1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <climits>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <set>
78 #include <tuple>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 using namespace PatternMatch;
84 
85 #define DEBUG_TYPE "simplifycfg"
86 
87 // Chosen as 2 so as to be cheap, but still to have enough power to fold
88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
89 // To catch this, we need to fold a compare and a select, hence '2' being the
90 // minimum reasonable default.
91 static cl::opt<unsigned> PHINodeFoldingThreshold(
92     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
93     cl::desc(
94         "Control the amount of phi node folding to perform (default = 2)"));
95 
96 static cl::opt<bool> DupRet(
97     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
98     cl::desc("Duplicate return instructions into unconditional branches"));
99 
100 static cl::opt<bool>
101     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
102                cl::desc("Sink common instructions down to the end block"));
103 
104 static cl::opt<bool> HoistCondStores(
105     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
106     cl::desc("Hoist conditional stores if an unconditional store precedes"));
107 
108 static cl::opt<bool> MergeCondStores(
109     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
110     cl::desc("Hoist conditional stores even if an unconditional store does not "
111              "precede - hoist multiple conditional stores into a single "
112              "predicated store"));
113 
114 static cl::opt<bool> MergeCondStoresAggressively(
115     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
116     cl::desc("When merging conditional stores, do so even if the resultant "
117              "basic blocks are unlikely to be if-converted as a result"));
118 
119 static cl::opt<bool> SpeculateOneExpensiveInst(
120     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
121     cl::desc("Allow exactly one expensive instruction to be speculatively "
122              "executed"));
123 
124 static cl::opt<unsigned> MaxSpeculationDepth(
125     "max-speculation-depth", cl::Hidden, cl::init(10),
126     cl::desc("Limit maximum recursion depth when calculating costs of "
127              "speculatively executed instructions"));
128 
129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
130 STATISTIC(NumLinearMaps,
131           "Number of switch instructions turned into linear mapping");
132 STATISTIC(NumLookupTables,
133           "Number of switch instructions turned into lookup tables");
134 STATISTIC(
135     NumLookupTablesHoles,
136     "Number of switch instructions turned into lookup tables (holes checked)");
137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
138 STATISTIC(NumSinkCommons,
139           "Number of common instructions sunk down to the end block");
140 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
141 
142 namespace {
143 
144 // The first field contains the value that the switch produces when a certain
145 // case group is selected, and the second field is a vector containing the
146 // cases composing the case group.
147 using SwitchCaseResultVectorTy =
148     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
149 
150 // The first field contains the phi node that generates a result of the switch
151 // and the second field contains the value generated for a certain case in the
152 // switch for that PHI.
153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
154 
155 /// ValueEqualityComparisonCase - Represents a case of a switch.
156 struct ValueEqualityComparisonCase {
157   ConstantInt *Value;
158   BasicBlock *Dest;
159 
160   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
161       : Value(Value), Dest(Dest) {}
162 
163   bool operator<(ValueEqualityComparisonCase RHS) const {
164     // Comparing pointers is ok as we only rely on the order for uniquing.
165     return Value < RHS.Value;
166   }
167 
168   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
169 };
170 
171 class SimplifyCFGOpt {
172   const TargetTransformInfo &TTI;
173   const DataLayout &DL;
174   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
175   const SimplifyCFGOptions &Options;
176   bool Resimplify;
177 
178   Value *isValueEqualityComparison(Instruction *TI);
179   BasicBlock *GetValueEqualityComparisonCases(
180       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
181   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
182                                                      BasicBlock *Pred,
183                                                      IRBuilder<> &Builder);
184   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
185                                            IRBuilder<> &Builder);
186 
187   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
188   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
189   bool SimplifySingleResume(ResumeInst *RI);
190   bool SimplifyCommonResume(ResumeInst *RI);
191   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
192   bool SimplifyUnreachable(UnreachableInst *UI);
193   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
194   bool SimplifyIndirectBr(IndirectBrInst *IBI);
195   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
196   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 
198   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
199                                              IRBuilder<> &Builder);
200 
201 public:
202   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
203                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
204                  const SimplifyCFGOptions &Opts)
205       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
206 
207   bool run(BasicBlock *BB);
208   bool simplifyOnce(BasicBlock *BB);
209 
210   // Helper to set Resimplify and return change indication.
211   bool requestResimplify() {
212     Resimplify = true;
213     return true;
214   }
215 };
216 
217 } // end anonymous namespace
218 
219 /// Return true if it is safe to merge these two
220 /// terminator instructions together.
221 static bool
222 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
223                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
224   if (SI1 == SI2)
225     return false; // Can't merge with self!
226 
227   // It is not safe to merge these two switch instructions if they have a common
228   // successor, and if that successor has a PHI node, and if *that* PHI node has
229   // conflicting incoming values from the two switch blocks.
230   BasicBlock *SI1BB = SI1->getParent();
231   BasicBlock *SI2BB = SI2->getParent();
232 
233   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
234   bool Fail = false;
235   for (BasicBlock *Succ : successors(SI2BB))
236     if (SI1Succs.count(Succ))
237       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
238         PHINode *PN = cast<PHINode>(BBI);
239         if (PN->getIncomingValueForBlock(SI1BB) !=
240             PN->getIncomingValueForBlock(SI2BB)) {
241           if (FailBlocks)
242             FailBlocks->insert(Succ);
243           Fail = true;
244         }
245       }
246 
247   return !Fail;
248 }
249 
250 /// Return true if it is safe and profitable to merge these two terminator
251 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
252 /// store all PHI nodes in common successors.
253 static bool
254 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
255                                 Instruction *Cond,
256                                 SmallVectorImpl<PHINode *> &PhiNodes) {
257   if (SI1 == SI2)
258     return false; // Can't merge with self!
259   assert(SI1->isUnconditional() && SI2->isConditional());
260 
261   // We fold the unconditional branch if we can easily update all PHI nodes in
262   // common successors:
263   // 1> We have a constant incoming value for the conditional branch;
264   // 2> We have "Cond" as the incoming value for the unconditional branch;
265   // 3> SI2->getCondition() and Cond have same operands.
266   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
267   if (!Ci2)
268     return false;
269   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
270         Cond->getOperand(1) == Ci2->getOperand(1)) &&
271       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
272         Cond->getOperand(1) == Ci2->getOperand(0)))
273     return false;
274 
275   BasicBlock *SI1BB = SI1->getParent();
276   BasicBlock *SI2BB = SI2->getParent();
277   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
278   for (BasicBlock *Succ : successors(SI2BB))
279     if (SI1Succs.count(Succ))
280       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
281         PHINode *PN = cast<PHINode>(BBI);
282         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
283             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
284           return false;
285         PhiNodes.push_back(PN);
286       }
287   return true;
288 }
289 
290 /// Update PHI nodes in Succ to indicate that there will now be entries in it
291 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
292 /// will be the same as those coming in from ExistPred, an existing predecessor
293 /// of Succ.
294 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
295                                   BasicBlock *ExistPred) {
296   for (PHINode &PN : Succ->phis())
297     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
298 }
299 
300 /// Compute an abstract "cost" of speculating the given instruction,
301 /// which is assumed to be safe to speculate. TCC_Free means cheap,
302 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
303 /// expensive.
304 static unsigned ComputeSpeculationCost(const User *I,
305                                        const TargetTransformInfo &TTI) {
306   assert(isSafeToSpeculativelyExecute(I) &&
307          "Instruction is not safe to speculatively execute!");
308   return TTI.getUserCost(I);
309 }
310 
311 /// If we have a merge point of an "if condition" as accepted above,
312 /// return true if the specified value dominates the block.  We
313 /// don't handle the true generality of domination here, just a special case
314 /// which works well enough for us.
315 ///
316 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
317 /// see if V (which must be an instruction) and its recursive operands
318 /// that do not dominate BB have a combined cost lower than CostRemaining and
319 /// are non-trapping.  If both are true, the instruction is inserted into the
320 /// set and true is returned.
321 ///
322 /// The cost for most non-trapping instructions is defined as 1 except for
323 /// Select whose cost is 2.
324 ///
325 /// After this function returns, CostRemaining is decreased by the cost of
326 /// V plus its non-dominating operands.  If that cost is greater than
327 /// CostRemaining, false is returned and CostRemaining is undefined.
328 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
329                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
330                                 unsigned &CostRemaining,
331                                 const TargetTransformInfo &TTI,
332                                 unsigned Depth = 0) {
333   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
334   // so limit the recursion depth.
335   // TODO: While this recursion limit does prevent pathological behavior, it
336   // would be better to track visited instructions to avoid cycles.
337   if (Depth == MaxSpeculationDepth)
338     return false;
339 
340   Instruction *I = dyn_cast<Instruction>(V);
341   if (!I) {
342     // Non-instructions all dominate instructions, but not all constantexprs
343     // can be executed unconditionally.
344     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
345       if (C->canTrap())
346         return false;
347     return true;
348   }
349   BasicBlock *PBB = I->getParent();
350 
351   // We don't want to allow weird loops that might have the "if condition" in
352   // the bottom of this block.
353   if (PBB == BB)
354     return false;
355 
356   // If this instruction is defined in a block that contains an unconditional
357   // branch to BB, then it must be in the 'conditional' part of the "if
358   // statement".  If not, it definitely dominates the region.
359   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
360   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
361     return true;
362 
363   // If we have seen this instruction before, don't count it again.
364   if (AggressiveInsts.count(I))
365     return true;
366 
367   // Okay, it looks like the instruction IS in the "condition".  Check to
368   // see if it's a cheap instruction to unconditionally compute, and if it
369   // only uses stuff defined outside of the condition.  If so, hoist it out.
370   if (!isSafeToSpeculativelyExecute(I))
371     return false;
372 
373   unsigned Cost = ComputeSpeculationCost(I, TTI);
374 
375   // Allow exactly one instruction to be speculated regardless of its cost
376   // (as long as it is safe to do so).
377   // This is intended to flatten the CFG even if the instruction is a division
378   // or other expensive operation. The speculation of an expensive instruction
379   // is expected to be undone in CodeGenPrepare if the speculation has not
380   // enabled further IR optimizations.
381   if (Cost > CostRemaining &&
382       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
383     return false;
384 
385   // Avoid unsigned wrap.
386   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
387 
388   // Okay, we can only really hoist these out if their operands do
389   // not take us over the cost threshold.
390   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
391     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
392                              Depth + 1))
393       return false;
394   // Okay, it's safe to do this!  Remember this instruction.
395   AggressiveInsts.insert(I);
396   return true;
397 }
398 
399 /// Extract ConstantInt from value, looking through IntToPtr
400 /// and PointerNullValue. Return NULL if value is not a constant int.
401 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
402   // Normal constant int.
403   ConstantInt *CI = dyn_cast<ConstantInt>(V);
404   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
405     return CI;
406 
407   // This is some kind of pointer constant. Turn it into a pointer-sized
408   // ConstantInt if possible.
409   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
410 
411   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
412   if (isa<ConstantPointerNull>(V))
413     return ConstantInt::get(PtrTy, 0);
414 
415   // IntToPtr const int.
416   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
417     if (CE->getOpcode() == Instruction::IntToPtr)
418       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
419         // The constant is very likely to have the right type already.
420         if (CI->getType() == PtrTy)
421           return CI;
422         else
423           return cast<ConstantInt>(
424               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
425       }
426   return nullptr;
427 }
428 
429 namespace {
430 
431 /// Given a chain of or (||) or and (&&) comparison of a value against a
432 /// constant, this will try to recover the information required for a switch
433 /// structure.
434 /// It will depth-first traverse the chain of comparison, seeking for patterns
435 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
436 /// representing the different cases for the switch.
437 /// Note that if the chain is composed of '||' it will build the set of elements
438 /// that matches the comparisons (i.e. any of this value validate the chain)
439 /// while for a chain of '&&' it will build the set elements that make the test
440 /// fail.
441 struct ConstantComparesGatherer {
442   const DataLayout &DL;
443 
444   /// Value found for the switch comparison
445   Value *CompValue = nullptr;
446 
447   /// Extra clause to be checked before the switch
448   Value *Extra = nullptr;
449 
450   /// Set of integers to match in switch
451   SmallVector<ConstantInt *, 8> Vals;
452 
453   /// Number of comparisons matched in the and/or chain
454   unsigned UsedICmps = 0;
455 
456   /// Construct and compute the result for the comparison instruction Cond
457   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
458     gather(Cond);
459   }
460 
461   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
462   ConstantComparesGatherer &
463   operator=(const ConstantComparesGatherer &) = delete;
464 
465 private:
466   /// Try to set the current value used for the comparison, it succeeds only if
467   /// it wasn't set before or if the new value is the same as the old one
468   bool setValueOnce(Value *NewVal) {
469     if (CompValue && CompValue != NewVal)
470       return false;
471     CompValue = NewVal;
472     return (CompValue != nullptr);
473   }
474 
475   /// Try to match Instruction "I" as a comparison against a constant and
476   /// populates the array Vals with the set of values that match (or do not
477   /// match depending on isEQ).
478   /// Return false on failure. On success, the Value the comparison matched
479   /// against is placed in CompValue.
480   /// If CompValue is already set, the function is expected to fail if a match
481   /// is found but the value compared to is different.
482   bool matchInstruction(Instruction *I, bool isEQ) {
483     // If this is an icmp against a constant, handle this as one of the cases.
484     ICmpInst *ICI;
485     ConstantInt *C;
486     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
487           (C = GetConstantInt(I->getOperand(1), DL)))) {
488       return false;
489     }
490 
491     Value *RHSVal;
492     const APInt *RHSC;
493 
494     // Pattern match a special case
495     // (x & ~2^z) == y --> x == y || x == y|2^z
496     // This undoes a transformation done by instcombine to fuse 2 compares.
497     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
498       // It's a little bit hard to see why the following transformations are
499       // correct. Here is a CVC3 program to verify them for 64-bit values:
500 
501       /*
502          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
503          x    : BITVECTOR(64);
504          y    : BITVECTOR(64);
505          z    : BITVECTOR(64);
506          mask : BITVECTOR(64) = BVSHL(ONE, z);
507          QUERY( (y & ~mask = y) =>
508                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
509          );
510          QUERY( (y |  mask = y) =>
511                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
512          );
513       */
514 
515       // Please note that each pattern must be a dual implication (<--> or
516       // iff). One directional implication can create spurious matches. If the
517       // implication is only one-way, an unsatisfiable condition on the left
518       // side can imply a satisfiable condition on the right side. Dual
519       // implication ensures that satisfiable conditions are transformed to
520       // other satisfiable conditions and unsatisfiable conditions are
521       // transformed to other unsatisfiable conditions.
522 
523       // Here is a concrete example of a unsatisfiable condition on the left
524       // implying a satisfiable condition on the right:
525       //
526       // mask = (1 << z)
527       // (x & ~mask) == y  --> (x == y || x == (y | mask))
528       //
529       // Substituting y = 3, z = 0 yields:
530       // (x & -2) == 3 --> (x == 3 || x == 2)
531 
532       // Pattern match a special case:
533       /*
534         QUERY( (y & ~mask = y) =>
535                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
536         );
537       */
538       if (match(ICI->getOperand(0),
539                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
540         APInt Mask = ~*RHSC;
541         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
542           // If we already have a value for the switch, it has to match!
543           if (!setValueOnce(RHSVal))
544             return false;
545 
546           Vals.push_back(C);
547           Vals.push_back(
548               ConstantInt::get(C->getContext(),
549                                C->getValue() | Mask));
550           UsedICmps++;
551           return true;
552         }
553       }
554 
555       // Pattern match a special case:
556       /*
557         QUERY( (y |  mask = y) =>
558                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
559         );
560       */
561       if (match(ICI->getOperand(0),
562                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
563         APInt Mask = *RHSC;
564         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
565           // If we already have a value for the switch, it has to match!
566           if (!setValueOnce(RHSVal))
567             return false;
568 
569           Vals.push_back(C);
570           Vals.push_back(ConstantInt::get(C->getContext(),
571                                           C->getValue() & ~Mask));
572           UsedICmps++;
573           return true;
574         }
575       }
576 
577       // If we already have a value for the switch, it has to match!
578       if (!setValueOnce(ICI->getOperand(0)))
579         return false;
580 
581       UsedICmps++;
582       Vals.push_back(C);
583       return ICI->getOperand(0);
584     }
585 
586     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
587     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
588         ICI->getPredicate(), C->getValue());
589 
590     // Shift the range if the compare is fed by an add. This is the range
591     // compare idiom as emitted by instcombine.
592     Value *CandidateVal = I->getOperand(0);
593     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
594       Span = Span.subtract(*RHSC);
595       CandidateVal = RHSVal;
596     }
597 
598     // If this is an and/!= check, then we are looking to build the set of
599     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
600     // x != 0 && x != 1.
601     if (!isEQ)
602       Span = Span.inverse();
603 
604     // If there are a ton of values, we don't want to make a ginormous switch.
605     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
606       return false;
607     }
608 
609     // If we already have a value for the switch, it has to match!
610     if (!setValueOnce(CandidateVal))
611       return false;
612 
613     // Add all values from the range to the set
614     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
615       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
616 
617     UsedICmps++;
618     return true;
619   }
620 
621   /// Given a potentially 'or'd or 'and'd together collection of icmp
622   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
623   /// the value being compared, and stick the list constants into the Vals
624   /// vector.
625   /// One "Extra" case is allowed to differ from the other.
626   void gather(Value *V) {
627     Instruction *I = dyn_cast<Instruction>(V);
628     bool isEQ = (I->getOpcode() == Instruction::Or);
629 
630     // Keep a stack (SmallVector for efficiency) for depth-first traversal
631     SmallVector<Value *, 8> DFT;
632     SmallPtrSet<Value *, 8> Visited;
633 
634     // Initialize
635     Visited.insert(V);
636     DFT.push_back(V);
637 
638     while (!DFT.empty()) {
639       V = DFT.pop_back_val();
640 
641       if (Instruction *I = dyn_cast<Instruction>(V)) {
642         // If it is a || (or && depending on isEQ), process the operands.
643         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
644           if (Visited.insert(I->getOperand(1)).second)
645             DFT.push_back(I->getOperand(1));
646           if (Visited.insert(I->getOperand(0)).second)
647             DFT.push_back(I->getOperand(0));
648           continue;
649         }
650 
651         // Try to match the current instruction
652         if (matchInstruction(I, isEQ))
653           // Match succeed, continue the loop
654           continue;
655       }
656 
657       // One element of the sequence of || (or &&) could not be match as a
658       // comparison against the same value as the others.
659       // We allow only one "Extra" case to be checked before the switch
660       if (!Extra) {
661         Extra = V;
662         continue;
663       }
664       // Failed to parse a proper sequence, abort now
665       CompValue = nullptr;
666       break;
667     }
668   }
669 };
670 
671 } // end anonymous namespace
672 
673 static void EraseTerminatorAndDCECond(Instruction *TI) {
674   Instruction *Cond = nullptr;
675   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
676     Cond = dyn_cast<Instruction>(SI->getCondition());
677   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
678     if (BI->isConditional())
679       Cond = dyn_cast<Instruction>(BI->getCondition());
680   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
681     Cond = dyn_cast<Instruction>(IBI->getAddress());
682   }
683 
684   TI->eraseFromParent();
685   if (Cond)
686     RecursivelyDeleteTriviallyDeadInstructions(Cond);
687 }
688 
689 /// Return true if the specified terminator checks
690 /// to see if a value is equal to constant integer value.
691 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
692   Value *CV = nullptr;
693   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
694     // Do not permit merging of large switch instructions into their
695     // predecessors unless there is only one predecessor.
696     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
697       CV = SI->getCondition();
698   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
699     if (BI->isConditional() && BI->getCondition()->hasOneUse())
700       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
701         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
702           CV = ICI->getOperand(0);
703       }
704 
705   // Unwrap any lossless ptrtoint cast.
706   if (CV) {
707     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
708       Value *Ptr = PTII->getPointerOperand();
709       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
710         CV = Ptr;
711     }
712   }
713   return CV;
714 }
715 
716 /// Given a value comparison instruction,
717 /// decode all of the 'cases' that it represents and return the 'default' block.
718 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
719     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
720   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
721     Cases.reserve(SI->getNumCases());
722     for (auto Case : SI->cases())
723       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
724                                                   Case.getCaseSuccessor()));
725     return SI->getDefaultDest();
726   }
727 
728   BranchInst *BI = cast<BranchInst>(TI);
729   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
730   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
731   Cases.push_back(ValueEqualityComparisonCase(
732       GetConstantInt(ICI->getOperand(1), DL), Succ));
733   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
734 }
735 
736 /// Given a vector of bb/value pairs, remove any entries
737 /// in the list that match the specified block.
738 static void
739 EliminateBlockCases(BasicBlock *BB,
740                     std::vector<ValueEqualityComparisonCase> &Cases) {
741   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
742 }
743 
744 /// Return true if there are any keys in C1 that exist in C2 as well.
745 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
746                           std::vector<ValueEqualityComparisonCase> &C2) {
747   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
748 
749   // Make V1 be smaller than V2.
750   if (V1->size() > V2->size())
751     std::swap(V1, V2);
752 
753   if (V1->empty())
754     return false;
755   if (V1->size() == 1) {
756     // Just scan V2.
757     ConstantInt *TheVal = (*V1)[0].Value;
758     for (unsigned i = 0, e = V2->size(); i != e; ++i)
759       if (TheVal == (*V2)[i].Value)
760         return true;
761   }
762 
763   // Otherwise, just sort both lists and compare element by element.
764   array_pod_sort(V1->begin(), V1->end());
765   array_pod_sort(V2->begin(), V2->end());
766   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
767   while (i1 != e1 && i2 != e2) {
768     if ((*V1)[i1].Value == (*V2)[i2].Value)
769       return true;
770     if ((*V1)[i1].Value < (*V2)[i2].Value)
771       ++i1;
772     else
773       ++i2;
774   }
775   return false;
776 }
777 
778 // Set branch weights on SwitchInst. This sets the metadata if there is at
779 // least one non-zero weight.
780 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
781   // Check that there is at least one non-zero weight. Otherwise, pass
782   // nullptr to setMetadata which will erase the existing metadata.
783   MDNode *N = nullptr;
784   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
785     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
786   SI->setMetadata(LLVMContext::MD_prof, N);
787 }
788 
789 // Similar to the above, but for branch and select instructions that take
790 // exactly 2 weights.
791 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
792                              uint32_t FalseWeight) {
793   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
794   // Check that there is at least one non-zero weight. Otherwise, pass
795   // nullptr to setMetadata which will erase the existing metadata.
796   MDNode *N = nullptr;
797   if (TrueWeight || FalseWeight)
798     N = MDBuilder(I->getParent()->getContext())
799             .createBranchWeights(TrueWeight, FalseWeight);
800   I->setMetadata(LLVMContext::MD_prof, N);
801 }
802 
803 /// If TI is known to be a terminator instruction and its block is known to
804 /// only have a single predecessor block, check to see if that predecessor is
805 /// also a value comparison with the same value, and if that comparison
806 /// determines the outcome of this comparison. If so, simplify TI. This does a
807 /// very limited form of jump threading.
808 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
809     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
810   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
811   if (!PredVal)
812     return false; // Not a value comparison in predecessor.
813 
814   Value *ThisVal = isValueEqualityComparison(TI);
815   assert(ThisVal && "This isn't a value comparison!!");
816   if (ThisVal != PredVal)
817     return false; // Different predicates.
818 
819   // TODO: Preserve branch weight metadata, similarly to how
820   // FoldValueComparisonIntoPredecessors preserves it.
821 
822   // Find out information about when control will move from Pred to TI's block.
823   std::vector<ValueEqualityComparisonCase> PredCases;
824   BasicBlock *PredDef =
825       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
826   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
827 
828   // Find information about how control leaves this block.
829   std::vector<ValueEqualityComparisonCase> ThisCases;
830   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
831   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
832 
833   // If TI's block is the default block from Pred's comparison, potentially
834   // simplify TI based on this knowledge.
835   if (PredDef == TI->getParent()) {
836     // If we are here, we know that the value is none of those cases listed in
837     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
838     // can simplify TI.
839     if (!ValuesOverlap(PredCases, ThisCases))
840       return false;
841 
842     if (isa<BranchInst>(TI)) {
843       // Okay, one of the successors of this condbr is dead.  Convert it to a
844       // uncond br.
845       assert(ThisCases.size() == 1 && "Branch can only have one case!");
846       // Insert the new branch.
847       Instruction *NI = Builder.CreateBr(ThisDef);
848       (void)NI;
849 
850       // Remove PHI node entries for the dead edge.
