1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <climits> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <set> 78 #include <tuple> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 using namespace PatternMatch; 84 85 #define DEBUG_TYPE "simplifycfg" 86 87 // Chosen as 2 so as to be cheap, but still to have enough power to fold 88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 89 // To catch this, we need to fold a compare and a select, hence '2' being the 90 // minimum reasonable default. 91 static cl::opt<unsigned> PHINodeFoldingThreshold( 92 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 93 cl::desc( 94 "Control the amount of phi node folding to perform (default = 2)")); 95 96 static cl::opt<bool> DupRet( 97 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 98 cl::desc("Duplicate return instructions into unconditional branches")); 99 100 static cl::opt<bool> 101 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 102 cl::desc("Sink common instructions down to the end block")); 103 104 static cl::opt<bool> HoistCondStores( 105 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 106 cl::desc("Hoist conditional stores if an unconditional store precedes")); 107 108 static cl::opt<bool> MergeCondStores( 109 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 110 cl::desc("Hoist conditional stores even if an unconditional store does not " 111 "precede - hoist multiple conditional stores into a single " 112 "predicated store")); 113 114 static cl::opt<bool> MergeCondStoresAggressively( 115 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 116 cl::desc("When merging conditional stores, do so even if the resultant " 117 "basic blocks are unlikely to be if-converted as a result")); 118 119 static cl::opt<bool> SpeculateOneExpensiveInst( 120 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 121 cl::desc("Allow exactly one expensive instruction to be speculatively " 122 "executed")); 123 124 static cl::opt<unsigned> MaxSpeculationDepth( 125 "max-speculation-depth", cl::Hidden, cl::init(10), 126 cl::desc("Limit maximum recursion depth when calculating costs of " 127 "speculatively executed instructions")); 128 129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 130 STATISTIC(NumLinearMaps, 131 "Number of switch instructions turned into linear mapping"); 132 STATISTIC(NumLookupTables, 133 "Number of switch instructions turned into lookup tables"); 134 STATISTIC( 135 NumLookupTablesHoles, 136 "Number of switch instructions turned into lookup tables (holes checked)"); 137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 138 STATISTIC(NumSinkCommons, 139 "Number of common instructions sunk down to the end block"); 140 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 141 142 namespace { 143 144 // The first field contains the value that the switch produces when a certain 145 // case group is selected, and the second field is a vector containing the 146 // cases composing the case group. 147 using SwitchCaseResultVectorTy = 148 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 149 150 // The first field contains the phi node that generates a result of the switch 151 // and the second field contains the value generated for a certain case in the 152 // switch for that PHI. 153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 154 155 /// ValueEqualityComparisonCase - Represents a case of a switch. 156 struct ValueEqualityComparisonCase { 157 ConstantInt *Value; 158 BasicBlock *Dest; 159 160 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 161 : Value(Value), Dest(Dest) {} 162 163 bool operator<(ValueEqualityComparisonCase RHS) const { 164 // Comparing pointers is ok as we only rely on the order for uniquing. 165 return Value < RHS.Value; 166 } 167 168 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 169 }; 170 171 class SimplifyCFGOpt { 172 const TargetTransformInfo &TTI; 173 const DataLayout &DL; 174 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 175 const SimplifyCFGOptions &Options; 176 bool Resimplify; 177 178 Value *isValueEqualityComparison(Instruction *TI); 179 BasicBlock *GetValueEqualityComparisonCases( 180 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 181 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 182 BasicBlock *Pred, 183 IRBuilder<> &Builder); 184 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 185 IRBuilder<> &Builder); 186 187 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 188 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 189 bool SimplifySingleResume(ResumeInst *RI); 190 bool SimplifyCommonResume(ResumeInst *RI); 191 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 192 bool SimplifyUnreachable(UnreachableInst *UI); 193 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 194 bool SimplifyIndirectBr(IndirectBrInst *IBI); 195 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 198 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 199 IRBuilder<> &Builder); 200 201 public: 202 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 203 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 204 const SimplifyCFGOptions &Opts) 205 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 206 207 bool run(BasicBlock *BB); 208 bool simplifyOnce(BasicBlock *BB); 209 210 // Helper to set Resimplify and return change indication. 211 bool requestResimplify() { 212 Resimplify = true; 213 return true; 214 } 215 }; 216 217 } // end anonymous namespace 218 219 /// Return true if it is safe to merge these two 220 /// terminator instructions together. 221 static bool 222 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 223 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 224 if (SI1 == SI2) 225 return false; // Can't merge with self! 226 227 // It is not safe to merge these two switch instructions if they have a common 228 // successor, and if that successor has a PHI node, and if *that* PHI node has 229 // conflicting incoming values from the two switch blocks. 230 BasicBlock *SI1BB = SI1->getParent(); 231 BasicBlock *SI2BB = SI2->getParent(); 232 233 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 234 bool Fail = false; 235 for (BasicBlock *Succ : successors(SI2BB)) 236 if (SI1Succs.count(Succ)) 237 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 238 PHINode *PN = cast<PHINode>(BBI); 239 if (PN->getIncomingValueForBlock(SI1BB) != 240 PN->getIncomingValueForBlock(SI2BB)) { 241 if (FailBlocks) 242 FailBlocks->insert(Succ); 243 Fail = true; 244 } 245 } 246 247 return !Fail; 248 } 249 250 /// Return true if it is safe and profitable to merge these two terminator 251 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 252 /// store all PHI nodes in common successors. 253 static bool 254 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 255 Instruction *Cond, 256 SmallVectorImpl<PHINode *> &PhiNodes) { 257 if (SI1 == SI2) 258 return false; // Can't merge with self! 259 assert(SI1->isUnconditional() && SI2->isConditional()); 260 261 // We fold the unconditional branch if we can easily update all PHI nodes in 262 // common successors: 263 // 1> We have a constant incoming value for the conditional branch; 264 // 2> We have "Cond" as the incoming value for the unconditional branch; 265 // 3> SI2->getCondition() and Cond have same operands. 266 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 267 if (!Ci2) 268 return false; 269 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 270 Cond->getOperand(1) == Ci2->getOperand(1)) && 271 !(Cond->getOperand(0) == Ci2->getOperand(1) && 272 Cond->getOperand(1) == Ci2->getOperand(0))) 273 return false; 274 275 BasicBlock *SI1BB = SI1->getParent(); 276 BasicBlock *SI2BB = SI2->getParent(); 277 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 278 for (BasicBlock *Succ : successors(SI2BB)) 279 if (SI1Succs.count(Succ)) 280 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 281 PHINode *PN = cast<PHINode>(BBI); 282 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 283 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 284 return false; 285 PhiNodes.push_back(PN); 286 } 287 return true; 288 } 289 290 /// Update PHI nodes in Succ to indicate that there will now be entries in it 291 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 292 /// will be the same as those coming in from ExistPred, an existing predecessor 293 /// of Succ. 294 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 295 BasicBlock *ExistPred) { 296 for (PHINode &PN : Succ->phis()) 297 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 298 } 299 300 /// Compute an abstract "cost" of speculating the given instruction, 301 /// which is assumed to be safe to speculate. TCC_Free means cheap, 302 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 303 /// expensive. 304 static unsigned ComputeSpeculationCost(const User *I, 305 const TargetTransformInfo &TTI) { 306 assert(isSafeToSpeculativelyExecute(I) && 307 "Instruction is not safe to speculatively execute!"); 308 return TTI.getUserCost(I); 309 } 310 311 /// If we have a merge point of an "if condition" as accepted above, 312 /// return true if the specified value dominates the block. We 313 /// don't handle the true generality of domination here, just a special case 314 /// which works well enough for us. 315 /// 316 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 317 /// see if V (which must be an instruction) and its recursive operands 318 /// that do not dominate BB have a combined cost lower than CostRemaining and 319 /// are non-trapping. If both are true, the instruction is inserted into the 320 /// set and true is returned. 321 /// 322 /// The cost for most non-trapping instructions is defined as 1 except for 323 /// Select whose cost is 2. 324 /// 325 /// After this function returns, CostRemaining is decreased by the cost of 326 /// V plus its non-dominating operands. If that cost is greater than 327 /// CostRemaining, false is returned and CostRemaining is undefined. 328 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 329 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 330 unsigned &CostRemaining, 331 const TargetTransformInfo &TTI, 332 unsigned Depth = 0) { 333 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 334 // so limit the recursion depth. 335 // TODO: While this recursion limit does prevent pathological behavior, it 336 // would be better to track visited instructions to avoid cycles. 337 if (Depth == MaxSpeculationDepth) 338 return false; 339 340 Instruction *I = dyn_cast<Instruction>(V); 341 if (!I) { 342 // Non-instructions all dominate instructions, but not all constantexprs 343 // can be executed unconditionally. 344 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 345 if (C->canTrap()) 346 return false; 347 return true; 348 } 349 BasicBlock *PBB = I->getParent(); 350 351 // We don't want to allow weird loops that might have the "if condition" in 352 // the bottom of this block. 353 if (PBB == BB) 354 return false; 355 356 // If this instruction is defined in a block that contains an unconditional 357 // branch to BB, then it must be in the 'conditional' part of the "if 358 // statement". If not, it definitely dominates the region. 359 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 360 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 361 return true; 362 363 // If we have seen this instruction before, don't count it again. 364 if (AggressiveInsts.count(I)) 365 return true; 366 367 // Okay, it looks like the instruction IS in the "condition". Check to 368 // see if it's a cheap instruction to unconditionally compute, and if it 369 // only uses stuff defined outside of the condition. If so, hoist it out. 370 if (!isSafeToSpeculativelyExecute(I)) 371 return false; 372 373 unsigned Cost = ComputeSpeculationCost(I, TTI); 374 375 // Allow exactly one instruction to be speculated regardless of its cost 376 // (as long as it is safe to do so). 377 // This is intended to flatten the CFG even if the instruction is a division 378 // or other expensive operation. The speculation of an expensive instruction 379 // is expected to be undone in CodeGenPrepare if the speculation has not 380 // enabled further IR optimizations. 381 if (Cost > CostRemaining && 382 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 383 return false; 384 385 // Avoid unsigned wrap. 386 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 387 388 // Okay, we can only really hoist these out if their operands do 389 // not take us over the cost threshold. 390 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 391 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 392 Depth + 1)) 393 return false; 394 // Okay, it's safe to do this! Remember this instruction. 395 AggressiveInsts.insert(I); 396 return true; 397 } 398 399 /// Extract ConstantInt from value, looking through IntToPtr 400 /// and PointerNullValue. Return NULL if value is not a constant int. 401 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 402 // Normal constant int. 403 ConstantInt *CI = dyn_cast<ConstantInt>(V); 404 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 405 return CI; 406 407 // This is some kind of pointer constant. Turn it into a pointer-sized 408 // ConstantInt if possible. 409 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 410 411 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 412 if (isa<ConstantPointerNull>(V)) 413 return ConstantInt::get(PtrTy, 0); 414 415 // IntToPtr const int. 416 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 417 if (CE->getOpcode() == Instruction::IntToPtr) 418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 419 // The constant is very likely to have the right type already. 420 if (CI->getType() == PtrTy) 421 return CI; 422 else 423 return cast<ConstantInt>( 424 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 425 } 426 return nullptr; 427 } 428 429 namespace { 430 431 /// Given a chain of or (||) or and (&&) comparison of a value against a 432 /// constant, this will try to recover the information required for a switch 433 /// structure. 434 /// It will depth-first traverse the chain of comparison, seeking for patterns 435 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 436 /// representing the different cases for the switch. 437 /// Note that if the chain is composed of '||' it will build the set of elements 438 /// that matches the comparisons (i.e. any of this value validate the chain) 439 /// while for a chain of '&&' it will build the set elements that make the test 440 /// fail. 441 struct ConstantComparesGatherer { 442 const DataLayout &DL; 443 444 /// Value found for the switch comparison 445 Value *CompValue = nullptr; 446 447 /// Extra clause to be checked before the switch 448 Value *Extra = nullptr; 449 450 /// Set of integers to match in switch 451 SmallVector<ConstantInt *, 8> Vals; 452 453 /// Number of comparisons matched in the and/or chain 454 unsigned UsedICmps = 0; 455 456 /// Construct and compute the result for the comparison instruction Cond 457 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 458 gather(Cond); 459 } 460 461 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 462 ConstantComparesGatherer & 463 operator=(const ConstantComparesGatherer &) = delete; 464 465 private: 466 /// Try to set the current value used for the comparison, it succeeds only if 467 /// it wasn't set before or if the new value is the same as the old one 468 bool setValueOnce(Value *NewVal) { 469 if (CompValue && CompValue != NewVal) 470 return false; 471 CompValue = NewVal; 472 return (CompValue != nullptr); 473 } 474 475 /// Try to match Instruction "I" as a comparison against a constant and 476 /// populates the array Vals with the set of values that match (or do not 477 /// match depending on isEQ). 478 /// Return false on failure. On success, the Value the comparison matched 479 /// against is placed in CompValue. 480 /// If CompValue is already set, the function is expected to fail if a match 481 /// is found but the value compared to is different. 482 bool matchInstruction(Instruction *I, bool isEQ) { 483 // If this is an icmp against a constant, handle this as one of the cases. 484 ICmpInst *ICI; 485 ConstantInt *C; 486 if (!((ICI = dyn_cast<ICmpInst>(I)) && 487 (C = GetConstantInt(I->getOperand(1), DL)))) { 488 return false; 489 } 490 491 Value *RHSVal; 492 const APInt *RHSC; 493 494 // Pattern match a special case 495 // (x & ~2^z) == y --> x == y || x == y|2^z 496 // This undoes a transformation done by instcombine to fuse 2 compares. 497 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 498 // It's a little bit hard to see why the following transformations are 499 // correct. Here is a CVC3 program to verify them for 64-bit values: 500 501 /* 502 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 503 x : BITVECTOR(64); 504 y : BITVECTOR(64); 505 z : BITVECTOR(64); 506 mask : BITVECTOR(64) = BVSHL(ONE, z); 507 QUERY( (y & ~mask = y) => 508 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 509 ); 510 QUERY( (y | mask = y) => 511 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 512 ); 513 */ 514 515 // Please note that each pattern must be a dual implication (<--> or 516 // iff). One directional implication can create spurious matches. If the 517 // implication is only one-way, an unsatisfiable condition on the left 518 // side can imply a satisfiable condition on the right side. Dual 519 // implication ensures that satisfiable conditions are transformed to 520 // other satisfiable conditions and unsatisfiable conditions are 521 // transformed to other unsatisfiable conditions. 522 523 // Here is a concrete example of a unsatisfiable condition on the left 524 // implying a satisfiable condition on the right: 525 // 526 // mask = (1 << z) 527 // (x & ~mask) == y --> (x == y || x == (y | mask)) 528 // 529 // Substituting y = 3, z = 0 yields: 530 // (x & -2) == 3 --> (x == 3 || x == 2) 531 532 // Pattern match a special case: 533 /* 534 QUERY( (y & ~mask = y) => 535 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 536 ); 537 */ 538 if (match(ICI->getOperand(0), 539 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 540 APInt Mask = ~*RHSC; 541 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 542 // If we already have a value for the switch, it has to match! 543 if (!setValueOnce(RHSVal)) 544 return false; 545 546 Vals.push_back(C); 547 Vals.push_back( 548 ConstantInt::get(C->getContext(), 549 C->getValue() | Mask)); 550 UsedICmps++; 551 return true; 552 } 553 } 554 555 // Pattern match a special case: 556 /* 557 QUERY( (y | mask = y) => 558 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 559 ); 560 */ 561 if (match(ICI->getOperand(0), 562 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 563 APInt Mask = *RHSC; 564 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 565 // If we already have a value for the switch, it has to match! 566 if (!setValueOnce(RHSVal)) 567 return false; 568 569 Vals.push_back(C); 570 Vals.push_back(ConstantInt::get(C->getContext(), 571 C->getValue() & ~Mask)); 572 UsedICmps++; 573 return true; 574 } 575 } 576 577 // If we already have a value for the switch, it has to match! 578 if (!setValueOnce(ICI->getOperand(0))) 579 return false; 580 581 UsedICmps++; 582 Vals.push_back(C); 583 return ICI->getOperand(0); 584 } 585 586 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 587 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 588 ICI->getPredicate(), C->getValue()); 589 590 // Shift the range if the compare is fed by an add. This is the range 591 // compare idiom as emitted by instcombine. 592 Value *CandidateVal = I->getOperand(0); 593 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 594 Span = Span.subtract(*RHSC); 595 CandidateVal = RHSVal; 596 } 597 598 // If this is an and/!= check, then we are looking to build the set of 599 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 600 // x != 0 && x != 1. 601 if (!isEQ) 602 Span = Span.inverse(); 603 604 // If there are a ton of values, we don't want to make a ginormous switch. 605 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 606 return false; 607 } 608 609 // If we already have a value for the switch, it has to match! 610 if (!setValueOnce(CandidateVal)) 611 return false; 612 613 // Add all values from the range to the set 614 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 615 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 616 617 UsedICmps++; 618 return true; 619 } 620 621 /// Given a potentially 'or'd or 'and'd together collection of icmp 622 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 623 /// the value being compared, and stick the list constants into the Vals 624 /// vector. 625 /// One "Extra" case is allowed to differ from the other. 626 void gather(Value *V) { 627 Instruction *I = dyn_cast<Instruction>(V); 628 bool isEQ = (I->getOpcode() == Instruction::Or); 629 630 // Keep a stack (SmallVector for efficiency) for depth-first traversal 631 SmallVector<Value *, 8> DFT; 632 SmallPtrSet<Value *, 8> Visited; 633 634 // Initialize 635 Visited.insert(V); 636 DFT.push_back(V); 637 638 while (!DFT.empty()) { 639 V = DFT.pop_back_val(); 640 641 if (Instruction *I = dyn_cast<Instruction>(V)) { 642 // If it is a || (or && depending on isEQ), process the operands. 643 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 644 if (Visited.insert(I->getOperand(1)).second) 645 DFT.push_back(I->getOperand(1)); 646 if (Visited.insert(I->getOperand(0)).second) 647 DFT.push_back(I->getOperand(0)); 648 continue; 649 } 650 651 // Try to match the current instruction 652 if (matchInstruction(I, isEQ)) 653 // Match succeed, continue the loop 654 continue; 655 } 656 657 // One element of the sequence of || (or &&) could not be match as a 658 // comparison against the same value as the others. 659 // We allow only one "Extra" case to be checked before the switch 660 if (!Extra) { 661 Extra = V; 662 continue; 663 } 664 // Failed to parse a proper sequence, abort now 665 CompValue = nullptr; 666 break; 667 } 668 } 669 }; 670 671 } // end anonymous namespace 672 673 static void EraseTerminatorAndDCECond(Instruction *TI) { 674 Instruction *Cond = nullptr; 675 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 676 Cond = dyn_cast<Instruction>(SI->getCondition()); 677 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 678 if (BI->isConditional()) 679 Cond = dyn_cast<Instruction>(BI->getCondition()); 680 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 681 Cond = dyn_cast<Instruction>(IBI->getAddress()); 682 } 683 684 TI->eraseFromParent(); 685 if (Cond) 686 RecursivelyDeleteTriviallyDeadInstructions(Cond); 687 } 688 689 /// Return true if the specified terminator checks 690 /// to see if a value is equal to constant integer value. 691 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 692 Value *CV = nullptr; 693 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 694 // Do not permit merging of large switch instructions into their 695 // predecessors unless there is only one predecessor. 696 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 697 CV = SI->getCondition(); 698 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 699 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 700 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 701 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 702 CV = ICI->getOperand(0); 703 } 704 705 // Unwrap any lossless ptrtoint cast. 706 if (CV) { 707 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 708 Value *Ptr = PTII->getPointerOperand(); 709 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 710 CV = Ptr; 711 } 712 } 713 return CV; 714 } 715 716 /// Given a value comparison instruction, 717 /// decode all of the 'cases' that it represents and return the 'default' block. 718 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 719 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 720 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 721 Cases.reserve(SI->getNumCases()); 722 for (auto Case : SI->cases()) 723 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 724 Case.getCaseSuccessor())); 725 return SI->getDefaultDest(); 726 } 727 728 BranchInst *BI = cast<BranchInst>(TI); 729 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 730 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 731 Cases.push_back(ValueEqualityComparisonCase( 732 GetConstantInt(ICI->getOperand(1), DL), Succ)); 733 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 734 } 735 736 /// Given a vector of bb/value pairs, remove any entries 737 /// in the list that match the specified block. 738 static void 739 EliminateBlockCases(BasicBlock *BB, 740 std::vector<ValueEqualityComparisonCase> &Cases) { 741 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 742 } 743 744 /// Return true if there are any keys in C1 that exist in C2 as well. 745 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 746 std::vector<ValueEqualityComparisonCase> &C2) { 747 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 748 749 // Make V1 be smaller than V2. 750 if (V1->size() > V2->size()) 751 std::swap(V1, V2); 752 753 if (V1->empty()) 754 return false; 755 if (V1->size() == 1) { 756 // Just scan V2. 757 ConstantInt *TheVal = (*V1)[0].Value; 758 for (unsigned i = 0, e = V2->size(); i != e; ++i) 759 if (TheVal == (*V2)[i].Value) 760 return true; 761 } 762 763 // Otherwise, just sort both lists and compare element by element. 764 array_pod_sort(V1->begin(), V1->end()); 765 array_pod_sort(V2->begin(), V2->end()); 766 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 767 while (i1 != e1 && i2 != e2) { 768 if ((*V1)[i1].Value == (*V2)[i2].Value) 769 return true; 770 if ((*V1)[i1].Value < (*V2)[i2].Value) 771 ++i1; 772 else 773 ++i2; 774 } 775 return false; 776 } 777 778 // Set branch weights on SwitchInst. This sets the metadata if there is at 779 // least one non-zero weight. 780 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 781 // Check that there is at least one non-zero weight. Otherwise, pass 782 // nullptr to setMetadata which will erase the existing metadata. 783 MDNode *N = nullptr; 784 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 785 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 786 SI->setMetadata(LLVMContext::MD_prof, N); 787 } 788 789 // Similar to the above, but for branch and select instructions that take 790 // exactly 2 weights. 791 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 792 uint32_t FalseWeight) { 793 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 794 // Check that there is at least one non-zero weight. Otherwise, pass 795 // nullptr to setMetadata which will erase the existing metadata. 796 MDNode *N = nullptr; 797 if (TrueWeight || FalseWeight) 798 N = MDBuilder(I->getParent()->getContext()) 799 .createBranchWeights(TrueWeight, FalseWeight); 800 I->setMetadata(LLVMContext::MD_prof, N); 801 } 802 803 /// If TI is known to be a terminator instruction and its block is known to 804 /// only have a single predecessor block, check to see if that predecessor is 805 /// also a value comparison with the same value, and if that comparison 806 /// determines the outcome of this comparison. If so, simplify TI. This does a 807 /// very limited form of jump threading. 808 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 809 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 810 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 811 if (!PredVal) 812 return false; // Not a value comparison in predecessor. 813 814 Value *ThisVal = isValueEqualityComparison(TI); 815 assert(ThisVal && "This isn't a value comparison!!"); 816 if (ThisVal != PredVal) 817 return false; // Different predicates. 818 819 // TODO: Preserve branch weight metadata, similarly to how 820 // FoldValueComparisonIntoPredecessors preserves it. 821 822 // Find out information about when control will move from Pred to TI's block. 823 std::vector<ValueEqualityComparisonCase> PredCases; 824 BasicBlock *PredDef = 825 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 826 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 827 828 // Find information about how control leaves this block. 