1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/ValueHandle.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/KnownBits.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include "llvm/Transforms/Utils/SSAUpdater.h" 75 #include "llvm/Transforms/Utils/ValueMapper.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <set> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "simplifycfg" 92 93 cl::opt<bool> llvm::RequireAndPreserveDomTree( 94 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 95 cl::init(false), 96 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 97 "into preserving DomTree,")); 98 99 // Chosen as 2 so as to be cheap, but still to have enough power to fold 100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 101 // To catch this, we need to fold a compare and a select, hence '2' being the 102 // minimum reasonable default. 103 static cl::opt<unsigned> PHINodeFoldingThreshold( 104 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 105 cl::desc( 106 "Control the amount of phi node folding to perform (default = 2)")); 107 108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 109 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 110 cl::desc("Control the maximal total instruction cost that we are willing " 111 "to speculatively execute to fold a 2-entry PHI node into a " 112 "select (default = 4)")); 113 114 static cl::opt<bool> DupRet( 115 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 116 cl::desc("Duplicate return instructions into unconditional branches")); 117 118 static cl::opt<bool> 119 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 120 cl::desc("Hoist common instructions up to the parent block")); 121 122 static cl::opt<bool> 123 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 124 cl::desc("Sink common instructions down to the end block")); 125 126 static cl::opt<bool> HoistCondStores( 127 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 128 cl::desc("Hoist conditional stores if an unconditional store precedes")); 129 130 static cl::opt<bool> MergeCondStores( 131 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 132 cl::desc("Hoist conditional stores even if an unconditional store does not " 133 "precede - hoist multiple conditional stores into a single " 134 "predicated store")); 135 136 static cl::opt<bool> MergeCondStoresAggressively( 137 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 138 cl::desc("When merging conditional stores, do so even if the resultant " 139 "basic blocks are unlikely to be if-converted as a result")); 140 141 static cl::opt<bool> SpeculateOneExpensiveInst( 142 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 143 cl::desc("Allow exactly one expensive instruction to be speculatively " 144 "executed")); 145 146 static cl::opt<unsigned> MaxSpeculationDepth( 147 "max-speculation-depth", cl::Hidden, cl::init(10), 148 cl::desc("Limit maximum recursion depth when calculating costs of " 149 "speculatively executed instructions")); 150 151 static cl::opt<int> 152 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 153 cl::desc("Max size of a block which is still considered " 154 "small enough to thread through")); 155 156 // Two is chosen to allow one negation and a logical combine. 157 static cl::opt<unsigned> 158 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 159 cl::init(2), 160 cl::desc("Maximum cost of combining conditions when " 161 "folding branches")); 162 163 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 164 STATISTIC(NumLinearMaps, 165 "Number of switch instructions turned into linear mapping"); 166 STATISTIC(NumLookupTables, 167 "Number of switch instructions turned into lookup tables"); 168 STATISTIC( 169 NumLookupTablesHoles, 170 "Number of switch instructions turned into lookup tables (holes checked)"); 171 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 172 STATISTIC(NumFoldValueComparisonIntoPredecessors, 173 "Number of value comparisons folded into predecessor basic blocks"); 174 STATISTIC(NumFoldBranchToCommonDest, 175 "Number of branches folded into predecessor basic block"); 176 STATISTIC( 177 NumHoistCommonCode, 178 "Number of common instruction 'blocks' hoisted up to the begin block"); 179 STATISTIC(NumHoistCommonInstrs, 180 "Number of common instructions hoisted up to the begin block"); 181 STATISTIC(NumSinkCommonCode, 182 "Number of common instruction 'blocks' sunk down to the end block"); 183 STATISTIC(NumSinkCommonInstrs, 184 "Number of common instructions sunk down to the end block"); 185 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 186 STATISTIC(NumInvokes, 187 "Number of invokes with empty resume blocks simplified into calls"); 188 189 namespace { 190 191 // The first field contains the value that the switch produces when a certain 192 // case group is selected, and the second field is a vector containing the 193 // cases composing the case group. 194 using SwitchCaseResultVectorTy = 195 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 196 197 // The first field contains the phi node that generates a result of the switch 198 // and the second field contains the value generated for a certain case in the 199 // switch for that PHI. 200 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 201 202 /// ValueEqualityComparisonCase - Represents a case of a switch. 203 struct ValueEqualityComparisonCase { 204 ConstantInt *Value; 205 BasicBlock *Dest; 206 207 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 208 : Value(Value), Dest(Dest) {} 209 210 bool operator<(ValueEqualityComparisonCase RHS) const { 211 // Comparing pointers is ok as we only rely on the order for uniquing. 212 return Value < RHS.Value; 213 } 214 215 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 216 }; 217 218 class SimplifyCFGOpt { 219 const TargetTransformInfo &TTI; 220 DomTreeUpdater *DTU; 221 const DataLayout &DL; 222 ArrayRef<WeakVH> LoopHeaders; 223 const SimplifyCFGOptions &Options; 224 bool Resimplify; 225 226 Value *isValueEqualityComparison(Instruction *TI); 227 BasicBlock *GetValueEqualityComparisonCases( 228 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 229 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 230 BasicBlock *Pred, 231 IRBuilder<> &Builder); 232 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 233 Instruction *PTI, 234 IRBuilder<> &Builder); 235 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 236 IRBuilder<> &Builder); 237 238 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 239 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 240 bool simplifySingleResume(ResumeInst *RI); 241 bool simplifyCommonResume(ResumeInst *RI); 242 bool simplifyCleanupReturn(CleanupReturnInst *RI); 243 bool simplifyUnreachable(UnreachableInst *UI); 244 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 245 bool simplifyIndirectBr(IndirectBrInst *IBI); 246 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 247 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 248 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 249 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 250 251 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 252 IRBuilder<> &Builder); 253 254 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 255 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 256 const TargetTransformInfo &TTI); 257 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 258 BasicBlock *TrueBB, BasicBlock *FalseBB, 259 uint32_t TrueWeight, uint32_t FalseWeight); 260 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 261 const DataLayout &DL); 262 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 263 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 264 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 265 266 public: 267 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 268 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 269 const SimplifyCFGOptions &Opts) 270 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 271 assert((!DTU || !DTU->hasPostDomTree()) && 272 "SimplifyCFG is not yet capable of maintaining validity of a " 273 "PostDomTree, so don't ask for it."); 274 } 275 276 bool simplifyOnce(BasicBlock *BB); 277 bool simplifyOnceImpl(BasicBlock *BB); 278 bool run(BasicBlock *BB); 279 280 // Helper to set Resimplify and return change indication. 281 bool requestResimplify() { 282 Resimplify = true; 283 return true; 284 } 285 }; 286 287 } // end anonymous namespace 288 289 /// Return true if it is safe to merge these two 290 /// terminator instructions together. 291 static bool 292 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 293 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 294 if (SI1 == SI2) 295 return false; // Can't merge with self! 296 297 // It is not safe to merge these two switch instructions if they have a common 298 // successor, and if that successor has a PHI node, and if *that* PHI node has 299 // conflicting incoming values from the two switch blocks. 300 BasicBlock *SI1BB = SI1->getParent(); 301 BasicBlock *SI2BB = SI2->getParent(); 302 303 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 304 bool Fail = false; 305 for (BasicBlock *Succ : successors(SI2BB)) 306 if (SI1Succs.count(Succ)) 307 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 308 PHINode *PN = cast<PHINode>(BBI); 309 if (PN->getIncomingValueForBlock(SI1BB) != 310 PN->getIncomingValueForBlock(SI2BB)) { 311 if (FailBlocks) 312 FailBlocks->insert(Succ); 313 Fail = true; 314 } 315 } 316 317 return !Fail; 318 } 319 320 /// Update PHI nodes in Succ to indicate that there will now be entries in it 321 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 322 /// will be the same as those coming in from ExistPred, an existing predecessor 323 /// of Succ. 324 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 325 BasicBlock *ExistPred, 326 MemorySSAUpdater *MSSAU = nullptr) { 327 for (PHINode &PN : Succ->phis()) 328 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 329 if (MSSAU) 330 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 331 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 332 } 333 334 /// Compute an abstract "cost" of speculating the given instruction, 335 /// which is assumed to be safe to speculate. TCC_Free means cheap, 336 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 337 /// expensive. 338 static InstructionCost computeSpeculationCost(const User *I, 339 const TargetTransformInfo &TTI) { 340 assert(isSafeToSpeculativelyExecute(I) && 341 "Instruction is not safe to speculatively execute!"); 342 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 343 } 344 345 /// If we have a merge point of an "if condition" as accepted above, 346 /// return true if the specified value dominates the block. We 347 /// don't handle the true generality of domination here, just a special case 348 /// which works well enough for us. 349 /// 350 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 351 /// see if V (which must be an instruction) and its recursive operands 352 /// that do not dominate BB have a combined cost lower than Budget and 353 /// are non-trapping. If both are true, the instruction is inserted into the 354 /// set and true is returned. 355 /// 356 /// The cost for most non-trapping instructions is defined as 1 except for 357 /// Select whose cost is 2. 358 /// 359 /// After this function returns, Cost is increased by the cost of 360 /// V plus its non-dominating operands. If that cost is greater than 361 /// Budget, false is returned and Cost is undefined. 362 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 363 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 364 InstructionCost &Cost, 365 InstructionCost Budget, 366 const TargetTransformInfo &TTI, 367 unsigned Depth = 0) { 368 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 369 // so limit the recursion depth. 370 // TODO: While this recursion limit does prevent pathological behavior, it 371 // would be better to track visited instructions to avoid cycles. 372 if (Depth == MaxSpeculationDepth) 373 return false; 374 375 Instruction *I = dyn_cast<Instruction>(V); 376 if (!I) { 377 // Non-instructions all dominate instructions, but not all constantexprs 378 // can be executed unconditionally. 379 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 380 if (C->canTrap()) 381 return false; 382 return true; 383 } 384 BasicBlock *PBB = I->getParent(); 385 386 // We don't want to allow weird loops that might have the "if condition" in 387 // the bottom of this block. 388 if (PBB == BB) 389 return false; 390 391 // If this instruction is defined in a block that contains an unconditional 392 // branch to BB, then it must be in the 'conditional' part of the "if 393 // statement". If not, it definitely dominates the region. 394 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 395 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 396 return true; 397 398 // If we have seen this instruction before, don't count it again. 399 if (AggressiveInsts.count(I)) 400 return true; 401 402 // Okay, it looks like the instruction IS in the "condition". Check to 403 // see if it's a cheap instruction to unconditionally compute, and if it 404 // only uses stuff defined outside of the condition. If so, hoist it out. 405 if (!isSafeToSpeculativelyExecute(I)) 406 return false; 407 408 Cost += computeSpeculationCost(I, TTI); 409 410 // Allow exactly one instruction to be speculated regardless of its cost 411 // (as long as it is safe to do so). 412 // This is intended to flatten the CFG even if the instruction is a division 413 // or other expensive operation. The speculation of an expensive instruction 414 // is expected to be undone in CodeGenPrepare if the speculation has not 415 // enabled further IR optimizations. 416 if (Cost > Budget && 417 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 418 !Cost.isValid())) 419 return false; 420 421 // Okay, we can only really hoist these out if their operands do 422 // not take us over the cost threshold. 423 for (Use &Op : I->operands()) 424 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 425 Depth + 1)) 426 return false; 427 // Okay, it's safe to do this! Remember this instruction. 428 AggressiveInsts.insert(I); 429 return true; 430 } 431 432 /// Extract ConstantInt from value, looking through IntToPtr 433 /// and PointerNullValue. Return NULL if value is not a constant int. 434 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 435 // Normal constant int. 436 ConstantInt *CI = dyn_cast<ConstantInt>(V); 437 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 438 return CI; 439 440 // This is some kind of pointer constant. Turn it into a pointer-sized 441 // ConstantInt if possible. 442 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 443 444 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 445 if (isa<ConstantPointerNull>(V)) 446 return ConstantInt::get(PtrTy, 0); 447 448 // IntToPtr const int. 449 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 450 if (CE->getOpcode() == Instruction::IntToPtr) 451 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 452 // The constant is very likely to have the right type already. 453 if (CI->getType() == PtrTy) 454 return CI; 455 else 456 return cast<ConstantInt>( 457 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 458 } 459 return nullptr; 460 } 461 462 namespace { 463 464 /// Given a chain of or (||) or and (&&) comparison of a value against a 465 /// constant, this will try to recover the information required for a switch 466 /// structure. 467 /// It will depth-first traverse the chain of comparison, seeking for patterns 468 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 469 /// representing the different cases for the switch. 470 /// Note that if the chain is composed of '||' it will build the set of elements 471 /// that matches the comparisons (i.e. any of this value validate the chain) 472 /// while for a chain of '&&' it will build the set elements that make the test 473 /// fail. 474 struct ConstantComparesGatherer { 475 const DataLayout &DL; 476 477 /// Value found for the switch comparison 478 Value *CompValue = nullptr; 479 480 /// Extra clause to be checked before the switch 481 Value *Extra = nullptr; 482 483 /// Set of integers to match in switch 484 SmallVector<ConstantInt *, 8> Vals; 485 486 /// Number of comparisons matched in the and/or chain 487 unsigned UsedICmps = 0; 488 489 /// Construct and compute the result for the comparison instruction Cond 490 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 491 gather(Cond); 492 } 493 494 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 495 ConstantComparesGatherer & 496 operator=(const ConstantComparesGatherer &) = delete; 497 498 private: 499 /// Try to set the current value used for the comparison, it succeeds only if 500 /// it wasn't set before or if the new value is the same as the old one 501 bool setValueOnce(Value *NewVal) { 502 if (CompValue && CompValue != NewVal) 503 return false; 504 CompValue = NewVal; 505 return (CompValue != nullptr); 506 } 507 508 /// Try to match Instruction "I" as a comparison against a constant and 509 /// populates the array Vals with the set of values that match (or do not 510 /// match depending on isEQ). 511 /// Return false on failure. On success, the Value the comparison matched 512 /// against is placed in CompValue. 513 /// If CompValue is already set, the function is expected to fail if a match 514 /// is found but the value compared to is different. 515 bool matchInstruction(Instruction *I, bool isEQ) { 516 // If this is an icmp against a constant, handle this as one of the cases. 517 ICmpInst *ICI; 518 ConstantInt *C; 519 if (!((ICI = dyn_cast<ICmpInst>(I)) && 520 (C = GetConstantInt(I->getOperand(1), DL)))) { 521 return false; 522 } 523 524 Value *RHSVal; 525 const APInt *RHSC; 526 527 // Pattern match a special case 528 // (x & ~2^z) == y --> x == y || x == y|2^z 529 // This undoes a transformation done by instcombine to fuse 2 compares. 530 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 531 // It's a little bit hard to see why the following transformations are 532 // correct. Here is a CVC3 program to verify them for 64-bit values: 533 534 /* 535 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 536 x : BITVECTOR(64); 537 y : BITVECTOR(64); 538 z : BITVECTOR(64); 539 mask : BITVECTOR(64) = BVSHL(ONE, z); 540 QUERY( (y & ~mask = y) => 541 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 542 ); 543 QUERY( (y | mask = y) => 544 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 545 ); 546 */ 547 548 // Please note that each pattern must be a dual implication (<--> or 549 // iff). One directional implication can create spurious matches. If the 550 // implication is only one-way, an unsatisfiable condition on the left 551 // side can imply a satisfiable condition on the right side. Dual 552 // implication ensures that satisfiable conditions are transformed to 553 // other satisfiable conditions and unsatisfiable conditions are 554 // transformed to other unsatisfiable conditions. 555 556 // Here is a concrete example of a unsatisfiable condition on the left 557 // implying a satisfiable condition on the right: 558 // 559 // mask = (1 << z) 560 // (x & ~mask) == y --> (x == y || x == (y | mask)) 561 // 562 // Substituting y = 3, z = 0 yields: 563 // (x & -2) == 3 --> (x == 3 || x == 2) 564 565 // Pattern match a special case: 566 /* 567 QUERY( (y & ~mask = y) => 568 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 569 ); 570 */ 571 if (match(ICI->getOperand(0), 572 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 573 APInt Mask = ~*RHSC; 574 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 575 // If we already have a value for the switch, it has to match! 576 if (!setValueOnce(RHSVal)) 577 return false; 578 579 Vals.push_back(C); 580 Vals.push_back( 581 ConstantInt::get(C->getContext(), 582 C->getValue() | Mask)); 583 UsedICmps++; 584 return true; 585 } 586 } 587 588 // Pattern match a special case: 589 /* 590 QUERY( (y | mask = y) => 591 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 592 ); 593 */ 594 if (match(ICI->getOperand(0), 595 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 596 APInt Mask = *RHSC; 597 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 598 // If we already have a value for the switch, it has to match! 599 if (!setValueOnce(RHSVal)) 600 return false; 601 602 Vals.push_back(C); 603 Vals.push_back(ConstantInt::get(C->getContext(), 604 C->getValue() & ~Mask)); 605 UsedICmps++; 606 return true; 607 } 608 } 609 610 // If we already have a value for the switch, it has to match! 611 if (!setValueOnce(ICI->getOperand(0))) 612 return false; 613 614 UsedICmps++; 615 Vals.push_back(C); 616 return ICI->getOperand(0); 617 } 618 619 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 620 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 621 ICI->getPredicate(), C->getValue()); 622 623 // Shift the range if the compare is fed by an add. This is the range 624 // compare idiom as emitted by instcombine. 625 Value *CandidateVal = I->getOperand(0); 626 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 627 Span = Span.subtract(*RHSC); 628 CandidateVal = RHSVal; 629 } 630 631 // If this is an and/!= check, then we are looking to build the set of 632 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 633 // x != 0 && x != 1. 634 if (!isEQ) 635 Span = Span.inverse(); 636 637 // If there are a ton of values, we don't want to make a ginormous switch. 638 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 639 return false; 640 } 641 642 // If we already have a value for the switch, it has to match! 643 if (!setValueOnce(CandidateVal)) 644 return false; 645 646 // Add all values from the range to the set 647 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 648 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 649 650 UsedICmps++; 651 return true; 652 } 653 654 /// Given a potentially 'or'd or 'and'd together collection of icmp 655 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 656 /// the value being compared, and stick the list constants into the Vals 657 /// vector. 658 /// One "Extra" case is allowed to differ from the other. 659 void gather(Value *V) { 660 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 661 662 // Keep a stack (SmallVector for efficiency) for depth-first traversal 663 SmallVector<Value *, 8> DFT; 664 SmallPtrSet<Value *, 8> Visited; 665 666 // Initialize 667 Visited.insert(V); 668 DFT.push_back(V); 669 670 while (!DFT.empty()) { 671 V = DFT.pop_back_val(); 672 673 if (Instruction *I = dyn_cast<Instruction>(V)) { 674 // If it is a || (or && depending on isEQ), process the operands. 675 Value *Op0, *Op1; 676 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 677 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 678 if (Visited.insert(Op1).second) 679 DFT.push_back(Op1); 680 if (Visited.insert(Op0).second) 681 DFT.push_back(Op0); 682 683 continue; 684 } 685 686 // Try to match the current instruction 687 if (matchInstruction(I, isEQ)) 688 // Match succeed, continue the loop 689 continue; 690 } 691 692 // One element of the sequence of || (or &&) could not be match as a 693 // comparison against the same value as the others. 694 // We allow only one "Extra" case to be checked before the switch 695 if (!Extra) { 696 Extra = V; 697 continue; 698 } 699 // Failed to parse a proper sequence, abort now 700 CompValue = nullptr; 701 break; 702 } 703 } 704 }; 705 706 } // end anonymous namespace 707 708 static void EraseTerminatorAndDCECond(Instruction *TI, 709 MemorySSAUpdater *MSSAU = nullptr) { 710 Instruction *Cond = nullptr; 711 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 712 Cond = dyn_cast<Instruction>(SI->getCondition()); 713 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 714 if (BI->isConditional()) 715 Cond = dyn_cast<Instruction>(BI->getCondition()); 716 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 717 Cond = dyn_cast<Instruction>(IBI->getAddress()); 718 } 719 720 TI->eraseFromParent(); 721 if (Cond) 722 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 723 } 724 725 /// Return true if the specified terminator checks 726 /// to see if a value is equal to constant integer value. 727 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 728 Value *CV = nullptr; 729 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 730 // Do not permit merging of large switch instructions into their 731 // predecessors unless there is only one predecessor. 732 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 733 CV = SI->getCondition(); 734 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 735 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 736 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 737 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 738 CV = ICI->getOperand(0); 739 } 740 741 // Unwrap any lossless ptrtoint cast. 742 if (CV) { 743 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 744 Value *Ptr = PTII->getPointerOperand(); 745 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 746 CV = Ptr; 747 } 748 } 749 return CV; 750 } 751 752 /// Given a value comparison instruction, 753 /// decode all of the 'cases' that it represents and return the 'default' block. 754 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 755 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 756 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 757 Cases.reserve(SI->getNumCases()); 758 for (auto Case : SI->cases()) 759 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 760 Case.getCaseSuccessor())); 761 return SI->getDefaultDest(); 762 } 763 764 BranchInst *BI = cast<BranchInst>(TI); 765 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 766 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 767 Cases.push_back(ValueEqualityComparisonCase( 768 GetConstantInt(ICI->getOperand(1), DL), Succ)); 769 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 770 } 771 772 /// Given a vector of bb/value pairs, remove any entries 773 /// in the list that match the specified block. 774 static void 775 EliminateBlockCases(BasicBlock *BB, 776 std::vector<ValueEqualityComparisonCase> &Cases) { 777 llvm::erase_value(Cases, BB); 778 } 779 780 /// Return true if there are any keys in C1 that exist in C2 as well. 781 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 782 std::vector<ValueEqualityComparisonCase> &C2) { 783 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 784 785 // Make V1 be smaller than V2. 786 if (V1->size() > V2->size()) 787 std::swap(V1, V2); 788 789 if (V1->empty()) 790 return false; 791 if (V1->size() == 1) { 792 // Just scan V2. 793 ConstantInt *TheVal = (*V1)[0].Value; 794 for (unsigned i = 0, e = V2->size(); i != e; ++i) 795 if (TheVal == (*V2)[i].Value) 796 return true; 797 } 798 799 // Otherwise, just sort both lists and compare element by element. 800 array_pod_sort(V1->begin(), V1->end()); 801 array_pod_sort(V2->begin(), V2->end()); 802 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 803 while (i1 != e1 && i2 != e2) { 804 if ((*V1)[i1].Value == (*V2)[i2].Value) 805 return true; 806 if ((*V1)[i1].Value < (*V2)[i2].Value) 807 ++i1; 808 else 809 ++i2; 810 } 811 return false; 812 } 813 814 // Set branch weights on SwitchInst. This sets the metadata if there is at 815 // least one non-zero weight. 816 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 817 // Check that there is at least one non-zero weight. Otherwise, pass 818 // nullptr to setMetadata which will erase the existing metadata. 819 MDNode *N = nullptr; 820 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 821 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 822 SI->setMetadata(LLVMContext::MD_prof, N); 823 } 824 825 // Similar to the above, but for branch and select instructions that take 826 // exactly 2 weights. 827 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 828 uint32_t FalseWeight) { 829 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 830 // Check that there is at least one non-zero weight. Otherwise, pass 831 // nullptr to setMetadata which will erase the existing metadata. 832 MDNode *N = nullptr; 833 if (TrueWeight || FalseWeight) 834 N = MDBuilder(I->getParent()->getContext()) 835 .createBranchWeights(TrueWeight, FalseWeight); 836 I->setMetadata(LLVMContext::MD_prof, N); 837 } 838 839 /// If TI is known to be a terminator instruction and its block is known to 840 /// only have a single predecessor block, check to see if that predecessor is 841 /// also a value comparison with the same value, and if that comparison 842 /// determines the outcome of this comparison. If so, simplify TI. This does a 843 /// very limited form of jump threading. 844 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 845 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 846 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 847 if (!PredVal) 848 return false; // Not a value comparison in predecessor. 849 850 Value *ThisVal = isValueEqualityComparison(TI); 851 assert(ThisVal && "This isn't a value comparison!!"); 852 if (ThisVal != PredVal) 853 return false; // Different predicates. 854 855 // TODO: Preserve branch weight metadata, similarly to how 856 // FoldValueComparisonIntoPredecessors preserves it. 857 858 // Find out information about when control will move from Pred to TI's block. 859 std::vector<ValueEqualityComparisonCase> PredCases; 860 BasicBlock *PredDef = 861 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 862 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 863 864 // Find information about how control leaves this block. 865 std::vector<ValueEqualityComparisonCase> ThisCases; 866 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 867 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 868 869 // If TI's block is the default block from Pred's comparison, potentially 870 // simplify TI based on this knowledge. 871 if (PredDef == TI->getParent()) { 872 // If we are here, we know that the value is none of those cases listed in 873 // PredCases. If there are any cases in ThisCases that are in PredCases, we 874 // can simplify TI. 875 if (!ValuesOverlap(PredCases, ThisCases)) 876 return false; 877 878 if (isa<BranchInst>(TI)) { 879 // Okay, one of the successors of this condbr is dead. Convert it to a 880 // uncond br. 881 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 882 // Insert the new branch. 