1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <climits>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <set>
78 #include <tuple>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 using namespace PatternMatch;
84 
85 #define DEBUG_TYPE "simplifycfg"
86 
87 // Chosen as 2 so as to be cheap, but still to have enough power to fold
88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
89 // To catch this, we need to fold a compare and a select, hence '2' being the
90 // minimum reasonable default.
91 static cl::opt<unsigned> PHINodeFoldingThreshold(
92     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
93     cl::desc(
94         "Control the amount of phi node folding to perform (default = 2)"));
95 
96 static cl::opt<bool> DupRet(
97     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
98     cl::desc("Duplicate return instructions into unconditional branches"));
99 
100 static cl::opt<bool>
101     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
102                cl::desc("Sink common instructions down to the end block"));
103 
104 static cl::opt<bool> HoistCondStores(
105     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
106     cl::desc("Hoist conditional stores if an unconditional store precedes"));
107 
108 static cl::opt<bool> MergeCondStores(
109     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
110     cl::desc("Hoist conditional stores even if an unconditional store does not "
111              "precede - hoist multiple conditional stores into a single "
112              "predicated store"));
113 
114 static cl::opt<bool> MergeCondStoresAggressively(
115     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
116     cl::desc("When merging conditional stores, do so even if the resultant "
117              "basic blocks are unlikely to be if-converted as a result"));
118 
119 static cl::opt<bool> SpeculateOneExpensiveInst(
120     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
121     cl::desc("Allow exactly one expensive instruction to be speculatively "
122              "executed"));
123 
124 static cl::opt<unsigned> MaxSpeculationDepth(
125     "max-speculation-depth", cl::Hidden, cl::init(10),
126     cl::desc("Limit maximum recursion depth when calculating costs of "
127              "speculatively executed instructions"));
128 
129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
130 STATISTIC(NumLinearMaps,
131           "Number of switch instructions turned into linear mapping");
132 STATISTIC(NumLookupTables,
133           "Number of switch instructions turned into lookup tables");
134 STATISTIC(
135     NumLookupTablesHoles,
136     "Number of switch instructions turned into lookup tables (holes checked)");
137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
138 STATISTIC(NumSinkCommons,
139           "Number of common instructions sunk down to the end block");
140 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
141 
142 namespace {
143 
144 // The first field contains the value that the switch produces when a certain
145 // case group is selected, and the second field is a vector containing the
146 // cases composing the case group.
147 using SwitchCaseResultVectorTy =
148     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
149 
150 // The first field contains the phi node that generates a result of the switch
151 // and the second field contains the value generated for a certain case in the
152 // switch for that PHI.
153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
154 
155 /// ValueEqualityComparisonCase - Represents a case of a switch.
156 struct ValueEqualityComparisonCase {
157   ConstantInt *Value;
158   BasicBlock *Dest;
159 
160   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
161       : Value(Value), Dest(Dest) {}
162 
163   bool operator<(ValueEqualityComparisonCase RHS) const {
164     // Comparing pointers is ok as we only rely on the order for uniquing.
165     return Value < RHS.Value;
166   }
167 
168   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
169 };
170 
171 class SimplifyCFGOpt {
172   const TargetTransformInfo &TTI;
173   const DataLayout &DL;
174   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
175   const SimplifyCFGOptions &Options;
176 
177   Value *isValueEqualityComparison(TerminatorInst *TI);
178   BasicBlock *GetValueEqualityComparisonCases(
179       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
180   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
181                                                      BasicBlock *Pred,
182                                                      IRBuilder<> &Builder);
183   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
184                                            IRBuilder<> &Builder);
185 
186   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
187   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
188   bool SimplifySingleResume(ResumeInst *RI);
189   bool SimplifyCommonResume(ResumeInst *RI);
190   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
191   bool SimplifyUnreachable(UnreachableInst *UI);
192   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
193   bool SimplifyIndirectBr(IndirectBrInst *IBI);
194   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
195   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
196 
197 public:
198   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
199                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
200                  const SimplifyCFGOptions &Opts)
201       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
202 
203   bool run(BasicBlock *BB);
204 };
205 
206 } // end anonymous namespace
207 
208 /// Return true if it is safe to merge these two
209 /// terminator instructions together.
210 static bool
211 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
212                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
213   if (SI1 == SI2)
214     return false; // Can't merge with self!
215 
216   // It is not safe to merge these two switch instructions if they have a common
217   // successor, and if that successor has a PHI node, and if *that* PHI node has
218   // conflicting incoming values from the two switch blocks.
219   BasicBlock *SI1BB = SI1->getParent();
220   BasicBlock *SI2BB = SI2->getParent();
221 
222   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
223   bool Fail = false;
224   for (BasicBlock *Succ : successors(SI2BB))
225     if (SI1Succs.count(Succ))
226       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
227         PHINode *PN = cast<PHINode>(BBI);
228         if (PN->getIncomingValueForBlock(SI1BB) !=
229             PN->getIncomingValueForBlock(SI2BB)) {
230           if (FailBlocks)
231             FailBlocks->insert(Succ);
232           Fail = true;
233         }
234       }
235 
236   return !Fail;
237 }
238 
239 /// Return true if it is safe and profitable to merge these two terminator
240 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
241 /// store all PHI nodes in common successors.
242 static bool
243 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
244                                 Instruction *Cond,
245                                 SmallVectorImpl<PHINode *> &PhiNodes) {
246   if (SI1 == SI2)
247     return false; // Can't merge with self!
248   assert(SI1->isUnconditional() && SI2->isConditional());
249 
250   // We fold the unconditional branch if we can easily update all PHI nodes in
251   // common successors:
252   // 1> We have a constant incoming value for the conditional branch;
253   // 2> We have "Cond" as the incoming value for the unconditional branch;
254   // 3> SI2->getCondition() and Cond have same operands.
255   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
256   if (!Ci2)
257     return false;
258   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
259         Cond->getOperand(1) == Ci2->getOperand(1)) &&
260       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
261         Cond->getOperand(1) == Ci2->getOperand(0)))
262     return false;
263 
264   BasicBlock *SI1BB = SI1->getParent();
265   BasicBlock *SI2BB = SI2->getParent();
266   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
267   for (BasicBlock *Succ : successors(SI2BB))
268     if (SI1Succs.count(Succ))
269       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
270         PHINode *PN = cast<PHINode>(BBI);
271         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
272             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
273           return false;
274         PhiNodes.push_back(PN);
275       }
276   return true;
277 }
278 
279 /// Update PHI nodes in Succ to indicate that there will now be entries in it
280 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
281 /// will be the same as those coming in from ExistPred, an existing predecessor
282 /// of Succ.
283 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
284                                   BasicBlock *ExistPred) {
285   for (PHINode &PN : Succ->phis())
286     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
287 }
288 
289 /// Compute an abstract "cost" of speculating the given instruction,
290 /// which is assumed to be safe to speculate. TCC_Free means cheap,
291 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
292 /// expensive.
293 static unsigned ComputeSpeculationCost(const User *I,
294                                        const TargetTransformInfo &TTI) {
295   assert(isSafeToSpeculativelyExecute(I) &&
296          "Instruction is not safe to speculatively execute!");
297   return TTI.getUserCost(I);
298 }
299 
300 /// If we have a merge point of an "if condition" as accepted above,
301 /// return true if the specified value dominates the block.  We
302 /// don't handle the true generality of domination here, just a special case
303 /// which works well enough for us.
304 ///
305 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
306 /// see if V (which must be an instruction) and its recursive operands
307 /// that do not dominate BB have a combined cost lower than CostRemaining and
308 /// are non-trapping.  If both are true, the instruction is inserted into the
309 /// set and true is returned.
310 ///
311 /// The cost for most non-trapping instructions is defined as 1 except for
312 /// Select whose cost is 2.
313 ///
314 /// After this function returns, CostRemaining is decreased by the cost of
315 /// V plus its non-dominating operands.  If that cost is greater than
316 /// CostRemaining, false is returned and CostRemaining is undefined.
317 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
318                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
319                                 unsigned &CostRemaining,
320                                 const TargetTransformInfo &TTI,
321                                 unsigned Depth = 0) {
322   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
323   // so limit the recursion depth.
324   // TODO: While this recursion limit does prevent pathological behavior, it
325   // would be better to track visited instructions to avoid cycles.
326   if (Depth == MaxSpeculationDepth)
327     return false;
328 
329   Instruction *I = dyn_cast<Instruction>(V);
330   if (!I) {
331     // Non-instructions all dominate instructions, but not all constantexprs
332     // can be executed unconditionally.
333     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
334       if (C->canTrap())
335         return false;
336     return true;
337   }
338   BasicBlock *PBB = I->getParent();
339 
340   // We don't want to allow weird loops that might have the "if condition" in
341   // the bottom of this block.
342   if (PBB == BB)
343     return false;
344 
345   // If this instruction is defined in a block that contains an unconditional
346   // branch to BB, then it must be in the 'conditional' part of the "if
347   // statement".  If not, it definitely dominates the region.
348   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
349   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
350     return true;
351 
352   // If we aren't allowing aggressive promotion anymore, then don't consider
353   // instructions in the 'if region'.
354   if (!AggressiveInsts)
355     return false;
356 
357   // If we have seen this instruction before, don't count it again.
358   if (AggressiveInsts->count(I))
359     return true;
360 
361   // Okay, it looks like the instruction IS in the "condition".  Check to
362   // see if it's a cheap instruction to unconditionally compute, and if it
363   // only uses stuff defined outside of the condition.  If so, hoist it out.
364   if (!isSafeToSpeculativelyExecute(I))
365     return false;
366 
367   unsigned Cost = ComputeSpeculationCost(I, TTI);
368 
369   // Allow exactly one instruction to be speculated regardless of its cost
370   // (as long as it is safe to do so).
371   // This is intended to flatten the CFG even if the instruction is a division
372   // or other expensive operation. The speculation of an expensive instruction
373   // is expected to be undone in CodeGenPrepare if the speculation has not
374   // enabled further IR optimizations.
375   if (Cost > CostRemaining &&
376       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
377     return false;
378 
379   // Avoid unsigned wrap.
380   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
381 
382   // Okay, we can only really hoist these out if their operands do
383   // not take us over the cost threshold.
384   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
385     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
386                              Depth + 1))
387       return false;
388   // Okay, it's safe to do this!  Remember this instruction.
389   AggressiveInsts->insert(I);
390   return true;
391 }
392 
393 /// Extract ConstantInt from value, looking through IntToPtr
394 /// and PointerNullValue. Return NULL if value is not a constant int.
395 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
396   // Normal constant int.
397   ConstantInt *CI = dyn_cast<ConstantInt>(V);
398   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
399     return CI;
400 
401   // This is some kind of pointer constant. Turn it into a pointer-sized
402   // ConstantInt if possible.
403   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
404 
405   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
406   if (isa<ConstantPointerNull>(V))
407     return ConstantInt::get(PtrTy, 0);
408 
409   // IntToPtr const int.
410   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
411     if (CE->getOpcode() == Instruction::IntToPtr)
412       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
413         // The constant is very likely to have the right type already.
414         if (CI->getType() == PtrTy)
415           return CI;
416         else
417           return cast<ConstantInt>(
418               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
419       }
420   return nullptr;
421 }
422 
423 namespace {
424 
425 /// Given a chain of or (||) or and (&&) comparison of a value against a
426 /// constant, this will try to recover the information required for a switch
427 /// structure.
428 /// It will depth-first traverse the chain of comparison, seeking for patterns
429 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
430 /// representing the different cases for the switch.
431 /// Note that if the chain is composed of '||' it will build the set of elements
432 /// that matches the comparisons (i.e. any of this value validate the chain)
433 /// while for a chain of '&&' it will build the set elements that make the test
434 /// fail.
435 struct ConstantComparesGatherer {
436   const DataLayout &DL;
437 
438   /// Value found for the switch comparison
439   Value *CompValue = nullptr;
440 
441   /// Extra clause to be checked before the switch
442   Value *Extra = nullptr;
443 
444   /// Set of integers to match in switch
445   SmallVector<ConstantInt *, 8> Vals;
446 
447   /// Number of comparisons matched in the and/or chain
448   unsigned UsedICmps = 0;
449 
450   /// Construct and compute the result for the comparison instruction Cond
451   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
452     gather(Cond);
453   }
454 
455   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
456   ConstantComparesGatherer &
457   operator=(const ConstantComparesGatherer &) = delete;
458 
459 private:
460   /// Try to set the current value used for the comparison, it succeeds only if
461   /// it wasn't set before or if the new value is the same as the old one
462   bool setValueOnce(Value *NewVal) {
463     if (CompValue && CompValue != NewVal)
464       return false;
465     CompValue = NewVal;
466     return (CompValue != nullptr);
467   }
468 
469   /// Try to match Instruction "I" as a comparison against a constant and
470   /// populates the array Vals with the set of values that match (or do not
471   /// match depending on isEQ).
472   /// Return false on failure. On success, the Value the comparison matched
473   /// against is placed in CompValue.
474   /// If CompValue is already set, the function is expected to fail if a match
475   /// is found but the value compared to is different.
476   bool matchInstruction(Instruction *I, bool isEQ) {
477     // If this is an icmp against a constant, handle this as one of the cases.
478     ICmpInst *ICI;
479     ConstantInt *C;
480     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
481           (C = GetConstantInt(I->getOperand(1), DL)))) {
482       return false;
483     }
484 
485     Value *RHSVal;
486     const APInt *RHSC;
487 
488     // Pattern match a special case
489     // (x & ~2^z) == y --> x == y || x == y|2^z
490     // This undoes a transformation done by instcombine to fuse 2 compares.
491     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
492       // It's a little bit hard to see why the following transformations are
493       // correct. Here is a CVC3 program to verify them for 64-bit values:
494 
495       /*
496          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
497          x    : BITVECTOR(64);
498          y    : BITVECTOR(64);
499          z    : BITVECTOR(64);
500          mask : BITVECTOR(64) = BVSHL(ONE, z);
501          QUERY( (y & ~mask = y) =>
502                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
503          );
504          QUERY( (y |  mask = y) =>
505                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
506          );
507       */
508 
509       // Please note that each pattern must be a dual implication (<--> or
510       // iff). One directional implication can create spurious matches. If the
511       // implication is only one-way, an unsatisfiable condition on the left
512       // side can imply a satisfiable condition on the right side. Dual
513       // implication ensures that satisfiable conditions are transformed to
514       // other satisfiable conditions and unsatisfiable conditions are
515       // transformed to other unsatisfiable conditions.
516 
517       // Here is a concrete example of a unsatisfiable condition on the left
518       // implying a satisfiable condition on the right:
519       //
520       // mask = (1 << z)
521       // (x & ~mask) == y  --> (x == y || x == (y | mask))
522       //
523       // Substituting y = 3, z = 0 yields:
524       // (x & -2) == 3 --> (x == 3 || x == 2)
525 
526       // Pattern match a special case:
527       /*
528         QUERY( (y & ~mask = y) =>
529                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
530         );
531       */
532       if (match(ICI->getOperand(0),
533                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
534         APInt Mask = ~*RHSC;
535         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
536           // If we already have a value for the switch, it has to match!
537           if (!setValueOnce(RHSVal))
538             return false;
539 
540           Vals.push_back(C);
541           Vals.push_back(
542               ConstantInt::get(C->getContext(),
543                                C->getValue() | Mask));
544           UsedICmps++;
545           return true;
546         }
547       }
548 
549       // Pattern match a special case:
550       /*
551         QUERY( (y |  mask = y) =>
552                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
553         );
554       */
555       if (match(ICI->getOperand(0),
556                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
557         APInt Mask = *RHSC;
558         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
559           // If we already have a value for the switch, it has to match!
560           if (!setValueOnce(RHSVal))
561             return false;
562 
563           Vals.push_back(C);
564           Vals.push_back(ConstantInt::get(C->getContext(),
565                                           C->getValue() & ~Mask));
566           UsedICmps++;
567           return true;
568         }
569       }
570 
571       // If we already have a value for the switch, it has to match!
572       if (!setValueOnce(ICI->getOperand(0)))
573         return false;
574 
575       UsedICmps++;
576       Vals.push_back(C);
577       return ICI->getOperand(0);
578     }
579 
580     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
581     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
582         ICI->getPredicate(), C->getValue());
583 
584     // Shift the range if the compare is fed by an add. This is the range
585     // compare idiom as emitted by instcombine.
586     Value *CandidateVal = I->getOperand(0);
587     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
588       Span = Span.subtract(*RHSC);
589       CandidateVal = RHSVal;
590     }
591 
592     // If this is an and/!= check, then we are looking to build the set of
593     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
594     // x != 0 && x != 1.
595     if (!isEQ)
596       Span = Span.inverse();
597 
598     // If there are a ton of values, we don't want to make a ginormous switch.
599     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
600       return false;
601     }
602 
603     // If we already have a value for the switch, it has to match!
604     if (!setValueOnce(CandidateVal))
605       return false;
606 
607     // Add all values from the range to the set
608     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
609       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
610 
611     UsedICmps++;
612     return true;
613   }
614 
615   /// Given a potentially 'or'd or 'and'd together collection of icmp
616   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
617   /// the value being compared, and stick the list constants into the Vals
618   /// vector.
619   /// One "Extra" case is allowed to differ from the other.
620   void gather(Value *V) {
621     Instruction *I = dyn_cast<Instruction>(V);
622     bool isEQ = (I->getOpcode() == Instruction::Or);
623 
624     // Keep a stack (SmallVector for efficiency) for depth-first traversal
625     SmallVector<Value *, 8> DFT;
626     SmallPtrSet<Value *, 8> Visited;
627 
628     // Initialize
629     Visited.insert(V);
630     DFT.push_back(V);
631 
632     while (!DFT.empty()) {
633       V = DFT.pop_back_val();
634 
635       if (Instruction *I = dyn_cast<Instruction>(V)) {
636         // If it is a || (or && depending on isEQ), process the operands.
637         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
638           if (Visited.insert(I->getOperand(1)).second)
639             DFT.push_back(I->getOperand(1));
640           if (Visited.insert(I->getOperand(0)).second)
641             DFT.push_back(I->getOperand(0));
642           continue;
643         }
644 
645         // Try to match the current instruction
646         if (matchInstruction(I, isEQ))
647           // Match succeed, continue the loop
648           continue;
649       }
650 
651       // One element of the sequence of || (or &&) could not be match as a
652       // comparison against the same value as the others.
653       // We allow only one "Extra" case to be checked before the switch
654       if (!Extra) {
655         Extra = V;
656         continue;
657       }
658       // Failed to parse a proper sequence, abort now
659       CompValue = nullptr;
660       break;
661     }
662   }
663 };
664 
665 } // end anonymous namespace
666 
667 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
668   Instruction *Cond = nullptr;
669   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
670     Cond = dyn_cast<Instruction>(SI->getCondition());
671   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
672     if (BI->isConditional())
673       Cond = dyn_cast<Instruction>(BI->getCondition());
674   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
675     Cond = dyn_cast<Instruction>(IBI->getAddress());
676   }
677 
678   TI->eraseFromParent();
679   if (Cond)
680     RecursivelyDeleteTriviallyDeadInstructions(Cond);
681 }
682 
683 /// Return true if the specified terminator checks
684 /// to see if a value is equal to constant integer value.
685 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
686   Value *CV = nullptr;
687   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
688     // Do not permit merging of large switch instructions into their
689     // predecessors unless there is only one predecessor.
690     if (SI->getNumSuccessors() * pred_size(SI->getParent()) <= 128)
691       CV = SI->getCondition();
692   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
693     if (BI->isConditional() && BI->getCondition()->hasOneUse())
694       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
695         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
696           CV = ICI->getOperand(0);
697       }
698 
699   // Unwrap any lossless ptrtoint cast.
700   if (CV) {
701     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
702       Value *Ptr = PTII->getPointerOperand();
703       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
704         CV = Ptr;
705     }
706   }
707   return CV;
708 }
709 
710 /// Given a value comparison instruction,
711 /// decode all of the 'cases' that it represents and return the 'default' block.
712 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
713     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
714   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
715     Cases.reserve(SI->getNumCases());
716     for (auto Case : SI->cases())
717       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
718                                                   Case.getCaseSuccessor()));
719     return SI->getDefaultDest();
720   }
721 
722   BranchInst *BI = cast<BranchInst>(TI);
723   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
724   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
725   Cases.push_back(ValueEqualityComparisonCase(
726       GetConstantInt(ICI->getOperand(1), DL), Succ));
727   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
728 }
729 
730 /// Given a vector of bb/value pairs, remove any entries
731 /// in the list that match the specified block.
732 static void
733 EliminateBlockCases(BasicBlock *BB,
734                     std::vector<ValueEqualityComparisonCase> &Cases) {
735   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
736 }
737 
738 /// Return true if there are any keys in C1 that exist in C2 as well.
739 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
740                           std::vector<ValueEqualityComparisonCase> &C2) {
741   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
742 
743   // Make V1 be smaller than V2.
744   if (V1->size() > V2->size())
745     std::swap(V1, V2);
746 
747   if (V1->empty())
748     return false;
749   if (V1->size() == 1) {
750     // Just scan V2.
751     ConstantInt *TheVal = (*V1)[0].Value;
752     for (unsigned i = 0, e = V2->size(); i != e; ++i)
753       if (TheVal == (*V2)[i].Value)
754         return true;
755   }
756 
757   // Otherwise, just sort both lists and compare element by element.
758   array_pod_sort(V1->begin(), V1->end());
759   array_pod_sort(V2->begin(), V2->end());
760   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
761   while (i1 != e1 && i2 != e2) {
762     if ((*V1)[i1].Value == (*V2)[i2].Value)
763       return true;
764     if ((*V1)[i1].Value < (*V2)[i2].Value)
765       ++i1;
766     else
767       ++i2;
768   }
769   return false;
770 }
771 
772 // Set branch weights on SwitchInst. This sets the metadata if there is at
773 // least one non-zero weight.
774 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
775   // Check that there is at least one non-zero weight. Otherwise, pass
776   // nullptr to setMetadata which will erase the existing metadata.
777   MDNode *N = nullptr;
778   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
779     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
780   SI->setMetadata(LLVMContext::MD_prof, N);
781 }
782 
783 // Similar to the above, but for branch and select instructions that take
784 // exactly 2 weights.
785 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
786                              uint32_t FalseWeight) {
787   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
788   // Check that there is at least one non-zero weight. Otherwise, pass
789   // nullptr to setMetadata which will erase the existing metadata.
790   MDNode *N = nullptr;
791   if (TrueWeight || FalseWeight)
792     N = MDBuilder(I->getParent()->getContext())
793             .createBranchWeights(TrueWeight, FalseWeight);
794   I->setMetadata(LLVMContext::MD_prof, N);
795 }
796 
797 /// If TI is known to be a terminator instruction and its block is known to
798 /// only have a single predecessor block, check to see if that predecessor is
799 /// also a value comparison with the same value, and if that comparison
800 /// determines the outcome of this comparison. If so, simplify TI. This does a
801 /// very limited form of jump threading.
802 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
803     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
804   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
805   if (!PredVal)
806     return false; // Not a value comparison in predecessor.
807 
808   Value *ThisVal = isValueEqualityComparison(TI);
809   assert(ThisVal && "This isn't a value comparison!!");
810   if (ThisVal != PredVal)
811     return false; // Different predicates.
812 
813   // TODO: Preserve branch weight metadata, similarly to how
814   // FoldValueComparisonIntoPredecessors preserves it.
815 
816   // Find out information about when control will move from Pred to TI's block.
817   std::vector<ValueEqualityComparisonCase> PredCases;
818   BasicBlock *PredDef =
819       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
820   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
821 
822   // Find information about how control leaves this block.
823   std::vector<ValueEqualityComparisonCase> ThisCases;
824   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
825   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
826 
827   // If TI's block is the default block from Pred's comparison, potentially
828   // simplify TI based on this knowledge.
829   if (PredDef == TI->getParent()) {
830     // If we are here, we know that the value is none of those cases listed in
831     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
832     // can simplify TI.
833     if (!ValuesOverlap(PredCases, ThisCases))
834       return false;
835 
836     if (isa<BranchInst>(TI)) {
837       // Okay, one of the successors of this condbr is dead.  Convert it to a
838       // uncond br.
839       assert(ThisCases.size() == 1 && "Branch can only have one case!");
840       // Insert the new branch.
841       Instruction *NI = Builder.CreateBr(ThisDef);
842       (void)NI;
843 
844       // Remove PHI node entries for the dead edge.
