1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/ConstantRange.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/NoFolder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> 62 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc("Control the amount of phi node folding to perform (default = 2)")); 64 65 static cl::opt<bool> 66 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 67 cl::desc("Duplicate return instructions into unconditional branches")); 68 69 static cl::opt<bool> 70 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 71 cl::desc("Sink common instructions down to the end block")); 72 73 static cl::opt<bool> HoistCondStores( 74 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 75 cl::desc("Hoist conditional stores if an unconditional store precedes")); 76 77 static cl::opt<bool> MergeCondStores( 78 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 79 cl::desc("Hoist conditional stores even if an unconditional store does not " 80 "precede - hoist multiple conditional stores into a single " 81 "predicated store")); 82 83 static cl::opt<bool> MergeCondStoresAggressively( 84 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 85 cl::desc("When merging conditional stores, do so even if the resultant " 86 "basic blocks are unlikely to be if-converted as a result")); 87 88 static cl::opt<bool> SpeculateOneExpensiveInst( 89 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 90 cl::desc("Allow exactly one expensive instruction to be speculatively " 91 "executed")); 92 93 static cl::opt<unsigned> MaxSpeculationDepth( 94 "max-speculation-depth", cl::Hidden, cl::init(10), 95 cl::desc("Limit maximum recursion depth when calculating costs of " 96 "speculatively executed instructions")); 97 98 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 99 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping"); 100 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 101 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 102 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 103 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 104 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 105 106 namespace { 107 // The first field contains the value that the switch produces when a certain 108 // case group is selected, and the second field is a vector containing the 109 // cases composing the case group. 110 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 111 SwitchCaseResultVectorTy; 112 // The first field contains the phi node that generates a result of the switch 113 // and the second field contains the value generated for a certain case in the 114 // switch for that PHI. 115 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 116 117 /// ValueEqualityComparisonCase - Represents a case of a switch. 118 struct ValueEqualityComparisonCase { 119 ConstantInt *Value; 120 BasicBlock *Dest; 121 122 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 123 : Value(Value), Dest(Dest) {} 124 125 bool operator<(ValueEqualityComparisonCase RHS) const { 126 // Comparing pointers is ok as we only rely on the order for uniquing. 127 return Value < RHS.Value; 128 } 129 130 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 131 }; 132 133 class SimplifyCFGOpt { 134 const TargetTransformInfo &TTI; 135 const DataLayout &DL; 136 unsigned BonusInstThreshold; 137 AssumptionCache *AC; 138 Value *isValueEqualityComparison(TerminatorInst *TI); 139 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 140 std::vector<ValueEqualityComparisonCase> &Cases); 141 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 142 BasicBlock *Pred, 143 IRBuilder<> &Builder); 144 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 145 IRBuilder<> &Builder); 146 147 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 148 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 149 bool SimplifySingleResume(ResumeInst *RI); 150 bool SimplifyCommonResume(ResumeInst *RI); 151 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 152 bool SimplifyUnreachable(UnreachableInst *UI); 153 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 154 bool SimplifyIndirectBr(IndirectBrInst *IBI); 155 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 156 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 157 158 public: 159 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 160 unsigned BonusInstThreshold, AssumptionCache *AC) 161 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {} 162 bool run(BasicBlock *BB); 163 }; 164 } 165 166 /// Return true if it is safe to merge these two 167 /// terminator instructions together. 168 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 169 if (SI1 == SI2) return false; // Can't merge with self! 170 171 // It is not safe to merge these two switch instructions if they have a common 172 // successor, and if that successor has a PHI node, and if *that* PHI node has 173 // conflicting incoming values from the two switch blocks. 174 BasicBlock *SI1BB = SI1->getParent(); 175 BasicBlock *SI2BB = SI2->getParent(); 176 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 177 178 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 179 if (SI1Succs.count(*I)) 180 for (BasicBlock::iterator BBI = (*I)->begin(); 181 isa<PHINode>(BBI); ++BBI) { 182 PHINode *PN = cast<PHINode>(BBI); 183 if (PN->getIncomingValueForBlock(SI1BB) != 184 PN->getIncomingValueForBlock(SI2BB)) 185 return false; 186 } 187 188 return true; 189 } 190 191 /// Return true if it is safe and profitable to merge these two terminator 192 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 193 /// store all PHI nodes in common successors. 