1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<bool> DupRet( 98 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 99 cl::desc("Duplicate return instructions into unconditional branches")); 100 101 static cl::opt<bool> 102 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 103 cl::desc("Sink common instructions down to the end block")); 104 105 static cl::opt<bool> HoistCondStores( 106 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores if an unconditional store precedes")); 108 109 static cl::opt<bool> MergeCondStores( 110 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 111 cl::desc("Hoist conditional stores even if an unconditional store does not " 112 "precede - hoist multiple conditional stores into a single " 113 "predicated store")); 114 115 static cl::opt<bool> MergeCondStoresAggressively( 116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 117 cl::desc("When merging conditional stores, do so even if the resultant " 118 "basic blocks are unlikely to be if-converted as a result")); 119 120 static cl::opt<bool> SpeculateOneExpensiveInst( 121 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 122 cl::desc("Allow exactly one expensive instruction to be speculatively " 123 "executed")); 124 125 static cl::opt<unsigned> MaxSpeculationDepth( 126 "max-speculation-depth", cl::Hidden, cl::init(10), 127 cl::desc("Limit maximum recursion depth when calculating costs of " 128 "speculatively executed instructions")); 129 130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 131 STATISTIC(NumLinearMaps, 132 "Number of switch instructions turned into linear mapping"); 133 STATISTIC(NumLookupTables, 134 "Number of switch instructions turned into lookup tables"); 135 STATISTIC( 136 NumLookupTablesHoles, 137 "Number of switch instructions turned into lookup tables (holes checked)"); 138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 139 STATISTIC(NumSinkCommons, 140 "Number of common instructions sunk down to the end block"); 141 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 142 143 namespace { 144 145 // The first field contains the value that the switch produces when a certain 146 // case group is selected, and the second field is a vector containing the 147 // cases composing the case group. 148 using SwitchCaseResultVectorTy = 149 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 150 151 // The first field contains the phi node that generates a result of the switch 152 // and the second field contains the value generated for a certain case in the 153 // switch for that PHI. 154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 155 156 /// ValueEqualityComparisonCase - Represents a case of a switch. 157 struct ValueEqualityComparisonCase { 158 ConstantInt *Value; 159 BasicBlock *Dest; 160 161 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 162 : Value(Value), Dest(Dest) {} 163 164 bool operator<(ValueEqualityComparisonCase RHS) const { 165 // Comparing pointers is ok as we only rely on the order for uniquing. 166 return Value < RHS.Value; 167 } 168 169 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 170 }; 171 172 class SimplifyCFGOpt { 173 const TargetTransformInfo &TTI; 174 const DataLayout &DL; 175 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 176 const SimplifyCFGOptions &Options; 177 bool Resimplify; 178 179 Value *isValueEqualityComparison(Instruction *TI); 180 BasicBlock *GetValueEqualityComparisonCases( 181 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 182 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 183 BasicBlock *Pred, 184 IRBuilder<> &Builder); 185 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 186 IRBuilder<> &Builder); 187 188 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 189 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 190 bool SimplifySingleResume(ResumeInst *RI); 191 bool SimplifyCommonResume(ResumeInst *RI); 192 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 193 bool SimplifyUnreachable(UnreachableInst *UI); 194 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 195 bool SimplifyIndirectBr(IndirectBrInst *IBI); 196 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 198 199 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 200 IRBuilder<> &Builder); 201 202 public: 203 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 204 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 205 const SimplifyCFGOptions &Opts) 206 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 207 208 bool run(BasicBlock *BB); 209 bool simplifyOnce(BasicBlock *BB); 210 211 // Helper to set Resimplify and return change indication. 212 bool requestResimplify() { 213 Resimplify = true; 214 return true; 215 } 216 }; 217 218 } // end anonymous namespace 219 220 /// Return true if it is safe to merge these two 221 /// terminator instructions together. 222 static bool 223 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 224 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 225 if (SI1 == SI2) 226 return false; // Can't merge with self! 227 228 // It is not safe to merge these two switch instructions if they have a common 229 // successor, and if that successor has a PHI node, and if *that* PHI node has 230 // conflicting incoming values from the two switch blocks. 231 BasicBlock *SI1BB = SI1->getParent(); 232 BasicBlock *SI2BB = SI2->getParent(); 233 234 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 235 bool Fail = false; 236 for (BasicBlock *Succ : successors(SI2BB)) 237 if (SI1Succs.count(Succ)) 238 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 239 PHINode *PN = cast<PHINode>(BBI); 240 if (PN->getIncomingValueForBlock(SI1BB) != 241 PN->getIncomingValueForBlock(SI2BB)) { 242 if (FailBlocks) 243 FailBlocks->insert(Succ); 244 Fail = true; 245 } 246 } 247 248 return !Fail; 249 } 250 251 /// Return true if it is safe and profitable to merge these two terminator 252 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 253 /// store all PHI nodes in common successors. 254 static bool 255 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 256 Instruction *Cond, 257 SmallVectorImpl<PHINode *> &PhiNodes) { 258 if (SI1 == SI2) 259 return false; // Can't merge with self! 260 assert(SI1->isUnconditional() && SI2->isConditional()); 261 262 // We fold the unconditional branch if we can easily update all PHI nodes in 263 // common successors: 264 // 1> We have a constant incoming value for the conditional branch; 265 // 2> We have "Cond" as the incoming value for the unconditional branch; 266 // 3> SI2->getCondition() and Cond have same operands. 267 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 268 if (!Ci2) 269 return false; 270 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 271 Cond->getOperand(1) == Ci2->getOperand(1)) && 272 !(Cond->getOperand(0) == Ci2->getOperand(1) && 273 Cond->getOperand(1) == Ci2->getOperand(0))) 274 return false; 275 276 BasicBlock *SI1BB = SI1->getParent(); 277 BasicBlock *SI2BB = SI2->getParent(); 278 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 279 for (BasicBlock *Succ : successors(SI2BB)) 280 if (SI1Succs.count(Succ)) 281 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 282 PHINode *PN = cast<PHINode>(BBI); 283 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 284 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 285 return false; 286 PhiNodes.push_back(PN); 287 } 288 return true; 289 } 290 291 /// Update PHI nodes in Succ to indicate that there will now be entries in it 292 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 293 /// will be the same as those coming in from ExistPred, an existing predecessor 294 /// of Succ. 295 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 296 BasicBlock *ExistPred, 297 MemorySSAUpdater *MSSAU = nullptr) { 298 for (PHINode &PN : Succ->phis()) 299 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 300 if (MSSAU) 301 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 302 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 303 } 304 305 /// Compute an abstract "cost" of speculating the given instruction, 306 /// which is assumed to be safe to speculate. TCC_Free means cheap, 307 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 308 /// expensive. 309 static unsigned ComputeSpeculationCost(const User *I, 310 const TargetTransformInfo &TTI) { 311 assert(isSafeToSpeculativelyExecute(I) && 312 "Instruction is not safe to speculatively execute!"); 313 return TTI.getUserCost(I); 314 } 315 316 /// If we have a merge point of an "if condition" as accepted above, 317 /// return true if the specified value dominates the block. We 318 /// don't handle the true generality of domination here, just a special case 319 /// which works well enough for us. 320 /// 321 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 322 /// see if V (which must be an instruction) and its recursive operands 323 /// that do not dominate BB have a combined cost lower than CostRemaining and 324 /// are non-trapping. If both are true, the instruction is inserted into the 325 /// set and true is returned. 326 /// 327 /// The cost for most non-trapping instructions is defined as 1 except for 328 /// Select whose cost is 2. 329 /// 330 /// After this function returns, CostRemaining is decreased by the cost of 331 /// V plus its non-dominating operands. If that cost is greater than 332 /// CostRemaining, false is returned and CostRemaining is undefined. 333 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 334 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 335 unsigned &CostRemaining, 336 const TargetTransformInfo &TTI, 337 unsigned Depth = 0) { 338 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 339 // so limit the recursion depth. 340 // TODO: While this recursion limit does prevent pathological behavior, it 341 // would be better to track visited instructions to avoid cycles. 342 if (Depth == MaxSpeculationDepth) 343 return false; 344 345 Instruction *I = dyn_cast<Instruction>(V); 346 if (!I) { 347 // Non-instructions all dominate instructions, but not all constantexprs 348 // can be executed unconditionally. 349 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 350 if (C->canTrap()) 351 return false; 352 return true; 353 } 354 BasicBlock *PBB = I->getParent(); 355 356 // We don't want to allow weird loops that might have the "if condition" in 357 // the bottom of this block. 358 if (PBB == BB) 359 return false; 360 361 // If this instruction is defined in a block that contains an unconditional 362 // branch to BB, then it must be in the 'conditional' part of the "if 363 // statement". If not, it definitely dominates the region. 364 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 365 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 366 return true; 367 368 // If we have seen this instruction before, don't count it again. 369 if (AggressiveInsts.count(I)) 370 return true; 371 372 // Okay, it looks like the instruction IS in the "condition". Check to 373 // see if it's a cheap instruction to unconditionally compute, and if it 374 // only uses stuff defined outside of the condition. If so, hoist it out. 375 if (!isSafeToSpeculativelyExecute(I)) 376 return false; 377 378 unsigned Cost = ComputeSpeculationCost(I, TTI); 379 380 // Allow exactly one instruction to be speculated regardless of its cost 381 // (as long as it is safe to do so). 382 // This is intended to flatten the CFG even if the instruction is a division 383 // or other expensive operation. The speculation of an expensive instruction 384 // is expected to be undone in CodeGenPrepare if the speculation has not 385 // enabled further IR optimizations. 386 if (Cost > CostRemaining && 387 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 388 return false; 389 390 // Avoid unsigned wrap. 391 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 392 393 // Okay, we can only really hoist these out if their operands do 394 // not take us over the cost threshold. 395 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 396 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 397 Depth + 1)) 398 return false; 399 // Okay, it's safe to do this! Remember this instruction. 400 AggressiveInsts.insert(I); 401 return true; 402 } 403 404 /// Extract ConstantInt from value, looking through IntToPtr 405 /// and PointerNullValue. Return NULL if value is not a constant int. 406 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 407 // Normal constant int. 408 ConstantInt *CI = dyn_cast<ConstantInt>(V); 409 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 410 return CI; 411 412 // This is some kind of pointer constant. Turn it into a pointer-sized 413 // ConstantInt if possible. 414 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 415 416 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 417 if (isa<ConstantPointerNull>(V)) 418 return ConstantInt::get(PtrTy, 0); 419 420 // IntToPtr const int. 421 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 422 if (CE->getOpcode() == Instruction::IntToPtr) 423 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 424 // The constant is very likely to have the right type already. 425 if (CI->getType() == PtrTy) 426 return CI; 427 else 428 return cast<ConstantInt>( 429 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 430 } 431 return nullptr; 432 } 433 434 namespace { 435 436 /// Given a chain of or (||) or and (&&) comparison of a value against a 437 /// constant, this will try to recover the information required for a switch 438 /// structure. 439 /// It will depth-first traverse the chain of comparison, seeking for patterns 440 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 441 /// representing the different cases for the switch. 442 /// Note that if the chain is composed of '||' it will build the set of elements 443 /// that matches the comparisons (i.e. any of this value validate the chain) 444 /// while for a chain of '&&' it will build the set elements that make the test 445 /// fail. 446 struct ConstantComparesGatherer { 447 const DataLayout &DL; 448 449 /// Value found for the switch comparison 450 Value *CompValue = nullptr; 451 452 /// Extra clause to be checked before the switch 453 Value *Extra = nullptr; 454 455 /// Set of integers to match in switch 456 SmallVector<ConstantInt *, 8> Vals; 457 458 /// Number of comparisons matched in the and/or chain 459 unsigned UsedICmps = 0; 460 461 /// Construct and compute the result for the comparison instruction Cond 462 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 463 gather(Cond); 464 } 465 466 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 467 ConstantComparesGatherer & 468 operator=(const ConstantComparesGatherer &) = delete; 469 470 private: 471 /// Try to set the current value used for the comparison, it succeeds only if 472 /// it wasn't set before or if the new value is the same as the old one 473 bool setValueOnce(Value *NewVal) { 474 if (CompValue && CompValue != NewVal) 475 return false; 476 CompValue = NewVal; 477 return (CompValue != nullptr); 478 } 479 480 /// Try to match Instruction "I" as a comparison against a constant and 481 /// populates the array Vals with the set of values that match (or do not 482 /// match depending on isEQ). 483 /// Return false on failure. On success, the Value the comparison matched 484 /// against is placed in CompValue. 485 /// If CompValue is already set, the function is expected to fail if a match 486 /// is found but the value compared to is different. 487 bool matchInstruction(Instruction *I, bool isEQ) { 488 // If this is an icmp against a constant, handle this as one of the cases. 489 ICmpInst *ICI; 490 ConstantInt *C; 491 if (!((ICI = dyn_cast<ICmpInst>(I)) && 492 (C = GetConstantInt(I->getOperand(1), DL)))) { 493 return false; 494 } 495 496 Value *RHSVal; 497 const APInt *RHSC; 498 499 // Pattern match a special case 500 // (x & ~2^z) == y --> x == y || x == y|2^z 501 // This undoes a transformation done by instcombine to fuse 2 compares. 502 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 503 // It's a little bit hard to see why the following transformations are 504 // correct. Here is a CVC3 program to verify them for 64-bit values: 505 506 /* 507 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 508 x : BITVECTOR(64); 509 y : BITVECTOR(64); 510 z : BITVECTOR(64); 511 mask : BITVECTOR(64) = BVSHL(ONE, z); 512 QUERY( (y & ~mask = y) => 513 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 514 ); 515 QUERY( (y | mask = y) => 516 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 517 ); 518 */ 519 520 // Please note that each pattern must be a dual implication (<--> or 521 // iff). One directional implication can create spurious matches. If the 522 // implication is only one-way, an unsatisfiable condition on the left 523 // side can imply a satisfiable condition on the right side. Dual 524 // implication ensures that satisfiable conditions are transformed to 525 // other satisfiable conditions and unsatisfiable conditions are 526 // transformed to other unsatisfiable conditions. 527 528 // Here is a concrete example of a unsatisfiable condition on the left 529 // implying a satisfiable condition on the right: 530 // 531 // mask = (1 << z) 532 // (x & ~mask) == y --> (x == y || x == (y | mask)) 533 // 534 // Substituting y = 3, z = 0 yields: 535 // (x & -2) == 3 --> (x == 3 || x == 2) 536 537 // Pattern match a special case: 538 /* 539 QUERY( (y & ~mask = y) => 540 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 541 ); 542 */ 543 if (match(ICI->getOperand(0), 544 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 545 APInt Mask = ~*RHSC; 546 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 547 // If we already have a value for the switch, it has to match! 548 if (!setValueOnce(RHSVal)) 549 return false; 550 551 Vals.push_back(C); 552 Vals.push_back( 553 ConstantInt::get(C->getContext(), 554 C->getValue() | Mask)); 555 UsedICmps++; 556 return true; 557 } 558 } 559 560 // Pattern match a special case: 561 /* 562 QUERY( (y | mask = y) => 563 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 564 ); 565 */ 566 if (match(ICI->getOperand(0), 567 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 568 APInt Mask = *RHSC; 569 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 570 // If we already have a value for the switch, it has to match! 571 if (!setValueOnce(RHSVal)) 572 return false; 573 574 Vals.push_back(C); 575 Vals.push_back(ConstantInt::get(C->getContext(), 576 C->getValue() & ~Mask)); 577 UsedICmps++; 578 return true; 579 } 580 } 581 582 // If we already have a value for the switch, it has to match! 583 if (!setValueOnce(ICI->getOperand(0))) 584 return false; 585 586 UsedICmps++; 587 Vals.push_back(C); 588 return ICI->getOperand(0); 589 } 590 591 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 592 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 593 ICI->getPredicate(), C->getValue()); 594 595 // Shift the range if the compare is fed by an add. This is the range 596 // compare idiom as emitted by instcombine. 597 Value *CandidateVal = I->getOperand(0); 598 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 599 Span = Span.subtract(*RHSC); 600 CandidateVal = RHSVal; 601 } 602 603 // If this is an and/!= check, then we are looking to build the set of 604 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 605 // x != 0 && x != 1. 606 if (!isEQ) 607 Span = Span.inverse(); 608 609 // If there are a ton of values, we don't want to make a ginormous switch. 610 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 611 return false; 612 } 613 614 // If we already have a value for the switch, it has to match! 615 if (!setValueOnce(CandidateVal)) 616 return false; 617 618 // Add all values from the range to the set 619 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 620 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 621 622 UsedICmps++; 623 return true; 624 } 625 626 /// Given a potentially 'or'd or 'and'd together collection of icmp 627 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 628 /// the value being compared, and stick the list constants into the Vals 629 /// vector. 630 /// One "Extra" case is allowed to differ from the other. 631 void gather(Value *V) { 632 Instruction *I = dyn_cast<Instruction>(V); 633 bool isEQ = (I->getOpcode() == Instruction::Or); 634 635 // Keep a stack (SmallVector for efficiency) for depth-first traversal 636 SmallVector<Value *, 8> DFT; 637 SmallPtrSet<Value *, 8> Visited; 638 639 // Initialize 640 Visited.insert(V); 641 DFT.push_back(V); 642 643 while (!DFT.empty()) { 644 V = DFT.pop_back_val(); 645 646 if (Instruction *I = dyn_cast<Instruction>(V)) { 647 // If it is a || (or && depending on isEQ), process the operands. 648 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 649 if (Visited.insert(I->getOperand(1)).second) 650 DFT.push_back(I->getOperand(1)); 651 if (Visited.insert(I->getOperand(0)).second) 652 DFT.push_back(I->getOperand(0)); 653 continue; 654 } 655 656 // Try to match the current instruction 657 if (matchInstruction(I, isEQ)) 658 // Match succeed, continue the loop 659 continue; 660 } 661 662 // One element of the sequence of || (or &&) could not be match as a 663 // comparison against the same value as the others. 664 // We allow only one "Extra" case to be checked before the switch 665 if (!Extra) { 666 Extra = V; 667 continue; 668 } 669 // Failed to parse a proper sequence, abort now 670 CompValue = nullptr; 671 break; 672 } 673 } 674 }; 675 676 } // end anonymous namespace 677 678 static void EraseTerminatorAndDCECond(Instruction *TI, 679 MemorySSAUpdater *MSSAU = nullptr) { 680 Instruction *Cond = nullptr; 681 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 682 Cond = dyn_cast<Instruction>(SI->getCondition()); 683 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 684 if (BI->isConditional()) 685 Cond = dyn_cast<Instruction>(BI->getCondition()); 686 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 687 Cond = dyn_cast<Instruction>(IBI->getAddress()); 688 } 689 690 TI->eraseFromParent(); 691 if (Cond) 692 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 693 } 694 695 /// Return true if the specified terminator checks 696 /// to see if a value is equal to constant integer value. 697 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 698 Value *CV = nullptr; 699 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 700 // Do not permit merging of large switch instructions into their 701 // predecessors unless there is only one predecessor. 702 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 703 CV = SI->getCondition(); 704 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 705 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 706 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 707 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 708 CV = ICI->getOperand(0); 709 } 710 711 // Unwrap any lossless ptrtoint cast. 712 if (CV) { 713 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 714 Value *Ptr = PTII->getPointerOperand(); 715 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 716 CV = Ptr; 717 } 718 } 719 return CV; 720 } 721 722 /// Given a value comparison instruction, 723 /// decode all of the 'cases' that it represents and return the 'default' block. 724 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 725 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 726 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 727 Cases.reserve(SI->getNumCases()); 728 for (auto Case : SI->cases()) 729 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 730 Case.getCaseSuccessor())); 731 return SI->getDefaultDest(); 732 } 733 734 BranchInst *BI = cast<BranchInst>(TI); 735 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 736 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 737 Cases.push_back(ValueEqualityComparisonCase( 738 GetConstantInt(ICI->getOperand(1), DL), Succ)); 739 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 740 } 741 742 /// Given a vector of bb/value pairs, remove any entries 743 /// in the list that match the specified block. 744 static void 745 EliminateBlockCases(BasicBlock *BB, 746 std::vector<ValueEqualityComparisonCase> &Cases) { 747 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 748 } 749 750 /// Return true if there are any keys in C1 that exist in C2 as well. 751 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 752 std::vector<ValueEqualityComparisonCase> &C2) { 753 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 754 755 // Make V1 be smaller than V2. 756 if (V1->size() > V2->size()) 757 std::swap(V1, V2); 758 759 if (V1->empty()) 760 return false; 761 if (V1->size() == 1) { 762 // Just scan V2. 763 ConstantInt *TheVal = (*V1)[0].Value; 764 for (unsigned i = 0, e = V2->size(); i != e; ++i) 765 if (TheVal == (*V2)[i].Value) 766 return true; 767 } 768 769 // Otherwise, just sort both lists and compare element by element. 770 array_pod_sort(V1->begin(), V1->end()); 771 array_pod_sort(V2->begin(), V2->end()); 772 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 773 while (i1 != e1 && i2 != e2) { 774 if ((*V1)[i1].Value == (*V2)[i2].Value) 775 return true; 776 if ((*V1)[i1].Value < (*V2)[i2].Value) 777 ++i1; 778 else 779 ++i2; 780 } 781 return false; 782 } 783 784 // Set branch weights on SwitchInst. This sets the metadata if there is at 785 // least one non-zero weight. 786 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 787 // Check that there is at least one non-zero weight. Otherwise, pass 788 // nullptr to setMetadata which will erase the existing metadata. 789 MDNode *N = nullptr; 790 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 791 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 792 SI->setMetadata(LLVMContext::MD_prof, N); 793 } 794 795 // Similar to the above, but for branch and select instructions that take 796 // exactly 2 weights. 797 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 798 uint32_t FalseWeight) { 799 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 800 // Check that there is at least one non-zero weight. Otherwise, pass 801 // nullptr to setMetadata which will erase the existing metadata. 802 MDNode *N = nullptr; 803 if (TrueWeight || FalseWeight) 804 N = MDBuilder(I->getParent()->getContext()) 805 .createBranchWeights(TrueWeight, FalseWeight); 806 I->setMetadata(LLVMContext::MD_prof, N); 807 } 808 809 /// If TI is known to be a terminator instruction and its block is known to 810 /// only have a single predecessor block, check to see if that predecessor is 811 /// also a value comparison with the same value, and if that comparison 812 /// determines the outcome of this comparison. If so, simplify TI. This does a 813 /// very limited form of jump threading. 814 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 815 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 816 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 817 if (!PredVal) 818 return false; // Not a value comparison in predecessor. 819 820 Value *ThisVal = isValueEqualityComparison(TI); 821 assert(ThisVal && "This isn't a value comparison!!"); 822 if (ThisVal != PredVal) 823 return false; // Different predicates. 824 825 // TODO: Preserve branch weight metadata, similarly to how 826 // FoldValueComparisonIntoPredecessors preserves it. 827 828 // Find out information about when control will move from Pred to TI's block. 829 std::vector<ValueEqualityComparisonCase> PredCases; 830 BasicBlock *PredDef = 831 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 832 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 833 834 // Find information about how control leaves this block. 835 std::vector<ValueEqualityComparisonCase> ThisCases; 836 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 837 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 838 839 // If TI's block is the default block from Pred's comparison, potentially 840 // simplify TI based on this knowledge. 841 if (PredDef == TI->getParent()) { 842 // If we are here, we know that the value is none of those cases listed in 843 // PredCases. If there are any cases in ThisCases that are in PredCases, we 844 // can simplify TI. 845 if (!ValuesOverlap(PredCases, ThisCases)) 846 return false; 847 848 if (isa<BranchInst>(TI)) { 849 // Okay, one of the successors of this condbr is dead. Convert it to a 850 // uncond br. 851 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 852 // Insert the new branch. 