829 std::vector<ValueEqualityComparisonCase> ThisCases; 830 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 831 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 832 833 // If TI's block is the default block from Pred's comparison, potentially 834 // simplify TI based on this knowledge. 835 if (PredDef == TI->getParent()) { 836 // If we are here, we know that the value is none of those cases listed in 837 // PredCases. If there are any cases in ThisCases that are in PredCases, we 838 // can simplify TI. 839 if (!ValuesOverlap(PredCases, ThisCases)) 840 return false; 841 842 if (isa<BranchInst>(TI)) { 843 // Okay, one of the successors of this condbr is dead. Convert it to a 844 // uncond br. 845 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 846 // Insert the new branch. 847 Instruction *NI = Builder.CreateBr(ThisDef); 848 (void)NI; 849 850 // Remove PHI node entries for the dead edge. 851 ThisCases[0].Dest->removePredecessor(TI->getParent()); 852 853 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 854 << "Through successor TI: " << *TI << "Leaving: " << *NI 855 << "\n"); 856 857 EraseTerminatorAndDCECond(TI); 858 return true; 859 } 860 861 SwitchInst *SI = cast<SwitchInst>(TI); 862 // Okay, TI has cases that are statically dead, prune them away. 863 SmallPtrSet<Constant *, 16> DeadCases; 864 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 865 DeadCases.insert(PredCases[i].Value); 866 867 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 868 << "Through successor TI: " << *TI); 869 870 // Collect branch weights into a vector. 871 SmallVector<uint32_t, 8> Weights; 872 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 873 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 874 if (HasWeight) 875 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 876 ++MD_i) { 877 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 878 Weights.push_back(CI->getValue().getZExtValue()); 879 } 880 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 881 --i; 882 if (DeadCases.count(i->getCaseValue())) { 883 if (HasWeight) { 884 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 885 Weights.pop_back(); 886 } 887 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 888 SI->removeCase(i); 889 } 890 } 891 if (HasWeight && Weights.size() >= 2) 892 setBranchWeights(SI, Weights); 893 894 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 895 return true; 896 } 897 898 // Otherwise, TI's block must correspond to some matched value. Find out 899 // which value (or set of values) this is. 900 ConstantInt *TIV = nullptr; 901 BasicBlock *TIBB = TI->getParent(); 902 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 903 if (PredCases[i].Dest == TIBB) { 904 if (TIV) 905 return false; // Cannot handle multiple values coming to this block. 906 TIV = PredCases[i].Value; 907 } 908 assert(TIV && "No edge from pred to succ?"); 909 910 // Okay, we found the one constant that our value can be if we get into TI's 911 // BB. Find out which successor will unconditionally be branched to. 912 BasicBlock *TheRealDest = nullptr; 913 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 914 if (ThisCases[i].Value == TIV) { 915 TheRealDest = ThisCases[i].Dest; 916 break; 917 } 918 919 // If not handled by any explicit cases, it is handled by the default case. 920 if (!TheRealDest) 921 TheRealDest = ThisDef; 922 923 // Remove PHI node entries for dead edges. 924 BasicBlock *CheckEdge = TheRealDest; 925 for (BasicBlock *Succ : successors(TIBB)) 926 if (Succ != CheckEdge) 927 Succ->removePredecessor(TIBB); 928 else 929 CheckEdge = nullptr; 930 931 // Insert the new branch. 932 Instruction *NI = Builder.CreateBr(TheRealDest); 933 (void)NI; 934 935 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 936 << "Through successor TI: " << *TI << "Leaving: " << *NI 937 << "\n"); 938 939 EraseTerminatorAndDCECond(TI); 940 return true; 941 } 942 943 namespace { 944 945 /// This class implements a stable ordering of constant 946 /// integers that does not depend on their address. This is important for 947 /// applications that sort ConstantInt's to ensure uniqueness. 948 struct ConstantIntOrdering { 949 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 950 return LHS->getValue().ult(RHS->getValue()); 951 } 952 }; 953 954 } // end anonymous namespace 955 956 static int ConstantIntSortPredicate(ConstantInt *const *P1, 957 ConstantInt *const *P2) { 958 const ConstantInt *LHS = *P1; 959 const ConstantInt *RHS = *P2; 960 if (LHS == RHS) 961 return 0; 962 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 963 } 964 965 static inline bool HasBranchWeights(const Instruction *I) { 966 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 967 if (ProfMD && ProfMD->getOperand(0)) 968 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 969 return MDS->getString().equals("branch_weights"); 970 971 return false; 972 } 973 974 /// Get Weights of a given terminator, the default weight is at the front 975 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 976 /// metadata. 977 static void GetBranchWeights(Instruction *TI, 978 SmallVectorImpl<uint64_t> &Weights) { 979 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 980 assert(MD); 981 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 982 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 983 Weights.push_back(CI->getValue().getZExtValue()); 984 } 985 986 // If TI is a conditional eq, the default case is the false case, 987 // and the corresponding branch-weight data is at index 2. We swap the 988 // default weight to be the first entry. 989 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 990 assert(Weights.size() == 2); 991 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 992 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 993 std::swap(Weights.front(), Weights.back()); 994 } 995 } 996 997 /// Keep halving the weights until all can fit in uint32_t. 998 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 999 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1000 if (Max > UINT_MAX) { 1001 unsigned Offset = 32 - countLeadingZeros(Max); 1002 for (uint64_t &I : Weights) 1003 I >>= Offset; 1004 } 1005 } 1006 1007 /// The specified terminator is a value equality comparison instruction 1008 /// (either a switch or a branch on "X == c"). 1009 /// See if any of the predecessors of the terminator block are value comparisons 1010 /// on the same value. If so, and if safe to do so, fold them together. 1011 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1012 IRBuilder<> &Builder) { 1013 BasicBlock *BB = TI->getParent(); 1014 Value *CV = isValueEqualityComparison(TI); // CondVal 1015 assert(CV && "Not a comparison?"); 1016 bool Changed = false; 1017 1018 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1019 while (!Preds.empty()) { 1020 BasicBlock *Pred = Preds.pop_back_val(); 1021 1022 // See if the predecessor is a comparison with the same value. 1023 Instruction *PTI = Pred->getTerminator(); 1024 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1025 1026 if (PCV == CV && TI != PTI) { 1027 SmallSetVector<BasicBlock*, 4> FailBlocks; 1028 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1029 for (auto *Succ : FailBlocks) { 1030 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1031 return false; 1032 } 1033 } 1034 1035 // Figure out which 'cases' to copy from SI to PSI. 1036 std::vector<ValueEqualityComparisonCase> BBCases; 1037 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1038 1039 std::vector<ValueEqualityComparisonCase> PredCases; 1040 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1041 1042 // Based on whether the default edge from PTI goes to BB or not, fill in 1043 // PredCases and PredDefault with the new switch cases we would like to 1044 // build. 1045 SmallVector<BasicBlock *, 8> NewSuccessors; 1046 1047 // Update the branch weight metadata along the way 1048 SmallVector<uint64_t, 8> Weights; 1049 bool PredHasWeights = HasBranchWeights(PTI); 1050 bool SuccHasWeights = HasBranchWeights(TI); 1051 1052 if (PredHasWeights) { 1053 GetBranchWeights(PTI, Weights); 1054 // branch-weight metadata is inconsistent here. 1055 if (Weights.size() != 1 + PredCases.size()) 1056 PredHasWeights = SuccHasWeights = false; 1057 } else if (SuccHasWeights) 1058 // If there are no predecessor weights but there are successor weights, 1059 // populate Weights with 1, which will later be scaled to the sum of 1060 // successor's weights 1061 Weights.assign(1 + PredCases.size(), 1); 1062 1063 SmallVector<uint64_t, 8> SuccWeights; 1064 if (SuccHasWeights) { 1065 GetBranchWeights(TI, SuccWeights); 1066 // branch-weight metadata is inconsistent here. 1067 if (SuccWeights.size() != 1 + BBCases.size()) 1068 PredHasWeights = SuccHasWeights = false; 1069 } else if (PredHasWeights) 1070 SuccWeights.assign(1 + BBCases.size(), 1); 1071 1072 if (PredDefault == BB) { 1073 // If this is the default destination from PTI, only the edges in TI 1074 // that don't occur in PTI, or that branch to BB will be activated. 1075 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1076 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1077 if (PredCases[i].Dest != BB) 1078 PTIHandled.insert(PredCases[i].Value); 1079 else { 1080 // The default destination is BB, we don't need explicit targets. 1081 std::swap(PredCases[i], PredCases.back()); 1082 1083 if (PredHasWeights || SuccHasWeights) { 1084 // Increase weight for the default case. 1085 Weights[0] += Weights[i + 1]; 1086 std::swap(Weights[i + 1], Weights.back()); 1087 Weights.pop_back(); 1088 } 1089 1090 PredCases.pop_back(); 1091 --i; 1092 --e; 1093 } 1094 1095 // Reconstruct the new switch statement we will be building. 1096 if (PredDefault != BBDefault) { 1097 PredDefault->removePredecessor(Pred); 1098 PredDefault = BBDefault; 1099 NewSuccessors.push_back(BBDefault); 1100 } 1101 1102 unsigned CasesFromPred = Weights.size(); 1103 uint64_t ValidTotalSuccWeight = 0; 1104 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1105 if (!PTIHandled.count(BBCases[i].Value) && 1106 BBCases[i].Dest != BBDefault) { 1107 PredCases.push_back(BBCases[i]); 1108 NewSuccessors.push_back(BBCases[i].Dest); 1109 if (SuccHasWeights || PredHasWeights) { 1110 // The default weight is at index 0, so weight for the ith case 1111 // should be at index i+1. Scale the cases from successor by 1112 // PredDefaultWeight (Weights[0]). 1113 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1114 ValidTotalSuccWeight += SuccWeights[i + 1]; 1115 } 1116 } 1117 1118 if (SuccHasWeights || PredHasWeights) { 1119 ValidTotalSuccWeight += SuccWeights[0]; 1120 // Scale the cases from predecessor by ValidTotalSuccWeight. 1121 for (unsigned i = 1; i < CasesFromPred; ++i) 1122 Weights[i] *= ValidTotalSuccWeight; 1123 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1124 Weights[0] *= SuccWeights[0]; 1125 } 1126 } else { 1127 // If this is not the default destination from PSI, only the edges 1128 // in SI that occur in PSI with a destination of BB will be 1129 // activated. 1130 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1131 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1132 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1133 if (PredCases[i].Dest == BB) { 1134 PTIHandled.insert(PredCases[i].Value); 1135 1136 if (PredHasWeights || SuccHasWeights) { 1137 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1138 std::swap(Weights[i + 1], Weights.back()); 1139 Weights.pop_back(); 1140 } 1141 1142 std::swap(PredCases[i], PredCases.back()); 1143 PredCases.pop_back(); 1144 --i; 1145 --e; 1146 } 1147 1148 // Okay, now we know which constants were sent to BB from the 1149 // predecessor. Figure out where they will all go now. 1150 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1151 if (PTIHandled.count(BBCases[i].Value)) { 1152 // If this is one we are capable of getting... 1153 if (PredHasWeights || SuccHasWeights) 1154 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1155 PredCases.push_back(BBCases[i]); 1156 NewSuccessors.push_back(BBCases[i].Dest); 1157 PTIHandled.erase( 1158 BBCases[i].Value); // This constant is taken care of 1159 } 1160 1161 // If there are any constants vectored to BB that TI doesn't handle, 1162 // they must go to the default destination of TI. 1163 for (ConstantInt *I : PTIHandled) { 1164 if (PredHasWeights || SuccHasWeights) 1165 Weights.push_back(WeightsForHandled[I]); 1166 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1167 NewSuccessors.push_back(BBDefault); 1168 } 1169 } 1170 1171 // Okay, at this point, we know which new successor Pred will get. Make 1172 // sure we update the number of entries in the PHI nodes for these 1173 // successors. 1174 for (BasicBlock *NewSuccessor : NewSuccessors) 1175 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1176 1177 Builder.SetInsertPoint(PTI); 1178 // Convert pointer to int before we switch. 1179 if (CV->getType()->isPointerTy()) { 1180 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1181 "magicptr"); 1182 } 1183 1184 // Now that the successors are updated, create the new Switch instruction. 1185 SwitchInst *NewSI = 1186 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1187 NewSI->setDebugLoc(PTI->getDebugLoc()); 1188 for (ValueEqualityComparisonCase &V : PredCases) 1189 NewSI->addCase(V.Value, V.Dest); 1190 1191 if (PredHasWeights || SuccHasWeights) { 1192 // Halve the weights if any of them cannot fit in an uint32_t 1193 FitWeights(Weights); 1194 1195 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1196 1197 setBranchWeights(NewSI, MDWeights); 1198 } 1199 1200 EraseTerminatorAndDCECond(PTI); 1201 1202 // Okay, last check. If BB is still a successor of PSI, then we must 1203 // have an infinite loop case. If so, add an infinitely looping block 1204 // to handle the case to preserve the behavior of the code. 1205 BasicBlock *InfLoopBlock = nullptr; 1206 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1207 if (NewSI->getSuccessor(i) == BB) { 1208 if (!InfLoopBlock) { 1209 // Insert it at the end of the function, because it's either code, 1210 // or it won't matter if it's hot. :) 1211 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1212 BB->getParent()); 1213 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1214 } 1215 NewSI->setSuccessor(i, InfLoopBlock); 1216 } 1217 1218 Changed = true; 1219 } 1220 } 1221 return Changed; 1222 } 1223 1224 // If we would need to insert a select that uses the value of this invoke 1225 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1226 // can't hoist the invoke, as there is nowhere to put the select in this case. 1227 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1228 Instruction *I1, Instruction *I2) { 1229 for (BasicBlock *Succ : successors(BB1)) { 1230 for (const PHINode &PN : Succ->phis()) { 1231 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1232 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1233 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1234 return false; 1235 } 1236 } 1237 } 1238 return true; 1239 } 1240 1241 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1242 1243 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1244 /// in the two blocks up into the branch block. The caller of this function 1245 /// guarantees that BI's block dominates BB1 and BB2. 1246 static bool HoistThenElseCodeToIf(BranchInst *BI, 1247 const TargetTransformInfo &TTI) { 1248 // This does very trivial matching, with limited scanning, to find identical 1249 // instructions in the two blocks. In particular, we don't want to get into 1250 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1251 // such, we currently just scan for obviously identical instructions in an 1252 // identical order. 1253 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1254 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1255 1256 BasicBlock::iterator BB1_Itr = BB1->begin(); 1257 BasicBlock::iterator BB2_Itr = BB2->begin(); 1258 1259 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1260 // Skip debug info if it is not identical. 1261 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1262 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1263 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1264 while (isa<DbgInfoIntrinsic>(I1)) 1265 I1 = &*BB1_Itr++; 1266 while (isa<DbgInfoIntrinsic>(I2)) 1267 I2 = &*BB2_Itr++; 1268 } 1269 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1270 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1271 return false; 1272 1273 BasicBlock *BIParent = BI->getParent(); 1274 1275 bool Changed = false; 1276 do { 1277 // If we are hoisting the terminator instruction, don't move one (making a 1278 // broken BB), instead clone it, and remove BI. 1279 if (I1->isTerminator()) 1280 goto HoistTerminator; 1281 1282 // If we're going to hoist a call, make sure that the two instructions we're 1283 // commoning/hoisting are both marked with musttail, or neither of them is 1284 // marked as such. Otherwise, we might end up in a situation where we hoist 1285 // from a block where the terminator is a `ret` to a block where the terminator 1286 // is a `br`, and `musttail` calls expect to be followed by a return. 1287 auto *C1 = dyn_cast<CallInst>(I1); 1288 auto *C2 = dyn_cast<CallInst>(I2); 1289 if (C1 && C2) 1290 if (C1->isMustTailCall() != C2->isMustTailCall()) 1291 return Changed; 1292 1293 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1294 return Changed; 1295 1296 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1297 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1298 // The debug location is an integral part of a debug info intrinsic 1299 // and can't be separated from it or replaced. Instead of attempting 1300 // to merge locations, simply hoist both copies of the intrinsic. 1301 BIParent->getInstList().splice(BI->getIterator(), 1302 BB1->getInstList(), I1); 1303 BIParent->getInstList().splice(BI->getIterator(), 1304 BB2->getInstList(), I2); 1305 Changed = true; 1306 } else { 1307 // For a normal instruction, we just move one to right before the branch, 1308 // then replace all uses of the other with the first. Finally, we remove 1309 // the now redundant second instruction. 1310 BIParent->getInstList().splice(BI->getIterator(), 1311 BB1->getInstList(), I1); 1312 if (!I2->use_empty()) 1313 I2->replaceAllUsesWith(I1); 1314 I1->andIRFlags(I2); 1315 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1316 LLVMContext::MD_range, 1317 LLVMContext::MD_fpmath, 1318 LLVMContext::MD_invariant_load, 1319 LLVMContext::MD_nonnull, 1320 LLVMContext::MD_invariant_group, 1321 LLVMContext::MD_align, 1322 LLVMContext::MD_dereferenceable, 1323 LLVMContext::MD_dereferenceable_or_null, 1324 LLVMContext::MD_mem_parallel_loop_access}; 1325 combineMetadata(I1, I2, KnownIDs, true); 1326 1327 // I1 and I2 are being combined into a single instruction. Its debug 1328 // location is the merged locations of the original instructions. 1329 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1330 1331 I2->eraseFromParent(); 1332 Changed = true; 1333 } 1334 1335 I1 = &*BB1_Itr++; 1336 I2 = &*BB2_Itr++; 1337 // Skip debug info if it is not identical. 1338 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1339 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1340 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1341 while (isa<DbgInfoIntrinsic>(I1)) 1342 I1 = &*BB1_Itr++; 1343 while (isa<DbgInfoIntrinsic>(I2)) 1344 I2 = &*BB2_Itr++; 1345 } 1346 } while (I1->isIdenticalToWhenDefined(I2)); 1347 1348 return true; 1349 1350 HoistTerminator: 1351 // It may not be possible to hoist an invoke. 1352 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1353 return Changed; 1354 1355 for (BasicBlock *Succ : successors(BB1)) { 1356 for (PHINode &PN : Succ->phis()) { 1357 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1358 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1359 if (BB1V == BB2V) 1360 continue; 1361 1362 // Check for passingValueIsAlwaysUndefined here because we would rather 1363 // eliminate undefined control flow then converting it to a select. 1364 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1365 passingValueIsAlwaysUndefined(BB2V, &PN)) 1366 return Changed; 1367 1368 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1369 return Changed; 1370 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1371 return Changed; 1372 } 1373 } 1374 1375 // As the parent basic block terminator is a branch instruction which is 1376 // removed at the end of the current transformation, use its previous 1377 // non-debug instruction, as the reference insertion point, which will 1378 // provide the debug location for generated select instructions. For BBs 1379 // with only debug instructions, use an empty debug location. 1380 Instruction *InsertPt = 1381 BIParent->getTerminator()->getPrevNonDebugInstruction(); 1382 1383 // Okay, it is safe to hoist the terminator. 1384 Instruction *NT = I1->clone(); 1385 BIParent->getInstList().insert(BI->getIterator(), NT); 1386 if (!NT->getType()->isVoidTy()) { 1387 I1->replaceAllUsesWith(NT); 1388 I2->replaceAllUsesWith(NT); 1389 NT->takeName(I1); 1390 } 1391 1392 // Ensure terminator gets a debug location, even an unknown one, in case 1393 // it involves inlinable calls. 1394 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1395 1396 IRBuilder<NoFolder> Builder(NT); 1397 // If an earlier instruction in this BB had a location, adopt it, otherwise 1398 // clear debug locations. 1399 Builder.SetCurrentDebugLocation(InsertPt ? InsertPt->getDebugLoc() 1400 : DebugLoc()); 1401 1402 // Hoisting one of the terminators from our successor is a great thing. 1403 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1404 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1405 // nodes, so we insert select instruction to compute the final result. 1406 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1407 for (BasicBlock *Succ : successors(BB1)) { 1408 for (PHINode &PN : Succ->phis()) { 1409 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1410 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1411 if (BB1V == BB2V) 1412 continue; 1413 1414 // These values do not agree. Insert a select instruction before NT 1415 // that determines the right value. 1416 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1417 if (!SI) 1418 SI = cast<SelectInst>( 1419 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1420 BB1V->getName() + "." + BB2V->getName(), BI)); 1421 1422 // Make the PHI node use the select for all incoming values for BB1/BB2 1423 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1424 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1425 PN.setIncomingValue(i, SI); 1426 } 1427 } 1428 1429 // Update any PHI nodes in our new successors. 1430 for (BasicBlock *Succ : successors(BB1)) 1431 AddPredecessorToBlock(Succ, BIParent, BB1); 1432 1433 EraseTerminatorAndDCECond(BI); 1434 return true; 1435 } 1436 1437 // All instructions in Insts belong to different blocks that all unconditionally 1438 // branch to a common successor. Analyze each instruction and return true if it 1439 // would be possible to sink them into their successor, creating one common 1440 // instruction instead. For every value that would be required to be provided by 1441 // PHI node (because an operand varies in each input block), add to PHIOperands. 1442 static bool canSinkInstructions( 1443 ArrayRef<Instruction *> Insts, 1444 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1445 // Prune out obviously bad instructions to move. Any non-store instruction 1446 // must have exactly one use, and we check later that use is by a single, 1447 // common PHI instruction in the successor. 1448 for (auto *I : Insts) { 1449 // These instructions may change or break semantics if moved. 1450 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1451 I->getType()->isTokenTy()) 1452 return false; 1453 1454 // Conservatively return false if I is an inline-asm instruction. Sinking 1455 // and merging inline-asm instructions can potentially create arguments 1456 // that cannot satisfy the inline-asm constraints. 1457 if (const auto *C = dyn_cast<CallInst>(I)) 1458 if (C->isInlineAsm()) 1459 return false; 1460 1461 // Everything must have only one use too, apart from stores which 1462 // have no uses. 1463 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1464 return false; 1465 } 1466 1467 const Instruction *I0 = Insts.front(); 1468 for (auto *I : Insts) 1469 if (!I->isSameOperationAs(I0)) 1470 return false; 1471 1472 // All instructions in Insts are known to be the same opcode. If they aren't 1473 // stores, check the only user of each is a PHI or in the same block as the 1474 // instruction, because if a user is in the same block as an instruction 1475 // we're contemplating sinking, it must already be determined to be sinkable. 1476 if (!isa<StoreInst>(I0)) { 1477 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1478 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1479 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1480 auto *U = cast<Instruction>(*I->user_begin()); 1481 return (PNUse && 1482 PNUse->getParent() == Succ && 1483 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1484 U->getParent() == I->getParent(); 1485 })) 1486 return false; 1487 } 1488 1489 // Because SROA can't handle speculating stores of selects, try not 1490 // to sink loads or stores of allocas when we'd have to create a PHI for 1491 // the address operand. Also, because it is likely that loads or stores 1492 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1493 // This can cause code churn which can have unintended consequences down 1494 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1495 // FIXME: This is a workaround for a deficiency in SROA - see 1496 // https://llvm.org/bugs/show_bug.cgi?id=30188 1497 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1498 return isa<AllocaInst>(I->getOperand(1)); 1499 })) 1500 return false; 1501 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1502 return isa<AllocaInst>(I->getOperand(0)); 1503 })) 1504 return false; 1505 1506 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1507 if (I0->getOperand(OI)->getType()->isTokenTy()) 1508 // Don't touch any operand of token type. 1509 return false; 1510 1511 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1512 assert(I->getNumOperands() == I0->getNumOperands()); 1513 return I->getOperand(OI) == I0->getOperand(OI); 1514 }; 1515 if (!all_of(Insts, SameAsI0)) { 1516 if (!canReplaceOperandWithVariable(I0, OI)) 1517 // We can't create a PHI from this GEP. 1518 return false; 1519 // Don't create indirect calls! The called value is the final operand. 1520 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1521 // FIXME: if the call was *already* indirect, we should do this. 1522 return false; 1523 } 1524 for (auto *I : Insts) 1525 PHIOperands[I].push_back(I->getOperand(OI)); 1526 } 1527 } 1528 return true; 1529 } 1530 1531 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1532 // instruction of every block in Blocks to their common successor, commoning 1533 // into one instruction. 1534 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1535 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1536 1537 // canSinkLastInstruction returning true guarantees that every block has at 1538 // least one non-terminator instruction. 