851       ThisCases[0].Dest->removePredecessor(TI->getParent());
852 
853       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
854                         << "Through successor TI: " << *TI << "Leaving: " << *NI
855                         << "\n");
856 
857       EraseTerminatorAndDCECond(TI);
858       return true;
859     }
860 
861     SwitchInst *SI = cast<SwitchInst>(TI);
862     // Okay, TI has cases that are statically dead, prune them away.
863     SmallPtrSet<Constant *, 16> DeadCases;
864     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
865       DeadCases.insert(PredCases[i].Value);
866 
867     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
868                       << "Through successor TI: " << *TI);
869 
870     // Collect branch weights into a vector.
871     SmallVector<uint32_t, 8> Weights;
872     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
873     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
874     if (HasWeight)
875       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
876            ++MD_i) {
877         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
878         Weights.push_back(CI->getValue().getZExtValue());
879       }
880     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
881       --i;
882       if (DeadCases.count(i->getCaseValue())) {
883         if (HasWeight) {
884           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
885           Weights.pop_back();
886         }
887         i->getCaseSuccessor()->removePredecessor(TI->getParent());
888         SI->removeCase(i);
889       }
890     }
891     if (HasWeight && Weights.size() >= 2)
892       setBranchWeights(SI, Weights);
893 
894     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
895     return true;
896   }
897 
898   // Otherwise, TI's block must correspond to some matched value.  Find out
899   // which value (or set of values) this is.
900   ConstantInt *TIV = nullptr;
901   BasicBlock *TIBB = TI->getParent();
902   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
903     if (PredCases[i].Dest == TIBB) {
904       if (TIV)
905         return false; // Cannot handle multiple values coming to this block.
906       TIV = PredCases[i].Value;
907     }
908   assert(TIV && "No edge from pred to succ?");
909 
910   // Okay, we found the one constant that our value can be if we get into TI's
911   // BB.  Find out which successor will unconditionally be branched to.
912   BasicBlock *TheRealDest = nullptr;
913   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
914     if (ThisCases[i].Value == TIV) {
915       TheRealDest = ThisCases[i].Dest;
916       break;
917     }
918 
919   // If not handled by any explicit cases, it is handled by the default case.
920   if (!TheRealDest)
921     TheRealDest = ThisDef;
922 
923   // Remove PHI node entries for dead edges.
924   BasicBlock *CheckEdge = TheRealDest;
925   for (BasicBlock *Succ : successors(TIBB))
926     if (Succ != CheckEdge)
927       Succ->removePredecessor(TIBB);
928     else
929       CheckEdge = nullptr;
930 
931   // Insert the new branch.
932   Instruction *NI = Builder.CreateBr(TheRealDest);
933   (void)NI;
934 
935   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
936                     << "Through successor TI: " << *TI << "Leaving: " << *NI
937                     << "\n");
938 
939   EraseTerminatorAndDCECond(TI);
940   return true;
941 }
942 
943 namespace {
944 
945 /// This class implements a stable ordering of constant
946 /// integers that does not depend on their address.  This is important for
947 /// applications that sort ConstantInt's to ensure uniqueness.
948 struct ConstantIntOrdering {
949   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
950     return LHS->getValue().ult(RHS->getValue());
951   }
952 };
953 
954 } // end anonymous namespace
955 
956 static int ConstantIntSortPredicate(ConstantInt *const *P1,
957                                     ConstantInt *const *P2) {
958   const ConstantInt *LHS = *P1;
959   const ConstantInt *RHS = *P2;
960   if (LHS == RHS)
961     return 0;
962   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
963 }
964 
965 static inline bool HasBranchWeights(const Instruction *I) {
966   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
967   if (ProfMD && ProfMD->getOperand(0))
968     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
969       return MDS->getString().equals("branch_weights");
970 
971   return false;
972 }
973 
974 /// Get Weights of a given terminator, the default weight is at the front
975 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
976 /// metadata.
977 static void GetBranchWeights(Instruction *TI,
978                              SmallVectorImpl<uint64_t> &Weights) {
979   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
980   assert(MD);
981   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
982     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
983     Weights.push_back(CI->getValue().getZExtValue());
984   }
985 
986   // If TI is a conditional eq, the default case is the false case,
987   // and the corresponding branch-weight data is at index 2. We swap the
988   // default weight to be the first entry.
989   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
990     assert(Weights.size() == 2);
991     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
992     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
993       std::swap(Weights.front(), Weights.back());
994   }
995 }
996 
997 /// Keep halving the weights until all can fit in uint32_t.
998 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
999   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1000   if (Max > UINT_MAX) {
1001     unsigned Offset = 32 - countLeadingZeros(Max);
1002     for (uint64_t &I : Weights)
1003       I >>= Offset;
1004   }
1005 }
1006 
1007 /// The specified terminator is a value equality comparison instruction
1008 /// (either a switch or a branch on "X == c").
1009 /// See if any of the predecessors of the terminator block are value comparisons
1010 /// on the same value.  If so, and if safe to do so, fold them together.
1011 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1012                                                          IRBuilder<> &Builder) {
1013   BasicBlock *BB = TI->getParent();
1014   Value *CV = isValueEqualityComparison(TI); // CondVal
1015   assert(CV && "Not a comparison?");
1016   bool Changed = false;
1017 
1018   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1019   while (!Preds.empty()) {
1020     BasicBlock *Pred = Preds.pop_back_val();
1021 
1022     // See if the predecessor is a comparison with the same value.
1023     Instruction *PTI = Pred->getTerminator();
1024     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1025 
1026     if (PCV == CV && TI != PTI) {
1027       SmallSetVector<BasicBlock*, 4> FailBlocks;
1028       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1029         for (auto *Succ : FailBlocks) {
1030           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1031             return false;
1032         }
1033       }
1034 
1035       // Figure out which 'cases' to copy from SI to PSI.
1036       std::vector<ValueEqualityComparisonCase> BBCases;
1037       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1038 
1039       std::vector<ValueEqualityComparisonCase> PredCases;
1040       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1041 
1042       // Based on whether the default edge from PTI goes to BB or not, fill in
1043       // PredCases and PredDefault with the new switch cases we would like to
1044       // build.
1045       SmallVector<BasicBlock *, 8> NewSuccessors;
1046 
1047       // Update the branch weight metadata along the way
1048       SmallVector<uint64_t, 8> Weights;
1049       bool PredHasWeights = HasBranchWeights(PTI);
1050       bool SuccHasWeights = HasBranchWeights(TI);
1051 
1052       if (PredHasWeights) {
1053         GetBranchWeights(PTI, Weights);
1054         // branch-weight metadata is inconsistent here.
1055         if (Weights.size() != 1 + PredCases.size())
1056           PredHasWeights = SuccHasWeights = false;
1057       } else if (SuccHasWeights)
1058         // If there are no predecessor weights but there are successor weights,
1059         // populate Weights with 1, which will later be scaled to the sum of
1060         // successor's weights
1061         Weights.assign(1 + PredCases.size(), 1);
1062 
1063       SmallVector<uint64_t, 8> SuccWeights;
1064       if (SuccHasWeights) {
1065         GetBranchWeights(TI, SuccWeights);
1066         // branch-weight metadata is inconsistent here.
1067         if (SuccWeights.size() != 1 + BBCases.size())
1068           PredHasWeights = SuccHasWeights = false;
1069       } else if (PredHasWeights)
1070         SuccWeights.assign(1 + BBCases.size(), 1);
1071 
1072       if (PredDefault == BB) {
1073         // If this is the default destination from PTI, only the edges in TI
1074         // that don't occur in PTI, or that branch to BB will be activated.
1075         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1076         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1077           if (PredCases[i].Dest != BB)
1078             PTIHandled.insert(PredCases[i].Value);
1079           else {
1080             // The default destination is BB, we don't need explicit targets.
1081             std::swap(PredCases[i], PredCases.back());
1082 
1083             if (PredHasWeights || SuccHasWeights) {
1084               // Increase weight for the default case.
1085               Weights[0] += Weights[i + 1];
1086               std::swap(Weights[i + 1], Weights.back());
1087               Weights.pop_back();
1088             }
1089 
1090             PredCases.pop_back();
1091             --i;
1092             --e;
1093           }
1094 
1095         // Reconstruct the new switch statement we will be building.
1096         if (PredDefault != BBDefault) {
1097           PredDefault->removePredecessor(Pred);
1098           PredDefault = BBDefault;
1099           NewSuccessors.push_back(BBDefault);
1100         }
1101 
1102         unsigned CasesFromPred = Weights.size();
1103         uint64_t ValidTotalSuccWeight = 0;
1104         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1105           if (!PTIHandled.count(BBCases[i].Value) &&
1106               BBCases[i].Dest != BBDefault) {
1107             PredCases.push_back(BBCases[i]);
1108             NewSuccessors.push_back(BBCases[i].Dest);
1109             if (SuccHasWeights || PredHasWeights) {
1110               // The default weight is at index 0, so weight for the ith case
1111               // should be at index i+1. Scale the cases from successor by
1112               // PredDefaultWeight (Weights[0]).
1113               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1114               ValidTotalSuccWeight += SuccWeights[i + 1];
1115             }
1116           }
1117 
1118         if (SuccHasWeights || PredHasWeights) {
1119           ValidTotalSuccWeight += SuccWeights[0];
1120           // Scale the cases from predecessor by ValidTotalSuccWeight.
1121           for (unsigned i = 1; i < CasesFromPred; ++i)
1122             Weights[i] *= ValidTotalSuccWeight;
1123           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1124           Weights[0] *= SuccWeights[0];
1125         }
1126       } else {
1127         // If this is not the default destination from PSI, only the edges
1128         // in SI that occur in PSI with a destination of BB will be
1129         // activated.
1130         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1131         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1132         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1133           if (PredCases[i].Dest == BB) {
1134             PTIHandled.insert(PredCases[i].Value);
1135 
1136             if (PredHasWeights || SuccHasWeights) {
1137               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1138               std::swap(Weights[i + 1], Weights.back());
1139               Weights.pop_back();
1140             }
1141 
1142             std::swap(PredCases[i], PredCases.back());
1143             PredCases.pop_back();
1144             --i;
1145             --e;
1146           }
1147 
1148         // Okay, now we know which constants were sent to BB from the
1149         // predecessor.  Figure out where they will all go now.
1150         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1151           if (PTIHandled.count(BBCases[i].Value)) {
1152             // If this is one we are capable of getting...
1153             if (PredHasWeights || SuccHasWeights)
1154               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1155             PredCases.push_back(BBCases[i]);
1156             NewSuccessors.push_back(BBCases[i].Dest);
1157             PTIHandled.erase(
1158                 BBCases[i].Value); // This constant is taken care of
1159           }
1160 
1161         // If there are any constants vectored to BB that TI doesn't handle,
1162         // they must go to the default destination of TI.
1163         for (ConstantInt *I : PTIHandled) {
1164           if (PredHasWeights || SuccHasWeights)
1165             Weights.push_back(WeightsForHandled[I]);
1166           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1167           NewSuccessors.push_back(BBDefault);
1168         }
1169       }
1170 
1171       // Okay, at this point, we know which new successor Pred will get.  Make
1172       // sure we update the number of entries in the PHI nodes for these
1173       // successors.
1174       for (BasicBlock *NewSuccessor : NewSuccessors)
1175         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1176 
1177       Builder.SetInsertPoint(PTI);
1178       // Convert pointer to int before we switch.
1179       if (CV->getType()->isPointerTy()) {
1180         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1181                                     "magicptr");
1182       }
1183 
1184       // Now that the successors are updated, create the new Switch instruction.
1185       SwitchInst *NewSI =
1186           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1187       NewSI->setDebugLoc(PTI->getDebugLoc());
1188       for (ValueEqualityComparisonCase &V : PredCases)
1189         NewSI->addCase(V.Value, V.Dest);
1190 
1191       if (PredHasWeights || SuccHasWeights) {
1192         // Halve the weights if any of them cannot fit in an uint32_t
1193         FitWeights(Weights);
1194 
1195         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1196 
1197         setBranchWeights(NewSI, MDWeights);
1198       }
1199 
1200       EraseTerminatorAndDCECond(PTI);
1201 
1202       // Okay, last check.  If BB is still a successor of PSI, then we must
1203       // have an infinite loop case.  If so, add an infinitely looping block
1204       // to handle the case to preserve the behavior of the code.
1205       BasicBlock *InfLoopBlock = nullptr;
1206       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1207         if (NewSI->getSuccessor(i) == BB) {
1208           if (!InfLoopBlock) {
1209             // Insert it at the end of the function, because it's either code,
1210             // or it won't matter if it's hot. :)
1211             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1212                                               BB->getParent());
1213             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1214           }
1215           NewSI->setSuccessor(i, InfLoopBlock);
1216         }
1217 
1218       Changed = true;
1219     }
1220   }
1221   return Changed;
1222 }
1223 
1224 // If we would need to insert a select that uses the value of this invoke
1225 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1226 // can't hoist the invoke, as there is nowhere to put the select in this case.
1227 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1228                                 Instruction *I1, Instruction *I2) {
1229   for (BasicBlock *Succ : successors(BB1)) {
1230     for (const PHINode &PN : Succ->phis()) {
1231       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1232       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1233       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1234         return false;
1235       }
1236     }
1237   }
1238   return true;
1239 }
1240 
1241 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1242 
1243 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1244 /// in the two blocks up into the branch block. The caller of this function
1245 /// guarantees that BI's block dominates BB1 and BB2.
1246 static bool HoistThenElseCodeToIf(BranchInst *BI,
1247                                   const TargetTransformInfo &TTI) {
1248   // This does very trivial matching, with limited scanning, to find identical
1249   // instructions in the two blocks.  In particular, we don't want to get into
1250   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1251   // such, we currently just scan for obviously identical instructions in an
1252   // identical order.
1253   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1254   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1255 
1256   BasicBlock::iterator BB1_Itr = BB1->begin();
1257   BasicBlock::iterator BB2_Itr = BB2->begin();
1258 
1259   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1260   // Skip debug info if it is not identical.
1261   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1262   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1263   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1264     while (isa<DbgInfoIntrinsic>(I1))
1265       I1 = &*BB1_Itr++;
1266     while (isa<DbgInfoIntrinsic>(I2))
1267       I2 = &*BB2_Itr++;
1268   }
1269   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1270       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1271     return false;
1272 
1273   BasicBlock *BIParent = BI->getParent();
1274 
1275   bool Changed = false;
1276   do {
1277     // If we are hoisting the terminator instruction, don't move one (making a
1278     // broken BB), instead clone it, and remove BI.
1279     if (I1->isTerminator())
1280       goto HoistTerminator;
1281 
1282     // If we're going to hoist a call, make sure that the two instructions we're
1283     // commoning/hoisting are both marked with musttail, or neither of them is
1284     // marked as such. Otherwise, we might end up in a situation where we hoist
1285     // from a block where the terminator is a `ret` to a block where the terminator
1286     // is a `br`, and `musttail` calls expect to be followed by a return.
1287     auto *C1 = dyn_cast<CallInst>(I1);
1288     auto *C2 = dyn_cast<CallInst>(I2);
1289     if (C1 && C2)
1290       if (C1->isMustTailCall() != C2->isMustTailCall())
1291         return Changed;
1292 
1293     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1294       return Changed;
1295 
1296     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1297       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1298       // The debug location is an integral part of a debug info intrinsic
1299       // and can't be separated from it or replaced.  Instead of attempting
1300       // to merge locations, simply hoist both copies of the intrinsic.
1301       BIParent->getInstList().splice(BI->getIterator(),
1302                                      BB1->getInstList(), I1);
1303       BIParent->getInstList().splice(BI->getIterator(),
1304                                      BB2->getInstList(), I2);
1305       Changed = true;
1306     } else {
1307       // For a normal instruction, we just move one to right before the branch,
1308       // then replace all uses of the other with the first.  Finally, we remove
1309       // the now redundant second instruction.
1310       BIParent->getInstList().splice(BI->getIterator(),
1311                                      BB1->getInstList(), I1);
1312       if (!I2->use_empty())
1313         I2->replaceAllUsesWith(I1);
1314       I1->andIRFlags(I2);
1315       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1316                              LLVMContext::MD_range,
1317                              LLVMContext::MD_fpmath,
1318                              LLVMContext::MD_invariant_load,
1319                              LLVMContext::MD_nonnull,
1320                              LLVMContext::MD_invariant_group,
1321                              LLVMContext::MD_align,
1322                              LLVMContext::MD_dereferenceable,
1323                              LLVMContext::MD_dereferenceable_or_null,
1324                              LLVMContext::MD_mem_parallel_loop_access};
1325       combineMetadata(I1, I2, KnownIDs, true);
1326 
1327       // I1 and I2 are being combined into a single instruction.  Its debug
1328       // location is the merged locations of the original instructions.
1329       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1330 
1331       I2->eraseFromParent();
1332       Changed = true;
1333     }
1334 
1335     I1 = &*BB1_Itr++;
1336     I2 = &*BB2_Itr++;
1337     // Skip debug info if it is not identical.
1338     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1339     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1340     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1341       while (isa<DbgInfoIntrinsic>(I1))
1342         I1 = &*BB1_Itr++;
1343       while (isa<DbgInfoIntrinsic>(I2))
1344         I2 = &*BB2_Itr++;
1345     }
1346   } while (I1->isIdenticalToWhenDefined(I2));
1347 
1348   return true;
1349 
1350 HoistTerminator:
1351   // It may not be possible to hoist an invoke.
1352   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1353     return Changed;
1354 
1355   for (BasicBlock *Succ : successors(BB1)) {
1356     for (PHINode &PN : Succ->phis()) {
1357       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1358       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1359       if (BB1V == BB2V)
1360         continue;
1361 
1362       // Check for passingValueIsAlwaysUndefined here because we would rather
1363       // eliminate undefined control flow then converting it to a select.
1364       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1365           passingValueIsAlwaysUndefined(BB2V, &PN))
1366         return Changed;
1367 
1368       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1369         return Changed;
1370       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1371         return Changed;
1372     }
1373   }
1374 
1375   // As the parent basic block terminator is a branch instruction which is
1376   // removed at the end of the current transformation, use its previous
1377   // non-debug instruction, as the reference insertion point, which will
1378   // provide the debug location for generated select instructions. For BBs
1379   // with only debug instructions, use an empty debug location.
1380   Instruction *InsertPt =
1381       BIParent->getTerminator()->getPrevNonDebugInstruction();
1382 
1383   // Okay, it is safe to hoist the terminator.
1384   Instruction *NT = I1->clone();
1385   BIParent->getInstList().insert(BI->getIterator(), NT);
1386   if (!NT->getType()->isVoidTy()) {
1387     I1->replaceAllUsesWith(NT);
1388     I2->replaceAllUsesWith(NT);
1389     NT->takeName(I1);
1390   }
1391 
1392   // Ensure terminator gets a debug location, even an unknown one, in case
1393   // it involves inlinable calls.
1394   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1395 
1396   IRBuilder<NoFolder> Builder(NT);
1397   // If an earlier instruction in this BB had a location, adopt it, otherwise
1398   // clear debug locations.
1399   Builder.SetCurrentDebugLocation(InsertPt ? InsertPt->getDebugLoc()
1400                                            : DebugLoc());
1401 
1402   // Hoisting one of the terminators from our successor is a great thing.
1403   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1404   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1405   // nodes, so we insert select instruction to compute the final result.
1406   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1407   for (BasicBlock *Succ : successors(BB1)) {
1408     for (PHINode &PN : Succ->phis()) {
1409       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1410       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1411       if (BB1V == BB2V)
1412         continue;
1413 
1414       // These values do not agree.  Insert a select instruction before NT
1415       // that determines the right value.
1416       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1417       if (!SI)
1418         SI = cast<SelectInst>(
1419             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1420                                  BB1V->getName() + "." + BB2V->getName(), BI));
1421 
1422       // Make the PHI node use the select for all incoming values for BB1/BB2
1423       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1424         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1425           PN.setIncomingValue(i, SI);
1426     }
1427   }
1428 
1429   // Update any PHI nodes in our new successors.
1430   for (BasicBlock *Succ : successors(BB1))
1431     AddPredecessorToBlock(Succ, BIParent, BB1);
1432 
1433   EraseTerminatorAndDCECond(BI);
1434   return true;
1435 }
1436 
1437 // All instructions in Insts belong to different blocks that all unconditionally
1438 // branch to a common successor. Analyze each instruction and return true if it
1439 // would be possible to sink them into their successor, creating one common
1440 // instruction instead. For every value that would be required to be provided by
1441 // PHI node (because an operand varies in each input block), add to PHIOperands.
1442 static bool canSinkInstructions(
1443     ArrayRef<Instruction *> Insts,
1444     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1445   // Prune out obviously bad instructions to move. Any non-store instruction
1446   // must have exactly one use, and we check later that use is by a single,
1447   // common PHI instruction in the successor.
1448   for (auto *I : Insts) {
1449     // These instructions may change or break semantics if moved.
1450     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1451         I->getType()->isTokenTy())
1452       return false;
1453 
1454     // Conservatively return false if I is an inline-asm instruction. Sinking
1455     // and merging inline-asm instructions can potentially create arguments
1456     // that cannot satisfy the inline-asm constraints.
1457     if (const auto *C = dyn_cast<CallInst>(I))
1458       if (C->isInlineAsm())
1459         return false;
1460 
1461     // Everything must have only one use too, apart from stores which
1462     // have no uses.
1463     if (!isa<StoreInst>(I) && !I->hasOneUse())
1464       return false;
1465   }
1466 
1467   const Instruction *I0 = Insts.front();
1468   for (auto *I : Insts)
1469     if (!I->isSameOperationAs(I0))
1470       return false;
1471 
1472   // All instructions in Insts are known to be the same opcode. If they aren't
1473   // stores, check the only user of each is a PHI or in the same block as the
1474   // instruction, because if a user is in the same block as an instruction
1475   // we're contemplating sinking, it must already be determined to be sinkable.
1476   if (!isa<StoreInst>(I0)) {
1477     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1478     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1479     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1480           auto *U = cast<Instruction>(*I->user_begin());
1481           return (PNUse &&
1482                   PNUse->getParent() == Succ &&
1483                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1484                  U->getParent() == I->getParent();
1485         }))
1486       return false;
1487   }
1488 
1489   // Because SROA can't handle speculating stores of selects, try not
1490   // to sink loads or stores of allocas when we'd have to create a PHI for
1491   // the address operand. Also, because it is likely that loads or stores
1492   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1493   // This can cause code churn which can have unintended consequences down
1494   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1495   // FIXME: This is a workaround for a deficiency in SROA - see
1496   // https://llvm.org/bugs/show_bug.cgi?id=30188
1497   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1498         return isa<AllocaInst>(I->getOperand(1));
1499       }))
1500     return false;
1501   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1502         return isa<AllocaInst>(I->getOperand(0));
1503       }))
1504     return false;
1505 
1506   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1507     if (I0->getOperand(OI)->getType()->isTokenTy())
1508       // Don't touch any operand of token type.
1509       return false;
1510 
1511     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1512       assert(I->getNumOperands() == I0->getNumOperands());
1513       return I->getOperand(OI) == I0->getOperand(OI);
1514     };
1515     if (!all_of(Insts, SameAsI0)) {
1516       if (!canReplaceOperandWithVariable(I0, OI))
1517         // We can't create a PHI from this GEP.
1518         return false;
1519       // Don't create indirect calls! The called value is the final operand.
1520       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1521         // FIXME: if the call was *already* indirect, we should do this.
1522         return false;
1523       }
1524       for (auto *I : Insts)
1525         PHIOperands[I].push_back(I->getOperand(OI));
1526     }
1527   }
1528   return true;
1529 }
1530 
1531 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1532 // instruction of every block in Blocks to their common successor, commoning
1533 // into one instruction.
1534 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1535   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1536 
1537   // canSinkLastInstruction returning true guarantees that every block has at
1538   // least one non-terminator instruction.
1539   SmallVector<Instruction*,4> Insts;
1540   for (auto *BB : Blocks) {
1541     Instruction *I = BB->getTerminator();
1542     do {
1543       I = I->getPrevNode();
1544     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1545     if (!isa<DbgInfoIntrinsic>(I))
1546       Insts.push_back(I);
1547   }
1548 
1549   // The only checking we need to do now is that all users of all instructions
1550   // are the same PHI node. canSinkLastInstruction should have checked this but
1551   // it is slightly over-aggressive - it gets confused by commutative instructions
1552   // so double-check it here.