853 Instruction *NI = Builder.CreateBr(ThisDef); 854 (void)NI; 855 856 // Remove PHI node entries for the dead edge. 857 ThisCases[0].Dest->removePredecessor(TI->getParent()); 858 859 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 860 << "Through successor TI: " << *TI << "Leaving: " << *NI 861 << "\n"); 862 863 EraseTerminatorAndDCECond(TI); 864 return true; 865 } 866 867 SwitchInst *SI = cast<SwitchInst>(TI); 868 // Okay, TI has cases that are statically dead, prune them away. 869 SmallPtrSet<Constant *, 16> DeadCases; 870 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 871 DeadCases.insert(PredCases[i].Value); 872 873 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 874 << "Through successor TI: " << *TI); 875 876 // Collect branch weights into a vector. 877 SmallVector<uint32_t, 8> Weights; 878 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 879 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 880 if (HasWeight) 881 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 882 ++MD_i) { 883 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 884 Weights.push_back(CI->getValue().getZExtValue()); 885 } 886 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 887 --i; 888 if (DeadCases.count(i->getCaseValue())) { 889 if (HasWeight) { 890 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 891 Weights.pop_back(); 892 } 893 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 894 SI->removeCase(i); 895 } 896 } 897 if (HasWeight && Weights.size() >= 2) 898 setBranchWeights(SI, Weights); 899 900 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 901 return true; 902 } 903 904 // Otherwise, TI's block must correspond to some matched value. Find out 905 // which value (or set of values) this is. 906 ConstantInt *TIV = nullptr; 907 BasicBlock *TIBB = TI->getParent(); 908 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 909 if (PredCases[i].Dest == TIBB) { 910 if (TIV) 911 return false; // Cannot handle multiple values coming to this block. 912 TIV = PredCases[i].Value; 913 } 914 assert(TIV && "No edge from pred to succ?"); 915 916 // Okay, we found the one constant that our value can be if we get into TI's 917 // BB. Find out which successor will unconditionally be branched to. 918 BasicBlock *TheRealDest = nullptr; 919 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 920 if (ThisCases[i].Value == TIV) { 921 TheRealDest = ThisCases[i].Dest; 922 break; 923 } 924 925 // If not handled by any explicit cases, it is handled by the default case. 926 if (!TheRealDest) 927 TheRealDest = ThisDef; 928 929 // Remove PHI node entries for dead edges. 930 BasicBlock *CheckEdge = TheRealDest; 931 for (BasicBlock *Succ : successors(TIBB)) 932 if (Succ != CheckEdge) 933 Succ->removePredecessor(TIBB); 934 else 935 CheckEdge = nullptr; 936 937 // Insert the new branch. 938 Instruction *NI = Builder.CreateBr(TheRealDest); 939 (void)NI; 940 941 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 942 << "Through successor TI: " << *TI << "Leaving: " << *NI 943 << "\n"); 944 945 EraseTerminatorAndDCECond(TI); 946 return true; 947 } 948 949 namespace { 950 951 /// This class implements a stable ordering of constant 952 /// integers that does not depend on their address. This is important for 953 /// applications that sort ConstantInt's to ensure uniqueness. 954 struct ConstantIntOrdering { 955 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 956 return LHS->getValue().ult(RHS->getValue()); 957 } 958 }; 959 960 } // end anonymous namespace 961 962 static int ConstantIntSortPredicate(ConstantInt *const *P1, 963 ConstantInt *const *P2) { 964 const ConstantInt *LHS = *P1; 965 const ConstantInt *RHS = *P2; 966 if (LHS == RHS) 967 return 0; 968 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 969 } 970 971 static inline bool HasBranchWeights(const Instruction *I) { 972 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 973 if (ProfMD && ProfMD->getOperand(0)) 974 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 975 return MDS->getString().equals("branch_weights"); 976 977 return false; 978 } 979 980 /// Get Weights of a given terminator, the default weight is at the front 981 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 982 /// metadata. 983 static void GetBranchWeights(Instruction *TI, 984 SmallVectorImpl<uint64_t> &Weights) { 985 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 986 assert(MD); 987 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 988 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 989 Weights.push_back(CI->getValue().getZExtValue()); 990 } 991 992 // If TI is a conditional eq, the default case is the false case, 993 // and the corresponding branch-weight data is at index 2. We swap the 994 // default weight to be the first entry. 995 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 996 assert(Weights.size() == 2); 997 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 998 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 999 std::swap(Weights.front(), Weights.back()); 1000 } 1001 } 1002 1003 /// Keep halving the weights until all can fit in uint32_t. 1004 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1005 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1006 if (Max > UINT_MAX) { 1007 unsigned Offset = 32 - countLeadingZeros(Max); 1008 for (uint64_t &I : Weights) 1009 I >>= Offset; 1010 } 1011 } 1012 1013 /// The specified terminator is a value equality comparison instruction 1014 /// (either a switch or a branch on "X == c"). 1015 /// See if any of the predecessors of the terminator block are value comparisons 1016 /// on the same value. If so, and if safe to do so, fold them together. 1017 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1018 IRBuilder<> &Builder) { 1019 BasicBlock *BB = TI->getParent(); 1020 Value *CV = isValueEqualityComparison(TI); // CondVal 1021 assert(CV && "Not a comparison?"); 1022 bool Changed = false; 1023 1024 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1025 while (!Preds.empty()) { 1026 BasicBlock *Pred = Preds.pop_back_val(); 1027 1028 // See if the predecessor is a comparison with the same value. 1029 Instruction *PTI = Pred->getTerminator(); 1030 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1031 1032 if (PCV == CV && TI != PTI) { 1033 SmallSetVector<BasicBlock*, 4> FailBlocks; 1034 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1035 for (auto *Succ : FailBlocks) { 1036 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1037 return false; 1038 } 1039 } 1040 1041 // Figure out which 'cases' to copy from SI to PSI. 1042 std::vector<ValueEqualityComparisonCase> BBCases; 1043 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1044 1045 std::vector<ValueEqualityComparisonCase> PredCases; 1046 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1047 1048 // Based on whether the default edge from PTI goes to BB or not, fill in 1049 // PredCases and PredDefault with the new switch cases we would like to 1050 // build. 1051 SmallVector<BasicBlock *, 8> NewSuccessors; 1052 1053 // Update the branch weight metadata along the way 1054 SmallVector<uint64_t, 8> Weights; 1055 bool PredHasWeights = HasBranchWeights(PTI); 1056 bool SuccHasWeights = HasBranchWeights(TI); 1057 1058 if (PredHasWeights) { 1059 GetBranchWeights(PTI, Weights); 1060 // branch-weight metadata is inconsistent here. 1061 if (Weights.size() != 1 + PredCases.size()) 1062 PredHasWeights = SuccHasWeights = false; 1063 } else if (SuccHasWeights) 1064 // If there are no predecessor weights but there are successor weights, 1065 // populate Weights with 1, which will later be scaled to the sum of 1066 // successor's weights 1067 Weights.assign(1 + PredCases.size(), 1); 1068 1069 SmallVector<uint64_t, 8> SuccWeights; 1070 if (SuccHasWeights) { 1071 GetBranchWeights(TI, SuccWeights); 1072 // branch-weight metadata is inconsistent here. 1073 if (SuccWeights.size() != 1 + BBCases.size()) 1074 PredHasWeights = SuccHasWeights = false; 1075 } else if (PredHasWeights) 1076 SuccWeights.assign(1 + BBCases.size(), 1); 1077 1078 if (PredDefault == BB) { 1079 // If this is the default destination from PTI, only the edges in TI 1080 // that don't occur in PTI, or that branch to BB will be activated. 1081 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1082 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1083 if (PredCases[i].Dest != BB) 1084 PTIHandled.insert(PredCases[i].Value); 1085 else { 1086 // The default destination is BB, we don't need explicit targets. 1087 std::swap(PredCases[i], PredCases.back()); 1088 1089 if (PredHasWeights || SuccHasWeights) { 1090 // Increase weight for the default case. 1091 Weights[0] += Weights[i + 1]; 1092 std::swap(Weights[i + 1], Weights.back()); 1093 Weights.pop_back(); 1094 } 1095 1096 PredCases.pop_back(); 1097 --i; 1098 --e; 1099 } 1100 1101 // Reconstruct the new switch statement we will be building. 1102 if (PredDefault != BBDefault) { 1103 PredDefault->removePredecessor(Pred); 1104 PredDefault = BBDefault; 1105 NewSuccessors.push_back(BBDefault); 1106 } 1107 1108 unsigned CasesFromPred = Weights.size(); 1109 uint64_t ValidTotalSuccWeight = 0; 1110 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1111 if (!PTIHandled.count(BBCases[i].Value) && 1112 BBCases[i].Dest != BBDefault) { 1113 PredCases.push_back(BBCases[i]); 1114 NewSuccessors.push_back(BBCases[i].Dest); 1115 if (SuccHasWeights || PredHasWeights) { 1116 // The default weight is at index 0, so weight for the ith case 1117 // should be at index i+1. Scale the cases from successor by 1118 // PredDefaultWeight (Weights[0]). 1119 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1120 ValidTotalSuccWeight += SuccWeights[i + 1]; 1121 } 1122 } 1123 1124 if (SuccHasWeights || PredHasWeights) { 1125 ValidTotalSuccWeight += SuccWeights[0]; 1126 // Scale the cases from predecessor by ValidTotalSuccWeight. 1127 for (unsigned i = 1; i < CasesFromPred; ++i) 1128 Weights[i] *= ValidTotalSuccWeight; 1129 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1130 Weights[0] *= SuccWeights[0]; 1131 } 1132 } else { 1133 // If this is not the default destination from PSI, only the edges 1134 // in SI that occur in PSI with a destination of BB will be 1135 // activated. 1136 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1137 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1138 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1139 if (PredCases[i].Dest == BB) { 1140 PTIHandled.insert(PredCases[i].Value); 1141 1142 if (PredHasWeights || SuccHasWeights) { 1143 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1144 std::swap(Weights[i + 1], Weights.back()); 1145 Weights.pop_back(); 1146 } 1147 1148 std::swap(PredCases[i], PredCases.back()); 1149 PredCases.pop_back(); 1150 --i; 1151 --e; 1152 } 1153 1154 // Okay, now we know which constants were sent to BB from the 1155 // predecessor. Figure out where they will all go now. 1156 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1157 if (PTIHandled.count(BBCases[i].Value)) { 1158 // If this is one we are capable of getting... 1159 if (PredHasWeights || SuccHasWeights) 1160 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1161 PredCases.push_back(BBCases[i]); 1162 NewSuccessors.push_back(BBCases[i].Dest); 1163 PTIHandled.erase( 1164 BBCases[i].Value); // This constant is taken care of 1165 } 1166 1167 // If there are any constants vectored to BB that TI doesn't handle, 1168 // they must go to the default destination of TI. 1169 for (ConstantInt *I : PTIHandled) { 1170 if (PredHasWeights || SuccHasWeights) 1171 Weights.push_back(WeightsForHandled[I]); 1172 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1173 NewSuccessors.push_back(BBDefault); 1174 } 1175 } 1176 1177 // Okay, at this point, we know which new successor Pred will get. Make 1178 // sure we update the number of entries in the PHI nodes for these 1179 // successors. 1180 for (BasicBlock *NewSuccessor : NewSuccessors) 1181 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1182 1183 Builder.SetInsertPoint(PTI); 1184 // Convert pointer to int before we switch. 1185 if (CV->getType()->isPointerTy()) { 1186 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1187 "magicptr"); 1188 } 1189 1190 // Now that the successors are updated, create the new Switch instruction. 1191 SwitchInst *NewSI = 1192 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1193 NewSI->setDebugLoc(PTI->getDebugLoc()); 1194 for (ValueEqualityComparisonCase &V : PredCases) 1195 NewSI->addCase(V.Value, V.Dest); 1196 1197 if (PredHasWeights || SuccHasWeights) { 1198 // Halve the weights if any of them cannot fit in an uint32_t 1199 FitWeights(Weights); 1200 1201 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1202 1203 setBranchWeights(NewSI, MDWeights); 1204 } 1205 1206 EraseTerminatorAndDCECond(PTI); 1207 1208 // Okay, last check. If BB is still a successor of PSI, then we must 1209 // have an infinite loop case. If so, add an infinitely looping block 1210 // to handle the case to preserve the behavior of the code. 1211 BasicBlock *InfLoopBlock = nullptr; 1212 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1213 if (NewSI->getSuccessor(i) == BB) { 1214 if (!InfLoopBlock) { 1215 // Insert it at the end of the function, because it's either code, 1216 // or it won't matter if it's hot. :) 1217 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1218 BB->getParent()); 1219 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1220 } 1221 NewSI->setSuccessor(i, InfLoopBlock); 1222 } 1223 1224 Changed = true; 1225 } 1226 } 1227 return Changed; 1228 } 1229 1230 // If we would need to insert a select that uses the value of this invoke 1231 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1232 // can't hoist the invoke, as there is nowhere to put the select in this case. 1233 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1234 Instruction *I1, Instruction *I2) { 1235 for (BasicBlock *Succ : successors(BB1)) { 1236 for (const PHINode &PN : Succ->phis()) { 1237 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1238 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1239 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1240 return false; 1241 } 1242 } 1243 } 1244 return true; 1245 } 1246 1247 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1248 1249 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1250 /// in the two blocks up into the branch block. The caller of this function 1251 /// guarantees that BI's block dominates BB1 and BB2. 1252 static bool HoistThenElseCodeToIf(BranchInst *BI, 1253 const TargetTransformInfo &TTI) { 1254 // This does very trivial matching, with limited scanning, to find identical 1255 // instructions in the two blocks. In particular, we don't want to get into 1256 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1257 // such, we currently just scan for obviously identical instructions in an 1258 // identical order. 1259 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1260 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1261 1262 BasicBlock::iterator BB1_Itr = BB1->begin(); 1263 BasicBlock::iterator BB2_Itr = BB2->begin(); 1264 1265 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1266 // Skip debug info if it is not identical. 1267 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1268 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1269 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1270 while (isa<DbgInfoIntrinsic>(I1)) 1271 I1 = &*BB1_Itr++; 1272 while (isa<DbgInfoIntrinsic>(I2)) 1273 I2 = &*BB2_Itr++; 1274 } 1275 // FIXME: Can we define a safety predicate for CallBr? 1276 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1277 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1278 isa<CallBrInst>(I1)) 1279 return false; 1280 1281 BasicBlock *BIParent = BI->getParent(); 1282 1283 bool Changed = false; 1284 do { 1285 // If we are hoisting the terminator instruction, don't move one (making a 1286 // broken BB), instead clone it, and remove BI. 1287 if (I1->isTerminator()) 1288 goto HoistTerminator; 1289 1290 // If we're going to hoist a call, make sure that the two instructions we're 1291 // commoning/hoisting are both marked with musttail, or neither of them is 1292 // marked as such. Otherwise, we might end up in a situation where we hoist 1293 // from a block where the terminator is a `ret` to a block where the terminator 1294 // is a `br`, and `musttail` calls expect to be followed by a return. 1295 auto *C1 = dyn_cast<CallInst>(I1); 1296 auto *C2 = dyn_cast<CallInst>(I2); 1297 if (C1 && C2) 1298 if (C1->isMustTailCall() != C2->isMustTailCall()) 1299 return Changed; 1300 1301 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1302 return Changed; 1303 1304 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1305 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1306 // The debug location is an integral part of a debug info intrinsic 1307 // and can't be separated from it or replaced. Instead of attempting 1308 // to merge locations, simply hoist both copies of the intrinsic. 1309 BIParent->getInstList().splice(BI->getIterator(), 1310 BB1->getInstList(), I1); 1311 BIParent->getInstList().splice(BI->getIterator(), 1312 BB2->getInstList(), I2); 1313 Changed = true; 1314 } else { 1315 // For a normal instruction, we just move one to right before the branch, 1316 // then replace all uses of the other with the first. Finally, we remove 1317 // the now redundant second instruction. 1318 BIParent->getInstList().splice(BI->getIterator(), 1319 BB1->getInstList(), I1); 1320 if (!I2->use_empty()) 1321 I2->replaceAllUsesWith(I1); 1322 I1->andIRFlags(I2); 1323 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1324 LLVMContext::MD_range, 1325 LLVMContext::MD_fpmath, 1326 LLVMContext::MD_invariant_load, 1327 LLVMContext::MD_nonnull, 1328 LLVMContext::MD_invariant_group, 1329 LLVMContext::MD_align, 1330 LLVMContext::MD_dereferenceable, 1331 LLVMContext::MD_dereferenceable_or_null, 1332 LLVMContext::MD_mem_parallel_loop_access, 1333 LLVMContext::MD_access_group}; 1334 combineMetadata(I1, I2, KnownIDs, true); 1335 1336 // I1 and I2 are being combined into a single instruction. Its debug 1337 // location is the merged locations of the original instructions. 1338 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1339 1340 I2->eraseFromParent(); 1341 Changed = true; 1342 } 1343 1344 I1 = &*BB1_Itr++; 1345 I2 = &*BB2_Itr++; 1346 // Skip debug info if it is not identical. 1347 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1348 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1349 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1350 while (isa<DbgInfoIntrinsic>(I1)) 1351 I1 = &*BB1_Itr++; 1352 while (isa<DbgInfoIntrinsic>(I2)) 1353 I2 = &*BB2_Itr++; 1354 } 1355 } while (I1->isIdenticalToWhenDefined(I2)); 1356 1357 return true; 1358 1359 HoistTerminator: 1360 // It may not be possible to hoist an invoke. 1361 // FIXME: Can we define a safety predicate for CallBr? 1362 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1363 return Changed; 1364 1365 // TODO: callbr hoisting currently disabled pending further study. 1366 if (isa<CallBrInst>(I1)) 1367 return Changed; 1368 1369 for (BasicBlock *Succ : successors(BB1)) { 1370 for (PHINode &PN : Succ->phis()) { 1371 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1372 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1373 if (BB1V == BB2V) 1374 continue; 1375 1376 // Check for passingValueIsAlwaysUndefined here because we would rather 1377 // eliminate undefined control flow then converting it to a select. 1378 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1379 passingValueIsAlwaysUndefined(BB2V, &PN)) 1380 return Changed; 1381 1382 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1383 return Changed; 1384 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1385 return Changed; 1386 } 1387 } 1388 1389 // Okay, it is safe to hoist the terminator. 1390 Instruction *NT = I1->clone(); 1391 BIParent->getInstList().insert(BI->getIterator(), NT); 1392 if (!NT->getType()->isVoidTy()) { 1393 I1->replaceAllUsesWith(NT); 1394 I2->replaceAllUsesWith(NT); 1395 NT->takeName(I1); 1396 } 1397 1398 // Ensure terminator gets a debug location, even an unknown one, in case 1399 // it involves inlinable calls. 1400 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1401 1402 // PHIs created below will adopt NT's merged DebugLoc. 1403 IRBuilder<NoFolder> Builder(NT); 1404 1405 // Hoisting one of the terminators from our successor is a great thing. 1406 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1407 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1408 // nodes, so we insert select instruction to compute the final result. 1409 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1410 for (BasicBlock *Succ : successors(BB1)) { 1411 for (PHINode &PN : Succ->phis()) { 1412 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1413 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1414 if (BB1V == BB2V) 1415 continue; 1416 1417 // These values do not agree. Insert a select instruction before NT 1418 // that determines the right value. 1419 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1420 if (!SI) 1421 SI = cast<SelectInst>( 1422 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1423 BB1V->getName() + "." + BB2V->getName(), BI)); 1424 1425 // Make the PHI node use the select for all incoming values for BB1/BB2 1426 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1427 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1428 PN.setIncomingValue(i, SI); 1429 } 1430 } 1431 1432 // Update any PHI nodes in our new successors. 1433 for (BasicBlock *Succ : successors(BB1)) 1434 AddPredecessorToBlock(Succ, BIParent, BB1); 1435 1436 EraseTerminatorAndDCECond(BI); 1437 return true; 1438 } 1439 1440 // All instructions in Insts belong to different blocks that all unconditionally 1441 // branch to a common successor. Analyze each instruction and return true if it 1442 // would be possible to sink them into their successor, creating one common 1443 // instruction instead. For every value that would be required to be provided by 1444 // PHI node (because an operand varies in each input block), add to PHIOperands. 1445 static bool canSinkInstructions( 1446 ArrayRef<Instruction *> Insts, 1447 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1448 // Prune out obviously bad instructions to move. Each instruction must have 1449 // exactly zero or one use, and we check later that use is by a single, common 1450 // PHI instruction in the successor. 1451 bool HasUse = !Insts.front()->user_empty(); 1452 for (auto *I : Insts) { 1453 // These instructions may change or break semantics if moved. 1454 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1455 I->getType()->isTokenTy()) 1456 return false; 1457 1458 // Conservatively return false if I is an inline-asm instruction. Sinking 1459 // and merging inline-asm instructions can potentially create arguments 1460 // that cannot satisfy the inline-asm constraints. 1461 if (const auto *C = dyn_cast<CallBase>(I)) 1462 if (C->isInlineAsm()) 1463 return false; 1464 1465 // Each instruction must have zero or one use. 1466 if (HasUse && !I->hasOneUse()) 1467 return false; 1468 if (!HasUse && !I->user_empty()) 1469 return false; 1470 } 1471 1472 const Instruction *I0 = Insts.front(); 1473 for (auto *I : Insts) 1474 if (!I->isSameOperationAs(I0)) 1475 return false; 1476 1477 // All instructions in Insts are known to be the same opcode. If they have a 1478 // use, check that the only user is a PHI or in the same block as the 1479 // instruction, because if a user is in the same block as an instruction we're 1480 // contemplating sinking, it must already be determined to be sinkable. 1481 if (HasUse) { 1482 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1483 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1484 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1485 auto *U = cast<Instruction>(*I->user_begin()); 1486 return (PNUse && 1487 PNUse->getParent() == Succ && 1488 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1489 U->getParent() == I->getParent(); 1490 })) 1491 return false; 1492 } 1493 1494 // Because SROA can't handle speculating stores of selects, try not 1495 // to sink loads or stores of allocas when we'd have to create a PHI for 1496 // the address operand. Also, because it is likely that loads or stores 1497 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1498 // This can cause code churn which can have unintended consequences down 1499 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1500 // FIXME: This is a workaround for a deficiency in SROA - see 1501 // https://llvm.org/bugs/show_bug.cgi?id=30188 1502 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1503 return isa<AllocaInst>(I->getOperand(1)); 1504 })) 1505 return false; 1506 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1507 return isa<AllocaInst>(I->getOperand(0)); 1508 })) 1509 return false; 1510 1511 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1512 if (I0->getOperand(OI)->getType()->isTokenTy()) 1513 // Don't touch any operand of token type. 1514 return false; 1515 1516 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1517 assert(I->getNumOperands() == I0->getNumOperands()); 1518 return I->getOperand(OI) == I0->getOperand(OI); 1519 }; 1520 if (!all_of(Insts, SameAsI0)) { 1521 if (!canReplaceOperandWithVariable(I0, OI)) 1522 // We can't create a PHI from this GEP. 1523 return false; 1524 // Don't create indirect calls! The called value is the final operand. 1525 if (isa<CallBase>(I0) && OI == OE - 1) { 1526 // FIXME: if the call was *already* indirect, we should do this. 1527 return false; 1528 } 1529 for (auto *I : Insts) 1530 PHIOperands[I].push_back(I->getOperand(OI)); 1531 } 1532 } 1533 return true; 1534 } 1535 1536 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1537 // instruction of every block in Blocks to their common successor, commoning 1538 // into one instruction. 1539 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1540 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1541 1542 // canSinkLastInstruction returning true guarantees that every block has at 1543 // least one non-terminator instruction. 1544 SmallVector<Instruction*,4> Insts; 1545 for (auto *BB : Blocks) { 1546 Instruction *I = BB->getTerminator(); 1547 do { 1548 I = I->getPrevNode(); 1549 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1550 if (!isa<DbgInfoIntrinsic>(I)) 1551 Insts.push_back(I); 1552 } 1553 1554 // The only checking we need to do now is that all users of all instructions 1555 // are the same PHI node. canSinkLastInstruction should have checked this but 1556 // it is slightly over-aggressive - it gets confused by commutative instructions 1557 // so double-check it here. 1558 Instruction *I0 = Insts.front(); 1559 if (!I0->user_empty()) { 1560 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1561 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1562 auto *U = cast<Instruction>(*I->user_begin()); 1563 return U == PNUse; 1564 })) 1565 return false; 1566 } 1567 1568 // We don't need to do any more checking here; canSinkLastInstruction should 1569 // have done it all for us. 1570 SmallVector<Value*, 4> NewOperands; 1571 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1572 // This check is different to that in canSinkLastInstruction. There, we 1573 // cared about the global view once simplifycfg (and instcombine) have 1574 // completed - it takes into account PHIs that become trivially 1575 // simplifiable. However here we need a more local view; if an operand 1576 // differs we create a PHI and rely on instcombine to clean up the very 1577 // small mess we may make. 1578 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1579 return I->getOperand(O) != I0->getOperand(O); 1580 }); 1581 if (!NeedPHI) { 1582 NewOperands.push_back(I0->getOperand(O)); 1583 continue; 1584 } 1585 1586 // Create a new PHI in the successor block and populate it. 1587 auto *Op = I0->getOperand(O); 1588 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1589 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1590 Op->getName() + ".sink", &BBEnd->front()); 1591 for (auto *I : Insts) 1592 PN->addIncoming(I->getOperand(O), I->getParent()); 1593 NewOperands.push_back(PN); 1594 } 1595 1596 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1597 // and move it to the start of the successor block. 