845       ThisCases[0].Dest->removePredecessor(TI->getParent());
846 
847       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
848                         << "Through successor TI: " << *TI << "Leaving: " << *NI
849                         << "\n");
850 
851       EraseTerminatorInstAndDCECond(TI);
852       return true;
853     }
854 
855     SwitchInst *SI = cast<SwitchInst>(TI);
856     // Okay, TI has cases that are statically dead, prune them away.
857     SmallPtrSet<Constant *, 16> DeadCases;
858     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
859       DeadCases.insert(PredCases[i].Value);
860 
861     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
862                       << "Through successor TI: " << *TI);
863 
864     // Collect branch weights into a vector.
865     SmallVector<uint32_t, 8> Weights;
866     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
867     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
868     if (HasWeight)
869       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
870            ++MD_i) {
871         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
872         Weights.push_back(CI->getValue().getZExtValue());
873       }
874     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
875       --i;
876       if (DeadCases.count(i->getCaseValue())) {
877         if (HasWeight) {
878           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
879           Weights.pop_back();
880         }
881         i->getCaseSuccessor()->removePredecessor(TI->getParent());
882         SI->removeCase(i);
883       }
884     }
885     if (HasWeight && Weights.size() >= 2)
886       setBranchWeights(SI, Weights);
887 
888     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
889     return true;
890   }
891 
892   // Otherwise, TI's block must correspond to some matched value.  Find out
893   // which value (or set of values) this is.
894   ConstantInt *TIV = nullptr;
895   BasicBlock *TIBB = TI->getParent();
896   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
897     if (PredCases[i].Dest == TIBB) {
898       if (TIV)
899         return false; // Cannot handle multiple values coming to this block.
900       TIV = PredCases[i].Value;
901     }
902   assert(TIV && "No edge from pred to succ?");
903 
904   // Okay, we found the one constant that our value can be if we get into TI's
905   // BB.  Find out which successor will unconditionally be branched to.
906   BasicBlock *TheRealDest = nullptr;
907   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
908     if (ThisCases[i].Value == TIV) {
909       TheRealDest = ThisCases[i].Dest;
910       break;
911     }
912 
913   // If not handled by any explicit cases, it is handled by the default case.
914   if (!TheRealDest)
915     TheRealDest = ThisDef;
916 
917   // Remove PHI node entries for dead edges.
918   BasicBlock *CheckEdge = TheRealDest;
919   for (BasicBlock *Succ : successors(TIBB))
920     if (Succ != CheckEdge)
921       Succ->removePredecessor(TIBB);
922     else
923       CheckEdge = nullptr;
924 
925   // Insert the new branch.
926   Instruction *NI = Builder.CreateBr(TheRealDest);
927   (void)NI;
928 
929   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
930                     << "Through successor TI: " << *TI << "Leaving: " << *NI
931                     << "\n");
932 
933   EraseTerminatorInstAndDCECond(TI);
934   return true;
935 }
936 
937 namespace {
938 
939 /// This class implements a stable ordering of constant
940 /// integers that does not depend on their address.  This is important for
941 /// applications that sort ConstantInt's to ensure uniqueness.
942 struct ConstantIntOrdering {
943   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
944     return LHS->getValue().ult(RHS->getValue());
945   }
946 };
947 
948 } // end anonymous namespace
949 
950 static int ConstantIntSortPredicate(ConstantInt *const *P1,
951                                     ConstantInt *const *P2) {
952   const ConstantInt *LHS = *P1;
953   const ConstantInt *RHS = *P2;
954   if (LHS == RHS)
955     return 0;
956   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
957 }
958 
959 static inline bool HasBranchWeights(const Instruction *I) {
960   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
961   if (ProfMD && ProfMD->getOperand(0))
962     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
963       return MDS->getString().equals("branch_weights");
964 
965   return false;
966 }
967 
968 /// Get Weights of a given TerminatorInst, the default weight is at the front
969 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
970 /// metadata.
971 static void GetBranchWeights(TerminatorInst *TI,
972                              SmallVectorImpl<uint64_t> &Weights) {
973   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
974   assert(MD);
975   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
976     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
977     Weights.push_back(CI->getValue().getZExtValue());
978   }
979 
980   // If TI is a conditional eq, the default case is the false case,
981   // and the corresponding branch-weight data is at index 2. We swap the
982   // default weight to be the first entry.
983   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
984     assert(Weights.size() == 2);
985     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
986     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
987       std::swap(Weights.front(), Weights.back());
988   }
989 }
990 
991 /// Keep halving the weights until all can fit in uint32_t.
992 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
993   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
994   if (Max > UINT_MAX) {
995     unsigned Offset = 32 - countLeadingZeros(Max);
996     for (uint64_t &I : Weights)
997       I >>= Offset;
998   }
999 }
1000 
1001 /// The specified terminator is a value equality comparison instruction
1002 /// (either a switch or a branch on "X == c").
1003 /// See if any of the predecessors of the terminator block are value comparisons
1004 /// on the same value.  If so, and if safe to do so, fold them together.
1005 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
1006                                                          IRBuilder<> &Builder) {
1007   BasicBlock *BB = TI->getParent();
1008   Value *CV = isValueEqualityComparison(TI); // CondVal
1009   assert(CV && "Not a comparison?");
1010   bool Changed = false;
1011 
1012   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1013   while (!Preds.empty()) {
1014     BasicBlock *Pred = Preds.pop_back_val();
1015 
1016     // See if the predecessor is a comparison with the same value.
1017     TerminatorInst *PTI = Pred->getTerminator();
1018     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1019 
1020     if (PCV == CV && TI != PTI) {
1021       SmallSetVector<BasicBlock*, 4> FailBlocks;
1022       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1023         for (auto *Succ : FailBlocks) {
1024           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1025             return false;
1026         }
1027       }
1028 
1029       // Figure out which 'cases' to copy from SI to PSI.
1030       std::vector<ValueEqualityComparisonCase> BBCases;
1031       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1032 
1033       std::vector<ValueEqualityComparisonCase> PredCases;
1034       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1035 
1036       // Based on whether the default edge from PTI goes to BB or not, fill in
1037       // PredCases and PredDefault with the new switch cases we would like to
1038       // build.
1039       SmallVector<BasicBlock *, 8> NewSuccessors;
1040 
1041       // Update the branch weight metadata along the way
1042       SmallVector<uint64_t, 8> Weights;
1043       bool PredHasWeights = HasBranchWeights(PTI);
1044       bool SuccHasWeights = HasBranchWeights(TI);
1045 
1046       if (PredHasWeights) {
1047         GetBranchWeights(PTI, Weights);
1048         // branch-weight metadata is inconsistent here.
1049         if (Weights.size() != 1 + PredCases.size())
1050           PredHasWeights = SuccHasWeights = false;
1051       } else if (SuccHasWeights)
1052         // If there are no predecessor weights but there are successor weights,
1053         // populate Weights with 1, which will later be scaled to the sum of
1054         // successor's weights
1055         Weights.assign(1 + PredCases.size(), 1);
1056 
1057       SmallVector<uint64_t, 8> SuccWeights;
1058       if (SuccHasWeights) {
1059         GetBranchWeights(TI, SuccWeights);
1060         // branch-weight metadata is inconsistent here.
1061         if (SuccWeights.size() != 1 + BBCases.size())
1062           PredHasWeights = SuccHasWeights = false;
1063       } else if (PredHasWeights)
1064         SuccWeights.assign(1 + BBCases.size(), 1);
1065 
1066       if (PredDefault == BB) {
1067         // If this is the default destination from PTI, only the edges in TI
1068         // that don't occur in PTI, or that branch to BB will be activated.
1069         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1070         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1071           if (PredCases[i].Dest != BB)
1072             PTIHandled.insert(PredCases[i].Value);
1073           else {
1074             // The default destination is BB, we don't need explicit targets.
1075             std::swap(PredCases[i], PredCases.back());
1076 
1077             if (PredHasWeights || SuccHasWeights) {
1078               // Increase weight for the default case.
1079               Weights[0] += Weights[i + 1];
1080               std::swap(Weights[i + 1], Weights.back());
1081               Weights.pop_back();
1082             }
1083 
1084             PredCases.pop_back();
1085             --i;
1086             --e;
1087           }
1088 
1089         // Reconstruct the new switch statement we will be building.
1090         if (PredDefault != BBDefault) {
1091           PredDefault->removePredecessor(Pred);
1092           PredDefault = BBDefault;
1093           NewSuccessors.push_back(BBDefault);
1094         }
1095 
1096         unsigned CasesFromPred = Weights.size();
1097         uint64_t ValidTotalSuccWeight = 0;
1098         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1099           if (!PTIHandled.count(BBCases[i].Value) &&
1100               BBCases[i].Dest != BBDefault) {
1101             PredCases.push_back(BBCases[i]);
1102             NewSuccessors.push_back(BBCases[i].Dest);
1103             if (SuccHasWeights || PredHasWeights) {
1104               // The default weight is at index 0, so weight for the ith case
1105               // should be at index i+1. Scale the cases from successor by
1106               // PredDefaultWeight (Weights[0]).
1107               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1108               ValidTotalSuccWeight += SuccWeights[i + 1];
1109             }
1110           }
1111 
1112         if (SuccHasWeights || PredHasWeights) {
1113           ValidTotalSuccWeight += SuccWeights[0];
1114           // Scale the cases from predecessor by ValidTotalSuccWeight.
1115           for (unsigned i = 1; i < CasesFromPred; ++i)
1116             Weights[i] *= ValidTotalSuccWeight;
1117           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1118           Weights[0] *= SuccWeights[0];
1119         }
1120       } else {
1121         // If this is not the default destination from PSI, only the edges
1122         // in SI that occur in PSI with a destination of BB will be
1123         // activated.
1124         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1125         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1126         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1127           if (PredCases[i].Dest == BB) {
1128             PTIHandled.insert(PredCases[i].Value);
1129 
1130             if (PredHasWeights || SuccHasWeights) {
1131               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1132               std::swap(Weights[i + 1], Weights.back());
1133               Weights.pop_back();
1134             }
1135 
1136             std::swap(PredCases[i], PredCases.back());
1137             PredCases.pop_back();
1138             --i;
1139             --e;
1140           }
1141 
1142         // Okay, now we know which constants were sent to BB from the
1143         // predecessor.  Figure out where they will all go now.
1144         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1145           if (PTIHandled.count(BBCases[i].Value)) {
1146             // If this is one we are capable of getting...
1147             if (PredHasWeights || SuccHasWeights)
1148               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1149             PredCases.push_back(BBCases[i]);
1150             NewSuccessors.push_back(BBCases[i].Dest);
1151             PTIHandled.erase(
1152                 BBCases[i].Value); // This constant is taken care of
1153           }
1154 
1155         // If there are any constants vectored to BB that TI doesn't handle,
1156         // they must go to the default destination of TI.
1157         for (ConstantInt *I : PTIHandled) {
1158           if (PredHasWeights || SuccHasWeights)
1159             Weights.push_back(WeightsForHandled[I]);
1160           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1161           NewSuccessors.push_back(BBDefault);
1162         }
1163       }
1164 
1165       // Okay, at this point, we know which new successor Pred will get.  Make
1166       // sure we update the number of entries in the PHI nodes for these
1167       // successors.
1168       for (BasicBlock *NewSuccessor : NewSuccessors)
1169         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1170 
1171       Builder.SetInsertPoint(PTI);
1172       // Convert pointer to int before we switch.
1173       if (CV->getType()->isPointerTy()) {
1174         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1175                                     "magicptr");
1176       }
1177 
1178       // Now that the successors are updated, create the new Switch instruction.
1179       SwitchInst *NewSI =
1180           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1181       NewSI->setDebugLoc(PTI->getDebugLoc());
1182       for (ValueEqualityComparisonCase &V : PredCases)
1183         NewSI->addCase(V.Value, V.Dest);
1184 
1185       if (PredHasWeights || SuccHasWeights) {
1186         // Halve the weights if any of them cannot fit in an uint32_t
1187         FitWeights(Weights);
1188 
1189         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1190 
1191         setBranchWeights(NewSI, MDWeights);
1192       }
1193 
1194       EraseTerminatorInstAndDCECond(PTI);
1195 
1196       // Okay, last check.  If BB is still a successor of PSI, then we must
1197       // have an infinite loop case.  If so, add an infinitely looping block
1198       // to handle the case to preserve the behavior of the code.
1199       BasicBlock *InfLoopBlock = nullptr;
1200       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1201         if (NewSI->getSuccessor(i) == BB) {
1202           if (!InfLoopBlock) {
1203             // Insert it at the end of the function, because it's either code,
1204             // or it won't matter if it's hot. :)
1205             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1206                                               BB->getParent());
1207             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1208           }
1209           NewSI->setSuccessor(i, InfLoopBlock);
1210         }
1211 
1212       Changed = true;
1213     }
1214   }
1215   return Changed;
1216 }
1217 
1218 // If we would need to insert a select that uses the value of this invoke
1219 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1220 // can't hoist the invoke, as there is nowhere to put the select in this case.
1221 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1222                                 Instruction *I1, Instruction *I2) {
1223   for (BasicBlock *Succ : successors(BB1)) {
1224     for (const PHINode &PN : Succ->phis()) {
1225       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1226       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1227       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1228         return false;
1229       }
1230     }
1231   }
1232   return true;
1233 }
1234 
1235 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1236 
1237 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1238 /// in the two blocks up into the branch block. The caller of this function
1239 /// guarantees that BI's block dominates BB1 and BB2.
1240 static bool HoistThenElseCodeToIf(BranchInst *BI,
1241                                   const TargetTransformInfo &TTI) {
1242   // This does very trivial matching, with limited scanning, to find identical
1243   // instructions in the two blocks.  In particular, we don't want to get into
1244   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1245   // such, we currently just scan for obviously identical instructions in an
1246   // identical order.
1247   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1248   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1249 
1250   BasicBlock::iterator BB1_Itr = BB1->begin();
1251   BasicBlock::iterator BB2_Itr = BB2->begin();
1252 
1253   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1254   // Skip debug info if it is not identical.
1255   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1256   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1257   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1258     while (isa<DbgInfoIntrinsic>(I1))
1259       I1 = &*BB1_Itr++;
1260     while (isa<DbgInfoIntrinsic>(I2))
1261       I2 = &*BB2_Itr++;
1262   }
1263   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1264       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1265     return false;
1266 
1267   BasicBlock *BIParent = BI->getParent();
1268 
1269   bool Changed = false;
1270   do {
1271     // If we are hoisting the terminator instruction, don't move one (making a
1272     // broken BB), instead clone it, and remove BI.
1273     if (I1->isTerminator())
1274       goto HoistTerminator;
1275 
1276     // If we're going to hoist a call, make sure that the two instructions we're
1277     // commoning/hoisting are both marked with musttail, or neither of them is
1278     // marked as such. Otherwise, we might end up in a situation where we hoist
1279     // from a block where the terminator is a `ret` to a block where the terminator
1280     // is a `br`, and `musttail` calls expect to be followed by a return.
1281     auto *C1 = dyn_cast<CallInst>(I1);
1282     auto *C2 = dyn_cast<CallInst>(I2);
1283     if (C1 && C2)
1284       if (C1->isMustTailCall() != C2->isMustTailCall())
1285         return Changed;
1286 
1287     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1288       return Changed;
1289 
1290     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1291       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1292       // The debug location is an integral part of a debug info intrinsic
1293       // and can't be separated from it or replaced.  Instead of attempting
1294       // to merge locations, simply hoist both copies of the intrinsic.
1295       BIParent->getInstList().splice(BI->getIterator(),
1296                                      BB1->getInstList(), I1);
1297       BIParent->getInstList().splice(BI->getIterator(),
1298                                      BB2->getInstList(), I2);
1299       Changed = true;
1300     } else {
1301       // For a normal instruction, we just move one to right before the branch,
1302       // then replace all uses of the other with the first.  Finally, we remove
1303       // the now redundant second instruction.
1304       BIParent->getInstList().splice(BI->getIterator(),
1305                                      BB1->getInstList(), I1);
1306       if (!I2->use_empty())
1307         I2->replaceAllUsesWith(I1);
1308       I1->andIRFlags(I2);
1309       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1310                              LLVMContext::MD_range,
1311                              LLVMContext::MD_fpmath,
1312                              LLVMContext::MD_invariant_load,
1313                              LLVMContext::MD_nonnull,
1314                              LLVMContext::MD_invariant_group,
1315                              LLVMContext::MD_align,
1316                              LLVMContext::MD_dereferenceable,
1317                              LLVMContext::MD_dereferenceable_or_null,
1318                              LLVMContext::MD_mem_parallel_loop_access};
1319       combineMetadata(I1, I2, KnownIDs, true);
1320 
1321       // I1 and I2 are being combined into a single instruction.  Its debug
1322       // location is the merged locations of the original instructions.
1323       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1324 
1325       I2->eraseFromParent();
1326       Changed = true;
1327     }
1328 
1329     I1 = &*BB1_Itr++;
1330     I2 = &*BB2_Itr++;
1331     // Skip debug info if it is not identical.
1332     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1333     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1334     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1335       while (isa<DbgInfoIntrinsic>(I1))
1336         I1 = &*BB1_Itr++;
1337       while (isa<DbgInfoIntrinsic>(I2))
1338         I2 = &*BB2_Itr++;
1339     }
1340   } while (I1->isIdenticalToWhenDefined(I2));
1341 
1342   return true;
1343 
1344 HoistTerminator:
1345   // It may not be possible to hoist an invoke.
1346   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1347     return Changed;
1348 
1349   for (BasicBlock *Succ : successors(BB1)) {
1350     for (PHINode &PN : Succ->phis()) {
1351       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1352       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1353       if (BB1V == BB2V)
1354         continue;
1355 
1356       // Check for passingValueIsAlwaysUndefined here because we would rather
1357       // eliminate undefined control flow then converting it to a select.
1358       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1359           passingValueIsAlwaysUndefined(BB2V, &PN))
1360         return Changed;
1361 
1362       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1363         return Changed;
1364       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1365         return Changed;
1366     }
1367   }
1368 
1369   // Okay, it is safe to hoist the terminator.
1370   Instruction *NT = I1->clone();
1371   BIParent->getInstList().insert(BI->getIterator(), NT);
1372   if (!NT->getType()->isVoidTy()) {
1373     I1->replaceAllUsesWith(NT);
1374     I2->replaceAllUsesWith(NT);
1375     NT->takeName(I1);
1376   }
1377 
1378   IRBuilder<NoFolder> Builder(NT);
1379   // Hoisting one of the terminators from our successor is a great thing.
1380   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1381   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1382   // nodes, so we insert select instruction to compute the final result.
1383   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1384   for (BasicBlock *Succ : successors(BB1)) {
1385     for (PHINode &PN : Succ->phis()) {
1386       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1387       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1388       if (BB1V == BB2V)
1389         continue;
1390 
1391       // These values do not agree.  Insert a select instruction before NT
1392       // that determines the right value.
1393       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1394       if (!SI)
1395         SI = cast<SelectInst>(
1396             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1397                                  BB1V->getName() + "." + BB2V->getName(), BI));
1398 
1399       // Make the PHI node use the select for all incoming values for BB1/BB2
1400       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1401         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1402           PN.setIncomingValue(i, SI);
1403     }
1404   }
1405 
1406   // Update any PHI nodes in our new successors.
1407   for (BasicBlock *Succ : successors(BB1))
1408     AddPredecessorToBlock(Succ, BIParent, BB1);
1409 
1410   EraseTerminatorInstAndDCECond(BI);
1411   return true;
1412 }
1413 
1414 // All instructions in Insts belong to different blocks that all unconditionally
1415 // branch to a common successor. Analyze each instruction and return true if it
1416 // would be possible to sink them into their successor, creating one common
1417 // instruction instead. For every value that would be required to be provided by
1418 // PHI node (because an operand varies in each input block), add to PHIOperands.
1419 static bool canSinkInstructions(
1420     ArrayRef<Instruction *> Insts,
1421     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1422   // Prune out obviously bad instructions to move. Any non-store instruction
1423   // must have exactly one use, and we check later that use is by a single,
1424   // common PHI instruction in the successor.
1425   for (auto *I : Insts) {
1426     // These instructions may change or break semantics if moved.
1427     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1428         I->getType()->isTokenTy())
1429       return false;
1430 
1431     // Conservatively return false if I is an inline-asm instruction. Sinking
1432     // and merging inline-asm instructions can potentially create arguments
1433     // that cannot satisfy the inline-asm constraints.
1434     if (const auto *C = dyn_cast<CallInst>(I))
1435       if (C->isInlineAsm())
1436         return false;
1437 
1438     // Everything must have only one use too, apart from stores which
1439     // have no uses.
1440     if (!isa<StoreInst>(I) && !I->hasOneUse())
1441       return false;
1442   }
1443 
1444   const Instruction *I0 = Insts.front();
1445   for (auto *I : Insts)
1446     if (!I->isSameOperationAs(I0))
1447       return false;
1448 
1449   // All instructions in Insts are known to be the same opcode. If they aren't
1450   // stores, check the only user of each is a PHI or in the same block as the
1451   // instruction, because if a user is in the same block as an instruction
1452   // we're contemplating sinking, it must already be determined to be sinkable.
1453   if (!isa<StoreInst>(I0)) {
1454     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1455     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1456     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1457           auto *U = cast<Instruction>(*I->user_begin());
1458           return (PNUse &&
1459                   PNUse->getParent() == Succ &&
1460                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1461                  U->getParent() == I->getParent();
1462         }))
1463       return false;
1464   }
1465 
1466   // Because SROA can't handle speculating stores of selects, try not
1467   // to sink loads or stores of allocas when we'd have to create a PHI for
1468   // the address operand. Also, because it is likely that loads or stores
1469   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1470   // This can cause code churn which can have unintended consequences down
1471   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1472   // FIXME: This is a workaround for a deficiency in SROA - see
1473   // https://llvm.org/bugs/show_bug.cgi?id=30188
1474   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1475         return isa<AllocaInst>(I->getOperand(1));
1476       }))
1477     return false;
1478   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1479         return isa<AllocaInst>(I->getOperand(0));
1480       }))
1481     return false;
1482 
1483   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1484     if (I0->getOperand(OI)->getType()->isTokenTy())
1485       // Don't touch any operand of token type.
1486       return false;
1487 
1488     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1489       assert(I->getNumOperands() == I0->getNumOperands());
1490       return I->getOperand(OI) == I0->getOperand(OI);
1491     };
1492     if (!all_of(Insts, SameAsI0)) {
1493       if (!canReplaceOperandWithVariable(I0, OI))
1494         // We can't create a PHI from this GEP.
1495         return false;
1496       // Don't create indirect calls! The called value is the final operand.
1497       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1498         // FIXME: if the call was *already* indirect, we should do this.
1499         return false;
1500       }
1501       for (auto *I : Insts)
1502         PHIOperands[I].push_back(I->getOperand(OI));
1503     }
1504   }
1505   return true;
1506 }
1507 
1508 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1509 // instruction of every block in Blocks to their common successor, commoning
1510 // into one instruction.
1511 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1512   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1513 
1514   // canSinkLastInstruction returning true guarantees that every block has at
1515   // least one non-terminator instruction.
1516   SmallVector<Instruction*,4> Insts;
1517   for (auto *BB : Blocks) {
1518     Instruction *I = BB->getTerminator();
1519     do {
1520       I = I->getPrevNode();
1521     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1522     if (!isa<DbgInfoIntrinsic>(I))
1523       Insts.push_back(I);
1524   }
1525 
1526   // The only checking we need to do now is that all users of all instructions
1527   // are the same PHI node. canSinkLastInstruction should have checked this but
1528   // it is slightly over-aggressive - it gets confused by commutative instructions
1529   // so double-check it here.
1530   Instruction *I0 = Insts.front();
1531   if (!isa<StoreInst>(I0)) {
1532     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1533     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1534           auto *U = cast<Instruction>(*I->user_begin());
1535           return U == PNUse;
1536         }))
1537       return false;
1538   }
1539 
1540   // We don't need to do any more checking here; canSinkLastInstruction should
1541   // have done it all for us.
1542   SmallVector<Value*, 4> NewOperands;
1543   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1544     // This check is different to that in canSinkLastInstruction. There, we
1545     // cared about the global view once simplifycfg (and instcombine) have
1546     // completed - it takes into account PHIs that become trivially
1547     // simplifiable.  However here we need a more local view; if an operand
1548     // differs we create a PHI and rely on instcombine to clean up the very
1549     // small mess we may make.
1550     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1551       return I->getOperand(O) != I0->getOperand(O);
1552     });
1553     if (!NeedPHI) {
1554       NewOperands.push_back(I0->getOperand(O));
1555       continue;
1556     }
1557 
1558     // Create a new PHI in the successor block and populate it.