1553   Instruction *I0 = Insts.front();
1554   if (!isa<StoreInst>(I0)) {
1555     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1556     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1557           auto *U = cast<Instruction>(*I->user_begin());
1558           return U == PNUse;
1559         }))
1560       return false;
1561   }
1562 
1563   // We don't need to do any more checking here; canSinkLastInstruction should
1564   // have done it all for us.
1565   SmallVector<Value*, 4> NewOperands;
1566   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1567     // This check is different to that in canSinkLastInstruction. There, we
1568     // cared about the global view once simplifycfg (and instcombine) have
1569     // completed - it takes into account PHIs that become trivially
1570     // simplifiable.  However here we need a more local view; if an operand
1571     // differs we create a PHI and rely on instcombine to clean up the very
1572     // small mess we may make.
1573     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1574       return I->getOperand(O) != I0->getOperand(O);
1575     });
1576     if (!NeedPHI) {
1577       NewOperands.push_back(I0->getOperand(O));
1578       continue;
1579     }
1580 
1581     // Create a new PHI in the successor block and populate it.
1582     auto *Op = I0->getOperand(O);
1583     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1584     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1585                                Op->getName() + ".sink", &BBEnd->front());
1586     for (auto *I : Insts)
1587       PN->addIncoming(I->getOperand(O), I->getParent());
1588     NewOperands.push_back(PN);
1589   }
1590 
1591   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1592   // and move it to the start of the successor block.
1593   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1594     I0->getOperandUse(O).set(NewOperands[O]);
1595   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1596 
1597   // Update metadata and IR flags, and merge debug locations.
1598   for (auto *I : Insts)
1599     if (I != I0) {
1600       // The debug location for the "common" instruction is the merged locations
1601       // of all the commoned instructions.  We start with the original location
1602       // of the "common" instruction and iteratively merge each location in the
1603       // loop below.
1604       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1605       // However, as N-way merge for CallInst is rare, so we use simplified API
1606       // instead of using complex API for N-way merge.
1607       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1608       combineMetadataForCSE(I0, I, true);
1609       I0->andIRFlags(I);
1610     }
1611 
1612   if (!isa<StoreInst>(I0)) {
1613     // canSinkLastInstruction checked that all instructions were used by
1614     // one and only one PHI node. Find that now, RAUW it to our common
1615     // instruction and nuke it.
1616     assert(I0->hasOneUse());
1617     auto *PN = cast<PHINode>(*I0->user_begin());
1618     PN->replaceAllUsesWith(I0);
1619     PN->eraseFromParent();
1620   }
1621 
1622   // Finally nuke all instructions apart from the common instruction.
1623   for (auto *I : Insts)
1624     if (I != I0)
1625       I->eraseFromParent();
1626 
1627   return true;
1628 }
1629 
1630 namespace {
1631 
1632   // LockstepReverseIterator - Iterates through instructions
1633   // in a set of blocks in reverse order from the first non-terminator.
1634   // For example (assume all blocks have size n):
1635   //   LockstepReverseIterator I([B1, B2, B3]);
1636   //   *I-- = [B1[n], B2[n], B3[n]];
1637   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1638   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1639   //   ...
1640   class LockstepReverseIterator {
1641     ArrayRef<BasicBlock*> Blocks;
1642     SmallVector<Instruction*,4> Insts;
1643     bool Fail;
1644 
1645   public:
1646     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1647       reset();
1648     }
1649 
1650     void reset() {
1651       Fail = false;
1652       Insts.clear();
1653       for (auto *BB : Blocks) {
1654         Instruction *Inst = BB->getTerminator();
1655         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1656           Inst = Inst->getPrevNode();
1657         if (!Inst) {
1658           // Block wasn't big enough.
1659           Fail = true;
1660           return;
1661         }
1662         Insts.push_back(Inst);
1663       }
1664     }
1665 
1666     bool isValid() const {
1667       return !Fail;
1668     }
1669 
1670     void operator--() {
1671       if (Fail)
1672         return;
1673       for (auto *&Inst : Insts) {
1674         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1675           Inst = Inst->getPrevNode();
1676         // Already at beginning of block.
1677         if (!Inst) {
1678           Fail = true;
1679           return;
1680         }
1681       }
1682     }
1683 
1684     ArrayRef<Instruction*> operator * () const {
1685       return Insts;
1686     }
1687   };
1688 
1689 } // end anonymous namespace
1690 
1691 /// Check whether BB's predecessors end with unconditional branches. If it is
1692 /// true, sink any common code from the predecessors to BB.
1693 /// We also allow one predecessor to end with conditional branch (but no more
1694 /// than one).
1695 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1696   // We support two situations:
1697   //   (1) all incoming arcs are unconditional
1698   //   (2) one incoming arc is conditional
1699   //
1700   // (2) is very common in switch defaults and
1701   // else-if patterns;
1702   //
1703   //   if (a) f(1);
1704   //   else if (b) f(2);
1705   //
1706   // produces:
1707   //
1708   //       [if]
1709   //      /    \
1710   //    [f(1)] [if]
1711   //      |     | \
1712   //      |     |  |
1713   //      |  [f(2)]|
1714   //       \    | /
1715   //        [ end ]
1716   //
1717   // [end] has two unconditional predecessor arcs and one conditional. The
1718   // conditional refers to the implicit empty 'else' arc. This conditional
1719   // arc can also be caused by an empty default block in a switch.
1720   //
1721   // In this case, we attempt to sink code from all *unconditional* arcs.
1722   // If we can sink instructions from these arcs (determined during the scan
1723   // phase below) we insert a common successor for all unconditional arcs and
1724   // connect that to [end], to enable sinking:
1725   //
1726   //       [if]
1727   //      /    \
1728   //    [x(1)] [if]
1729   //      |     | \
1730   //      |     |  \
1731   //      |  [x(2)] |
1732   //       \   /    |
1733   //   [sink.split] |
1734   //         \     /
1735   //         [ end ]
1736   //
1737   SmallVector<BasicBlock*,4> UnconditionalPreds;
1738   Instruction *Cond = nullptr;
1739   for (auto *B : predecessors(BB)) {
1740     auto *T = B->getTerminator();
1741     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1742       UnconditionalPreds.push_back(B);
1743     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1744       Cond = T;
1745     else
1746       return false;
1747   }
1748   if (UnconditionalPreds.size() < 2)
1749     return false;
1750 
1751   bool Changed = false;
1752   // We take a two-step approach to tail sinking. First we scan from the end of
1753   // each block upwards in lockstep. If the n'th instruction from the end of each
1754   // block can be sunk, those instructions are added to ValuesToSink and we
1755   // carry on. If we can sink an instruction but need to PHI-merge some operands
1756   // (because they're not identical in each instruction) we add these to
1757   // PHIOperands.
1758   unsigned ScanIdx = 0;
1759   SmallPtrSet<Value*,4> InstructionsToSink;
1760   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1761   LockstepReverseIterator LRI(UnconditionalPreds);
1762   while (LRI.isValid() &&
1763          canSinkInstructions(*LRI, PHIOperands)) {
1764     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1765                       << "\n");
1766     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1767     ++ScanIdx;
1768     --LRI;
1769   }
1770 
1771   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1772     unsigned NumPHIdValues = 0;
1773     for (auto *I : *LRI)
1774       for (auto *V : PHIOperands[I])
1775         if (InstructionsToSink.count(V) == 0)
1776           ++NumPHIdValues;
1777     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1778     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1779     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1780         NumPHIInsts++;
1781 
1782     return NumPHIInsts <= 1;
1783   };
1784 
1785   if (ScanIdx > 0 && Cond) {
1786     // Check if we would actually sink anything first! This mutates the CFG and
1787     // adds an extra block. The goal in doing this is to allow instructions that
1788     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1789     // (such as trunc, add) can be sunk and predicated already. So we check that
1790     // we're going to sink at least one non-speculatable instruction.
1791     LRI.reset();
1792     unsigned Idx = 0;
1793     bool Profitable = false;
1794     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1795       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1796         Profitable = true;
1797         break;
1798       }
1799       --LRI;
1800       ++Idx;
1801     }
1802     if (!Profitable)
1803       return false;
1804 
1805     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1806     // We have a conditional edge and we're going to sink some instructions.
1807     // Insert a new block postdominating all blocks we're going to sink from.
1808     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1809       // Edges couldn't be split.
1810       return false;
1811     Changed = true;
1812   }
1813 
1814   // Now that we've analyzed all potential sinking candidates, perform the
1815   // actual sink. We iteratively sink the last non-terminator of the source
1816   // blocks into their common successor unless doing so would require too
1817   // many PHI instructions to be generated (currently only one PHI is allowed
1818   // per sunk instruction).
1819   //
1820   // We can use InstructionsToSink to discount values needing PHI-merging that will
1821   // actually be sunk in a later iteration. This allows us to be more
1822   // aggressive in what we sink. This does allow a false positive where we
1823   // sink presuming a later value will also be sunk, but stop half way through
1824   // and never actually sink it which means we produce more PHIs than intended.
1825   // This is unlikely in practice though.
1826   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1827     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1828                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1829                       << "\n");
1830 
1831     // Because we've sunk every instruction in turn, the current instruction to
1832     // sink is always at index 0.
1833     LRI.reset();
1834     if (!ProfitableToSinkInstruction(LRI)) {
1835       // Too many PHIs would be created.
1836       LLVM_DEBUG(
1837           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1838       break;
1839     }
1840 
1841     if (!sinkLastInstruction(UnconditionalPreds))
1842       return Changed;
1843     NumSinkCommons++;
1844     Changed = true;
1845   }
1846   return Changed;
1847 }
1848 
1849 /// Determine if we can hoist sink a sole store instruction out of a
1850 /// conditional block.
1851 ///
1852 /// We are looking for code like the following:
1853 ///   BrBB:
1854 ///     store i32 %add, i32* %arrayidx2
1855 ///     ... // No other stores or function calls (we could be calling a memory
1856 ///     ... // function).
1857 ///     %cmp = icmp ult %x, %y
1858 ///     br i1 %cmp, label %EndBB, label %ThenBB
1859 ///   ThenBB:
1860 ///     store i32 %add5, i32* %arrayidx2
1861 ///     br label EndBB
1862 ///   EndBB:
1863 ///     ...
1864 ///   We are going to transform this into:
1865 ///   BrBB:
1866 ///     store i32 %add, i32* %arrayidx2
1867 ///     ... //
1868 ///     %cmp = icmp ult %x, %y
1869 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1870 ///     store i32 %add.add5, i32* %arrayidx2
1871 ///     ...
1872 ///
1873 /// \return The pointer to the value of the previous store if the store can be
1874 ///         hoisted into the predecessor block. 0 otherwise.
1875 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1876                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1877   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1878   if (!StoreToHoist)
1879     return nullptr;
1880 
1881   // Volatile or atomic.
1882   if (!StoreToHoist->isSimple())
1883     return nullptr;
1884 
1885   Value *StorePtr = StoreToHoist->getPointerOperand();
1886 
1887   // Look for a store to the same pointer in BrBB.
1888   unsigned MaxNumInstToLookAt = 9;
1889   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1890     if (!MaxNumInstToLookAt)
1891       break;
1892     --MaxNumInstToLookAt;
1893 
1894     // Could be calling an instruction that affects memory like free().
1895     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1896       return nullptr;
1897 
1898     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1899       // Found the previous store make sure it stores to the same location.
1900       if (SI->getPointerOperand() == StorePtr)
1901         // Found the previous store, return its value operand.
1902         return SI->getValueOperand();
1903       return nullptr; // Unknown store.
1904     }
1905   }
1906 
1907   return nullptr;
1908 }
1909 
1910 /// Speculate a conditional basic block flattening the CFG.
1911 ///
1912 /// Note that this is a very risky transform currently. Speculating
1913 /// instructions like this is most often not desirable. Instead, there is an MI
1914 /// pass which can do it with full awareness of the resource constraints.
1915 /// However, some cases are "obvious" and we should do directly. An example of
1916 /// this is speculating a single, reasonably cheap instruction.
1917 ///
1918 /// There is only one distinct advantage to flattening the CFG at the IR level:
1919 /// it makes very common but simplistic optimizations such as are common in
1920 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1921 /// modeling their effects with easier to reason about SSA value graphs.
1922 ///
1923 ///
1924 /// An illustration of this transform is turning this IR:
1925 /// \code
1926 ///   BB:
1927 ///     %cmp = icmp ult %x, %y
1928 ///     br i1 %cmp, label %EndBB, label %ThenBB
1929 ///   ThenBB:
1930 ///     %sub = sub %x, %y
1931 ///     br label BB2
1932 ///   EndBB:
1933 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1934 ///     ...
1935 /// \endcode
1936 ///
1937 /// Into this IR:
1938 /// \code
1939 ///   BB:
1940 ///     %cmp = icmp ult %x, %y
1941 ///     %sub = sub %x, %y
1942 ///     %cond = select i1 %cmp, 0, %sub
1943 ///     ...
1944 /// \endcode
1945 ///
1946 /// \returns true if the conditional block is removed.
1947 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1948                                    const TargetTransformInfo &TTI) {
1949   // Be conservative for now. FP select instruction can often be expensive.
1950   Value *BrCond = BI->getCondition();
1951   if (isa<FCmpInst>(BrCond))
1952     return false;
1953 
1954   BasicBlock *BB = BI->getParent();
1955   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1956 
1957   // If ThenBB is actually on the false edge of the conditional branch, remember
1958   // to swap the select operands later.
1959   bool Invert = false;
1960   if (ThenBB != BI->getSuccessor(0)) {
1961     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1962     Invert = true;
1963   }
1964   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1965 
1966   // Keep a count of how many times instructions are used within ThenBB when
1967   // they are candidates for sinking into ThenBB. Specifically:
1968   // - They are defined in BB, and
1969   // - They have no side effects, and
1970   // - All of their uses are in ThenBB.
1971   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1972 
1973   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1974 
1975   unsigned SpeculationCost = 0;
1976   Value *SpeculatedStoreValue = nullptr;
1977   StoreInst *SpeculatedStore = nullptr;
1978   for (BasicBlock::iterator BBI = ThenBB->begin(),
1979                             BBE = std::prev(ThenBB->end());
1980        BBI != BBE; ++BBI) {
1981     Instruction *I = &*BBI;
1982     // Skip debug info.
1983     if (isa<DbgInfoIntrinsic>(I)) {
1984       SpeculatedDbgIntrinsics.push_back(I);
1985       continue;
1986     }
1987 
1988     // Only speculatively execute a single instruction (not counting the
1989     // terminator) for now.
1990     ++SpeculationCost;
1991     if (SpeculationCost > 1)
1992       return false;
1993 
1994     // Don't hoist the instruction if it's unsafe or expensive.
1995     if (!isSafeToSpeculativelyExecute(I) &&
1996         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1997                                   I, BB, ThenBB, EndBB))))
1998       return false;
1999     if (!SpeculatedStoreValue &&
2000         ComputeSpeculationCost(I, TTI) >
2001             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2002       return false;
2003 
2004     // Store the store speculation candidate.
2005     if (SpeculatedStoreValue)
2006       SpeculatedStore = cast<StoreInst>(I);
2007 
2008     // Do not hoist the instruction if any of its operands are defined but not
2009     // used in BB. The transformation will prevent the operand from
2010     // being sunk into the use block.
2011     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2012       Instruction *OpI = dyn_cast<Instruction>(*i);
2013       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2014         continue; // Not a candidate for sinking.
2015 
2016       ++SinkCandidateUseCounts[OpI];
2017     }
2018   }
2019 
2020   // Consider any sink candidates which are only used in ThenBB as costs for
2021   // speculation. Note, while we iterate over a DenseMap here, we are summing
2022   // and so iteration order isn't significant.
2023   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2024            I = SinkCandidateUseCounts.begin(),
2025            E = SinkCandidateUseCounts.end();
2026        I != E; ++I)
2027     if (I->first->hasNUses(I->second)) {
2028       ++SpeculationCost;
2029       if (SpeculationCost > 1)
2030         return false;
2031     }
2032 
2033   // Check that the PHI nodes can be converted to selects.
2034   bool HaveRewritablePHIs = false;
2035   for (PHINode &PN : EndBB->phis()) {
2036     Value *OrigV = PN.getIncomingValueForBlock(BB);
2037     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2038 
2039     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2040     // Skip PHIs which are trivial.
2041     if (ThenV == OrigV)
2042       continue;
2043 
2044     // Don't convert to selects if we could remove undefined behavior instead.
2045     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2046         passingValueIsAlwaysUndefined(ThenV, &PN))
2047       return false;
2048 
2049     HaveRewritablePHIs = true;
2050     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2051     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2052     if (!OrigCE && !ThenCE)
2053       continue; // Known safe and cheap.
2054 
2055     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2056         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2057       return false;
2058     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2059     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2060     unsigned MaxCost =
2061         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2062     if (OrigCost + ThenCost > MaxCost)
2063       return false;
2064 
2065     // Account for the cost of an unfolded ConstantExpr which could end up
2066     // getting expanded into Instructions.
2067     // FIXME: This doesn't account for how many operations are combined in the
2068     // constant expression.
2069     ++SpeculationCost;
2070     if (SpeculationCost > 1)
2071       return false;
2072   }
2073 
2074   // If there are no PHIs to process, bail early. This helps ensure idempotence
2075   // as well.
2076   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2077     return false;
2078 
2079   // If we get here, we can hoist the instruction and if-convert.
2080   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2081 
2082   // Insert a select of the value of the speculated store.
2083   if (SpeculatedStoreValue) {
2084     IRBuilder<NoFolder> Builder(BI);
2085     Value *TrueV = SpeculatedStore->getValueOperand();
2086     Value *FalseV = SpeculatedStoreValue;
2087     if (Invert)
2088       std::swap(TrueV, FalseV);
2089     Value *S = Builder.CreateSelect(
2090         BrCond, TrueV, FalseV, "spec.store.select", BI);
2091     SpeculatedStore->setOperand(0, S);
2092     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2093                                          SpeculatedStore->getDebugLoc());
2094   }
2095 
2096   // Metadata can be dependent on the condition we are hoisting above.
2097   // Conservatively strip all metadata on the instruction.
2098   for (auto &I : *ThenBB)
2099     I.dropUnknownNonDebugMetadata();
2100 
2101   // Hoist the instructions.
2102   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2103                            ThenBB->begin(), std::prev(ThenBB->end()));
2104 
2105   // Insert selects and rewrite the PHI operands.
2106   IRBuilder<NoFolder> Builder(BI);
2107   for (PHINode &PN : EndBB->phis()) {
2108     unsigned OrigI = PN.getBasicBlockIndex(BB);
2109     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2110     Value *OrigV = PN.getIncomingValue(OrigI);
2111     Value *ThenV = PN.getIncomingValue(ThenI);
2112 
2113     // Skip PHIs which are trivial.
2114     if (OrigV == ThenV)
2115       continue;
2116 
2117     // Create a select whose true value is the speculatively executed value and
2118     // false value is the preexisting value. Swap them if the branch
2119     // destinations were inverted.
2120     Value *TrueV = ThenV, *FalseV = OrigV;
2121     if (Invert)
2122       std::swap(TrueV, FalseV);
2123     Value *V = Builder.CreateSelect(
2124         BrCond, TrueV, FalseV, "spec.select", BI);
2125     PN.setIncomingValue(OrigI, V);
2126     PN.setIncomingValue(ThenI, V);
2127   }
2128 
2129   // Remove speculated dbg intrinsics.
2130   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2131   // dbg value for the different flows and inserting it after the select.
2132   for (Instruction *I : SpeculatedDbgIntrinsics)
2133     I->eraseFromParent();
2134 
2135   ++NumSpeculations;
2136   return true;
2137 }
2138 
2139 /// Return true if we can thread a branch across this block.
2140 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2141   unsigned Size = 0;
2142 
2143   for (Instruction &I : BB->instructionsWithoutDebug()) {
2144     if (Size > 10)
2145       return false; // Don't clone large BB's.
2146     ++Size;
2147 
2148     // We can only support instructions that do not define values that are
2149     // live outside of the current basic block.
2150     for (User *U : I.users()) {
2151       Instruction *UI = cast<Instruction>(U);
2152       if (UI->getParent() != BB || isa<PHINode>(UI))
2153         return false;
2154     }
2155 
2156     // Looks ok, continue checking.
2157   }
2158 
2159   return true;
2160 }
2161 
2162 /// If we have a conditional branch on a PHI node value that is defined in the
2163 /// same block as the branch and if any PHI entries are constants, thread edges
2164 /// corresponding to that entry to be branches to their ultimate destination.
2165 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2166                                 AssumptionCache *AC) {
2167   BasicBlock *BB = BI->getParent();
2168   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2169   // NOTE: we currently cannot transform this case if the PHI node is used
2170   // outside of the block.
2171   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2172     return false;
2173 
2174   // Degenerate case of a single entry PHI.
2175   if (PN->getNumIncomingValues() == 1) {
2176     FoldSingleEntryPHINodes(PN->getParent());
2177     return true;
2178   }
2179 
2180   // Now we know that this block has multiple preds and two succs.
2181   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2182     return false;
2183 
2184   // Can't fold blocks that contain noduplicate or convergent calls.
2185   if (any_of(*BB, [](const Instruction &I) {
2186         const CallInst *CI = dyn_cast<CallInst>(&I);
2187         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2188       }))
2189     return false;
2190 
2191   // Okay, this is a simple enough basic block.  See if any phi values are
2192   // constants.
2193   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2194     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2195     if (!CB || !CB->getType()->isIntegerTy(1))
2196       continue;
2197 
2198     // Okay, we now know that all edges from PredBB should be revectored to
2199     // branch to RealDest.
2200     BasicBlock *PredBB = PN->getIncomingBlock(i);
2201     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2202 
2203     if (RealDest == BB)
2204       continue; // Skip self loops.
2205     // Skip if the predecessor's terminator is an indirect branch.
2206     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2207       continue;
2208 
2209     // The dest block might have PHI nodes, other predecessors and other
2210     // difficult cases.  Instead of being smart about this, just insert a new
2211     // block that jumps to the destination block, effectively splitting
2212     // the edge we are about to create.
2213     BasicBlock *EdgeBB =
2214         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2215                            RealDest->getParent(), RealDest);
2216     BranchInst::Create(RealDest, EdgeBB);
2217 
2218     // Update PHI nodes.
2219     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2220 
2221     // BB may have instructions that are being threaded over.  Clone these
2222     // instructions into EdgeBB.  We know that there will be no uses of the
2223     // cloned instructions outside of EdgeBB.
2224     BasicBlock::iterator InsertPt = EdgeBB->begin();
2225     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2226     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2227       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2228         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2229         continue;
2230       }
2231       // Clone the instruction.
2232       Instruction *N = BBI->clone();
2233       if (BBI->hasName())
2234         N->setName(BBI->getName() + ".c");
2235 
2236       // Update operands due to translation.
2237       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2238         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2239         if (PI != TranslateMap.end())
2240           *i = PI->second;
2241       }
2242 
2243       // Check for trivial simplification.
2244       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2245         if (!BBI->use_empty())
2246           TranslateMap[&*BBI] = V;
2247         if (!N->mayHaveSideEffects()) {
2248           N->deleteValue(); // Instruction folded away, don't need actual inst
2249           N = nullptr;
2250         }
2251       } else {
2252         if (!BBI->use_empty())
2253           TranslateMap[&*BBI] = N;
2254       }
2255       // Insert the new instruction into its new home.
2256       if (N)
2257         EdgeBB->getInstList().insert(InsertPt, N);
2258 
2259       // Register the new instruction with the assumption cache if necessary.
2260       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2261         if (II->getIntrinsicID() == Intrinsic::assume)
2262           AC->registerAssumption(II);
2263     }
2264 
2265     // Loop over all of the edges from PredBB to BB, changing them to branch
2266     // to EdgeBB instead.
2267     Instruction *PredBBTI = PredBB->getTerminator();
2268     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2269       if (PredBBTI->getSuccessor(i) == BB) {
2270         BB->removePredecessor(PredBB);
2271         PredBBTI->setSuccessor(i, EdgeBB);
2272       }
2273 
2274     // Recurse, simplifying any other constants.
2275     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2276   }
2277 
2278   return false;
2279 }
2280 
2281 /// Given a BB that starts with the specified two-entry PHI node,
2282 /// see if we can eliminate it.
2283 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2284                                 const DataLayout &DL) {
2285   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2286   // statement", which has a very simple dominance structure.  Basically, we
2287   // are trying to find the condition that is being branched on, which
2288   // subsequently causes this merge to happen.  We really want control
2289   // dependence information for this check, but simplifycfg can't keep it up
2290   // to date, and this catches most of the cases we care about anyway.