1598 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1599 I0->getOperandUse(O).set(NewOperands[O]); 1600 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1601 1602 // Update metadata and IR flags, and merge debug locations. 1603 for (auto *I : Insts) 1604 if (I != I0) { 1605 // The debug location for the "common" instruction is the merged locations 1606 // of all the commoned instructions. We start with the original location 1607 // of the "common" instruction and iteratively merge each location in the 1608 // loop below. 1609 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1610 // However, as N-way merge for CallInst is rare, so we use simplified API 1611 // instead of using complex API for N-way merge. 1612 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1613 combineMetadataForCSE(I0, I, true); 1614 I0->andIRFlags(I); 1615 } 1616 1617 if (!I0->user_empty()) { 1618 // canSinkLastInstruction checked that all instructions were used by 1619 // one and only one PHI node. Find that now, RAUW it to our common 1620 // instruction and nuke it. 1621 auto *PN = cast<PHINode>(*I0->user_begin()); 1622 PN->replaceAllUsesWith(I0); 1623 PN->eraseFromParent(); 1624 } 1625 1626 // Finally nuke all instructions apart from the common instruction. 1627 for (auto *I : Insts) 1628 if (I != I0) 1629 I->eraseFromParent(); 1630 1631 return true; 1632 } 1633 1634 namespace { 1635 1636 // LockstepReverseIterator - Iterates through instructions 1637 // in a set of blocks in reverse order from the first non-terminator. 1638 // For example (assume all blocks have size n): 1639 // LockstepReverseIterator I([B1, B2, B3]); 1640 // *I-- = [B1[n], B2[n], B3[n]]; 1641 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1642 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1643 // ... 1644 class LockstepReverseIterator { 1645 ArrayRef<BasicBlock*> Blocks; 1646 SmallVector<Instruction*,4> Insts; 1647 bool Fail; 1648 1649 public: 1650 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1651 reset(); 1652 } 1653 1654 void reset() { 1655 Fail = false; 1656 Insts.clear(); 1657 for (auto *BB : Blocks) { 1658 Instruction *Inst = BB->getTerminator(); 1659 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1660 Inst = Inst->getPrevNode(); 1661 if (!Inst) { 1662 // Block wasn't big enough. 1663 Fail = true; 1664 return; 1665 } 1666 Insts.push_back(Inst); 1667 } 1668 } 1669 1670 bool isValid() const { 1671 return !Fail; 1672 } 1673 1674 void operator--() { 1675 if (Fail) 1676 return; 1677 for (auto *&Inst : Insts) { 1678 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1679 Inst = Inst->getPrevNode(); 1680 // Already at beginning of block. 1681 if (!Inst) { 1682 Fail = true; 1683 return; 1684 } 1685 } 1686 } 1687 1688 ArrayRef<Instruction*> operator * () const { 1689 return Insts; 1690 } 1691 }; 1692 1693 } // end anonymous namespace 1694 1695 /// Check whether BB's predecessors end with unconditional branches. If it is 1696 /// true, sink any common code from the predecessors to BB. 1697 /// We also allow one predecessor to end with conditional branch (but no more 1698 /// than one). 1699 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1700 // We support two situations: 1701 // (1) all incoming arcs are unconditional 1702 // (2) one incoming arc is conditional 1703 // 1704 // (2) is very common in switch defaults and 1705 // else-if patterns; 1706 // 1707 // if (a) f(1); 1708 // else if (b) f(2); 1709 // 1710 // produces: 1711 // 1712 // [if] 1713 // / \ 1714 // [f(1)] [if] 1715 // | | \ 1716 // | | | 1717 // | [f(2)]| 1718 // \ | / 1719 // [ end ] 1720 // 1721 // [end] has two unconditional predecessor arcs and one conditional. The 1722 // conditional refers to the implicit empty 'else' arc. This conditional 1723 // arc can also be caused by an empty default block in a switch. 1724 // 1725 // In this case, we attempt to sink code from all *unconditional* arcs. 1726 // If we can sink instructions from these arcs (determined during the scan 1727 // phase below) we insert a common successor for all unconditional arcs and 1728 // connect that to [end], to enable sinking: 1729 // 1730 // [if] 1731 // / \ 1732 // [x(1)] [if] 1733 // | | \ 1734 // | | \ 1735 // | [x(2)] | 1736 // \ / | 1737 // [sink.split] | 1738 // \ / 1739 // [ end ] 1740 // 1741 SmallVector<BasicBlock*,4> UnconditionalPreds; 1742 Instruction *Cond = nullptr; 1743 for (auto *B : predecessors(BB)) { 1744 auto *T = B->getTerminator(); 1745 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1746 UnconditionalPreds.push_back(B); 1747 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1748 Cond = T; 1749 else 1750 return false; 1751 } 1752 if (UnconditionalPreds.size() < 2) 1753 return false; 1754 1755 bool Changed = false; 1756 // We take a two-step approach to tail sinking. First we scan from the end of 1757 // each block upwards in lockstep. If the n'th instruction from the end of each 1758 // block can be sunk, those instructions are added to ValuesToSink and we 1759 // carry on. If we can sink an instruction but need to PHI-merge some operands 1760 // (because they're not identical in each instruction) we add these to 1761 // PHIOperands. 1762 unsigned ScanIdx = 0; 1763 SmallPtrSet<Value*,4> InstructionsToSink; 1764 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1765 LockstepReverseIterator LRI(UnconditionalPreds); 1766 while (LRI.isValid() && 1767 canSinkInstructions(*LRI, PHIOperands)) { 1768 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1769 << "\n"); 1770 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1771 ++ScanIdx; 1772 --LRI; 1773 } 1774 1775 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1776 unsigned NumPHIdValues = 0; 1777 for (auto *I : *LRI) 1778 for (auto *V : PHIOperands[I]) 1779 if (InstructionsToSink.count(V) == 0) 1780 ++NumPHIdValues; 1781 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1782 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1783 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1784 NumPHIInsts++; 1785 1786 return NumPHIInsts <= 1; 1787 }; 1788 1789 if (ScanIdx > 0 && Cond) { 1790 // Check if we would actually sink anything first! This mutates the CFG and 1791 // adds an extra block. The goal in doing this is to allow instructions that 1792 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1793 // (such as trunc, add) can be sunk and predicated already. So we check that 1794 // we're going to sink at least one non-speculatable instruction. 1795 LRI.reset(); 1796 unsigned Idx = 0; 1797 bool Profitable = false; 1798 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1799 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1800 Profitable = true; 1801 break; 1802 } 1803 --LRI; 1804 ++Idx; 1805 } 1806 if (!Profitable) 1807 return false; 1808 1809 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1810 // We have a conditional edge and we're going to sink some instructions. 1811 // Insert a new block postdominating all blocks we're going to sink from. 1812 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1813 // Edges couldn't be split. 1814 return false; 1815 Changed = true; 1816 } 1817 1818 // Now that we've analyzed all potential sinking candidates, perform the 1819 // actual sink. We iteratively sink the last non-terminator of the source 1820 // blocks into their common successor unless doing so would require too 1821 // many PHI instructions to be generated (currently only one PHI is allowed 1822 // per sunk instruction). 1823 // 1824 // We can use InstructionsToSink to discount values needing PHI-merging that will 1825 // actually be sunk in a later iteration. This allows us to be more 1826 // aggressive in what we sink. This does allow a false positive where we 1827 // sink presuming a later value will also be sunk, but stop half way through 1828 // and never actually sink it which means we produce more PHIs than intended. 1829 // This is unlikely in practice though. 1830 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1831 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1832 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1833 << "\n"); 1834 1835 // Because we've sunk every instruction in turn, the current instruction to 1836 // sink is always at index 0. 1837 LRI.reset(); 1838 if (!ProfitableToSinkInstruction(LRI)) { 1839 // Too many PHIs would be created. 1840 LLVM_DEBUG( 1841 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1842 break; 1843 } 1844 1845 if (!sinkLastInstruction(UnconditionalPreds)) 1846 return Changed; 1847 NumSinkCommons++; 1848 Changed = true; 1849 } 1850 return Changed; 1851 } 1852 1853 /// Determine if we can hoist sink a sole store instruction out of a 1854 /// conditional block. 1855 /// 1856 /// We are looking for code like the following: 1857 /// BrBB: 1858 /// store i32 %add, i32* %arrayidx2 1859 /// ... // No other stores or function calls (we could be calling a memory 1860 /// ... // function). 1861 /// %cmp = icmp ult %x, %y 1862 /// br i1 %cmp, label %EndBB, label %ThenBB 1863 /// ThenBB: 1864 /// store i32 %add5, i32* %arrayidx2 1865 /// br label EndBB 1866 /// EndBB: 1867 /// ... 1868 /// We are going to transform this into: 1869 /// BrBB: 1870 /// store i32 %add, i32* %arrayidx2 1871 /// ... // 1872 /// %cmp = icmp ult %x, %y 1873 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1874 /// store i32 %add.add5, i32* %arrayidx2 1875 /// ... 1876 /// 1877 /// \return The pointer to the value of the previous store if the store can be 1878 /// hoisted into the predecessor block. 0 otherwise. 1879 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1880 BasicBlock *StoreBB, BasicBlock *EndBB) { 1881 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1882 if (!StoreToHoist) 1883 return nullptr; 1884 1885 // Volatile or atomic. 1886 if (!StoreToHoist->isSimple()) 1887 return nullptr; 1888 1889 Value *StorePtr = StoreToHoist->getPointerOperand(); 1890 1891 // Look for a store to the same pointer in BrBB. 1892 unsigned MaxNumInstToLookAt = 9; 1893 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1894 if (!MaxNumInstToLookAt) 1895 break; 1896 --MaxNumInstToLookAt; 1897 1898 // Could be calling an instruction that affects memory like free(). 1899 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1900 return nullptr; 1901 1902 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1903 // Found the previous store make sure it stores to the same location. 1904 if (SI->getPointerOperand() == StorePtr) 1905 // Found the previous store, return its value operand. 1906 return SI->getValueOperand(); 1907 return nullptr; // Unknown store. 1908 } 1909 } 1910 1911 return nullptr; 1912 } 1913 1914 /// Speculate a conditional basic block flattening the CFG. 1915 /// 1916 /// Note that this is a very risky transform currently. Speculating 1917 /// instructions like this is most often not desirable. Instead, there is an MI 1918 /// pass which can do it with full awareness of the resource constraints. 1919 /// However, some cases are "obvious" and we should do directly. An example of 1920 /// this is speculating a single, reasonably cheap instruction. 1921 /// 1922 /// There is only one distinct advantage to flattening the CFG at the IR level: 1923 /// it makes very common but simplistic optimizations such as are common in 1924 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1925 /// modeling their effects with easier to reason about SSA value graphs. 1926 /// 1927 /// 1928 /// An illustration of this transform is turning this IR: 1929 /// \code 1930 /// BB: 1931 /// %cmp = icmp ult %x, %y 1932 /// br i1 %cmp, label %EndBB, label %ThenBB 1933 /// ThenBB: 1934 /// %sub = sub %x, %y 1935 /// br label BB2 1936 /// EndBB: 1937 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1938 /// ... 1939 /// \endcode 1940 /// 1941 /// Into this IR: 1942 /// \code 1943 /// BB: 1944 /// %cmp = icmp ult %x, %y 1945 /// %sub = sub %x, %y 1946 /// %cond = select i1 %cmp, 0, %sub 1947 /// ... 1948 /// \endcode 1949 /// 1950 /// \returns true if the conditional block is removed. 1951 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1952 const TargetTransformInfo &TTI) { 1953 // Be conservative for now. FP select instruction can often be expensive. 1954 Value *BrCond = BI->getCondition(); 1955 if (isa<FCmpInst>(BrCond)) 1956 return false; 1957 1958 BasicBlock *BB = BI->getParent(); 1959 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1960 1961 // If ThenBB is actually on the false edge of the conditional branch, remember 1962 // to swap the select operands later. 1963 bool Invert = false; 1964 if (ThenBB != BI->getSuccessor(0)) { 1965 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1966 Invert = true; 1967 } 1968 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1969 1970 // Keep a count of how many times instructions are used within ThenBB when 1971 // they are candidates for sinking into ThenBB. Specifically: 1972 // - They are defined in BB, and 1973 // - They have no side effects, and 1974 // - All of their uses are in ThenBB. 1975 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1976 1977 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1978 1979 unsigned SpeculationCost = 0; 1980 Value *SpeculatedStoreValue = nullptr; 1981 StoreInst *SpeculatedStore = nullptr; 1982 for (BasicBlock::iterator BBI = ThenBB->begin(), 1983 BBE = std::prev(ThenBB->end()); 1984 BBI != BBE; ++BBI) { 1985 Instruction *I = &*BBI; 1986 // Skip debug info. 1987 if (isa<DbgInfoIntrinsic>(I)) { 1988 SpeculatedDbgIntrinsics.push_back(I); 1989 continue; 1990 } 1991 1992 // Only speculatively execute a single instruction (not counting the 1993 // terminator) for now. 1994 ++SpeculationCost; 1995 if (SpeculationCost > 1) 1996 return false; 1997 1998 // Don't hoist the instruction if it's unsafe or expensive. 1999 if (!isSafeToSpeculativelyExecute(I) && 2000 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2001 I, BB, ThenBB, EndBB)))) 2002 return false; 2003 if (!SpeculatedStoreValue && 2004 ComputeSpeculationCost(I, TTI) > 2005 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2006 return false; 2007 2008 // Store the store speculation candidate. 2009 if (SpeculatedStoreValue) 2010 SpeculatedStore = cast<StoreInst>(I); 2011 2012 // Do not hoist the instruction if any of its operands are defined but not 2013 // used in BB. The transformation will prevent the operand from 2014 // being sunk into the use block. 2015 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2016 Instruction *OpI = dyn_cast<Instruction>(*i); 2017 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2018 continue; // Not a candidate for sinking. 2019 2020 ++SinkCandidateUseCounts[OpI]; 2021 } 2022 } 2023 2024 // Consider any sink candidates which are only used in ThenBB as costs for 2025 // speculation. Note, while we iterate over a DenseMap here, we are summing 2026 // and so iteration order isn't significant. 2027 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2028 I = SinkCandidateUseCounts.begin(), 2029 E = SinkCandidateUseCounts.end(); 2030 I != E; ++I) 2031 if (I->first->hasNUses(I->second)) { 2032 ++SpeculationCost; 2033 if (SpeculationCost > 1) 2034 return false; 2035 } 2036 2037 // Check that the PHI nodes can be converted to selects. 2038 bool HaveRewritablePHIs = false; 2039 for (PHINode &PN : EndBB->phis()) { 2040 Value *OrigV = PN.getIncomingValueForBlock(BB); 2041 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2042 2043 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2044 // Skip PHIs which are trivial. 2045 if (ThenV == OrigV) 2046 continue; 2047 2048 // Don't convert to selects if we could remove undefined behavior instead. 2049 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2050 passingValueIsAlwaysUndefined(ThenV, &PN)) 2051 return false; 2052 2053 HaveRewritablePHIs = true; 2054 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2055 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2056 if (!OrigCE && !ThenCE) 2057 continue; // Known safe and cheap. 2058 2059 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2060 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2061 return false; 2062 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2063 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2064 unsigned MaxCost = 2065 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2066 if (OrigCost + ThenCost > MaxCost) 2067 return false; 2068 2069 // Account for the cost of an unfolded ConstantExpr which could end up 2070 // getting expanded into Instructions. 2071 // FIXME: This doesn't account for how many operations are combined in the 2072 // constant expression. 2073 ++SpeculationCost; 2074 if (SpeculationCost > 1) 2075 return false; 2076 } 2077 2078 // If there are no PHIs to process, bail early. This helps ensure idempotence 2079 // as well. 2080 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2081 return false; 2082 2083 // If we get here, we can hoist the instruction and if-convert. 2084 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2085 2086 // Insert a select of the value of the speculated store. 2087 if (SpeculatedStoreValue) { 2088 IRBuilder<NoFolder> Builder(BI); 2089 Value *TrueV = SpeculatedStore->getValueOperand(); 2090 Value *FalseV = SpeculatedStoreValue; 2091 if (Invert) 2092 std::swap(TrueV, FalseV); 2093 Value *S = Builder.CreateSelect( 2094 BrCond, TrueV, FalseV, "spec.store.select", BI); 2095 SpeculatedStore->setOperand(0, S); 2096 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2097 SpeculatedStore->getDebugLoc()); 2098 } 2099 2100 // Metadata can be dependent on the condition we are hoisting above. 2101 // Conservatively strip all metadata on the instruction. 2102 for (auto &I : *ThenBB) 2103 I.dropUnknownNonDebugMetadata(); 2104 2105 // Hoist the instructions. 2106 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2107 ThenBB->begin(), std::prev(ThenBB->end())); 2108 2109 // Insert selects and rewrite the PHI operands. 2110 IRBuilder<NoFolder> Builder(BI); 2111 for (PHINode &PN : EndBB->phis()) { 2112 unsigned OrigI = PN.getBasicBlockIndex(BB); 2113 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2114 Value *OrigV = PN.getIncomingValue(OrigI); 2115 Value *ThenV = PN.getIncomingValue(ThenI); 2116 2117 // Skip PHIs which are trivial. 2118 if (OrigV == ThenV) 2119 continue; 2120 2121 // Create a select whose true value is the speculatively executed value and 2122 // false value is the preexisting value. Swap them if the branch 2123 // destinations were inverted. 2124 Value *TrueV = ThenV, *FalseV = OrigV; 2125 if (Invert) 2126 std::swap(TrueV, FalseV); 2127 Value *V = Builder.CreateSelect( 2128 BrCond, TrueV, FalseV, "spec.select", BI); 2129 PN.setIncomingValue(OrigI, V); 2130 PN.setIncomingValue(ThenI, V); 2131 } 2132 2133 // Remove speculated dbg intrinsics. 2134 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2135 // dbg value for the different flows and inserting it after the select. 2136 for (Instruction *I : SpeculatedDbgIntrinsics) 2137 I->eraseFromParent(); 2138 2139 ++NumSpeculations; 2140 return true; 2141 } 2142 2143 /// Return true if we can thread a branch across this block. 2144 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2145 unsigned Size = 0; 2146 2147 for (Instruction &I : BB->instructionsWithoutDebug()) { 2148 if (Size > 10) 2149 return false; // Don't clone large BB's. 2150 ++Size; 2151 2152 // We can only support instructions that do not define values that are 2153 // live outside of the current basic block. 2154 for (User *U : I.users()) { 2155 Instruction *UI = cast<Instruction>(U); 2156 if (UI->getParent() != BB || isa<PHINode>(UI)) 2157 return false; 2158 } 2159 2160 // Looks ok, continue checking. 2161 } 2162 2163 return true; 2164 } 2165 2166 /// If we have a conditional branch on a PHI node value that is defined in the 2167 /// same block as the branch and if any PHI entries are constants, thread edges 2168 /// corresponding to that entry to be branches to their ultimate destination. 2169 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2170 AssumptionCache *AC) { 2171 BasicBlock *BB = BI->getParent(); 2172 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2173 // NOTE: we currently cannot transform this case if the PHI node is used 2174 // outside of the block. 2175 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2176 return false; 2177 2178 // Degenerate case of a single entry PHI. 2179 if (PN->getNumIncomingValues() == 1) { 2180 FoldSingleEntryPHINodes(PN->getParent()); 2181 return true; 2182 } 2183 2184 // Now we know that this block has multiple preds and two succs. 2185 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2186 return false; 2187 2188 // Can't fold blocks that contain noduplicate or convergent calls. 2189 if (any_of(*BB, [](const Instruction &I) { 2190 const CallInst *CI = dyn_cast<CallInst>(&I); 2191 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2192 })) 2193 return false; 2194 2195 // Okay, this is a simple enough basic block. See if any phi values are 2196 // constants. 2197 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2198 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2199 if (!CB || !CB->getType()->isIntegerTy(1)) 2200 continue; 2201 2202 // Okay, we now know that all edges from PredBB should be revectored to 2203 // branch to RealDest. 2204 BasicBlock *PredBB = PN->getIncomingBlock(i); 2205 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2206 2207 if (RealDest == BB) 2208 continue; // Skip self loops. 2209 // Skip if the predecessor's terminator is an indirect branch. 2210 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2211 continue; 2212 2213 // The dest block might have PHI nodes, other predecessors and other 2214 // difficult cases. Instead of being smart about this, just insert a new 2215 // block that jumps to the destination block, effectively splitting 2216 // the edge we are about to create. 2217 BasicBlock *EdgeBB = 2218 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2219 RealDest->getParent(), RealDest); 2220 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2221 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2222 2223 // Update PHI nodes. 2224 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2225 2226 // BB may have instructions that are being threaded over. Clone these 2227 // instructions into EdgeBB. We know that there will be no uses of the 2228 // cloned instructions outside of EdgeBB. 2229 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2230 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2231 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2232 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2233 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2234 continue; 2235 } 2236 // Clone the instruction. 2237 Instruction *N = BBI->clone(); 2238 if (BBI->hasName()) 2239 N->setName(BBI->getName() + ".c"); 2240 2241 // Update operands due to translation. 2242 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2243 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2244 if (PI != TranslateMap.end()) 2245 *i = PI->second; 2246 } 2247 2248 // Check for trivial simplification. 2249 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2250 if (!BBI->use_empty()) 2251 TranslateMap[&*BBI] = V; 2252 if (!N->mayHaveSideEffects()) { 2253 N->deleteValue(); // Instruction folded away, don't need actual inst 2254 N = nullptr; 2255 } 2256 } else { 2257 if (!BBI->use_empty()) 2258 TranslateMap[&*BBI] = N; 2259 } 2260 // Insert the new instruction into its new home. 2261 if (N) 2262 EdgeBB->getInstList().insert(InsertPt, N); 2263 2264 // Register the new instruction with the assumption cache if necessary. 2265 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2266 if (II->getIntrinsicID() == Intrinsic::assume) 2267 AC->registerAssumption(II); 2268 } 2269 2270 // Loop over all of the edges from PredBB to BB, changing them to branch 2271 // to EdgeBB instead. 2272 Instruction *PredBBTI = PredBB->getTerminator(); 2273 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2274 if (PredBBTI->getSuccessor(i) == BB) { 2275 BB->removePredecessor(PredBB); 2276 PredBBTI->setSuccessor(i, EdgeBB); 2277 } 2278 2279 // Recurse, simplifying any other constants. 2280 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2281 } 2282 2283 return false; 2284 } 2285 2286 /// Given a BB that starts with the specified two-entry PHI node, 2287 /// see if we can eliminate it. 2288 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2289 const DataLayout &DL) { 2290 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2291 // statement", which has a very simple dominance structure. Basically, we 2292 // are trying to find the condition that is being branched on, which 2293 // subsequently causes this merge to happen. We really want control 2294 // dependence information for this check, but simplifycfg can't keep it up 2295 // to date, and this catches most of the cases we care about anyway. 2296 BasicBlock *BB = PN->getParent(); 2297 const Function *Fn = BB->getParent(); 2298 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2299 return false; 2300 2301 BasicBlock *IfTrue, *IfFalse; 2302 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2303 if (!IfCond || 2304 // Don't bother if the branch will be constant folded trivially. 2305 isa<ConstantInt>(IfCond)) 2306 return false; 2307 2308 // Okay, we found that we can merge this two-entry phi node into a select. 2309 // Doing so would require us to fold *all* two entry phi nodes in this block. 2310 // At some point this becomes non-profitable (particularly if the target 2311 // doesn't support cmov's). Only do this transformation if there are two or 2312 // fewer PHI nodes in this block. 2313 unsigned NumPhis = 0; 2314 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2315 if (NumPhis > 2) 2316 return false; 2317 2318 // Loop over the PHI's seeing if we can promote them all to select 2319 // instructions. While we are at it, keep track of the instructions 2320 // that need to be moved to the dominating block. 2321 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2322 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2323 MaxCostVal1 = PHINodeFoldingThreshold; 2324 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2325 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2326 2327 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2328 PHINode *PN = cast<PHINode>(II++); 2329 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2330 PN->replaceAllUsesWith(V); 2331 PN->eraseFromParent(); 2332 continue; 2333 } 2334 2335 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2336 MaxCostVal0, TTI) || 2337 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2338 MaxCostVal1, TTI)) 2339 return false; 2340 } 2341 2342 // If we folded the first phi, PN dangles at this point. Refresh it. If 2343 // we ran out of PHIs then we simplified them all. 2344 PN = dyn_cast<PHINode>(BB->begin()); 2345 if (!PN) 2346 return true; 2347 2348 // Don't fold i1 branches on PHIs which contain binary operators. These can 2349 // often be turned into switches and other things. 2350 if (PN->getType()->isIntegerTy(1) && 2351 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2352 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2353 isa<BinaryOperator>(IfCond))) 2354 return false; 2355 2356 // If all PHI nodes are promotable, check to make sure that all instructions 2357 // in the predecessor blocks can be promoted as well. If not, we won't be able 2358 // to get rid of the control flow, so it's not worth promoting to select 2359 // instructions. 