883 Instruction *NI = Builder.CreateBr(ThisDef); 884 (void)NI; 885 886 // Remove PHI node entries for the dead edge. 887 ThisCases[0].Dest->removePredecessor(PredDef); 888 889 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 890 << "Through successor TI: " << *TI << "Leaving: " << *NI 891 << "\n"); 892 893 EraseTerminatorAndDCECond(TI); 894 895 if (DTU) 896 DTU->applyUpdates( 897 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 898 899 return true; 900 } 901 902 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 903 // Okay, TI has cases that are statically dead, prune them away. 904 SmallPtrSet<Constant *, 16> DeadCases; 905 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 906 DeadCases.insert(PredCases[i].Value); 907 908 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 909 << "Through successor TI: " << *TI); 910 911 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 912 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 913 --i; 914 auto *Successor = i->getCaseSuccessor(); 915 ++NumPerSuccessorCases[Successor]; 916 if (DeadCases.count(i->getCaseValue())) { 917 Successor->removePredecessor(PredDef); 918 SI.removeCase(i); 919 --NumPerSuccessorCases[Successor]; 920 } 921 } 922 923 std::vector<DominatorTree::UpdateType> Updates; 924 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 925 if (I.second == 0) 926 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 927 if (DTU) 928 DTU->applyUpdates(Updates); 929 930 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 931 return true; 932 } 933 934 // Otherwise, TI's block must correspond to some matched value. Find out 935 // which value (or set of values) this is. 936 ConstantInt *TIV = nullptr; 937 BasicBlock *TIBB = TI->getParent(); 938 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 939 if (PredCases[i].Dest == TIBB) { 940 if (TIV) 941 return false; // Cannot handle multiple values coming to this block. 942 TIV = PredCases[i].Value; 943 } 944 assert(TIV && "No edge from pred to succ?"); 945 946 // Okay, we found the one constant that our value can be if we get into TI's 947 // BB. Find out which successor will unconditionally be branched to. 948 BasicBlock *TheRealDest = nullptr; 949 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 950 if (ThisCases[i].Value == TIV) { 951 TheRealDest = ThisCases[i].Dest; 952 break; 953 } 954 955 // If not handled by any explicit cases, it is handled by the default case. 956 if (!TheRealDest) 957 TheRealDest = ThisDef; 958 959 SmallSetVector<BasicBlock *, 2> RemovedSuccs; 960 961 // Remove PHI node entries for dead edges. 962 BasicBlock *CheckEdge = TheRealDest; 963 for (BasicBlock *Succ : successors(TIBB)) 964 if (Succ != CheckEdge) { 965 if (Succ != TheRealDest) 966 RemovedSuccs.insert(Succ); 967 Succ->removePredecessor(TIBB); 968 } else 969 CheckEdge = nullptr; 970 971 // Insert the new branch. 972 Instruction *NI = Builder.CreateBr(TheRealDest); 973 (void)NI; 974 975 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 976 << "Through successor TI: " << *TI << "Leaving: " << *NI 977 << "\n"); 978 979 EraseTerminatorAndDCECond(TI); 980 if (DTU) { 981 SmallVector<DominatorTree::UpdateType, 2> Updates; 982 Updates.reserve(RemovedSuccs.size()); 983 for (auto *RemovedSucc : RemovedSuccs) 984 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 985 DTU->applyUpdates(Updates); 986 } 987 return true; 988 } 989 990 namespace { 991 992 /// This class implements a stable ordering of constant 993 /// integers that does not depend on their address. This is important for 994 /// applications that sort ConstantInt's to ensure uniqueness. 995 struct ConstantIntOrdering { 996 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 997 return LHS->getValue().ult(RHS->getValue()); 998 } 999 }; 1000 1001 } // end anonymous namespace 1002 1003 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1004 ConstantInt *const *P2) { 1005 const ConstantInt *LHS = *P1; 1006 const ConstantInt *RHS = *P2; 1007 if (LHS == RHS) 1008 return 0; 1009 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1010 } 1011 1012 static inline bool HasBranchWeights(const Instruction *I) { 1013 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1014 if (ProfMD && ProfMD->getOperand(0)) 1015 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1016 return MDS->getString().equals("branch_weights"); 1017 1018 return false; 1019 } 1020 1021 /// Get Weights of a given terminator, the default weight is at the front 1022 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1023 /// metadata. 1024 static void GetBranchWeights(Instruction *TI, 1025 SmallVectorImpl<uint64_t> &Weights) { 1026 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1027 assert(MD); 1028 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1029 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1030 Weights.push_back(CI->getValue().getZExtValue()); 1031 } 1032 1033 // If TI is a conditional eq, the default case is the false case, 1034 // and the corresponding branch-weight data is at index 2. We swap the 1035 // default weight to be the first entry. 1036 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1037 assert(Weights.size() == 2); 1038 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1039 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1040 std::swap(Weights.front(), Weights.back()); 1041 } 1042 } 1043 1044 /// Keep halving the weights until all can fit in uint32_t. 1045 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1046 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1047 if (Max > UINT_MAX) { 1048 unsigned Offset = 32 - countLeadingZeros(Max); 1049 for (uint64_t &I : Weights) 1050 I >>= Offset; 1051 } 1052 } 1053 1054 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1055 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1056 Instruction *PTI = PredBlock->getTerminator(); 1057 1058 // If we have bonus instructions, clone them into the predecessor block. 1059 // Note that there may be multiple predecessor blocks, so we cannot move 1060 // bonus instructions to a predecessor block. 1061 for (Instruction &BonusInst : *BB) { 1062 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1063 continue; 1064 1065 Instruction *NewBonusInst = BonusInst.clone(); 1066 1067 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1068 // Unless the instruction has the same !dbg location as the original 1069 // branch, drop it. When we fold the bonus instructions we want to make 1070 // sure we reset their debug locations in order to avoid stepping on 1071 // dead code caused by folding dead branches. 1072 NewBonusInst->setDebugLoc(DebugLoc()); 1073 } 1074 1075 RemapInstruction(NewBonusInst, VMap, 1076 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1077 VMap[&BonusInst] = NewBonusInst; 1078 1079 // If we moved a load, we cannot any longer claim any knowledge about 1080 // its potential value. The previous information might have been valid 1081 // only given the branch precondition. 1082 // For an analogous reason, we must also drop all the metadata whose 1083 // semantics we don't understand. We *can* preserve !annotation, because 1084 // it is tied to the instruction itself, not the value or position. 1085 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1086 1087 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1088 NewBonusInst->takeName(&BonusInst); 1089 BonusInst.setName(NewBonusInst->getName() + ".old"); 1090 1091 // Update (liveout) uses of bonus instructions, 1092 // now that the bonus instruction has been cloned into predecessor. 1093 SSAUpdater SSAUpdate; 1094 SSAUpdate.Initialize(BonusInst.getType(), 1095 (NewBonusInst->getName() + ".merge").str()); 1096 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1097 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1098 for (Use &U : make_early_inc_range(BonusInst.uses())) 1099 SSAUpdate.RewriteUseAfterInsertions(U); 1100 } 1101 } 1102 1103 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1104 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1105 BasicBlock *BB = TI->getParent(); 1106 BasicBlock *Pred = PTI->getParent(); 1107 1108 std::vector<DominatorTree::UpdateType> Updates; 1109 1110 // Figure out which 'cases' to copy from SI to PSI. 1111 std::vector<ValueEqualityComparisonCase> BBCases; 1112 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1113 1114 std::vector<ValueEqualityComparisonCase> PredCases; 1115 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1116 1117 // Based on whether the default edge from PTI goes to BB or not, fill in 1118 // PredCases and PredDefault with the new switch cases we would like to 1119 // build. 1120 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1121 1122 // Update the branch weight metadata along the way 1123 SmallVector<uint64_t, 8> Weights; 1124 bool PredHasWeights = HasBranchWeights(PTI); 1125 bool SuccHasWeights = HasBranchWeights(TI); 1126 1127 if (PredHasWeights) { 1128 GetBranchWeights(PTI, Weights); 1129 // branch-weight metadata is inconsistent here. 1130 if (Weights.size() != 1 + PredCases.size()) 1131 PredHasWeights = SuccHasWeights = false; 1132 } else if (SuccHasWeights) 1133 // If there are no predecessor weights but there are successor weights, 1134 // populate Weights with 1, which will later be scaled to the sum of 1135 // successor's weights 1136 Weights.assign(1 + PredCases.size(), 1); 1137 1138 SmallVector<uint64_t, 8> SuccWeights; 1139 if (SuccHasWeights) { 1140 GetBranchWeights(TI, SuccWeights); 1141 // branch-weight metadata is inconsistent here. 1142 if (SuccWeights.size() != 1 + BBCases.size()) 1143 PredHasWeights = SuccHasWeights = false; 1144 } else if (PredHasWeights) 1145 SuccWeights.assign(1 + BBCases.size(), 1); 1146 1147 if (PredDefault == BB) { 1148 // If this is the default destination from PTI, only the edges in TI 1149 // that don't occur in PTI, or that branch to BB will be activated. 1150 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1151 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1152 if (PredCases[i].Dest != BB) 1153 PTIHandled.insert(PredCases[i].Value); 1154 else { 1155 // The default destination is BB, we don't need explicit targets. 1156 std::swap(PredCases[i], PredCases.back()); 1157 1158 if (PredHasWeights || SuccHasWeights) { 1159 // Increase weight for the default case. 1160 Weights[0] += Weights[i + 1]; 1161 std::swap(Weights[i + 1], Weights.back()); 1162 Weights.pop_back(); 1163 } 1164 1165 PredCases.pop_back(); 1166 --i; 1167 --e; 1168 } 1169 1170 // Reconstruct the new switch statement we will be building. 1171 if (PredDefault != BBDefault) { 1172 PredDefault->removePredecessor(Pred); 1173 if (PredDefault != BB) 1174 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1175 PredDefault = BBDefault; 1176 ++NewSuccessors[BBDefault]; 1177 } 1178 1179 unsigned CasesFromPred = Weights.size(); 1180 uint64_t ValidTotalSuccWeight = 0; 1181 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1182 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1183 PredCases.push_back(BBCases[i]); 1184 ++NewSuccessors[BBCases[i].Dest]; 1185 if (SuccHasWeights || PredHasWeights) { 1186 // The default weight is at index 0, so weight for the ith case 1187 // should be at index i+1. Scale the cases from successor by 1188 // PredDefaultWeight (Weights[0]). 1189 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1190 ValidTotalSuccWeight += SuccWeights[i + 1]; 1191 } 1192 } 1193 1194 if (SuccHasWeights || PredHasWeights) { 1195 ValidTotalSuccWeight += SuccWeights[0]; 1196 // Scale the cases from predecessor by ValidTotalSuccWeight. 1197 for (unsigned i = 1; i < CasesFromPred; ++i) 1198 Weights[i] *= ValidTotalSuccWeight; 1199 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1200 Weights[0] *= SuccWeights[0]; 1201 } 1202 } else { 1203 // If this is not the default destination from PSI, only the edges 1204 // in SI that occur in PSI with a destination of BB will be 1205 // activated. 1206 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1207 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1208 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1209 if (PredCases[i].Dest == BB) { 1210 PTIHandled.insert(PredCases[i].Value); 1211 1212 if (PredHasWeights || SuccHasWeights) { 1213 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1214 std::swap(Weights[i + 1], Weights.back()); 1215 Weights.pop_back(); 1216 } 1217 1218 std::swap(PredCases[i], PredCases.back()); 1219 PredCases.pop_back(); 1220 --i; 1221 --e; 1222 } 1223 1224 // Okay, now we know which constants were sent to BB from the 1225 // predecessor. Figure out where they will all go now. 1226 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1227 if (PTIHandled.count(BBCases[i].Value)) { 1228 // If this is one we are capable of getting... 1229 if (PredHasWeights || SuccHasWeights) 1230 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1231 PredCases.push_back(BBCases[i]); 1232 ++NewSuccessors[BBCases[i].Dest]; 1233 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1234 } 1235 1236 // If there are any constants vectored to BB that TI doesn't handle, 1237 // they must go to the default destination of TI. 1238 for (ConstantInt *I : PTIHandled) { 1239 if (PredHasWeights || SuccHasWeights) 1240 Weights.push_back(WeightsForHandled[I]); 1241 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1242 ++NewSuccessors[BBDefault]; 1243 } 1244 } 1245 1246 // Okay, at this point, we know which new successor Pred will get. Make 1247 // sure we update the number of entries in the PHI nodes for these 1248 // successors. 1249 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1250 NewSuccessors) { 1251 for (auto I : seq(0, NewSuccessor.second)) { 1252 (void)I; 1253 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1254 } 1255 if (!is_contained(successors(Pred), NewSuccessor.first)) 1256 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1257 } 1258 1259 Builder.SetInsertPoint(PTI); 1260 // Convert pointer to int before we switch. 1261 if (CV->getType()->isPointerTy()) { 1262 CV = 1263 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1264 } 1265 1266 // Now that the successors are updated, create the new Switch instruction. 1267 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1268 NewSI->setDebugLoc(PTI->getDebugLoc()); 1269 for (ValueEqualityComparisonCase &V : PredCases) 1270 NewSI->addCase(V.Value, V.Dest); 1271 1272 if (PredHasWeights || SuccHasWeights) { 1273 // Halve the weights if any of them cannot fit in an uint32_t 1274 FitWeights(Weights); 1275 1276 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1277 1278 setBranchWeights(NewSI, MDWeights); 1279 } 1280 1281 EraseTerminatorAndDCECond(PTI); 1282 1283 // Okay, last check. If BB is still a successor of PSI, then we must 1284 // have an infinite loop case. If so, add an infinitely looping block 1285 // to handle the case to preserve the behavior of the code. 1286 BasicBlock *InfLoopBlock = nullptr; 1287 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1288 if (NewSI->getSuccessor(i) == BB) { 1289 if (!InfLoopBlock) { 1290 // Insert it at the end of the function, because it's either code, 1291 // or it won't matter if it's hot. :) 1292 InfLoopBlock = 1293 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1294 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1295 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1296 } 1297 NewSI->setSuccessor(i, InfLoopBlock); 1298 } 1299 1300 if (InfLoopBlock) 1301 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1302 1303 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1304 1305 if (DTU) 1306 DTU->applyUpdates(Updates); 1307 1308 ++NumFoldValueComparisonIntoPredecessors; 1309 return true; 1310 } 1311 1312 /// The specified terminator is a value equality comparison instruction 1313 /// (either a switch or a branch on "X == c"). 1314 /// See if any of the predecessors of the terminator block are value comparisons 1315 /// on the same value. If so, and if safe to do so, fold them together. 1316 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1317 IRBuilder<> &Builder) { 1318 BasicBlock *BB = TI->getParent(); 1319 Value *CV = isValueEqualityComparison(TI); // CondVal 1320 assert(CV && "Not a comparison?"); 1321 1322 bool Changed = false; 1323 1324 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1325 while (!Preds.empty()) { 1326 BasicBlock *Pred = Preds.pop_back_val(); 1327 Instruction *PTI = Pred->getTerminator(); 1328 1329 // Don't try to fold into itself. 1330 if (Pred == BB) 1331 continue; 1332 1333 // See if the predecessor is a comparison with the same value. 1334 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1335 if (PCV != CV) 1336 continue; 1337 1338 SmallSetVector<BasicBlock *, 4> FailBlocks; 1339 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1340 for (auto *Succ : FailBlocks) { 1341 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1342 return false; 1343 } 1344 } 1345 1346 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1347 Changed = true; 1348 } 1349 return Changed; 1350 } 1351 1352 // If we would need to insert a select that uses the value of this invoke 1353 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1354 // can't hoist the invoke, as there is nowhere to put the select in this case. 1355 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1356 Instruction *I1, Instruction *I2) { 1357 for (BasicBlock *Succ : successors(BB1)) { 1358 for (const PHINode &PN : Succ->phis()) { 1359 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1360 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1361 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1362 return false; 1363 } 1364 } 1365 } 1366 return true; 1367 } 1368 1369 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1370 1371 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1372 /// in the two blocks up into the branch block. The caller of this function 1373 /// guarantees that BI's block dominates BB1 and BB2. 1374 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1375 const TargetTransformInfo &TTI) { 1376 // This does very trivial matching, with limited scanning, to find identical 1377 // instructions in the two blocks. In particular, we don't want to get into 1378 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1379 // such, we currently just scan for obviously identical instructions in an 1380 // identical order. 1381 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1382 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1383 1384 BasicBlock::iterator BB1_Itr = BB1->begin(); 1385 BasicBlock::iterator BB2_Itr = BB2->begin(); 1386 1387 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1388 // Skip debug info if it is not identical. 1389 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1390 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1391 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1392 while (isa<DbgInfoIntrinsic>(I1)) 1393 I1 = &*BB1_Itr++; 1394 while (isa<DbgInfoIntrinsic>(I2)) 1395 I2 = &*BB2_Itr++; 1396 } 1397 // FIXME: Can we define a safety predicate for CallBr? 1398 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1399 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1400 isa<CallBrInst>(I1)) 1401 return false; 1402 1403 BasicBlock *BIParent = BI->getParent(); 1404 1405 bool Changed = false; 1406 1407 auto _ = make_scope_exit([&]() { 1408 if (Changed) 1409 ++NumHoistCommonCode; 1410 }); 1411 1412 do { 1413 // If we are hoisting the terminator instruction, don't move one (making a 1414 // broken BB), instead clone it, and remove BI. 1415 if (I1->isTerminator()) 1416 goto HoistTerminator; 1417 1418 // If we're going to hoist a call, make sure that the two instructions we're 1419 // commoning/hoisting are both marked with musttail, or neither of them is 1420 // marked as such. Otherwise, we might end up in a situation where we hoist 1421 // from a block where the terminator is a `ret` to a block where the terminator 1422 // is a `br`, and `musttail` calls expect to be followed by a return. 1423 auto *C1 = dyn_cast<CallInst>(I1); 1424 auto *C2 = dyn_cast<CallInst>(I2); 1425 if (C1 && C2) 1426 if (C1->isMustTailCall() != C2->isMustTailCall()) 1427 return Changed; 1428 1429 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1430 return Changed; 1431 1432 // If any of the two call sites has nomerge attribute, stop hoisting. 1433 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1434 if (CB1->cannotMerge()) 1435 return Changed; 1436 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1437 if (CB2->cannotMerge()) 1438 return Changed; 1439 1440 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1441 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1442 // The debug location is an integral part of a debug info intrinsic 1443 // and can't be separated from it or replaced. Instead of attempting 1444 // to merge locations, simply hoist both copies of the intrinsic. 1445 BIParent->getInstList().splice(BI->getIterator(), 1446 BB1->getInstList(), I1); 1447 BIParent->getInstList().splice(BI->getIterator(), 1448 BB2->getInstList(), I2); 1449 Changed = true; 1450 } else { 1451 // For a normal instruction, we just move one to right before the branch, 1452 // then replace all uses of the other with the first. Finally, we remove 1453 // the now redundant second instruction. 1454 BIParent->getInstList().splice(BI->getIterator(), 1455 BB1->getInstList(), I1); 1456 if (!I2->use_empty()) 1457 I2->replaceAllUsesWith(I1); 1458 I1->andIRFlags(I2); 1459 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1460 LLVMContext::MD_range, 1461 LLVMContext::MD_fpmath, 1462 LLVMContext::MD_invariant_load, 1463 LLVMContext::MD_nonnull, 1464 LLVMContext::MD_invariant_group, 1465 LLVMContext::MD_align, 1466 LLVMContext::MD_dereferenceable, 1467 LLVMContext::MD_dereferenceable_or_null, 1468 LLVMContext::MD_mem_parallel_loop_access, 1469 LLVMContext::MD_access_group, 1470 LLVMContext::MD_preserve_access_index}; 1471 combineMetadata(I1, I2, KnownIDs, true); 1472 1473 // I1 and I2 are being combined into a single instruction. Its debug 1474 // location is the merged locations of the original instructions. 1475 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1476 1477 I2->eraseFromParent(); 1478 Changed = true; 1479 } 1480 ++NumHoistCommonInstrs; 1481 1482 I1 = &*BB1_Itr++; 1483 I2 = &*BB2_Itr++; 1484 // Skip debug info if it is not identical. 1485 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1486 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1487 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1488 while (isa<DbgInfoIntrinsic>(I1)) 1489 I1 = &*BB1_Itr++; 1490 while (isa<DbgInfoIntrinsic>(I2)) 1491 I2 = &*BB2_Itr++; 1492 } 1493 } while (I1->isIdenticalToWhenDefined(I2)); 1494 1495 return true; 1496 1497 HoistTerminator: 1498 // It may not be possible to hoist an invoke. 1499 // FIXME: Can we define a safety predicate for CallBr? 1500 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1501 return Changed; 1502 1503 // TODO: callbr hoisting currently disabled pending further study. 1504 if (isa<CallBrInst>(I1)) 1505 return Changed; 1506 1507 for (BasicBlock *Succ : successors(BB1)) { 1508 for (PHINode &PN : Succ->phis()) { 1509 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1510 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1511 if (BB1V == BB2V) 1512 continue; 1513 1514 // Check for passingValueIsAlwaysUndefined here because we would rather 1515 // eliminate undefined control flow then converting it to a select. 1516 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1517 passingValueIsAlwaysUndefined(BB2V, &PN)) 1518 return Changed; 1519 1520 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1521 return Changed; 1522 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1523 return Changed; 1524 } 1525 } 1526 1527 // Okay, it is safe to hoist the terminator. 1528 Instruction *NT = I1->clone(); 1529 BIParent->getInstList().insert(BI->getIterator(), NT); 1530 if (!NT->getType()->isVoidTy()) { 1531 I1->replaceAllUsesWith(NT); 1532 I2->replaceAllUsesWith(NT); 1533 NT->takeName(I1); 1534 } 1535 Changed = true; 1536 ++NumHoistCommonInstrs; 1537 1538 // Ensure terminator gets a debug location, even an unknown one, in case 1539 // it involves inlinable calls. 1540 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1541 1542 // PHIs created below will adopt NT's merged DebugLoc. 1543 IRBuilder<NoFolder> Builder(NT); 1544 1545 // Hoisting one of the terminators from our successor is a great thing. 1546 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1547 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1548 // nodes, so we insert select instruction to compute the final result. 1549 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1550 for (BasicBlock *Succ : successors(BB1)) { 1551 for (PHINode &PN : Succ->phis()) { 1552 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1553 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1554 if (BB1V == BB2V) 1555 continue; 1556 1557 // These values do not agree. Insert a select instruction before NT 1558 // that determines the right value. 1559 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1560 if (!SI) { 1561 // Propagate fast-math-flags from phi node to its replacement select. 1562 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1563 if (isa<FPMathOperator>(PN)) 1564 Builder.setFastMathFlags(PN.getFastMathFlags()); 1565 1566 SI = cast<SelectInst>( 1567 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1568 BB1V->getName() + "." + BB2V->getName(), BI)); 1569 } 1570 1571 // Make the PHI node use the select for all incoming values for BB1/BB2 1572 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1573 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1574 PN.setIncomingValue(i, SI); 1575 } 1576 } 1577 1578 SmallVector<DominatorTree::UpdateType, 4> Updates; 1579 1580 // Update any PHI nodes in our new successors. 1581 for (BasicBlock *Succ : successors(BB1)) { 1582 AddPredecessorToBlock(Succ, BIParent, BB1); 1583 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1584 } 1585 for (BasicBlock *Succ : successors(BI)) 1586 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1587 1588 EraseTerminatorAndDCECond(BI); 1589 if (DTU) 1590 DTU->applyUpdates(Updates); 1591 return Changed; 1592 } 1593 1594 // Check lifetime markers. 1595 static bool isLifeTimeMarker(const Instruction *I) { 1596 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1597 switch (II->getIntrinsicID()) { 1598 default: 1599 break; 1600 case Intrinsic::lifetime_start: 1601 case Intrinsic::lifetime_end: 1602 return true; 1603 } 1604 } 1605 return false; 1606 } 1607 1608 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1609 // into variables. 1610 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1611 int OpIdx) { 1612 return !isa<IntrinsicInst>(I); 1613 } 1614 1615 // All instructions in Insts belong to different blocks that all unconditionally 1616 // branch to a common successor. Analyze each instruction and return true if it 1617 // would be possible to sink them into their successor, creating one common 1618 // instruction instead. For every value that would be required to be provided by 1619 // PHI node (because an operand varies in each input block), add to PHIOperands. 1620 static bool canSinkInstructions( 1621 ArrayRef<Instruction *> Insts, 1622 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1623 // Prune out obviously bad instructions to move. Each instruction must have 1624 // exactly zero or one use, and we check later that use is by a single, common 1625 // PHI instruction in the successor. 1626 bool HasUse = !Insts.front()->user_empty(); 1627 for (auto *I : Insts) { 1628 // These instructions may change or break semantics if moved. 1629 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1630 I->getType()->isTokenTy()) 1631 return false; 1632 1633 // Conservatively return false if I is an inline-asm instruction. Sinking 1634 // and merging inline-asm instructions can potentially create arguments 1635 // that cannot satisfy the inline-asm constraints. 1636 // If the instruction has nomerge attribute, return false. 1637 if (const auto *C = dyn_cast<CallBase>(I)) 1638 if (C->isInlineAsm() || C->cannotMerge()) 1639 return false; 1640 1641 // Each instruction must have zero or one use. 1642 if (HasUse && !I->hasOneUse()) 1643 return false; 1644 if (!HasUse && !I->user_empty()) 1645 return false; 1646 } 1647 1648 const Instruction *I0 = Insts.front(); 1649 for (auto *I : Insts) 1650 if (!I->isSameOperationAs(I0)) 1651 return false; 1652 1653 // All instructions in Insts are known to be the same opcode. If they have a 1654 // use, check that the only user is a PHI or in the same block as the 1655 // instruction, because if a user is in the same block as an instruction we're 1656 // contemplating sinking, it must already be determined to be sinkable. 1657 if (HasUse) { 1658 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1659 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1660 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1661 auto *U = cast<Instruction>(*I->user_begin()); 1662 return (PNUse && 1663 PNUse->getParent() == Succ && 1664 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1665 U->getParent() == I->getParent(); 1666 })) 1667 return false; 1668 } 1669 1670 // Because SROA can't handle speculating stores of selects, try not to sink 1671 // loads, stores or lifetime markers of allocas when we'd have to create a 1672 // PHI for the address operand. Also, because it is likely that loads or 1673 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1674 // them. 1675 // This can cause code churn which can have unintended consequences down 1676 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1677 // FIXME: This is a workaround for a deficiency in SROA - see 1678 // https://llvm.org/bugs/show_bug.cgi?id=30188 1679 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1680 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1681 })) 1682 return false; 1683 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1684 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1685 })) 1686 return false; 1687 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1688 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1689 })) 1690 return false; 1691 1692 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1693 Value *Op = I0->getOperand(OI); 1694 if (Op->getType()->isTokenTy()) 1695 // Don't touch any operand of token type. 1696 return false; 1697 1698 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1699 assert(I->getNumOperands() == I0->getNumOperands()); 1700 return I->getOperand(OI) == I0->getOperand(OI); 1701 }; 1702 if (!all_of(Insts, SameAsI0)) { 1703 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1704 !canReplaceOperandWithVariable(I0, OI)) 1705 // We can't create a PHI from this GEP. 1706 return false; 1707 // Don't create indirect calls! The called value is the final operand. 