1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <climits>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 using namespace PatternMatch;
85 
86 #define DEBUG_TYPE "simplifycfg"
87 
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt<unsigned> PHINodeFoldingThreshold(
93     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
94     cl::desc(
95         "Control the amount of phi node folding to perform (default = 2)"));
96 
97 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
98     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
99     cl::desc("Control the maximal total instruction cost that we are willing "
100              "to speculatively execute to fold a 2-entry PHI node into a "
101              "select (default = 4)"));
102 
103 static cl::opt<bool> DupRet(
104     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
105     cl::desc("Duplicate return instructions into unconditional branches"));
106 
107 static cl::opt<bool>
108     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
109                cl::desc("Sink common instructions down to the end block"));
110 
111 static cl::opt<bool> HoistCondStores(
112     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
113     cl::desc("Hoist conditional stores if an unconditional store precedes"));
114 
115 static cl::opt<bool> MergeCondStores(
116     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
117     cl::desc("Hoist conditional stores even if an unconditional store does not "
118              "precede - hoist multiple conditional stores into a single "
119              "predicated store"));
120 
121 static cl::opt<bool> MergeCondStoresAggressively(
122     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
123     cl::desc("When merging conditional stores, do so even if the resultant "
124              "basic blocks are unlikely to be if-converted as a result"));
125 
126 static cl::opt<bool> SpeculateOneExpensiveInst(
127     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
128     cl::desc("Allow exactly one expensive instruction to be speculatively "
129              "executed"));
130 
131 static cl::opt<unsigned> MaxSpeculationDepth(
132     "max-speculation-depth", cl::Hidden, cl::init(10),
133     cl::desc("Limit maximum recursion depth when calculating costs of "
134              "speculatively executed instructions"));
135 
136 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
137 STATISTIC(NumLinearMaps,
138           "Number of switch instructions turned into linear mapping");
139 STATISTIC(NumLookupTables,
140           "Number of switch instructions turned into lookup tables");
141 STATISTIC(
142     NumLookupTablesHoles,
143     "Number of switch instructions turned into lookup tables (holes checked)");
144 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
145 STATISTIC(NumSinkCommons,
146           "Number of common instructions sunk down to the end block");
147 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
148 
149 namespace {
150 
151 // The first field contains the value that the switch produces when a certain
152 // case group is selected, and the second field is a vector containing the
153 // cases composing the case group.
154 using SwitchCaseResultVectorTy =
155     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
156 
157 // The first field contains the phi node that generates a result of the switch
158 // and the second field contains the value generated for a certain case in the
159 // switch for that PHI.
160 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
161 
162 /// ValueEqualityComparisonCase - Represents a case of a switch.
163 struct ValueEqualityComparisonCase {
164   ConstantInt *Value;
165   BasicBlock *Dest;
166 
167   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
168       : Value(Value), Dest(Dest) {}
169 
170   bool operator<(ValueEqualityComparisonCase RHS) const {
171     // Comparing pointers is ok as we only rely on the order for uniquing.
172     return Value < RHS.Value;
173   }
174 
175   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
176 };
177 
178 class SimplifyCFGOpt {
179   const TargetTransformInfo &TTI;
180   const DataLayout &DL;
181   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
182   const SimplifyCFGOptions &Options;
183   bool Resimplify;
184 
185   Value *isValueEqualityComparison(Instruction *TI);
186   BasicBlock *GetValueEqualityComparisonCases(
187       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
188   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
189                                                      BasicBlock *Pred,
190                                                      IRBuilder<> &Builder);
191   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
192                                            IRBuilder<> &Builder);
193 
194   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
195   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
196   bool simplifySingleResume(ResumeInst *RI);
197   bool simplifyCommonResume(ResumeInst *RI);
198   bool simplifyCleanupReturn(CleanupReturnInst *RI);
199   bool simplifyUnreachable(UnreachableInst *UI);
200   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
201   bool simplifyIndirectBr(IndirectBrInst *IBI);
202   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
203   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
204   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
205   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
206 
207   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
208                                              IRBuilder<> &Builder);
209 
210   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
211   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
212                               const TargetTransformInfo &TTI);
213   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
214                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
215                                   uint32_t TrueWeight, uint32_t FalseWeight);
216   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
217                                  const DataLayout &DL);
218   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
219   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
220   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
221 
222 public:
223   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
224                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
225                  const SimplifyCFGOptions &Opts)
226       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
227 
228   bool run(BasicBlock *BB);
229   bool simplifyOnce(BasicBlock *BB);
230 
231   // Helper to set Resimplify and return change indication.
232   bool requestResimplify() {
233     Resimplify = true;
234     return true;
235   }
236 };
237 
238 } // end anonymous namespace
239 
240 /// Return true if it is safe to merge these two
241 /// terminator instructions together.
242 static bool
243 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
244                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
245   if (SI1 == SI2)
246     return false; // Can't merge with self!
247 
248   // It is not safe to merge these two switch instructions if they have a common
249   // successor, and if that successor has a PHI node, and if *that* PHI node has
250   // conflicting incoming values from the two switch blocks.
251   BasicBlock *SI1BB = SI1->getParent();
252   BasicBlock *SI2BB = SI2->getParent();
253 
254   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
255   bool Fail = false;
256   for (BasicBlock *Succ : successors(SI2BB))
257     if (SI1Succs.count(Succ))
258       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
259         PHINode *PN = cast<PHINode>(BBI);
260         if (PN->getIncomingValueForBlock(SI1BB) !=
261             PN->getIncomingValueForBlock(SI2BB)) {
262           if (FailBlocks)
263             FailBlocks->insert(Succ);
264           Fail = true;
265         }
266       }
267 
268   return !Fail;
269 }
270 
271 /// Return true if it is safe and profitable to merge these two terminator
272 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
273 /// store all PHI nodes in common successors.
274 static bool
275 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
276                                 Instruction *Cond,
277                                 SmallVectorImpl<PHINode *> &PhiNodes) {
278   if (SI1 == SI2)
279     return false; // Can't merge with self!
280   assert(SI1->isUnconditional() && SI2->isConditional());
281 
282   // We fold the unconditional branch if we can easily update all PHI nodes in
283   // common successors:
284   // 1> We have a constant incoming value for the conditional branch;
285   // 2> We have "Cond" as the incoming value for the unconditional branch;
286   // 3> SI2->getCondition() and Cond have same operands.
287   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
288   if (!Ci2)
289     return false;
290   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
291         Cond->getOperand(1) == Ci2->getOperand(1)) &&
292       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
293         Cond->getOperand(1) == Ci2->getOperand(0)))
294     return false;
295 
296   BasicBlock *SI1BB = SI1->getParent();
297   BasicBlock *SI2BB = SI2->getParent();
298   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
299   for (BasicBlock *Succ : successors(SI2BB))
300     if (SI1Succs.count(Succ))
301       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
302         PHINode *PN = cast<PHINode>(BBI);
303         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
304             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
305           return false;
306         PhiNodes.push_back(PN);
307       }
308   return true;
309 }
310 
311 /// Update PHI nodes in Succ to indicate that there will now be entries in it
312 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
313 /// will be the same as those coming in from ExistPred, an existing predecessor
314 /// of Succ.
315 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
316                                   BasicBlock *ExistPred,
317                                   MemorySSAUpdater *MSSAU = nullptr) {
318   for (PHINode &PN : Succ->phis())
319     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
320   if (MSSAU)
321     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
322       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
323 }
324 
325 /// Compute an abstract "cost" of speculating the given instruction,
326 /// which is assumed to be safe to speculate. TCC_Free means cheap,
327 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
328 /// expensive.
329 static unsigned ComputeSpeculationCost(const User *I,
330                                        const TargetTransformInfo &TTI) {
331   assert(isSafeToSpeculativelyExecute(I) &&
332          "Instruction is not safe to speculatively execute!");
333   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
334 }
335 
336 /// If we have a merge point of an "if condition" as accepted above,
337 /// return true if the specified value dominates the block.  We
338 /// don't handle the true generality of domination here, just a special case
339 /// which works well enough for us.
340 ///
341 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
342 /// see if V (which must be an instruction) and its recursive operands
343 /// that do not dominate BB have a combined cost lower than CostRemaining and
344 /// are non-trapping.  If both are true, the instruction is inserted into the
345 /// set and true is returned.
346 ///
347 /// The cost for most non-trapping instructions is defined as 1 except for
348 /// Select whose cost is 2.
349 ///
350 /// After this function returns, CostRemaining is decreased by the cost of
351 /// V plus its non-dominating operands.  If that cost is greater than
352 /// CostRemaining, false is returned and CostRemaining is undefined.
353 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
354                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
355                                 int &BudgetRemaining,
356                                 const TargetTransformInfo &TTI,
357                                 unsigned Depth = 0) {
358   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
359   // so limit the recursion depth.
360   // TODO: While this recursion limit does prevent pathological behavior, it
361   // would be better to track visited instructions to avoid cycles.
362   if (Depth == MaxSpeculationDepth)
363     return false;
364 
365   Instruction *I = dyn_cast<Instruction>(V);
366   if (!I) {
367     // Non-instructions all dominate instructions, but not all constantexprs
368     // can be executed unconditionally.
369     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
370       if (C->canTrap())
371         return false;
372     return true;
373   }
374   BasicBlock *PBB = I->getParent();
375 
376   // We don't want to allow weird loops that might have the "if condition" in
377   // the bottom of this block.
378   if (PBB == BB)
379     return false;
380 
381   // If this instruction is defined in a block that contains an unconditional
382   // branch to BB, then it must be in the 'conditional' part of the "if
383   // statement".  If not, it definitely dominates the region.
384   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
385   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
386     return true;
387 
388   // If we have seen this instruction before, don't count it again.
389   if (AggressiveInsts.count(I))
390     return true;
391 
392   // Okay, it looks like the instruction IS in the "condition".  Check to
393   // see if it's a cheap instruction to unconditionally compute, and if it
394   // only uses stuff defined outside of the condition.  If so, hoist it out.
395   if (!isSafeToSpeculativelyExecute(I))
396     return false;
397 
398   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
399 
400   // Allow exactly one instruction to be speculated regardless of its cost
401   // (as long as it is safe to do so).
402   // This is intended to flatten the CFG even if the instruction is a division
403   // or other expensive operation. The speculation of an expensive instruction
404   // is expected to be undone in CodeGenPrepare if the speculation has not
405   // enabled further IR optimizations.
406   if (BudgetRemaining < 0 &&
407       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
408     return false;
409 
410   // Okay, we can only really hoist these out if their operands do
411   // not take us over the cost threshold.
412   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
413     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
414                              Depth + 1))
415       return false;
416   // Okay, it's safe to do this!  Remember this instruction.
417   AggressiveInsts.insert(I);
418   return true;
419 }
420 
421 /// Extract ConstantInt from value, looking through IntToPtr
422 /// and PointerNullValue. Return NULL if value is not a constant int.
423 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
424   // Normal constant int.
425   ConstantInt *CI = dyn_cast<ConstantInt>(V);
426   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
427     return CI;
428 
429   // This is some kind of pointer constant. Turn it into a pointer-sized
430   // ConstantInt if possible.
431   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
432 
433   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
434   if (isa<ConstantPointerNull>(V))
435     return ConstantInt::get(PtrTy, 0);
436 
437   // IntToPtr const int.
438   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
439     if (CE->getOpcode() == Instruction::IntToPtr)
440       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
441         // The constant is very likely to have the right type already.
442         if (CI->getType() == PtrTy)
443           return CI;
444         else
445           return cast<ConstantInt>(
446               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
447       }
448   return nullptr;
449 }
450 
451 namespace {
452 
453 /// Given a chain of or (||) or and (&&) comparison of a value against a
454 /// constant, this will try to recover the information required for a switch
455 /// structure.
456 /// It will depth-first traverse the chain of comparison, seeking for patterns
457 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
458 /// representing the different cases for the switch.
459 /// Note that if the chain is composed of '||' it will build the set of elements
460 /// that matches the comparisons (i.e. any of this value validate the chain)
461 /// while for a chain of '&&' it will build the set elements that make the test
462 /// fail.
463 struct ConstantComparesGatherer {
464   const DataLayout &DL;
465 
466   /// Value found for the switch comparison
467   Value *CompValue = nullptr;
468 
469   /// Extra clause to be checked before the switch
470   Value *Extra = nullptr;
471 
472   /// Set of integers to match in switch
473   SmallVector<ConstantInt *, 8> Vals;
474 
475   /// Number of comparisons matched in the and/or chain
476   unsigned UsedICmps = 0;
477 
478   /// Construct and compute the result for the comparison instruction Cond
479   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
480     gather(Cond);
481   }
482 
483   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
484   ConstantComparesGatherer &
485   operator=(const ConstantComparesGatherer &) = delete;
486 
487 private:
488   /// Try to set the current value used for the comparison, it succeeds only if
489   /// it wasn't set before or if the new value is the same as the old one
490   bool setValueOnce(Value *NewVal) {
491     if (CompValue && CompValue != NewVal)
492       return false;
493     CompValue = NewVal;
494     return (CompValue != nullptr);
495   }
496 
497   /// Try to match Instruction "I" as a comparison against a constant and
498   /// populates the array Vals with the set of values that match (or do not
499   /// match depending on isEQ).
500   /// Return false on failure. On success, the Value the comparison matched
501   /// against is placed in CompValue.
502   /// If CompValue is already set, the function is expected to fail if a match
503   /// is found but the value compared to is different.
504   bool matchInstruction(Instruction *I, bool isEQ) {
505     // If this is an icmp against a constant, handle this as one of the cases.
506     ICmpInst *ICI;
507     ConstantInt *C;
508     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
509           (C = GetConstantInt(I->getOperand(1), DL)))) {
510       return false;
511     }
512 
513     Value *RHSVal;
514     const APInt *RHSC;
515 
516     // Pattern match a special case
517     // (x & ~2^z) == y --> x == y || x == y|2^z
518     // This undoes a transformation done by instcombine to fuse 2 compares.
519     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
520       // It's a little bit hard to see why the following transformations are
521       // correct. Here is a CVC3 program to verify them for 64-bit values:
522 
523       /*
524          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
525          x    : BITVECTOR(64);
526          y    : BITVECTOR(64);
527          z    : BITVECTOR(64);
528          mask : BITVECTOR(64) = BVSHL(ONE, z);
529          QUERY( (y & ~mask = y) =>
530                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
531          );
532          QUERY( (y |  mask = y) =>
533                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
534          );
535       */
536 
537       // Please note that each pattern must be a dual implication (<--> or
538       // iff). One directional implication can create spurious matches. If the
539       // implication is only one-way, an unsatisfiable condition on the left
540       // side can imply a satisfiable condition on the right side. Dual
541       // implication ensures that satisfiable conditions are transformed to
542       // other satisfiable conditions and unsatisfiable conditions are
543       // transformed to other unsatisfiable conditions.
544 
545       // Here is a concrete example of a unsatisfiable condition on the left
546       // implying a satisfiable condition on the right:
547       //
548       // mask = (1 << z)
549       // (x & ~mask) == y  --> (x == y || x == (y | mask))
550       //
551       // Substituting y = 3, z = 0 yields:
552       // (x & -2) == 3 --> (x == 3 || x == 2)
553 
554       // Pattern match a special case:
555       /*
556         QUERY( (y & ~mask = y) =>
557                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
558         );
559       */
560       if (match(ICI->getOperand(0),
561                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
562         APInt Mask = ~*RHSC;
563         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
564           // If we already have a value for the switch, it has to match!
565           if (!setValueOnce(RHSVal))
566             return false;
567 
568           Vals.push_back(C);
569           Vals.push_back(
570               ConstantInt::get(C->getContext(),
571                                C->getValue() | Mask));
572           UsedICmps++;
573           return true;
574         }
575       }
576 
577       // Pattern match a special case:
578       /*
579         QUERY( (y |  mask = y) =>
580                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
581         );
582       */
583       if (match(ICI->getOperand(0),
584                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
585         APInt Mask = *RHSC;
586         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
587           // If we already have a value for the switch, it has to match!
588           if (!setValueOnce(RHSVal))
589             return false;
590 
591           Vals.push_back(C);
592           Vals.push_back(ConstantInt::get(C->getContext(),
593                                           C->getValue() & ~Mask));
594           UsedICmps++;
595           return true;
596         }
597       }
598 
599       // If we already have a value for the switch, it has to match!
600       if (!setValueOnce(ICI->getOperand(0)))
601         return false;
602 
603       UsedICmps++;
604       Vals.push_back(C);
605       return ICI->getOperand(0);
606     }
607 
608     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
609     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
610         ICI->getPredicate(), C->getValue());
611 
612     // Shift the range if the compare is fed by an add. This is the range
613     // compare idiom as emitted by instcombine.
614     Value *CandidateVal = I->getOperand(0);
615     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
616       Span = Span.subtract(*RHSC);
617       CandidateVal = RHSVal;
618     }
619 
620     // If this is an and/!= check, then we are looking to build the set of
621     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
622     // x != 0 && x != 1.
623     if (!isEQ)
624       Span = Span.inverse();
625 
626     // If there are a ton of values, we don't want to make a ginormous switch.
627     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
628       return false;
629     }
630 
631     // If we already have a value for the switch, it has to match!
632     if (!setValueOnce(CandidateVal))
633       return false;
634 
635     // Add all values from the range to the set
636     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
637       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
638 
639     UsedICmps++;
640     return true;
641   }
642 
643   /// Given a potentially 'or'd or 'and'd together collection of icmp
644   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
645   /// the value being compared, and stick the list constants into the Vals
646   /// vector.
647   /// One "Extra" case is allowed to differ from the other.
648   void gather(Value *V) {
649     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
650 
651     // Keep a stack (SmallVector for efficiency) for depth-first traversal
652     SmallVector<Value *, 8> DFT;
653     SmallPtrSet<Value *, 8> Visited;
654 
655     // Initialize
656     Visited.insert(V);
657     DFT.push_back(V);
658 
659     while (!DFT.empty()) {
660       V = DFT.pop_back_val();
661 
662       if (Instruction *I = dyn_cast<Instruction>(V)) {
663         // If it is a || (or && depending on isEQ), process the operands.
664         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
665           if (Visited.insert(I->getOperand(1)).second)
666             DFT.push_back(I->getOperand(1));
667           if (Visited.insert(I->getOperand(0)).second)
668             DFT.push_back(I->getOperand(0));
669           continue;
670         }
671 
672         // Try to match the current instruction
673         if (matchInstruction(I, isEQ))
674           // Match succeed, continue the loop
675           continue;
676       }
677 
678       // One element of the sequence of || (or &&) could not be match as a
679       // comparison against the same value as the others.
680       // We allow only one "Extra" case to be checked before the switch
681       if (!Extra) {
682         Extra = V;
683         continue;
684       }
685       // Failed to parse a proper sequence, abort now
686       CompValue = nullptr;
687       break;
688     }
689   }
690 };
691 
692 } // end anonymous namespace
693 
694 static void EraseTerminatorAndDCECond(Instruction *TI,
695                                       MemorySSAUpdater *MSSAU = nullptr) {
696   Instruction *Cond = nullptr;
697   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
698     Cond = dyn_cast<Instruction>(SI->getCondition());
699   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
700     if (BI->isConditional())
701       Cond = dyn_cast<Instruction>(BI->getCondition());
702   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
703     Cond = dyn_cast<Instruction>(IBI->getAddress());
704   }
705 
706   TI->eraseFromParent();
707   if (Cond)
708     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
709 }
710 
711 /// Return true if the specified terminator checks
712 /// to see if a value is equal to constant integer value.
713 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
714   Value *CV = nullptr;
715   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
716     // Do not permit merging of large switch instructions into their
717     // predecessors unless there is only one predecessor.
718     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
719       CV = SI->getCondition();
720   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
721     if (BI->isConditional() && BI->getCondition()->hasOneUse())
722       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
723         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
724           CV = ICI->getOperand(0);
725       }
726 
727   // Unwrap any lossless ptrtoint cast.
728   if (CV) {
729     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
730       Value *Ptr = PTII->getPointerOperand();
731       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
732         CV = Ptr;
733     }
734   }
735   return CV;
736 }
737 
738 /// Given a value comparison instruction,
739 /// decode all of the 'cases' that it represents and return the 'default' block.
740 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
741     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
742   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
743     Cases.reserve(SI->getNumCases());
744     for (auto Case : SI->cases())
745       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
746                                                   Case.getCaseSuccessor()));
747     return SI->getDefaultDest();
748   }
749 
750   BranchInst *BI = cast<BranchInst>(TI);
751   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
752   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
753   Cases.push_back(ValueEqualityComparisonCase(
754       GetConstantInt(ICI->getOperand(1), DL), Succ));
755   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
756 }
757 
758 /// Given a vector of bb/value pairs, remove any entries
759 /// in the list that match the specified block.
760 static void
761 EliminateBlockCases(BasicBlock *BB,
762                     std::vector<ValueEqualityComparisonCase> &Cases) {
763   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
764 }
765 
766 /// Return true if there are any keys in C1 that exist in C2 as well.
767 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
768                           std::vector<ValueEqualityComparisonCase> &C2) {
769   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
770 
771   // Make V1 be smaller than V2.
772   if (V1->size() > V2->size())
773     std::swap(V1, V2);
774 
775   if (V1->empty())
776     return false;
777   if (V1->size() == 1) {
778     // Just scan V2.
779     ConstantInt *TheVal = (*V1)[0].Value;
780     for (unsigned i = 0, e = V2->size(); i != e; ++i)
781       if (TheVal == (*V2)[i].Value)
782         return true;
783   }
784 
785   // Otherwise, just sort both lists and compare element by element.
786   array_pod_sort(V1->begin(), V1->end());
787   array_pod_sort(V2->begin(), V2->end());
788   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
789   while (i1 != e1 && i2 != e2) {
790     if ((*V1)[i1].Value == (*V2)[i2].Value)
791       return true;
792     if ((*V1)[i1].Value < (*V2)[i2].Value)
793       ++i1;
794     else
795       ++i2;
796   }
797   return false;
798 }
799 
800 // Set branch weights on SwitchInst. This sets the metadata if there is at
801 // least one non-zero weight.
802 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
803   // Check that there is at least one non-zero weight. Otherwise, pass
804   // nullptr to setMetadata which will erase the existing metadata.
805   MDNode *N = nullptr;
806   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
807     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
808   SI->setMetadata(LLVMContext::MD_prof, N);
809 }
810 
811 // Similar to the above, but for branch and select instructions that take
812 // exactly 2 weights.
813 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
814                              uint32_t FalseWeight) {
815   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
816   // Check that there is at least one non-zero weight. Otherwise, pass
817   // nullptr to setMetadata which will erase the existing metadata.
818   MDNode *N = nullptr;
819   if (TrueWeight || FalseWeight)
820     N = MDBuilder(I->getParent()->getContext())
821             .createBranchWeights(TrueWeight, FalseWeight);
822   I->setMetadata(LLVMContext::MD_prof, N);
823 }
824 
825 /// If TI is known to be a terminator instruction and its block is known to
826 /// only have a single predecessor block, check to see if that predecessor is
827 /// also a value comparison with the same value, and if that comparison
828 /// determines the outcome of this comparison. If so, simplify TI. This does a
829 /// very limited form of jump threading.
830 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
831     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
832   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
833   if (!PredVal)
834     return false; // Not a value comparison in predecessor.
835 
836   Value *ThisVal = isValueEqualityComparison(TI);
837   assert(ThisVal && "This isn't a value comparison!!");
838   if (ThisVal != PredVal)
839     return false; // Different predicates.
840 
841   // TODO: Preserve branch weight metadata, similarly to how
842   // FoldValueComparisonIntoPredecessors preserves it.
843 
844   // Find out information about when control will move from Pred to TI's block.
845   std::vector<ValueEqualityComparisonCase> PredCases;
846   BasicBlock *PredDef =
847       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
848   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
849 
850   // Find information about how control leaves this block.
851   std::vector<ValueEqualityComparisonCase> ThisCases;
852   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
853   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
854 
855   // If TI's block is the default block from Pred's comparison, potentially
856   // simplify TI based on this knowledge.
857   if (PredDef == TI->getParent()) {
858     // If we are here, we know that the value is none of those cases listed in
859     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
860     // can simplify TI.
861     if (!ValuesOverlap(PredCases, ThisCases))
862       return false;
863 
864     if (isa<BranchInst>(TI)) {
865       // Okay, one of the successors of this condbr is dead.  Convert it to a
866       // uncond br.
867       assert(ThisCases.size() == 1 && "Branch can only have one case!");
868       // Insert the new branch.
869       Instruction *NI = Builder.CreateBr(ThisDef);
870       (void)NI;
871 
872       // Remove PHI node entries for the dead edge.
873       ThisCases[0].Dest->removePredecessor(TI->getParent());
874 
875       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
876                         << "Through successor TI: " << *TI << "Leaving: " << *NI
877                         << "\n");
878 
879       EraseTerminatorAndDCECond(TI);
880       return true;
881     }
882 
883     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
884     // Okay, TI has cases that are statically dead, prune them away.