2360 BasicBlock *DomBlock = nullptr; 2361 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2362 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2363 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2364 IfBlock1 = nullptr; 2365 } else { 2366 DomBlock = *pred_begin(IfBlock1); 2367 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2368 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2369 // This is not an aggressive instruction that we can promote. 2370 // Because of this, we won't be able to get rid of the control flow, so 2371 // the xform is not worth it. 2372 return false; 2373 } 2374 } 2375 2376 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2377 IfBlock2 = nullptr; 2378 } else { 2379 DomBlock = *pred_begin(IfBlock2); 2380 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2381 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2382 // This is not an aggressive instruction that we can promote. 2383 // Because of this, we won't be able to get rid of the control flow, so 2384 // the xform is not worth it. 2385 return false; 2386 } 2387 } 2388 2389 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2390 << " T: " << IfTrue->getName() 2391 << " F: " << IfFalse->getName() << "\n"); 2392 2393 // If we can still promote the PHI nodes after this gauntlet of tests, 2394 // do all of the PHI's now. 2395 Instruction *InsertPt = DomBlock->getTerminator(); 2396 IRBuilder<NoFolder> Builder(InsertPt); 2397 2398 // Move all 'aggressive' instructions, which are defined in the 2399 // conditional parts of the if's up to the dominating block. 2400 if (IfBlock1) 2401 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2402 if (IfBlock2) 2403 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2404 2405 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2406 // Change the PHI node into a select instruction. 2407 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2408 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2409 2410 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2411 PN->replaceAllUsesWith(Sel); 2412 Sel->takeName(PN); 2413 PN->eraseFromParent(); 2414 } 2415 2416 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2417 // has been flattened. Change DomBlock to jump directly to our new block to 2418 // avoid other simplifycfg's kicking in on the diamond. 2419 Instruction *OldTI = DomBlock->getTerminator(); 2420 Builder.SetInsertPoint(OldTI); 2421 Builder.CreateBr(BB); 2422 OldTI->eraseFromParent(); 2423 return true; 2424 } 2425 2426 /// If we found a conditional branch that goes to two returning blocks, 2427 /// try to merge them together into one return, 2428 /// introducing a select if the return values disagree. 2429 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2430 IRBuilder<> &Builder) { 2431 assert(BI->isConditional() && "Must be a conditional branch"); 2432 BasicBlock *TrueSucc = BI->getSuccessor(0); 2433 BasicBlock *FalseSucc = BI->getSuccessor(1); 2434 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2435 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2436 2437 // Check to ensure both blocks are empty (just a return) or optionally empty 2438 // with PHI nodes. If there are other instructions, merging would cause extra 2439 // computation on one path or the other. 2440 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2441 return false; 2442 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2443 return false; 2444 2445 Builder.SetInsertPoint(BI); 2446 // Okay, we found a branch that is going to two return nodes. If 2447 // there is no return value for this function, just change the 2448 // branch into a return. 2449 if (FalseRet->getNumOperands() == 0) { 2450 TrueSucc->removePredecessor(BI->getParent()); 2451 FalseSucc->removePredecessor(BI->getParent()); 2452 Builder.CreateRetVoid(); 2453 EraseTerminatorAndDCECond(BI); 2454 return true; 2455 } 2456 2457 // Otherwise, figure out what the true and false return values are 2458 // so we can insert a new select instruction. 2459 Value *TrueValue = TrueRet->getReturnValue(); 2460 Value *FalseValue = FalseRet->getReturnValue(); 2461 2462 // Unwrap any PHI nodes in the return blocks. 2463 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2464 if (TVPN->getParent() == TrueSucc) 2465 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2466 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2467 if (FVPN->getParent() == FalseSucc) 2468 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2469 2470 // In order for this transformation to be safe, we must be able to 2471 // unconditionally execute both operands to the return. This is 2472 // normally the case, but we could have a potentially-trapping 2473 // constant expression that prevents this transformation from being 2474 // safe. 2475 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2476 if (TCV->canTrap()) 2477 return false; 2478 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2479 if (FCV->canTrap()) 2480 return false; 2481 2482 // Okay, we collected all the mapped values and checked them for sanity, and 2483 // defined to really do this transformation. First, update the CFG. 2484 TrueSucc->removePredecessor(BI->getParent()); 2485 FalseSucc->removePredecessor(BI->getParent()); 2486 2487 // Insert select instructions where needed. 2488 Value *BrCond = BI->getCondition(); 2489 if (TrueValue) { 2490 // Insert a select if the results differ. 2491 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2492 } else if (isa<UndefValue>(TrueValue)) { 2493 TrueValue = FalseValue; 2494 } else { 2495 TrueValue = 2496 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2497 } 2498 } 2499 2500 Value *RI = 2501 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2502 2503 (void)RI; 2504 2505 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2506 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2507 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2508 2509 EraseTerminatorAndDCECond(BI); 2510 2511 return true; 2512 } 2513 2514 /// Return true if the given instruction is available 2515 /// in its predecessor block. If yes, the instruction will be removed. 2516 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2517 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2518 return false; 2519 for (Instruction &I : *PB) { 2520 Instruction *PBI = &I; 2521 // Check whether Inst and PBI generate the same value. 2522 if (Inst->isIdenticalTo(PBI)) { 2523 Inst->replaceAllUsesWith(PBI); 2524 Inst->eraseFromParent(); 2525 return true; 2526 } 2527 } 2528 return false; 2529 } 2530 2531 /// Return true if either PBI or BI has branch weight available, and store 2532 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2533 /// not have branch weight, use 1:1 as its weight. 2534 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2535 uint64_t &PredTrueWeight, 2536 uint64_t &PredFalseWeight, 2537 uint64_t &SuccTrueWeight, 2538 uint64_t &SuccFalseWeight) { 2539 bool PredHasWeights = 2540 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2541 bool SuccHasWeights = 2542 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2543 if (PredHasWeights || SuccHasWeights) { 2544 if (!PredHasWeights) 2545 PredTrueWeight = PredFalseWeight = 1; 2546 if (!SuccHasWeights) 2547 SuccTrueWeight = SuccFalseWeight = 1; 2548 return true; 2549 } else { 2550 return false; 2551 } 2552 } 2553 2554 /// If this basic block is simple enough, and if a predecessor branches to us 2555 /// and one of our successors, fold the block into the predecessor and use 2556 /// logical operations to pick the right destination. 2557 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2558 unsigned BonusInstThreshold) { 2559 BasicBlock *BB = BI->getParent(); 2560 2561 const unsigned PredCount = pred_size(BB); 2562 2563 Instruction *Cond = nullptr; 2564 if (BI->isConditional()) 2565 Cond = dyn_cast<Instruction>(BI->getCondition()); 2566 else { 2567 // For unconditional branch, check for a simple CFG pattern, where 2568 // BB has a single predecessor and BB's successor is also its predecessor's 2569 // successor. If such pattern exists, check for CSE between BB and its 2570 // predecessor. 2571 if (BasicBlock *PB = BB->getSinglePredecessor()) 2572 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2573 if (PBI->isConditional() && 2574 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2575 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2576 for (auto I = BB->instructionsWithoutDebug().begin(), 2577 E = BB->instructionsWithoutDebug().end(); 2578 I != E;) { 2579 Instruction *Curr = &*I++; 2580 if (isa<CmpInst>(Curr)) { 2581 Cond = Curr; 2582 break; 2583 } 2584 // Quit if we can't remove this instruction. 2585 if (!tryCSEWithPredecessor(Curr, PB)) 2586 return false; 2587 } 2588 } 2589 2590 if (!Cond) 2591 return false; 2592 } 2593 2594 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2595 Cond->getParent() != BB || !Cond->hasOneUse()) 2596 return false; 2597 2598 // Make sure the instruction after the condition is the cond branch. 2599 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2600 2601 // Ignore dbg intrinsics. 2602 while (isa<DbgInfoIntrinsic>(CondIt)) 2603 ++CondIt; 2604 2605 if (&*CondIt != BI) 2606 return false; 2607 2608 // Only allow this transformation if computing the condition doesn't involve 2609 // too many instructions and these involved instructions can be executed 2610 // unconditionally. We denote all involved instructions except the condition 2611 // as "bonus instructions", and only allow this transformation when the 2612 // number of the bonus instructions we'll need to create when cloning into 2613 // each predecessor does not exceed a certain threshold. 2614 unsigned NumBonusInsts = 0; 2615 for (auto I = BB->begin(); Cond != &*I; ++I) { 2616 // Ignore dbg intrinsics. 2617 if (isa<DbgInfoIntrinsic>(I)) 2618 continue; 2619 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2620 return false; 2621 // I has only one use and can be executed unconditionally. 2622 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2623 if (User == nullptr || User->getParent() != BB) 2624 return false; 2625 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2626 // to use any other instruction, User must be an instruction between next(I) 2627 // and Cond. 2628 2629 // Account for the cost of duplicating this instruction into each 2630 // predecessor. 2631 NumBonusInsts += PredCount; 2632 // Early exits once we reach the limit. 2633 if (NumBonusInsts > BonusInstThreshold) 2634 return false; 2635 } 2636 2637 // Cond is known to be a compare or binary operator. Check to make sure that 2638 // neither operand is a potentially-trapping constant expression. 2639 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2640 if (CE->canTrap()) 2641 return false; 2642 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2643 if (CE->canTrap()) 2644 return false; 2645 2646 // Finally, don't infinitely unroll conditional loops. 2647 BasicBlock *TrueDest = BI->getSuccessor(0); 2648 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2649 if (TrueDest == BB || FalseDest == BB) 2650 return false; 2651 2652 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2653 BasicBlock *PredBlock = *PI; 2654 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2655 2656 // Check that we have two conditional branches. If there is a PHI node in 2657 // the common successor, verify that the same value flows in from both 2658 // blocks. 2659 SmallVector<PHINode *, 4> PHIs; 2660 if (!PBI || PBI->isUnconditional() || 2661 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2662 (!BI->isConditional() && 2663 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2664 continue; 2665 2666 // Determine if the two branches share a common destination. 2667 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2668 bool InvertPredCond = false; 2669 2670 if (BI->isConditional()) { 2671 if (PBI->getSuccessor(0) == TrueDest) { 2672 Opc = Instruction::Or; 2673 } else if (PBI->getSuccessor(1) == FalseDest) { 2674 Opc = Instruction::And; 2675 } else if (PBI->getSuccessor(0) == FalseDest) { 2676 Opc = Instruction::And; 2677 InvertPredCond = true; 2678 } else if (PBI->getSuccessor(1) == TrueDest) { 2679 Opc = Instruction::Or; 2680 InvertPredCond = true; 2681 } else { 2682 continue; 2683 } 2684 } else { 2685 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2686 continue; 2687 } 2688 2689 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2690 IRBuilder<> Builder(PBI); 2691 2692 // If we need to invert the condition in the pred block to match, do so now. 2693 if (InvertPredCond) { 2694 Value *NewCond = PBI->getCondition(); 2695 2696 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2697 CmpInst *CI = cast<CmpInst>(NewCond); 2698 CI->setPredicate(CI->getInversePredicate()); 2699 } else { 2700 NewCond = 2701 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2702 } 2703 2704 PBI->setCondition(NewCond); 2705 PBI->swapSuccessors(); 2706 } 2707 2708 // If we have bonus instructions, clone them into the predecessor block. 2709 // Note that there may be multiple predecessor blocks, so we cannot move 2710 // bonus instructions to a predecessor block. 2711 ValueToValueMapTy VMap; // maps original values to cloned values 2712 // We already make sure Cond is the last instruction before BI. Therefore, 2713 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2714 // instructions. 2715 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2716 if (isa<DbgInfoIntrinsic>(BonusInst)) 2717 continue; 2718 Instruction *NewBonusInst = BonusInst->clone(); 2719 RemapInstruction(NewBonusInst, VMap, 2720 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2721 VMap[&*BonusInst] = NewBonusInst; 2722 2723 // If we moved a load, we cannot any longer claim any knowledge about 2724 // its potential value. The previous information might have been valid 2725 // only given the branch precondition. 2726 // For an analogous reason, we must also drop all the metadata whose 2727 // semantics we don't understand. 2728 NewBonusInst->dropUnknownNonDebugMetadata(); 2729 2730 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2731 NewBonusInst->takeName(&*BonusInst); 2732 BonusInst->setName(BonusInst->getName() + ".old"); 2733 } 2734 2735 // Clone Cond into the predecessor basic block, and or/and the 2736 // two conditions together. 2737 Instruction *CondInPred = Cond->clone(); 2738 RemapInstruction(CondInPred, VMap, 2739 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2740 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2741 CondInPred->takeName(Cond); 2742 Cond->setName(CondInPred->getName() + ".old"); 2743 2744 if (BI->isConditional()) { 2745 Instruction *NewCond = cast<Instruction>( 2746 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2747 PBI->setCondition(NewCond); 2748 2749 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2750 bool HasWeights = 2751 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2752 SuccTrueWeight, SuccFalseWeight); 2753 SmallVector<uint64_t, 8> NewWeights; 2754 2755 if (PBI->getSuccessor(0) == BB) { 2756 if (HasWeights) { 2757 // PBI: br i1 %x, BB, FalseDest 2758 // BI: br i1 %y, TrueDest, FalseDest 2759 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2760 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2761 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2762 // TrueWeight for PBI * FalseWeight for BI. 2763 // We assume that total weights of a BranchInst can fit into 32 bits. 2764 // Therefore, we will not have overflow using 64-bit arithmetic. 2765 NewWeights.push_back(PredFalseWeight * 2766 (SuccFalseWeight + SuccTrueWeight) + 2767 PredTrueWeight * SuccFalseWeight); 2768 } 2769 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU); 2770 PBI->setSuccessor(0, TrueDest); 2771 } 2772 if (PBI->getSuccessor(1) == BB) { 2773 if (HasWeights) { 2774 // PBI: br i1 %x, TrueDest, BB 2775 // BI: br i1 %y, TrueDest, FalseDest 2776 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2777 // FalseWeight for PBI * TrueWeight for BI. 2778 NewWeights.push_back(PredTrueWeight * 2779 (SuccFalseWeight + SuccTrueWeight) + 2780 PredFalseWeight * SuccTrueWeight); 2781 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2782 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2783 } 2784 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU); 2785 PBI->setSuccessor(1, FalseDest); 2786 } 2787 if (NewWeights.size() == 2) { 2788 // Halve the weights if any of them cannot fit in an uint32_t 2789 FitWeights(NewWeights); 2790 2791 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2792 NewWeights.end()); 2793 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2794 } else 2795 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2796 } else { 2797 // Update PHI nodes in the common successors. 2798 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2799 ConstantInt *PBI_C = cast<ConstantInt>( 2800 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2801 assert(PBI_C->getType()->isIntegerTy(1)); 2802 Instruction *MergedCond = nullptr; 2803 if (PBI->getSuccessor(0) == TrueDest) { 2804 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2805 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2806 // is false: !PBI_Cond and BI_Value 2807 Instruction *NotCond = cast<Instruction>( 2808 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2809 MergedCond = cast<Instruction>( 2810 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2811 "and.cond")); 2812 if (PBI_C->isOne()) 2813 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2814 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2815 } else { 2816 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2817 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2818 // is false: PBI_Cond and BI_Value 2819 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2820 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2821 if (PBI_C->isOne()) { 2822 Instruction *NotCond = cast<Instruction>( 2823 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2824 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2825 Instruction::Or, NotCond, MergedCond, "or.cond")); 2826 } 2827 } 2828 // Update PHI Node. 2829 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2830 MergedCond); 2831 } 2832 2833 // PBI is changed to branch to TrueDest below. Remove itself from 2834 // potential phis from all other successors. 2835 if (MSSAU) 2836 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 2837 2838 // Change PBI from Conditional to Unconditional. 2839 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2840 EraseTerminatorAndDCECond(PBI, MSSAU); 2841 PBI = New_PBI; 2842 } 2843 2844 // If BI was a loop latch, it may have had associated loop metadata. 2845 // We need to copy it to the new latch, that is, PBI. 2846 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2847 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2848 2849 // TODO: If BB is reachable from all paths through PredBlock, then we 2850 // could replace PBI's branch probabilities with BI's. 2851 2852 // Copy any debug value intrinsics into the end of PredBlock. 2853 for (Instruction &I : *BB) 2854 if (isa<DbgInfoIntrinsic>(I)) 2855 I.clone()->insertBefore(PBI); 2856 2857 return true; 2858 } 2859 return false; 2860 } 2861 2862 // If there is only one store in BB1 and BB2, return it, otherwise return 2863 // nullptr. 2864 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2865 StoreInst *S = nullptr; 2866 for (auto *BB : {BB1, BB2}) { 2867 if (!BB) 2868 continue; 2869 for (auto &I : *BB) 2870 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2871 if (S) 2872 // Multiple stores seen. 2873 return nullptr; 2874 else 2875 S = SI; 2876 } 2877 } 2878 return S; 2879 } 2880 2881 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2882 Value *AlternativeV = nullptr) { 2883 // PHI is going to be a PHI node that allows the value V that is defined in 2884 // BB to be referenced in BB's only successor. 2885 // 2886 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2887 // doesn't matter to us what the other operand is (it'll never get used). We 2888 // could just create a new PHI with an undef incoming value, but that could 2889 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2890 // other PHI. So here we directly look for some PHI in BB's successor with V 2891 // as an incoming operand. If we find one, we use it, else we create a new 2892 // one. 2893 // 2894 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2895 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2896 // where OtherBB is the single other predecessor of BB's only successor. 2897 PHINode *PHI = nullptr; 2898 BasicBlock *Succ = BB->getSingleSuccessor(); 2899 2900 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2901 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2902 PHI = cast<PHINode>(I); 2903 if (!AlternativeV) 2904 break; 2905 2906 assert(Succ->hasNPredecessors(2)); 2907 auto PredI = pred_begin(Succ); 2908 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2909 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2910 break; 2911 PHI = nullptr; 2912 } 2913 if (PHI) 2914 return PHI; 2915 2916 // If V is not an instruction defined in BB, just return it. 2917 if (!AlternativeV && 2918 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2919 return V; 2920 2921 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2922 PHI->addIncoming(V, BB); 2923 for (BasicBlock *PredBB : predecessors(Succ)) 2924 if (PredBB != BB) 2925 PHI->addIncoming( 2926 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2927 return PHI; 2928 } 2929 2930 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2931 BasicBlock *QTB, BasicBlock *QFB, 2932 BasicBlock *PostBB, Value *Address, 2933 bool InvertPCond, bool InvertQCond, 2934 const DataLayout &DL) { 2935 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2936 return Operator::getOpcode(&I) == Instruction::BitCast && 2937 I.getType()->isPointerTy(); 2938 }; 2939 2940 // If we're not in aggressive mode, we only optimize if we have some 2941 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2942 auto IsWorthwhile = [&](BasicBlock *BB) { 2943 if (!BB) 2944 return true; 2945 // Heuristic: if the block can be if-converted/phi-folded and the 2946 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2947 // thread this store. 2948 unsigned N = 0; 2949 for (auto &I : BB->instructionsWithoutDebug()) { 2950 // Cheap instructions viable for folding. 2951 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2952 isa<StoreInst>(I)) 2953 ++N; 2954 // Free instructions. 2955 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2956 continue; 2957 else 2958 return false; 2959 } 2960 // The store we want to merge is counted in N, so add 1 to make sure 2961 // we're counting the instructions that would be left. 2962 return N <= (PHINodeFoldingThreshold + 1); 2963 }; 2964 2965 if (!MergeCondStoresAggressively && 2966 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2967 !IsWorthwhile(QFB))) 2968 return false; 2969 2970 // For every pointer, there must be exactly two stores, one coming from 2971 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2972 // store (to any address) in PTB,PFB or QTB,QFB. 2973 // FIXME: We could relax this restriction with a bit more work and performance 2974 // testing. 2975 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2976 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2977 if (!PStore || !QStore) 2978 return false; 2979 2980 // Now check the stores are compatible. 2981 if (!QStore->isUnordered() || !PStore->isUnordered()) 2982 return false; 2983 2984 // Check that sinking the store won't cause program behavior changes. Sinking 2985 // the store out of the Q blocks won't change any behavior as we're sinking 2986 // from a block to its unconditional successor. But we're moving a store from 2987 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2988 // So we need to check that there are no aliasing loads or stores in 2989 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2990 // operations between PStore and the end of its parent block. 2991 // 2992 // The ideal way to do this is to query AliasAnalysis, but we don't 2993 // preserve AA currently so that is dangerous. Be super safe and just 2994 // check there are no other memory operations at all. 2995 for (auto &I : *QFB->getSinglePredecessor()) 2996 if (I.mayReadOrWriteMemory()) 2997 return false; 2998 for (auto &I : *QFB) 2999 if (&I != QStore && I.mayReadOrWriteMemory()) 3000 return false; 3001 if (QTB) 3002 for (auto &I : *QTB) 3003 if (&I != QStore && I.mayReadOrWriteMemory()) 3004 return false; 3005 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3006 I != E; ++I) 3007 if (&*I != PStore && I->mayReadOrWriteMemory()) 3008 return false; 3009 3010 // If PostBB has more than two predecessors, we need to split it so we can 3011 // sink the store. 3012 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3013 // We know that QFB's only successor is PostBB. And QFB has a single 3014 // predecessor. If QTB exists, then its only successor is also PostBB. 3015 // If QTB does not exist, then QFB's only predecessor has a conditional 3016 // branch to QFB and PostBB. 3017 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3018 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3019 "condstore.split"); 3020 if (!NewBB) 3021 return false; 3022 PostBB = NewBB; 3023 } 3024 3025 // OK, we're going to sink the stores to PostBB. The store has to be 3026 // conditional though, so first create the predicate. 3027 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3028 ->getCondition(); 3029 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3030 ->getCondition(); 3031 3032 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3033 PStore->getParent()); 3034 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3035 QStore->getParent(), PPHI); 3036 3037 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3038 3039 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3040 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3041 3042 if (InvertPCond) 3043 PPred = QB.CreateNot(PPred); 3044 if (InvertQCond) 3045 QPred = QB.CreateNot(QPred); 3046 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3047 3048 auto *T = 3049 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3050 QB.SetInsertPoint(T); 3051 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3052 AAMDNodes AAMD; 3053 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3054 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3055 SI->setAAMetadata(AAMD); 3056 unsigned PAlignment = PStore->getAlignment(); 3057 unsigned QAlignment = QStore->getAlignment(); 3058 unsigned TypeAlignment = 3059 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3060 unsigned MinAlignment; 3061 unsigned MaxAlignment; 3062 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3063 // Choose the minimum alignment. If we could prove both stores execute, we 3064 // could use biggest one. In this case, though, we only know that one of the 3065 // stores executes. And we don't know it's safe to take the alignment from a 3066 // store that doesn't execute. 3067 if (MinAlignment != 0) { 3068 // Choose the minimum of all non-zero alignments. 3069 SI->setAlignment(MinAlignment); 3070 } else if (MaxAlignment != 0) { 3071 // Choose the minimal alignment between the non-zero alignment and the ABI 3072 // default alignment for the type of the stored value. 3073 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3074 } else { 3075 // If both alignments are zero, use ABI default alignment for the type of 3076 // the stored value. 3077 SI->setAlignment(TypeAlignment); 3078 } 3079 3080 QStore->eraseFromParent(); 3081 PStore->eraseFromParent(); 3082 3083 return true; 3084 } 3085 3086 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3087 const DataLayout &DL) { 3088 // The intention here is to find diamonds or triangles (see below) where each 3089 // conditional block contains a store to the same address. Both of these 3090 // stores are conditional, so they can't be unconditionally sunk. But it may 3091 // be profitable to speculatively sink the stores into one merged store at the 3092 // end, and predicate the merged store on the union of the two conditions of 3093 // PBI and QBI. 3094 // 3095 // This can reduce the number of stores executed if both of the conditions are 3096 // true, and can allow the blocks to become small enough to be if-converted. 