I)) 415 return false; 416 417 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 418 419 // Allow exactly one instruction to be speculated regardless of its cost 420 // (as long as it is safe to do so). 421 // This is intended to flatten the CFG even if the instruction is a division 422 // or other expensive operation. The speculation of an expensive instruction 423 // is expected to be undone in CodeGenPrepare if the speculation has not 424 // enabled further IR optimizations. 425 if (BudgetRemaining < 0 && 426 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 427 return false; 428 429 // Okay, we can only really hoist these out if their operands do 430 // not take us over the cost threshold. 431 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 432 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 433 Depth + 1)) 434 return false; 435 // Okay, it's safe to do this! Remember this instruction. 436 AggressiveInsts.insert(I); 437 return true; 438 } 439 440 /// Extract ConstantInt from value, looking through IntToPtr 441 /// and PointerNullValue. Return NULL if value is not a constant int. 442 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 443 // Normal constant int. 444 ConstantInt *CI = dyn_cast<ConstantInt>(V); 445 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 446 return CI; 447 448 // This is some kind of pointer constant. Turn it into a pointer-sized 449 // ConstantInt if possible. 450 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 451 452 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 453 if (isa<ConstantPointerNull>(V)) 454 return ConstantInt::get(PtrTy, 0); 455 456 // IntToPtr const int. 457 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 458 if (CE->getOpcode() == Instruction::IntToPtr) 459 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 460 // The constant is very likely to have the right type already. 461 if (CI->getType() == PtrTy) 462 return CI; 463 else 464 return cast<ConstantInt>( 465 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 466 } 467 return nullptr; 468 } 469 470 namespace { 471 472 /// Given a chain of or (||) or and (&&) comparison of a value against a 473 /// constant, this will try to recover the information required for a switch 474 /// structure. 475 /// It will depth-first traverse the chain of comparison, seeking for patterns 476 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 477 /// representing the different cases for the switch. 478 /// Note that if the chain is composed of '||' it will build the set of elements 479 /// that matches the comparisons (i.e. any of this value validate the chain) 480 /// while for a chain of '&&' it will build the set elements that make the test 481 /// fail. 482 struct ConstantComparesGatherer { 483 const DataLayout &DL; 484 485 /// Value found for the switch comparison 486 Value *CompValue = nullptr; 487 488 /// Extra clause to be checked before the switch 489 Value *Extra = nullptr; 490 491 /// Set of integers to match in switch 492 SmallVector<ConstantInt *, 8> Vals; 493 494 /// Number of comparisons matched in the and/or chain 495 unsigned UsedICmps = 0; 496 497 /// Construct and compute the result for the comparison instruction Cond 498 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 499 gather(Cond); 500 } 501 502 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 503 ConstantComparesGatherer & 504 operator=(const ConstantComparesGatherer &) = delete; 505 506 private: 507 /// Try to set the current value used for the comparison, it succeeds only if 508 /// it wasn't set before or if the new value is the same as the old one 509 bool setValueOnce(Value *NewVal) { 510 if (CompValue && CompValue != NewVal) 511 return false; 512 CompValue = NewVal; 513 return (CompValue != nullptr); 514 } 515 516 /// Try to match Instruction "I" as a comparison against a constant and 517 /// populates the array Vals with the set of values that match (or do not 518 /// match depending on isEQ). 519 /// Return false on failure. On success, the Value the comparison matched 520 /// against is placed in CompValue. 521 /// If CompValue is already set, the function is expected to fail if a match 522 /// is found but the value compared to is different. 523 bool matchInstruction(Instruction *I, bool isEQ) { 524 // If this is an icmp against a constant, handle this as one of the cases. 525 ICmpInst *ICI; 526 ConstantInt *C; 527 if (!((ICI = dyn_cast<ICmpInst>(I)) && 528 (C = GetConstantInt(I->getOperand(1), DL)))) { 529 return false; 530 } 531 532 Value *RHSVal; 533 const APInt *RHSC; 534 535 // Pattern match a special case 536 // (x & ~2^z) == y --> x == y || x == y|2^z 537 // This undoes a transformation done by instcombine to fuse 2 compares. 538 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 539 // It's a little bit hard to see why the following transformations are 540 // correct. Here is a CVC3 program to verify them for 64-bit values: 541 542 /* 543 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 544 x : BITVECTOR(64); 545 y : BITVECTOR(64); 546 z : BITVECTOR(64); 547 mask : BITVECTOR(64) = BVSHL(ONE, z); 548 QUERY( (y & ~mask = y) => 549 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 550 ); 551 QUERY( (y | mask = y) => 552 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 553 ); 554 */ 555 556 // Please note that each pattern must be a dual implication (<--> or 557 // iff). One directional implication can create spurious matches. If the 558 // implication is only one-way, an unsatisfiable condition on the left 559 // side can imply a satisfiable condition on the right side. Dual 560 // implication ensures that satisfiable conditions are transformed to 561 // other satisfiable conditions and unsatisfiable conditions are 562 // transformed to other unsatisfiable conditions. 563 564 // Here is a concrete example of a unsatisfiable condition on the left 565 // implying a satisfiable condition on the right: 566 // 567 // mask = (1 << z) 568 // (x & ~mask) == y --> (x == y || x == (y | mask)) 569 // 570 // Substituting y = 3, z = 0 yields: 571 // (x & -2) == 3 --> (x == 3 || x == 2) 572 573 // Pattern match a special case: 574 /* 575 QUERY( (y & ~mask = y) => 576 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 577 ); 578 */ 579 if (match(ICI->getOperand(0), 580 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 581 APInt Mask = ~*RHSC; 582 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 583 // If we already have a value for the switch, it has to match! 584 if (!setValueOnce(RHSVal)) 585 return false; 586 587 Vals.push_back(C); 588 Vals.push_back( 589 ConstantInt::get(C->getContext(), 590 C->getValue() | Mask)); 591 UsedICmps++; 592 return true; 593 } 594 } 595 596 // Pattern match a special case: 597 /* 598 QUERY( (y | mask = y) => 599 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 600 ); 601 */ 602 if (match(ICI->getOperand(0), 603 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 604 APInt Mask = *RHSC; 605 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 606 // If we already have a value for the switch, it has to match! 607 if (!setValueOnce(RHSVal)) 608 return false; 609 610 Vals.push_back(C); 611 Vals.push_back(ConstantInt::get(C->getContext(), 612 C->getValue() & ~Mask)); 613 UsedICmps++; 614 return true; 615 } 616 } 617 618 // If we already have a value for the switch, it has to match! 619 if (!setValueOnce(ICI->getOperand(0))) 620 return false; 621 622 UsedICmps++; 623 Vals.push_back(C); 624 return ICI->getOperand(0); 625 } 626 627 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 628 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 629 ICI->getPredicate(), C->getValue()); 630 631 // Shift the range if the compare is fed by an add. This is the range 632 // compare idiom as emitted by instcombine. 633 Value *CandidateVal = I->getOperand(0); 634 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 635 Span = Span.subtract(*RHSC); 636 CandidateVal = RHSVal; 637 } 638 639 // If this is an and/!= check, then we are looking to build the set of 640 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 641 // x != 0 && x != 1. 642 if (!isEQ) 643 Span = Span.inverse(); 644 645 // If there are a ton of values, we don't want to make a ginormous switch. 646 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 647 return false; 648 } 649 650 // If we already have a value for the switch, it has to match! 651 if (!setValueOnce(CandidateVal)) 652 return false; 653 654 // Add all values from the range to the set 655 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 656 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 657 658 UsedICmps++; 659 return true; 660 } 661 662 /// Given a potentially 'or'd or 'and'd together collection of icmp 663 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 664 /// the value being compared, and stick the list constants into the Vals 665 /// vector. 666 /// One "Extra" case is allowed to differ from the other. 667 void gather(Value *V) { 668 bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or); 669 670 // Keep a stack (SmallVector for efficiency) for depth-first traversal 671 SmallVector<Value *, 8> DFT; 672 SmallPtrSet<Value *, 8> Visited; 673 674 // Initialize 675 Visited.insert(V); 676 DFT.push_back(V); 677 678 while (!DFT.empty()) { 679 V = DFT.pop_back_val(); 680 681 if (Instruction *I = dyn_cast<Instruction>(V)) { 682 // If it is a || (or && depending on isEQ), process the operands. 683 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 684 if (Visited.insert(I->getOperand(1)).second) 685 DFT.push_back(I->getOperand(1)); 686 if (Visited.insert(I->getOperand(0)).second) 687 DFT.push_back(I->getOperand(0)); 688 continue; 689 } 690 691 // Try to match the current instruction 692 if (matchInstruction(I, isEQ)) 693 // Match succeed, continue the loop 694 continue; 695 } 696 697 // One element of the sequence of || (or &&) could not be match as a 698 // comparison against the same value as the others. 699 // We allow only one "Extra" case to be checked before the switch 700 if (!Extra) { 701 Extra = V; 702 continue; 703 } 704 // Failed to parse a proper sequence, abort now 705 CompValue = nullptr; 706 break; 707 } 708 } 709 }; 710 711 } // end anonymous namespace 712 713 static void EraseTerminatorAndDCECond(Instruction *TI, 714 MemorySSAUpdater *MSSAU = nullptr) { 715 Instruction *Cond = nullptr; 716 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 717 Cond = dyn_cast<Instruction>(SI->getCondition()); 718 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 719 if (BI->isConditional()) 720 Cond = dyn_cast<Instruction>(BI->getCondition()); 721 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 722 Cond = dyn_cast<Instruction>(IBI->getAddress()); 723 } 724 725 TI->eraseFromParent(); 726 if (Cond) 727 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 728 } 729 730 /// Return true if the specified terminator checks 731 /// to see if a value is equal to constant integer value. 732 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 733 Value *CV = nullptr; 734 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 735 // Do not permit merging of large switch instructions into their 736 // predecessors unless there is only one predecessor. 737 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 738 CV = SI->getCondition(); 739 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 740 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 741 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 742 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 743 CV = ICI->getOperand(0); 744 } 745 746 // Unwrap any lossless ptrtoint cast. 747 if (CV) { 748 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 749 Value *Ptr = PTII->getPointerOperand(); 750 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 751 CV = Ptr; 752 } 753 } 754 return CV; 755 } 756 757 /// Given a value comparison instruction, 758 /// decode all of the 'cases' that it represents and return the 'default' block. 759 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 760 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 761 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 762 Cases.reserve(SI->getNumCases()); 763 for (auto Case : SI->cases()) 764 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 765 Case.getCaseSuccessor())); 766 return SI->getDefaultDest(); 767 } 768 769 BranchInst *BI = cast<BranchInst>(TI); 770 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 771 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 772 Cases.push_back(ValueEqualityComparisonCase( 773 GetConstantInt(ICI->getOperand(1), DL), Succ)); 774 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 775 } 776 777 /// Given a vector of bb/value pairs, remove any entries 778 /// in the list that match the specified block. 779 static void 780 EliminateBlockCases(BasicBlock *BB, 781 std::vector<ValueEqualityComparisonCase> &Cases) { 782 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 783 } 784 785 /// Return true if there are any keys in C1 that exist in C2 as well. 786 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 787 std::vector<ValueEqualityComparisonCase> &C2) { 788 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 789 790 // Make V1 be smaller than V2. 791 if (V1->size() > V2->size()) 792 std::swap(V1, V2); 793 794 if (V1->empty()) 795 return false; 796 if (V1->size() == 1) { 797 // Just scan V2. 798 ConstantInt *TheVal = (*V1)[0].Value; 799 for (unsigned i = 0, e = V2->size(); i != e; ++i) 800 if (TheVal == (*V2)[i].Value) 801 return true; 802 } 803 804 // Otherwise, just sort both lists and compare element by element. 805 array_pod_sort(V1->begin(), V1->end()); 806 array_pod_sort(V2->begin(), V2->end()); 807 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 808 while (i1 != e1 && i2 != e2) { 809 if ((*V1)[i1].Value == (*V2)[i2].Value) 810 return true; 811 if ((*V1)[i1].Value < (*V2)[i2].Value) 812 ++i1; 813 else 814 ++i2; 815 } 816 return false; 817 } 818 819 // Set branch weights on SwitchInst. This sets the metadata if there is at 820 // least one non-zero weight. 821 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 822 // Check that there is at least one non-zero weight. Otherwise, pass 823 // nullptr to setMetadata which will erase the existing metadata. 824 MDNode *N = nullptr; 825 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 826 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 827 SI->setMetadata(LLVMContext::MD_prof, N); 828 } 829 830 // Similar to the above, but for branch and select instructions that take 831 // exactly 2 weights. 832 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 833 uint32_t FalseWeight) { 834 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 835 // Check that there is at least one non-zero weight. Otherwise, pass 836 // nullptr to setMetadata which will erase the existing metadata. 837 MDNode *N = nullptr; 838 if (TrueWeight || FalseWeight) 839 N = MDBuilder(I->getParent()->getContext()) 840 .createBranchWeights(TrueWeight, FalseWeight); 841 I->setMetadata(LLVMContext::MD_prof, N); 842 } 843 844 /// If TI is known to be a terminator instruction and its block is known to 845 /// only have a single predecessor block, check to see if that predecessor is 846 /// also a value comparison with the same value, and if that comparison 847 /// determines the outcome of this comparison. If so, simplify TI. This does a 848 /// very limited form of jump threading. 849 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 850 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 851 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 852 if (!PredVal) 853 return false; // Not a value comparison in predecessor. 854 855 Value *ThisVal = isValueEqualityComparison(TI); 856 assert(ThisVal && "This isn't a value comparison!!"); 857 if (ThisVal != PredVal) 858 return false; // Different predicates. 859 860 // TODO: Preserve branch weight metadata, similarly to how 861 // FoldValueComparisonIntoPredecessors preserves it. 862 863 // Find out information about when control will move from Pred to TI's block. 864 std::vector<ValueEqualityComparisonCase> PredCases; 865 BasicBlock *PredDef = 866 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 867 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 868 869 // Find information about how control leaves this block. 870 std::vector<ValueEqualityComparisonCase> ThisCases; 871 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 872 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 873 874 // If TI's block is the default block from Pred's comparison, potentially 875 // simplify TI based on this knowledge. 876 if (PredDef == TI->getParent()) { 877 // If we are here, we know that the value is none of those cases listed in 878 // PredCases. If there are any cases in ThisCases that are in PredCases, we 879 // can simplify TI. 880 if (!ValuesOverlap(PredCases, ThisCases)) 881 return false; 882 883 if (isa<BranchInst>(TI)) { 884 // Okay, one of the successors of this condbr is dead. Convert it to a 885 // uncond br. 886 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 887 // Insert the new branch. 888 Instruction *NI = Builder.CreateBr(ThisDef); 889 (void)NI; 890 891 // Remove PHI node entries for the dead edge. 892 ThisCases[0].Dest->removePredecessor(TI->getParent()); 893 894 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 895 << "Through successor TI: " << *TI << "Leaving: " << *NI 896 << "\n"); 897 898 EraseTerminatorAndDCECond(TI); 899 return true; 900 } 901 902 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 903 // Okay, TI has cases that are statically dead, prune them away. 904 SmallPtrSet<Constant *, 16> DeadCases; 905 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 906 DeadCases.insert(PredCases[i].Value); 907 908 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 909 << "Through successor TI: " << *TI); 910 911 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 912 --i; 913 if (DeadCases.count(i->getCaseValue())) { 914 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 915 SI.removeCase(i); 916 } 917 } 918 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 919 return true; 920 } 921 922 // Otherwise, TI's block must correspond to some matched value. Find out 923 // which value (or set of values) this is. 924 ConstantInt *TIV = nullptr; 925 BasicBlock *TIBB = TI->getParent(); 926 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 927 if (PredCases[i].Dest == TIBB) { 928 if (TIV) 929 return false; // Cannot handle multiple values coming to this block. 930 TIV = PredCases[i].Value; 931 } 932 assert(TIV && "No edge from pred to succ?"); 933 934 // Okay, we found the one constant that our value can be if we get into TI's 935 // BB. Find out which successor will unconditionally be branched to. 936 BasicBlock *TheRealDest = nullptr; 937 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 938 if (ThisCases[i].Value == TIV) { 939 TheRealDest = ThisCases[i].Dest; 940 break; 941 } 942 943 // If not handled by any explicit cases, it is handled by the default case. 944 if (!TheRealDest) 945 TheRealDest = ThisDef; 946 947 // Remove PHI node entries for dead edges. 948 BasicBlock *CheckEdge = TheRealDest; 949 for (BasicBlock *Succ : successors(TIBB)) 950 if (Succ != CheckEdge) 951 Succ->removePredecessor(TIBB); 952 else 953 CheckEdge = nullptr; 954 955 // Insert the new branch. 956 Instruction *NI = Builder.CreateBr(TheRealDest); 957 (void)NI; 958 959 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 960 << "Through successor TI: " << *TI << "Leaving: " << *NI 961 << "\n"); 962 963 EraseTerminatorAndDCECond(TI); 964 return true; 965 } 966 967 namespace { 968 969 /// This class implements a stable ordering of constant 970 /// integers that does not depend on their address. This is important for 971 /// applications that sort ConstantInt's to ensure uniqueness. 972 struct ConstantIntOrdering { 973 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 974 return LHS->getValue().ult(RHS->getValue()); 975 } 976 }; 977 978 } // end anonymous namespace 979 980 static int ConstantIntSortPredicate(ConstantInt *const *P1, 981 ConstantInt *const *P2) { 982 const ConstantInt *LHS = *P1; 983 const ConstantInt *RHS = *P2; 984 if (LHS == RHS) 985 return 0; 986 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 987 } 988 989 static inline bool HasBranchWeights(const Instruction *I) { 990 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 991 if (ProfMD && ProfMD->getOperand(0)) 992 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 993 return MDS->getString().equals("branch_weights"); 994 995 return false; 996 } 997 998 /// Get Weights of a given terminator, the default weight is at the front 999 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1000 /// metadata. 1001 static void GetBranchWeights(Instruction *TI, 1002 SmallVectorImpl<uint64_t> &Weights) { 1003 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1004 assert(MD); 1005 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1006 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1007 Weights.push_back(CI->getValue().getZExtValue()); 1008 } 1009 1010 // If TI is a conditional eq, the default case is the false case, 1011 // and the corresponding branch-weight data is at index 2. We swap the 1012 // default weight to be the first entry. 1013 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1014 assert(Weights.size() == 2); 1015 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1016 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1017 std::swap(Weights.front(), Weights.back()); 1018 } 1019 } 1020 1021 /// Keep halving the weights until all can fit in uint32_t. 1022 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1023 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1024 if (Max > UINT_MAX) { 1025 unsigned Offset = 32 - countLeadingZeros(Max); 1026 for (uint64_t &I : Weights) 1027 I >>= Offset; 1028 } 1029 } 1030 1031 /// The specified terminator is a value equality comparison instruction 1032 /// (either a switch or a branch on "X == c"). 1033 /// See if any of the predecessors of the terminator block are value comparisons 1034 /// on the same value. If so, and if safe to do so, fold them together. 1035 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1036 IRBuilder<> &Builder) { 1037 BasicBlock *BB = TI->getParent(); 1038 Value *CV = isValueEqualityComparison(TI); // CondVal 1039 assert(CV && "Not a comparison?"); 1040 bool Changed = false; 1041 1042 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1043 while (!Preds.empty()) { 1044 BasicBlock *Pred = Preds.pop_back_val(); 1045 1046 // See if the predecessor is a comparison with the same value. 1047 Instruction *PTI = Pred->getTerminator(); 1048 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1049 1050 if (PCV == CV && TI != PTI) { 1051 SmallSetVector<BasicBlock*, 4> FailBlocks; 1052 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1053 for (auto *Succ : FailBlocks) { 1054 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1055 return false; 1056 } 1057 } 1058 1059 // Figure out which 'cases' to copy from SI to PSI. 1060 std::vector<ValueEqualityComparisonCase> BBCases; 1061 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1062 1063 std::vector<ValueEqualityComparisonCase> PredCases; 1064 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1065 1066 // Based on whether the default edge from PTI goes to BB or not, fill in 1067 // PredCases and PredDefault with the new switch cases we would like to 1068 // build. 1069 SmallVector<BasicBlock *, 8> NewSuccessors; 1070 1071 // Update the branch weight metadata along the way 1072 SmallVector<uint64_t, 8> Weights; 1073 bool PredHasWeights = HasBranchWeights(PTI); 1074 bool SuccHasWeights = HasBranchWeights(TI); 1075 1076 if (PredHasWeights) { 1077 GetBranchWeights(PTI, Weights); 1078 // branch-weight metadata is inconsistent here. 1079 if (Weights.size() != 1 + PredCases.size()) 1080 PredHasWeights = SuccHasWeights = false; 1081 } else if (SuccHasWeights) 1082 // If there are no predecessor weights but there are successor weights, 1083 // populate Weights with 1, which will later be scaled to the sum of 1084 // successor's weights 1085 Weights.assign(1 + PredCases.size(), 1); 1086 1087 SmallVector<uint64_t, 8> SuccWeights; 1088 if (SuccHasWeights) { 1089 GetBranchWeights(TI, SuccWeights); 1090 // branch-weight metadata is inconsistent here. 1091 if (SuccWeights.size() != 1 + BBCases.size()) 1092 PredHasWeights = SuccHasWeights = false; 1093 } else if (PredHasWeights) 1094 SuccWeights.assign(1 + BBCases.size(), 1); 1095 1096 if (PredDefault == BB) { 1097 // If this is the default destination from PTI, only the edges in TI 1098 // that don't occur in PTI, or that branch to BB will be activated. 1099 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1100 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1101 if (PredCases[i].Dest != BB) 1102 PTIHandled.insert(PredCases[i].Value); 1103 else { 1104 // The default destination is BB, we don't need explicit targets. 1105 std::swap(PredCases[i], PredCases.back()); 1106 1107 if (PredHasWeights || SuccHasWeights) { 1108 // Increase weight for the default case. 1109 Weights[0] += Weights[i + 1]; 1110 std::swap(Weights[i + 1], Weights.back()); 1111 Weights.pop_back(); 1112 } 1113 1114 PredCases.pop_back(); 1115 --i; 1116 --e; 1117 } 1118 1119 // Reconstruct the new switch statement we will be building. 1120 if (PredDefault != BBDefault) { 1121 PredDefault->removePredecessor(Pred); 1122 PredDefault = BBDefault; 1123 NewSuccessors.push_back(BBDefault); 1124 } 1125 1126 unsigned CasesFromPred = Weights.size(); 1127 uint64_t ValidTotalSuccWeight = 0; 1128 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1129 if (!PTIHandled.count(BBCases[i].Value) && 1130 BBCases[i].Dest != BBDefault) { 1131 PredCases.push_back(BBCases[i]); 1132 NewSuccessors.push_back(BBCases[i].Dest); 1133 if (SuccHasWeights || PredHasWeights) { 1134 // The default weight is at index 0, so weight for the ith case 1135 // should be at index i+1. Scale the cases from successor by 1136 // PredDefaultWeight (Weights[0]). 1137 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1138 ValidTotalSuccWeight += SuccWeights[i + 1]; 1139 } 1140 } 1141 1142 if (SuccHasWeights || PredHasWeights) { 1143 ValidTotalSuccWeight += SuccWeights[0]; 1144 // Scale the cases from predecessor by ValidTotalSuccWeight. 1145 for (unsigned i = 1; i < CasesFromPred; ++i) 1146 Weights[i] *= ValidTotalSuccWeight; 1147 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1148 Weights[0] *= SuccWeights[0]; 1149 } 1150 } else { 1151 // If this is not the default destination from PSI, only the edges 1152 // in SI that occur in PSI with a destination of BB will be 1153 // activated. 1154 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1155 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1156 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1157 if (PredCases[i].Dest == BB) { 1158 PTIHandled.insert(PredCases[i].Value); 1159 1160 if (PredHasWeights || SuccHasWeights) { 1161 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1162 std::swap(Weights[i + 1], Weights.back()); 1163 Weights.pop_back(); 1164 } 1165 1166 std::swap(PredCases[i], PredCases.back()); 1167 PredCases.pop_back(); 1168 --i; 1169 --e; 1170 } 1171 1172 // Okay, now we know which constants were sent to BB from the 1173 // predecessor. Figure out where they will all go now. 1174 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1175 if (PTIHandled.count(BBCases[i].Value)) { 1176 // If this is one we are capable of getting... 