194 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 195 BranchInst *SI2, 196 Instruction *Cond, 197 SmallVectorImpl<PHINode*> &PhiNodes) { 198 if (SI1 == SI2) return false; // Can't merge with self! 199 assert(SI1->isUnconditional() && SI2->isConditional()); 200 201 // We fold the unconditional branch if we can easily update all PHI nodes in 202 // common successors: 203 // 1> We have a constant incoming value for the conditional branch; 204 // 2> We have "Cond" as the incoming value for the unconditional branch; 205 // 3> SI2->getCondition() and Cond have same operands. 206 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 207 if (!Ci2) return false; 208 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 209 Cond->getOperand(1) == Ci2->getOperand(1)) && 210 !(Cond->getOperand(0) == Ci2->getOperand(1) && 211 Cond->getOperand(1) == Ci2->getOperand(0))) 212 return false; 213 214 BasicBlock *SI1BB = SI1->getParent(); 215 BasicBlock *SI2BB = SI2->getParent(); 216 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 217 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 218 if (SI1Succs.count(*I)) 219 for (BasicBlock::iterator BBI = (*I)->begin(); 220 isa<PHINode>(BBI); ++BBI) { 221 PHINode *PN = cast<PHINode>(BBI); 222 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 223 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 224 return false; 225 PhiNodes.push_back(PN); 226 } 227 return true; 228 } 229 230 /// Update PHI nodes in Succ to indicate that there will now be entries in it 231 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 232 /// will be the same as those coming in from ExistPred, an existing predecessor 233 /// of Succ. 234 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 235 BasicBlock *ExistPred) { 236 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 237 238 PHINode *PN; 239 for (BasicBlock::iterator I = Succ->begin(); 240 (PN = dyn_cast<PHINode>(I)); ++I) 241 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 242 } 243 244 /// Compute an abstract "cost" of speculating the given instruction, 245 /// which is assumed to be safe to speculate. TCC_Free means cheap, 246 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 247 /// expensive. 248 static unsigned ComputeSpeculationCost(const User *I, 249 const TargetTransformInfo &TTI) { 250 assert(isSafeToSpeculativelyExecute(I) && 251 "Instruction is not safe to speculatively execute!"); 252 return TTI.getUserCost(I); 253 } 254 255 /// If we have a merge point of an "if condition" as accepted above, 256 /// return true if the specified value dominates the block. We 257 /// don't handle the true generality of domination here, just a special case 258 /// which works well enough for us. 259 /// 260 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 261 /// see if V (which must be an instruction) and its recursive operands 262 /// that do not dominate BB have a combined cost lower than CostRemaining and 263 /// are non-trapping. If both are true, the instruction is inserted into the 264 /// set and true is returned. 265 /// 266 /// The cost for most non-trapping instructions is defined as 1 except for 267 /// Select whose cost is 2. 268 /// 269 /// After this function returns, CostRemaining is decreased by the cost of 270 /// V plus its non-dominating operands. If that cost is greater than 271 /// CostRemaining, false is returned and CostRemaining is undefined. 272 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 273 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 274 unsigned &CostRemaining, 275 const TargetTransformInfo &TTI, 276 unsigned Depth = 0) { 277 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 278 // so limit the recursion depth. 279 // TODO: While this recursion limit does prevent pathological behavior, it 280 // would be better to track visited instructions to avoid cycles. 281 if (Depth == MaxSpeculationDepth) 282 return false; 283 284 Instruction *I = dyn_cast<Instruction>(V); 285 if (!I) { 286 // Non-instructions all dominate instructions, but not all constantexprs 287 // can be executed unconditionally. 288 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 289 if (C->canTrap()) 290 return false; 291 return true; 292 } 293 BasicBlock *PBB = I->getParent(); 294 295 // We don't want to allow weird loops that might have the "if condition" in 296 // the bottom of this block. 297 if (PBB == BB) return false; 298 299 // If this instruction is defined in a block that contains an unconditional 300 // branch to BB, then it must be in the 'conditional' part of the "if 301 // statement". If not, it definitely dominates the region. 302 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 303 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 304 return true; 305 306 // If we aren't allowing aggressive promotion anymore, then don't consider 307 // instructions in the 'if region'. 308 if (!AggressiveInsts) return false; 309 310 // If we have seen this instruction before, don't count it again. 311 if (AggressiveInsts->count(I)) return true; 312 313 // Okay, it looks like the instruction IS in the "condition". Check to 314 // see if it's a cheap instruction to unconditionally compute, and if it 315 // only uses stuff defined outside of the condition. If so, hoist it out. 316 if (!isSafeToSpeculativelyExecute(I)) 317 return false; 318 319 unsigned Cost = ComputeSpeculationCost(I, TTI); 320 321 // Allow exactly one instruction to be speculated regardless of its cost 322 // (as long as it is safe to do so). 