885     SmallPtrSet<Constant *, 16> DeadCases;
886     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
887       DeadCases.insert(PredCases[i].Value);
888 
889     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
890                       << "Through successor TI: " << *TI);
891 
892     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
893       --i;
894       if (DeadCases.count(i->getCaseValue())) {
895         i->getCaseSuccessor()->removePredecessor(TI->getParent());
896         SI.removeCase(i);
897       }
898     }
899     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
900     return true;
901   }
902 
903   // Otherwise, TI's block must correspond to some matched value.  Find out
904   // which value (or set of values) this is.
905   ConstantInt *TIV = nullptr;
906   BasicBlock *TIBB = TI->getParent();
907   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
908     if (PredCases[i].Dest == TIBB) {
909       if (TIV)
910         return false; // Cannot handle multiple values coming to this block.
911       TIV = PredCases[i].Value;
912     }
913   assert(TIV && "No edge from pred to succ?");
914 
915   // Okay, we found the one constant that our value can be if we get into TI's
916   // BB.  Find out which successor will unconditionally be branched to.
917   BasicBlock *TheRealDest = nullptr;
918   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
919     if (ThisCases[i].Value == TIV) {
920       TheRealDest = ThisCases[i].Dest;
921       break;
922     }
923 
924   // If not handled by any explicit cases, it is handled by the default case.
925   if (!TheRealDest)
926     TheRealDest = ThisDef;
927 
928   // Remove PHI node entries for dead edges.
929   BasicBlock *CheckEdge = TheRealDest;
930   for (BasicBlock *Succ : successors(TIBB))
931     if (Succ != CheckEdge)
932       Succ->removePredecessor(TIBB);
933     else
934       CheckEdge = nullptr;
935 
936   // Insert the new branch.
937   Instruction *NI = Builder.CreateBr(TheRealDest);
938   (void)NI;
939 
940   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
941                     << "Through successor TI: " << *TI << "Leaving: " << *NI
942                     << "\n");
943 
944   EraseTerminatorAndDCECond(TI);
945   return true;
946 }
947 
948 namespace {
949 
950 /// This class implements a stable ordering of constant
951 /// integers that does not depend on their address.  This is important for
952 /// applications that sort ConstantInt's to ensure uniqueness.
953 struct ConstantIntOrdering {
954   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
955     return LHS->getValue().ult(RHS->getValue());
956   }
957 };
958 
959 } // end anonymous namespace
960 
961 static int ConstantIntSortPredicate(ConstantInt *const *P1,
962                                     ConstantInt *const *P2) {
963   const ConstantInt *LHS = *P1;
964   const ConstantInt *RHS = *P2;
965   if (LHS == RHS)
966     return 0;
967   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
968 }
969 
970 static inline bool HasBranchWeights(const Instruction *I) {
971   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
972   if (ProfMD && ProfMD->getOperand(0))
973     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
974       return MDS->getString().equals("branch_weights");
975 
976   return false;
977 }
978 
979 /// Get Weights of a given terminator, the default weight is at the front
980 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
981 /// metadata.
982 static void GetBranchWeights(Instruction *TI,
983                              SmallVectorImpl<uint64_t> &Weights) {
984   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
985   assert(MD);
986   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
987     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
988     Weights.push_back(CI->getValue().getZExtValue());
989   }
990 
991   // If TI is a conditional eq, the default case is the false case,
992   // and the corresponding branch-weight data is at index 2. We swap the
993   // default weight to be the first entry.
994   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
995     assert(Weights.size() == 2);
996     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
997     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
998       std::swap(Weights.front(), Weights.back());
999   }
1000 }
1001 
1002 /// Keep halving the weights until all can fit in uint32_t.
1003 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1004   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1005   if (Max > UINT_MAX) {
1006     unsigned Offset = 32 - countLeadingZeros(Max);
1007     for (uint64_t &I : Weights)
1008       I >>= Offset;
1009   }
1010 }
1011 
1012 /// The specified terminator is a value equality comparison instruction
1013 /// (either a switch or a branch on "X == c").
1014 /// See if any of the predecessors of the terminator block are value comparisons
1015 /// on the same value.  If so, and if safe to do so, fold them together.
1016 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1017                                                          IRBuilder<> &Builder) {
1018   BasicBlock *BB = TI->getParent();
1019   Value *CV = isValueEqualityComparison(TI); // CondVal
1020   assert(CV && "Not a comparison?");
1021   bool Changed = false;
1022 
1023   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1024   while (!Preds.empty()) {
1025     BasicBlock *Pred = Preds.pop_back_val();
1026 
1027     // See if the predecessor is a comparison with the same value.
1028     Instruction *PTI = Pred->getTerminator();
1029     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1030 
1031     if (PCV == CV && TI != PTI) {
1032       SmallSetVector<BasicBlock*, 4> FailBlocks;
1033       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1034         for (auto *Succ : FailBlocks) {
1035           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1036             return false;
1037         }
1038       }
1039 
1040       // Figure out which 'cases' to copy from SI to PSI.
1041       std::vector<ValueEqualityComparisonCase> BBCases;
1042       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1043 
1044       std::vector<ValueEqualityComparisonCase> PredCases;
1045       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1046 
1047       // Based on whether the default edge from PTI goes to BB or not, fill in
1048       // PredCases and PredDefault with the new switch cases we would like to
1049       // build.
1050       SmallVector<BasicBlock *, 8> NewSuccessors;
1051 
1052       // Update the branch weight metadata along the way
1053       SmallVector<uint64_t, 8> Weights;
1054       bool PredHasWeights = HasBranchWeights(PTI);
1055       bool SuccHasWeights = HasBranchWeights(TI);
1056 
1057       if (PredHasWeights) {
1058         GetBranchWeights(PTI, Weights);
1059         // branch-weight metadata is inconsistent here.
1060         if (Weights.size() != 1 + PredCases.size())
1061           PredHasWeights = SuccHasWeights = false;
1062       } else if (SuccHasWeights)
1063         // If there are no predecessor weights but there are successor weights,
1064         // populate Weights with 1, which will later be scaled to the sum of
1065         // successor's weights
1066         Weights.assign(1 + PredCases.size(), 1);
1067 
1068       SmallVector<uint64_t, 8> SuccWeights;
1069       if (SuccHasWeights) {
1070         GetBranchWeights(TI, SuccWeights);
1071         // branch-weight metadata is inconsistent here.
1072         if (SuccWeights.size() != 1 + BBCases.size())
1073           PredHasWeights = SuccHasWeights = false;
1074       } else if (PredHasWeights)
1075         SuccWeights.assign(1 + BBCases.size(), 1);
1076 
1077       if (PredDefault == BB) {
1078         // If this is the default destination from PTI, only the edges in TI
1079         // that don't occur in PTI, or that branch to BB will be activated.
1080         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1081         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1082           if (PredCases[i].Dest != BB)
1083             PTIHandled.insert(PredCases[i].Value);
1084           else {
1085             // The default destination is BB, we don't need explicit targets.
1086             std::swap(PredCases[i], PredCases.back());
1087 
1088             if (PredHasWeights || SuccHasWeights) {
1089               // Increase weight for the default case.
1090               Weights[0] += Weights[i + 1];
1091               std::swap(Weights[i + 1], Weights.back());
1092               Weights.pop_back();
1093             }
1094 
1095             PredCases.pop_back();
1096             --i;
1097             --e;
1098           }
1099 
1100         // Reconstruct the new switch statement we will be building.
1101         if (PredDefault != BBDefault) {
1102           PredDefault->removePredecessor(Pred);
1103           PredDefault = BBDefault;
1104           NewSuccessors.push_back(BBDefault);
1105         }
1106 
1107         unsigned CasesFromPred = Weights.size();
1108         uint64_t ValidTotalSuccWeight = 0;
1109         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1110           if (!PTIHandled.count(BBCases[i].Value) &&
1111               BBCases[i].Dest != BBDefault) {
1112             PredCases.push_back(BBCases[i]);
1113             NewSuccessors.push_back(BBCases[i].Dest);
1114             if (SuccHasWeights || PredHasWeights) {
1115               // The default weight is at index 0, so weight for the ith case
1116               // should be at index i+1. Scale the cases from successor by
1117               // PredDefaultWeight (Weights[0]).
1118               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1119               ValidTotalSuccWeight += SuccWeights[i + 1];
1120             }
1121           }
1122 
1123         if (SuccHasWeights || PredHasWeights) {
1124           ValidTotalSuccWeight += SuccWeights[0];
1125           // Scale the cases from predecessor by ValidTotalSuccWeight.
1126           for (unsigned i = 1; i < CasesFromPred; ++i)
1127             Weights[i] *= ValidTotalSuccWeight;
1128           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1129           Weights[0] *= SuccWeights[0];
1130         }
1131       } else {
1132         // If this is not the default destination from PSI, only the edges
1133         // in SI that occur in PSI with a destination of BB will be
1134         // activated.
1135         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1136         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1137         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1138           if (PredCases[i].Dest == BB) {
1139             PTIHandled.insert(PredCases[i].Value);
1140 
1141             if (PredHasWeights || SuccHasWeights) {
1142               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1143               std::swap(Weights[i + 1], Weights.back());
1144               Weights.pop_back();
1145             }
1146 
1147             std::swap(PredCases[i], PredCases.back());
1148             PredCases.pop_back();
1149             --i;
1150             --e;
1151           }
1152 
1153         // Okay, now we know which constants were sent to BB from the
1154         // predecessor.  Figure out where they will all go now.
1155         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1156           if (PTIHandled.count(BBCases[i].Value)) {
1157             // If this is one we are capable of getting...
1158             if (PredHasWeights || SuccHasWeights)
1159               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1160             PredCases.push_back(BBCases[i]);
1161             NewSuccessors.push_back(BBCases[i].Dest);
1162             PTIHandled.erase(
1163                 BBCases[i].Value); // This constant is taken care of
1164           }
1165 
1166         // If there are any constants vectored to BB that TI doesn't handle,
1167         // they must go to the default destination of TI.
1168         for (ConstantInt *I : PTIHandled) {
1169           if (PredHasWeights || SuccHasWeights)
1170             Weights.push_back(WeightsForHandled[I]);
1171           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1172           NewSuccessors.push_back(BBDefault);
1173         }
1174       }
1175 
1176       // Okay, at this point, we know which new successor Pred will get.  Make
1177       // sure we update the number of entries in the PHI nodes for these
1178       // successors.
1179       for (BasicBlock *NewSuccessor : NewSuccessors)
1180         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1181 
1182       Builder.SetInsertPoint(PTI);
1183       // Convert pointer to int before we switch.
1184       if (CV->getType()->isPointerTy()) {
1185         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1186                                     "magicptr");
1187       }
1188 
1189       // Now that the successors are updated, create the new Switch instruction.
1190       SwitchInst *NewSI =
1191           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1192       NewSI->setDebugLoc(PTI->getDebugLoc());
1193       for (ValueEqualityComparisonCase &V : PredCases)
1194         NewSI->addCase(V.Value, V.Dest);
1195 
1196       if (PredHasWeights || SuccHasWeights) {
1197         // Halve the weights if any of them cannot fit in an uint32_t
1198         FitWeights(Weights);
1199 
1200         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1201 
1202         setBranchWeights(NewSI, MDWeights);
1203       }
1204 
1205       EraseTerminatorAndDCECond(PTI);
1206 
1207       // Okay, last check.  If BB is still a successor of PSI, then we must
1208       // have an infinite loop case.  If so, add an infinitely looping block
1209       // to handle the case to preserve the behavior of the code.
1210       BasicBlock *InfLoopBlock = nullptr;
1211       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1212         if (NewSI->getSuccessor(i) == BB) {
1213           if (!InfLoopBlock) {
1214             // Insert it at the end of the function, because it's either code,
1215             // or it won't matter if it's hot. :)
1216             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1217                                               BB->getParent());
1218             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1219           }
1220           NewSI->setSuccessor(i, InfLoopBlock);
1221         }
1222 
1223       Changed = true;
1224     }
1225   }
1226   return Changed;
1227 }
1228 
1229 // If we would need to insert a select that uses the value of this invoke
1230 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1231 // can't hoist the invoke, as there is nowhere to put the select in this case.
1232 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1233                                 Instruction *I1, Instruction *I2) {
1234   for (BasicBlock *Succ : successors(BB1)) {
1235     for (const PHINode &PN : Succ->phis()) {
1236       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1237       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1238       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1239         return false;
1240       }
1241     }
1242   }
1243   return true;
1244 }
1245 
1246 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1247 
1248 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1249 /// in the two blocks up into the branch block. The caller of this function
1250 /// guarantees that BI's block dominates BB1 and BB2.
1251 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1252                                            const TargetTransformInfo &TTI) {
1253   // This does very trivial matching, with limited scanning, to find identical
1254   // instructions in the two blocks.  In particular, we don't want to get into
1255   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1256   // such, we currently just scan for obviously identical instructions in an
1257   // identical order.
1258   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1259   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1260 
1261   BasicBlock::iterator BB1_Itr = BB1->begin();
1262   BasicBlock::iterator BB2_Itr = BB2->begin();
1263 
1264   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1265   // Skip debug info if it is not identical.
1266   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1267   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1268   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1269     while (isa<DbgInfoIntrinsic>(I1))
1270       I1 = &*BB1_Itr++;
1271     while (isa<DbgInfoIntrinsic>(I2))
1272       I2 = &*BB2_Itr++;
1273   }
1274   // FIXME: Can we define a safety predicate for CallBr?
1275   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1276       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1277       isa<CallBrInst>(I1))
1278     return false;
1279 
1280   BasicBlock *BIParent = BI->getParent();
1281 
1282   bool Changed = false;
1283   do {
1284     // If we are hoisting the terminator instruction, don't move one (making a
1285     // broken BB), instead clone it, and remove BI.
1286     if (I1->isTerminator())
1287       goto HoistTerminator;
1288 
1289     // If we're going to hoist a call, make sure that the two instructions we're
1290     // commoning/hoisting are both marked with musttail, or neither of them is
1291     // marked as such. Otherwise, we might end up in a situation where we hoist
1292     // from a block where the terminator is a `ret` to a block where the terminator
1293     // is a `br`, and `musttail` calls expect to be followed by a return.
1294     auto *C1 = dyn_cast<CallInst>(I1);
1295     auto *C2 = dyn_cast<CallInst>(I2);
1296     if (C1 && C2)
1297       if (C1->isMustTailCall() != C2->isMustTailCall())
1298         return Changed;
1299 
1300     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1301       return Changed;
1302 
1303     // If any of the two call sites has nomerge attribute, stop hoisting.
1304     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1305       if (CB1->cannotMerge())
1306         return Changed;
1307     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1308       if (CB2->cannotMerge())
1309         return Changed;
1310 
1311     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1312       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1313       // The debug location is an integral part of a debug info intrinsic
1314       // and can't be separated from it or replaced.  Instead of attempting
1315       // to merge locations, simply hoist both copies of the intrinsic.
1316       BIParent->getInstList().splice(BI->getIterator(),
1317                                      BB1->getInstList(), I1);
1318       BIParent->getInstList().splice(BI->getIterator(),
1319                                      BB2->getInstList(), I2);
1320       Changed = true;
1321     } else {
1322       // For a normal instruction, we just move one to right before the branch,
1323       // then replace all uses of the other with the first.  Finally, we remove
1324       // the now redundant second instruction.
1325       BIParent->getInstList().splice(BI->getIterator(),
1326                                      BB1->getInstList(), I1);
1327       if (!I2->use_empty())
1328         I2->replaceAllUsesWith(I1);
1329       I1->andIRFlags(I2);
1330       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1331                              LLVMContext::MD_range,
1332                              LLVMContext::MD_fpmath,
1333                              LLVMContext::MD_invariant_load,
1334                              LLVMContext::MD_nonnull,
1335                              LLVMContext::MD_invariant_group,
1336                              LLVMContext::MD_align,
1337                              LLVMContext::MD_dereferenceable,
1338                              LLVMContext::MD_dereferenceable_or_null,
1339                              LLVMContext::MD_mem_parallel_loop_access,
1340                              LLVMContext::MD_access_group,
1341                              LLVMContext::MD_preserve_access_index};
1342       combineMetadata(I1, I2, KnownIDs, true);
1343 
1344       // I1 and I2 are being combined into a single instruction.  Its debug
1345       // location is the merged locations of the original instructions.
1346       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1347 
1348       I2->eraseFromParent();
1349       Changed = true;
1350     }
1351 
1352     I1 = &*BB1_Itr++;
1353     I2 = &*BB2_Itr++;
1354     // Skip debug info if it is not identical.
1355     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1356     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1357     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1358       while (isa<DbgInfoIntrinsic>(I1))
1359         I1 = &*BB1_Itr++;
1360       while (isa<DbgInfoIntrinsic>(I2))
1361         I2 = &*BB2_Itr++;
1362     }
1363   } while (I1->isIdenticalToWhenDefined(I2));
1364 
1365   return true;
1366 
1367 HoistTerminator:
1368   // It may not be possible to hoist an invoke.
1369   // FIXME: Can we define a safety predicate for CallBr?
1370   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1371     return Changed;
1372 
1373   // TODO: callbr hoisting currently disabled pending further study.
1374   if (isa<CallBrInst>(I1))
1375     return Changed;
1376 
1377   for (BasicBlock *Succ : successors(BB1)) {
1378     for (PHINode &PN : Succ->phis()) {
1379       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1380       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1381       if (BB1V == BB2V)
1382         continue;
1383 
1384       // Check for passingValueIsAlwaysUndefined here because we would rather
1385       // eliminate undefined control flow then converting it to a select.
1386       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1387           passingValueIsAlwaysUndefined(BB2V, &PN))
1388         return Changed;
1389 
1390       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1391         return Changed;
1392       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1393         return Changed;
1394     }
1395   }
1396 
1397   // Okay, it is safe to hoist the terminator.
1398   Instruction *NT = I1->clone();
1399   BIParent->getInstList().insert(BI->getIterator(), NT);
1400   if (!NT->getType()->isVoidTy()) {
1401     I1->replaceAllUsesWith(NT);
1402     I2->replaceAllUsesWith(NT);
1403     NT->takeName(I1);
1404   }
1405 
1406   // Ensure terminator gets a debug location, even an unknown one, in case
1407   // it involves inlinable calls.
1408   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1409 
1410   // PHIs created below will adopt NT's merged DebugLoc.
1411   IRBuilder<NoFolder> Builder(NT);
1412 
1413   // Hoisting one of the terminators from our successor is a great thing.
1414   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1415   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1416   // nodes, so we insert select instruction to compute the final result.
1417   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1418   for (BasicBlock *Succ : successors(BB1)) {
1419     for (PHINode &PN : Succ->phis()) {
1420       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1421       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1422       if (BB1V == BB2V)
1423         continue;
1424 
1425       // These values do not agree.  Insert a select instruction before NT
1426       // that determines the right value.
1427       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1428       if (!SI) {
1429         // Propagate fast-math-flags from phi node to its replacement select.
1430         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1431         if (isa<FPMathOperator>(PN))
1432           Builder.setFastMathFlags(PN.getFastMathFlags());
1433 
1434         SI = cast<SelectInst>(
1435             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1436                                  BB1V->getName() + "." + BB2V->getName(), BI));
1437       }
1438 
1439       // Make the PHI node use the select for all incoming values for BB1/BB2
1440       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1441         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1442           PN.setIncomingValue(i, SI);
1443     }
1444   }
1445 
1446   // Update any PHI nodes in our new successors.
1447   for (BasicBlock *Succ : successors(BB1))
1448     AddPredecessorToBlock(Succ, BIParent, BB1);
1449 
1450   EraseTerminatorAndDCECond(BI);
1451   return true;
1452 }
1453 
1454 // Check lifetime markers.
1455 static bool isLifeTimeMarker(const Instruction *I) {
1456   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1457     switch (II->getIntrinsicID()) {
1458     default:
1459       break;
1460     case Intrinsic::lifetime_start:
1461     case Intrinsic::lifetime_end:
1462       return true;
1463     }
1464   }
1465   return false;
1466 }
1467 
1468 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1469 // into variables.
1470 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1471                                                 int OpIdx) {
1472   return !isa<IntrinsicInst>(I);
1473 }
1474 
1475 // All instructions in Insts belong to different blocks that all unconditionally
1476 // branch to a common successor. Analyze each instruction and return true if it
1477 // would be possible to sink them into their successor, creating one common
1478 // instruction instead. For every value that would be required to be provided by
1479 // PHI node (because an operand varies in each input block), add to PHIOperands.
1480 static bool canSinkInstructions(
1481     ArrayRef<Instruction *> Insts,
1482     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1483   // Prune out obviously bad instructions to move. Each instruction must have
1484   // exactly zero or one use, and we check later that use is by a single, common
1485   // PHI instruction in the successor.
1486   bool HasUse = !Insts.front()->user_empty();
1487   for (auto *I : Insts) {
1488     // These instructions may change or break semantics if moved.
1489     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1490         I->getType()->isTokenTy())
1491       return false;
1492 
1493     // Conservatively return false if I is an inline-asm instruction. Sinking
1494     // and merging inline-asm instructions can potentially create arguments
1495     // that cannot satisfy the inline-asm constraints.
1496     // If the instruction has nomerge attribute, return false.
1497     if (const auto *C = dyn_cast<CallBase>(I))
1498       if (C->isInlineAsm() || C->cannotMerge())
1499         return false;
1500 
1501     // Each instruction must have zero or one use.
1502     if (HasUse && !I->hasOneUse())
1503       return false;
1504     if (!HasUse && !I->user_empty())
1505       return false;
1506   }
1507 
1508   const Instruction *I0 = Insts.front();
1509   for (auto *I : Insts)
1510     if (!I->isSameOperationAs(I0))
1511       return false;
1512 
1513   // All instructions in Insts are known to be the same opcode. If they have a
1514   // use, check that the only user is a PHI or in the same block as the
1515   // instruction, because if a user is in the same block as an instruction we're
1516   // contemplating sinking, it must already be determined to be sinkable.
1517   if (HasUse) {
1518     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1519     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1520     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1521           auto *U = cast<Instruction>(*I->user_begin());
1522           return (PNUse &&
1523                   PNUse->getParent() == Succ &&
1524                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1525                  U->getParent() == I->getParent();
1526         }))
1527       return false;
1528   }
1529 
1530   // Because SROA can't handle speculating stores of selects, try not to sink
1531   // loads, stores or lifetime markers of allocas when we'd have to create a
1532   // PHI for the address operand. Also, because it is likely that loads or
1533   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1534   // them.
1535   // This can cause code churn which can have unintended consequences down
1536   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1537   // FIXME: This is a workaround for a deficiency in SROA - see
1538   // https://llvm.org/bugs/show_bug.cgi?id=30188
1539   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1540         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1541       }))
1542     return false;
1543   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1544         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1545       }))
1546     return false;
1547   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1548         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1549       }))
1550     return false;
1551 
1552   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1553     Value *Op = I0->getOperand(OI);
1554     if (Op->getType()->isTokenTy())
1555       // Don't touch any operand of token type.
1556       return false;
1557 
1558     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1559       assert(I->getNumOperands() == I0->getNumOperands());
1560       return I->getOperand(OI) == I0->getOperand(OI);
1561     };
1562     if (!all_of(Insts, SameAsI0)) {
1563       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1564           !canReplaceOperandWithVariable(I0, OI))
1565         // We can't create a PHI from this GEP.
1566         return false;
1567       // Don't create indirect calls! The called value is the final operand.
1568       if (isa<CallBase>(I0) && OI == OE - 1) {
1569         // FIXME: if the call was *already* indirect, we should do this.
1570         return false;
1571       }
1572       for (auto *I : Insts)
1573         PHIOperands[I].push_back(I->getOperand(OI));
1574     }
1575   }
1576   return true;
1577 }
1578 
1579 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1580 // instruction of every block in Blocks to their common successor, commoning
1581 // into one instruction.
1582 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1583   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1584 
1585   // canSinkLastInstruction returning true guarantees that every block has at
1586   // least one non-terminator instruction.
1587   SmallVector<Instruction*,4> Insts;
1588   for (auto *BB : Blocks) {
1589     Instruction *I = BB->getTerminator();
1590     do {
1591       I = I->getPrevNode();
1592     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1593     if (!isa<DbgInfoIntrinsic>(I))
1594       Insts.push_back(I);
1595   }
1596 
1597   // The only checking we need to do now is that all users of all instructions
1598   // are the same PHI node. canSinkLastInstruction should have checked this but
1599   // it is slightly over-aggressive - it gets confused by commutative instructions
1600   // so double-check it here.
1601   Instruction *I0 = Insts.front();
1602   if (!I0->user_empty()) {
1603     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1604     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1605           auto *U = cast<Instruction>(*I->user_begin());
1606           return U == PNUse;
1607         }))
1608       return false;
1609   }
1610 
1611   // We don't need to do any more checking here; canSinkLastInstruction should
1612   // have done it all for us.