1177 if (PredHasWeights || SuccHasWeights) 1178 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1179 PredCases.push_back(BBCases[i]); 1180 NewSuccessors.push_back(BBCases[i].Dest); 1181 PTIHandled.erase( 1182 BBCases[i].Value); // This constant is taken care of 1183 } 1184 1185 // If there are any constants vectored to BB that TI doesn't handle, 1186 // they must go to the default destination of TI. 1187 for (ConstantInt *I : PTIHandled) { 1188 if (PredHasWeights || SuccHasWeights) 1189 Weights.push_back(WeightsForHandled[I]); 1190 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1191 NewSuccessors.push_back(BBDefault); 1192 } 1193 } 1194 1195 // Okay, at this point, we know which new successor Pred will get. Make 1196 // sure we update the number of entries in the PHI nodes for these 1197 // successors. 1198 for (BasicBlock *NewSuccessor : NewSuccessors) 1199 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1200 1201 Builder.SetInsertPoint(PTI); 1202 // Convert pointer to int before we switch. 1203 if (CV->getType()->isPointerTy()) { 1204 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1205 "magicptr"); 1206 } 1207 1208 // Now that the successors are updated, create the new Switch instruction. 1209 SwitchInst *NewSI = 1210 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1211 NewSI->setDebugLoc(PTI->getDebugLoc()); 1212 for (ValueEqualityComparisonCase &V : PredCases) 1213 NewSI->addCase(V.Value, V.Dest); 1214 1215 if (PredHasWeights || SuccHasWeights) { 1216 // Halve the weights if any of them cannot fit in an uint32_t 1217 FitWeights(Weights); 1218 1219 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1220 1221 setBranchWeights(NewSI, MDWeights); 1222 } 1223 1224 EraseTerminatorAndDCECond(PTI); 1225 1226 // Okay, last check. If BB is still a successor of PSI, then we must 1227 // have an infinite loop case. If so, add an infinitely looping block 1228 // to handle the case to preserve the behavior of the code. 1229 BasicBlock *InfLoopBlock = nullptr; 1230 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1231 if (NewSI->getSuccessor(i) == BB) { 1232 if (!InfLoopBlock) { 1233 // Insert it at the end of the function, because it's either code, 1234 // or it won't matter if it's hot. :) 1235 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1236 BB->getParent()); 1237 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1238 } 1239 NewSI->setSuccessor(i, InfLoopBlock); 1240 } 1241 1242 Changed = true; 1243 } 1244 } 1245 return Changed; 1246 } 1247 1248 // If we would need to insert a select that uses the value of this invoke 1249 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1250 // can't hoist the invoke, as there is nowhere to put the select in this case. 1251 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1252 Instruction *I1, Instruction *I2) { 1253 for (BasicBlock *Succ : successors(BB1)) { 1254 for (const PHINode &PN : Succ->phis()) { 1255 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1256 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1257 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1258 return false; 1259 } 1260 } 1261 } 1262 return true; 1263 } 1264 1265 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1266 1267 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1268 /// in the two blocks up into the branch block. The caller of this function 1269 /// guarantees that BI's block dominates BB1 and BB2. 1270 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1271 const TargetTransformInfo &TTI) { 1272 // This does very trivial matching, with limited scanning, to find identical 1273 // instructions in the two blocks. In particular, we don't want to get into 1274 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1275 // such, we currently just scan for obviously identical instructions in an 1276 // identical order. 1277 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1278 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1279 1280 BasicBlock::iterator BB1_Itr = BB1->begin(); 1281 BasicBlock::iterator BB2_Itr = BB2->begin(); 1282 1283 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1284 // Skip debug info if it is not identical. 1285 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1286 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1287 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1288 while (isa<DbgInfoIntrinsic>(I1)) 1289 I1 = &*BB1_Itr++; 1290 while (isa<DbgInfoIntrinsic>(I2)) 1291 I2 = &*BB2_Itr++; 1292 } 1293 // FIXME: Can we define a safety predicate for CallBr? 1294 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1295 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1296 isa<CallBrInst>(I1)) 1297 return false; 1298 1299 BasicBlock *BIParent = BI->getParent(); 1300 1301 bool Changed = false; 1302 1303 auto _ = make_scope_exit([&]() { 1304 if (Changed) 1305 ++NumHoistCommonCode; 1306 }); 1307 1308 do { 1309 // If we are hoisting the terminator instruction, don't move one (making a 1310 // broken BB), instead clone it, and remove BI. 1311 if (I1->isTerminator()) 1312 goto HoistTerminator; 1313 1314 // If we're going to hoist a call, make sure that the two instructions we're 1315 // commoning/hoisting are both marked with musttail, or neither of them is 1316 // marked as such. Otherwise, we might end up in a situation where we hoist 1317 // from a block where the terminator is a `ret` to a block where the terminator 1318 // is a `br`, and `musttail` calls expect to be followed by a return. 1319 auto *C1 = dyn_cast<CallInst>(I1); 1320 auto *C2 = dyn_cast<CallInst>(I2); 1321 if (C1 && C2) 1322 if (C1->isMustTailCall() != C2->isMustTailCall()) 1323 return Changed; 1324 1325 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1326 return Changed; 1327 1328 // If any of the two call sites has nomerge attribute, stop hoisting. 1329 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1330 if (CB1->cannotMerge()) 1331 return Changed; 1332 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1333 if (CB2->cannotMerge()) 1334 return Changed; 1335 1336 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1337 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1338 // The debug location is an integral part of a debug info intrinsic 1339 // and can't be separated from it or replaced. Instead of attempting 1340 // to merge locations, simply hoist both copies of the intrinsic. 1341 BIParent->getInstList().splice(BI->getIterator(), 1342 BB1->getInstList(), I1); 1343 BIParent->getInstList().splice(BI->getIterator(), 1344 BB2->getInstList(), I2); 1345 Changed = true; 1346 } else { 1347 // For a normal instruction, we just move one to right before the branch, 1348 // then replace all uses of the other with the first. Finally, we remove 1349 // the now redundant second instruction. 1350 BIParent->getInstList().splice(BI->getIterator(), 1351 BB1->getInstList(), I1); 1352 if (!I2->use_empty()) 1353 I2->replaceAllUsesWith(I1); 1354 I1->andIRFlags(I2); 1355 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1356 LLVMContext::MD_range, 1357 LLVMContext::MD_fpmath, 1358 LLVMContext::MD_invariant_load, 1359 LLVMContext::MD_nonnull, 1360 LLVMContext::MD_invariant_group, 1361 LLVMContext::MD_align, 1362 LLVMContext::MD_dereferenceable, 1363 LLVMContext::MD_dereferenceable_or_null, 1364 LLVMContext::MD_mem_parallel_loop_access, 1365 LLVMContext::MD_access_group, 1366 LLVMContext::MD_preserve_access_index}; 1367 combineMetadata(I1, I2, KnownIDs, true); 1368 1369 // I1 and I2 are being combined into a single instruction. Its debug 1370 // location is the merged locations of the original instructions. 1371 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1372 1373 I2->eraseFromParent(); 1374 Changed = true; 1375 } 1376 ++NumHoistCommonInstrs; 1377 1378 I1 = &*BB1_Itr++; 1379 I2 = &*BB2_Itr++; 1380 // Skip debug info if it is not identical. 1381 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1382 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1383 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1384 while (isa<DbgInfoIntrinsic>(I1)) 1385 I1 = &*BB1_Itr++; 1386 while (isa<DbgInfoIntrinsic>(I2)) 1387 I2 = &*BB2_Itr++; 1388 } 1389 } while (I1->isIdenticalToWhenDefined(I2)); 1390 1391 return true; 1392 1393 HoistTerminator: 1394 // It may not be possible to hoist an invoke. 1395 // FIXME: Can we define a safety predicate for CallBr? 1396 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1397 return Changed; 1398 1399 // TODO: callbr hoisting currently disabled pending further study. 1400 if (isa<CallBrInst>(I1)) 1401 return Changed; 1402 1403 for (BasicBlock *Succ : successors(BB1)) { 1404 for (PHINode &PN : Succ->phis()) { 1405 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1406 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1407 if (BB1V == BB2V) 1408 continue; 1409 1410 // Check for passingValueIsAlwaysUndefined here because we would rather 1411 // eliminate undefined control flow then converting it to a select. 1412 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1413 passingValueIsAlwaysUndefined(BB2V, &PN)) 1414 return Changed; 1415 1416 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1417 return Changed; 1418 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1419 return Changed; 1420 } 1421 } 1422 1423 // Okay, it is safe to hoist the terminator. 1424 Instruction *NT = I1->clone(); 1425 BIParent->getInstList().insert(BI->getIterator(), NT); 1426 if (!NT->getType()->isVoidTy()) { 1427 I1->replaceAllUsesWith(NT); 1428 I2->replaceAllUsesWith(NT); 1429 NT->takeName(I1); 1430 } 1431 Changed = true; 1432 ++NumHoistCommonInstrs; 1433 1434 // Ensure terminator gets a debug location, even an unknown one, in case 1435 // it involves inlinable calls. 1436 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1437 1438 // PHIs created below will adopt NT's merged DebugLoc. 1439 IRBuilder<NoFolder> Builder(NT); 1440 1441 // Hoisting one of the terminators from our successor is a great thing. 1442 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1443 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1444 // nodes, so we insert select instruction to compute the final result. 1445 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1446 for (BasicBlock *Succ : successors(BB1)) { 1447 for (PHINode &PN : Succ->phis()) { 1448 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1449 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1450 if (BB1V == BB2V) 1451 continue; 1452 1453 // These values do not agree. Insert a select instruction before NT 1454 // that determines the right value. 1455 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1456 if (!SI) { 1457 // Propagate fast-math-flags from phi node to its replacement select. 1458 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1459 if (isa<FPMathOperator>(PN)) 1460 Builder.setFastMathFlags(PN.getFastMathFlags()); 1461 1462 SI = cast<SelectInst>( 1463 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1464 BB1V->getName() + "." + BB2V->getName(), BI)); 1465 } 1466 1467 // Make the PHI node use the select for all incoming values for BB1/BB2 1468 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1469 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1470 PN.setIncomingValue(i, SI); 1471 } 1472 } 1473 1474 // Update any PHI nodes in our new successors. 1475 for (BasicBlock *Succ : successors(BB1)) 1476 AddPredecessorToBlock(Succ, BIParent, BB1); 1477 1478 EraseTerminatorAndDCECond(BI); 1479 return Changed; 1480 } 1481 1482 // Check lifetime markers. 1483 static bool isLifeTimeMarker(const Instruction *I) { 1484 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1485 switch (II->getIntrinsicID()) { 1486 default: 1487 break; 1488 case Intrinsic::lifetime_start: 1489 case Intrinsic::lifetime_end: 1490 return true; 1491 } 1492 } 1493 return false; 1494 } 1495 1496 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1497 // into variables. 1498 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1499 int OpIdx) { 1500 return !isa<IntrinsicInst>(I); 1501 } 1502 1503 // All instructions in Insts belong to different blocks that all unconditionally 1504 // branch to a common successor. Analyze each instruction and return true if it 1505 // would be possible to sink them into their successor, creating one common 1506 // instruction instead. For every value that would be required to be provided by 1507 // PHI node (because an operand varies in each input block), add to PHIOperands. 1508 static bool canSinkInstructions( 1509 ArrayRef<Instruction *> Insts, 1510 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1511 // Prune out obviously bad instructions to move. Each instruction must have 1512 // exactly zero or one use, and we check later that use is by a single, common 1513 // PHI instruction in the successor. 1514 bool HasUse = !Insts.front()->user_empty(); 1515 for (auto *I : Insts) { 1516 // These instructions may change or break semantics if moved. 1517 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1518 I->getType()->isTokenTy()) 1519 return false; 1520 1521 // Conservatively return false if I is an inline-asm instruction. Sinking 1522 // and merging inline-asm instructions can potentially create arguments 1523 // that cannot satisfy the inline-asm constraints. 1524 // If the instruction has nomerge attribute, return false. 1525 if (const auto *C = dyn_cast<CallBase>(I)) 1526 if (C->isInlineAsm() || C->cannotMerge()) 1527 return false; 1528 1529 // Each instruction must have zero or one use. 1530 if (HasUse && !I->hasOneUse()) 1531 return false; 1532 if (!HasUse && !I->user_empty()) 1533 return false; 1534 } 1535 1536 const Instruction *I0 = Insts.front(); 1537 for (auto *I : Insts) 1538 if (!I->isSameOperationAs(I0)) 1539 return false; 1540 1541 // All instructions in Insts are known to be the same opcode. If they have a 1542 // use, check that the only user is a PHI or in the same block as the 1543 // instruction, because if a user is in the same block as an instruction we're 1544 // contemplating sinking, it must already be determined to be sinkable. 1545 if (HasUse) { 1546 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1547 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1548 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1549 auto *U = cast<Instruction>(*I->user_begin()); 1550 return (PNUse && 1551 PNUse->getParent() == Succ && 1552 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1553 U->getParent() == I->getParent(); 1554 })) 1555 return false; 1556 } 1557 1558 // Because SROA can't handle speculating stores of selects, try not to sink 1559 // loads, stores or lifetime markers of allocas when we'd have to create a 1560 // PHI for the address operand. Also, because it is likely that loads or 1561 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1562 // them. 1563 // This can cause code churn which can have unintended consequences down 1564 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1565 // FIXME: This is a workaround for a deficiency in SROA - see 1566 // https://llvm.org/bugs/show_bug.cgi?id=30188 1567 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1568 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1569 })) 1570 return false; 1571 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1572 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1573 })) 1574 return false; 1575 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1576 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1577 })) 1578 return false; 1579 1580 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1581 Value *Op = I0->getOperand(OI); 1582 if (Op->getType()->isTokenTy()) 1583 // Don't touch any operand of token type. 1584 return false; 1585 1586 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1587 assert(I->getNumOperands() == I0->getNumOperands()); 1588 return I->getOperand(OI) == I0->getOperand(OI); 1589 }; 1590 if (!all_of(Insts, SameAsI0)) { 1591 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1592 !canReplaceOperandWithVariable(I0, OI)) 1593 // We can't create a PHI from this GEP. 1594 return false; 1595 // Don't create indirect calls! The called value is the final operand. 1596 if (isa<CallBase>(I0) && OI == OE - 1) { 1597 // FIXME: if the call was *already* indirect, we should do this. 1598 return false; 1599 } 1600 for (auto *I : Insts) 1601 PHIOperands[I].push_back(I->getOperand(OI)); 1602 } 1603 } 1604 return true; 1605 } 1606 1607 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1608 // instruction of every block in Blocks to their common successor, commoning 1609 // into one instruction. 1610 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1611 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1612 1613 // canSinkLastInstruction returning true guarantees that every block has at 1614 // least one non-terminator instruction. 1615 SmallVector<Instruction*,4> Insts; 1616 for (auto *BB : Blocks) { 1617 Instruction *I = BB->getTerminator(); 1618 do { 1619 I = I->getPrevNode(); 1620 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1621 if (!isa<DbgInfoIntrinsic>(I)) 1622 Insts.push_back(I); 1623 } 1624 1625 // The only checking we need to do now is that all users of all instructions 1626 // are the same PHI node. canSinkLastInstruction should have checked this but 1627 // it is slightly over-aggressive - it gets confused by commutative instructions 1628 // so double-check it here. 1629 Instruction *I0 = Insts.front(); 1630 if (!I0->user_empty()) { 1631 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1632 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1633 auto *U = cast<Instruction>(*I->user_begin()); 1634 return U == PNUse; 1635 })) 1636 return false; 1637 } 1638 1639 // We don't need to do any more checking here; canSinkLastInstruction should 1640 // have done it all for us. 1641 SmallVector<Value*, 4> NewOperands; 1642 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1643 // This check is different to that in canSinkLastInstruction. There, we 1644 // cared about the global view once simplifycfg (and instcombine) have 1645 // completed - it takes into account PHIs that become trivially 1646 // simplifiable. However here we need a more local view; if an operand 1647 // differs we create a PHI and rely on instcombine to clean up the very 1648 // small mess we may make. 1649 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1650 return I->getOperand(O) != I0->getOperand(O); 1651 }); 1652 if (!NeedPHI) { 1653 NewOperands.push_back(I0->getOperand(O)); 1654 continue; 1655 } 1656 1657 // Create a new PHI in the successor block and populate it. 1658 auto *Op = I0->getOperand(O); 1659 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1660 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1661 Op->getName() + ".sink", &BBEnd->front()); 1662 for (auto *I : Insts) 1663 PN->addIncoming(I->getOperand(O), I->getParent()); 1664 NewOperands.push_back(PN); 1665 } 1666 1667 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1668 // and move it to the start of the successor block. 1669 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1670 I0->getOperandUse(O).set(NewOperands[O]); 1671 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1672 1673 // Update metadata and IR flags, and merge debug locations. 1674 for (auto *I : Insts) 1675 if (I != I0) { 1676 // The debug location for the "common" instruction is the merged locations 1677 // of all the commoned instructions. We start with the original location 1678 // of the "common" instruction and iteratively merge each location in the 1679 // loop below. 1680 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1681 // However, as N-way merge for CallInst is rare, so we use simplified API 1682 // instead of using complex API for N-way merge. 1683 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1684 combineMetadataForCSE(I0, I, true); 1685 I0->andIRFlags(I); 1686 } 1687 1688 if (!I0->user_empty()) { 1689 // canSinkLastInstruction checked that all instructions were used by 1690 // one and only one PHI node. Find that now, RAUW it to our common 1691 // instruction and nuke it. 1692 auto *PN = cast<PHINode>(*I0->user_begin()); 1693 PN->replaceAllUsesWith(I0); 1694 PN->eraseFromParent(); 1695 } 1696 1697 // Finally nuke all instructions apart from the common instruction. 1698 for (auto *I : Insts) 1699 if (I != I0) 1700 I->eraseFromParent(); 1701 1702 return true; 1703 } 1704 1705 namespace { 1706 1707 // LockstepReverseIterator - Iterates through instructions 1708 // in a set of blocks in reverse order from the first non-terminator. 1709 // For example (assume all blocks have size n): 1710 // LockstepReverseIterator I([B1, B2, B3]); 1711 // *I-- = [B1[n], B2[n], B3[n]]; 1712 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1713 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1714 // ... 1715 class LockstepReverseIterator { 1716 ArrayRef<BasicBlock*> Blocks; 1717 SmallVector<Instruction*,4> Insts; 1718 bool Fail; 1719 1720 public: 1721 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1722 reset(); 1723 } 1724 1725 void reset() { 1726 Fail = false; 1727 Insts.clear(); 1728 for (auto *BB : Blocks) { 1729 Instruction *Inst = BB->getTerminator(); 1730 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1731 Inst = Inst->getPrevNode(); 1732 if (!Inst) { 1733 // Block wasn't big enough. 1734 Fail = true; 1735 return; 1736 } 1737 Insts.push_back(Inst); 1738 } 1739 } 1740 1741 bool isValid() const { 1742 return !Fail; 1743 } 1744 1745 void operator--() { 1746 if (Fail) 1747 return; 1748 for (auto *&Inst : Insts) { 1749 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1750 Inst = Inst->getPrevNode(); 1751 // Already at beginning of block. 1752 if (!Inst) { 1753 Fail = true; 1754 return; 1755 } 1756 } 1757 } 1758 1759 ArrayRef<Instruction*> operator * () const { 1760 return Insts; 1761 } 1762 }; 1763 1764 } // end anonymous namespace 1765 1766 /// Check whether BB's predecessors end with unconditional branches. If it is 1767 /// true, sink any common code from the predecessors to BB. 1768 /// We also allow one predecessor to end with conditional branch (but no more 1769 /// than one). 1770 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1771 // We support two situations: 1772 // (1) all incoming arcs are unconditional 1773 // (2) one incoming arc is conditional 1774 // 1775 // (2) is very common in switch defaults and 1776 // else-if patterns; 1777 // 1778 // if (a) f(1); 1779 // else if (b) f(2); 1780 // 1781 // produces: 1782 // 1783 // [if] 1784 // / \ 1785 // [f(1)] [if] 1786 // | | \ 1787 // | | | 1788 // | [f(2)]| 1789 // \ | / 1790 // [ end ] 1791 // 1792 // [end] has two unconditional predecessor arcs and one conditional. The 1793 // conditional refers to the implicit empty 'else' arc. This conditional 1794 // arc can also be caused by an empty default block in a switch. 1795 // 1796 // In this case, we attempt to sink code from all *unconditional* arcs. 1797 // If we can sink instructions from these arcs (determined during the scan 1798 // phase below) we insert a common successor for all unconditional arcs and 1799 // connect that to [end], to enable sinking: 1800 // 1801 // [if] 1802 // / \ 1803 // [x(1)] [if] 1804 // | | \ 1805 // | | \ 1806 // | [x(2)] | 1807 // \ / | 1808 // [sink.split] | 1809 // \ / 1810 // [ end ] 1811 // 1812 SmallVector<BasicBlock*,4> UnconditionalPreds; 1813 Instruction *Cond = nullptr; 1814 for (auto *B : predecessors(BB)) { 1815 auto *T = B->getTerminator(); 1816 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1817 UnconditionalPreds.push_back(B); 1818 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1819 Cond = T; 1820 else 1821 return false; 1822 } 1823 if (UnconditionalPreds.size() < 2) 1824 return false; 1825 1826 // We take a two-step approach to tail sinking. First we scan from the end of 1827 // each block upwards in lockstep. If the n'th instruction from the end of each 1828 // block can be sunk, those instructions are added to ValuesToSink and we 1829 // carry on. If we can sink an instruction but need to PHI-merge some operands 1830 // (because they're not identical in each instruction) we add these to 1831 // PHIOperands. 1832 unsigned ScanIdx = 0; 1833 SmallPtrSet<Value*,4> InstructionsToSink; 1834 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1835 LockstepReverseIterator LRI(UnconditionalPreds); 1836 while (LRI.isValid() && 1837 canSinkInstructions(*LRI, PHIOperands)) { 1838 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1839 << "\n"); 1840 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1841 ++ScanIdx; 1842 --LRI; 1843 } 1844 1845 // If no instructions can be sunk, early-return. 1846 if (ScanIdx == 0) 1847 return false; 1848 1849 bool Changed = false; 1850 1851 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1852 unsigned NumPHIdValues = 0; 1853 for (auto *I : *LRI) 1854 for (auto *V : PHIOperands[I]) 1855 if (InstructionsToSink.count(V) == 0) 1856 ++NumPHIdValues; 1857 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1858 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1859 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1860 NumPHIInsts++; 1861 1862 return NumPHIInsts <= 1; 1863 }; 1864 1865 if (Cond) { 1866 // Check if we would actually sink anything first! This mutates the CFG and 1867 // adds an extra block. The goal in doing this is to allow instructions that 1868 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1869 // (such as trunc, add) can be sunk and predicated already. So we check that 1870 // we're going to sink at least one non-speculatable instruction. 1871 LRI.reset(); 1872 unsigned Idx = 0; 1873 bool Profitable = false; 1874 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1875 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1876 Profitable = true; 1877 break; 1878 } 1879 --LRI; 1880 ++Idx; 1881 } 1882 if (!Profitable) 1883 return false; 1884 1885 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1886 // We have a conditional edge and we're going to sink some instructions. 1887 // Insert a new block postdominating all blocks we're going to sink from. 1888 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1889 // Edges couldn't be split. 1890 return false; 1891 Changed = true; 1892 } 1893 1894 // Now that we've analyzed all potential sinking candidates, perform the 1895 // actual sink. We iteratively sink the last non-terminator of the source 1896 // blocks into their common successor unless doing so would require too 1897 // many PHI instructions to be generated (currently only one PHI is allowed 1898 // per sunk instruction). 1899 // 1900 // We can use InstructionsToSink to discount values needing PHI-merging that will 1901 // actually be sunk in a later iteration. This allows us to be more 1902 // aggressive in what we sink. This does allow a false positive where we 1903 // sink presuming a later value will also be sunk, but stop half way through 1904 // and never actually sink it which means we produce more PHIs than intended. 1905 // This is unlikely in practice though. 1906 unsigned SinkIdx = 0; 1907 for (; SinkIdx != ScanIdx; ++SinkIdx) { 1908 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1909 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1910 << "\n"); 1911 1912 // Because we've sunk every instruction in turn, the current instruction to 1913 // sink is always at index 0. 