1539 SmallVector<Instruction*,4> Insts; 1540 for (auto *BB : Blocks) { 1541 Instruction *I = BB->getTerminator(); 1542 do { 1543 I = I->getPrevNode(); 1544 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1545 if (!isa<DbgInfoIntrinsic>(I)) 1546 Insts.push_back(I); 1547 } 1548 1549 // The only checking we need to do now is that all users of all instructions 1550 // are the same PHI node. canSinkLastInstruction should have checked this but 1551 // it is slightly over-aggressive - it gets confused by commutative instructions 1552 // so double-check it here. 1553 Instruction *I0 = Insts.front(); 1554 if (!isa<StoreInst>(I0)) { 1555 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1556 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1557 auto *U = cast<Instruction>(*I->user_begin()); 1558 return U == PNUse; 1559 })) 1560 return false; 1561 } 1562 1563 // We don't need to do any more checking here; canSinkLastInstruction should 1564 // have done it all for us. 1565 SmallVector<Value*, 4> NewOperands; 1566 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1567 // This check is different to that in canSinkLastInstruction. There, we 1568 // cared about the global view once simplifycfg (and instcombine) have 1569 // completed - it takes into account PHIs that become trivially 1570 // simplifiable. However here we need a more local view; if an operand 1571 // differs we create a PHI and rely on instcombine to clean up the very 1572 // small mess we may make. 1573 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1574 return I->getOperand(O) != I0->getOperand(O); 1575 }); 1576 if (!NeedPHI) { 1577 NewOperands.push_back(I0->getOperand(O)); 1578 continue; 1579 } 1580 1581 // Create a new PHI in the successor block and populate it. 1582 auto *Op = I0->getOperand(O); 1583 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1584 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1585 Op->getName() + ".sink", &BBEnd->front()); 1586 for (auto *I : Insts) 1587 PN->addIncoming(I->getOperand(O), I->getParent()); 1588 NewOperands.push_back(PN); 1589 } 1590 1591 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1592 // and move it to the start of the successor block. 1593 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1594 I0->getOperandUse(O).set(NewOperands[O]); 1595 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1596 1597 // Update metadata and IR flags, and merge debug locations. 1598 for (auto *I : Insts) 1599 if (I != I0) { 1600 // The debug location for the "common" instruction is the merged locations 1601 // of all the commoned instructions. We start with the original location 1602 // of the "common" instruction and iteratively merge each location in the 1603 // loop below. 1604 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1605 // However, as N-way merge for CallInst is rare, so we use simplified API 1606 // instead of using complex API for N-way merge. 1607 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1608 combineMetadataForCSE(I0, I, true); 1609 I0->andIRFlags(I); 1610 } 1611 1612 if (!isa<StoreInst>(I0)) { 1613 // canSinkLastInstruction checked that all instructions were used by 1614 // one and only one PHI node. Find that now, RAUW it to our common 1615 // instruction and nuke it. 1616 assert(I0->hasOneUse()); 1617 auto *PN = cast<PHINode>(*I0->user_begin()); 1618 PN->replaceAllUsesWith(I0); 1619 PN->eraseFromParent(); 1620 } 1621 1622 // Finally nuke all instructions apart from the common instruction. 1623 for (auto *I : Insts) 1624 if (I != I0) 1625 I->eraseFromParent(); 1626 1627 return true; 1628 } 1629 1630 namespace { 1631 1632 // LockstepReverseIterator - Iterates through instructions 1633 // in a set of blocks in reverse order from the first non-terminator. 1634 // For example (assume all blocks have size n): 1635 // LockstepReverseIterator I([B1, B2, B3]); 1636 // *I-- = [B1[n], B2[n], B3[n]]; 1637 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1638 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1639 // ... 1640 class LockstepReverseIterator { 1641 ArrayRef<BasicBlock*> Blocks; 1642 SmallVector<Instruction*,4> Insts; 1643 bool Fail; 1644 1645 public: 1646 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1647 reset(); 1648 } 1649 1650 void reset() { 1651 Fail = false; 1652 Insts.clear(); 1653 for (auto *BB : Blocks) { 1654 Instruction *Inst = BB->getTerminator(); 1655 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1656 Inst = Inst->getPrevNode(); 1657 if (!Inst) { 1658 // Block wasn't big enough. 1659 Fail = true; 1660 return; 1661 } 1662 Insts.push_back(Inst); 1663 } 1664 } 1665 1666 bool isValid() const { 1667 return !Fail; 1668 } 1669 1670 void operator--() { 1671 if (Fail) 1672 return; 1673 for (auto *&Inst : Insts) { 1674 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1675 Inst = Inst->getPrevNode(); 1676 // Already at beginning of block. 1677 if (!Inst) { 1678 Fail = true; 1679 return; 1680 } 1681 } 1682 } 1683 1684 ArrayRef<Instruction*> operator * () const { 1685 return Insts; 1686 } 1687 }; 1688 1689 } // end anonymous namespace 1690 1691 /// Check whether BB's predecessors end with unconditional branches. If it is 1692 /// true, sink any common code from the predecessors to BB. 1693 /// We also allow one predecessor to end with conditional branch (but no more 1694 /// than one). 1695 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1696 // We support two situations: 1697 // (1) all incoming arcs are unconditional 1698 // (2) one incoming arc is conditional 1699 // 1700 // (2) is very common in switch defaults and 1701 // else-if patterns; 1702 // 1703 // if (a) f(1); 1704 // else if (b) f(2); 1705 // 1706 // produces: 1707 // 1708 // [if] 1709 // / \ 1710 // [f(1)] [if] 1711 // | | \ 1712 // | | | 1713 // | [f(2)]| 1714 // \ | / 1715 // [ end ] 1716 // 1717 // [end] has two unconditional predecessor arcs and one conditional. The 1718 // conditional refers to the implicit empty 'else' arc. This conditional 1719 // arc can also be caused by an empty default block in a switch. 1720 // 1721 // In this case, we attempt to sink code from all *unconditional* arcs. 1722 // If we can sink instructions from these arcs (determined during the scan 1723 // phase below) we insert a common successor for all unconditional arcs and 1724 // connect that to [end], to enable sinking: 1725 // 1726 // [if] 1727 // / \ 1728 // [x(1)] [if] 1729 // | | \ 1730 // | | \ 1731 // | [x(2)] | 1732 // \ / | 1733 // [sink.split] | 1734 // \ / 1735 // [ end ] 1736 // 1737 SmallVector<BasicBlock*,4> UnconditionalPreds; 1738 Instruction *Cond = nullptr; 1739 for (auto *B : predecessors(BB)) { 1740 auto *T = B->getTerminator(); 1741 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1742 UnconditionalPreds.push_back(B); 1743 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1744 Cond = T; 1745 else 1746 return false; 1747 } 1748 if (UnconditionalPreds.size() < 2) 1749 return false; 1750 1751 bool Changed = false; 1752 // We take a two-step approach to tail sinking. First we scan from the end of 1753 // each block upwards in lockstep. If the n'th instruction from the end of each 1754 // block can be sunk, those instructions are added to ValuesToSink and we 1755 // carry on. If we can sink an instruction but need to PHI-merge some operands 1756 // (because they're not identical in each instruction) we add these to 1757 // PHIOperands. 1758 unsigned ScanIdx = 0; 1759 SmallPtrSet<Value*,4> InstructionsToSink; 1760 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1761 LockstepReverseIterator LRI(UnconditionalPreds); 1762 while (LRI.isValid() && 1763 canSinkInstructions(*LRI, PHIOperands)) { 1764 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1765 << "\n"); 1766 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1767 ++ScanIdx; 1768 --LRI; 1769 } 1770 1771 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1772 unsigned NumPHIdValues = 0; 1773 for (auto *I : *LRI) 1774 for (auto *V : PHIOperands[I]) 1775 if (InstructionsToSink.count(V) == 0) 1776 ++NumPHIdValues; 1777 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1778 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1779 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1780 NumPHIInsts++; 1781 1782 return NumPHIInsts <= 1; 1783 }; 1784 1785 if (ScanIdx > 0 && Cond) { 1786 // Check if we would actually sink anything first! This mutates the CFG and 1787 // adds an extra block. The goal in doing this is to allow instructions that 1788 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1789 // (such as trunc, add) can be sunk and predicated already. So we check that 1790 // we're going to sink at least one non-speculatable instruction. 1791 LRI.reset(); 1792 unsigned Idx = 0; 1793 bool Profitable = false; 1794 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1795 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1796 Profitable = true; 1797 break; 1798 } 1799 --LRI; 1800 ++Idx; 1801 } 1802 if (!Profitable) 1803 return false; 1804 1805 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1806 // We have a conditional edge and we're going to sink some instructions. 1807 // Insert a new block postdominating all blocks we're going to sink from. 1808 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1809 // Edges couldn't be split. 1810 return false; 1811 Changed = true; 1812 } 1813 1814 // Now that we've analyzed all potential sinking candidates, perform the 1815 // actual sink. We iteratively sink the last non-terminator of the source 1816 // blocks into their common successor unless doing so would require too 1817 // many PHI instructions to be generated (currently only one PHI is allowed 1818 // per sunk instruction). 1819 // 1820 // We can use InstructionsToSink to discount values needing PHI-merging that will 1821 // actually be sunk in a later iteration. This allows us to be more 1822 // aggressive in what we sink. This does allow a false positive where we 1823 // sink presuming a later value will also be sunk, but stop half way through 1824 // and never actually sink it which means we produce more PHIs than intended. 1825 // This is unlikely in practice though. 1826 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1827 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1828 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1829 << "\n"); 1830 1831 // Because we've sunk every instruction in turn, the current instruction to 1832 // sink is always at index 0. 1833 LRI.reset(); 1834 if (!ProfitableToSinkInstruction(LRI)) { 1835 // Too many PHIs would be created. 1836 LLVM_DEBUG( 1837 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1838 break; 1839 } 1840 1841 if (!sinkLastInstruction(UnconditionalPreds)) 1842 return Changed; 1843 NumSinkCommons++; 1844 Changed = true; 1845 } 1846 return Changed; 1847 } 1848 1849 /// Determine if we can hoist sink a sole store instruction out of a 1850 /// conditional block. 1851 /// 1852 /// We are looking for code like the following: 1853 /// BrBB: 1854 /// store i32 %add, i32* %arrayidx2 1855 /// ... // No other stores or function calls (we could be calling a memory 1856 /// ... // function). 1857 /// %cmp = icmp ult %x, %y 1858 /// br i1 %cmp, label %EndBB, label %ThenBB 1859 /// ThenBB: 1860 /// store i32 %add5, i32* %arrayidx2 1861 /// br label EndBB 1862 /// EndBB: 1863 /// ... 1864 /// We are going to transform this into: 1865 /// BrBB: 1866 /// store i32 %add, i32* %arrayidx2 1867 /// ... // 1868 /// %cmp = icmp ult %x, %y 1869 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1870 /// store i32 %add.add5, i32* %arrayidx2 1871 /// ... 1872 /// 1873 /// \return The pointer to the value of the previous store if the store can be 1874 /// hoisted into the predecessor block. 0 otherwise. 1875 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1876 BasicBlock *StoreBB, BasicBlock *EndBB) { 1877 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1878 if (!StoreToHoist) 1879 return nullptr; 1880 1881 // Volatile or atomic. 1882 if (!StoreToHoist->isSimple()) 1883 return nullptr; 1884 1885 Value *StorePtr = StoreToHoist->getPointerOperand(); 1886 1887 // Look for a store to the same pointer in BrBB. 1888 unsigned MaxNumInstToLookAt = 9; 1889 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1890 if (!MaxNumInstToLookAt) 1891 break; 1892 --MaxNumInstToLookAt; 1893 1894 // Could be calling an instruction that affects memory like free(). 1895 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1896 return nullptr; 1897 1898 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1899 // Found the previous store make sure it stores to the same location. 1900 if (SI->getPointerOperand() == StorePtr) 1901 // Found the previous store, return its value operand. 1902 return SI->getValueOperand(); 1903 return nullptr; // Unknown store. 1904 } 1905 } 1906 1907 return nullptr; 1908 } 1909 1910 /// Speculate a conditional basic block flattening the CFG. 1911 /// 1912 /// Note that this is a very risky transform currently. Speculating 1913 /// instructions like this is most often not desirable. Instead, there is an MI 1914 /// pass which can do it with full awareness of the resource constraints. 1915 /// However, some cases are "obvious" and we should do directly. An example of 1916 /// this is speculating a single, reasonably cheap instruction. 1917 /// 1918 /// There is only one distinct advantage to flattening the CFG at the IR level: 1919 /// it makes very common but simplistic optimizations such as are common in 1920 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1921 /// modeling their effects with easier to reason about SSA value graphs. 1922 /// 1923 /// 1924 /// An illustration of this transform is turning this IR: 1925 /// \code 1926 /// BB: 1927 /// %cmp = icmp ult %x, %y 1928 /// br i1 %cmp, label %EndBB, label %ThenBB 1929 /// ThenBB: 1930 /// %sub = sub %x, %y 1931 /// br label BB2 1932 /// EndBB: 1933 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1934 /// ... 1935 /// \endcode 1936 /// 1937 /// Into this IR: 1938 /// \code 1939 /// BB: 1940 /// %cmp = icmp ult %x, %y 1941 /// %sub = sub %x, %y 1942 /// %cond = select i1 %cmp, 0, %sub 1943 /// ... 1944 /// \endcode 1945 /// 1946 /// \returns true if the conditional block is removed. 1947 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1948 const TargetTransformInfo &TTI) { 1949 // Be conservative for now. FP select instruction can often be expensive. 1950 Value *BrCond = BI->getCondition(); 1951 if (isa<FCmpInst>(BrCond)) 1952 return false; 1953 1954 BasicBlock *BB = BI->getParent(); 1955 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1956 1957 // If ThenBB is actually on the false edge of the conditional branch, remember 1958 // to swap the select operands later. 1959 bool Invert = false; 1960 if (ThenBB != BI->getSuccessor(0)) { 1961 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1962 Invert = true; 1963 } 1964 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1965 1966 // Keep a count of how many times instructions are used within ThenBB when 1967 // they are candidates for sinking into ThenBB. Specifically: 1968 // - They are defined in BB, and 1969 // - They have no side effects, and 1970 // - All of their uses are in ThenBB. 1971 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1972 1973 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1974 1975 unsigned SpeculationCost = 0; 1976 Value *SpeculatedStoreValue = nullptr; 1977 StoreInst *SpeculatedStore = nullptr; 1978 for (BasicBlock::iterator BBI = ThenBB->begin(), 1979 BBE = std::prev(ThenBB->end()); 1980 BBI != BBE; ++BBI) { 1981 Instruction *I = &*BBI; 1982 // Skip debug info. 1983 if (isa<DbgInfoIntrinsic>(I)) { 1984 SpeculatedDbgIntrinsics.push_back(I); 1985 continue; 1986 } 1987 1988 // Only speculatively execute a single instruction (not counting the 1989 // terminator) for now. 1990 ++SpeculationCost; 1991 if (SpeculationCost > 1) 1992 return false; 1993 1994 // Don't hoist the instruction if it's unsafe or expensive. 1995 if (!isSafeToSpeculativelyExecute(I) && 1996 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1997 I, BB, ThenBB, EndBB)))) 1998 return false; 1999 if (!SpeculatedStoreValue && 2000 ComputeSpeculationCost(I, TTI) > 2001 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2002 return false; 2003 2004 // Store the store speculation candidate. 2005 if (SpeculatedStoreValue) 2006 SpeculatedStore = cast<StoreInst>(I); 2007 2008 // Do not hoist the instruction if any of its operands are defined but not 2009 // used in BB. The transformation will prevent the operand from 2010 // being sunk into the use block. 2011 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2012 Instruction *OpI = dyn_cast<Instruction>(*i); 2013 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2014 continue; // Not a candidate for sinking. 2015 2016 ++SinkCandidateUseCounts[OpI]; 2017 } 2018 } 2019 2020 // Consider any sink candidates which are only used in ThenBB as costs for 2021 // speculation. Note, while we iterate over a DenseMap here, we are summing 2022 // and so iteration order isn't significant. 2023 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2024 I = SinkCandidateUseCounts.begin(), 2025 E = SinkCandidateUseCounts.end(); 2026 I != E; ++I) 2027 if (I->first->hasNUses(I->second)) { 2028 ++SpeculationCost; 2029 if (SpeculationCost > 1) 2030 return false; 2031 } 2032 2033 // Check that the PHI nodes can be converted to selects. 2034 bool HaveRewritablePHIs = false; 2035 for (PHINode &PN : EndBB->phis()) { 2036 Value *OrigV = PN.getIncomingValueForBlock(BB); 2037 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2038 2039 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2040 // Skip PHIs which are trivial. 2041 if (ThenV == OrigV) 2042 continue; 2043 2044 // Don't convert to selects if we could remove undefined behavior instead. 2045 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2046 passingValueIsAlwaysUndefined(ThenV, &PN)) 2047 return false; 2048 2049 HaveRewritablePHIs = true; 2050 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2051 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2052 if (!OrigCE && !ThenCE) 2053 continue; // Known safe and cheap. 2054 2055 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2056 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2057 return false; 2058 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2059 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2060 unsigned MaxCost = 2061 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2062 if (OrigCost + ThenCost > MaxCost) 2063 return false; 2064 2065 // Account for the cost of an unfolded ConstantExpr which could end up 2066 // getting expanded into Instructions. 2067 // FIXME: This doesn't account for how many operations are combined in the 2068 // constant expression. 2069 ++SpeculationCost; 2070 if (SpeculationCost > 1) 2071 return false; 2072 } 2073 2074 // If there are no PHIs to process, bail early. This helps ensure idempotence 2075 // as well. 2076 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2077 return false; 2078 2079 // If we get here, we can hoist the instruction and if-convert. 2080 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2081 2082 // Insert a select of the value of the speculated store. 2083 if (SpeculatedStoreValue) { 2084 IRBuilder<NoFolder> Builder(BI); 2085 Value *TrueV = SpeculatedStore->getValueOperand(); 2086 Value *FalseV = SpeculatedStoreValue; 2087 if (Invert) 2088 std::swap(TrueV, FalseV); 2089 Value *S = Builder.CreateSelect( 2090 BrCond, TrueV, FalseV, "spec.store.select", BI); 2091 SpeculatedStore->setOperand(0, S); 2092 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2093 SpeculatedStore->getDebugLoc()); 2094 } 2095 2096 // Metadata can be dependent on the condition we are hoisting above. 2097 // Conservatively strip all metadata on the instruction. 2098 for (auto &I : *ThenBB) 2099 I.dropUnknownNonDebugMetadata(); 2100 2101 // Hoist the instructions. 2102 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2103 ThenBB->begin(), std::prev(ThenBB->end())); 2104 2105 // Insert selects and rewrite the PHI operands. 2106 IRBuilder<NoFolder> Builder(BI); 2107 for (PHINode &PN : EndBB->phis()) { 2108 unsigned OrigI = PN.getBasicBlockIndex(BB); 2109 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2110 Value *OrigV = PN.getIncomingValue(OrigI); 2111 Value *ThenV = PN.getIncomingValue(ThenI); 2112 2113 // Skip PHIs which are trivial. 2114 if (OrigV == ThenV) 2115 continue; 2116 2117 // Create a select whose true value is the speculatively executed value and 2118 // false value is the preexisting value. Swap them if the branch 2119 // destinations were inverted. 2120 Value *TrueV = ThenV, *FalseV = OrigV; 2121 if (Invert) 2122 std::swap(TrueV, FalseV); 2123 Value *V = Builder.CreateSelect( 2124 BrCond, TrueV, FalseV, "spec.select", BI); 2125 PN.setIncomingValue(OrigI, V); 2126 PN.setIncomingValue(ThenI, V); 2127 } 2128 2129 // Remove speculated dbg intrinsics. 2130 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2131 // dbg value for the different flows and inserting it after the select. 2132 for (Instruction *I : SpeculatedDbgIntrinsics) 2133 I->eraseFromParent(); 2134 2135 ++NumSpeculations; 2136 return true; 2137 } 2138 2139 /// Return true if we can thread a branch across this block. 2140 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2141 unsigned Size = 0; 2142 2143 for (Instruction &I : BB->instructionsWithoutDebug()) { 2144 if (Size > 10) 2145 return false; // Don't clone large BB's. 2146 ++Size; 2147 2148 // We can only support instructions that do not define values that are 2149 // live outside of the current basic block. 2150 for (User *U : I.users()) { 2151 Instruction *UI = cast<Instruction>(U); 2152 if (UI->getParent() != BB || isa<PHINode>(UI)) 2153 return false; 2154 } 2155 2156 // Looks ok, continue checking. 2157 } 2158 2159 return true; 2160 } 2161 2162 /// If we have a conditional branch on a PHI node value that is defined in the 2163 /// same block as the branch and if any PHI entries are constants, thread edges 2164 /// corresponding to that entry to be branches to their ultimate destination. 2165 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2166 AssumptionCache *AC) { 2167 BasicBlock *BB = BI->getParent(); 2168 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2169 // NOTE: we currently cannot transform this case if the PHI node is used 2170 // outside of the block. 2171 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2172 return false; 2173 2174 // Degenerate case of a single entry PHI. 2175 if (PN->getNumIncomingValues() == 1) { 2176 FoldSingleEntryPHINodes(PN->getParent()); 2177 return true; 2178 } 2179 2180 // Now we know that this block has multiple preds and two succs. 2181 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2182 return false; 2183 2184 // Can't fold blocks that contain noduplicate or convergent calls. 2185 if (any_of(*BB, [](const Instruction &I) { 2186 const CallInst *CI = dyn_cast<CallInst>(&I); 2187 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2188 })) 2189 return false; 2190 2191 // Okay, this is a simple enough basic block. See if any phi values are 2192 // constants. 2193 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2194 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2195 if (!CB || !CB->getType()->isIntegerTy(1)) 2196 continue; 2197 2198 // Okay, we now know that all edges from PredBB should be revectored to 2199 // branch to RealDest. 2200 BasicBlock *PredBB = PN->getIncomingBlock(i); 2201 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2202 2203 if (RealDest == BB) 2204 continue; // Skip self loops. 2205 // Skip if the predecessor's terminator is an indirect branch. 2206 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2207 continue; 2208 2209 // The dest block might have PHI nodes, other predecessors and other 2210 // difficult cases. Instead of being smart about this, just insert a new 2211 // block that jumps to the destination block, effectively splitting 2212 // the edge we are about to create. 2213 BasicBlock *EdgeBB = 2214 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2215 RealDest->getParent(), RealDest); 2216 BranchInst::Create(RealDest, EdgeBB); 2217 2218 // Update PHI nodes. 2219 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2220 2221 // BB may have instructions that are being threaded over. Clone these 2222 // instructions into EdgeBB. We know that there will be no uses of the 2223 // cloned instructions outside of EdgeBB. 2224 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2225 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2226 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2227 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2228 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2229 continue; 2230 } 2231 // Clone the instruction. 2232 Instruction *N = BBI->clone(); 2233 if (BBI->hasName()) 2234 N->setName(BBI->getName() + ".c"); 2235 2236 // Update operands due to translation. 2237 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2238 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2239 if (PI != TranslateMap.end()) 2240 *i = PI->second; 2241 } 2242 2243 // Check for trivial simplification. 2244 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2245 if (!BBI->use_empty()) 2246 TranslateMap[&*BBI] = V; 2247 if (!N->mayHaveSideEffects()) { 2248 N->deleteValue(); // Instruction folded away, don't need actual inst 2249 N = nullptr; 2250 } 2251 } else { 2252 if (!BBI->use_empty()) 2253 TranslateMap[&*BBI] = N; 2254 } 2255 // Insert the new instruction into its new home. 2256 if (N) 2257 EdgeBB->getInstList().insert(InsertPt, N); 2258 2259 // Register the new instruction with the assumption cache if necessary. 2260 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2261 if (II->getIntrinsicID() == Intrinsic::assume) 2262 AC->registerAssumption(II); 2263 } 2264 2265 // Loop over all of the edges from PredBB to BB, changing them to branch 2266 // to EdgeBB instead. 2267 Instruction *PredBBTI = PredBB->getTerminator(); 2268 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2269 if (PredBBTI->getSuccessor(i) == BB) { 2270 BB->removePredecessor(PredBB); 2271 PredBBTI->setSuccessor(i, EdgeBB); 2272 } 2273 2274 // Recurse, simplifying any other constants. 2275 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2276 } 2277 2278 return false; 2279 } 2280 2281 /// Given a BB that starts with the specified two-entry PHI node, 2282 /// see if we can eliminate it. 2283 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2284 const DataLayout &DL) { 2285 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2286 // statement", which has a very simple dominance structure. Basically, we 2287 // are trying to find the condition that is being branched on, which 2288 // subsequently causes this merge to happen. We really want control 2289 // dependence information for this check, but simplifycfg can't keep it up 2290 // to date, and this catches most of the cases we care about anyway. 2291 BasicBlock *BB = PN->getParent(); 2292 const Function *Fn = BB->getParent(); 2293 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2294 return false; 2295 2296 BasicBlock *IfTrue, *IfFalse; 2297 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2298 if (!IfCond || 2299 // Don't bother if the branch will be constant folded trivially. 2300 isa<ConstantInt>(IfCond)) 2301 return false; 2302 2303 // Okay, we found that we can merge this two-entry phi node into a select. 2304 // Doing so would require us to fold *all* two entry phi nodes in this block. 2305 // At some point this becomes non-profitable (particularly if the target 2306 // doesn't support cmov's). Only do this transformation if there are two or 2307 // fewer PHI nodes in this block. 2308 unsigned NumPhis = 0; 2309 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2310 if (NumPhis > 2) 2311 return false; 2312 2313 // Loop over the PHI's seeing if we can promote them all to select 2314 // instructions. While we are at it, keep track of the instructions 2315 // that need to be moved to the dominating block. 2316 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2317 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2318 MaxCostVal1 = PHINodeFoldingThreshold; 2319 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2320 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2321 2322 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2323 PHINode *PN = cast<PHINode>(II++); 2324 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2325 PN->replaceAllUsesWith(V); 2326 PN->eraseFromParent(); 2327 continue; 2328 } 2329 2330 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2331 MaxCostVal0, TTI) || 2332 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2333 MaxCostVal1, TTI)) 2334 return false; 2335 } 2336 2337 // If we folded the first phi, PN dangles at this point. Refresh it. If 2338 // we ran out of PHIs then we simplified them all. 2339 PN = dyn_cast<PHINode>(BB->begin()); 2340 if (!PN) 2341 return true; 2342 2343 // Don't fold i1 branches on PHIs which contain binary operators. These can 2344 // often be turned into switches and other things. 