1559     auto *Op = I0->getOperand(O);
1560     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1561     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1562                                Op->getName() + ".sink", &BBEnd->front());
1563     for (auto *I : Insts)
1564       PN->addIncoming(I->getOperand(O), I->getParent());
1565     NewOperands.push_back(PN);
1566   }
1567 
1568   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1569   // and move it to the start of the successor block.
1570   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1571     I0->getOperandUse(O).set(NewOperands[O]);
1572   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1573 
1574   // Update metadata and IR flags, and merge debug locations.
1575   for (auto *I : Insts)
1576     if (I != I0) {
1577       // The debug location for the "common" instruction is the merged locations
1578       // of all the commoned instructions.  We start with the original location
1579       // of the "common" instruction and iteratively merge each location in the
1580       // loop below.
1581       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1582       // However, as N-way merge for CallInst is rare, so we use simplified API
1583       // instead of using complex API for N-way merge.
1584       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1585       combineMetadataForCSE(I0, I, true);
1586       I0->andIRFlags(I);
1587     }
1588 
1589   if (!isa<StoreInst>(I0)) {
1590     // canSinkLastInstruction checked that all instructions were used by
1591     // one and only one PHI node. Find that now, RAUW it to our common
1592     // instruction and nuke it.
1593     assert(I0->hasOneUse());
1594     auto *PN = cast<PHINode>(*I0->user_begin());
1595     PN->replaceAllUsesWith(I0);
1596     PN->eraseFromParent();
1597   }
1598 
1599   // Finally nuke all instructions apart from the common instruction.
1600   for (auto *I : Insts)
1601     if (I != I0)
1602       I->eraseFromParent();
1603 
1604   return true;
1605 }
1606 
1607 namespace {
1608 
1609   // LockstepReverseIterator - Iterates through instructions
1610   // in a set of blocks in reverse order from the first non-terminator.
1611   // For example (assume all blocks have size n):
1612   //   LockstepReverseIterator I([B1, B2, B3]);
1613   //   *I-- = [B1[n], B2[n], B3[n]];
1614   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1615   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1616   //   ...
1617   class LockstepReverseIterator {
1618     ArrayRef<BasicBlock*> Blocks;
1619     SmallVector<Instruction*,4> Insts;
1620     bool Fail;
1621 
1622   public:
1623     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1624       reset();
1625     }
1626 
1627     void reset() {
1628       Fail = false;
1629       Insts.clear();
1630       for (auto *BB : Blocks) {
1631         Instruction *Inst = BB->getTerminator();
1632         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1633           Inst = Inst->getPrevNode();
1634         if (!Inst) {
1635           // Block wasn't big enough.
1636           Fail = true;
1637           return;
1638         }
1639         Insts.push_back(Inst);
1640       }
1641     }
1642 
1643     bool isValid() const {
1644       return !Fail;
1645     }
1646 
1647     void operator--() {
1648       if (Fail)
1649         return;
1650       for (auto *&Inst : Insts) {
1651         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1652           Inst = Inst->getPrevNode();
1653         // Already at beginning of block.
1654         if (!Inst) {
1655           Fail = true;
1656           return;
1657         }
1658       }
1659     }
1660 
1661     ArrayRef<Instruction*> operator * () const {
1662       return Insts;
1663     }
1664   };
1665 
1666 } // end anonymous namespace
1667 
1668 /// Check whether BB's predecessors end with unconditional branches. If it is
1669 /// true, sink any common code from the predecessors to BB.
1670 /// We also allow one predecessor to end with conditional branch (but no more
1671 /// than one).
1672 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1673   // We support two situations:
1674   //   (1) all incoming arcs are unconditional
1675   //   (2) one incoming arc is conditional
1676   //
1677   // (2) is very common in switch defaults and
1678   // else-if patterns;
1679   //
1680   //   if (a) f(1);
1681   //   else if (b) f(2);
1682   //
1683   // produces:
1684   //
1685   //       [if]
1686   //      /    \
1687   //    [f(1)] [if]
1688   //      |     | \
1689   //      |     |  |
1690   //      |  [f(2)]|
1691   //       \    | /
1692   //        [ end ]
1693   //
1694   // [end] has two unconditional predecessor arcs and one conditional. The
1695   // conditional refers to the implicit empty 'else' arc. This conditional
1696   // arc can also be caused by an empty default block in a switch.
1697   //
1698   // In this case, we attempt to sink code from all *unconditional* arcs.
1699   // If we can sink instructions from these arcs (determined during the scan
1700   // phase below) we insert a common successor for all unconditional arcs and
1701   // connect that to [end], to enable sinking:
1702   //
1703   //       [if]
1704   //      /    \
1705   //    [x(1)] [if]
1706   //      |     | \
1707   //      |     |  \
1708   //      |  [x(2)] |
1709   //       \   /    |
1710   //   [sink.split] |
1711   //         \     /
1712   //         [ end ]
1713   //
1714   SmallVector<BasicBlock*,4> UnconditionalPreds;
1715   Instruction *Cond = nullptr;
1716   for (auto *B : predecessors(BB)) {
1717     auto *T = B->getTerminator();
1718     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1719       UnconditionalPreds.push_back(B);
1720     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1721       Cond = T;
1722     else
1723       return false;
1724   }
1725   if (UnconditionalPreds.size() < 2)
1726     return false;
1727 
1728   bool Changed = false;
1729   // We take a two-step approach to tail sinking. First we scan from the end of
1730   // each block upwards in lockstep. If the n'th instruction from the end of each
1731   // block can be sunk, those instructions are added to ValuesToSink and we
1732   // carry on. If we can sink an instruction but need to PHI-merge some operands
1733   // (because they're not identical in each instruction) we add these to
1734   // PHIOperands.
1735   unsigned ScanIdx = 0;
1736   SmallPtrSet<Value*,4> InstructionsToSink;
1737   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1738   LockstepReverseIterator LRI(UnconditionalPreds);
1739   while (LRI.isValid() &&
1740          canSinkInstructions(*LRI, PHIOperands)) {
1741     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1742                       << "\n");
1743     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1744     ++ScanIdx;
1745     --LRI;
1746   }
1747 
1748   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1749     unsigned NumPHIdValues = 0;
1750     for (auto *I : *LRI)
1751       for (auto *V : PHIOperands[I])
1752         if (InstructionsToSink.count(V) == 0)
1753           ++NumPHIdValues;
1754     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1755     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1756     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1757         NumPHIInsts++;
1758 
1759     return NumPHIInsts <= 1;
1760   };
1761 
1762   if (ScanIdx > 0 && Cond) {
1763     // Check if we would actually sink anything first! This mutates the CFG and
1764     // adds an extra block. The goal in doing this is to allow instructions that
1765     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1766     // (such as trunc, add) can be sunk and predicated already. So we check that
1767     // we're going to sink at least one non-speculatable instruction.
1768     LRI.reset();
1769     unsigned Idx = 0;
1770     bool Profitable = false;
1771     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1772       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1773         Profitable = true;
1774         break;
1775       }
1776       --LRI;
1777       ++Idx;
1778     }
1779     if (!Profitable)
1780       return false;
1781 
1782     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1783     // We have a conditional edge and we're going to sink some instructions.
1784     // Insert a new block postdominating all blocks we're going to sink from.
1785     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1786       // Edges couldn't be split.
1787       return false;
1788     Changed = true;
1789   }
1790 
1791   // Now that we've analyzed all potential sinking candidates, perform the
1792   // actual sink. We iteratively sink the last non-terminator of the source
1793   // blocks into their common successor unless doing so would require too
1794   // many PHI instructions to be generated (currently only one PHI is allowed
1795   // per sunk instruction).
1796   //
1797   // We can use InstructionsToSink to discount values needing PHI-merging that will
1798   // actually be sunk in a later iteration. This allows us to be more
1799   // aggressive in what we sink. This does allow a false positive where we
1800   // sink presuming a later value will also be sunk, but stop half way through
1801   // and never actually sink it which means we produce more PHIs than intended.
1802   // This is unlikely in practice though.
1803   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1804     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1805                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1806                       << "\n");
1807 
1808     // Because we've sunk every instruction in turn, the current instruction to
1809     // sink is always at index 0.
1810     LRI.reset();
1811     if (!ProfitableToSinkInstruction(LRI)) {
1812       // Too many PHIs would be created.
1813       LLVM_DEBUG(
1814           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1815       break;
1816     }
1817 
1818     if (!sinkLastInstruction(UnconditionalPreds))
1819       return Changed;
1820     NumSinkCommons++;
1821     Changed = true;
1822   }
1823   return Changed;
1824 }
1825 
1826 /// Determine if we can hoist sink a sole store instruction out of a
1827 /// conditional block.
1828 ///
1829 /// We are looking for code like the following:
1830 ///   BrBB:
1831 ///     store i32 %add, i32* %arrayidx2
1832 ///     ... // No other stores or function calls (we could be calling a memory
1833 ///     ... // function).
1834 ///     %cmp = icmp ult %x, %y
1835 ///     br i1 %cmp, label %EndBB, label %ThenBB
1836 ///   ThenBB:
1837 ///     store i32 %add5, i32* %arrayidx2
1838 ///     br label EndBB
1839 ///   EndBB:
1840 ///     ...
1841 ///   We are going to transform this into:
1842 ///   BrBB:
1843 ///     store i32 %add, i32* %arrayidx2
1844 ///     ... //
1845 ///     %cmp = icmp ult %x, %y
1846 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1847 ///     store i32 %add.add5, i32* %arrayidx2
1848 ///     ...
1849 ///
1850 /// \return The pointer to the value of the previous store if the store can be
1851 ///         hoisted into the predecessor block. 0 otherwise.
1852 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1853                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1854   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1855   if (!StoreToHoist)
1856     return nullptr;
1857 
1858   // Volatile or atomic.
1859   if (!StoreToHoist->isSimple())
1860     return nullptr;
1861 
1862   Value *StorePtr = StoreToHoist->getPointerOperand();
1863 
1864   // Look for a store to the same pointer in BrBB.
1865   unsigned MaxNumInstToLookAt = 9;
1866   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1867     if (!MaxNumInstToLookAt)
1868       break;
1869     --MaxNumInstToLookAt;
1870 
1871     // Could be calling an instruction that affects memory like free().
1872     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1873       return nullptr;
1874 
1875     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1876       // Found the previous store make sure it stores to the same location.
1877       if (SI->getPointerOperand() == StorePtr)
1878         // Found the previous store, return its value operand.
1879         return SI->getValueOperand();
1880       return nullptr; // Unknown store.
1881     }
1882   }
1883 
1884   return nullptr;
1885 }
1886 
1887 /// Speculate a conditional basic block flattening the CFG.
1888 ///
1889 /// Note that this is a very risky transform currently. Speculating
1890 /// instructions like this is most often not desirable. Instead, there is an MI
1891 /// pass which can do it with full awareness of the resource constraints.
1892 /// However, some cases are "obvious" and we should do directly. An example of
1893 /// this is speculating a single, reasonably cheap instruction.
1894 ///
1895 /// There is only one distinct advantage to flattening the CFG at the IR level:
1896 /// it makes very common but simplistic optimizations such as are common in
1897 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1898 /// modeling their effects with easier to reason about SSA value graphs.
1899 ///
1900 ///
1901 /// An illustration of this transform is turning this IR:
1902 /// \code
1903 ///   BB:
1904 ///     %cmp = icmp ult %x, %y
1905 ///     br i1 %cmp, label %EndBB, label %ThenBB
1906 ///   ThenBB:
1907 ///     %sub = sub %x, %y
1908 ///     br label BB2
1909 ///   EndBB:
1910 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1911 ///     ...
1912 /// \endcode
1913 ///
1914 /// Into this IR:
1915 /// \code
1916 ///   BB:
1917 ///     %cmp = icmp ult %x, %y
1918 ///     %sub = sub %x, %y
1919 ///     %cond = select i1 %cmp, 0, %sub
1920 ///     ...
1921 /// \endcode
1922 ///
1923 /// \returns true if the conditional block is removed.
1924 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1925                                    const TargetTransformInfo &TTI) {
1926   // Be conservative for now. FP select instruction can often be expensive.
1927   Value *BrCond = BI->getCondition();
1928   if (isa<FCmpInst>(BrCond))
1929     return false;
1930 
1931   BasicBlock *BB = BI->getParent();
1932   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1933 
1934   // If ThenBB is actually on the false edge of the conditional branch, remember
1935   // to swap the select operands later.
1936   bool Invert = false;
1937   if (ThenBB != BI->getSuccessor(0)) {
1938     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1939     Invert = true;
1940   }
1941   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1942 
1943   // Keep a count of how many times instructions are used within CondBB when
1944   // they are candidates for sinking into CondBB. Specifically:
1945   // - They are defined in BB, and
1946   // - They have no side effects, and
1947   // - All of their uses are in CondBB.
1948   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1949 
1950   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1951 
1952   unsigned SpeculationCost = 0;
1953   Value *SpeculatedStoreValue = nullptr;
1954   StoreInst *SpeculatedStore = nullptr;
1955   for (BasicBlock::iterator BBI = ThenBB->begin(),
1956                             BBE = std::prev(ThenBB->end());
1957        BBI != BBE; ++BBI) {
1958     Instruction *I = &*BBI;
1959     // Skip debug info.
1960     if (isa<DbgInfoIntrinsic>(I)) {
1961       SpeculatedDbgIntrinsics.push_back(I);
1962       continue;
1963     }
1964 
1965     // Only speculatively execute a single instruction (not counting the
1966     // terminator) for now.
1967     ++SpeculationCost;
1968     if (SpeculationCost > 1)
1969       return false;
1970 
1971     // Don't hoist the instruction if it's unsafe or expensive.
1972     if (!isSafeToSpeculativelyExecute(I) &&
1973         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1974                                   I, BB, ThenBB, EndBB))))
1975       return false;
1976     if (!SpeculatedStoreValue &&
1977         ComputeSpeculationCost(I, TTI) >
1978             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1979       return false;
1980 
1981     // Store the store speculation candidate.
1982     if (SpeculatedStoreValue)
1983       SpeculatedStore = cast<StoreInst>(I);
1984 
1985     // Do not hoist the instruction if any of its operands are defined but not
1986     // used in BB. The transformation will prevent the operand from
1987     // being sunk into the use block.
1988     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1989       Instruction *OpI = dyn_cast<Instruction>(*i);
1990       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1991         continue; // Not a candidate for sinking.
1992 
1993       ++SinkCandidateUseCounts[OpI];
1994     }
1995   }
1996 
1997   // Consider any sink candidates which are only used in CondBB as costs for
1998   // speculation. Note, while we iterate over a DenseMap here, we are summing
1999   // and so iteration order isn't significant.
2000   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2001            I = SinkCandidateUseCounts.begin(),
2002            E = SinkCandidateUseCounts.end();
2003        I != E; ++I)
2004     if (I->first->getNumUses() == I->second) {
2005       ++SpeculationCost;
2006       if (SpeculationCost > 1)
2007         return false;
2008     }
2009 
2010   // Check that the PHI nodes can be converted to selects.
2011   bool HaveRewritablePHIs = false;
2012   for (PHINode &PN : EndBB->phis()) {
2013     Value *OrigV = PN.getIncomingValueForBlock(BB);
2014     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2015 
2016     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2017     // Skip PHIs which are trivial.
2018     if (ThenV == OrigV)
2019       continue;
2020 
2021     // Don't convert to selects if we could remove undefined behavior instead.
2022     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2023         passingValueIsAlwaysUndefined(ThenV, &PN))
2024       return false;
2025 
2026     HaveRewritablePHIs = true;
2027     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2028     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2029     if (!OrigCE && !ThenCE)
2030       continue; // Known safe and cheap.
2031 
2032     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2033         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2034       return false;
2035     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2036     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2037     unsigned MaxCost =
2038         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2039     if (OrigCost + ThenCost > MaxCost)
2040       return false;
2041 
2042     // Account for the cost of an unfolded ConstantExpr which could end up
2043     // getting expanded into Instructions.
2044     // FIXME: This doesn't account for how many operations are combined in the
2045     // constant expression.
2046     ++SpeculationCost;
2047     if (SpeculationCost > 1)
2048       return false;
2049   }
2050 
2051   // If there are no PHIs to process, bail early. This helps ensure idempotence
2052   // as well.
2053   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2054     return false;
2055 
2056   // If we get here, we can hoist the instruction and if-convert.
2057   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2058 
2059   // Insert a select of the value of the speculated store.
2060   if (SpeculatedStoreValue) {
2061     IRBuilder<NoFolder> Builder(BI);
2062     Value *TrueV = SpeculatedStore->getValueOperand();
2063     Value *FalseV = SpeculatedStoreValue;
2064     if (Invert)
2065       std::swap(TrueV, FalseV);
2066     Value *S = Builder.CreateSelect(
2067         BrCond, TrueV, FalseV, "spec.store.select", BI);
2068     SpeculatedStore->setOperand(0, S);
2069     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2070                                          SpeculatedStore->getDebugLoc());
2071   }
2072 
2073   // Metadata can be dependent on the condition we are hoisting above.
2074   // Conservatively strip all metadata on the instruction.
2075   for (auto &I : *ThenBB)
2076     I.dropUnknownNonDebugMetadata();
2077 
2078   // Hoist the instructions.
2079   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2080                            ThenBB->begin(), std::prev(ThenBB->end()));
2081 
2082   // Insert selects and rewrite the PHI operands.
2083   IRBuilder<NoFolder> Builder(BI);
2084   for (PHINode &PN : EndBB->phis()) {
2085     unsigned OrigI = PN.getBasicBlockIndex(BB);
2086     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2087     Value *OrigV = PN.getIncomingValue(OrigI);
2088     Value *ThenV = PN.getIncomingValue(ThenI);
2089 
2090     // Skip PHIs which are trivial.
2091     if (OrigV == ThenV)
2092       continue;
2093 
2094     // Create a select whose true value is the speculatively executed value and
2095     // false value is the preexisting value. Swap them if the branch
2096     // destinations were inverted.
2097     Value *TrueV = ThenV, *FalseV = OrigV;
2098     if (Invert)
2099       std::swap(TrueV, FalseV);
2100     Value *V = Builder.CreateSelect(
2101         BrCond, TrueV, FalseV, "spec.select", BI);
2102     PN.setIncomingValue(OrigI, V);
2103     PN.setIncomingValue(ThenI, V);
2104   }
2105 
2106   // Remove speculated dbg intrinsics.
2107   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2108   // dbg value for the different flows and inserting it after the select.
2109   for (Instruction *I : SpeculatedDbgIntrinsics)
2110     I->eraseFromParent();
2111 
2112   ++NumSpeculations;
2113   return true;
2114 }
2115 
2116 /// Return true if we can thread a branch across this block.
2117 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2118   unsigned Size = 0;
2119 
2120   for (Instruction &I : BB->instructionsWithoutDebug()) {
2121     if (Size > 10)
2122       return false; // Don't clone large BB's.
2123     ++Size;
2124 
2125     // We can only support instructions that do not define values that are
2126     // live outside of the current basic block.
2127     for (User *U : I.users()) {
2128       Instruction *UI = cast<Instruction>(U);
2129       if (UI->getParent() != BB || isa<PHINode>(UI))
2130         return false;
2131     }
2132 
2133     // Looks ok, continue checking.
2134   }
2135 
2136   return true;
2137 }
2138 
2139 /// If we have a conditional branch on a PHI node value that is defined in the
2140 /// same block as the branch and if any PHI entries are constants, thread edges
2141 /// corresponding to that entry to be branches to their ultimate destination.
2142 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2143                                 AssumptionCache *AC) {
2144   BasicBlock *BB = BI->getParent();
2145   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2146   // NOTE: we currently cannot transform this case if the PHI node is used
2147   // outside of the block.
2148   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2149     return false;
2150 
2151   // Degenerate case of a single entry PHI.
2152   if (PN->getNumIncomingValues() == 1) {
2153     FoldSingleEntryPHINodes(PN->getParent());
2154     return true;
2155   }
2156 
2157   // Now we know that this block has multiple preds and two succs.
2158   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2159     return false;
2160 
2161   // Can't fold blocks that contain noduplicate or convergent calls.
2162   if (any_of(*BB, [](const Instruction &I) {
2163         const CallInst *CI = dyn_cast<CallInst>(&I);
2164         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2165       }))
2166     return false;
2167 
2168   // Okay, this is a simple enough basic block.  See if any phi values are
2169   // constants.
2170   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2171     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2172     if (!CB || !CB->getType()->isIntegerTy(1))
2173       continue;
2174 
2175     // Okay, we now know that all edges from PredBB should be revectored to
2176     // branch to RealDest.
2177     BasicBlock *PredBB = PN->getIncomingBlock(i);
2178     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2179 
2180     if (RealDest == BB)
2181       continue; // Skip self loops.
2182     // Skip if the predecessor's terminator is an indirect branch.
2183     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2184       continue;
2185 
2186     // The dest block might have PHI nodes, other predecessors and other
2187     // difficult cases.  Instead of being smart about this, just insert a new
2188     // block that jumps to the destination block, effectively splitting
2189     // the edge we are about to create.
2190     BasicBlock *EdgeBB =
2191         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2192                            RealDest->getParent(), RealDest);
2193     BranchInst::Create(RealDest, EdgeBB);
2194 
2195     // Update PHI nodes.
2196     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2197 
2198     // BB may have instructions that are being threaded over.  Clone these
2199     // instructions into EdgeBB.  We know that there will be no uses of the
2200     // cloned instructions outside of EdgeBB.
2201     BasicBlock::iterator InsertPt = EdgeBB->begin();
2202     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2203     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2204       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2205         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2206         continue;
2207       }
2208       // Clone the instruction.
2209       Instruction *N = BBI->clone();
2210       if (BBI->hasName())
2211         N->setName(BBI->getName() + ".c");
2212 
2213       // Update operands due to translation.
2214       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2215         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2216         if (PI != TranslateMap.end())
2217           *i = PI->second;
2218       }
2219 
2220       // Check for trivial simplification.
2221       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2222         if (!BBI->use_empty())
2223           TranslateMap[&*BBI] = V;
2224         if (!N->mayHaveSideEffects()) {
2225           N->deleteValue(); // Instruction folded away, don't need actual inst
2226           N = nullptr;
2227         }
2228       } else {
2229         if (!BBI->use_empty())
2230           TranslateMap[&*BBI] = N;
2231       }
2232       // Insert the new instruction into its new home.
2233       if (N)
2234         EdgeBB->getInstList().insert(InsertPt, N);
2235 
2236       // Register the new instruction with the assumption cache if necessary.
2237       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2238         if (II->getIntrinsicID() == Intrinsic::assume)
2239           AC->registerAssumption(II);
2240     }
2241 
2242     // Loop over all of the edges from PredBB to BB, changing them to branch
2243     // to EdgeBB instead.
2244     TerminatorInst *PredBBTI = PredBB->getTerminator();
2245     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2246       if (PredBBTI->getSuccessor(i) == BB) {
2247         BB->removePredecessor(PredBB);
2248         PredBBTI->setSuccessor(i, EdgeBB);
2249       }
2250 
2251     // Recurse, simplifying any other constants.
2252     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2253   }
2254 
2255   return false;
2256 }
2257 
2258 /// Given a BB that starts with the specified two-entry PHI node,
2259 /// see if we can eliminate it.
2260 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2261                                 const DataLayout &DL) {
2262   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2263   // statement", which has a very simple dominance structure.  Basically, we
2264   // are trying to find the condition that is being branched on, which
2265   // subsequently causes this merge to happen.  We really want control
2266   // dependence information for this check, but simplifycfg can't keep it up
2267   // to date, and this catches most of the cases we care about anyway.
2268   BasicBlock *BB = PN->getParent();
2269   const Function *Fn = BB->getParent();
2270   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2271     return false;
2272 
2273   BasicBlock *IfTrue, *IfFalse;
2274   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2275   if (!IfCond ||
2276       // Don't bother if the branch will be constant folded trivially.
2277       isa<ConstantInt>(IfCond))
2278     return false;
2279 
2280   // Okay, we found that we can merge this two-entry phi node into a select.
2281   // Doing so would require us to fold *all* two entry phi nodes in this block.
2282   // At some point this becomes non-profitable (particularly if the target
2283   // doesn't support cmov's).  Only do this transformation if there are two or
2284   // fewer PHI nodes in this block.
2285   unsigned NumPhis = 0;
2286   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2287     if (NumPhis > 2)
2288       return false;
2289 
2290   // Loop over the PHI's seeing if we can promote them all to select
2291   // instructions.  While we are at it, keep track of the instructions
2292   // that need to be moved to the dominating block.