1914 LRI.reset(); 1915 if (!ProfitableToSinkInstruction(LRI)) { 1916 // Too many PHIs would be created. 1917 LLVM_DEBUG( 1918 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1919 break; 1920 } 1921 1922 if (!sinkLastInstruction(UnconditionalPreds)) { 1923 LLVM_DEBUG( 1924 dbgs() 1925 << "SINK: stopping here, failed to actually sink instruction!\n"); 1926 break; 1927 } 1928 1929 NumSinkCommonInstrs++; 1930 Changed = true; 1931 } 1932 if (SinkIdx != 0) 1933 ++NumSinkCommonCode; 1934 return Changed; 1935 } 1936 1937 /// Determine if we can hoist sink a sole store instruction out of a 1938 /// conditional block. 1939 /// 1940 /// We are looking for code like the following: 1941 /// BrBB: 1942 /// store i32 %add, i32* %arrayidx2 1943 /// ... // No other stores or function calls (we could be calling a memory 1944 /// ... // function). 1945 /// %cmp = icmp ult %x, %y 1946 /// br i1 %cmp, label %EndBB, label %ThenBB 1947 /// ThenBB: 1948 /// store i32 %add5, i32* %arrayidx2 1949 /// br label EndBB 1950 /// EndBB: 1951 /// ... 1952 /// We are going to transform this into: 1953 /// BrBB: 1954 /// store i32 %add, i32* %arrayidx2 1955 /// ... // 1956 /// %cmp = icmp ult %x, %y 1957 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1958 /// store i32 %add.add5, i32* %arrayidx2 1959 /// ... 1960 /// 1961 /// \return The pointer to the value of the previous store if the store can be 1962 /// hoisted into the predecessor block. 0 otherwise. 1963 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1964 BasicBlock *StoreBB, BasicBlock *EndBB) { 1965 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1966 if (!StoreToHoist) 1967 return nullptr; 1968 1969 // Volatile or atomic. 1970 if (!StoreToHoist->isSimple()) 1971 return nullptr; 1972 1973 Value *StorePtr = StoreToHoist->getPointerOperand(); 1974 1975 // Look for a store to the same pointer in BrBB. 1976 unsigned MaxNumInstToLookAt = 9; 1977 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1978 if (!MaxNumInstToLookAt) 1979 break; 1980 --MaxNumInstToLookAt; 1981 1982 // Could be calling an instruction that affects memory like free(). 1983 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1984 return nullptr; 1985 1986 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1987 // Found the previous store make sure it stores to the same location. 1988 if (SI->getPointerOperand() == StorePtr) 1989 // Found the previous store, return its value operand. 1990 return SI->getValueOperand(); 1991 return nullptr; // Unknown store. 1992 } 1993 } 1994 1995 return nullptr; 1996 } 1997 1998 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 1999 /// converted to selects. 2000 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2001 BasicBlock *EndBB, 2002 unsigned &SpeculatedInstructions, 2003 int &BudgetRemaining, 2004 const TargetTransformInfo &TTI) { 2005 TargetTransformInfo::TargetCostKind CostKind = 2006 BB->getParent()->hasMinSize() 2007 ? TargetTransformInfo::TCK_CodeSize 2008 : TargetTransformInfo::TCK_SizeAndLatency; 2009 2010 bool HaveRewritablePHIs = false; 2011 for (PHINode &PN : EndBB->phis()) { 2012 Value *OrigV = PN.getIncomingValueForBlock(BB); 2013 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2014 2015 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2016 // Skip PHIs which are trivial. 2017 if (ThenV == OrigV) 2018 continue; 2019 2020 BudgetRemaining -= 2021 TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2022 CostKind); 2023 2024 // Don't convert to selects if we could remove undefined behavior instead. 2025 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2026 passingValueIsAlwaysUndefined(ThenV, &PN)) 2027 return false; 2028 2029 HaveRewritablePHIs = true; 2030 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2031 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2032 if (!OrigCE && !ThenCE) 2033 continue; // Known safe and cheap. 2034 2035 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2036 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2037 return false; 2038 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2039 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2040 unsigned MaxCost = 2041 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2042 if (OrigCost + ThenCost > MaxCost) 2043 return false; 2044 2045 // Account for the cost of an unfolded ConstantExpr which could end up 2046 // getting expanded into Instructions. 2047 // FIXME: This doesn't account for how many operations are combined in the 2048 // constant expression. 2049 ++SpeculatedInstructions; 2050 if (SpeculatedInstructions > 1) 2051 return false; 2052 } 2053 2054 return HaveRewritablePHIs; 2055 } 2056 2057 /// Speculate a conditional basic block flattening the CFG. 2058 /// 2059 /// Note that this is a very risky transform currently. Speculating 2060 /// instructions like this is most often not desirable. Instead, there is an MI 2061 /// pass which can do it with full awareness of the resource constraints. 2062 /// However, some cases are "obvious" and we should do directly. An example of 2063 /// this is speculating a single, reasonably cheap instruction. 2064 /// 2065 /// There is only one distinct advantage to flattening the CFG at the IR level: 2066 /// it makes very common but simplistic optimizations such as are common in 2067 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2068 /// modeling their effects with easier to reason about SSA value graphs. 2069 /// 2070 /// 2071 /// An illustration of this transform is turning this IR: 2072 /// \code 2073 /// BB: 2074 /// %cmp = icmp ult %x, %y 2075 /// br i1 %cmp, label %EndBB, label %ThenBB 2076 /// ThenBB: 2077 /// %sub = sub %x, %y 2078 /// br label BB2 2079 /// EndBB: 2080 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2081 /// ... 2082 /// \endcode 2083 /// 2084 /// Into this IR: 2085 /// \code 2086 /// BB: 2087 /// %cmp = icmp ult %x, %y 2088 /// %sub = sub %x, %y 2089 /// %cond = select i1 %cmp, 0, %sub 2090 /// ... 2091 /// \endcode 2092 /// 2093 /// \returns true if the conditional block is removed. 2094 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2095 const TargetTransformInfo &TTI) { 2096 // Be conservative for now. FP select instruction can often be expensive. 2097 Value *BrCond = BI->getCondition(); 2098 if (isa<FCmpInst>(BrCond)) 2099 return false; 2100 2101 BasicBlock *BB = BI->getParent(); 2102 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2103 int BudgetRemaining = 2104 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2105 2106 // If ThenBB is actually on the false edge of the conditional branch, remember 2107 // to swap the select operands later. 2108 bool Invert = false; 2109 if (ThenBB != BI->getSuccessor(0)) { 2110 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2111 Invert = true; 2112 } 2113 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2114 2115 // Keep a count of how many times instructions are used within ThenBB when 2116 // they are candidates for sinking into ThenBB. Specifically: 2117 // - They are defined in BB, and 2118 // - They have no side effects, and 2119 // - All of their uses are in ThenBB. 2120 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2121 2122 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2123 2124 unsigned SpeculatedInstructions = 0; 2125 Value *SpeculatedStoreValue = nullptr; 2126 StoreInst *SpeculatedStore = nullptr; 2127 for (BasicBlock::iterator BBI = ThenBB->begin(), 2128 BBE = std::prev(ThenBB->end()); 2129 BBI != BBE; ++BBI) { 2130 Instruction *I = &*BBI; 2131 // Skip debug info. 2132 if (isa<DbgInfoIntrinsic>(I)) { 2133 SpeculatedDbgIntrinsics.push_back(I); 2134 continue; 2135 } 2136 2137 // Only speculatively execute a single instruction (not counting the 2138 // terminator) for now. 2139 ++SpeculatedInstructions; 2140 if (SpeculatedInstructions > 1) 2141 return false; 2142 2143 // Don't hoist the instruction if it's unsafe or expensive. 2144 if (!isSafeToSpeculativelyExecute(I) && 2145 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2146 I, BB, ThenBB, EndBB)))) 2147 return false; 2148 if (!SpeculatedStoreValue && 2149 ComputeSpeculationCost(I, TTI) > 2150 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2151 return false; 2152 2153 // Store the store speculation candidate. 2154 if (SpeculatedStoreValue) 2155 SpeculatedStore = cast<StoreInst>(I); 2156 2157 // Do not hoist the instruction if any of its operands are defined but not 2158 // used in BB. The transformation will prevent the operand from 2159 // being sunk into the use block. 2160 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2161 Instruction *OpI = dyn_cast<Instruction>(*i); 2162 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2163 continue; // Not a candidate for sinking. 2164 2165 ++SinkCandidateUseCounts[OpI]; 2166 } 2167 } 2168 2169 // Consider any sink candidates which are only used in ThenBB as costs for 2170 // speculation. Note, while we iterate over a DenseMap here, we are summing 2171 // and so iteration order isn't significant. 2172 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2173 I = SinkCandidateUseCounts.begin(), 2174 E = SinkCandidateUseCounts.end(); 2175 I != E; ++I) 2176 if (I->first->hasNUses(I->second)) { 2177 ++SpeculatedInstructions; 2178 if (SpeculatedInstructions > 1) 2179 return false; 2180 } 2181 2182 // Check that we can insert the selects and that it's not too expensive to do 2183 // so. 2184 bool Convert = SpeculatedStore != nullptr; 2185 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2186 SpeculatedInstructions, 2187 BudgetRemaining, TTI); 2188 if (!Convert || BudgetRemaining < 0) 2189 return false; 2190 2191 // If we get here, we can hoist the instruction and if-convert. 2192 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2193 2194 // Insert a select of the value of the speculated store. 2195 if (SpeculatedStoreValue) { 2196 IRBuilder<NoFolder> Builder(BI); 2197 Value *TrueV = SpeculatedStore->getValueOperand(); 2198 Value *FalseV = SpeculatedStoreValue; 2199 if (Invert) 2200 std::swap(TrueV, FalseV); 2201 Value *S = Builder.CreateSelect( 2202 BrCond, TrueV, FalseV, "spec.store.select", BI); 2203 SpeculatedStore->setOperand(0, S); 2204 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2205 SpeculatedStore->getDebugLoc()); 2206 } 2207 2208 // Metadata can be dependent on the condition we are hoisting above. 2209 // Conservatively strip all metadata on the instruction. Drop the debug loc 2210 // to avoid making it appear as if the condition is a constant, which would 2211 // be misleading while debugging. 2212 for (auto &I : *ThenBB) { 2213 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2214 I.setDebugLoc(DebugLoc()); 2215 I.dropUnknownNonDebugMetadata(); 2216 } 2217 2218 // Hoist the instructions. 2219 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2220 ThenBB->begin(), std::prev(ThenBB->end())); 2221 2222 // Insert selects and rewrite the PHI operands. 2223 IRBuilder<NoFolder> Builder(BI); 2224 for (PHINode &PN : EndBB->phis()) { 2225 unsigned OrigI = PN.getBasicBlockIndex(BB); 2226 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2227 Value *OrigV = PN.getIncomingValue(OrigI); 2228 Value *ThenV = PN.getIncomingValue(ThenI); 2229 2230 // Skip PHIs which are trivial. 2231 if (OrigV == ThenV) 2232 continue; 2233 2234 // Create a select whose true value is the speculatively executed value and 2235 // false value is the pre-existing value. Swap them if the branch 2236 // destinations were inverted. 2237 Value *TrueV = ThenV, *FalseV = OrigV; 2238 if (Invert) 2239 std::swap(TrueV, FalseV); 2240 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2241 PN.setIncomingValue(OrigI, V); 2242 PN.setIncomingValue(ThenI, V); 2243 } 2244 2245 // Remove speculated dbg intrinsics. 2246 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2247 // dbg value for the different flows and inserting it after the select. 2248 for (Instruction *I : SpeculatedDbgIntrinsics) 2249 I->eraseFromParent(); 2250 2251 ++NumSpeculations; 2252 return true; 2253 } 2254 2255 /// Return true if we can thread a branch across this block. 2256 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2257 int Size = 0; 2258 2259 for (Instruction &I : BB->instructionsWithoutDebug()) { 2260 if (Size > MaxSmallBlockSize) 2261 return false; // Don't clone large BB's. 2262 2263 // Can't fold blocks that contain noduplicate or convergent calls. 2264 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2265 if (CI->cannotDuplicate() || CI->isConvergent()) 2266 return false; 2267 2268 // We will delete Phis while threading, so Phis should not be accounted in 2269 // block's size 2270 if (!isa<PHINode>(I)) 2271 ++Size; 2272 2273 // We can only support instructions that do not define values that are 2274 // live outside of the current basic block. 2275 for (User *U : I.users()) { 2276 Instruction *UI = cast<Instruction>(U); 2277 if (UI->getParent() != BB || isa<PHINode>(UI)) 2278 return false; 2279 } 2280 2281 // Looks ok, continue checking. 2282 } 2283 2284 return true; 2285 } 2286 2287 /// If we have a conditional branch on a PHI node value that is defined in the 2288 /// same block as the branch and if any PHI entries are constants, thread edges 2289 /// corresponding to that entry to be branches to their ultimate destination. 2290 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2291 AssumptionCache *AC) { 2292 BasicBlock *BB = BI->getParent(); 2293 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2294 // NOTE: we currently cannot transform this case if the PHI node is used 2295 // outside of the block. 2296 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2297 return false; 2298 2299 // Degenerate case of a single entry PHI. 2300 if (PN->getNumIncomingValues() == 1) { 2301 FoldSingleEntryPHINodes(PN->getParent()); 2302 return true; 2303 } 2304 2305 // Now we know that this block has multiple preds and two succs. 2306 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2307 return false; 2308 2309 // Okay, this is a simple enough basic block. See if any phi values are 2310 // constants. 2311 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2312 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2313 if (!CB || !CB->getType()->isIntegerTy(1)) 2314 continue; 2315 2316 // Okay, we now know that all edges from PredBB should be revectored to 2317 // branch to RealDest. 2318 BasicBlock *PredBB = PN->getIncomingBlock(i); 2319 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2320 2321 if (RealDest == BB) 2322 continue; // Skip self loops. 2323 // Skip if the predecessor's terminator is an indirect branch. 2324 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2325 continue; 2326 2327 // The dest block might have PHI nodes, other predecessors and other 2328 // difficult cases. Instead of being smart about this, just insert a new 2329 // block that jumps to the destination block, effectively splitting 2330 // the edge we are about to create. 2331 BasicBlock *EdgeBB = 2332 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2333 RealDest->getParent(), RealDest); 2334 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2335 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2336 2337 // Update PHI nodes. 2338 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2339 2340 // BB may have instructions that are being threaded over. Clone these 2341 // instructions into EdgeBB. We know that there will be no uses of the 2342 // cloned instructions outside of EdgeBB. 2343 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2344 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2345 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2346 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2347 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2348 continue; 2349 } 2350 // Clone the instruction. 2351 Instruction *N = BBI->clone(); 2352 if (BBI->hasName()) 2353 N->setName(BBI->getName() + ".c"); 2354 2355 // Update operands due to translation. 2356 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2357 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2358 if (PI != TranslateMap.end()) 2359 *i = PI->second; 2360 } 2361 2362 // Check for trivial simplification. 2363 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2364 if (!BBI->use_empty()) 2365 TranslateMap[&*BBI] = V; 2366 if (!N->mayHaveSideEffects()) { 2367 N->deleteValue(); // Instruction folded away, don't need actual inst 2368 N = nullptr; 2369 } 2370 } else { 2371 if (!BBI->use_empty()) 2372 TranslateMap[&*BBI] = N; 2373 } 2374 if (N) { 2375 // Insert the new instruction into its new home. 2376 EdgeBB->getInstList().insert(InsertPt, N); 2377 2378 // Register the new instruction with the assumption cache if necessary. 2379 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2380 AC->registerAssumption(cast<IntrinsicInst>(N)); 2381 } 2382 } 2383 2384 // Loop over all of the edges from PredBB to BB, changing them to branch 2385 // to EdgeBB instead. 2386 Instruction *PredBBTI = PredBB->getTerminator(); 2387 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2388 if (PredBBTI->getSuccessor(i) == BB) { 2389 BB->removePredecessor(PredBB); 2390 PredBBTI->setSuccessor(i, EdgeBB); 2391 } 2392 2393 // Recurse, simplifying any other constants. 2394 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2395 } 2396 2397 return false; 2398 } 2399 2400 /// Given a BB that starts with the specified two-entry PHI node, 2401 /// see if we can eliminate it. 2402 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2403 const DataLayout &DL) { 2404 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2405 // statement", which has a very simple dominance structure. Basically, we 2406 // are trying to find the condition that is being branched on, which 2407 // subsequently causes this merge to happen. We really want control 2408 // dependence information for this check, but simplifycfg can't keep it up 2409 // to date, and this catches most of the cases we care about anyway. 2410 BasicBlock *BB = PN->getParent(); 2411 2412 BasicBlock *IfTrue, *IfFalse; 2413 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2414 if (!IfCond || 2415 // Don't bother if the branch will be constant folded trivially. 2416 isa<ConstantInt>(IfCond)) 2417 return false; 2418 2419 // Okay, we found that we can merge this two-entry phi node into a select. 2420 // Doing so would require us to fold *all* two entry phi nodes in this block. 2421 // At some point this becomes non-profitable (particularly if the target 2422 // doesn't support cmov's). Only do this transformation if there are two or 2423 // fewer PHI nodes in this block. 2424 unsigned NumPhis = 0; 2425 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2426 if (NumPhis > 2) 2427 return false; 2428 2429 // Loop over the PHI's seeing if we can promote them all to select 2430 // instructions. While we are at it, keep track of the instructions 2431 // that need to be moved to the dominating block. 2432 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2433 int BudgetRemaining = 2434 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2435 2436 bool Changed = false; 2437 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2438 PHINode *PN = cast<PHINode>(II++); 2439 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2440 PN->replaceAllUsesWith(V); 2441 PN->eraseFromParent(); 2442 Changed = true; 2443 continue; 2444 } 2445 2446 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2447 BudgetRemaining, TTI) || 2448 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2449 BudgetRemaining, TTI)) 2450 return Changed; 2451 } 2452 2453 // If we folded the first phi, PN dangles at this point. Refresh it. If 2454 // we ran out of PHIs then we simplified them all. 2455 PN = dyn_cast<PHINode>(BB->begin()); 2456 if (!PN) 2457 return true; 2458 2459 // Return true if at least one of these is a 'not', and another is either 2460 // a 'not' too, or a constant. 2461 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2462 if (!match(V0, m_Not(m_Value()))) 2463 std::swap(V0, V1); 2464 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2465 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2466 }; 2467 2468 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2469 // of the incoming values is an 'not' and another one is freely invertible. 2470 // These can often be turned into switches and other things. 2471 if (PN->getType()->isIntegerTy(1) && 2472 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2473 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2474 isa<BinaryOperator>(IfCond)) && 2475 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2476 PN->getIncomingValue(1))) 2477 return Changed; 2478 2479 // If all PHI nodes are promotable, check to make sure that all instructions 2480 // in the predecessor blocks can be promoted as well. If not, we won't be able 2481 // to get rid of the control flow, so it's not worth promoting to select 2482 // instructions. 2483 BasicBlock *DomBlock = nullptr; 2484 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2485 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2486 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2487 IfBlock1 = nullptr; 2488 } else { 2489 DomBlock = *pred_begin(IfBlock1); 2490 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2491 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2492 // This is not an aggressive instruction that we can promote. 2493 // Because of this, we won't be able to get rid of the control flow, so 2494 // the xform is not worth it. 2495 return Changed; 2496 } 2497 } 2498 2499 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2500 IfBlock2 = nullptr; 2501 } else { 2502 DomBlock = *pred_begin(IfBlock2); 2503 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2504 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2505 // This is not an aggressive instruction that we can promote. 2506 // Because of this, we won't be able to get rid of the control flow, so 2507 // the xform is not worth it. 2508 return Changed; 2509 } 2510 } 2511 assert(DomBlock && "Failed to find root DomBlock"); 2512 2513 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2514 << " T: " << IfTrue->getName() 2515 << " F: " << IfFalse->getName() << "\n"); 2516 2517 // If we can still promote the PHI nodes after this gauntlet of tests, 2518 // do all of the PHI's now. 2519 Instruction *InsertPt = DomBlock->getTerminator(); 2520 IRBuilder<NoFolder> Builder(InsertPt); 2521 2522 // Move all 'aggressive' instructions, which are defined in the 2523 // conditional parts of the if's up to the dominating block. 2524 if (IfBlock1) 2525 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2526 if (IfBlock2) 2527 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2528 2529 // Propagate fast-math-flags from phi nodes to replacement selects. 2530 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2531 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2532 if (isa<FPMathOperator>(PN)) 2533 Builder.setFastMathFlags(PN->getFastMathFlags()); 2534 2535 // Change the PHI node into a select instruction. 2536 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2537 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2538 2539 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2540 PN->replaceAllUsesWith(Sel); 2541 Sel->takeName(PN); 2542 PN->eraseFromParent(); 2543 } 2544 2545 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2546 // has been flattened. Change DomBlock to jump directly to our new block to 2547 // avoid other simplifycfg's kicking in on the diamond. 2548 Instruction *OldTI = DomBlock->getTerminator(); 2549 Builder.SetInsertPoint(OldTI); 2550 Builder.CreateBr(BB); 2551 OldTI->eraseFromParent(); 2552 return true; 2553 } 2554 2555 /// If we found a conditional branch that goes to two returning blocks, 2556 /// try to merge them together into one return, 2557 /// introducing a select if the return values disagree. 2558 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2559 IRBuilder<> &Builder) { 2560 assert(BI->isConditional() && "Must be a conditional branch"); 2561 BasicBlock *TrueSucc = BI->getSuccessor(0); 2562 BasicBlock *FalseSucc = BI->getSuccessor(1); 2563 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2564 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2565 2566 // Check to ensure both blocks are empty (just a return) or optionally empty 2567 // with PHI nodes. If there are other instructions, merging would cause extra 2568 // computation on one path or the other. 2569 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2570 return false; 2571 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2572 return false; 2573 2574 Builder.SetInsertPoint(BI); 2575 // Okay, we found a branch that is going to two return nodes. If 2576 // there is no return value for this function, just change the 2577 // branch into a return. 2578 if (FalseRet->getNumOperands() == 0) { 2579 TrueSucc->removePredecessor(BI->getParent()); 2580 FalseSucc->removePredecessor(BI->getParent()); 2581 Builder.CreateRetVoid(); 2582 EraseTerminatorAndDCECond(BI); 2583 return true; 2584 } 2585 2586 // Otherwise, figure out what the true and false return values are 2587 // so we can insert a new select instruction. 2588 Value *TrueValue = TrueRet->getReturnValue(); 2589 Value *FalseValue = FalseRet->getReturnValue(); 2590 2591 // Unwrap any PHI nodes in the return blocks. 2592 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2593 if (TVPN->getParent() == TrueSucc) 2594 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2595 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2596 if (FVPN->getParent() == FalseSucc) 2597 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2598 2599 // In order for this transformation to be safe, we must be able to 2600 // unconditionally execute both operands to the return. This is 2601 // normally the case, but we could have a potentially-trapping 2602 // constant expression that prevents this transformation from being 2603 // safe. 2604 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2605 if (TCV->canTrap()) 2606 return false; 2607 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2608 if (FCV->canTrap()) 2609 return false; 2610 2611 // Okay, we collected all the mapped values and checked them for sanity, and 2612 // defined to really do this transformation. First, update the CFG. 2613 TrueSucc->removePredecessor(BI->getParent()); 2614 FalseSucc->removePredecessor(BI->getParent()); 2615 2616 // Insert select instructions where needed. 2617 Value *BrCond = BI->getCondition(); 2618 if (TrueValue) { 2619 // Insert a select if the results differ. 2620 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2621 } else if (isa<UndefValue>(TrueValue)) { 2622 TrueValue = FalseValue; 2623 } else { 2624 TrueValue = 2625 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2626 } 2627 } 2628 2629 Value *RI = 2630 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2631 2632 (void)RI; 2633 2634 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2635 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2636 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2637 2638 EraseTerminatorAndDCECond(BI); 2639 2640 return true; 2641 } 2642 2643 /// Return true if the given instruction is available 2644 /// in its predecessor block. If yes, the instruction will be removed. 2645 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2646 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2647 return false; 2648 for (Instruction &I : *PB) { 2649 Instruction *PBI = &I; 2650 // Check whether Inst and PBI generate the same value. 