2345 if (PN->getType()->isIntegerTy(1) && 2346 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2347 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2348 isa<BinaryOperator>(IfCond))) 2349 return false; 2350 2351 // If all PHI nodes are promotable, check to make sure that all instructions 2352 // in the predecessor blocks can be promoted as well. If not, we won't be able 2353 // to get rid of the control flow, so it's not worth promoting to select 2354 // instructions. 2355 BasicBlock *DomBlock = nullptr; 2356 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2357 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2358 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2359 IfBlock1 = nullptr; 2360 } else { 2361 DomBlock = *pred_begin(IfBlock1); 2362 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2363 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2364 // This is not an aggressive instruction that we can promote. 2365 // Because of this, we won't be able to get rid of the control flow, so 2366 // the xform is not worth it. 2367 return false; 2368 } 2369 } 2370 2371 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2372 IfBlock2 = nullptr; 2373 } else { 2374 DomBlock = *pred_begin(IfBlock2); 2375 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2376 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2377 // This is not an aggressive instruction that we can promote. 2378 // Because of this, we won't be able to get rid of the control flow, so 2379 // the xform is not worth it. 2380 return false; 2381 } 2382 } 2383 2384 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2385 << " T: " << IfTrue->getName() 2386 << " F: " << IfFalse->getName() << "\n"); 2387 2388 // If we can still promote the PHI nodes after this gauntlet of tests, 2389 // do all of the PHI's now. 2390 Instruction *InsertPt = DomBlock->getTerminator(); 2391 IRBuilder<NoFolder> Builder(InsertPt); 2392 2393 // Move all 'aggressive' instructions, which are defined in the 2394 // conditional parts of the if's up to the dominating block. 2395 if (IfBlock1) 2396 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2397 if (IfBlock2) 2398 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2399 2400 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2401 // Change the PHI node into a select instruction. 2402 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2403 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2404 2405 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2406 PN->replaceAllUsesWith(Sel); 2407 Sel->takeName(PN); 2408 PN->eraseFromParent(); 2409 } 2410 2411 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2412 // has been flattened. Change DomBlock to jump directly to our new block to 2413 // avoid other simplifycfg's kicking in on the diamond. 2414 Instruction *OldTI = DomBlock->getTerminator(); 2415 Builder.SetInsertPoint(OldTI); 2416 Builder.CreateBr(BB); 2417 OldTI->eraseFromParent(); 2418 return true; 2419 } 2420 2421 /// If we found a conditional branch that goes to two returning blocks, 2422 /// try to merge them together into one return, 2423 /// introducing a select if the return values disagree. 2424 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2425 IRBuilder<> &Builder) { 2426 assert(BI->isConditional() && "Must be a conditional branch"); 2427 BasicBlock *TrueSucc = BI->getSuccessor(0); 2428 BasicBlock *FalseSucc = BI->getSuccessor(1); 2429 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2430 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2431 2432 // Check to ensure both blocks are empty (just a return) or optionally empty 2433 // with PHI nodes. If there are other instructions, merging would cause extra 2434 // computation on one path or the other. 2435 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2436 return false; 2437 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2438 return false; 2439 2440 Builder.SetInsertPoint(BI); 2441 // Okay, we found a branch that is going to two return nodes. If 2442 // there is no return value for this function, just change the 2443 // branch into a return. 2444 if (FalseRet->getNumOperands() == 0) { 2445 TrueSucc->removePredecessor(BI->getParent()); 2446 FalseSucc->removePredecessor(BI->getParent()); 2447 Builder.CreateRetVoid(); 2448 EraseTerminatorAndDCECond(BI); 2449 return true; 2450 } 2451 2452 // Otherwise, figure out what the true and false return values are 2453 // so we can insert a new select instruction. 2454 Value *TrueValue = TrueRet->getReturnValue(); 2455 Value *FalseValue = FalseRet->getReturnValue(); 2456 2457 // Unwrap any PHI nodes in the return blocks. 2458 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2459 if (TVPN->getParent() == TrueSucc) 2460 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2461 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2462 if (FVPN->getParent() == FalseSucc) 2463 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2464 2465 // In order for this transformation to be safe, we must be able to 2466 // unconditionally execute both operands to the return. This is 2467 // normally the case, but we could have a potentially-trapping 2468 // constant expression that prevents this transformation from being 2469 // safe. 2470 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2471 if (TCV->canTrap()) 2472 return false; 2473 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2474 if (FCV->canTrap()) 2475 return false; 2476 2477 // Okay, we collected all the mapped values and checked them for sanity, and 2478 // defined to really do this transformation. First, update the CFG. 2479 TrueSucc->removePredecessor(BI->getParent()); 2480 FalseSucc->removePredecessor(BI->getParent()); 2481 2482 // Insert select instructions where needed. 2483 Value *BrCond = BI->getCondition(); 2484 if (TrueValue) { 2485 // Insert a select if the results differ. 2486 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2487 } else if (isa<UndefValue>(TrueValue)) { 2488 TrueValue = FalseValue; 2489 } else { 2490 TrueValue = 2491 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2492 } 2493 } 2494 2495 Value *RI = 2496 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2497 2498 (void)RI; 2499 2500 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2501 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2502 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2503 2504 EraseTerminatorAndDCECond(BI); 2505 2506 return true; 2507 } 2508 2509 /// Return true if the given instruction is available 2510 /// in its predecessor block. If yes, the instruction will be removed. 2511 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2512 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2513 return false; 2514 for (Instruction &I : *PB) { 2515 Instruction *PBI = &I; 2516 // Check whether Inst and PBI generate the same value. 2517 if (Inst->isIdenticalTo(PBI)) { 2518 Inst->replaceAllUsesWith(PBI); 2519 Inst->eraseFromParent(); 2520 return true; 2521 } 2522 } 2523 return false; 2524 } 2525 2526 /// Return true if either PBI or BI has branch weight available, and store 2527 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2528 /// not have branch weight, use 1:1 as its weight. 2529 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2530 uint64_t &PredTrueWeight, 2531 uint64_t &PredFalseWeight, 2532 uint64_t &SuccTrueWeight, 2533 uint64_t &SuccFalseWeight) { 2534 bool PredHasWeights = 2535 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2536 bool SuccHasWeights = 2537 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2538 if (PredHasWeights || SuccHasWeights) { 2539 if (!PredHasWeights) 2540 PredTrueWeight = PredFalseWeight = 1; 2541 if (!SuccHasWeights) 2542 SuccTrueWeight = SuccFalseWeight = 1; 2543 return true; 2544 } else { 2545 return false; 2546 } 2547 } 2548 2549 /// If this basic block is simple enough, and if a predecessor branches to us 2550 /// and one of our successors, fold the block into the predecessor and use 2551 /// logical operations to pick the right destination. 2552 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2553 BasicBlock *BB = BI->getParent(); 2554 2555 const unsigned PredCount = pred_size(BB); 2556 2557 Instruction *Cond = nullptr; 2558 if (BI->isConditional()) 2559 Cond = dyn_cast<Instruction>(BI->getCondition()); 2560 else { 2561 // For unconditional branch, check for a simple CFG pattern, where 2562 // BB has a single predecessor and BB's successor is also its predecessor's 2563 // successor. If such pattern exists, check for CSE between BB and its 2564 // predecessor. 2565 if (BasicBlock *PB = BB->getSinglePredecessor()) 2566 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2567 if (PBI->isConditional() && 2568 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2569 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2570 for (auto I = BB->instructionsWithoutDebug().begin(), 2571 E = BB->instructionsWithoutDebug().end(); 2572 I != E;) { 2573 Instruction *Curr = &*I++; 2574 if (isa<CmpInst>(Curr)) { 2575 Cond = Curr; 2576 break; 2577 } 2578 // Quit if we can't remove this instruction. 2579 if (!tryCSEWithPredecessor(Curr, PB)) 2580 return false; 2581 } 2582 } 2583 2584 if (!Cond) 2585 return false; 2586 } 2587 2588 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2589 Cond->getParent() != BB || !Cond->hasOneUse()) 2590 return false; 2591 2592 // Make sure the instruction after the condition is the cond branch. 2593 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2594 2595 // Ignore dbg intrinsics. 2596 while (isa<DbgInfoIntrinsic>(CondIt)) 2597 ++CondIt; 2598 2599 if (&*CondIt != BI) 2600 return false; 2601 2602 // Only allow this transformation if computing the condition doesn't involve 2603 // too many instructions and these involved instructions can be executed 2604 // unconditionally. We denote all involved instructions except the condition 2605 // as "bonus instructions", and only allow this transformation when the 2606 // number of the bonus instructions we'll need to create when cloning into 2607 // each predecessor does not exceed a certain threshold. 2608 unsigned NumBonusInsts = 0; 2609 for (auto I = BB->begin(); Cond != &*I; ++I) { 2610 // Ignore dbg intrinsics. 2611 if (isa<DbgInfoIntrinsic>(I)) 2612 continue; 2613 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2614 return false; 2615 // I has only one use and can be executed unconditionally. 2616 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2617 if (User == nullptr || User->getParent() != BB) 2618 return false; 2619 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2620 // to use any other instruction, User must be an instruction between next(I) 2621 // and Cond. 2622 2623 // Account for the cost of duplicating this instruction into each 2624 // predecessor. 2625 NumBonusInsts += PredCount; 2626 // Early exits once we reach the limit. 2627 if (NumBonusInsts > BonusInstThreshold) 2628 return false; 2629 } 2630 2631 // Cond is known to be a compare or binary operator. Check to make sure that 2632 // neither operand is a potentially-trapping constant expression. 2633 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2634 if (CE->canTrap()) 2635 return false; 2636 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2637 if (CE->canTrap()) 2638 return false; 2639 2640 // Finally, don't infinitely unroll conditional loops. 2641 BasicBlock *TrueDest = BI->getSuccessor(0); 2642 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2643 if (TrueDest == BB || FalseDest == BB) 2644 return false; 2645 2646 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2647 BasicBlock *PredBlock = *PI; 2648 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2649 2650 // Check that we have two conditional branches. If there is a PHI node in 2651 // the common successor, verify that the same value flows in from both 2652 // blocks. 2653 SmallVector<PHINode *, 4> PHIs; 2654 if (!PBI || PBI->isUnconditional() || 2655 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2656 (!BI->isConditional() && 2657 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2658 continue; 2659 2660 // Determine if the two branches share a common destination. 2661 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2662 bool InvertPredCond = false; 2663 2664 if (BI->isConditional()) { 2665 if (PBI->getSuccessor(0) == TrueDest) { 2666 Opc = Instruction::Or; 2667 } else if (PBI->getSuccessor(1) == FalseDest) { 2668 Opc = Instruction::And; 2669 } else if (PBI->getSuccessor(0) == FalseDest) { 2670 Opc = Instruction::And; 2671 InvertPredCond = true; 2672 } else if (PBI->getSuccessor(1) == TrueDest) { 2673 Opc = Instruction::Or; 2674 InvertPredCond = true; 2675 } else { 2676 continue; 2677 } 2678 } else { 2679 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2680 continue; 2681 } 2682 2683 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2684 IRBuilder<> Builder(PBI); 2685 2686 // If we need to invert the condition in the pred block to match, do so now. 2687 if (InvertPredCond) { 2688 Value *NewCond = PBI->getCondition(); 2689 2690 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2691 CmpInst *CI = cast<CmpInst>(NewCond); 2692 CI->setPredicate(CI->getInversePredicate()); 2693 } else { 2694 NewCond = 2695 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2696 } 2697 2698 PBI->setCondition(NewCond); 2699 PBI->swapSuccessors(); 2700 } 2701 2702 // If we have bonus instructions, clone them into the predecessor block. 2703 // Note that there may be multiple predecessor blocks, so we cannot move 2704 // bonus instructions to a predecessor block. 2705 ValueToValueMapTy VMap; // maps original values to cloned values 2706 // We already make sure Cond is the last instruction before BI. Therefore, 2707 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2708 // instructions. 2709 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2710 if (isa<DbgInfoIntrinsic>(BonusInst)) 2711 continue; 2712 Instruction *NewBonusInst = BonusInst->clone(); 2713 RemapInstruction(NewBonusInst, VMap, 2714 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2715 VMap[&*BonusInst] = NewBonusInst; 2716 2717 // If we moved a load, we cannot any longer claim any knowledge about 2718 // its potential value. The previous information might have been valid 2719 // only given the branch precondition. 2720 // For an analogous reason, we must also drop all the metadata whose 2721 // semantics we don't understand. 2722 NewBonusInst->dropUnknownNonDebugMetadata(); 2723 2724 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2725 NewBonusInst->takeName(&*BonusInst); 2726 BonusInst->setName(BonusInst->getName() + ".old"); 2727 } 2728 2729 // Clone Cond into the predecessor basic block, and or/and the 2730 // two conditions together. 2731 Instruction *CondInPred = Cond->clone(); 2732 RemapInstruction(CondInPred, VMap, 2733 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2734 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2735 CondInPred->takeName(Cond); 2736 Cond->setName(CondInPred->getName() + ".old"); 2737 2738 if (BI->isConditional()) { 2739 Instruction *NewCond = cast<Instruction>( 2740 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2741 PBI->setCondition(NewCond); 2742 2743 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2744 bool HasWeights = 2745 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2746 SuccTrueWeight, SuccFalseWeight); 2747 SmallVector<uint64_t, 8> NewWeights; 2748 2749 if (PBI->getSuccessor(0) == BB) { 2750 if (HasWeights) { 2751 // PBI: br i1 %x, BB, FalseDest 2752 // BI: br i1 %y, TrueDest, FalseDest 2753 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2754 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2755 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2756 // TrueWeight for PBI * FalseWeight for BI. 2757 // We assume that total weights of a BranchInst can fit into 32 bits. 2758 // Therefore, we will not have overflow using 64-bit arithmetic. 2759 NewWeights.push_back(PredFalseWeight * 2760 (SuccFalseWeight + SuccTrueWeight) + 2761 PredTrueWeight * SuccFalseWeight); 2762 } 2763 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2764 PBI->setSuccessor(0, TrueDest); 2765 } 2766 if (PBI->getSuccessor(1) == BB) { 2767 if (HasWeights) { 2768 // PBI: br i1 %x, TrueDest, BB 2769 // BI: br i1 %y, TrueDest, FalseDest 2770 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2771 // FalseWeight for PBI * TrueWeight for BI. 2772 NewWeights.push_back(PredTrueWeight * 2773 (SuccFalseWeight + SuccTrueWeight) + 2774 PredFalseWeight * SuccTrueWeight); 2775 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2776 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2777 } 2778 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2779 PBI->setSuccessor(1, FalseDest); 2780 } 2781 if (NewWeights.size() == 2) { 2782 // Halve the weights if any of them cannot fit in an uint32_t 2783 FitWeights(NewWeights); 2784 2785 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2786 NewWeights.end()); 2787 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2788 } else 2789 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2790 } else { 2791 // Update PHI nodes in the common successors. 2792 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2793 ConstantInt *PBI_C = cast<ConstantInt>( 2794 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2795 assert(PBI_C->getType()->isIntegerTy(1)); 2796 Instruction *MergedCond = nullptr; 2797 if (PBI->getSuccessor(0) == TrueDest) { 2798 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2799 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2800 // is false: !PBI_Cond and BI_Value 2801 Instruction *NotCond = cast<Instruction>( 2802 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2803 MergedCond = cast<Instruction>( 2804 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2805 "and.cond")); 2806 if (PBI_C->isOne()) 2807 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2808 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2809 } else { 2810 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2811 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2812 // is false: PBI_Cond and BI_Value 2813 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2814 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2815 if (PBI_C->isOne()) { 2816 Instruction *NotCond = cast<Instruction>( 2817 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2818 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2819 Instruction::Or, NotCond, MergedCond, "or.cond")); 2820 } 2821 } 2822 // Update PHI Node. 2823 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2824 MergedCond); 2825 } 2826 // Change PBI from Conditional to Unconditional. 2827 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2828 EraseTerminatorAndDCECond(PBI); 2829 PBI = New_PBI; 2830 } 2831 2832 // If BI was a loop latch, it may have had associated loop metadata. 2833 // We need to copy it to the new latch, that is, PBI. 2834 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2835 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2836 2837 // TODO: If BB is reachable from all paths through PredBlock, then we 2838 // could replace PBI's branch probabilities with BI's. 2839 2840 // Copy any debug value intrinsics into the end of PredBlock. 2841 for (Instruction &I : *BB) 2842 if (isa<DbgInfoIntrinsic>(I)) 2843 I.clone()->insertBefore(PBI); 2844 2845 return true; 2846 } 2847 return false; 2848 } 2849 2850 // If there is only one store in BB1 and BB2, return it, otherwise return 2851 // nullptr. 2852 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2853 StoreInst *S = nullptr; 2854 for (auto *BB : {BB1, BB2}) { 2855 if (!BB) 2856 continue; 2857 for (auto &I : *BB) 2858 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2859 if (S) 2860 // Multiple stores seen. 2861 return nullptr; 2862 else 2863 S = SI; 2864 } 2865 } 2866 return S; 2867 } 2868 2869 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2870 Value *AlternativeV = nullptr) { 2871 // PHI is going to be a PHI node that allows the value V that is defined in 2872 // BB to be referenced in BB's only successor. 2873 // 2874 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2875 // doesn't matter to us what the other operand is (it'll never get used). We 2876 // could just create a new PHI with an undef incoming value, but that could 2877 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2878 // other PHI. So here we directly look for some PHI in BB's successor with V 2879 // as an incoming operand. If we find one, we use it, else we create a new 2880 // one. 2881 // 2882 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2883 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2884 // where OtherBB is the single other predecessor of BB's only successor. 2885 PHINode *PHI = nullptr; 2886 BasicBlock *Succ = BB->getSingleSuccessor(); 2887 2888 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2889 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2890 PHI = cast<PHINode>(I); 2891 if (!AlternativeV) 2892 break; 2893 2894 assert(Succ->hasNPredecessors(2)); 2895 auto PredI = pred_begin(Succ); 2896 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2897 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2898 break; 2899 PHI = nullptr; 2900 } 2901 if (PHI) 2902 return PHI; 2903 2904 // If V is not an instruction defined in BB, just return it. 2905 if (!AlternativeV && 2906 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2907 return V; 2908 2909 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2910 PHI->addIncoming(V, BB); 2911 for (BasicBlock *PredBB : predecessors(Succ)) 2912 if (PredBB != BB) 2913 PHI->addIncoming( 2914 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2915 return PHI; 2916 } 2917 2918 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2919 BasicBlock *QTB, BasicBlock *QFB, 2920 BasicBlock *PostBB, Value *Address, 2921 bool InvertPCond, bool InvertQCond, 2922 const DataLayout &DL) { 2923 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2924 return Operator::getOpcode(&I) == Instruction::BitCast && 2925 I.getType()->isPointerTy(); 2926 }; 2927 2928 // If we're not in aggressive mode, we only optimize if we have some 2929 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2930 auto IsWorthwhile = [&](BasicBlock *BB) { 2931 if (!BB) 2932 return true; 2933 // Heuristic: if the block can be if-converted/phi-folded and the 2934 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2935 // thread this store. 2936 unsigned N = 0; 2937 for (auto &I : BB->instructionsWithoutDebug()) { 2938 // Cheap instructions viable for folding. 2939 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2940 isa<StoreInst>(I)) 2941 ++N; 2942 // Free instructions. 2943 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2944 continue; 2945 else 2946 return false; 2947 } 2948 // The store we want to merge is counted in N, so add 1 to make sure 2949 // we're counting the instructions that would be left. 2950 return N <= (PHINodeFoldingThreshold + 1); 2951 }; 2952 2953 if (!MergeCondStoresAggressively && 2954 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2955 !IsWorthwhile(QFB))) 2956 return false; 2957 2958 // For every pointer, there must be exactly two stores, one coming from 2959 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2960 // store (to any address) in PTB,PFB or QTB,QFB. 2961 // FIXME: We could relax this restriction with a bit more work and performance 2962 // testing. 2963 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2964 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2965 if (!PStore || !QStore) 2966 return false; 2967 2968 // Now check the stores are compatible. 2969 if (!QStore->isUnordered() || !PStore->isUnordered()) 2970 return false; 2971 2972 // Check that sinking the store won't cause program behavior changes. Sinking 2973 // the store out of the Q blocks won't change any behavior as we're sinking 2974 // from a block to its unconditional successor. But we're moving a store from 2975 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2976 // So we need to check that there are no aliasing loads or stores in 2977 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2978 // operations between PStore and the end of its parent block. 2979 // 2980 // The ideal way to do this is to query AliasAnalysis, but we don't 2981 // preserve AA currently so that is dangerous. Be super safe and just 2982 // check there are no other memory operations at all. 2983 for (auto &I : *QFB->getSinglePredecessor()) 2984 if (I.mayReadOrWriteMemory()) 2985 return false; 2986 for (auto &I : *QFB) 2987 if (&I != QStore && I.mayReadOrWriteMemory()) 2988 return false; 2989 if (QTB) 2990 for (auto &I : *QTB) 2991 if (&I != QStore && I.mayReadOrWriteMemory()) 2992 return false; 2993 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2994 I != E; ++I) 2995 if (&*I != PStore && I->mayReadOrWriteMemory()) 2996 return false; 2997 2998 // If PostBB has more than two predecessors, we need to split it so we can 2999 // sink the store. 3000 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3001 // We know that QFB's only successor is PostBB. And QFB has a single 3002 // predecessor. If QTB exists, then its only successor is also PostBB. 3003 // If QTB does not exist, then QFB's only predecessor has a conditional 3004 // branch to QFB and PostBB. 3005 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3006 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3007 "condstore.split"); 3008 if (!NewBB) 3009 return false; 3010 PostBB = NewBB; 3011 } 3012 3013 // OK, we're going to sink the stores to PostBB. The store has to be 3014 // conditional though, so first create the predicate. 3015 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3016 ->getCondition(); 3017 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3018 ->getCondition(); 3019 3020 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3021 PStore->getParent()); 3022 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3023 QStore->getParent(), PPHI); 3024 3025 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3026 3027 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3028 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3029 3030 if (InvertPCond) 3031 PPred = QB.CreateNot(PPred); 3032 if (InvertQCond) 3033 QPred = QB.CreateNot(QPred); 3034 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3035 3036 auto *T = 3037 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3038 QB.SetInsertPoint(T); 3039 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3040 AAMDNodes AAMD; 3041 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3042 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3043 SI->setAAMetadata(AAMD); 3044 unsigned PAlignment = PStore->getAlignment(); 3045 unsigned QAlignment = QStore->getAlignment(); 3046 unsigned TypeAlignment = 3047 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3048 unsigned MinAlignment; 3049 unsigned MaxAlignment; 3050 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3051 // Choose the minimum alignment. If we could prove both stores execute, we 3052 // could use biggest one. In this case, though, we only know that one of the 3053 // stores executes. And we don't know it's safe to take the alignment from a 3054 // store that doesn't execute. 3055 if (MinAlignment != 0) { 3056 // Choose the minimum of all non-zero alignments. 3057 SI->setAlignment(MinAlignment); 3058 } else if (MaxAlignment != 0) { 3059 // Choose the minimal alignment between the non-zero alignment and the ABI 3060 // default alignment for the type of the stored value. 3061 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3062 } else { 3063 // If both alignments are zero, use ABI default alignment for the type of 3064 // the stored value. 