1708 if (isa<CallBase>(I0) && OI == OE - 1) { 1709 // FIXME: if the call was *already* indirect, we should do this. 1710 return false; 1711 } 1712 for (auto *I : Insts) 1713 PHIOperands[I].push_back(I->getOperand(OI)); 1714 } 1715 } 1716 return true; 1717 } 1718 1719 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1720 // instruction of every block in Blocks to their common successor, commoning 1721 // into one instruction. 1722 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1723 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1724 1725 // canSinkLastInstruction returning true guarantees that every block has at 1726 // least one non-terminator instruction. 1727 SmallVector<Instruction*,4> Insts; 1728 for (auto *BB : Blocks) { 1729 Instruction *I = BB->getTerminator(); 1730 do { 1731 I = I->getPrevNode(); 1732 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1733 if (!isa<DbgInfoIntrinsic>(I)) 1734 Insts.push_back(I); 1735 } 1736 1737 // The only checking we need to do now is that all users of all instructions 1738 // are the same PHI node. canSinkLastInstruction should have checked this but 1739 // it is slightly over-aggressive - it gets confused by commutative instructions 1740 // so double-check it here. 1741 Instruction *I0 = Insts.front(); 1742 if (!I0->user_empty()) { 1743 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1744 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1745 auto *U = cast<Instruction>(*I->user_begin()); 1746 return U == PNUse; 1747 })) 1748 return false; 1749 } 1750 1751 // We don't need to do any more checking here; canSinkLastInstruction should 1752 // have done it all for us. 1753 SmallVector<Value*, 4> NewOperands; 1754 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1755 // This check is different to that in canSinkLastInstruction. There, we 1756 // cared about the global view once simplifycfg (and instcombine) have 1757 // completed - it takes into account PHIs that become trivially 1758 // simplifiable. However here we need a more local view; if an operand 1759 // differs we create a PHI and rely on instcombine to clean up the very 1760 // small mess we may make. 1761 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1762 return I->getOperand(O) != I0->getOperand(O); 1763 }); 1764 if (!NeedPHI) { 1765 NewOperands.push_back(I0->getOperand(O)); 1766 continue; 1767 } 1768 1769 // Create a new PHI in the successor block and populate it. 1770 auto *Op = I0->getOperand(O); 1771 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1772 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1773 Op->getName() + ".sink", &BBEnd->front()); 1774 for (auto *I : Insts) 1775 PN->addIncoming(I->getOperand(O), I->getParent()); 1776 NewOperands.push_back(PN); 1777 } 1778 1779 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1780 // and move it to the start of the successor block. 1781 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1782 I0->getOperandUse(O).set(NewOperands[O]); 1783 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1784 1785 // Update metadata and IR flags, and merge debug locations. 1786 for (auto *I : Insts) 1787 if (I != I0) { 1788 // The debug location for the "common" instruction is the merged locations 1789 // of all the commoned instructions. We start with the original location 1790 // of the "common" instruction and iteratively merge each location in the 1791 // loop below. 1792 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1793 // However, as N-way merge for CallInst is rare, so we use simplified API 1794 // instead of using complex API for N-way merge. 1795 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1796 combineMetadataForCSE(I0, I, true); 1797 I0->andIRFlags(I); 1798 } 1799 1800 if (!I0->user_empty()) { 1801 // canSinkLastInstruction checked that all instructions were used by 1802 // one and only one PHI node. Find that now, RAUW it to our common 1803 // instruction and nuke it. 1804 auto *PN = cast<PHINode>(*I0->user_begin()); 1805 PN->replaceAllUsesWith(I0); 1806 PN->eraseFromParent(); 1807 } 1808 1809 // Finally nuke all instructions apart from the common instruction. 1810 for (auto *I : Insts) 1811 if (I != I0) 1812 I->eraseFromParent(); 1813 1814 return true; 1815 } 1816 1817 namespace { 1818 1819 // LockstepReverseIterator - Iterates through instructions 1820 // in a set of blocks in reverse order from the first non-terminator. 1821 // For example (assume all blocks have size n): 1822 // LockstepReverseIterator I([B1, B2, B3]); 1823 // *I-- = [B1[n], B2[n], B3[n]]; 1824 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1825 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1826 // ... 1827 class LockstepReverseIterator { 1828 ArrayRef<BasicBlock*> Blocks; 1829 SmallVector<Instruction*,4> Insts; 1830 bool Fail; 1831 1832 public: 1833 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1834 reset(); 1835 } 1836 1837 void reset() { 1838 Fail = false; 1839 Insts.clear(); 1840 for (auto *BB : Blocks) { 1841 Instruction *Inst = BB->getTerminator(); 1842 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1843 Inst = Inst->getPrevNode(); 1844 if (!Inst) { 1845 // Block wasn't big enough. 1846 Fail = true; 1847 return; 1848 } 1849 Insts.push_back(Inst); 1850 } 1851 } 1852 1853 bool isValid() const { 1854 return !Fail; 1855 } 1856 1857 void operator--() { 1858 if (Fail) 1859 return; 1860 for (auto *&Inst : Insts) { 1861 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1862 Inst = Inst->getPrevNode(); 1863 // Already at beginning of block. 1864 if (!Inst) { 1865 Fail = true; 1866 return; 1867 } 1868 } 1869 } 1870 1871 ArrayRef<Instruction*> operator * () const { 1872 return Insts; 1873 } 1874 }; 1875 1876 } // end anonymous namespace 1877 1878 /// Check whether BB's predecessors end with unconditional branches. If it is 1879 /// true, sink any common code from the predecessors to BB. 1880 /// We also allow one predecessor to end with conditional branch (but no more 1881 /// than one). 1882 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1883 DomTreeUpdater *DTU) { 1884 // We support two situations: 1885 // (1) all incoming arcs are unconditional 1886 // (2) one incoming arc is conditional 1887 // 1888 // (2) is very common in switch defaults and 1889 // else-if patterns; 1890 // 1891 // if (a) f(1); 1892 // else if (b) f(2); 1893 // 1894 // produces: 1895 // 1896 // [if] 1897 // / \ 1898 // [f(1)] [if] 1899 // | | \ 1900 // | | | 1901 // | [f(2)]| 1902 // \ | / 1903 // [ end ] 1904 // 1905 // [end] has two unconditional predecessor arcs and one conditional. The 1906 // conditional refers to the implicit empty 'else' arc. This conditional 1907 // arc can also be caused by an empty default block in a switch. 1908 // 1909 // In this case, we attempt to sink code from all *unconditional* arcs. 1910 // If we can sink instructions from these arcs (determined during the scan 1911 // phase below) we insert a common successor for all unconditional arcs and 1912 // connect that to [end], to enable sinking: 1913 // 1914 // [if] 1915 // / \ 1916 // [x(1)] [if] 1917 // | | \ 1918 // | | \ 1919 // | [x(2)] | 1920 // \ / | 1921 // [sink.split] | 1922 // \ / 1923 // [ end ] 1924 // 1925 SmallVector<BasicBlock*,4> UnconditionalPreds; 1926 Instruction *Cond = nullptr; 1927 for (auto *B : predecessors(BB)) { 1928 auto *T = B->getTerminator(); 1929 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1930 UnconditionalPreds.push_back(B); 1931 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1932 Cond = T; 1933 else 1934 return false; 1935 } 1936 if (UnconditionalPreds.size() < 2) 1937 return false; 1938 1939 // We take a two-step approach to tail sinking. First we scan from the end of 1940 // each block upwards in lockstep. If the n'th instruction from the end of each 1941 // block can be sunk, those instructions are added to ValuesToSink and we 1942 // carry on. If we can sink an instruction but need to PHI-merge some operands 1943 // (because they're not identical in each instruction) we add these to 1944 // PHIOperands. 1945 unsigned ScanIdx = 0; 1946 SmallPtrSet<Value*,4> InstructionsToSink; 1947 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1948 LockstepReverseIterator LRI(UnconditionalPreds); 1949 while (LRI.isValid() && 1950 canSinkInstructions(*LRI, PHIOperands)) { 1951 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1952 << "\n"); 1953 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1954 ++ScanIdx; 1955 --LRI; 1956 } 1957 1958 // If no instructions can be sunk, early-return. 1959 if (ScanIdx == 0) 1960 return false; 1961 1962 bool Changed = false; 1963 1964 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1965 unsigned NumPHIdValues = 0; 1966 for (auto *I : *LRI) 1967 for (auto *V : PHIOperands[I]) 1968 if (InstructionsToSink.count(V) == 0) 1969 ++NumPHIdValues; 1970 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1971 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1972 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1973 NumPHIInsts++; 1974 1975 return NumPHIInsts <= 1; 1976 }; 1977 1978 if (Cond) { 1979 // Check if we would actually sink anything first! This mutates the CFG and 1980 // adds an extra block. The goal in doing this is to allow instructions that 1981 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1982 // (such as trunc, add) can be sunk and predicated already. So we check that 1983 // we're going to sink at least one non-speculatable instruction. 1984 LRI.reset(); 1985 unsigned Idx = 0; 1986 bool Profitable = false; 1987 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1988 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1989 Profitable = true; 1990 break; 1991 } 1992 --LRI; 1993 ++Idx; 1994 } 1995 if (!Profitable) 1996 return false; 1997 1998 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1999 // We have a conditional edge and we're going to sink some instructions. 2000 // Insert a new block postdominating all blocks we're going to sink from. 2001 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2002 // Edges couldn't be split. 2003 return false; 2004 Changed = true; 2005 } 2006 2007 // Now that we've analyzed all potential sinking candidates, perform the 2008 // actual sink. We iteratively sink the last non-terminator of the source 2009 // blocks into their common successor unless doing so would require too 2010 // many PHI instructions to be generated (currently only one PHI is allowed 2011 // per sunk instruction). 2012 // 2013 // We can use InstructionsToSink to discount values needing PHI-merging that will 2014 // actually be sunk in a later iteration. This allows us to be more 2015 // aggressive in what we sink. This does allow a false positive where we 2016 // sink presuming a later value will also be sunk, but stop half way through 2017 // and never actually sink it which means we produce more PHIs than intended. 2018 // This is unlikely in practice though. 2019 unsigned SinkIdx = 0; 2020 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2021 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2022 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2023 << "\n"); 2024 2025 // Because we've sunk every instruction in turn, the current instruction to 2026 // sink is always at index 0. 2027 LRI.reset(); 2028 if (!ProfitableToSinkInstruction(LRI)) { 2029 // Too many PHIs would be created. 2030 LLVM_DEBUG( 2031 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2032 break; 2033 } 2034 2035 if (!sinkLastInstruction(UnconditionalPreds)) { 2036 LLVM_DEBUG( 2037 dbgs() 2038 << "SINK: stopping here, failed to actually sink instruction!\n"); 2039 break; 2040 } 2041 2042 NumSinkCommonInstrs++; 2043 Changed = true; 2044 } 2045 if (SinkIdx != 0) 2046 ++NumSinkCommonCode; 2047 return Changed; 2048 } 2049 2050 /// Determine if we can hoist sink a sole store instruction out of a 2051 /// conditional block. 2052 /// 2053 /// We are looking for code like the following: 2054 /// BrBB: 2055 /// store i32 %add, i32* %arrayidx2 2056 /// ... // No other stores or function calls (we could be calling a memory 2057 /// ... // function). 2058 /// %cmp = icmp ult %x, %y 2059 /// br i1 %cmp, label %EndBB, label %ThenBB 2060 /// ThenBB: 2061 /// store i32 %add5, i32* %arrayidx2 2062 /// br label EndBB 2063 /// EndBB: 2064 /// ... 2065 /// We are going to transform this into: 2066 /// BrBB: 2067 /// store i32 %add, i32* %arrayidx2 2068 /// ... // 2069 /// %cmp = icmp ult %x, %y 2070 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2071 /// store i32 %add.add5, i32* %arrayidx2 2072 /// ... 2073 /// 2074 /// \return The pointer to the value of the previous store if the store can be 2075 /// hoisted into the predecessor block. 0 otherwise. 2076 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2077 BasicBlock *StoreBB, BasicBlock *EndBB) { 2078 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2079 if (!StoreToHoist) 2080 return nullptr; 2081 2082 // Volatile or atomic. 2083 if (!StoreToHoist->isSimple()) 2084 return nullptr; 2085 2086 Value *StorePtr = StoreToHoist->getPointerOperand(); 2087 2088 // Look for a store to the same pointer in BrBB. 2089 unsigned MaxNumInstToLookAt = 9; 2090 // Skip pseudo probe intrinsic calls which are not really killing any memory 2091 // accesses. 2092 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2093 if (!MaxNumInstToLookAt) 2094 break; 2095 --MaxNumInstToLookAt; 2096 2097 // Could be calling an instruction that affects memory like free(). 2098 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2099 return nullptr; 2100 2101 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2102 // Found the previous store make sure it stores to the same location. 2103 if (SI->getPointerOperand() == StorePtr) 2104 // Found the previous store, return its value operand. 2105 return SI->getValueOperand(); 2106 return nullptr; // Unknown store. 2107 } 2108 } 2109 2110 return nullptr; 2111 } 2112 2113 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2114 /// converted to selects. 2115 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2116 BasicBlock *EndBB, 2117 unsigned &SpeculatedInstructions, 2118 InstructionCost &Cost, 2119 const TargetTransformInfo &TTI) { 2120 TargetTransformInfo::TargetCostKind CostKind = 2121 BB->getParent()->hasMinSize() 2122 ? TargetTransformInfo::TCK_CodeSize 2123 : TargetTransformInfo::TCK_SizeAndLatency; 2124 2125 bool HaveRewritablePHIs = false; 2126 for (PHINode &PN : EndBB->phis()) { 2127 Value *OrigV = PN.getIncomingValueForBlock(BB); 2128 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2129 2130 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2131 // Skip PHIs which are trivial. 2132 if (ThenV == OrigV) 2133 continue; 2134 2135 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2136 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2137 2138 // Don't convert to selects if we could remove undefined behavior instead. 2139 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2140 passingValueIsAlwaysUndefined(ThenV, &PN)) 2141 return false; 2142 2143 HaveRewritablePHIs = true; 2144 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2145 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2146 if (!OrigCE && !ThenCE) 2147 continue; // Known safe and cheap. 2148 2149 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2150 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2151 return false; 2152 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2153 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2154 InstructionCost MaxCost = 2155 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2156 if (OrigCost + ThenCost > MaxCost) 2157 return false; 2158 2159 // Account for the cost of an unfolded ConstantExpr which could end up 2160 // getting expanded into Instructions. 2161 // FIXME: This doesn't account for how many operations are combined in the 2162 // constant expression. 2163 ++SpeculatedInstructions; 2164 if (SpeculatedInstructions > 1) 2165 return false; 2166 } 2167 2168 return HaveRewritablePHIs; 2169 } 2170 2171 /// Speculate a conditional basic block flattening the CFG. 2172 /// 2173 /// Note that this is a very risky transform currently. Speculating 2174 /// instructions like this is most often not desirable. Instead, there is an MI 2175 /// pass which can do it with full awareness of the resource constraints. 2176 /// However, some cases are "obvious" and we should do directly. An example of 2177 /// this is speculating a single, reasonably cheap instruction. 2178 /// 2179 /// There is only one distinct advantage to flattening the CFG at the IR level: 2180 /// it makes very common but simplistic optimizations such as are common in 2181 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2182 /// modeling their effects with easier to reason about SSA value graphs. 2183 /// 2184 /// 2185 /// An illustration of this transform is turning this IR: 2186 /// \code 2187 /// BB: 2188 /// %cmp = icmp ult %x, %y 2189 /// br i1 %cmp, label %EndBB, label %ThenBB 2190 /// ThenBB: 2191 /// %sub = sub %x, %y 2192 /// br label BB2 2193 /// EndBB: 2194 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2195 /// ... 2196 /// \endcode 2197 /// 2198 /// Into this IR: 2199 /// \code 2200 /// BB: 2201 /// %cmp = icmp ult %x, %y 2202 /// %sub = sub %x, %y 2203 /// %cond = select i1 %cmp, 0, %sub 2204 /// ... 2205 /// \endcode 2206 /// 2207 /// \returns true if the conditional block is removed. 2208 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2209 const TargetTransformInfo &TTI) { 2210 // Be conservative for now. FP select instruction can often be expensive. 2211 Value *BrCond = BI->getCondition(); 2212 if (isa<FCmpInst>(BrCond)) 2213 return false; 2214 2215 BasicBlock *BB = BI->getParent(); 2216 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2217 InstructionCost Budget = 2218 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2219 2220 // If ThenBB is actually on the false edge of the conditional branch, remember 2221 // to swap the select operands later. 2222 bool Invert = false; 2223 if (ThenBB != BI->getSuccessor(0)) { 2224 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2225 Invert = true; 2226 } 2227 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2228 2229 // Keep a count of how many times instructions are used within ThenBB when 2230 // they are candidates for sinking into ThenBB. Specifically: 2231 // - They are defined in BB, and 2232 // - They have no side effects, and 2233 // - All of their uses are in ThenBB. 2234 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2235 2236 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2237 2238 unsigned SpeculatedInstructions = 0; 2239 Value *SpeculatedStoreValue = nullptr; 2240 StoreInst *SpeculatedStore = nullptr; 2241 for (BasicBlock::iterator BBI = ThenBB->begin(), 2242 BBE = std::prev(ThenBB->end()); 2243 BBI != BBE; ++BBI) { 2244 Instruction *I = &*BBI; 2245 // Skip debug info. 2246 if (isa<DbgInfoIntrinsic>(I)) { 2247 SpeculatedDbgIntrinsics.push_back(I); 2248 continue; 2249 } 2250 2251 // Skip pseudo probes. The consequence is we lose track of the branch 2252 // probability for ThenBB, which is fine since the optimization here takes 2253 // place regardless of the branch probability. 2254 if (isa<PseudoProbeInst>(I)) { 2255 SpeculatedDbgIntrinsics.push_back(I); 2256 continue; 2257 } 2258 2259 // Only speculatively execute a single instruction (not counting the 2260 // terminator) for now. 2261 ++SpeculatedInstructions; 2262 if (SpeculatedInstructions > 1) 2263 return false; 2264 2265 // Don't hoist the instruction if it's unsafe or expensive. 2266 if (!isSafeToSpeculativelyExecute(I) && 2267 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2268 I, BB, ThenBB, EndBB)))) 2269 return false; 2270 if (!SpeculatedStoreValue && 2271 computeSpeculationCost(I, TTI) > 2272 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2273 return false; 2274 2275 // Store the store speculation candidate. 2276 if (SpeculatedStoreValue) 2277 SpeculatedStore = cast<StoreInst>(I); 2278 2279 // Do not hoist the instruction if any of its operands are defined but not 2280 // used in BB. The transformation will prevent the operand from 2281 // being sunk into the use block. 2282 for (Use &Op : I->operands()) { 2283 Instruction *OpI = dyn_cast<Instruction>(Op); 2284 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2285 continue; // Not a candidate for sinking. 2286 2287 ++SinkCandidateUseCounts[OpI]; 2288 } 2289 } 2290 2291 // Consider any sink candidates which are only used in ThenBB as costs for 2292 // speculation. Note, while we iterate over a DenseMap here, we are summing 2293 // and so iteration order isn't significant. 2294 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2295 I = SinkCandidateUseCounts.begin(), 2296 E = SinkCandidateUseCounts.end(); 2297 I != E; ++I) 2298 if (I->first->hasNUses(I->second)) { 2299 ++SpeculatedInstructions; 2300 if (SpeculatedInstructions > 1) 2301 return false; 2302 } 2303 2304 // Check that we can insert the selects and that it's not too expensive to do 2305 // so. 2306 bool Convert = SpeculatedStore != nullptr; 2307 InstructionCost Cost = 0; 2308 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2309 SpeculatedInstructions, 2310 Cost, TTI); 2311 if (!Convert || Cost > Budget) 2312 return false; 2313 2314 // If we get here, we can hoist the instruction and if-convert. 2315 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2316 2317 // Insert a select of the value of the speculated store. 2318 if (SpeculatedStoreValue) { 2319 IRBuilder<NoFolder> Builder(BI); 2320 Value *TrueV = SpeculatedStore->getValueOperand(); 2321 Value *FalseV = SpeculatedStoreValue; 2322 if (Invert) 2323 std::swap(TrueV, FalseV); 2324 Value *S = Builder.CreateSelect( 2325 BrCond, TrueV, FalseV, "spec.store.select", BI); 2326 SpeculatedStore->setOperand(0, S); 2327 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2328 SpeculatedStore->getDebugLoc()); 2329 } 2330 2331 // Metadata can be dependent on the condition we are hoisting above. 2332 // Conservatively strip all metadata on the instruction. Drop the debug loc 2333 // to avoid making it appear as if the condition is a constant, which would 2334 // be misleading while debugging. 2335 for (auto &I : *ThenBB) { 2336 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2337 I.setDebugLoc(DebugLoc()); 2338 I.dropUnknownNonDebugMetadata(); 2339 } 2340 2341 // Hoist the instructions. 2342 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2343 ThenBB->begin(), std::prev(ThenBB->end())); 2344 2345 // Insert selects and rewrite the PHI operands. 2346 IRBuilder<NoFolder> Builder(BI); 2347 for (PHINode &PN : EndBB->phis()) { 2348 unsigned OrigI = PN.getBasicBlockIndex(BB); 2349 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2350 Value *OrigV = PN.getIncomingValue(OrigI); 2351 Value *ThenV = PN.getIncomingValue(ThenI); 2352 2353 // Skip PHIs which are trivial. 2354 if (OrigV == ThenV) 2355 continue; 2356 2357 // Create a select whose true value is the speculatively executed value and 2358 // false value is the pre-existing value. Swap them if the branch 2359 // destinations were inverted. 2360 Value *TrueV = ThenV, *FalseV = OrigV; 2361 if (Invert) 2362 std::swap(TrueV, FalseV); 2363 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2364 PN.setIncomingValue(OrigI, V); 2365 PN.setIncomingValue(ThenI, V); 2366 } 2367 2368 // Remove speculated dbg intrinsics. 2369 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2370 // dbg value for the different flows and inserting it after the select. 2371 for (Instruction *I : SpeculatedDbgIntrinsics) 2372 I->eraseFromParent(); 2373 2374 ++NumSpeculations; 2375 return true; 2376 } 2377 2378 /// Return true if we can thread a branch across this block. 2379 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2380 int Size = 0; 2381 2382 for (Instruction &I : BB->instructionsWithoutDebug()) { 2383 if (Size > MaxSmallBlockSize) 2384 return false; // Don't clone large BB's. 2385 2386 // Can't fold blocks that contain noduplicate or convergent calls. 2387 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2388 if (CI->cannotDuplicate() || CI->isConvergent()) 2389 return false; 2390 2391 // We will delete Phis while threading, so Phis should not be accounted in 2392 // block's size 2393 if (!isa<PHINode>(I)) 2394 ++Size; 2395 2396 // We can only support instructions that do not define values that are 2397 // live outside of the current basic block. 2398 for (User *U : I.users()) { 2399 Instruction *UI = cast<Instruction>(U); 2400 if (UI->getParent() != BB || isa<PHINode>(UI)) 2401 return false; 2402 } 2403 2404 // Looks ok, continue checking. 2405 } 2406 2407 return true; 2408 } 2409 2410 /// If we have a conditional branch on a PHI node value that is defined in the 2411 /// same block as the branch and if any PHI entries are constants, thread edges 2412 /// corresponding to that entry to be branches to their ultimate destination. 2413 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2414 const DataLayout &DL, AssumptionCache *AC) { 2415 BasicBlock *BB = BI->getParent(); 2416 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2417 // NOTE: we currently cannot transform this case if the PHI node is used 2418 // outside of the block. 2419 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2420 return false; 2421 2422 // Degenerate case of a single entry PHI. 2423 if (PN->getNumIncomingValues() == 1) { 2424 FoldSingleEntryPHINodes(PN->getParent()); 2425 return true; 2426 } 2427 2428 // Now we know that this block has multiple preds and two succs. 2429 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2430 return false; 2431 2432 // Okay, this is a simple enough basic block. See if any phi values are 2433 // constants. 2434 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2435 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2436 if (!CB || !CB->getType()->isIntegerTy(1)) 2437 continue; 2438 2439 // Okay, we now know that all edges from PredBB should be revectored to 2440 // branch to RealDest. 2441 BasicBlock *PredBB = PN->getIncomingBlock(i); 2442 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2443 2444 if (RealDest == BB) 2445 continue; // Skip self loops. 2446 // Skip if the predecessor's terminator is an indirect branch. 2447 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2448 continue; 2449 2450 SmallVector<DominatorTree::UpdateType, 3> Updates; 2451 2452 // The dest block might have PHI nodes, other predecessors and other 2453 // difficult cases. Instead of being smart about this, just insert a new 2454 // block that jumps to the destination block, effectively splitting 2455 // the edge we are about to create. 2456 BasicBlock *EdgeBB = 2457 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2458 RealDest->getParent(), RealDest); 2459 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2460 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2461 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2462 2463 // Update PHI nodes. 2464 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2465 2466 // BB may have instructions that are being threaded over. Clone these 2467 // instructions into EdgeBB. We know that there will be no uses of the 2468 // cloned instructions outside of EdgeBB. 2469 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2470 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2471 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2472 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2473 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2474 continue; 2475 } 2476 // Clone the instruction. 2477 Instruction *N = BBI->clone(); 2478 if (BBI->hasName()) 2479 N->setName(BBI->getName() + ".c"); 2480 2481 // Update operands due to translation. 2482 for (Use &Op : N->operands()) { 2483 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2484 if (PI != TranslateMap.end()) 2485 Op = PI->second; 2486 } 2487 2488 // Check for trivial simplification. 2489 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2490 if (!BBI->use_empty()) 2491 TranslateMap[&*BBI] = V; 2492 if (!N->mayHaveSideEffects()) { 2493 N->deleteValue(); // Instruction folded away, don't need actual inst 2494 N = nullptr; 2495 } 2496 } else { 2497 if (!BBI->use_empty()) 2498 TranslateMap[&*BBI] = N; 2499 } 2500 if (N) { 2501 // Insert the new instruction into its new home. 2502 EdgeBB->getInstList().insert(InsertPt, N); 2503 2504 // Register the new instruction with the assumption cache if necessary. 2505 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2506 AC->registerAssumption(cast<IntrinsicInst>(N)); 2507 } 2508 } 2509 2510 // Loop over all of the edges from PredBB to BB, changing them to branch 2511 // to EdgeBB instead. 2512 Instruction *PredBBTI = PredBB->getTerminator(); 2513 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2514 if (PredBBTI->getSuccessor(i) == BB) { 2515 BB->removePredecessor(PredBB); 2516 PredBBTI->setSuccessor(i, EdgeBB); 2517 } 2518 2519 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2520 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2521 2522 if (DTU) 2523 DTU->applyUpdates(Updates); 2524 2525 // Recurse, simplifying any other constants. 2526 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2527 } 2528 2529 return false; 2530 } 2531 2532 /// Given a BB that starts with the specified two-entry PHI node, 2533 /// see if we can eliminate it. 2534 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2535 DomTreeUpdater *DTU, const DataLayout &DL) { 2536 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2537 // statement", which has a very simple dominance structure. Basically, we 2538 // are trying to find the condition that is being branched on, which 2539 // subsequently causes this merge to happen. We really want control 2540 // dependence information for this check, but simplifycfg can't keep it up 2541 // to date, and this catches most of the cases we care about anyway. 