2293   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2294   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2295            MaxCostVal1 = PHINodeFoldingThreshold;
2296   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2297   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2298 
2299   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2300     PHINode *PN = cast<PHINode>(II++);
2301     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2302       PN->replaceAllUsesWith(V);
2303       PN->eraseFromParent();
2304       continue;
2305     }
2306 
2307     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2308                              MaxCostVal0, TTI) ||
2309         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2310                              MaxCostVal1, TTI))
2311       return false;
2312   }
2313 
2314   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2315   // we ran out of PHIs then we simplified them all.
2316   PN = dyn_cast<PHINode>(BB->begin());
2317   if (!PN)
2318     return true;
2319 
2320   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2321   // often be turned into switches and other things.
2322   if (PN->getType()->isIntegerTy(1) &&
2323       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2324        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2325        isa<BinaryOperator>(IfCond)))
2326     return false;
2327 
2328   // If all PHI nodes are promotable, check to make sure that all instructions
2329   // in the predecessor blocks can be promoted as well. If not, we won't be able
2330   // to get rid of the control flow, so it's not worth promoting to select
2331   // instructions.
2332   BasicBlock *DomBlock = nullptr;
2333   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2334   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2335   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2336     IfBlock1 = nullptr;
2337   } else {
2338     DomBlock = *pred_begin(IfBlock1);
2339     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2340       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2341         // This is not an aggressive instruction that we can promote.
2342         // Because of this, we won't be able to get rid of the control flow, so
2343         // the xform is not worth it.
2344         return false;
2345       }
2346   }
2347 
2348   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2349     IfBlock2 = nullptr;
2350   } else {
2351     DomBlock = *pred_begin(IfBlock2);
2352     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2353       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2354         // This is not an aggressive instruction that we can promote.
2355         // Because of this, we won't be able to get rid of the control flow, so
2356         // the xform is not worth it.
2357         return false;
2358       }
2359   }
2360 
2361   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2362                     << "  T: " << IfTrue->getName()
2363                     << "  F: " << IfFalse->getName() << "\n");
2364 
2365   // If we can still promote the PHI nodes after this gauntlet of tests,
2366   // do all of the PHI's now.
2367   Instruction *InsertPt = DomBlock->getTerminator();
2368   IRBuilder<NoFolder> Builder(InsertPt);
2369 
2370   // Move all 'aggressive' instructions, which are defined in the
2371   // conditional parts of the if's up to the dominating block.
2372   if (IfBlock1) {
2373     for (auto &I : *IfBlock1)
2374       I.dropUnknownNonDebugMetadata();
2375     DomBlock->getInstList().splice(InsertPt->getIterator(),
2376                                    IfBlock1->getInstList(), IfBlock1->begin(),
2377                                    IfBlock1->getTerminator()->getIterator());
2378   }
2379   if (IfBlock2) {
2380     for (auto &I : *IfBlock2)
2381       I.dropUnknownNonDebugMetadata();
2382     DomBlock->getInstList().splice(InsertPt->getIterator(),
2383                                    IfBlock2->getInstList(), IfBlock2->begin(),
2384                                    IfBlock2->getTerminator()->getIterator());
2385   }
2386 
2387   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2388     // Change the PHI node into a select instruction.
2389     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2390     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2391 
2392     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2393     PN->replaceAllUsesWith(Sel);
2394     Sel->takeName(PN);
2395     PN->eraseFromParent();
2396   }
2397 
2398   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2399   // has been flattened.  Change DomBlock to jump directly to our new block to
2400   // avoid other simplifycfg's kicking in on the diamond.
2401   TerminatorInst *OldTI = DomBlock->getTerminator();
2402   Builder.SetInsertPoint(OldTI);
2403   Builder.CreateBr(BB);
2404   OldTI->eraseFromParent();
2405   return true;
2406 }
2407 
2408 /// If we found a conditional branch that goes to two returning blocks,
2409 /// try to merge them together into one return,
2410 /// introducing a select if the return values disagree.
2411 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2412                                            IRBuilder<> &Builder) {
2413   assert(BI->isConditional() && "Must be a conditional branch");
2414   BasicBlock *TrueSucc = BI->getSuccessor(0);
2415   BasicBlock *FalseSucc = BI->getSuccessor(1);
2416   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2417   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2418 
2419   // Check to ensure both blocks are empty (just a return) or optionally empty
2420   // with PHI nodes.  If there are other instructions, merging would cause extra
2421   // computation on one path or the other.
2422   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2423     return false;
2424   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2425     return false;
2426 
2427   Builder.SetInsertPoint(BI);
2428   // Okay, we found a branch that is going to two return nodes.  If
2429   // there is no return value for this function, just change the
2430   // branch into a return.
2431   if (FalseRet->getNumOperands() == 0) {
2432     TrueSucc->removePredecessor(BI->getParent());
2433     FalseSucc->removePredecessor(BI->getParent());
2434     Builder.CreateRetVoid();
2435     EraseTerminatorInstAndDCECond(BI);
2436     return true;
2437   }
2438 
2439   // Otherwise, figure out what the true and false return values are
2440   // so we can insert a new select instruction.
2441   Value *TrueValue = TrueRet->getReturnValue();
2442   Value *FalseValue = FalseRet->getReturnValue();
2443 
2444   // Unwrap any PHI nodes in the return blocks.
2445   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2446     if (TVPN->getParent() == TrueSucc)
2447       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2448   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2449     if (FVPN->getParent() == FalseSucc)
2450       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2451 
2452   // In order for this transformation to be safe, we must be able to
2453   // unconditionally execute both operands to the return.  This is
2454   // normally the case, but we could have a potentially-trapping
2455   // constant expression that prevents this transformation from being
2456   // safe.
2457   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2458     if (TCV->canTrap())
2459       return false;
2460   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2461     if (FCV->canTrap())
2462       return false;
2463 
2464   // Okay, we collected all the mapped values and checked them for sanity, and
2465   // defined to really do this transformation.  First, update the CFG.
2466   TrueSucc->removePredecessor(BI->getParent());
2467   FalseSucc->removePredecessor(BI->getParent());
2468 
2469   // Insert select instructions where needed.
2470   Value *BrCond = BI->getCondition();
2471   if (TrueValue) {
2472     // Insert a select if the results differ.
2473     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2474     } else if (isa<UndefValue>(TrueValue)) {
2475       TrueValue = FalseValue;
2476     } else {
2477       TrueValue =
2478           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2479     }
2480   }
2481 
2482   Value *RI =
2483       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2484 
2485   (void)RI;
2486 
2487   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2488                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2489                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2490 
2491   EraseTerminatorInstAndDCECond(BI);
2492 
2493   return true;
2494 }
2495 
2496 /// Return true if the given instruction is available
2497 /// in its predecessor block. If yes, the instruction will be removed.
2498 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2499   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2500     return false;
2501   for (Instruction &I : *PB) {
2502     Instruction *PBI = &I;
2503     // Check whether Inst and PBI generate the same value.
2504     if (Inst->isIdenticalTo(PBI)) {
2505       Inst->replaceAllUsesWith(PBI);
2506       Inst->eraseFromParent();
2507       return true;
2508     }
2509   }
2510   return false;
2511 }
2512 
2513 /// Return true if either PBI or BI has branch weight available, and store
2514 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2515 /// not have branch weight, use 1:1 as its weight.
2516 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2517                                    uint64_t &PredTrueWeight,
2518                                    uint64_t &PredFalseWeight,
2519                                    uint64_t &SuccTrueWeight,
2520                                    uint64_t &SuccFalseWeight) {
2521   bool PredHasWeights =
2522       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2523   bool SuccHasWeights =
2524       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2525   if (PredHasWeights || SuccHasWeights) {
2526     if (!PredHasWeights)
2527       PredTrueWeight = PredFalseWeight = 1;
2528     if (!SuccHasWeights)
2529       SuccTrueWeight = SuccFalseWeight = 1;
2530     return true;
2531   } else {
2532     return false;
2533   }
2534 }
2535 
2536 /// If this basic block is simple enough, and if a predecessor branches to us
2537 /// and one of our successors, fold the block into the predecessor and use
2538 /// logical operations to pick the right destination.
2539 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2540   BasicBlock *BB = BI->getParent();
2541 
2542   const unsigned PredCount = pred_size(BB);
2543 
2544   Instruction *Cond = nullptr;
2545   if (BI->isConditional())
2546     Cond = dyn_cast<Instruction>(BI->getCondition());
2547   else {
2548     // For unconditional branch, check for a simple CFG pattern, where
2549     // BB has a single predecessor and BB's successor is also its predecessor's
2550     // successor. If such pattern exists, check for CSE between BB and its
2551     // predecessor.
2552     if (BasicBlock *PB = BB->getSinglePredecessor())
2553       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2554         if (PBI->isConditional() &&
2555             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2556              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2557           for (auto I = BB->instructionsWithoutDebug().begin(),
2558                     E = BB->instructionsWithoutDebug().end();
2559                I != E;) {
2560             Instruction *Curr = &*I++;
2561             if (isa<CmpInst>(Curr)) {
2562               Cond = Curr;
2563               break;
2564             }
2565             // Quit if we can't remove this instruction.
2566             if (!tryCSEWithPredecessor(Curr, PB))
2567               return false;
2568           }
2569         }
2570 
2571     if (!Cond)
2572       return false;
2573   }
2574 
2575   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2576       Cond->getParent() != BB || !Cond->hasOneUse())
2577     return false;
2578 
2579   // Make sure the instruction after the condition is the cond branch.
2580   BasicBlock::iterator CondIt = ++Cond->getIterator();
2581 
2582   // Ignore dbg intrinsics.
2583   while (isa<DbgInfoIntrinsic>(CondIt))
2584     ++CondIt;
2585 
2586   if (&*CondIt != BI)
2587     return false;
2588 
2589   // Only allow this transformation if computing the condition doesn't involve
2590   // too many instructions and these involved instructions can be executed
2591   // unconditionally. We denote all involved instructions except the condition
2592   // as "bonus instructions", and only allow this transformation when the
2593   // number of the bonus instructions we'll need to create when cloning into
2594   // each predecessor does not exceed a certain threshold.
2595   unsigned NumBonusInsts = 0;
2596   for (auto I = BB->begin(); Cond != &*I; ++I) {
2597     // Ignore dbg intrinsics.
2598     if (isa<DbgInfoIntrinsic>(I))
2599       continue;
2600     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2601       return false;
2602     // I has only one use and can be executed unconditionally.
2603     Instruction *User = dyn_cast<Instruction>(I->user_back());
2604     if (User == nullptr || User->getParent() != BB)
2605       return false;
2606     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2607     // to use any other instruction, User must be an instruction between next(I)
2608     // and Cond.
2609 
2610     // Account for the cost of duplicating this instruction into each
2611     // predecessor.
2612     NumBonusInsts += PredCount;
2613     // Early exits once we reach the limit.
2614     if (NumBonusInsts > BonusInstThreshold)
2615       return false;
2616   }
2617 
2618   // Cond is known to be a compare or binary operator.  Check to make sure that
2619   // neither operand is a potentially-trapping constant expression.
2620   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2621     if (CE->canTrap())
2622       return false;
2623   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2624     if (CE->canTrap())
2625       return false;
2626 
2627   // Finally, don't infinitely unroll conditional loops.
2628   BasicBlock *TrueDest = BI->getSuccessor(0);
2629   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2630   if (TrueDest == BB || FalseDest == BB)
2631     return false;
2632 
2633   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2634     BasicBlock *PredBlock = *PI;
2635     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2636 
2637     // Check that we have two conditional branches.  If there is a PHI node in
2638     // the common successor, verify that the same value flows in from both
2639     // blocks.
2640     SmallVector<PHINode *, 4> PHIs;
2641     if (!PBI || PBI->isUnconditional() ||
2642         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2643         (!BI->isConditional() &&
2644          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2645       continue;
2646 
2647     // Determine if the two branches share a common destination.
2648     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2649     bool InvertPredCond = false;
2650 
2651     if (BI->isConditional()) {
2652       if (PBI->getSuccessor(0) == TrueDest) {
2653         Opc = Instruction::Or;
2654       } else if (PBI->getSuccessor(1) == FalseDest) {
2655         Opc = Instruction::And;
2656       } else if (PBI->getSuccessor(0) == FalseDest) {
2657         Opc = Instruction::And;
2658         InvertPredCond = true;
2659       } else if (PBI->getSuccessor(1) == TrueDest) {
2660         Opc = Instruction::Or;
2661         InvertPredCond = true;
2662       } else {
2663         continue;
2664       }
2665     } else {
2666       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2667         continue;
2668     }
2669 
2670     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2671     IRBuilder<> Builder(PBI);
2672 
2673     // If we need to invert the condition in the pred block to match, do so now.
2674     if (InvertPredCond) {
2675       Value *NewCond = PBI->getCondition();
2676 
2677       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2678         CmpInst *CI = cast<CmpInst>(NewCond);
2679         CI->setPredicate(CI->getInversePredicate());
2680       } else {
2681         NewCond =
2682             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2683       }
2684 
2685       PBI->setCondition(NewCond);
2686       PBI->swapSuccessors();
2687     }
2688 
2689     // If we have bonus instructions, clone them into the predecessor block.
2690     // Note that there may be multiple predecessor blocks, so we cannot move
2691     // bonus instructions to a predecessor block.
2692     ValueToValueMapTy VMap; // maps original values to cloned values
2693     // We already make sure Cond is the last instruction before BI. Therefore,
2694     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2695     // instructions.
2696     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2697       if (isa<DbgInfoIntrinsic>(BonusInst))
2698         continue;
2699       Instruction *NewBonusInst = BonusInst->clone();
2700       RemapInstruction(NewBonusInst, VMap,
2701                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2702       VMap[&*BonusInst] = NewBonusInst;
2703 
2704       // If we moved a load, we cannot any longer claim any knowledge about
2705       // its potential value. The previous information might have been valid
2706       // only given the branch precondition.
2707       // For an analogous reason, we must also drop all the metadata whose
2708       // semantics we don't understand.
2709       NewBonusInst->dropUnknownNonDebugMetadata();
2710 
2711       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2712       NewBonusInst->takeName(&*BonusInst);
2713       BonusInst->setName(BonusInst->getName() + ".old");
2714     }
2715 
2716     // Clone Cond into the predecessor basic block, and or/and the
2717     // two conditions together.
2718     Instruction *CondInPred = Cond->clone();
2719     RemapInstruction(CondInPred, VMap,
2720                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2721     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2722     CondInPred->takeName(Cond);
2723     Cond->setName(CondInPred->getName() + ".old");
2724 
2725     if (BI->isConditional()) {
2726       Instruction *NewCond = cast<Instruction>(
2727           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2728       PBI->setCondition(NewCond);
2729 
2730       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2731       bool HasWeights =
2732           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2733                                  SuccTrueWeight, SuccFalseWeight);
2734       SmallVector<uint64_t, 8> NewWeights;
2735 
2736       if (PBI->getSuccessor(0) == BB) {
2737         if (HasWeights) {
2738           // PBI: br i1 %x, BB, FalseDest
2739           // BI:  br i1 %y, TrueDest, FalseDest
2740           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2741           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2742           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2743           //               TrueWeight for PBI * FalseWeight for BI.
2744           // We assume that total weights of a BranchInst can fit into 32 bits.
2745           // Therefore, we will not have overflow using 64-bit arithmetic.
2746           NewWeights.push_back(PredFalseWeight *
2747                                    (SuccFalseWeight + SuccTrueWeight) +
2748                                PredTrueWeight * SuccFalseWeight);
2749         }
2750         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2751         PBI->setSuccessor(0, TrueDest);
2752       }
2753       if (PBI->getSuccessor(1) == BB) {
2754         if (HasWeights) {
2755           // PBI: br i1 %x, TrueDest, BB
2756           // BI:  br i1 %y, TrueDest, FalseDest
2757           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2758           //              FalseWeight for PBI * TrueWeight for BI.
2759           NewWeights.push_back(PredTrueWeight *
2760                                    (SuccFalseWeight + SuccTrueWeight) +
2761                                PredFalseWeight * SuccTrueWeight);
2762           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2763           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2764         }
2765         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2766         PBI->setSuccessor(1, FalseDest);
2767       }
2768       if (NewWeights.size() == 2) {
2769         // Halve the weights if any of them cannot fit in an uint32_t
2770         FitWeights(NewWeights);
2771 
2772         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2773                                            NewWeights.end());
2774         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2775       } else
2776         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2777     } else {
2778       // Update PHI nodes in the common successors.
2779       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2780         ConstantInt *PBI_C = cast<ConstantInt>(
2781             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2782         assert(PBI_C->getType()->isIntegerTy(1));
2783         Instruction *MergedCond = nullptr;
2784         if (PBI->getSuccessor(0) == TrueDest) {
2785           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2786           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2787           //       is false: !PBI_Cond and BI_Value
2788           Instruction *NotCond = cast<Instruction>(
2789               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2790           MergedCond = cast<Instruction>(
2791                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2792                                    "and.cond"));
2793           if (PBI_C->isOne())
2794             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2795                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2796         } else {
2797           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2798           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2799           //       is false: PBI_Cond and BI_Value
2800           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2801               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2802           if (PBI_C->isOne()) {
2803             Instruction *NotCond = cast<Instruction>(
2804                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2805             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2806                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2807           }
2808         }
2809         // Update PHI Node.
2810         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2811                                   MergedCond);
2812       }
2813       // Change PBI from Conditional to Unconditional.
2814       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2815       EraseTerminatorInstAndDCECond(PBI);
2816       PBI = New_PBI;
2817     }
2818 
2819     // If BI was a loop latch, it may have had associated loop metadata.
2820     // We need to copy it to the new latch, that is, PBI.
2821     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2822       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2823 
2824     // TODO: If BB is reachable from all paths through PredBlock, then we
2825     // could replace PBI's branch probabilities with BI's.
2826 
2827     // Copy any debug value intrinsics into the end of PredBlock.
2828     for (Instruction &I : *BB)
2829       if (isa<DbgInfoIntrinsic>(I))
2830         I.clone()->insertBefore(PBI);
2831 
2832     return true;
2833   }
2834   return false;
2835 }
2836 
2837 // If there is only one store in BB1 and BB2, return it, otherwise return
2838 // nullptr.
2839 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2840   StoreInst *S = nullptr;
2841   for (auto *BB : {BB1, BB2}) {
2842     if (!BB)
2843       continue;
2844     for (auto &I : *BB)
2845       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2846         if (S)
2847           // Multiple stores seen.
2848           return nullptr;
2849         else
2850           S = SI;
2851       }
2852   }
2853   return S;
2854 }
2855 
2856 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2857                                               Value *AlternativeV = nullptr) {
2858   // PHI is going to be a PHI node that allows the value V that is defined in
2859   // BB to be referenced in BB's only successor.
2860   //
2861   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2862   // doesn't matter to us what the other operand is (it'll never get used). We
2863   // could just create a new PHI with an undef incoming value, but that could
2864   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2865   // other PHI. So here we directly look for some PHI in BB's successor with V
2866   // as an incoming operand. If we find one, we use it, else we create a new
2867   // one.
2868   //
2869   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2870   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2871   // where OtherBB is the single other predecessor of BB's only successor.
2872   PHINode *PHI = nullptr;
2873   BasicBlock *Succ = BB->getSingleSuccessor();
2874 
2875   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2876     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2877       PHI = cast<PHINode>(I);
2878       if (!AlternativeV)
2879         break;
2880 
2881       assert(pred_size(Succ) == 2);
2882       auto PredI = pred_begin(Succ);
2883       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2884       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2885         break;
2886       PHI = nullptr;
2887     }
2888   if (PHI)
2889     return PHI;
2890 
2891   // If V is not an instruction defined in BB, just return it.
2892   if (!AlternativeV &&
2893       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2894     return V;
2895 
2896   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2897   PHI->addIncoming(V, BB);
2898   for (BasicBlock *PredBB : predecessors(Succ))
2899     if (PredBB != BB)
2900       PHI->addIncoming(
2901           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2902   return PHI;
2903 }
2904 
2905 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2906                                            BasicBlock *QTB, BasicBlock *QFB,
2907                                            BasicBlock *PostBB, Value *Address,
2908                                            bool InvertPCond, bool InvertQCond,
2909                                            const DataLayout &DL) {
2910   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2911     return Operator::getOpcode(&I) == Instruction::BitCast &&
2912            I.getType()->isPointerTy();
2913   };
2914 
2915   // If we're not in aggressive mode, we only optimize if we have some
2916   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2917   auto IsWorthwhile = [&](BasicBlock *BB) {
2918     if (!BB)
2919       return true;
2920     // Heuristic: if the block can be if-converted/phi-folded and the
2921     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2922     // thread this store.
2923     unsigned N = 0;
2924     for (auto &I : BB->instructionsWithoutDebug()) {
2925       // Cheap instructions viable for folding.
2926       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2927           isa<StoreInst>(I))
2928         ++N;
2929       // Free instructions.
2930       else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2931         continue;
2932       else
2933         return false;
2934     }
2935     // The store we want to merge is counted in N, so add 1 to make sure
2936     // we're counting the instructions that would be left.
2937     return N <= (PHINodeFoldingThreshold + 1);
2938   };
2939 
2940   if (!MergeCondStoresAggressively &&
2941       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2942        !IsWorthwhile(QFB)))
2943     return false;
2944 
2945   // For every pointer, there must be exactly two stores, one coming from
2946   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2947   // store (to any address) in PTB,PFB or QTB,QFB.
2948   // FIXME: We could relax this restriction with a bit more work and performance
2949   // testing.
2950   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2951   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2952   if (!PStore || !QStore)
2953     return false;
2954 
2955   // Now check the stores are compatible.
2956   if (!QStore->isUnordered() || !PStore->isUnordered())
2957     return false;
2958 
2959   // Check that sinking the store won't cause program behavior changes. Sinking
2960   // the store out of the Q blocks won't change any behavior as we're sinking
2961   // from a block to its unconditional successor. But we're moving a store from
2962   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2963   // So we need to check that there are no aliasing loads or stores in
2964   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2965   // operations between PStore and the end of its parent block.
2966   //
2967   // The ideal way to do this is to query AliasAnalysis, but we don't
2968   // preserve AA currently so that is dangerous. Be super safe and just
2969   // check there are no other memory operations at all.
2970   for (auto &I : *QFB->getSinglePredecessor())
2971     if (I.mayReadOrWriteMemory())
2972       return false;
2973   for (auto &I : *QFB)
2974     if (&I != QStore && I.mayReadOrWriteMemory())
2975       return false;
2976   if (QTB)
2977     for (auto &I : *QTB)
2978       if (&I != QStore && I.mayReadOrWriteMemory())
2979         return false;
2980   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2981        I != E; ++I)
2982     if (&*I != PStore && I->mayReadOrWriteMemory())
2983       return false;
2984 
2985   // If PostBB has more than two predecessors, we need to split it so we can
2986   // sink the store.
2987   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
2988     // We know that QFB's only successor is PostBB. And QFB has a single
2989     // predecessor. If QTB exists, then its only successor is also PostBB.
2990     // If QTB does not exist, then QFB's only predecessor has a conditional
2991     // branch to QFB and PostBB.
2992     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
2993     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
2994                                                "condstore.split");
2995     if (!NewBB)
2996       return false;
2997     PostBB = NewBB;
2998   }
2999 
3000   // OK, we're going to sink the stores to PostBB. The store has to be
3001   // conditional though, so first create the predicate.
3002   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3003                      ->getCondition();
3004   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3005                      ->getCondition();
3006 
3007   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3008                                                 PStore->getParent());
3009   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3010                                                 QStore->getParent(), PPHI);
3011 
3012   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3013 
3014   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3015   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3016 
3017   if (InvertPCond)
3018     PPred = QB.CreateNot(PPred);
3019   if (InvertQCond)
3020     QPred = QB.CreateNot(QPred);
3021   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3022 
3023   auto *T =
3024       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3025   QB.SetInsertPoint(T);
3026   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3027   AAMDNodes AAMD;
3028   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3029   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3030   SI->setAAMetadata(AAMD);
3031   unsigned PAlignment = PStore->getAlignment();
3032   unsigned QAlignment = QStore->getAlignment();
3033   unsigned TypeAlignment =
3034       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3035   unsigned MinAlignment;
3036   unsigned MaxAlignment;
3037   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3038   // Choose the minimum alignment. If we could prove both stores execute, we
3039   // could use biggest one.  In this case, though, we only know that one of the
3040   // stores executes.  And we don't know it's safe to take the alignment from a
3041   // store that doesn't execute.
3042   if (MinAlignment != 0) {
3043     // Choose the minimum of all non-zero alignments.