2291   BasicBlock *BB = PN->getParent();
2292   const Function *Fn = BB->getParent();
2293   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2294     return false;
2295 
2296   BasicBlock *IfTrue, *IfFalse;
2297   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2298   if (!IfCond ||
2299       // Don't bother if the branch will be constant folded trivially.
2300       isa<ConstantInt>(IfCond))
2301     return false;
2302 
2303   // Okay, we found that we can merge this two-entry phi node into a select.
2304   // Doing so would require us to fold *all* two entry phi nodes in this block.
2305   // At some point this becomes non-profitable (particularly if the target
2306   // doesn't support cmov's).  Only do this transformation if there are two or
2307   // fewer PHI nodes in this block.
2308   unsigned NumPhis = 0;
2309   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2310     if (NumPhis > 2)
2311       return false;
2312 
2313   // Loop over the PHI's seeing if we can promote them all to select
2314   // instructions.  While we are at it, keep track of the instructions
2315   // that need to be moved to the dominating block.
2316   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2317   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2318            MaxCostVal1 = PHINodeFoldingThreshold;
2319   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2320   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2321 
2322   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2323     PHINode *PN = cast<PHINode>(II++);
2324     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2325       PN->replaceAllUsesWith(V);
2326       PN->eraseFromParent();
2327       continue;
2328     }
2329 
2330     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2331                              MaxCostVal0, TTI) ||
2332         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2333                              MaxCostVal1, TTI))
2334       return false;
2335   }
2336 
2337   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2338   // we ran out of PHIs then we simplified them all.
2339   PN = dyn_cast<PHINode>(BB->begin());
2340   if (!PN)
2341     return true;
2342 
2343   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2344   // often be turned into switches and other things.
2345   if (PN->getType()->isIntegerTy(1) &&
2346       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2347        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2348        isa<BinaryOperator>(IfCond)))
2349     return false;
2350 
2351   // If all PHI nodes are promotable, check to make sure that all instructions
2352   // in the predecessor blocks can be promoted as well. If not, we won't be able
2353   // to get rid of the control flow, so it's not worth promoting to select
2354   // instructions.
2355   BasicBlock *DomBlock = nullptr;
2356   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2357   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2358   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2359     IfBlock1 = nullptr;
2360   } else {
2361     DomBlock = *pred_begin(IfBlock1);
2362     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2363       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2364         // This is not an aggressive instruction that we can promote.
2365         // Because of this, we won't be able to get rid of the control flow, so
2366         // the xform is not worth it.
2367         return false;
2368       }
2369   }
2370 
2371   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2372     IfBlock2 = nullptr;
2373   } else {
2374     DomBlock = *pred_begin(IfBlock2);
2375     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2376       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2377         // This is not an aggressive instruction that we can promote.
2378         // Because of this, we won't be able to get rid of the control flow, so
2379         // the xform is not worth it.
2380         return false;
2381       }
2382   }
2383 
2384   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2385                     << "  T: " << IfTrue->getName()
2386                     << "  F: " << IfFalse->getName() << "\n");
2387 
2388   // If we can still promote the PHI nodes after this gauntlet of tests,
2389   // do all of the PHI's now.
2390   Instruction *InsertPt = DomBlock->getTerminator();
2391   IRBuilder<NoFolder> Builder(InsertPt);
2392 
2393   // Move all 'aggressive' instructions, which are defined in the
2394   // conditional parts of the if's up to the dominating block.
2395   if (IfBlock1)
2396     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2397   if (IfBlock2)
2398     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2399 
2400   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2401     // Change the PHI node into a select instruction.
2402     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2403     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2404 
2405     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2406     PN->replaceAllUsesWith(Sel);
2407     Sel->takeName(PN);
2408     PN->eraseFromParent();
2409   }
2410 
2411   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2412   // has been flattened.  Change DomBlock to jump directly to our new block to
2413   // avoid other simplifycfg's kicking in on the diamond.
2414   Instruction *OldTI = DomBlock->getTerminator();
2415   Builder.SetInsertPoint(OldTI);
2416   Builder.CreateBr(BB);
2417   OldTI->eraseFromParent();
2418   return true;
2419 }
2420 
2421 /// If we found a conditional branch that goes to two returning blocks,
2422 /// try to merge them together into one return,
2423 /// introducing a select if the return values disagree.
2424 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2425                                            IRBuilder<> &Builder) {
2426   assert(BI->isConditional() && "Must be a conditional branch");
2427   BasicBlock *TrueSucc = BI->getSuccessor(0);
2428   BasicBlock *FalseSucc = BI->getSuccessor(1);
2429   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2430   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2431 
2432   // Check to ensure both blocks are empty (just a return) or optionally empty
2433   // with PHI nodes.  If there are other instructions, merging would cause extra
2434   // computation on one path or the other.
2435   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2436     return false;
2437   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2438     return false;
2439 
2440   Builder.SetInsertPoint(BI);
2441   // Okay, we found a branch that is going to two return nodes.  If
2442   // there is no return value for this function, just change the
2443   // branch into a return.
2444   if (FalseRet->getNumOperands() == 0) {
2445     TrueSucc->removePredecessor(BI->getParent());
2446     FalseSucc->removePredecessor(BI->getParent());
2447     Builder.CreateRetVoid();
2448     EraseTerminatorAndDCECond(BI);
2449     return true;
2450   }
2451 
2452   // Otherwise, figure out what the true and false return values are
2453   // so we can insert a new select instruction.
2454   Value *TrueValue = TrueRet->getReturnValue();
2455   Value *FalseValue = FalseRet->getReturnValue();
2456 
2457   // Unwrap any PHI nodes in the return blocks.
2458   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2459     if (TVPN->getParent() == TrueSucc)
2460       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2461   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2462     if (FVPN->getParent() == FalseSucc)
2463       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2464 
2465   // In order for this transformation to be safe, we must be able to
2466   // unconditionally execute both operands to the return.  This is
2467   // normally the case, but we could have a potentially-trapping
2468   // constant expression that prevents this transformation from being
2469   // safe.
2470   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2471     if (TCV->canTrap())
2472       return false;
2473   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2474     if (FCV->canTrap())
2475       return false;
2476 
2477   // Okay, we collected all the mapped values and checked them for sanity, and
2478   // defined to really do this transformation.  First, update the CFG.
2479   TrueSucc->removePredecessor(BI->getParent());
2480   FalseSucc->removePredecessor(BI->getParent());
2481 
2482   // Insert select instructions where needed.
2483   Value *BrCond = BI->getCondition();
2484   if (TrueValue) {
2485     // Insert a select if the results differ.
2486     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2487     } else if (isa<UndefValue>(TrueValue)) {
2488       TrueValue = FalseValue;
2489     } else {
2490       TrueValue =
2491           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2492     }
2493   }
2494 
2495   Value *RI =
2496       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2497 
2498   (void)RI;
2499 
2500   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2501                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2502                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2503 
2504   EraseTerminatorAndDCECond(BI);
2505 
2506   return true;
2507 }
2508 
2509 /// Return true if the given instruction is available
2510 /// in its predecessor block. If yes, the instruction will be removed.
2511 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2512   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2513     return false;
2514   for (Instruction &I : *PB) {
2515     Instruction *PBI = &I;
2516     // Check whether Inst and PBI generate the same value.
2517     if (Inst->isIdenticalTo(PBI)) {
2518       Inst->replaceAllUsesWith(PBI);
2519       Inst->eraseFromParent();
2520       return true;
2521     }
2522   }
2523   return false;
2524 }
2525 
2526 /// Return true if either PBI or BI has branch weight available, and store
2527 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2528 /// not have branch weight, use 1:1 as its weight.
2529 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2530                                    uint64_t &PredTrueWeight,
2531                                    uint64_t &PredFalseWeight,
2532                                    uint64_t &SuccTrueWeight,
2533                                    uint64_t &SuccFalseWeight) {
2534   bool PredHasWeights =
2535       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2536   bool SuccHasWeights =
2537       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2538   if (PredHasWeights || SuccHasWeights) {
2539     if (!PredHasWeights)
2540       PredTrueWeight = PredFalseWeight = 1;
2541     if (!SuccHasWeights)
2542       SuccTrueWeight = SuccFalseWeight = 1;
2543     return true;
2544   } else {
2545     return false;
2546   }
2547 }
2548 
2549 /// If this basic block is simple enough, and if a predecessor branches to us
2550 /// and one of our successors, fold the block into the predecessor and use
2551 /// logical operations to pick the right destination.
2552 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2553   BasicBlock *BB = BI->getParent();
2554 
2555   const unsigned PredCount = pred_size(BB);
2556 
2557   Instruction *Cond = nullptr;
2558   if (BI->isConditional())
2559     Cond = dyn_cast<Instruction>(BI->getCondition());
2560   else {
2561     // For unconditional branch, check for a simple CFG pattern, where
2562     // BB has a single predecessor and BB's successor is also its predecessor's
2563     // successor. If such pattern exists, check for CSE between BB and its
2564     // predecessor.
2565     if (BasicBlock *PB = BB->getSinglePredecessor())
2566       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2567         if (PBI->isConditional() &&
2568             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2569              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2570           for (auto I = BB->instructionsWithoutDebug().begin(),
2571                     E = BB->instructionsWithoutDebug().end();
2572                I != E;) {
2573             Instruction *Curr = &*I++;
2574             if (isa<CmpInst>(Curr)) {
2575               Cond = Curr;
2576               break;
2577             }
2578             // Quit if we can't remove this instruction.
2579             if (!tryCSEWithPredecessor(Curr, PB))
2580               return false;
2581           }
2582         }
2583 
2584     if (!Cond)
2585       return false;
2586   }
2587 
2588   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2589       Cond->getParent() != BB || !Cond->hasOneUse())
2590     return false;
2591 
2592   // Make sure the instruction after the condition is the cond branch.
2593   BasicBlock::iterator CondIt = ++Cond->getIterator();
2594 
2595   // Ignore dbg intrinsics.
2596   while (isa<DbgInfoIntrinsic>(CondIt))
2597     ++CondIt;
2598 
2599   if (&*CondIt != BI)
2600     return false;
2601 
2602   // Only allow this transformation if computing the condition doesn't involve
2603   // too many instructions and these involved instructions can be executed
2604   // unconditionally. We denote all involved instructions except the condition
2605   // as "bonus instructions", and only allow this transformation when the
2606   // number of the bonus instructions we'll need to create when cloning into
2607   // each predecessor does not exceed a certain threshold.
2608   unsigned NumBonusInsts = 0;
2609   for (auto I = BB->begin(); Cond != &*I; ++I) {
2610     // Ignore dbg intrinsics.
2611     if (isa<DbgInfoIntrinsic>(I))
2612       continue;
2613     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2614       return false;
2615     // I has only one use and can be executed unconditionally.
2616     Instruction *User = dyn_cast<Instruction>(I->user_back());
2617     if (User == nullptr || User->getParent() != BB)
2618       return false;
2619     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2620     // to use any other instruction, User must be an instruction between next(I)
2621     // and Cond.
2622 
2623     // Account for the cost of duplicating this instruction into each
2624     // predecessor.
2625     NumBonusInsts += PredCount;
2626     // Early exits once we reach the limit.
2627     if (NumBonusInsts > BonusInstThreshold)
2628       return false;
2629   }
2630 
2631   // Cond is known to be a compare or binary operator.  Check to make sure that
2632   // neither operand is a potentially-trapping constant expression.
2633   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2634     if (CE->canTrap())
2635       return false;
2636   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2637     if (CE->canTrap())
2638       return false;
2639 
2640   // Finally, don't infinitely unroll conditional loops.
2641   BasicBlock *TrueDest = BI->getSuccessor(0);
2642   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2643   if (TrueDest == BB || FalseDest == BB)
2644     return false;
2645 
2646   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2647     BasicBlock *PredBlock = *PI;
2648     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2649 
2650     // Check that we have two conditional branches.  If there is a PHI node in
2651     // the common successor, verify that the same value flows in from both
2652     // blocks.
2653     SmallVector<PHINode *, 4> PHIs;
2654     if (!PBI || PBI->isUnconditional() ||
2655         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2656         (!BI->isConditional() &&
2657          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2658       continue;
2659 
2660     // Determine if the two branches share a common destination.
2661     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2662     bool InvertPredCond = false;
2663 
2664     if (BI->isConditional()) {
2665       if (PBI->getSuccessor(0) == TrueDest) {
2666         Opc = Instruction::Or;
2667       } else if (PBI->getSuccessor(1) == FalseDest) {
2668         Opc = Instruction::And;
2669       } else if (PBI->getSuccessor(0) == FalseDest) {
2670         Opc = Instruction::And;
2671         InvertPredCond = true;
2672       } else if (PBI->getSuccessor(1) == TrueDest) {
2673         Opc = Instruction::Or;
2674         InvertPredCond = true;
2675       } else {
2676         continue;
2677       }
2678     } else {
2679       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2680         continue;
2681     }
2682 
2683     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2684     IRBuilder<> Builder(PBI);
2685 
2686     // If we need to invert the condition in the pred block to match, do so now.
2687     if (InvertPredCond) {
2688       Value *NewCond = PBI->getCondition();
2689 
2690       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2691         CmpInst *CI = cast<CmpInst>(NewCond);
2692         CI->setPredicate(CI->getInversePredicate());
2693       } else {
2694         NewCond =
2695             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2696       }
2697 
2698       PBI->setCondition(NewCond);
2699       PBI->swapSuccessors();
2700     }
2701 
2702     // If we have bonus instructions, clone them into the predecessor block.
2703     // Note that there may be multiple predecessor blocks, so we cannot move
2704     // bonus instructions to a predecessor block.
2705     ValueToValueMapTy VMap; // maps original values to cloned values
2706     // We already make sure Cond is the last instruction before BI. Therefore,
2707     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2708     // instructions.
2709     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2710       if (isa<DbgInfoIntrinsic>(BonusInst))
2711         continue;
2712       Instruction *NewBonusInst = BonusInst->clone();
2713       RemapInstruction(NewBonusInst, VMap,
2714                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2715       VMap[&*BonusInst] = NewBonusInst;
2716 
2717       // If we moved a load, we cannot any longer claim any knowledge about
2718       // its potential value. The previous information might have been valid
2719       // only given the branch precondition.
2720       // For an analogous reason, we must also drop all the metadata whose
2721       // semantics we don't understand.
2722       NewBonusInst->dropUnknownNonDebugMetadata();
2723 
2724       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2725       NewBonusInst->takeName(&*BonusInst);
2726       BonusInst->setName(BonusInst->getName() + ".old");
2727     }
2728 
2729     // Clone Cond into the predecessor basic block, and or/and the
2730     // two conditions together.
2731     Instruction *CondInPred = Cond->clone();
2732     RemapInstruction(CondInPred, VMap,
2733                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2734     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2735     CondInPred->takeName(Cond);
2736     Cond->setName(CondInPred->getName() + ".old");
2737 
2738     if (BI->isConditional()) {
2739       Instruction *NewCond = cast<Instruction>(
2740           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2741       PBI->setCondition(NewCond);
2742 
2743       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2744       bool HasWeights =
2745           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2746                                  SuccTrueWeight, SuccFalseWeight);
2747       SmallVector<uint64_t, 8> NewWeights;
2748 
2749       if (PBI->getSuccessor(0) == BB) {
2750         if (HasWeights) {
2751           // PBI: br i1 %x, BB, FalseDest
2752           // BI:  br i1 %y, TrueDest, FalseDest
2753           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2754           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2755           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2756           //               TrueWeight for PBI * FalseWeight for BI.
2757           // We assume that total weights of a BranchInst can fit into 32 bits.
2758           // Therefore, we will not have overflow using 64-bit arithmetic.
2759           NewWeights.push_back(PredFalseWeight *
2760                                    (SuccFalseWeight + SuccTrueWeight) +
2761                                PredTrueWeight * SuccFalseWeight);
2762         }
2763         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2764         PBI->setSuccessor(0, TrueDest);
2765       }
2766       if (PBI->getSuccessor(1) == BB) {
2767         if (HasWeights) {
2768           // PBI: br i1 %x, TrueDest, BB
2769           // BI:  br i1 %y, TrueDest, FalseDest
2770           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2771           //              FalseWeight for PBI * TrueWeight for BI.
2772           NewWeights.push_back(PredTrueWeight *
2773                                    (SuccFalseWeight + SuccTrueWeight) +
2774                                PredFalseWeight * SuccTrueWeight);
2775           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2776           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2777         }
2778         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2779         PBI->setSuccessor(1, FalseDest);
2780       }
2781       if (NewWeights.size() == 2) {
2782         // Halve the weights if any of them cannot fit in an uint32_t
2783         FitWeights(NewWeights);
2784 
2785         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2786                                            NewWeights.end());
2787         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2788       } else
2789         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2790     } else {
2791       // Update PHI nodes in the common successors.
2792       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2793         ConstantInt *PBI_C = cast<ConstantInt>(
2794             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2795         assert(PBI_C->getType()->isIntegerTy(1));
2796         Instruction *MergedCond = nullptr;
2797         if (PBI->getSuccessor(0) == TrueDest) {
2798           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2799           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2800           //       is false: !PBI_Cond and BI_Value
2801           Instruction *NotCond = cast<Instruction>(
2802               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2803           MergedCond = cast<Instruction>(
2804                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2805                                    "and.cond"));
2806           if (PBI_C->isOne())
2807             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2808                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2809         } else {
2810           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2811           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2812           //       is false: PBI_Cond and BI_Value
2813           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2814               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2815           if (PBI_C->isOne()) {
2816             Instruction *NotCond = cast<Instruction>(
2817                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2818             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2819                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2820           }
2821         }
2822         // Update PHI Node.
2823         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2824                                   MergedCond);
2825       }
2826       // Change PBI from Conditional to Unconditional.
2827       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2828       EraseTerminatorAndDCECond(PBI);
2829       PBI = New_PBI;
2830     }
2831 
2832     // If BI was a loop latch, it may have had associated loop metadata.
2833     // We need to copy it to the new latch, that is, PBI.
2834     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2835       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2836 
2837     // TODO: If BB is reachable from all paths through PredBlock, then we
2838     // could replace PBI's branch probabilities with BI's.
2839 
2840     // Copy any debug value intrinsics into the end of PredBlock.
2841     for (Instruction &I : *BB)
2842       if (isa<DbgInfoIntrinsic>(I))
2843         I.clone()->insertBefore(PBI);
2844 
2845     return true;
2846   }
2847   return false;
2848 }
2849 
2850 // If there is only one store in BB1 and BB2, return it, otherwise return
2851 // nullptr.
2852 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2853   StoreInst *S = nullptr;
2854   for (auto *BB : {BB1, BB2}) {
2855     if (!BB)
2856       continue;
2857     for (auto &I : *BB)
2858       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2859         if (S)
2860           // Multiple stores seen.
2861           return nullptr;
2862         else
2863           S = SI;
2864       }
2865   }
2866   return S;
2867 }
2868 
2869 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2870                                               Value *AlternativeV = nullptr) {
2871   // PHI is going to be a PHI node that allows the value V that is defined in
2872   // BB to be referenced in BB's only successor.
2873   //
2874   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2875   // doesn't matter to us what the other operand is (it'll never get used). We
2876   // could just create a new PHI with an undef incoming value, but that could
2877   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2878   // other PHI. So here we directly look for some PHI in BB's successor with V
2879   // as an incoming operand. If we find one, we use it, else we create a new
2880   // one.
2881   //
2882   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2883   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2884   // where OtherBB is the single other predecessor of BB's only successor.
2885   PHINode *PHI = nullptr;
2886   BasicBlock *Succ = BB->getSingleSuccessor();
2887 
2888   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2889     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2890       PHI = cast<PHINode>(I);
2891       if (!AlternativeV)
2892         break;
2893 
2894       assert(Succ->hasNPredecessors(2));
2895       auto PredI = pred_begin(Succ);
2896       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2897       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2898         break;
2899       PHI = nullptr;
2900     }
2901   if (PHI)
2902     return PHI;
2903 
2904   // If V is not an instruction defined in BB, just return it.
2905   if (!AlternativeV &&
2906       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2907     return V;
2908 
2909   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2910   PHI->addIncoming(V, BB);
2911   for (BasicBlock *PredBB : predecessors(Succ))
2912     if (PredBB != BB)
2913       PHI->addIncoming(
2914           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2915   return PHI;
2916 }
2917 
2918 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2919                                            BasicBlock *QTB, BasicBlock *QFB,
2920                                            BasicBlock *PostBB, Value *Address,
2921                                            bool InvertPCond, bool InvertQCond,
2922                                            const DataLayout &DL) {
2923   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2924     return Operator::getOpcode(&I) == Instruction::BitCast &&
2925            I.getType()->isPointerTy();
2926   };
2927 
2928   // If we're not in aggressive mode, we only optimize if we have some
2929   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2930   auto IsWorthwhile = [&](BasicBlock *BB) {
2931     if (!BB)
2932       return true;
2933     // Heuristic: if the block can be if-converted/phi-folded and the
2934     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2935     // thread this store.
2936     unsigned N = 0;
2937     for (auto &I : BB->instructionsWithoutDebug()) {
2938       // Cheap instructions viable for folding.
2939       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2940           isa<StoreInst>(I))
2941         ++N;
2942       // Free instructions.
2943       else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2944         continue;
2945       else
2946         return false;
2947     }
2948     // The store we want to merge is counted in N, so add 1 to make sure
2949     // we're counting the instructions that would be left.
2950     return N <= (PHINodeFoldingThreshold + 1);
2951   };
2952 
2953   if (!MergeCondStoresAggressively &&
2954       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2955        !IsWorthwhile(QFB)))
2956     return false;
2957 
2958   // For every pointer, there must be exactly two stores, one coming from
2959   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2960   // store (to any address) in PTB,PFB or QTB,QFB.
2961   // FIXME: We could relax this restriction with a bit more work and performance
2962   // testing.
2963   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2964   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2965   if (!PStore || !QStore)
2966     return false;
2967 
2968   // Now check the stores are compatible.
2969   if (!QStore->isUnordered() || !PStore->isUnordered())
2970     return false;
2971 
2972   // Check that sinking the store won't cause program behavior changes. Sinking
2973   // the store out of the Q blocks won't change any behavior as we're sinking
2974   // from a block to its unconditional successor. But we're moving a store from
2975   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2976   // So we need to check that there are no aliasing loads or stores in
2977   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2978   // operations between PStore and the end of its parent block.
2979   //
2980   // The ideal way to do this is to query AliasAnalysis, but we don't
2981   // preserve AA currently so that is dangerous. Be super safe and just
2982   // check there are no other memory operations at all.
2983   for (auto &I : *QFB->getSinglePredecessor())
2984     if (I.mayReadOrWriteMemory())
2985       return false;
2986   for (auto &I : *QFB)
2987     if (&I != QStore && I.mayReadOrWriteMemory())
2988       return false;
2989   if (QTB)
2990     for (auto &I : *QTB)
2991       if (&I != QStore && I.mayReadOrWriteMemory())
2992         return false;
2993   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2994        I != E; ++I)
2995     if (&*I != PStore && I->mayReadOrWriteMemory())
2996       return false;
2997 
2998   // If PostBB has more than two predecessors, we need to split it so we can
2999   // sink the store.
3000   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3001     // We know that QFB's only successor is PostBB. And QFB has a single
3002     // predecessor. If QTB exists, then its only successor is also PostBB.
3003     // If QTB does not exist, then QFB's only predecessor has a conditional
3004     // branch to QFB and PostBB.
3005     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3006     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3007                                                "condstore.split");
3008     if (!NewBB)
3009       return false;
3010     PostBB = NewBB;
3011   }
3012 
3013   // OK, we're going to sink the stores to PostBB. The store has to be
3014   // conditional though, so first create the predicate.
3015   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3016                      ->getCondition();
3017   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3018                      ->getCondition();
3019 
3020   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3021                                                 PStore->getParent());
3022   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3023                                                 QStore->getParent(), PPHI);
3024 
3025   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3026 
3027   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3028   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3029 
3030   if (InvertPCond)
3031     PPred = QB.CreateNot(PPred);
3032   if (InvertQCond)
3033     QPred = QB.CreateNot(QPred);
3034   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3035 
3036   auto *T =
3037       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3038   QB.SetInsertPoint(T);
3039   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3040   AAMDNodes AAMD;
3041   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3042   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3043   SI->setAAMetadata(AAMD);
3044   unsigned PAlignment = PStore->getAlignment();
3045   unsigned QAlignment = QStore->getAlignment();
3046   unsigned TypeAlignment =
3047       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3048   unsigned MinAlignment;
3049   unsigned MaxAlignment;
3050   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3051   // Choose the minimum alignment. If we could prove both stores execute, we
3052   // could use biggest one.  In this case, though, we only know that one of the
3053   // stores executes.  And we don't know it's safe to take the alignment from a
3054   // store that doesn't execute.