3097 // This optimization will also chain, so that ladders of test-and-set 3098 // sequences can be if-converted away. 3099 // 3100 // We only deal with simple diamonds or triangles: 3101 // 3102 // PBI or PBI or a combination of the two 3103 // / \ | \ 3104 // PTB PFB | PFB 3105 // \ / | / 3106 // QBI QBI 3107 // / \ | \ 3108 // QTB QFB | QFB 3109 // \ / | / 3110 // PostBB PostBB 3111 // 3112 // We model triangles as a type of diamond with a nullptr "true" block. 3113 // Triangles are canonicalized so that the fallthrough edge is represented by 3114 // a true condition, as in the diagram above. 3115 BasicBlock *PTB = PBI->getSuccessor(0); 3116 BasicBlock *PFB = PBI->getSuccessor(1); 3117 BasicBlock *QTB = QBI->getSuccessor(0); 3118 BasicBlock *QFB = QBI->getSuccessor(1); 3119 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3120 3121 // Make sure we have a good guess for PostBB. If QTB's only successor is 3122 // QFB, then QFB is a better PostBB. 3123 if (QTB->getSingleSuccessor() == QFB) 3124 PostBB = QFB; 3125 3126 // If we couldn't find a good PostBB, stop. 3127 if (!PostBB) 3128 return false; 3129 3130 bool InvertPCond = false, InvertQCond = false; 3131 // Canonicalize fallthroughs to the true branches. 3132 if (PFB == QBI->getParent()) { 3133 std::swap(PFB, PTB); 3134 InvertPCond = true; 3135 } 3136 if (QFB == PostBB) { 3137 std::swap(QFB, QTB); 3138 InvertQCond = true; 3139 } 3140 3141 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3142 // and QFB may not. Model fallthroughs as a nullptr block. 3143 if (PTB == QBI->getParent()) 3144 PTB = nullptr; 3145 if (QTB == PostBB) 3146 QTB = nullptr; 3147 3148 // Legality bailouts. We must have at least the non-fallthrough blocks and 3149 // the post-dominating block, and the non-fallthroughs must only have one 3150 // predecessor. 3151 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3152 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3153 }; 3154 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3155 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3156 return false; 3157 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3158 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3159 return false; 3160 if (!QBI->getParent()->hasNUses(2)) 3161 return false; 3162 3163 // OK, this is a sequence of two diamonds or triangles. 3164 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3165 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3166 for (auto *BB : {PTB, PFB}) { 3167 if (!BB) 3168 continue; 3169 for (auto &I : *BB) 3170 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3171 PStoreAddresses.insert(SI->getPointerOperand()); 3172 } 3173 for (auto *BB : {QTB, QFB}) { 3174 if (!BB) 3175 continue; 3176 for (auto &I : *BB) 3177 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3178 QStoreAddresses.insert(SI->getPointerOperand()); 3179 } 3180 3181 set_intersect(PStoreAddresses, QStoreAddresses); 3182 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3183 // clear what it contains. 3184 auto &CommonAddresses = PStoreAddresses; 3185 3186 bool Changed = false; 3187 for (auto *Address : CommonAddresses) 3188 Changed |= mergeConditionalStoreToAddress( 3189 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3190 return Changed; 3191 } 3192 3193 /// If we have a conditional branch as a predecessor of another block, 3194 /// this function tries to simplify it. We know 3195 /// that PBI and BI are both conditional branches, and BI is in one of the 3196 /// successor blocks of PBI - PBI branches to BI. 3197 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3198 const DataLayout &DL) { 3199 assert(PBI->isConditional() && BI->isConditional()); 3200 BasicBlock *BB = BI->getParent(); 3201 3202 // If this block ends with a branch instruction, and if there is a 3203 // predecessor that ends on a branch of the same condition, make 3204 // this conditional branch redundant. 3205 if (PBI->getCondition() == BI->getCondition() && 3206 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3207 // Okay, the outcome of this conditional branch is statically 3208 // knowable. If this block had a single pred, handle specially. 3209 if (BB->getSinglePredecessor()) { 3210 // Turn this into a branch on constant. 3211 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3212 BI->setCondition( 3213 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3214 return true; // Nuke the branch on constant. 3215 } 3216 3217 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3218 // in the constant and simplify the block result. Subsequent passes of 3219 // simplifycfg will thread the block. 3220 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3221 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3222 PHINode *NewPN = PHINode::Create( 3223 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3224 BI->getCondition()->getName() + ".pr", &BB->front()); 3225 // Okay, we're going to insert the PHI node. Since PBI is not the only 3226 // predecessor, compute the PHI'd conditional value for all of the preds. 3227 // Any predecessor where the condition is not computable we keep symbolic. 3228 for (pred_iterator PI = PB; PI != PE; ++PI) { 3229 BasicBlock *P = *PI; 3230 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3231 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3232 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3233 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3234 NewPN->addIncoming( 3235 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3236 P); 3237 } else { 3238 NewPN->addIncoming(BI->getCondition(), P); 3239 } 3240 } 3241 3242 BI->setCondition(NewPN); 3243 return true; 3244 } 3245 } 3246 3247 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3248 if (CE->canTrap()) 3249 return false; 3250 3251 // If both branches are conditional and both contain stores to the same 3252 // address, remove the stores from the conditionals and create a conditional 3253 // merged store at the end. 3254 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3255 return true; 3256 3257 // If this is a conditional branch in an empty block, and if any 3258 // predecessors are a conditional branch to one of our destinations, 3259 // fold the conditions into logical ops and one cond br. 3260 3261 // Ignore dbg intrinsics. 3262 if (&*BB->instructionsWithoutDebug().begin() != BI) 3263 return false; 3264 3265 int PBIOp, BIOp; 3266 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3267 PBIOp = 0; 3268 BIOp = 0; 3269 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3270 PBIOp = 0; 3271 BIOp = 1; 3272 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3273 PBIOp = 1; 3274 BIOp = 0; 3275 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3276 PBIOp = 1; 3277 BIOp = 1; 3278 } else { 3279 return false; 3280 } 3281 3282 // Check to make sure that the other destination of this branch 3283 // isn't BB itself. If so, this is an infinite loop that will 3284 // keep getting unwound. 3285 if (PBI->getSuccessor(PBIOp) == BB) 3286 return false; 3287 3288 // Do not perform this transformation if it would require 3289 // insertion of a large number of select instructions. For targets 3290 // without predication/cmovs, this is a big pessimization. 3291 3292 // Also do not perform this transformation if any phi node in the common 3293 // destination block can trap when reached by BB or PBB (PR17073). In that 3294 // case, it would be unsafe to hoist the operation into a select instruction. 3295 3296 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3297 unsigned NumPhis = 0; 3298 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3299 ++II, ++NumPhis) { 3300 if (NumPhis > 2) // Disable this xform. 3301 return false; 3302 3303 PHINode *PN = cast<PHINode>(II); 3304 Value *BIV = PN->getIncomingValueForBlock(BB); 3305 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3306 if (CE->canTrap()) 3307 return false; 3308 3309 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3310 Value *PBIV = PN->getIncomingValue(PBBIdx); 3311 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3312 if (CE->canTrap()) 3313 return false; 3314 } 3315 3316 // Finally, if everything is ok, fold the branches to logical ops. 3317 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3318 3319 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3320 << "AND: " << *BI->getParent()); 3321 3322 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3323 // branch in it, where one edge (OtherDest) goes back to itself but the other 3324 // exits. We don't *know* that the program avoids the infinite loop 3325 // (even though that seems likely). If we do this xform naively, we'll end up 3326 // recursively unpeeling the loop. Since we know that (after the xform is 3327 // done) that the block *is* infinite if reached, we just make it an obviously 3328 // infinite loop with no cond branch. 3329 if (OtherDest == BB) { 3330 // Insert it at the end of the function, because it's either code, 3331 // or it won't matter if it's hot. :) 3332 BasicBlock *InfLoopBlock = 3333 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3334 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3335 OtherDest = InfLoopBlock; 3336 } 3337 3338 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3339 3340 // BI may have other predecessors. Because of this, we leave 3341 // it alone, but modify PBI. 3342 3343 // Make sure we get to CommonDest on True&True directions. 3344 Value *PBICond = PBI->getCondition(); 3345 IRBuilder<NoFolder> Builder(PBI); 3346 if (PBIOp) 3347 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3348 3349 Value *BICond = BI->getCondition(); 3350 if (BIOp) 3351 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3352 3353 // Merge the conditions. 3354 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3355 3356 // Modify PBI to branch on the new condition to the new dests. 3357 PBI->setCondition(Cond); 3358 PBI->setSuccessor(0, CommonDest); 3359 PBI->setSuccessor(1, OtherDest); 3360 3361 // Update branch weight for PBI. 3362 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3363 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3364 bool HasWeights = 3365 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3366 SuccTrueWeight, SuccFalseWeight); 3367 if (HasWeights) { 3368 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3369 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3370 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3371 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3372 // The weight to CommonDest should be PredCommon * SuccTotal + 3373 // PredOther * SuccCommon. 3374 // The weight to OtherDest should be PredOther * SuccOther. 3375 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3376 PredOther * SuccCommon, 3377 PredOther * SuccOther}; 3378 // Halve the weights if any of them cannot fit in an uint32_t 3379 FitWeights(NewWeights); 3380 3381 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3382 } 3383 3384 // OtherDest may have phi nodes. If so, add an entry from PBI's 3385 // block that are identical to the entries for BI's block. 3386 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3387 3388 // We know that the CommonDest already had an edge from PBI to 3389 // it. If it has PHIs though, the PHIs may have different 3390 // entries for BB and PBI's BB. If so, insert a select to make 3391 // them agree. 3392 for (PHINode &PN : CommonDest->phis()) { 3393 Value *BIV = PN.getIncomingValueForBlock(BB); 3394 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3395 Value *PBIV = PN.getIncomingValue(PBBIdx); 3396 if (BIV != PBIV) { 3397 // Insert a select in PBI to pick the right value. 3398 SelectInst *NV = cast<SelectInst>( 3399 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3400 PN.setIncomingValue(PBBIdx, NV); 3401 // Although the select has the same condition as PBI, the original branch 3402 // weights for PBI do not apply to the new select because the select's 3403 // 'logical' edges are incoming edges of the phi that is eliminated, not 3404 // the outgoing edges of PBI. 3405 if (HasWeights) { 3406 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3407 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3408 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3409 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3410 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3411 // The weight to PredOtherDest should be PredOther * SuccCommon. 3412 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3413 PredOther * SuccCommon}; 3414 3415 FitWeights(NewWeights); 3416 3417 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3418 } 3419 } 3420 } 3421 3422 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3423 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3424 3425 // This basic block is probably dead. We know it has at least 3426 // one fewer predecessor. 3427 return true; 3428 } 3429 3430 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3431 // true or to FalseBB if Cond is false. 3432 // Takes care of updating the successors and removing the old terminator. 3433 // Also makes sure not to introduce new successors by assuming that edges to 3434 // non-successor TrueBBs and FalseBBs aren't reachable. 3435 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3436 BasicBlock *TrueBB, BasicBlock *FalseBB, 3437 uint32_t TrueWeight, 3438 uint32_t FalseWeight) { 3439 // Remove any superfluous successor edges from the CFG. 3440 // First, figure out which successors to preserve. 3441 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3442 // successor. 3443 BasicBlock *KeepEdge1 = TrueBB; 3444 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3445 3446 // Then remove the rest. 3447 for (BasicBlock *Succ : successors(OldTerm)) { 3448 // Make sure only to keep exactly one copy of each edge. 3449 if (Succ == KeepEdge1) 3450 KeepEdge1 = nullptr; 3451 else if (Succ == KeepEdge2) 3452 KeepEdge2 = nullptr; 3453 else 3454 Succ->removePredecessor(OldTerm->getParent(), 3455 /*KeepOneInputPHIs=*/true); 3456 } 3457 3458 IRBuilder<> Builder(OldTerm); 3459 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3460 3461 // Insert an appropriate new terminator. 3462 if (!KeepEdge1 && !KeepEdge2) { 3463 if (TrueBB == FalseBB) 3464 // We were only looking for one successor, and it was present. 3465 // Create an unconditional branch to it. 3466 Builder.CreateBr(TrueBB); 3467 else { 3468 // We found both of the successors we were looking for. 3469 // Create a conditional branch sharing the condition of the select. 3470 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3471 if (TrueWeight != FalseWeight) 3472 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3473 } 3474 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3475 // Neither of the selected blocks were successors, so this 3476 // terminator must be unreachable. 3477 new UnreachableInst(OldTerm->getContext(), OldTerm); 3478 } else { 3479 // One of the selected values was a successor, but the other wasn't. 3480 // Insert an unconditional branch to the one that was found; 3481 // the edge to the one that wasn't must be unreachable. 3482 if (!KeepEdge1) 3483 // Only TrueBB was found. 3484 Builder.CreateBr(TrueBB); 3485 else 3486 // Only FalseBB was found. 3487 Builder.CreateBr(FalseBB); 3488 } 3489 3490 EraseTerminatorAndDCECond(OldTerm); 3491 return true; 3492 } 3493 3494 // Replaces 3495 // (switch (select cond, X, Y)) on constant X, Y 3496 // with a branch - conditional if X and Y lead to distinct BBs, 3497 // unconditional otherwise. 3498 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3499 // Check for constant integer values in the select. 3500 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3501 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3502 if (!TrueVal || !FalseVal) 3503 return false; 3504 3505 // Find the relevant condition and destinations. 3506 Value *Condition = Select->getCondition(); 3507 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3508 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3509 3510 // Get weight for TrueBB and FalseBB. 3511 uint32_t TrueWeight = 0, FalseWeight = 0; 3512 SmallVector<uint64_t, 8> Weights; 3513 bool HasWeights = HasBranchWeights(SI); 3514 if (HasWeights) { 3515 GetBranchWeights(SI, Weights); 3516 if (Weights.size() == 1 + SI->getNumCases()) { 3517 TrueWeight = 3518 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3519 FalseWeight = 3520 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3521 } 3522 } 3523 3524 // Perform the actual simplification. 3525 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3526 FalseWeight); 3527 } 3528 3529 // Replaces 3530 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3531 // blockaddress(@fn, BlockB))) 3532 // with 3533 // (br cond, BlockA, BlockB). 3534 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3535 // Check that both operands of the select are block addresses. 3536 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3537 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3538 if (!TBA || !FBA) 3539 return false; 3540 3541 // Extract the actual blocks. 3542 BasicBlock *TrueBB = TBA->getBasicBlock(); 3543 BasicBlock *FalseBB = FBA->getBasicBlock(); 3544 3545 // Perform the actual simplification. 3546 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3547 0); 3548 } 3549 3550 /// This is called when we find an icmp instruction 3551 /// (a seteq/setne with a constant) as the only instruction in a 3552 /// block that ends with an uncond branch. We are looking for a very specific 3553 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3554 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3555 /// default value goes to an uncond block with a seteq in it, we get something 3556 /// like: 3557 /// 3558 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3559 /// DEFAULT: 3560 /// %tmp = icmp eq i8 %A, 92 3561 /// br label %end 3562 /// end: 3563 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3564 /// 3565 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3566 /// the PHI, merging the third icmp into the switch. 3567 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3568 ICmpInst *ICI, IRBuilder<> &Builder) { 3569 BasicBlock *BB = ICI->getParent(); 3570 3571 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3572 // complex. 3573 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3574 return false; 3575 3576 Value *V = ICI->getOperand(0); 3577 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3578 3579 // The pattern we're looking for is where our only predecessor is a switch on 3580 // 'V' and this block is the default case for the switch. In this case we can 3581 // fold the compared value into the switch to simplify things. 3582 BasicBlock *Pred = BB->getSinglePredecessor(); 3583 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3584 return false; 3585 3586 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3587 if (SI->getCondition() != V) 3588 return false; 3589 3590 // If BB is reachable on a non-default case, then we simply know the value of 3591 // V in this block. Substitute it and constant fold the icmp instruction 3592 // away. 3593 if (SI->getDefaultDest() != BB) { 3594 ConstantInt *VVal = SI->findCaseDest(BB); 3595 assert(VVal && "Should have a unique destination value"); 3596 ICI->setOperand(0, VVal); 3597 3598 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3599 ICI->replaceAllUsesWith(V); 3600 ICI->eraseFromParent(); 3601 } 3602 // BB is now empty, so it is likely to simplify away. 3603 return requestResimplify(); 3604 } 3605 3606 // Ok, the block is reachable from the default dest. If the constant we're 3607 // comparing exists in one of the other edges, then we can constant fold ICI 3608 // and zap it. 3609 if (SI->findCaseValue(Cst) != SI->case_default()) { 3610 Value *V; 3611 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3612 V = ConstantInt::getFalse(BB->getContext()); 3613 else 3614 V = ConstantInt::getTrue(BB->getContext()); 3615 3616 ICI->replaceAllUsesWith(V); 3617 ICI->eraseFromParent(); 3618 // BB is now empty, so it is likely to simplify away. 3619 return requestResimplify(); 3620 } 3621 3622 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3623 // the block. 3624 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3625 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3626 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3627 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3628 return false; 3629 3630 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3631 // true in the PHI. 3632 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3633 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3634 3635 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3636 std::swap(DefaultCst, NewCst); 3637 3638 // Replace ICI (which is used by the PHI for the default value) with true or 3639 // false depending on if it is EQ or NE. 3640 ICI->replaceAllUsesWith(DefaultCst); 3641 ICI->eraseFromParent(); 3642 3643 // Okay, the switch goes to this block on a default value. Add an edge from 3644 // the switch to the merge point on the compared value. 3645 BasicBlock *NewBB = 3646 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3647 SmallVector<uint64_t, 8> Weights; 3648 bool HasWeights = HasBranchWeights(SI); 3649 if (HasWeights) { 3650 GetBranchWeights(SI, Weights); 3651 if (Weights.size() == 1 + SI->getNumCases()) { 3652 // Split weight for default case to case for "Cst". 3653 Weights[0] = (Weights[0] + 1) >> 1; 3654 Weights.push_back(Weights[0]); 3655 3656 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3657 setBranchWeights(SI, MDWeights); 3658 } 3659 } 3660 SI->addCase(Cst, NewBB); 3661 3662 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3663 Builder.SetInsertPoint(NewBB); 3664 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3665 Builder.CreateBr(SuccBlock); 3666 PHIUse->addIncoming(NewCst, NewBB); 3667 return true; 3668 } 3669 3670 /// The specified branch is a conditional branch. 3671 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3672 /// fold it into a switch instruction if so. 3673 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3674 const DataLayout &DL) { 3675 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3676 if (!Cond) 3677 return false; 3678 3679 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3680 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3681 // 'setne's and'ed together, collect them. 3682 3683 // Try to gather values from a chain of and/or to be turned into a switch 3684 ConstantComparesGatherer ConstantCompare(Cond, DL); 3685 // Unpack the result 3686 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3687 Value *CompVal = ConstantCompare.CompValue; 3688 unsigned UsedICmps = ConstantCompare.UsedICmps; 3689 Value *ExtraCase = ConstantCompare.Extra; 3690 3691 // If we didn't have a multiply compared value, fail. 3692 if (!CompVal) 3693 return false; 3694 3695 // Avoid turning single icmps into a switch. 3696 if (UsedICmps <= 1) 3697 return false; 3698 3699 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3700 3701 // There might be duplicate constants in the list, which the switch 3702 // instruction can't handle, remove them now. 3703 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3704 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3705 3706 // If Extra was used, we require at least two switch values to do the 3707 // transformation. A switch with one value is just a conditional branch. 3708 if (ExtraCase && Values.size() < 2) 3709 return false; 3710 3711 // TODO: Preserve branch weight metadata, similarly to how 3712 // FoldValueComparisonIntoPredecessors preserves it. 3713 3714 // Figure out which block is which destination. 3715 BasicBlock *DefaultBB = BI->getSuccessor(1); 3716 BasicBlock *EdgeBB = BI->getSuccessor(0); 3717 if (!TrueWhenEqual) 3718 std::swap(DefaultBB, EdgeBB); 3719 3720 BasicBlock *BB = BI->getParent(); 3721 3722 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3723 << " cases into SWITCH. BB is:\n" 3724 << *BB); 3725 3726 // If there are any extra values that couldn't be folded into the switch 3727 // then we evaluate them with an explicit branch first. Split the block 3728 // right before the condbr to handle it. 3729 if (ExtraCase) { 3730 BasicBlock *NewBB = 3731 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3732 // Remove the uncond branch added to the old block. 3733 Instruction *OldTI = BB->getTerminator(); 3734 Builder.SetInsertPoint(OldTI); 3735 3736 if (TrueWhenEqual) 3737 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3738 else 3739 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3740 3741 OldTI->eraseFromParent(); 3742 3743 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3744 // for the edge we just added. 3745 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3746 3747 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3748 << "\nEXTRABB = " << *BB); 3749 BB = NewBB; 3750 } 3751 3752 Builder.SetInsertPoint(BI); 3753 // Convert pointer to int before we switch. 3754 if (CompVal->getType()->isPointerTy()) { 3755 CompVal = Builder.CreatePtrToInt( 3756 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3757 } 3758 3759 // Create the new switch instruction now. 3760 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3761 3762 // Add all of the 'cases' to the switch instruction. 3763 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3764 New->addCase(Values[i], EdgeBB); 3765 3766 // We added edges from PI to the EdgeBB. As such, if there were any 3767 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3768 // the number of edges added. 3769 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3770 PHINode *PN = cast<PHINode>(BBI); 3771 Value *InVal = PN->getIncomingValueForBlock(BB); 3772 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3773 PN->addIncoming(InVal, BB); 3774 } 3775 3776 // Erase the old branch instruction. 3777 EraseTerminatorAndDCECond(BI); 3778 3779 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3780 return true; 3781 } 3782 3783 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3784 if (isa<PHINode>(RI->getValue())) 3785 return SimplifyCommonResume(RI); 3786 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3787 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3788 // The resume must unwind the exception that caused control to branch here. 3789 return SimplifySingleResume(RI); 3790 3791 return false; 3792 } 3793 3794 // Simplify resume that is shared by several landing pads (phi of landing pad). 3795 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3796 BasicBlock *BB = RI->getParent(); 3797 3798 // Check that there are no other instructions except for debug intrinsics 3799 // between the phi of landing pads (RI->getValue()) and resume instruction. 3800 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3801 E = RI->getIterator(); 3802 while (++I != E) 3803 if (!isa<DbgInfoIntrinsic>(I)) 3804 return false; 3805 3806 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3807 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3808 3809 // Check incoming blocks to see if any of them are trivial. 3810 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3811 Idx++) { 3812 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3813 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3814 3815 // If the block has other successors, we can not delete it because 3816 // it has other dependents. 3817 if (IncomingBB->getUniqueSuccessor() != BB) 3818 continue; 3819 3820 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3821 // Not the landing pad that caused the control to branch here. 3822 if (IncomingValue != LandingPad) 3823 continue; 3824 3825 bool isTrivial = true; 3826 3827 I = IncomingBB->getFirstNonPHI()->getIterator(); 3828 E = IncomingBB->getTerminator()->getIterator(); 3829 while (++I != E) 3830 if (!isa<DbgInfoIntrinsic>(I)) { 3831 isTrivial = false; 3832 break; 3833 } 3834 3835 if (isTrivial) 3836 TrivialUnwindBlocks.insert(IncomingBB); 3837 } 3838 3839 // If no trivial unwind blocks, don't do any simplifications. 