3065 SI->setAlignment(TypeAlignment); 3066 } 3067 3068 QStore->eraseFromParent(); 3069 PStore->eraseFromParent(); 3070 3071 return true; 3072 } 3073 3074 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3075 const DataLayout &DL) { 3076 // The intention here is to find diamonds or triangles (see below) where each 3077 // conditional block contains a store to the same address. Both of these 3078 // stores are conditional, so they can't be unconditionally sunk. But it may 3079 // be profitable to speculatively sink the stores into one merged store at the 3080 // end, and predicate the merged store on the union of the two conditions of 3081 // PBI and QBI. 3082 // 3083 // This can reduce the number of stores executed if both of the conditions are 3084 // true, and can allow the blocks to become small enough to be if-converted. 3085 // This optimization will also chain, so that ladders of test-and-set 3086 // sequences can be if-converted away. 3087 // 3088 // We only deal with simple diamonds or triangles: 3089 // 3090 // PBI or PBI or a combination of the two 3091 // / \ | \ 3092 // PTB PFB | PFB 3093 // \ / | / 3094 // QBI QBI 3095 // / \ | \ 3096 // QTB QFB | QFB 3097 // \ / | / 3098 // PostBB PostBB 3099 // 3100 // We model triangles as a type of diamond with a nullptr "true" block. 3101 // Triangles are canonicalized so that the fallthrough edge is represented by 3102 // a true condition, as in the diagram above. 3103 BasicBlock *PTB = PBI->getSuccessor(0); 3104 BasicBlock *PFB = PBI->getSuccessor(1); 3105 BasicBlock *QTB = QBI->getSuccessor(0); 3106 BasicBlock *QFB = QBI->getSuccessor(1); 3107 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3108 3109 // Make sure we have a good guess for PostBB. If QTB's only successor is 3110 // QFB, then QFB is a better PostBB. 3111 if (QTB->getSingleSuccessor() == QFB) 3112 PostBB = QFB; 3113 3114 // If we couldn't find a good PostBB, stop. 3115 if (!PostBB) 3116 return false; 3117 3118 bool InvertPCond = false, InvertQCond = false; 3119 // Canonicalize fallthroughs to the true branches. 3120 if (PFB == QBI->getParent()) { 3121 std::swap(PFB, PTB); 3122 InvertPCond = true; 3123 } 3124 if (QFB == PostBB) { 3125 std::swap(QFB, QTB); 3126 InvertQCond = true; 3127 } 3128 3129 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3130 // and QFB may not. Model fallthroughs as a nullptr block. 3131 if (PTB == QBI->getParent()) 3132 PTB = nullptr; 3133 if (QTB == PostBB) 3134 QTB = nullptr; 3135 3136 // Legality bailouts. We must have at least the non-fallthrough blocks and 3137 // the post-dominating block, and the non-fallthroughs must only have one 3138 // predecessor. 3139 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3140 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3141 }; 3142 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3143 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3144 return false; 3145 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3146 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3147 return false; 3148 if (!QBI->getParent()->hasNUses(2)) 3149 return false; 3150 3151 // OK, this is a sequence of two diamonds or triangles. 3152 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3153 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3154 for (auto *BB : {PTB, PFB}) { 3155 if (!BB) 3156 continue; 3157 for (auto &I : *BB) 3158 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3159 PStoreAddresses.insert(SI->getPointerOperand()); 3160 } 3161 for (auto *BB : {QTB, QFB}) { 3162 if (!BB) 3163 continue; 3164 for (auto &I : *BB) 3165 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3166 QStoreAddresses.insert(SI->getPointerOperand()); 3167 } 3168 3169 set_intersect(PStoreAddresses, QStoreAddresses); 3170 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3171 // clear what it contains. 3172 auto &CommonAddresses = PStoreAddresses; 3173 3174 bool Changed = false; 3175 for (auto *Address : CommonAddresses) 3176 Changed |= mergeConditionalStoreToAddress( 3177 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3178 return Changed; 3179 } 3180 3181 /// If we have a conditional branch as a predecessor of another block, 3182 /// this function tries to simplify it. We know 3183 /// that PBI and BI are both conditional branches, and BI is in one of the 3184 /// successor blocks of PBI - PBI branches to BI. 3185 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3186 const DataLayout &DL) { 3187 assert(PBI->isConditional() && BI->isConditional()); 3188 BasicBlock *BB = BI->getParent(); 3189 3190 // If this block ends with a branch instruction, and if there is a 3191 // predecessor that ends on a branch of the same condition, make 3192 // this conditional branch redundant. 3193 if (PBI->getCondition() == BI->getCondition() && 3194 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3195 // Okay, the outcome of this conditional branch is statically 3196 // knowable. If this block had a single pred, handle specially. 3197 if (BB->getSinglePredecessor()) { 3198 // Turn this into a branch on constant. 3199 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3200 BI->setCondition( 3201 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3202 return true; // Nuke the branch on constant. 3203 } 3204 3205 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3206 // in the constant and simplify the block result. Subsequent passes of 3207 // simplifycfg will thread the block. 3208 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3209 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3210 PHINode *NewPN = PHINode::Create( 3211 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3212 BI->getCondition()->getName() + ".pr", &BB->front()); 3213 // Okay, we're going to insert the PHI node. Since PBI is not the only 3214 // predecessor, compute the PHI'd conditional value for all of the preds. 3215 // Any predecessor where the condition is not computable we keep symbolic. 3216 for (pred_iterator PI = PB; PI != PE; ++PI) { 3217 BasicBlock *P = *PI; 3218 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3219 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3220 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3221 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3222 NewPN->addIncoming( 3223 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3224 P); 3225 } else { 3226 NewPN->addIncoming(BI->getCondition(), P); 3227 } 3228 } 3229 3230 BI->setCondition(NewPN); 3231 return true; 3232 } 3233 } 3234 3235 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3236 if (CE->canTrap()) 3237 return false; 3238 3239 // If both branches are conditional and both contain stores to the same 3240 // address, remove the stores from the conditionals and create a conditional 3241 // merged store at the end. 3242 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3243 return true; 3244 3245 // If this is a conditional branch in an empty block, and if any 3246 // predecessors are a conditional branch to one of our destinations, 3247 // fold the conditions into logical ops and one cond br. 3248 3249 // Ignore dbg intrinsics. 3250 if (&*BB->instructionsWithoutDebug().begin() != BI) 3251 return false; 3252 3253 int PBIOp, BIOp; 3254 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3255 PBIOp = 0; 3256 BIOp = 0; 3257 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3258 PBIOp = 0; 3259 BIOp = 1; 3260 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3261 PBIOp = 1; 3262 BIOp = 0; 3263 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3264 PBIOp = 1; 3265 BIOp = 1; 3266 } else { 3267 return false; 3268 } 3269 3270 // Check to make sure that the other destination of this branch 3271 // isn't BB itself. If so, this is an infinite loop that will 3272 // keep getting unwound. 3273 if (PBI->getSuccessor(PBIOp) == BB) 3274 return false; 3275 3276 // Do not perform this transformation if it would require 3277 // insertion of a large number of select instructions. For targets 3278 // without predication/cmovs, this is a big pessimization. 3279 3280 // Also do not perform this transformation if any phi node in the common 3281 // destination block can trap when reached by BB or PBB (PR17073). In that 3282 // case, it would be unsafe to hoist the operation into a select instruction. 3283 3284 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3285 unsigned NumPhis = 0; 3286 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3287 ++II, ++NumPhis) { 3288 if (NumPhis > 2) // Disable this xform. 3289 return false; 3290 3291 PHINode *PN = cast<PHINode>(II); 3292 Value *BIV = PN->getIncomingValueForBlock(BB); 3293 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3294 if (CE->canTrap()) 3295 return false; 3296 3297 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3298 Value *PBIV = PN->getIncomingValue(PBBIdx); 3299 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3300 if (CE->canTrap()) 3301 return false; 3302 } 3303 3304 // Finally, if everything is ok, fold the branches to logical ops. 3305 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3306 3307 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3308 << "AND: " << *BI->getParent()); 3309 3310 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3311 // branch in it, where one edge (OtherDest) goes back to itself but the other 3312 // exits. We don't *know* that the program avoids the infinite loop 3313 // (even though that seems likely). If we do this xform naively, we'll end up 3314 // recursively unpeeling the loop. Since we know that (after the xform is 3315 // done) that the block *is* infinite if reached, we just make it an obviously 3316 // infinite loop with no cond branch. 3317 if (OtherDest == BB) { 3318 // Insert it at the end of the function, because it's either code, 3319 // or it won't matter if it's hot. :) 3320 BasicBlock *InfLoopBlock = 3321 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3322 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3323 OtherDest = InfLoopBlock; 3324 } 3325 3326 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3327 3328 // BI may have other predecessors. Because of this, we leave 3329 // it alone, but modify PBI. 3330 3331 // Make sure we get to CommonDest on True&True directions. 3332 Value *PBICond = PBI->getCondition(); 3333 IRBuilder<NoFolder> Builder(PBI); 3334 if (PBIOp) 3335 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3336 3337 Value *BICond = BI->getCondition(); 3338 if (BIOp) 3339 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3340 3341 // Merge the conditions. 3342 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3343 3344 // Modify PBI to branch on the new condition to the new dests. 3345 PBI->setCondition(Cond); 3346 PBI->setSuccessor(0, CommonDest); 3347 PBI->setSuccessor(1, OtherDest); 3348 3349 // Update branch weight for PBI. 3350 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3351 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3352 bool HasWeights = 3353 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3354 SuccTrueWeight, SuccFalseWeight); 3355 if (HasWeights) { 3356 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3357 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3358 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3359 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3360 // The weight to CommonDest should be PredCommon * SuccTotal + 3361 // PredOther * SuccCommon. 3362 // The weight to OtherDest should be PredOther * SuccOther. 3363 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3364 PredOther * SuccCommon, 3365 PredOther * SuccOther}; 3366 // Halve the weights if any of them cannot fit in an uint32_t 3367 FitWeights(NewWeights); 3368 3369 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3370 } 3371 3372 // OtherDest may have phi nodes. If so, add an entry from PBI's 3373 // block that are identical to the entries for BI's block. 3374 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3375 3376 // We know that the CommonDest already had an edge from PBI to 3377 // it. If it has PHIs though, the PHIs may have different 3378 // entries for BB and PBI's BB. If so, insert a select to make 3379 // them agree. 3380 for (PHINode &PN : CommonDest->phis()) { 3381 Value *BIV = PN.getIncomingValueForBlock(BB); 3382 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3383 Value *PBIV = PN.getIncomingValue(PBBIdx); 3384 if (BIV != PBIV) { 3385 // Insert a select in PBI to pick the right value. 3386 SelectInst *NV = cast<SelectInst>( 3387 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3388 PN.setIncomingValue(PBBIdx, NV); 3389 // Although the select has the same condition as PBI, the original branch 3390 // weights for PBI do not apply to the new select because the select's 3391 // 'logical' edges are incoming edges of the phi that is eliminated, not 3392 // the outgoing edges of PBI. 3393 if (HasWeights) { 3394 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3395 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3396 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3397 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3398 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3399 // The weight to PredOtherDest should be PredOther * SuccCommon. 3400 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3401 PredOther * SuccCommon}; 3402 3403 FitWeights(NewWeights); 3404 3405 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3406 } 3407 } 3408 } 3409 3410 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3411 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3412 3413 // This basic block is probably dead. We know it has at least 3414 // one fewer predecessor. 3415 return true; 3416 } 3417 3418 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3419 // true or to FalseBB if Cond is false. 3420 // Takes care of updating the successors and removing the old terminator. 3421 // Also makes sure not to introduce new successors by assuming that edges to 3422 // non-successor TrueBBs and FalseBBs aren't reachable. 3423 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3424 BasicBlock *TrueBB, BasicBlock *FalseBB, 3425 uint32_t TrueWeight, 3426 uint32_t FalseWeight) { 3427 // Remove any superfluous successor edges from the CFG. 3428 // First, figure out which successors to preserve. 3429 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3430 // successor. 3431 BasicBlock *KeepEdge1 = TrueBB; 3432 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3433 3434 // Then remove the rest. 3435 for (BasicBlock *Succ : successors(OldTerm)) { 3436 // Make sure only to keep exactly one copy of each edge. 3437 if (Succ == KeepEdge1) 3438 KeepEdge1 = nullptr; 3439 else if (Succ == KeepEdge2) 3440 KeepEdge2 = nullptr; 3441 else 3442 Succ->removePredecessor(OldTerm->getParent(), 3443 /*DontDeleteUselessPHIs=*/true); 3444 } 3445 3446 IRBuilder<> Builder(OldTerm); 3447 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3448 3449 // Insert an appropriate new terminator. 3450 if (!KeepEdge1 && !KeepEdge2) { 3451 if (TrueBB == FalseBB) 3452 // We were only looking for one successor, and it was present. 3453 // Create an unconditional branch to it. 3454 Builder.CreateBr(TrueBB); 3455 else { 3456 // We found both of the successors we were looking for. 3457 // Create a conditional branch sharing the condition of the select. 3458 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3459 if (TrueWeight != FalseWeight) 3460 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3461 } 3462 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3463 // Neither of the selected blocks were successors, so this 3464 // terminator must be unreachable. 3465 new UnreachableInst(OldTerm->getContext(), OldTerm); 3466 } else { 3467 // One of the selected values was a successor, but the other wasn't. 3468 // Insert an unconditional branch to the one that was found; 3469 // the edge to the one that wasn't must be unreachable. 3470 if (!KeepEdge1) 3471 // Only TrueBB was found. 3472 Builder.CreateBr(TrueBB); 3473 else 3474 // Only FalseBB was found. 3475 Builder.CreateBr(FalseBB); 3476 } 3477 3478 EraseTerminatorAndDCECond(OldTerm); 3479 return true; 3480 } 3481 3482 // Replaces 3483 // (switch (select cond, X, Y)) on constant X, Y 3484 // with a branch - conditional if X and Y lead to distinct BBs, 3485 // unconditional otherwise. 3486 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3487 // Check for constant integer values in the select. 3488 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3489 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3490 if (!TrueVal || !FalseVal) 3491 return false; 3492 3493 // Find the relevant condition and destinations. 3494 Value *Condition = Select->getCondition(); 3495 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3496 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3497 3498 // Get weight for TrueBB and FalseBB. 3499 uint32_t TrueWeight = 0, FalseWeight = 0; 3500 SmallVector<uint64_t, 8> Weights; 3501 bool HasWeights = HasBranchWeights(SI); 3502 if (HasWeights) { 3503 GetBranchWeights(SI, Weights); 3504 if (Weights.size() == 1 + SI->getNumCases()) { 3505 TrueWeight = 3506 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3507 FalseWeight = 3508 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3509 } 3510 } 3511 3512 // Perform the actual simplification. 3513 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3514 FalseWeight); 3515 } 3516 3517 // Replaces 3518 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3519 // blockaddress(@fn, BlockB))) 3520 // with 3521 // (br cond, BlockA, BlockB). 3522 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3523 // Check that both operands of the select are block addresses. 3524 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3525 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3526 if (!TBA || !FBA) 3527 return false; 3528 3529 // Extract the actual blocks. 3530 BasicBlock *TrueBB = TBA->getBasicBlock(); 3531 BasicBlock *FalseBB = FBA->getBasicBlock(); 3532 3533 // Perform the actual simplification. 3534 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3535 0); 3536 } 3537 3538 /// This is called when we find an icmp instruction 3539 /// (a seteq/setne with a constant) as the only instruction in a 3540 /// block that ends with an uncond branch. We are looking for a very specific 3541 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3542 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3543 /// default value goes to an uncond block with a seteq in it, we get something 3544 /// like: 3545 /// 3546 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3547 /// DEFAULT: 3548 /// %tmp = icmp eq i8 %A, 92 3549 /// br label %end 3550 /// end: 3551 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3552 /// 3553 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3554 /// the PHI, merging the third icmp into the switch. 3555 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3556 ICmpInst *ICI, IRBuilder<> &Builder) { 3557 BasicBlock *BB = ICI->getParent(); 3558 3559 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3560 // complex. 3561 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3562 return false; 3563 3564 Value *V = ICI->getOperand(0); 3565 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3566 3567 // The pattern we're looking for is where our only predecessor is a switch on 3568 // 'V' and this block is the default case for the switch. In this case we can 3569 // fold the compared value into the switch to simplify things. 3570 BasicBlock *Pred = BB->getSinglePredecessor(); 3571 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3572 return false; 3573 3574 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3575 if (SI->getCondition() != V) 3576 return false; 3577 3578 // If BB is reachable on a non-default case, then we simply know the value of 3579 // V in this block. Substitute it and constant fold the icmp instruction 3580 // away. 3581 if (SI->getDefaultDest() != BB) { 3582 ConstantInt *VVal = SI->findCaseDest(BB); 3583 assert(VVal && "Should have a unique destination value"); 3584 ICI->setOperand(0, VVal); 3585 3586 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3587 ICI->replaceAllUsesWith(V); 3588 ICI->eraseFromParent(); 3589 } 3590 // BB is now empty, so it is likely to simplify away. 3591 return requestResimplify(); 3592 } 3593 3594 // Ok, the block is reachable from the default dest. If the constant we're 3595 // comparing exists in one of the other edges, then we can constant fold ICI 3596 // and zap it. 3597 if (SI->findCaseValue(Cst) != SI->case_default()) { 3598 Value *V; 3599 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3600 V = ConstantInt::getFalse(BB->getContext()); 3601 else 3602 V = ConstantInt::getTrue(BB->getContext()); 3603 3604 ICI->replaceAllUsesWith(V); 3605 ICI->eraseFromParent(); 3606 // BB is now empty, so it is likely to simplify away. 3607 return requestResimplify(); 3608 } 3609 3610 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3611 // the block. 3612 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3613 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3614 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3615 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3616 return false; 3617 3618 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3619 // true in the PHI. 3620 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3621 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3622 3623 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3624 std::swap(DefaultCst, NewCst); 3625 3626 // Replace ICI (which is used by the PHI for the default value) with true or 3627 // false depending on if it is EQ or NE. 3628 ICI->replaceAllUsesWith(DefaultCst); 3629 ICI->eraseFromParent(); 3630 3631 // Okay, the switch goes to this block on a default value. Add an edge from 3632 // the switch to the merge point on the compared value. 3633 BasicBlock *NewBB = 3634 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3635 SmallVector<uint64_t, 8> Weights; 3636 bool HasWeights = HasBranchWeights(SI); 3637 if (HasWeights) { 3638 GetBranchWeights(SI, Weights); 3639 if (Weights.size() == 1 + SI->getNumCases()) { 3640 // Split weight for default case to case for "Cst". 3641 Weights[0] = (Weights[0] + 1) >> 1; 3642 Weights.push_back(Weights[0]); 3643 3644 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3645 setBranchWeights(SI, MDWeights); 3646 } 3647 } 3648 SI->addCase(Cst, NewBB); 3649 3650 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3651 Builder.SetInsertPoint(NewBB); 3652 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3653 Builder.CreateBr(SuccBlock); 3654 PHIUse->addIncoming(NewCst, NewBB); 3655 return true; 3656 } 3657 3658 /// The specified branch is a conditional branch. 3659 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3660 /// fold it into a switch instruction if so. 3661 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3662 const DataLayout &DL) { 3663 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3664 if (!Cond) 3665 return false; 3666 3667 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3668 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3669 // 'setne's and'ed together, collect them. 3670 3671 // Try to gather values from a chain of and/or to be turned into a switch 3672 ConstantComparesGatherer ConstantCompare(Cond, DL); 3673 // Unpack the result 3674 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3675 Value *CompVal = ConstantCompare.CompValue; 3676 unsigned UsedICmps = ConstantCompare.UsedICmps; 3677 Value *ExtraCase = ConstantCompare.Extra; 3678 3679 // If we didn't have a multiply compared value, fail. 3680 if (!CompVal) 3681 return false; 3682 3683 // Avoid turning single icmps into a switch. 3684 if (UsedICmps <= 1) 3685 return false; 3686 3687 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3688 3689 // There might be duplicate constants in the list, which the switch 3690 // instruction can't handle, remove them now. 3691 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3692 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3693 3694 // If Extra was used, we require at least two switch values to do the 3695 // transformation. A switch with one value is just a conditional branch. 3696 if (ExtraCase && Values.size() < 2) 3697 return false; 3698 3699 // TODO: Preserve branch weight metadata, similarly to how 3700 // FoldValueComparisonIntoPredecessors preserves it. 3701 3702 // Figure out which block is which destination. 3703 BasicBlock *DefaultBB = BI->getSuccessor(1); 3704 BasicBlock *EdgeBB = BI->getSuccessor(0); 3705 if (!TrueWhenEqual) 3706 std::swap(DefaultBB, EdgeBB); 3707 3708 BasicBlock *BB = BI->getParent(); 3709 3710 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3711 << " cases into SWITCH. BB is:\n" 3712 << *BB); 3713 3714 // If there are any extra values that couldn't be folded into the switch 3715 // then we evaluate them with an explicit branch first. Split the block 3716 // right before the condbr to handle it. 3717 if (ExtraCase) { 3718 BasicBlock *NewBB = 3719 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3720 // Remove the uncond branch added to the old block. 3721 Instruction *OldTI = BB->getTerminator(); 3722 Builder.SetInsertPoint(OldTI); 3723 3724 if (TrueWhenEqual) 3725 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3726 else 3727 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3728 3729 OldTI->eraseFromParent(); 3730 3731 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3732 // for the edge we just added. 3733 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3734 3735 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3736 << "\nEXTRABB = " << *BB); 3737 BB = NewBB; 3738 } 3739 3740 Builder.SetInsertPoint(BI); 3741 // Convert pointer to int before we switch. 3742 if (CompVal->getType()->isPointerTy()) { 3743 CompVal = Builder.CreatePtrToInt( 3744 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3745 } 3746 3747 // Create the new switch instruction now. 3748 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3749 3750 // Add all of the 'cases' to the switch instruction. 3751 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3752 New->addCase(Values[i], EdgeBB); 3753 3754 // We added edges from PI to the EdgeBB. As such, if there were any 3755 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3756 // the number of edges added. 3757 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3758 PHINode *PN = cast<PHINode>(BBI); 3759 Value *InVal = PN->getIncomingValueForBlock(BB); 3760 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3761 PN->addIncoming(InVal, BB); 3762 } 3763 3764 // Erase the old branch instruction. 3765 EraseTerminatorAndDCECond(BI); 3766 3767 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3768 return true; 3769 } 3770 3771 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3772 if (isa<PHINode>(RI->getValue())) 3773 return SimplifyCommonResume(RI); 3774 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3775 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3776 // The resume must unwind the exception that caused control to branch here. 3777 return SimplifySingleResume(RI); 3778 3779 return false; 3780 } 3781 3782 // Simplify resume that is shared by several landing pads (phi of landing pad). 3783 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3784 BasicBlock *BB = RI->getParent(); 3785 3786 // Check that there are no other instructions except for debug intrinsics 3787 // between the phi of landing pads (RI->getValue()) and resume instruction. 3788 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3789 E = RI->getIterator(); 3790 while (++I != E) 3791 if (!isa<DbgInfoIntrinsic>(I)) 3792 return false; 3793 3794 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3795 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3796 3797 // Check incoming blocks to see if any of them are trivial. 3798 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3799 Idx++) { 3800 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3801 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3802 3803 // If the block has other successors, we can not delete it because 3804 // it has other dependents. 3805 if (IncomingBB->getUniqueSuccessor() != BB) 3806 continue; 3807 3808 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3809 // Not the landing pad that caused the control to branch here. 3810 if (IncomingValue != LandingPad) 3811 continue; 3812 3813 bool isTrivial = true; 3814 3815 I = IncomingBB->getFirstNonPHI()->getIterator(); 3816 E = IncomingBB->getTerminator()->getIterator(); 3817 while (++I != E) 3818 if (!isa<DbgInfoIntrinsic>(I)) { 3819 isTrivial = false; 3820 break; 3821 } 3822 3823 if (isTrivial) 3824 TrivialUnwindBlocks.insert(IncomingBB); 3825 } 3826 3827 // If no trivial unwind blocks, don't do any simplifications. 