3055   if (MinAlignment != 0) {
3056     // Choose the minimum of all non-zero alignments.
3057     SI->setAlignment(MinAlignment);
3058   } else if (MaxAlignment != 0) {
3059     // Choose the minimal alignment between the non-zero alignment and the ABI
3060     // default alignment for the type of the stored value.
3061     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3062   } else {
3063     // If both alignments are zero, use ABI default alignment for the type of
3064     // the stored value.
3065     SI->setAlignment(TypeAlignment);
3066   }
3067 
3068   QStore->eraseFromParent();
3069   PStore->eraseFromParent();
3070 
3071   return true;
3072 }
3073 
3074 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3075                                    const DataLayout &DL) {
3076   // The intention here is to find diamonds or triangles (see below) where each
3077   // conditional block contains a store to the same address. Both of these
3078   // stores are conditional, so they can't be unconditionally sunk. But it may
3079   // be profitable to speculatively sink the stores into one merged store at the
3080   // end, and predicate the merged store on the union of the two conditions of
3081   // PBI and QBI.
3082   //
3083   // This can reduce the number of stores executed if both of the conditions are
3084   // true, and can allow the blocks to become small enough to be if-converted.
3085   // This optimization will also chain, so that ladders of test-and-set
3086   // sequences can be if-converted away.
3087   //
3088   // We only deal with simple diamonds or triangles:
3089   //
3090   //     PBI       or      PBI        or a combination of the two
3091   //    /   \               | \
3092   //   PTB  PFB             |  PFB
3093   //    \   /               | /
3094   //     QBI                QBI
3095   //    /  \                | \
3096   //   QTB  QFB             |  QFB
3097   //    \  /                | /
3098   //    PostBB            PostBB
3099   //
3100   // We model triangles as a type of diamond with a nullptr "true" block.
3101   // Triangles are canonicalized so that the fallthrough edge is represented by
3102   // a true condition, as in the diagram above.
3103   BasicBlock *PTB = PBI->getSuccessor(0);
3104   BasicBlock *PFB = PBI->getSuccessor(1);
3105   BasicBlock *QTB = QBI->getSuccessor(0);
3106   BasicBlock *QFB = QBI->getSuccessor(1);
3107   BasicBlock *PostBB = QFB->getSingleSuccessor();
3108 
3109   // Make sure we have a good guess for PostBB. If QTB's only successor is
3110   // QFB, then QFB is a better PostBB.
3111   if (QTB->getSingleSuccessor() == QFB)
3112     PostBB = QFB;
3113 
3114   // If we couldn't find a good PostBB, stop.
3115   if (!PostBB)
3116     return false;
3117 
3118   bool InvertPCond = false, InvertQCond = false;
3119   // Canonicalize fallthroughs to the true branches.
3120   if (PFB == QBI->getParent()) {
3121     std::swap(PFB, PTB);
3122     InvertPCond = true;
3123   }
3124   if (QFB == PostBB) {
3125     std::swap(QFB, QTB);
3126     InvertQCond = true;
3127   }
3128 
3129   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3130   // and QFB may not. Model fallthroughs as a nullptr block.
3131   if (PTB == QBI->getParent())
3132     PTB = nullptr;
3133   if (QTB == PostBB)
3134     QTB = nullptr;
3135 
3136   // Legality bailouts. We must have at least the non-fallthrough blocks and
3137   // the post-dominating block, and the non-fallthroughs must only have one
3138   // predecessor.
3139   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3140     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3141   };
3142   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3143       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3144     return false;
3145   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3146       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3147     return false;
3148   if (!QBI->getParent()->hasNUses(2))
3149     return false;
3150 
3151   // OK, this is a sequence of two diamonds or triangles.
3152   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3153   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3154   for (auto *BB : {PTB, PFB}) {
3155     if (!BB)
3156       continue;
3157     for (auto &I : *BB)
3158       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3159         PStoreAddresses.insert(SI->getPointerOperand());
3160   }
3161   for (auto *BB : {QTB, QFB}) {
3162     if (!BB)
3163       continue;
3164     for (auto &I : *BB)
3165       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3166         QStoreAddresses.insert(SI->getPointerOperand());
3167   }
3168 
3169   set_intersect(PStoreAddresses, QStoreAddresses);
3170   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3171   // clear what it contains.
3172   auto &CommonAddresses = PStoreAddresses;
3173 
3174   bool Changed = false;
3175   for (auto *Address : CommonAddresses)
3176     Changed |= mergeConditionalStoreToAddress(
3177         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3178   return Changed;
3179 }
3180 
3181 /// If we have a conditional branch as a predecessor of another block,
3182 /// this function tries to simplify it.  We know
3183 /// that PBI and BI are both conditional branches, and BI is in one of the
3184 /// successor blocks of PBI - PBI branches to BI.
3185 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3186                                            const DataLayout &DL) {
3187   assert(PBI->isConditional() && BI->isConditional());
3188   BasicBlock *BB = BI->getParent();
3189 
3190   // If this block ends with a branch instruction, and if there is a
3191   // predecessor that ends on a branch of the same condition, make
3192   // this conditional branch redundant.
3193   if (PBI->getCondition() == BI->getCondition() &&
3194       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3195     // Okay, the outcome of this conditional branch is statically
3196     // knowable.  If this block had a single pred, handle specially.
3197     if (BB->getSinglePredecessor()) {
3198       // Turn this into a branch on constant.
3199       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3200       BI->setCondition(
3201           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3202       return true; // Nuke the branch on constant.
3203     }
3204 
3205     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3206     // in the constant and simplify the block result.  Subsequent passes of
3207     // simplifycfg will thread the block.
3208     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3209       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3210       PHINode *NewPN = PHINode::Create(
3211           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3212           BI->getCondition()->getName() + ".pr", &BB->front());
3213       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3214       // predecessor, compute the PHI'd conditional value for all of the preds.
3215       // Any predecessor where the condition is not computable we keep symbolic.
3216       for (pred_iterator PI = PB; PI != PE; ++PI) {
3217         BasicBlock *P = *PI;
3218         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3219             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3220             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3221           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3222           NewPN->addIncoming(
3223               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3224               P);
3225         } else {
3226           NewPN->addIncoming(BI->getCondition(), P);
3227         }
3228       }
3229 
3230       BI->setCondition(NewPN);
3231       return true;
3232     }
3233   }
3234 
3235   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3236     if (CE->canTrap())
3237       return false;
3238 
3239   // If both branches are conditional and both contain stores to the same
3240   // address, remove the stores from the conditionals and create a conditional
3241   // merged store at the end.
3242   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3243     return true;
3244 
3245   // If this is a conditional branch in an empty block, and if any
3246   // predecessors are a conditional branch to one of our destinations,
3247   // fold the conditions into logical ops and one cond br.
3248 
3249   // Ignore dbg intrinsics.
3250   if (&*BB->instructionsWithoutDebug().begin() != BI)
3251     return false;
3252 
3253   int PBIOp, BIOp;
3254   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3255     PBIOp = 0;
3256     BIOp = 0;
3257   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3258     PBIOp = 0;
3259     BIOp = 1;
3260   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3261     PBIOp = 1;
3262     BIOp = 0;
3263   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3264     PBIOp = 1;
3265     BIOp = 1;
3266   } else {
3267     return false;
3268   }
3269 
3270   // Check to make sure that the other destination of this branch
3271   // isn't BB itself.  If so, this is an infinite loop that will
3272   // keep getting unwound.
3273   if (PBI->getSuccessor(PBIOp) == BB)
3274     return false;
3275 
3276   // Do not perform this transformation if it would require
3277   // insertion of a large number of select instructions. For targets
3278   // without predication/cmovs, this is a big pessimization.
3279 
3280   // Also do not perform this transformation if any phi node in the common
3281   // destination block can trap when reached by BB or PBB (PR17073). In that
3282   // case, it would be unsafe to hoist the operation into a select instruction.
3283 
3284   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3285   unsigned NumPhis = 0;
3286   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3287        ++II, ++NumPhis) {
3288     if (NumPhis > 2) // Disable this xform.
3289       return false;
3290 
3291     PHINode *PN = cast<PHINode>(II);
3292     Value *BIV = PN->getIncomingValueForBlock(BB);
3293     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3294       if (CE->canTrap())
3295         return false;
3296 
3297     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3298     Value *PBIV = PN->getIncomingValue(PBBIdx);
3299     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3300       if (CE->canTrap())
3301         return false;
3302   }
3303 
3304   // Finally, if everything is ok, fold the branches to logical ops.
3305   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3306 
3307   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3308                     << "AND: " << *BI->getParent());
3309 
3310   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3311   // branch in it, where one edge (OtherDest) goes back to itself but the other
3312   // exits.  We don't *know* that the program avoids the infinite loop
3313   // (even though that seems likely).  If we do this xform naively, we'll end up
3314   // recursively unpeeling the loop.  Since we know that (after the xform is
3315   // done) that the block *is* infinite if reached, we just make it an obviously
3316   // infinite loop with no cond branch.
3317   if (OtherDest == BB) {
3318     // Insert it at the end of the function, because it's either code,
3319     // or it won't matter if it's hot. :)
3320     BasicBlock *InfLoopBlock =
3321         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3322     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3323     OtherDest = InfLoopBlock;
3324   }
3325 
3326   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3327 
3328   // BI may have other predecessors.  Because of this, we leave
3329   // it alone, but modify PBI.
3330 
3331   // Make sure we get to CommonDest on True&True directions.
3332   Value *PBICond = PBI->getCondition();
3333   IRBuilder<NoFolder> Builder(PBI);
3334   if (PBIOp)
3335     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3336 
3337   Value *BICond = BI->getCondition();
3338   if (BIOp)
3339     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3340 
3341   // Merge the conditions.
3342   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3343 
3344   // Modify PBI to branch on the new condition to the new dests.
3345   PBI->setCondition(Cond);
3346   PBI->setSuccessor(0, CommonDest);
3347   PBI->setSuccessor(1, OtherDest);
3348 
3349   // Update branch weight for PBI.
3350   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3351   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3352   bool HasWeights =
3353       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3354                              SuccTrueWeight, SuccFalseWeight);
3355   if (HasWeights) {
3356     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3357     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3358     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3359     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3360     // The weight to CommonDest should be PredCommon * SuccTotal +
3361     //                                    PredOther * SuccCommon.
3362     // The weight to OtherDest should be PredOther * SuccOther.
3363     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3364                                   PredOther * SuccCommon,
3365                               PredOther * SuccOther};
3366     // Halve the weights if any of them cannot fit in an uint32_t
3367     FitWeights(NewWeights);
3368 
3369     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3370   }
3371 
3372   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3373   // block that are identical to the entries for BI's block.
3374   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3375 
3376   // We know that the CommonDest already had an edge from PBI to
3377   // it.  If it has PHIs though, the PHIs may have different
3378   // entries for BB and PBI's BB.  If so, insert a select to make
3379   // them agree.
3380   for (PHINode &PN : CommonDest->phis()) {
3381     Value *BIV = PN.getIncomingValueForBlock(BB);
3382     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3383     Value *PBIV = PN.getIncomingValue(PBBIdx);
3384     if (BIV != PBIV) {
3385       // Insert a select in PBI to pick the right value.
3386       SelectInst *NV = cast<SelectInst>(
3387           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3388       PN.setIncomingValue(PBBIdx, NV);
3389       // Although the select has the same condition as PBI, the original branch
3390       // weights for PBI do not apply to the new select because the select's
3391       // 'logical' edges are incoming edges of the phi that is eliminated, not
3392       // the outgoing edges of PBI.
3393       if (HasWeights) {
3394         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3395         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3396         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3397         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3398         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3399         // The weight to PredOtherDest should be PredOther * SuccCommon.
3400         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3401                                   PredOther * SuccCommon};
3402 
3403         FitWeights(NewWeights);
3404 
3405         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3406       }
3407     }
3408   }
3409 
3410   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3411   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3412 
3413   // This basic block is probably dead.  We know it has at least
3414   // one fewer predecessor.
3415   return true;
3416 }
3417 
3418 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3419 // true or to FalseBB if Cond is false.
3420 // Takes care of updating the successors and removing the old terminator.
3421 // Also makes sure not to introduce new successors by assuming that edges to
3422 // non-successor TrueBBs and FalseBBs aren't reachable.
3423 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3424                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3425                                        uint32_t TrueWeight,
3426                                        uint32_t FalseWeight) {
3427   // Remove any superfluous successor edges from the CFG.
3428   // First, figure out which successors to preserve.
3429   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3430   // successor.
3431   BasicBlock *KeepEdge1 = TrueBB;
3432   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3433 
3434   // Then remove the rest.
3435   for (BasicBlock *Succ : successors(OldTerm)) {
3436     // Make sure only to keep exactly one copy of each edge.
3437     if (Succ == KeepEdge1)
3438       KeepEdge1 = nullptr;
3439     else if (Succ == KeepEdge2)
3440       KeepEdge2 = nullptr;
3441     else
3442       Succ->removePredecessor(OldTerm->getParent(),
3443                               /*DontDeleteUselessPHIs=*/true);
3444   }
3445 
3446   IRBuilder<> Builder(OldTerm);
3447   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3448 
3449   // Insert an appropriate new terminator.
3450   if (!KeepEdge1 && !KeepEdge2) {
3451     if (TrueBB == FalseBB)
3452       // We were only looking for one successor, and it was present.
3453       // Create an unconditional branch to it.
3454       Builder.CreateBr(TrueBB);
3455     else {
3456       // We found both of the successors we were looking for.
3457       // Create a conditional branch sharing the condition of the select.
3458       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3459       if (TrueWeight != FalseWeight)
3460         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3461     }
3462   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3463     // Neither of the selected blocks were successors, so this
3464     // terminator must be unreachable.
3465     new UnreachableInst(OldTerm->getContext(), OldTerm);
3466   } else {
3467     // One of the selected values was a successor, but the other wasn't.
3468     // Insert an unconditional branch to the one that was found;
3469     // the edge to the one that wasn't must be unreachable.
3470     if (!KeepEdge1)
3471       // Only TrueBB was found.
3472       Builder.CreateBr(TrueBB);
3473     else
3474       // Only FalseBB was found.
3475       Builder.CreateBr(FalseBB);
3476   }
3477 
3478   EraseTerminatorAndDCECond(OldTerm);
3479   return true;
3480 }
3481 
3482 // Replaces
3483 //   (switch (select cond, X, Y)) on constant X, Y
3484 // with a branch - conditional if X and Y lead to distinct BBs,
3485 // unconditional otherwise.
3486 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3487   // Check for constant integer values in the select.
3488   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3489   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3490   if (!TrueVal || !FalseVal)
3491     return false;
3492 
3493   // Find the relevant condition and destinations.
3494   Value *Condition = Select->getCondition();
3495   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3496   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3497 
3498   // Get weight for TrueBB and FalseBB.
3499   uint32_t TrueWeight = 0, FalseWeight = 0;
3500   SmallVector<uint64_t, 8> Weights;
3501   bool HasWeights = HasBranchWeights(SI);
3502   if (HasWeights) {
3503     GetBranchWeights(SI, Weights);
3504     if (Weights.size() == 1 + SI->getNumCases()) {
3505       TrueWeight =
3506           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3507       FalseWeight =
3508           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3509     }
3510   }
3511 
3512   // Perform the actual simplification.
3513   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3514                                     FalseWeight);
3515 }
3516 
3517 // Replaces
3518 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3519 //                             blockaddress(@fn, BlockB)))
3520 // with
3521 //   (br cond, BlockA, BlockB).
3522 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3523   // Check that both operands of the select are block addresses.
3524   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3525   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3526   if (!TBA || !FBA)
3527     return false;
3528 
3529   // Extract the actual blocks.
3530   BasicBlock *TrueBB = TBA->getBasicBlock();
3531   BasicBlock *FalseBB = FBA->getBasicBlock();
3532 
3533   // Perform the actual simplification.
3534   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3535                                     0);
3536 }
3537 
3538 /// This is called when we find an icmp instruction
3539 /// (a seteq/setne with a constant) as the only instruction in a
3540 /// block that ends with an uncond branch.  We are looking for a very specific
3541 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3542 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3543 /// default value goes to an uncond block with a seteq in it, we get something
3544 /// like:
3545 ///
3546 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3547 /// DEFAULT:
3548 ///   %tmp = icmp eq i8 %A, 92
3549 ///   br label %end
3550 /// end:
3551 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3552 ///
3553 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3554 /// the PHI, merging the third icmp into the switch.
3555 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3556     ICmpInst *ICI, IRBuilder<> &Builder) {
3557   BasicBlock *BB = ICI->getParent();
3558 
3559   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3560   // complex.
3561   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3562     return false;
3563 
3564   Value *V = ICI->getOperand(0);
3565   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3566 
3567   // The pattern we're looking for is where our only predecessor is a switch on
3568   // 'V' and this block is the default case for the switch.  In this case we can
3569   // fold the compared value into the switch to simplify things.
3570   BasicBlock *Pred = BB->getSinglePredecessor();
3571   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3572     return false;
3573 
3574   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3575   if (SI->getCondition() != V)
3576     return false;
3577 
3578   // If BB is reachable on a non-default case, then we simply know the value of
3579   // V in this block.  Substitute it and constant fold the icmp instruction
3580   // away.
3581   if (SI->getDefaultDest() != BB) {
3582     ConstantInt *VVal = SI->findCaseDest(BB);
3583     assert(VVal && "Should have a unique destination value");
3584     ICI->setOperand(0, VVal);
3585 
3586     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3587       ICI->replaceAllUsesWith(V);
3588       ICI->eraseFromParent();
3589     }
3590     // BB is now empty, so it is likely to simplify away.
3591     return requestResimplify();
3592   }
3593 
3594   // Ok, the block is reachable from the default dest.  If the constant we're
3595   // comparing exists in one of the other edges, then we can constant fold ICI
3596   // and zap it.
3597   if (SI->findCaseValue(Cst) != SI->case_default()) {
3598     Value *V;
3599     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3600       V = ConstantInt::getFalse(BB->getContext());
3601     else
3602       V = ConstantInt::getTrue(BB->getContext());
3603 
3604     ICI->replaceAllUsesWith(V);
3605     ICI->eraseFromParent();
3606     // BB is now empty, so it is likely to simplify away.
3607     return requestResimplify();
3608   }
3609 
3610   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3611   // the block.
3612   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3613   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3614   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3615       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3616     return false;
3617 
3618   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3619   // true in the PHI.
3620   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3621   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3622 
3623   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3624     std::swap(DefaultCst, NewCst);
3625 
3626   // Replace ICI (which is used by the PHI for the default value) with true or
3627   // false depending on if it is EQ or NE.
3628   ICI->replaceAllUsesWith(DefaultCst);
3629   ICI->eraseFromParent();
3630 
3631   // Okay, the switch goes to this block on a default value.  Add an edge from
3632   // the switch to the merge point on the compared value.
3633   BasicBlock *NewBB =
3634       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3635   SmallVector<uint64_t, 8> Weights;
3636   bool HasWeights = HasBranchWeights(SI);
3637   if (HasWeights) {
3638     GetBranchWeights(SI, Weights);
3639     if (Weights.size() == 1 + SI->getNumCases()) {
3640       // Split weight for default case to case for "Cst".
3641       Weights[0] = (Weights[0] + 1) >> 1;
3642       Weights.push_back(Weights[0]);
3643 
3644       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3645       setBranchWeights(SI, MDWeights);
3646     }
3647   }
3648   SI->addCase(Cst, NewBB);
3649 
3650   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3651   Builder.SetInsertPoint(NewBB);
3652   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3653   Builder.CreateBr(SuccBlock);
3654   PHIUse->addIncoming(NewCst, NewBB);
3655   return true;
3656 }
3657 
3658 /// The specified branch is a conditional branch.
3659 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3660 /// fold it into a switch instruction if so.
3661 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3662                                       const DataLayout &DL) {
3663   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3664   if (!Cond)
3665     return false;
3666 
3667   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3668   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3669   // 'setne's and'ed together, collect them.
3670 
3671   // Try to gather values from a chain of and/or to be turned into a switch
3672   ConstantComparesGatherer ConstantCompare(Cond, DL);
3673   // Unpack the result
3674   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3675   Value *CompVal = ConstantCompare.CompValue;
3676   unsigned UsedICmps = ConstantCompare.UsedICmps;
3677   Value *ExtraCase = ConstantCompare.Extra;
3678 
3679   // If we didn't have a multiply compared value, fail.
3680   if (!CompVal)
3681     return false;
3682 
3683   // Avoid turning single icmps into a switch.
3684   if (UsedICmps <= 1)
3685     return false;
3686 
3687   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3688 
3689   // There might be duplicate constants in the list, which the switch
3690   // instruction can't handle, remove them now.
3691   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3692   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3693 
3694   // If Extra was used, we require at least two switch values to do the
3695   // transformation.  A switch with one value is just a conditional branch.
3696   if (ExtraCase && Values.size() < 2)
3697     return false;
3698 
3699   // TODO: Preserve branch weight metadata, similarly to how
3700   // FoldValueComparisonIntoPredecessors preserves it.
3701 
3702   // Figure out which block is which destination.
3703   BasicBlock *DefaultBB = BI->getSuccessor(1);
3704   BasicBlock *EdgeBB = BI->getSuccessor(0);
3705   if (!TrueWhenEqual)
3706     std::swap(DefaultBB, EdgeBB);
3707 
3708   BasicBlock *BB = BI->getParent();
3709 
3710   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3711                     << " cases into SWITCH.  BB is:\n"
3712                     << *BB);
3713 
3714   // If there are any extra values that couldn't be folded into the switch
3715   // then we evaluate them with an explicit branch first.  Split the block
3716   // right before the condbr to handle it.
3717   if (ExtraCase) {
3718     BasicBlock *NewBB =
3719         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3720     // Remove the uncond branch added to the old block.
3721     Instruction *OldTI = BB->getTerminator();
3722     Builder.SetInsertPoint(OldTI);
3723 
3724     if (TrueWhenEqual)
3725       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3726     else
3727       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3728 
3729     OldTI->eraseFromParent();
3730 
3731     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3732     // for the edge we just added.
3733     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3734 
3735     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3736                       << "\nEXTRABB = " << *BB);
3737     BB = NewBB;
3738   }
3739 
3740   Builder.SetInsertPoint(BI);
3741   // Convert pointer to int before we switch.
3742   if (CompVal->getType()->isPointerTy()) {
3743     CompVal = Builder.CreatePtrToInt(
3744         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3745   }
3746 
3747   // Create the new switch instruction now.
3748   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3749 
3750   // Add all of the 'cases' to the switch instruction.
3751   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3752     New->addCase(Values[i], EdgeBB);
3753 
3754   // We added edges from PI to the EdgeBB.  As such, if there were any
3755   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3756   // the number of edges added.
3757   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3758     PHINode *PN = cast<PHINode>(BBI);
3759     Value *InVal = PN->getIncomingValueForBlock(BB);
3760     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3761       PN->addIncoming(InVal, BB);
3762   }
3763 
3764   // Erase the old branch instruction.
3765   EraseTerminatorAndDCECond(BI);
3766 
3767   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3768   return true;
3769 }
3770 
3771 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3772   if (isa<PHINode>(RI->getValue()))
3773     return SimplifyCommonResume(RI);
3774   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3775            RI->getValue() == RI->getParent()->getFirstNonPHI())
3776     // The resume must unwind the exception that caused control to branch here.
3777     return SimplifySingleResume(RI);
3778 
3779   return false;
3780 }
3781 
3782 // Simplify resume that is shared by several landing pads (phi of landing pad).
3783 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3784   BasicBlock *BB = RI->getParent();
3785 
3786   // Check that there are no other instructions except for debug intrinsics
3787   // between the phi of landing pads (RI->getValue()) and resume instruction.
3788   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3789                        E = RI->getIterator();
3790   while (++I != E)
3791     if (!isa<DbgInfoIntrinsic>(I))
3792       return false;
3793 
3794   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3795   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3796 
3797   // Check incoming blocks to see if any of them are trivial.
3798   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3799        Idx++) {
3800     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3801     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3802 
3803     // If the block has other successors, we can not delete it because
3804     // it has other dependents.