1613   SmallVector<Value*, 4> NewOperands;
1614   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1615     // This check is different to that in canSinkLastInstruction. There, we
1616     // cared about the global view once simplifycfg (and instcombine) have
1617     // completed - it takes into account PHIs that become trivially
1618     // simplifiable.  However here we need a more local view; if an operand
1619     // differs we create a PHI and rely on instcombine to clean up the very
1620     // small mess we may make.
1621     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1622       return I->getOperand(O) != I0->getOperand(O);
1623     });
1624     if (!NeedPHI) {
1625       NewOperands.push_back(I0->getOperand(O));
1626       continue;
1627     }
1628 
1629     // Create a new PHI in the successor block and populate it.
1630     auto *Op = I0->getOperand(O);
1631     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1632     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1633                                Op->getName() + ".sink", &BBEnd->front());
1634     for (auto *I : Insts)
1635       PN->addIncoming(I->getOperand(O), I->getParent());
1636     NewOperands.push_back(PN);
1637   }
1638 
1639   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1640   // and move it to the start of the successor block.
1641   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1642     I0->getOperandUse(O).set(NewOperands[O]);
1643   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1644 
1645   // Update metadata and IR flags, and merge debug locations.
1646   for (auto *I : Insts)
1647     if (I != I0) {
1648       // The debug location for the "common" instruction is the merged locations
1649       // of all the commoned instructions.  We start with the original location
1650       // of the "common" instruction and iteratively merge each location in the
1651       // loop below.
1652       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1653       // However, as N-way merge for CallInst is rare, so we use simplified API
1654       // instead of using complex API for N-way merge.
1655       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1656       combineMetadataForCSE(I0, I, true);
1657       I0->andIRFlags(I);
1658     }
1659 
1660   if (!I0->user_empty()) {
1661     // canSinkLastInstruction checked that all instructions were used by
1662     // one and only one PHI node. Find that now, RAUW it to our common
1663     // instruction and nuke it.
1664     auto *PN = cast<PHINode>(*I0->user_begin());
1665     PN->replaceAllUsesWith(I0);
1666     PN->eraseFromParent();
1667   }
1668 
1669   // Finally nuke all instructions apart from the common instruction.
1670   for (auto *I : Insts)
1671     if (I != I0)
1672       I->eraseFromParent();
1673 
1674   return true;
1675 }
1676 
1677 namespace {
1678 
1679   // LockstepReverseIterator - Iterates through instructions
1680   // in a set of blocks in reverse order from the first non-terminator.
1681   // For example (assume all blocks have size n):
1682   //   LockstepReverseIterator I([B1, B2, B3]);
1683   //   *I-- = [B1[n], B2[n], B3[n]];
1684   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1685   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1686   //   ...
1687   class LockstepReverseIterator {
1688     ArrayRef<BasicBlock*> Blocks;
1689     SmallVector<Instruction*,4> Insts;
1690     bool Fail;
1691 
1692   public:
1693     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1694       reset();
1695     }
1696 
1697     void reset() {
1698       Fail = false;
1699       Insts.clear();
1700       for (auto *BB : Blocks) {
1701         Instruction *Inst = BB->getTerminator();
1702         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1703           Inst = Inst->getPrevNode();
1704         if (!Inst) {
1705           // Block wasn't big enough.
1706           Fail = true;
1707           return;
1708         }
1709         Insts.push_back(Inst);
1710       }
1711     }
1712 
1713     bool isValid() const {
1714       return !Fail;
1715     }
1716 
1717     void operator--() {
1718       if (Fail)
1719         return;
1720       for (auto *&Inst : Insts) {
1721         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1722           Inst = Inst->getPrevNode();
1723         // Already at beginning of block.
1724         if (!Inst) {
1725           Fail = true;
1726           return;
1727         }
1728       }
1729     }
1730 
1731     ArrayRef<Instruction*> operator * () const {
1732       return Insts;
1733     }
1734   };
1735 
1736 } // end anonymous namespace
1737 
1738 /// Check whether BB's predecessors end with unconditional branches. If it is
1739 /// true, sink any common code from the predecessors to BB.
1740 /// We also allow one predecessor to end with conditional branch (but no more
1741 /// than one).
1742 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1743   // We support two situations:
1744   //   (1) all incoming arcs are unconditional
1745   //   (2) one incoming arc is conditional
1746   //
1747   // (2) is very common in switch defaults and
1748   // else-if patterns;
1749   //
1750   //   if (a) f(1);
1751   //   else if (b) f(2);
1752   //
1753   // produces:
1754   //
1755   //       [if]
1756   //      /    \
1757   //    [f(1)] [if]
1758   //      |     | \
1759   //      |     |  |
1760   //      |  [f(2)]|
1761   //       \    | /
1762   //        [ end ]
1763   //
1764   // [end] has two unconditional predecessor arcs and one conditional. The
1765   // conditional refers to the implicit empty 'else' arc. This conditional
1766   // arc can also be caused by an empty default block in a switch.
1767   //
1768   // In this case, we attempt to sink code from all *unconditional* arcs.
1769   // If we can sink instructions from these arcs (determined during the scan
1770   // phase below) we insert a common successor for all unconditional arcs and
1771   // connect that to [end], to enable sinking:
1772   //
1773   //       [if]
1774   //      /    \
1775   //    [x(1)] [if]
1776   //      |     | \
1777   //      |     |  \
1778   //      |  [x(2)] |
1779   //       \   /    |
1780   //   [sink.split] |
1781   //         \     /
1782   //         [ end ]
1783   //
1784   SmallVector<BasicBlock*,4> UnconditionalPreds;
1785   Instruction *Cond = nullptr;
1786   for (auto *B : predecessors(BB)) {
1787     auto *T = B->getTerminator();
1788     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1789       UnconditionalPreds.push_back(B);
1790     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1791       Cond = T;
1792     else
1793       return false;
1794   }
1795   if (UnconditionalPreds.size() < 2)
1796     return false;
1797 
1798   bool Changed = false;
1799   // We take a two-step approach to tail sinking. First we scan from the end of
1800   // each block upwards in lockstep. If the n'th instruction from the end of each
1801   // block can be sunk, those instructions are added to ValuesToSink and we
1802   // carry on. If we can sink an instruction but need to PHI-merge some operands
1803   // (because they're not identical in each instruction) we add these to
1804   // PHIOperands.
1805   unsigned ScanIdx = 0;
1806   SmallPtrSet<Value*,4> InstructionsToSink;
1807   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1808   LockstepReverseIterator LRI(UnconditionalPreds);
1809   while (LRI.isValid() &&
1810          canSinkInstructions(*LRI, PHIOperands)) {
1811     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1812                       << "\n");
1813     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1814     ++ScanIdx;
1815     --LRI;
1816   }
1817 
1818   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1819     unsigned NumPHIdValues = 0;
1820     for (auto *I : *LRI)
1821       for (auto *V : PHIOperands[I])
1822         if (InstructionsToSink.count(V) == 0)
1823           ++NumPHIdValues;
1824     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1825     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1826     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1827         NumPHIInsts++;
1828 
1829     return NumPHIInsts <= 1;
1830   };
1831 
1832   if (ScanIdx > 0 && Cond) {
1833     // Check if we would actually sink anything first! This mutates the CFG and
1834     // adds an extra block. The goal in doing this is to allow instructions that
1835     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1836     // (such as trunc, add) can be sunk and predicated already. So we check that
1837     // we're going to sink at least one non-speculatable instruction.
1838     LRI.reset();
1839     unsigned Idx = 0;
1840     bool Profitable = false;
1841     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1842       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1843         Profitable = true;
1844         break;
1845       }
1846       --LRI;
1847       ++Idx;
1848     }
1849     if (!Profitable)
1850       return false;
1851 
1852     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1853     // We have a conditional edge and we're going to sink some instructions.
1854     // Insert a new block postdominating all blocks we're going to sink from.
1855     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1856       // Edges couldn't be split.
1857       return false;
1858     Changed = true;
1859   }
1860 
1861   // Now that we've analyzed all potential sinking candidates, perform the
1862   // actual sink. We iteratively sink the last non-terminator of the source
1863   // blocks into their common successor unless doing so would require too
1864   // many PHI instructions to be generated (currently only one PHI is allowed
1865   // per sunk instruction).
1866   //
1867   // We can use InstructionsToSink to discount values needing PHI-merging that will
1868   // actually be sunk in a later iteration. This allows us to be more
1869   // aggressive in what we sink. This does allow a false positive where we
1870   // sink presuming a later value will also be sunk, but stop half way through
1871   // and never actually sink it which means we produce more PHIs than intended.
1872   // This is unlikely in practice though.
1873   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1874     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1875                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1876                       << "\n");
1877 
1878     // Because we've sunk every instruction in turn, the current instruction to
1879     // sink is always at index 0.
1880     LRI.reset();
1881     if (!ProfitableToSinkInstruction(LRI)) {
1882       // Too many PHIs would be created.
1883       LLVM_DEBUG(
1884           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1885       break;
1886     }
1887 
1888     if (!sinkLastInstruction(UnconditionalPreds))
1889       return Changed;
1890     NumSinkCommons++;
1891     Changed = true;
1892   }
1893   return Changed;
1894 }
1895 
1896 /// Determine if we can hoist sink a sole store instruction out of a
1897 /// conditional block.
1898 ///
1899 /// We are looking for code like the following:
1900 ///   BrBB:
1901 ///     store i32 %add, i32* %arrayidx2
1902 ///     ... // No other stores or function calls (we could be calling a memory
1903 ///     ... // function).
1904 ///     %cmp = icmp ult %x, %y
1905 ///     br i1 %cmp, label %EndBB, label %ThenBB
1906 ///   ThenBB:
1907 ///     store i32 %add5, i32* %arrayidx2
1908 ///     br label EndBB
1909 ///   EndBB:
1910 ///     ...
1911 ///   We are going to transform this into:
1912 ///   BrBB:
1913 ///     store i32 %add, i32* %arrayidx2
1914 ///     ... //
1915 ///     %cmp = icmp ult %x, %y
1916 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1917 ///     store i32 %add.add5, i32* %arrayidx2
1918 ///     ...
1919 ///
1920 /// \return The pointer to the value of the previous store if the store can be
1921 ///         hoisted into the predecessor block. 0 otherwise.
1922 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1923                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1924   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1925   if (!StoreToHoist)
1926     return nullptr;
1927 
1928   // Volatile or atomic.
1929   if (!StoreToHoist->isSimple())
1930     return nullptr;
1931 
1932   Value *StorePtr = StoreToHoist->getPointerOperand();
1933 
1934   // Look for a store to the same pointer in BrBB.
1935   unsigned MaxNumInstToLookAt = 9;
1936   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1937     if (!MaxNumInstToLookAt)
1938       break;
1939     --MaxNumInstToLookAt;
1940 
1941     // Could be calling an instruction that affects memory like free().
1942     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1943       return nullptr;
1944 
1945     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1946       // Found the previous store make sure it stores to the same location.
1947       if (SI->getPointerOperand() == StorePtr)
1948         // Found the previous store, return its value operand.
1949         return SI->getValueOperand();
1950       return nullptr; // Unknown store.
1951     }
1952   }
1953 
1954   return nullptr;
1955 }
1956 
1957 /// Speculate a conditional basic block flattening the CFG.
1958 ///
1959 /// Note that this is a very risky transform currently. Speculating
1960 /// instructions like this is most often not desirable. Instead, there is an MI
1961 /// pass which can do it with full awareness of the resource constraints.
1962 /// However, some cases are "obvious" and we should do directly. An example of
1963 /// this is speculating a single, reasonably cheap instruction.
1964 ///
1965 /// There is only one distinct advantage to flattening the CFG at the IR level:
1966 /// it makes very common but simplistic optimizations such as are common in
1967 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1968 /// modeling their effects with easier to reason about SSA value graphs.
1969 ///
1970 ///
1971 /// An illustration of this transform is turning this IR:
1972 /// \code
1973 ///   BB:
1974 ///     %cmp = icmp ult %x, %y
1975 ///     br i1 %cmp, label %EndBB, label %ThenBB
1976 ///   ThenBB:
1977 ///     %sub = sub %x, %y
1978 ///     br label BB2
1979 ///   EndBB:
1980 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1981 ///     ...
1982 /// \endcode
1983 ///
1984 /// Into this IR:
1985 /// \code
1986 ///   BB:
1987 ///     %cmp = icmp ult %x, %y
1988 ///     %sub = sub %x, %y
1989 ///     %cond = select i1 %cmp, 0, %sub
1990 ///     ...
1991 /// \endcode
1992 ///
1993 /// \returns true if the conditional block is removed.
1994 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1995                                             const TargetTransformInfo &TTI) {
1996   // Be conservative for now. FP select instruction can often be expensive.
1997   Value *BrCond = BI->getCondition();
1998   if (isa<FCmpInst>(BrCond))
1999     return false;
2000 
2001   BasicBlock *BB = BI->getParent();
2002   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2003 
2004   // If ThenBB is actually on the false edge of the conditional branch, remember
2005   // to swap the select operands later.
2006   bool Invert = false;
2007   if (ThenBB != BI->getSuccessor(0)) {
2008     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2009     Invert = true;
2010   }
2011   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2012 
2013   // Keep a count of how many times instructions are used within ThenBB when
2014   // they are candidates for sinking into ThenBB. Specifically:
2015   // - They are defined in BB, and
2016   // - They have no side effects, and
2017   // - All of their uses are in ThenBB.
2018   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2019 
2020   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2021 
2022   unsigned SpeculatedInstructions = 0;
2023   Value *SpeculatedStoreValue = nullptr;
2024   StoreInst *SpeculatedStore = nullptr;
2025   for (BasicBlock::iterator BBI = ThenBB->begin(),
2026                             BBE = std::prev(ThenBB->end());
2027        BBI != BBE; ++BBI) {
2028     Instruction *I = &*BBI;
2029     // Skip debug info.
2030     if (isa<DbgInfoIntrinsic>(I)) {
2031       SpeculatedDbgIntrinsics.push_back(I);
2032       continue;
2033     }
2034 
2035     // Only speculatively execute a single instruction (not counting the
2036     // terminator) for now.
2037     ++SpeculatedInstructions;
2038     if (SpeculatedInstructions > 1)
2039       return false;
2040 
2041     // Don't hoist the instruction if it's unsafe or expensive.
2042     if (!isSafeToSpeculativelyExecute(I) &&
2043         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2044                                   I, BB, ThenBB, EndBB))))
2045       return false;
2046     if (!SpeculatedStoreValue &&
2047         ComputeSpeculationCost(I, TTI) >
2048             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2049       return false;
2050 
2051     // Store the store speculation candidate.
2052     if (SpeculatedStoreValue)
2053       SpeculatedStore = cast<StoreInst>(I);
2054 
2055     // Do not hoist the instruction if any of its operands are defined but not
2056     // used in BB. The transformation will prevent the operand from
2057     // being sunk into the use block.
2058     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2059       Instruction *OpI = dyn_cast<Instruction>(*i);
2060       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2061         continue; // Not a candidate for sinking.
2062 
2063       ++SinkCandidateUseCounts[OpI];
2064     }
2065   }
2066 
2067   // Consider any sink candidates which are only used in ThenBB as costs for
2068   // speculation. Note, while we iterate over a DenseMap here, we are summing
2069   // and so iteration order isn't significant.
2070   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2071            I = SinkCandidateUseCounts.begin(),
2072            E = SinkCandidateUseCounts.end();
2073        I != E; ++I)
2074     if (I->first->hasNUses(I->second)) {
2075       ++SpeculatedInstructions;
2076       if (SpeculatedInstructions > 1)
2077         return false;
2078     }
2079 
2080   // Check that the PHI nodes can be converted to selects.
2081   bool HaveRewritablePHIs = false;
2082   for (PHINode &PN : EndBB->phis()) {
2083     Value *OrigV = PN.getIncomingValueForBlock(BB);
2084     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2085 
2086     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2087     // Skip PHIs which are trivial.
2088     if (ThenV == OrigV)
2089       continue;
2090 
2091     // Don't convert to selects if we could remove undefined behavior instead.
2092     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2093         passingValueIsAlwaysUndefined(ThenV, &PN))
2094       return false;
2095 
2096     HaveRewritablePHIs = true;
2097     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2098     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2099     if (!OrigCE && !ThenCE)
2100       continue; // Known safe and cheap.
2101 
2102     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2103         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2104       return false;
2105     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2106     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2107     unsigned MaxCost =
2108         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2109     if (OrigCost + ThenCost > MaxCost)
2110       return false;
2111 
2112     // Account for the cost of an unfolded ConstantExpr which could end up
2113     // getting expanded into Instructions.
2114     // FIXME: This doesn't account for how many operations are combined in the
2115     // constant expression.
2116     ++SpeculatedInstructions;
2117     if (SpeculatedInstructions > 1)
2118       return false;
2119   }
2120 
2121   // If there are no PHIs to process, bail early. This helps ensure idempotence
2122   // as well.
2123   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2124     return false;
2125 
2126   // If we get here, we can hoist the instruction and if-convert.
2127   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2128 
2129   // Insert a select of the value of the speculated store.
2130   if (SpeculatedStoreValue) {
2131     IRBuilder<NoFolder> Builder(BI);
2132     Value *TrueV = SpeculatedStore->getValueOperand();
2133     Value *FalseV = SpeculatedStoreValue;
2134     if (Invert)
2135       std::swap(TrueV, FalseV);
2136     Value *S = Builder.CreateSelect(
2137         BrCond, TrueV, FalseV, "spec.store.select", BI);
2138     SpeculatedStore->setOperand(0, S);
2139     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2140                                          SpeculatedStore->getDebugLoc());
2141   }
2142 
2143   // Metadata can be dependent on the condition we are hoisting above.
2144   // Conservatively strip all metadata on the instruction.
2145   for (auto &I : *ThenBB)
2146     I.dropUnknownNonDebugMetadata();
2147 
2148   // Hoist the instructions.
2149   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2150                            ThenBB->begin(), std::prev(ThenBB->end()));
2151 
2152   // Insert selects and rewrite the PHI operands.
2153   IRBuilder<NoFolder> Builder(BI);
2154   for (PHINode &PN : EndBB->phis()) {
2155     unsigned OrigI = PN.getBasicBlockIndex(BB);
2156     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2157     Value *OrigV = PN.getIncomingValue(OrigI);
2158     Value *ThenV = PN.getIncomingValue(ThenI);
2159 
2160     // Skip PHIs which are trivial.
2161     if (OrigV == ThenV)
2162       continue;
2163 
2164     // Create a select whose true value is the speculatively executed value and
2165     // false value is the pre-existing value. Swap them if the branch
2166     // destinations were inverted.
2167     Value *TrueV = ThenV, *FalseV = OrigV;
2168     if (Invert)
2169       std::swap(TrueV, FalseV);
2170     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2171     PN.setIncomingValue(OrigI, V);
2172     PN.setIncomingValue(ThenI, V);
2173   }
2174 
2175   // Remove speculated dbg intrinsics.
2176   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2177   // dbg value for the different flows and inserting it after the select.
2178   for (Instruction *I : SpeculatedDbgIntrinsics)
2179     I->eraseFromParent();
2180 
2181   ++NumSpeculations;
2182   return true;
2183 }
2184 
2185 /// Return true if we can thread a branch across this block.
2186 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2187   unsigned Size = 0;
2188 
2189   for (Instruction &I : BB->instructionsWithoutDebug()) {
2190     if (Size > 10)
2191       return false; // Don't clone large BB's.
2192     ++Size;
2193 
2194     // We can only support instructions that do not define values that are
2195     // live outside of the current basic block.
2196     for (User *U : I.users()) {
2197       Instruction *UI = cast<Instruction>(U);
2198       if (UI->getParent() != BB || isa<PHINode>(UI))
2199         return false;
2200     }
2201 
2202     // Looks ok, continue checking.
2203   }
2204 
2205   return true;
2206 }
2207 
2208 /// If we have a conditional branch on a PHI node value that is defined in the
2209 /// same block as the branch and if any PHI entries are constants, thread edges
2210 /// corresponding to that entry to be branches to their ultimate destination.
2211 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2212                                 AssumptionCache *AC) {
2213   BasicBlock *BB = BI->getParent();
2214   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2215   // NOTE: we currently cannot transform this case if the PHI node is used
2216   // outside of the block.
2217   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2218     return false;
2219 
2220   // Degenerate case of a single entry PHI.
2221   if (PN->getNumIncomingValues() == 1) {
2222     FoldSingleEntryPHINodes(PN->getParent());
2223     return true;
2224   }
2225 
2226   // Now we know that this block has multiple preds and two succs.
2227   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2228     return false;
2229 
2230   // Can't fold blocks that contain noduplicate or convergent calls.
2231   if (any_of(*BB, [](const Instruction &I) {
2232         const CallInst *CI = dyn_cast<CallInst>(&I);
2233         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2234       }))
2235     return false;
2236 
2237   // Okay, this is a simple enough basic block.  See if any phi values are
2238   // constants.
2239   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2240     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2241     if (!CB || !CB->getType()->isIntegerTy(1))
2242       continue;
2243 
2244     // Okay, we now know that all edges from PredBB should be revectored to
2245     // branch to RealDest.
2246     BasicBlock *PredBB = PN->getIncomingBlock(i);
2247     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2248 
2249     if (RealDest == BB)
2250       continue; // Skip self loops.
2251     // Skip if the predecessor's terminator is an indirect branch.
2252     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2253       continue;
2254 
2255     // The dest block might have PHI nodes, other predecessors and other
2256     // difficult cases.  Instead of being smart about this, just insert a new
2257     // block that jumps to the destination block, effectively splitting
2258     // the edge we are about to create.
2259     BasicBlock *EdgeBB =
2260         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2261                            RealDest->getParent(), RealDest);
2262     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2263     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2264 
2265     // Update PHI nodes.
2266     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2267 
2268     // BB may have instructions that are being threaded over.  Clone these
2269     // instructions into EdgeBB.  We know that there will be no uses of the
2270     // cloned instructions outside of EdgeBB.
2271     BasicBlock::iterator InsertPt = EdgeBB->begin();
2272     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2273     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2274       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2275         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2276         continue;
2277       }
2278       // Clone the instruction.
2279       Instruction *N = BBI->clone();
2280       if (BBI->hasName())
2281         N->setName(BBI->getName() + ".c");
2282 
2283       // Update operands due to translation.
2284       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2285         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2286         if (PI != TranslateMap.end())
2287           *i = PI->second;
2288       }
2289 
2290       // Check for trivial simplification.
2291       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2292         if (!BBI->use_empty())
2293           TranslateMap[&*BBI] = V;
2294         if (!N->mayHaveSideEffects()) {
2295           N->deleteValue(); // Instruction folded away, don't need actual inst
2296           N = nullptr;
2297         }
2298       } else {
2299         if (!BBI->use_empty())
2300           TranslateMap[&*BBI] = N;
2301       }
2302       if (N) {
2303         // Insert the new instruction into its new home.
2304         EdgeBB->getInstList().insert(InsertPt, N);
2305 
2306         // Register the new instruction with the assumption cache if necessary.
2307         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2308           AC->registerAssumption(cast<IntrinsicInst>(N));
2309       }
2310     }
2311 
2312     // Loop over all of the edges from PredBB to BB, changing them to branch
2313     // to EdgeBB instead.
2314     Instruction *PredBBTI = PredBB->getTerminator();
2315     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2316       if (PredBBTI->getSuccessor(i) == BB) {
2317         BB->removePredecessor(PredBB);
2318         PredBBTI->setSuccessor(i, EdgeBB);
2319       }
2320 
2321     // Recurse, simplifying any other constants.
2322     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2323   }
2324 
2325   return false;
2326 }
2327 
2328 /// Given a BB that starts with the specified two-entry PHI node,
2329 /// see if we can eliminate it.
2330 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2331                                 const DataLayout &DL) {
2332   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2333   // statement", which has a very simple dominance structure.  Basically, we
2334   // are trying to find the condition that is being branched on, which
2335   // subsequently causes this merge to happen.  We really want control
2336   // dependence information for this check, but simplifycfg can't keep it up
2337   // to date, and this catches most of the cases we care about anyway.
2338   BasicBlock *BB = PN->getParent();
2339 
2340   BasicBlock *IfTrue, *IfFalse;
2341   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2342   if (!IfCond ||
2343       // Don't bother if the branch will be constant folded trivially.
2344       isa<ConstantInt>(IfCond))
2345     return false;
2346 
2347   // Okay, we found that we can merge this two-entry phi node into a select.
2348   // Doing so would require us to fold *all* two entry phi nodes in this block.
2349   // At some point this becomes non-profitable (particularly if the target
2350   // doesn't support cmov's).  Only do this transformation if there are two or
2351   // fewer PHI nodes in this block.
2352   unsigned NumPhis = 0;
2353   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2354     if (NumPhis > 2)
2355       return false;
2356 
2357   // Loop over the PHI's seeing if we can promote them all to select
2358   // instructions.  While we are at it, keep track of the instructions
2359   // that need to be moved to the dominating block.