2651 if (Inst->isIdenticalTo(PBI)) { 2652 Inst->replaceAllUsesWith(PBI); 2653 Inst->eraseFromParent(); 2654 return true; 2655 } 2656 } 2657 return false; 2658 } 2659 2660 /// Return true if either PBI or BI has branch weight available, and store 2661 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2662 /// not have branch weight, use 1:1 as its weight. 2663 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2664 uint64_t &PredTrueWeight, 2665 uint64_t &PredFalseWeight, 2666 uint64_t &SuccTrueWeight, 2667 uint64_t &SuccFalseWeight) { 2668 bool PredHasWeights = 2669 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2670 bool SuccHasWeights = 2671 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2672 if (PredHasWeights || SuccHasWeights) { 2673 if (!PredHasWeights) 2674 PredTrueWeight = PredFalseWeight = 1; 2675 if (!SuccHasWeights) 2676 SuccTrueWeight = SuccFalseWeight = 1; 2677 return true; 2678 } else { 2679 return false; 2680 } 2681 } 2682 2683 /// If this basic block is simple enough, and if a predecessor branches to us 2684 /// and one of our successors, fold the block into the predecessor and use 2685 /// logical operations to pick the right destination. 2686 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2687 unsigned BonusInstThreshold) { 2688 BasicBlock *BB = BI->getParent(); 2689 2690 const unsigned PredCount = pred_size(BB); 2691 2692 bool Changed = false; 2693 2694 Instruction *Cond = nullptr; 2695 if (BI->isConditional()) 2696 Cond = dyn_cast<Instruction>(BI->getCondition()); 2697 else { 2698 // For unconditional branch, check for a simple CFG pattern, where 2699 // BB has a single predecessor and BB's successor is also its predecessor's 2700 // successor. If such pattern exists, check for CSE between BB and its 2701 // predecessor. 2702 if (BasicBlock *PB = BB->getSinglePredecessor()) 2703 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2704 if (PBI->isConditional() && 2705 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2706 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2707 for (auto I = BB->instructionsWithoutDebug().begin(), 2708 E = BB->instructionsWithoutDebug().end(); 2709 I != E;) { 2710 Instruction *Curr = &*I++; 2711 if (isa<CmpInst>(Curr)) { 2712 Cond = Curr; 2713 break; 2714 } 2715 // Quit if we can't remove this instruction. 2716 if (!tryCSEWithPredecessor(Curr, PB)) 2717 return Changed; 2718 Changed = true; 2719 } 2720 } 2721 2722 if (!Cond) 2723 return Changed; 2724 } 2725 2726 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2727 Cond->getParent() != BB || !Cond->hasOneUse()) 2728 return Changed; 2729 2730 // Make sure the instruction after the condition is the cond branch. 2731 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2732 2733 // Ignore dbg intrinsics. 2734 while (isa<DbgInfoIntrinsic>(CondIt)) 2735 ++CondIt; 2736 2737 if (&*CondIt != BI) 2738 return Changed; 2739 2740 // Only allow this transformation if computing the condition doesn't involve 2741 // too many instructions and these involved instructions can be executed 2742 // unconditionally. We denote all involved instructions except the condition 2743 // as "bonus instructions", and only allow this transformation when the 2744 // number of the bonus instructions we'll need to create when cloning into 2745 // each predecessor does not exceed a certain threshold. 2746 unsigned NumBonusInsts = 0; 2747 for (auto I = BB->begin(); Cond != &*I; ++I) { 2748 // Ignore dbg intrinsics. 2749 if (isa<DbgInfoIntrinsic>(I)) 2750 continue; 2751 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2752 return Changed; 2753 // I has only one use and can be executed unconditionally. 2754 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2755 if (User == nullptr || User->getParent() != BB) 2756 return Changed; 2757 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2758 // to use any other instruction, User must be an instruction between next(I) 2759 // and Cond. 2760 2761 // Account for the cost of duplicating this instruction into each 2762 // predecessor. 2763 NumBonusInsts += PredCount; 2764 // Early exits once we reach the limit. 2765 if (NumBonusInsts > BonusInstThreshold) 2766 return Changed; 2767 } 2768 2769 // Cond is known to be a compare or binary operator. Check to make sure that 2770 // neither operand is a potentially-trapping constant expression. 2771 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2772 if (CE->canTrap()) 2773 return Changed; 2774 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2775 if (CE->canTrap()) 2776 return Changed; 2777 2778 // Finally, don't infinitely unroll conditional loops. 2779 BasicBlock *TrueDest = BI->getSuccessor(0); 2780 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2781 if (TrueDest == BB || FalseDest == BB) 2782 return Changed; 2783 2784 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2785 BasicBlock *PredBlock = *PI; 2786 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2787 2788 // Check that we have two conditional branches. If there is a PHI node in 2789 // the common successor, verify that the same value flows in from both 2790 // blocks. 2791 SmallVector<PHINode *, 4> PHIs; 2792 if (!PBI || PBI->isUnconditional() || 2793 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2794 (!BI->isConditional() && 2795 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2796 continue; 2797 2798 // Determine if the two branches share a common destination. 2799 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2800 bool InvertPredCond = false; 2801 2802 if (BI->isConditional()) { 2803 if (PBI->getSuccessor(0) == TrueDest) { 2804 Opc = Instruction::Or; 2805 } else if (PBI->getSuccessor(1) == FalseDest) { 2806 Opc = Instruction::And; 2807 } else if (PBI->getSuccessor(0) == FalseDest) { 2808 Opc = Instruction::And; 2809 InvertPredCond = true; 2810 } else if (PBI->getSuccessor(1) == TrueDest) { 2811 Opc = Instruction::Or; 2812 InvertPredCond = true; 2813 } else { 2814 continue; 2815 } 2816 } else { 2817 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2818 continue; 2819 } 2820 2821 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2822 Changed = true; 2823 2824 IRBuilder<> Builder(PBI); 2825 2826 // If we need to invert the condition in the pred block to match, do so now. 2827 if (InvertPredCond) { 2828 Value *NewCond = PBI->getCondition(); 2829 2830 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2831 CmpInst *CI = cast<CmpInst>(NewCond); 2832 CI->setPredicate(CI->getInversePredicate()); 2833 } else { 2834 NewCond = 2835 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2836 } 2837 2838 PBI->setCondition(NewCond); 2839 PBI->swapSuccessors(); 2840 } 2841 2842 // If we have bonus instructions, clone them into the predecessor block. 2843 // Note that there may be multiple predecessor blocks, so we cannot move 2844 // bonus instructions to a predecessor block. 2845 ValueToValueMapTy VMap; // maps original values to cloned values 2846 // We already make sure Cond is the last instruction before BI. Therefore, 2847 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2848 // instructions. 2849 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2850 if (isa<DbgInfoIntrinsic>(BonusInst)) 2851 continue; 2852 Instruction *NewBonusInst = BonusInst->clone(); 2853 2854 // When we fold the bonus instructions we want to make sure we 2855 // reset their debug locations in order to avoid stepping on dead 2856 // code caused by folding dead branches. 2857 NewBonusInst->setDebugLoc(DebugLoc()); 2858 2859 RemapInstruction(NewBonusInst, VMap, 2860 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2861 VMap[&*BonusInst] = NewBonusInst; 2862 2863 // If we moved a load, we cannot any longer claim any knowledge about 2864 // its potential value. The previous information might have been valid 2865 // only given the branch precondition. 2866 // For an analogous reason, we must also drop all the metadata whose 2867 // semantics we don't understand. 2868 NewBonusInst->dropUnknownNonDebugMetadata(); 2869 2870 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2871 NewBonusInst->takeName(&*BonusInst); 2872 BonusInst->setName(BonusInst->getName() + ".old"); 2873 } 2874 2875 // Clone Cond into the predecessor basic block, and or/and the 2876 // two conditions together. 2877 Instruction *CondInPred = Cond->clone(); 2878 2879 // Reset the condition debug location to avoid jumping on dead code 2880 // as the result of folding dead branches. 2881 CondInPred->setDebugLoc(DebugLoc()); 2882 2883 RemapInstruction(CondInPred, VMap, 2884 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2885 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2886 CondInPred->takeName(Cond); 2887 Cond->setName(CondInPred->getName() + ".old"); 2888 2889 if (BI->isConditional()) { 2890 Instruction *NewCond = cast<Instruction>( 2891 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2892 PBI->setCondition(NewCond); 2893 2894 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2895 bool HasWeights = 2896 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2897 SuccTrueWeight, SuccFalseWeight); 2898 SmallVector<uint64_t, 8> NewWeights; 2899 2900 if (PBI->getSuccessor(0) == BB) { 2901 if (HasWeights) { 2902 // PBI: br i1 %x, BB, FalseDest 2903 // BI: br i1 %y, TrueDest, FalseDest 2904 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2905 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2906 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2907 // TrueWeight for PBI * FalseWeight for BI. 2908 // We assume that total weights of a BranchInst can fit into 32 bits. 2909 // Therefore, we will not have overflow using 64-bit arithmetic. 2910 NewWeights.push_back(PredFalseWeight * 2911 (SuccFalseWeight + SuccTrueWeight) + 2912 PredTrueWeight * SuccFalseWeight); 2913 } 2914 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU); 2915 PBI->setSuccessor(0, TrueDest); 2916 } 2917 if (PBI->getSuccessor(1) == BB) { 2918 if (HasWeights) { 2919 // PBI: br i1 %x, TrueDest, BB 2920 // BI: br i1 %y, TrueDest, FalseDest 2921 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2922 // FalseWeight for PBI * TrueWeight for BI. 2923 NewWeights.push_back(PredTrueWeight * 2924 (SuccFalseWeight + SuccTrueWeight) + 2925 PredFalseWeight * SuccTrueWeight); 2926 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2927 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2928 } 2929 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU); 2930 PBI->setSuccessor(1, FalseDest); 2931 } 2932 if (NewWeights.size() == 2) { 2933 // Halve the weights if any of them cannot fit in an uint32_t 2934 FitWeights(NewWeights); 2935 2936 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2937 NewWeights.end()); 2938 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2939 } else 2940 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2941 } else { 2942 // Update PHI nodes in the common successors. 2943 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2944 ConstantInt *PBI_C = cast<ConstantInt>( 2945 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2946 assert(PBI_C->getType()->isIntegerTy(1)); 2947 Instruction *MergedCond = nullptr; 2948 if (PBI->getSuccessor(0) == TrueDest) { 2949 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2950 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2951 // is false: !PBI_Cond and BI_Value 2952 Instruction *NotCond = cast<Instruction>( 2953 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2954 MergedCond = cast<Instruction>( 2955 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2956 "and.cond")); 2957 if (PBI_C->isOne()) 2958 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2959 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2960 } else { 2961 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2962 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2963 // is false: PBI_Cond and BI_Value 2964 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2965 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2966 if (PBI_C->isOne()) { 2967 Instruction *NotCond = cast<Instruction>( 2968 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2969 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2970 Instruction::Or, NotCond, MergedCond, "or.cond")); 2971 } 2972 } 2973 // Update PHI Node. 2974 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 2975 } 2976 2977 // PBI is changed to branch to TrueDest below. Remove itself from 2978 // potential phis from all other successors. 2979 if (MSSAU) 2980 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 2981 2982 // Change PBI from Conditional to Unconditional. 2983 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2984 EraseTerminatorAndDCECond(PBI, MSSAU); 2985 PBI = New_PBI; 2986 } 2987 2988 // If BI was a loop latch, it may have had associated loop metadata. 2989 // We need to copy it to the new latch, that is, PBI. 2990 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2991 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2992 2993 // TODO: If BB is reachable from all paths through PredBlock, then we 2994 // could replace PBI's branch probabilities with BI's. 2995 2996 // Copy any debug value intrinsics into the end of PredBlock. 2997 for (Instruction &I : *BB) { 2998 if (isa<DbgInfoIntrinsic>(I)) { 2999 Instruction *NewI = I.clone(); 3000 RemapInstruction(NewI, VMap, 3001 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3002 NewI->insertBefore(PBI); 3003 } 3004 } 3005 3006 return Changed; 3007 } 3008 return Changed; 3009 } 3010 3011 // If there is only one store in BB1 and BB2, return it, otherwise return 3012 // nullptr. 3013 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3014 StoreInst *S = nullptr; 3015 for (auto *BB : {BB1, BB2}) { 3016 if (!BB) 3017 continue; 3018 for (auto &I : *BB) 3019 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3020 if (S) 3021 // Multiple stores seen. 3022 return nullptr; 3023 else 3024 S = SI; 3025 } 3026 } 3027 return S; 3028 } 3029 3030 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3031 Value *AlternativeV = nullptr) { 3032 // PHI is going to be a PHI node that allows the value V that is defined in 3033 // BB to be referenced in BB's only successor. 3034 // 3035 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3036 // doesn't matter to us what the other operand is (it'll never get used). We 3037 // could just create a new PHI with an undef incoming value, but that could 3038 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3039 // other PHI. So here we directly look for some PHI in BB's successor with V 3040 // as an incoming operand. If we find one, we use it, else we create a new 3041 // one. 3042 // 3043 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3044 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3045 // where OtherBB is the single other predecessor of BB's only successor. 3046 PHINode *PHI = nullptr; 3047 BasicBlock *Succ = BB->getSingleSuccessor(); 3048 3049 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3050 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3051 PHI = cast<PHINode>(I); 3052 if (!AlternativeV) 3053 break; 3054 3055 assert(Succ->hasNPredecessors(2)); 3056 auto PredI = pred_begin(Succ); 3057 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3058 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3059 break; 3060 PHI = nullptr; 3061 } 3062 if (PHI) 3063 return PHI; 3064 3065 // If V is not an instruction defined in BB, just return it. 3066 if (!AlternativeV && 3067 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3068 return V; 3069 3070 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3071 PHI->addIncoming(V, BB); 3072 for (BasicBlock *PredBB : predecessors(Succ)) 3073 if (PredBB != BB) 3074 PHI->addIncoming( 3075 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3076 return PHI; 3077 } 3078 3079 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 3080 BasicBlock *QTB, BasicBlock *QFB, 3081 BasicBlock *PostBB, Value *Address, 3082 bool InvertPCond, bool InvertQCond, 3083 const DataLayout &DL, 3084 const TargetTransformInfo &TTI) { 3085 // For every pointer, there must be exactly two stores, one coming from 3086 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3087 // store (to any address) in PTB,PFB or QTB,QFB. 3088 // FIXME: We could relax this restriction with a bit more work and performance 3089 // testing. 3090 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3091 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3092 if (!PStore || !QStore) 3093 return false; 3094 3095 // Now check the stores are compatible. 3096 if (!QStore->isUnordered() || !PStore->isUnordered()) 3097 return false; 3098 3099 // Check that sinking the store won't cause program behavior changes. Sinking 3100 // the store out of the Q blocks won't change any behavior as we're sinking 3101 // from a block to its unconditional successor. But we're moving a store from 3102 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3103 // So we need to check that there are no aliasing loads or stores in 3104 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3105 // operations between PStore and the end of its parent block. 3106 // 3107 // The ideal way to do this is to query AliasAnalysis, but we don't 3108 // preserve AA currently so that is dangerous. Be super safe and just 3109 // check there are no other memory operations at all. 3110 for (auto &I : *QFB->getSinglePredecessor()) 3111 if (I.mayReadOrWriteMemory()) 3112 return false; 3113 for (auto &I : *QFB) 3114 if (&I != QStore && I.mayReadOrWriteMemory()) 3115 return false; 3116 if (QTB) 3117 for (auto &I : *QTB) 3118 if (&I != QStore && I.mayReadOrWriteMemory()) 3119 return false; 3120 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3121 I != E; ++I) 3122 if (&*I != PStore && I->mayReadOrWriteMemory()) 3123 return false; 3124 3125 // If we're not in aggressive mode, we only optimize if we have some 3126 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3127 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3128 if (!BB) 3129 return true; 3130 // Heuristic: if the block can be if-converted/phi-folded and the 3131 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3132 // thread this store. 3133 int BudgetRemaining = 3134 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3135 for (auto &I : BB->instructionsWithoutDebug()) { 3136 // Consider terminator instruction to be free. 3137 if (I.isTerminator()) 3138 continue; 3139 // If this is one the stores that we want to speculate out of this BB, 3140 // then don't count it's cost, consider it to be free. 3141 if (auto *S = dyn_cast<StoreInst>(&I)) 3142 if (llvm::find(FreeStores, S)) 3143 continue; 3144 // Else, we have a white-list of instructions that we are ak speculating. 3145 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3146 return false; // Not in white-list - not worthwhile folding. 3147 // And finally, if this is a non-free instruction that we are okay 3148 // speculating, ensure that we consider the speculation budget. 3149 BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3150 if (BudgetRemaining < 0) 3151 return false; // Eagerly refuse to fold as soon as we're out of budget. 3152 } 3153 assert(BudgetRemaining >= 0 && 3154 "When we run out of budget we will eagerly return from within the " 3155 "per-instruction loop."); 3156 return true; 3157 }; 3158 3159 const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore}; 3160 if (!MergeCondStoresAggressively && 3161 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3162 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3163 return false; 3164 3165 // If PostBB has more than two predecessors, we need to split it so we can 3166 // sink the store. 3167 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3168 // We know that QFB's only successor is PostBB. And QFB has a single 3169 // predecessor. If QTB exists, then its only successor is also PostBB. 3170 // If QTB does not exist, then QFB's only predecessor has a conditional 3171 // branch to QFB and PostBB. 3172 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3173 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3174 "condstore.split"); 3175 if (!NewBB) 3176 return false; 3177 PostBB = NewBB; 3178 } 3179 3180 // OK, we're going to sink the stores to PostBB. The store has to be 3181 // conditional though, so first create the predicate. 3182 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3183 ->getCondition(); 3184 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3185 ->getCondition(); 3186 3187 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3188 PStore->getParent()); 3189 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3190 QStore->getParent(), PPHI); 3191 3192 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3193 3194 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3195 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3196 3197 if (InvertPCond) 3198 PPred = QB.CreateNot(PPred); 3199 if (InvertQCond) 3200 QPred = QB.CreateNot(QPred); 3201 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3202 3203 auto *T = 3204 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3205 QB.SetInsertPoint(T); 3206 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3207 AAMDNodes AAMD; 3208 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3209 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3210 SI->setAAMetadata(AAMD); 3211 // Choose the minimum alignment. If we could prove both stores execute, we 3212 // could use biggest one. In this case, though, we only know that one of the 3213 // stores executes. And we don't know it's safe to take the alignment from a 3214 // store that doesn't execute. 3215 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3216 3217 QStore->eraseFromParent(); 3218 PStore->eraseFromParent(); 3219 3220 return true; 3221 } 3222 3223 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3224 const DataLayout &DL, 3225 const TargetTransformInfo &TTI) { 3226 // The intention here is to find diamonds or triangles (see below) where each 3227 // conditional block contains a store to the same address. Both of these 3228 // stores are conditional, so they can't be unconditionally sunk. But it may 3229 // be profitable to speculatively sink the stores into one merged store at the 3230 // end, and predicate the merged store on the union of the two conditions of 3231 // PBI and QBI. 3232 // 3233 // This can reduce the number of stores executed if both of the conditions are 3234 // true, and can allow the blocks to become small enough to be if-converted. 3235 // This optimization will also chain, so that ladders of test-and-set 3236 // sequences can be if-converted away. 3237 // 3238 // We only deal with simple diamonds or triangles: 3239 // 3240 // PBI or PBI or a combination of the two 3241 // / \ | \ 3242 // PTB PFB | PFB 3243 // \ / | / 3244 // QBI QBI 3245 // / \ | \ 3246 // QTB QFB | QFB 3247 // \ / | / 3248 // PostBB PostBB 3249 // 3250 // We model triangles as a type of diamond with a nullptr "true" block. 3251 // Triangles are canonicalized so that the fallthrough edge is represented by 3252 // a true condition, as in the diagram above. 3253 BasicBlock *PTB = PBI->getSuccessor(0); 3254 BasicBlock *PFB = PBI->getSuccessor(1); 3255 BasicBlock *QTB = QBI->getSuccessor(0); 3256 BasicBlock *QFB = QBI->getSuccessor(1); 3257 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3258 3259 // Make sure we have a good guess for PostBB. If QTB's only successor is 3260 // QFB, then QFB is a better PostBB. 3261 if (QTB->getSingleSuccessor() == QFB) 3262 PostBB = QFB; 3263 3264 // If we couldn't find a good PostBB, stop. 3265 if (!PostBB) 3266 return false; 3267 3268 bool InvertPCond = false, InvertQCond = false; 3269 // Canonicalize fallthroughs to the true branches. 3270 if (PFB == QBI->getParent()) { 3271 std::swap(PFB, PTB); 3272 InvertPCond = true; 3273 } 3274 if (QFB == PostBB) { 3275 std::swap(QFB, QTB); 3276 InvertQCond = true; 3277 } 3278 3279 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3280 // and QFB may not. Model fallthroughs as a nullptr block. 3281 if (PTB == QBI->getParent()) 3282 PTB = nullptr; 3283 if (QTB == PostBB) 3284 QTB = nullptr; 3285 3286 // Legality bailouts. We must have at least the non-fallthrough blocks and 3287 // the post-dominating block, and the non-fallthroughs must only have one 3288 // predecessor. 3289 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3290 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3291 }; 3292 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3293 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3294 return false; 3295 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3296 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3297 return false; 3298 if (!QBI->getParent()->hasNUses(2)) 3299 return false; 3300 3301 // OK, this is a sequence of two diamonds or triangles. 3302 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3303 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3304 for (auto *BB : {PTB, PFB}) { 3305 if (!BB) 3306 continue; 3307 for (auto &I : *BB) 3308 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3309 PStoreAddresses.insert(SI->getPointerOperand()); 3310 } 3311 for (auto *BB : {QTB, QFB}) { 3312 if (!BB) 3313 continue; 3314 for (auto &I : *BB) 3315 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3316 QStoreAddresses.insert(SI->getPointerOperand()); 3317 } 3318 3319 set_intersect(PStoreAddresses, QStoreAddresses); 3320 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3321 // clear what it contains. 3322 auto &CommonAddresses = PStoreAddresses; 3323 3324 bool Changed = false; 3325 for (auto *Address : CommonAddresses) 3326 Changed |= mergeConditionalStoreToAddress( 3327 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI); 3328 return Changed; 3329 } 3330 3331 3332 /// If the previous block ended with a widenable branch, determine if reusing 3333 /// the target block is profitable and legal. This will have the effect of 3334 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3335 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 3336 // TODO: This can be generalized in two important ways: 3337 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3338 // values from the PBI edge. 3339 // 2) We can sink side effecting instructions into BI's fallthrough 3340 // successor provided they doesn't contribute to computation of 3341 // BI's condition. 3342 Value *CondWB, *WC; 3343 BasicBlock *IfTrueBB, *IfFalseBB; 3344 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3345 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3346 return false; 3347 if (!IfFalseBB->phis().empty()) 3348 return false; // TODO 3349 // Use lambda to lazily compute expensive condition after cheap ones. 3350 auto NoSideEffects = [](BasicBlock &BB) { 3351 return !llvm::any_of(BB, [](const Instruction &I) { 3352 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3353 }); 3354 }; 3355 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3356 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3357 NoSideEffects(*BI->getParent())) { 3358 BI->getSuccessor(1)->removePredecessor(BI->getParent()); 3359 BI->setSuccessor(1, IfFalseBB); 3360 return true; 3361 } 3362 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3363 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3364 NoSideEffects(*BI->getParent())) { 3365 BI->getSuccessor(0)->removePredecessor(BI->getParent()); 3366 BI->setSuccessor(0, IfFalseBB); 3367 return true; 3368 } 3369 return false; 3370 } 3371 3372 /// If we have a conditional branch as a predecessor of another block, 3373 /// this function tries to simplify it. We know 3374 /// that PBI and BI are both conditional branches, and BI is in one of the 3375 /// successor blocks of PBI - PBI branches to BI. 3376 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3377 const DataLayout &DL, 3378 const TargetTransformInfo &TTI) { 3379 assert(PBI->isConditional() && BI->isConditional()); 3380 BasicBlock *BB = BI->getParent(); 3381 3382 // If this block ends with a branch instruction, and if there is a 3383 // predecessor that ends on a branch of the same condition, make 3384 // this conditional branch redundant. 