3044     SI->setAlignment(MinAlignment);
3045   } else if (MaxAlignment != 0) {
3046     // Choose the minimal alignment between the non-zero alignment and the ABI
3047     // default alignment for the type of the stored value.
3048     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3049   } else {
3050     // If both alignments are zero, use ABI default alignment for the type of
3051     // the stored value.
3052     SI->setAlignment(TypeAlignment);
3053   }
3054 
3055   QStore->eraseFromParent();
3056   PStore->eraseFromParent();
3057 
3058   return true;
3059 }
3060 
3061 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3062                                    const DataLayout &DL) {
3063   // The intention here is to find diamonds or triangles (see below) where each
3064   // conditional block contains a store to the same address. Both of these
3065   // stores are conditional, so they can't be unconditionally sunk. But it may
3066   // be profitable to speculatively sink the stores into one merged store at the
3067   // end, and predicate the merged store on the union of the two conditions of
3068   // PBI and QBI.
3069   //
3070   // This can reduce the number of stores executed if both of the conditions are
3071   // true, and can allow the blocks to become small enough to be if-converted.
3072   // This optimization will also chain, so that ladders of test-and-set
3073   // sequences can be if-converted away.
3074   //
3075   // We only deal with simple diamonds or triangles:
3076   //
3077   //     PBI       or      PBI        or a combination of the two
3078   //    /   \               | \
3079   //   PTB  PFB             |  PFB
3080   //    \   /               | /
3081   //     QBI                QBI
3082   //    /  \                | \
3083   //   QTB  QFB             |  QFB
3084   //    \  /                | /
3085   //    PostBB            PostBB
3086   //
3087   // We model triangles as a type of diamond with a nullptr "true" block.
3088   // Triangles are canonicalized so that the fallthrough edge is represented by
3089   // a true condition, as in the diagram above.
3090   BasicBlock *PTB = PBI->getSuccessor(0);
3091   BasicBlock *PFB = PBI->getSuccessor(1);
3092   BasicBlock *QTB = QBI->getSuccessor(0);
3093   BasicBlock *QFB = QBI->getSuccessor(1);
3094   BasicBlock *PostBB = QFB->getSingleSuccessor();
3095 
3096   // Make sure we have a good guess for PostBB. If QTB's only successor is
3097   // QFB, then QFB is a better PostBB.
3098   if (QTB->getSingleSuccessor() == QFB)
3099     PostBB = QFB;
3100 
3101   // If we couldn't find a good PostBB, stop.
3102   if (!PostBB)
3103     return false;
3104 
3105   bool InvertPCond = false, InvertQCond = false;
3106   // Canonicalize fallthroughs to the true branches.
3107   if (PFB == QBI->getParent()) {
3108     std::swap(PFB, PTB);
3109     InvertPCond = true;
3110   }
3111   if (QFB == PostBB) {
3112     std::swap(QFB, QTB);
3113     InvertQCond = true;
3114   }
3115 
3116   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3117   // and QFB may not. Model fallthroughs as a nullptr block.
3118   if (PTB == QBI->getParent())
3119     PTB = nullptr;
3120   if (QTB == PostBB)
3121     QTB = nullptr;
3122 
3123   // Legality bailouts. We must have at least the non-fallthrough blocks and
3124   // the post-dominating block, and the non-fallthroughs must only have one
3125   // predecessor.
3126   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3127     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3128   };
3129   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3130       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3131     return false;
3132   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3133       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3134     return false;
3135   if (!QBI->getParent()->hasNUses(2))
3136     return false;
3137 
3138   // OK, this is a sequence of two diamonds or triangles.
3139   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3140   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3141   for (auto *BB : {PTB, PFB}) {
3142     if (!BB)
3143       continue;
3144     for (auto &I : *BB)
3145       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3146         PStoreAddresses.insert(SI->getPointerOperand());
3147   }
3148   for (auto *BB : {QTB, QFB}) {
3149     if (!BB)
3150       continue;
3151     for (auto &I : *BB)
3152       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3153         QStoreAddresses.insert(SI->getPointerOperand());
3154   }
3155 
3156   set_intersect(PStoreAddresses, QStoreAddresses);
3157   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3158   // clear what it contains.
3159   auto &CommonAddresses = PStoreAddresses;
3160 
3161   bool Changed = false;
3162   for (auto *Address : CommonAddresses)
3163     Changed |= mergeConditionalStoreToAddress(
3164         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3165   return Changed;
3166 }
3167 
3168 /// If we have a conditional branch as a predecessor of another block,
3169 /// this function tries to simplify it.  We know
3170 /// that PBI and BI are both conditional branches, and BI is in one of the
3171 /// successor blocks of PBI - PBI branches to BI.
3172 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3173                                            const DataLayout &DL) {
3174   assert(PBI->isConditional() && BI->isConditional());
3175   BasicBlock *BB = BI->getParent();
3176 
3177   // If this block ends with a branch instruction, and if there is a
3178   // predecessor that ends on a branch of the same condition, make
3179   // this conditional branch redundant.
3180   if (PBI->getCondition() == BI->getCondition() &&
3181       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3182     // Okay, the outcome of this conditional branch is statically
3183     // knowable.  If this block had a single pred, handle specially.
3184     if (BB->getSinglePredecessor()) {
3185       // Turn this into a branch on constant.
3186       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3187       BI->setCondition(
3188           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3189       return true; // Nuke the branch on constant.
3190     }
3191 
3192     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3193     // in the constant and simplify the block result.  Subsequent passes of
3194     // simplifycfg will thread the block.
3195     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3196       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3197       PHINode *NewPN = PHINode::Create(
3198           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3199           BI->getCondition()->getName() + ".pr", &BB->front());
3200       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3201       // predecessor, compute the PHI'd conditional value for all of the preds.
3202       // Any predecessor where the condition is not computable we keep symbolic.
3203       for (pred_iterator PI = PB; PI != PE; ++PI) {
3204         BasicBlock *P = *PI;
3205         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3206             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3207             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3208           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3209           NewPN->addIncoming(
3210               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3211               P);
3212         } else {
3213           NewPN->addIncoming(BI->getCondition(), P);
3214         }
3215       }
3216 
3217       BI->setCondition(NewPN);
3218       return true;
3219     }
3220   }
3221 
3222   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3223     if (CE->canTrap())
3224       return false;
3225 
3226   // If both branches are conditional and both contain stores to the same
3227   // address, remove the stores from the conditionals and create a conditional
3228   // merged store at the end.
3229   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3230     return true;
3231 
3232   // If this is a conditional branch in an empty block, and if any
3233   // predecessors are a conditional branch to one of our destinations,
3234   // fold the conditions into logical ops and one cond br.
3235 
3236   // Ignore dbg intrinsics.
3237   if (&*BB->instructionsWithoutDebug().begin() != BI)
3238     return false;
3239 
3240   int PBIOp, BIOp;
3241   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3242     PBIOp = 0;
3243     BIOp = 0;
3244   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3245     PBIOp = 0;
3246     BIOp = 1;
3247   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3248     PBIOp = 1;
3249     BIOp = 0;
3250   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3251     PBIOp = 1;
3252     BIOp = 1;
3253   } else {
3254     return false;
3255   }
3256 
3257   // Check to make sure that the other destination of this branch
3258   // isn't BB itself.  If so, this is an infinite loop that will
3259   // keep getting unwound.
3260   if (PBI->getSuccessor(PBIOp) == BB)
3261     return false;
3262 
3263   // Do not perform this transformation if it would require
3264   // insertion of a large number of select instructions. For targets
3265   // without predication/cmovs, this is a big pessimization.
3266 
3267   // Also do not perform this transformation if any phi node in the common
3268   // destination block can trap when reached by BB or PBB (PR17073). In that
3269   // case, it would be unsafe to hoist the operation into a select instruction.
3270 
3271   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3272   unsigned NumPhis = 0;
3273   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3274        ++II, ++NumPhis) {
3275     if (NumPhis > 2) // Disable this xform.
3276       return false;
3277 
3278     PHINode *PN = cast<PHINode>(II);
3279     Value *BIV = PN->getIncomingValueForBlock(BB);
3280     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3281       if (CE->canTrap())
3282         return false;
3283 
3284     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3285     Value *PBIV = PN->getIncomingValue(PBBIdx);
3286     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3287       if (CE->canTrap())
3288         return false;
3289   }
3290 
3291   // Finally, if everything is ok, fold the branches to logical ops.
3292   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3293 
3294   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3295                     << "AND: " << *BI->getParent());
3296 
3297   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3298   // branch in it, where one edge (OtherDest) goes back to itself but the other
3299   // exits.  We don't *know* that the program avoids the infinite loop
3300   // (even though that seems likely).  If we do this xform naively, we'll end up
3301   // recursively unpeeling the loop.  Since we know that (after the xform is
3302   // done) that the block *is* infinite if reached, we just make it an obviously
3303   // infinite loop with no cond branch.
3304   if (OtherDest == BB) {
3305     // Insert it at the end of the function, because it's either code,
3306     // or it won't matter if it's hot. :)
3307     BasicBlock *InfLoopBlock =
3308         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3309     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3310     OtherDest = InfLoopBlock;
3311   }
3312 
3313   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3314 
3315   // BI may have other predecessors.  Because of this, we leave
3316   // it alone, but modify PBI.
3317 
3318   // Make sure we get to CommonDest on True&True directions.
3319   Value *PBICond = PBI->getCondition();
3320   IRBuilder<NoFolder> Builder(PBI);
3321   if (PBIOp)
3322     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3323 
3324   Value *BICond = BI->getCondition();
3325   if (BIOp)
3326     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3327 
3328   // Merge the conditions.
3329   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3330 
3331   // Modify PBI to branch on the new condition to the new dests.
3332   PBI->setCondition(Cond);
3333   PBI->setSuccessor(0, CommonDest);
3334   PBI->setSuccessor(1, OtherDest);
3335 
3336   // Update branch weight for PBI.
3337   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3338   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3339   bool HasWeights =
3340       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3341                              SuccTrueWeight, SuccFalseWeight);
3342   if (HasWeights) {
3343     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3344     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3345     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3346     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3347     // The weight to CommonDest should be PredCommon * SuccTotal +
3348     //                                    PredOther * SuccCommon.
3349     // The weight to OtherDest should be PredOther * SuccOther.
3350     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3351                                   PredOther * SuccCommon,
3352                               PredOther * SuccOther};
3353     // Halve the weights if any of them cannot fit in an uint32_t
3354     FitWeights(NewWeights);
3355 
3356     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3357   }
3358 
3359   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3360   // block that are identical to the entries for BI's block.
3361   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3362 
3363   // We know that the CommonDest already had an edge from PBI to
3364   // it.  If it has PHIs though, the PHIs may have different
3365   // entries for BB and PBI's BB.  If so, insert a select to make
3366   // them agree.
3367   for (PHINode &PN : CommonDest->phis()) {
3368     Value *BIV = PN.getIncomingValueForBlock(BB);
3369     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3370     Value *PBIV = PN.getIncomingValue(PBBIdx);
3371     if (BIV != PBIV) {
3372       // Insert a select in PBI to pick the right value.
3373       SelectInst *NV = cast<SelectInst>(
3374           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3375       PN.setIncomingValue(PBBIdx, NV);
3376       // Although the select has the same condition as PBI, the original branch
3377       // weights for PBI do not apply to the new select because the select's
3378       // 'logical' edges are incoming edges of the phi that is eliminated, not
3379       // the outgoing edges of PBI.
3380       if (HasWeights) {
3381         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3382         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3383         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3384         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3385         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3386         // The weight to PredOtherDest should be PredOther * SuccCommon.
3387         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3388                                   PredOther * SuccCommon};
3389 
3390         FitWeights(NewWeights);
3391 
3392         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3393       }
3394     }
3395   }
3396 
3397   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3398   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3399 
3400   // This basic block is probably dead.  We know it has at least
3401   // one fewer predecessor.
3402   return true;
3403 }
3404 
3405 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3406 // true or to FalseBB if Cond is false.
3407 // Takes care of updating the successors and removing the old terminator.
3408 // Also makes sure not to introduce new successors by assuming that edges to
3409 // non-successor TrueBBs and FalseBBs aren't reachable.
3410 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3411                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3412                                        uint32_t TrueWeight,
3413                                        uint32_t FalseWeight) {
3414   // Remove any superfluous successor edges from the CFG.
3415   // First, figure out which successors to preserve.
3416   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3417   // successor.
3418   BasicBlock *KeepEdge1 = TrueBB;
3419   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3420 
3421   // Then remove the rest.
3422   for (BasicBlock *Succ : successors(OldTerm)) {
3423     // Make sure only to keep exactly one copy of each edge.
3424     if (Succ == KeepEdge1)
3425       KeepEdge1 = nullptr;
3426     else if (Succ == KeepEdge2)
3427       KeepEdge2 = nullptr;
3428     else
3429       Succ->removePredecessor(OldTerm->getParent(),
3430                               /*DontDeleteUselessPHIs=*/true);
3431   }
3432 
3433   IRBuilder<> Builder(OldTerm);
3434   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3435 
3436   // Insert an appropriate new terminator.
3437   if (!KeepEdge1 && !KeepEdge2) {
3438     if (TrueBB == FalseBB)
3439       // We were only looking for one successor, and it was present.
3440       // Create an unconditional branch to it.
3441       Builder.CreateBr(TrueBB);
3442     else {
3443       // We found both of the successors we were looking for.
3444       // Create a conditional branch sharing the condition of the select.
3445       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3446       if (TrueWeight != FalseWeight)
3447         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3448     }
3449   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3450     // Neither of the selected blocks were successors, so this
3451     // terminator must be unreachable.
3452     new UnreachableInst(OldTerm->getContext(), OldTerm);
3453   } else {
3454     // One of the selected values was a successor, but the other wasn't.
3455     // Insert an unconditional branch to the one that was found;
3456     // the edge to the one that wasn't must be unreachable.
3457     if (!KeepEdge1)
3458       // Only TrueBB was found.
3459       Builder.CreateBr(TrueBB);
3460     else
3461       // Only FalseBB was found.
3462       Builder.CreateBr(FalseBB);
3463   }
3464 
3465   EraseTerminatorInstAndDCECond(OldTerm);
3466   return true;
3467 }
3468 
3469 // Replaces
3470 //   (switch (select cond, X, Y)) on constant X, Y
3471 // with a branch - conditional if X and Y lead to distinct BBs,
3472 // unconditional otherwise.
3473 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3474   // Check for constant integer values in the select.
3475   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3476   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3477   if (!TrueVal || !FalseVal)
3478     return false;
3479 
3480   // Find the relevant condition and destinations.
3481   Value *Condition = Select->getCondition();
3482   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3483   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3484 
3485   // Get weight for TrueBB and FalseBB.
3486   uint32_t TrueWeight = 0, FalseWeight = 0;
3487   SmallVector<uint64_t, 8> Weights;
3488   bool HasWeights = HasBranchWeights(SI);
3489   if (HasWeights) {
3490     GetBranchWeights(SI, Weights);
3491     if (Weights.size() == 1 + SI->getNumCases()) {
3492       TrueWeight =
3493           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3494       FalseWeight =
3495           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3496     }
3497   }
3498 
3499   // Perform the actual simplification.
3500   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3501                                     FalseWeight);
3502 }
3503 
3504 // Replaces
3505 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3506 //                             blockaddress(@fn, BlockB)))
3507 // with
3508 //   (br cond, BlockA, BlockB).
3509 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3510   // Check that both operands of the select are block addresses.
3511   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3512   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3513   if (!TBA || !FBA)
3514     return false;
3515 
3516   // Extract the actual blocks.
3517   BasicBlock *TrueBB = TBA->getBasicBlock();
3518   BasicBlock *FalseBB = FBA->getBasicBlock();
3519 
3520   // Perform the actual simplification.
3521   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3522                                     0);
3523 }
3524 
3525 /// This is called when we find an icmp instruction
3526 /// (a seteq/setne with a constant) as the only instruction in a
3527 /// block that ends with an uncond branch.  We are looking for a very specific
3528 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3529 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3530 /// default value goes to an uncond block with a seteq in it, we get something
3531 /// like:
3532 ///
3533 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3534 /// DEFAULT:
3535 ///   %tmp = icmp eq i8 %A, 92
3536 ///   br label %end
3537 /// end:
3538 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3539 ///
3540 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3541 /// the PHI, merging the third icmp into the switch.
3542 static bool tryToSimplifyUncondBranchWithICmpInIt(
3543     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3544     const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) {
3545   BasicBlock *BB = ICI->getParent();
3546 
3547   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3548   // complex.
3549   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3550     return false;
3551 
3552   Value *V = ICI->getOperand(0);
3553   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3554 
3555   // The pattern we're looking for is where our only predecessor is a switch on
3556   // 'V' and this block is the default case for the switch.  In this case we can
3557   // fold the compared value into the switch to simplify things.
3558   BasicBlock *Pred = BB->getSinglePredecessor();
3559   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3560     return false;
3561 
3562   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3563   if (SI->getCondition() != V)
3564     return false;
3565 
3566   // If BB is reachable on a non-default case, then we simply know the value of
3567   // V in this block.  Substitute it and constant fold the icmp instruction
3568   // away.
3569   if (SI->getDefaultDest() != BB) {
3570     ConstantInt *VVal = SI->findCaseDest(BB);
3571     assert(VVal && "Should have a unique destination value");
3572     ICI->setOperand(0, VVal);
3573 
3574     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3575       ICI->replaceAllUsesWith(V);
3576       ICI->eraseFromParent();
3577     }
3578     // BB is now empty, so it is likely to simplify away.
3579     return simplifyCFG(BB, TTI, Options) || true;
3580   }
3581 
3582   // Ok, the block is reachable from the default dest.  If the constant we're
3583   // comparing exists in one of the other edges, then we can constant fold ICI
3584   // and zap it.
3585   if (SI->findCaseValue(Cst) != SI->case_default()) {
3586     Value *V;
3587     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3588       V = ConstantInt::getFalse(BB->getContext());
3589     else
3590       V = ConstantInt::getTrue(BB->getContext());
3591 
3592     ICI->replaceAllUsesWith(V);
3593     ICI->eraseFromParent();
3594     // BB is now empty, so it is likely to simplify away.
3595     return simplifyCFG(BB, TTI, Options) || true;
3596   }
3597 
3598   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3599   // the block.
3600   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3601   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3602   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3603       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3604     return false;
3605 
3606   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3607   // true in the PHI.
3608   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3609   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3610 
3611   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3612     std::swap(DefaultCst, NewCst);
3613 
3614   // Replace ICI (which is used by the PHI for the default value) with true or
3615   // false depending on if it is EQ or NE.
3616   ICI->replaceAllUsesWith(DefaultCst);
3617   ICI->eraseFromParent();
3618 
3619   // Okay, the switch goes to this block on a default value.  Add an edge from
3620   // the switch to the merge point on the compared value.
3621   BasicBlock *NewBB =
3622       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3623   SmallVector<uint64_t, 8> Weights;
3624   bool HasWeights = HasBranchWeights(SI);
3625   if (HasWeights) {
3626     GetBranchWeights(SI, Weights);
3627     if (Weights.size() == 1 + SI->getNumCases()) {
3628       // Split weight for default case to case for "Cst".
3629       Weights[0] = (Weights[0] + 1) >> 1;
3630       Weights.push_back(Weights[0]);
3631 
3632       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3633       setBranchWeights(SI, MDWeights);
3634     }
3635   }
3636   SI->addCase(Cst, NewBB);
3637 
3638   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3639   Builder.SetInsertPoint(NewBB);
3640   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3641   Builder.CreateBr(SuccBlock);
3642   PHIUse->addIncoming(NewCst, NewBB);
3643   return true;
3644 }
3645 
3646 /// The specified branch is a conditional branch.
3647 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3648 /// fold it into a switch instruction if so.
3649 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3650                                       const DataLayout &DL) {
3651   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3652   if (!Cond)
3653     return false;
3654 
3655   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3656   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3657   // 'setne's and'ed together, collect them.
3658 
3659   // Try to gather values from a chain of and/or to be turned into a switch
3660   ConstantComparesGatherer ConstantCompare(Cond, DL);
3661   // Unpack the result
3662   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3663   Value *CompVal = ConstantCompare.CompValue;
3664   unsigned UsedICmps = ConstantCompare.UsedICmps;
3665   Value *ExtraCase = ConstantCompare.Extra;
3666 
3667   // If we didn't have a multiply compared value, fail.
3668   if (!CompVal)
3669     return false;
3670 
3671   // Avoid turning single icmps into a switch.
3672   if (UsedICmps <= 1)
3673     return false;
3674 
3675   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3676 
3677   // There might be duplicate constants in the list, which the switch
3678   // instruction can't handle, remove them now.
3679   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3680   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3681 
3682   // If Extra was used, we require at least two switch values to do the
3683   // transformation.  A switch with one value is just a conditional branch.
3684   if (ExtraCase && Values.size() < 2)
3685     return false;
3686 
3687   // TODO: Preserve branch weight metadata, similarly to how
3688   // FoldValueComparisonIntoPredecessors preserves it.
3689 
3690   // Figure out which block is which destination.
3691   BasicBlock *DefaultBB = BI->getSuccessor(1);
3692   BasicBlock *EdgeBB = BI->getSuccessor(0);
3693   if (!TrueWhenEqual)
3694     std::swap(DefaultBB, EdgeBB);
3695 
3696   BasicBlock *BB = BI->getParent();
3697 
3698   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3699                     << " cases into SWITCH.  BB is:\n"
3700                     << *BB);
3701 
3702   // If there are any extra values that couldn't be folded into the switch
3703   // then we evaluate them with an explicit branch first.  Split the block
3704   // right before the condbr to handle it.
3705   if (ExtraCase) {
3706     BasicBlock *NewBB =
3707         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3708     // Remove the uncond branch added to the old block.
3709     TerminatorInst *OldTI = BB->getTerminator();
3710     Builder.SetInsertPoint(OldTI);
3711 
3712     if (TrueWhenEqual)
3713       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3714     else
3715       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3716 
3717     OldTI->eraseFromParent();
3718 
3719     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3720     // for the edge we just added.
3721     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3722 
3723     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3724                       << "\nEXTRABB = " << *BB);
3725     BB = NewBB;
3726   }
3727 
3728   Builder.SetInsertPoint(BI);
3729   // Convert pointer to int before we switch.
3730   if (CompVal->getType()->isPointerTy()) {
3731     CompVal = Builder.CreatePtrToInt(
3732         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3733   }
3734 
3735   // Create the new switch instruction now.
3736   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3737 
3738   // Add all of the 'cases' to the switch instruction.
3739   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3740     New->addCase(Values[i], EdgeBB);
3741 
3742   // We added edges from PI to the EdgeBB.  As such, if there were any
3743   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3744   // the number of edges added.
3745   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3746     PHINode *PN = cast<PHINode>(BBI);
3747     Value *InVal = PN->getIncomingValueForBlock(BB);
3748     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3749       PN->addIncoming(InVal, BB);
3750   }
3751 
3752   // Erase the old branch instruction.
3753   EraseTerminatorInstAndDCECond(BI);
3754 
3755   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3756   return true;
3757 }
3758 
3759 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3760   if (isa<PHINode>(RI->getValue()))
3761     return SimplifyCommonResume(RI);
3762   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3763            RI->getValue() == RI->getParent()->getFirstNonPHI())
3764     // The resume must unwind the exception that caused control to branch here.
3765     return SimplifySingleResume(RI);
3766 
3767   return false;
3768 }
3769 
3770 // Simplify resume that is shared by several landing pads (phi of landing pad).
3771 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3772   BasicBlock *BB = RI->getParent();
3773 
3774   // Check that there are no other instructions except for debug intrinsics
3775   // between the phi of landing pads (RI->getValue()) and resume instruction.
3776   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3777                        E = RI->getIterator();
3778   while (++I != E)
3779     if (!isa<DbgInfoIntrinsic>(I))
3780       return false;
3781 
3782   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3783   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3784 
3785   // Check incoming blocks to see if any of them are trivial.
3786   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3787        Idx++) {
3788     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3789     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3790 
3791     // If the block has other successors, we can not delete it because
3792     // it has other dependents.
3793     if (IncomingBB->getUniqueSuccessor() != BB)
3794       continue;
3795 
3796     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3797     // Not the landing pad that caused the control to branch here.
3798     if (IncomingValue != LandingPad)
3799       continue;
3800 
3801     bool isTrivial = true;
3802 
3803     I = IncomingBB->getFirstNonPHI()->getIterator();
3804     E = IncomingBB->getTerminator()->getIterator();
3805     while (++I != E)
3806       if (!isa<DbgInfoIntrinsic>(I)) {
3807         isTrivial = false;
3808         break;
3809       }
3810 
3811     if (isTrivial)
3812       TrivialUnwindBlocks.insert(IncomingBB);
3813   }
3814 
3815   // If no trivial unwind blocks, don't do any simplifications.