3840 if (TrivialUnwindBlocks.empty()) 3841 return false; 3842 3843 // Turn all invokes that unwind here into calls. 3844 for (auto *TrivialBB : TrivialUnwindBlocks) { 3845 // Blocks that will be simplified should be removed from the phi node. 3846 // Note there could be multiple edges to the resume block, and we need 3847 // to remove them all. 3848 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3849 BB->removePredecessor(TrivialBB, true); 3850 3851 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3852 PI != PE;) { 3853 BasicBlock *Pred = *PI++; 3854 removeUnwindEdge(Pred); 3855 } 3856 3857 // In each SimplifyCFG run, only the current processed block can be erased. 3858 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3859 // of erasing TrivialBB, we only remove the branch to the common resume 3860 // block so that we can later erase the resume block since it has no 3861 // predecessors. 3862 TrivialBB->getTerminator()->eraseFromParent(); 3863 new UnreachableInst(RI->getContext(), TrivialBB); 3864 } 3865 3866 // Delete the resume block if all its predecessors have been removed. 3867 if (pred_empty(BB)) 3868 BB->eraseFromParent(); 3869 3870 return !TrivialUnwindBlocks.empty(); 3871 } 3872 3873 // Simplify resume that is only used by a single (non-phi) landing pad. 3874 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3875 BasicBlock *BB = RI->getParent(); 3876 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3877 assert(RI->getValue() == LPInst && 3878 "Resume must unwind the exception that caused control to here"); 3879 3880 // Check that there are no other instructions except for debug intrinsics. 3881 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3882 while (++I != E) 3883 if (!isa<DbgInfoIntrinsic>(I)) 3884 return false; 3885 3886 // Turn all invokes that unwind here into calls and delete the basic block. 3887 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3888 BasicBlock *Pred = *PI++; 3889 removeUnwindEdge(Pred); 3890 } 3891 3892 // The landingpad is now unreachable. Zap it. 3893 if (LoopHeaders) 3894 LoopHeaders->erase(BB); 3895 BB->eraseFromParent(); 3896 return true; 3897 } 3898 3899 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3900 // If this is a trivial cleanup pad that executes no instructions, it can be 3901 // eliminated. If the cleanup pad continues to the caller, any predecessor 3902 // that is an EH pad will be updated to continue to the caller and any 3903 // predecessor that terminates with an invoke instruction will have its invoke 3904 // instruction converted to a call instruction. If the cleanup pad being 3905 // simplified does not continue to the caller, each predecessor will be 3906 // updated to continue to the unwind destination of the cleanup pad being 3907 // simplified. 3908 BasicBlock *BB = RI->getParent(); 3909 CleanupPadInst *CPInst = RI->getCleanupPad(); 3910 if (CPInst->getParent() != BB) 3911 // This isn't an empty cleanup. 3912 return false; 3913 3914 // We cannot kill the pad if it has multiple uses. This typically arises 3915 // from unreachable basic blocks. 3916 if (!CPInst->hasOneUse()) 3917 return false; 3918 3919 // Check that there are no other instructions except for benign intrinsics. 3920 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3921 while (++I != E) { 3922 auto *II = dyn_cast<IntrinsicInst>(I); 3923 if (!II) 3924 return false; 3925 3926 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3927 switch (IntrinsicID) { 3928 case Intrinsic::dbg_declare: 3929 case Intrinsic::dbg_value: 3930 case Intrinsic::dbg_label: 3931 case Intrinsic::lifetime_end: 3932 break; 3933 default: 3934 return false; 3935 } 3936 } 3937 3938 // If the cleanup return we are simplifying unwinds to the caller, this will 3939 // set UnwindDest to nullptr. 3940 BasicBlock *UnwindDest = RI->getUnwindDest(); 3941 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3942 3943 // We're about to remove BB from the control flow. Before we do, sink any 3944 // PHINodes into the unwind destination. Doing this before changing the 3945 // control flow avoids some potentially slow checks, since we can currently 3946 // be certain that UnwindDest and BB have no common predecessors (since they 3947 // are both EH pads). 3948 if (UnwindDest) { 3949 // First, go through the PHI nodes in UnwindDest and update any nodes that 3950 // reference the block we are removing 3951 for (BasicBlock::iterator I = UnwindDest->begin(), 3952 IE = DestEHPad->getIterator(); 3953 I != IE; ++I) { 3954 PHINode *DestPN = cast<PHINode>(I); 3955 3956 int Idx = DestPN->getBasicBlockIndex(BB); 3957 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3958 assert(Idx != -1); 3959 // This PHI node has an incoming value that corresponds to a control 3960 // path through the cleanup pad we are removing. If the incoming 3961 // value is in the cleanup pad, it must be a PHINode (because we 3962 // verified above that the block is otherwise empty). Otherwise, the 3963 // value is either a constant or a value that dominates the cleanup 3964 // pad being removed. 3965 // 3966 // Because BB and UnwindDest are both EH pads, all of their 3967 // predecessors must unwind to these blocks, and since no instruction 3968 // can have multiple unwind destinations, there will be no overlap in 3969 // incoming blocks between SrcPN and DestPN. 3970 Value *SrcVal = DestPN->getIncomingValue(Idx); 3971 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3972 3973 // Remove the entry for the block we are deleting. 3974 DestPN->removeIncomingValue(Idx, false); 3975 3976 if (SrcPN && SrcPN->getParent() == BB) { 3977 // If the incoming value was a PHI node in the cleanup pad we are 3978 // removing, we need to merge that PHI node's incoming values into 3979 // DestPN. 3980 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3981 SrcIdx != SrcE; ++SrcIdx) { 3982 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3983 SrcPN->getIncomingBlock(SrcIdx)); 3984 } 3985 } else { 3986 // Otherwise, the incoming value came from above BB and 3987 // so we can just reuse it. We must associate all of BB's 3988 // predecessors with this value. 3989 for (auto *pred : predecessors(BB)) { 3990 DestPN->addIncoming(SrcVal, pred); 3991 } 3992 } 3993 } 3994 3995 // Sink any remaining PHI nodes directly into UnwindDest. 3996 Instruction *InsertPt = DestEHPad; 3997 for (BasicBlock::iterator I = BB->begin(), 3998 IE = BB->getFirstNonPHI()->getIterator(); 3999 I != IE;) { 4000 // The iterator must be incremented here because the instructions are 4001 // being moved to another block. 4002 PHINode *PN = cast<PHINode>(I++); 4003 if (PN->use_empty()) 4004 // If the PHI node has no uses, just leave it. It will be erased 4005 // when we erase BB below. 4006 continue; 4007 4008 // Otherwise, sink this PHI node into UnwindDest. 4009 // Any predecessors to UnwindDest which are not already represented 4010 // must be back edges which inherit the value from the path through 4011 // BB. In this case, the PHI value must reference itself. 4012 for (auto *pred : predecessors(UnwindDest)) 4013 if (pred != BB) 4014 PN->addIncoming(PN, pred); 4015 PN->moveBefore(InsertPt); 4016 } 4017 } 4018 4019 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4020 // The iterator must be updated here because we are removing this pred. 4021 BasicBlock *PredBB = *PI++; 4022 if (UnwindDest == nullptr) { 4023 removeUnwindEdge(PredBB); 4024 } else { 4025 Instruction *TI = PredBB->getTerminator(); 4026 TI->replaceUsesOfWith(BB, UnwindDest); 4027 } 4028 } 4029 4030 // The cleanup pad is now unreachable. Zap it. 4031 BB->eraseFromParent(); 4032 return true; 4033 } 4034 4035 // Try to merge two cleanuppads together. 4036 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4037 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4038 // with. 4039 BasicBlock *UnwindDest = RI->getUnwindDest(); 4040 if (!UnwindDest) 4041 return false; 4042 4043 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4044 // be safe to merge without code duplication. 4045 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4046 return false; 4047 4048 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4049 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4050 if (!SuccessorCleanupPad) 4051 return false; 4052 4053 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4054 // Replace any uses of the successor cleanupad with the predecessor pad 4055 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4056 // funclet bundle operands. 4057 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4058 // Remove the old cleanuppad. 4059 SuccessorCleanupPad->eraseFromParent(); 4060 // Now, we simply replace the cleanupret with a branch to the unwind 4061 // destination. 4062 BranchInst::Create(UnwindDest, RI->getParent()); 4063 RI->eraseFromParent(); 4064 4065 return true; 4066 } 4067 4068 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4069 // It is possible to transiantly have an undef cleanuppad operand because we 4070 // have deleted some, but not all, dead blocks. 4071 // Eventually, this block will be deleted. 4072 if (isa<UndefValue>(RI->getOperand(0))) 4073 return false; 4074 4075 if (mergeCleanupPad(RI)) 4076 return true; 4077 4078 if (removeEmptyCleanup(RI)) 4079 return true; 4080 4081 return false; 4082 } 4083 4084 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4085 BasicBlock *BB = RI->getParent(); 4086 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4087 return false; 4088 4089 // Find predecessors that end with branches. 4090 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4091 SmallVector<BranchInst *, 8> CondBranchPreds; 4092 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4093 BasicBlock *P = *PI; 4094 Instruction *PTI = P->getTerminator(); 4095 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4096 if (BI->isUnconditional()) 4097 UncondBranchPreds.push_back(P); 4098 else 4099 CondBranchPreds.push_back(BI); 4100 } 4101 } 4102 4103 // If we found some, do the transformation! 4104 if (!UncondBranchPreds.empty() && DupRet) { 4105 while (!UncondBranchPreds.empty()) { 4106 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4107 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4108 << "INTO UNCOND BRANCH PRED: " << *Pred); 4109 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4110 } 4111 4112 // If we eliminated all predecessors of the block, delete the block now. 4113 if (pred_empty(BB)) { 4114 // We know there are no successors, so just nuke the block. 4115 if (LoopHeaders) 4116 LoopHeaders->erase(BB); 4117 BB->eraseFromParent(); 4118 } 4119 4120 return true; 4121 } 4122 4123 // Check out all of the conditional branches going to this return 4124 // instruction. If any of them just select between returns, change the 4125 // branch itself into a select/return pair. 4126 while (!CondBranchPreds.empty()) { 4127 BranchInst *BI = CondBranchPreds.pop_back_val(); 4128 4129 // Check to see if the non-BB successor is also a return block. 4130 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4131 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4132 SimplifyCondBranchToTwoReturns(BI, Builder)) 4133 return true; 4134 } 4135 return false; 4136 } 4137 4138 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4139 BasicBlock *BB = UI->getParent(); 4140 4141 bool Changed = false; 4142 4143 // If there are any instructions immediately before the unreachable that can 4144 // be removed, do so. 4145 while (UI->getIterator() != BB->begin()) { 4146 BasicBlock::iterator BBI = UI->getIterator(); 4147 --BBI; 4148 // Do not delete instructions that can have side effects which might cause 4149 // the unreachable to not be reachable; specifically, calls and volatile 4150 // operations may have this effect. 4151 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4152 break; 4153 4154 if (BBI->mayHaveSideEffects()) { 4155 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4156 if (SI->isVolatile()) 4157 break; 4158 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4159 if (LI->isVolatile()) 4160 break; 4161 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4162 if (RMWI->isVolatile()) 4163 break; 4164 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4165 if (CXI->isVolatile()) 4166 break; 4167 } else if (isa<CatchPadInst>(BBI)) { 4168 // A catchpad may invoke exception object constructors and such, which 4169 // in some languages can be arbitrary code, so be conservative by 4170 // default. 4171 // For CoreCLR, it just involves a type test, so can be removed. 4172 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4173 EHPersonality::CoreCLR) 4174 break; 4175 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4176 !isa<LandingPadInst>(BBI)) { 4177 break; 4178 } 4179 // Note that deleting LandingPad's here is in fact okay, although it 4180 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4181 // all the predecessors of this block will be the unwind edges of Invokes, 4182 // and we can therefore guarantee this block will be erased. 4183 } 4184 4185 // Delete this instruction (any uses are guaranteed to be dead) 4186 if (!BBI->use_empty()) 4187 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4188 BBI->eraseFromParent(); 4189 Changed = true; 4190 } 4191 4192 // If the unreachable instruction is the first in the block, take a gander 4193 // at all of the predecessors of this instruction, and simplify them. 4194 if (&BB->front() != UI) 4195 return Changed; 4196 4197 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4198 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4199 Instruction *TI = Preds[i]->getTerminator(); 4200 IRBuilder<> Builder(TI); 4201 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4202 if (BI->isUnconditional()) { 4203 if (BI->getSuccessor(0) == BB) { 4204 new UnreachableInst(TI->getContext(), TI); 4205 TI->eraseFromParent(); 4206 Changed = true; 4207 } 4208 } else { 4209 Value* Cond = BI->getCondition(); 4210 if (BI->getSuccessor(0) == BB) { 4211 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4212 Builder.CreateBr(BI->getSuccessor(1)); 4213 EraseTerminatorAndDCECond(BI); 4214 } else if (BI->getSuccessor(1) == BB) { 4215 Builder.CreateAssumption(Cond); 4216 Builder.CreateBr(BI->getSuccessor(0)); 4217 EraseTerminatorAndDCECond(BI); 4218 Changed = true; 4219 } 4220 } 4221 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4222 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4223 if (i->getCaseSuccessor() != BB) { 4224 ++i; 4225 continue; 4226 } 4227 BB->removePredecessor(SI->getParent()); 4228 i = SI->removeCase(i); 4229 e = SI->case_end(); 4230 Changed = true; 4231 } 4232 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4233 if (II->getUnwindDest() == BB) { 4234 removeUnwindEdge(TI->getParent()); 4235 Changed = true; 4236 } 4237 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4238 if (CSI->getUnwindDest() == BB) { 4239 removeUnwindEdge(TI->getParent()); 4240 Changed = true; 4241 continue; 4242 } 4243 4244 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4245 E = CSI->handler_end(); 4246 I != E; ++I) { 4247 if (*I == BB) { 4248 CSI->removeHandler(I); 4249 --I; 4250 --E; 4251 Changed = true; 4252 } 4253 } 4254 if (CSI->getNumHandlers() == 0) { 4255 BasicBlock *CatchSwitchBB = CSI->getParent(); 4256 if (CSI->hasUnwindDest()) { 4257 // Redirect preds to the unwind dest 4258 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4259 } else { 4260 // Rewrite all preds to unwind to caller (or from invoke to call). 4261 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4262 for (BasicBlock *EHPred : EHPreds) 4263 removeUnwindEdge(EHPred); 4264 } 4265 // The catchswitch is no longer reachable. 4266 new UnreachableInst(CSI->getContext(), CSI); 4267 CSI->eraseFromParent(); 4268 Changed = true; 4269 } 4270 } else if (isa<CleanupReturnInst>(TI)) { 4271 new UnreachableInst(TI->getContext(), TI); 4272 TI->eraseFromParent(); 4273 Changed = true; 4274 } 4275 } 4276 4277 // If this block is now dead, remove it. 4278 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4279 // We know there are no successors, so just nuke the block. 4280 if (LoopHeaders) 4281 LoopHeaders->erase(BB); 4282 BB->eraseFromParent(); 4283 return true; 4284 } 4285 4286 return Changed; 4287 } 4288 4289 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4290 assert(Cases.size() >= 1); 4291 4292 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4293 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4294 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4295 return false; 4296 } 4297 return true; 4298 } 4299 4300 /// Turn a switch with two reachable destinations into an integer range 4301 /// comparison and branch. 4302 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4303 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4304 4305 bool HasDefault = 4306 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4307 4308 // Partition the cases into two sets with different destinations. 4309 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4310 BasicBlock *DestB = nullptr; 4311 SmallVector<ConstantInt *, 16> CasesA; 4312 SmallVector<ConstantInt *, 16> CasesB; 4313 4314 for (auto Case : SI->cases()) { 4315 BasicBlock *Dest = Case.getCaseSuccessor(); 4316 if (!DestA) 4317 DestA = Dest; 4318 if (Dest == DestA) { 4319 CasesA.push_back(Case.getCaseValue()); 4320 continue; 4321 } 4322 if (!DestB) 4323 DestB = Dest; 4324 if (Dest == DestB) { 4325 CasesB.push_back(Case.getCaseValue()); 4326 continue; 4327 } 4328 return false; // More than two destinations. 4329 } 4330 4331 assert(DestA && DestB && 4332 "Single-destination switch should have been folded."); 4333 assert(DestA != DestB); 4334 assert(DestB != SI->getDefaultDest()); 4335 assert(!CasesB.empty() && "There must be non-default cases."); 4336 assert(!CasesA.empty() || HasDefault); 4337 4338 // Figure out if one of the sets of cases form a contiguous range. 4339 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4340 BasicBlock *ContiguousDest = nullptr; 4341 BasicBlock *OtherDest = nullptr; 4342 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4343 ContiguousCases = &CasesA; 4344 ContiguousDest = DestA; 4345 OtherDest = DestB; 4346 } else if (CasesAreContiguous(CasesB)) { 4347 ContiguousCases = &CasesB; 4348 ContiguousDest = DestB; 4349 OtherDest = DestA; 4350 } else 4351 return false; 4352 4353 // Start building the compare and branch. 4354 4355 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4356 Constant *NumCases = 4357 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4358 4359 Value *Sub = SI->getCondition(); 4360 if (!Offset->isNullValue()) 4361 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4362 4363 Value *Cmp; 4364 // If NumCases overflowed, then all possible values jump to the successor. 4365 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4366 Cmp = ConstantInt::getTrue(SI->getContext()); 4367 else 4368 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4369 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4370 4371 // Update weight for the newly-created conditional branch. 4372 if (HasBranchWeights(SI)) { 4373 SmallVector<uint64_t, 8> Weights; 4374 GetBranchWeights(SI, Weights); 4375 if (Weights.size() == 1 + SI->getNumCases()) { 4376 uint64_t TrueWeight = 0; 4377 uint64_t FalseWeight = 0; 4378 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4379 if (SI->getSuccessor(I) == ContiguousDest) 4380 TrueWeight += Weights[I]; 4381 else 4382 FalseWeight += Weights[I]; 4383 } 4384 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4385 TrueWeight /= 2; 4386 FalseWeight /= 2; 4387 } 4388 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4389 } 4390 } 4391 4392 // Prune obsolete incoming values off the successors' PHI nodes. 4393 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4394 unsigned PreviousEdges = ContiguousCases->size(); 4395 if (ContiguousDest == SI->getDefaultDest()) 4396 ++PreviousEdges; 4397 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4398 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4399 } 4400 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4401 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4402 if (OtherDest == SI->getDefaultDest()) 4403 ++PreviousEdges; 4404 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4405 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4406 } 4407 4408 // Drop the switch. 4409 SI->eraseFromParent(); 4410 4411 return true; 4412 } 4413 4414 /// Compute masked bits for the condition of a switch 4415 /// and use it to remove dead cases. 4416 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4417 const DataLayout &DL) { 4418 Value *Cond = SI->getCondition(); 4419 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4420 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4421 4422 // We can also eliminate cases by determining that their values are outside of 4423 // the limited range of the condition based on how many significant (non-sign) 4424 // bits are in the condition value. 4425 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4426 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4427 4428 // Gather dead cases. 4429 SmallVector<ConstantInt *, 8> DeadCases; 4430 for (auto &Case : SI->cases()) { 4431 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4432 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4433 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4434 DeadCases.push_back(Case.getCaseValue()); 4435 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4436 << " is dead.\n"); 4437 } 4438 } 4439 4440 // If we can prove that the cases must cover all possible values, the 4441 // default destination becomes dead and we can remove it. If we know some 4442 // of the bits in the value, we can use that to more precisely compute the 4443 // number of possible unique case values. 4444 bool HasDefault = 4445 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4446 const unsigned NumUnknownBits = 4447 Bits - (Known.Zero | Known.One).countPopulation(); 4448 assert(NumUnknownBits <= Bits); 4449 if (HasDefault && DeadCases.empty() && 4450 NumUnknownBits < 64 /* avoid overflow */ && 4451 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4452 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4453 BasicBlock *NewDefault = 4454 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4455 SI->setDefaultDest(&*NewDefault); 4456 SplitBlock(&*NewDefault, &NewDefault->front()); 4457 auto *OldTI = NewDefault->getTerminator(); 4458 new UnreachableInst(SI->getContext(), OldTI); 4459 EraseTerminatorAndDCECond(OldTI); 4460 return true; 4461 } 4462 4463 SmallVector<uint64_t, 8> Weights; 4464 bool HasWeight = HasBranchWeights(SI); 4465 if (HasWeight) { 4466 GetBranchWeights(SI, Weights); 4467 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4468 } 4469 4470 // Remove dead cases from the switch. 4471 for (ConstantInt *DeadCase : DeadCases) { 4472 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4473 assert(CaseI != SI->case_default() && 4474 "Case was not found. Probably mistake in DeadCases forming."); 4475 if (HasWeight) { 4476 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4477 Weights.pop_back(); 4478 } 4479 4480 // Prune unused values from PHI nodes. 4481 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4482 SI->removeCase(CaseI); 4483 } 4484 if (HasWeight && Weights.size() >= 2) { 4485 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4486 setBranchWeights(SI, MDWeights); 4487 } 4488 4489 return !DeadCases.empty(); 4490 } 4491 4492 /// If BB would be eligible for simplification by 4493 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4494 /// by an unconditional branch), look at the phi node for BB in the successor 4495 /// block and see if the incoming value is equal to CaseValue. If so, return 4496 /// the phi node, and set PhiIndex to BB's index in the phi node. 4497 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4498 BasicBlock *BB, int *PhiIndex) { 4499 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4500 return nullptr; // BB must be empty to be a candidate for simplification. 4501 if (!BB->getSinglePredecessor()) 4502 return nullptr; // BB must be dominated by the switch. 4503 4504 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4505 if (!Branch || !Branch->isUnconditional()) 4506 return nullptr; // Terminator must be unconditional branch. 4507 4508 BasicBlock *Succ = Branch->getSuccessor(0); 4509 4510 for (PHINode &PHI : Succ->phis()) { 4511 int Idx = PHI.getBasicBlockIndex(BB); 4512 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4513 4514 Value *InValue = PHI.getIncomingValue(Idx); 4515 if (InValue != CaseValue) 4516 continue; 4517 4518 *PhiIndex = Idx; 4519 return &PHI; 4520 } 4521 4522 return nullptr; 4523 } 4524 4525 /// Try to forward the condition of a switch instruction to a phi node 4526 /// dominated by the switch, if that would mean that some of the destination 4527 /// blocks of the switch can be folded away. Return true if a change is made. 4528 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4529 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4530 4531 ForwardingNodesMap ForwardingNodes; 4532 BasicBlock *SwitchBlock = SI->getParent(); 4533 bool Changed = false; 4534 for (auto &Case : SI->cases()) { 4535 ConstantInt *CaseValue = Case.getCaseValue(); 4536 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4537 4538 // Replace phi operands in successor blocks that are using the constant case 4539 // value rather than the switch condition variable: 4540 // switchbb: 4541 // switch i32 %x, label %default [ 4542 // i32 17, label %succ 4543 // ... 4544 // succ: 4545 // %r = phi i32 ... [ 17, %switchbb ] ... 4546 // --> 4547 // %r = phi i32 ... [ %x, %switchbb ] ... 4548 4549 for (PHINode &Phi : CaseDest->phis()) { 4550 // This only works if there is exactly 1 incoming edge from the switch to 4551 // a phi. If there is >1, that means multiple cases of the switch map to 1 4552 // value in the phi, and that phi value is not the switch condition. Thus, 4553 // this transform would not make sense (the phi would be invalid because 4554 // a phi can't have different incoming values from the same block). 4555 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4556 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4557 count(Phi.blocks(), SwitchBlock) == 1) { 4558 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4559 Changed = true; 4560 } 4561 } 4562 4563 // Collect phi nodes that are indirectly using this switch's case constants. 4564 int PhiIdx; 4565 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4566 ForwardingNodes[Phi].push_back(PhiIdx); 4567 } 4568 4569 for (auto &ForwardingNode : ForwardingNodes) { 4570 PHINode *Phi = ForwardingNode.first; 4571 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4572 if (Indexes.size() < 2) 4573 continue; 4574 4575 for (int Index : Indexes) 4576 Phi->setIncomingValue(Index, SI->getCondition()); 4577 Changed = true; 4578 } 4579 4580 return Changed; 4581 } 4582 4583 /// Return true if the backend will be able to handle 4584 /// initializing an array of constants like C. 4585 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4586 if (C->isThreadDependent()) 4587 return false; 4588 if (C->isDLLImportDependent()) 4589 return false; 4590 4591 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4592 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4593 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4594 return false; 4595 4596 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4597 if (!CE->isGEPWithNoNotionalOverIndexing()) 4598 return false; 4599 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4600 return false; 4601 } 4602 4603 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4604 return false; 4605 4606 return true; 4607 } 4608 4609 /// If V is a Constant, return it. Otherwise, try to look up 4610 /// its constant value in ConstantPool, returning 0 if it's not there. 4611 static Constant * 4612 LookupConstant(Value *V, 4613 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4614 if (Constant *C = dyn_cast<Constant>(V)) 4615 return C; 4616 return ConstantPool.lookup(V); 4617 } 4618 4619 /// Try to fold instruction I into a constant. This works for 4620 /// simple instructions such as binary operations where both operands are 4621 /// constant or can be replaced by constants from the ConstantPool. Returns the 4622 /// resulting constant on success, 0 otherwise. 