3828 if (TrivialUnwindBlocks.empty()) 3829 return false; 3830 3831 // Turn all invokes that unwind here into calls. 3832 for (auto *TrivialBB : TrivialUnwindBlocks) { 3833 // Blocks that will be simplified should be removed from the phi node. 3834 // Note there could be multiple edges to the resume block, and we need 3835 // to remove them all. 3836 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3837 BB->removePredecessor(TrivialBB, true); 3838 3839 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3840 PI != PE;) { 3841 BasicBlock *Pred = *PI++; 3842 removeUnwindEdge(Pred); 3843 } 3844 3845 // In each SimplifyCFG run, only the current processed block can be erased. 3846 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3847 // of erasing TrivialBB, we only remove the branch to the common resume 3848 // block so that we can later erase the resume block since it has no 3849 // predecessors. 3850 TrivialBB->getTerminator()->eraseFromParent(); 3851 new UnreachableInst(RI->getContext(), TrivialBB); 3852 } 3853 3854 // Delete the resume block if all its predecessors have been removed. 3855 if (pred_empty(BB)) 3856 BB->eraseFromParent(); 3857 3858 return !TrivialUnwindBlocks.empty(); 3859 } 3860 3861 // Simplify resume that is only used by a single (non-phi) landing pad. 3862 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3863 BasicBlock *BB = RI->getParent(); 3864 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3865 assert(RI->getValue() == LPInst && 3866 "Resume must unwind the exception that caused control to here"); 3867 3868 // Check that there are no other instructions except for debug intrinsics. 3869 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3870 while (++I != E) 3871 if (!isa<DbgInfoIntrinsic>(I)) 3872 return false; 3873 3874 // Turn all invokes that unwind here into calls and delete the basic block. 3875 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3876 BasicBlock *Pred = *PI++; 3877 removeUnwindEdge(Pred); 3878 } 3879 3880 // The landingpad is now unreachable. Zap it. 3881 if (LoopHeaders) 3882 LoopHeaders->erase(BB); 3883 BB->eraseFromParent(); 3884 return true; 3885 } 3886 3887 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3888 // If this is a trivial cleanup pad that executes no instructions, it can be 3889 // eliminated. If the cleanup pad continues to the caller, any predecessor 3890 // that is an EH pad will be updated to continue to the caller and any 3891 // predecessor that terminates with an invoke instruction will have its invoke 3892 // instruction converted to a call instruction. If the cleanup pad being 3893 // simplified does not continue to the caller, each predecessor will be 3894 // updated to continue to the unwind destination of the cleanup pad being 3895 // simplified. 3896 BasicBlock *BB = RI->getParent(); 3897 CleanupPadInst *CPInst = RI->getCleanupPad(); 3898 if (CPInst->getParent() != BB) 3899 // This isn't an empty cleanup. 3900 return false; 3901 3902 // We cannot kill the pad if it has multiple uses. This typically arises 3903 // from unreachable basic blocks. 3904 if (!CPInst->hasOneUse()) 3905 return false; 3906 3907 // Check that there are no other instructions except for benign intrinsics. 3908 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3909 while (++I != E) { 3910 auto *II = dyn_cast<IntrinsicInst>(I); 3911 if (!II) 3912 return false; 3913 3914 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3915 switch (IntrinsicID) { 3916 case Intrinsic::dbg_declare: 3917 case Intrinsic::dbg_value: 3918 case Intrinsic::dbg_label: 3919 case Intrinsic::lifetime_end: 3920 break; 3921 default: 3922 return false; 3923 } 3924 } 3925 3926 // If the cleanup return we are simplifying unwinds to the caller, this will 3927 // set UnwindDest to nullptr. 3928 BasicBlock *UnwindDest = RI->getUnwindDest(); 3929 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3930 3931 // We're about to remove BB from the control flow. Before we do, sink any 3932 // PHINodes into the unwind destination. Doing this before changing the 3933 // control flow avoids some potentially slow checks, since we can currently 3934 // be certain that UnwindDest and BB have no common predecessors (since they 3935 // are both EH pads). 3936 if (UnwindDest) { 3937 // First, go through the PHI nodes in UnwindDest and update any nodes that 3938 // reference the block we are removing 3939 for (BasicBlock::iterator I = UnwindDest->begin(), 3940 IE = DestEHPad->getIterator(); 3941 I != IE; ++I) { 3942 PHINode *DestPN = cast<PHINode>(I); 3943 3944 int Idx = DestPN->getBasicBlockIndex(BB); 3945 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3946 assert(Idx != -1); 3947 // This PHI node has an incoming value that corresponds to a control 3948 // path through the cleanup pad we are removing. If the incoming 3949 // value is in the cleanup pad, it must be a PHINode (because we 3950 // verified above that the block is otherwise empty). Otherwise, the 3951 // value is either a constant or a value that dominates the cleanup 3952 // pad being removed. 3953 // 3954 // Because BB and UnwindDest are both EH pads, all of their 3955 // predecessors must unwind to these blocks, and since no instruction 3956 // can have multiple unwind destinations, there will be no overlap in 3957 // incoming blocks between SrcPN and DestPN. 3958 Value *SrcVal = DestPN->getIncomingValue(Idx); 3959 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3960 3961 // Remove the entry for the block we are deleting. 3962 DestPN->removeIncomingValue(Idx, false); 3963 3964 if (SrcPN && SrcPN->getParent() == BB) { 3965 // If the incoming value was a PHI node in the cleanup pad we are 3966 // removing, we need to merge that PHI node's incoming values into 3967 // DestPN. 3968 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3969 SrcIdx != SrcE; ++SrcIdx) { 3970 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3971 SrcPN->getIncomingBlock(SrcIdx)); 3972 } 3973 } else { 3974 // Otherwise, the incoming value came from above BB and 3975 // so we can just reuse it. We must associate all of BB's 3976 // predecessors with this value. 3977 for (auto *pred : predecessors(BB)) { 3978 DestPN->addIncoming(SrcVal, pred); 3979 } 3980 } 3981 } 3982 3983 // Sink any remaining PHI nodes directly into UnwindDest. 3984 Instruction *InsertPt = DestEHPad; 3985 for (BasicBlock::iterator I = BB->begin(), 3986 IE = BB->getFirstNonPHI()->getIterator(); 3987 I != IE;) { 3988 // The iterator must be incremented here because the instructions are 3989 // being moved to another block. 3990 PHINode *PN = cast<PHINode>(I++); 3991 if (PN->use_empty()) 3992 // If the PHI node has no uses, just leave it. It will be erased 3993 // when we erase BB below. 3994 continue; 3995 3996 // Otherwise, sink this PHI node into UnwindDest. 3997 // Any predecessors to UnwindDest which are not already represented 3998 // must be back edges which inherit the value from the path through 3999 // BB. In this case, the PHI value must reference itself. 4000 for (auto *pred : predecessors(UnwindDest)) 4001 if (pred != BB) 4002 PN->addIncoming(PN, pred); 4003 PN->moveBefore(InsertPt); 4004 } 4005 } 4006 4007 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4008 // The iterator must be updated here because we are removing this pred. 4009 BasicBlock *PredBB = *PI++; 4010 if (UnwindDest == nullptr) { 4011 removeUnwindEdge(PredBB); 4012 } else { 4013 Instruction *TI = PredBB->getTerminator(); 4014 TI->replaceUsesOfWith(BB, UnwindDest); 4015 } 4016 } 4017 4018 // The cleanup pad is now unreachable. Zap it. 4019 BB->eraseFromParent(); 4020 return true; 4021 } 4022 4023 // Try to merge two cleanuppads together. 4024 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4025 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4026 // with. 4027 BasicBlock *UnwindDest = RI->getUnwindDest(); 4028 if (!UnwindDest) 4029 return false; 4030 4031 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4032 // be safe to merge without code duplication. 4033 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4034 return false; 4035 4036 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4037 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4038 if (!SuccessorCleanupPad) 4039 return false; 4040 4041 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4042 // Replace any uses of the successor cleanupad with the predecessor pad 4043 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4044 // funclet bundle operands. 4045 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4046 // Remove the old cleanuppad. 4047 SuccessorCleanupPad->eraseFromParent(); 4048 // Now, we simply replace the cleanupret with a branch to the unwind 4049 // destination. 4050 BranchInst::Create(UnwindDest, RI->getParent()); 4051 RI->eraseFromParent(); 4052 4053 return true; 4054 } 4055 4056 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4057 // It is possible to transiantly have an undef cleanuppad operand because we 4058 // have deleted some, but not all, dead blocks. 4059 // Eventually, this block will be deleted. 4060 if (isa<UndefValue>(RI->getOperand(0))) 4061 return false; 4062 4063 if (mergeCleanupPad(RI)) 4064 return true; 4065 4066 if (removeEmptyCleanup(RI)) 4067 return true; 4068 4069 return false; 4070 } 4071 4072 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4073 BasicBlock *BB = RI->getParent(); 4074 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4075 return false; 4076 4077 // Find predecessors that end with branches. 4078 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4079 SmallVector<BranchInst *, 8> CondBranchPreds; 4080 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4081 BasicBlock *P = *PI; 4082 Instruction *PTI = P->getTerminator(); 4083 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4084 if (BI->isUnconditional()) 4085 UncondBranchPreds.push_back(P); 4086 else 4087 CondBranchPreds.push_back(BI); 4088 } 4089 } 4090 4091 // If we found some, do the transformation! 4092 if (!UncondBranchPreds.empty() && DupRet) { 4093 while (!UncondBranchPreds.empty()) { 4094 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4095 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4096 << "INTO UNCOND BRANCH PRED: " << *Pred); 4097 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4098 } 4099 4100 // If we eliminated all predecessors of the block, delete the block now. 4101 if (pred_empty(BB)) { 4102 // We know there are no successors, so just nuke the block. 4103 if (LoopHeaders) 4104 LoopHeaders->erase(BB); 4105 BB->eraseFromParent(); 4106 } 4107 4108 return true; 4109 } 4110 4111 // Check out all of the conditional branches going to this return 4112 // instruction. If any of them just select between returns, change the 4113 // branch itself into a select/return pair. 4114 while (!CondBranchPreds.empty()) { 4115 BranchInst *BI = CondBranchPreds.pop_back_val(); 4116 4117 // Check to see if the non-BB successor is also a return block. 4118 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4119 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4120 SimplifyCondBranchToTwoReturns(BI, Builder)) 4121 return true; 4122 } 4123 return false; 4124 } 4125 4126 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4127 BasicBlock *BB = UI->getParent(); 4128 4129 bool Changed = false; 4130 4131 // If there are any instructions immediately before the unreachable that can 4132 // be removed, do so. 4133 while (UI->getIterator() != BB->begin()) { 4134 BasicBlock::iterator BBI = UI->getIterator(); 4135 --BBI; 4136 // Do not delete instructions that can have side effects which might cause 4137 // the unreachable to not be reachable; specifically, calls and volatile 4138 // operations may have this effect. 4139 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4140 break; 4141 4142 if (BBI->mayHaveSideEffects()) { 4143 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4144 if (SI->isVolatile()) 4145 break; 4146 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4147 if (LI->isVolatile()) 4148 break; 4149 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4150 if (RMWI->isVolatile()) 4151 break; 4152 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4153 if (CXI->isVolatile()) 4154 break; 4155 } else if (isa<CatchPadInst>(BBI)) { 4156 // A catchpad may invoke exception object constructors and such, which 4157 // in some languages can be arbitrary code, so be conservative by 4158 // default. 4159 // For CoreCLR, it just involves a type test, so can be removed. 4160 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4161 EHPersonality::CoreCLR) 4162 break; 4163 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4164 !isa<LandingPadInst>(BBI)) { 4165 break; 4166 } 4167 // Note that deleting LandingPad's here is in fact okay, although it 4168 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4169 // all the predecessors of this block will be the unwind edges of Invokes, 4170 // and we can therefore guarantee this block will be erased. 4171 } 4172 4173 // Delete this instruction (any uses are guaranteed to be dead) 4174 if (!BBI->use_empty()) 4175 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4176 BBI->eraseFromParent(); 4177 Changed = true; 4178 } 4179 4180 // If the unreachable instruction is the first in the block, take a gander 4181 // at all of the predecessors of this instruction, and simplify them. 4182 if (&BB->front() != UI) 4183 return Changed; 4184 4185 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4186 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4187 Instruction *TI = Preds[i]->getTerminator(); 4188 IRBuilder<> Builder(TI); 4189 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4190 if (BI->isUnconditional()) { 4191 if (BI->getSuccessor(0) == BB) { 4192 new UnreachableInst(TI->getContext(), TI); 4193 TI->eraseFromParent(); 4194 Changed = true; 4195 } 4196 } else { 4197 if (BI->getSuccessor(0) == BB) { 4198 Builder.CreateBr(BI->getSuccessor(1)); 4199 EraseTerminatorAndDCECond(BI); 4200 } else if (BI->getSuccessor(1) == BB) { 4201 Builder.CreateBr(BI->getSuccessor(0)); 4202 EraseTerminatorAndDCECond(BI); 4203 Changed = true; 4204 } 4205 } 4206 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4207 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4208 if (i->getCaseSuccessor() != BB) { 4209 ++i; 4210 continue; 4211 } 4212 BB->removePredecessor(SI->getParent()); 4213 i = SI->removeCase(i); 4214 e = SI->case_end(); 4215 Changed = true; 4216 } 4217 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4218 if (II->getUnwindDest() == BB) { 4219 removeUnwindEdge(TI->getParent()); 4220 Changed = true; 4221 } 4222 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4223 if (CSI->getUnwindDest() == BB) { 4224 removeUnwindEdge(TI->getParent()); 4225 Changed = true; 4226 continue; 4227 } 4228 4229 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4230 E = CSI->handler_end(); 4231 I != E; ++I) { 4232 if (*I == BB) { 4233 CSI->removeHandler(I); 4234 --I; 4235 --E; 4236 Changed = true; 4237 } 4238 } 4239 if (CSI->getNumHandlers() == 0) { 4240 BasicBlock *CatchSwitchBB = CSI->getParent(); 4241 if (CSI->hasUnwindDest()) { 4242 // Redirect preds to the unwind dest 4243 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4244 } else { 4245 // Rewrite all preds to unwind to caller (or from invoke to call). 4246 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4247 for (BasicBlock *EHPred : EHPreds) 4248 removeUnwindEdge(EHPred); 4249 } 4250 // The catchswitch is no longer reachable. 4251 new UnreachableInst(CSI->getContext(), CSI); 4252 CSI->eraseFromParent(); 4253 Changed = true; 4254 } 4255 } else if (isa<CleanupReturnInst>(TI)) { 4256 new UnreachableInst(TI->getContext(), TI); 4257 TI->eraseFromParent(); 4258 Changed = true; 4259 } 4260 } 4261 4262 // If this block is now dead, remove it. 4263 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4264 // We know there are no successors, so just nuke the block. 4265 if (LoopHeaders) 4266 LoopHeaders->erase(BB); 4267 BB->eraseFromParent(); 4268 return true; 4269 } 4270 4271 return Changed; 4272 } 4273 4274 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4275 assert(Cases.size() >= 1); 4276 4277 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4278 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4279 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4280 return false; 4281 } 4282 return true; 4283 } 4284 4285 /// Turn a switch with two reachable destinations into an integer range 4286 /// comparison and branch. 4287 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4288 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4289 4290 bool HasDefault = 4291 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4292 4293 // Partition the cases into two sets with different destinations. 4294 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4295 BasicBlock *DestB = nullptr; 4296 SmallVector<ConstantInt *, 16> CasesA; 4297 SmallVector<ConstantInt *, 16> CasesB; 4298 4299 for (auto Case : SI->cases()) { 4300 BasicBlock *Dest = Case.getCaseSuccessor(); 4301 if (!DestA) 4302 DestA = Dest; 4303 if (Dest == DestA) { 4304 CasesA.push_back(Case.getCaseValue()); 4305 continue; 4306 } 4307 if (!DestB) 4308 DestB = Dest; 4309 if (Dest == DestB) { 4310 CasesB.push_back(Case.getCaseValue()); 4311 continue; 4312 } 4313 return false; // More than two destinations. 4314 } 4315 4316 assert(DestA && DestB && 4317 "Single-destination switch should have been folded."); 4318 assert(DestA != DestB); 4319 assert(DestB != SI->getDefaultDest()); 4320 assert(!CasesB.empty() && "There must be non-default cases."); 4321 assert(!CasesA.empty() || HasDefault); 4322 4323 // Figure out if one of the sets of cases form a contiguous range. 4324 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4325 BasicBlock *ContiguousDest = nullptr; 4326 BasicBlock *OtherDest = nullptr; 4327 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4328 ContiguousCases = &CasesA; 4329 ContiguousDest = DestA; 4330 OtherDest = DestB; 4331 } else if (CasesAreContiguous(CasesB)) { 4332 ContiguousCases = &CasesB; 4333 ContiguousDest = DestB; 4334 OtherDest = DestA; 4335 } else 4336 return false; 4337 4338 // Start building the compare and branch. 4339 4340 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4341 Constant *NumCases = 4342 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4343 4344 Value *Sub = SI->getCondition(); 4345 if (!Offset->isNullValue()) 4346 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4347 4348 Value *Cmp; 4349 // If NumCases overflowed, then all possible values jump to the successor. 4350 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4351 Cmp = ConstantInt::getTrue(SI->getContext()); 4352 else 4353 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4354 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4355 4356 // Update weight for the newly-created conditional branch. 4357 if (HasBranchWeights(SI)) { 4358 SmallVector<uint64_t, 8> Weights; 4359 GetBranchWeights(SI, Weights); 4360 if (Weights.size() == 1 + SI->getNumCases()) { 4361 uint64_t TrueWeight = 0; 4362 uint64_t FalseWeight = 0; 4363 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4364 if (SI->getSuccessor(I) == ContiguousDest) 4365 TrueWeight += Weights[I]; 4366 else 4367 FalseWeight += Weights[I]; 4368 } 4369 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4370 TrueWeight /= 2; 4371 FalseWeight /= 2; 4372 } 4373 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4374 } 4375 } 4376 4377 // Prune obsolete incoming values off the successors' PHI nodes. 4378 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4379 unsigned PreviousEdges = ContiguousCases->size(); 4380 if (ContiguousDest == SI->getDefaultDest()) 4381 ++PreviousEdges; 4382 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4383 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4384 } 4385 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4386 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4387 if (OtherDest == SI->getDefaultDest()) 4388 ++PreviousEdges; 4389 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4390 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4391 } 4392 4393 // Drop the switch. 4394 SI->eraseFromParent(); 4395 4396 return true; 4397 } 4398 4399 /// Compute masked bits for the condition of a switch 4400 /// and use it to remove dead cases. 4401 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4402 const DataLayout &DL) { 4403 Value *Cond = SI->getCondition(); 4404 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4405 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4406 4407 // We can also eliminate cases by determining that their values are outside of 4408 // the limited range of the condition based on how many significant (non-sign) 4409 // bits are in the condition value. 4410 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4411 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4412 4413 // Gather dead cases. 4414 SmallVector<ConstantInt *, 8> DeadCases; 4415 for (auto &Case : SI->cases()) { 4416 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4417 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4418 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4419 DeadCases.push_back(Case.getCaseValue()); 4420 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4421 << " is dead.\n"); 4422 } 4423 } 4424 4425 // If we can prove that the cases must cover all possible values, the 4426 // default destination becomes dead and we can remove it. If we know some 4427 // of the bits in the value, we can use that to more precisely compute the 4428 // number of possible unique case values. 4429 bool HasDefault = 4430 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4431 const unsigned NumUnknownBits = 4432 Bits - (Known.Zero | Known.One).countPopulation(); 4433 assert(NumUnknownBits <= Bits); 4434 if (HasDefault && DeadCases.empty() && 4435 NumUnknownBits < 64 /* avoid overflow */ && 4436 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4437 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4438 BasicBlock *NewDefault = 4439 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4440 SI->setDefaultDest(&*NewDefault); 4441 SplitBlock(&*NewDefault, &NewDefault->front()); 4442 auto *OldTI = NewDefault->getTerminator(); 4443 new UnreachableInst(SI->getContext(), OldTI); 4444 EraseTerminatorAndDCECond(OldTI); 4445 return true; 4446 } 4447 4448 SmallVector<uint64_t, 8> Weights; 4449 bool HasWeight = HasBranchWeights(SI); 4450 if (HasWeight) { 4451 GetBranchWeights(SI, Weights); 4452 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4453 } 4454 4455 // Remove dead cases from the switch. 4456 for (ConstantInt *DeadCase : DeadCases) { 4457 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4458 assert(CaseI != SI->case_default() && 4459 "Case was not found. Probably mistake in DeadCases forming."); 4460 if (HasWeight) { 4461 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4462 Weights.pop_back(); 4463 } 4464 4465 // Prune unused values from PHI nodes. 4466 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4467 SI->removeCase(CaseI); 4468 } 4469 if (HasWeight && Weights.size() >= 2) { 4470 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4471 setBranchWeights(SI, MDWeights); 4472 } 4473 4474 return !DeadCases.empty(); 4475 } 4476 4477 /// If BB would be eligible for simplification by 4478 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4479 /// by an unconditional branch), look at the phi node for BB in the successor 4480 /// block and see if the incoming value is equal to CaseValue. If so, return 4481 /// the phi node, and set PhiIndex to BB's index in the phi node. 4482 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4483 BasicBlock *BB, int *PhiIndex) { 4484 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4485 return nullptr; // BB must be empty to be a candidate for simplification. 4486 if (!BB->getSinglePredecessor()) 4487 return nullptr; // BB must be dominated by the switch. 4488 4489 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4490 if (!Branch || !Branch->isUnconditional()) 4491 return nullptr; // Terminator must be unconditional branch. 4492 4493 BasicBlock *Succ = Branch->getSuccessor(0); 4494 4495 for (PHINode &PHI : Succ->phis()) { 4496 int Idx = PHI.getBasicBlockIndex(BB); 4497 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4498 4499 Value *InValue = PHI.getIncomingValue(Idx); 4500 if (InValue != CaseValue) 4501 continue; 4502 4503 *PhiIndex = Idx; 4504 return &PHI; 4505 } 4506 4507 return nullptr; 4508 } 4509 4510 /// Try to forward the condition of a switch instruction to a phi node 4511 /// dominated by the switch, if that would mean that some of the destination 4512 /// blocks of the switch can be folded away. Return true if a change is made. 4513 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4514 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4515 4516 ForwardingNodesMap ForwardingNodes; 4517 BasicBlock *SwitchBlock = SI->getParent(); 4518 bool Changed = false; 4519 for (auto &Case : SI->cases()) { 4520 ConstantInt *CaseValue = Case.getCaseValue(); 4521 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4522 4523 // Replace phi operands in successor blocks that are using the constant case 4524 // value rather than the switch condition variable: 4525 // switchbb: 4526 // switch i32 %x, label %default [ 4527 // i32 17, label %succ 4528 // ... 4529 // succ: 4530 // %r = phi i32 ... [ 17, %switchbb ] ... 4531 // --> 4532 // %r = phi i32 ... [ %x, %switchbb ] ... 4533 4534 for (PHINode &Phi : CaseDest->phis()) { 4535 // This only works if there is exactly 1 incoming edge from the switch to 4536 // a phi. If there is >1, that means multiple cases of the switch map to 1 4537 // value in the phi, and that phi value is not the switch condition. Thus, 4538 // this transform would not make sense (the phi would be invalid because 4539 // a phi can't have different incoming values from the same block). 4540 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4541 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4542 count(Phi.blocks(), SwitchBlock) == 1) { 4543 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4544 Changed = true; 4545 } 4546 } 4547 4548 // Collect phi nodes that are indirectly using this switch's case constants. 4549 int PhiIdx; 4550 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4551 ForwardingNodes[Phi].push_back(PhiIdx); 4552 } 4553 4554 for (auto &ForwardingNode : ForwardingNodes) { 4555 PHINode *Phi = ForwardingNode.first; 4556 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4557 if (Indexes.size() < 2) 4558 continue; 4559 4560 for (int Index : Indexes) 4561 Phi->setIncomingValue(Index, SI->getCondition()); 4562 Changed = true; 4563 } 4564 4565 return Changed; 4566 } 4567 4568 /// Return true if the backend will be able to handle 4569 /// initializing an array of constants like C. 4570 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4571 if (C->isThreadDependent()) 4572 return false; 4573 if (C->isDLLImportDependent()) 4574 return false; 4575 4576 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4577 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4578 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4579 return false; 4580 4581 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4582 if (!CE->isGEPWithNoNotionalOverIndexing()) 4583 return false; 4584 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4585 return false; 4586 } 4587 4588 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4589 return false; 4590 4591 return true; 4592 } 4593 4594 /// If V is a Constant, return it. Otherwise, try to look up 4595 /// its constant value in ConstantPool, returning 0 if it's not there. 