2542 BasicBlock *BB = PN->getParent(); 2543 2544 BasicBlock *IfTrue, *IfFalse; 2545 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2546 if (!IfCond || 2547 // Don't bother if the branch will be constant folded trivially. 2548 isa<ConstantInt>(IfCond)) 2549 return false; 2550 2551 // Okay, we found that we can merge this two-entry phi node into a select. 2552 // Doing so would require us to fold *all* two entry phi nodes in this block. 2553 // At some point this becomes non-profitable (particularly if the target 2554 // doesn't support cmov's). Only do this transformation if there are two or 2555 // fewer PHI nodes in this block. 2556 unsigned NumPhis = 0; 2557 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2558 if (NumPhis > 2) 2559 return false; 2560 2561 // Loop over the PHI's seeing if we can promote them all to select 2562 // instructions. While we are at it, keep track of the instructions 2563 // that need to be moved to the dominating block. 2564 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2565 InstructionCost Cost = 0; 2566 InstructionCost Budget = 2567 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2568 2569 bool Changed = false; 2570 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2571 PHINode *PN = cast<PHINode>(II++); 2572 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2573 PN->replaceAllUsesWith(V); 2574 PN->eraseFromParent(); 2575 Changed = true; 2576 continue; 2577 } 2578 2579 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2580 Cost, Budget, TTI) || 2581 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2582 Cost, Budget, TTI)) 2583 return Changed; 2584 } 2585 2586 // If we folded the first phi, PN dangles at this point. Refresh it. If 2587 // we ran out of PHIs then we simplified them all. 2588 PN = dyn_cast<PHINode>(BB->begin()); 2589 if (!PN) 2590 return true; 2591 2592 // Return true if at least one of these is a 'not', and another is either 2593 // a 'not' too, or a constant. 2594 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2595 if (!match(V0, m_Not(m_Value()))) 2596 std::swap(V0, V1); 2597 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2598 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2599 }; 2600 2601 // Don't fold i1 branches on PHIs which contain binary operators or 2602 // select form of or/ands, unless one of the incoming values is an 'not' and 2603 // another one is freely invertible. 2604 // These can often be turned into switches and other things. 2605 auto IsBinOpOrAnd = [](Value *V) { 2606 return match( 2607 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2608 }; 2609 if (PN->getType()->isIntegerTy(1) && 2610 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2611 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2612 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2613 PN->getIncomingValue(1))) 2614 return Changed; 2615 2616 // If all PHI nodes are promotable, check to make sure that all instructions 2617 // in the predecessor blocks can be promoted as well. If not, we won't be able 2618 // to get rid of the control flow, so it's not worth promoting to select 2619 // instructions. 2620 BasicBlock *DomBlock = nullptr; 2621 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2622 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2623 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2624 IfBlock1 = nullptr; 2625 } else { 2626 DomBlock = *pred_begin(IfBlock1); 2627 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2628 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2629 !isa<PseudoProbeInst>(I)) { 2630 // This is not an aggressive instruction that we can promote. 2631 // Because of this, we won't be able to get rid of the control flow, so 2632 // the xform is not worth it. 2633 return Changed; 2634 } 2635 } 2636 2637 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2638 IfBlock2 = nullptr; 2639 } else { 2640 DomBlock = *pred_begin(IfBlock2); 2641 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2642 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2643 !isa<PseudoProbeInst>(I)) { 2644 // This is not an aggressive instruction that we can promote. 2645 // Because of this, we won't be able to get rid of the control flow, so 2646 // the xform is not worth it. 2647 return Changed; 2648 } 2649 } 2650 assert(DomBlock && "Failed to find root DomBlock"); 2651 2652 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2653 << " T: " << IfTrue->getName() 2654 << " F: " << IfFalse->getName() << "\n"); 2655 2656 // If we can still promote the PHI nodes after this gauntlet of tests, 2657 // do all of the PHI's now. 2658 Instruction *InsertPt = DomBlock->getTerminator(); 2659 IRBuilder<NoFolder> Builder(InsertPt); 2660 2661 // Move all 'aggressive' instructions, which are defined in the 2662 // conditional parts of the if's up to the dominating block. 2663 if (IfBlock1) 2664 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2665 if (IfBlock2) 2666 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2667 2668 // Propagate fast-math-flags from phi nodes to replacement selects. 2669 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2670 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2671 if (isa<FPMathOperator>(PN)) 2672 Builder.setFastMathFlags(PN->getFastMathFlags()); 2673 2674 // Change the PHI node into a select instruction. 2675 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2676 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2677 2678 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2679 PN->replaceAllUsesWith(Sel); 2680 Sel->takeName(PN); 2681 PN->eraseFromParent(); 2682 } 2683 2684 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2685 // has been flattened. Change DomBlock to jump directly to our new block to 2686 // avoid other simplifycfg's kicking in on the diamond. 2687 Instruction *OldTI = DomBlock->getTerminator(); 2688 Builder.SetInsertPoint(OldTI); 2689 Builder.CreateBr(BB); 2690 2691 SmallVector<DominatorTree::UpdateType, 3> Updates; 2692 if (DTU) { 2693 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2694 for (auto *Successor : successors(DomBlock)) 2695 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2696 } 2697 2698 OldTI->eraseFromParent(); 2699 if (DTU) 2700 DTU->applyUpdates(Updates); 2701 2702 return true; 2703 } 2704 2705 /// If we found a conditional branch that goes to two returning blocks, 2706 /// try to merge them together into one return, 2707 /// introducing a select if the return values disagree. 2708 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2709 IRBuilder<> &Builder) { 2710 auto *BB = BI->getParent(); 2711 assert(BI->isConditional() && "Must be a conditional branch"); 2712 BasicBlock *TrueSucc = BI->getSuccessor(0); 2713 BasicBlock *FalseSucc = BI->getSuccessor(1); 2714 // NOTE: destinations may match, this could be degenerate uncond branch. 2715 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2716 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2717 2718 // Check to ensure both blocks are empty (just a return) or optionally empty 2719 // with PHI nodes. If there are other instructions, merging would cause extra 2720 // computation on one path or the other. 2721 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2722 return false; 2723 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2724 return false; 2725 2726 Builder.SetInsertPoint(BI); 2727 // Okay, we found a branch that is going to two return nodes. If 2728 // there is no return value for this function, just change the 2729 // branch into a return. 2730 if (FalseRet->getNumOperands() == 0) { 2731 TrueSucc->removePredecessor(BB); 2732 FalseSucc->removePredecessor(BB); 2733 Builder.CreateRetVoid(); 2734 EraseTerminatorAndDCECond(BI); 2735 if (DTU) { 2736 SmallVector<DominatorTree::UpdateType, 2> Updates; 2737 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2738 if (TrueSucc != FalseSucc) 2739 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2740 DTU->applyUpdates(Updates); 2741 } 2742 return true; 2743 } 2744 2745 // Otherwise, figure out what the true and false return values are 2746 // so we can insert a new select instruction. 2747 Value *TrueValue = TrueRet->getReturnValue(); 2748 Value *FalseValue = FalseRet->getReturnValue(); 2749 2750 // Unwrap any PHI nodes in the return blocks. 2751 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2752 if (TVPN->getParent() == TrueSucc) 2753 TrueValue = TVPN->getIncomingValueForBlock(BB); 2754 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2755 if (FVPN->getParent() == FalseSucc) 2756 FalseValue = FVPN->getIncomingValueForBlock(BB); 2757 2758 // In order for this transformation to be safe, we must be able to 2759 // unconditionally execute both operands to the return. This is 2760 // normally the case, but we could have a potentially-trapping 2761 // constant expression that prevents this transformation from being 2762 // safe. 2763 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2764 if (TCV->canTrap()) 2765 return false; 2766 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2767 if (FCV->canTrap()) 2768 return false; 2769 2770 // Okay, we collected all the mapped values and checked them for sanity, and 2771 // defined to really do this transformation. First, update the CFG. 2772 TrueSucc->removePredecessor(BB); 2773 FalseSucc->removePredecessor(BB); 2774 2775 // Insert select instructions where needed. 2776 Value *BrCond = BI->getCondition(); 2777 if (TrueValue) { 2778 // Insert a select if the results differ. 2779 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2780 } else if (isa<UndefValue>(TrueValue)) { 2781 TrueValue = FalseValue; 2782 } else { 2783 TrueValue = 2784 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2785 } 2786 } 2787 2788 Value *RI = 2789 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2790 2791 (void)RI; 2792 2793 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2794 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2795 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2796 2797 EraseTerminatorAndDCECond(BI); 2798 if (DTU) { 2799 SmallVector<DominatorTree::UpdateType, 2> Updates; 2800 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2801 if (TrueSucc != FalseSucc) 2802 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2803 DTU->applyUpdates(Updates); 2804 } 2805 2806 return true; 2807 } 2808 2809 /// Return true if either PBI or BI has branch weight available, and store 2810 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2811 /// not have branch weight, use 1:1 as its weight. 2812 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2813 uint64_t &PredTrueWeight, 2814 uint64_t &PredFalseWeight, 2815 uint64_t &SuccTrueWeight, 2816 uint64_t &SuccFalseWeight) { 2817 bool PredHasWeights = 2818 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2819 bool SuccHasWeights = 2820 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2821 if (PredHasWeights || SuccHasWeights) { 2822 if (!PredHasWeights) 2823 PredTrueWeight = PredFalseWeight = 1; 2824 if (!SuccHasWeights) 2825 SuccTrueWeight = SuccFalseWeight = 1; 2826 return true; 2827 } else { 2828 return false; 2829 } 2830 } 2831 2832 // Determine if the two branches share a common destination, 2833 // and deduce a glue that we need to use to join branch's conditions 2834 // to arrive at the common destination. 2835 static Optional<std::pair<Instruction::BinaryOps, bool>> 2836 CheckIfCondBranchesShareCommonDestination(BranchInst *BI, BranchInst *PBI) { 2837 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2838 "Both blocks must end with a conditional branches."); 2839 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2840 "PredBB must be a predecessor of BB."); 2841 2842 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2843 return {{Instruction::Or, false}}; 2844 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2845 return {{Instruction::And, false}}; 2846 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2847 return {{Instruction::And, true}}; 2848 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2849 return {{Instruction::Or, true}}; 2850 return None; 2851 } 2852 2853 static bool PerformBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2854 DomTreeUpdater *DTU, 2855 MemorySSAUpdater *MSSAU) { 2856 BasicBlock *BB = BI->getParent(); 2857 BasicBlock *PredBlock = PBI->getParent(); 2858 2859 // Determine if the two branches share a common destination. 2860 Instruction::BinaryOps Opc; 2861 bool InvertPredCond; 2862 std::tie(Opc, InvertPredCond) = 2863 *CheckIfCondBranchesShareCommonDestination(BI, PBI); 2864 2865 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2866 2867 IRBuilder<> Builder(PBI); 2868 // The builder is used to create instructions to eliminate the branch in BB. 2869 // If BB's terminator has !annotation metadata, add it to the new 2870 // instructions. 2871 Builder.CollectMetadataToCopy(BB->getTerminator(), 2872 {LLVMContext::MD_annotation}); 2873 2874 // If we need to invert the condition in the pred block to match, do so now. 2875 if (InvertPredCond) { 2876 Value *NewCond = PBI->getCondition(); 2877 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2878 CmpInst *CI = cast<CmpInst>(NewCond); 2879 CI->setPredicate(CI->getInversePredicate()); 2880 } else { 2881 NewCond = 2882 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2883 } 2884 2885 PBI->setCondition(NewCond); 2886 PBI->swapSuccessors(); 2887 } 2888 2889 BasicBlock *UniqueSucc = 2890 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2891 2892 // Before cloning instructions, notify the successor basic block that it 2893 // is about to have a new predecessor. This will update PHI nodes, 2894 // which will allow us to update live-out uses of bonus instructions. 2895 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2896 2897 // Try to update branch weights. 2898 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2899 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2900 SuccTrueWeight, SuccFalseWeight)) { 2901 SmallVector<uint64_t, 8> NewWeights; 2902 2903 if (PBI->getSuccessor(0) == BB) { 2904 // PBI: br i1 %x, BB, FalseDest 2905 // BI: br i1 %y, UniqueSucc, FalseDest 2906 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2907 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2908 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2909 // TrueWeight for PBI * FalseWeight for BI. 2910 // We assume that total weights of a BranchInst can fit into 32 bits. 2911 // Therefore, we will not have overflow using 64-bit arithmetic. 2912 NewWeights.push_back(PredFalseWeight * 2913 (SuccFalseWeight + SuccTrueWeight) + 2914 PredTrueWeight * SuccFalseWeight); 2915 } else { 2916 // PBI: br i1 %x, TrueDest, BB 2917 // BI: br i1 %y, TrueDest, UniqueSucc 2918 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2919 // FalseWeight for PBI * TrueWeight for BI. 2920 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2921 PredFalseWeight * SuccTrueWeight); 2922 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2923 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2924 } 2925 2926 // Halve the weights if any of them cannot fit in an uint32_t 2927 FitWeights(NewWeights); 2928 2929 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 2930 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2931 2932 // TODO: If BB is reachable from all paths through PredBlock, then we 2933 // could replace PBI's branch probabilities with BI's. 2934 } else 2935 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2936 2937 // Now, update the CFG. 2938 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 2939 2940 if (DTU) 2941 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 2942 {DominatorTree::Delete, PredBlock, BB}}); 2943 2944 // If BI was a loop latch, it may have had associated loop metadata. 2945 // We need to copy it to the new latch, that is, PBI. 2946 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2947 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2948 2949 ValueToValueMapTy VMap; // maps original values to cloned values 2950 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 2951 2952 // Now that the Cond was cloned into the predecessor basic block, 2953 // or/and the two conditions together. 2954 Instruction *NewCond = cast<Instruction>(Builder.CreateBinOp( 2955 Opc, PBI->getCondition(), VMap[BI->getCondition()], "or.cond")); 2956 PBI->setCondition(NewCond); 2957 2958 // Copy any debug value intrinsics into the end of PredBlock. 2959 for (Instruction &I : *BB) { 2960 if (isa<DbgInfoIntrinsic>(I)) { 2961 Instruction *NewI = I.clone(); 2962 RemapInstruction(NewI, VMap, 2963 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2964 NewI->insertBefore(PBI); 2965 } 2966 } 2967 2968 ++NumFoldBranchToCommonDest; 2969 return true; 2970 } 2971 2972 /// If this basic block is simple enough, and if a predecessor branches to us 2973 /// and one of our successors, fold the block into the predecessor and use 2974 /// logical operations to pick the right destination. 2975 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 2976 MemorySSAUpdater *MSSAU, 2977 const TargetTransformInfo *TTI, 2978 unsigned BonusInstThreshold) { 2979 // If this block ends with an unconditional branch, 2980 // let SpeculativelyExecuteBB() deal with it. 2981 if (!BI->isConditional()) 2982 return false; 2983 2984 BasicBlock *BB = BI->getParent(); 2985 2986 const unsigned PredCount = pred_size(BB); 2987 2988 bool Changed = false; 2989 2990 TargetTransformInfo::TargetCostKind CostKind = 2991 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 2992 : TargetTransformInfo::TCK_SizeAndLatency; 2993 2994 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2995 2996 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2997 Cond->getParent() != BB || !Cond->hasOneUse()) 2998 return Changed; 2999 3000 // Only allow this transformation if computing the condition doesn't involve 3001 // too many instructions and these involved instructions can be executed 3002 // unconditionally. We denote all involved instructions except the condition 3003 // as "bonus instructions", and only allow this transformation when the 3004 // number of the bonus instructions we'll need to create when cloning into 3005 // each predecessor does not exceed a certain threshold. 3006 unsigned NumBonusInsts = 0; 3007 for (Instruction &I : *BB) { 3008 // Don't check the branch condition comparison itself. 3009 if (&I == Cond) 3010 continue; 3011 // Ignore dbg intrinsics, and the terminator. 3012 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3013 continue; 3014 // I must be safe to execute unconditionally. 3015 if (!isSafeToSpeculativelyExecute(&I)) 3016 return Changed; 3017 3018 // Account for the cost of duplicating this instruction into each 3019 // predecessor. 3020 NumBonusInsts += PredCount; 3021 // Early exits once we reach the limit. 3022 if (NumBonusInsts > BonusInstThreshold) 3023 return Changed; 3024 } 3025 3026 // Cond is known to be a compare or binary operator. Check to make sure that 3027 // neither operand is a potentially-trapping constant expression. 3028 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3029 if (CE->canTrap()) 3030 return Changed; 3031 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3032 if (CE->canTrap()) 3033 return Changed; 3034 3035 // Finally, don't infinitely unroll conditional loops. 3036 if (is_contained(successors(BB), BB)) 3037 return Changed; 3038 3039 for (BasicBlock *PredBlock : predecessors(BB)) { 3040 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3041 3042 // Check that we have two conditional branches. If there is a PHI node in 3043 // the common successor, verify that the same value flows in from both 3044 // blocks. 3045 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3046 continue; 3047 3048 // Determine if the two branches share a common destination. 3049 Instruction::BinaryOps Opc; 3050 bool InvertPredCond; 3051 if (auto Recepie = CheckIfCondBranchesShareCommonDestination(BI, PBI)) 3052 std::tie(Opc, InvertPredCond) = *Recepie; 3053 else 3054 continue; 3055 3056 // Check the cost of inserting the necessary logic before performing the 3057 // transformation. 3058 if (TTI) { 3059 Type *Ty = BI->getCondition()->getType(); 3060 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3061 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3062 !isa<CmpInst>(PBI->getCondition()))) 3063 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3064 3065 if (Cost > BranchFoldThreshold) 3066 continue; 3067 } 3068 3069 return PerformBranchToCommonDestFolding(BI, PBI, DTU, MSSAU); 3070 } 3071 return Changed; 3072 } 3073 3074 // If there is only one store in BB1 and BB2, return it, otherwise return 3075 // nullptr. 3076 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3077 StoreInst *S = nullptr; 3078 for (auto *BB : {BB1, BB2}) { 3079 if (!BB) 3080 continue; 3081 for (auto &I : *BB) 3082 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3083 if (S) 3084 // Multiple stores seen. 3085 return nullptr; 3086 else 3087 S = SI; 3088 } 3089 } 3090 return S; 3091 } 3092 3093 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3094 Value *AlternativeV = nullptr) { 3095 // PHI is going to be a PHI node that allows the value V that is defined in 3096 // BB to be referenced in BB's only successor. 3097 // 3098 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3099 // doesn't matter to us what the other operand is (it'll never get used). We 3100 // could just create a new PHI with an undef incoming value, but that could 3101 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3102 // other PHI. So here we directly look for some PHI in BB's successor with V 3103 // as an incoming operand. If we find one, we use it, else we create a new 3104 // one. 3105 // 3106 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3107 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3108 // where OtherBB is the single other predecessor of BB's only successor. 3109 PHINode *PHI = nullptr; 3110 BasicBlock *Succ = BB->getSingleSuccessor(); 3111 3112 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3113 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3114 PHI = cast<PHINode>(I); 3115 if (!AlternativeV) 3116 break; 3117 3118 assert(Succ->hasNPredecessors(2)); 3119 auto PredI = pred_begin(Succ); 3120 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3121 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3122 break; 3123 PHI = nullptr; 3124 } 3125 if (PHI) 3126 return PHI; 3127 3128 // If V is not an instruction defined in BB, just return it. 3129 if (!AlternativeV && 3130 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3131 return V; 3132 3133 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3134 PHI->addIncoming(V, BB); 3135 for (BasicBlock *PredBB : predecessors(Succ)) 3136 if (PredBB != BB) 3137 PHI->addIncoming( 3138 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3139 return PHI; 3140 } 3141 3142 static bool mergeConditionalStoreToAddress( 3143 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3144 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3145 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3146 // For every pointer, there must be exactly two stores, one coming from 3147 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3148 // store (to any address) in PTB,PFB or QTB,QFB. 3149 // FIXME: We could relax this restriction with a bit more work and performance 3150 // testing. 3151 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3152 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3153 if (!PStore || !QStore) 3154 return false; 3155 3156 // Now check the stores are compatible. 3157 if (!QStore->isUnordered() || !PStore->isUnordered()) 3158 return false; 3159 3160 // Check that sinking the store won't cause program behavior changes. Sinking 3161 // the store out of the Q blocks won't change any behavior as we're sinking 3162 // from a block to its unconditional successor. But we're moving a store from 3163 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3164 // So we need to check that there are no aliasing loads or stores in 3165 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3166 // operations between PStore and the end of its parent block. 3167 // 3168 // The ideal way to do this is to query AliasAnalysis, but we don't 3169 // preserve AA currently so that is dangerous. Be super safe and just 3170 // check there are no other memory operations at all. 3171 for (auto &I : *QFB->getSinglePredecessor()) 3172 if (I.mayReadOrWriteMemory()) 3173 return false; 3174 for (auto &I : *QFB) 3175 if (&I != QStore && I.mayReadOrWriteMemory()) 3176 return false; 3177 if (QTB) 3178 for (auto &I : *QTB) 3179 if (&I != QStore && I.mayReadOrWriteMemory()) 3180 return false; 3181 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3182 I != E; ++I) 3183 if (&*I != PStore && I->mayReadOrWriteMemory()) 3184 return false; 3185 3186 // If we're not in aggressive mode, we only optimize if we have some 3187 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3188 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3189 if (!BB) 3190 return true; 3191 // Heuristic: if the block can be if-converted/phi-folded and the 3192 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3193 // thread this store. 3194 InstructionCost Cost = 0; 3195 InstructionCost Budget = 3196 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3197 for (auto &I : BB->instructionsWithoutDebug()) { 3198 // Consider terminator instruction to be free. 3199 if (I.isTerminator()) 3200 continue; 3201 // If this is one the stores that we want to speculate out of this BB, 3202 // then don't count it's cost, consider it to be free. 3203 if (auto *S = dyn_cast<StoreInst>(&I)) 3204 if (llvm::find(FreeStores, S)) 3205 continue; 3206 // Else, we have a white-list of instructions that we are ak speculating. 3207 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3208 return false; // Not in white-list - not worthwhile folding. 3209 // And finally, if this is a non-free instruction that we are okay 3210 // speculating, ensure that we consider the speculation budget. 3211 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3212 if (Cost > Budget) 3213 return false; // Eagerly refuse to fold as soon as we're out of budget. 3214 } 3215 assert(Cost <= Budget && 3216 "When we run out of budget we will eagerly return from within the " 3217 "per-instruction loop."); 3218 return true; 3219 }; 3220 3221 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3222 if (!MergeCondStoresAggressively && 3223 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3224 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3225 return false; 3226 3227 // If PostBB has more than two predecessors, we need to split it so we can 3228 // sink the store. 3229 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3230 // We know that QFB's only successor is PostBB. And QFB has a single 3231 // predecessor. If QTB exists, then its only successor is also PostBB. 3232 // If QTB does not exist, then QFB's only predecessor has a conditional 3233 // branch to QFB and PostBB. 3234 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3235 BasicBlock *NewBB = 3236 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3237 if (!NewBB) 3238 return false; 3239 PostBB = NewBB; 3240 } 3241 3242 // OK, we're going to sink the stores to PostBB. The store has to be 3243 // conditional though, so first create the predicate. 3244 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3245 ->getCondition(); 3246 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3247 ->getCondition(); 3248 3249 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3250 PStore->getParent()); 3251 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3252 QStore->getParent(), PPHI); 3253 3254 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3255 3256 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3257 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3258 3259 if (InvertPCond) 3260 PPred = QB.CreateNot(PPred); 3261 if (InvertQCond) 3262 QPred = QB.CreateNot(QPred); 3263 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3264 3265 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3266 /*Unreachable=*/false, 3267 /*BranchWeights=*/nullptr, DTU); 3268 QB.SetInsertPoint(T); 3269 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3270 AAMDNodes AAMD; 3271 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3272 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3273 SI->setAAMetadata(AAMD); 3274 // Choose the minimum alignment. If we could prove both stores execute, we 3275 // could use biggest one. In this case, though, we only know that one of the 3276 // stores executes. And we don't know it's safe to take the alignment from a 3277 // store that doesn't execute. 3278 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3279 3280 QStore->eraseFromParent(); 3281 PStore->eraseFromParent(); 3282 3283 return true; 3284 } 3285 3286 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3287 DomTreeUpdater *DTU, const DataLayout &DL, 3288 const TargetTransformInfo &TTI) { 3289 // The intention here is to find diamonds or triangles (see below) where each 3290 // conditional block contains a store to the same address. Both of these 3291 // stores are conditional, so they can't be unconditionally sunk. But it may 3292 // be profitable to speculatively sink the stores into one merged store at the 3293 // end, and predicate the merged store on the union of the two conditions of 3294 // PBI and QBI. 3295 // 3296 // This can reduce the number of stores executed if both of the conditions are 3297 // true, and can allow the blocks to become small enough to be if-converted. 3298 // This optimization will also chain, so that ladders of test-and-set 3299 // sequences can be if-converted away. 3300 // 3301 // We only deal with simple diamonds or triangles: 3302 // 3303 // PBI or PBI or a combination of the two 3304 // / \ | \ 3305 // PTB PFB | PFB 3306 // \ / | / 3307 // QBI QBI 3308 // / \ | \ 3309 // QTB QFB | QFB 3310 // \ / | / 3311 // PostBB PostBB 3312 // 3313 // We model triangles as a type of diamond with a nullptr "true" block. 3314 // Triangles are canonicalized so that the fallthrough edge is represented by 3315 // a true condition, as in the diagram above. 