3385 if (PBI->getCondition() == BI->getCondition() && 3386 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3387 // Okay, the outcome of this conditional branch is statically 3388 // knowable. If this block had a single pred, handle specially. 3389 if (BB->getSinglePredecessor()) { 3390 // Turn this into a branch on constant. 3391 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3392 BI->setCondition( 3393 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3394 return true; // Nuke the branch on constant. 3395 } 3396 3397 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3398 // in the constant and simplify the block result. Subsequent passes of 3399 // simplifycfg will thread the block. 3400 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3401 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3402 PHINode *NewPN = PHINode::Create( 3403 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3404 BI->getCondition()->getName() + ".pr", &BB->front()); 3405 // Okay, we're going to insert the PHI node. Since PBI is not the only 3406 // predecessor, compute the PHI'd conditional value for all of the preds. 3407 // Any predecessor where the condition is not computable we keep symbolic. 3408 for (pred_iterator PI = PB; PI != PE; ++PI) { 3409 BasicBlock *P = *PI; 3410 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3411 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3412 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3413 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3414 NewPN->addIncoming( 3415 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3416 P); 3417 } else { 3418 NewPN->addIncoming(BI->getCondition(), P); 3419 } 3420 } 3421 3422 BI->setCondition(NewPN); 3423 return true; 3424 } 3425 } 3426 3427 // If the previous block ended with a widenable branch, determine if reusing 3428 // the target block is profitable and legal. This will have the effect of 3429 // "widening" PBI, but doesn't require us to reason about hosting safety. 3430 if (tryWidenCondBranchToCondBranch(PBI, BI)) 3431 return true; 3432 3433 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3434 if (CE->canTrap()) 3435 return false; 3436 3437 // If both branches are conditional and both contain stores to the same 3438 // address, remove the stores from the conditionals and create a conditional 3439 // merged store at the end. 3440 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI)) 3441 return true; 3442 3443 // If this is a conditional branch in an empty block, and if any 3444 // predecessors are a conditional branch to one of our destinations, 3445 // fold the conditions into logical ops and one cond br. 3446 3447 // Ignore dbg intrinsics. 3448 if (&*BB->instructionsWithoutDebug().begin() != BI) 3449 return false; 3450 3451 int PBIOp, BIOp; 3452 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3453 PBIOp = 0; 3454 BIOp = 0; 3455 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3456 PBIOp = 0; 3457 BIOp = 1; 3458 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3459 PBIOp = 1; 3460 BIOp = 0; 3461 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3462 PBIOp = 1; 3463 BIOp = 1; 3464 } else { 3465 return false; 3466 } 3467 3468 // Check to make sure that the other destination of this branch 3469 // isn't BB itself. If so, this is an infinite loop that will 3470 // keep getting unwound. 3471 if (PBI->getSuccessor(PBIOp) == BB) 3472 return false; 3473 3474 // Do not perform this transformation if it would require 3475 // insertion of a large number of select instructions. For targets 3476 // without predication/cmovs, this is a big pessimization. 3477 3478 // Also do not perform this transformation if any phi node in the common 3479 // destination block can trap when reached by BB or PBB (PR17073). In that 3480 // case, it would be unsafe to hoist the operation into a select instruction. 3481 3482 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3483 unsigned NumPhis = 0; 3484 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3485 ++II, ++NumPhis) { 3486 if (NumPhis > 2) // Disable this xform. 3487 return false; 3488 3489 PHINode *PN = cast<PHINode>(II); 3490 Value *BIV = PN->getIncomingValueForBlock(BB); 3491 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3492 if (CE->canTrap()) 3493 return false; 3494 3495 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3496 Value *PBIV = PN->getIncomingValue(PBBIdx); 3497 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3498 if (CE->canTrap()) 3499 return false; 3500 } 3501 3502 // Finally, if everything is ok, fold the branches to logical ops. 3503 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3504 3505 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3506 << "AND: " << *BI->getParent()); 3507 3508 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3509 // branch in it, where one edge (OtherDest) goes back to itself but the other 3510 // exits. We don't *know* that the program avoids the infinite loop 3511 // (even though that seems likely). If we do this xform naively, we'll end up 3512 // recursively unpeeling the loop. Since we know that (after the xform is 3513 // done) that the block *is* infinite if reached, we just make it an obviously 3514 // infinite loop with no cond branch. 3515 if (OtherDest == BB) { 3516 // Insert it at the end of the function, because it's either code, 3517 // or it won't matter if it's hot. :) 3518 BasicBlock *InfLoopBlock = 3519 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3520 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3521 OtherDest = InfLoopBlock; 3522 } 3523 3524 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3525 3526 // BI may have other predecessors. Because of this, we leave 3527 // it alone, but modify PBI. 3528 3529 // Make sure we get to CommonDest on True&True directions. 3530 Value *PBICond = PBI->getCondition(); 3531 IRBuilder<NoFolder> Builder(PBI); 3532 if (PBIOp) 3533 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3534 3535 Value *BICond = BI->getCondition(); 3536 if (BIOp) 3537 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3538 3539 // Merge the conditions. 3540 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3541 3542 // Modify PBI to branch on the new condition to the new dests. 3543 PBI->setCondition(Cond); 3544 PBI->setSuccessor(0, CommonDest); 3545 PBI->setSuccessor(1, OtherDest); 3546 3547 // Update branch weight for PBI. 3548 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3549 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3550 bool HasWeights = 3551 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3552 SuccTrueWeight, SuccFalseWeight); 3553 if (HasWeights) { 3554 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3555 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3556 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3557 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3558 // The weight to CommonDest should be PredCommon * SuccTotal + 3559 // PredOther * SuccCommon. 3560 // The weight to OtherDest should be PredOther * SuccOther. 3561 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3562 PredOther * SuccCommon, 3563 PredOther * SuccOther}; 3564 // Halve the weights if any of them cannot fit in an uint32_t 3565 FitWeights(NewWeights); 3566 3567 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3568 } 3569 3570 // OtherDest may have phi nodes. If so, add an entry from PBI's 3571 // block that are identical to the entries for BI's block. 3572 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3573 3574 // We know that the CommonDest already had an edge from PBI to 3575 // it. If it has PHIs though, the PHIs may have different 3576 // entries for BB and PBI's BB. If so, insert a select to make 3577 // them agree. 3578 for (PHINode &PN : CommonDest->phis()) { 3579 Value *BIV = PN.getIncomingValueForBlock(BB); 3580 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3581 Value *PBIV = PN.getIncomingValue(PBBIdx); 3582 if (BIV != PBIV) { 3583 // Insert a select in PBI to pick the right value. 3584 SelectInst *NV = cast<SelectInst>( 3585 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3586 PN.setIncomingValue(PBBIdx, NV); 3587 // Although the select has the same condition as PBI, the original branch 3588 // weights for PBI do not apply to the new select because the select's 3589 // 'logical' edges are incoming edges of the phi that is eliminated, not 3590 // the outgoing edges of PBI. 3591 if (HasWeights) { 3592 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3593 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3594 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3595 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3596 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3597 // The weight to PredOtherDest should be PredOther * SuccCommon. 3598 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3599 PredOther * SuccCommon}; 3600 3601 FitWeights(NewWeights); 3602 3603 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3604 } 3605 } 3606 } 3607 3608 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3609 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3610 3611 // This basic block is probably dead. We know it has at least 3612 // one fewer predecessor. 3613 return true; 3614 } 3615 3616 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3617 // true or to FalseBB if Cond is false. 3618 // Takes care of updating the successors and removing the old terminator. 3619 // Also makes sure not to introduce new successors by assuming that edges to 3620 // non-successor TrueBBs and FalseBBs aren't reachable. 3621 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3622 Value *Cond, BasicBlock *TrueBB, 3623 BasicBlock *FalseBB, 3624 uint32_t TrueWeight, 3625 uint32_t FalseWeight) { 3626 // Remove any superfluous successor edges from the CFG. 3627 // First, figure out which successors to preserve. 3628 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3629 // successor. 3630 BasicBlock *KeepEdge1 = TrueBB; 3631 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3632 3633 // Then remove the rest. 3634 for (BasicBlock *Succ : successors(OldTerm)) { 3635 // Make sure only to keep exactly one copy of each edge. 3636 if (Succ == KeepEdge1) 3637 KeepEdge1 = nullptr; 3638 else if (Succ == KeepEdge2) 3639 KeepEdge2 = nullptr; 3640 else 3641 Succ->removePredecessor(OldTerm->getParent(), 3642 /*KeepOneInputPHIs=*/true); 3643 } 3644 3645 IRBuilder<> Builder(OldTerm); 3646 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3647 3648 // Insert an appropriate new terminator. 3649 if (!KeepEdge1 && !KeepEdge2) { 3650 if (TrueBB == FalseBB) 3651 // We were only looking for one successor, and it was present. 3652 // Create an unconditional branch to it. 3653 Builder.CreateBr(TrueBB); 3654 else { 3655 // We found both of the successors we were looking for. 3656 // Create a conditional branch sharing the condition of the select. 3657 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3658 if (TrueWeight != FalseWeight) 3659 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3660 } 3661 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3662 // Neither of the selected blocks were successors, so this 3663 // terminator must be unreachable. 3664 new UnreachableInst(OldTerm->getContext(), OldTerm); 3665 } else { 3666 // One of the selected values was a successor, but the other wasn't. 3667 // Insert an unconditional branch to the one that was found; 3668 // the edge to the one that wasn't must be unreachable. 3669 if (!KeepEdge1) 3670 // Only TrueBB was found. 3671 Builder.CreateBr(TrueBB); 3672 else 3673 // Only FalseBB was found. 3674 Builder.CreateBr(FalseBB); 3675 } 3676 3677 EraseTerminatorAndDCECond(OldTerm); 3678 return true; 3679 } 3680 3681 // Replaces 3682 // (switch (select cond, X, Y)) on constant X, Y 3683 // with a branch - conditional if X and Y lead to distinct BBs, 3684 // unconditional otherwise. 3685 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3686 SelectInst *Select) { 3687 // Check for constant integer values in the select. 3688 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3689 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3690 if (!TrueVal || !FalseVal) 3691 return false; 3692 3693 // Find the relevant condition and destinations. 3694 Value *Condition = Select->getCondition(); 3695 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3696 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3697 3698 // Get weight for TrueBB and FalseBB. 3699 uint32_t TrueWeight = 0, FalseWeight = 0; 3700 SmallVector<uint64_t, 8> Weights; 3701 bool HasWeights = HasBranchWeights(SI); 3702 if (HasWeights) { 3703 GetBranchWeights(SI, Weights); 3704 if (Weights.size() == 1 + SI->getNumCases()) { 3705 TrueWeight = 3706 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3707 FalseWeight = 3708 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3709 } 3710 } 3711 3712 // Perform the actual simplification. 3713 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3714 FalseWeight); 3715 } 3716 3717 // Replaces 3718 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3719 // blockaddress(@fn, BlockB))) 3720 // with 3721 // (br cond, BlockA, BlockB). 3722 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3723 SelectInst *SI) { 3724 // Check that both operands of the select are block addresses. 3725 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3726 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3727 if (!TBA || !FBA) 3728 return false; 3729 3730 // Extract the actual blocks. 3731 BasicBlock *TrueBB = TBA->getBasicBlock(); 3732 BasicBlock *FalseBB = FBA->getBasicBlock(); 3733 3734 // Perform the actual simplification. 3735 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3736 0); 3737 } 3738 3739 /// This is called when we find an icmp instruction 3740 /// (a seteq/setne with a constant) as the only instruction in a 3741 /// block that ends with an uncond branch. We are looking for a very specific 3742 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3743 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3744 /// default value goes to an uncond block with a seteq in it, we get something 3745 /// like: 3746 /// 3747 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3748 /// DEFAULT: 3749 /// %tmp = icmp eq i8 %A, 92 3750 /// br label %end 3751 /// end: 3752 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3753 /// 3754 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3755 /// the PHI, merging the third icmp into the switch. 3756 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3757 ICmpInst *ICI, IRBuilder<> &Builder) { 3758 BasicBlock *BB = ICI->getParent(); 3759 3760 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3761 // complex. 3762 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3763 return false; 3764 3765 Value *V = ICI->getOperand(0); 3766 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3767 3768 // The pattern we're looking for is where our only predecessor is a switch on 3769 // 'V' and this block is the default case for the switch. In this case we can 3770 // fold the compared value into the switch to simplify things. 3771 BasicBlock *Pred = BB->getSinglePredecessor(); 3772 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3773 return false; 3774 3775 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3776 if (SI->getCondition() != V) 3777 return false; 3778 3779 // If BB is reachable on a non-default case, then we simply know the value of 3780 // V in this block. Substitute it and constant fold the icmp instruction 3781 // away. 3782 if (SI->getDefaultDest() != BB) { 3783 ConstantInt *VVal = SI->findCaseDest(BB); 3784 assert(VVal && "Should have a unique destination value"); 3785 ICI->setOperand(0, VVal); 3786 3787 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3788 ICI->replaceAllUsesWith(V); 3789 ICI->eraseFromParent(); 3790 } 3791 // BB is now empty, so it is likely to simplify away. 3792 return requestResimplify(); 3793 } 3794 3795 // Ok, the block is reachable from the default dest. If the constant we're 3796 // comparing exists in one of the other edges, then we can constant fold ICI 3797 // and zap it. 3798 if (SI->findCaseValue(Cst) != SI->case_default()) { 3799 Value *V; 3800 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3801 V = ConstantInt::getFalse(BB->getContext()); 3802 else 3803 V = ConstantInt::getTrue(BB->getContext()); 3804 3805 ICI->replaceAllUsesWith(V); 3806 ICI->eraseFromParent(); 3807 // BB is now empty, so it is likely to simplify away. 3808 return requestResimplify(); 3809 } 3810 3811 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3812 // the block. 3813 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3814 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3815 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3816 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3817 return false; 3818 3819 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3820 // true in the PHI. 3821 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3822 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3823 3824 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3825 std::swap(DefaultCst, NewCst); 3826 3827 // Replace ICI (which is used by the PHI for the default value) with true or 3828 // false depending on if it is EQ or NE. 3829 ICI->replaceAllUsesWith(DefaultCst); 3830 ICI->eraseFromParent(); 3831 3832 // Okay, the switch goes to this block on a default value. Add an edge from 3833 // the switch to the merge point on the compared value. 3834 BasicBlock *NewBB = 3835 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3836 { 3837 SwitchInstProfUpdateWrapper SIW(*SI); 3838 auto W0 = SIW.getSuccessorWeight(0); 3839 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3840 if (W0) { 3841 NewW = ((uint64_t(*W0) + 1) >> 1); 3842 SIW.setSuccessorWeight(0, *NewW); 3843 } 3844 SIW.addCase(Cst, NewBB, NewW); 3845 } 3846 3847 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3848 Builder.SetInsertPoint(NewBB); 3849 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3850 Builder.CreateBr(SuccBlock); 3851 PHIUse->addIncoming(NewCst, NewBB); 3852 return true; 3853 } 3854 3855 /// The specified branch is a conditional branch. 3856 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3857 /// fold it into a switch instruction if so. 3858 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3859 IRBuilder<> &Builder, 3860 const DataLayout &DL) { 3861 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3862 if (!Cond) 3863 return false; 3864 3865 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3866 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3867 // 'setne's and'ed together, collect them. 3868 3869 // Try to gather values from a chain of and/or to be turned into a switch 3870 ConstantComparesGatherer ConstantCompare(Cond, DL); 3871 // Unpack the result 3872 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3873 Value *CompVal = ConstantCompare.CompValue; 3874 unsigned UsedICmps = ConstantCompare.UsedICmps; 3875 Value *ExtraCase = ConstantCompare.Extra; 3876 3877 // If we didn't have a multiply compared value, fail. 3878 if (!CompVal) 3879 return false; 3880 3881 // Avoid turning single icmps into a switch. 3882 if (UsedICmps <= 1) 3883 return false; 3884 3885 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3886 3887 // There might be duplicate constants in the list, which the switch 3888 // instruction can't handle, remove them now. 3889 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3890 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3891 3892 // If Extra was used, we require at least two switch values to do the 3893 // transformation. A switch with one value is just a conditional branch. 3894 if (ExtraCase && Values.size() < 2) 3895 return false; 3896 3897 // TODO: Preserve branch weight metadata, similarly to how 3898 // FoldValueComparisonIntoPredecessors preserves it. 3899 3900 // Figure out which block is which destination. 3901 BasicBlock *DefaultBB = BI->getSuccessor(1); 3902 BasicBlock *EdgeBB = BI->getSuccessor(0); 3903 if (!TrueWhenEqual) 3904 std::swap(DefaultBB, EdgeBB); 3905 3906 BasicBlock *BB = BI->getParent(); 3907 3908 // MSAN does not like undefs as branch condition which can be introduced 3909 // with "explicit branch". 3910 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 3911 return false; 3912 3913 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3914 << " cases into SWITCH. BB is:\n" 3915 << *BB); 3916 3917 // If there are any extra values that couldn't be folded into the switch 3918 // then we evaluate them with an explicit branch first. Split the block 3919 // right before the condbr to handle it. 3920 if (ExtraCase) { 3921 BasicBlock *NewBB = 3922 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3923 // Remove the uncond branch added to the old block. 3924 Instruction *OldTI = BB->getTerminator(); 3925 Builder.SetInsertPoint(OldTI); 3926 3927 if (TrueWhenEqual) 3928 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3929 else 3930 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3931 3932 OldTI->eraseFromParent(); 3933 3934 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3935 // for the edge we just added. 3936 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3937 3938 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3939 << "\nEXTRABB = " << *BB); 3940 BB = NewBB; 3941 } 3942 3943 Builder.SetInsertPoint(BI); 3944 // Convert pointer to int before we switch. 3945 if (CompVal->getType()->isPointerTy()) { 3946 CompVal = Builder.CreatePtrToInt( 3947 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3948 } 3949 3950 // Create the new switch instruction now. 3951 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3952 3953 // Add all of the 'cases' to the switch instruction. 3954 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3955 New->addCase(Values[i], EdgeBB); 3956 3957 // We added edges from PI to the EdgeBB. As such, if there were any 3958 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3959 // the number of edges added. 3960 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3961 PHINode *PN = cast<PHINode>(BBI); 3962 Value *InVal = PN->getIncomingValueForBlock(BB); 3963 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3964 PN->addIncoming(InVal, BB); 3965 } 3966 3967 // Erase the old branch instruction. 3968 EraseTerminatorAndDCECond(BI); 3969 3970 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3971 return true; 3972 } 3973 3974 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3975 if (isa<PHINode>(RI->getValue())) 3976 return simplifyCommonResume(RI); 3977 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3978 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3979 // The resume must unwind the exception that caused control to branch here. 3980 return simplifySingleResume(RI); 3981 3982 return false; 3983 } 3984 3985 // Check if cleanup block is empty 3986 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 3987 for (Instruction &I : R) { 3988 auto *II = dyn_cast<IntrinsicInst>(&I); 3989 if (!II) 3990 return false; 3991 3992 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3993 switch (IntrinsicID) { 3994 case Intrinsic::dbg_declare: 3995 case Intrinsic::dbg_value: 3996 case Intrinsic::dbg_label: 3997 case Intrinsic::lifetime_end: 3998 break; 3999 default: 4000 return false; 4001 } 4002 } 4003 return true; 4004 } 4005 4006 // Simplify resume that is shared by several landing pads (phi of landing pad). 4007 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4008 BasicBlock *BB = RI->getParent(); 4009 4010 // Check that there are no other instructions except for debug and lifetime 4011 // intrinsics between the phi's and resume instruction. 4012 if (!isCleanupBlockEmpty( 4013 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4014 return false; 4015 4016 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4017 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4018 4019 // Check incoming blocks to see if any of them are trivial. 4020 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4021 Idx++) { 4022 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4023 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4024 4025 // If the block has other successors, we can not delete it because 4026 // it has other dependents. 4027 if (IncomingBB->getUniqueSuccessor() != BB) 4028 continue; 4029 4030 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4031 // Not the landing pad that caused the control to branch here. 4032 if (IncomingValue != LandingPad) 4033 continue; 4034 4035 if (isCleanupBlockEmpty( 4036 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4037 TrivialUnwindBlocks.insert(IncomingBB); 4038 } 4039 4040 // If no trivial unwind blocks, don't do any simplifications. 4041 if (TrivialUnwindBlocks.empty()) 4042 return false; 4043 4044 // Turn all invokes that unwind here into calls. 4045 for (auto *TrivialBB : TrivialUnwindBlocks) { 4046 // Blocks that will be simplified should be removed from the phi node. 4047 // Note there could be multiple edges to the resume block, and we need 4048 // to remove them all. 4049 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4050 BB->removePredecessor(TrivialBB, true); 4051 4052 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 4053 PI != PE;) { 4054 BasicBlock *Pred = *PI++; 4055 removeUnwindEdge(Pred); 4056 ++NumInvokes; 4057 } 4058 4059 // In each SimplifyCFG run, only the current processed block can be erased. 4060 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4061 // of erasing TrivialBB, we only remove the branch to the common resume 4062 // block so that we can later erase the resume block since it has no 4063 // predecessors. 4064 TrivialBB->getTerminator()->eraseFromParent(); 4065 new UnreachableInst(RI->getContext(), TrivialBB); 4066 } 4067 4068 // Delete the resume block if all its predecessors have been removed. 4069 if (pred_empty(BB)) 4070 BB->eraseFromParent(); 4071 4072 return !TrivialUnwindBlocks.empty(); 4073 } 4074 4075 // Simplify resume that is only used by a single (non-phi) landing pad. 4076 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4077 BasicBlock *BB = RI->getParent(); 4078 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4079 assert(RI->getValue() == LPInst && 4080 "Resume must unwind the exception that caused control to here"); 4081 4082 // Check that there are no other instructions except for debug intrinsics. 4083 if (!isCleanupBlockEmpty( 4084 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4085 return false; 4086 4087 // Turn all invokes that unwind here into calls and delete the basic block. 