4623 static Constant * 4624 ConstantFold(Instruction *I, const DataLayout &DL, 4625 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4626 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4627 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4628 if (!A) 4629 return nullptr; 4630 if (A->isAllOnesValue()) 4631 return LookupConstant(Select->getTrueValue(), ConstantPool); 4632 if (A->isNullValue()) 4633 return LookupConstant(Select->getFalseValue(), ConstantPool); 4634 return nullptr; 4635 } 4636 4637 SmallVector<Constant *, 4> COps; 4638 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4639 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4640 COps.push_back(A); 4641 else 4642 return nullptr; 4643 } 4644 4645 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4646 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4647 COps[1], DL); 4648 } 4649 4650 return ConstantFoldInstOperands(I, COps, DL); 4651 } 4652 4653 /// Try to determine the resulting constant values in phi nodes 4654 /// at the common destination basic block, *CommonDest, for one of the case 4655 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4656 /// case), of a switch instruction SI. 4657 static bool 4658 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4659 BasicBlock **CommonDest, 4660 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4661 const DataLayout &DL, const TargetTransformInfo &TTI) { 4662 // The block from which we enter the common destination. 4663 BasicBlock *Pred = SI->getParent(); 4664 4665 // If CaseDest is empty except for some side-effect free instructions through 4666 // which we can constant-propagate the CaseVal, continue to its successor. 4667 SmallDenseMap<Value *, Constant *> ConstantPool; 4668 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4669 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4670 if (I.isTerminator()) { 4671 // If the terminator is a simple branch, continue to the next block. 4672 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4673 return false; 4674 Pred = CaseDest; 4675 CaseDest = I.getSuccessor(0); 4676 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4677 // Instruction is side-effect free and constant. 4678 4679 // If the instruction has uses outside this block or a phi node slot for 4680 // the block, it is not safe to bypass the instruction since it would then 4681 // no longer dominate all its uses. 4682 for (auto &Use : I.uses()) { 4683 User *User = Use.getUser(); 4684 if (Instruction *I = dyn_cast<Instruction>(User)) 4685 if (I->getParent() == CaseDest) 4686 continue; 4687 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4688 if (Phi->getIncomingBlock(Use) == CaseDest) 4689 continue; 4690 return false; 4691 } 4692 4693 ConstantPool.insert(std::make_pair(&I, C)); 4694 } else { 4695 break; 4696 } 4697 } 4698 4699 // If we did not have a CommonDest before, use the current one. 4700 if (!*CommonDest) 4701 *CommonDest = CaseDest; 4702 // If the destination isn't the common one, abort. 4703 if (CaseDest != *CommonDest) 4704 return false; 4705 4706 // Get the values for this case from phi nodes in the destination block. 4707 for (PHINode &PHI : (*CommonDest)->phis()) { 4708 int Idx = PHI.getBasicBlockIndex(Pred); 4709 if (Idx == -1) 4710 continue; 4711 4712 Constant *ConstVal = 4713 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4714 if (!ConstVal) 4715 return false; 4716 4717 // Be conservative about which kinds of constants we support. 4718 if (!ValidLookupTableConstant(ConstVal, TTI)) 4719 return false; 4720 4721 Res.push_back(std::make_pair(&PHI, ConstVal)); 4722 } 4723 4724 return Res.size() > 0; 4725 } 4726 4727 // Helper function used to add CaseVal to the list of cases that generate 4728 // Result. Returns the updated number of cases that generate this result. 4729 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4730 SwitchCaseResultVectorTy &UniqueResults, 4731 Constant *Result) { 4732 for (auto &I : UniqueResults) { 4733 if (I.first == Result) { 4734 I.second.push_back(CaseVal); 4735 return I.second.size(); 4736 } 4737 } 4738 UniqueResults.push_back( 4739 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4740 return 1; 4741 } 4742 4743 // Helper function that initializes a map containing 4744 // results for the PHI node of the common destination block for a switch 4745 // instruction. Returns false if multiple PHI nodes have been found or if 4746 // there is not a common destination block for the switch. 4747 static bool 4748 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4749 SwitchCaseResultVectorTy &UniqueResults, 4750 Constant *&DefaultResult, const DataLayout &DL, 4751 const TargetTransformInfo &TTI, 4752 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4753 for (auto &I : SI->cases()) { 4754 ConstantInt *CaseVal = I.getCaseValue(); 4755 4756 // Resulting value at phi nodes for this case value. 4757 SwitchCaseResultsTy Results; 4758 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4759 DL, TTI)) 4760 return false; 4761 4762 // Only one value per case is permitted. 4763 if (Results.size() > 1) 4764 return false; 4765 4766 // Add the case->result mapping to UniqueResults. 4767 const uintptr_t NumCasesForResult = 4768 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4769 4770 // Early out if there are too many cases for this result. 4771 if (NumCasesForResult > MaxCasesPerResult) 4772 return false; 4773 4774 // Early out if there are too many unique results. 4775 if (UniqueResults.size() > MaxUniqueResults) 4776 return false; 4777 4778 // Check the PHI consistency. 4779 if (!PHI) 4780 PHI = Results[0].first; 4781 else if (PHI != Results[0].first) 4782 return false; 4783 } 4784 // Find the default result value. 4785 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4786 BasicBlock *DefaultDest = SI->getDefaultDest(); 4787 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4788 DL, TTI); 4789 // If the default value is not found abort unless the default destination 4790 // is unreachable. 4791 DefaultResult = 4792 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4793 if ((!DefaultResult && 4794 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4795 return false; 4796 4797 return true; 4798 } 4799 4800 // Helper function that checks if it is possible to transform a switch with only 4801 // two cases (or two cases + default) that produces a result into a select. 4802 // Example: 4803 // switch (a) { 4804 // case 10: %0 = icmp eq i32 %a, 10 4805 // return 10; %1 = select i1 %0, i32 10, i32 4 4806 // case 20: ----> %2 = icmp eq i32 %a, 20 4807 // return 2; %3 = select i1 %2, i32 2, i32 %1 4808 // default: 4809 // return 4; 4810 // } 4811 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4812 Constant *DefaultResult, Value *Condition, 4813 IRBuilder<> &Builder) { 4814 assert(ResultVector.size() == 2 && 4815 "We should have exactly two unique results at this point"); 4816 // If we are selecting between only two cases transform into a simple 4817 // select or a two-way select if default is possible. 4818 if (ResultVector[0].second.size() == 1 && 4819 ResultVector[1].second.size() == 1) { 4820 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4821 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4822 4823 bool DefaultCanTrigger = DefaultResult; 4824 Value *SelectValue = ResultVector[1].first; 4825 if (DefaultCanTrigger) { 4826 Value *const ValueCompare = 4827 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4828 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4829 DefaultResult, "switch.select"); 4830 } 4831 Value *const ValueCompare = 4832 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4833 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4834 SelectValue, "switch.select"); 4835 } 4836 4837 return nullptr; 4838 } 4839 4840 // Helper function to cleanup a switch instruction that has been converted into 4841 // a select, fixing up PHI nodes and basic blocks. 4842 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4843 Value *SelectValue, 4844 IRBuilder<> &Builder) { 4845 BasicBlock *SelectBB = SI->getParent(); 4846 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4847 PHI->removeIncomingValue(SelectBB); 4848 PHI->addIncoming(SelectValue, SelectBB); 4849 4850 Builder.CreateBr(PHI->getParent()); 4851 4852 // Remove the switch. 4853 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4854 BasicBlock *Succ = SI->getSuccessor(i); 4855 4856 if (Succ == PHI->getParent()) 4857 continue; 4858 Succ->removePredecessor(SelectBB); 4859 } 4860 SI->eraseFromParent(); 4861 } 4862 4863 /// If the switch is only used to initialize one or more 4864 /// phi nodes in a common successor block with only two different 4865 /// constant values, replace the switch with select. 4866 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4867 const DataLayout &DL, 4868 const TargetTransformInfo &TTI) { 4869 Value *const Cond = SI->getCondition(); 4870 PHINode *PHI = nullptr; 4871 BasicBlock *CommonDest = nullptr; 4872 Constant *DefaultResult; 4873 SwitchCaseResultVectorTy UniqueResults; 4874 // Collect all the cases that will deliver the same value from the switch. 4875 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4876 DL, TTI, 2, 1)) 4877 return false; 4878 // Selects choose between maximum two values. 4879 if (UniqueResults.size() != 2) 4880 return false; 4881 assert(PHI != nullptr && "PHI for value select not found"); 4882 4883 Builder.SetInsertPoint(SI); 4884 Value *SelectValue = 4885 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4886 if (SelectValue) { 4887 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4888 return true; 4889 } 4890 // The switch couldn't be converted into a select. 4891 return false; 4892 } 4893 4894 namespace { 4895 4896 /// This class represents a lookup table that can be used to replace a switch. 4897 class SwitchLookupTable { 4898 public: 4899 /// Create a lookup table to use as a switch replacement with the contents 4900 /// of Values, using DefaultValue to fill any holes in the table. 4901 SwitchLookupTable( 4902 Module &M, uint64_t TableSize, ConstantInt *Offset, 4903 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4904 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4905 4906 /// Build instructions with Builder to retrieve the value at 4907 /// the position given by Index in the lookup table. 4908 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4909 4910 /// Return true if a table with TableSize elements of 4911 /// type ElementType would fit in a target-legal register. 4912 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4913 Type *ElementType); 4914 4915 private: 4916 // Depending on the contents of the table, it can be represented in 4917 // different ways. 4918 enum { 4919 // For tables where each element contains the same value, we just have to 4920 // store that single value and return it for each lookup. 4921 SingleValueKind, 4922 4923 // For tables where there is a linear relationship between table index 4924 // and values. We calculate the result with a simple multiplication 4925 // and addition instead of a table lookup. 4926 LinearMapKind, 4927 4928 // For small tables with integer elements, we can pack them into a bitmap 4929 // that fits into a target-legal register. Values are retrieved by 4930 // shift and mask operations. 4931 BitMapKind, 4932 4933 // The table is stored as an array of values. Values are retrieved by load 4934 // instructions from the table. 4935 ArrayKind 4936 } Kind; 4937 4938 // For SingleValueKind, this is the single value. 4939 Constant *SingleValue = nullptr; 4940 4941 // For BitMapKind, this is the bitmap. 4942 ConstantInt *BitMap = nullptr; 4943 IntegerType *BitMapElementTy = nullptr; 4944 4945 // For LinearMapKind, these are the constants used to derive the value. 4946 ConstantInt *LinearOffset = nullptr; 4947 ConstantInt *LinearMultiplier = nullptr; 4948 4949 // For ArrayKind, this is the array. 4950 GlobalVariable *Array = nullptr; 4951 }; 4952 4953 } // end anonymous namespace 4954 4955 SwitchLookupTable::SwitchLookupTable( 4956 Module &M, uint64_t TableSize, ConstantInt *Offset, 4957 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4958 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4959 assert(Values.size() && "Can't build lookup table without values!"); 4960 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4961 4962 // If all values in the table are equal, this is that value. 4963 SingleValue = Values.begin()->second; 4964 4965 Type *ValueType = Values.begin()->second->getType(); 4966 4967 // Build up the table contents. 4968 SmallVector<Constant *, 64> TableContents(TableSize); 4969 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4970 ConstantInt *CaseVal = Values[I].first; 4971 Constant *CaseRes = Values[I].second; 4972 assert(CaseRes->getType() == ValueType); 4973 4974 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4975 TableContents[Idx] = CaseRes; 4976 4977 if (CaseRes != SingleValue) 4978 SingleValue = nullptr; 4979 } 4980 4981 // Fill in any holes in the table with the default result. 4982 if (Values.size() < TableSize) { 4983 assert(DefaultValue && 4984 "Need a default value to fill the lookup table holes."); 4985 assert(DefaultValue->getType() == ValueType); 4986 for (uint64_t I = 0; I < TableSize; ++I) { 4987 if (!TableContents[I]) 4988 TableContents[I] = DefaultValue; 4989 } 4990 4991 if (DefaultValue != SingleValue) 4992 SingleValue = nullptr; 4993 } 4994 4995 // If each element in the table contains the same value, we only need to store 4996 // that single value. 4997 if (SingleValue) { 4998 Kind = SingleValueKind; 4999 return; 5000 } 5001 5002 // Check if we can derive the value with a linear transformation from the 5003 // table index. 5004 if (isa<IntegerType>(ValueType)) { 5005 bool LinearMappingPossible = true; 5006 APInt PrevVal; 5007 APInt DistToPrev; 5008 assert(TableSize >= 2 && "Should be a SingleValue table."); 5009 // Check if there is the same distance between two consecutive values. 5010 for (uint64_t I = 0; I < TableSize; ++I) { 5011 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5012 if (!ConstVal) { 5013 // This is an undef. We could deal with it, but undefs in lookup tables 5014 // are very seldom. It's probably not worth the additional complexity. 5015 LinearMappingPossible = false; 5016 break; 5017 } 5018 const APInt &Val = ConstVal->getValue(); 5019 if (I != 0) { 5020 APInt Dist = Val - PrevVal; 5021 if (I == 1) { 5022 DistToPrev = Dist; 5023 } else if (Dist != DistToPrev) { 5024 LinearMappingPossible = false; 5025 break; 5026 } 5027 } 5028 PrevVal = Val; 5029 } 5030 if (LinearMappingPossible) { 5031 LinearOffset = cast<ConstantInt>(TableContents[0]); 5032 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5033 Kind = LinearMapKind; 5034 ++NumLinearMaps; 5035 return; 5036 } 5037 } 5038 5039 // If the type is integer and the table fits in a register, build a bitmap. 5040 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5041 IntegerType *IT = cast<IntegerType>(ValueType); 5042 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5043 for (uint64_t I = TableSize; I > 0; --I) { 5044 TableInt <<= IT->getBitWidth(); 5045 // Insert values into the bitmap. Undef values are set to zero. 5046 if (!isa<UndefValue>(TableContents[I - 1])) { 5047 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5048 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5049 } 5050 } 5051 BitMap = ConstantInt::get(M.getContext(), TableInt); 5052 BitMapElementTy = IT; 5053 Kind = BitMapKind; 5054 ++NumBitMaps; 5055 return; 5056 } 5057 5058 // Store the table in an array. 5059 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5060 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5061 5062 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5063 GlobalVariable::PrivateLinkage, Initializer, 5064 "switch.table." + FuncName); 5065 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5066 // Set the alignment to that of an array items. We will be only loading one 5067 // value out of it. 5068 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5069 Kind = ArrayKind; 5070 } 5071 5072 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5073 switch (Kind) { 5074 case SingleValueKind: 5075 return SingleValue; 5076 case LinearMapKind: { 5077 // Derive the result value from the input value. 5078 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5079 false, "switch.idx.cast"); 5080 if (!LinearMultiplier->isOne()) 5081 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5082 if (!LinearOffset->isZero()) 5083 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5084 return Result; 5085 } 5086 case BitMapKind: { 5087 // Type of the bitmap (e.g. i59). 5088 IntegerType *MapTy = BitMap->getType(); 5089 5090 // Cast Index to the same type as the bitmap. 5091 // Note: The Index is <= the number of elements in the table, so 5092 // truncating it to the width of the bitmask is safe. 5093 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5094 5095 // Multiply the shift amount by the element width. 5096 ShiftAmt = Builder.CreateMul( 5097 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5098 "switch.shiftamt"); 5099 5100 // Shift down. 5101 Value *DownShifted = 5102 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5103 // Mask off. 5104 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5105 } 5106 case ArrayKind: { 5107 // Make sure the table index will not overflow when treated as signed. 5108 IntegerType *IT = cast<IntegerType>(Index->getType()); 5109 uint64_t TableSize = 5110 Array->getInitializer()->getType()->getArrayNumElements(); 5111 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5112 Index = Builder.CreateZExt( 5113 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5114 "switch.tableidx.zext"); 5115 5116 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5117 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5118 GEPIndices, "switch.gep"); 5119 return Builder.CreateLoad( 5120 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5121 "switch.load"); 5122 } 5123 } 5124 llvm_unreachable("Unknown lookup table kind!"); 5125 } 5126 5127 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5128 uint64_t TableSize, 5129 Type *ElementType) { 5130 auto *IT = dyn_cast<IntegerType>(ElementType); 5131 if (!IT) 5132 return false; 5133 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5134 // are <= 15, we could try to narrow the type. 5135 5136 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5137 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5138 return false; 5139 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5140 } 5141 5142 /// Determine whether a lookup table should be built for this switch, based on 5143 /// the number of cases, size of the table, and the types of the results. 5144 static bool 5145 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5146 const TargetTransformInfo &TTI, const DataLayout &DL, 5147 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5148 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5149 return false; // TableSize overflowed, or mul below might overflow. 5150 5151 bool AllTablesFitInRegister = true; 5152 bool HasIllegalType = false; 5153 for (const auto &I : ResultTypes) { 5154 Type *Ty = I.second; 5155 5156 // Saturate this flag to true. 5157 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5158 5159 // Saturate this flag to false. 5160 AllTablesFitInRegister = 5161 AllTablesFitInRegister && 5162 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5163 5164 // If both flags saturate, we're done. NOTE: This *only* works with 5165 // saturating flags, and all flags have to saturate first due to the 5166 // non-deterministic behavior of iterating over a dense map. 5167 if (HasIllegalType && !AllTablesFitInRegister) 5168 break; 5169 } 5170 5171 // If each table would fit in a register, we should build it anyway. 5172 if (AllTablesFitInRegister) 5173 return true; 5174 5175 // Don't build a table that doesn't fit in-register if it has illegal types. 5176 if (HasIllegalType) 5177 return false; 5178 5179 // The table density should be at least 40%. This is the same criterion as for 5180 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5181 // FIXME: Find the best cut-off. 5182 return SI->getNumCases() * 10 >= TableSize * 4; 5183 } 5184 5185 /// Try to reuse the switch table index compare. Following pattern: 5186 /// \code 5187 /// if (idx < tablesize) 5188 /// r = table[idx]; // table does not contain default_value 5189 /// else 5190 /// r = default_value; 5191 /// if (r != default_value) 5192 /// ... 5193 /// \endcode 5194 /// Is optimized to: 5195 /// \code 5196 /// cond = idx < tablesize; 5197 /// if (cond) 5198 /// r = table[idx]; 5199 /// else 5200 /// r = default_value; 5201 /// if (cond) 5202 /// ... 5203 /// \endcode 5204 /// Jump threading will then eliminate the second if(cond). 5205 static void reuseTableCompare( 5206 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5207 Constant *DefaultValue, 5208 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5209 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5210 if (!CmpInst) 5211 return; 5212 5213 // We require that the compare is in the same block as the phi so that jump 5214 // threading can do its work afterwards. 5215 if (CmpInst->getParent() != PhiBlock) 5216 return; 5217 5218 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5219 if (!CmpOp1) 5220 return; 5221 5222 Value *RangeCmp = RangeCheckBranch->getCondition(); 5223 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5224 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5225 5226 // Check if the compare with the default value is constant true or false. 5227 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5228 DefaultValue, CmpOp1, true); 5229 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5230 return; 5231 5232 // Check if the compare with the case values is distinct from the default 5233 // compare result. 5234 for (auto ValuePair : Values) { 5235 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5236 ValuePair.second, CmpOp1, true); 5237 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5238 return; 5239 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5240 "Expect true or false as compare result."); 5241 } 5242 5243 // Check if the branch instruction dominates the phi node. It's a simple 5244 // dominance check, but sufficient for our needs. 5245 // Although this check is invariant in the calling loops, it's better to do it 5246 // at this late stage. Practically we do it at most once for a switch. 5247 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5248 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5249 BasicBlock *Pred = *PI; 5250 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5251 return; 5252 } 5253 5254 if (DefaultConst == FalseConst) { 5255 // The compare yields the same result. We can replace it. 5256 CmpInst->replaceAllUsesWith(RangeCmp); 5257 ++NumTableCmpReuses; 5258 } else { 5259 // The compare yields the same result, just inverted. We can replace it. 5260 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5261 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5262 RangeCheckBranch); 5263 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5264 ++NumTableCmpReuses; 5265 } 5266 } 5267 5268 /// If the switch is only used to initialize one or more phi nodes in a common 5269 /// successor block with different constant values, replace the switch with 5270 /// lookup tables. 5271 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5272 const DataLayout &DL, 5273 const TargetTransformInfo &TTI) { 5274 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5275 5276 Function *Fn = SI->getParent()->getParent(); 5277 // Only build lookup table when we have a target that supports it or the 5278 // attribute is not set. 5279 if (!TTI.shouldBuildLookupTables() || 5280 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5281 return false; 5282 5283 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5284 // split off a dense part and build a lookup table for that. 5285 5286 // FIXME: This creates arrays of GEPs to constant strings, which means each 5287 // GEP needs a runtime relocation in PIC code. We should just build one big 5288 // string and lookup indices into that. 5289 5290 // Ignore switches with less than three cases. Lookup tables will not make 5291 // them faster, so we don't analyze them. 5292 if (SI->getNumCases() < 3) 5293 return false; 5294 5295 // Figure out the corresponding result for each case value and phi node in the 5296 // common destination, as well as the min and max case values. 5297 assert(!empty(SI->cases())); 5298 SwitchInst::CaseIt CI = SI->case_begin(); 5299 ConstantInt *MinCaseVal = CI->getCaseValue(); 5300 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5301 5302 BasicBlock *CommonDest = nullptr; 5303 5304 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5305 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5306 5307 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5308 SmallDenseMap<PHINode *, Type *> ResultTypes; 5309 SmallVector<PHINode *, 4> PHIs; 5310 5311 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5312 ConstantInt *CaseVal = CI->getCaseValue(); 5313 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5314 MinCaseVal = CaseVal; 5315 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5316 MaxCaseVal = CaseVal; 5317 5318 // Resulting value at phi nodes for this case value. 5319 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5320 ResultsTy Results; 5321 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5322 Results, DL, TTI)) 5323 return false; 5324 5325 // Append the result from this case to the list for each phi. 5326 for (const auto &I : Results) { 5327 PHINode *PHI = I.first; 5328 Constant *Value = I.second; 5329 if (!ResultLists.count(PHI)) 5330 PHIs.push_back(PHI); 5331 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5332 } 5333 } 5334 5335 // Keep track of the result types. 5336 for (PHINode *PHI : PHIs) { 5337 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5338 } 5339 5340 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5341 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5342 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5343 bool TableHasHoles = (NumResults < TableSize); 5344 5345 // If the table has holes, we need a constant result for the default case 5346 // or a bitmask that fits in a register. 5347 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5348 bool HasDefaultResults = 5349 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5350 DefaultResultsList, DL, TTI); 5351 5352 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5353 if (NeedMask) { 5354 // As an extra penalty for the validity test we require more cases. 5355 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5356 return false; 5357 if (!DL.fitsInLegalInteger(TableSize)) 5358 return false; 5359 } 5360 5361 for (const auto &I : DefaultResultsList) { 5362 PHINode *PHI = I.first; 5363 Constant *Result = I.second; 5364 DefaultResults[PHI] = Result; 5365 } 5366 5367 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5368 return false; 5369 5370 // Create the BB that does the lookups. 5371 Module &Mod = *CommonDest->getParent()->getParent(); 5372 BasicBlock *LookupBB = BasicBlock::Create( 5373 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5374 5375 // Compute the table index value. 5376 Builder.SetInsertPoint(SI); 5377 Value *TableIndex; 5378 if (MinCaseVal->isNullValue()) 5379 TableIndex = SI->getCondition(); 5380 else 5381 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5382 "switch.tableidx"); 5383 5384 // Compute the maximum table size representable by the integer type we are 5385 // switching upon. 5386 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5387 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5388 assert(MaxTableSize >= TableSize && 5389 "It is impossible for a switch to have more entries than the max " 5390 "representable value of its input integer type's size."); 5391 5392 // If the default destination is unreachable, or if the lookup table covers 5393 // all values of the conditional variable, branch directly to the lookup table 5394 // BB. Otherwise, check that the condition is within the case range. 