3316 BasicBlock *PTB = PBI->getSuccessor(0); 3317 BasicBlock *PFB = PBI->getSuccessor(1); 3318 BasicBlock *QTB = QBI->getSuccessor(0); 3319 BasicBlock *QFB = QBI->getSuccessor(1); 3320 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3321 3322 // Make sure we have a good guess for PostBB. If QTB's only successor is 3323 // QFB, then QFB is a better PostBB. 3324 if (QTB->getSingleSuccessor() == QFB) 3325 PostBB = QFB; 3326 3327 // If we couldn't find a good PostBB, stop. 3328 if (!PostBB) 3329 return false; 3330 3331 bool InvertPCond = false, InvertQCond = false; 3332 // Canonicalize fallthroughs to the true branches. 3333 if (PFB == QBI->getParent()) { 3334 std::swap(PFB, PTB); 3335 InvertPCond = true; 3336 } 3337 if (QFB == PostBB) { 3338 std::swap(QFB, QTB); 3339 InvertQCond = true; 3340 } 3341 3342 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3343 // and QFB may not. Model fallthroughs as a nullptr block. 3344 if (PTB == QBI->getParent()) 3345 PTB = nullptr; 3346 if (QTB == PostBB) 3347 QTB = nullptr; 3348 3349 // Legality bailouts. We must have at least the non-fallthrough blocks and 3350 // the post-dominating block, and the non-fallthroughs must only have one 3351 // predecessor. 3352 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3353 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3354 }; 3355 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3356 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3357 return false; 3358 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3359 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3360 return false; 3361 if (!QBI->getParent()->hasNUses(2)) 3362 return false; 3363 3364 // OK, this is a sequence of two diamonds or triangles. 3365 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3366 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3367 for (auto *BB : {PTB, PFB}) { 3368 if (!BB) 3369 continue; 3370 for (auto &I : *BB) 3371 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3372 PStoreAddresses.insert(SI->getPointerOperand()); 3373 } 3374 for (auto *BB : {QTB, QFB}) { 3375 if (!BB) 3376 continue; 3377 for (auto &I : *BB) 3378 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3379 QStoreAddresses.insert(SI->getPointerOperand()); 3380 } 3381 3382 set_intersect(PStoreAddresses, QStoreAddresses); 3383 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3384 // clear what it contains. 3385 auto &CommonAddresses = PStoreAddresses; 3386 3387 bool Changed = false; 3388 for (auto *Address : CommonAddresses) 3389 Changed |= 3390 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3391 InvertPCond, InvertQCond, DTU, DL, TTI); 3392 return Changed; 3393 } 3394 3395 /// If the previous block ended with a widenable branch, determine if reusing 3396 /// the target block is profitable and legal. This will have the effect of 3397 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3398 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3399 DomTreeUpdater *DTU) { 3400 // TODO: This can be generalized in two important ways: 3401 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3402 // values from the PBI edge. 3403 // 2) We can sink side effecting instructions into BI's fallthrough 3404 // successor provided they doesn't contribute to computation of 3405 // BI's condition. 3406 Value *CondWB, *WC; 3407 BasicBlock *IfTrueBB, *IfFalseBB; 3408 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3409 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3410 return false; 3411 if (!IfFalseBB->phis().empty()) 3412 return false; // TODO 3413 // Use lambda to lazily compute expensive condition after cheap ones. 3414 auto NoSideEffects = [](BasicBlock &BB) { 3415 return !llvm::any_of(BB, [](const Instruction &I) { 3416 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3417 }); 3418 }; 3419 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3420 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3421 NoSideEffects(*BI->getParent())) { 3422 auto *OldSuccessor = BI->getSuccessor(1); 3423 OldSuccessor->removePredecessor(BI->getParent()); 3424 BI->setSuccessor(1, IfFalseBB); 3425 if (DTU) 3426 DTU->applyUpdates( 3427 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3428 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3429 return true; 3430 } 3431 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3432 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3433 NoSideEffects(*BI->getParent())) { 3434 auto *OldSuccessor = BI->getSuccessor(0); 3435 OldSuccessor->removePredecessor(BI->getParent()); 3436 BI->setSuccessor(0, IfFalseBB); 3437 if (DTU) 3438 DTU->applyUpdates( 3439 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3440 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3441 return true; 3442 } 3443 return false; 3444 } 3445 3446 /// If we have a conditional branch as a predecessor of another block, 3447 /// this function tries to simplify it. We know 3448 /// that PBI and BI are both conditional branches, and BI is in one of the 3449 /// successor blocks of PBI - PBI branches to BI. 3450 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3451 DomTreeUpdater *DTU, 3452 const DataLayout &DL, 3453 const TargetTransformInfo &TTI) { 3454 assert(PBI->isConditional() && BI->isConditional()); 3455 BasicBlock *BB = BI->getParent(); 3456 3457 // If this block ends with a branch instruction, and if there is a 3458 // predecessor that ends on a branch of the same condition, make 3459 // this conditional branch redundant. 3460 if (PBI->getCondition() == BI->getCondition() && 3461 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3462 // Okay, the outcome of this conditional branch is statically 3463 // knowable. If this block had a single pred, handle specially. 3464 if (BB->getSinglePredecessor()) { 3465 // Turn this into a branch on constant. 3466 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3467 BI->setCondition( 3468 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3469 return true; // Nuke the branch on constant. 3470 } 3471 3472 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3473 // in the constant and simplify the block result. Subsequent passes of 3474 // simplifycfg will thread the block. 3475 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3476 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3477 PHINode *NewPN = PHINode::Create( 3478 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3479 BI->getCondition()->getName() + ".pr", &BB->front()); 3480 // Okay, we're going to insert the PHI node. Since PBI is not the only 3481 // predecessor, compute the PHI'd conditional value for all of the preds. 3482 // Any predecessor where the condition is not computable we keep symbolic. 3483 for (pred_iterator PI = PB; PI != PE; ++PI) { 3484 BasicBlock *P = *PI; 3485 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3486 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3487 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3488 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3489 NewPN->addIncoming( 3490 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3491 P); 3492 } else { 3493 NewPN->addIncoming(BI->getCondition(), P); 3494 } 3495 } 3496 3497 BI->setCondition(NewPN); 3498 return true; 3499 } 3500 } 3501 3502 // If the previous block ended with a widenable branch, determine if reusing 3503 // the target block is profitable and legal. This will have the effect of 3504 // "widening" PBI, but doesn't require us to reason about hosting safety. 3505 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3506 return true; 3507 3508 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3509 if (CE->canTrap()) 3510 return false; 3511 3512 // If both branches are conditional and both contain stores to the same 3513 // address, remove the stores from the conditionals and create a conditional 3514 // merged store at the end. 3515 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3516 return true; 3517 3518 // If this is a conditional branch in an empty block, and if any 3519 // predecessors are a conditional branch to one of our destinations, 3520 // fold the conditions into logical ops and one cond br. 3521 3522 // Ignore dbg intrinsics. 3523 if (&*BB->instructionsWithoutDebug().begin() != BI) 3524 return false; 3525 3526 int PBIOp, BIOp; 3527 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3528 PBIOp = 0; 3529 BIOp = 0; 3530 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3531 PBIOp = 0; 3532 BIOp = 1; 3533 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3534 PBIOp = 1; 3535 BIOp = 0; 3536 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3537 PBIOp = 1; 3538 BIOp = 1; 3539 } else { 3540 return false; 3541 } 3542 3543 // Check to make sure that the other destination of this branch 3544 // isn't BB itself. If so, this is an infinite loop that will 3545 // keep getting unwound. 3546 if (PBI->getSuccessor(PBIOp) == BB) 3547 return false; 3548 3549 // Do not perform this transformation if it would require 3550 // insertion of a large number of select instructions. For targets 3551 // without predication/cmovs, this is a big pessimization. 3552 3553 // Also do not perform this transformation if any phi node in the common 3554 // destination block can trap when reached by BB or PBB (PR17073). In that 3555 // case, it would be unsafe to hoist the operation into a select instruction. 3556 3557 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3558 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3559 unsigned NumPhis = 0; 3560 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3561 ++II, ++NumPhis) { 3562 if (NumPhis > 2) // Disable this xform. 3563 return false; 3564 3565 PHINode *PN = cast<PHINode>(II); 3566 Value *BIV = PN->getIncomingValueForBlock(BB); 3567 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3568 if (CE->canTrap()) 3569 return false; 3570 3571 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3572 Value *PBIV = PN->getIncomingValue(PBBIdx); 3573 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3574 if (CE->canTrap()) 3575 return false; 3576 } 3577 3578 // Finally, if everything is ok, fold the branches to logical ops. 3579 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3580 3581 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3582 << "AND: " << *BI->getParent()); 3583 3584 SmallVector<DominatorTree::UpdateType, 5> Updates; 3585 3586 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3587 // branch in it, where one edge (OtherDest) goes back to itself but the other 3588 // exits. We don't *know* that the program avoids the infinite loop 3589 // (even though that seems likely). If we do this xform naively, we'll end up 3590 // recursively unpeeling the loop. Since we know that (after the xform is 3591 // done) that the block *is* infinite if reached, we just make it an obviously 3592 // infinite loop with no cond branch. 3593 if (OtherDest == BB) { 3594 // Insert it at the end of the function, because it's either code, 3595 // or it won't matter if it's hot. :) 3596 BasicBlock *InfLoopBlock = 3597 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3598 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3599 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3600 OtherDest = InfLoopBlock; 3601 } 3602 3603 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3604 3605 // BI may have other predecessors. Because of this, we leave 3606 // it alone, but modify PBI. 3607 3608 // Make sure we get to CommonDest on True&True directions. 3609 Value *PBICond = PBI->getCondition(); 3610 IRBuilder<NoFolder> Builder(PBI); 3611 if (PBIOp) 3612 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3613 3614 Value *BICond = BI->getCondition(); 3615 if (BIOp) 3616 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3617 3618 // Merge the conditions. 3619 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3620 3621 // Modify PBI to branch on the new condition to the new dests. 3622 PBI->setCondition(Cond); 3623 PBI->setSuccessor(0, CommonDest); 3624 PBI->setSuccessor(1, OtherDest); 3625 3626 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3627 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3628 3629 if (DTU) 3630 DTU->applyUpdates(Updates); 3631 3632 // Update branch weight for PBI. 3633 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3634 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3635 bool HasWeights = 3636 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3637 SuccTrueWeight, SuccFalseWeight); 3638 if (HasWeights) { 3639 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3640 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3641 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3642 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3643 // The weight to CommonDest should be PredCommon * SuccTotal + 3644 // PredOther * SuccCommon. 3645 // The weight to OtherDest should be PredOther * SuccOther. 3646 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3647 PredOther * SuccCommon, 3648 PredOther * SuccOther}; 3649 // Halve the weights if any of them cannot fit in an uint32_t 3650 FitWeights(NewWeights); 3651 3652 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3653 } 3654 3655 // OtherDest may have phi nodes. If so, add an entry from PBI's 3656 // block that are identical to the entries for BI's block. 3657 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3658 3659 // We know that the CommonDest already had an edge from PBI to 3660 // it. If it has PHIs though, the PHIs may have different 3661 // entries for BB and PBI's BB. If so, insert a select to make 3662 // them agree. 3663 for (PHINode &PN : CommonDest->phis()) { 3664 Value *BIV = PN.getIncomingValueForBlock(BB); 3665 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3666 Value *PBIV = PN.getIncomingValue(PBBIdx); 3667 if (BIV != PBIV) { 3668 // Insert a select in PBI to pick the right value. 3669 SelectInst *NV = cast<SelectInst>( 3670 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3671 PN.setIncomingValue(PBBIdx, NV); 3672 // Although the select has the same condition as PBI, the original branch 3673 // weights for PBI do not apply to the new select because the select's 3674 // 'logical' edges are incoming edges of the phi that is eliminated, not 3675 // the outgoing edges of PBI. 3676 if (HasWeights) { 3677 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3678 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3679 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3680 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3681 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3682 // The weight to PredOtherDest should be PredOther * SuccCommon. 3683 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3684 PredOther * SuccCommon}; 3685 3686 FitWeights(NewWeights); 3687 3688 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3689 } 3690 } 3691 } 3692 3693 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3694 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3695 3696 // This basic block is probably dead. We know it has at least 3697 // one fewer predecessor. 3698 return true; 3699 } 3700 3701 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3702 // true or to FalseBB if Cond is false. 3703 // Takes care of updating the successors and removing the old terminator. 3704 // Also makes sure not to introduce new successors by assuming that edges to 3705 // non-successor TrueBBs and FalseBBs aren't reachable. 3706 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3707 Value *Cond, BasicBlock *TrueBB, 3708 BasicBlock *FalseBB, 3709 uint32_t TrueWeight, 3710 uint32_t FalseWeight) { 3711 auto *BB = OldTerm->getParent(); 3712 // Remove any superfluous successor edges from the CFG. 3713 // First, figure out which successors to preserve. 3714 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3715 // successor. 3716 BasicBlock *KeepEdge1 = TrueBB; 3717 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3718 3719 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 3720 3721 // Then remove the rest. 3722 for (BasicBlock *Succ : successors(OldTerm)) { 3723 // Make sure only to keep exactly one copy of each edge. 3724 if (Succ == KeepEdge1) 3725 KeepEdge1 = nullptr; 3726 else if (Succ == KeepEdge2) 3727 KeepEdge2 = nullptr; 3728 else { 3729 Succ->removePredecessor(BB, 3730 /*KeepOneInputPHIs=*/true); 3731 3732 if (Succ != TrueBB && Succ != FalseBB) 3733 RemovedSuccessors.insert(Succ); 3734 } 3735 } 3736 3737 IRBuilder<> Builder(OldTerm); 3738 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3739 3740 // Insert an appropriate new terminator. 3741 if (!KeepEdge1 && !KeepEdge2) { 3742 if (TrueBB == FalseBB) { 3743 // We were only looking for one successor, and it was present. 3744 // Create an unconditional branch to it. 3745 Builder.CreateBr(TrueBB); 3746 } else { 3747 // We found both of the successors we were looking for. 3748 // Create a conditional branch sharing the condition of the select. 3749 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3750 if (TrueWeight != FalseWeight) 3751 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3752 } 3753 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3754 // Neither of the selected blocks were successors, so this 3755 // terminator must be unreachable. 3756 new UnreachableInst(OldTerm->getContext(), OldTerm); 3757 } else { 3758 // One of the selected values was a successor, but the other wasn't. 3759 // Insert an unconditional branch to the one that was found; 3760 // the edge to the one that wasn't must be unreachable. 3761 if (!KeepEdge1) { 3762 // Only TrueBB was found. 3763 Builder.CreateBr(TrueBB); 3764 } else { 3765 // Only FalseBB was found. 3766 Builder.CreateBr(FalseBB); 3767 } 3768 } 3769 3770 EraseTerminatorAndDCECond(OldTerm); 3771 3772 if (DTU) { 3773 SmallVector<DominatorTree::UpdateType, 2> Updates; 3774 Updates.reserve(RemovedSuccessors.size()); 3775 for (auto *RemovedSuccessor : RemovedSuccessors) 3776 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3777 DTU->applyUpdates(Updates); 3778 } 3779 3780 return true; 3781 } 3782 3783 // Replaces 3784 // (switch (select cond, X, Y)) on constant X, Y 3785 // with a branch - conditional if X and Y lead to distinct BBs, 3786 // unconditional otherwise. 3787 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3788 SelectInst *Select) { 3789 // Check for constant integer values in the select. 3790 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3791 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3792 if (!TrueVal || !FalseVal) 3793 return false; 3794 3795 // Find the relevant condition and destinations. 3796 Value *Condition = Select->getCondition(); 3797 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3798 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3799 3800 // Get weight for TrueBB and FalseBB. 3801 uint32_t TrueWeight = 0, FalseWeight = 0; 3802 SmallVector<uint64_t, 8> Weights; 3803 bool HasWeights = HasBranchWeights(SI); 3804 if (HasWeights) { 3805 GetBranchWeights(SI, Weights); 3806 if (Weights.size() == 1 + SI->getNumCases()) { 3807 TrueWeight = 3808 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3809 FalseWeight = 3810 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3811 } 3812 } 3813 3814 // Perform the actual simplification. 3815 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3816 FalseWeight); 3817 } 3818 3819 // Replaces 3820 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3821 // blockaddress(@fn, BlockB))) 3822 // with 3823 // (br cond, BlockA, BlockB). 3824 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3825 SelectInst *SI) { 3826 // Check that both operands of the select are block addresses. 3827 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3828 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3829 if (!TBA || !FBA) 3830 return false; 3831 3832 // Extract the actual blocks. 3833 BasicBlock *TrueBB = TBA->getBasicBlock(); 3834 BasicBlock *FalseBB = FBA->getBasicBlock(); 3835 3836 // Perform the actual simplification. 3837 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3838 0); 3839 } 3840 3841 /// This is called when we find an icmp instruction 3842 /// (a seteq/setne with a constant) as the only instruction in a 3843 /// block that ends with an uncond branch. We are looking for a very specific 3844 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3845 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3846 /// default value goes to an uncond block with a seteq in it, we get something 3847 /// like: 3848 /// 3849 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3850 /// DEFAULT: 3851 /// %tmp = icmp eq i8 %A, 92 3852 /// br label %end 3853 /// end: 3854 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3855 /// 3856 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3857 /// the PHI, merging the third icmp into the switch. 3858 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3859 ICmpInst *ICI, IRBuilder<> &Builder) { 3860 BasicBlock *BB = ICI->getParent(); 3861 3862 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3863 // complex. 3864 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3865 return false; 3866 3867 Value *V = ICI->getOperand(0); 3868 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3869 3870 // The pattern we're looking for is where our only predecessor is a switch on 3871 // 'V' and this block is the default case for the switch. In this case we can 3872 // fold the compared value into the switch to simplify things. 3873 BasicBlock *Pred = BB->getSinglePredecessor(); 3874 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3875 return false; 3876 3877 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3878 if (SI->getCondition() != V) 3879 return false; 3880 3881 // If BB is reachable on a non-default case, then we simply know the value of 3882 // V in this block. Substitute it and constant fold the icmp instruction 3883 // away. 3884 if (SI->getDefaultDest() != BB) { 3885 ConstantInt *VVal = SI->findCaseDest(BB); 3886 assert(VVal && "Should have a unique destination value"); 3887 ICI->setOperand(0, VVal); 3888 3889 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3890 ICI->replaceAllUsesWith(V); 3891 ICI->eraseFromParent(); 3892 } 3893 // BB is now empty, so it is likely to simplify away. 3894 return requestResimplify(); 3895 } 3896 3897 // Ok, the block is reachable from the default dest. If the constant we're 3898 // comparing exists in one of the other edges, then we can constant fold ICI 3899 // and zap it. 3900 if (SI->findCaseValue(Cst) != SI->case_default()) { 3901 Value *V; 3902 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3903 V = ConstantInt::getFalse(BB->getContext()); 3904 else 3905 V = ConstantInt::getTrue(BB->getContext()); 3906 3907 ICI->replaceAllUsesWith(V); 3908 ICI->eraseFromParent(); 3909 // BB is now empty, so it is likely to simplify away. 3910 return requestResimplify(); 3911 } 3912 3913 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3914 // the block. 3915 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3916 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3917 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3918 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3919 return false; 3920 3921 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3922 // true in the PHI. 3923 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3924 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3925 3926 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3927 std::swap(DefaultCst, NewCst); 3928 3929 // Replace ICI (which is used by the PHI for the default value) with true or 3930 // false depending on if it is EQ or NE. 3931 ICI->replaceAllUsesWith(DefaultCst); 3932 ICI->eraseFromParent(); 3933 3934 SmallVector<DominatorTree::UpdateType, 2> Updates; 3935 3936 // Okay, the switch goes to this block on a default value. Add an edge from 3937 // the switch to the merge point on the compared value. 3938 BasicBlock *NewBB = 3939 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3940 { 3941 SwitchInstProfUpdateWrapper SIW(*SI); 3942 auto W0 = SIW.getSuccessorWeight(0); 3943 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3944 if (W0) { 3945 NewW = ((uint64_t(*W0) + 1) >> 1); 3946 SIW.setSuccessorWeight(0, *NewW); 3947 } 3948 SIW.addCase(Cst, NewBB, NewW); 3949 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 3950 } 3951 3952 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3953 Builder.SetInsertPoint(NewBB); 3954 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3955 Builder.CreateBr(SuccBlock); 3956 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 3957 PHIUse->addIncoming(NewCst, NewBB); 3958 if (DTU) 3959 DTU->applyUpdates(Updates); 3960 return true; 3961 } 3962 3963 /// The specified branch is a conditional branch. 3964 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3965 /// fold it into a switch instruction if so. 3966 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3967 IRBuilder<> &Builder, 3968 const DataLayout &DL) { 3969 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3970 if (!Cond) 3971 return false; 3972 3973 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3974 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3975 // 'setne's and'ed together, collect them. 3976 3977 // Try to gather values from a chain of and/or to be turned into a switch 3978 ConstantComparesGatherer ConstantCompare(Cond, DL); 3979 // Unpack the result 3980 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3981 Value *CompVal = ConstantCompare.CompValue; 3982 unsigned UsedICmps = ConstantCompare.UsedICmps; 3983 Value *ExtraCase = ConstantCompare.Extra; 3984 3985 // If we didn't have a multiply compared value, fail. 3986 if (!CompVal) 3987 return false; 3988 3989 // Avoid turning single icmps into a switch. 3990 if (UsedICmps <= 1) 3991 return false; 3992 3993 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 3994 3995 // There might be duplicate constants in the list, which the switch 3996 // instruction can't handle, remove them now. 3997 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3998 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3999 4000 // If Extra was used, we require at least two switch values to do the 4001 // transformation. A switch with one value is just a conditional branch. 4002 if (ExtraCase && Values.size() < 2) 4003 return false; 4004 4005 // TODO: Preserve branch weight metadata, similarly to how 4006 // FoldValueComparisonIntoPredecessors preserves it. 4007 4008 // Figure out which block is which destination. 4009 BasicBlock *DefaultBB = BI->getSuccessor(1); 4010 BasicBlock *EdgeBB = BI->getSuccessor(0); 4011 if (!TrueWhenEqual) 4012 std::swap(DefaultBB, EdgeBB); 4013 4014 BasicBlock *BB = BI->getParent(); 4015 4016 // MSAN does not like undefs as branch condition which can be introduced 4017 // with "explicit branch". 4018 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4019 return false; 4020 4021 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4022 << " cases into SWITCH. BB is:\n" 4023 << *BB); 4024 4025 SmallVector<DominatorTree::UpdateType, 2> Updates; 4026 4027 // If there are any extra values that couldn't be folded into the switch 4028 // then we evaluate them with an explicit branch first. Split the block 4029 // right before the condbr to handle it. 4030 if (ExtraCase) { 4031 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4032 /*MSSAU=*/nullptr, "switch.early.test"); 4033 4034 // Remove the uncond branch added to the old block. 4035 Instruction *OldTI = BB->getTerminator(); 4036 Builder.SetInsertPoint(OldTI); 4037 4038 if (TrueWhenEqual) 4039 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4040 else 4041 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4042 4043 OldTI->eraseFromParent(); 4044 4045 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4046 4047 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4048 // for the edge we just added. 4049 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4050 4051 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4052 << "\nEXTRABB = " << *BB); 4053 BB = NewBB; 4054 } 4055 4056 Builder.SetInsertPoint(BI); 4057 // Convert pointer to int before we switch. 4058 if (CompVal->getType()->isPointerTy()) { 4059 CompVal = Builder.CreatePtrToInt( 4060 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4061 } 4062 4063 // Create the new switch instruction now. 4064 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4065 4066 // Add all of the 'cases' to the switch instruction. 4067 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4068 New->addCase(Values[i], EdgeBB); 4069 4070 // We added edges from PI to the EdgeBB. As such, if there were any 4071 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4072 // the number of edges added. 4073 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4074 PHINode *PN = cast<PHINode>(BBI); 4075 Value *InVal = PN->getIncomingValueForBlock(BB); 4076 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4077 PN->addIncoming(InVal, BB); 4078 } 4079 4080 // Erase the old branch instruction. 4081 EraseTerminatorAndDCECond(BI); 4082 if (DTU) 4083 DTU->applyUpdates(Updates); 4084 4085 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4086 return true; 4087 } 4088 4089 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4090 if (isa<PHINode>(RI->getValue())) 4091 return simplifyCommonResume(RI); 4092 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4093 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4094 // The resume must unwind the exception that caused control to branch here. 4095 return simplifySingleResume(RI); 4096 4097 return false; 4098 } 4099 4100 // Check if cleanup block is empty 4101 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4102 for (Instruction &I : R) { 4103 auto *II = dyn_cast<IntrinsicInst>(&I); 4104 if (!II) 4105 return false; 4106 4107 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4108 switch (IntrinsicID) { 4109 case Intrinsic::dbg_declare: 4110 case Intrinsic::dbg_value: 4111 case Intrinsic::dbg_label: 4112 case Intrinsic::lifetime_end: 4113 break; 4114 default: 4115 return false; 4116 } 4117 } 4118 return true; 4119 } 4120 4121 // Simplify resume that is shared by several landing pads (phi of landing pad). 4122 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4123 BasicBlock *BB = RI->getParent(); 4124 4125 // Check that there are no other instructions except for debug and lifetime 4126 // intrinsics between the phi's and resume instruction. 