3805     if (IncomingBB->getUniqueSuccessor() != BB)
3806       continue;
3807 
3808     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3809     // Not the landing pad that caused the control to branch here.
3810     if (IncomingValue != LandingPad)
3811       continue;
3812 
3813     bool isTrivial = true;
3814 
3815     I = IncomingBB->getFirstNonPHI()->getIterator();
3816     E = IncomingBB->getTerminator()->getIterator();
3817     while (++I != E)
3818       if (!isa<DbgInfoIntrinsic>(I)) {
3819         isTrivial = false;
3820         break;
3821       }
3822 
3823     if (isTrivial)
3824       TrivialUnwindBlocks.insert(IncomingBB);
3825   }
3826 
3827   // If no trivial unwind blocks, don't do any simplifications.
3828   if (TrivialUnwindBlocks.empty())
3829     return false;
3830 
3831   // Turn all invokes that unwind here into calls.
3832   for (auto *TrivialBB : TrivialUnwindBlocks) {
3833     // Blocks that will be simplified should be removed from the phi node.
3834     // Note there could be multiple edges to the resume block, and we need
3835     // to remove them all.
3836     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3837       BB->removePredecessor(TrivialBB, true);
3838 
3839     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3840          PI != PE;) {
3841       BasicBlock *Pred = *PI++;
3842       removeUnwindEdge(Pred);
3843     }
3844 
3845     // In each SimplifyCFG run, only the current processed block can be erased.
3846     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3847     // of erasing TrivialBB, we only remove the branch to the common resume
3848     // block so that we can later erase the resume block since it has no
3849     // predecessors.
3850     TrivialBB->getTerminator()->eraseFromParent();
3851     new UnreachableInst(RI->getContext(), TrivialBB);
3852   }
3853 
3854   // Delete the resume block if all its predecessors have been removed.
3855   if (pred_empty(BB))
3856     BB->eraseFromParent();
3857 
3858   return !TrivialUnwindBlocks.empty();
3859 }
3860 
3861 // Simplify resume that is only used by a single (non-phi) landing pad.
3862 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3863   BasicBlock *BB = RI->getParent();
3864   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3865   assert(RI->getValue() == LPInst &&
3866          "Resume must unwind the exception that caused control to here");
3867 
3868   // Check that there are no other instructions except for debug intrinsics.
3869   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3870   while (++I != E)
3871     if (!isa<DbgInfoIntrinsic>(I))
3872       return false;
3873 
3874   // Turn all invokes that unwind here into calls and delete the basic block.
3875   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3876     BasicBlock *Pred = *PI++;
3877     removeUnwindEdge(Pred);
3878   }
3879 
3880   // The landingpad is now unreachable.  Zap it.
3881   if (LoopHeaders)
3882     LoopHeaders->erase(BB);
3883   BB->eraseFromParent();
3884   return true;
3885 }
3886 
3887 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3888   // If this is a trivial cleanup pad that executes no instructions, it can be
3889   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3890   // that is an EH pad will be updated to continue to the caller and any
3891   // predecessor that terminates with an invoke instruction will have its invoke
3892   // instruction converted to a call instruction.  If the cleanup pad being
3893   // simplified does not continue to the caller, each predecessor will be
3894   // updated to continue to the unwind destination of the cleanup pad being
3895   // simplified.
3896   BasicBlock *BB = RI->getParent();
3897   CleanupPadInst *CPInst = RI->getCleanupPad();
3898   if (CPInst->getParent() != BB)
3899     // This isn't an empty cleanup.
3900     return false;
3901 
3902   // We cannot kill the pad if it has multiple uses.  This typically arises
3903   // from unreachable basic blocks.
3904   if (!CPInst->hasOneUse())
3905     return false;
3906 
3907   // Check that there are no other instructions except for benign intrinsics.
3908   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3909   while (++I != E) {
3910     auto *II = dyn_cast<IntrinsicInst>(I);
3911     if (!II)
3912       return false;
3913 
3914     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3915     switch (IntrinsicID) {
3916     case Intrinsic::dbg_declare:
3917     case Intrinsic::dbg_value:
3918     case Intrinsic::dbg_label:
3919     case Intrinsic::lifetime_end:
3920       break;
3921     default:
3922       return false;
3923     }
3924   }
3925 
3926   // If the cleanup return we are simplifying unwinds to the caller, this will
3927   // set UnwindDest to nullptr.
3928   BasicBlock *UnwindDest = RI->getUnwindDest();
3929   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3930 
3931   // We're about to remove BB from the control flow.  Before we do, sink any
3932   // PHINodes into the unwind destination.  Doing this before changing the
3933   // control flow avoids some potentially slow checks, since we can currently
3934   // be certain that UnwindDest and BB have no common predecessors (since they
3935   // are both EH pads).
3936   if (UnwindDest) {
3937     // First, go through the PHI nodes in UnwindDest and update any nodes that
3938     // reference the block we are removing
3939     for (BasicBlock::iterator I = UnwindDest->begin(),
3940                               IE = DestEHPad->getIterator();
3941          I != IE; ++I) {
3942       PHINode *DestPN = cast<PHINode>(I);
3943 
3944       int Idx = DestPN->getBasicBlockIndex(BB);
3945       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3946       assert(Idx != -1);
3947       // This PHI node has an incoming value that corresponds to a control
3948       // path through the cleanup pad we are removing.  If the incoming
3949       // value is in the cleanup pad, it must be a PHINode (because we
3950       // verified above that the block is otherwise empty).  Otherwise, the
3951       // value is either a constant or a value that dominates the cleanup
3952       // pad being removed.
3953       //
3954       // Because BB and UnwindDest are both EH pads, all of their
3955       // predecessors must unwind to these blocks, and since no instruction
3956       // can have multiple unwind destinations, there will be no overlap in
3957       // incoming blocks between SrcPN and DestPN.
3958       Value *SrcVal = DestPN->getIncomingValue(Idx);
3959       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3960 
3961       // Remove the entry for the block we are deleting.
3962       DestPN->removeIncomingValue(Idx, false);
3963 
3964       if (SrcPN && SrcPN->getParent() == BB) {
3965         // If the incoming value was a PHI node in the cleanup pad we are
3966         // removing, we need to merge that PHI node's incoming values into
3967         // DestPN.
3968         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3969              SrcIdx != SrcE; ++SrcIdx) {
3970           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3971                               SrcPN->getIncomingBlock(SrcIdx));
3972         }
3973       } else {
3974         // Otherwise, the incoming value came from above BB and
3975         // so we can just reuse it.  We must associate all of BB's
3976         // predecessors with this value.
3977         for (auto *pred : predecessors(BB)) {
3978           DestPN->addIncoming(SrcVal, pred);
3979         }
3980       }
3981     }
3982 
3983     // Sink any remaining PHI nodes directly into UnwindDest.
3984     Instruction *InsertPt = DestEHPad;
3985     for (BasicBlock::iterator I = BB->begin(),
3986                               IE = BB->getFirstNonPHI()->getIterator();
3987          I != IE;) {
3988       // The iterator must be incremented here because the instructions are
3989       // being moved to another block.
3990       PHINode *PN = cast<PHINode>(I++);
3991       if (PN->use_empty())
3992         // If the PHI node has no uses, just leave it.  It will be erased
3993         // when we erase BB below.
3994         continue;
3995 
3996       // Otherwise, sink this PHI node into UnwindDest.
3997       // Any predecessors to UnwindDest which are not already represented
3998       // must be back edges which inherit the value from the path through
3999       // BB.  In this case, the PHI value must reference itself.
4000       for (auto *pred : predecessors(UnwindDest))
4001         if (pred != BB)
4002           PN->addIncoming(PN, pred);
4003       PN->moveBefore(InsertPt);
4004     }
4005   }
4006 
4007   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4008     // The iterator must be updated here because we are removing this pred.
4009     BasicBlock *PredBB = *PI++;
4010     if (UnwindDest == nullptr) {
4011       removeUnwindEdge(PredBB);
4012     } else {
4013       Instruction *TI = PredBB->getTerminator();
4014       TI->replaceUsesOfWith(BB, UnwindDest);
4015     }
4016   }
4017 
4018   // The cleanup pad is now unreachable.  Zap it.
4019   BB->eraseFromParent();
4020   return true;
4021 }
4022 
4023 // Try to merge two cleanuppads together.
4024 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4025   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4026   // with.
4027   BasicBlock *UnwindDest = RI->getUnwindDest();
4028   if (!UnwindDest)
4029     return false;
4030 
4031   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4032   // be safe to merge without code duplication.
4033   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4034     return false;
4035 
4036   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4037   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4038   if (!SuccessorCleanupPad)
4039     return false;
4040 
4041   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4042   // Replace any uses of the successor cleanupad with the predecessor pad
4043   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4044   // funclet bundle operands.
4045   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4046   // Remove the old cleanuppad.
4047   SuccessorCleanupPad->eraseFromParent();
4048   // Now, we simply replace the cleanupret with a branch to the unwind
4049   // destination.
4050   BranchInst::Create(UnwindDest, RI->getParent());
4051   RI->eraseFromParent();
4052 
4053   return true;
4054 }
4055 
4056 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4057   // It is possible to transiantly have an undef cleanuppad operand because we
4058   // have deleted some, but not all, dead blocks.
4059   // Eventually, this block will be deleted.
4060   if (isa<UndefValue>(RI->getOperand(0)))
4061     return false;
4062 
4063   if (mergeCleanupPad(RI))
4064     return true;
4065 
4066   if (removeEmptyCleanup(RI))
4067     return true;
4068 
4069   return false;
4070 }
4071 
4072 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4073   BasicBlock *BB = RI->getParent();
4074   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4075     return false;
4076 
4077   // Find predecessors that end with branches.
4078   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4079   SmallVector<BranchInst *, 8> CondBranchPreds;
4080   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4081     BasicBlock *P = *PI;
4082     Instruction *PTI = P->getTerminator();
4083     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4084       if (BI->isUnconditional())
4085         UncondBranchPreds.push_back(P);
4086       else
4087         CondBranchPreds.push_back(BI);
4088     }
4089   }
4090 
4091   // If we found some, do the transformation!
4092   if (!UncondBranchPreds.empty() && DupRet) {
4093     while (!UncondBranchPreds.empty()) {
4094       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4095       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4096                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4097       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4098     }
4099 
4100     // If we eliminated all predecessors of the block, delete the block now.
4101     if (pred_empty(BB)) {
4102       // We know there are no successors, so just nuke the block.
4103       if (LoopHeaders)
4104         LoopHeaders->erase(BB);
4105       BB->eraseFromParent();
4106     }
4107 
4108     return true;
4109   }
4110 
4111   // Check out all of the conditional branches going to this return
4112   // instruction.  If any of them just select between returns, change the
4113   // branch itself into a select/return pair.
4114   while (!CondBranchPreds.empty()) {
4115     BranchInst *BI = CondBranchPreds.pop_back_val();
4116 
4117     // Check to see if the non-BB successor is also a return block.
4118     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4119         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4120         SimplifyCondBranchToTwoReturns(BI, Builder))
4121       return true;
4122   }
4123   return false;
4124 }
4125 
4126 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4127   BasicBlock *BB = UI->getParent();
4128 
4129   bool Changed = false;
4130 
4131   // If there are any instructions immediately before the unreachable that can
4132   // be removed, do so.
4133   while (UI->getIterator() != BB->begin()) {
4134     BasicBlock::iterator BBI = UI->getIterator();
4135     --BBI;
4136     // Do not delete instructions that can have side effects which might cause
4137     // the unreachable to not be reachable; specifically, calls and volatile
4138     // operations may have this effect.
4139     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4140       break;
4141 
4142     if (BBI->mayHaveSideEffects()) {
4143       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4144         if (SI->isVolatile())
4145           break;
4146       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4147         if (LI->isVolatile())
4148           break;
4149       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4150         if (RMWI->isVolatile())
4151           break;
4152       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4153         if (CXI->isVolatile())
4154           break;
4155       } else if (isa<CatchPadInst>(BBI)) {
4156         // A catchpad may invoke exception object constructors and such, which
4157         // in some languages can be arbitrary code, so be conservative by
4158         // default.
4159         // For CoreCLR, it just involves a type test, so can be removed.
4160         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4161             EHPersonality::CoreCLR)
4162           break;
4163       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4164                  !isa<LandingPadInst>(BBI)) {
4165         break;
4166       }
4167       // Note that deleting LandingPad's here is in fact okay, although it
4168       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4169       // all the predecessors of this block will be the unwind edges of Invokes,
4170       // and we can therefore guarantee this block will be erased.
4171     }
4172 
4173     // Delete this instruction (any uses are guaranteed to be dead)
4174     if (!BBI->use_empty())
4175       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4176     BBI->eraseFromParent();
4177     Changed = true;
4178   }
4179 
4180   // If the unreachable instruction is the first in the block, take a gander
4181   // at all of the predecessors of this instruction, and simplify them.
4182   if (&BB->front() != UI)
4183     return Changed;
4184 
4185   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4186   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4187     Instruction *TI = Preds[i]->getTerminator();
4188     IRBuilder<> Builder(TI);
4189     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4190       if (BI->isUnconditional()) {
4191         if (BI->getSuccessor(0) == BB) {
4192           new UnreachableInst(TI->getContext(), TI);
4193           TI->eraseFromParent();
4194           Changed = true;
4195         }
4196       } else {
4197         if (BI->getSuccessor(0) == BB) {
4198           Builder.CreateBr(BI->getSuccessor(1));
4199           EraseTerminatorAndDCECond(BI);
4200         } else if (BI->getSuccessor(1) == BB) {
4201           Builder.CreateBr(BI->getSuccessor(0));
4202           EraseTerminatorAndDCECond(BI);
4203           Changed = true;
4204         }
4205       }
4206     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4207       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4208         if (i->getCaseSuccessor() != BB) {
4209           ++i;
4210           continue;
4211         }
4212         BB->removePredecessor(SI->getParent());
4213         i = SI->removeCase(i);
4214         e = SI->case_end();
4215         Changed = true;
4216       }
4217     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4218       if (II->getUnwindDest() == BB) {
4219         removeUnwindEdge(TI->getParent());
4220         Changed = true;
4221       }
4222     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4223       if (CSI->getUnwindDest() == BB) {
4224         removeUnwindEdge(TI->getParent());
4225         Changed = true;
4226         continue;
4227       }
4228 
4229       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4230                                              E = CSI->handler_end();
4231            I != E; ++I) {
4232         if (*I == BB) {
4233           CSI->removeHandler(I);
4234           --I;
4235           --E;
4236           Changed = true;
4237         }
4238       }
4239       if (CSI->getNumHandlers() == 0) {
4240         BasicBlock *CatchSwitchBB = CSI->getParent();
4241         if (CSI->hasUnwindDest()) {
4242           // Redirect preds to the unwind dest
4243           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4244         } else {
4245           // Rewrite all preds to unwind to caller (or from invoke to call).
4246           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4247           for (BasicBlock *EHPred : EHPreds)
4248             removeUnwindEdge(EHPred);
4249         }
4250         // The catchswitch is no longer reachable.
4251         new UnreachableInst(CSI->getContext(), CSI);
4252         CSI->eraseFromParent();
4253         Changed = true;
4254       }
4255     } else if (isa<CleanupReturnInst>(TI)) {
4256       new UnreachableInst(TI->getContext(), TI);
4257       TI->eraseFromParent();
4258       Changed = true;
4259     }
4260   }
4261 
4262   // If this block is now dead, remove it.
4263   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4264     // We know there are no successors, so just nuke the block.
4265     if (LoopHeaders)
4266       LoopHeaders->erase(BB);
4267     BB->eraseFromParent();
4268     return true;
4269   }
4270 
4271   return Changed;
4272 }
4273 
4274 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4275   assert(Cases.size() >= 1);
4276 
4277   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4278   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4279     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4280       return false;
4281   }
4282   return true;
4283 }
4284 
4285 /// Turn a switch with two reachable destinations into an integer range
4286 /// comparison and branch.
4287 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4288   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4289 
4290   bool HasDefault =
4291       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4292 
4293   // Partition the cases into two sets with different destinations.
4294   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4295   BasicBlock *DestB = nullptr;
4296   SmallVector<ConstantInt *, 16> CasesA;
4297   SmallVector<ConstantInt *, 16> CasesB;
4298 
4299   for (auto Case : SI->cases()) {
4300     BasicBlock *Dest = Case.getCaseSuccessor();
4301     if (!DestA)
4302       DestA = Dest;
4303     if (Dest == DestA) {
4304       CasesA.push_back(Case.getCaseValue());
4305       continue;
4306     }
4307     if (!DestB)
4308       DestB = Dest;
4309     if (Dest == DestB) {
4310       CasesB.push_back(Case.getCaseValue());
4311       continue;
4312     }
4313     return false; // More than two destinations.
4314   }
4315 
4316   assert(DestA && DestB &&
4317          "Single-destination switch should have been folded.");
4318   assert(DestA != DestB);
4319   assert(DestB != SI->getDefaultDest());
4320   assert(!CasesB.empty() && "There must be non-default cases.");
4321   assert(!CasesA.empty() || HasDefault);
4322 
4323   // Figure out if one of the sets of cases form a contiguous range.
4324   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4325   BasicBlock *ContiguousDest = nullptr;
4326   BasicBlock *OtherDest = nullptr;
4327   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4328     ContiguousCases = &CasesA;
4329     ContiguousDest = DestA;
4330     OtherDest = DestB;
4331   } else if (CasesAreContiguous(CasesB)) {
4332     ContiguousCases = &CasesB;
4333     ContiguousDest = DestB;
4334     OtherDest = DestA;
4335   } else
4336     return false;
4337 
4338   // Start building the compare and branch.
4339 
4340   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4341   Constant *NumCases =
4342       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4343 
4344   Value *Sub = SI->getCondition();
4345   if (!Offset->isNullValue())
4346     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4347 
4348   Value *Cmp;
4349   // If NumCases overflowed, then all possible values jump to the successor.
4350   if (NumCases->isNullValue() && !ContiguousCases->empty())
4351     Cmp = ConstantInt::getTrue(SI->getContext());
4352   else
4353     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4354   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4355 
4356   // Update weight for the newly-created conditional branch.
4357   if (HasBranchWeights(SI)) {
4358     SmallVector<uint64_t, 8> Weights;
4359     GetBranchWeights(SI, Weights);
4360     if (Weights.size() == 1 + SI->getNumCases()) {
4361       uint64_t TrueWeight = 0;
4362       uint64_t FalseWeight = 0;
4363       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4364         if (SI->getSuccessor(I) == ContiguousDest)
4365           TrueWeight += Weights[I];
4366         else
4367           FalseWeight += Weights[I];
4368       }
4369       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4370         TrueWeight /= 2;
4371         FalseWeight /= 2;
4372       }
4373       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4374     }
4375   }
4376 
4377   // Prune obsolete incoming values off the successors' PHI nodes.
4378   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4379     unsigned PreviousEdges = ContiguousCases->size();
4380     if (ContiguousDest == SI->getDefaultDest())
4381       ++PreviousEdges;
4382     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4383       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4384   }
4385   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4386     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4387     if (OtherDest == SI->getDefaultDest())
4388       ++PreviousEdges;
4389     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4390       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4391   }
4392 
4393   // Drop the switch.
4394   SI->eraseFromParent();
4395 
4396   return true;
4397 }
4398 
4399 /// Compute masked bits for the condition of a switch
4400 /// and use it to remove dead cases.
4401 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4402                                      const DataLayout &DL) {
4403   Value *Cond = SI->getCondition();
4404   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4405   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4406 
4407   // We can also eliminate cases by determining that their values are outside of
4408   // the limited range of the condition based on how many significant (non-sign)
4409   // bits are in the condition value.
4410   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4411   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4412 
4413   // Gather dead cases.
4414   SmallVector<ConstantInt *, 8> DeadCases;
4415   for (auto &Case : SI->cases()) {
4416     const APInt &CaseVal = Case.getCaseValue()->getValue();
4417     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4418         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4419       DeadCases.push_back(Case.getCaseValue());
4420       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4421                         << " is dead.\n");
4422     }
4423   }
4424 
4425   // If we can prove that the cases must cover all possible values, the
4426   // default destination becomes dead and we can remove it.  If we know some
4427   // of the bits in the value, we can use that to more precisely compute the
4428   // number of possible unique case values.
4429   bool HasDefault =
4430       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4431   const unsigned NumUnknownBits =
4432       Bits - (Known.Zero | Known.One).countPopulation();
4433   assert(NumUnknownBits <= Bits);
4434   if (HasDefault && DeadCases.empty() &&
4435       NumUnknownBits < 64 /* avoid overflow */ &&
4436       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4437     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4438     BasicBlock *NewDefault =
4439         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4440     SI->setDefaultDest(&*NewDefault);
4441     SplitBlock(&*NewDefault, &NewDefault->front());
4442     auto *OldTI = NewDefault->getTerminator();
4443     new UnreachableInst(SI->getContext(), OldTI);
4444     EraseTerminatorAndDCECond(OldTI);
4445     return true;
4446   }
4447 
4448   SmallVector<uint64_t, 8> Weights;
4449   bool HasWeight = HasBranchWeights(SI);
4450   if (HasWeight) {
4451     GetBranchWeights(SI, Weights);
4452     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4453   }
4454 
4455   // Remove dead cases from the switch.
4456   for (ConstantInt *DeadCase : DeadCases) {
4457     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4458     assert(CaseI != SI->case_default() &&
4459            "Case was not found. Probably mistake in DeadCases forming.");
4460     if (HasWeight) {
4461       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4462       Weights.pop_back();
4463     }
4464 
4465     // Prune unused values from PHI nodes.
4466     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4467     SI->removeCase(CaseI);
4468   }
4469   if (HasWeight && Weights.size() >= 2) {
4470     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4471     setBranchWeights(SI, MDWeights);
4472   }
4473 
4474   return !DeadCases.empty();
4475 }
4476 
4477 /// If BB would be eligible for simplification by
4478 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4479 /// by an unconditional branch), look at the phi node for BB in the successor
4480 /// block and see if the incoming value is equal to CaseValue. If so, return
4481 /// the phi node, and set PhiIndex to BB's index in the phi node.
4482 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4483                                               BasicBlock *BB, int *PhiIndex) {
4484   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4485     return nullptr; // BB must be empty to be a candidate for simplification.
4486   if (!BB->getSinglePredecessor())
4487     return nullptr; // BB must be dominated by the switch.
4488 
4489   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4490   if (!Branch || !Branch->isUnconditional())
4491     return nullptr; // Terminator must be unconditional branch.
4492 
4493   BasicBlock *Succ = Branch->getSuccessor(0);
4494 
4495   for (PHINode &PHI : Succ->phis()) {
4496     int Idx = PHI.getBasicBlockIndex(BB);
4497     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4498 
4499     Value *InValue = PHI.getIncomingValue(Idx);
4500     if (InValue != CaseValue)
4501       continue;
4502 
4503     *PhiIndex = Idx;
4504     return &PHI;
4505   }
4506 
4507   return nullptr;
4508 }
4509 
4510 /// Try to forward the condition of a switch instruction to a phi node
4511 /// dominated by the switch, if that would mean that some of the destination
4512 /// blocks of the switch can be folded away. Return true if a change is made.
4513 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4514   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4515 
4516   ForwardingNodesMap ForwardingNodes;
4517   BasicBlock *SwitchBlock = SI->getParent();
4518   bool Changed = false;
4519   for (auto &Case : SI->cases()) {
4520     ConstantInt *CaseValue = Case.getCaseValue();
4521     BasicBlock *CaseDest = Case.getCaseSuccessor();
4522 
4523     // Replace phi operands in successor blocks that are using the constant case
4524     // value rather than the switch condition variable:
4525     //   switchbb:
4526     //   switch i32 %x, label %default [
4527     //     i32 17, label %succ
4528     //   ...
4529     //   succ:
4530     //     %r = phi i32 ... [ 17, %switchbb ] ...
4531     // -->
4532     //     %r = phi i32 ... [ %x, %switchbb ] ...
4533 
4534     for (PHINode &Phi : CaseDest->phis()) {
4535       // This only works if there is exactly 1 incoming edge from the switch to
4536       // a phi. If there is >1, that means multiple cases of the switch map to 1
4537       // value in the phi, and that phi value is not the switch condition. Thus,
4538       // this transform would not make sense (the phi would be invalid because
4539       // a phi can't have different incoming values from the same block).
4540       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4541       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4542           count(Phi.blocks(), SwitchBlock) == 1) {
4543         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4544         Changed = true;
4545       }
4546     }
4547 
4548     // Collect phi nodes that are indirectly using this switch's case constants.