4596 static Constant * 4597 LookupConstant(Value *V, 4598 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4599 if (Constant *C = dyn_cast<Constant>(V)) 4600 return C; 4601 return ConstantPool.lookup(V); 4602 } 4603 4604 /// Try to fold instruction I into a constant. This works for 4605 /// simple instructions such as binary operations where both operands are 4606 /// constant or can be replaced by constants from the ConstantPool. Returns the 4607 /// resulting constant on success, 0 otherwise. 4608 static Constant * 4609 ConstantFold(Instruction *I, const DataLayout &DL, 4610 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4611 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4612 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4613 if (!A) 4614 return nullptr; 4615 if (A->isAllOnesValue()) 4616 return LookupConstant(Select->getTrueValue(), ConstantPool); 4617 if (A->isNullValue()) 4618 return LookupConstant(Select->getFalseValue(), ConstantPool); 4619 return nullptr; 4620 } 4621 4622 SmallVector<Constant *, 4> COps; 4623 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4624 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4625 COps.push_back(A); 4626 else 4627 return nullptr; 4628 } 4629 4630 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4631 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4632 COps[1], DL); 4633 } 4634 4635 return ConstantFoldInstOperands(I, COps, DL); 4636 } 4637 4638 /// Try to determine the resulting constant values in phi nodes 4639 /// at the common destination basic block, *CommonDest, for one of the case 4640 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4641 /// case), of a switch instruction SI. 4642 static bool 4643 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4644 BasicBlock **CommonDest, 4645 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4646 const DataLayout &DL, const TargetTransformInfo &TTI) { 4647 // The block from which we enter the common destination. 4648 BasicBlock *Pred = SI->getParent(); 4649 4650 // If CaseDest is empty except for some side-effect free instructions through 4651 // which we can constant-propagate the CaseVal, continue to its successor. 4652 SmallDenseMap<Value *, Constant *> ConstantPool; 4653 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4654 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4655 if (I.isTerminator()) { 4656 // If the terminator is a simple branch, continue to the next block. 4657 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4658 return false; 4659 Pred = CaseDest; 4660 CaseDest = I.getSuccessor(0); 4661 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4662 // Instruction is side-effect free and constant. 4663 4664 // If the instruction has uses outside this block or a phi node slot for 4665 // the block, it is not safe to bypass the instruction since it would then 4666 // no longer dominate all its uses. 4667 for (auto &Use : I.uses()) { 4668 User *User = Use.getUser(); 4669 if (Instruction *I = dyn_cast<Instruction>(User)) 4670 if (I->getParent() == CaseDest) 4671 continue; 4672 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4673 if (Phi->getIncomingBlock(Use) == CaseDest) 4674 continue; 4675 return false; 4676 } 4677 4678 ConstantPool.insert(std::make_pair(&I, C)); 4679 } else { 4680 break; 4681 } 4682 } 4683 4684 // If we did not have a CommonDest before, use the current one. 4685 if (!*CommonDest) 4686 *CommonDest = CaseDest; 4687 // If the destination isn't the common one, abort. 4688 if (CaseDest != *CommonDest) 4689 return false; 4690 4691 // Get the values for this case from phi nodes in the destination block. 4692 for (PHINode &PHI : (*CommonDest)->phis()) { 4693 int Idx = PHI.getBasicBlockIndex(Pred); 4694 if (Idx == -1) 4695 continue; 4696 4697 Constant *ConstVal = 4698 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4699 if (!ConstVal) 4700 return false; 4701 4702 // Be conservative about which kinds of constants we support. 4703 if (!ValidLookupTableConstant(ConstVal, TTI)) 4704 return false; 4705 4706 Res.push_back(std::make_pair(&PHI, ConstVal)); 4707 } 4708 4709 return Res.size() > 0; 4710 } 4711 4712 // Helper function used to add CaseVal to the list of cases that generate 4713 // Result. Returns the updated number of cases that generate this result. 4714 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4715 SwitchCaseResultVectorTy &UniqueResults, 4716 Constant *Result) { 4717 for (auto &I : UniqueResults) { 4718 if (I.first == Result) { 4719 I.second.push_back(CaseVal); 4720 return I.second.size(); 4721 } 4722 } 4723 UniqueResults.push_back( 4724 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4725 return 1; 4726 } 4727 4728 // Helper function that initializes a map containing 4729 // results for the PHI node of the common destination block for a switch 4730 // instruction. Returns false if multiple PHI nodes have been found or if 4731 // there is not a common destination block for the switch. 4732 static bool 4733 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4734 SwitchCaseResultVectorTy &UniqueResults, 4735 Constant *&DefaultResult, const DataLayout &DL, 4736 const TargetTransformInfo &TTI, 4737 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4738 for (auto &I : SI->cases()) { 4739 ConstantInt *CaseVal = I.getCaseValue(); 4740 4741 // Resulting value at phi nodes for this case value. 4742 SwitchCaseResultsTy Results; 4743 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4744 DL, TTI)) 4745 return false; 4746 4747 // Only one value per case is permitted. 4748 if (Results.size() > 1) 4749 return false; 4750 4751 // Add the case->result mapping to UniqueResults. 4752 const uintptr_t NumCasesForResult = 4753 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4754 4755 // Early out if there are too many cases for this result. 4756 if (NumCasesForResult > MaxCasesPerResult) 4757 return false; 4758 4759 // Early out if there are too many unique results. 4760 if (UniqueResults.size() > MaxUniqueResults) 4761 return false; 4762 4763 // Check the PHI consistency. 4764 if (!PHI) 4765 PHI = Results[0].first; 4766 else if (PHI != Results[0].first) 4767 return false; 4768 } 4769 // Find the default result value. 4770 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4771 BasicBlock *DefaultDest = SI->getDefaultDest(); 4772 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4773 DL, TTI); 4774 // If the default value is not found abort unless the default destination 4775 // is unreachable. 4776 DefaultResult = 4777 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4778 if ((!DefaultResult && 4779 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4780 return false; 4781 4782 return true; 4783 } 4784 4785 // Helper function that checks if it is possible to transform a switch with only 4786 // two cases (or two cases + default) that produces a result into a select. 4787 // Example: 4788 // switch (a) { 4789 // case 10: %0 = icmp eq i32 %a, 10 4790 // return 10; %1 = select i1 %0, i32 10, i32 4 4791 // case 20: ----> %2 = icmp eq i32 %a, 20 4792 // return 2; %3 = select i1 %2, i32 2, i32 %1 4793 // default: 4794 // return 4; 4795 // } 4796 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4797 Constant *DefaultResult, Value *Condition, 4798 IRBuilder<> &Builder) { 4799 assert(ResultVector.size() == 2 && 4800 "We should have exactly two unique results at this point"); 4801 // If we are selecting between only two cases transform into a simple 4802 // select or a two-way select if default is possible. 4803 if (ResultVector[0].second.size() == 1 && 4804 ResultVector[1].second.size() == 1) { 4805 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4806 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4807 4808 bool DefaultCanTrigger = DefaultResult; 4809 Value *SelectValue = ResultVector[1].first; 4810 if (DefaultCanTrigger) { 4811 Value *const ValueCompare = 4812 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4813 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4814 DefaultResult, "switch.select"); 4815 } 4816 Value *const ValueCompare = 4817 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4818 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4819 SelectValue, "switch.select"); 4820 } 4821 4822 return nullptr; 4823 } 4824 4825 // Helper function to cleanup a switch instruction that has been converted into 4826 // a select, fixing up PHI nodes and basic blocks. 4827 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4828 Value *SelectValue, 4829 IRBuilder<> &Builder) { 4830 BasicBlock *SelectBB = SI->getParent(); 4831 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4832 PHI->removeIncomingValue(SelectBB); 4833 PHI->addIncoming(SelectValue, SelectBB); 4834 4835 Builder.CreateBr(PHI->getParent()); 4836 4837 // Remove the switch. 4838 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4839 BasicBlock *Succ = SI->getSuccessor(i); 4840 4841 if (Succ == PHI->getParent()) 4842 continue; 4843 Succ->removePredecessor(SelectBB); 4844 } 4845 SI->eraseFromParent(); 4846 } 4847 4848 /// If the switch is only used to initialize one or more 4849 /// phi nodes in a common successor block with only two different 4850 /// constant values, replace the switch with select. 4851 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4852 const DataLayout &DL, 4853 const TargetTransformInfo &TTI) { 4854 Value *const Cond = SI->getCondition(); 4855 PHINode *PHI = nullptr; 4856 BasicBlock *CommonDest = nullptr; 4857 Constant *DefaultResult; 4858 SwitchCaseResultVectorTy UniqueResults; 4859 // Collect all the cases that will deliver the same value from the switch. 4860 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4861 DL, TTI, 2, 1)) 4862 return false; 4863 // Selects choose between maximum two values. 4864 if (UniqueResults.size() != 2) 4865 return false; 4866 assert(PHI != nullptr && "PHI for value select not found"); 4867 4868 Builder.SetInsertPoint(SI); 4869 Value *SelectValue = 4870 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4871 if (SelectValue) { 4872 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4873 return true; 4874 } 4875 // The switch couldn't be converted into a select. 4876 return false; 4877 } 4878 4879 namespace { 4880 4881 /// This class represents a lookup table that can be used to replace a switch. 4882 class SwitchLookupTable { 4883 public: 4884 /// Create a lookup table to use as a switch replacement with the contents 4885 /// of Values, using DefaultValue to fill any holes in the table. 4886 SwitchLookupTable( 4887 Module &M, uint64_t TableSize, ConstantInt *Offset, 4888 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4889 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4890 4891 /// Build instructions with Builder to retrieve the value at 4892 /// the position given by Index in the lookup table. 4893 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4894 4895 /// Return true if a table with TableSize elements of 4896 /// type ElementType would fit in a target-legal register. 4897 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4898 Type *ElementType); 4899 4900 private: 4901 // Depending on the contents of the table, it can be represented in 4902 // different ways. 4903 enum { 4904 // For tables where each element contains the same value, we just have to 4905 // store that single value and return it for each lookup. 4906 SingleValueKind, 4907 4908 // For tables where there is a linear relationship between table index 4909 // and values. We calculate the result with a simple multiplication 4910 // and addition instead of a table lookup. 4911 LinearMapKind, 4912 4913 // For small tables with integer elements, we can pack them into a bitmap 4914 // that fits into a target-legal register. Values are retrieved by 4915 // shift and mask operations. 4916 BitMapKind, 4917 4918 // The table is stored as an array of values. Values are retrieved by load 4919 // instructions from the table. 4920 ArrayKind 4921 } Kind; 4922 4923 // For SingleValueKind, this is the single value. 4924 Constant *SingleValue = nullptr; 4925 4926 // For BitMapKind, this is the bitmap. 4927 ConstantInt *BitMap = nullptr; 4928 IntegerType *BitMapElementTy = nullptr; 4929 4930 // For LinearMapKind, these are the constants used to derive the value. 4931 ConstantInt *LinearOffset = nullptr; 4932 ConstantInt *LinearMultiplier = nullptr; 4933 4934 // For ArrayKind, this is the array. 4935 GlobalVariable *Array = nullptr; 4936 }; 4937 4938 } // end anonymous namespace 4939 4940 SwitchLookupTable::SwitchLookupTable( 4941 Module &M, uint64_t TableSize, ConstantInt *Offset, 4942 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4943 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4944 assert(Values.size() && "Can't build lookup table without values!"); 4945 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4946 4947 // If all values in the table are equal, this is that value. 4948 SingleValue = Values.begin()->second; 4949 4950 Type *ValueType = Values.begin()->second->getType(); 4951 4952 // Build up the table contents. 4953 SmallVector<Constant *, 64> TableContents(TableSize); 4954 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4955 ConstantInt *CaseVal = Values[I].first; 4956 Constant *CaseRes = Values[I].second; 4957 assert(CaseRes->getType() == ValueType); 4958 4959 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4960 TableContents[Idx] = CaseRes; 4961 4962 if (CaseRes != SingleValue) 4963 SingleValue = nullptr; 4964 } 4965 4966 // Fill in any holes in the table with the default result. 4967 if (Values.size() < TableSize) { 4968 assert(DefaultValue && 4969 "Need a default value to fill the lookup table holes."); 4970 assert(DefaultValue->getType() == ValueType); 4971 for (uint64_t I = 0; I < TableSize; ++I) { 4972 if (!TableContents[I]) 4973 TableContents[I] = DefaultValue; 4974 } 4975 4976 if (DefaultValue != SingleValue) 4977 SingleValue = nullptr; 4978 } 4979 4980 // If each element in the table contains the same value, we only need to store 4981 // that single value. 4982 if (SingleValue) { 4983 Kind = SingleValueKind; 4984 return; 4985 } 4986 4987 // Check if we can derive the value with a linear transformation from the 4988 // table index. 4989 if (isa<IntegerType>(ValueType)) { 4990 bool LinearMappingPossible = true; 4991 APInt PrevVal; 4992 APInt DistToPrev; 4993 assert(TableSize >= 2 && "Should be a SingleValue table."); 4994 // Check if there is the same distance between two consecutive values. 4995 for (uint64_t I = 0; I < TableSize; ++I) { 4996 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4997 if (!ConstVal) { 4998 // This is an undef. We could deal with it, but undefs in lookup tables 4999 // are very seldom. It's probably not worth the additional complexity. 5000 LinearMappingPossible = false; 5001 break; 5002 } 5003 const APInt &Val = ConstVal->getValue(); 5004 if (I != 0) { 5005 APInt Dist = Val - PrevVal; 5006 if (I == 1) { 5007 DistToPrev = Dist; 5008 } else if (Dist != DistToPrev) { 5009 LinearMappingPossible = false; 5010 break; 5011 } 5012 } 5013 PrevVal = Val; 5014 } 5015 if (LinearMappingPossible) { 5016 LinearOffset = cast<ConstantInt>(TableContents[0]); 5017 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5018 Kind = LinearMapKind; 5019 ++NumLinearMaps; 5020 return; 5021 } 5022 } 5023 5024 // If the type is integer and the table fits in a register, build a bitmap. 5025 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5026 IntegerType *IT = cast<IntegerType>(ValueType); 5027 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5028 for (uint64_t I = TableSize; I > 0; --I) { 5029 TableInt <<= IT->getBitWidth(); 5030 // Insert values into the bitmap. Undef values are set to zero. 5031 if (!isa<UndefValue>(TableContents[I - 1])) { 5032 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5033 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5034 } 5035 } 5036 BitMap = ConstantInt::get(M.getContext(), TableInt); 5037 BitMapElementTy = IT; 5038 Kind = BitMapKind; 5039 ++NumBitMaps; 5040 return; 5041 } 5042 5043 // Store the table in an array. 5044 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5045 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5046 5047 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5048 GlobalVariable::PrivateLinkage, Initializer, 5049 "switch.table." + FuncName); 5050 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5051 // Set the alignment to that of an array items. We will be only loading one 5052 // value out of it. 5053 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5054 Kind = ArrayKind; 5055 } 5056 5057 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5058 switch (Kind) { 5059 case SingleValueKind: 5060 return SingleValue; 5061 case LinearMapKind: { 5062 // Derive the result value from the input value. 5063 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5064 false, "switch.idx.cast"); 5065 if (!LinearMultiplier->isOne()) 5066 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5067 if (!LinearOffset->isZero()) 5068 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5069 return Result; 5070 } 5071 case BitMapKind: { 5072 // Type of the bitmap (e.g. i59). 5073 IntegerType *MapTy = BitMap->getType(); 5074 5075 // Cast Index to the same type as the bitmap. 5076 // Note: The Index is <= the number of elements in the table, so 5077 // truncating it to the width of the bitmask is safe. 5078 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5079 5080 // Multiply the shift amount by the element width. 5081 ShiftAmt = Builder.CreateMul( 5082 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5083 "switch.shiftamt"); 5084 5085 // Shift down. 5086 Value *DownShifted = 5087 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5088 // Mask off. 5089 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5090 } 5091 case ArrayKind: { 5092 // Make sure the table index will not overflow when treated as signed. 5093 IntegerType *IT = cast<IntegerType>(Index->getType()); 5094 uint64_t TableSize = 5095 Array->getInitializer()->getType()->getArrayNumElements(); 5096 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5097 Index = Builder.CreateZExt( 5098 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5099 "switch.tableidx.zext"); 5100 5101 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5102 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5103 GEPIndices, "switch.gep"); 5104 return Builder.CreateLoad(GEP, "switch.load"); 5105 } 5106 } 5107 llvm_unreachable("Unknown lookup table kind!"); 5108 } 5109 5110 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5111 uint64_t TableSize, 5112 Type *ElementType) { 5113 auto *IT = dyn_cast<IntegerType>(ElementType); 5114 if (!IT) 5115 return false; 5116 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5117 // are <= 15, we could try to narrow the type. 5118 5119 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5120 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5121 return false; 5122 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5123 } 5124 5125 /// Determine whether a lookup table should be built for this switch, based on 5126 /// the number of cases, size of the table, and the types of the results. 5127 static bool 5128 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5129 const TargetTransformInfo &TTI, const DataLayout &DL, 5130 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5131 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5132 return false; // TableSize overflowed, or mul below might overflow. 5133 5134 bool AllTablesFitInRegister = true; 5135 bool HasIllegalType = false; 5136 for (const auto &I : ResultTypes) { 5137 Type *Ty = I.second; 5138 5139 // Saturate this flag to true. 5140 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5141 5142 // Saturate this flag to false. 5143 AllTablesFitInRegister = 5144 AllTablesFitInRegister && 5145 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5146 5147 // If both flags saturate, we're done. NOTE: This *only* works with 5148 // saturating flags, and all flags have to saturate first due to the 5149 // non-deterministic behavior of iterating over a dense map. 5150 if (HasIllegalType && !AllTablesFitInRegister) 5151 break; 5152 } 5153 5154 // If each table would fit in a register, we should build it anyway. 5155 if (AllTablesFitInRegister) 5156 return true; 5157 5158 // Don't build a table that doesn't fit in-register if it has illegal types. 5159 if (HasIllegalType) 5160 return false; 5161 5162 // The table density should be at least 40%. This is the same criterion as for 5163 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5164 // FIXME: Find the best cut-off. 5165 return SI->getNumCases() * 10 >= TableSize * 4; 5166 } 5167 5168 /// Try to reuse the switch table index compare. Following pattern: 5169 /// \code 5170 /// if (idx < tablesize) 5171 /// r = table[idx]; // table does not contain default_value 5172 /// else 5173 /// r = default_value; 5174 /// if (r != default_value) 5175 /// ... 5176 /// \endcode 5177 /// Is optimized to: 5178 /// \code 5179 /// cond = idx < tablesize; 5180 /// if (cond) 5181 /// r = table[idx]; 5182 /// else 5183 /// r = default_value; 5184 /// if (cond) 5185 /// ... 5186 /// \endcode 5187 /// Jump threading will then eliminate the second if(cond). 5188 static void reuseTableCompare( 5189 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5190 Constant *DefaultValue, 5191 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5192 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5193 if (!CmpInst) 5194 return; 5195 5196 // We require that the compare is in the same block as the phi so that jump 5197 // threading can do its work afterwards. 5198 if (CmpInst->getParent() != PhiBlock) 5199 return; 5200 5201 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5202 if (!CmpOp1) 5203 return; 5204 5205 Value *RangeCmp = RangeCheckBranch->getCondition(); 5206 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5207 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5208 5209 // Check if the compare with the default value is constant true or false. 5210 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5211 DefaultValue, CmpOp1, true); 5212 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5213 return; 5214 5215 // Check if the compare with the case values is distinct from the default 5216 // compare result. 5217 for (auto ValuePair : Values) { 5218 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5219 ValuePair.second, CmpOp1, true); 5220 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5221 return; 5222 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5223 "Expect true or false as compare result."); 5224 } 5225 5226 // Check if the branch instruction dominates the phi node. It's a simple 5227 // dominance check, but sufficient for our needs. 5228 // Although this check is invariant in the calling loops, it's better to do it 5229 // at this late stage. Practically we do it at most once for a switch. 5230 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5231 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5232 BasicBlock *Pred = *PI; 5233 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5234 return; 5235 } 5236 5237 if (DefaultConst == FalseConst) { 5238 // The compare yields the same result. We can replace it. 5239 CmpInst->replaceAllUsesWith(RangeCmp); 5240 ++NumTableCmpReuses; 5241 } else { 5242 // The compare yields the same result, just inverted. We can replace it. 5243 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5244 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5245 RangeCheckBranch); 5246 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5247 ++NumTableCmpReuses; 5248 } 5249 } 5250 5251 /// If the switch is only used to initialize one or more phi nodes in a common 5252 /// successor block with different constant values, replace the switch with 5253 /// lookup tables. 5254 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5255 const DataLayout &DL, 5256 const TargetTransformInfo &TTI) { 5257 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5258 5259 Function *Fn = SI->getParent()->getParent(); 5260 // Only build lookup table when we have a target that supports it or the 5261 // attribute is not set. 5262 if (!TTI.shouldBuildLookupTables() || 5263 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5264 return false; 5265 5266 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5267 // split off a dense part and build a lookup table for that. 5268 5269 // FIXME: This creates arrays of GEPs to constant strings, which means each 5270 // GEP needs a runtime relocation in PIC code. We should just build one big 5271 // string and lookup indices into that. 5272 5273 // Ignore switches with less than three cases. Lookup tables will not make 5274 // them faster, so we don't analyze them. 5275 if (SI->getNumCases() < 3) 5276 return false; 5277 5278 // Figure out the corresponding result for each case value and phi node in the 5279 // common destination, as well as the min and max case values. 5280 assert(!empty(SI->cases())); 5281 SwitchInst::CaseIt CI = SI->case_begin(); 5282 ConstantInt *MinCaseVal = CI->getCaseValue(); 5283 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5284 5285 BasicBlock *CommonDest = nullptr; 5286 5287 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5288 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5289 5290 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5291 SmallDenseMap<PHINode *, Type *> ResultTypes; 5292 SmallVector<PHINode *, 4> PHIs; 5293 5294 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5295 ConstantInt *CaseVal = CI->getCaseValue(); 5296 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5297 MinCaseVal = CaseVal; 5298 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5299 MaxCaseVal = CaseVal; 5300 5301 // Resulting value at phi nodes for this case value. 5302 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5303 ResultsTy Results; 5304 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5305 Results, DL, TTI)) 5306 return false; 5307 5308 // Append the result from this case to the list for each phi. 5309 for (const auto &I : Results) { 5310 PHINode *PHI = I.first; 5311 Constant *Value = I.second; 5312 if (!ResultLists.count(PHI)) 5313 PHIs.push_back(PHI); 5314 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5315 } 5316 } 5317 5318 // Keep track of the result types. 5319 for (PHINode *PHI : PHIs) { 5320 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5321 } 5322 5323 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5324 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5325 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5326 bool TableHasHoles = (NumResults < TableSize); 5327 5328 // If the table has holes, we need a constant result for the default case 5329 // or a bitmask that fits in a register. 5330 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5331 bool HasDefaultResults = 5332 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5333 DefaultResultsList, DL, TTI); 5334 5335 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5336 if (NeedMask) { 5337 // As an extra penalty for the validity test we require more cases. 5338 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5339 return false; 5340 if (!DL.fitsInLegalInteger(TableSize)) 5341 return false; 5342 } 5343 5344 for (const auto &I : DefaultResultsList) { 5345 PHINode *PHI = I.first; 5346 Constant *Result = I.second; 5347 DefaultResults[PHI] = Result; 5348 } 5349 5350 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5351 return false; 5352 5353 // Create the BB that does the lookups. 5354 Module &Mod = *CommonDest->getParent()->getParent(); 5355 BasicBlock *LookupBB = BasicBlock::Create( 5356 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5357 5358 // Compute the table index value. 5359 Builder.SetInsertPoint(SI); 5360 Value *TableIndex; 5361 if (MinCaseVal->isNullValue()) 5362 TableIndex = SI->getCondition(); 5363 else 5364 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5365 "switch.tableidx"); 5366 5367 // Compute the maximum table size representable by the integer type we are 5368 // switching upon. 5369 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5370 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5371 assert(MaxTableSize >= TableSize && 5372 "It is impossible for a switch to have more entries than the max " 5373 "representable value of its input integer type's size."); 5374 5375 // If the default destination is unreachable, or if the lookup table covers 5376 // all values of the conditional variable, branch directly to the lookup table 5377 // BB. Otherwise, check that the condition is within the case range. 