2360   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2361   int BudgetRemaining =
2362       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2363 
2364   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2365     PHINode *PN = cast<PHINode>(II++);
2366     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2367       PN->replaceAllUsesWith(V);
2368       PN->eraseFromParent();
2369       continue;
2370     }
2371 
2372     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2373                              BudgetRemaining, TTI) ||
2374         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2375                              BudgetRemaining, TTI))
2376       return false;
2377   }
2378 
2379   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2380   // we ran out of PHIs then we simplified them all.
2381   PN = dyn_cast<PHINode>(BB->begin());
2382   if (!PN)
2383     return true;
2384 
2385   // Return true if at least one of these is a 'not', and another is either
2386   // a 'not' too, or a constant.
2387   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2388     if (!match(V0, m_Not(m_Value())))
2389       std::swap(V0, V1);
2390     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2391     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2392   };
2393 
2394   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2395   // of the incoming values is an 'not' and another one is freely invertible.
2396   // These can often be turned into switches and other things.
2397   if (PN->getType()->isIntegerTy(1) &&
2398       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2399        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2400        isa<BinaryOperator>(IfCond)) &&
2401       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2402                                  PN->getIncomingValue(1)))
2403     return false;
2404 
2405   // If all PHI nodes are promotable, check to make sure that all instructions
2406   // in the predecessor blocks can be promoted as well. If not, we won't be able
2407   // to get rid of the control flow, so it's not worth promoting to select
2408   // instructions.
2409   BasicBlock *DomBlock = nullptr;
2410   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2411   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2412   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2413     IfBlock1 = nullptr;
2414   } else {
2415     DomBlock = *pred_begin(IfBlock1);
2416     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2417       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2418         // This is not an aggressive instruction that we can promote.
2419         // Because of this, we won't be able to get rid of the control flow, so
2420         // the xform is not worth it.
2421         return false;
2422       }
2423   }
2424 
2425   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2426     IfBlock2 = nullptr;
2427   } else {
2428     DomBlock = *pred_begin(IfBlock2);
2429     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2430       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2431         // This is not an aggressive instruction that we can promote.
2432         // Because of this, we won't be able to get rid of the control flow, so
2433         // the xform is not worth it.
2434         return false;
2435       }
2436   }
2437   assert(DomBlock && "Failed to find root DomBlock");
2438 
2439   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2440                     << "  T: " << IfTrue->getName()
2441                     << "  F: " << IfFalse->getName() << "\n");
2442 
2443   // If we can still promote the PHI nodes after this gauntlet of tests,
2444   // do all of the PHI's now.
2445   Instruction *InsertPt = DomBlock->getTerminator();
2446   IRBuilder<NoFolder> Builder(InsertPt);
2447 
2448   // Move all 'aggressive' instructions, which are defined in the
2449   // conditional parts of the if's up to the dominating block.
2450   if (IfBlock1)
2451     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2452   if (IfBlock2)
2453     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2454 
2455   // Propagate fast-math-flags from phi nodes to replacement selects.
2456   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2457   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2458     if (isa<FPMathOperator>(PN))
2459       Builder.setFastMathFlags(PN->getFastMathFlags());
2460 
2461     // Change the PHI node into a select instruction.
2462     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2463     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2464 
2465     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2466     PN->replaceAllUsesWith(Sel);
2467     Sel->takeName(PN);
2468     PN->eraseFromParent();
2469   }
2470 
2471   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2472   // has been flattened.  Change DomBlock to jump directly to our new block to
2473   // avoid other simplifycfg's kicking in on the diamond.
2474   Instruction *OldTI = DomBlock->getTerminator();
2475   Builder.SetInsertPoint(OldTI);
2476   Builder.CreateBr(BB);
2477   OldTI->eraseFromParent();
2478   return true;
2479 }
2480 
2481 /// If we found a conditional branch that goes to two returning blocks,
2482 /// try to merge them together into one return,
2483 /// introducing a select if the return values disagree.
2484 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2485                                                     IRBuilder<> &Builder) {
2486   assert(BI->isConditional() && "Must be a conditional branch");
2487   BasicBlock *TrueSucc = BI->getSuccessor(0);
2488   BasicBlock *FalseSucc = BI->getSuccessor(1);
2489   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2490   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2491 
2492   // Check to ensure both blocks are empty (just a return) or optionally empty
2493   // with PHI nodes.  If there are other instructions, merging would cause extra
2494   // computation on one path or the other.
2495   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2496     return false;
2497   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2498     return false;
2499 
2500   Builder.SetInsertPoint(BI);
2501   // Okay, we found a branch that is going to two return nodes.  If
2502   // there is no return value for this function, just change the
2503   // branch into a return.
2504   if (FalseRet->getNumOperands() == 0) {
2505     TrueSucc->removePredecessor(BI->getParent());
2506     FalseSucc->removePredecessor(BI->getParent());
2507     Builder.CreateRetVoid();
2508     EraseTerminatorAndDCECond(BI);
2509     return true;
2510   }
2511 
2512   // Otherwise, figure out what the true and false return values are
2513   // so we can insert a new select instruction.
2514   Value *TrueValue = TrueRet->getReturnValue();
2515   Value *FalseValue = FalseRet->getReturnValue();
2516 
2517   // Unwrap any PHI nodes in the return blocks.
2518   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2519     if (TVPN->getParent() == TrueSucc)
2520       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2521   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2522     if (FVPN->getParent() == FalseSucc)
2523       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2524 
2525   // In order for this transformation to be safe, we must be able to
2526   // unconditionally execute both operands to the return.  This is
2527   // normally the case, but we could have a potentially-trapping
2528   // constant expression that prevents this transformation from being
2529   // safe.
2530   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2531     if (TCV->canTrap())
2532       return false;
2533   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2534     if (FCV->canTrap())
2535       return false;
2536 
2537   // Okay, we collected all the mapped values and checked them for sanity, and
2538   // defined to really do this transformation.  First, update the CFG.
2539   TrueSucc->removePredecessor(BI->getParent());
2540   FalseSucc->removePredecessor(BI->getParent());
2541 
2542   // Insert select instructions where needed.
2543   Value *BrCond = BI->getCondition();
2544   if (TrueValue) {
2545     // Insert a select if the results differ.
2546     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2547     } else if (isa<UndefValue>(TrueValue)) {
2548       TrueValue = FalseValue;
2549     } else {
2550       TrueValue =
2551           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2552     }
2553   }
2554 
2555   Value *RI =
2556       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2557 
2558   (void)RI;
2559 
2560   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2561                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2562                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2563 
2564   EraseTerminatorAndDCECond(BI);
2565 
2566   return true;
2567 }
2568 
2569 /// Return true if the given instruction is available
2570 /// in its predecessor block. If yes, the instruction will be removed.
2571 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2572   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2573     return false;
2574   for (Instruction &I : *PB) {
2575     Instruction *PBI = &I;
2576     // Check whether Inst and PBI generate the same value.
2577     if (Inst->isIdenticalTo(PBI)) {
2578       Inst->replaceAllUsesWith(PBI);
2579       Inst->eraseFromParent();
2580       return true;
2581     }
2582   }
2583   return false;
2584 }
2585 
2586 /// Return true if either PBI or BI has branch weight available, and store
2587 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2588 /// not have branch weight, use 1:1 as its weight.
2589 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2590                                    uint64_t &PredTrueWeight,
2591                                    uint64_t &PredFalseWeight,
2592                                    uint64_t &SuccTrueWeight,
2593                                    uint64_t &SuccFalseWeight) {
2594   bool PredHasWeights =
2595       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2596   bool SuccHasWeights =
2597       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2598   if (PredHasWeights || SuccHasWeights) {
2599     if (!PredHasWeights)
2600       PredTrueWeight = PredFalseWeight = 1;
2601     if (!SuccHasWeights)
2602       SuccTrueWeight = SuccFalseWeight = 1;
2603     return true;
2604   } else {
2605     return false;
2606   }
2607 }
2608 
2609 /// If this basic block is simple enough, and if a predecessor branches to us
2610 /// and one of our successors, fold the block into the predecessor and use
2611 /// logical operations to pick the right destination.
2612 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2613                                   unsigned BonusInstThreshold) {
2614   BasicBlock *BB = BI->getParent();
2615 
2616   const unsigned PredCount = pred_size(BB);
2617 
2618   bool Changed = false;
2619 
2620   Instruction *Cond = nullptr;
2621   if (BI->isConditional())
2622     Cond = dyn_cast<Instruction>(BI->getCondition());
2623   else {
2624     // For unconditional branch, check for a simple CFG pattern, where
2625     // BB has a single predecessor and BB's successor is also its predecessor's
2626     // successor. If such pattern exists, check for CSE between BB and its
2627     // predecessor.
2628     if (BasicBlock *PB = BB->getSinglePredecessor())
2629       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2630         if (PBI->isConditional() &&
2631             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2632              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2633           for (auto I = BB->instructionsWithoutDebug().begin(),
2634                     E = BB->instructionsWithoutDebug().end();
2635                I != E;) {
2636             Instruction *Curr = &*I++;
2637             if (isa<CmpInst>(Curr)) {
2638               Cond = Curr;
2639               break;
2640             }
2641             // Quit if we can't remove this instruction.
2642             if (!tryCSEWithPredecessor(Curr, PB))
2643               return false;
2644             Changed = true;
2645           }
2646         }
2647 
2648     if (!Cond)
2649       return Changed;
2650   }
2651 
2652   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2653       Cond->getParent() != BB || !Cond->hasOneUse())
2654     return Changed;
2655 
2656   // Make sure the instruction after the condition is the cond branch.
2657   BasicBlock::iterator CondIt = ++Cond->getIterator();
2658 
2659   // Ignore dbg intrinsics.
2660   while (isa<DbgInfoIntrinsic>(CondIt))
2661     ++CondIt;
2662 
2663   if (&*CondIt != BI)
2664     return Changed;
2665 
2666   // Only allow this transformation if computing the condition doesn't involve
2667   // too many instructions and these involved instructions can be executed
2668   // unconditionally. We denote all involved instructions except the condition
2669   // as "bonus instructions", and only allow this transformation when the
2670   // number of the bonus instructions we'll need to create when cloning into
2671   // each predecessor does not exceed a certain threshold.
2672   unsigned NumBonusInsts = 0;
2673   for (auto I = BB->begin(); Cond != &*I; ++I) {
2674     // Ignore dbg intrinsics.
2675     if (isa<DbgInfoIntrinsic>(I))
2676       continue;
2677     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2678       return Changed;
2679     // I has only one use and can be executed unconditionally.
2680     Instruction *User = dyn_cast<Instruction>(I->user_back());
2681     if (User == nullptr || User->getParent() != BB)
2682       return Changed;
2683     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2684     // to use any other instruction, User must be an instruction between next(I)
2685     // and Cond.
2686 
2687     // Account for the cost of duplicating this instruction into each
2688     // predecessor.
2689     NumBonusInsts += PredCount;
2690     // Early exits once we reach the limit.
2691     if (NumBonusInsts > BonusInstThreshold)
2692       return Changed;
2693   }
2694 
2695   // Cond is known to be a compare or binary operator.  Check to make sure that
2696   // neither operand is a potentially-trapping constant expression.
2697   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2698     if (CE->canTrap())
2699       return Changed;
2700   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2701     if (CE->canTrap())
2702       return Changed;
2703 
2704   // Finally, don't infinitely unroll conditional loops.
2705   BasicBlock *TrueDest = BI->getSuccessor(0);
2706   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2707   if (TrueDest == BB || FalseDest == BB)
2708     return Changed;
2709 
2710   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2711     BasicBlock *PredBlock = *PI;
2712     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2713 
2714     // Check that we have two conditional branches.  If there is a PHI node in
2715     // the common successor, verify that the same value flows in from both
2716     // blocks.
2717     SmallVector<PHINode *, 4> PHIs;
2718     if (!PBI || PBI->isUnconditional() ||
2719         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2720         (!BI->isConditional() &&
2721          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2722       continue;
2723 
2724     // Determine if the two branches share a common destination.
2725     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2726     bool InvertPredCond = false;
2727 
2728     if (BI->isConditional()) {
2729       if (PBI->getSuccessor(0) == TrueDest) {
2730         Opc = Instruction::Or;
2731       } else if (PBI->getSuccessor(1) == FalseDest) {
2732         Opc = Instruction::And;
2733       } else if (PBI->getSuccessor(0) == FalseDest) {
2734         Opc = Instruction::And;
2735         InvertPredCond = true;
2736       } else if (PBI->getSuccessor(1) == TrueDest) {
2737         Opc = Instruction::Or;
2738         InvertPredCond = true;
2739       } else {
2740         continue;
2741       }
2742     } else {
2743       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2744         continue;
2745     }
2746 
2747     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2748     Changed = true;
2749 
2750     IRBuilder<> Builder(PBI);
2751 
2752     // If we need to invert the condition in the pred block to match, do so now.
2753     if (InvertPredCond) {
2754       Value *NewCond = PBI->getCondition();
2755 
2756       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2757         CmpInst *CI = cast<CmpInst>(NewCond);
2758         CI->setPredicate(CI->getInversePredicate());
2759       } else {
2760         NewCond =
2761             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2762       }
2763 
2764       PBI->setCondition(NewCond);
2765       PBI->swapSuccessors();
2766     }
2767 
2768     // If we have bonus instructions, clone them into the predecessor block.
2769     // Note that there may be multiple predecessor blocks, so we cannot move
2770     // bonus instructions to a predecessor block.
2771     ValueToValueMapTy VMap; // maps original values to cloned values
2772     // We already make sure Cond is the last instruction before BI. Therefore,
2773     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2774     // instructions.
2775     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2776       if (isa<DbgInfoIntrinsic>(BonusInst))
2777         continue;
2778       Instruction *NewBonusInst = BonusInst->clone();
2779       RemapInstruction(NewBonusInst, VMap,
2780                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2781       VMap[&*BonusInst] = NewBonusInst;
2782 
2783       // If we moved a load, we cannot any longer claim any knowledge about
2784       // its potential value. The previous information might have been valid
2785       // only given the branch precondition.
2786       // For an analogous reason, we must also drop all the metadata whose
2787       // semantics we don't understand.
2788       NewBonusInst->dropUnknownNonDebugMetadata();
2789 
2790       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2791       NewBonusInst->takeName(&*BonusInst);
2792       BonusInst->setName(BonusInst->getName() + ".old");
2793     }
2794 
2795     // Clone Cond into the predecessor basic block, and or/and the
2796     // two conditions together.
2797     Instruction *CondInPred = Cond->clone();
2798     RemapInstruction(CondInPred, VMap,
2799                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2800     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2801     CondInPred->takeName(Cond);
2802     Cond->setName(CondInPred->getName() + ".old");
2803 
2804     if (BI->isConditional()) {
2805       Instruction *NewCond = cast<Instruction>(
2806           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2807       PBI->setCondition(NewCond);
2808 
2809       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2810       bool HasWeights =
2811           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2812                                  SuccTrueWeight, SuccFalseWeight);
2813       SmallVector<uint64_t, 8> NewWeights;
2814 
2815       if (PBI->getSuccessor(0) == BB) {
2816         if (HasWeights) {
2817           // PBI: br i1 %x, BB, FalseDest
2818           // BI:  br i1 %y, TrueDest, FalseDest
2819           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2820           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2821           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2822           //               TrueWeight for PBI * FalseWeight for BI.
2823           // We assume that total weights of a BranchInst can fit into 32 bits.
2824           // Therefore, we will not have overflow using 64-bit arithmetic.
2825           NewWeights.push_back(PredFalseWeight *
2826                                    (SuccFalseWeight + SuccTrueWeight) +
2827                                PredTrueWeight * SuccFalseWeight);
2828         }
2829         AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
2830         PBI->setSuccessor(0, TrueDest);
2831       }
2832       if (PBI->getSuccessor(1) == BB) {
2833         if (HasWeights) {
2834           // PBI: br i1 %x, TrueDest, BB
2835           // BI:  br i1 %y, TrueDest, FalseDest
2836           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2837           //              FalseWeight for PBI * TrueWeight for BI.
2838           NewWeights.push_back(PredTrueWeight *
2839                                    (SuccFalseWeight + SuccTrueWeight) +
2840                                PredFalseWeight * SuccTrueWeight);
2841           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2842           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2843         }
2844         AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
2845         PBI->setSuccessor(1, FalseDest);
2846       }
2847       if (NewWeights.size() == 2) {
2848         // Halve the weights if any of them cannot fit in an uint32_t
2849         FitWeights(NewWeights);
2850 
2851         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2852                                            NewWeights.end());
2853         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2854       } else
2855         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2856     } else {
2857       // Update PHI nodes in the common successors.
2858       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2859         ConstantInt *PBI_C = cast<ConstantInt>(
2860             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2861         assert(PBI_C->getType()->isIntegerTy(1));
2862         Instruction *MergedCond = nullptr;
2863         if (PBI->getSuccessor(0) == TrueDest) {
2864           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2865           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2866           //       is false: !PBI_Cond and BI_Value
2867           Instruction *NotCond = cast<Instruction>(
2868               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2869           MergedCond = cast<Instruction>(
2870                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2871                                    "and.cond"));
2872           if (PBI_C->isOne())
2873             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2874                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2875         } else {
2876           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2877           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2878           //       is false: PBI_Cond and BI_Value
2879           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2880               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2881           if (PBI_C->isOne()) {
2882             Instruction *NotCond = cast<Instruction>(
2883                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2884             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2885                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2886           }
2887         }
2888         // Update PHI Node.
2889 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
2890       }
2891 
2892       // PBI is changed to branch to TrueDest below. Remove itself from
2893       // potential phis from all other successors.
2894       if (MSSAU)
2895         MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);
2896 
2897       // Change PBI from Conditional to Unconditional.
2898       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2899       EraseTerminatorAndDCECond(PBI, MSSAU);
2900       PBI = New_PBI;
2901     }
2902 
2903     // If BI was a loop latch, it may have had associated loop metadata.
2904     // We need to copy it to the new latch, that is, PBI.
2905     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2906       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2907 
2908     // TODO: If BB is reachable from all paths through PredBlock, then we
2909     // could replace PBI's branch probabilities with BI's.
2910 
2911     // Copy any debug value intrinsics into the end of PredBlock.
2912     for (Instruction &I : *BB) {
2913       if (isa<DbgInfoIntrinsic>(I)) {
2914         Instruction *NewI = I.clone();
2915         RemapInstruction(NewI, VMap,
2916                          RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2917         NewI->insertBefore(PBI);
2918       }
2919     }
2920 
2921     return Changed;
2922   }
2923   return Changed;
2924 }
2925 
2926 // If there is only one store in BB1 and BB2, return it, otherwise return
2927 // nullptr.
2928 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2929   StoreInst *S = nullptr;
2930   for (auto *BB : {BB1, BB2}) {
2931     if (!BB)
2932       continue;
2933     for (auto &I : *BB)
2934       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2935         if (S)
2936           // Multiple stores seen.
2937           return nullptr;
2938         else
2939           S = SI;
2940       }
2941   }
2942   return S;
2943 }
2944 
2945 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2946                                               Value *AlternativeV = nullptr) {
2947   // PHI is going to be a PHI node that allows the value V that is defined in
2948   // BB to be referenced in BB's only successor.
2949   //
2950   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2951   // doesn't matter to us what the other operand is (it'll never get used). We
2952   // could just create a new PHI with an undef incoming value, but that could
2953   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2954   // other PHI. So here we directly look for some PHI in BB's successor with V
2955   // as an incoming operand. If we find one, we use it, else we create a new
2956   // one.
2957   //
2958   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2959   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2960   // where OtherBB is the single other predecessor of BB's only successor.
2961   PHINode *PHI = nullptr;
2962   BasicBlock *Succ = BB->getSingleSuccessor();
2963 
2964   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2965     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2966       PHI = cast<PHINode>(I);
2967       if (!AlternativeV)
2968         break;
2969 
2970       assert(Succ->hasNPredecessors(2));
2971       auto PredI = pred_begin(Succ);
2972       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2973       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2974         break;
2975       PHI = nullptr;
2976     }
2977   if (PHI)
2978     return PHI;
2979 
2980   // If V is not an instruction defined in BB, just return it.
2981   if (!AlternativeV &&
2982       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2983     return V;
2984 
2985   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2986   PHI->addIncoming(V, BB);
2987   for (BasicBlock *PredBB : predecessors(Succ))
2988     if (PredBB != BB)
2989       PHI->addIncoming(
2990           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2991   return PHI;
2992 }
2993 
2994 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2995                                            BasicBlock *QTB, BasicBlock *QFB,
2996                                            BasicBlock *PostBB, Value *Address,
2997                                            bool InvertPCond, bool InvertQCond,
2998                                            const DataLayout &DL,
2999                                            const TargetTransformInfo &TTI) {
3000   // For every pointer, there must be exactly two stores, one coming from
3001   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3002   // store (to any address) in PTB,PFB or QTB,QFB.
3003   // FIXME: We could relax this restriction with a bit more work and performance
3004   // testing.
3005   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3006   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3007   if (!PStore || !QStore)
3008     return false;
3009 
3010   // Now check the stores are compatible.
3011   if (!QStore->isUnordered() || !PStore->isUnordered())
3012     return false;
3013 
3014   // Check that sinking the store won't cause program behavior changes. Sinking
3015   // the store out of the Q blocks won't change any behavior as we're sinking
3016   // from a block to its unconditional successor. But we're moving a store from
3017   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3018   // So we need to check that there are no aliasing loads or stores in
3019   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3020   // operations between PStore and the end of its parent block.
3021   //
3022   // The ideal way to do this is to query AliasAnalysis, but we don't
3023   // preserve AA currently so that is dangerous. Be super safe and just
3024   // check there are no other memory operations at all.
3025   for (auto &I : *QFB->getSinglePredecessor())
3026     if (I.mayReadOrWriteMemory())
3027       return false;
3028   for (auto &I : *QFB)
3029     if (&I != QStore && I.mayReadOrWriteMemory())
3030       return false;
3031   if (QTB)
3032     for (auto &I : *QTB)
3033       if (&I != QStore && I.mayReadOrWriteMemory())
3034         return false;
3035   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3036        I != E; ++I)
3037     if (&*I != PStore && I->mayReadOrWriteMemory())
3038       return false;
3039 
3040   // If we're not in aggressive mode, we only optimize if we have some
3041   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3042   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3043     if (!BB)
3044       return true;
3045     // Heuristic: if the block can be if-converted/phi-folded and the
3046     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3047     // thread this store.
3048     int BudgetRemaining =
3049         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3050     for (auto &I : BB->instructionsWithoutDebug()) {
3051       // Consider terminator instruction to be free.
3052       if (I.isTerminator())
3053         continue;
3054       // If this is one the stores that we want to speculate out of this BB,
3055       // then don't count it's cost, consider it to be free.
3056       if (auto *S = dyn_cast<StoreInst>(&I))
3057         if (llvm::find(FreeStores, S))
3058           continue;
3059       // Else, we have a white-list of instructions that we are ak speculating.
3060       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3061         return false; // Not in white-list - not worthwhile folding.
3062       // And finally, if this is a non-free instruction that we are okay
3063       // speculating, ensure that we consider the speculation budget.
3064       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3065       if (BudgetRemaining < 0)
3066         return false; // Eagerly refuse to fold as soon as we're out of budget.
3067     }
3068     assert(BudgetRemaining >= 0 &&
3069            "When we run out of budget we will eagerly return from within the "
3070            "per-instruction loop.");
3071     return true;
3072   };
3073 
3074   const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore};
3075   if (!MergeCondStoresAggressively &&
3076       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3077        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3078     return false;
3079 
3080   // If PostBB has more than two predecessors, we need to split it so we can
3081   // sink the store.
3082   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3083     // We know that QFB's only successor is PostBB. And QFB has a single
3084     // predecessor. If QTB exists, then its only successor is also PostBB.
3085     // If QTB does not exist, then QFB's only predecessor has a conditional
3086     // branch to QFB and PostBB.
3087     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3088     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3089                                                "condstore.split");
3090     if (!NewBB)
3091       return false;
3092     PostBB = NewBB;
3093   }
3094 
3095   // OK, we're going to sink the stores to PostBB. The store has to be
3096   // conditional though, so first create the predicate.
3097   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3098                      ->getCondition();
3099   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3100                      ->getCondition();
3101 
3102   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3103                                                 PStore->getParent());
3104   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3105                                                 QStore->getParent(), PPHI);
3106 
3107   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3108 
3109   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3110   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3111 
3112   if (InvertPCond)
3113     PPred = QB.CreateNot(PPred);
3114   if (InvertQCond)
3115     QPred = QB.CreateNot(QPred);
3116   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3117 
3118   auto *T =
3119       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3120   QB.SetInsertPoint(T);
3121   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3122   AAMDNodes AAMD;
3123   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3124   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3125   SI->setAAMetadata(AAMD);
3126   unsigned PAlignment = PStore->getAlignment();
3127   unsigned QAlignment = QStore->getAlignment();
3128   unsigned TypeAlignment =
3129       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3130   unsigned MinAlignment;
3131   unsigned MaxAlignment;
3132   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3133   // Choose the minimum alignment. If we could prove both stores execute, we
3134   // could use biggest one.  In this case, though, we only know that one of the
3135   // stores executes.  And we don't know it's safe to take the alignment from a
3136   // store that doesn't execute.