4088 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4089 BasicBlock *Pred = *PI++; 4090 removeUnwindEdge(Pred); 4091 ++NumInvokes; 4092 } 4093 4094 // The landingpad is now unreachable. Zap it. 4095 if (LoopHeaders) 4096 LoopHeaders->erase(BB); 4097 BB->eraseFromParent(); 4098 return true; 4099 } 4100 4101 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 4102 // If this is a trivial cleanup pad that executes no instructions, it can be 4103 // eliminated. If the cleanup pad continues to the caller, any predecessor 4104 // that is an EH pad will be updated to continue to the caller and any 4105 // predecessor that terminates with an invoke instruction will have its invoke 4106 // instruction converted to a call instruction. If the cleanup pad being 4107 // simplified does not continue to the caller, each predecessor will be 4108 // updated to continue to the unwind destination of the cleanup pad being 4109 // simplified. 4110 BasicBlock *BB = RI->getParent(); 4111 CleanupPadInst *CPInst = RI->getCleanupPad(); 4112 if (CPInst->getParent() != BB) 4113 // This isn't an empty cleanup. 4114 return false; 4115 4116 // We cannot kill the pad if it has multiple uses. This typically arises 4117 // from unreachable basic blocks. 4118 if (!CPInst->hasOneUse()) 4119 return false; 4120 4121 // Check that there are no other instructions except for benign intrinsics. 4122 if (!isCleanupBlockEmpty( 4123 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4124 return false; 4125 4126 // If the cleanup return we are simplifying unwinds to the caller, this will 4127 // set UnwindDest to nullptr. 4128 BasicBlock *UnwindDest = RI->getUnwindDest(); 4129 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4130 4131 // We're about to remove BB from the control flow. Before we do, sink any 4132 // PHINodes into the unwind destination. Doing this before changing the 4133 // control flow avoids some potentially slow checks, since we can currently 4134 // be certain that UnwindDest and BB have no common predecessors (since they 4135 // are both EH pads). 4136 if (UnwindDest) { 4137 // First, go through the PHI nodes in UnwindDest and update any nodes that 4138 // reference the block we are removing 4139 for (BasicBlock::iterator I = UnwindDest->begin(), 4140 IE = DestEHPad->getIterator(); 4141 I != IE; ++I) { 4142 PHINode *DestPN = cast<PHINode>(I); 4143 4144 int Idx = DestPN->getBasicBlockIndex(BB); 4145 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4146 assert(Idx != -1); 4147 // This PHI node has an incoming value that corresponds to a control 4148 // path through the cleanup pad we are removing. If the incoming 4149 // value is in the cleanup pad, it must be a PHINode (because we 4150 // verified above that the block is otherwise empty). Otherwise, the 4151 // value is either a constant or a value that dominates the cleanup 4152 // pad being removed. 4153 // 4154 // Because BB and UnwindDest are both EH pads, all of their 4155 // predecessors must unwind to these blocks, and since no instruction 4156 // can have multiple unwind destinations, there will be no overlap in 4157 // incoming blocks between SrcPN and DestPN. 4158 Value *SrcVal = DestPN->getIncomingValue(Idx); 4159 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4160 4161 // Remove the entry for the block we are deleting. 4162 DestPN->removeIncomingValue(Idx, false); 4163 4164 if (SrcPN && SrcPN->getParent() == BB) { 4165 // If the incoming value was a PHI node in the cleanup pad we are 4166 // removing, we need to merge that PHI node's incoming values into 4167 // DestPN. 4168 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4169 SrcIdx != SrcE; ++SrcIdx) { 4170 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4171 SrcPN->getIncomingBlock(SrcIdx)); 4172 } 4173 } else { 4174 // Otherwise, the incoming value came from above BB and 4175 // so we can just reuse it. We must associate all of BB's 4176 // predecessors with this value. 4177 for (auto *pred : predecessors(BB)) { 4178 DestPN->addIncoming(SrcVal, pred); 4179 } 4180 } 4181 } 4182 4183 // Sink any remaining PHI nodes directly into UnwindDest. 4184 Instruction *InsertPt = DestEHPad; 4185 for (BasicBlock::iterator I = BB->begin(), 4186 IE = BB->getFirstNonPHI()->getIterator(); 4187 I != IE;) { 4188 // The iterator must be incremented here because the instructions are 4189 // being moved to another block. 4190 PHINode *PN = cast<PHINode>(I++); 4191 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4192 // If the PHI node has no uses or all of its uses are in this basic 4193 // block (meaning they are debug or lifetime intrinsics), just leave 4194 // it. It will be erased when we erase BB below. 4195 continue; 4196 4197 // Otherwise, sink this PHI node into UnwindDest. 4198 // Any predecessors to UnwindDest which are not already represented 4199 // must be back edges which inherit the value from the path through 4200 // BB. In this case, the PHI value must reference itself. 4201 for (auto *pred : predecessors(UnwindDest)) 4202 if (pred != BB) 4203 PN->addIncoming(PN, pred); 4204 PN->moveBefore(InsertPt); 4205 } 4206 } 4207 4208 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4209 // The iterator must be updated here because we are removing this pred. 4210 BasicBlock *PredBB = *PI++; 4211 if (UnwindDest == nullptr) { 4212 removeUnwindEdge(PredBB); 4213 ++NumInvokes; 4214 } else { 4215 Instruction *TI = PredBB->getTerminator(); 4216 TI->replaceUsesOfWith(BB, UnwindDest); 4217 } 4218 } 4219 4220 // The cleanup pad is now unreachable. Zap it. 4221 BB->eraseFromParent(); 4222 return true; 4223 } 4224 4225 // Try to merge two cleanuppads together. 4226 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4227 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4228 // with. 4229 BasicBlock *UnwindDest = RI->getUnwindDest(); 4230 if (!UnwindDest) 4231 return false; 4232 4233 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4234 // be safe to merge without code duplication. 4235 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4236 return false; 4237 4238 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4239 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4240 if (!SuccessorCleanupPad) 4241 return false; 4242 4243 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4244 // Replace any uses of the successor cleanupad with the predecessor pad 4245 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4246 // funclet bundle operands. 4247 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4248 // Remove the old cleanuppad. 4249 SuccessorCleanupPad->eraseFromParent(); 4250 // Now, we simply replace the cleanupret with a branch to the unwind 4251 // destination. 4252 BranchInst::Create(UnwindDest, RI->getParent()); 4253 RI->eraseFromParent(); 4254 4255 return true; 4256 } 4257 4258 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4259 // It is possible to transiantly have an undef cleanuppad operand because we 4260 // have deleted some, but not all, dead blocks. 4261 // Eventually, this block will be deleted. 4262 if (isa<UndefValue>(RI->getOperand(0))) 4263 return false; 4264 4265 if (mergeCleanupPad(RI)) 4266 return true; 4267 4268 if (removeEmptyCleanup(RI)) 4269 return true; 4270 4271 return false; 4272 } 4273 4274 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4275 BasicBlock *BB = RI->getParent(); 4276 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4277 return false; 4278 4279 // Find predecessors that end with branches. 4280 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4281 SmallVector<BranchInst *, 8> CondBranchPreds; 4282 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4283 BasicBlock *P = *PI; 4284 Instruction *PTI = P->getTerminator(); 4285 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4286 if (BI->isUnconditional()) 4287 UncondBranchPreds.push_back(P); 4288 else 4289 CondBranchPreds.push_back(BI); 4290 } 4291 } 4292 4293 // If we found some, do the transformation! 4294 if (!UncondBranchPreds.empty() && DupRet) { 4295 while (!UncondBranchPreds.empty()) { 4296 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4297 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4298 << "INTO UNCOND BRANCH PRED: " << *Pred); 4299 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4300 } 4301 4302 // If we eliminated all predecessors of the block, delete the block now. 4303 if (pred_empty(BB)) { 4304 // We know there are no successors, so just nuke the block. 4305 if (LoopHeaders) 4306 LoopHeaders->erase(BB); 4307 BB->eraseFromParent(); 4308 } 4309 4310 return true; 4311 } 4312 4313 // Check out all of the conditional branches going to this return 4314 // instruction. If any of them just select between returns, change the 4315 // branch itself into a select/return pair. 4316 while (!CondBranchPreds.empty()) { 4317 BranchInst *BI = CondBranchPreds.pop_back_val(); 4318 4319 // Check to see if the non-BB successor is also a return block. 4320 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4321 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4322 SimplifyCondBranchToTwoReturns(BI, Builder)) 4323 return true; 4324 } 4325 return false; 4326 } 4327 4328 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4329 BasicBlock *BB = UI->getParent(); 4330 4331 bool Changed = false; 4332 4333 // If there are any instructions immediately before the unreachable that can 4334 // be removed, do so. 4335 while (UI->getIterator() != BB->begin()) { 4336 BasicBlock::iterator BBI = UI->getIterator(); 4337 --BBI; 4338 // Do not delete instructions that can have side effects which might cause 4339 // the unreachable to not be reachable; specifically, calls and volatile 4340 // operations may have this effect. 4341 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4342 break; 4343 4344 if (BBI->mayHaveSideEffects()) { 4345 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4346 if (SI->isVolatile()) 4347 break; 4348 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4349 if (LI->isVolatile()) 4350 break; 4351 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4352 if (RMWI->isVolatile()) 4353 break; 4354 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4355 if (CXI->isVolatile()) 4356 break; 4357 } else if (isa<CatchPadInst>(BBI)) { 4358 // A catchpad may invoke exception object constructors and such, which 4359 // in some languages can be arbitrary code, so be conservative by 4360 // default. 4361 // For CoreCLR, it just involves a type test, so can be removed. 4362 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4363 EHPersonality::CoreCLR) 4364 break; 4365 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4366 !isa<LandingPadInst>(BBI)) { 4367 break; 4368 } 4369 // Note that deleting LandingPad's here is in fact okay, although it 4370 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4371 // all the predecessors of this block will be the unwind edges of Invokes, 4372 // and we can therefore guarantee this block will be erased. 4373 } 4374 4375 // Delete this instruction (any uses are guaranteed to be dead) 4376 if (!BBI->use_empty()) 4377 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4378 BBI->eraseFromParent(); 4379 Changed = true; 4380 } 4381 4382 // If the unreachable instruction is the first in the block, take a gander 4383 // at all of the predecessors of this instruction, and simplify them. 4384 if (&BB->front() != UI) 4385 return Changed; 4386 4387 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4388 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4389 Instruction *TI = Preds[i]->getTerminator(); 4390 IRBuilder<> Builder(TI); 4391 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4392 if (BI->isUnconditional()) { 4393 assert(BI->getSuccessor(0) == BB && "Incorrect CFG"); 4394 new UnreachableInst(TI->getContext(), TI); 4395 TI->eraseFromParent(); 4396 Changed = true; 4397 } else { 4398 Value* Cond = BI->getCondition(); 4399 if (BI->getSuccessor(0) == BB) { 4400 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4401 Builder.CreateBr(BI->getSuccessor(1)); 4402 } else { 4403 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4404 Builder.CreateAssumption(Cond); 4405 Builder.CreateBr(BI->getSuccessor(0)); 4406 } 4407 EraseTerminatorAndDCECond(BI); 4408 Changed = true; 4409 } 4410 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4411 SwitchInstProfUpdateWrapper SU(*SI); 4412 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4413 if (i->getCaseSuccessor() != BB) { 4414 ++i; 4415 continue; 4416 } 4417 BB->removePredecessor(SU->getParent()); 4418 i = SU.removeCase(i); 4419 e = SU->case_end(); 4420 Changed = true; 4421 } 4422 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4423 if (II->getUnwindDest() == BB) { 4424 removeUnwindEdge(TI->getParent()); 4425 Changed = true; 4426 } 4427 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4428 if (CSI->getUnwindDest() == BB) { 4429 removeUnwindEdge(TI->getParent()); 4430 Changed = true; 4431 continue; 4432 } 4433 4434 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4435 E = CSI->handler_end(); 4436 I != E; ++I) { 4437 if (*I == BB) { 4438 CSI->removeHandler(I); 4439 --I; 4440 --E; 4441 Changed = true; 4442 } 4443 } 4444 if (CSI->getNumHandlers() == 0) { 4445 BasicBlock *CatchSwitchBB = CSI->getParent(); 4446 if (CSI->hasUnwindDest()) { 4447 // Redirect preds to the unwind dest 4448 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4449 } else { 4450 // Rewrite all preds to unwind to caller (or from invoke to call). 4451 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4452 for (BasicBlock *EHPred : EHPreds) 4453 removeUnwindEdge(EHPred); 4454 } 4455 // The catchswitch is no longer reachable. 4456 new UnreachableInst(CSI->getContext(), CSI); 4457 CSI->eraseFromParent(); 4458 Changed = true; 4459 } 4460 } else if (isa<CleanupReturnInst>(TI)) { 4461 new UnreachableInst(TI->getContext(), TI); 4462 TI->eraseFromParent(); 4463 Changed = true; 4464 } 4465 } 4466 4467 // If this block is now dead, remove it. 4468 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4469 // We know there are no successors, so just nuke the block. 4470 if (LoopHeaders) 4471 LoopHeaders->erase(BB); 4472 BB->eraseFromParent(); 4473 return true; 4474 } 4475 4476 return Changed; 4477 } 4478 4479 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4480 assert(Cases.size() >= 1); 4481 4482 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4483 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4484 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4485 return false; 4486 } 4487 return true; 4488 } 4489 4490 static void createUnreachableSwitchDefault(SwitchInst *Switch) { 4491 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4492 BasicBlock *NewDefaultBlock = 4493 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), ""); 4494 Switch->setDefaultDest(&*NewDefaultBlock); 4495 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front()); 4496 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4497 new UnreachableInst(Switch->getContext(), NewTerminator); 4498 EraseTerminatorAndDCECond(NewTerminator); 4499 } 4500 4501 /// Turn a switch with two reachable destinations into an integer range 4502 /// comparison and branch. 4503 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4504 IRBuilder<> &Builder) { 4505 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4506 4507 bool HasDefault = 4508 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4509 4510 // Partition the cases into two sets with different destinations. 4511 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4512 BasicBlock *DestB = nullptr; 4513 SmallVector<ConstantInt *, 16> CasesA; 4514 SmallVector<ConstantInt *, 16> CasesB; 4515 4516 for (auto Case : SI->cases()) { 4517 BasicBlock *Dest = Case.getCaseSuccessor(); 4518 if (!DestA) 4519 DestA = Dest; 4520 if (Dest == DestA) { 4521 CasesA.push_back(Case.getCaseValue()); 4522 continue; 4523 } 4524 if (!DestB) 4525 DestB = Dest; 4526 if (Dest == DestB) { 4527 CasesB.push_back(Case.getCaseValue()); 4528 continue; 4529 } 4530 return false; // More than two destinations. 4531 } 4532 4533 assert(DestA && DestB && 4534 "Single-destination switch should have been folded."); 4535 assert(DestA != DestB); 4536 assert(DestB != SI->getDefaultDest()); 4537 assert(!CasesB.empty() && "There must be non-default cases."); 4538 assert(!CasesA.empty() || HasDefault); 4539 4540 // Figure out if one of the sets of cases form a contiguous range. 4541 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4542 BasicBlock *ContiguousDest = nullptr; 4543 BasicBlock *OtherDest = nullptr; 4544 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4545 ContiguousCases = &CasesA; 4546 ContiguousDest = DestA; 4547 OtherDest = DestB; 4548 } else if (CasesAreContiguous(CasesB)) { 4549 ContiguousCases = &CasesB; 4550 ContiguousDest = DestB; 4551 OtherDest = DestA; 4552 } else 4553 return false; 4554 4555 // Start building the compare and branch. 4556 4557 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4558 Constant *NumCases = 4559 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4560 4561 Value *Sub = SI->getCondition(); 4562 if (!Offset->isNullValue()) 4563 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4564 4565 Value *Cmp; 4566 // If NumCases overflowed, then all possible values jump to the successor. 4567 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4568 Cmp = ConstantInt::getTrue(SI->getContext()); 4569 else 4570 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4571 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4572 4573 // Update weight for the newly-created conditional branch. 4574 if (HasBranchWeights(SI)) { 4575 SmallVector<uint64_t, 8> Weights; 4576 GetBranchWeights(SI, Weights); 4577 if (Weights.size() == 1 + SI->getNumCases()) { 4578 uint64_t TrueWeight = 0; 4579 uint64_t FalseWeight = 0; 4580 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4581 if (SI->getSuccessor(I) == ContiguousDest) 4582 TrueWeight += Weights[I]; 4583 else 4584 FalseWeight += Weights[I]; 4585 } 4586 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4587 TrueWeight /= 2; 4588 FalseWeight /= 2; 4589 } 4590 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4591 } 4592 } 4593 4594 // Prune obsolete incoming values off the successors' PHI nodes. 4595 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4596 unsigned PreviousEdges = ContiguousCases->size(); 4597 if (ContiguousDest == SI->getDefaultDest()) 4598 ++PreviousEdges; 4599 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4600 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4601 } 4602 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4603 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4604 if (OtherDest == SI->getDefaultDest()) 4605 ++PreviousEdges; 4606 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4607 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4608 } 4609 4610 // Clean up the default block - it may have phis or other instructions before 4611 // the unreachable terminator. 4612 if (!HasDefault) 4613 createUnreachableSwitchDefault(SI); 4614 4615 // Drop the switch. 4616 SI->eraseFromParent(); 4617 4618 return true; 4619 } 4620 4621 /// Compute masked bits for the condition of a switch 4622 /// and use it to remove dead cases. 4623 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4624 const DataLayout &DL) { 4625 Value *Cond = SI->getCondition(); 4626 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4627 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4628 4629 // We can also eliminate cases by determining that their values are outside of 4630 // the limited range of the condition based on how many significant (non-sign) 4631 // bits are in the condition value. 4632 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4633 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4634 4635 // Gather dead cases. 4636 SmallVector<ConstantInt *, 8> DeadCases; 4637 for (auto &Case : SI->cases()) { 4638 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4639 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4640 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4641 DeadCases.push_back(Case.getCaseValue()); 4642 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4643 << " is dead.\n"); 4644 } 4645 } 4646 4647 // If we can prove that the cases must cover all possible values, the 4648 // default destination becomes dead and we can remove it. If we know some 4649 // of the bits in the value, we can use that to more precisely compute the 4650 // number of possible unique case values. 4651 bool HasDefault = 4652 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4653 const unsigned NumUnknownBits = 4654 Bits - (Known.Zero | Known.One).countPopulation(); 4655 assert(NumUnknownBits <= Bits); 4656 if (HasDefault && DeadCases.empty() && 4657 NumUnknownBits < 64 /* avoid overflow */ && 4658 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4659 createUnreachableSwitchDefault(SI); 4660 return true; 4661 } 4662 4663 if (DeadCases.empty()) 4664 return false; 4665 4666 SwitchInstProfUpdateWrapper SIW(*SI); 4667 for (ConstantInt *DeadCase : DeadCases) { 4668 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4669 assert(CaseI != SI->case_default() && 4670 "Case was not found. Probably mistake in DeadCases forming."); 4671 // Prune unused values from PHI nodes. 4672 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4673 SIW.removeCase(CaseI); 4674 } 4675 4676 return true; 4677 } 4678 4679 /// If BB would be eligible for simplification by 4680 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4681 /// by an unconditional branch), look at the phi node for BB in the successor 4682 /// block and see if the incoming value is equal to CaseValue. If so, return 4683 /// the phi node, and set PhiIndex to BB's index in the phi node. 4684 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4685 BasicBlock *BB, int *PhiIndex) { 4686 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4687 return nullptr; // BB must be empty to be a candidate for simplification. 4688 if (!BB->getSinglePredecessor()) 4689 return nullptr; // BB must be dominated by the switch. 4690 4691 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4692 if (!Branch || !Branch->isUnconditional()) 4693 return nullptr; // Terminator must be unconditional branch. 4694 4695 BasicBlock *Succ = Branch->getSuccessor(0); 4696 4697 for (PHINode &PHI : Succ->phis()) { 4698 int Idx = PHI.getBasicBlockIndex(BB); 4699 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4700 4701 Value *InValue = PHI.getIncomingValue(Idx); 4702 if (InValue != CaseValue) 4703 continue; 4704 4705 *PhiIndex = Idx; 4706 return &PHI; 4707 } 4708 4709 return nullptr; 4710 } 4711 4712 /// Try to forward the condition of a switch instruction to a phi node 4713 /// dominated by the switch, if that would mean that some of the destination 4714 /// blocks of the switch can be folded away. Return true if a change is made. 4715 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4716 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4717 4718 ForwardingNodesMap ForwardingNodes; 4719 BasicBlock *SwitchBlock = SI->getParent(); 4720 bool Changed = false; 4721 for (auto &Case : SI->cases()) { 4722 ConstantInt *CaseValue = Case.getCaseValue(); 4723 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4724 4725 // Replace phi operands in successor blocks that are using the constant case 4726 // value rather than the switch condition variable: 4727 // switchbb: 4728 // switch i32 %x, label %default [ 4729 // i32 17, label %succ 4730 // ... 4731 // succ: 4732 // %r = phi i32 ... [ 17, %switchbb ] ... 4733 // --> 4734 // %r = phi i32 ... [ %x, %switchbb ] ... 4735 4736 for (PHINode &Phi : CaseDest->phis()) { 4737 // This only works if there is exactly 1 incoming edge from the switch to 4738 // a phi. If there is >1, that means multiple cases of the switch map to 1 4739 // value in the phi, and that phi value is not the switch condition. Thus, 4740 // this transform would not make sense (the phi would be invalid because 4741 // a phi can't have different incoming values from the same block). 4742 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4743 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4744 count(Phi.blocks(), SwitchBlock) == 1) { 4745 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4746 Changed = true; 4747 } 4748 } 4749 4750 // Collect phi nodes that are indirectly using this switch's case constants. 4751 int PhiIdx; 4752 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4753 ForwardingNodes[Phi].push_back(PhiIdx); 4754 } 4755 4756 for (auto &ForwardingNode : ForwardingNodes) { 4757 PHINode *Phi = ForwardingNode.first; 4758 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4759 if (Indexes.size() < 2) 4760 continue; 4761 4762 for (int Index : Indexes) 4763 Phi->setIncomingValue(Index, SI->getCondition()); 4764 Changed = true; 4765 } 4766 4767 return Changed; 4768 } 4769 4770 /// Return true if the backend will be able to handle 4771 /// initializing an array of constants like C. 4772 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4773 if (C->isThreadDependent()) 4774 return false; 4775 if (C->isDLLImportDependent()) 4776 return false; 4777 4778 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4779 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4780 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4781 return false; 4782 4783 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4784 if (!CE->isGEPWithNoNotionalOverIndexing()) 4785 return false; 4786 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4787 return false; 4788 } 4789 4790 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4791 return false; 4792 4793 return true; 4794 } 4795 4796 /// If V is a Constant, return it. Otherwise, try to look up 4797 /// its constant value in ConstantPool, returning 0 if it's not there. 4798 static Constant * 4799 LookupConstant(Value *V, 4800 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4801 if (Constant *C = dyn_cast<Constant>(V)) 4802 return C; 4803 return ConstantPool.lookup(V); 4804 } 4805 4806 /// Try to fold instruction I into a constant. This works for 4807 /// simple instructions such as binary operations where both operands are 4808 /// constant or can be replaced by constants from the ConstantPool. Returns the 4809 /// resulting constant on success, 0 otherwise. 4810 static Constant * 4811 ConstantFold(Instruction *I, const DataLayout &DL, 4812 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4813 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4814 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4815 if (!A) 4816 return nullptr; 4817 if (A->isAllOnesValue()) 4818 return LookupConstant(Select->getTrueValue(), ConstantPool); 4819 if (A->isNullValue()) 4820 return LookupConstant(Select->getFalseValue(), ConstantPool); 4821 return nullptr; 4822 } 4823 4824 SmallVector<Constant *, 4> COps; 4825 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4826 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4827 COps.push_back(A); 4828 else 4829 return nullptr; 4830 } 4831 4832 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4833 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4834 COps[1], DL); 4835 } 4836 4837 return ConstantFoldInstOperands(I, COps, DL); 4838 } 4839 4840 /// Try to determine the resulting constant values in phi nodes 4841 /// at the common destination basic block, *CommonDest, for one of the case 4842 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4843 /// case), of a switch instruction SI. 4844 static bool 4845 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4846 BasicBlock **CommonDest, 4847 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4848 const DataLayout &DL, const TargetTransformInfo &TTI) { 4849 // The block from which we enter the common destination. 