5378 const bool DefaultIsReachable = 5379 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5380 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5381 BranchInst *RangeCheckBranch = nullptr; 5382 5383 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5384 Builder.CreateBr(LookupBB); 5385 // Note: We call removeProdecessor later since we need to be able to get the 5386 // PHI value for the default case in case we're using a bit mask. 5387 } else { 5388 Value *Cmp = Builder.CreateICmpULT( 5389 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5390 RangeCheckBranch = 5391 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5392 } 5393 5394 // Populate the BB that does the lookups. 5395 Builder.SetInsertPoint(LookupBB); 5396 5397 if (NeedMask) { 5398 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5399 // re-purposed to do the hole check, and we create a new LookupBB. 5400 BasicBlock *MaskBB = LookupBB; 5401 MaskBB->setName("switch.hole_check"); 5402 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5403 CommonDest->getParent(), CommonDest); 5404 5405 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5406 // unnecessary illegal types. 5407 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5408 APInt MaskInt(TableSizePowOf2, 0); 5409 APInt One(TableSizePowOf2, 1); 5410 // Build bitmask; fill in a 1 bit for every case. 5411 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5412 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5413 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5414 .getLimitedValue(); 5415 MaskInt |= One << Idx; 5416 } 5417 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5418 5419 // Get the TableIndex'th bit of the bitmask. 5420 // If this bit is 0 (meaning hole) jump to the default destination, 5421 // else continue with table lookup. 5422 IntegerType *MapTy = TableMask->getType(); 5423 Value *MaskIndex = 5424 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5425 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5426 Value *LoBit = Builder.CreateTrunc( 5427 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5428 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5429 5430 Builder.SetInsertPoint(LookupBB); 5431 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5432 } 5433 5434 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5435 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5436 // do not delete PHINodes here. 5437 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5438 /*DontDeleteUselessPHIs=*/true); 5439 } 5440 5441 bool ReturnedEarly = false; 5442 for (PHINode *PHI : PHIs) { 5443 const ResultListTy &ResultList = ResultLists[PHI]; 5444 5445 // If using a bitmask, use any value to fill the lookup table holes. 5446 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5447 StringRef FuncName = Fn->getName(); 5448 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5449 FuncName); 5450 5451 Value *Result = Table.BuildLookup(TableIndex, Builder); 5452 5453 // If the result is used to return immediately from the function, we want to 5454 // do that right here. 5455 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5456 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5457 Builder.CreateRet(Result); 5458 ReturnedEarly = true; 5459 break; 5460 } 5461 5462 // Do a small peephole optimization: re-use the switch table compare if 5463 // possible. 5464 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5465 BasicBlock *PhiBlock = PHI->getParent(); 5466 // Search for compare instructions which use the phi. 5467 for (auto *User : PHI->users()) { 5468 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5469 } 5470 } 5471 5472 PHI->addIncoming(Result, LookupBB); 5473 } 5474 5475 if (!ReturnedEarly) 5476 Builder.CreateBr(CommonDest); 5477 5478 // Remove the switch. 5479 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5480 BasicBlock *Succ = SI->getSuccessor(i); 5481 5482 if (Succ == SI->getDefaultDest()) 5483 continue; 5484 Succ->removePredecessor(SI->getParent()); 5485 } 5486 SI->eraseFromParent(); 5487 5488 ++NumLookupTables; 5489 if (NeedMask) 5490 ++NumLookupTablesHoles; 5491 return true; 5492 } 5493 5494 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5495 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5496 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5497 uint64_t Range = Diff + 1; 5498 uint64_t NumCases = Values.size(); 5499 // 40% is the default density for building a jump table in optsize/minsize mode. 5500 uint64_t MinDensity = 40; 5501 5502 return NumCases * 100 >= Range * MinDensity; 5503 } 5504 5505 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5506 /// of cases. 5507 /// 5508 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5509 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5510 /// 5511 /// This converts a sparse switch into a dense switch which allows better 5512 /// lowering and could also allow transforming into a lookup table. 5513 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5514 const DataLayout &DL, 5515 const TargetTransformInfo &TTI) { 5516 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5517 if (CondTy->getIntegerBitWidth() > 64 || 5518 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5519 return false; 5520 // Only bother with this optimization if there are more than 3 switch cases; 5521 // SDAG will only bother creating jump tables for 4 or more cases. 5522 if (SI->getNumCases() < 4) 5523 return false; 5524 5525 // This transform is agnostic to the signedness of the input or case values. We 5526 // can treat the case values as signed or unsigned. We can optimize more common 5527 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5528 // as signed. 5529 SmallVector<int64_t,4> Values; 5530 for (auto &C : SI->cases()) 5531 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5532 llvm::sort(Values); 5533 5534 // If the switch is already dense, there's nothing useful to do here. 5535 if (isSwitchDense(Values)) 5536 return false; 5537 5538 // First, transform the values such that they start at zero and ascend. 5539 int64_t Base = Values[0]; 5540 for (auto &V : Values) 5541 V -= (uint64_t)(Base); 5542 5543 // Now we have signed numbers that have been shifted so that, given enough 5544 // precision, there are no negative values. Since the rest of the transform 5545 // is bitwise only, we switch now to an unsigned representation. 5546 uint64_t GCD = 0; 5547 for (auto &V : Values) 5548 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5549 5550 // This transform can be done speculatively because it is so cheap - it results 5551 // in a single rotate operation being inserted. This can only happen if the 5552 // factor extracted is a power of 2. 5553 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5554 // inverse of GCD and then perform this transform. 5555 // FIXME: It's possible that optimizing a switch on powers of two might also 5556 // be beneficial - flag values are often powers of two and we could use a CLZ 5557 // as the key function. 5558 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5559 // No common divisor found or too expensive to compute key function. 5560 return false; 5561 5562 unsigned Shift = Log2_64(GCD); 5563 for (auto &V : Values) 5564 V = (int64_t)((uint64_t)V >> Shift); 5565 5566 if (!isSwitchDense(Values)) 5567 // Transform didn't create a dense switch. 5568 return false; 5569 5570 // The obvious transform is to shift the switch condition right and emit a 5571 // check that the condition actually cleanly divided by GCD, i.e. 5572 // C & (1 << Shift - 1) == 0 5573 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5574 // 5575 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5576 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5577 // are nonzero then the switch condition will be very large and will hit the 5578 // default case. 5579 5580 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5581 Builder.SetInsertPoint(SI); 5582 auto *ShiftC = ConstantInt::get(Ty, Shift); 5583 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5584 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5585 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5586 auto *Rot = Builder.CreateOr(LShr, Shl); 5587 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5588 5589 for (auto Case : SI->cases()) { 5590 auto *Orig = Case.getCaseValue(); 5591 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5592 Case.setValue( 5593 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5594 } 5595 return true; 5596 } 5597 5598 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5599 BasicBlock *BB = SI->getParent(); 5600 5601 if (isValueEqualityComparison(SI)) { 5602 // If we only have one predecessor, and if it is a branch on this value, 5603 // see if that predecessor totally determines the outcome of this switch. 5604 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5605 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5606 return requestResimplify(); 5607 5608 Value *Cond = SI->getCondition(); 5609 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5610 if (SimplifySwitchOnSelect(SI, Select)) 5611 return requestResimplify(); 5612 5613 // If the block only contains the switch, see if we can fold the block 5614 // away into any preds. 5615 if (SI == &*BB->instructionsWithoutDebug().begin()) 5616 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5617 return requestResimplify(); 5618 } 5619 5620 // Try to transform the switch into an icmp and a branch. 5621 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5622 return requestResimplify(); 5623 5624 // Remove unreachable cases. 5625 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5626 return requestResimplify(); 5627 5628 if (switchToSelect(SI, Builder, DL, TTI)) 5629 return requestResimplify(); 5630 5631 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5632 return requestResimplify(); 5633 5634 // The conversion from switch to lookup tables results in difficult-to-analyze 5635 // code and makes pruning branches much harder. This is a problem if the 5636 // switch expression itself can still be restricted as a result of inlining or 5637 // CVP. Therefore, only apply this transformation during late stages of the 5638 // optimisation pipeline. 5639 if (Options.ConvertSwitchToLookupTable && 5640 SwitchToLookupTable(SI, Builder, DL, TTI)) 5641 return requestResimplify(); 5642 5643 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5644 return requestResimplify(); 5645 5646 return false; 5647 } 5648 5649 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5650 BasicBlock *BB = IBI->getParent(); 5651 bool Changed = false; 5652 5653 // Eliminate redundant destinations. 5654 SmallPtrSet<Value *, 8> Succs; 5655 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5656 BasicBlock *Dest = IBI->getDestination(i); 5657 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5658 Dest->removePredecessor(BB); 5659 IBI->removeDestination(i); 5660 --i; 5661 --e; 5662 Changed = true; 5663 } 5664 } 5665 5666 if (IBI->getNumDestinations() == 0) { 5667 // If the indirectbr has no successors, change it to unreachable. 5668 new UnreachableInst(IBI->getContext(), IBI); 5669 EraseTerminatorAndDCECond(IBI); 5670 return true; 5671 } 5672 5673 if (IBI->getNumDestinations() == 1) { 5674 // If the indirectbr has one successor, change it to a direct branch. 5675 BranchInst::Create(IBI->getDestination(0), IBI); 5676 EraseTerminatorAndDCECond(IBI); 5677 return true; 5678 } 5679 5680 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5681 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5682 return requestResimplify(); 5683 } 5684 return Changed; 5685 } 5686 5687 /// Given an block with only a single landing pad and a unconditional branch 5688 /// try to find another basic block which this one can be merged with. This 5689 /// handles cases where we have multiple invokes with unique landing pads, but 5690 /// a shared handler. 5691 /// 5692 /// We specifically choose to not worry about merging non-empty blocks 5693 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5694 /// practice, the optimizer produces empty landing pad blocks quite frequently 5695 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5696 /// sinking in this file) 5697 /// 5698 /// This is primarily a code size optimization. We need to avoid performing 5699 /// any transform which might inhibit optimization (such as our ability to 5700 /// specialize a particular handler via tail commoning). We do this by not 5701 /// merging any blocks which require us to introduce a phi. Since the same 5702 /// values are flowing through both blocks, we don't lose any ability to 5703 /// specialize. If anything, we make such specialization more likely. 5704 /// 5705 /// TODO - This transformation could remove entries from a phi in the target 5706 /// block when the inputs in the phi are the same for the two blocks being 5707 /// merged. In some cases, this could result in removal of the PHI entirely. 5708 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5709 BasicBlock *BB) { 5710 auto Succ = BB->getUniqueSuccessor(); 5711 assert(Succ); 5712 // If there's a phi in the successor block, we'd likely have to introduce 5713 // a phi into the merged landing pad block. 5714 if (isa<PHINode>(*Succ->begin())) 5715 return false; 5716 5717 for (BasicBlock *OtherPred : predecessors(Succ)) { 5718 if (BB == OtherPred) 5719 continue; 5720 BasicBlock::iterator I = OtherPred->begin(); 5721 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5722 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5723 continue; 5724 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5725 ; 5726 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5727 if (!BI2 || !BI2->isIdenticalTo(BI)) 5728 continue; 5729 5730 // We've found an identical block. Update our predecessors to take that 5731 // path instead and make ourselves dead. 5732 SmallPtrSet<BasicBlock *, 16> Preds; 5733 Preds.insert(pred_begin(BB), pred_end(BB)); 5734 for (BasicBlock *Pred : Preds) { 5735 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5736 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5737 "unexpected successor"); 5738 II->setUnwindDest(OtherPred); 5739 } 5740 5741 // The debug info in OtherPred doesn't cover the merged control flow that 5742 // used to go through BB. We need to delete it or update it. 5743 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5744 Instruction &Inst = *I; 5745 I++; 5746 if (isa<DbgInfoIntrinsic>(Inst)) 5747 Inst.eraseFromParent(); 5748 } 5749 5750 SmallPtrSet<BasicBlock *, 16> Succs; 5751 Succs.insert(succ_begin(BB), succ_end(BB)); 5752 for (BasicBlock *Succ : Succs) { 5753 Succ->removePredecessor(BB); 5754 } 5755 5756 IRBuilder<> Builder(BI); 5757 Builder.CreateUnreachable(); 5758 BI->eraseFromParent(); 5759 return true; 5760 } 5761 return false; 5762 } 5763 5764 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5765 IRBuilder<> &Builder) { 5766 BasicBlock *BB = BI->getParent(); 5767 BasicBlock *Succ = BI->getSuccessor(0); 5768 5769 // If the Terminator is the only non-phi instruction, simplify the block. 5770 // If LoopHeader is provided, check if the block or its successor is a loop 5771 // header. (This is for early invocations before loop simplify and 5772 // vectorization to keep canonical loop forms for nested loops. These blocks 5773 // can be eliminated when the pass is invoked later in the back-end.) 5774 // Note that if BB has only one predecessor then we do not introduce new 5775 // backedge, so we can eliminate BB. 5776 bool NeedCanonicalLoop = 5777 Options.NeedCanonicalLoop && 5778 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5779 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5780 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5781 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5782 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5783 return true; 5784 5785 // If the only instruction in the block is a seteq/setne comparison against a 5786 // constant, try to simplify the block. 5787 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5788 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5789 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5790 ; 5791 if (I->isTerminator() && 5792 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5793 return true; 5794 } 5795 5796 // See if we can merge an empty landing pad block with another which is 5797 // equivalent. 5798 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5799 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5800 ; 5801 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5802 return true; 5803 } 5804 5805 // If this basic block is ONLY a compare and a branch, and if a predecessor 5806 // branches to us and our successor, fold the comparison into the 5807 // predecessor and use logical operations to update the incoming value 5808 // for PHI nodes in common successor. 5809 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5810 return requestResimplify(); 5811 return false; 5812 } 5813 5814 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5815 BasicBlock *PredPred = nullptr; 5816 for (auto *P : predecessors(BB)) { 5817 BasicBlock *PPred = P->getSinglePredecessor(); 5818 if (!PPred || (PredPred && PredPred != PPred)) 5819 return nullptr; 5820 PredPred = PPred; 5821 } 5822 return PredPred; 5823 } 5824 5825 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5826 BasicBlock *BB = BI->getParent(); 5827 const Function *Fn = BB->getParent(); 5828 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5829 return false; 5830 5831 // Conditional branch 5832 if (isValueEqualityComparison(BI)) { 5833 // If we only have one predecessor, and if it is a branch on this value, 5834 // see if that predecessor totally determines the outcome of this 5835 // switch. 5836 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5837 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5838 return requestResimplify(); 5839 5840 // This block must be empty, except for the setcond inst, if it exists. 5841 // Ignore dbg intrinsics. 5842 auto I = BB->instructionsWithoutDebug().begin(); 5843 if (&*I == BI) { 5844 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5845 return requestResimplify(); 5846 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5847 ++I; 5848 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5849 return requestResimplify(); 5850 } 5851 } 5852 5853 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5854 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5855 return true; 5856 5857 // If this basic block has dominating predecessor blocks and the dominating 5858 // blocks' conditions imply BI's condition, we know the direction of BI. 5859 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5860 if (Imp) { 5861 // Turn this into a branch on constant. 5862 auto *OldCond = BI->getCondition(); 5863 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5864 : ConstantInt::getFalse(BB->getContext()); 5865 BI->setCondition(TorF); 5866 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5867 return requestResimplify(); 5868 } 5869 5870 // If this basic block is ONLY a compare and a branch, and if a predecessor 5871 // branches to us and one of our successors, fold the comparison into the 5872 // predecessor and use logical operations to pick the right destination. 5873 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5874 return requestResimplify(); 5875 5876 // We have a conditional branch to two blocks that are only reachable 5877 // from BI. We know that the condbr dominates the two blocks, so see if 5878 // there is any identical code in the "then" and "else" blocks. If so, we 5879 // can hoist it up to the branching block. 5880 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5881 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5882 if (HoistThenElseCodeToIf(BI, TTI)) 5883 return requestResimplify(); 5884 } else { 5885 // If Successor #1 has multiple preds, we may be able to conditionally 5886 // execute Successor #0 if it branches to Successor #1. 5887 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5888 if (Succ0TI->getNumSuccessors() == 1 && 5889 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5890 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5891 return requestResimplify(); 5892 } 5893 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5894 // If Successor #0 has multiple preds, we may be able to conditionally 5895 // execute Successor #1 if it branches to Successor #0. 5896 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5897 if (Succ1TI->getNumSuccessors() == 1 && 5898 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5899 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5900 return requestResimplify(); 5901 } 5902 5903 // If this is a branch on a phi node in the current block, thread control 5904 // through this block if any PHI node entries are constants. 5905 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5906 if (PN->getParent() == BI->getParent()) 5907 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5908 return requestResimplify(); 5909 5910 // Scan predecessor blocks for conditional branches. 5911 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5912 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5913 if (PBI != BI && PBI->isConditional()) 5914 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5915 return requestResimplify(); 5916 5917 // Look for diamond patterns. 5918 if (MergeCondStores) 5919 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5920 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5921 if (PBI != BI && PBI->isConditional()) 5922 if (mergeConditionalStores(PBI, BI, DL)) 5923 return requestResimplify(); 5924 5925 return false; 5926 } 5927 5928 /// Check if passing a value to an instruction will cause undefined behavior. 5929 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5930 Constant *C = dyn_cast<Constant>(V); 5931 if (!C) 5932 return false; 5933 5934 if (I->use_empty()) 5935 return false; 5936 5937 if (C->isNullValue() || isa<UndefValue>(C)) { 5938 // Only look at the first use, avoid hurting compile time with long uselists 5939 User *Use = *I->user_begin(); 5940 5941 // Now make sure that there are no instructions in between that can alter 5942 // control flow (eg. calls) 5943 for (BasicBlock::iterator 5944 i = ++BasicBlock::iterator(I), 5945 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5946 i != UI; ++i) 5947 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5948 return false; 5949 5950 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5951 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5952 if (GEP->getPointerOperand() == I) 5953 return passingValueIsAlwaysUndefined(V, GEP); 5954 5955 // Look through bitcasts. 5956 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5957 return passingValueIsAlwaysUndefined(V, BC); 5958 5959 // Load from null is undefined. 5960 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5961 if (!LI->isVolatile()) 5962 return !NullPointerIsDefined(LI->getFunction(), 5963 LI->getPointerAddressSpace()); 5964 5965 // Store to null is undefined. 5966 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5967 if (!SI->isVolatile()) 5968 return (!NullPointerIsDefined(SI->getFunction(), 5969 SI->getPointerAddressSpace())) && 5970 SI->getPointerOperand() == I; 5971 5972 // A call to null is undefined. 5973 if (auto CS = CallSite(Use)) 5974 return !NullPointerIsDefined(CS->getFunction()) && 5975 CS.getCalledValue() == I; 5976 } 5977 return false; 5978 } 5979 5980 /// If BB has an incoming value that will always trigger undefined behavior 5981 /// (eg. null pointer dereference), remove the branch leading here. 5982 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5983 for (PHINode &PHI : BB->phis()) 5984 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5985 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5986 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 5987 IRBuilder<> Builder(T); 5988 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5989 BB->removePredecessor(PHI.getIncomingBlock(i)); 5990 // Turn uncoditional branches into unreachables and remove the dead 5991 // destination from conditional branches. 5992 if (BI->isUnconditional()) 5993 Builder.CreateUnreachable(); 5994 else 5995 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5996 : BI->getSuccessor(0)); 5997 BI->eraseFromParent(); 5998 return true; 5999 } 6000 // TODO: SwitchInst. 6001 } 6002 6003 return false; 6004 } 6005 6006 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6007 bool Changed = false; 6008 6009 assert(BB && BB->getParent() && "Block not embedded in function!"); 6010 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6011 6012 // Remove basic blocks that have no predecessors (except the entry block)... 6013 // or that just have themself as a predecessor. These are unreachable. 6014 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6015 BB->getSinglePredecessor() == BB) { 6016 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6017 DeleteDeadBlock(BB); 6018 return true; 6019 } 6020 6021 // Check to see if we can constant propagate this terminator instruction 6022 // away... 6023 Changed |= ConstantFoldTerminator(BB, true); 6024 6025 // Check for and eliminate duplicate PHI nodes in this block. 6026 Changed |= EliminateDuplicatePHINodes(BB); 6027 6028 // Check for and remove branches that will always cause undefined behavior. 6029 Changed |= removeUndefIntroducingPredecessor(BB); 6030 6031 // Merge basic blocks into their predecessor if there is only one distinct 6032 // pred, and if there is only one distinct successor of the predecessor, and 6033 // if there are no PHI nodes. 6034 if (MergeBlockIntoPredecessor(BB)) 6035 return true; 6036 6037 if (SinkCommon && Options.SinkCommonInsts) 6038 Changed |= SinkCommonCodeFromPredecessors(BB); 6039 6040 IRBuilder<> Builder(BB); 6041 6042 // If there is a trivial two-entry PHI node in this basic block, and we can 6043 // eliminate it, do so now. 6044 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6045 if (PN->getNumIncomingValues() == 2) 6046 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6047 6048 Builder.SetInsertPoint(BB->getTerminator()); 6049 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6050 if (BI->isUnconditional()) { 6051 if (SimplifyUncondBranch(BI, Builder)) 6052 return true; 6053 } else { 6054 if (SimplifyCondBranch(BI, Builder)) 6055 return true; 6056 } 6057 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6058 if (SimplifyReturn(RI, Builder)) 6059 return true; 6060 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6061 if (SimplifyResume(RI, Builder)) 6062 return true; 6063 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6064 if (SimplifyCleanupReturn(RI)) 6065 return true; 6066 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6067 if (SimplifySwitch(SI, Builder)) 6068 return true; 6069 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6070 if (SimplifyUnreachable(UI)) 6071 return true; 6072 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6073 if (SimplifyIndirectBr(IBI)) 6074 return true; 6075 } 6076 6077 return Changed; 6078 } 6079 6080 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6081 bool Changed = false; 6082 6083 // Repeated simplify BB as long as resimplification is requested. 6084 do { 6085 Resimplify = false; 6086 6087 // Perform one round of simplifcation. Resimplify flag will be set if 6088 // another iteration is requested. 6089 Changed |= simplifyOnce(BB); 6090 } while (Resimplify); 6091 6092 return Changed; 6093 } 6094 6095 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6096 const SimplifyCFGOptions &Options, 6097 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6098 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6099 Options) 6100 .run(BB); 6101 } 6102