3137   if (MinAlignment != 0) {
3138     // Choose the minimum of all non-zero alignments.
3139     SI->setAlignment(Align(MinAlignment));
3140   } else if (MaxAlignment != 0) {
3141     // Choose the minimal alignment between the non-zero alignment and the ABI
3142     // default alignment for the type of the stored value.
3143     SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment)));
3144   } else {
3145     // If both alignments are zero, use ABI default alignment for the type of
3146     // the stored value.
3147     SI->setAlignment(Align(TypeAlignment));
3148   }
3149 
3150   QStore->eraseFromParent();
3151   PStore->eraseFromParent();
3152 
3153   return true;
3154 }
3155 
3156 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3157                                    const DataLayout &DL,
3158                                    const TargetTransformInfo &TTI) {
3159   // The intention here is to find diamonds or triangles (see below) where each
3160   // conditional block contains a store to the same address. Both of these
3161   // stores are conditional, so they can't be unconditionally sunk. But it may
3162   // be profitable to speculatively sink the stores into one merged store at the
3163   // end, and predicate the merged store on the union of the two conditions of
3164   // PBI and QBI.
3165   //
3166   // This can reduce the number of stores executed if both of the conditions are
3167   // true, and can allow the blocks to become small enough to be if-converted.
3168   // This optimization will also chain, so that ladders of test-and-set
3169   // sequences can be if-converted away.
3170   //
3171   // We only deal with simple diamonds or triangles:
3172   //
3173   //     PBI       or      PBI        or a combination of the two
3174   //    /   \               | \
3175   //   PTB  PFB             |  PFB
3176   //    \   /               | /
3177   //     QBI                QBI
3178   //    /  \                | \
3179   //   QTB  QFB             |  QFB
3180   //    \  /                | /
3181   //    PostBB            PostBB
3182   //
3183   // We model triangles as a type of diamond with a nullptr "true" block.
3184   // Triangles are canonicalized so that the fallthrough edge is represented by
3185   // a true condition, as in the diagram above.
3186   BasicBlock *PTB = PBI->getSuccessor(0);
3187   BasicBlock *PFB = PBI->getSuccessor(1);
3188   BasicBlock *QTB = QBI->getSuccessor(0);
3189   BasicBlock *QFB = QBI->getSuccessor(1);
3190   BasicBlock *PostBB = QFB->getSingleSuccessor();
3191 
3192   // Make sure we have a good guess for PostBB. If QTB's only successor is
3193   // QFB, then QFB is a better PostBB.
3194   if (QTB->getSingleSuccessor() == QFB)
3195     PostBB = QFB;
3196 
3197   // If we couldn't find a good PostBB, stop.
3198   if (!PostBB)
3199     return false;
3200 
3201   bool InvertPCond = false, InvertQCond = false;
3202   // Canonicalize fallthroughs to the true branches.
3203   if (PFB == QBI->getParent()) {
3204     std::swap(PFB, PTB);
3205     InvertPCond = true;
3206   }
3207   if (QFB == PostBB) {
3208     std::swap(QFB, QTB);
3209     InvertQCond = true;
3210   }
3211 
3212   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3213   // and QFB may not. Model fallthroughs as a nullptr block.
3214   if (PTB == QBI->getParent())
3215     PTB = nullptr;
3216   if (QTB == PostBB)
3217     QTB = nullptr;
3218 
3219   // Legality bailouts. We must have at least the non-fallthrough blocks and
3220   // the post-dominating block, and the non-fallthroughs must only have one
3221   // predecessor.
3222   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3223     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3224   };
3225   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3226       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3227     return false;
3228   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3229       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3230     return false;
3231   if (!QBI->getParent()->hasNUses(2))
3232     return false;
3233 
3234   // OK, this is a sequence of two diamonds or triangles.
3235   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3236   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3237   for (auto *BB : {PTB, PFB}) {
3238     if (!BB)
3239       continue;
3240     for (auto &I : *BB)
3241       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3242         PStoreAddresses.insert(SI->getPointerOperand());
3243   }
3244   for (auto *BB : {QTB, QFB}) {
3245     if (!BB)
3246       continue;
3247     for (auto &I : *BB)
3248       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3249         QStoreAddresses.insert(SI->getPointerOperand());
3250   }
3251 
3252   set_intersect(PStoreAddresses, QStoreAddresses);
3253   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3254   // clear what it contains.
3255   auto &CommonAddresses = PStoreAddresses;
3256 
3257   bool Changed = false;
3258   for (auto *Address : CommonAddresses)
3259     Changed |= mergeConditionalStoreToAddress(
3260         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3261   return Changed;
3262 }
3263 
3264 
3265 /// If the previous block ended with a widenable branch, determine if reusing
3266 /// the target block is profitable and legal.  This will have the effect of
3267 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3268 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3269   // TODO: This can be generalized in two important ways:
3270   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3271   //    values from the PBI edge.
3272   // 2) We can sink side effecting instructions into BI's fallthrough
3273   //    successor provided they doesn't contribute to computation of
3274   //    BI's condition.
3275   Value *CondWB, *WC;
3276   BasicBlock *IfTrueBB, *IfFalseBB;
3277   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3278       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3279     return false;
3280   if (!IfFalseBB->phis().empty())
3281     return false; // TODO
3282   // Use lambda to lazily compute expensive condition after cheap ones.
3283   auto NoSideEffects = [](BasicBlock &BB) {
3284     return !llvm::any_of(BB, [](const Instruction &I) {
3285         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3286       });
3287   };
3288   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3289       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3290       NoSideEffects(*BI->getParent())) {
3291     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3292     BI->setSuccessor(1, IfFalseBB);
3293     return true;
3294   }
3295   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3296       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3297       NoSideEffects(*BI->getParent())) {
3298     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3299     BI->setSuccessor(0, IfFalseBB);
3300     return true;
3301   }
3302   return false;
3303 }
3304 
3305 /// If we have a conditional branch as a predecessor of another block,
3306 /// this function tries to simplify it.  We know
3307 /// that PBI and BI are both conditional branches, and BI is in one of the
3308 /// successor blocks of PBI - PBI branches to BI.
3309 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3310                                            const DataLayout &DL,
3311                                            const TargetTransformInfo &TTI) {
3312   assert(PBI->isConditional() && BI->isConditional());
3313   BasicBlock *BB = BI->getParent();
3314 
3315   // If this block ends with a branch instruction, and if there is a
3316   // predecessor that ends on a branch of the same condition, make
3317   // this conditional branch redundant.
3318   if (PBI->getCondition() == BI->getCondition() &&
3319       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3320     // Okay, the outcome of this conditional branch is statically
3321     // knowable.  If this block had a single pred, handle specially.
3322     if (BB->getSinglePredecessor()) {
3323       // Turn this into a branch on constant.
3324       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3325       BI->setCondition(
3326           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3327       return true; // Nuke the branch on constant.
3328     }
3329 
3330     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3331     // in the constant and simplify the block result.  Subsequent passes of
3332     // simplifycfg will thread the block.
3333     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3334       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3335       PHINode *NewPN = PHINode::Create(
3336           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3337           BI->getCondition()->getName() + ".pr", &BB->front());
3338       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3339       // predecessor, compute the PHI'd conditional value for all of the preds.
3340       // Any predecessor where the condition is not computable we keep symbolic.
3341       for (pred_iterator PI = PB; PI != PE; ++PI) {
3342         BasicBlock *P = *PI;
3343         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3344             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3345             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3346           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3347           NewPN->addIncoming(
3348               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3349               P);
3350         } else {
3351           NewPN->addIncoming(BI->getCondition(), P);
3352         }
3353       }
3354 
3355       BI->setCondition(NewPN);
3356       return true;
3357     }
3358   }
3359 
3360   // If the previous block ended with a widenable branch, determine if reusing
3361   // the target block is profitable and legal.  This will have the effect of
3362   // "widening" PBI, but doesn't require us to reason about hosting safety.
3363   if (tryWidenCondBranchToCondBranch(PBI, BI))
3364     return true;
3365 
3366   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3367     if (CE->canTrap())
3368       return false;
3369 
3370   // If both branches are conditional and both contain stores to the same
3371   // address, remove the stores from the conditionals and create a conditional
3372   // merged store at the end.
3373   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3374     return true;
3375 
3376   // If this is a conditional branch in an empty block, and if any
3377   // predecessors are a conditional branch to one of our destinations,
3378   // fold the conditions into logical ops and one cond br.
3379 
3380   // Ignore dbg intrinsics.
3381   if (&*BB->instructionsWithoutDebug().begin() != BI)
3382     return false;
3383 
3384   int PBIOp, BIOp;
3385   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3386     PBIOp = 0;
3387     BIOp = 0;
3388   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3389     PBIOp = 0;
3390     BIOp = 1;
3391   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3392     PBIOp = 1;
3393     BIOp = 0;
3394   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3395     PBIOp = 1;
3396     BIOp = 1;
3397   } else {
3398     return false;
3399   }
3400 
3401   // Check to make sure that the other destination of this branch
3402   // isn't BB itself.  If so, this is an infinite loop that will
3403   // keep getting unwound.
3404   if (PBI->getSuccessor(PBIOp) == BB)
3405     return false;
3406 
3407   // Do not perform this transformation if it would require
3408   // insertion of a large number of select instructions. For targets
3409   // without predication/cmovs, this is a big pessimization.
3410 
3411   // Also do not perform this transformation if any phi node in the common
3412   // destination block can trap when reached by BB or PBB (PR17073). In that
3413   // case, it would be unsafe to hoist the operation into a select instruction.
3414 
3415   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3416   unsigned NumPhis = 0;
3417   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3418        ++II, ++NumPhis) {
3419     if (NumPhis > 2) // Disable this xform.
3420       return false;
3421 
3422     PHINode *PN = cast<PHINode>(II);
3423     Value *BIV = PN->getIncomingValueForBlock(BB);
3424     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3425       if (CE->canTrap())
3426         return false;
3427 
3428     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3429     Value *PBIV = PN->getIncomingValue(PBBIdx);
3430     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3431       if (CE->canTrap())
3432         return false;
3433   }
3434 
3435   // Finally, if everything is ok, fold the branches to logical ops.
3436   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3437 
3438   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3439                     << "AND: " << *BI->getParent());
3440 
3441   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3442   // branch in it, where one edge (OtherDest) goes back to itself but the other
3443   // exits.  We don't *know* that the program avoids the infinite loop
3444   // (even though that seems likely).  If we do this xform naively, we'll end up
3445   // recursively unpeeling the loop.  Since we know that (after the xform is
3446   // done) that the block *is* infinite if reached, we just make it an obviously
3447   // infinite loop with no cond branch.
3448   if (OtherDest == BB) {
3449     // Insert it at the end of the function, because it's either code,
3450     // or it won't matter if it's hot. :)
3451     BasicBlock *InfLoopBlock =
3452         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3453     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3454     OtherDest = InfLoopBlock;
3455   }
3456 
3457   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3458 
3459   // BI may have other predecessors.  Because of this, we leave
3460   // it alone, but modify PBI.
3461 
3462   // Make sure we get to CommonDest on True&True directions.
3463   Value *PBICond = PBI->getCondition();
3464   IRBuilder<NoFolder> Builder(PBI);
3465   if (PBIOp)
3466     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3467 
3468   Value *BICond = BI->getCondition();
3469   if (BIOp)
3470     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3471 
3472   // Merge the conditions.
3473   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3474 
3475   // Modify PBI to branch on the new condition to the new dests.
3476   PBI->setCondition(Cond);
3477   PBI->setSuccessor(0, CommonDest);
3478   PBI->setSuccessor(1, OtherDest);
3479 
3480   // Update branch weight for PBI.
3481   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3482   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3483   bool HasWeights =
3484       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3485                              SuccTrueWeight, SuccFalseWeight);
3486   if (HasWeights) {
3487     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3488     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3489     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3490     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3491     // The weight to CommonDest should be PredCommon * SuccTotal +
3492     //                                    PredOther * SuccCommon.
3493     // The weight to OtherDest should be PredOther * SuccOther.
3494     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3495                                   PredOther * SuccCommon,
3496                               PredOther * SuccOther};
3497     // Halve the weights if any of them cannot fit in an uint32_t
3498     FitWeights(NewWeights);
3499 
3500     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3501   }
3502 
3503   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3504   // block that are identical to the entries for BI's block.
3505   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3506 
3507   // We know that the CommonDest already had an edge from PBI to
3508   // it.  If it has PHIs though, the PHIs may have different
3509   // entries for BB and PBI's BB.  If so, insert a select to make
3510   // them agree.
3511   for (PHINode &PN : CommonDest->phis()) {
3512     Value *BIV = PN.getIncomingValueForBlock(BB);
3513     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3514     Value *PBIV = PN.getIncomingValue(PBBIdx);
3515     if (BIV != PBIV) {
3516       // Insert a select in PBI to pick the right value.
3517       SelectInst *NV = cast<SelectInst>(
3518           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3519       PN.setIncomingValue(PBBIdx, NV);
3520       // Although the select has the same condition as PBI, the original branch
3521       // weights for PBI do not apply to the new select because the select's
3522       // 'logical' edges are incoming edges of the phi that is eliminated, not
3523       // the outgoing edges of PBI.
3524       if (HasWeights) {
3525         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3526         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3527         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3528         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3529         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3530         // The weight to PredOtherDest should be PredOther * SuccCommon.
3531         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3532                                   PredOther * SuccCommon};
3533 
3534         FitWeights(NewWeights);
3535 
3536         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3537       }
3538     }
3539   }
3540 
3541   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3542   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3543 
3544   // This basic block is probably dead.  We know it has at least
3545   // one fewer predecessor.
3546   return true;
3547 }
3548 
3549 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3550 // true or to FalseBB if Cond is false.
3551 // Takes care of updating the successors and removing the old terminator.
3552 // Also makes sure not to introduce new successors by assuming that edges to
3553 // non-successor TrueBBs and FalseBBs aren't reachable.
3554 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3555                                                 Value *Cond, BasicBlock *TrueBB,
3556                                                 BasicBlock *FalseBB,
3557                                                 uint32_t TrueWeight,
3558                                                 uint32_t FalseWeight) {
3559   // Remove any superfluous successor edges from the CFG.
3560   // First, figure out which successors to preserve.
3561   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3562   // successor.
3563   BasicBlock *KeepEdge1 = TrueBB;
3564   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3565 
3566   // Then remove the rest.
3567   for (BasicBlock *Succ : successors(OldTerm)) {
3568     // Make sure only to keep exactly one copy of each edge.
3569     if (Succ == KeepEdge1)
3570       KeepEdge1 = nullptr;
3571     else if (Succ == KeepEdge2)
3572       KeepEdge2 = nullptr;
3573     else
3574       Succ->removePredecessor(OldTerm->getParent(),
3575                               /*KeepOneInputPHIs=*/true);
3576   }
3577 
3578   IRBuilder<> Builder(OldTerm);
3579   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3580 
3581   // Insert an appropriate new terminator.
3582   if (!KeepEdge1 && !KeepEdge2) {
3583     if (TrueBB == FalseBB)
3584       // We were only looking for one successor, and it was present.
3585       // Create an unconditional branch to it.
3586       Builder.CreateBr(TrueBB);
3587     else {
3588       // We found both of the successors we were looking for.
3589       // Create a conditional branch sharing the condition of the select.
3590       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3591       if (TrueWeight != FalseWeight)
3592         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3593     }
3594   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3595     // Neither of the selected blocks were successors, so this
3596     // terminator must be unreachable.
3597     new UnreachableInst(OldTerm->getContext(), OldTerm);
3598   } else {
3599     // One of the selected values was a successor, but the other wasn't.
3600     // Insert an unconditional branch to the one that was found;
3601     // the edge to the one that wasn't must be unreachable.
3602     if (!KeepEdge1)
3603       // Only TrueBB was found.
3604       Builder.CreateBr(TrueBB);
3605     else
3606       // Only FalseBB was found.
3607       Builder.CreateBr(FalseBB);
3608   }
3609 
3610   EraseTerminatorAndDCECond(OldTerm);
3611   return true;
3612 }
3613 
3614 // Replaces
3615 //   (switch (select cond, X, Y)) on constant X, Y
3616 // with a branch - conditional if X and Y lead to distinct BBs,
3617 // unconditional otherwise.
3618 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3619                                             SelectInst *Select) {
3620   // Check for constant integer values in the select.
3621   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3622   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3623   if (!TrueVal || !FalseVal)
3624     return false;
3625 
3626   // Find the relevant condition and destinations.
3627   Value *Condition = Select->getCondition();
3628   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3629   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3630 
3631   // Get weight for TrueBB and FalseBB.
3632   uint32_t TrueWeight = 0, FalseWeight = 0;
3633   SmallVector<uint64_t, 8> Weights;
3634   bool HasWeights = HasBranchWeights(SI);
3635   if (HasWeights) {
3636     GetBranchWeights(SI, Weights);
3637     if (Weights.size() == 1 + SI->getNumCases()) {
3638       TrueWeight =
3639           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3640       FalseWeight =
3641           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3642     }
3643   }
3644 
3645   // Perform the actual simplification.
3646   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3647                                     FalseWeight);
3648 }
3649 
3650 // Replaces
3651 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3652 //                             blockaddress(@fn, BlockB)))
3653 // with
3654 //   (br cond, BlockA, BlockB).
3655 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3656                                                 SelectInst *SI) {
3657   // Check that both operands of the select are block addresses.
3658   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3659   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3660   if (!TBA || !FBA)
3661     return false;
3662 
3663   // Extract the actual blocks.
3664   BasicBlock *TrueBB = TBA->getBasicBlock();
3665   BasicBlock *FalseBB = FBA->getBasicBlock();
3666 
3667   // Perform the actual simplification.
3668   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3669                                     0);
3670 }
3671 
3672 /// This is called when we find an icmp instruction
3673 /// (a seteq/setne with a constant) as the only instruction in a
3674 /// block that ends with an uncond branch.  We are looking for a very specific
3675 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3676 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3677 /// default value goes to an uncond block with a seteq in it, we get something
3678 /// like:
3679 ///
3680 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3681 /// DEFAULT:
3682 ///   %tmp = icmp eq i8 %A, 92
3683 ///   br label %end
3684 /// end:
3685 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3686 ///
3687 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3688 /// the PHI, merging the third icmp into the switch.
3689 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3690     ICmpInst *ICI, IRBuilder<> &Builder) {
3691   BasicBlock *BB = ICI->getParent();
3692 
3693   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3694   // complex.
3695   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3696     return false;
3697 
3698   Value *V = ICI->getOperand(0);
3699   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3700 
3701   // The pattern we're looking for is where our only predecessor is a switch on
3702   // 'V' and this block is the default case for the switch.  In this case we can
3703   // fold the compared value into the switch to simplify things.
3704   BasicBlock *Pred = BB->getSinglePredecessor();
3705   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3706     return false;
3707 
3708   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3709   if (SI->getCondition() != V)
3710     return false;
3711 
3712   // If BB is reachable on a non-default case, then we simply know the value of
3713   // V in this block.  Substitute it and constant fold the icmp instruction
3714   // away.
3715   if (SI->getDefaultDest() != BB) {
3716     ConstantInt *VVal = SI->findCaseDest(BB);
3717     assert(VVal && "Should have a unique destination value");
3718     ICI->setOperand(0, VVal);
3719 
3720     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3721       ICI->replaceAllUsesWith(V);
3722       ICI->eraseFromParent();
3723     }
3724     // BB is now empty, so it is likely to simplify away.
3725     return requestResimplify();
3726   }
3727 
3728   // Ok, the block is reachable from the default dest.  If the constant we're
3729   // comparing exists in one of the other edges, then we can constant fold ICI
3730   // and zap it.
3731   if (SI->findCaseValue(Cst) != SI->case_default()) {
3732     Value *V;
3733     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3734       V = ConstantInt::getFalse(BB->getContext());
3735     else
3736       V = ConstantInt::getTrue(BB->getContext());
3737 
3738     ICI->replaceAllUsesWith(V);
3739     ICI->eraseFromParent();
3740     // BB is now empty, so it is likely to simplify away.
3741     return requestResimplify();
3742   }
3743 
3744   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3745   // the block.
3746   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3747   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3748   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3749       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3750     return false;
3751 
3752   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3753   // true in the PHI.
3754   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3755   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3756 
3757   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3758     std::swap(DefaultCst, NewCst);
3759 
3760   // Replace ICI (which is used by the PHI for the default value) with true or
3761   // false depending on if it is EQ or NE.
3762   ICI->replaceAllUsesWith(DefaultCst);
3763   ICI->eraseFromParent();
3764 
3765   // Okay, the switch goes to this block on a default value.  Add an edge from
3766   // the switch to the merge point on the compared value.
3767   BasicBlock *NewBB =
3768       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3769   {
3770     SwitchInstProfUpdateWrapper SIW(*SI);
3771     auto W0 = SIW.getSuccessorWeight(0);
3772     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3773     if (W0) {
3774       NewW = ((uint64_t(*W0) + 1) >> 1);
3775       SIW.setSuccessorWeight(0, *NewW);
3776     }
3777     SIW.addCase(Cst, NewBB, NewW);
3778   }
3779 
3780   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3781   Builder.SetInsertPoint(NewBB);
3782   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3783   Builder.CreateBr(SuccBlock);
3784   PHIUse->addIncoming(NewCst, NewBB);
3785   return true;
3786 }
3787 
3788 /// The specified branch is a conditional branch.
3789 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3790 /// fold it into a switch instruction if so.
3791 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
3792                                                IRBuilder<> &Builder,
3793                                                const DataLayout &DL) {
3794   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3795   if (!Cond)
3796     return false;
3797 
3798   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3799   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3800   // 'setne's and'ed together, collect them.
3801 
3802   // Try to gather values from a chain of and/or to be turned into a switch
3803   ConstantComparesGatherer ConstantCompare(Cond, DL);
3804   // Unpack the result
3805   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3806   Value *CompVal = ConstantCompare.CompValue;
3807   unsigned UsedICmps = ConstantCompare.UsedICmps;
3808   Value *ExtraCase = ConstantCompare.Extra;
3809 
3810   // If we didn't have a multiply compared value, fail.
3811   if (!CompVal)
3812     return false;
3813 
3814   // Avoid turning single icmps into a switch.
3815   if (UsedICmps <= 1)
3816     return false;
3817 
3818   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3819 
3820   // There might be duplicate constants in the list, which the switch
3821   // instruction can't handle, remove them now.
3822   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3823   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3824 
3825   // If Extra was used, we require at least two switch values to do the
3826   // transformation.  A switch with one value is just a conditional branch.
3827   if (ExtraCase && Values.size() < 2)
3828     return false;
3829 
3830   // TODO: Preserve branch weight metadata, similarly to how
3831   // FoldValueComparisonIntoPredecessors preserves it.
3832 
3833   // Figure out which block is which destination.
3834   BasicBlock *DefaultBB = BI->getSuccessor(1);
3835   BasicBlock *EdgeBB = BI->getSuccessor(0);
3836   if (!TrueWhenEqual)
3837     std::swap(DefaultBB, EdgeBB);
3838 
3839   BasicBlock *BB = BI->getParent();
3840 
3841   // MSAN does not like undefs as branch condition which can be introduced
3842   // with "explicit branch".
3843   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
3844     return false;
3845 
3846   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3847                     << " cases into SWITCH.  BB is:\n"
3848                     << *BB);
3849 
3850   // If there are any extra values that couldn't be folded into the switch
3851   // then we evaluate them with an explicit branch first. Split the block
3852   // right before the condbr to handle it.
3853   if (ExtraCase) {
3854     BasicBlock *NewBB =
3855         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3856     // Remove the uncond branch added to the old block.
3857     Instruction *OldTI = BB->getTerminator();
3858     Builder.SetInsertPoint(OldTI);
3859 
3860     if (TrueWhenEqual)
3861       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3862     else
3863       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3864 
3865     OldTI->eraseFromParent();
3866 
3867     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3868     // for the edge we just added.
3869     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3870 
3871     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3872                       << "\nEXTRABB = " << *BB);
3873     BB = NewBB;
3874   }
3875 
3876   Builder.SetInsertPoint(BI);
3877   // Convert pointer to int before we switch.
3878   if (CompVal->getType()->isPointerTy()) {
3879     CompVal = Builder.CreatePtrToInt(
3880         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3881   }
3882 
3883   // Create the new switch instruction now.
3884   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3885 
3886   // Add all of the 'cases' to the switch instruction.
3887   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3888     New->addCase(Values[i], EdgeBB);
3889 
3890   // We added edges from PI to the EdgeBB.  As such, if there were any
3891   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3892   // the number of edges added.