4127 if (!isCleanupBlockEmpty( 4128 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4129 return false; 4130 4131 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4132 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4133 4134 // Check incoming blocks to see if any of them are trivial. 4135 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4136 Idx++) { 4137 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4138 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4139 4140 // If the block has other successors, we can not delete it because 4141 // it has other dependents. 4142 if (IncomingBB->getUniqueSuccessor() != BB) 4143 continue; 4144 4145 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4146 // Not the landing pad that caused the control to branch here. 4147 if (IncomingValue != LandingPad) 4148 continue; 4149 4150 if (isCleanupBlockEmpty( 4151 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4152 TrivialUnwindBlocks.insert(IncomingBB); 4153 } 4154 4155 // If no trivial unwind blocks, don't do any simplifications. 4156 if (TrivialUnwindBlocks.empty()) 4157 return false; 4158 4159 // Turn all invokes that unwind here into calls. 4160 for (auto *TrivialBB : TrivialUnwindBlocks) { 4161 // Blocks that will be simplified should be removed from the phi node. 4162 // Note there could be multiple edges to the resume block, and we need 4163 // to remove them all. 4164 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4165 BB->removePredecessor(TrivialBB, true); 4166 4167 for (BasicBlock *Pred : 4168 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4169 removeUnwindEdge(Pred, DTU); 4170 ++NumInvokes; 4171 } 4172 4173 // In each SimplifyCFG run, only the current processed block can be erased. 4174 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4175 // of erasing TrivialBB, we only remove the branch to the common resume 4176 // block so that we can later erase the resume block since it has no 4177 // predecessors. 4178 TrivialBB->getTerminator()->eraseFromParent(); 4179 new UnreachableInst(RI->getContext(), TrivialBB); 4180 if (DTU) 4181 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4182 } 4183 4184 // Delete the resume block if all its predecessors have been removed. 4185 if (pred_empty(BB)) { 4186 if (DTU) 4187 DTU->deleteBB(BB); 4188 else 4189 BB->eraseFromParent(); 4190 } 4191 4192 return !TrivialUnwindBlocks.empty(); 4193 } 4194 4195 // Simplify resume that is only used by a single (non-phi) landing pad. 4196 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4197 BasicBlock *BB = RI->getParent(); 4198 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4199 assert(RI->getValue() == LPInst && 4200 "Resume must unwind the exception that caused control to here"); 4201 4202 // Check that there are no other instructions except for debug intrinsics. 4203 if (!isCleanupBlockEmpty( 4204 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4205 return false; 4206 4207 // Turn all invokes that unwind here into calls and delete the basic block. 4208 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4209 removeUnwindEdge(Pred, DTU); 4210 ++NumInvokes; 4211 } 4212 4213 // The landingpad is now unreachable. Zap it. 4214 if (DTU) 4215 DTU->deleteBB(BB); 4216 else 4217 BB->eraseFromParent(); 4218 return true; 4219 } 4220 4221 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4222 // If this is a trivial cleanup pad that executes no instructions, it can be 4223 // eliminated. If the cleanup pad continues to the caller, any predecessor 4224 // that is an EH pad will be updated to continue to the caller and any 4225 // predecessor that terminates with an invoke instruction will have its invoke 4226 // instruction converted to a call instruction. If the cleanup pad being 4227 // simplified does not continue to the caller, each predecessor will be 4228 // updated to continue to the unwind destination of the cleanup pad being 4229 // simplified. 4230 BasicBlock *BB = RI->getParent(); 4231 CleanupPadInst *CPInst = RI->getCleanupPad(); 4232 if (CPInst->getParent() != BB) 4233 // This isn't an empty cleanup. 4234 return false; 4235 4236 // We cannot kill the pad if it has multiple uses. This typically arises 4237 // from unreachable basic blocks. 4238 if (!CPInst->hasOneUse()) 4239 return false; 4240 4241 // Check that there are no other instructions except for benign intrinsics. 4242 if (!isCleanupBlockEmpty( 4243 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4244 return false; 4245 4246 // If the cleanup return we are simplifying unwinds to the caller, this will 4247 // set UnwindDest to nullptr. 4248 BasicBlock *UnwindDest = RI->getUnwindDest(); 4249 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4250 4251 // We're about to remove BB from the control flow. Before we do, sink any 4252 // PHINodes into the unwind destination. Doing this before changing the 4253 // control flow avoids some potentially slow checks, since we can currently 4254 // be certain that UnwindDest and BB have no common predecessors (since they 4255 // are both EH pads). 4256 if (UnwindDest) { 4257 // First, go through the PHI nodes in UnwindDest and update any nodes that 4258 // reference the block we are removing 4259 for (BasicBlock::iterator I = UnwindDest->begin(), 4260 IE = DestEHPad->getIterator(); 4261 I != IE; ++I) { 4262 PHINode *DestPN = cast<PHINode>(I); 4263 4264 int Idx = DestPN->getBasicBlockIndex(BB); 4265 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4266 assert(Idx != -1); 4267 // This PHI node has an incoming value that corresponds to a control 4268 // path through the cleanup pad we are removing. If the incoming 4269 // value is in the cleanup pad, it must be a PHINode (because we 4270 // verified above that the block is otherwise empty). Otherwise, the 4271 // value is either a constant or a value that dominates the cleanup 4272 // pad being removed. 4273 // 4274 // Because BB and UnwindDest are both EH pads, all of their 4275 // predecessors must unwind to these blocks, and since no instruction 4276 // can have multiple unwind destinations, there will be no overlap in 4277 // incoming blocks between SrcPN and DestPN. 4278 Value *SrcVal = DestPN->getIncomingValue(Idx); 4279 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4280 4281 // Remove the entry for the block we are deleting. 4282 DestPN->removeIncomingValue(Idx, false); 4283 4284 if (SrcPN && SrcPN->getParent() == BB) { 4285 // If the incoming value was a PHI node in the cleanup pad we are 4286 // removing, we need to merge that PHI node's incoming values into 4287 // DestPN. 4288 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4289 SrcIdx != SrcE; ++SrcIdx) { 4290 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4291 SrcPN->getIncomingBlock(SrcIdx)); 4292 } 4293 } else { 4294 // Otherwise, the incoming value came from above BB and 4295 // so we can just reuse it. We must associate all of BB's 4296 // predecessors with this value. 4297 for (auto *pred : predecessors(BB)) { 4298 DestPN->addIncoming(SrcVal, pred); 4299 } 4300 } 4301 } 4302 4303 // Sink any remaining PHI nodes directly into UnwindDest. 4304 Instruction *InsertPt = DestEHPad; 4305 for (BasicBlock::iterator I = BB->begin(), 4306 IE = BB->getFirstNonPHI()->getIterator(); 4307 I != IE;) { 4308 // The iterator must be incremented here because the instructions are 4309 // being moved to another block. 4310 PHINode *PN = cast<PHINode>(I++); 4311 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4312 // If the PHI node has no uses or all of its uses are in this basic 4313 // block (meaning they are debug or lifetime intrinsics), just leave 4314 // it. It will be erased when we erase BB below. 4315 continue; 4316 4317 // Otherwise, sink this PHI node into UnwindDest. 4318 // Any predecessors to UnwindDest which are not already represented 4319 // must be back edges which inherit the value from the path through 4320 // BB. In this case, the PHI value must reference itself. 4321 for (auto *pred : predecessors(UnwindDest)) 4322 if (pred != BB) 4323 PN->addIncoming(PN, pred); 4324 PN->moveBefore(InsertPt); 4325 } 4326 } 4327 4328 std::vector<DominatorTree::UpdateType> Updates; 4329 4330 // We use make_early_inc_range here because we may remove some predecessors. 4331 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4332 if (UnwindDest == nullptr) { 4333 if (DTU) 4334 DTU->applyUpdates(Updates); 4335 Updates.clear(); 4336 removeUnwindEdge(PredBB, DTU); 4337 ++NumInvokes; 4338 } else { 4339 Instruction *TI = PredBB->getTerminator(); 4340 TI->replaceUsesOfWith(BB, UnwindDest); 4341 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4342 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4343 } 4344 } 4345 4346 if (DTU) { 4347 DTU->applyUpdates(Updates); 4348 DTU->deleteBB(BB); 4349 } else 4350 // The cleanup pad is now unreachable. Zap it. 4351 BB->eraseFromParent(); 4352 4353 return true; 4354 } 4355 4356 // Try to merge two cleanuppads together. 4357 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4358 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4359 // with. 4360 BasicBlock *UnwindDest = RI->getUnwindDest(); 4361 if (!UnwindDest) 4362 return false; 4363 4364 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4365 // be safe to merge without code duplication. 4366 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4367 return false; 4368 4369 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4370 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4371 if (!SuccessorCleanupPad) 4372 return false; 4373 4374 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4375 // Replace any uses of the successor cleanupad with the predecessor pad 4376 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4377 // funclet bundle operands. 4378 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4379 // Remove the old cleanuppad. 4380 SuccessorCleanupPad->eraseFromParent(); 4381 // Now, we simply replace the cleanupret with a branch to the unwind 4382 // destination. 4383 BranchInst::Create(UnwindDest, RI->getParent()); 4384 RI->eraseFromParent(); 4385 4386 return true; 4387 } 4388 4389 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4390 // It is possible to transiantly have an undef cleanuppad operand because we 4391 // have deleted some, but not all, dead blocks. 4392 // Eventually, this block will be deleted. 4393 if (isa<UndefValue>(RI->getOperand(0))) 4394 return false; 4395 4396 if (mergeCleanupPad(RI)) 4397 return true; 4398 4399 if (removeEmptyCleanup(RI, DTU)) 4400 return true; 4401 4402 return false; 4403 } 4404 4405 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4406 BasicBlock *BB = RI->getParent(); 4407 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4408 return false; 4409 4410 // Find predecessors that end with branches. 4411 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4412 SmallVector<BranchInst *, 8> CondBranchPreds; 4413 for (BasicBlock *P : predecessors(BB)) { 4414 Instruction *PTI = P->getTerminator(); 4415 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4416 if (BI->isUnconditional()) 4417 UncondBranchPreds.push_back(P); 4418 else 4419 CondBranchPreds.push_back(BI); 4420 } 4421 } 4422 4423 // If we found some, do the transformation! 4424 if (!UncondBranchPreds.empty() && DupRet) { 4425 while (!UncondBranchPreds.empty()) { 4426 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4427 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4428 << "INTO UNCOND BRANCH PRED: " << *Pred); 4429 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4430 } 4431 4432 // If we eliminated all predecessors of the block, delete the block now. 4433 if (pred_empty(BB)) { 4434 // We know there are no successors, so just nuke the block. 4435 if (DTU) 4436 DTU->deleteBB(BB); 4437 else 4438 BB->eraseFromParent(); 4439 } 4440 4441 return true; 4442 } 4443 4444 // Check out all of the conditional branches going to this return 4445 // instruction. If any of them just select between returns, change the 4446 // branch itself into a select/return pair. 4447 while (!CondBranchPreds.empty()) { 4448 BranchInst *BI = CondBranchPreds.pop_back_val(); 4449 4450 // Check to see if the non-BB successor is also a return block. 4451 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4452 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4453 SimplifyCondBranchToTwoReturns(BI, Builder)) 4454 return true; 4455 } 4456 return false; 4457 } 4458 4459 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4460 BasicBlock *BB = UI->getParent(); 4461 4462 bool Changed = false; 4463 4464 // If there are any instructions immediately before the unreachable that can 4465 // be removed, do so. 4466 while (UI->getIterator() != BB->begin()) { 4467 BasicBlock::iterator BBI = UI->getIterator(); 4468 --BBI; 4469 // Do not delete instructions that can have side effects which might cause 4470 // the unreachable to not be reachable; specifically, calls and volatile 4471 // operations may have this effect. 4472 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4473 break; 4474 4475 if (BBI->mayHaveSideEffects()) { 4476 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4477 if (SI->isVolatile()) 4478 break; 4479 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4480 if (LI->isVolatile()) 4481 break; 4482 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4483 if (RMWI->isVolatile()) 4484 break; 4485 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4486 if (CXI->isVolatile()) 4487 break; 4488 } else if (isa<CatchPadInst>(BBI)) { 4489 // A catchpad may invoke exception object constructors and such, which 4490 // in some languages can be arbitrary code, so be conservative by 4491 // default. 4492 // For CoreCLR, it just involves a type test, so can be removed. 4493 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4494 EHPersonality::CoreCLR) 4495 break; 4496 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4497 !isa<LandingPadInst>(BBI)) { 4498 break; 4499 } 4500 // Note that deleting LandingPad's here is in fact okay, although it 4501 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4502 // all the predecessors of this block will be the unwind edges of Invokes, 4503 // and we can therefore guarantee this block will be erased. 4504 } 4505 4506 // Delete this instruction (any uses are guaranteed to be dead) 4507 if (!BBI->use_empty()) 4508 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4509 BBI->eraseFromParent(); 4510 Changed = true; 4511 } 4512 4513 // If the unreachable instruction is the first in the block, take a gander 4514 // at all of the predecessors of this instruction, and simplify them. 4515 if (&BB->front() != UI) 4516 return Changed; 4517 4518 std::vector<DominatorTree::UpdateType> Updates; 4519 4520 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4521 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4522 auto *Predecessor = Preds[i]; 4523 Instruction *TI = Predecessor->getTerminator(); 4524 IRBuilder<> Builder(TI); 4525 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4526 // We could either have a proper unconditional branch, 4527 // or a degenerate conditional branch with matching destinations. 4528 if (all_of(BI->successors(), 4529 [BB](auto *Successor) { return Successor == BB; })) { 4530 new UnreachableInst(TI->getContext(), TI); 4531 TI->eraseFromParent(); 4532 Changed = true; 4533 } else { 4534 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4535 Value* Cond = BI->getCondition(); 4536 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4537 "The destinations are guaranteed to be different here."); 4538 if (BI->getSuccessor(0) == BB) { 4539 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4540 Builder.CreateBr(BI->getSuccessor(1)); 4541 } else { 4542 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4543 Builder.CreateAssumption(Cond); 4544 Builder.CreateBr(BI->getSuccessor(0)); 4545 } 4546 EraseTerminatorAndDCECond(BI); 4547 Changed = true; 4548 } 4549 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4550 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4551 SwitchInstProfUpdateWrapper SU(*SI); 4552 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4553 if (i->getCaseSuccessor() != BB) { 4554 ++i; 4555 continue; 4556 } 4557 BB->removePredecessor(SU->getParent()); 4558 i = SU.removeCase(i); 4559 e = SU->case_end(); 4560 Changed = true; 4561 } 4562 // Note that the default destination can't be removed! 4563 if (SI->getDefaultDest() != BB) 4564 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4565 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4566 if (II->getUnwindDest() == BB) { 4567 if (DTU) 4568 DTU->applyUpdates(Updates); 4569 Updates.clear(); 4570 removeUnwindEdge(TI->getParent(), DTU); 4571 Changed = true; 4572 } 4573 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4574 if (CSI->getUnwindDest() == BB) { 4575 if (DTU) 4576 DTU->applyUpdates(Updates); 4577 Updates.clear(); 4578 removeUnwindEdge(TI->getParent(), DTU); 4579 Changed = true; 4580 continue; 4581 } 4582 4583 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4584 E = CSI->handler_end(); 4585 I != E; ++I) { 4586 if (*I == BB) { 4587 CSI->removeHandler(I); 4588 --I; 4589 --E; 4590 Changed = true; 4591 } 4592 } 4593 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4594 if (CSI->getNumHandlers() == 0) { 4595 if (CSI->hasUnwindDest()) { 4596 // Redirect all predecessors of the block containing CatchSwitchInst 4597 // to instead branch to the CatchSwitchInst's unwind destination. 4598 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4599 Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor, 4600 CSI->getUnwindDest()}); 4601 Updates.push_back( 4602 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor}); 4603 } 4604 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4605 } else { 4606 // Rewrite all preds to unwind to caller (or from invoke to call). 4607 if (DTU) 4608 DTU->applyUpdates(Updates); 4609 Updates.clear(); 4610 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4611 for (BasicBlock *EHPred : EHPreds) 4612 removeUnwindEdge(EHPred, DTU); 4613 } 4614 // The catchswitch is no longer reachable. 4615 new UnreachableInst(CSI->getContext(), CSI); 4616 CSI->eraseFromParent(); 4617 Changed = true; 4618 } 4619 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4620 (void)CRI; 4621 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4622 "Expected to always have an unwind to BB."); 4623 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4624 new UnreachableInst(TI->getContext(), TI); 4625 TI->eraseFromParent(); 4626 Changed = true; 4627 } 4628 } 4629 4630 if (DTU) 4631 DTU->applyUpdates(Updates); 4632 4633 // If this block is now dead, remove it. 4634 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4635 // We know there are no successors, so just nuke the block. 4636 if (DTU) 4637 DTU->deleteBB(BB); 4638 else 4639 BB->eraseFromParent(); 4640 return true; 4641 } 4642 4643 return Changed; 4644 } 4645 4646 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4647 assert(Cases.size() >= 1); 4648 4649 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4650 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4651 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4652 return false; 4653 } 4654 return true; 4655 } 4656 4657 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4658 DomTreeUpdater *DTU) { 4659 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4660 auto *BB = Switch->getParent(); 4661 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4662 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4663 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4664 Switch->setDefaultDest(&*NewDefaultBlock); 4665 if (DTU) 4666 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4667 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4668 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4669 SmallVector<DominatorTree::UpdateType, 2> Updates; 4670 for (auto *Successor : successors(NewDefaultBlock)) 4671 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4672 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4673 new UnreachableInst(Switch->getContext(), NewTerminator); 4674 EraseTerminatorAndDCECond(NewTerminator); 4675 if (DTU) 4676 DTU->applyUpdates(Updates); 4677 } 4678 4679 /// Turn a switch with two reachable destinations into an integer range 4680 /// comparison and branch. 4681 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4682 IRBuilder<> &Builder) { 4683 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4684 4685 bool HasDefault = 4686 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4687 4688 auto *BB = SI->getParent(); 4689 4690 // Partition the cases into two sets with different destinations. 4691 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4692 BasicBlock *DestB = nullptr; 4693 SmallVector<ConstantInt *, 16> CasesA; 4694 SmallVector<ConstantInt *, 16> CasesB; 4695 4696 for (auto Case : SI->cases()) { 4697 BasicBlock *Dest = Case.getCaseSuccessor(); 4698 if (!DestA) 4699 DestA = Dest; 4700 if (Dest == DestA) { 4701 CasesA.push_back(Case.getCaseValue()); 4702 continue; 4703 } 4704 if (!DestB) 4705 DestB = Dest; 4706 if (Dest == DestB) { 4707 CasesB.push_back(Case.getCaseValue()); 4708 continue; 4709 } 4710 return false; // More than two destinations. 4711 } 4712 4713 assert(DestA && DestB && 4714 "Single-destination switch should have been folded."); 4715 assert(DestA != DestB); 4716 assert(DestB != SI->getDefaultDest()); 4717 assert(!CasesB.empty() && "There must be non-default cases."); 4718 assert(!CasesA.empty() || HasDefault); 4719 4720 // Figure out if one of the sets of cases form a contiguous range. 4721 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4722 BasicBlock *ContiguousDest = nullptr; 4723 BasicBlock *OtherDest = nullptr; 4724 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4725 ContiguousCases = &CasesA; 4726 ContiguousDest = DestA; 4727 OtherDest = DestB; 4728 } else if (CasesAreContiguous(CasesB)) { 4729 ContiguousCases = &CasesB; 4730 ContiguousDest = DestB; 4731 OtherDest = DestA; 4732 } else 4733 return false; 4734 4735 // Start building the compare and branch. 4736 4737 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4738 Constant *NumCases = 4739 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4740 4741 Value *Sub = SI->getCondition(); 4742 if (!Offset->isNullValue()) 4743 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4744 4745 Value *Cmp; 4746 // If NumCases overflowed, then all possible values jump to the successor. 4747 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4748 Cmp = ConstantInt::getTrue(SI->getContext()); 4749 else 4750 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4751 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4752 4753 // Update weight for the newly-created conditional branch. 4754 if (HasBranchWeights(SI)) { 4755 SmallVector<uint64_t, 8> Weights; 4756 GetBranchWeights(SI, Weights); 4757 if (Weights.size() == 1 + SI->getNumCases()) { 4758 uint64_t TrueWeight = 0; 4759 uint64_t FalseWeight = 0; 4760 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4761 if (SI->getSuccessor(I) == ContiguousDest) 4762 TrueWeight += Weights[I]; 4763 else 4764 FalseWeight += Weights[I]; 4765 } 4766 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4767 TrueWeight /= 2; 4768 FalseWeight /= 2; 4769 } 4770 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4771 } 4772 } 4773 4774 // Prune obsolete incoming values off the successors' PHI nodes. 4775 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4776 unsigned PreviousEdges = ContiguousCases->size(); 4777 if (ContiguousDest == SI->getDefaultDest()) 4778 ++PreviousEdges; 4779 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4780 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4781 } 4782 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4783 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4784 if (OtherDest == SI->getDefaultDest()) 4785 ++PreviousEdges; 4786 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4787 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4788 } 4789 4790 // Clean up the default block - it may have phis or other instructions before 4791 // the unreachable terminator. 4792 if (!HasDefault) 4793 createUnreachableSwitchDefault(SI, DTU); 4794 4795 auto *UnreachableDefault = SI->getDefaultDest(); 4796 4797 // Drop the switch. 4798 SI->eraseFromParent(); 4799 4800 if (!HasDefault && DTU) 4801 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4802 4803 return true; 4804 } 4805 4806 /// Compute masked bits for the condition of a switch 4807 /// and use it to remove dead cases. 4808 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4809 AssumptionCache *AC, 4810 const DataLayout &DL) { 4811 Value *Cond = SI->getCondition(); 4812 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4813 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4814 4815 // We can also eliminate cases by determining that their values are outside of 4816 // the limited range of the condition based on how many significant (non-sign) 4817 // bits are in the condition value. 4818 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4819 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4820 4821 // Gather dead cases. 4822 SmallVector<ConstantInt *, 8> DeadCases; 4823 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 4824 for (auto &Case : SI->cases()) { 4825 auto *Successor = Case.getCaseSuccessor(); 4826 ++NumPerSuccessorCases[Successor]; 4827 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4828 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4829 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4830 DeadCases.push_back(Case.getCaseValue()); 4831 --NumPerSuccessorCases[Successor]; 4832 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4833 << " is dead.\n"); 4834 } 4835 } 4836 4837 // If we can prove that the cases must cover all possible values, the 4838 // default destination becomes dead and we can remove it. If we know some 4839 // of the bits in the value, we can use that to more precisely compute the 4840 // number of possible unique case values. 4841 bool HasDefault = 4842 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4843 const unsigned NumUnknownBits = 4844 Bits - (Known.Zero | Known.One).countPopulation(); 4845 assert(NumUnknownBits <= Bits); 4846 if (HasDefault && DeadCases.empty() && 4847 NumUnknownBits < 64 /* avoid overflow */ && 4848 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4849 createUnreachableSwitchDefault(SI, DTU); 4850 return true; 4851 } 4852 4853 if (DeadCases.empty()) 4854 return false; 4855 4856 SwitchInstProfUpdateWrapper SIW(*SI); 4857 for (ConstantInt *DeadCase : DeadCases) { 4858 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4859 assert(CaseI != SI->case_default() && 4860 "Case was not found. Probably mistake in DeadCases forming."); 4861 // Prune unused values from PHI nodes. 4862 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4863 SIW.removeCase(CaseI); 4864 } 4865 4866 std::vector<DominatorTree::UpdateType> Updates; 4867 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4868 if (I.second == 0) 4869 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4870 if (DTU) 4871 DTU->applyUpdates(Updates); 4872 4873 return true; 4874 } 4875 4876 /// If BB would be eligible for simplification by 4877 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4878 /// by an unconditional branch), look at the phi node for BB in the successor 4879 /// block and see if the incoming value is equal to CaseValue. If so, return 4880 /// the phi node, and set PhiIndex to BB's index in the phi node. 4881 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4882 BasicBlock *BB, int *PhiIndex) { 4883 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4884 return nullptr; // BB must be empty to be a candidate for simplification. 4885 if (!BB->getSinglePredecessor()) 4886 return nullptr; // BB must be dominated by the switch. 4887 4888 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4889 if (!Branch || !Branch->isUnconditional()) 4890 return nullptr; // Terminator must be unconditional branch. 4891 4892 BasicBlock *Succ = Branch->getSuccessor(0); 4893 4894 for (PHINode &PHI : Succ->phis()) { 4895 int Idx = PHI.getBasicBlockIndex(BB); 4896 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4897 4898 Value *InValue = PHI.getIncomingValue(Idx); 4899 if (InValue != CaseValue) 4900 continue; 4901 4902 *PhiIndex = Idx; 4903 return &PHI; 4904 } 4905 4906 return nullptr; 4907 } 4908 4909 /// Try to forward the condition of a switch instruction to a phi node 4910 /// dominated by the switch, if that would mean that some of the destination 4911 /// blocks of the switch can be folded away. Return true if a change is made. 4912 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4913 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4914 4915 ForwardingNodesMap ForwardingNodes; 4916 BasicBlock *SwitchBlock = SI->getParent(); 4917 bool Changed = false; 4918 for (auto &Case : SI->cases()) { 4919 ConstantInt *CaseValue = Case.getCaseValue(); 4920 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4921 4922 // Replace phi operands in successor blocks that are using the constant case 4923 // value rather than the switch condition variable: 4924 // switchbb: 4925 // switch i32 %x, label %default [ 4926 // i32 17, label %succ 4927 // ... 4928 // succ: 4929 // %r = phi i32 ... [ 17, %switchbb ] ... 4930 // --> 4931 // %r = phi i32 ... [ %x, %switchbb ] ... 4932 4933 for (PHINode &Phi : CaseDest->phis()) { 4934 // This only works if there is exactly 1 incoming edge from the switch to 4935 // a phi. If there is >1, that means multiple cases of the switch map to 1 4936 // value in the phi, and that phi value is not the switch condition. Thus, 4937 // this transform would not make sense (the phi would be invalid because 4938 // a phi can't have different incoming values from the same block). 4939 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4940 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4941 count(Phi.blocks(), SwitchBlock) == 1) { 4942 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4943 Changed = true; 4944 } 4945 } 4946 4947 // Collect phi nodes that are indirectly using this switch's case constants. 