5395 const bool DefaultIsReachable = 5396 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5397 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5398 BranchInst *RangeCheckBranch = nullptr; 5399 5400 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5401 Builder.CreateBr(LookupBB); 5402 // Note: We call removeProdecessor later since we need to be able to get the 5403 // PHI value for the default case in case we're using a bit mask. 5404 } else { 5405 Value *Cmp = Builder.CreateICmpULT( 5406 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5407 RangeCheckBranch = 5408 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5409 } 5410 5411 // Populate the BB that does the lookups. 5412 Builder.SetInsertPoint(LookupBB); 5413 5414 if (NeedMask) { 5415 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5416 // re-purposed to do the hole check, and we create a new LookupBB. 5417 BasicBlock *MaskBB = LookupBB; 5418 MaskBB->setName("switch.hole_check"); 5419 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5420 CommonDest->getParent(), CommonDest); 5421 5422 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5423 // unnecessary illegal types. 5424 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5425 APInt MaskInt(TableSizePowOf2, 0); 5426 APInt One(TableSizePowOf2, 1); 5427 // Build bitmask; fill in a 1 bit for every case. 5428 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5429 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5430 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5431 .getLimitedValue(); 5432 MaskInt |= One << Idx; 5433 } 5434 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5435 5436 // Get the TableIndex'th bit of the bitmask. 5437 // If this bit is 0 (meaning hole) jump to the default destination, 5438 // else continue with table lookup. 5439 IntegerType *MapTy = TableMask->getType(); 5440 Value *MaskIndex = 5441 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5442 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5443 Value *LoBit = Builder.CreateTrunc( 5444 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5445 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5446 5447 Builder.SetInsertPoint(LookupBB); 5448 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5449 } 5450 5451 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5452 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5453 // do not delete PHINodes here. 5454 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5455 /*KeepOneInputPHIs=*/true); 5456 } 5457 5458 bool ReturnedEarly = false; 5459 for (PHINode *PHI : PHIs) { 5460 const ResultListTy &ResultList = ResultLists[PHI]; 5461 5462 // If using a bitmask, use any value to fill the lookup table holes. 5463 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5464 StringRef FuncName = Fn->getName(); 5465 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5466 FuncName); 5467 5468 Value *Result = Table.BuildLookup(TableIndex, Builder); 5469 5470 // If the result is used to return immediately from the function, we want to 5471 // do that right here. 5472 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5473 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5474 Builder.CreateRet(Result); 5475 ReturnedEarly = true; 5476 break; 5477 } 5478 5479 // Do a small peephole optimization: re-use the switch table compare if 5480 // possible. 5481 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5482 BasicBlock *PhiBlock = PHI->getParent(); 5483 // Search for compare instructions which use the phi. 5484 for (auto *User : PHI->users()) { 5485 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5486 } 5487 } 5488 5489 PHI->addIncoming(Result, LookupBB); 5490 } 5491 5492 if (!ReturnedEarly) 5493 Builder.CreateBr(CommonDest); 5494 5495 // Remove the switch. 5496 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5497 BasicBlock *Succ = SI->getSuccessor(i); 5498 5499 if (Succ == SI->getDefaultDest()) 5500 continue; 5501 Succ->removePredecessor(SI->getParent()); 5502 } 5503 SI->eraseFromParent(); 5504 5505 ++NumLookupTables; 5506 if (NeedMask) 5507 ++NumLookupTablesHoles; 5508 return true; 5509 } 5510 5511 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5512 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5513 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5514 uint64_t Range = Diff + 1; 5515 uint64_t NumCases = Values.size(); 5516 // 40% is the default density for building a jump table in optsize/minsize mode. 5517 uint64_t MinDensity = 40; 5518 5519 return NumCases * 100 >= Range * MinDensity; 5520 } 5521 5522 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5523 /// of cases. 5524 /// 5525 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5526 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5527 /// 5528 /// This converts a sparse switch into a dense switch which allows better 5529 /// lowering and could also allow transforming into a lookup table. 5530 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5531 const DataLayout &DL, 5532 const TargetTransformInfo &TTI) { 5533 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5534 if (CondTy->getIntegerBitWidth() > 64 || 5535 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5536 return false; 5537 // Only bother with this optimization if there are more than 3 switch cases; 5538 // SDAG will only bother creating jump tables for 4 or more cases. 5539 if (SI->getNumCases() < 4) 5540 return false; 5541 5542 // This transform is agnostic to the signedness of the input or case values. We 5543 // can treat the case values as signed or unsigned. We can optimize more common 5544 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5545 // as signed. 5546 SmallVector<int64_t,4> Values; 5547 for (auto &C : SI->cases()) 5548 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5549 llvm::sort(Values); 5550 5551 // If the switch is already dense, there's nothing useful to do here. 5552 if (isSwitchDense(Values)) 5553 return false; 5554 5555 // First, transform the values such that they start at zero and ascend. 5556 int64_t Base = Values[0]; 5557 for (auto &V : Values) 5558 V -= (uint64_t)(Base); 5559 5560 // Now we have signed numbers that have been shifted so that, given enough 5561 // precision, there are no negative values. Since the rest of the transform 5562 // is bitwise only, we switch now to an unsigned representation. 5563 uint64_t GCD = 0; 5564 for (auto &V : Values) 5565 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5566 5567 // This transform can be done speculatively because it is so cheap - it results 5568 // in a single rotate operation being inserted. This can only happen if the 5569 // factor extracted is a power of 2. 5570 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5571 // inverse of GCD and then perform this transform. 5572 // FIXME: It's possible that optimizing a switch on powers of two might also 5573 // be beneficial - flag values are often powers of two and we could use a CLZ 5574 // as the key function. 5575 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5576 // No common divisor found or too expensive to compute key function. 5577 return false; 5578 5579 unsigned Shift = Log2_64(GCD); 5580 for (auto &V : Values) 5581 V = (int64_t)((uint64_t)V >> Shift); 5582 5583 if (!isSwitchDense(Values)) 5584 // Transform didn't create a dense switch. 5585 return false; 5586 5587 // The obvious transform is to shift the switch condition right and emit a 5588 // check that the condition actually cleanly divided by GCD, i.e. 5589 // C & (1 << Shift - 1) == 0 5590 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5591 // 5592 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5593 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5594 // are nonzero then the switch condition will be very large and will hit the 5595 // default case. 5596 5597 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5598 Builder.SetInsertPoint(SI); 5599 auto *ShiftC = ConstantInt::get(Ty, Shift); 5600 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5601 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5602 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5603 auto *Rot = Builder.CreateOr(LShr, Shl); 5604 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5605 5606 for (auto Case : SI->cases()) { 5607 auto *Orig = Case.getCaseValue(); 5608 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5609 Case.setValue( 5610 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5611 } 5612 return true; 5613 } 5614 5615 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5616 BasicBlock *BB = SI->getParent(); 5617 5618 if (isValueEqualityComparison(SI)) { 5619 // If we only have one predecessor, and if it is a branch on this value, 5620 // see if that predecessor totally determines the outcome of this switch. 5621 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5622 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5623 return requestResimplify(); 5624 5625 Value *Cond = SI->getCondition(); 5626 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5627 if (SimplifySwitchOnSelect(SI, Select)) 5628 return requestResimplify(); 5629 5630 // If the block only contains the switch, see if we can fold the block 5631 // away into any preds. 5632 if (SI == &*BB->instructionsWithoutDebug().begin()) 5633 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5634 return requestResimplify(); 5635 } 5636 5637 // Try to transform the switch into an icmp and a branch. 5638 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5639 return requestResimplify(); 5640 5641 // Remove unreachable cases. 5642 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5643 return requestResimplify(); 5644 5645 if (switchToSelect(SI, Builder, DL, TTI)) 5646 return requestResimplify(); 5647 5648 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5649 return requestResimplify(); 5650 5651 // The conversion from switch to lookup tables results in difficult-to-analyze 5652 // code and makes pruning branches much harder. This is a problem if the 5653 // switch expression itself can still be restricted as a result of inlining or 5654 // CVP. Therefore, only apply this transformation during late stages of the 5655 // optimisation pipeline. 5656 if (Options.ConvertSwitchToLookupTable && 5657 SwitchToLookupTable(SI, Builder, DL, TTI)) 5658 return requestResimplify(); 5659 5660 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5661 return requestResimplify(); 5662 5663 return false; 5664 } 5665 5666 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5667 BasicBlock *BB = IBI->getParent(); 5668 bool Changed = false; 5669 5670 // Eliminate redundant destinations. 5671 SmallPtrSet<Value *, 8> Succs; 5672 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5673 BasicBlock *Dest = IBI->getDestination(i); 5674 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5675 Dest->removePredecessor(BB); 5676 IBI->removeDestination(i); 5677 --i; 5678 --e; 5679 Changed = true; 5680 } 5681 } 5682 5683 if (IBI->getNumDestinations() == 0) { 5684 // If the indirectbr has no successors, change it to unreachable. 5685 new UnreachableInst(IBI->getContext(), IBI); 5686 EraseTerminatorAndDCECond(IBI); 5687 return true; 5688 } 5689 5690 if (IBI->getNumDestinations() == 1) { 5691 // If the indirectbr has one successor, change it to a direct branch. 5692 BranchInst::Create(IBI->getDestination(0), IBI); 5693 EraseTerminatorAndDCECond(IBI); 5694 return true; 5695 } 5696 5697 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5698 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5699 return requestResimplify(); 5700 } 5701 return Changed; 5702 } 5703 5704 /// Given an block with only a single landing pad and a unconditional branch 5705 /// try to find another basic block which this one can be merged with. This 5706 /// handles cases where we have multiple invokes with unique landing pads, but 5707 /// a shared handler. 5708 /// 5709 /// We specifically choose to not worry about merging non-empty blocks 5710 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5711 /// practice, the optimizer produces empty landing pad blocks quite frequently 5712 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5713 /// sinking in this file) 5714 /// 5715 /// This is primarily a code size optimization. We need to avoid performing 5716 /// any transform which might inhibit optimization (such as our ability to 5717 /// specialize a particular handler via tail commoning). We do this by not 5718 /// merging any blocks which require us to introduce a phi. Since the same 5719 /// values are flowing through both blocks, we don't lose any ability to 5720 /// specialize. If anything, we make such specialization more likely. 5721 /// 5722 /// TODO - This transformation could remove entries from a phi in the target 5723 /// block when the inputs in the phi are the same for the two blocks being 5724 /// merged. In some cases, this could result in removal of the PHI entirely. 5725 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5726 BasicBlock *BB) { 5727 auto Succ = BB->getUniqueSuccessor(); 5728 assert(Succ); 5729 // If there's a phi in the successor block, we'd likely have to introduce 5730 // a phi into the merged landing pad block. 5731 if (isa<PHINode>(*Succ->begin())) 5732 return false; 5733 5734 for (BasicBlock *OtherPred : predecessors(Succ)) { 5735 if (BB == OtherPred) 5736 continue; 5737 BasicBlock::iterator I = OtherPred->begin(); 5738 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5739 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5740 continue; 5741 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5742 ; 5743 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5744 if (!BI2 || !BI2->isIdenticalTo(BI)) 5745 continue; 5746 5747 // We've found an identical block. Update our predecessors to take that 5748 // path instead and make ourselves dead. 5749 SmallPtrSet<BasicBlock *, 16> Preds; 5750 Preds.insert(pred_begin(BB), pred_end(BB)); 5751 for (BasicBlock *Pred : Preds) { 5752 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5753 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5754 "unexpected successor"); 5755 II->setUnwindDest(OtherPred); 5756 } 5757 5758 // The debug info in OtherPred doesn't cover the merged control flow that 5759 // used to go through BB. We need to delete it or update it. 5760 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5761 Instruction &Inst = *I; 5762 I++; 5763 if (isa<DbgInfoIntrinsic>(Inst)) 5764 Inst.eraseFromParent(); 5765 } 5766 5767 SmallPtrSet<BasicBlock *, 16> Succs; 5768 Succs.insert(succ_begin(BB), succ_end(BB)); 5769 for (BasicBlock *Succ : Succs) { 5770 Succ->removePredecessor(BB); 5771 } 5772 5773 IRBuilder<> Builder(BI); 5774 Builder.CreateUnreachable(); 5775 BI->eraseFromParent(); 5776 return true; 5777 } 5778 return false; 5779 } 5780 5781 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5782 IRBuilder<> &Builder) { 5783 BasicBlock *BB = BI->getParent(); 5784 BasicBlock *Succ = BI->getSuccessor(0); 5785 5786 // If the Terminator is the only non-phi instruction, simplify the block. 5787 // If LoopHeader is provided, check if the block or its successor is a loop 5788 // header. (This is for early invocations before loop simplify and 5789 // vectorization to keep canonical loop forms for nested loops. These blocks 5790 // can be eliminated when the pass is invoked later in the back-end.) 5791 // Note that if BB has only one predecessor then we do not introduce new 5792 // backedge, so we can eliminate BB. 5793 bool NeedCanonicalLoop = 5794 Options.NeedCanonicalLoop && 5795 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5796 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5797 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5798 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5799 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5800 return true; 5801 5802 // If the only instruction in the block is a seteq/setne comparison against a 5803 // constant, try to simplify the block. 5804 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5805 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5806 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5807 ; 5808 if (I->isTerminator() && 5809 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5810 return true; 5811 } 5812 5813 // See if we can merge an empty landing pad block with another which is 5814 // equivalent. 5815 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5816 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5817 ; 5818 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5819 return true; 5820 } 5821 5822 // If this basic block is ONLY a compare and a branch, and if a predecessor 5823 // branches to us and our successor, fold the comparison into the 5824 // predecessor and use logical operations to update the incoming value 5825 // for PHI nodes in common successor. 5826 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5827 return requestResimplify(); 5828 return false; 5829 } 5830 5831 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5832 BasicBlock *PredPred = nullptr; 5833 for (auto *P : predecessors(BB)) { 5834 BasicBlock *PPred = P->getSinglePredecessor(); 5835 if (!PPred || (PredPred && PredPred != PPred)) 5836 return nullptr; 5837 PredPred = PPred; 5838 } 5839 return PredPred; 5840 } 5841 5842 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5843 BasicBlock *BB = BI->getParent(); 5844 const Function *Fn = BB->getParent(); 5845 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5846 return false; 5847 5848 // Conditional branch 5849 if (isValueEqualityComparison(BI)) { 5850 // If we only have one predecessor, and if it is a branch on this value, 5851 // see if that predecessor totally determines the outcome of this 5852 // switch. 5853 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5854 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5855 return requestResimplify(); 5856 5857 // This block must be empty, except for the setcond inst, if it exists. 5858 // Ignore dbg intrinsics. 5859 auto I = BB->instructionsWithoutDebug().begin(); 5860 if (&*I == BI) { 5861 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5862 return requestResimplify(); 5863 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5864 ++I; 5865 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5866 return requestResimplify(); 5867 } 5868 } 5869 5870 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5871 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5872 return true; 5873 5874 // If this basic block has dominating predecessor blocks and the dominating 5875 // blocks' conditions imply BI's condition, we know the direction of BI. 5876 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5877 if (Imp) { 5878 // Turn this into a branch on constant. 5879 auto *OldCond = BI->getCondition(); 5880 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5881 : ConstantInt::getFalse(BB->getContext()); 5882 BI->setCondition(TorF); 5883 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5884 return requestResimplify(); 5885 } 5886 5887 // If this basic block is ONLY a compare and a branch, and if a predecessor 5888 // branches to us and one of our successors, fold the comparison into the 5889 // predecessor and use logical operations to pick the right destination. 5890 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5891 return requestResimplify(); 5892 5893 // We have a conditional branch to two blocks that are only reachable 5894 // from BI. We know that the condbr dominates the two blocks, so see if 5895 // there is any identical code in the "then" and "else" blocks. If so, we 5896 // can hoist it up to the branching block. 5897 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5898 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5899 if (HoistThenElseCodeToIf(BI, TTI)) 5900 return requestResimplify(); 5901 } else { 5902 // If Successor #1 has multiple preds, we may be able to conditionally 5903 // execute Successor #0 if it branches to Successor #1. 5904 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5905 if (Succ0TI->getNumSuccessors() == 1 && 5906 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5907 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5908 return requestResimplify(); 5909 } 5910 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5911 // If Successor #0 has multiple preds, we may be able to conditionally 5912 // execute Successor #1 if it branches to Successor #0. 5913 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5914 if (Succ1TI->getNumSuccessors() == 1 && 5915 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5916 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5917 return requestResimplify(); 5918 } 5919 5920 // If this is a branch on a phi node in the current block, thread control 5921 // through this block if any PHI node entries are constants. 5922 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5923 if (PN->getParent() == BI->getParent()) 5924 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5925 return requestResimplify(); 5926 5927 // Scan predecessor blocks for conditional branches. 5928 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5929 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5930 if (PBI != BI && PBI->isConditional()) 5931 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5932 return requestResimplify(); 5933 5934 // Look for diamond patterns. 5935 if (MergeCondStores) 5936 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5937 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5938 if (PBI != BI && PBI->isConditional()) 5939 if (mergeConditionalStores(PBI, BI, DL)) 5940 return requestResimplify(); 5941 5942 return false; 5943 } 5944 5945 /// Check if passing a value to an instruction will cause undefined behavior. 5946 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5947 Constant *C = dyn_cast<Constant>(V); 5948 if (!C) 5949 return false; 5950 5951 if (I->use_empty()) 5952 return false; 5953 5954 if (C->isNullValue() || isa<UndefValue>(C)) { 5955 // Only look at the first use, avoid hurting compile time with long uselists 5956 User *Use = *I->user_begin(); 5957 5958 // Now make sure that there are no instructions in between that can alter 5959 // control flow (eg. calls) 5960 for (BasicBlock::iterator 5961 i = ++BasicBlock::iterator(I), 5962 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5963 i != UI; ++i) 5964 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5965 return false; 5966 5967 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5968 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5969 if (GEP->getPointerOperand() == I) 5970 return passingValueIsAlwaysUndefined(V, GEP); 5971 5972 // Look through bitcasts. 5973 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5974 return passingValueIsAlwaysUndefined(V, BC); 5975 5976 // Load from null is undefined. 5977 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5978 if (!LI->isVolatile()) 5979 return !NullPointerIsDefined(LI->getFunction(), 5980 LI->getPointerAddressSpace()); 5981 5982 // Store to null is undefined. 5983 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5984 if (!SI->isVolatile()) 5985 return (!NullPointerIsDefined(SI->getFunction(), 5986 SI->getPointerAddressSpace())) && 5987 SI->getPointerOperand() == I; 5988 5989 // A call to null is undefined. 5990 if (auto CS = CallSite(Use)) 5991 return !NullPointerIsDefined(CS->getFunction()) && 5992 CS.getCalledValue() == I; 5993 } 5994 return false; 5995 } 5996 5997 /// If BB has an incoming value that will always trigger undefined behavior 5998 /// (eg. null pointer dereference), remove the branch leading here. 5999 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 6000 for (PHINode &PHI : BB->phis()) 6001 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6002 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6003 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6004 IRBuilder<> Builder(T); 6005 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6006 BB->removePredecessor(PHI.getIncomingBlock(i)); 6007 // Turn uncoditional branches into unreachables and remove the dead 6008 // destination from conditional branches. 6009 if (BI->isUnconditional()) 6010 Builder.CreateUnreachable(); 6011 else 6012 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6013 : BI->getSuccessor(0)); 6014 BI->eraseFromParent(); 6015 return true; 6016 } 6017 // TODO: SwitchInst. 6018 } 6019 6020 return false; 6021 } 6022 6023 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6024 bool Changed = false; 6025 6026 assert(BB && BB->getParent() && "Block not embedded in function!"); 6027 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6028 6029 // Remove basic blocks that have no predecessors (except the entry block)... 6030 // or that just have themself as a predecessor. These are unreachable. 6031 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6032 BB->getSinglePredecessor() == BB) { 6033 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6034 DeleteDeadBlock(BB); 6035 return true; 6036 } 6037 6038 // Check to see if we can constant propagate this terminator instruction 6039 // away... 6040 Changed |= ConstantFoldTerminator(BB, true); 6041 6042 // Check for and eliminate duplicate PHI nodes in this block. 6043 Changed |= EliminateDuplicatePHINodes(BB); 6044 6045 // Check for and remove branches that will always cause undefined behavior. 6046 Changed |= removeUndefIntroducingPredecessor(BB); 6047 6048 // Merge basic blocks into their predecessor if there is only one distinct 6049 // pred, and if there is only one distinct successor of the predecessor, and 6050 // if there are no PHI nodes. 6051 if (MergeBlockIntoPredecessor(BB)) 6052 return true; 6053 6054 if (SinkCommon && Options.SinkCommonInsts) 6055 Changed |= SinkCommonCodeFromPredecessors(BB); 6056 6057 IRBuilder<> Builder(BB); 6058 6059 // If there is a trivial two-entry PHI node in this basic block, and we can 6060 // eliminate it, do so now. 6061 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6062 if (PN->getNumIncomingValues() == 2) 6063 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6064 6065 Builder.SetInsertPoint(BB->getTerminator()); 6066 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6067 if (BI->isUnconditional()) { 6068 if (SimplifyUncondBranch(BI, Builder)) 6069 return true; 6070 } else { 6071 if (SimplifyCondBranch(BI, Builder)) 6072 return true; 6073 } 6074 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6075 if (SimplifyReturn(RI, Builder)) 6076 return true; 6077 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6078 if (SimplifyResume(RI, Builder)) 6079 return true; 6080 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6081 if (SimplifyCleanupReturn(RI)) 6082 return true; 6083 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6084 if (SimplifySwitch(SI, Builder)) 6085 return true; 6086 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6087 if (SimplifyUnreachable(UI)) 6088 return true; 6089 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6090 if (SimplifyIndirectBr(IBI)) 6091 return true; 6092 } 6093 6094 return Changed; 6095 } 6096 6097 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6098 bool Changed = false; 6099 6100 // Repeated simplify BB as long as resimplification is requested. 6101 do { 6102 Resimplify = false; 6103 6104 // Perform one round of simplifcation. Resimplify flag will be set if 6105 // another iteration is requested. 6106 Changed |= simplifyOnce(BB); 6107 } while (Resimplify); 6108 6109 return Changed; 6110 } 6111 6112 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6113 const SimplifyCFGOptions &Options, 6114 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6115 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6116 Options) 6117 .run(BB); 6118 } 6119