3816   if (TrivialUnwindBlocks.empty())
3817     return false;
3818 
3819   // Turn all invokes that unwind here into calls.
3820   for (auto *TrivialBB : TrivialUnwindBlocks) {
3821     // Blocks that will be simplified should be removed from the phi node.
3822     // Note there could be multiple edges to the resume block, and we need
3823     // to remove them all.
3824     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3825       BB->removePredecessor(TrivialBB, true);
3826 
3827     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3828          PI != PE;) {
3829       BasicBlock *Pred = *PI++;
3830       removeUnwindEdge(Pred);
3831     }
3832 
3833     // In each SimplifyCFG run, only the current processed block can be erased.
3834     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3835     // of erasing TrivialBB, we only remove the branch to the common resume
3836     // block so that we can later erase the resume block since it has no
3837     // predecessors.
3838     TrivialBB->getTerminator()->eraseFromParent();
3839     new UnreachableInst(RI->getContext(), TrivialBB);
3840   }
3841 
3842   // Delete the resume block if all its predecessors have been removed.
3843   if (pred_empty(BB))
3844     BB->eraseFromParent();
3845 
3846   return !TrivialUnwindBlocks.empty();
3847 }
3848 
3849 // Simplify resume that is only used by a single (non-phi) landing pad.
3850 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3851   BasicBlock *BB = RI->getParent();
3852   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3853   assert(RI->getValue() == LPInst &&
3854          "Resume must unwind the exception that caused control to here");
3855 
3856   // Check that there are no other instructions except for debug intrinsics.
3857   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3858   while (++I != E)
3859     if (!isa<DbgInfoIntrinsic>(I))
3860       return false;
3861 
3862   // Turn all invokes that unwind here into calls and delete the basic block.
3863   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3864     BasicBlock *Pred = *PI++;
3865     removeUnwindEdge(Pred);
3866   }
3867 
3868   // The landingpad is now unreachable.  Zap it.
3869   if (LoopHeaders)
3870     LoopHeaders->erase(BB);
3871   BB->eraseFromParent();
3872   return true;
3873 }
3874 
3875 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3876   // If this is a trivial cleanup pad that executes no instructions, it can be
3877   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3878   // that is an EH pad will be updated to continue to the caller and any
3879   // predecessor that terminates with an invoke instruction will have its invoke
3880   // instruction converted to a call instruction.  If the cleanup pad being
3881   // simplified does not continue to the caller, each predecessor will be
3882   // updated to continue to the unwind destination of the cleanup pad being
3883   // simplified.
3884   BasicBlock *BB = RI->getParent();
3885   CleanupPadInst *CPInst = RI->getCleanupPad();
3886   if (CPInst->getParent() != BB)
3887     // This isn't an empty cleanup.
3888     return false;
3889 
3890   // We cannot kill the pad if it has multiple uses.  This typically arises
3891   // from unreachable basic blocks.
3892   if (!CPInst->hasOneUse())
3893     return false;
3894 
3895   // Check that there are no other instructions except for benign intrinsics.
3896   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3897   while (++I != E) {
3898     auto *II = dyn_cast<IntrinsicInst>(I);
3899     if (!II)
3900       return false;
3901 
3902     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3903     switch (IntrinsicID) {
3904     case Intrinsic::dbg_declare:
3905     case Intrinsic::dbg_value:
3906     case Intrinsic::dbg_label:
3907     case Intrinsic::lifetime_end:
3908       break;
3909     default:
3910       return false;
3911     }
3912   }
3913 
3914   // If the cleanup return we are simplifying unwinds to the caller, this will
3915   // set UnwindDest to nullptr.
3916   BasicBlock *UnwindDest = RI->getUnwindDest();
3917   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3918 
3919   // We're about to remove BB from the control flow.  Before we do, sink any
3920   // PHINodes into the unwind destination.  Doing this before changing the
3921   // control flow avoids some potentially slow checks, since we can currently
3922   // be certain that UnwindDest and BB have no common predecessors (since they
3923   // are both EH pads).
3924   if (UnwindDest) {
3925     // First, go through the PHI nodes in UnwindDest and update any nodes that
3926     // reference the block we are removing
3927     for (BasicBlock::iterator I = UnwindDest->begin(),
3928                               IE = DestEHPad->getIterator();
3929          I != IE; ++I) {
3930       PHINode *DestPN = cast<PHINode>(I);
3931 
3932       int Idx = DestPN->getBasicBlockIndex(BB);
3933       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3934       assert(Idx != -1);
3935       // This PHI node has an incoming value that corresponds to a control
3936       // path through the cleanup pad we are removing.  If the incoming
3937       // value is in the cleanup pad, it must be a PHINode (because we
3938       // verified above that the block is otherwise empty).  Otherwise, the
3939       // value is either a constant or a value that dominates the cleanup
3940       // pad being removed.
3941       //
3942       // Because BB and UnwindDest are both EH pads, all of their
3943       // predecessors must unwind to these blocks, and since no instruction
3944       // can have multiple unwind destinations, there will be no overlap in
3945       // incoming blocks between SrcPN and DestPN.
3946       Value *SrcVal = DestPN->getIncomingValue(Idx);
3947       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3948 
3949       // Remove the entry for the block we are deleting.
3950       DestPN->removeIncomingValue(Idx, false);
3951 
3952       if (SrcPN && SrcPN->getParent() == BB) {
3953         // If the incoming value was a PHI node in the cleanup pad we are
3954         // removing, we need to merge that PHI node's incoming values into
3955         // DestPN.
3956         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3957              SrcIdx != SrcE; ++SrcIdx) {
3958           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3959                               SrcPN->getIncomingBlock(SrcIdx));
3960         }
3961       } else {
3962         // Otherwise, the incoming value came from above BB and
3963         // so we can just reuse it.  We must associate all of BB's
3964         // predecessors with this value.
3965         for (auto *pred : predecessors(BB)) {
3966           DestPN->addIncoming(SrcVal, pred);
3967         }
3968       }
3969     }
3970 
3971     // Sink any remaining PHI nodes directly into UnwindDest.
3972     Instruction *InsertPt = DestEHPad;
3973     for (BasicBlock::iterator I = BB->begin(),
3974                               IE = BB->getFirstNonPHI()->getIterator();
3975          I != IE;) {
3976       // The iterator must be incremented here because the instructions are
3977       // being moved to another block.
3978       PHINode *PN = cast<PHINode>(I++);
3979       if (PN->use_empty())
3980         // If the PHI node has no uses, just leave it.  It will be erased
3981         // when we erase BB below.
3982         continue;
3983 
3984       // Otherwise, sink this PHI node into UnwindDest.
3985       // Any predecessors to UnwindDest which are not already represented
3986       // must be back edges which inherit the value from the path through
3987       // BB.  In this case, the PHI value must reference itself.
3988       for (auto *pred : predecessors(UnwindDest))
3989         if (pred != BB)
3990           PN->addIncoming(PN, pred);
3991       PN->moveBefore(InsertPt);
3992     }
3993   }
3994 
3995   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3996     // The iterator must be updated here because we are removing this pred.
3997     BasicBlock *PredBB = *PI++;
3998     if (UnwindDest == nullptr) {
3999       removeUnwindEdge(PredBB);
4000     } else {
4001       TerminatorInst *TI = PredBB->getTerminator();
4002       TI->replaceUsesOfWith(BB, UnwindDest);
4003     }
4004   }
4005 
4006   // The cleanup pad is now unreachable.  Zap it.
4007   BB->eraseFromParent();
4008   return true;
4009 }
4010 
4011 // Try to merge two cleanuppads together.
4012 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4013   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4014   // with.
4015   BasicBlock *UnwindDest = RI->getUnwindDest();
4016   if (!UnwindDest)
4017     return false;
4018 
4019   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4020   // be safe to merge without code duplication.
4021   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4022     return false;
4023 
4024   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4025   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4026   if (!SuccessorCleanupPad)
4027     return false;
4028 
4029   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4030   // Replace any uses of the successor cleanupad with the predecessor pad
4031   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4032   // funclet bundle operands.
4033   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4034   // Remove the old cleanuppad.
4035   SuccessorCleanupPad->eraseFromParent();
4036   // Now, we simply replace the cleanupret with a branch to the unwind
4037   // destination.
4038   BranchInst::Create(UnwindDest, RI->getParent());
4039   RI->eraseFromParent();
4040 
4041   return true;
4042 }
4043 
4044 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4045   // It is possible to transiantly have an undef cleanuppad operand because we
4046   // have deleted some, but not all, dead blocks.
4047   // Eventually, this block will be deleted.
4048   if (isa<UndefValue>(RI->getOperand(0)))
4049     return false;
4050 
4051   if (mergeCleanupPad(RI))
4052     return true;
4053 
4054   if (removeEmptyCleanup(RI))
4055     return true;
4056 
4057   return false;
4058 }
4059 
4060 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4061   BasicBlock *BB = RI->getParent();
4062   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4063     return false;
4064 
4065   // Find predecessors that end with branches.
4066   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4067   SmallVector<BranchInst *, 8> CondBranchPreds;
4068   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4069     BasicBlock *P = *PI;
4070     TerminatorInst *PTI = P->getTerminator();
4071     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4072       if (BI->isUnconditional())
4073         UncondBranchPreds.push_back(P);
4074       else
4075         CondBranchPreds.push_back(BI);
4076     }
4077   }
4078 
4079   // If we found some, do the transformation!
4080   if (!UncondBranchPreds.empty() && DupRet) {
4081     while (!UncondBranchPreds.empty()) {
4082       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4083       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4084                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4085       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4086     }
4087 
4088     // If we eliminated all predecessors of the block, delete the block now.
4089     if (pred_empty(BB)) {
4090       // We know there are no successors, so just nuke the block.
4091       if (LoopHeaders)
4092         LoopHeaders->erase(BB);
4093       BB->eraseFromParent();
4094     }
4095 
4096     return true;
4097   }
4098 
4099   // Check out all of the conditional branches going to this return
4100   // instruction.  If any of them just select between returns, change the
4101   // branch itself into a select/return pair.
4102   while (!CondBranchPreds.empty()) {
4103     BranchInst *BI = CondBranchPreds.pop_back_val();
4104 
4105     // Check to see if the non-BB successor is also a return block.
4106     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4107         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4108         SimplifyCondBranchToTwoReturns(BI, Builder))
4109       return true;
4110   }
4111   return false;
4112 }
4113 
4114 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4115   BasicBlock *BB = UI->getParent();
4116 
4117   bool Changed = false;
4118 
4119   // If there are any instructions immediately before the unreachable that can
4120   // be removed, do so.
4121   while (UI->getIterator() != BB->begin()) {
4122     BasicBlock::iterator BBI = UI->getIterator();
4123     --BBI;
4124     // Do not delete instructions that can have side effects which might cause
4125     // the unreachable to not be reachable; specifically, calls and volatile
4126     // operations may have this effect.
4127     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4128       break;
4129 
4130     if (BBI->mayHaveSideEffects()) {
4131       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4132         if (SI->isVolatile())
4133           break;
4134       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4135         if (LI->isVolatile())
4136           break;
4137       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4138         if (RMWI->isVolatile())
4139           break;
4140       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4141         if (CXI->isVolatile())
4142           break;
4143       } else if (isa<CatchPadInst>(BBI)) {
4144         // A catchpad may invoke exception object constructors and such, which
4145         // in some languages can be arbitrary code, so be conservative by
4146         // default.
4147         // For CoreCLR, it just involves a type test, so can be removed.
4148         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4149             EHPersonality::CoreCLR)
4150           break;
4151       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4152                  !isa<LandingPadInst>(BBI)) {
4153         break;
4154       }
4155       // Note that deleting LandingPad's here is in fact okay, although it
4156       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4157       // all the predecessors of this block will be the unwind edges of Invokes,
4158       // and we can therefore guarantee this block will be erased.
4159     }
4160 
4161     // Delete this instruction (any uses are guaranteed to be dead)
4162     if (!BBI->use_empty())
4163       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4164     BBI->eraseFromParent();
4165     Changed = true;
4166   }
4167 
4168   // If the unreachable instruction is the first in the block, take a gander
4169   // at all of the predecessors of this instruction, and simplify them.
4170   if (&BB->front() != UI)
4171     return Changed;
4172 
4173   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4174   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4175     TerminatorInst *TI = Preds[i]->getTerminator();
4176     IRBuilder<> Builder(TI);
4177     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4178       if (BI->isUnconditional()) {
4179         if (BI->getSuccessor(0) == BB) {
4180           new UnreachableInst(TI->getContext(), TI);
4181           TI->eraseFromParent();
4182           Changed = true;
4183         }
4184       } else {
4185         if (BI->getSuccessor(0) == BB) {
4186           Builder.CreateBr(BI->getSuccessor(1));
4187           EraseTerminatorInstAndDCECond(BI);
4188         } else if (BI->getSuccessor(1) == BB) {
4189           Builder.CreateBr(BI->getSuccessor(0));
4190           EraseTerminatorInstAndDCECond(BI);
4191           Changed = true;
4192         }
4193       }
4194     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4195       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4196         if (i->getCaseSuccessor() != BB) {
4197           ++i;
4198           continue;
4199         }
4200         BB->removePredecessor(SI->getParent());
4201         i = SI->removeCase(i);
4202         e = SI->case_end();
4203         Changed = true;
4204       }
4205     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4206       if (II->getUnwindDest() == BB) {
4207         removeUnwindEdge(TI->getParent());
4208         Changed = true;
4209       }
4210     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4211       if (CSI->getUnwindDest() == BB) {
4212         removeUnwindEdge(TI->getParent());
4213         Changed = true;
4214         continue;
4215       }
4216 
4217       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4218                                              E = CSI->handler_end();
4219            I != E; ++I) {
4220         if (*I == BB) {
4221           CSI->removeHandler(I);
4222           --I;
4223           --E;
4224           Changed = true;
4225         }
4226       }
4227       if (CSI->getNumHandlers() == 0) {
4228         BasicBlock *CatchSwitchBB = CSI->getParent();
4229         if (CSI->hasUnwindDest()) {
4230           // Redirect preds to the unwind dest
4231           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4232         } else {
4233           // Rewrite all preds to unwind to caller (or from invoke to call).
4234           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4235           for (BasicBlock *EHPred : EHPreds)
4236             removeUnwindEdge(EHPred);
4237         }
4238         // The catchswitch is no longer reachable.
4239         new UnreachableInst(CSI->getContext(), CSI);
4240         CSI->eraseFromParent();
4241         Changed = true;
4242       }
4243     } else if (isa<CleanupReturnInst>(TI)) {
4244       new UnreachableInst(TI->getContext(), TI);
4245       TI->eraseFromParent();
4246       Changed = true;
4247     }
4248   }
4249 
4250   // If this block is now dead, remove it.
4251   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4252     // We know there are no successors, so just nuke the block.
4253     if (LoopHeaders)
4254       LoopHeaders->erase(BB);
4255     BB->eraseFromParent();
4256     return true;
4257   }
4258 
4259   return Changed;
4260 }
4261 
4262 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4263   assert(Cases.size() >= 1);
4264 
4265   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4266   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4267     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4268       return false;
4269   }
4270   return true;
4271 }
4272 
4273 /// Turn a switch with two reachable destinations into an integer range
4274 /// comparison and branch.
4275 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4276   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4277 
4278   bool HasDefault =
4279       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4280 
4281   // Partition the cases into two sets with different destinations.
4282   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4283   BasicBlock *DestB = nullptr;
4284   SmallVector<ConstantInt *, 16> CasesA;
4285   SmallVector<ConstantInt *, 16> CasesB;
4286 
4287   for (auto Case : SI->cases()) {
4288     BasicBlock *Dest = Case.getCaseSuccessor();
4289     if (!DestA)
4290       DestA = Dest;
4291     if (Dest == DestA) {
4292       CasesA.push_back(Case.getCaseValue());
4293       continue;
4294     }
4295     if (!DestB)
4296       DestB = Dest;
4297     if (Dest == DestB) {
4298       CasesB.push_back(Case.getCaseValue());
4299       continue;
4300     }
4301     return false; // More than two destinations.
4302   }
4303 
4304   assert(DestA && DestB &&
4305          "Single-destination switch should have been folded.");
4306   assert(DestA != DestB);
4307   assert(DestB != SI->getDefaultDest());
4308   assert(!CasesB.empty() && "There must be non-default cases.");
4309   assert(!CasesA.empty() || HasDefault);
4310 
4311   // Figure out if one of the sets of cases form a contiguous range.
4312   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4313   BasicBlock *ContiguousDest = nullptr;
4314   BasicBlock *OtherDest = nullptr;
4315   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4316     ContiguousCases = &CasesA;
4317     ContiguousDest = DestA;
4318     OtherDest = DestB;
4319   } else if (CasesAreContiguous(CasesB)) {
4320     ContiguousCases = &CasesB;
4321     ContiguousDest = DestB;
4322     OtherDest = DestA;
4323   } else
4324     return false;
4325 
4326   // Start building the compare and branch.
4327 
4328   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4329   Constant *NumCases =
4330       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4331 
4332   Value *Sub = SI->getCondition();
4333   if (!Offset->isNullValue())
4334     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4335 
4336   Value *Cmp;
4337   // If NumCases overflowed, then all possible values jump to the successor.
4338   if (NumCases->isNullValue() && !ContiguousCases->empty())
4339     Cmp = ConstantInt::getTrue(SI->getContext());
4340   else
4341     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4342   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4343 
4344   // Update weight for the newly-created conditional branch.
4345   if (HasBranchWeights(SI)) {
4346     SmallVector<uint64_t, 8> Weights;
4347     GetBranchWeights(SI, Weights);
4348     if (Weights.size() == 1 + SI->getNumCases()) {
4349       uint64_t TrueWeight = 0;
4350       uint64_t FalseWeight = 0;
4351       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4352         if (SI->getSuccessor(I) == ContiguousDest)
4353           TrueWeight += Weights[I];
4354         else
4355           FalseWeight += Weights[I];
4356       }
4357       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4358         TrueWeight /= 2;
4359         FalseWeight /= 2;
4360       }
4361       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4362     }
4363   }
4364 
4365   // Prune obsolete incoming values off the successors' PHI nodes.
4366   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4367     unsigned PreviousEdges = ContiguousCases->size();
4368     if (ContiguousDest == SI->getDefaultDest())
4369       ++PreviousEdges;
4370     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4371       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4372   }
4373   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4374     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4375     if (OtherDest == SI->getDefaultDest())
4376       ++PreviousEdges;
4377     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4378       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4379   }
4380 
4381   // Drop the switch.
4382   SI->eraseFromParent();
4383 
4384   return true;
4385 }
4386 
4387 /// Compute masked bits for the condition of a switch
4388 /// and use it to remove dead cases.
4389 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4390                                      const DataLayout &DL) {
4391   Value *Cond = SI->getCondition();
4392   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4393   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4394 
4395   // We can also eliminate cases by determining that their values are outside of
4396   // the limited range of the condition based on how many significant (non-sign)
4397   // bits are in the condition value.
4398   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4399   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4400 
4401   // Gather dead cases.
4402   SmallVector<ConstantInt *, 8> DeadCases;
4403   for (auto &Case : SI->cases()) {
4404     const APInt &CaseVal = Case.getCaseValue()->getValue();
4405     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4406         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4407       DeadCases.push_back(Case.getCaseValue());
4408       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4409                         << " is dead.\n");
4410     }
4411   }
4412 
4413   // If we can prove that the cases must cover all possible values, the
4414   // default destination becomes dead and we can remove it.  If we know some
4415   // of the bits in the value, we can use that to more precisely compute the
4416   // number of possible unique case values.
4417   bool HasDefault =
4418       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4419   const unsigned NumUnknownBits =
4420       Bits - (Known.Zero | Known.One).countPopulation();
4421   assert(NumUnknownBits <= Bits);
4422   if (HasDefault && DeadCases.empty() &&
4423       NumUnknownBits < 64 /* avoid overflow */ &&
4424       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4425     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4426     BasicBlock *NewDefault =
4427         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4428     SI->setDefaultDest(&*NewDefault);
4429     SplitBlock(&*NewDefault, &NewDefault->front());
4430     auto *OldTI = NewDefault->getTerminator();
4431     new UnreachableInst(SI->getContext(), OldTI);
4432     EraseTerminatorInstAndDCECond(OldTI);
4433     return true;
4434   }
4435 
4436   SmallVector<uint64_t, 8> Weights;
4437   bool HasWeight = HasBranchWeights(SI);
4438   if (HasWeight) {
4439     GetBranchWeights(SI, Weights);
4440     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4441   }
4442 
4443   // Remove dead cases from the switch.
4444   for (ConstantInt *DeadCase : DeadCases) {
4445     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4446     assert(CaseI != SI->case_default() &&
4447            "Case was not found. Probably mistake in DeadCases forming.");
4448     if (HasWeight) {
4449       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4450       Weights.pop_back();
4451     }
4452 
4453     // Prune unused values from PHI nodes.
4454     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4455     SI->removeCase(CaseI);
4456   }
4457   if (HasWeight && Weights.size() >= 2) {
4458     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4459     setBranchWeights(SI, MDWeights);
4460   }
4461 
4462   return !DeadCases.empty();
4463 }
4464 
4465 /// If BB would be eligible for simplification by
4466 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4467 /// by an unconditional branch), look at the phi node for BB in the successor
4468 /// block and see if the incoming value is equal to CaseValue. If so, return
4469 /// the phi node, and set PhiIndex to BB's index in the phi node.
4470 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4471                                               BasicBlock *BB, int *PhiIndex) {
4472   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4473     return nullptr; // BB must be empty to be a candidate for simplification.
4474   if (!BB->getSinglePredecessor())
4475     return nullptr; // BB must be dominated by the switch.
4476 
4477   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4478   if (!Branch || !Branch->isUnconditional())
4479     return nullptr; // Terminator must be unconditional branch.
4480 
4481   BasicBlock *Succ = Branch->getSuccessor(0);
4482 
4483   for (PHINode &PHI : Succ->phis()) {
4484     int Idx = PHI.getBasicBlockIndex(BB);
4485     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4486 
4487     Value *InValue = PHI.getIncomingValue(Idx);
4488     if (InValue != CaseValue)
4489       continue;
4490 
4491     *PhiIndex = Idx;
4492     return &PHI;
4493   }
4494 
4495   return nullptr;
4496 }
4497 
4498 /// Try to forward the condition of a switch instruction to a phi node
4499 /// dominated by the switch, if that would mean that some of the destination
4500 /// blocks of the switch can be folded away. Return true if a change is made.
4501 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4502   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4503 
4504   ForwardingNodesMap ForwardingNodes;
4505   BasicBlock *SwitchBlock = SI->getParent();
4506   bool Changed = false;
4507   for (auto &Case : SI->cases()) {
4508     ConstantInt *CaseValue = Case.getCaseValue();
4509     BasicBlock *CaseDest = Case.getCaseSuccessor();
4510 
4511     // Replace phi operands in successor blocks that are using the constant case
4512     // value rather than the switch condition variable:
4513     //   switchbb:
4514     //   switch i32 %x, label %default [
4515     //     i32 17, label %succ
4516     //   ...
4517     //   succ:
4518     //     %r = phi i32 ... [ 17, %switchbb ] ...
4519     // -->
4520     //     %r = phi i32 ... [ %x, %switchbb ] ...
4521 
4522     for (PHINode &Phi : CaseDest->phis()) {
4523       // This only works if there is exactly 1 incoming edge from the switch to
4524       // a phi. If there is >1, that means multiple cases of the switch map to 1
4525       // value in the phi, and that phi value is not the switch condition. Thus,
4526       // this transform would not make sense (the phi would be invalid because
4527       // a phi can't have different incoming values from the same block).
4528       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4529       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4530           count(Phi.blocks(), SwitchBlock) == 1) {
4531         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4532         Changed = true;
4533       }
4534     }
4535 
4536     // Collect phi nodes that are indirectly using this switch's case constants.
4537     int PhiIdx;
4538     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4539       ForwardingNodes[Phi].push_back(PhiIdx);
4540   }
4541 
4542   for (auto &ForwardingNode : ForwardingNodes) {
4543     PHINode *Phi = ForwardingNode.first;
4544     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4545     if (Indexes.size() < 2)
4546       continue;
4547 
4548     for (int Index : Indexes)
4549       Phi->setIncomingValue(Index, SI->getCondition());
4550     Changed = true;
4551   }
4552 
4553   return Changed;
4554 }
4555 
4556 /// Return true if the backend will be able to handle
4557 /// initializing an array of constants like C.