4549     int PhiIdx;
4550     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4551       ForwardingNodes[Phi].push_back(PhiIdx);
4552   }
4553 
4554   for (auto &ForwardingNode : ForwardingNodes) {
4555     PHINode *Phi = ForwardingNode.first;
4556     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4557     if (Indexes.size() < 2)
4558       continue;
4559 
4560     for (int Index : Indexes)
4561       Phi->setIncomingValue(Index, SI->getCondition());
4562     Changed = true;
4563   }
4564 
4565   return Changed;
4566 }
4567 
4568 /// Return true if the backend will be able to handle
4569 /// initializing an array of constants like C.
4570 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4571   if (C->isThreadDependent())
4572     return false;
4573   if (C->isDLLImportDependent())
4574     return false;
4575 
4576   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4577       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4578       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4579     return false;
4580 
4581   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4582     if (!CE->isGEPWithNoNotionalOverIndexing())
4583       return false;
4584     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4585       return false;
4586   }
4587 
4588   if (!TTI.shouldBuildLookupTablesForConstant(C))
4589     return false;
4590 
4591   return true;
4592 }
4593 
4594 /// If V is a Constant, return it. Otherwise, try to look up
4595 /// its constant value in ConstantPool, returning 0 if it's not there.
4596 static Constant *
4597 LookupConstant(Value *V,
4598                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4599   if (Constant *C = dyn_cast<Constant>(V))
4600     return C;
4601   return ConstantPool.lookup(V);
4602 }
4603 
4604 /// Try to fold instruction I into a constant. This works for
4605 /// simple instructions such as binary operations where both operands are
4606 /// constant or can be replaced by constants from the ConstantPool. Returns the
4607 /// resulting constant on success, 0 otherwise.
4608 static Constant *
4609 ConstantFold(Instruction *I, const DataLayout &DL,
4610              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4611   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4612     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4613     if (!A)
4614       return nullptr;
4615     if (A->isAllOnesValue())
4616       return LookupConstant(Select->getTrueValue(), ConstantPool);
4617     if (A->isNullValue())
4618       return LookupConstant(Select->getFalseValue(), ConstantPool);
4619     return nullptr;
4620   }
4621 
4622   SmallVector<Constant *, 4> COps;
4623   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4624     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4625       COps.push_back(A);
4626     else
4627       return nullptr;
4628   }
4629 
4630   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4631     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4632                                            COps[1], DL);
4633   }
4634 
4635   return ConstantFoldInstOperands(I, COps, DL);
4636 }
4637 
4638 /// Try to determine the resulting constant values in phi nodes
4639 /// at the common destination basic block, *CommonDest, for one of the case
4640 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4641 /// case), of a switch instruction SI.
4642 static bool
4643 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4644                BasicBlock **CommonDest,
4645                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4646                const DataLayout &DL, const TargetTransformInfo &TTI) {
4647   // The block from which we enter the common destination.
4648   BasicBlock *Pred = SI->getParent();
4649 
4650   // If CaseDest is empty except for some side-effect free instructions through
4651   // which we can constant-propagate the CaseVal, continue to its successor.
4652   SmallDenseMap<Value *, Constant *> ConstantPool;
4653   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4654   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4655     if (I.isTerminator()) {
4656       // If the terminator is a simple branch, continue to the next block.
4657       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4658         return false;
4659       Pred = CaseDest;
4660       CaseDest = I.getSuccessor(0);
4661     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4662       // Instruction is side-effect free and constant.
4663 
4664       // If the instruction has uses outside this block or a phi node slot for
4665       // the block, it is not safe to bypass the instruction since it would then
4666       // no longer dominate all its uses.
4667       for (auto &Use : I.uses()) {
4668         User *User = Use.getUser();
4669         if (Instruction *I = dyn_cast<Instruction>(User))
4670           if (I->getParent() == CaseDest)
4671             continue;
4672         if (PHINode *Phi = dyn_cast<PHINode>(User))
4673           if (Phi->getIncomingBlock(Use) == CaseDest)
4674             continue;
4675         return false;
4676       }
4677 
4678       ConstantPool.insert(std::make_pair(&I, C));
4679     } else {
4680       break;
4681     }
4682   }
4683 
4684   // If we did not have a CommonDest before, use the current one.
4685   if (!*CommonDest)
4686     *CommonDest = CaseDest;
4687   // If the destination isn't the common one, abort.
4688   if (CaseDest != *CommonDest)
4689     return false;
4690 
4691   // Get the values for this case from phi nodes in the destination block.
4692   for (PHINode &PHI : (*CommonDest)->phis()) {
4693     int Idx = PHI.getBasicBlockIndex(Pred);
4694     if (Idx == -1)
4695       continue;
4696 
4697     Constant *ConstVal =
4698         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4699     if (!ConstVal)
4700       return false;
4701 
4702     // Be conservative about which kinds of constants we support.
4703     if (!ValidLookupTableConstant(ConstVal, TTI))
4704       return false;
4705 
4706     Res.push_back(std::make_pair(&PHI, ConstVal));
4707   }
4708 
4709   return Res.size() > 0;
4710 }
4711 
4712 // Helper function used to add CaseVal to the list of cases that generate
4713 // Result. Returns the updated number of cases that generate this result.
4714 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4715                                  SwitchCaseResultVectorTy &UniqueResults,
4716                                  Constant *Result) {
4717   for (auto &I : UniqueResults) {
4718     if (I.first == Result) {
4719       I.second.push_back(CaseVal);
4720       return I.second.size();
4721     }
4722   }
4723   UniqueResults.push_back(
4724       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4725   return 1;
4726 }
4727 
4728 // Helper function that initializes a map containing
4729 // results for the PHI node of the common destination block for a switch
4730 // instruction. Returns false if multiple PHI nodes have been found or if
4731 // there is not a common destination block for the switch.
4732 static bool
4733 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4734                       SwitchCaseResultVectorTy &UniqueResults,
4735                       Constant *&DefaultResult, const DataLayout &DL,
4736                       const TargetTransformInfo &TTI,
4737                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4738   for (auto &I : SI->cases()) {
4739     ConstantInt *CaseVal = I.getCaseValue();
4740 
4741     // Resulting value at phi nodes for this case value.
4742     SwitchCaseResultsTy Results;
4743     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4744                         DL, TTI))
4745       return false;
4746 
4747     // Only one value per case is permitted.
4748     if (Results.size() > 1)
4749       return false;
4750 
4751     // Add the case->result mapping to UniqueResults.
4752     const uintptr_t NumCasesForResult =
4753         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4754 
4755     // Early out if there are too many cases for this result.
4756     if (NumCasesForResult > MaxCasesPerResult)
4757       return false;
4758 
4759     // Early out if there are too many unique results.
4760     if (UniqueResults.size() > MaxUniqueResults)
4761       return false;
4762 
4763     // Check the PHI consistency.
4764     if (!PHI)
4765       PHI = Results[0].first;
4766     else if (PHI != Results[0].first)
4767       return false;
4768   }
4769   // Find the default result value.
4770   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4771   BasicBlock *DefaultDest = SI->getDefaultDest();
4772   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4773                  DL, TTI);
4774   // If the default value is not found abort unless the default destination
4775   // is unreachable.
4776   DefaultResult =
4777       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4778   if ((!DefaultResult &&
4779        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4780     return false;
4781 
4782   return true;
4783 }
4784 
4785 // Helper function that checks if it is possible to transform a switch with only
4786 // two cases (or two cases + default) that produces a result into a select.
4787 // Example:
4788 // switch (a) {
4789 //   case 10:                %0 = icmp eq i32 %a, 10
4790 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4791 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4792 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4793 //   default:
4794 //     return 4;
4795 // }
4796 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4797                                    Constant *DefaultResult, Value *Condition,
4798                                    IRBuilder<> &Builder) {
4799   assert(ResultVector.size() == 2 &&
4800          "We should have exactly two unique results at this point");
4801   // If we are selecting between only two cases transform into a simple
4802   // select or a two-way select if default is possible.
4803   if (ResultVector[0].second.size() == 1 &&
4804       ResultVector[1].second.size() == 1) {
4805     ConstantInt *const FirstCase = ResultVector[0].second[0];
4806     ConstantInt *const SecondCase = ResultVector[1].second[0];
4807 
4808     bool DefaultCanTrigger = DefaultResult;
4809     Value *SelectValue = ResultVector[1].first;
4810     if (DefaultCanTrigger) {
4811       Value *const ValueCompare =
4812           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4813       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4814                                          DefaultResult, "switch.select");
4815     }
4816     Value *const ValueCompare =
4817         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4818     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4819                                 SelectValue, "switch.select");
4820   }
4821 
4822   return nullptr;
4823 }
4824 
4825 // Helper function to cleanup a switch instruction that has been converted into
4826 // a select, fixing up PHI nodes and basic blocks.
4827 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4828                                               Value *SelectValue,
4829                                               IRBuilder<> &Builder) {
4830   BasicBlock *SelectBB = SI->getParent();
4831   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4832     PHI->removeIncomingValue(SelectBB);
4833   PHI->addIncoming(SelectValue, SelectBB);
4834 
4835   Builder.CreateBr(PHI->getParent());
4836 
4837   // Remove the switch.
4838   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4839     BasicBlock *Succ = SI->getSuccessor(i);
4840 
4841     if (Succ == PHI->getParent())
4842       continue;
4843     Succ->removePredecessor(SelectBB);
4844   }
4845   SI->eraseFromParent();
4846 }
4847 
4848 /// If the switch is only used to initialize one or more
4849 /// phi nodes in a common successor block with only two different
4850 /// constant values, replace the switch with select.
4851 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4852                            const DataLayout &DL,
4853                            const TargetTransformInfo &TTI) {
4854   Value *const Cond = SI->getCondition();
4855   PHINode *PHI = nullptr;
4856   BasicBlock *CommonDest = nullptr;
4857   Constant *DefaultResult;
4858   SwitchCaseResultVectorTy UniqueResults;
4859   // Collect all the cases that will deliver the same value from the switch.
4860   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4861                              DL, TTI, 2, 1))
4862     return false;
4863   // Selects choose between maximum two values.
4864   if (UniqueResults.size() != 2)
4865     return false;
4866   assert(PHI != nullptr && "PHI for value select not found");
4867 
4868   Builder.SetInsertPoint(SI);
4869   Value *SelectValue =
4870       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4871   if (SelectValue) {
4872     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4873     return true;
4874   }
4875   // The switch couldn't be converted into a select.
4876   return false;
4877 }
4878 
4879 namespace {
4880 
4881 /// This class represents a lookup table that can be used to replace a switch.
4882 class SwitchLookupTable {
4883 public:
4884   /// Create a lookup table to use as a switch replacement with the contents
4885   /// of Values, using DefaultValue to fill any holes in the table.
4886   SwitchLookupTable(
4887       Module &M, uint64_t TableSize, ConstantInt *Offset,
4888       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4889       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4890 
4891   /// Build instructions with Builder to retrieve the value at
4892   /// the position given by Index in the lookup table.
4893   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4894 
4895   /// Return true if a table with TableSize elements of
4896   /// type ElementType would fit in a target-legal register.
4897   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4898                                  Type *ElementType);
4899 
4900 private:
4901   // Depending on the contents of the table, it can be represented in
4902   // different ways.
4903   enum {
4904     // For tables where each element contains the same value, we just have to
4905     // store that single value and return it for each lookup.
4906     SingleValueKind,
4907 
4908     // For tables where there is a linear relationship between table index
4909     // and values. We calculate the result with a simple multiplication
4910     // and addition instead of a table lookup.
4911     LinearMapKind,
4912 
4913     // For small tables with integer elements, we can pack them into a bitmap
4914     // that fits into a target-legal register. Values are retrieved by
4915     // shift and mask operations.
4916     BitMapKind,
4917 
4918     // The table is stored as an array of values. Values are retrieved by load
4919     // instructions from the table.
4920     ArrayKind
4921   } Kind;
4922 
4923   // For SingleValueKind, this is the single value.
4924   Constant *SingleValue = nullptr;
4925 
4926   // For BitMapKind, this is the bitmap.
4927   ConstantInt *BitMap = nullptr;
4928   IntegerType *BitMapElementTy = nullptr;
4929 
4930   // For LinearMapKind, these are the constants used to derive the value.
4931   ConstantInt *LinearOffset = nullptr;
4932   ConstantInt *LinearMultiplier = nullptr;
4933 
4934   // For ArrayKind, this is the array.
4935   GlobalVariable *Array = nullptr;
4936 };
4937 
4938 } // end anonymous namespace
4939 
4940 SwitchLookupTable::SwitchLookupTable(
4941     Module &M, uint64_t TableSize, ConstantInt *Offset,
4942     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4943     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4944   assert(Values.size() && "Can't build lookup table without values!");
4945   assert(TableSize >= Values.size() && "Can't fit values in table!");
4946 
4947   // If all values in the table are equal, this is that value.
4948   SingleValue = Values.begin()->second;
4949 
4950   Type *ValueType = Values.begin()->second->getType();
4951 
4952   // Build up the table contents.
4953   SmallVector<Constant *, 64> TableContents(TableSize);
4954   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4955     ConstantInt *CaseVal = Values[I].first;
4956     Constant *CaseRes = Values[I].second;
4957     assert(CaseRes->getType() == ValueType);
4958 
4959     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4960     TableContents[Idx] = CaseRes;
4961 
4962     if (CaseRes != SingleValue)
4963       SingleValue = nullptr;
4964   }
4965 
4966   // Fill in any holes in the table with the default result.
4967   if (Values.size() < TableSize) {
4968     assert(DefaultValue &&
4969            "Need a default value to fill the lookup table holes.");
4970     assert(DefaultValue->getType() == ValueType);
4971     for (uint64_t I = 0; I < TableSize; ++I) {
4972       if (!TableContents[I])
4973         TableContents[I] = DefaultValue;
4974     }
4975 
4976     if (DefaultValue != SingleValue)
4977       SingleValue = nullptr;
4978   }
4979 
4980   // If each element in the table contains the same value, we only need to store
4981   // that single value.
4982   if (SingleValue) {
4983     Kind = SingleValueKind;
4984     return;
4985   }
4986 
4987   // Check if we can derive the value with a linear transformation from the
4988   // table index.
4989   if (isa<IntegerType>(ValueType)) {
4990     bool LinearMappingPossible = true;
4991     APInt PrevVal;
4992     APInt DistToPrev;
4993     assert(TableSize >= 2 && "Should be a SingleValue table.");
4994     // Check if there is the same distance between two consecutive values.
4995     for (uint64_t I = 0; I < TableSize; ++I) {
4996       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4997       if (!ConstVal) {
4998         // This is an undef. We could deal with it, but undefs in lookup tables
4999         // are very seldom. It's probably not worth the additional complexity.
5000         LinearMappingPossible = false;
5001         break;
5002       }
5003       const APInt &Val = ConstVal->getValue();
5004       if (I != 0) {
5005         APInt Dist = Val - PrevVal;
5006         if (I == 1) {
5007           DistToPrev = Dist;
5008         } else if (Dist != DistToPrev) {
5009           LinearMappingPossible = false;
5010           break;
5011         }
5012       }
5013       PrevVal = Val;
5014     }
5015     if (LinearMappingPossible) {
5016       LinearOffset = cast<ConstantInt>(TableContents[0]);
5017       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5018       Kind = LinearMapKind;
5019       ++NumLinearMaps;
5020       return;
5021     }
5022   }
5023 
5024   // If the type is integer and the table fits in a register, build a bitmap.
5025   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5026     IntegerType *IT = cast<IntegerType>(ValueType);
5027     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5028     for (uint64_t I = TableSize; I > 0; --I) {
5029       TableInt <<= IT->getBitWidth();
5030       // Insert values into the bitmap. Undef values are set to zero.
5031       if (!isa<UndefValue>(TableContents[I - 1])) {
5032         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5033         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5034       }
5035     }
5036     BitMap = ConstantInt::get(M.getContext(), TableInt);
5037     BitMapElementTy = IT;
5038     Kind = BitMapKind;
5039     ++NumBitMaps;
5040     return;
5041   }
5042 
5043   // Store the table in an array.
5044   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5045   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5046 
5047   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5048                              GlobalVariable::PrivateLinkage, Initializer,
5049                              "switch.table." + FuncName);
5050   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5051   // Set the alignment to that of an array items. We will be only loading one
5052   // value out of it.
5053   Array->setAlignment(DL.getPrefTypeAlignment(ValueType));
5054   Kind = ArrayKind;
5055 }
5056 
5057 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5058   switch (Kind) {
5059   case SingleValueKind:
5060     return SingleValue;
5061   case LinearMapKind: {
5062     // Derive the result value from the input value.
5063     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5064                                           false, "switch.idx.cast");
5065     if (!LinearMultiplier->isOne())
5066       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5067     if (!LinearOffset->isZero())
5068       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5069     return Result;
5070   }
5071   case BitMapKind: {
5072     // Type of the bitmap (e.g. i59).
5073     IntegerType *MapTy = BitMap->getType();
5074 
5075     // Cast Index to the same type as the bitmap.
5076     // Note: The Index is <= the number of elements in the table, so
5077     // truncating it to the width of the bitmask is safe.
5078     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5079 
5080     // Multiply the shift amount by the element width.
5081     ShiftAmt = Builder.CreateMul(
5082         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5083         "switch.shiftamt");
5084 
5085     // Shift down.
5086     Value *DownShifted =
5087         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5088     // Mask off.
5089     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5090   }
5091   case ArrayKind: {
5092     // Make sure the table index will not overflow when treated as signed.
5093     IntegerType *IT = cast<IntegerType>(Index->getType());
5094     uint64_t TableSize =
5095         Array->getInitializer()->getType()->getArrayNumElements();
5096     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5097       Index = Builder.CreateZExt(
5098           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5099           "switch.tableidx.zext");
5100 
5101     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5102     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5103                                            GEPIndices, "switch.gep");
5104     return Builder.CreateLoad(GEP, "switch.load");
5105   }
5106   }
5107   llvm_unreachable("Unknown lookup table kind!");
5108 }
5109 
5110 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5111                                            uint64_t TableSize,
5112                                            Type *ElementType) {
5113   auto *IT = dyn_cast<IntegerType>(ElementType);
5114   if (!IT)
5115     return false;
5116   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5117   // are <= 15, we could try to narrow the type.
5118 
5119   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5120   if (TableSize >= UINT_MAX / IT->getBitWidth())
5121     return false;
5122   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5123 }
5124 
5125 /// Determine whether a lookup table should be built for this switch, based on
5126 /// the number of cases, size of the table, and the types of the results.
5127 static bool
5128 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5129                        const TargetTransformInfo &TTI, const DataLayout &DL,
5130                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5131   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5132     return false; // TableSize overflowed, or mul below might overflow.
5133 
5134   bool AllTablesFitInRegister = true;
5135   bool HasIllegalType = false;
5136   for (const auto &I : ResultTypes) {
5137     Type *Ty = I.second;
5138 
5139     // Saturate this flag to true.
5140     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5141 
5142     // Saturate this flag to false.
5143     AllTablesFitInRegister =
5144         AllTablesFitInRegister &&
5145         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5146 
5147     // If both flags saturate, we're done. NOTE: This *only* works with
5148     // saturating flags, and all flags have to saturate first due to the
5149     // non-deterministic behavior of iterating over a dense map.
5150     if (HasIllegalType && !AllTablesFitInRegister)
5151       break;
5152   }
5153 
5154   // If each table would fit in a register, we should build it anyway.
5155   if (AllTablesFitInRegister)
5156     return true;
5157 
5158   // Don't build a table that doesn't fit in-register if it has illegal types.
5159   if (HasIllegalType)
5160     return false;
5161 
5162   // The table density should be at least 40%. This is the same criterion as for
5163   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5164   // FIXME: Find the best cut-off.
5165   return SI->getNumCases() * 10 >= TableSize * 4;
5166 }
5167 
5168 /// Try to reuse the switch table index compare. Following pattern:
5169 /// \code
5170 ///     if (idx < tablesize)
5171 ///        r = table[idx]; // table does not contain default_value
5172 ///     else
5173 ///        r = default_value;
5174 ///     if (r != default_value)
5175 ///        ...
5176 /// \endcode
5177 /// Is optimized to:
5178 /// \code
5179 ///     cond = idx < tablesize;
5180 ///     if (cond)
5181 ///        r = table[idx];
5182 ///     else
5183 ///        r = default_value;
5184 ///     if (cond)
5185 ///        ...
5186 /// \endcode
5187 /// Jump threading will then eliminate the second if(cond).
5188 static void reuseTableCompare(
5189     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5190     Constant *DefaultValue,
5191     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5192   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5193   if (!CmpInst)
5194     return;
5195 
5196   // We require that the compare is in the same block as the phi so that jump
5197   // threading can do its work afterwards.
5198   if (CmpInst->getParent() != PhiBlock)
5199     return;
5200 
5201   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5202   if (!CmpOp1)
5203     return;
5204 
5205   Value *RangeCmp = RangeCheckBranch->getCondition();
5206   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5207   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5208 
5209   // Check if the compare with the default value is constant true or false.
5210   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5211                                                  DefaultValue, CmpOp1, true);
5212   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5213     return;
5214 
5215   // Check if the compare with the case values is distinct from the default
5216   // compare result.
5217   for (auto ValuePair : Values) {
5218     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5219                                                 ValuePair.second, CmpOp1, true);
5220     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5221       return;
5222     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5223            "Expect true or false as compare result.");
5224   }
5225 
5226   // Check if the branch instruction dominates the phi node. It's a simple
5227   // dominance check, but sufficient for our needs.
5228   // Although this check is invariant in the calling loops, it's better to do it
5229   // at this late stage. Practically we do it at most once for a switch.
5230   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5231   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5232     BasicBlock *Pred = *PI;
5233     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5234       return;
5235   }
5236 
5237   if (DefaultConst == FalseConst) {
5238     // The compare yields the same result. We can replace it.
5239     CmpInst->replaceAllUsesWith(RangeCmp);
5240     ++NumTableCmpReuses;
5241   } else {
5242     // The compare yields the same result, just inverted. We can replace it.
5243     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5244         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5245         RangeCheckBranch);
5246     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5247     ++NumTableCmpReuses;
5248   }
5249 }
5250 
5251 /// If the switch is only used to initialize one or more phi nodes in a common
5252 /// successor block with different constant values, replace the switch with
5253 /// lookup tables.
5254 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5255                                 const DataLayout &DL,
5256                                 const TargetTransformInfo &TTI) {
5257   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5258 
5259   Function *Fn = SI->getParent()->getParent();
5260   // Only build lookup table when we have a target that supports it or the
5261   // attribute is not set.
5262   if (!TTI.shouldBuildLookupTables() ||
5263       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5264     return false;
5265 
5266   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5267   // split off a dense part and build a lookup table for that.
5268 
5269   // FIXME: This creates arrays of GEPs to constant strings, which means each
5270   // GEP needs a runtime relocation in PIC code. We should just build one big
5271   // string and lookup indices into that.
5272 
5273   // Ignore switches with less than three cases. Lookup tables will not make
5274   // them faster, so we don't analyze them.
5275   if (SI->getNumCases() < 3)
5276     return false;
5277 
5278   // Figure out the corresponding result for each case value and phi node in the
5279   // common destination, as well as the min and max case values.
5280   assert(!empty(SI->cases()));
5281   SwitchInst::CaseIt CI = SI->case_begin();
5282   ConstantInt *MinCaseVal = CI->getCaseValue();
5283   ConstantInt *MaxCaseVal = CI->getCaseValue();
5284 
5285   BasicBlock *CommonDest = nullptr;
5286 
5287   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5288   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5289 
5290   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5291   SmallDenseMap<PHINode *, Type *> ResultTypes;
5292   SmallVector<PHINode *, 4> PHIs;
5293 
5294   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5295     ConstantInt *CaseVal = CI->getCaseValue();
5296     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5297       MinCaseVal = CaseVal;
5298     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5299       MaxCaseVal = CaseVal;
5300 
5301     // Resulting value at phi nodes for this case value.
5302     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5303     ResultsTy Results;
5304     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5305                         Results, DL, TTI))
5306       return false;
5307 
5308     // Append the result from this case to the list for each phi.
5309     for (const auto &I : Results) {
5310       PHINode *PHI = I.first;
5311       Constant *Value = I.second;
5312       if (!ResultLists.count(PHI))
5313         PHIs.push_back(PHI);
5314       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5315     }
5316   }
5317 
5318   // Keep track of the result types.