4850 BasicBlock *Pred = SI->getParent(); 4851 4852 // If CaseDest is empty except for some side-effect free instructions through 4853 // which we can constant-propagate the CaseVal, continue to its successor. 4854 SmallDenseMap<Value *, Constant *> ConstantPool; 4855 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4856 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4857 if (I.isTerminator()) { 4858 // If the terminator is a simple branch, continue to the next block. 4859 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4860 return false; 4861 Pred = CaseDest; 4862 CaseDest = I.getSuccessor(0); 4863 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4864 // Instruction is side-effect free and constant. 4865 4866 // If the instruction has uses outside this block or a phi node slot for 4867 // the block, it is not safe to bypass the instruction since it would then 4868 // no longer dominate all its uses. 4869 for (auto &Use : I.uses()) { 4870 User *User = Use.getUser(); 4871 if (Instruction *I = dyn_cast<Instruction>(User)) 4872 if (I->getParent() == CaseDest) 4873 continue; 4874 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4875 if (Phi->getIncomingBlock(Use) == CaseDest) 4876 continue; 4877 return false; 4878 } 4879 4880 ConstantPool.insert(std::make_pair(&I, C)); 4881 } else { 4882 break; 4883 } 4884 } 4885 4886 // If we did not have a CommonDest before, use the current one. 4887 if (!*CommonDest) 4888 *CommonDest = CaseDest; 4889 // If the destination isn't the common one, abort. 4890 if (CaseDest != *CommonDest) 4891 return false; 4892 4893 // Get the values for this case from phi nodes in the destination block. 4894 for (PHINode &PHI : (*CommonDest)->phis()) { 4895 int Idx = PHI.getBasicBlockIndex(Pred); 4896 if (Idx == -1) 4897 continue; 4898 4899 Constant *ConstVal = 4900 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4901 if (!ConstVal) 4902 return false; 4903 4904 // Be conservative about which kinds of constants we support. 4905 if (!ValidLookupTableConstant(ConstVal, TTI)) 4906 return false; 4907 4908 Res.push_back(std::make_pair(&PHI, ConstVal)); 4909 } 4910 4911 return Res.size() > 0; 4912 } 4913 4914 // Helper function used to add CaseVal to the list of cases that generate 4915 // Result. Returns the updated number of cases that generate this result. 4916 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4917 SwitchCaseResultVectorTy &UniqueResults, 4918 Constant *Result) { 4919 for (auto &I : UniqueResults) { 4920 if (I.first == Result) { 4921 I.second.push_back(CaseVal); 4922 return I.second.size(); 4923 } 4924 } 4925 UniqueResults.push_back( 4926 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4927 return 1; 4928 } 4929 4930 // Helper function that initializes a map containing 4931 // results for the PHI node of the common destination block for a switch 4932 // instruction. Returns false if multiple PHI nodes have been found or if 4933 // there is not a common destination block for the switch. 4934 static bool 4935 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4936 SwitchCaseResultVectorTy &UniqueResults, 4937 Constant *&DefaultResult, const DataLayout &DL, 4938 const TargetTransformInfo &TTI, 4939 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4940 for (auto &I : SI->cases()) { 4941 ConstantInt *CaseVal = I.getCaseValue(); 4942 4943 // Resulting value at phi nodes for this case value. 4944 SwitchCaseResultsTy Results; 4945 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4946 DL, TTI)) 4947 return false; 4948 4949 // Only one value per case is permitted. 4950 if (Results.size() > 1) 4951 return false; 4952 4953 // Add the case->result mapping to UniqueResults. 4954 const uintptr_t NumCasesForResult = 4955 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4956 4957 // Early out if there are too many cases for this result. 4958 if (NumCasesForResult > MaxCasesPerResult) 4959 return false; 4960 4961 // Early out if there are too many unique results. 4962 if (UniqueResults.size() > MaxUniqueResults) 4963 return false; 4964 4965 // Check the PHI consistency. 4966 if (!PHI) 4967 PHI = Results[0].first; 4968 else if (PHI != Results[0].first) 4969 return false; 4970 } 4971 // Find the default result value. 4972 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4973 BasicBlock *DefaultDest = SI->getDefaultDest(); 4974 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4975 DL, TTI); 4976 // If the default value is not found abort unless the default destination 4977 // is unreachable. 4978 DefaultResult = 4979 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4980 if ((!DefaultResult && 4981 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4982 return false; 4983 4984 return true; 4985 } 4986 4987 // Helper function that checks if it is possible to transform a switch with only 4988 // two cases (or two cases + default) that produces a result into a select. 4989 // Example: 4990 // switch (a) { 4991 // case 10: %0 = icmp eq i32 %a, 10 4992 // return 10; %1 = select i1 %0, i32 10, i32 4 4993 // case 20: ----> %2 = icmp eq i32 %a, 20 4994 // return 2; %3 = select i1 %2, i32 2, i32 %1 4995 // default: 4996 // return 4; 4997 // } 4998 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4999 Constant *DefaultResult, Value *Condition, 5000 IRBuilder<> &Builder) { 5001 assert(ResultVector.size() == 2 && 5002 "We should have exactly two unique results at this point"); 5003 // If we are selecting between only two cases transform into a simple 5004 // select or a two-way select if default is possible. 5005 if (ResultVector[0].second.size() == 1 && 5006 ResultVector[1].second.size() == 1) { 5007 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5008 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5009 5010 bool DefaultCanTrigger = DefaultResult; 5011 Value *SelectValue = ResultVector[1].first; 5012 if (DefaultCanTrigger) { 5013 Value *const ValueCompare = 5014 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5015 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5016 DefaultResult, "switch.select"); 5017 } 5018 Value *const ValueCompare = 5019 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5020 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5021 SelectValue, "switch.select"); 5022 } 5023 5024 return nullptr; 5025 } 5026 5027 // Helper function to cleanup a switch instruction that has been converted into 5028 // a select, fixing up PHI nodes and basic blocks. 5029 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5030 Value *SelectValue, 5031 IRBuilder<> &Builder) { 5032 BasicBlock *SelectBB = SI->getParent(); 5033 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5034 PHI->removeIncomingValue(SelectBB); 5035 PHI->addIncoming(SelectValue, SelectBB); 5036 5037 Builder.CreateBr(PHI->getParent()); 5038 5039 // Remove the switch. 5040 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5041 BasicBlock *Succ = SI->getSuccessor(i); 5042 5043 if (Succ == PHI->getParent()) 5044 continue; 5045 Succ->removePredecessor(SelectBB); 5046 } 5047 SI->eraseFromParent(); 5048 } 5049 5050 /// If the switch is only used to initialize one or more 5051 /// phi nodes in a common successor block with only two different 5052 /// constant values, replace the switch with select. 5053 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5054 const DataLayout &DL, 5055 const TargetTransformInfo &TTI) { 5056 Value *const Cond = SI->getCondition(); 5057 PHINode *PHI = nullptr; 5058 BasicBlock *CommonDest = nullptr; 5059 Constant *DefaultResult; 5060 SwitchCaseResultVectorTy UniqueResults; 5061 // Collect all the cases that will deliver the same value from the switch. 5062 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5063 DL, TTI, 2, 1)) 5064 return false; 5065 // Selects choose between maximum two values. 5066 if (UniqueResults.size() != 2) 5067 return false; 5068 assert(PHI != nullptr && "PHI for value select not found"); 5069 5070 Builder.SetInsertPoint(SI); 5071 Value *SelectValue = 5072 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5073 if (SelectValue) { 5074 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 5075 return true; 5076 } 5077 // The switch couldn't be converted into a select. 5078 return false; 5079 } 5080 5081 namespace { 5082 5083 /// This class represents a lookup table that can be used to replace a switch. 5084 class SwitchLookupTable { 5085 public: 5086 /// Create a lookup table to use as a switch replacement with the contents 5087 /// of Values, using DefaultValue to fill any holes in the table. 5088 SwitchLookupTable( 5089 Module &M, uint64_t TableSize, ConstantInt *Offset, 5090 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5091 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5092 5093 /// Build instructions with Builder to retrieve the value at 5094 /// the position given by Index in the lookup table. 5095 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5096 5097 /// Return true if a table with TableSize elements of 5098 /// type ElementType would fit in a target-legal register. 5099 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5100 Type *ElementType); 5101 5102 private: 5103 // Depending on the contents of the table, it can be represented in 5104 // different ways. 5105 enum { 5106 // For tables where each element contains the same value, we just have to 5107 // store that single value and return it for each lookup. 5108 SingleValueKind, 5109 5110 // For tables where there is a linear relationship between table index 5111 // and values. We calculate the result with a simple multiplication 5112 // and addition instead of a table lookup. 5113 LinearMapKind, 5114 5115 // For small tables with integer elements, we can pack them into a bitmap 5116 // that fits into a target-legal register. Values are retrieved by 5117 // shift and mask operations. 5118 BitMapKind, 5119 5120 // The table is stored as an array of values. Values are retrieved by load 5121 // instructions from the table. 5122 ArrayKind 5123 } Kind; 5124 5125 // For SingleValueKind, this is the single value. 5126 Constant *SingleValue = nullptr; 5127 5128 // For BitMapKind, this is the bitmap. 5129 ConstantInt *BitMap = nullptr; 5130 IntegerType *BitMapElementTy = nullptr; 5131 5132 // For LinearMapKind, these are the constants used to derive the value. 5133 ConstantInt *LinearOffset = nullptr; 5134 ConstantInt *LinearMultiplier = nullptr; 5135 5136 // For ArrayKind, this is the array. 5137 GlobalVariable *Array = nullptr; 5138 }; 5139 5140 } // end anonymous namespace 5141 5142 SwitchLookupTable::SwitchLookupTable( 5143 Module &M, uint64_t TableSize, ConstantInt *Offset, 5144 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5145 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5146 assert(Values.size() && "Can't build lookup table without values!"); 5147 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5148 5149 // If all values in the table are equal, this is that value. 5150 SingleValue = Values.begin()->second; 5151 5152 Type *ValueType = Values.begin()->second->getType(); 5153 5154 // Build up the table contents. 5155 SmallVector<Constant *, 64> TableContents(TableSize); 5156 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5157 ConstantInt *CaseVal = Values[I].first; 5158 Constant *CaseRes = Values[I].second; 5159 assert(CaseRes->getType() == ValueType); 5160 5161 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5162 TableContents[Idx] = CaseRes; 5163 5164 if (CaseRes != SingleValue) 5165 SingleValue = nullptr; 5166 } 5167 5168 // Fill in any holes in the table with the default result. 5169 if (Values.size() < TableSize) { 5170 assert(DefaultValue && 5171 "Need a default value to fill the lookup table holes."); 5172 assert(DefaultValue->getType() == ValueType); 5173 for (uint64_t I = 0; I < TableSize; ++I) { 5174 if (!TableContents[I]) 5175 TableContents[I] = DefaultValue; 5176 } 5177 5178 if (DefaultValue != SingleValue) 5179 SingleValue = nullptr; 5180 } 5181 5182 // If each element in the table contains the same value, we only need to store 5183 // that single value. 5184 if (SingleValue) { 5185 Kind = SingleValueKind; 5186 return; 5187 } 5188 5189 // Check if we can derive the value with a linear transformation from the 5190 // table index. 5191 if (isa<IntegerType>(ValueType)) { 5192 bool LinearMappingPossible = true; 5193 APInt PrevVal; 5194 APInt DistToPrev; 5195 assert(TableSize >= 2 && "Should be a SingleValue table."); 5196 // Check if there is the same distance between two consecutive values. 5197 for (uint64_t I = 0; I < TableSize; ++I) { 5198 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5199 if (!ConstVal) { 5200 // This is an undef. We could deal with it, but undefs in lookup tables 5201 // are very seldom. It's probably not worth the additional complexity. 5202 LinearMappingPossible = false; 5203 break; 5204 } 5205 const APInt &Val = ConstVal->getValue(); 5206 if (I != 0) { 5207 APInt Dist = Val - PrevVal; 5208 if (I == 1) { 5209 DistToPrev = Dist; 5210 } else if (Dist != DistToPrev) { 5211 LinearMappingPossible = false; 5212 break; 5213 } 5214 } 5215 PrevVal = Val; 5216 } 5217 if (LinearMappingPossible) { 5218 LinearOffset = cast<ConstantInt>(TableContents[0]); 5219 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5220 Kind = LinearMapKind; 5221 ++NumLinearMaps; 5222 return; 5223 } 5224 } 5225 5226 // If the type is integer and the table fits in a register, build a bitmap. 5227 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5228 IntegerType *IT = cast<IntegerType>(ValueType); 5229 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5230 for (uint64_t I = TableSize; I > 0; --I) { 5231 TableInt <<= IT->getBitWidth(); 5232 // Insert values into the bitmap. Undef values are set to zero. 5233 if (!isa<UndefValue>(TableContents[I - 1])) { 5234 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5235 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5236 } 5237 } 5238 BitMap = ConstantInt::get(M.getContext(), TableInt); 5239 BitMapElementTy = IT; 5240 Kind = BitMapKind; 5241 ++NumBitMaps; 5242 return; 5243 } 5244 5245 // Store the table in an array. 5246 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5247 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5248 5249 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5250 GlobalVariable::PrivateLinkage, Initializer, 5251 "switch.table." + FuncName); 5252 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5253 // Set the alignment to that of an array items. We will be only loading one 5254 // value out of it. 5255 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5256 Kind = ArrayKind; 5257 } 5258 5259 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5260 switch (Kind) { 5261 case SingleValueKind: 5262 return SingleValue; 5263 case LinearMapKind: { 5264 // Derive the result value from the input value. 5265 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5266 false, "switch.idx.cast"); 5267 if (!LinearMultiplier->isOne()) 5268 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5269 if (!LinearOffset->isZero()) 5270 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5271 return Result; 5272 } 5273 case BitMapKind: { 5274 // Type of the bitmap (e.g. i59). 5275 IntegerType *MapTy = BitMap->getType(); 5276 5277 // Cast Index to the same type as the bitmap. 5278 // Note: The Index is <= the number of elements in the table, so 5279 // truncating it to the width of the bitmask is safe. 5280 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5281 5282 // Multiply the shift amount by the element width. 5283 ShiftAmt = Builder.CreateMul( 5284 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5285 "switch.shiftamt"); 5286 5287 // Shift down. 5288 Value *DownShifted = 5289 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5290 // Mask off. 5291 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5292 } 5293 case ArrayKind: { 5294 // Make sure the table index will not overflow when treated as signed. 5295 IntegerType *IT = cast<IntegerType>(Index->getType()); 5296 uint64_t TableSize = 5297 Array->getInitializer()->getType()->getArrayNumElements(); 5298 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5299 Index = Builder.CreateZExt( 5300 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5301 "switch.tableidx.zext"); 5302 5303 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5304 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5305 GEPIndices, "switch.gep"); 5306 return Builder.CreateLoad( 5307 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5308 "switch.load"); 5309 } 5310 } 5311 llvm_unreachable("Unknown lookup table kind!"); 5312 } 5313 5314 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5315 uint64_t TableSize, 5316 Type *ElementType) { 5317 auto *IT = dyn_cast<IntegerType>(ElementType); 5318 if (!IT) 5319 return false; 5320 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5321 // are <= 15, we could try to narrow the type. 5322 5323 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5324 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5325 return false; 5326 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5327 } 5328 5329 /// Determine whether a lookup table should be built for this switch, based on 5330 /// the number of cases, size of the table, and the types of the results. 5331 static bool 5332 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5333 const TargetTransformInfo &TTI, const DataLayout &DL, 5334 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5335 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5336 return false; // TableSize overflowed, or mul below might overflow. 5337 5338 bool AllTablesFitInRegister = true; 5339 bool HasIllegalType = false; 5340 for (const auto &I : ResultTypes) { 5341 Type *Ty = I.second; 5342 5343 // Saturate this flag to true. 5344 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5345 5346 // Saturate this flag to false. 5347 AllTablesFitInRegister = 5348 AllTablesFitInRegister && 5349 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5350 5351 // If both flags saturate, we're done. NOTE: This *only* works with 5352 // saturating flags, and all flags have to saturate first due to the 5353 // non-deterministic behavior of iterating over a dense map. 5354 if (HasIllegalType && !AllTablesFitInRegister) 5355 break; 5356 } 5357 5358 // If each table would fit in a register, we should build it anyway. 5359 if (AllTablesFitInRegister) 5360 return true; 5361 5362 // Don't build a table that doesn't fit in-register if it has illegal types. 5363 if (HasIllegalType) 5364 return false; 5365 5366 // The table density should be at least 40%. This is the same criterion as for 5367 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5368 // FIXME: Find the best cut-off. 5369 return SI->getNumCases() * 10 >= TableSize * 4; 5370 } 5371 5372 /// Try to reuse the switch table index compare. Following pattern: 5373 /// \code 5374 /// if (idx < tablesize) 5375 /// r = table[idx]; // table does not contain default_value 5376 /// else 5377 /// r = default_value; 5378 /// if (r != default_value) 5379 /// ... 5380 /// \endcode 5381 /// Is optimized to: 5382 /// \code 5383 /// cond = idx < tablesize; 5384 /// if (cond) 5385 /// r = table[idx]; 5386 /// else 5387 /// r = default_value; 5388 /// if (cond) 5389 /// ... 5390 /// \endcode 5391 /// Jump threading will then eliminate the second if(cond). 5392 static void reuseTableCompare( 5393 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5394 Constant *DefaultValue, 5395 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5396 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5397 if (!CmpInst) 5398 return; 5399 5400 // We require that the compare is in the same block as the phi so that jump 5401 // threading can do its work afterwards. 5402 if (CmpInst->getParent() != PhiBlock) 5403 return; 5404 5405 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5406 if (!CmpOp1) 5407 return; 5408 5409 Value *RangeCmp = RangeCheckBranch->getCondition(); 5410 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5411 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5412 5413 // Check if the compare with the default value is constant true or false. 5414 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5415 DefaultValue, CmpOp1, true); 5416 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5417 return; 5418 5419 // Check if the compare with the case values is distinct from the default 5420 // compare result. 5421 for (auto ValuePair : Values) { 5422 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5423 ValuePair.second, CmpOp1, true); 5424 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5425 return; 5426 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5427 "Expect true or false as compare result."); 5428 } 5429 5430 // Check if the branch instruction dominates the phi node. It's a simple 5431 // dominance check, but sufficient for our needs. 5432 // Although this check is invariant in the calling loops, it's better to do it 5433 // at this late stage. Practically we do it at most once for a switch. 5434 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5435 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5436 BasicBlock *Pred = *PI; 5437 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5438 return; 5439 } 5440 5441 if (DefaultConst == FalseConst) { 5442 // The compare yields the same result. We can replace it. 5443 CmpInst->replaceAllUsesWith(RangeCmp); 5444 ++NumTableCmpReuses; 5445 } else { 5446 // The compare yields the same result, just inverted. We can replace it. 5447 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5448 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5449 RangeCheckBranch); 5450 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5451 ++NumTableCmpReuses; 5452 } 5453 } 5454 5455 /// If the switch is only used to initialize one or more phi nodes in a common 5456 /// successor block with different constant values, replace the switch with 5457 /// lookup tables. 5458 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5459 const DataLayout &DL, 5460 const TargetTransformInfo &TTI) { 5461 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5462 5463 Function *Fn = SI->getParent()->getParent(); 5464 // Only build lookup table when we have a target that supports it or the 5465 // attribute is not set. 5466 if (!TTI.shouldBuildLookupTables() || 5467 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5468 return false; 5469 5470 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5471 // split off a dense part and build a lookup table for that. 5472 5473 // FIXME: This creates arrays of GEPs to constant strings, which means each 5474 // GEP needs a runtime relocation in PIC code. We should just build one big 5475 // string and lookup indices into that. 5476 5477 // Ignore switches with less than three cases. Lookup tables will not make 5478 // them faster, so we don't analyze them. 5479 if (SI->getNumCases() < 3) 5480 return false; 5481 5482 // Figure out the corresponding result for each case value and phi node in the 5483 // common destination, as well as the min and max case values. 5484 assert(!SI->cases().empty()); 5485 SwitchInst::CaseIt CI = SI->case_begin(); 5486 ConstantInt *MinCaseVal = CI->getCaseValue(); 5487 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5488 5489 BasicBlock *CommonDest = nullptr; 5490 5491 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5492 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5493 5494 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5495 SmallDenseMap<PHINode *, Type *> ResultTypes; 5496 SmallVector<PHINode *, 4> PHIs; 5497 5498 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5499 ConstantInt *CaseVal = CI->getCaseValue(); 5500 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5501 MinCaseVal = CaseVal; 5502 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5503 MaxCaseVal = CaseVal; 5504 5505 // Resulting value at phi nodes for this case value. 5506 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5507 ResultsTy Results; 5508 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5509 Results, DL, TTI)) 5510 return false; 5511 5512 // Append the result from this case to the list for each phi. 5513 for (const auto &I : Results) { 5514 PHINode *PHI = I.first; 5515 Constant *Value = I.second; 5516 if (!ResultLists.count(PHI)) 5517 PHIs.push_back(PHI); 5518 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5519 } 5520 } 5521 5522 // Keep track of the result types. 5523 for (PHINode *PHI : PHIs) { 5524 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5525 } 5526 5527 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5528 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5529 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5530 bool TableHasHoles = (NumResults < TableSize); 5531 5532 // If the table has holes, we need a constant result for the default case 5533 // or a bitmask that fits in a register. 5534 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5535 bool HasDefaultResults = 5536 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5537 DefaultResultsList, DL, TTI); 5538 5539 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5540 if (NeedMask) { 5541 // As an extra penalty for the validity test we require more cases. 5542 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5543 return false; 5544 if (!DL.fitsInLegalInteger(TableSize)) 5545 return false; 5546 } 5547 5548 for (const auto &I : DefaultResultsList) { 5549 PHINode *PHI = I.first; 5550 Constant *Result = I.second; 5551 DefaultResults[PHI] = Result; 5552 } 5553 5554 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5555 return false; 5556 5557 // Create the BB that does the lookups. 5558 Module &Mod = *CommonDest->getParent()->getParent(); 5559 BasicBlock *LookupBB = BasicBlock::Create( 5560 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5561 5562 // Compute the table index value. 5563 Builder.SetInsertPoint(SI); 5564 Value *TableIndex; 5565 if (MinCaseVal->isNullValue()) 5566 TableIndex = SI->getCondition(); 5567 else 5568 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5569 "switch.tableidx"); 5570 5571 // Compute the maximum table size representable by the integer type we are 5572 // switching upon. 5573 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5574 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5575 assert(MaxTableSize >= TableSize && 5576 "It is impossible for a switch to have more entries than the max " 5577 "representable value of its input integer type's size."); 5578 5579 // If the default destination is unreachable, or if the lookup table covers 5580 // all values of the conditional variable, branch directly to the lookup table 5581 // BB. Otherwise, check that the condition is within the case range. 