4948 int PhiIdx; 4949 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4950 ForwardingNodes[Phi].push_back(PhiIdx); 4951 } 4952 4953 for (auto &ForwardingNode : ForwardingNodes) { 4954 PHINode *Phi = ForwardingNode.first; 4955 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4956 if (Indexes.size() < 2) 4957 continue; 4958 4959 for (int Index : Indexes) 4960 Phi->setIncomingValue(Index, SI->getCondition()); 4961 Changed = true; 4962 } 4963 4964 return Changed; 4965 } 4966 4967 /// Return true if the backend will be able to handle 4968 /// initializing an array of constants like C. 4969 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4970 if (C->isThreadDependent()) 4971 return false; 4972 if (C->isDLLImportDependent()) 4973 return false; 4974 4975 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4976 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4977 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4978 return false; 4979 4980 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4981 if (!CE->isGEPWithNoNotionalOverIndexing()) 4982 return false; 4983 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4984 return false; 4985 } 4986 4987 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4988 return false; 4989 4990 return true; 4991 } 4992 4993 /// If V is a Constant, return it. Otherwise, try to look up 4994 /// its constant value in ConstantPool, returning 0 if it's not there. 4995 static Constant * 4996 LookupConstant(Value *V, 4997 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4998 if (Constant *C = dyn_cast<Constant>(V)) 4999 return C; 5000 return ConstantPool.lookup(V); 5001 } 5002 5003 /// Try to fold instruction I into a constant. This works for 5004 /// simple instructions such as binary operations where both operands are 5005 /// constant or can be replaced by constants from the ConstantPool. Returns the 5006 /// resulting constant on success, 0 otherwise. 5007 static Constant * 5008 ConstantFold(Instruction *I, const DataLayout &DL, 5009 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5010 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5011 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5012 if (!A) 5013 return nullptr; 5014 if (A->isAllOnesValue()) 5015 return LookupConstant(Select->getTrueValue(), ConstantPool); 5016 if (A->isNullValue()) 5017 return LookupConstant(Select->getFalseValue(), ConstantPool); 5018 return nullptr; 5019 } 5020 5021 SmallVector<Constant *, 4> COps; 5022 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5023 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5024 COps.push_back(A); 5025 else 5026 return nullptr; 5027 } 5028 5029 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5030 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5031 COps[1], DL); 5032 } 5033 5034 return ConstantFoldInstOperands(I, COps, DL); 5035 } 5036 5037 /// Try to determine the resulting constant values in phi nodes 5038 /// at the common destination basic block, *CommonDest, for one of the case 5039 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5040 /// case), of a switch instruction SI. 5041 static bool 5042 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5043 BasicBlock **CommonDest, 5044 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5045 const DataLayout &DL, const TargetTransformInfo &TTI) { 5046 // The block from which we enter the common destination. 5047 BasicBlock *Pred = SI->getParent(); 5048 5049 // If CaseDest is empty except for some side-effect free instructions through 5050 // which we can constant-propagate the CaseVal, continue to its successor. 5051 SmallDenseMap<Value *, Constant *> ConstantPool; 5052 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5053 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5054 if (I.isTerminator()) { 5055 // If the terminator is a simple branch, continue to the next block. 5056 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5057 return false; 5058 Pred = CaseDest; 5059 CaseDest = I.getSuccessor(0); 5060 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5061 // Instruction is side-effect free and constant. 5062 5063 // If the instruction has uses outside this block or a phi node slot for 5064 // the block, it is not safe to bypass the instruction since it would then 5065 // no longer dominate all its uses. 5066 for (auto &Use : I.uses()) { 5067 User *User = Use.getUser(); 5068 if (Instruction *I = dyn_cast<Instruction>(User)) 5069 if (I->getParent() == CaseDest) 5070 continue; 5071 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5072 if (Phi->getIncomingBlock(Use) == CaseDest) 5073 continue; 5074 return false; 5075 } 5076 5077 ConstantPool.insert(std::make_pair(&I, C)); 5078 } else { 5079 break; 5080 } 5081 } 5082 5083 // If we did not have a CommonDest before, use the current one. 5084 if (!*CommonDest) 5085 *CommonDest = CaseDest; 5086 // If the destination isn't the common one, abort. 5087 if (CaseDest != *CommonDest) 5088 return false; 5089 5090 // Get the values for this case from phi nodes in the destination block. 5091 for (PHINode &PHI : (*CommonDest)->phis()) { 5092 int Idx = PHI.getBasicBlockIndex(Pred); 5093 if (Idx == -1) 5094 continue; 5095 5096 Constant *ConstVal = 5097 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5098 if (!ConstVal) 5099 return false; 5100 5101 // Be conservative about which kinds of constants we support. 5102 if (!ValidLookupTableConstant(ConstVal, TTI)) 5103 return false; 5104 5105 Res.push_back(std::make_pair(&PHI, ConstVal)); 5106 } 5107 5108 return Res.size() > 0; 5109 } 5110 5111 // Helper function used to add CaseVal to the list of cases that generate 5112 // Result. Returns the updated number of cases that generate this result. 5113 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5114 SwitchCaseResultVectorTy &UniqueResults, 5115 Constant *Result) { 5116 for (auto &I : UniqueResults) { 5117 if (I.first == Result) { 5118 I.second.push_back(CaseVal); 5119 return I.second.size(); 5120 } 5121 } 5122 UniqueResults.push_back( 5123 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5124 return 1; 5125 } 5126 5127 // Helper function that initializes a map containing 5128 // results for the PHI node of the common destination block for a switch 5129 // instruction. Returns false if multiple PHI nodes have been found or if 5130 // there is not a common destination block for the switch. 5131 static bool 5132 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5133 SwitchCaseResultVectorTy &UniqueResults, 5134 Constant *&DefaultResult, const DataLayout &DL, 5135 const TargetTransformInfo &TTI, 5136 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5137 for (auto &I : SI->cases()) { 5138 ConstantInt *CaseVal = I.getCaseValue(); 5139 5140 // Resulting value at phi nodes for this case value. 5141 SwitchCaseResultsTy Results; 5142 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5143 DL, TTI)) 5144 return false; 5145 5146 // Only one value per case is permitted. 5147 if (Results.size() > 1) 5148 return false; 5149 5150 // Add the case->result mapping to UniqueResults. 5151 const uintptr_t NumCasesForResult = 5152 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5153 5154 // Early out if there are too many cases for this result. 5155 if (NumCasesForResult > MaxCasesPerResult) 5156 return false; 5157 5158 // Early out if there are too many unique results. 5159 if (UniqueResults.size() > MaxUniqueResults) 5160 return false; 5161 5162 // Check the PHI consistency. 5163 if (!PHI) 5164 PHI = Results[0].first; 5165 else if (PHI != Results[0].first) 5166 return false; 5167 } 5168 // Find the default result value. 5169 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5170 BasicBlock *DefaultDest = SI->getDefaultDest(); 5171 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5172 DL, TTI); 5173 // If the default value is not found abort unless the default destination 5174 // is unreachable. 5175 DefaultResult = 5176 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5177 if ((!DefaultResult && 5178 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5179 return false; 5180 5181 return true; 5182 } 5183 5184 // Helper function that checks if it is possible to transform a switch with only 5185 // two cases (or two cases + default) that produces a result into a select. 5186 // Example: 5187 // switch (a) { 5188 // case 10: %0 = icmp eq i32 %a, 10 5189 // return 10; %1 = select i1 %0, i32 10, i32 4 5190 // case 20: ----> %2 = icmp eq i32 %a, 20 5191 // return 2; %3 = select i1 %2, i32 2, i32 %1 5192 // default: 5193 // return 4; 5194 // } 5195 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5196 Constant *DefaultResult, Value *Condition, 5197 IRBuilder<> &Builder) { 5198 assert(ResultVector.size() == 2 && 5199 "We should have exactly two unique results at this point"); 5200 // If we are selecting between only two cases transform into a simple 5201 // select or a two-way select if default is possible. 5202 if (ResultVector[0].second.size() == 1 && 5203 ResultVector[1].second.size() == 1) { 5204 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5205 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5206 5207 bool DefaultCanTrigger = DefaultResult; 5208 Value *SelectValue = ResultVector[1].first; 5209 if (DefaultCanTrigger) { 5210 Value *const ValueCompare = 5211 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5212 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5213 DefaultResult, "switch.select"); 5214 } 5215 Value *const ValueCompare = 5216 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5217 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5218 SelectValue, "switch.select"); 5219 } 5220 5221 return nullptr; 5222 } 5223 5224 // Helper function to cleanup a switch instruction that has been converted into 5225 // a select, fixing up PHI nodes and basic blocks. 5226 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5227 Value *SelectValue, 5228 IRBuilder<> &Builder, 5229 DomTreeUpdater *DTU) { 5230 std::vector<DominatorTree::UpdateType> Updates; 5231 5232 BasicBlock *SelectBB = SI->getParent(); 5233 BasicBlock *DestBB = PHI->getParent(); 5234 5235 if (!is_contained(predecessors(DestBB), SelectBB)) 5236 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5237 Builder.CreateBr(DestBB); 5238 5239 // Remove the switch. 5240 5241 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5242 PHI->removeIncomingValue(SelectBB); 5243 PHI->addIncoming(SelectValue, SelectBB); 5244 5245 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5246 BasicBlock *Succ = SI->getSuccessor(i); 5247 5248 if (Succ == DestBB) 5249 continue; 5250 Succ->removePredecessor(SelectBB); 5251 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5252 } 5253 SI->eraseFromParent(); 5254 if (DTU) 5255 DTU->applyUpdates(Updates); 5256 } 5257 5258 /// If the switch is only used to initialize one or more 5259 /// phi nodes in a common successor block with only two different 5260 /// constant values, replace the switch with select. 5261 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5262 DomTreeUpdater *DTU, const DataLayout &DL, 5263 const TargetTransformInfo &TTI) { 5264 Value *const Cond = SI->getCondition(); 5265 PHINode *PHI = nullptr; 5266 BasicBlock *CommonDest = nullptr; 5267 Constant *DefaultResult; 5268 SwitchCaseResultVectorTy UniqueResults; 5269 // Collect all the cases that will deliver the same value from the switch. 5270 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5271 DL, TTI, 2, 1)) 5272 return false; 5273 // Selects choose between maximum two values. 5274 if (UniqueResults.size() != 2) 5275 return false; 5276 assert(PHI != nullptr && "PHI for value select not found"); 5277 5278 Builder.SetInsertPoint(SI); 5279 Value *SelectValue = 5280 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5281 if (SelectValue) { 5282 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5283 return true; 5284 } 5285 // The switch couldn't be converted into a select. 5286 return false; 5287 } 5288 5289 namespace { 5290 5291 /// This class represents a lookup table that can be used to replace a switch. 5292 class SwitchLookupTable { 5293 public: 5294 /// Create a lookup table to use as a switch replacement with the contents 5295 /// of Values, using DefaultValue to fill any holes in the table. 5296 SwitchLookupTable( 5297 Module &M, uint64_t TableSize, ConstantInt *Offset, 5298 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5299 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5300 5301 /// Build instructions with Builder to retrieve the value at 5302 /// the position given by Index in the lookup table. 5303 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5304 5305 /// Return true if a table with TableSize elements of 5306 /// type ElementType would fit in a target-legal register. 5307 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5308 Type *ElementType); 5309 5310 private: 5311 // Depending on the contents of the table, it can be represented in 5312 // different ways. 5313 enum { 5314 // For tables where each element contains the same value, we just have to 5315 // store that single value and return it for each lookup. 5316 SingleValueKind, 5317 5318 // For tables where there is a linear relationship between table index 5319 // and values. We calculate the result with a simple multiplication 5320 // and addition instead of a table lookup. 5321 LinearMapKind, 5322 5323 // For small tables with integer elements, we can pack them into a bitmap 5324 // that fits into a target-legal register. Values are retrieved by 5325 // shift and mask operations. 5326 BitMapKind, 5327 5328 // The table is stored as an array of values. Values are retrieved by load 5329 // instructions from the table. 5330 ArrayKind 5331 } Kind; 5332 5333 // For SingleValueKind, this is the single value. 5334 Constant *SingleValue = nullptr; 5335 5336 // For BitMapKind, this is the bitmap. 5337 ConstantInt *BitMap = nullptr; 5338 IntegerType *BitMapElementTy = nullptr; 5339 5340 // For LinearMapKind, these are the constants used to derive the value. 5341 ConstantInt *LinearOffset = nullptr; 5342 ConstantInt *LinearMultiplier = nullptr; 5343 5344 // For ArrayKind, this is the array. 5345 GlobalVariable *Array = nullptr; 5346 }; 5347 5348 } // end anonymous namespace 5349 5350 SwitchLookupTable::SwitchLookupTable( 5351 Module &M, uint64_t TableSize, ConstantInt *Offset, 5352 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5353 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5354 assert(Values.size() && "Can't build lookup table without values!"); 5355 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5356 5357 // If all values in the table are equal, this is that value. 5358 SingleValue = Values.begin()->second; 5359 5360 Type *ValueType = Values.begin()->second->getType(); 5361 5362 // Build up the table contents. 5363 SmallVector<Constant *, 64> TableContents(TableSize); 5364 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5365 ConstantInt *CaseVal = Values[I].first; 5366 Constant *CaseRes = Values[I].second; 5367 assert(CaseRes->getType() == ValueType); 5368 5369 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5370 TableContents[Idx] = CaseRes; 5371 5372 if (CaseRes != SingleValue) 5373 SingleValue = nullptr; 5374 } 5375 5376 // Fill in any holes in the table with the default result. 5377 if (Values.size() < TableSize) { 5378 assert(DefaultValue && 5379 "Need a default value to fill the lookup table holes."); 5380 assert(DefaultValue->getType() == ValueType); 5381 for (uint64_t I = 0; I < TableSize; ++I) { 5382 if (!TableContents[I]) 5383 TableContents[I] = DefaultValue; 5384 } 5385 5386 if (DefaultValue != SingleValue) 5387 SingleValue = nullptr; 5388 } 5389 5390 // If each element in the table contains the same value, we only need to store 5391 // that single value. 5392 if (SingleValue) { 5393 Kind = SingleValueKind; 5394 return; 5395 } 5396 5397 // Check if we can derive the value with a linear transformation from the 5398 // table index. 5399 if (isa<IntegerType>(ValueType)) { 5400 bool LinearMappingPossible = true; 5401 APInt PrevVal; 5402 APInt DistToPrev; 5403 assert(TableSize >= 2 && "Should be a SingleValue table."); 5404 // Check if there is the same distance between two consecutive values. 5405 for (uint64_t I = 0; I < TableSize; ++I) { 5406 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5407 if (!ConstVal) { 5408 // This is an undef. We could deal with it, but undefs in lookup tables 5409 // are very seldom. It's probably not worth the additional complexity. 5410 LinearMappingPossible = false; 5411 break; 5412 } 5413 const APInt &Val = ConstVal->getValue(); 5414 if (I != 0) { 5415 APInt Dist = Val - PrevVal; 5416 if (I == 1) { 5417 DistToPrev = Dist; 5418 } else if (Dist != DistToPrev) { 5419 LinearMappingPossible = false; 5420 break; 5421 } 5422 } 5423 PrevVal = Val; 5424 } 5425 if (LinearMappingPossible) { 5426 LinearOffset = cast<ConstantInt>(TableContents[0]); 5427 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5428 Kind = LinearMapKind; 5429 ++NumLinearMaps; 5430 return; 5431 } 5432 } 5433 5434 // If the type is integer and the table fits in a register, build a bitmap. 5435 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5436 IntegerType *IT = cast<IntegerType>(ValueType); 5437 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5438 for (uint64_t I = TableSize; I > 0; --I) { 5439 TableInt <<= IT->getBitWidth(); 5440 // Insert values into the bitmap. Undef values are set to zero. 5441 if (!isa<UndefValue>(TableContents[I - 1])) { 5442 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5443 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5444 } 5445 } 5446 BitMap = ConstantInt::get(M.getContext(), TableInt); 5447 BitMapElementTy = IT; 5448 Kind = BitMapKind; 5449 ++NumBitMaps; 5450 return; 5451 } 5452 5453 // Store the table in an array. 5454 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5455 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5456 5457 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5458 GlobalVariable::PrivateLinkage, Initializer, 5459 "switch.table." + FuncName); 5460 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5461 // Set the alignment to that of an array items. We will be only loading one 5462 // value out of it. 5463 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5464 Kind = ArrayKind; 5465 } 5466 5467 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5468 switch (Kind) { 5469 case SingleValueKind: 5470 return SingleValue; 5471 case LinearMapKind: { 5472 // Derive the result value from the input value. 5473 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5474 false, "switch.idx.cast"); 5475 if (!LinearMultiplier->isOne()) 5476 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5477 if (!LinearOffset->isZero()) 5478 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5479 return Result; 5480 } 5481 case BitMapKind: { 5482 // Type of the bitmap (e.g. i59). 5483 IntegerType *MapTy = BitMap->getType(); 5484 5485 // Cast Index to the same type as the bitmap. 5486 // Note: The Index is <= the number of elements in the table, so 5487 // truncating it to the width of the bitmask is safe. 5488 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5489 5490 // Multiply the shift amount by the element width. 5491 ShiftAmt = Builder.CreateMul( 5492 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5493 "switch.shiftamt"); 5494 5495 // Shift down. 5496 Value *DownShifted = 5497 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5498 // Mask off. 5499 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5500 } 5501 case ArrayKind: { 5502 // Make sure the table index will not overflow when treated as signed. 5503 IntegerType *IT = cast<IntegerType>(Index->getType()); 5504 uint64_t TableSize = 5505 Array->getInitializer()->getType()->getArrayNumElements(); 5506 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5507 Index = Builder.CreateZExt( 5508 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5509 "switch.tableidx.zext"); 5510 5511 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5512 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5513 GEPIndices, "switch.gep"); 5514 return Builder.CreateLoad( 5515 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5516 "switch.load"); 5517 } 5518 } 5519 llvm_unreachable("Unknown lookup table kind!"); 5520 } 5521 5522 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5523 uint64_t TableSize, 5524 Type *ElementType) { 5525 auto *IT = dyn_cast<IntegerType>(ElementType); 5526 if (!IT) 5527 return false; 5528 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5529 // are <= 15, we could try to narrow the type. 5530 5531 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5532 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5533 return false; 5534 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5535 } 5536 5537 /// Determine whether a lookup table should be built for this switch, based on 5538 /// the number of cases, size of the table, and the types of the results. 5539 static bool 5540 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5541 const TargetTransformInfo &TTI, const DataLayout &DL, 5542 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5543 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5544 return false; // TableSize overflowed, or mul below might overflow. 5545 5546 bool AllTablesFitInRegister = true; 5547 bool HasIllegalType = false; 5548 for (const auto &I : ResultTypes) { 5549 Type *Ty = I.second; 5550 5551 // Saturate this flag to true. 5552 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5553 5554 // Saturate this flag to false. 5555 AllTablesFitInRegister = 5556 AllTablesFitInRegister && 5557 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5558 5559 // If both flags saturate, we're done. NOTE: This *only* works with 5560 // saturating flags, and all flags have to saturate first due to the 5561 // non-deterministic behavior of iterating over a dense map. 5562 if (HasIllegalType && !AllTablesFitInRegister) 5563 break; 5564 } 5565 5566 // If each table would fit in a register, we should build it anyway. 5567 if (AllTablesFitInRegister) 5568 return true; 5569 5570 // Don't build a table that doesn't fit in-register if it has illegal types. 5571 if (HasIllegalType) 5572 return false; 5573 5574 // The table density should be at least 40%. This is the same criterion as for 5575 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5576 // FIXME: Find the best cut-off. 5577 return SI->getNumCases() * 10 >= TableSize * 4; 5578 } 5579 5580 /// Try to reuse the switch table index compare. Following pattern: 5581 /// \code 5582 /// if (idx < tablesize) 5583 /// r = table[idx]; // table does not contain default_value 5584 /// else 5585 /// r = default_value; 5586 /// if (r != default_value) 5587 /// ... 5588 /// \endcode 5589 /// Is optimized to: 5590 /// \code 5591 /// cond = idx < tablesize; 5592 /// if (cond) 5593 /// r = table[idx]; 5594 /// else 5595 /// r = default_value; 5596 /// if (cond) 5597 /// ... 5598 /// \endcode 5599 /// Jump threading will then eliminate the second if(cond). 5600 static void reuseTableCompare( 5601 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5602 Constant *DefaultValue, 5603 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5604 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5605 if (!CmpInst) 5606 return; 5607 5608 // We require that the compare is in the same block as the phi so that jump 5609 // threading can do its work afterwards. 5610 if (CmpInst->getParent() != PhiBlock) 5611 return; 5612 5613 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5614 if (!CmpOp1) 5615 return; 5616 5617 Value *RangeCmp = RangeCheckBranch->getCondition(); 5618 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5619 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5620 5621 // Check if the compare with the default value is constant true or false. 5622 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5623 DefaultValue, CmpOp1, true); 5624 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5625 return; 5626 5627 // Check if the compare with the case values is distinct from the default 5628 // compare result. 5629 for (auto ValuePair : Values) { 5630 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5631 ValuePair.second, CmpOp1, true); 5632 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5633 return; 5634 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5635 "Expect true or false as compare result."); 5636 } 5637 5638 // Check if the branch instruction dominates the phi node. It's a simple 5639 // dominance check, but sufficient for our needs. 5640 // Although this check is invariant in the calling loops, it's better to do it 5641 // at this late stage. Practically we do it at most once for a switch. 5642 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5643 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5644 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5645 return; 5646 } 5647 5648 if (DefaultConst == FalseConst) { 5649 // The compare yields the same result. We can replace it. 5650 CmpInst->replaceAllUsesWith(RangeCmp); 5651 ++NumTableCmpReuses; 5652 } else { 5653 // The compare yields the same result, just inverted. We can replace it. 5654 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5655 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5656 RangeCheckBranch); 5657 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5658 ++NumTableCmpReuses; 5659 } 5660 } 5661 5662 /// If the switch is only used to initialize one or more phi nodes in a common 5663 /// successor block with different constant values, replace the switch with 5664 /// lookup tables. 5665 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5666 DomTreeUpdater *DTU, const DataLayout &DL, 5667 const TargetTransformInfo &TTI) { 5668 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5669 5670 BasicBlock *BB = SI->getParent(); 5671 Function *Fn = BB->getParent(); 5672 // Only build lookup table when we have a target that supports it or the 5673 // attribute is not set. 5674 if (!TTI.shouldBuildLookupTables() || 5675 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5676 return false; 5677 5678 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5679 // split off a dense part and build a lookup table for that. 5680 5681 // FIXME: This creates arrays of GEPs to constant strings, which means each 5682 // GEP needs a runtime relocation in PIC code. We should just build one big 5683 // string and lookup indices into that. 5684 5685 // Ignore switches with less than three cases. Lookup tables will not make 5686 // them faster, so we don't analyze them. 5687 if (SI->getNumCases() < 3) 5688 return false; 5689 5690 // Figure out the corresponding result for each case value and phi node in the 5691 // common destination, as well as the min and max case values. 5692 assert(!SI->cases().empty()); 5693 SwitchInst::CaseIt CI = SI->case_begin(); 5694 ConstantInt *MinCaseVal = CI->getCaseValue(); 5695 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5696 5697 BasicBlock *CommonDest = nullptr; 5698 5699 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5700 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5701 5702 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5703 SmallDenseMap<PHINode *, Type *> ResultTypes; 5704 SmallVector<PHINode *, 4> PHIs; 5705 5706 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5707 ConstantInt *CaseVal = CI->getCaseValue(); 5708 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5709 MinCaseVal = CaseVal; 5710 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5711 MaxCaseVal = CaseVal; 5712 5713 // Resulting value at phi nodes for this case value. 5714 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5715 ResultsTy Results; 5716 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5717 Results, DL, TTI)) 5718 return false; 5719 5720 // Append the result from this case to the list for each phi. 5721 for (const auto &I : Results) { 5722 PHINode *PHI = I.first; 5723 Constant *Value = I.second; 5724 if (!ResultLists.count(PHI)) 5725 PHIs.push_back(PHI); 5726 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5727 } 5728 } 5729 5730 // Keep track of the result types. 5731 for (PHINode *PHI : PHIs) { 5732 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5733 } 5734 5735 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5736 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5737 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5738 bool TableHasHoles = (NumResults < TableSize); 5739 5740 // If the table has holes, we need a constant result for the default case 5741 // or a bitmask that fits in a register. 5742 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5743 bool HasDefaultResults = 5744 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5745 DefaultResultsList, DL, TTI); 5746 5747 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5748 if (NeedMask) { 5749 // As an extra penalty for the validity test we require more cases. 5750 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5751 return false; 5752 if (!DL.fitsInLegalInteger(TableSize)) 5753 return false; 5754 } 5755 5756 for (const auto &I : DefaultResultsList) { 5757 PHINode *PHI = I.first; 5758 Constant *Result = I.second; 5759 DefaultResults[PHI] = Result; 5760 } 5761 5762 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5763 return false; 5764 5765 std::vector<DominatorTree::UpdateType> Updates; 5766 5767 // Create the BB that does the lookups. 5768 Module &Mod = *CommonDest->getParent()->getParent(); 5769 BasicBlock *LookupBB = BasicBlock::Create( 5770 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5771 5772 // Compute the table index value. 5773 Builder.SetInsertPoint(SI); 5774 Value *TableIndex; 5775 if (MinCaseVal->isNullValue()) 5776 TableIndex = SI->getCondition(); 5777 else 5778 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5779 "switch.tableidx"); 5780 5781 // Compute the maximum table size representable by the integer type we are 5782 // switching upon. 5783 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5784 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5785 assert(MaxTableSize >= TableSize && 5786 "It is impossible for a switch to have more entries than the max " 5787 "representable value of its input integer type's size."); 5788 5789 // If the default destination is unreachable, or if the lookup table covers 5790 // all values of the conditional variable, branch directly to the lookup table 5791 // BB. Otherwise, check that the condition is within the case range. 