3893   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3894     PHINode *PN = cast<PHINode>(BBI);
3895     Value *InVal = PN->getIncomingValueForBlock(BB);
3896     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3897       PN->addIncoming(InVal, BB);
3898   }
3899 
3900   // Erase the old branch instruction.
3901   EraseTerminatorAndDCECond(BI);
3902 
3903   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3904   return true;
3905 }
3906 
3907 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3908   if (isa<PHINode>(RI->getValue()))
3909     return simplifyCommonResume(RI);
3910   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3911            RI->getValue() == RI->getParent()->getFirstNonPHI())
3912     // The resume must unwind the exception that caused control to branch here.
3913     return simplifySingleResume(RI);
3914 
3915   return false;
3916 }
3917 
3918 // Simplify resume that is shared by several landing pads (phi of landing pad).
3919 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
3920   BasicBlock *BB = RI->getParent();
3921 
3922   // Check that there are no other instructions except for debug intrinsics
3923   // between the phi of landing pads (RI->getValue()) and resume instruction.
3924   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3925                        E = RI->getIterator();
3926   while (++I != E)
3927     if (!isa<DbgInfoIntrinsic>(I))
3928       return false;
3929 
3930   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3931   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3932 
3933   // Check incoming blocks to see if any of them are trivial.
3934   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3935        Idx++) {
3936     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3937     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3938 
3939     // If the block has other successors, we can not delete it because
3940     // it has other dependents.
3941     if (IncomingBB->getUniqueSuccessor() != BB)
3942       continue;
3943 
3944     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3945     // Not the landing pad that caused the control to branch here.
3946     if (IncomingValue != LandingPad)
3947       continue;
3948 
3949     bool isTrivial = true;
3950 
3951     I = IncomingBB->getFirstNonPHI()->getIterator();
3952     E = IncomingBB->getTerminator()->getIterator();
3953     while (++I != E)
3954       if (!isa<DbgInfoIntrinsic>(I)) {
3955         isTrivial = false;
3956         break;
3957       }
3958 
3959     if (isTrivial)
3960       TrivialUnwindBlocks.insert(IncomingBB);
3961   }
3962 
3963   // If no trivial unwind blocks, don't do any simplifications.
3964   if (TrivialUnwindBlocks.empty())
3965     return false;
3966 
3967   // Turn all invokes that unwind here into calls.
3968   for (auto *TrivialBB : TrivialUnwindBlocks) {
3969     // Blocks that will be simplified should be removed from the phi node.
3970     // Note there could be multiple edges to the resume block, and we need
3971     // to remove them all.
3972     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3973       BB->removePredecessor(TrivialBB, true);
3974 
3975     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3976          PI != PE;) {
3977       BasicBlock *Pred = *PI++;
3978       removeUnwindEdge(Pred);
3979     }
3980 
3981     // In each SimplifyCFG run, only the current processed block can be erased.
3982     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3983     // of erasing TrivialBB, we only remove the branch to the common resume
3984     // block so that we can later erase the resume block since it has no
3985     // predecessors.
3986     TrivialBB->getTerminator()->eraseFromParent();
3987     new UnreachableInst(RI->getContext(), TrivialBB);
3988   }
3989 
3990   // Delete the resume block if all its predecessors have been removed.
3991   if (pred_empty(BB))
3992     BB->eraseFromParent();
3993 
3994   return !TrivialUnwindBlocks.empty();
3995 }
3996 
3997 // Check if cleanup block is empty
3998 static bool isCleanupBlockEmpty(Instruction *Inst, Instruction *RI) {
3999   BasicBlock::iterator I = Inst->getIterator(), E = RI->getIterator();
4000   while (++I != E) {
4001     auto *II = dyn_cast<IntrinsicInst>(I);
4002     if (!II)
4003       return false;
4004 
4005     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4006     switch (IntrinsicID) {
4007     case Intrinsic::dbg_declare:
4008     case Intrinsic::dbg_value:
4009     case Intrinsic::dbg_label:
4010     case Intrinsic::lifetime_end:
4011       break;
4012     default:
4013       return false;
4014     }
4015   }
4016   return true;
4017 }
4018 
4019 // Simplify resume that is only used by a single (non-phi) landing pad.
4020 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4021   BasicBlock *BB = RI->getParent();
4022   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4023   assert(RI->getValue() == LPInst &&
4024          "Resume must unwind the exception that caused control to here");
4025 
4026   // Check that there are no other instructions except for debug intrinsics.
4027   if (!isCleanupBlockEmpty(LPInst, RI))
4028     return false;
4029 
4030   // Turn all invokes that unwind here into calls and delete the basic block.
4031   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4032     BasicBlock *Pred = *PI++;
4033     removeUnwindEdge(Pred);
4034   }
4035 
4036   // The landingpad is now unreachable.  Zap it.
4037   if (LoopHeaders)
4038     LoopHeaders->erase(BB);
4039   BB->eraseFromParent();
4040   return true;
4041 }
4042 
4043 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
4044   // If this is a trivial cleanup pad that executes no instructions, it can be
4045   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4046   // that is an EH pad will be updated to continue to the caller and any
4047   // predecessor that terminates with an invoke instruction will have its invoke
4048   // instruction converted to a call instruction.  If the cleanup pad being
4049   // simplified does not continue to the caller, each predecessor will be
4050   // updated to continue to the unwind destination of the cleanup pad being
4051   // simplified.
4052   BasicBlock *BB = RI->getParent();
4053   CleanupPadInst *CPInst = RI->getCleanupPad();
4054   if (CPInst->getParent() != BB)
4055     // This isn't an empty cleanup.
4056     return false;
4057 
4058   // We cannot kill the pad if it has multiple uses.  This typically arises
4059   // from unreachable basic blocks.
4060   if (!CPInst->hasOneUse())
4061     return false;
4062 
4063   // Check that there are no other instructions except for benign intrinsics.
4064   if (!isCleanupBlockEmpty(CPInst, RI))
4065     return false;
4066 
4067   // If the cleanup return we are simplifying unwinds to the caller, this will
4068   // set UnwindDest to nullptr.
4069   BasicBlock *UnwindDest = RI->getUnwindDest();
4070   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4071 
4072   // We're about to remove BB from the control flow.  Before we do, sink any
4073   // PHINodes into the unwind destination.  Doing this before changing the
4074   // control flow avoids some potentially slow checks, since we can currently
4075   // be certain that UnwindDest and BB have no common predecessors (since they
4076   // are both EH pads).
4077   if (UnwindDest) {
4078     // First, go through the PHI nodes in UnwindDest and update any nodes that
4079     // reference the block we are removing
4080     for (BasicBlock::iterator I = UnwindDest->begin(),
4081                               IE = DestEHPad->getIterator();
4082          I != IE; ++I) {
4083       PHINode *DestPN = cast<PHINode>(I);
4084 
4085       int Idx = DestPN->getBasicBlockIndex(BB);
4086       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4087       assert(Idx != -1);
4088       // This PHI node has an incoming value that corresponds to a control
4089       // path through the cleanup pad we are removing.  If the incoming
4090       // value is in the cleanup pad, it must be a PHINode (because we
4091       // verified above that the block is otherwise empty).  Otherwise, the
4092       // value is either a constant or a value that dominates the cleanup
4093       // pad being removed.
4094       //
4095       // Because BB and UnwindDest are both EH pads, all of their
4096       // predecessors must unwind to these blocks, and since no instruction
4097       // can have multiple unwind destinations, there will be no overlap in
4098       // incoming blocks between SrcPN and DestPN.
4099       Value *SrcVal = DestPN->getIncomingValue(Idx);
4100       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4101 
4102       // Remove the entry for the block we are deleting.
4103       DestPN->removeIncomingValue(Idx, false);
4104 
4105       if (SrcPN && SrcPN->getParent() == BB) {
4106         // If the incoming value was a PHI node in the cleanup pad we are
4107         // removing, we need to merge that PHI node's incoming values into
4108         // DestPN.
4109         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4110              SrcIdx != SrcE; ++SrcIdx) {
4111           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4112                               SrcPN->getIncomingBlock(SrcIdx));
4113         }
4114       } else {
4115         // Otherwise, the incoming value came from above BB and
4116         // so we can just reuse it.  We must associate all of BB's
4117         // predecessors with this value.
4118         for (auto *pred : predecessors(BB)) {
4119           DestPN->addIncoming(SrcVal, pred);
4120         }
4121       }
4122     }
4123 
4124     // Sink any remaining PHI nodes directly into UnwindDest.
4125     Instruction *InsertPt = DestEHPad;
4126     for (BasicBlock::iterator I = BB->begin(),
4127                               IE = BB->getFirstNonPHI()->getIterator();
4128          I != IE;) {
4129       // The iterator must be incremented here because the instructions are
4130       // being moved to another block.
4131       PHINode *PN = cast<PHINode>(I++);
4132       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4133         // If the PHI node has no uses or all of its uses are in this basic
4134         // block (meaning they are debug or lifetime intrinsics), just leave
4135         // it.  It will be erased when we erase BB below.
4136         continue;
4137 
4138       // Otherwise, sink this PHI node into UnwindDest.
4139       // Any predecessors to UnwindDest which are not already represented
4140       // must be back edges which inherit the value from the path through
4141       // BB.  In this case, the PHI value must reference itself.
4142       for (auto *pred : predecessors(UnwindDest))
4143         if (pred != BB)
4144           PN->addIncoming(PN, pred);
4145       PN->moveBefore(InsertPt);
4146     }
4147   }
4148 
4149   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4150     // The iterator must be updated here because we are removing this pred.
4151     BasicBlock *PredBB = *PI++;
4152     if (UnwindDest == nullptr) {
4153       removeUnwindEdge(PredBB);
4154     } else {
4155       Instruction *TI = PredBB->getTerminator();
4156       TI->replaceUsesOfWith(BB, UnwindDest);
4157     }
4158   }
4159 
4160   // The cleanup pad is now unreachable.  Zap it.
4161   BB->eraseFromParent();
4162   return true;
4163 }
4164 
4165 // Try to merge two cleanuppads together.
4166 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4167   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4168   // with.
4169   BasicBlock *UnwindDest = RI->getUnwindDest();
4170   if (!UnwindDest)
4171     return false;
4172 
4173   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4174   // be safe to merge without code duplication.
4175   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4176     return false;
4177 
4178   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4179   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4180   if (!SuccessorCleanupPad)
4181     return false;
4182 
4183   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4184   // Replace any uses of the successor cleanupad with the predecessor pad
4185   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4186   // funclet bundle operands.
4187   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4188   // Remove the old cleanuppad.
4189   SuccessorCleanupPad->eraseFromParent();
4190   // Now, we simply replace the cleanupret with a branch to the unwind
4191   // destination.
4192   BranchInst::Create(UnwindDest, RI->getParent());
4193   RI->eraseFromParent();
4194 
4195   return true;
4196 }
4197 
4198 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4199   // It is possible to transiantly have an undef cleanuppad operand because we
4200   // have deleted some, but not all, dead blocks.
4201   // Eventually, this block will be deleted.
4202   if (isa<UndefValue>(RI->getOperand(0)))
4203     return false;
4204 
4205   if (mergeCleanupPad(RI))
4206     return true;
4207 
4208   if (removeEmptyCleanup(RI))
4209     return true;
4210 
4211   return false;
4212 }
4213 
4214 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4215   BasicBlock *BB = RI->getParent();
4216   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4217     return false;
4218 
4219   // Find predecessors that end with branches.
4220   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4221   SmallVector<BranchInst *, 8> CondBranchPreds;
4222   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4223     BasicBlock *P = *PI;
4224     Instruction *PTI = P->getTerminator();
4225     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4226       if (BI->isUnconditional())
4227         UncondBranchPreds.push_back(P);
4228       else
4229         CondBranchPreds.push_back(BI);
4230     }
4231   }
4232 
4233   // If we found some, do the transformation!
4234   if (!UncondBranchPreds.empty() && DupRet) {
4235     while (!UncondBranchPreds.empty()) {
4236       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4237       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4238                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4239       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4240     }
4241 
4242     // If we eliminated all predecessors of the block, delete the block now.
4243     if (pred_empty(BB)) {
4244       // We know there are no successors, so just nuke the block.
4245       if (LoopHeaders)
4246         LoopHeaders->erase(BB);
4247       BB->eraseFromParent();
4248     }
4249 
4250     return true;
4251   }
4252 
4253   // Check out all of the conditional branches going to this return
4254   // instruction.  If any of them just select between returns, change the
4255   // branch itself into a select/return pair.
4256   while (!CondBranchPreds.empty()) {
4257     BranchInst *BI = CondBranchPreds.pop_back_val();
4258 
4259     // Check to see if the non-BB successor is also a return block.
4260     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4261         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4262         SimplifyCondBranchToTwoReturns(BI, Builder))
4263       return true;
4264   }
4265   return false;
4266 }
4267 
4268 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4269   BasicBlock *BB = UI->getParent();
4270 
4271   bool Changed = false;
4272 
4273   // If there are any instructions immediately before the unreachable that can
4274   // be removed, do so.
4275   while (UI->getIterator() != BB->begin()) {
4276     BasicBlock::iterator BBI = UI->getIterator();
4277     --BBI;
4278     // Do not delete instructions that can have side effects which might cause
4279     // the unreachable to not be reachable; specifically, calls and volatile
4280     // operations may have this effect.
4281     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4282       break;
4283 
4284     if (BBI->mayHaveSideEffects()) {
4285       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4286         if (SI->isVolatile())
4287           break;
4288       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4289         if (LI->isVolatile())
4290           break;
4291       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4292         if (RMWI->isVolatile())
4293           break;
4294       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4295         if (CXI->isVolatile())
4296           break;
4297       } else if (isa<CatchPadInst>(BBI)) {
4298         // A catchpad may invoke exception object constructors and such, which
4299         // in some languages can be arbitrary code, so be conservative by
4300         // default.
4301         // For CoreCLR, it just involves a type test, so can be removed.
4302         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4303             EHPersonality::CoreCLR)
4304           break;
4305       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4306                  !isa<LandingPadInst>(BBI)) {
4307         break;
4308       }
4309       // Note that deleting LandingPad's here is in fact okay, although it
4310       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4311       // all the predecessors of this block will be the unwind edges of Invokes,
4312       // and we can therefore guarantee this block will be erased.
4313     }
4314 
4315     // Delete this instruction (any uses are guaranteed to be dead)
4316     if (!BBI->use_empty())
4317       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4318     BBI->eraseFromParent();
4319     Changed = true;
4320   }
4321 
4322   // If the unreachable instruction is the first in the block, take a gander
4323   // at all of the predecessors of this instruction, and simplify them.
4324   if (&BB->front() != UI)
4325     return Changed;
4326 
4327   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4328   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4329     Instruction *TI = Preds[i]->getTerminator();
4330     IRBuilder<> Builder(TI);
4331     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4332       if (BI->isUnconditional()) {
4333         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4334         new UnreachableInst(TI->getContext(), TI);
4335         TI->eraseFromParent();
4336         Changed = true;
4337       } else {
4338         Value* Cond = BI->getCondition();
4339         if (BI->getSuccessor(0) == BB) {
4340           Builder.CreateAssumption(Builder.CreateNot(Cond));
4341           Builder.CreateBr(BI->getSuccessor(1));
4342         } else {
4343           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4344           Builder.CreateAssumption(Cond);
4345           Builder.CreateBr(BI->getSuccessor(0));
4346         }
4347         EraseTerminatorAndDCECond(BI);
4348         Changed = true;
4349       }
4350     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4351       SwitchInstProfUpdateWrapper SU(*SI);
4352       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4353         if (i->getCaseSuccessor() != BB) {
4354           ++i;
4355           continue;
4356         }
4357         BB->removePredecessor(SU->getParent());
4358         i = SU.removeCase(i);
4359         e = SU->case_end();
4360         Changed = true;
4361       }
4362     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4363       if (II->getUnwindDest() == BB) {
4364         removeUnwindEdge(TI->getParent());
4365         Changed = true;
4366       }
4367     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4368       if (CSI->getUnwindDest() == BB) {
4369         removeUnwindEdge(TI->getParent());
4370         Changed = true;
4371         continue;
4372       }
4373 
4374       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4375                                              E = CSI->handler_end();
4376            I != E; ++I) {
4377         if (*I == BB) {
4378           CSI->removeHandler(I);
4379           --I;
4380           --E;
4381           Changed = true;
4382         }
4383       }
4384       if (CSI->getNumHandlers() == 0) {
4385         BasicBlock *CatchSwitchBB = CSI->getParent();
4386         if (CSI->hasUnwindDest()) {
4387           // Redirect preds to the unwind dest
4388           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4389         } else {
4390           // Rewrite all preds to unwind to caller (or from invoke to call).
4391           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4392           for (BasicBlock *EHPred : EHPreds)
4393             removeUnwindEdge(EHPred);
4394         }
4395         // The catchswitch is no longer reachable.
4396         new UnreachableInst(CSI->getContext(), CSI);
4397         CSI->eraseFromParent();
4398         Changed = true;
4399       }
4400     } else if (isa<CleanupReturnInst>(TI)) {
4401       new UnreachableInst(TI->getContext(), TI);
4402       TI->eraseFromParent();
4403       Changed = true;
4404     }
4405   }
4406 
4407   // If this block is now dead, remove it.
4408   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4409     // We know there are no successors, so just nuke the block.
4410     if (LoopHeaders)
4411       LoopHeaders->erase(BB);
4412     BB->eraseFromParent();
4413     return true;
4414   }
4415 
4416   return Changed;
4417 }
4418 
4419 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4420   assert(Cases.size() >= 1);
4421 
4422   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4423   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4424     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4425       return false;
4426   }
4427   return true;
4428 }
4429 
4430 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4431   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4432   BasicBlock *NewDefaultBlock =
4433      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4434   Switch->setDefaultDest(&*NewDefaultBlock);
4435   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4436   auto *NewTerminator = NewDefaultBlock->getTerminator();
4437   new UnreachableInst(Switch->getContext(), NewTerminator);
4438   EraseTerminatorAndDCECond(NewTerminator);
4439 }
4440 
4441 /// Turn a switch with two reachable destinations into an integer range
4442 /// comparison and branch.
4443 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4444                                              IRBuilder<> &Builder) {
4445   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4446 
4447   bool HasDefault =
4448       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4449 
4450   // Partition the cases into two sets with different destinations.
4451   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4452   BasicBlock *DestB = nullptr;
4453   SmallVector<ConstantInt *, 16> CasesA;
4454   SmallVector<ConstantInt *, 16> CasesB;
4455 
4456   for (auto Case : SI->cases()) {
4457     BasicBlock *Dest = Case.getCaseSuccessor();
4458     if (!DestA)
4459       DestA = Dest;
4460     if (Dest == DestA) {
4461       CasesA.push_back(Case.getCaseValue());
4462       continue;
4463     }
4464     if (!DestB)
4465       DestB = Dest;
4466     if (Dest == DestB) {
4467       CasesB.push_back(Case.getCaseValue());
4468       continue;
4469     }
4470     return false; // More than two destinations.
4471   }
4472 
4473   assert(DestA && DestB &&
4474          "Single-destination switch should have been folded.");
4475   assert(DestA != DestB);
4476   assert(DestB != SI->getDefaultDest());
4477   assert(!CasesB.empty() && "There must be non-default cases.");
4478   assert(!CasesA.empty() || HasDefault);
4479 
4480   // Figure out if one of the sets of cases form a contiguous range.
4481   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4482   BasicBlock *ContiguousDest = nullptr;
4483   BasicBlock *OtherDest = nullptr;
4484   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4485     ContiguousCases = &CasesA;
4486     ContiguousDest = DestA;
4487     OtherDest = DestB;
4488   } else if (CasesAreContiguous(CasesB)) {
4489     ContiguousCases = &CasesB;
4490     ContiguousDest = DestB;
4491     OtherDest = DestA;
4492   } else
4493     return false;
4494 
4495   // Start building the compare and branch.
4496 
4497   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4498   Constant *NumCases =
4499       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4500 
4501   Value *Sub = SI->getCondition();
4502   if (!Offset->isNullValue())
4503     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4504 
4505   Value *Cmp;
4506   // If NumCases overflowed, then all possible values jump to the successor.
4507   if (NumCases->isNullValue() && !ContiguousCases->empty())
4508     Cmp = ConstantInt::getTrue(SI->getContext());
4509   else
4510     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4511   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4512 
4513   // Update weight for the newly-created conditional branch.
4514   if (HasBranchWeights(SI)) {
4515     SmallVector<uint64_t, 8> Weights;
4516     GetBranchWeights(SI, Weights);
4517     if (Weights.size() == 1 + SI->getNumCases()) {
4518       uint64_t TrueWeight = 0;
4519       uint64_t FalseWeight = 0;
4520       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4521         if (SI->getSuccessor(I) == ContiguousDest)
4522           TrueWeight += Weights[I];
4523         else
4524           FalseWeight += Weights[I];
4525       }
4526       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4527         TrueWeight /= 2;
4528         FalseWeight /= 2;
4529       }
4530       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4531     }
4532   }
4533 
4534   // Prune obsolete incoming values off the successors' PHI nodes.
4535   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4536     unsigned PreviousEdges = ContiguousCases->size();
4537     if (ContiguousDest == SI->getDefaultDest())
4538       ++PreviousEdges;
4539     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4540       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4541   }
4542   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4543     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4544     if (OtherDest == SI->getDefaultDest())
4545       ++PreviousEdges;
4546     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4547       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4548   }
4549 
4550   // Clean up the default block - it may have phis or other instructions before
4551   // the unreachable terminator.
4552   if (!HasDefault)
4553     createUnreachableSwitchDefault(SI);
4554 
4555   // Drop the switch.
4556   SI->eraseFromParent();
4557 
4558   return true;
4559 }
4560 
4561 /// Compute masked bits for the condition of a switch
4562 /// and use it to remove dead cases.
4563 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4564                                      const DataLayout &DL) {
4565   Value *Cond = SI->getCondition();
4566   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4567   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4568 
4569   // We can also eliminate cases by determining that their values are outside of
4570   // the limited range of the condition based on how many significant (non-sign)
4571   // bits are in the condition value.
4572   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4573   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4574 
4575   // Gather dead cases.
4576   SmallVector<ConstantInt *, 8> DeadCases;
4577   for (auto &Case : SI->cases()) {
4578     const APInt &CaseVal = Case.getCaseValue()->getValue();
4579     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4580         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4581       DeadCases.push_back(Case.getCaseValue());
4582       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4583                         << " is dead.\n");
4584     }
4585   }
4586 
4587   // If we can prove that the cases must cover all possible values, the
4588   // default destination becomes dead and we can remove it.  If we know some
4589   // of the bits in the value, we can use that to more precisely compute the
4590   // number of possible unique case values.
4591   bool HasDefault =
4592       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4593   const unsigned NumUnknownBits =
4594       Bits - (Known.Zero | Known.One).countPopulation();
4595   assert(NumUnknownBits <= Bits);
4596   if (HasDefault && DeadCases.empty() &&
4597       NumUnknownBits < 64 /* avoid overflow */ &&
4598       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4599     createUnreachableSwitchDefault(SI);
4600     return true;
4601   }
4602 
4603   if (DeadCases.empty())
4604     return false;
4605 
4606   SwitchInstProfUpdateWrapper SIW(*SI);
4607   for (ConstantInt *DeadCase : DeadCases) {
4608     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4609     assert(CaseI != SI->case_default() &&
4610            "Case was not found. Probably mistake in DeadCases forming.");
4611     // Prune unused values from PHI nodes.
4612     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4613     SIW.removeCase(CaseI);
4614   }
4615 
4616   return true;
4617 }
4618 
4619 /// If BB would be eligible for simplification by
4620 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4621 /// by an unconditional branch), look at the phi node for BB in the successor
4622 /// block and see if the incoming value is equal to CaseValue. If so, return
4623 /// the phi node, and set PhiIndex to BB's index in the phi node.
4624 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4625                                               BasicBlock *BB, int *PhiIndex) {
4626   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4627     return nullptr; // BB must be empty to be a candidate for simplification.
4628   if (!BB->getSinglePredecessor())
4629     return nullptr; // BB must be dominated by the switch.
4630 
4631   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4632   if (!Branch || !Branch->isUnconditional())
4633     return nullptr; // Terminator must be unconditional branch.
4634 
4635   BasicBlock *Succ = Branch->getSuccessor(0);
4636 
4637   for (PHINode &PHI : Succ->phis()) {
4638     int Idx = PHI.getBasicBlockIndex(BB);
4639     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4640 
4641     Value *InValue = PHI.getIncomingValue(Idx);
4642     if (InValue != CaseValue)
4643       continue;
4644 
4645     *PhiIndex = Idx;
4646     return &PHI;
4647   }
4648 
4649   return nullptr;
4650 }
4651 
4652 /// Try to forward the condition of a switch instruction to a phi node
4653 /// dominated by the switch, if that would mean that some of the destination
4654 /// blocks of the switch can be folded away. Return true if a change is made.