5319   for (PHINode *PHI : PHIs) {
5320     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5321   }
5322 
5323   uint64_t NumResults = ResultLists[PHIs[0]].size();
5324   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5325   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5326   bool TableHasHoles = (NumResults < TableSize);
5327 
5328   // If the table has holes, we need a constant result for the default case
5329   // or a bitmask that fits in a register.
5330   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5331   bool HasDefaultResults =
5332       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5333                      DefaultResultsList, DL, TTI);
5334 
5335   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5336   if (NeedMask) {
5337     // As an extra penalty for the validity test we require more cases.
5338     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5339       return false;
5340     if (!DL.fitsInLegalInteger(TableSize))
5341       return false;
5342   }
5343 
5344   for (const auto &I : DefaultResultsList) {
5345     PHINode *PHI = I.first;
5346     Constant *Result = I.second;
5347     DefaultResults[PHI] = Result;
5348   }
5349 
5350   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5351     return false;
5352 
5353   // Create the BB that does the lookups.
5354   Module &Mod = *CommonDest->getParent()->getParent();
5355   BasicBlock *LookupBB = BasicBlock::Create(
5356       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5357 
5358   // Compute the table index value.
5359   Builder.SetInsertPoint(SI);
5360   Value *TableIndex;
5361   if (MinCaseVal->isNullValue())
5362     TableIndex = SI->getCondition();
5363   else
5364     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5365                                    "switch.tableidx");
5366 
5367   // Compute the maximum table size representable by the integer type we are
5368   // switching upon.
5369   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5370   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5371   assert(MaxTableSize >= TableSize &&
5372          "It is impossible for a switch to have more entries than the max "
5373          "representable value of its input integer type's size.");
5374 
5375   // If the default destination is unreachable, or if the lookup table covers
5376   // all values of the conditional variable, branch directly to the lookup table
5377   // BB. Otherwise, check that the condition is within the case range.
5378   const bool DefaultIsReachable =
5379       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5380   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5381   BranchInst *RangeCheckBranch = nullptr;
5382 
5383   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5384     Builder.CreateBr(LookupBB);
5385     // Note: We call removeProdecessor later since we need to be able to get the
5386     // PHI value for the default case in case we're using a bit mask.
5387   } else {
5388     Value *Cmp = Builder.CreateICmpULT(
5389         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5390     RangeCheckBranch =
5391         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5392   }
5393 
5394   // Populate the BB that does the lookups.
5395   Builder.SetInsertPoint(LookupBB);
5396 
5397   if (NeedMask) {
5398     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5399     // re-purposed to do the hole check, and we create a new LookupBB.
5400     BasicBlock *MaskBB = LookupBB;
5401     MaskBB->setName("switch.hole_check");
5402     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5403                                   CommonDest->getParent(), CommonDest);
5404 
5405     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5406     // unnecessary illegal types.
5407     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5408     APInt MaskInt(TableSizePowOf2, 0);
5409     APInt One(TableSizePowOf2, 1);
5410     // Build bitmask; fill in a 1 bit for every case.
5411     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5412     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5413       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5414                          .getLimitedValue();
5415       MaskInt |= One << Idx;
5416     }
5417     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5418 
5419     // Get the TableIndex'th bit of the bitmask.
5420     // If this bit is 0 (meaning hole) jump to the default destination,
5421     // else continue with table lookup.
5422     IntegerType *MapTy = TableMask->getType();
5423     Value *MaskIndex =
5424         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5425     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5426     Value *LoBit = Builder.CreateTrunc(
5427         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5428     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5429 
5430     Builder.SetInsertPoint(LookupBB);
5431     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5432   }
5433 
5434   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5435     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5436     // do not delete PHINodes here.
5437     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5438                                             /*DontDeleteUselessPHIs=*/true);
5439   }
5440 
5441   bool ReturnedEarly = false;
5442   for (PHINode *PHI : PHIs) {
5443     const ResultListTy &ResultList = ResultLists[PHI];
5444 
5445     // If using a bitmask, use any value to fill the lookup table holes.
5446     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5447     StringRef FuncName = Fn->getName();
5448     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5449                             FuncName);
5450 
5451     Value *Result = Table.BuildLookup(TableIndex, Builder);
5452 
5453     // If the result is used to return immediately from the function, we want to
5454     // do that right here.
5455     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5456         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5457       Builder.CreateRet(Result);
5458       ReturnedEarly = true;
5459       break;
5460     }
5461 
5462     // Do a small peephole optimization: re-use the switch table compare if
5463     // possible.
5464     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5465       BasicBlock *PhiBlock = PHI->getParent();
5466       // Search for compare instructions which use the phi.
5467       for (auto *User : PHI->users()) {
5468         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5469       }
5470     }
5471 
5472     PHI->addIncoming(Result, LookupBB);
5473   }
5474 
5475   if (!ReturnedEarly)
5476     Builder.CreateBr(CommonDest);
5477 
5478   // Remove the switch.
5479   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5480     BasicBlock *Succ = SI->getSuccessor(i);
5481 
5482     if (Succ == SI->getDefaultDest())
5483       continue;
5484     Succ->removePredecessor(SI->getParent());
5485   }
5486   SI->eraseFromParent();
5487 
5488   ++NumLookupTables;
5489   if (NeedMask)
5490     ++NumLookupTablesHoles;
5491   return true;
5492 }
5493 
5494 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5495   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5496   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5497   uint64_t Range = Diff + 1;
5498   uint64_t NumCases = Values.size();
5499   // 40% is the default density for building a jump table in optsize/minsize mode.
5500   uint64_t MinDensity = 40;
5501 
5502   return NumCases * 100 >= Range * MinDensity;
5503 }
5504 
5505 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5506 /// of cases.
5507 ///
5508 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5509 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5510 ///
5511 /// This converts a sparse switch into a dense switch which allows better
5512 /// lowering and could also allow transforming into a lookup table.
5513 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5514                               const DataLayout &DL,
5515                               const TargetTransformInfo &TTI) {
5516   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5517   if (CondTy->getIntegerBitWidth() > 64 ||
5518       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5519     return false;
5520   // Only bother with this optimization if there are more than 3 switch cases;
5521   // SDAG will only bother creating jump tables for 4 or more cases.
5522   if (SI->getNumCases() < 4)
5523     return false;
5524 
5525   // This transform is agnostic to the signedness of the input or case values. We
5526   // can treat the case values as signed or unsigned. We can optimize more common
5527   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5528   // as signed.
5529   SmallVector<int64_t,4> Values;
5530   for (auto &C : SI->cases())
5531     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5532   llvm::sort(Values);
5533 
5534   // If the switch is already dense, there's nothing useful to do here.
5535   if (isSwitchDense(Values))
5536     return false;
5537 
5538   // First, transform the values such that they start at zero and ascend.
5539   int64_t Base = Values[0];
5540   for (auto &V : Values)
5541     V -= (uint64_t)(Base);
5542 
5543   // Now we have signed numbers that have been shifted so that, given enough
5544   // precision, there are no negative values. Since the rest of the transform
5545   // is bitwise only, we switch now to an unsigned representation.
5546   uint64_t GCD = 0;
5547   for (auto &V : Values)
5548     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5549 
5550   // This transform can be done speculatively because it is so cheap - it results
5551   // in a single rotate operation being inserted. This can only happen if the
5552   // factor extracted is a power of 2.
5553   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5554   // inverse of GCD and then perform this transform.
5555   // FIXME: It's possible that optimizing a switch on powers of two might also
5556   // be beneficial - flag values are often powers of two and we could use a CLZ
5557   // as the key function.
5558   if (GCD <= 1 || !isPowerOf2_64(GCD))
5559     // No common divisor found or too expensive to compute key function.
5560     return false;
5561 
5562   unsigned Shift = Log2_64(GCD);
5563   for (auto &V : Values)
5564     V = (int64_t)((uint64_t)V >> Shift);
5565 
5566   if (!isSwitchDense(Values))
5567     // Transform didn't create a dense switch.
5568     return false;
5569 
5570   // The obvious transform is to shift the switch condition right and emit a
5571   // check that the condition actually cleanly divided by GCD, i.e.
5572   //   C & (1 << Shift - 1) == 0
5573   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5574   //
5575   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5576   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5577   // are nonzero then the switch condition will be very large and will hit the
5578   // default case.
5579 
5580   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5581   Builder.SetInsertPoint(SI);
5582   auto *ShiftC = ConstantInt::get(Ty, Shift);
5583   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5584   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5585   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5586   auto *Rot = Builder.CreateOr(LShr, Shl);
5587   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5588 
5589   for (auto Case : SI->cases()) {
5590     auto *Orig = Case.getCaseValue();
5591     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5592     Case.setValue(
5593         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5594   }
5595   return true;
5596 }
5597 
5598 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5599   BasicBlock *BB = SI->getParent();
5600 
5601   if (isValueEqualityComparison(SI)) {
5602     // If we only have one predecessor, and if it is a branch on this value,
5603     // see if that predecessor totally determines the outcome of this switch.
5604     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5605       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5606         return requestResimplify();
5607 
5608     Value *Cond = SI->getCondition();
5609     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5610       if (SimplifySwitchOnSelect(SI, Select))
5611         return requestResimplify();
5612 
5613     // If the block only contains the switch, see if we can fold the block
5614     // away into any preds.
5615     if (SI == &*BB->instructionsWithoutDebug().begin())
5616       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5617         return requestResimplify();
5618   }
5619 
5620   // Try to transform the switch into an icmp and a branch.
5621   if (TurnSwitchRangeIntoICmp(SI, Builder))
5622     return requestResimplify();
5623 
5624   // Remove unreachable cases.
5625   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5626     return requestResimplify();
5627 
5628   if (switchToSelect(SI, Builder, DL, TTI))
5629     return requestResimplify();
5630 
5631   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5632     return requestResimplify();
5633 
5634   // The conversion from switch to lookup tables results in difficult-to-analyze
5635   // code and makes pruning branches much harder. This is a problem if the
5636   // switch expression itself can still be restricted as a result of inlining or
5637   // CVP. Therefore, only apply this transformation during late stages of the
5638   // optimisation pipeline.
5639   if (Options.ConvertSwitchToLookupTable &&
5640       SwitchToLookupTable(SI, Builder, DL, TTI))
5641     return requestResimplify();
5642 
5643   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5644     return requestResimplify();
5645 
5646   return false;
5647 }
5648 
5649 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5650   BasicBlock *BB = IBI->getParent();
5651   bool Changed = false;
5652 
5653   // Eliminate redundant destinations.
5654   SmallPtrSet<Value *, 8> Succs;
5655   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5656     BasicBlock *Dest = IBI->getDestination(i);
5657     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5658       Dest->removePredecessor(BB);
5659       IBI->removeDestination(i);
5660       --i;
5661       --e;
5662       Changed = true;
5663     }
5664   }
5665 
5666   if (IBI->getNumDestinations() == 0) {
5667     // If the indirectbr has no successors, change it to unreachable.
5668     new UnreachableInst(IBI->getContext(), IBI);
5669     EraseTerminatorAndDCECond(IBI);
5670     return true;
5671   }
5672 
5673   if (IBI->getNumDestinations() == 1) {
5674     // If the indirectbr has one successor, change it to a direct branch.
5675     BranchInst::Create(IBI->getDestination(0), IBI);
5676     EraseTerminatorAndDCECond(IBI);
5677     return true;
5678   }
5679 
5680   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5681     if (SimplifyIndirectBrOnSelect(IBI, SI))
5682       return requestResimplify();
5683   }
5684   return Changed;
5685 }
5686 
5687 /// Given an block with only a single landing pad and a unconditional branch
5688 /// try to find another basic block which this one can be merged with.  This
5689 /// handles cases where we have multiple invokes with unique landing pads, but
5690 /// a shared handler.
5691 ///
5692 /// We specifically choose to not worry about merging non-empty blocks
5693 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5694 /// practice, the optimizer produces empty landing pad blocks quite frequently
5695 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5696 /// sinking in this file)
5697 ///
5698 /// This is primarily a code size optimization.  We need to avoid performing
5699 /// any transform which might inhibit optimization (such as our ability to
5700 /// specialize a particular handler via tail commoning).  We do this by not
5701 /// merging any blocks which require us to introduce a phi.  Since the same
5702 /// values are flowing through both blocks, we don't lose any ability to
5703 /// specialize.  If anything, we make such specialization more likely.
5704 ///
5705 /// TODO - This transformation could remove entries from a phi in the target
5706 /// block when the inputs in the phi are the same for the two blocks being
5707 /// merged.  In some cases, this could result in removal of the PHI entirely.
5708 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5709                                  BasicBlock *BB) {
5710   auto Succ = BB->getUniqueSuccessor();
5711   assert(Succ);
5712   // If there's a phi in the successor block, we'd likely have to introduce
5713   // a phi into the merged landing pad block.
5714   if (isa<PHINode>(*Succ->begin()))
5715     return false;
5716 
5717   for (BasicBlock *OtherPred : predecessors(Succ)) {
5718     if (BB == OtherPred)
5719       continue;
5720     BasicBlock::iterator I = OtherPred->begin();
5721     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5722     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5723       continue;
5724     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5725       ;
5726     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5727     if (!BI2 || !BI2->isIdenticalTo(BI))
5728       continue;
5729 
5730     // We've found an identical block.  Update our predecessors to take that
5731     // path instead and make ourselves dead.
5732     SmallPtrSet<BasicBlock *, 16> Preds;
5733     Preds.insert(pred_begin(BB), pred_end(BB));
5734     for (BasicBlock *Pred : Preds) {
5735       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5736       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5737              "unexpected successor");
5738       II->setUnwindDest(OtherPred);
5739     }
5740 
5741     // The debug info in OtherPred doesn't cover the merged control flow that
5742     // used to go through BB.  We need to delete it or update it.
5743     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5744       Instruction &Inst = *I;
5745       I++;
5746       if (isa<DbgInfoIntrinsic>(Inst))
5747         Inst.eraseFromParent();
5748     }
5749 
5750     SmallPtrSet<BasicBlock *, 16> Succs;
5751     Succs.insert(succ_begin(BB), succ_end(BB));
5752     for (BasicBlock *Succ : Succs) {
5753       Succ->removePredecessor(BB);
5754     }
5755 
5756     IRBuilder<> Builder(BI);
5757     Builder.CreateUnreachable();
5758     BI->eraseFromParent();
5759     return true;
5760   }
5761   return false;
5762 }
5763 
5764 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5765                                           IRBuilder<> &Builder) {
5766   BasicBlock *BB = BI->getParent();
5767   BasicBlock *Succ = BI->getSuccessor(0);
5768 
5769   // If the Terminator is the only non-phi instruction, simplify the block.
5770   // If LoopHeader is provided, check if the block or its successor is a loop
5771   // header. (This is for early invocations before loop simplify and
5772   // vectorization to keep canonical loop forms for nested loops. These blocks
5773   // can be eliminated when the pass is invoked later in the back-end.)
5774   // Note that if BB has only one predecessor then we do not introduce new
5775   // backedge, so we can eliminate BB.
5776   bool NeedCanonicalLoop =
5777       Options.NeedCanonicalLoop &&
5778       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5779        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5780   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5781   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5782       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5783     return true;
5784 
5785   // If the only instruction in the block is a seteq/setne comparison against a
5786   // constant, try to simplify the block.
5787   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5788     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5789       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5790         ;
5791       if (I->isTerminator() &&
5792           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5793         return true;
5794     }
5795 
5796   // See if we can merge an empty landing pad block with another which is
5797   // equivalent.
5798   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5799     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5800       ;
5801     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5802       return true;
5803   }
5804 
5805   // If this basic block is ONLY a compare and a branch, and if a predecessor
5806   // branches to us and our successor, fold the comparison into the
5807   // predecessor and use logical operations to update the incoming value
5808   // for PHI nodes in common successor.
5809   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5810     return requestResimplify();
5811   return false;
5812 }
5813 
5814 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5815   BasicBlock *PredPred = nullptr;
5816   for (auto *P : predecessors(BB)) {
5817     BasicBlock *PPred = P->getSinglePredecessor();
5818     if (!PPred || (PredPred && PredPred != PPred))
5819       return nullptr;
5820     PredPred = PPred;
5821   }
5822   return PredPred;
5823 }
5824 
5825 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5826   BasicBlock *BB = BI->getParent();
5827   const Function *Fn = BB->getParent();
5828   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5829     return false;
5830 
5831   // Conditional branch
5832   if (isValueEqualityComparison(BI)) {
5833     // If we only have one predecessor, and if it is a branch on this value,
5834     // see if that predecessor totally determines the outcome of this
5835     // switch.
5836     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5837       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5838         return requestResimplify();
5839 
5840     // This block must be empty, except for the setcond inst, if it exists.
5841     // Ignore dbg intrinsics.
5842     auto I = BB->instructionsWithoutDebug().begin();
5843     if (&*I == BI) {
5844       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5845         return requestResimplify();
5846     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5847       ++I;
5848       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5849         return requestResimplify();
5850     }
5851   }
5852 
5853   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5854   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5855     return true;
5856 
5857   // If this basic block has dominating predecessor blocks and the dominating
5858   // blocks' conditions imply BI's condition, we know the direction of BI.
5859   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5860   if (Imp) {
5861     // Turn this into a branch on constant.
5862     auto *OldCond = BI->getCondition();
5863     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5864                              : ConstantInt::getFalse(BB->getContext());
5865     BI->setCondition(TorF);
5866     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5867     return requestResimplify();
5868   }
5869 
5870   // If this basic block is ONLY a compare and a branch, and if a predecessor
5871   // branches to us and one of our successors, fold the comparison into the
5872   // predecessor and use logical operations to pick the right destination.
5873   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5874     return requestResimplify();
5875 
5876   // We have a conditional branch to two blocks that are only reachable
5877   // from BI.  We know that the condbr dominates the two blocks, so see if
5878   // there is any identical code in the "then" and "else" blocks.  If so, we
5879   // can hoist it up to the branching block.
5880   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5881     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5882       if (HoistThenElseCodeToIf(BI, TTI))
5883         return requestResimplify();
5884     } else {
5885       // If Successor #1 has multiple preds, we may be able to conditionally
5886       // execute Successor #0 if it branches to Successor #1.
5887       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5888       if (Succ0TI->getNumSuccessors() == 1 &&
5889           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5890         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5891           return requestResimplify();
5892     }
5893   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5894     // If Successor #0 has multiple preds, we may be able to conditionally
5895     // execute Successor #1 if it branches to Successor #0.
5896     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5897     if (Succ1TI->getNumSuccessors() == 1 &&
5898         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5899       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5900         return requestResimplify();
5901   }
5902 
5903   // If this is a branch on a phi node in the current block, thread control
5904   // through this block if any PHI node entries are constants.
5905   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5906     if (PN->getParent() == BI->getParent())
5907       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5908         return requestResimplify();
5909 
5910   // Scan predecessor blocks for conditional branches.
5911   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5912     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5913       if (PBI != BI && PBI->isConditional())
5914         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5915           return requestResimplify();
5916 
5917   // Look for diamond patterns.
5918   if (MergeCondStores)
5919     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5920       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5921         if (PBI != BI && PBI->isConditional())
5922           if (mergeConditionalStores(PBI, BI, DL))
5923             return requestResimplify();
5924 
5925   return false;
5926 }
5927 
5928 /// Check if passing a value to an instruction will cause undefined behavior.
5929 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5930   Constant *C = dyn_cast<Constant>(V);
5931   if (!C)
5932     return false;
5933 
5934   if (I->use_empty())
5935     return false;
5936 
5937   if (C->isNullValue() || isa<UndefValue>(C)) {
5938     // Only look at the first use, avoid hurting compile time with long uselists
5939     User *Use = *I->user_begin();
5940 
5941     // Now make sure that there are no instructions in between that can alter
5942     // control flow (eg. calls)
5943     for (BasicBlock::iterator
5944              i = ++BasicBlock::iterator(I),
5945              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5946          i != UI; ++i)
5947       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5948         return false;
5949 
5950     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5951     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5952       if (GEP->getPointerOperand() == I)
5953         return passingValueIsAlwaysUndefined(V, GEP);
5954 
5955     // Look through bitcasts.
5956     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5957       return passingValueIsAlwaysUndefined(V, BC);
5958 
5959     // Load from null is undefined.
5960     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5961       if (!LI->isVolatile())
5962         return !NullPointerIsDefined(LI->getFunction(),
5963                                      LI->getPointerAddressSpace());
5964 
5965     // Store to null is undefined.
5966     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5967       if (!SI->isVolatile())
5968         return (!NullPointerIsDefined(SI->getFunction(),
5969                                       SI->getPointerAddressSpace())) &&
5970                SI->getPointerOperand() == I;
5971 
5972     // A call to null is undefined.
5973     if (auto CS = CallSite(Use))
5974       return !NullPointerIsDefined(CS->getFunction()) &&
5975              CS.getCalledValue() == I;
5976   }
5977   return false;
5978 }
5979 
5980 /// If BB has an incoming value that will always trigger undefined behavior
5981 /// (eg. null pointer dereference), remove the branch leading here.
5982 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5983   for (PHINode &PHI : BB->phis())
5984     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5985       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5986         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
5987         IRBuilder<> Builder(T);
5988         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5989           BB->removePredecessor(PHI.getIncomingBlock(i));
5990           // Turn uncoditional branches into unreachables and remove the dead
5991           // destination from conditional branches.
5992           if (BI->isUnconditional())
5993             Builder.CreateUnreachable();
5994           else
5995             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5996                                                        : BI->getSuccessor(0));
5997           BI->eraseFromParent();
5998           return true;
5999         }
6000         // TODO: SwitchInst.
6001       }
6002 
6003   return false;
6004 }
6005 
6006 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6007   bool Changed = false;
6008 
6009   assert(BB && BB->getParent() && "Block not embedded in function!");
6010   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6011 
6012   // Remove basic blocks that have no predecessors (except the entry block)...
6013   // or that just have themself as a predecessor.  These are unreachable.
6014   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6015       BB->getSinglePredecessor() == BB) {
6016     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6017     DeleteDeadBlock(BB);
6018     return true;
6019   }
6020 
6021   // Check to see if we can constant propagate this terminator instruction
6022   // away...
6023   Changed |= ConstantFoldTerminator(BB, true);
6024 
6025   // Check for and eliminate duplicate PHI nodes in this block.
6026   Changed |= EliminateDuplicatePHINodes(BB);
6027 
6028   // Check for and remove branches that will always cause undefined behavior.
6029   Changed |= removeUndefIntroducingPredecessor(BB);
6030 
6031   // Merge basic blocks into their predecessor if there is only one distinct
6032   // pred, and if there is only one distinct successor of the predecessor, and
6033   // if there are no PHI nodes.
6034   if (MergeBlockIntoPredecessor(BB))
6035     return true;
6036 
6037   if (SinkCommon && Options.SinkCommonInsts)
6038     Changed |= SinkCommonCodeFromPredecessors(BB);
6039 
6040   IRBuilder<> Builder(BB);
6041 
6042   // If there is a trivial two-entry PHI node in this basic block, and we can
6043   // eliminate it, do so now.
6044   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6045     if (PN->getNumIncomingValues() == 2)
6046       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6047 
6048   Builder.SetInsertPoint(BB->getTerminator());
6049   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6050     if (BI->isUnconditional()) {
6051       if (SimplifyUncondBranch(BI, Builder))
6052         return true;
6053     } else {
6054       if (SimplifyCondBranch(BI, Builder))
6055         return true;
6056     }
6057   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6058     if (SimplifyReturn(RI, Builder))
6059       return true;
6060   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6061     if (SimplifyResume(RI, Builder))
6062       return true;
6063   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6064     if (SimplifyCleanupReturn(RI))
6065       return true;
6066   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6067     if (SimplifySwitch(SI, Builder))
6068       return true;
6069   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6070     if (SimplifyUnreachable(UI))
6071       return true;
6072   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6073     if (SimplifyIndirectBr(IBI))
6074       return true;
6075   }
6076 
6077   return Changed;
6078 }
6079 
6080 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6081   bool Changed = false;
6082 
6083   // Repeated simplify BB as long as resimplification is requested.
6084   do {
6085     Resimplify = false;
6086 
6087     // Perform one round of simplifcation. Resimplify flag will be set if
6088     // another iteration is requested.
6089     Changed |= simplifyOnce(BB);
6090   } while (Resimplify);
6091 
6092   return Changed;
6093 }
6094 
6095 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6096                        const SimplifyCFGOptions &Options,
6097                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6098   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6099                         Options)
6100       .run(BB);
6101 }
6102