5792 const bool DefaultIsReachable = 5793 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5794 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5795 BranchInst *RangeCheckBranch = nullptr; 5796 5797 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5798 Builder.CreateBr(LookupBB); 5799 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5800 // Note: We call removeProdecessor later since we need to be able to get the 5801 // PHI value for the default case in case we're using a bit mask. 5802 } else { 5803 Value *Cmp = Builder.CreateICmpULT( 5804 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5805 RangeCheckBranch = 5806 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5807 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5808 } 5809 5810 // Populate the BB that does the lookups. 5811 Builder.SetInsertPoint(LookupBB); 5812 5813 if (NeedMask) { 5814 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5815 // re-purposed to do the hole check, and we create a new LookupBB. 5816 BasicBlock *MaskBB = LookupBB; 5817 MaskBB->setName("switch.hole_check"); 5818 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5819 CommonDest->getParent(), CommonDest); 5820 5821 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5822 // unnecessary illegal types. 5823 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5824 APInt MaskInt(TableSizePowOf2, 0); 5825 APInt One(TableSizePowOf2, 1); 5826 // Build bitmask; fill in a 1 bit for every case. 5827 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5828 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5829 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5830 .getLimitedValue(); 5831 MaskInt |= One << Idx; 5832 } 5833 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5834 5835 // Get the TableIndex'th bit of the bitmask. 5836 // If this bit is 0 (meaning hole) jump to the default destination, 5837 // else continue with table lookup. 5838 IntegerType *MapTy = TableMask->getType(); 5839 Value *MaskIndex = 5840 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5841 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5842 Value *LoBit = Builder.CreateTrunc( 5843 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5844 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5845 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5846 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5847 Builder.SetInsertPoint(LookupBB); 5848 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5849 } 5850 5851 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5852 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5853 // do not delete PHINodes here. 5854 SI->getDefaultDest()->removePredecessor(BB, 5855 /*KeepOneInputPHIs=*/true); 5856 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5857 } 5858 5859 bool ReturnedEarly = false; 5860 for (PHINode *PHI : PHIs) { 5861 const ResultListTy &ResultList = ResultLists[PHI]; 5862 5863 // If using a bitmask, use any value to fill the lookup table holes. 5864 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5865 StringRef FuncName = Fn->getName(); 5866 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5867 FuncName); 5868 5869 Value *Result = Table.BuildLookup(TableIndex, Builder); 5870 5871 // If the result is used to return immediately from the function, we want to 5872 // do that right here. 5873 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5874 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5875 Builder.CreateRet(Result); 5876 ReturnedEarly = true; 5877 break; 5878 } 5879 5880 // Do a small peephole optimization: re-use the switch table compare if 5881 // possible. 5882 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5883 BasicBlock *PhiBlock = PHI->getParent(); 5884 // Search for compare instructions which use the phi. 5885 for (auto *User : PHI->users()) { 5886 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5887 } 5888 } 5889 5890 PHI->addIncoming(Result, LookupBB); 5891 } 5892 5893 if (!ReturnedEarly) { 5894 Builder.CreateBr(CommonDest); 5895 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 5896 } 5897 5898 // Remove the switch. 5899 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 5900 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5901 BasicBlock *Succ = SI->getSuccessor(i); 5902 5903 if (Succ == SI->getDefaultDest()) 5904 continue; 5905 Succ->removePredecessor(BB); 5906 RemovedSuccessors.insert(Succ); 5907 } 5908 SI->eraseFromParent(); 5909 5910 if (DTU) { 5911 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 5912 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 5913 DTU->applyUpdates(Updates); 5914 } 5915 5916 ++NumLookupTables; 5917 if (NeedMask) 5918 ++NumLookupTablesHoles; 5919 return true; 5920 } 5921 5922 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5923 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5924 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5925 uint64_t Range = Diff + 1; 5926 uint64_t NumCases = Values.size(); 5927 // 40% is the default density for building a jump table in optsize/minsize mode. 5928 uint64_t MinDensity = 40; 5929 5930 return NumCases * 100 >= Range * MinDensity; 5931 } 5932 5933 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5934 /// of cases. 5935 /// 5936 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5937 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5938 /// 5939 /// This converts a sparse switch into a dense switch which allows better 5940 /// lowering and could also allow transforming into a lookup table. 5941 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5942 const DataLayout &DL, 5943 const TargetTransformInfo &TTI) { 5944 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5945 if (CondTy->getIntegerBitWidth() > 64 || 5946 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5947 return false; 5948 // Only bother with this optimization if there are more than 3 switch cases; 5949 // SDAG will only bother creating jump tables for 4 or more cases. 5950 if (SI->getNumCases() < 4) 5951 return false; 5952 5953 // This transform is agnostic to the signedness of the input or case values. We 5954 // can treat the case values as signed or unsigned. We can optimize more common 5955 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5956 // as signed. 5957 SmallVector<int64_t,4> Values; 5958 for (auto &C : SI->cases()) 5959 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5960 llvm::sort(Values); 5961 5962 // If the switch is already dense, there's nothing useful to do here. 5963 if (isSwitchDense(Values)) 5964 return false; 5965 5966 // First, transform the values such that they start at zero and ascend. 5967 int64_t Base = Values[0]; 5968 for (auto &V : Values) 5969 V -= (uint64_t)(Base); 5970 5971 // Now we have signed numbers that have been shifted so that, given enough 5972 // precision, there are no negative values. Since the rest of the transform 5973 // is bitwise only, we switch now to an unsigned representation. 5974 5975 // This transform can be done speculatively because it is so cheap - it 5976 // results in a single rotate operation being inserted. 5977 // FIXME: It's possible that optimizing a switch on powers of two might also 5978 // be beneficial - flag values are often powers of two and we could use a CLZ 5979 // as the key function. 5980 5981 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5982 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5983 // less than 64. 5984 unsigned Shift = 64; 5985 for (auto &V : Values) 5986 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5987 assert(Shift < 64); 5988 if (Shift > 0) 5989 for (auto &V : Values) 5990 V = (int64_t)((uint64_t)V >> Shift); 5991 5992 if (!isSwitchDense(Values)) 5993 // Transform didn't create a dense switch. 5994 return false; 5995 5996 // The obvious transform is to shift the switch condition right and emit a 5997 // check that the condition actually cleanly divided by GCD, i.e. 5998 // C & (1 << Shift - 1) == 0 5999 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6000 // 6001 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6002 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6003 // are nonzero then the switch condition will be very large and will hit the 6004 // default case. 6005 6006 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6007 Builder.SetInsertPoint(SI); 6008 auto *ShiftC = ConstantInt::get(Ty, Shift); 6009 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6010 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6011 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6012 auto *Rot = Builder.CreateOr(LShr, Shl); 6013 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6014 6015 for (auto Case : SI->cases()) { 6016 auto *Orig = Case.getCaseValue(); 6017 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6018 Case.setValue( 6019 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6020 } 6021 return true; 6022 } 6023 6024 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6025 BasicBlock *BB = SI->getParent(); 6026 6027 if (isValueEqualityComparison(SI)) { 6028 // If we only have one predecessor, and if it is a branch on this value, 6029 // see if that predecessor totally determines the outcome of this switch. 6030 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6031 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6032 return requestResimplify(); 6033 6034 Value *Cond = SI->getCondition(); 6035 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6036 if (SimplifySwitchOnSelect(SI, Select)) 6037 return requestResimplify(); 6038 6039 // If the block only contains the switch, see if we can fold the block 6040 // away into any preds. 6041 if (SI == &*BB->instructionsWithoutDebug().begin()) 6042 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6043 return requestResimplify(); 6044 } 6045 6046 // Try to transform the switch into an icmp and a branch. 6047 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6048 return requestResimplify(); 6049 6050 // Remove unreachable cases. 6051 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6052 return requestResimplify(); 6053 6054 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6055 return requestResimplify(); 6056 6057 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6058 return requestResimplify(); 6059 6060 // The conversion from switch to lookup tables results in difficult-to-analyze 6061 // code and makes pruning branches much harder. This is a problem if the 6062 // switch expression itself can still be restricted as a result of inlining or 6063 // CVP. Therefore, only apply this transformation during late stages of the 6064 // optimisation pipeline. 6065 if (Options.ConvertSwitchToLookupTable && 6066 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6067 return requestResimplify(); 6068 6069 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6070 return requestResimplify(); 6071 6072 return false; 6073 } 6074 6075 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6076 BasicBlock *BB = IBI->getParent(); 6077 bool Changed = false; 6078 6079 // Eliminate redundant destinations. 6080 SmallPtrSet<Value *, 8> Succs; 6081 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6082 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6083 BasicBlock *Dest = IBI->getDestination(i); 6084 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6085 if (!Dest->hasAddressTaken()) 6086 RemovedSuccs.insert(Dest); 6087 Dest->removePredecessor(BB); 6088 IBI->removeDestination(i); 6089 --i; 6090 --e; 6091 Changed = true; 6092 } 6093 } 6094 6095 if (DTU) { 6096 std::vector<DominatorTree::UpdateType> Updates; 6097 Updates.reserve(RemovedSuccs.size()); 6098 for (auto *RemovedSucc : RemovedSuccs) 6099 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6100 DTU->applyUpdates(Updates); 6101 } 6102 6103 if (IBI->getNumDestinations() == 0) { 6104 // If the indirectbr has no successors, change it to unreachable. 6105 new UnreachableInst(IBI->getContext(), IBI); 6106 EraseTerminatorAndDCECond(IBI); 6107 return true; 6108 } 6109 6110 if (IBI->getNumDestinations() == 1) { 6111 // If the indirectbr has one successor, change it to a direct branch. 6112 BranchInst::Create(IBI->getDestination(0), IBI); 6113 EraseTerminatorAndDCECond(IBI); 6114 return true; 6115 } 6116 6117 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6118 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6119 return requestResimplify(); 6120 } 6121 return Changed; 6122 } 6123 6124 /// Given an block with only a single landing pad and a unconditional branch 6125 /// try to find another basic block which this one can be merged with. This 6126 /// handles cases where we have multiple invokes with unique landing pads, but 6127 /// a shared handler. 6128 /// 6129 /// We specifically choose to not worry about merging non-empty blocks 6130 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6131 /// practice, the optimizer produces empty landing pad blocks quite frequently 6132 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6133 /// sinking in this file) 6134 /// 6135 /// This is primarily a code size optimization. We need to avoid performing 6136 /// any transform which might inhibit optimization (such as our ability to 6137 /// specialize a particular handler via tail commoning). We do this by not 6138 /// merging any blocks which require us to introduce a phi. Since the same 6139 /// values are flowing through both blocks, we don't lose any ability to 6140 /// specialize. If anything, we make such specialization more likely. 6141 /// 6142 /// TODO - This transformation could remove entries from a phi in the target 6143 /// block when the inputs in the phi are the same for the two blocks being 6144 /// merged. In some cases, this could result in removal of the PHI entirely. 6145 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6146 BasicBlock *BB, DomTreeUpdater *DTU) { 6147 auto Succ = BB->getUniqueSuccessor(); 6148 assert(Succ); 6149 // If there's a phi in the successor block, we'd likely have to introduce 6150 // a phi into the merged landing pad block. 6151 if (isa<PHINode>(*Succ->begin())) 6152 return false; 6153 6154 for (BasicBlock *OtherPred : predecessors(Succ)) { 6155 if (BB == OtherPred) 6156 continue; 6157 BasicBlock::iterator I = OtherPred->begin(); 6158 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6159 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6160 continue; 6161 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6162 ; 6163 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6164 if (!BI2 || !BI2->isIdenticalTo(BI)) 6165 continue; 6166 6167 std::vector<DominatorTree::UpdateType> Updates; 6168 6169 // We've found an identical block. Update our predecessors to take that 6170 // path instead and make ourselves dead. 6171 SmallPtrSet<BasicBlock *, 16> Preds; 6172 Preds.insert(pred_begin(BB), pred_end(BB)); 6173 for (BasicBlock *Pred : Preds) { 6174 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6175 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6176 "unexpected successor"); 6177 II->setUnwindDest(OtherPred); 6178 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6179 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6180 } 6181 6182 // The debug info in OtherPred doesn't cover the merged control flow that 6183 // used to go through BB. We need to delete it or update it. 6184 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6185 Instruction &Inst = *I; 6186 I++; 6187 if (isa<DbgInfoIntrinsic>(Inst)) 6188 Inst.eraseFromParent(); 6189 } 6190 6191 SmallPtrSet<BasicBlock *, 16> Succs; 6192 Succs.insert(succ_begin(BB), succ_end(BB)); 6193 for (BasicBlock *Succ : Succs) { 6194 Succ->removePredecessor(BB); 6195 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6196 } 6197 6198 IRBuilder<> Builder(BI); 6199 Builder.CreateUnreachable(); 6200 BI->eraseFromParent(); 6201 if (DTU) 6202 DTU->applyUpdates(Updates); 6203 return true; 6204 } 6205 return false; 6206 } 6207 6208 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6209 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6210 : simplifyCondBranch(Branch, Builder); 6211 } 6212 6213 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6214 IRBuilder<> &Builder) { 6215 BasicBlock *BB = BI->getParent(); 6216 BasicBlock *Succ = BI->getSuccessor(0); 6217 6218 // If the Terminator is the only non-phi instruction, simplify the block. 6219 // If LoopHeader is provided, check if the block or its successor is a loop 6220 // header. (This is for early invocations before loop simplify and 6221 // vectorization to keep canonical loop forms for nested loops. These blocks 6222 // can be eliminated when the pass is invoked later in the back-end.) 6223 // Note that if BB has only one predecessor then we do not introduce new 6224 // backedge, so we can eliminate BB. 6225 bool NeedCanonicalLoop = 6226 Options.NeedCanonicalLoop && 6227 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6228 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6229 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 6230 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6231 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6232 return true; 6233 6234 // If the only instruction in the block is a seteq/setne comparison against a 6235 // constant, try to simplify the block. 6236 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6237 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6238 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6239 ; 6240 if (I->isTerminator() && 6241 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6242 return true; 6243 } 6244 6245 // See if we can merge an empty landing pad block with another which is 6246 // equivalent. 6247 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6248 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6249 ; 6250 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6251 return true; 6252 } 6253 6254 // If this basic block is ONLY a compare and a branch, and if a predecessor 6255 // branches to us and our successor, fold the comparison into the 6256 // predecessor and use logical operations to update the incoming value 6257 // for PHI nodes in common successor. 6258 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6259 Options.BonusInstThreshold)) 6260 return requestResimplify(); 6261 return false; 6262 } 6263 6264 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6265 BasicBlock *PredPred = nullptr; 6266 for (auto *P : predecessors(BB)) { 6267 BasicBlock *PPred = P->getSinglePredecessor(); 6268 if (!PPred || (PredPred && PredPred != PPred)) 6269 return nullptr; 6270 PredPred = PPred; 6271 } 6272 return PredPred; 6273 } 6274 6275 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6276 BasicBlock *BB = BI->getParent(); 6277 if (!Options.SimplifyCondBranch) 6278 return false; 6279 6280 // Conditional branch 6281 if (isValueEqualityComparison(BI)) { 6282 // If we only have one predecessor, and if it is a branch on this value, 6283 // see if that predecessor totally determines the outcome of this 6284 // switch. 6285 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6286 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6287 return requestResimplify(); 6288 6289 // This block must be empty, except for the setcond inst, if it exists. 6290 // Ignore dbg intrinsics. 6291 auto I = BB->instructionsWithoutDebug().begin(); 6292 if (&*I == BI) { 6293 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6294 return requestResimplify(); 6295 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6296 ++I; 6297 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6298 return requestResimplify(); 6299 } 6300 } 6301 6302 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6303 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6304 return true; 6305 6306 // If this basic block has dominating predecessor blocks and the dominating 6307 // blocks' conditions imply BI's condition, we know the direction of BI. 6308 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6309 if (Imp) { 6310 // Turn this into a branch on constant. 6311 auto *OldCond = BI->getCondition(); 6312 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6313 : ConstantInt::getFalse(BB->getContext()); 6314 BI->setCondition(TorF); 6315 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6316 return requestResimplify(); 6317 } 6318 6319 // If this basic block is ONLY a compare and a branch, and if a predecessor 6320 // branches to us and one of our successors, fold the comparison into the 6321 // predecessor and use logical operations to pick the right destination. 6322 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6323 Options.BonusInstThreshold)) 6324 return requestResimplify(); 6325 6326 // We have a conditional branch to two blocks that are only reachable 6327 // from BI. We know that the condbr dominates the two blocks, so see if 6328 // there is any identical code in the "then" and "else" blocks. If so, we 6329 // can hoist it up to the branching block. 6330 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6331 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6332 if (HoistCommon && Options.HoistCommonInsts) 6333 if (HoistThenElseCodeToIf(BI, TTI)) 6334 return requestResimplify(); 6335 } else { 6336 // If Successor #1 has multiple preds, we may be able to conditionally 6337 // execute Successor #0 if it branches to Successor #1. 6338 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6339 if (Succ0TI->getNumSuccessors() == 1 && 6340 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6341 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6342 return requestResimplify(); 6343 } 6344 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6345 // If Successor #0 has multiple preds, we may be able to conditionally 6346 // execute Successor #1 if it branches to Successor #0. 6347 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6348 if (Succ1TI->getNumSuccessors() == 1 && 6349 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6350 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6351 return requestResimplify(); 6352 } 6353 6354 // If this is a branch on a phi node in the current block, thread control 6355 // through this block if any PHI node entries are constants. 6356 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6357 if (PN->getParent() == BI->getParent()) 6358 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6359 return requestResimplify(); 6360 6361 // Scan predecessor blocks for conditional branches. 6362 for (BasicBlock *Pred : predecessors(BB)) 6363 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6364 if (PBI != BI && PBI->isConditional()) 6365 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6366 return requestResimplify(); 6367 6368 // Look for diamond patterns. 6369 if (MergeCondStores) 6370 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6371 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6372 if (PBI != BI && PBI->isConditional()) 6373 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6374 return requestResimplify(); 6375 6376 return false; 6377 } 6378 6379 /// Check if passing a value to an instruction will cause undefined behavior. 6380 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6381 Constant *C = dyn_cast<Constant>(V); 6382 if (!C) 6383 return false; 6384 6385 if (I->use_empty()) 6386 return false; 6387 6388 if (C->isNullValue() || isa<UndefValue>(C)) { 6389 // Only look at the first use, avoid hurting compile time with long uselists 6390 User *Use = *I->user_begin(); 6391 6392 // Now make sure that there are no instructions in between that can alter 6393 // control flow (eg. calls) 6394 for (BasicBlock::iterator 6395 i = ++BasicBlock::iterator(I), 6396 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6397 i != UI; ++i) 6398 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6399 return false; 6400 6401 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6402 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6403 if (GEP->getPointerOperand() == I) { 6404 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6405 PtrValueMayBeModified = true; 6406 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6407 } 6408 6409 // Look through bitcasts. 6410 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6411 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6412 6413 // Load from null is undefined. 6414 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6415 if (!LI->isVolatile()) 6416 return !NullPointerIsDefined(LI->getFunction(), 6417 LI->getPointerAddressSpace()); 6418 6419 // Store to null is undefined. 6420 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6421 if (!SI->isVolatile()) 6422 return (!NullPointerIsDefined(SI->getFunction(), 6423 SI->getPointerAddressSpace())) && 6424 SI->getPointerOperand() == I; 6425 6426 if (auto *CB = dyn_cast<CallBase>(Use)) { 6427 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6428 return false; 6429 // A call to null is undefined. 6430 if (CB->getCalledOperand() == I) 6431 return true; 6432 6433 if (C->isNullValue()) { 6434 for (const llvm::Use &Arg : CB->args()) 6435 if (Arg == I) { 6436 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6437 if (CB->isPassingUndefUB(ArgIdx) && 6438 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6439 // Passing null to a nonnnull+noundef argument is undefined. 6440 return !PtrValueMayBeModified; 6441 } 6442 } 6443 } else if (isa<UndefValue>(C)) { 6444 // Passing undef to a noundef argument is undefined. 6445 for (const llvm::Use &Arg : CB->args()) 6446 if (Arg == I) { 6447 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6448 if (CB->isPassingUndefUB(ArgIdx)) { 6449 // Passing undef to a noundef argument is undefined. 6450 return true; 6451 } 6452 } 6453 } 6454 } 6455 } 6456 return false; 6457 } 6458 6459 /// If BB has an incoming value that will always trigger undefined behavior 6460 /// (eg. null pointer dereference), remove the branch leading here. 6461 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6462 DomTreeUpdater *DTU) { 6463 for (PHINode &PHI : BB->phis()) 6464 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6465 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6466 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6467 Instruction *T = Predecessor->getTerminator(); 6468 IRBuilder<> Builder(T); 6469 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6470 BB->removePredecessor(Predecessor); 6471 // Turn uncoditional branches into unreachables and remove the dead 6472 // destination from conditional branches. 6473 if (BI->isUnconditional()) 6474 Builder.CreateUnreachable(); 6475 else 6476 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6477 : BI->getSuccessor(0)); 6478 BI->eraseFromParent(); 6479 if (DTU) 6480 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6481 return true; 6482 } 6483 // TODO: SwitchInst. 6484 } 6485 6486 return false; 6487 } 6488 6489 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6490 bool Changed = false; 6491 6492 assert(BB && BB->getParent() && "Block not embedded in function!"); 6493 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6494 6495 // Remove basic blocks that have no predecessors (except the entry block)... 6496 // or that just have themself as a predecessor. These are unreachable. 6497 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6498 BB->getSinglePredecessor() == BB) { 6499 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6500 DeleteDeadBlock(BB, DTU); 6501 return true; 6502 } 6503 6504 // Check to see if we can constant propagate this terminator instruction 6505 // away... 6506 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6507 /*TLI=*/nullptr, DTU); 6508 6509 // Check for and eliminate duplicate PHI nodes in this block. 6510 Changed |= EliminateDuplicatePHINodes(BB); 6511 6512 // Check for and remove branches that will always cause undefined behavior. 6513 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6514 6515 // Merge basic blocks into their predecessor if there is only one distinct 6516 // pred, and if there is only one distinct successor of the predecessor, and 6517 // if there are no PHI nodes. 6518 if (MergeBlockIntoPredecessor(BB, DTU)) 6519 return true; 6520 6521 if (SinkCommon && Options.SinkCommonInsts) 6522 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6523 6524 IRBuilder<> Builder(BB); 6525 6526 if (Options.FoldTwoEntryPHINode) { 6527 // If there is a trivial two-entry PHI node in this basic block, and we can 6528 // eliminate it, do so now. 6529 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6530 if (PN->getNumIncomingValues() == 2) 6531 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6532 } 6533 6534 Instruction *Terminator = BB->getTerminator(); 6535 Builder.SetInsertPoint(Terminator); 6536 switch (Terminator->getOpcode()) { 6537 case Instruction::Br: 6538 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6539 break; 6540 case Instruction::Ret: 6541 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6542 break; 6543 case Instruction::Resume: 6544 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6545 break; 6546 case Instruction::CleanupRet: 6547 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6548 break; 6549 case Instruction::Switch: 6550 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6551 break; 6552 case Instruction::Unreachable: 6553 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6554 break; 6555 case Instruction::IndirectBr: 6556 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6557 break; 6558 } 6559 6560 return Changed; 6561 } 6562 6563 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6564 bool Changed = simplifyOnceImpl(BB); 6565 6566 return Changed; 6567 } 6568 6569 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6570 bool Changed = false; 6571 6572 // Repeated simplify BB as long as resimplification is requested. 6573 do { 6574 Resimplify = false; 6575 6576 // Perform one round of simplifcation. Resimplify flag will be set if 6577 // another iteration is requested. 6578 Changed |= simplifyOnce(BB); 6579 } while (Resimplify); 6580 6581 return Changed; 6582 } 6583 6584 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6585 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6586 ArrayRef<WeakVH> LoopHeaders) { 6587 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6588 Options) 6589 .run(BB); 6590 } 6591