4558 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4559   if (C->isThreadDependent())
4560     return false;
4561   if (C->isDLLImportDependent())
4562     return false;
4563 
4564   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4565       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4566       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4567     return false;
4568 
4569   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4570     if (!CE->isGEPWithNoNotionalOverIndexing())
4571       return false;
4572     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4573       return false;
4574   }
4575 
4576   if (!TTI.shouldBuildLookupTablesForConstant(C))
4577     return false;
4578 
4579   return true;
4580 }
4581 
4582 /// If V is a Constant, return it. Otherwise, try to look up
4583 /// its constant value in ConstantPool, returning 0 if it's not there.
4584 static Constant *
4585 LookupConstant(Value *V,
4586                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4587   if (Constant *C = dyn_cast<Constant>(V))
4588     return C;
4589   return ConstantPool.lookup(V);
4590 }
4591 
4592 /// Try to fold instruction I into a constant. This works for
4593 /// simple instructions such as binary operations where both operands are
4594 /// constant or can be replaced by constants from the ConstantPool. Returns the
4595 /// resulting constant on success, 0 otherwise.
4596 static Constant *
4597 ConstantFold(Instruction *I, const DataLayout &DL,
4598              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4599   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4600     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4601     if (!A)
4602       return nullptr;
4603     if (A->isAllOnesValue())
4604       return LookupConstant(Select->getTrueValue(), ConstantPool);
4605     if (A->isNullValue())
4606       return LookupConstant(Select->getFalseValue(), ConstantPool);
4607     return nullptr;
4608   }
4609 
4610   SmallVector<Constant *, 4> COps;
4611   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4612     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4613       COps.push_back(A);
4614     else
4615       return nullptr;
4616   }
4617 
4618   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4619     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4620                                            COps[1], DL);
4621   }
4622 
4623   return ConstantFoldInstOperands(I, COps, DL);
4624 }
4625 
4626 /// Try to determine the resulting constant values in phi nodes
4627 /// at the common destination basic block, *CommonDest, for one of the case
4628 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4629 /// case), of a switch instruction SI.
4630 static bool
4631 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4632                BasicBlock **CommonDest,
4633                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4634                const DataLayout &DL, const TargetTransformInfo &TTI) {
4635   // The block from which we enter the common destination.
4636   BasicBlock *Pred = SI->getParent();
4637 
4638   // If CaseDest is empty except for some side-effect free instructions through
4639   // which we can constant-propagate the CaseVal, continue to its successor.
4640   SmallDenseMap<Value *, Constant *> ConstantPool;
4641   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4642   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4643     if (TerminatorInst *T = dyn_cast<TerminatorInst>(&I)) {
4644       // If the terminator is a simple branch, continue to the next block.
4645       if (T->getNumSuccessors() != 1 || T->isExceptionalTerminator())
4646         return false;
4647       Pred = CaseDest;
4648       CaseDest = T->getSuccessor(0);
4649     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4650       // Instruction is side-effect free and constant.
4651 
4652       // If the instruction has uses outside this block or a phi node slot for
4653       // the block, it is not safe to bypass the instruction since it would then
4654       // no longer dominate all its uses.
4655       for (auto &Use : I.uses()) {
4656         User *User = Use.getUser();
4657         if (Instruction *I = dyn_cast<Instruction>(User))
4658           if (I->getParent() == CaseDest)
4659             continue;
4660         if (PHINode *Phi = dyn_cast<PHINode>(User))
4661           if (Phi->getIncomingBlock(Use) == CaseDest)
4662             continue;
4663         return false;
4664       }
4665 
4666       ConstantPool.insert(std::make_pair(&I, C));
4667     } else {
4668       break;
4669     }
4670   }
4671 
4672   // If we did not have a CommonDest before, use the current one.
4673   if (!*CommonDest)
4674     *CommonDest = CaseDest;
4675   // If the destination isn't the common one, abort.
4676   if (CaseDest != *CommonDest)
4677     return false;
4678 
4679   // Get the values for this case from phi nodes in the destination block.
4680   for (PHINode &PHI : (*CommonDest)->phis()) {
4681     int Idx = PHI.getBasicBlockIndex(Pred);
4682     if (Idx == -1)
4683       continue;
4684 
4685     Constant *ConstVal =
4686         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4687     if (!ConstVal)
4688       return false;
4689 
4690     // Be conservative about which kinds of constants we support.
4691     if (!ValidLookupTableConstant(ConstVal, TTI))
4692       return false;
4693 
4694     Res.push_back(std::make_pair(&PHI, ConstVal));
4695   }
4696 
4697   return Res.size() > 0;
4698 }
4699 
4700 // Helper function used to add CaseVal to the list of cases that generate
4701 // Result. Returns the updated number of cases that generate this result.
4702 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4703                                  SwitchCaseResultVectorTy &UniqueResults,
4704                                  Constant *Result) {
4705   for (auto &I : UniqueResults) {
4706     if (I.first == Result) {
4707       I.second.push_back(CaseVal);
4708       return I.second.size();
4709     }
4710   }
4711   UniqueResults.push_back(
4712       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4713   return 1;
4714 }
4715 
4716 // Helper function that initializes a map containing
4717 // results for the PHI node of the common destination block for a switch
4718 // instruction. Returns false if multiple PHI nodes have been found or if
4719 // there is not a common destination block for the switch.
4720 static bool
4721 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4722                       SwitchCaseResultVectorTy &UniqueResults,
4723                       Constant *&DefaultResult, const DataLayout &DL,
4724                       const TargetTransformInfo &TTI,
4725                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4726   for (auto &I : SI->cases()) {
4727     ConstantInt *CaseVal = I.getCaseValue();
4728 
4729     // Resulting value at phi nodes for this case value.
4730     SwitchCaseResultsTy Results;
4731     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4732                         DL, TTI))
4733       return false;
4734 
4735     // Only one value per case is permitted.
4736     if (Results.size() > 1)
4737       return false;
4738 
4739     // Add the case->result mapping to UniqueResults.
4740     const uintptr_t NumCasesForResult =
4741         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4742 
4743     // Early out if there are too many cases for this result.
4744     if (NumCasesForResult > MaxCasesPerResult)
4745       return false;
4746 
4747     // Early out if there are too many unique results.
4748     if (UniqueResults.size() > MaxUniqueResults)
4749       return false;
4750 
4751     // Check the PHI consistency.
4752     if (!PHI)
4753       PHI = Results[0].first;
4754     else if (PHI != Results[0].first)
4755       return false;
4756   }
4757   // Find the default result value.
4758   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4759   BasicBlock *DefaultDest = SI->getDefaultDest();
4760   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4761                  DL, TTI);
4762   // If the default value is not found abort unless the default destination
4763   // is unreachable.
4764   DefaultResult =
4765       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4766   if ((!DefaultResult &&
4767        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4768     return false;
4769 
4770   return true;
4771 }
4772 
4773 // Helper function that checks if it is possible to transform a switch with only
4774 // two cases (or two cases + default) that produces a result into a select.
4775 // Example:
4776 // switch (a) {
4777 //   case 10:                %0 = icmp eq i32 %a, 10
4778 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4779 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4780 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4781 //   default:
4782 //     return 4;
4783 // }
4784 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4785                                    Constant *DefaultResult, Value *Condition,
4786                                    IRBuilder<> &Builder) {
4787   assert(ResultVector.size() == 2 &&
4788          "We should have exactly two unique results at this point");
4789   // If we are selecting between only two cases transform into a simple
4790   // select or a two-way select if default is possible.
4791   if (ResultVector[0].second.size() == 1 &&
4792       ResultVector[1].second.size() == 1) {
4793     ConstantInt *const FirstCase = ResultVector[0].second[0];
4794     ConstantInt *const SecondCase = ResultVector[1].second[0];
4795 
4796     bool DefaultCanTrigger = DefaultResult;
4797     Value *SelectValue = ResultVector[1].first;
4798     if (DefaultCanTrigger) {
4799       Value *const ValueCompare =
4800           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4801       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4802                                          DefaultResult, "switch.select");
4803     }
4804     Value *const ValueCompare =
4805         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4806     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4807                                 SelectValue, "switch.select");
4808   }
4809 
4810   return nullptr;
4811 }
4812 
4813 // Helper function to cleanup a switch instruction that has been converted into
4814 // a select, fixing up PHI nodes and basic blocks.
4815 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4816                                               Value *SelectValue,
4817                                               IRBuilder<> &Builder) {
4818   BasicBlock *SelectBB = SI->getParent();
4819   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4820     PHI->removeIncomingValue(SelectBB);
4821   PHI->addIncoming(SelectValue, SelectBB);
4822 
4823   Builder.CreateBr(PHI->getParent());
4824 
4825   // Remove the switch.
4826   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4827     BasicBlock *Succ = SI->getSuccessor(i);
4828 
4829     if (Succ == PHI->getParent())
4830       continue;
4831     Succ->removePredecessor(SelectBB);
4832   }
4833   SI->eraseFromParent();
4834 }
4835 
4836 /// If the switch is only used to initialize one or more
4837 /// phi nodes in a common successor block with only two different
4838 /// constant values, replace the switch with select.
4839 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4840                            const DataLayout &DL,
4841                            const TargetTransformInfo &TTI) {
4842   Value *const Cond = SI->getCondition();
4843   PHINode *PHI = nullptr;
4844   BasicBlock *CommonDest = nullptr;
4845   Constant *DefaultResult;
4846   SwitchCaseResultVectorTy UniqueResults;
4847   // Collect all the cases that will deliver the same value from the switch.
4848   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4849                              DL, TTI, 2, 1))
4850     return false;
4851   // Selects choose between maximum two values.
4852   if (UniqueResults.size() != 2)
4853     return false;
4854   assert(PHI != nullptr && "PHI for value select not found");
4855 
4856   Builder.SetInsertPoint(SI);
4857   Value *SelectValue =
4858       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4859   if (SelectValue) {
4860     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4861     return true;
4862   }
4863   // The switch couldn't be converted into a select.
4864   return false;
4865 }
4866 
4867 namespace {
4868 
4869 /// This class represents a lookup table that can be used to replace a switch.
4870 class SwitchLookupTable {
4871 public:
4872   /// Create a lookup table to use as a switch replacement with the contents
4873   /// of Values, using DefaultValue to fill any holes in the table.
4874   SwitchLookupTable(
4875       Module &M, uint64_t TableSize, ConstantInt *Offset,
4876       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4877       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4878 
4879   /// Build instructions with Builder to retrieve the value at
4880   /// the position given by Index in the lookup table.
4881   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4882 
4883   /// Return true if a table with TableSize elements of
4884   /// type ElementType would fit in a target-legal register.
4885   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4886                                  Type *ElementType);
4887 
4888 private:
4889   // Depending on the contents of the table, it can be represented in
4890   // different ways.
4891   enum {
4892     // For tables where each element contains the same value, we just have to
4893     // store that single value and return it for each lookup.
4894     SingleValueKind,
4895 
4896     // For tables where there is a linear relationship between table index
4897     // and values. We calculate the result with a simple multiplication
4898     // and addition instead of a table lookup.
4899     LinearMapKind,
4900 
4901     // For small tables with integer elements, we can pack them into a bitmap
4902     // that fits into a target-legal register. Values are retrieved by
4903     // shift and mask operations.
4904     BitMapKind,
4905 
4906     // The table is stored as an array of values. Values are retrieved by load
4907     // instructions from the table.
4908     ArrayKind
4909   } Kind;
4910 
4911   // For SingleValueKind, this is the single value.
4912   Constant *SingleValue = nullptr;
4913 
4914   // For BitMapKind, this is the bitmap.
4915   ConstantInt *BitMap = nullptr;
4916   IntegerType *BitMapElementTy = nullptr;
4917 
4918   // For LinearMapKind, these are the constants used to derive the value.
4919   ConstantInt *LinearOffset = nullptr;
4920   ConstantInt *LinearMultiplier = nullptr;
4921 
4922   // For ArrayKind, this is the array.
4923   GlobalVariable *Array = nullptr;
4924 };
4925 
4926 } // end anonymous namespace
4927 
4928 SwitchLookupTable::SwitchLookupTable(
4929     Module &M, uint64_t TableSize, ConstantInt *Offset,
4930     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4931     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4932   assert(Values.size() && "Can't build lookup table without values!");
4933   assert(TableSize >= Values.size() && "Can't fit values in table!");
4934 
4935   // If all values in the table are equal, this is that value.
4936   SingleValue = Values.begin()->second;
4937 
4938   Type *ValueType = Values.begin()->second->getType();
4939 
4940   // Build up the table contents.
4941   SmallVector<Constant *, 64> TableContents(TableSize);
4942   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4943     ConstantInt *CaseVal = Values[I].first;
4944     Constant *CaseRes = Values[I].second;
4945     assert(CaseRes->getType() == ValueType);
4946 
4947     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4948     TableContents[Idx] = CaseRes;
4949 
4950     if (CaseRes != SingleValue)
4951       SingleValue = nullptr;
4952   }
4953 
4954   // Fill in any holes in the table with the default result.
4955   if (Values.size() < TableSize) {
4956     assert(DefaultValue &&
4957            "Need a default value to fill the lookup table holes.");
4958     assert(DefaultValue->getType() == ValueType);
4959     for (uint64_t I = 0; I < TableSize; ++I) {
4960       if (!TableContents[I])
4961         TableContents[I] = DefaultValue;
4962     }
4963 
4964     if (DefaultValue != SingleValue)
4965       SingleValue = nullptr;
4966   }
4967 
4968   // If each element in the table contains the same value, we only need to store
4969   // that single value.
4970   if (SingleValue) {
4971     Kind = SingleValueKind;
4972     return;
4973   }
4974 
4975   // Check if we can derive the value with a linear transformation from the
4976   // table index.
4977   if (isa<IntegerType>(ValueType)) {
4978     bool LinearMappingPossible = true;
4979     APInt PrevVal;
4980     APInt DistToPrev;
4981     assert(TableSize >= 2 && "Should be a SingleValue table.");
4982     // Check if there is the same distance between two consecutive values.
4983     for (uint64_t I = 0; I < TableSize; ++I) {
4984       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4985       if (!ConstVal) {
4986         // This is an undef. We could deal with it, but undefs in lookup tables
4987         // are very seldom. It's probably not worth the additional complexity.
4988         LinearMappingPossible = false;
4989         break;
4990       }
4991       const APInt &Val = ConstVal->getValue();
4992       if (I != 0) {
4993         APInt Dist = Val - PrevVal;
4994         if (I == 1) {
4995           DistToPrev = Dist;
4996         } else if (Dist != DistToPrev) {
4997           LinearMappingPossible = false;
4998           break;
4999         }
5000       }
5001       PrevVal = Val;
5002     }
5003     if (LinearMappingPossible) {
5004       LinearOffset = cast<ConstantInt>(TableContents[0]);
5005       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5006       Kind = LinearMapKind;
5007       ++NumLinearMaps;
5008       return;
5009     }
5010   }
5011 
5012   // If the type is integer and the table fits in a register, build a bitmap.
5013   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5014     IntegerType *IT = cast<IntegerType>(ValueType);
5015     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5016     for (uint64_t I = TableSize; I > 0; --I) {
5017       TableInt <<= IT->getBitWidth();
5018       // Insert values into the bitmap. Undef values are set to zero.
5019       if (!isa<UndefValue>(TableContents[I - 1])) {
5020         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5021         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5022       }
5023     }
5024     BitMap = ConstantInt::get(M.getContext(), TableInt);
5025     BitMapElementTy = IT;
5026     Kind = BitMapKind;
5027     ++NumBitMaps;
5028     return;
5029   }
5030 
5031   // Store the table in an array.
5032   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5033   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5034 
5035   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5036                              GlobalVariable::PrivateLinkage, Initializer,
5037                              "switch.table." + FuncName);
5038   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5039   Kind = ArrayKind;
5040 }
5041 
5042 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5043   switch (Kind) {
5044   case SingleValueKind:
5045     return SingleValue;
5046   case LinearMapKind: {
5047     // Derive the result value from the input value.
5048     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5049                                           false, "switch.idx.cast");
5050     if (!LinearMultiplier->isOne())
5051       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5052     if (!LinearOffset->isZero())
5053       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5054     return Result;
5055   }
5056   case BitMapKind: {
5057     // Type of the bitmap (e.g. i59).
5058     IntegerType *MapTy = BitMap->getType();
5059 
5060     // Cast Index to the same type as the bitmap.
5061     // Note: The Index is <= the number of elements in the table, so
5062     // truncating it to the width of the bitmask is safe.
5063     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5064 
5065     // Multiply the shift amount by the element width.
5066     ShiftAmt = Builder.CreateMul(
5067         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5068         "switch.shiftamt");
5069 
5070     // Shift down.
5071     Value *DownShifted =
5072         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5073     // Mask off.
5074     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5075   }
5076   case ArrayKind: {
5077     // Make sure the table index will not overflow when treated as signed.
5078     IntegerType *IT = cast<IntegerType>(Index->getType());
5079     uint64_t TableSize =
5080         Array->getInitializer()->getType()->getArrayNumElements();
5081     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5082       Index = Builder.CreateZExt(
5083           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5084           "switch.tableidx.zext");
5085 
5086     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5087     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5088                                            GEPIndices, "switch.gep");
5089     return Builder.CreateLoad(GEP, "switch.load");
5090   }
5091   }
5092   llvm_unreachable("Unknown lookup table kind!");
5093 }
5094 
5095 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5096                                            uint64_t TableSize,
5097                                            Type *ElementType) {
5098   auto *IT = dyn_cast<IntegerType>(ElementType);
5099   if (!IT)
5100     return false;
5101   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5102   // are <= 15, we could try to narrow the type.
5103 
5104   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5105   if (TableSize >= UINT_MAX / IT->getBitWidth())
5106     return false;
5107   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5108 }
5109 
5110 /// Determine whether a lookup table should be built for this switch, based on
5111 /// the number of cases, size of the table, and the types of the results.
5112 static bool
5113 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5114                        const TargetTransformInfo &TTI, const DataLayout &DL,
5115                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5116   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5117     return false; // TableSize overflowed, or mul below might overflow.
5118 
5119   bool AllTablesFitInRegister = true;
5120   bool HasIllegalType = false;
5121   for (const auto &I : ResultTypes) {
5122     Type *Ty = I.second;
5123 
5124     // Saturate this flag to true.
5125     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5126 
5127     // Saturate this flag to false.
5128     AllTablesFitInRegister =
5129         AllTablesFitInRegister &&
5130         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5131 
5132     // If both flags saturate, we're done. NOTE: This *only* works with
5133     // saturating flags, and all flags have to saturate first due to the
5134     // non-deterministic behavior of iterating over a dense map.
5135     if (HasIllegalType && !AllTablesFitInRegister)
5136       break;
5137   }
5138 
5139   // If each table would fit in a register, we should build it anyway.
5140   if (AllTablesFitInRegister)
5141     return true;
5142 
5143   // Don't build a table that doesn't fit in-register if it has illegal types.
5144   if (HasIllegalType)
5145     return false;
5146 
5147   // The table density should be at least 40%. This is the same criterion as for
5148   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5149   // FIXME: Find the best cut-off.
5150   return SI->getNumCases() * 10 >= TableSize * 4;
5151 }
5152 
5153 /// Try to reuse the switch table index compare. Following pattern:
5154 /// \code
5155 ///     if (idx < tablesize)
5156 ///        r = table[idx]; // table does not contain default_value
5157 ///     else
5158 ///        r = default_value;
5159 ///     if (r != default_value)
5160 ///        ...
5161 /// \endcode
5162 /// Is optimized to:
5163 /// \code
5164 ///     cond = idx < tablesize;
5165 ///     if (cond)
5166 ///        r = table[idx];
5167 ///     else
5168 ///        r = default_value;
5169 ///     if (cond)
5170 ///        ...
5171 /// \endcode
5172 /// Jump threading will then eliminate the second if(cond).
5173 static void reuseTableCompare(
5174     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5175     Constant *DefaultValue,
5176     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5177   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5178   if (!CmpInst)
5179     return;
5180 
5181   // We require that the compare is in the same block as the phi so that jump
5182   // threading can do its work afterwards.
5183   if (CmpInst->getParent() != PhiBlock)
5184     return;
5185 
5186   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5187   if (!CmpOp1)
5188     return;
5189 
5190   Value *RangeCmp = RangeCheckBranch->getCondition();
5191   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5192   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5193 
5194   // Check if the compare with the default value is constant true or false.
5195   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5196                                                  DefaultValue, CmpOp1, true);
5197   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5198     return;
5199 
5200   // Check if the compare with the case values is distinct from the default
5201   // compare result.
5202   for (auto ValuePair : Values) {
5203     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5204                                                 ValuePair.second, CmpOp1, true);
5205     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5206       return;
5207     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5208            "Expect true or false as compare result.");
5209   }
5210 
5211   // Check if the branch instruction dominates the phi node. It's a simple
5212   // dominance check, but sufficient for our needs.
5213   // Although this check is invariant in the calling loops, it's better to do it
5214   // at this late stage. Practically we do it at most once for a switch.
5215   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5216   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5217     BasicBlock *Pred = *PI;
5218     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5219       return;
5220   }
5221 
5222   if (DefaultConst == FalseConst) {
5223     // The compare yields the same result. We can replace it.
5224     CmpInst->replaceAllUsesWith(RangeCmp);
5225     ++NumTableCmpReuses;
5226   } else {
5227     // The compare yields the same result, just inverted. We can replace it.
5228     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5229         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5230         RangeCheckBranch);
5231     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5232     ++NumTableCmpReuses;
5233   }
5234 }
5235 
5236 /// If the switch is only used to initialize one or more phi nodes in a common
5237 /// successor block with different constant values, replace the switch with
5238 /// lookup tables.
5239 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5240                                 const DataLayout &DL,
5241                                 const TargetTransformInfo &TTI) {
5242   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5243 
5244   Function *Fn = SI->getParent()->getParent();
5245   // Only build lookup table when we have a target that supports it or the
5246   // attribute is not set.
5247   if (!TTI.shouldBuildLookupTables() ||
5248       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5249     return false;
5250 
5251   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5252   // split off a dense part and build a lookup table for that.
5253 
5254   // FIXME: This creates arrays of GEPs to constant strings, which means each
5255   // GEP needs a runtime relocation in PIC code. We should just build one big
5256   // string and lookup indices into that.
5257 
5258   // Ignore switches with less than three cases. Lookup tables will not make
5259   // them faster, so we don't analyze them.
5260   if (SI->getNumCases() < 3)
5261     return false;
5262 
5263   // Figure out the corresponding result for each case value and phi node in the
5264   // common destination, as well as the min and max case values.
5265   assert(SI->case_begin() != SI->case_end());
5266   SwitchInst::CaseIt CI = SI->case_begin();
5267   ConstantInt *MinCaseVal = CI->getCaseValue();
5268   ConstantInt *MaxCaseVal = CI->getCaseValue();
5269 
5270   BasicBlock *CommonDest = nullptr;
5271 
5272   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5273   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5274 
5275   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5276   SmallDenseMap<PHINode *, Type *> ResultTypes;
5277   SmallVector<PHINode *, 4> PHIs;
5278 
5279   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5280     ConstantInt *CaseVal = CI->getCaseValue();
5281     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5282       MinCaseVal = CaseVal;
5283     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5284       MaxCaseVal = CaseVal;
5285 
5286     // Resulting value at phi nodes for this case value.
5287     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5288     ResultsTy Results;
5289     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5290                         Results, DL, TTI))
5291       return false;
5292 
5293     // Append the result from this case to the list for each phi.
5294     for (const auto &I : Results) {
5295       PHINode *PHI = I.first;
5296       Constant *Value = I.second;
5297       if (!ResultLists.count(PHI))
5298         PHIs.push_back(PHI);
5299       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5300     }
5301   }
5302 
5303   // Keep track of the result types.
5304   for (PHINode *PHI : PHIs) {
5305     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5306   }
5307 
5308   uint64_t NumResults = ResultLists[PHIs[0]].size();
5309   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5310   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5311   bool TableHasHoles = (NumResults < TableSize);
5312 
5313   // If the table has holes, we need a constant result for the default case
5314   // or a bitmask that fits in a register.
5315   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5316   bool HasDefaultResults =
5317       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5318                      DefaultResultsList, DL, TTI);
5319 
5320   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5321   if (NeedMask) {
5322     // As an extra penalty for the validity test we require more cases.