4655 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4656   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4657 
4658   ForwardingNodesMap ForwardingNodes;
4659   BasicBlock *SwitchBlock = SI->getParent();
4660   bool Changed = false;
4661   for (auto &Case : SI->cases()) {
4662     ConstantInt *CaseValue = Case.getCaseValue();
4663     BasicBlock *CaseDest = Case.getCaseSuccessor();
4664 
4665     // Replace phi operands in successor blocks that are using the constant case
4666     // value rather than the switch condition variable:
4667     //   switchbb:
4668     //   switch i32 %x, label %default [
4669     //     i32 17, label %succ
4670     //   ...
4671     //   succ:
4672     //     %r = phi i32 ... [ 17, %switchbb ] ...
4673     // -->
4674     //     %r = phi i32 ... [ %x, %switchbb ] ...
4675 
4676     for (PHINode &Phi : CaseDest->phis()) {
4677       // This only works if there is exactly 1 incoming edge from the switch to
4678       // a phi. If there is >1, that means multiple cases of the switch map to 1
4679       // value in the phi, and that phi value is not the switch condition. Thus,
4680       // this transform would not make sense (the phi would be invalid because
4681       // a phi can't have different incoming values from the same block).
4682       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4683       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4684           count(Phi.blocks(), SwitchBlock) == 1) {
4685         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4686         Changed = true;
4687       }
4688     }
4689 
4690     // Collect phi nodes that are indirectly using this switch's case constants.
4691     int PhiIdx;
4692     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4693       ForwardingNodes[Phi].push_back(PhiIdx);
4694   }
4695 
4696   for (auto &ForwardingNode : ForwardingNodes) {
4697     PHINode *Phi = ForwardingNode.first;
4698     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4699     if (Indexes.size() < 2)
4700       continue;
4701 
4702     for (int Index : Indexes)
4703       Phi->setIncomingValue(Index, SI->getCondition());
4704     Changed = true;
4705   }
4706 
4707   return Changed;
4708 }
4709 
4710 /// Return true if the backend will be able to handle
4711 /// initializing an array of constants like C.
4712 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4713   if (C->isThreadDependent())
4714     return false;
4715   if (C->isDLLImportDependent())
4716     return false;
4717 
4718   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4719       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4720       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4721     return false;
4722 
4723   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4724     if (!CE->isGEPWithNoNotionalOverIndexing())
4725       return false;
4726     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4727       return false;
4728   }
4729 
4730   if (!TTI.shouldBuildLookupTablesForConstant(C))
4731     return false;
4732 
4733   return true;
4734 }
4735 
4736 /// If V is a Constant, return it. Otherwise, try to look up
4737 /// its constant value in ConstantPool, returning 0 if it's not there.
4738 static Constant *
4739 LookupConstant(Value *V,
4740                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4741   if (Constant *C = dyn_cast<Constant>(V))
4742     return C;
4743   return ConstantPool.lookup(V);
4744 }
4745 
4746 /// Try to fold instruction I into a constant. This works for
4747 /// simple instructions such as binary operations where both operands are
4748 /// constant or can be replaced by constants from the ConstantPool. Returns the
4749 /// resulting constant on success, 0 otherwise.
4750 static Constant *
4751 ConstantFold(Instruction *I, const DataLayout &DL,
4752              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4753   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4754     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4755     if (!A)
4756       return nullptr;
4757     if (A->isAllOnesValue())
4758       return LookupConstant(Select->getTrueValue(), ConstantPool);
4759     if (A->isNullValue())
4760       return LookupConstant(Select->getFalseValue(), ConstantPool);
4761     return nullptr;
4762   }
4763 
4764   SmallVector<Constant *, 4> COps;
4765   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4766     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4767       COps.push_back(A);
4768     else
4769       return nullptr;
4770   }
4771 
4772   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4773     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4774                                            COps[1], DL);
4775   }
4776 
4777   return ConstantFoldInstOperands(I, COps, DL);
4778 }
4779 
4780 /// Try to determine the resulting constant values in phi nodes
4781 /// at the common destination basic block, *CommonDest, for one of the case
4782 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4783 /// case), of a switch instruction SI.
4784 static bool
4785 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4786                BasicBlock **CommonDest,
4787                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4788                const DataLayout &DL, const TargetTransformInfo &TTI) {
4789   // The block from which we enter the common destination.
4790   BasicBlock *Pred = SI->getParent();
4791 
4792   // If CaseDest is empty except for some side-effect free instructions through
4793   // which we can constant-propagate the CaseVal, continue to its successor.
4794   SmallDenseMap<Value *, Constant *> ConstantPool;
4795   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4796   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4797     if (I.isTerminator()) {
4798       // If the terminator is a simple branch, continue to the next block.
4799       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4800         return false;
4801       Pred = CaseDest;
4802       CaseDest = I.getSuccessor(0);
4803     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4804       // Instruction is side-effect free and constant.
4805 
4806       // If the instruction has uses outside this block or a phi node slot for
4807       // the block, it is not safe to bypass the instruction since it would then
4808       // no longer dominate all its uses.
4809       for (auto &Use : I.uses()) {
4810         User *User = Use.getUser();
4811         if (Instruction *I = dyn_cast<Instruction>(User))
4812           if (I->getParent() == CaseDest)
4813             continue;
4814         if (PHINode *Phi = dyn_cast<PHINode>(User))
4815           if (Phi->getIncomingBlock(Use) == CaseDest)
4816             continue;
4817         return false;
4818       }
4819 
4820       ConstantPool.insert(std::make_pair(&I, C));
4821     } else {
4822       break;
4823     }
4824   }
4825 
4826   // If we did not have a CommonDest before, use the current one.
4827   if (!*CommonDest)
4828     *CommonDest = CaseDest;
4829   // If the destination isn't the common one, abort.
4830   if (CaseDest != *CommonDest)
4831     return false;
4832 
4833   // Get the values for this case from phi nodes in the destination block.
4834   for (PHINode &PHI : (*CommonDest)->phis()) {
4835     int Idx = PHI.getBasicBlockIndex(Pred);
4836     if (Idx == -1)
4837       continue;
4838 
4839     Constant *ConstVal =
4840         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4841     if (!ConstVal)
4842       return false;
4843 
4844     // Be conservative about which kinds of constants we support.
4845     if (!ValidLookupTableConstant(ConstVal, TTI))
4846       return false;
4847 
4848     Res.push_back(std::make_pair(&PHI, ConstVal));
4849   }
4850 
4851   return Res.size() > 0;
4852 }
4853 
4854 // Helper function used to add CaseVal to the list of cases that generate
4855 // Result. Returns the updated number of cases that generate this result.
4856 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4857                                  SwitchCaseResultVectorTy &UniqueResults,
4858                                  Constant *Result) {
4859   for (auto &I : UniqueResults) {
4860     if (I.first == Result) {
4861       I.second.push_back(CaseVal);
4862       return I.second.size();
4863     }
4864   }
4865   UniqueResults.push_back(
4866       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4867   return 1;
4868 }
4869 
4870 // Helper function that initializes a map containing
4871 // results for the PHI node of the common destination block for a switch
4872 // instruction. Returns false if multiple PHI nodes have been found or if
4873 // there is not a common destination block for the switch.
4874 static bool
4875 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4876                       SwitchCaseResultVectorTy &UniqueResults,
4877                       Constant *&DefaultResult, const DataLayout &DL,
4878                       const TargetTransformInfo &TTI,
4879                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4880   for (auto &I : SI->cases()) {
4881     ConstantInt *CaseVal = I.getCaseValue();
4882 
4883     // Resulting value at phi nodes for this case value.
4884     SwitchCaseResultsTy Results;
4885     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4886                         DL, TTI))
4887       return false;
4888 
4889     // Only one value per case is permitted.
4890     if (Results.size() > 1)
4891       return false;
4892 
4893     // Add the case->result mapping to UniqueResults.
4894     const uintptr_t NumCasesForResult =
4895         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4896 
4897     // Early out if there are too many cases for this result.
4898     if (NumCasesForResult > MaxCasesPerResult)
4899       return false;
4900 
4901     // Early out if there are too many unique results.
4902     if (UniqueResults.size() > MaxUniqueResults)
4903       return false;
4904 
4905     // Check the PHI consistency.
4906     if (!PHI)
4907       PHI = Results[0].first;
4908     else if (PHI != Results[0].first)
4909       return false;
4910   }
4911   // Find the default result value.
4912   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4913   BasicBlock *DefaultDest = SI->getDefaultDest();
4914   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4915                  DL, TTI);
4916   // If the default value is not found abort unless the default destination
4917   // is unreachable.
4918   DefaultResult =
4919       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4920   if ((!DefaultResult &&
4921        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4922     return false;
4923 
4924   return true;
4925 }
4926 
4927 // Helper function that checks if it is possible to transform a switch with only
4928 // two cases (or two cases + default) that produces a result into a select.
4929 // Example:
4930 // switch (a) {
4931 //   case 10:                %0 = icmp eq i32 %a, 10
4932 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4933 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4934 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4935 //   default:
4936 //     return 4;
4937 // }
4938 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4939                                    Constant *DefaultResult, Value *Condition,
4940                                    IRBuilder<> &Builder) {
4941   assert(ResultVector.size() == 2 &&
4942          "We should have exactly two unique results at this point");
4943   // If we are selecting between only two cases transform into a simple
4944   // select or a two-way select if default is possible.
4945   if (ResultVector[0].second.size() == 1 &&
4946       ResultVector[1].second.size() == 1) {
4947     ConstantInt *const FirstCase = ResultVector[0].second[0];
4948     ConstantInt *const SecondCase = ResultVector[1].second[0];
4949 
4950     bool DefaultCanTrigger = DefaultResult;
4951     Value *SelectValue = ResultVector[1].first;
4952     if (DefaultCanTrigger) {
4953       Value *const ValueCompare =
4954           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4955       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4956                                          DefaultResult, "switch.select");
4957     }
4958     Value *const ValueCompare =
4959         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4960     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4961                                 SelectValue, "switch.select");
4962   }
4963 
4964   return nullptr;
4965 }
4966 
4967 // Helper function to cleanup a switch instruction that has been converted into
4968 // a select, fixing up PHI nodes and basic blocks.
4969 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4970                                               Value *SelectValue,
4971                                               IRBuilder<> &Builder) {
4972   BasicBlock *SelectBB = SI->getParent();
4973   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4974     PHI->removeIncomingValue(SelectBB);
4975   PHI->addIncoming(SelectValue, SelectBB);
4976 
4977   Builder.CreateBr(PHI->getParent());
4978 
4979   // Remove the switch.
4980   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4981     BasicBlock *Succ = SI->getSuccessor(i);
4982 
4983     if (Succ == PHI->getParent())
4984       continue;
4985     Succ->removePredecessor(SelectBB);
4986   }
4987   SI->eraseFromParent();
4988 }
4989 
4990 /// If the switch is only used to initialize one or more
4991 /// phi nodes in a common successor block with only two different
4992 /// constant values, replace the switch with select.
4993 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4994                            const DataLayout &DL,
4995                            const TargetTransformInfo &TTI) {
4996   Value *const Cond = SI->getCondition();
4997   PHINode *PHI = nullptr;
4998   BasicBlock *CommonDest = nullptr;
4999   Constant *DefaultResult;
5000   SwitchCaseResultVectorTy UniqueResults;
5001   // Collect all the cases that will deliver the same value from the switch.
5002   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5003                              DL, TTI, 2, 1))
5004     return false;
5005   // Selects choose between maximum two values.
5006   if (UniqueResults.size() != 2)
5007     return false;
5008   assert(PHI != nullptr && "PHI for value select not found");
5009 
5010   Builder.SetInsertPoint(SI);
5011   Value *SelectValue =
5012       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5013   if (SelectValue) {
5014     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
5015     return true;
5016   }
5017   // The switch couldn't be converted into a select.
5018   return false;
5019 }
5020 
5021 namespace {
5022 
5023 /// This class represents a lookup table that can be used to replace a switch.
5024 class SwitchLookupTable {
5025 public:
5026   /// Create a lookup table to use as a switch replacement with the contents
5027   /// of Values, using DefaultValue to fill any holes in the table.
5028   SwitchLookupTable(
5029       Module &M, uint64_t TableSize, ConstantInt *Offset,
5030       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5031       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5032 
5033   /// Build instructions with Builder to retrieve the value at
5034   /// the position given by Index in the lookup table.
5035   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5036 
5037   /// Return true if a table with TableSize elements of
5038   /// type ElementType would fit in a target-legal register.
5039   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5040                                  Type *ElementType);
5041 
5042 private:
5043   // Depending on the contents of the table, it can be represented in
5044   // different ways.
5045   enum {
5046     // For tables where each element contains the same value, we just have to
5047     // store that single value and return it for each lookup.
5048     SingleValueKind,
5049 
5050     // For tables where there is a linear relationship between table index
5051     // and values. We calculate the result with a simple multiplication
5052     // and addition instead of a table lookup.
5053     LinearMapKind,
5054 
5055     // For small tables with integer elements, we can pack them into a bitmap
5056     // that fits into a target-legal register. Values are retrieved by
5057     // shift and mask operations.
5058     BitMapKind,
5059 
5060     // The table is stored as an array of values. Values are retrieved by load
5061     // instructions from the table.
5062     ArrayKind
5063   } Kind;
5064 
5065   // For SingleValueKind, this is the single value.
5066   Constant *SingleValue = nullptr;
5067 
5068   // For BitMapKind, this is the bitmap.
5069   ConstantInt *BitMap = nullptr;
5070   IntegerType *BitMapElementTy = nullptr;
5071 
5072   // For LinearMapKind, these are the constants used to derive the value.
5073   ConstantInt *LinearOffset = nullptr;
5074   ConstantInt *LinearMultiplier = nullptr;
5075 
5076   // For ArrayKind, this is the array.
5077   GlobalVariable *Array = nullptr;
5078 };
5079 
5080 } // end anonymous namespace
5081 
5082 SwitchLookupTable::SwitchLookupTable(
5083     Module &M, uint64_t TableSize, ConstantInt *Offset,
5084     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5085     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5086   assert(Values.size() && "Can't build lookup table without values!");
5087   assert(TableSize >= Values.size() && "Can't fit values in table!");
5088 
5089   // If all values in the table are equal, this is that value.
5090   SingleValue = Values.begin()->second;
5091 
5092   Type *ValueType = Values.begin()->second->getType();
5093 
5094   // Build up the table contents.
5095   SmallVector<Constant *, 64> TableContents(TableSize);
5096   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5097     ConstantInt *CaseVal = Values[I].first;
5098     Constant *CaseRes = Values[I].second;
5099     assert(CaseRes->getType() == ValueType);
5100 
5101     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5102     TableContents[Idx] = CaseRes;
5103 
5104     if (CaseRes != SingleValue)
5105       SingleValue = nullptr;
5106   }
5107 
5108   // Fill in any holes in the table with the default result.
5109   if (Values.size() < TableSize) {
5110     assert(DefaultValue &&
5111            "Need a default value to fill the lookup table holes.");
5112     assert(DefaultValue->getType() == ValueType);
5113     for (uint64_t I = 0; I < TableSize; ++I) {
5114       if (!TableContents[I])
5115         TableContents[I] = DefaultValue;
5116     }
5117 
5118     if (DefaultValue != SingleValue)
5119       SingleValue = nullptr;
5120   }
5121 
5122   // If each element in the table contains the same value, we only need to store
5123   // that single value.
5124   if (SingleValue) {
5125     Kind = SingleValueKind;
5126     return;
5127   }
5128 
5129   // Check if we can derive the value with a linear transformation from the
5130   // table index.
5131   if (isa<IntegerType>(ValueType)) {
5132     bool LinearMappingPossible = true;
5133     APInt PrevVal;
5134     APInt DistToPrev;
5135     assert(TableSize >= 2 && "Should be a SingleValue table.");
5136     // Check if there is the same distance between two consecutive values.
5137     for (uint64_t I = 0; I < TableSize; ++I) {
5138       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5139       if (!ConstVal) {
5140         // This is an undef. We could deal with it, but undefs in lookup tables
5141         // are very seldom. It's probably not worth the additional complexity.
5142         LinearMappingPossible = false;
5143         break;
5144       }
5145       const APInt &Val = ConstVal->getValue();
5146       if (I != 0) {
5147         APInt Dist = Val - PrevVal;
5148         if (I == 1) {
5149           DistToPrev = Dist;
5150         } else if (Dist != DistToPrev) {
5151           LinearMappingPossible = false;
5152           break;
5153         }
5154       }
5155       PrevVal = Val;
5156     }
5157     if (LinearMappingPossible) {
5158       LinearOffset = cast<ConstantInt>(TableContents[0]);
5159       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5160       Kind = LinearMapKind;
5161       ++NumLinearMaps;
5162       return;
5163     }
5164   }
5165 
5166   // If the type is integer and the table fits in a register, build a bitmap.
5167   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5168     IntegerType *IT = cast<IntegerType>(ValueType);
5169     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5170     for (uint64_t I = TableSize; I > 0; --I) {
5171       TableInt <<= IT->getBitWidth();
5172       // Insert values into the bitmap. Undef values are set to zero.
5173       if (!isa<UndefValue>(TableContents[I - 1])) {
5174         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5175         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5176       }
5177     }
5178     BitMap = ConstantInt::get(M.getContext(), TableInt);
5179     BitMapElementTy = IT;
5180     Kind = BitMapKind;
5181     ++NumBitMaps;
5182     return;
5183   }
5184 
5185   // Store the table in an array.
5186   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5187   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5188 
5189   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5190                              GlobalVariable::PrivateLinkage, Initializer,
5191                              "switch.table." + FuncName);
5192   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5193   // Set the alignment to that of an array items. We will be only loading one
5194   // value out of it.
5195   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5196   Kind = ArrayKind;
5197 }
5198 
5199 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5200   switch (Kind) {
5201   case SingleValueKind:
5202     return SingleValue;
5203   case LinearMapKind: {
5204     // Derive the result value from the input value.
5205     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5206                                           false, "switch.idx.cast");
5207     if (!LinearMultiplier->isOne())
5208       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5209     if (!LinearOffset->isZero())
5210       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5211     return Result;
5212   }
5213   case BitMapKind: {
5214     // Type of the bitmap (e.g. i59).
5215     IntegerType *MapTy = BitMap->getType();
5216 
5217     // Cast Index to the same type as the bitmap.
5218     // Note: The Index is <= the number of elements in the table, so
5219     // truncating it to the width of the bitmask is safe.
5220     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5221 
5222     // Multiply the shift amount by the element width.
5223     ShiftAmt = Builder.CreateMul(
5224         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5225         "switch.shiftamt");
5226 
5227     // Shift down.
5228     Value *DownShifted =
5229         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5230     // Mask off.
5231     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5232   }
5233   case ArrayKind: {
5234     // Make sure the table index will not overflow when treated as signed.
5235     IntegerType *IT = cast<IntegerType>(Index->getType());
5236     uint64_t TableSize =
5237         Array->getInitializer()->getType()->getArrayNumElements();
5238     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5239       Index = Builder.CreateZExt(
5240           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5241           "switch.tableidx.zext");
5242 
5243     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5244     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5245                                            GEPIndices, "switch.gep");
5246     return Builder.CreateLoad(
5247         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5248         "switch.load");
5249   }
5250   }
5251   llvm_unreachable("Unknown lookup table kind!");
5252 }
5253 
5254 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5255                                            uint64_t TableSize,
5256                                            Type *ElementType) {
5257   auto *IT = dyn_cast<IntegerType>(ElementType);
5258   if (!IT)
5259     return false;
5260   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5261   // are <= 15, we could try to narrow the type.
5262 
5263   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5264   if (TableSize >= UINT_MAX / IT->getBitWidth())
5265     return false;
5266   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5267 }
5268 
5269 /// Determine whether a lookup table should be built for this switch, based on
5270 /// the number of cases, size of the table, and the types of the results.
5271 static bool
5272 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5273                        const TargetTransformInfo &TTI, const DataLayout &DL,
5274                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5275   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5276     return false; // TableSize overflowed, or mul below might overflow.
5277 
5278   bool AllTablesFitInRegister = true;
5279   bool HasIllegalType = false;
5280   for (const auto &I : ResultTypes) {
5281     Type *Ty = I.second;
5282 
5283     // Saturate this flag to true.
5284     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5285 
5286     // Saturate this flag to false.
5287     AllTablesFitInRegister =
5288         AllTablesFitInRegister &&
5289         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5290 
5291     // If both flags saturate, we're done. NOTE: This *only* works with
5292     // saturating flags, and all flags have to saturate first due to the
5293     // non-deterministic behavior of iterating over a dense map.
5294     if (HasIllegalType && !AllTablesFitInRegister)
5295       break;
5296   }
5297 
5298   // If each table would fit in a register, we should build it anyway.
5299   if (AllTablesFitInRegister)
5300     return true;
5301 
5302   // Don't build a table that doesn't fit in-register if it has illegal types.
5303   if (HasIllegalType)
5304     return false;
5305 
5306   // The table density should be at least 40%. This is the same criterion as for
5307   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5308   // FIXME: Find the best cut-off.
5309   return SI->getNumCases() * 10 >= TableSize * 4;
5310 }
5311 
5312 /// Try to reuse the switch table index compare. Following pattern:
5313 /// \code
5314 ///     if (idx < tablesize)
5315 ///        r = table[idx]; // table does not contain default_value
5316 ///     else
5317 ///        r = default_value;
5318 ///     if (r != default_value)
5319 ///        ...
5320 /// \endcode
5321 /// Is optimized to:
5322 /// \code
5323 ///     cond = idx < tablesize;
5324 ///     if (cond)
5325 ///        r = table[idx];
5326 ///     else
5327 ///        r = default_value;
5328 ///     if (cond)
5329 ///        ...
5330 /// \endcode
5331 /// Jump threading will then eliminate the second if(cond).
5332 static void reuseTableCompare(
5333     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5334     Constant *DefaultValue,
5335     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5336   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5337   if (!CmpInst)
5338     return;
5339 
5340   // We require that the compare is in the same block as the phi so that jump
5341   // threading can do its work afterwards.
5342   if (CmpInst->getParent() != PhiBlock)
5343     return;
5344 
5345   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5346   if (!CmpOp1)
5347     return;
5348 
5349   Value *RangeCmp = RangeCheckBranch->getCondition();
5350   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5351   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5352 
5353   // Check if the compare with the default value is constant true or false.
5354   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5355                                                  DefaultValue, CmpOp1, true);
5356   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5357     return;
5358 
5359   // Check if the compare with the case values is distinct from the default
5360   // compare result.
5361   for (auto ValuePair : Values) {
5362     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5363                                                 ValuePair.second, CmpOp1, true);
5364     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5365       return;
5366     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5367            "Expect true or false as compare result.");
5368   }
5369 
5370   // Check if the branch instruction dominates the phi node. It's a simple
5371   // dominance check, but sufficient for our needs.
5372   // Although this check is invariant in the calling loops, it's better to do it
5373   // at this late stage. Practically we do it at most once for a switch.
5374   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5375   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5376     BasicBlock *Pred = *PI;
5377     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5378       return;
5379   }
5380 
5381   if (DefaultConst == FalseConst) {
5382     // The compare yields the same result. We can replace it.
5383     CmpInst->replaceAllUsesWith(RangeCmp);
5384     ++NumTableCmpReuses;
5385   } else {
5386     // The compare yields the same result, just inverted. We can replace it.
5387     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5388         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5389         RangeCheckBranch);
5390     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5391     ++NumTableCmpReuses;
5392   }
5393 }
5394 
5395 /// If the switch is only used to initialize one or more phi nodes in a common
5396 /// successor block with different constant values, replace the switch with
5397 /// lookup tables.
5398 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5399                                 const DataLayout &DL,
5400                                 const TargetTransformInfo &TTI) {
5401   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5402 
5403   Function *Fn = SI->getParent()->getParent();
5404   // Only build lookup table when we have a target that supports it or the
5405   // attribute is not set.
5406   if (!TTI.shouldBuildLookupTables() ||
5407       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5408     return false;
5409 
5410   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5411   // split off a dense part and build a lookup table for that.
5412 
5413   // FIXME: This creates arrays of GEPs to constant strings, which means each
5414   // GEP needs a runtime relocation in PIC code. We should just build one big
5415   // string and lookup indices into that.
5416 
5417   // Ignore switches with less than three cases. Lookup tables will not make
5418   // them faster, so we don't analyze them.
5419   if (SI->getNumCases() < 3)
5420     return false;
5421 
5422   // Figure out the corresponding result for each case value and phi node in the
5423   // common destination, as well as the min and max case values.
5424   assert(!SI->cases().empty());
5425   SwitchInst::CaseIt CI = SI->case_begin();
5426   ConstantInt *MinCaseVal = CI->getCaseValue();
5427   ConstantInt *MaxCaseVal = CI->getCaseValue();
5428 
5429   BasicBlock *CommonDest = nullptr;
5430 
5431   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5432   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5433 
5434   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5435   SmallDenseMap<PHINode *, Type *> ResultTypes;
5436   SmallVector<PHINode *, 4> PHIs;
5437 
5438   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5439     ConstantInt *CaseVal = CI->getCaseValue();
5440     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5441       MinCaseVal = CaseVal;
5442     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5443       MaxCaseVal = CaseVal;
5444 
5445     // Resulting value at phi nodes for this case value.