5582 const bool DefaultIsReachable = 5583 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5584 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5585 BranchInst *RangeCheckBranch = nullptr; 5586 5587 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5588 Builder.CreateBr(LookupBB); 5589 // Note: We call removeProdecessor later since we need to be able to get the 5590 // PHI value for the default case in case we're using a bit mask. 5591 } else { 5592 Value *Cmp = Builder.CreateICmpULT( 5593 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5594 RangeCheckBranch = 5595 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5596 } 5597 5598 // Populate the BB that does the lookups. 5599 Builder.SetInsertPoint(LookupBB); 5600 5601 if (NeedMask) { 5602 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5603 // re-purposed to do the hole check, and we create a new LookupBB. 5604 BasicBlock *MaskBB = LookupBB; 5605 MaskBB->setName("switch.hole_check"); 5606 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5607 CommonDest->getParent(), CommonDest); 5608 5609 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5610 // unnecessary illegal types. 5611 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5612 APInt MaskInt(TableSizePowOf2, 0); 5613 APInt One(TableSizePowOf2, 1); 5614 // Build bitmask; fill in a 1 bit for every case. 5615 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5616 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5617 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5618 .getLimitedValue(); 5619 MaskInt |= One << Idx; 5620 } 5621 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5622 5623 // Get the TableIndex'th bit of the bitmask. 5624 // If this bit is 0 (meaning hole) jump to the default destination, 5625 // else continue with table lookup. 5626 IntegerType *MapTy = TableMask->getType(); 5627 Value *MaskIndex = 5628 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5629 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5630 Value *LoBit = Builder.CreateTrunc( 5631 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5632 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5633 5634 Builder.SetInsertPoint(LookupBB); 5635 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5636 } 5637 5638 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5639 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5640 // do not delete PHINodes here. 5641 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5642 /*KeepOneInputPHIs=*/true); 5643 } 5644 5645 bool ReturnedEarly = false; 5646 for (PHINode *PHI : PHIs) { 5647 const ResultListTy &ResultList = ResultLists[PHI]; 5648 5649 // If using a bitmask, use any value to fill the lookup table holes. 5650 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5651 StringRef FuncName = Fn->getName(); 5652 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5653 FuncName); 5654 5655 Value *Result = Table.BuildLookup(TableIndex, Builder); 5656 5657 // If the result is used to return immediately from the function, we want to 5658 // do that right here. 5659 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5660 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5661 Builder.CreateRet(Result); 5662 ReturnedEarly = true; 5663 break; 5664 } 5665 5666 // Do a small peephole optimization: re-use the switch table compare if 5667 // possible. 5668 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5669 BasicBlock *PhiBlock = PHI->getParent(); 5670 // Search for compare instructions which use the phi. 5671 for (auto *User : PHI->users()) { 5672 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5673 } 5674 } 5675 5676 PHI->addIncoming(Result, LookupBB); 5677 } 5678 5679 if (!ReturnedEarly) 5680 Builder.CreateBr(CommonDest); 5681 5682 // Remove the switch. 5683 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5684 BasicBlock *Succ = SI->getSuccessor(i); 5685 5686 if (Succ == SI->getDefaultDest()) 5687 continue; 5688 Succ->removePredecessor(SI->getParent()); 5689 } 5690 SI->eraseFromParent(); 5691 5692 ++NumLookupTables; 5693 if (NeedMask) 5694 ++NumLookupTablesHoles; 5695 return true; 5696 } 5697 5698 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5699 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5700 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5701 uint64_t Range = Diff + 1; 5702 uint64_t NumCases = Values.size(); 5703 // 40% is the default density for building a jump table in optsize/minsize mode. 5704 uint64_t MinDensity = 40; 5705 5706 return NumCases * 100 >= Range * MinDensity; 5707 } 5708 5709 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5710 /// of cases. 5711 /// 5712 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5713 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5714 /// 5715 /// This converts a sparse switch into a dense switch which allows better 5716 /// lowering and could also allow transforming into a lookup table. 5717 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5718 const DataLayout &DL, 5719 const TargetTransformInfo &TTI) { 5720 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5721 if (CondTy->getIntegerBitWidth() > 64 || 5722 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5723 return false; 5724 // Only bother with this optimization if there are more than 3 switch cases; 5725 // SDAG will only bother creating jump tables for 4 or more cases. 5726 if (SI->getNumCases() < 4) 5727 return false; 5728 5729 // This transform is agnostic to the signedness of the input or case values. We 5730 // can treat the case values as signed or unsigned. We can optimize more common 5731 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5732 // as signed. 5733 SmallVector<int64_t,4> Values; 5734 for (auto &C : SI->cases()) 5735 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5736 llvm::sort(Values); 5737 5738 // If the switch is already dense, there's nothing useful to do here. 5739 if (isSwitchDense(Values)) 5740 return false; 5741 5742 // First, transform the values such that they start at zero and ascend. 5743 int64_t Base = Values[0]; 5744 for (auto &V : Values) 5745 V -= (uint64_t)(Base); 5746 5747 // Now we have signed numbers that have been shifted so that, given enough 5748 // precision, there are no negative values. Since the rest of the transform 5749 // is bitwise only, we switch now to an unsigned representation. 5750 5751 // This transform can be done speculatively because it is so cheap - it 5752 // results in a single rotate operation being inserted. 5753 // FIXME: It's possible that optimizing a switch on powers of two might also 5754 // be beneficial - flag values are often powers of two and we could use a CLZ 5755 // as the key function. 5756 5757 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5758 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5759 // less than 64. 5760 unsigned Shift = 64; 5761 for (auto &V : Values) 5762 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5763 assert(Shift < 64); 5764 if (Shift > 0) 5765 for (auto &V : Values) 5766 V = (int64_t)((uint64_t)V >> Shift); 5767 5768 if (!isSwitchDense(Values)) 5769 // Transform didn't create a dense switch. 5770 return false; 5771 5772 // The obvious transform is to shift the switch condition right and emit a 5773 // check that the condition actually cleanly divided by GCD, i.e. 5774 // C & (1 << Shift - 1) == 0 5775 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5776 // 5777 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5778 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5779 // are nonzero then the switch condition will be very large and will hit the 5780 // default case. 5781 5782 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5783 Builder.SetInsertPoint(SI); 5784 auto *ShiftC = ConstantInt::get(Ty, Shift); 5785 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5786 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5787 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5788 auto *Rot = Builder.CreateOr(LShr, Shl); 5789 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5790 5791 for (auto Case : SI->cases()) { 5792 auto *Orig = Case.getCaseValue(); 5793 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5794 Case.setValue( 5795 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5796 } 5797 return true; 5798 } 5799 5800 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5801 BasicBlock *BB = SI->getParent(); 5802 5803 if (isValueEqualityComparison(SI)) { 5804 // If we only have one predecessor, and if it is a branch on this value, 5805 // see if that predecessor totally determines the outcome of this switch. 5806 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5807 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5808 return requestResimplify(); 5809 5810 Value *Cond = SI->getCondition(); 5811 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5812 if (SimplifySwitchOnSelect(SI, Select)) 5813 return requestResimplify(); 5814 5815 // If the block only contains the switch, see if we can fold the block 5816 // away into any preds. 5817 if (SI == &*BB->instructionsWithoutDebug().begin()) 5818 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5819 return requestResimplify(); 5820 } 5821 5822 // Try to transform the switch into an icmp and a branch. 5823 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5824 return requestResimplify(); 5825 5826 // Remove unreachable cases. 5827 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5828 return requestResimplify(); 5829 5830 if (switchToSelect(SI, Builder, DL, TTI)) 5831 return requestResimplify(); 5832 5833 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5834 return requestResimplify(); 5835 5836 // The conversion from switch to lookup tables results in difficult-to-analyze 5837 // code and makes pruning branches much harder. This is a problem if the 5838 // switch expression itself can still be restricted as a result of inlining or 5839 // CVP. Therefore, only apply this transformation during late stages of the 5840 // optimisation pipeline. 5841 if (Options.ConvertSwitchToLookupTable && 5842 SwitchToLookupTable(SI, Builder, DL, TTI)) 5843 return requestResimplify(); 5844 5845 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5846 return requestResimplify(); 5847 5848 return false; 5849 } 5850 5851 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 5852 BasicBlock *BB = IBI->getParent(); 5853 bool Changed = false; 5854 5855 // Eliminate redundant destinations. 5856 SmallPtrSet<Value *, 8> Succs; 5857 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5858 BasicBlock *Dest = IBI->getDestination(i); 5859 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5860 Dest->removePredecessor(BB); 5861 IBI->removeDestination(i); 5862 --i; 5863 --e; 5864 Changed = true; 5865 } 5866 } 5867 5868 if (IBI->getNumDestinations() == 0) { 5869 // If the indirectbr has no successors, change it to unreachable. 5870 new UnreachableInst(IBI->getContext(), IBI); 5871 EraseTerminatorAndDCECond(IBI); 5872 return true; 5873 } 5874 5875 if (IBI->getNumDestinations() == 1) { 5876 // If the indirectbr has one successor, change it to a direct branch. 5877 BranchInst::Create(IBI->getDestination(0), IBI); 5878 EraseTerminatorAndDCECond(IBI); 5879 return true; 5880 } 5881 5882 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5883 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5884 return requestResimplify(); 5885 } 5886 return Changed; 5887 } 5888 5889 /// Given an block with only a single landing pad and a unconditional branch 5890 /// try to find another basic block which this one can be merged with. This 5891 /// handles cases where we have multiple invokes with unique landing pads, but 5892 /// a shared handler. 5893 /// 5894 /// We specifically choose to not worry about merging non-empty blocks 5895 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5896 /// practice, the optimizer produces empty landing pad blocks quite frequently 5897 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5898 /// sinking in this file) 5899 /// 5900 /// This is primarily a code size optimization. We need to avoid performing 5901 /// any transform which might inhibit optimization (such as our ability to 5902 /// specialize a particular handler via tail commoning). We do this by not 5903 /// merging any blocks which require us to introduce a phi. Since the same 5904 /// values are flowing through both blocks, we don't lose any ability to 5905 /// specialize. If anything, we make such specialization more likely. 5906 /// 5907 /// TODO - This transformation could remove entries from a phi in the target 5908 /// block when the inputs in the phi are the same for the two blocks being 5909 /// merged. In some cases, this could result in removal of the PHI entirely. 5910 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5911 BasicBlock *BB) { 5912 auto Succ = BB->getUniqueSuccessor(); 5913 assert(Succ); 5914 // If there's a phi in the successor block, we'd likely have to introduce 5915 // a phi into the merged landing pad block. 5916 if (isa<PHINode>(*Succ->begin())) 5917 return false; 5918 5919 for (BasicBlock *OtherPred : predecessors(Succ)) { 5920 if (BB == OtherPred) 5921 continue; 5922 BasicBlock::iterator I = OtherPred->begin(); 5923 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5924 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5925 continue; 5926 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5927 ; 5928 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5929 if (!BI2 || !BI2->isIdenticalTo(BI)) 5930 continue; 5931 5932 // We've found an identical block. Update our predecessors to take that 5933 // path instead and make ourselves dead. 5934 SmallPtrSet<BasicBlock *, 16> Preds; 5935 Preds.insert(pred_begin(BB), pred_end(BB)); 5936 for (BasicBlock *Pred : Preds) { 5937 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5938 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5939 "unexpected successor"); 5940 II->setUnwindDest(OtherPred); 5941 } 5942 5943 // The debug info in OtherPred doesn't cover the merged control flow that 5944 // used to go through BB. We need to delete it or update it. 5945 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5946 Instruction &Inst = *I; 5947 I++; 5948 if (isa<DbgInfoIntrinsic>(Inst)) 5949 Inst.eraseFromParent(); 5950 } 5951 5952 SmallPtrSet<BasicBlock *, 16> Succs; 5953 Succs.insert(succ_begin(BB), succ_end(BB)); 5954 for (BasicBlock *Succ : Succs) { 5955 Succ->removePredecessor(BB); 5956 } 5957 5958 IRBuilder<> Builder(BI); 5959 Builder.CreateUnreachable(); 5960 BI->eraseFromParent(); 5961 return true; 5962 } 5963 return false; 5964 } 5965 5966 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 5967 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 5968 : simplifyCondBranch(Branch, Builder); 5969 } 5970 5971 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 5972 IRBuilder<> &Builder) { 5973 BasicBlock *BB = BI->getParent(); 5974 BasicBlock *Succ = BI->getSuccessor(0); 5975 5976 // If the Terminator is the only non-phi instruction, simplify the block. 5977 // If LoopHeader is provided, check if the block or its successor is a loop 5978 // header. (This is for early invocations before loop simplify and 5979 // vectorization to keep canonical loop forms for nested loops. These blocks 5980 // can be eliminated when the pass is invoked later in the back-end.) 5981 // Note that if BB has only one predecessor then we do not introduce new 5982 // backedge, so we can eliminate BB. 5983 bool NeedCanonicalLoop = 5984 Options.NeedCanonicalLoop && 5985 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5986 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5987 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5988 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5989 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5990 return true; 5991 5992 // If the only instruction in the block is a seteq/setne comparison against a 5993 // constant, try to simplify the block. 5994 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5995 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5996 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5997 ; 5998 if (I->isTerminator() && 5999 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6000 return true; 6001 } 6002 6003 // See if we can merge an empty landing pad block with another which is 6004 // equivalent. 6005 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6006 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6007 ; 6008 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 6009 return true; 6010 } 6011 6012 // If this basic block is ONLY a compare and a branch, and if a predecessor 6013 // branches to us and our successor, fold the comparison into the 6014 // predecessor and use logical operations to update the incoming value 6015 // for PHI nodes in common successor. 6016 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 6017 return requestResimplify(); 6018 return false; 6019 } 6020 6021 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6022 BasicBlock *PredPred = nullptr; 6023 for (auto *P : predecessors(BB)) { 6024 BasicBlock *PPred = P->getSinglePredecessor(); 6025 if (!PPred || (PredPred && PredPred != PPred)) 6026 return nullptr; 6027 PredPred = PPred; 6028 } 6029 return PredPred; 6030 } 6031 6032 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6033 BasicBlock *BB = BI->getParent(); 6034 if (!Options.SimplifyCondBranch) 6035 return false; 6036 6037 // Conditional branch 6038 if (isValueEqualityComparison(BI)) { 6039 // If we only have one predecessor, and if it is a branch on this value, 6040 // see if that predecessor totally determines the outcome of this 6041 // switch. 6042 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6043 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6044 return requestResimplify(); 6045 6046 // This block must be empty, except for the setcond inst, if it exists. 6047 // Ignore dbg intrinsics. 6048 auto I = BB->instructionsWithoutDebug().begin(); 6049 if (&*I == BI) { 6050 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6051 return requestResimplify(); 6052 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6053 ++I; 6054 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6055 return requestResimplify(); 6056 } 6057 } 6058 6059 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6060 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6061 return true; 6062 6063 // If this basic block has dominating predecessor blocks and the dominating 6064 // blocks' conditions imply BI's condition, we know the direction of BI. 6065 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6066 if (Imp) { 6067 // Turn this into a branch on constant. 6068 auto *OldCond = BI->getCondition(); 6069 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6070 : ConstantInt::getFalse(BB->getContext()); 6071 BI->setCondition(TorF); 6072 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6073 return requestResimplify(); 6074 } 6075 6076 // If this basic block is ONLY a compare and a branch, and if a predecessor 6077 // branches to us and one of our successors, fold the comparison into the 6078 // predecessor and use logical operations to pick the right destination. 6079 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 6080 return requestResimplify(); 6081 6082 // We have a conditional branch to two blocks that are only reachable 6083 // from BI. We know that the condbr dominates the two blocks, so see if 6084 // there is any identical code in the "then" and "else" blocks. If so, we 6085 // can hoist it up to the branching block. 6086 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6087 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6088 if (HoistCommon && Options.HoistCommonInsts) 6089 if (HoistThenElseCodeToIf(BI, TTI)) 6090 return requestResimplify(); 6091 } else { 6092 // If Successor #1 has multiple preds, we may be able to conditionally 6093 // execute Successor #0 if it branches to Successor #1. 6094 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6095 if (Succ0TI->getNumSuccessors() == 1 && 6096 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6097 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6098 return requestResimplify(); 6099 } 6100 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6101 // If Successor #0 has multiple preds, we may be able to conditionally 6102 // execute Successor #1 if it branches to Successor #0. 6103 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6104 if (Succ1TI->getNumSuccessors() == 1 && 6105 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6106 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6107 return requestResimplify(); 6108 } 6109 6110 // If this is a branch on a phi node in the current block, thread control 6111 // through this block if any PHI node entries are constants. 6112 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6113 if (PN->getParent() == BI->getParent()) 6114 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 6115 return requestResimplify(); 6116 6117 // Scan predecessor blocks for conditional branches. 6118 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6119 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6120 if (PBI != BI && PBI->isConditional()) 6121 if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI)) 6122 return requestResimplify(); 6123 6124 // Look for diamond patterns. 6125 if (MergeCondStores) 6126 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6127 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6128 if (PBI != BI && PBI->isConditional()) 6129 if (mergeConditionalStores(PBI, BI, DL, TTI)) 6130 return requestResimplify(); 6131 6132 return false; 6133 } 6134 6135 /// Check if passing a value to an instruction will cause undefined behavior. 6136 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 6137 Constant *C = dyn_cast<Constant>(V); 6138 if (!C) 6139 return false; 6140 6141 if (I->use_empty()) 6142 return false; 6143 6144 if (C->isNullValue() || isa<UndefValue>(C)) { 6145 // Only look at the first use, avoid hurting compile time with long uselists 6146 User *Use = *I->user_begin(); 6147 6148 // Now make sure that there are no instructions in between that can alter 6149 // control flow (eg. calls) 6150 for (BasicBlock::iterator 6151 i = ++BasicBlock::iterator(I), 6152 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6153 i != UI; ++i) 6154 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6155 return false; 6156 6157 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6158 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6159 if (GEP->getPointerOperand() == I) 6160 return passingValueIsAlwaysUndefined(V, GEP); 6161 6162 // Look through bitcasts. 6163 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6164 return passingValueIsAlwaysUndefined(V, BC); 6165 6166 // Load from null is undefined. 6167 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6168 if (!LI->isVolatile()) 6169 return !NullPointerIsDefined(LI->getFunction(), 6170 LI->getPointerAddressSpace()); 6171 6172 // Store to null is undefined. 6173 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6174 if (!SI->isVolatile()) 6175 return (!NullPointerIsDefined(SI->getFunction(), 6176 SI->getPointerAddressSpace())) && 6177 SI->getPointerOperand() == I; 6178 6179 // A call to null is undefined. 6180 if (auto *CB = dyn_cast<CallBase>(Use)) 6181 return !NullPointerIsDefined(CB->getFunction()) && 6182 CB->getCalledOperand() == I; 6183 } 6184 return false; 6185 } 6186 6187 /// If BB has an incoming value that will always trigger undefined behavior 6188 /// (eg. null pointer dereference), remove the branch leading here. 6189 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 6190 for (PHINode &PHI : BB->phis()) 6191 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6192 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6193 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6194 IRBuilder<> Builder(T); 6195 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6196 BB->removePredecessor(PHI.getIncomingBlock(i)); 6197 // Turn uncoditional branches into unreachables and remove the dead 6198 // destination from conditional branches. 6199 if (BI->isUnconditional()) 6200 Builder.CreateUnreachable(); 6201 else 6202 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6203 : BI->getSuccessor(0)); 6204 BI->eraseFromParent(); 6205 return true; 6206 } 6207 // TODO: SwitchInst. 6208 } 6209 6210 return false; 6211 } 6212 6213 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6214 bool Changed = false; 6215 6216 assert(BB && BB->getParent() && "Block not embedded in function!"); 6217 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6218 6219 // Remove basic blocks that have no predecessors (except the entry block)... 6220 // or that just have themself as a predecessor. These are unreachable. 6221 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6222 BB->getSinglePredecessor() == BB) { 6223 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6224 DeleteDeadBlock(BB); 6225 return true; 6226 } 6227 6228 // Check to see if we can constant propagate this terminator instruction 6229 // away... 6230 Changed |= ConstantFoldTerminator(BB, true); 6231 6232 // Check for and eliminate duplicate PHI nodes in this block. 6233 Changed |= EliminateDuplicatePHINodes(BB); 6234 6235 // Check for and remove branches that will always cause undefined behavior. 6236 Changed |= removeUndefIntroducingPredecessor(BB); 6237 6238 // Merge basic blocks into their predecessor if there is only one distinct 6239 // pred, and if there is only one distinct successor of the predecessor, and 6240 // if there are no PHI nodes. 6241 if (MergeBlockIntoPredecessor(BB)) 6242 return true; 6243 6244 if (SinkCommon && Options.SinkCommonInsts) 6245 Changed |= SinkCommonCodeFromPredecessors(BB); 6246 6247 IRBuilder<> Builder(BB); 6248 6249 if (Options.FoldTwoEntryPHINode) { 6250 // If there is a trivial two-entry PHI node in this basic block, and we can 6251 // eliminate it, do so now. 6252 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6253 if (PN->getNumIncomingValues() == 2) 6254 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6255 } 6256 6257 Instruction *Terminator = BB->getTerminator(); 6258 Builder.SetInsertPoint(Terminator); 6259 switch (Terminator->getOpcode()) { 6260 case Instruction::Br: 6261 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6262 break; 6263 case Instruction::Ret: 6264 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6265 break; 6266 case Instruction::Resume: 6267 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6268 break; 6269 case Instruction::CleanupRet: 6270 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6271 break; 6272 case Instruction::Switch: 6273 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6274 break; 6275 case Instruction::Unreachable: 6276 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6277 break; 6278 case Instruction::IndirectBr: 6279 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6280 break; 6281 } 6282 6283 return Changed; 6284 } 6285 6286 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6287 bool Changed = false; 6288 6289 // Repeated simplify BB as long as resimplification is requested. 6290 do { 6291 Resimplify = false; 6292 6293 // Perform one round of simplifcation. Resimplify flag will be set if 6294 // another iteration is requested. 6295 Changed |= simplifyOnce(BB); 6296 } while (Resimplify); 6297 6298 return Changed; 6299 } 6300 6301 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6302 const SimplifyCFGOptions &Options, 6303 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6304 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6305 Options) 6306 .run(BB); 6307 } 6308