5323     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5324       return false;
5325     if (!DL.fitsInLegalInteger(TableSize))
5326       return false;
5327   }
5328 
5329   for (const auto &I : DefaultResultsList) {
5330     PHINode *PHI = I.first;
5331     Constant *Result = I.second;
5332     DefaultResults[PHI] = Result;
5333   }
5334 
5335   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5336     return false;
5337 
5338   // Create the BB that does the lookups.
5339   Module &Mod = *CommonDest->getParent()->getParent();
5340   BasicBlock *LookupBB = BasicBlock::Create(
5341       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5342 
5343   // Compute the table index value.
5344   Builder.SetInsertPoint(SI);
5345   Value *TableIndex;
5346   if (MinCaseVal->isNullValue())
5347     TableIndex = SI->getCondition();
5348   else
5349     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5350                                    "switch.tableidx");
5351 
5352   // Compute the maximum table size representable by the integer type we are
5353   // switching upon.
5354   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5355   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5356   assert(MaxTableSize >= TableSize &&
5357          "It is impossible for a switch to have more entries than the max "
5358          "representable value of its input integer type's size.");
5359 
5360   // If the default destination is unreachable, or if the lookup table covers
5361   // all values of the conditional variable, branch directly to the lookup table
5362   // BB. Otherwise, check that the condition is within the case range.
5363   const bool DefaultIsReachable =
5364       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5365   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5366   BranchInst *RangeCheckBranch = nullptr;
5367 
5368   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5369     Builder.CreateBr(LookupBB);
5370     // Note: We call removeProdecessor later since we need to be able to get the
5371     // PHI value for the default case in case we're using a bit mask.
5372   } else {
5373     Value *Cmp = Builder.CreateICmpULT(
5374         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5375     RangeCheckBranch =
5376         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5377   }
5378 
5379   // Populate the BB that does the lookups.
5380   Builder.SetInsertPoint(LookupBB);
5381 
5382   if (NeedMask) {
5383     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5384     // re-purposed to do the hole check, and we create a new LookupBB.
5385     BasicBlock *MaskBB = LookupBB;
5386     MaskBB->setName("switch.hole_check");
5387     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5388                                   CommonDest->getParent(), CommonDest);
5389 
5390     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5391     // unnecessary illegal types.
5392     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5393     APInt MaskInt(TableSizePowOf2, 0);
5394     APInt One(TableSizePowOf2, 1);
5395     // Build bitmask; fill in a 1 bit for every case.
5396     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5397     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5398       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5399                          .getLimitedValue();
5400       MaskInt |= One << Idx;
5401     }
5402     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5403 
5404     // Get the TableIndex'th bit of the bitmask.
5405     // If this bit is 0 (meaning hole) jump to the default destination,
5406     // else continue with table lookup.
5407     IntegerType *MapTy = TableMask->getType();
5408     Value *MaskIndex =
5409         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5410     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5411     Value *LoBit = Builder.CreateTrunc(
5412         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5413     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5414 
5415     Builder.SetInsertPoint(LookupBB);
5416     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5417   }
5418 
5419   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5420     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5421     // do not delete PHINodes here.
5422     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5423                                             /*DontDeleteUselessPHIs=*/true);
5424   }
5425 
5426   bool ReturnedEarly = false;
5427   for (PHINode *PHI : PHIs) {
5428     const ResultListTy &ResultList = ResultLists[PHI];
5429 
5430     // If using a bitmask, use any value to fill the lookup table holes.
5431     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5432     StringRef FuncName = Fn->getName();
5433     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5434                             FuncName);
5435 
5436     Value *Result = Table.BuildLookup(TableIndex, Builder);
5437 
5438     // If the result is used to return immediately from the function, we want to
5439     // do that right here.
5440     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5441         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5442       Builder.CreateRet(Result);
5443       ReturnedEarly = true;
5444       break;
5445     }
5446 
5447     // Do a small peephole optimization: re-use the switch table compare if
5448     // possible.
5449     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5450       BasicBlock *PhiBlock = PHI->getParent();
5451       // Search for compare instructions which use the phi.
5452       for (auto *User : PHI->users()) {
5453         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5454       }
5455     }
5456 
5457     PHI->addIncoming(Result, LookupBB);
5458   }
5459 
5460   if (!ReturnedEarly)
5461     Builder.CreateBr(CommonDest);
5462 
5463   // Remove the switch.
5464   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5465     BasicBlock *Succ = SI->getSuccessor(i);
5466 
5467     if (Succ == SI->getDefaultDest())
5468       continue;
5469     Succ->removePredecessor(SI->getParent());
5470   }
5471   SI->eraseFromParent();
5472 
5473   ++NumLookupTables;
5474   if (NeedMask)
5475     ++NumLookupTablesHoles;
5476   return true;
5477 }
5478 
5479 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5480   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5481   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5482   uint64_t Range = Diff + 1;
5483   uint64_t NumCases = Values.size();
5484   // 40% is the default density for building a jump table in optsize/minsize mode.
5485   uint64_t MinDensity = 40;
5486 
5487   return NumCases * 100 >= Range * MinDensity;
5488 }
5489 
5490 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5491 /// of cases.
5492 ///
5493 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5494 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5495 ///
5496 /// This converts a sparse switch into a dense switch which allows better
5497 /// lowering and could also allow transforming into a lookup table.
5498 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5499                               const DataLayout &DL,
5500                               const TargetTransformInfo &TTI) {
5501   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5502   if (CondTy->getIntegerBitWidth() > 64 ||
5503       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5504     return false;
5505   // Only bother with this optimization if there are more than 3 switch cases;
5506   // SDAG will only bother creating jump tables for 4 or more cases.
5507   if (SI->getNumCases() < 4)
5508     return false;
5509 
5510   // This transform is agnostic to the signedness of the input or case values. We
5511   // can treat the case values as signed or unsigned. We can optimize more common
5512   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5513   // as signed.
5514   SmallVector<int64_t,4> Values;
5515   for (auto &C : SI->cases())
5516     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5517   llvm::sort(Values.begin(), Values.end());
5518 
5519   // If the switch is already dense, there's nothing useful to do here.
5520   if (isSwitchDense(Values))
5521     return false;
5522 
5523   // First, transform the values such that they start at zero and ascend.
5524   int64_t Base = Values[0];
5525   for (auto &V : Values)
5526     V -= (uint64_t)(Base);
5527 
5528   // Now we have signed numbers that have been shifted so that, given enough
5529   // precision, there are no negative values. Since the rest of the transform
5530   // is bitwise only, we switch now to an unsigned representation.
5531   uint64_t GCD = 0;
5532   for (auto &V : Values)
5533     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5534 
5535   // This transform can be done speculatively because it is so cheap - it results
5536   // in a single rotate operation being inserted. This can only happen if the
5537   // factor extracted is a power of 2.
5538   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5539   // inverse of GCD and then perform this transform.
5540   // FIXME: It's possible that optimizing a switch on powers of two might also
5541   // be beneficial - flag values are often powers of two and we could use a CLZ
5542   // as the key function.
5543   if (GCD <= 1 || !isPowerOf2_64(GCD))
5544     // No common divisor found or too expensive to compute key function.
5545     return false;
5546 
5547   unsigned Shift = Log2_64(GCD);
5548   for (auto &V : Values)
5549     V = (int64_t)((uint64_t)V >> Shift);
5550 
5551   if (!isSwitchDense(Values))
5552     // Transform didn't create a dense switch.
5553     return false;
5554 
5555   // The obvious transform is to shift the switch condition right and emit a
5556   // check that the condition actually cleanly divided by GCD, i.e.
5557   //   C & (1 << Shift - 1) == 0
5558   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5559   //
5560   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5561   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5562   // are nonzero then the switch condition will be very large and will hit the
5563   // default case.
5564 
5565   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5566   Builder.SetInsertPoint(SI);
5567   auto *ShiftC = ConstantInt::get(Ty, Shift);
5568   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5569   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5570   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5571   auto *Rot = Builder.CreateOr(LShr, Shl);
5572   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5573 
5574   for (auto Case : SI->cases()) {
5575     auto *Orig = Case.getCaseValue();
5576     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5577     Case.setValue(
5578         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5579   }
5580   return true;
5581 }
5582 
5583 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5584   BasicBlock *BB = SI->getParent();
5585 
5586   if (isValueEqualityComparison(SI)) {
5587     // If we only have one predecessor, and if it is a branch on this value,
5588     // see if that predecessor totally determines the outcome of this switch.
5589     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5590       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5591         return simplifyCFG(BB, TTI, Options) || true;
5592 
5593     Value *Cond = SI->getCondition();
5594     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5595       if (SimplifySwitchOnSelect(SI, Select))
5596         return simplifyCFG(BB, TTI, Options) || true;
5597 
5598     // If the block only contains the switch, see if we can fold the block
5599     // away into any preds.
5600     if (SI == &*BB->instructionsWithoutDebug().begin())
5601       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5602         return simplifyCFG(BB, TTI, Options) || true;
5603   }
5604 
5605   // Try to transform the switch into an icmp and a branch.
5606   if (TurnSwitchRangeIntoICmp(SI, Builder))
5607     return simplifyCFG(BB, TTI, Options) || true;
5608 
5609   // Remove unreachable cases.
5610   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5611     return simplifyCFG(BB, TTI, Options) || true;
5612 
5613   if (switchToSelect(SI, Builder, DL, TTI))
5614     return simplifyCFG(BB, TTI, Options) || true;
5615 
5616   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5617     return simplifyCFG(BB, TTI, Options) || true;
5618 
5619   // The conversion from switch to lookup tables results in difficult-to-analyze
5620   // code and makes pruning branches much harder. This is a problem if the
5621   // switch expression itself can still be restricted as a result of inlining or
5622   // CVP. Therefore, only apply this transformation during late stages of the
5623   // optimisation pipeline.
5624   if (Options.ConvertSwitchToLookupTable &&
5625       SwitchToLookupTable(SI, Builder, DL, TTI))
5626     return simplifyCFG(BB, TTI, Options) || true;
5627 
5628   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5629     return simplifyCFG(BB, TTI, Options) || true;
5630 
5631   return false;
5632 }
5633 
5634 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5635   BasicBlock *BB = IBI->getParent();
5636   bool Changed = false;
5637 
5638   // Eliminate redundant destinations.
5639   SmallPtrSet<Value *, 8> Succs;
5640   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5641     BasicBlock *Dest = IBI->getDestination(i);
5642     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5643       Dest->removePredecessor(BB);
5644       IBI->removeDestination(i);
5645       --i;
5646       --e;
5647       Changed = true;
5648     }
5649   }
5650 
5651   if (IBI->getNumDestinations() == 0) {
5652     // If the indirectbr has no successors, change it to unreachable.
5653     new UnreachableInst(IBI->getContext(), IBI);
5654     EraseTerminatorInstAndDCECond(IBI);
5655     return true;
5656   }
5657 
5658   if (IBI->getNumDestinations() == 1) {
5659     // If the indirectbr has one successor, change it to a direct branch.
5660     BranchInst::Create(IBI->getDestination(0), IBI);
5661     EraseTerminatorInstAndDCECond(IBI);
5662     return true;
5663   }
5664 
5665   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5666     if (SimplifyIndirectBrOnSelect(IBI, SI))
5667       return simplifyCFG(BB, TTI, Options) || true;
5668   }
5669   return Changed;
5670 }
5671 
5672 /// Given an block with only a single landing pad and a unconditional branch
5673 /// try to find another basic block which this one can be merged with.  This
5674 /// handles cases where we have multiple invokes with unique landing pads, but
5675 /// a shared handler.
5676 ///
5677 /// We specifically choose to not worry about merging non-empty blocks
5678 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5679 /// practice, the optimizer produces empty landing pad blocks quite frequently
5680 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5681 /// sinking in this file)
5682 ///
5683 /// This is primarily a code size optimization.  We need to avoid performing
5684 /// any transform which might inhibit optimization (such as our ability to
5685 /// specialize a particular handler via tail commoning).  We do this by not
5686 /// merging any blocks which require us to introduce a phi.  Since the same
5687 /// values are flowing through both blocks, we don't lose any ability to
5688 /// specialize.  If anything, we make such specialization more likely.
5689 ///
5690 /// TODO - This transformation could remove entries from a phi in the target
5691 /// block when the inputs in the phi are the same for the two blocks being
5692 /// merged.  In some cases, this could result in removal of the PHI entirely.
5693 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5694                                  BasicBlock *BB) {
5695   auto Succ = BB->getUniqueSuccessor();
5696   assert(Succ);
5697   // If there's a phi in the successor block, we'd likely have to introduce
5698   // a phi into the merged landing pad block.
5699   if (isa<PHINode>(*Succ->begin()))
5700     return false;
5701 
5702   for (BasicBlock *OtherPred : predecessors(Succ)) {
5703     if (BB == OtherPred)
5704       continue;
5705     BasicBlock::iterator I = OtherPred->begin();
5706     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5707     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5708       continue;
5709     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5710       ;
5711     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5712     if (!BI2 || !BI2->isIdenticalTo(BI))
5713       continue;
5714 
5715     // We've found an identical block.  Update our predecessors to take that
5716     // path instead and make ourselves dead.
5717     SmallPtrSet<BasicBlock *, 16> Preds;
5718     Preds.insert(pred_begin(BB), pred_end(BB));
5719     for (BasicBlock *Pred : Preds) {
5720       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5721       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5722              "unexpected successor");
5723       II->setUnwindDest(OtherPred);
5724     }
5725 
5726     // The debug info in OtherPred doesn't cover the merged control flow that
5727     // used to go through BB.  We need to delete it or update it.
5728     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5729       Instruction &Inst = *I;
5730       I++;
5731       if (isa<DbgInfoIntrinsic>(Inst))
5732         Inst.eraseFromParent();
5733     }
5734 
5735     SmallPtrSet<BasicBlock *, 16> Succs;
5736     Succs.insert(succ_begin(BB), succ_end(BB));
5737     for (BasicBlock *Succ : Succs) {
5738       Succ->removePredecessor(BB);
5739     }
5740 
5741     IRBuilder<> Builder(BI);
5742     Builder.CreateUnreachable();
5743     BI->eraseFromParent();
5744     return true;
5745   }
5746   return false;
5747 }
5748 
5749 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5750                                           IRBuilder<> &Builder) {
5751   BasicBlock *BB = BI->getParent();
5752   BasicBlock *Succ = BI->getSuccessor(0);
5753 
5754   // If the Terminator is the only non-phi instruction, simplify the block.
5755   // If LoopHeader is provided, check if the block or its successor is a loop
5756   // header. (This is for early invocations before loop simplify and
5757   // vectorization to keep canonical loop forms for nested loops. These blocks
5758   // can be eliminated when the pass is invoked later in the back-end.)
5759   // Note that if BB has only one predecessor then we do not introduce new
5760   // backedge, so we can eliminate BB.
5761   bool NeedCanonicalLoop =
5762       Options.NeedCanonicalLoop &&
5763       (LoopHeaders && pred_size(BB) > 1 &&
5764        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5765   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5766   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5767       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5768     return true;
5769 
5770   // If the only instruction in the block is a seteq/setne comparison against a
5771   // constant, try to simplify the block.
5772   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5773     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5774       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5775         ;
5776       if (I->isTerminator() &&
5777           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options))
5778         return true;
5779     }
5780 
5781   // See if we can merge an empty landing pad block with another which is
5782   // equivalent.
5783   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5784     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5785       ;
5786     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5787       return true;
5788   }
5789 
5790   // If this basic block is ONLY a compare and a branch, and if a predecessor
5791   // branches to us and our successor, fold the comparison into the
5792   // predecessor and use logical operations to update the incoming value
5793   // for PHI nodes in common successor.
5794   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5795     return simplifyCFG(BB, TTI, Options) || true;
5796   return false;
5797 }
5798 
5799 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5800   BasicBlock *PredPred = nullptr;
5801   for (auto *P : predecessors(BB)) {
5802     BasicBlock *PPred = P->getSinglePredecessor();
5803     if (!PPred || (PredPred && PredPred != PPred))
5804       return nullptr;
5805     PredPred = PPred;
5806   }
5807   return PredPred;
5808 }
5809 
5810 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5811   BasicBlock *BB = BI->getParent();
5812   const Function *Fn = BB->getParent();
5813   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5814     return false;
5815 
5816   // Conditional branch
5817   if (isValueEqualityComparison(BI)) {
5818     // If we only have one predecessor, and if it is a branch on this value,
5819     // see if that predecessor totally determines the outcome of this
5820     // switch.
5821     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5822       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5823         return simplifyCFG(BB, TTI, Options) || true;
5824 
5825     // This block must be empty, except for the setcond inst, if it exists.
5826     // Ignore dbg intrinsics.
5827     auto I = BB->instructionsWithoutDebug().begin();
5828     if (&*I == BI) {
5829       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5830         return simplifyCFG(BB, TTI, Options) || true;
5831     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5832       ++I;
5833       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5834         return simplifyCFG(BB, TTI, Options) || true;
5835     }
5836   }
5837 
5838   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5839   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5840     return true;
5841 
5842   // If this basic block has a single dominating predecessor block and the
5843   // dominating block's condition implies BI's condition, we know the direction
5844   // of the BI branch.
5845   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5846     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5847     if (PBI && PBI->isConditional() &&
5848         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5849       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5850       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5851       Optional<bool> Implication = isImpliedCondition(
5852           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5853       if (Implication) {
5854         // Turn this into a branch on constant.
5855         auto *OldCond = BI->getCondition();
5856         ConstantInt *CI = *Implication
5857                               ? ConstantInt::getTrue(BB->getContext())
5858                               : ConstantInt::getFalse(BB->getContext());
5859         BI->setCondition(CI);
5860         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5861         return simplifyCFG(BB, TTI, Options) || true;
5862       }
5863     }
5864   }
5865 
5866   // If this basic block is ONLY a compare and a branch, and if a predecessor
5867   // branches to us and one of our successors, fold the comparison into the
5868   // predecessor and use logical operations to pick the right destination.
5869   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5870     return simplifyCFG(BB, TTI, Options) || true;
5871 
5872   // We have a conditional branch to two blocks that are only reachable
5873   // from BI.  We know that the condbr dominates the two blocks, so see if
5874   // there is any identical code in the "then" and "else" blocks.  If so, we
5875   // can hoist it up to the branching block.
5876   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5877     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5878       if (HoistThenElseCodeToIf(BI, TTI))
5879         return simplifyCFG(BB, TTI, Options) || true;
5880     } else {
5881       // If Successor #1 has multiple preds, we may be able to conditionally
5882       // execute Successor #0 if it branches to Successor #1.
5883       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5884       if (Succ0TI->getNumSuccessors() == 1 &&
5885           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5886         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5887           return simplifyCFG(BB, TTI, Options) || true;
5888     }
5889   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5890     // If Successor #0 has multiple preds, we may be able to conditionally
5891     // execute Successor #1 if it branches to Successor #0.
5892     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5893     if (Succ1TI->getNumSuccessors() == 1 &&
5894         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5895       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5896         return simplifyCFG(BB, TTI, Options) || true;
5897   }
5898 
5899   // If this is a branch on a phi node in the current block, thread control
5900   // through this block if any PHI node entries are constants.
5901   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5902     if (PN->getParent() == BI->getParent())
5903       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5904         return simplifyCFG(BB, TTI, Options) || true;
5905 
5906   // Scan predecessor blocks for conditional branches.
5907   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5908     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5909       if (PBI != BI && PBI->isConditional())
5910         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5911           return simplifyCFG(BB, TTI, Options) || true;
5912 
5913   // Look for diamond patterns.
5914   if (MergeCondStores)
5915     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5916       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5917         if (PBI != BI && PBI->isConditional())
5918           if (mergeConditionalStores(PBI, BI, DL))
5919             return simplifyCFG(BB, TTI, Options) || true;
5920 
5921   return false;
5922 }
5923 
5924 /// Check if passing a value to an instruction will cause undefined behavior.
5925 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5926   Constant *C = dyn_cast<Constant>(V);
5927   if (!C)
5928     return false;
5929 
5930   if (I->use_empty())
5931     return false;
5932 
5933   if (C->isNullValue() || isa<UndefValue>(C)) {
5934     // Only look at the first use, avoid hurting compile time with long uselists
5935     User *Use = *I->user_begin();
5936 
5937     // Now make sure that there are no instructions in between that can alter
5938     // control flow (eg. calls)
5939     for (BasicBlock::iterator
5940              i = ++BasicBlock::iterator(I),
5941              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5942          i != UI; ++i)
5943       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5944         return false;
5945 
5946     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5947     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5948       if (GEP->getPointerOperand() == I)
5949         return passingValueIsAlwaysUndefined(V, GEP);
5950 
5951     // Look through bitcasts.
5952     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5953       return passingValueIsAlwaysUndefined(V, BC);
5954 
5955     // Load from null is undefined.
5956     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5957       if (!LI->isVolatile())
5958         return !NullPointerIsDefined(LI->getFunction(),
5959                                      LI->getPointerAddressSpace());
5960 
5961     // Store to null is undefined.
5962     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5963       if (!SI->isVolatile())
5964         return (!NullPointerIsDefined(SI->getFunction(),
5965                                       SI->getPointerAddressSpace())) &&
5966                SI->getPointerOperand() == I;
5967 
5968     // A call to null is undefined.
5969     if (auto CS = CallSite(Use))
5970       return !NullPointerIsDefined(CS->getFunction()) &&
5971              CS.getCalledValue() == I;
5972   }
5973   return false;
5974 }
5975 
5976 /// If BB has an incoming value that will always trigger undefined behavior
5977 /// (eg. null pointer dereference), remove the branch leading here.
5978 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5979   for (PHINode &PHI : BB->phis())
5980     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5981       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5982         TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator();
5983         IRBuilder<> Builder(T);
5984         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5985           BB->removePredecessor(PHI.getIncomingBlock(i));
5986           // Turn uncoditional branches into unreachables and remove the dead
5987           // destination from conditional branches.
5988           if (BI->isUnconditional())
5989             Builder.CreateUnreachable();
5990           else
5991             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5992                                                        : BI->getSuccessor(0));
5993           BI->eraseFromParent();
5994           return true;
5995         }
5996         // TODO: SwitchInst.
5997       }
5998 
5999   return false;
6000 }
6001 
6002 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6003   bool Changed = false;
6004 
6005   assert(BB && BB->getParent() && "Block not embedded in function!");
6006   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6007 
6008   // Remove basic blocks that have no predecessors (except the entry block)...
6009   // or that just have themself as a predecessor.  These are unreachable.
6010   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6011       BB->getSinglePredecessor() == BB) {
6012     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6013     DeleteDeadBlock(BB);
6014     return true;
6015   }
6016 
6017   // Check to see if we can constant propagate this terminator instruction
6018   // away...
6019   Changed |= ConstantFoldTerminator(BB, true);
6020 
6021   // Check for and eliminate duplicate PHI nodes in this block.
6022   Changed |= EliminateDuplicatePHINodes(BB);
6023 
6024   // Check for and remove branches that will always cause undefined behavior.
6025   Changed |= removeUndefIntroducingPredecessor(BB);
6026 
6027   // Merge basic blocks into their predecessor if there is only one distinct
6028   // pred, and if there is only one distinct successor of the predecessor, and
6029   // if there are no PHI nodes.
6030   if (MergeBlockIntoPredecessor(BB))
6031     return true;
6032 
6033   if (SinkCommon && Options.SinkCommonInsts)
6034     Changed |= SinkCommonCodeFromPredecessors(BB);
6035 
6036   IRBuilder<> Builder(BB);
6037 
6038   // If there is a trivial two-entry PHI node in this basic block, and we can
6039   // eliminate it, do so now.
6040   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6041     if (PN->getNumIncomingValues() == 2)
6042       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6043 
6044   Builder.SetInsertPoint(BB->getTerminator());
6045   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6046     if (BI->isUnconditional()) {
6047       if (SimplifyUncondBranch(BI, Builder))
6048         return true;
6049     } else {
6050       if (SimplifyCondBranch(BI, Builder))
6051         return true;
6052     }
6053   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6054     if (SimplifyReturn(RI, Builder))
6055       return true;
6056   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6057     if (SimplifyResume(RI, Builder))
6058       return true;
6059   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6060     if (SimplifyCleanupReturn(RI))
6061       return true;
6062   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6063     if (SimplifySwitch(SI, Builder))
6064       return true;
6065   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6066     if (SimplifyUnreachable(UI))
6067       return true;
6068   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6069     if (SimplifyIndirectBr(IBI))
6070       return true;
6071   }
6072 
6073   return Changed;
6074 }
6075 
6076 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6077                        const SimplifyCFGOptions &Options,
6078                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6079   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6080                         Options)
6081       .run(BB);
6082 }
6083