5446     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5447     ResultsTy Results;
5448     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5449                         Results, DL, TTI))
5450       return false;
5451 
5452     // Append the result from this case to the list for each phi.
5453     for (const auto &I : Results) {
5454       PHINode *PHI = I.first;
5455       Constant *Value = I.second;
5456       if (!ResultLists.count(PHI))
5457         PHIs.push_back(PHI);
5458       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5459     }
5460   }
5461 
5462   // Keep track of the result types.
5463   for (PHINode *PHI : PHIs) {
5464     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5465   }
5466 
5467   uint64_t NumResults = ResultLists[PHIs[0]].size();
5468   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5469   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5470   bool TableHasHoles = (NumResults < TableSize);
5471 
5472   // If the table has holes, we need a constant result for the default case
5473   // or a bitmask that fits in a register.
5474   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5475   bool HasDefaultResults =
5476       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5477                      DefaultResultsList, DL, TTI);
5478 
5479   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5480   if (NeedMask) {
5481     // As an extra penalty for the validity test we require more cases.
5482     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5483       return false;
5484     if (!DL.fitsInLegalInteger(TableSize))
5485       return false;
5486   }
5487 
5488   for (const auto &I : DefaultResultsList) {
5489     PHINode *PHI = I.first;
5490     Constant *Result = I.second;
5491     DefaultResults[PHI] = Result;
5492   }
5493 
5494   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5495     return false;
5496 
5497   // Create the BB that does the lookups.
5498   Module &Mod = *CommonDest->getParent()->getParent();
5499   BasicBlock *LookupBB = BasicBlock::Create(
5500       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5501 
5502   // Compute the table index value.
5503   Builder.SetInsertPoint(SI);
5504   Value *TableIndex;
5505   if (MinCaseVal->isNullValue())
5506     TableIndex = SI->getCondition();
5507   else
5508     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5509                                    "switch.tableidx");
5510 
5511   // Compute the maximum table size representable by the integer type we are
5512   // switching upon.
5513   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5514   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5515   assert(MaxTableSize >= TableSize &&
5516          "It is impossible for a switch to have more entries than the max "
5517          "representable value of its input integer type's size.");
5518 
5519   // If the default destination is unreachable, or if the lookup table covers
5520   // all values of the conditional variable, branch directly to the lookup table
5521   // BB. Otherwise, check that the condition is within the case range.
5522   const bool DefaultIsReachable =
5523       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5524   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5525   BranchInst *RangeCheckBranch = nullptr;
5526 
5527   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5528     Builder.CreateBr(LookupBB);
5529     // Note: We call removeProdecessor later since we need to be able to get the
5530     // PHI value for the default case in case we're using a bit mask.
5531   } else {
5532     Value *Cmp = Builder.CreateICmpULT(
5533         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5534     RangeCheckBranch =
5535         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5536   }
5537 
5538   // Populate the BB that does the lookups.
5539   Builder.SetInsertPoint(LookupBB);
5540 
5541   if (NeedMask) {
5542     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5543     // re-purposed to do the hole check, and we create a new LookupBB.
5544     BasicBlock *MaskBB = LookupBB;
5545     MaskBB->setName("switch.hole_check");
5546     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5547                                   CommonDest->getParent(), CommonDest);
5548 
5549     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5550     // unnecessary illegal types.
5551     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5552     APInt MaskInt(TableSizePowOf2, 0);
5553     APInt One(TableSizePowOf2, 1);
5554     // Build bitmask; fill in a 1 bit for every case.
5555     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5556     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5557       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5558                          .getLimitedValue();
5559       MaskInt |= One << Idx;
5560     }
5561     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5562 
5563     // Get the TableIndex'th bit of the bitmask.
5564     // If this bit is 0 (meaning hole) jump to the default destination,
5565     // else continue with table lookup.
5566     IntegerType *MapTy = TableMask->getType();
5567     Value *MaskIndex =
5568         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5569     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5570     Value *LoBit = Builder.CreateTrunc(
5571         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5572     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5573 
5574     Builder.SetInsertPoint(LookupBB);
5575     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5576   }
5577 
5578   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5579     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5580     // do not delete PHINodes here.
5581     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5582                                             /*KeepOneInputPHIs=*/true);
5583   }
5584 
5585   bool ReturnedEarly = false;
5586   for (PHINode *PHI : PHIs) {
5587     const ResultListTy &ResultList = ResultLists[PHI];
5588 
5589     // If using a bitmask, use any value to fill the lookup table holes.
5590     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5591     StringRef FuncName = Fn->getName();
5592     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5593                             FuncName);
5594 
5595     Value *Result = Table.BuildLookup(TableIndex, Builder);
5596 
5597     // If the result is used to return immediately from the function, we want to
5598     // do that right here.
5599     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5600         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5601       Builder.CreateRet(Result);
5602       ReturnedEarly = true;
5603       break;
5604     }
5605 
5606     // Do a small peephole optimization: re-use the switch table compare if
5607     // possible.
5608     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5609       BasicBlock *PhiBlock = PHI->getParent();
5610       // Search for compare instructions which use the phi.
5611       for (auto *User : PHI->users()) {
5612         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5613       }
5614     }
5615 
5616     PHI->addIncoming(Result, LookupBB);
5617   }
5618 
5619   if (!ReturnedEarly)
5620     Builder.CreateBr(CommonDest);
5621 
5622   // Remove the switch.
5623   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5624     BasicBlock *Succ = SI->getSuccessor(i);
5625 
5626     if (Succ == SI->getDefaultDest())
5627       continue;
5628     Succ->removePredecessor(SI->getParent());
5629   }
5630   SI->eraseFromParent();
5631 
5632   ++NumLookupTables;
5633   if (NeedMask)
5634     ++NumLookupTablesHoles;
5635   return true;
5636 }
5637 
5638 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5639   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5640   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5641   uint64_t Range = Diff + 1;
5642   uint64_t NumCases = Values.size();
5643   // 40% is the default density for building a jump table in optsize/minsize mode.
5644   uint64_t MinDensity = 40;
5645 
5646   return NumCases * 100 >= Range * MinDensity;
5647 }
5648 
5649 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5650 /// of cases.
5651 ///
5652 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5653 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5654 ///
5655 /// This converts a sparse switch into a dense switch which allows better
5656 /// lowering and could also allow transforming into a lookup table.
5657 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5658                               const DataLayout &DL,
5659                               const TargetTransformInfo &TTI) {
5660   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5661   if (CondTy->getIntegerBitWidth() > 64 ||
5662       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5663     return false;
5664   // Only bother with this optimization if there are more than 3 switch cases;
5665   // SDAG will only bother creating jump tables for 4 or more cases.
5666   if (SI->getNumCases() < 4)
5667     return false;
5668 
5669   // This transform is agnostic to the signedness of the input or case values. We
5670   // can treat the case values as signed or unsigned. We can optimize more common
5671   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5672   // as signed.
5673   SmallVector<int64_t,4> Values;
5674   for (auto &C : SI->cases())
5675     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5676   llvm::sort(Values);
5677 
5678   // If the switch is already dense, there's nothing useful to do here.
5679   if (isSwitchDense(Values))
5680     return false;
5681 
5682   // First, transform the values such that they start at zero and ascend.
5683   int64_t Base = Values[0];
5684   for (auto &V : Values)
5685     V -= (uint64_t)(Base);
5686 
5687   // Now we have signed numbers that have been shifted so that, given enough
5688   // precision, there are no negative values. Since the rest of the transform
5689   // is bitwise only, we switch now to an unsigned representation.
5690 
5691   // This transform can be done speculatively because it is so cheap - it
5692   // results in a single rotate operation being inserted.
5693   // FIXME: It's possible that optimizing a switch on powers of two might also
5694   // be beneficial - flag values are often powers of two and we could use a CLZ
5695   // as the key function.
5696 
5697   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5698   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5699   // less than 64.
5700   unsigned Shift = 64;
5701   for (auto &V : Values)
5702     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5703   assert(Shift < 64);
5704   if (Shift > 0)
5705     for (auto &V : Values)
5706       V = (int64_t)((uint64_t)V >> Shift);
5707 
5708   if (!isSwitchDense(Values))
5709     // Transform didn't create a dense switch.
5710     return false;
5711 
5712   // The obvious transform is to shift the switch condition right and emit a
5713   // check that the condition actually cleanly divided by GCD, i.e.
5714   //   C & (1 << Shift - 1) == 0
5715   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5716   //
5717   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5718   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5719   // are nonzero then the switch condition will be very large and will hit the
5720   // default case.
5721 
5722   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5723   Builder.SetInsertPoint(SI);
5724   auto *ShiftC = ConstantInt::get(Ty, Shift);
5725   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5726   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5727   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5728   auto *Rot = Builder.CreateOr(LShr, Shl);
5729   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5730 
5731   for (auto Case : SI->cases()) {
5732     auto *Orig = Case.getCaseValue();
5733     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5734     Case.setValue(
5735         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5736   }
5737   return true;
5738 }
5739 
5740 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5741   BasicBlock *BB = SI->getParent();
5742 
5743   if (isValueEqualityComparison(SI)) {
5744     // If we only have one predecessor, and if it is a branch on this value,
5745     // see if that predecessor totally determines the outcome of this switch.
5746     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5747       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5748         return requestResimplify();
5749 
5750     Value *Cond = SI->getCondition();
5751     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5752       if (SimplifySwitchOnSelect(SI, Select))
5753         return requestResimplify();
5754 
5755     // If the block only contains the switch, see if we can fold the block
5756     // away into any preds.
5757     if (SI == &*BB->instructionsWithoutDebug().begin())
5758       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5759         return requestResimplify();
5760   }
5761 
5762   // Try to transform the switch into an icmp and a branch.
5763   if (TurnSwitchRangeIntoICmp(SI, Builder))
5764     return requestResimplify();
5765 
5766   // Remove unreachable cases.
5767   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5768     return requestResimplify();
5769 
5770   if (switchToSelect(SI, Builder, DL, TTI))
5771     return requestResimplify();
5772 
5773   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5774     return requestResimplify();
5775 
5776   // The conversion from switch to lookup tables results in difficult-to-analyze
5777   // code and makes pruning branches much harder. This is a problem if the
5778   // switch expression itself can still be restricted as a result of inlining or
5779   // CVP. Therefore, only apply this transformation during late stages of the
5780   // optimisation pipeline.
5781   if (Options.ConvertSwitchToLookupTable &&
5782       SwitchToLookupTable(SI, Builder, DL, TTI))
5783     return requestResimplify();
5784 
5785   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5786     return requestResimplify();
5787 
5788   return false;
5789 }
5790 
5791 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
5792   BasicBlock *BB = IBI->getParent();
5793   bool Changed = false;
5794 
5795   // Eliminate redundant destinations.
5796   SmallPtrSet<Value *, 8> Succs;
5797   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5798     BasicBlock *Dest = IBI->getDestination(i);
5799     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5800       Dest->removePredecessor(BB);
5801       IBI->removeDestination(i);
5802       --i;
5803       --e;
5804       Changed = true;
5805     }
5806   }
5807 
5808   if (IBI->getNumDestinations() == 0) {
5809     // If the indirectbr has no successors, change it to unreachable.
5810     new UnreachableInst(IBI->getContext(), IBI);
5811     EraseTerminatorAndDCECond(IBI);
5812     return true;
5813   }
5814 
5815   if (IBI->getNumDestinations() == 1) {
5816     // If the indirectbr has one successor, change it to a direct branch.
5817     BranchInst::Create(IBI->getDestination(0), IBI);
5818     EraseTerminatorAndDCECond(IBI);
5819     return true;
5820   }
5821 
5822   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5823     if (SimplifyIndirectBrOnSelect(IBI, SI))
5824       return requestResimplify();
5825   }
5826   return Changed;
5827 }
5828 
5829 /// Given an block with only a single landing pad and a unconditional branch
5830 /// try to find another basic block which this one can be merged with.  This
5831 /// handles cases where we have multiple invokes with unique landing pads, but
5832 /// a shared handler.
5833 ///
5834 /// We specifically choose to not worry about merging non-empty blocks
5835 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5836 /// practice, the optimizer produces empty landing pad blocks quite frequently
5837 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5838 /// sinking in this file)
5839 ///
5840 /// This is primarily a code size optimization.  We need to avoid performing
5841 /// any transform which might inhibit optimization (such as our ability to
5842 /// specialize a particular handler via tail commoning).  We do this by not
5843 /// merging any blocks which require us to introduce a phi.  Since the same
5844 /// values are flowing through both blocks, we don't lose any ability to
5845 /// specialize.  If anything, we make such specialization more likely.
5846 ///
5847 /// TODO - This transformation could remove entries from a phi in the target
5848 /// block when the inputs in the phi are the same for the two blocks being
5849 /// merged.  In some cases, this could result in removal of the PHI entirely.
5850 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5851                                  BasicBlock *BB) {
5852   auto Succ = BB->getUniqueSuccessor();
5853   assert(Succ);
5854   // If there's a phi in the successor block, we'd likely have to introduce
5855   // a phi into the merged landing pad block.
5856   if (isa<PHINode>(*Succ->begin()))
5857     return false;
5858 
5859   for (BasicBlock *OtherPred : predecessors(Succ)) {
5860     if (BB == OtherPred)
5861       continue;
5862     BasicBlock::iterator I = OtherPred->begin();
5863     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5864     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5865       continue;
5866     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5867       ;
5868     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5869     if (!BI2 || !BI2->isIdenticalTo(BI))
5870       continue;
5871 
5872     // We've found an identical block.  Update our predecessors to take that
5873     // path instead and make ourselves dead.
5874     SmallPtrSet<BasicBlock *, 16> Preds;
5875     Preds.insert(pred_begin(BB), pred_end(BB));
5876     for (BasicBlock *Pred : Preds) {
5877       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5878       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5879              "unexpected successor");
5880       II->setUnwindDest(OtherPred);
5881     }
5882 
5883     // The debug info in OtherPred doesn't cover the merged control flow that
5884     // used to go through BB.  We need to delete it or update it.
5885     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5886       Instruction &Inst = *I;
5887       I++;
5888       if (isa<DbgInfoIntrinsic>(Inst))
5889         Inst.eraseFromParent();
5890     }
5891 
5892     SmallPtrSet<BasicBlock *, 16> Succs;
5893     Succs.insert(succ_begin(BB), succ_end(BB));
5894     for (BasicBlock *Succ : Succs) {
5895       Succ->removePredecessor(BB);
5896     }
5897 
5898     IRBuilder<> Builder(BI);
5899     Builder.CreateUnreachable();
5900     BI->eraseFromParent();
5901     return true;
5902   }
5903   return false;
5904 }
5905 
5906 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
5907   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
5908                                    : simplifyCondBranch(Branch, Builder);
5909 }
5910 
5911 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
5912                                           IRBuilder<> &Builder) {
5913   BasicBlock *BB = BI->getParent();
5914   BasicBlock *Succ = BI->getSuccessor(0);
5915 
5916   // If the Terminator is the only non-phi instruction, simplify the block.
5917   // If LoopHeader is provided, check if the block or its successor is a loop
5918   // header. (This is for early invocations before loop simplify and
5919   // vectorization to keep canonical loop forms for nested loops. These blocks
5920   // can be eliminated when the pass is invoked later in the back-end.)
5921   // Note that if BB has only one predecessor then we do not introduce new
5922   // backedge, so we can eliminate BB.
5923   bool NeedCanonicalLoop =
5924       Options.NeedCanonicalLoop &&
5925       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5926        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5927   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5928   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5929       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5930     return true;
5931 
5932   // If the only instruction in the block is a seteq/setne comparison against a
5933   // constant, try to simplify the block.
5934   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5935     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5936       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5937         ;
5938       if (I->isTerminator() &&
5939           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5940         return true;
5941     }
5942 
5943   // See if we can merge an empty landing pad block with another which is
5944   // equivalent.
5945   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5946     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5947       ;
5948     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5949       return true;
5950   }
5951 
5952   // If this basic block is ONLY a compare and a branch, and if a predecessor
5953   // branches to us and our successor, fold the comparison into the
5954   // predecessor and use logical operations to update the incoming value
5955   // for PHI nodes in common successor.
5956   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5957     return requestResimplify();
5958   return false;
5959 }
5960 
5961 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5962   BasicBlock *PredPred = nullptr;
5963   for (auto *P : predecessors(BB)) {
5964     BasicBlock *PPred = P->getSinglePredecessor();
5965     if (!PPred || (PredPred && PredPred != PPred))
5966       return nullptr;
5967     PredPred = PPred;
5968   }
5969   return PredPred;
5970 }
5971 
5972 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5973   BasicBlock *BB = BI->getParent();
5974   if (!Options.SimplifyCondBranch)
5975     return false;
5976 
5977   // Conditional branch
5978   if (isValueEqualityComparison(BI)) {
5979     // If we only have one predecessor, and if it is a branch on this value,
5980     // see if that predecessor totally determines the outcome of this
5981     // switch.
5982     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5983       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5984         return requestResimplify();
5985 
5986     // This block must be empty, except for the setcond inst, if it exists.
5987     // Ignore dbg intrinsics.
5988     auto I = BB->instructionsWithoutDebug().begin();
5989     if (&*I == BI) {
5990       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5991         return requestResimplify();
5992     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5993       ++I;
5994       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5995         return requestResimplify();
5996     }
5997   }
5998 
5999   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6000   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6001     return true;
6002 
6003   // If this basic block has dominating predecessor blocks and the dominating
6004   // blocks' conditions imply BI's condition, we know the direction of BI.
6005   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6006   if (Imp) {
6007     // Turn this into a branch on constant.
6008     auto *OldCond = BI->getCondition();
6009     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6010                              : ConstantInt::getFalse(BB->getContext());
6011     BI->setCondition(TorF);
6012     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6013     return requestResimplify();
6014   }
6015 
6016   // If this basic block is ONLY a compare and a branch, and if a predecessor
6017   // branches to us and one of our successors, fold the comparison into the
6018   // predecessor and use logical operations to pick the right destination.
6019   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
6020     return requestResimplify();
6021 
6022   // We have a conditional branch to two blocks that are only reachable
6023   // from BI.  We know that the condbr dominates the two blocks, so see if
6024   // there is any identical code in the "then" and "else" blocks.  If so, we
6025   // can hoist it up to the branching block.
6026   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6027     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6028       if (HoistThenElseCodeToIf(BI, TTI))
6029         return requestResimplify();
6030     } else {
6031       // If Successor #1 has multiple preds, we may be able to conditionally
6032       // execute Successor #0 if it branches to Successor #1.
6033       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6034       if (Succ0TI->getNumSuccessors() == 1 &&
6035           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6036         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6037           return requestResimplify();
6038     }
6039   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6040     // If Successor #0 has multiple preds, we may be able to conditionally
6041     // execute Successor #1 if it branches to Successor #0.
6042     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6043     if (Succ1TI->getNumSuccessors() == 1 &&
6044         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6045       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6046         return requestResimplify();
6047   }
6048 
6049   // If this is a branch on a phi node in the current block, thread control
6050   // through this block if any PHI node entries are constants.
6051   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6052     if (PN->getParent() == BI->getParent())
6053       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
6054         return requestResimplify();
6055 
6056   // Scan predecessor blocks for conditional branches.
6057   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6058     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6059       if (PBI != BI && PBI->isConditional())
6060         if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
6061           return requestResimplify();
6062 
6063   // Look for diamond patterns.
6064   if (MergeCondStores)
6065     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6066       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6067         if (PBI != BI && PBI->isConditional())
6068           if (mergeConditionalStores(PBI, BI, DL, TTI))
6069             return requestResimplify();
6070 
6071   return false;
6072 }
6073 
6074 /// Check if passing a value to an instruction will cause undefined behavior.
6075 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6076   Constant *C = dyn_cast<Constant>(V);
6077   if (!C)
6078     return false;
6079 
6080   if (I->use_empty())
6081     return false;
6082 
6083   if (C->isNullValue() || isa<UndefValue>(C)) {
6084     // Only look at the first use, avoid hurting compile time with long uselists
6085     User *Use = *I->user_begin();
6086 
6087     // Now make sure that there are no instructions in between that can alter
6088     // control flow (eg. calls)
6089     for (BasicBlock::iterator
6090              i = ++BasicBlock::iterator(I),
6091              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6092          i != UI; ++i)
6093       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6094         return false;
6095 
6096     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6097     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6098       if (GEP->getPointerOperand() == I)
6099         return passingValueIsAlwaysUndefined(V, GEP);
6100 
6101     // Look through bitcasts.
6102     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6103       return passingValueIsAlwaysUndefined(V, BC);
6104 
6105     // Load from null is undefined.
6106     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6107       if (!LI->isVolatile())
6108         return !NullPointerIsDefined(LI->getFunction(),
6109                                      LI->getPointerAddressSpace());
6110 
6111     // Store to null is undefined.
6112     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6113       if (!SI->isVolatile())
6114         return (!NullPointerIsDefined(SI->getFunction(),
6115                                       SI->getPointerAddressSpace())) &&
6116                SI->getPointerOperand() == I;
6117 
6118     // A call to null is undefined.
6119     if (auto *CB = dyn_cast<CallBase>(Use))
6120       return !NullPointerIsDefined(CB->getFunction()) &&
6121              CB->getCalledOperand() == I;
6122   }
6123   return false;
6124 }
6125 
6126 /// If BB has an incoming value that will always trigger undefined behavior
6127 /// (eg. null pointer dereference), remove the branch leading here.
6128 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6129   for (PHINode &PHI : BB->phis())
6130     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6131       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6132         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6133         IRBuilder<> Builder(T);
6134         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6135           BB->removePredecessor(PHI.getIncomingBlock(i));
6136           // Turn uncoditional branches into unreachables and remove the dead
6137           // destination from conditional branches.
6138           if (BI->isUnconditional())
6139             Builder.CreateUnreachable();
6140           else
6141             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6142                                                        : BI->getSuccessor(0));
6143           BI->eraseFromParent();
6144           return true;
6145         }
6146         // TODO: SwitchInst.
6147       }
6148 
6149   return false;
6150 }
6151 
6152 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6153   bool Changed = false;
6154 
6155   assert(BB && BB->getParent() && "Block not embedded in function!");
6156   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6157 
6158   // Remove basic blocks that have no predecessors (except the entry block)...
6159   // or that just have themself as a predecessor.  These are unreachable.
6160   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6161       BB->getSinglePredecessor() == BB) {
6162     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6163     DeleteDeadBlock(BB);
6164     return true;
6165   }
6166 
6167   // Check to see if we can constant propagate this terminator instruction
6168   // away...
6169   Changed |= ConstantFoldTerminator(BB, true);
6170 
6171   // Check for and eliminate duplicate PHI nodes in this block.
6172   Changed |= EliminateDuplicatePHINodes(BB);
6173 
6174   // Check for and remove branches that will always cause undefined behavior.
6175   Changed |= removeUndefIntroducingPredecessor(BB);
6176 
6177   // Merge basic blocks into their predecessor if there is only one distinct
6178   // pred, and if there is only one distinct successor of the predecessor, and
6179   // if there are no PHI nodes.
6180   if (MergeBlockIntoPredecessor(BB))
6181     return true;
6182 
6183   if (SinkCommon && Options.SinkCommonInsts)
6184     Changed |= SinkCommonCodeFromPredecessors(BB);
6185 
6186   IRBuilder<> Builder(BB);
6187 
6188   if (Options.FoldTwoEntryPHINode) {
6189     // If there is a trivial two-entry PHI node in this basic block, and we can
6190     // eliminate it, do so now.
6191     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6192       if (PN->getNumIncomingValues() == 2)
6193         Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6194   }
6195 
6196   Instruction *Terminator = BB->getTerminator();
6197   Builder.SetInsertPoint(Terminator);
6198   switch (Terminator->getOpcode()) {
6199   case Instruction::Br:
6200     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6201     break;
6202   case Instruction::Ret:
6203     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6204     break;
6205   case Instruction::Resume:
6206     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6207     break;
6208   case Instruction::CleanupRet:
6209     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6210     break;
6211   case Instruction::Switch:
6212     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6213     break;
6214   case Instruction::Unreachable:
6215     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6216     break;
6217   case Instruction::IndirectBr:
6218     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6219     break;
6220   }
6221 
6222   return Changed;
6223 }
6224 
6225 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6226   bool Changed = false;
6227 
6228   // Repeated simplify BB as long as resimplification is requested.
6229   do {
6230     Resimplify = false;
6231 
6232     // Perform one round of simplifcation. Resimplify flag will be set if
6233     // another iteration is requested.
6234     Changed |= simplifyOnce(BB);
6235   } while (Resimplify);
6236 
6237   return Changed;
6238 }
6239 
6240 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6241                        const SimplifyCFGOptions &Options,
6242                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6243   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6244                         Options)
6245       .run(BB);
6246 }
6247