323 // This is intended to flatten the CFG even if the instruction is a division 324 // or other expensive operation. The speculation of an expensive instruction 325 // is expected to be undone in CodeGenPrepare if the speculation has not 326 // enabled further IR optimizations. 327 if (Cost > CostRemaining && 328 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 329 return false; 330 331 // Avoid unsigned wrap. 332 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 333 334 // Okay, we can only really hoist these out if their operands do 335 // not take us over the cost threshold. 336 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 337 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 338 Depth + 1)) 339 return false; 340 // Okay, it's safe to do this! Remember this instruction. 341 AggressiveInsts->insert(I); 342 return true; 343 } 344 345 /// Extract ConstantInt from value, looking through IntToPtr 346 /// and PointerNullValue. Return NULL if value is not a constant int. 347 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 348 // Normal constant int. 349 ConstantInt *CI = dyn_cast<ConstantInt>(V); 350 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 351 return CI; 352 353 // This is some kind of pointer constant. Turn it into a pointer-sized 354 // ConstantInt if possible. 355 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 356 357 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 358 if (isa<ConstantPointerNull>(V)) 359 return ConstantInt::get(PtrTy, 0); 360 361 // IntToPtr const int. 362 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 363 if (CE->getOpcode() == Instruction::IntToPtr) 364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 365 // The constant is very likely to have the right type already. 366 if (CI->getType() == PtrTy) 367 return CI; 368 else 369 return cast<ConstantInt> 370 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 371 } 372 return nullptr; 373 } 374 375 namespace { 376 377 /// Given a chain of or (||) or and (&&) comparison of a value against a 378 /// constant, this will try to recover the information required for a switch 379 /// structure. 380 /// It will depth-first traverse the chain of comparison, seeking for patterns 381 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 382 /// representing the different cases for the switch. 383 /// Note that if the chain is composed of '||' it will build the set of elements 384 /// that matches the comparisons (i.e. any of this value validate the chain) 385 /// while for a chain of '&&' it will build the set elements that make the test 386 /// fail. 387 struct ConstantComparesGatherer { 388 const DataLayout &DL; 389 Value *CompValue; /// Value found for the switch comparison 390 Value *Extra; /// Extra clause to be checked before the switch 391 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 392 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 393 394 /// Construct and compute the result for the comparison instruction Cond 395 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 396 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 397 gather(Cond); 398 } 399 400 /// Prevent copy 401 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 402 ConstantComparesGatherer & 403 operator=(const ConstantComparesGatherer &) = delete; 404 405 private: 406 407 /// Try to set the current value used for the comparison, it succeeds only if 408 /// it wasn't set before or if the new value is the same as the old one 409 bool setValueOnce(Value *NewVal) { 410 if(CompValue && CompValue != NewVal) return false; 411 CompValue = NewVal; 412 return (CompValue != nullptr); 413 } 414 415 /// Try to match Instruction "I" as a comparison against a constant and 416 /// populates the array Vals with the set of values that match (or do not 417 /// match depending on isEQ). 418 /// Return false on failure. On success, the Value the comparison matched 419 /// against is placed in CompValue. 420 /// If CompValue is already set, the function is expected to fail if a match 421 /// is found but the value compared to is different. 422 bool matchInstruction(Instruction *I, bool isEQ) { 423 // If this is an icmp against a constant, handle this as one of the cases. 424 ICmpInst *ICI; 425 ConstantInt *C; 426 if (!((ICI = dyn_cast<ICmpInst>(I)) && 427 (C = GetConstantInt(I->getOperand(1), DL)))) { 428 return false; 429 } 430 431 Value *RHSVal; 432 ConstantInt *RHSC; 433 434 // Pattern match a special case 435 // (x & ~2^z) == y --> x == y || x == y|2^z 436 // This undoes a transformation done by instcombine to fuse 2 compares. 437 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 438 if (match(ICI->getOperand(0), 439 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 440 APInt Not = ~RHSC->getValue(); 441 if (Not.isPowerOf2() && C->getValue().isPowerOf2() && 442 Not != C->getValue()) { 443 // If we already have a value for the switch, it has to match! 444 if(!setValueOnce(RHSVal)) 445 return false; 446 447 Vals.push_back(C); 448 Vals.push_back(ConstantInt::get(C->getContext(), 449 C->getValue() | Not)); 450 UsedICmps++; 451 return true; 452 } 453 } 454 455 // If we already have a value for the switch, it has to match! 456 if(!setValueOnce(ICI->getOperand(0))) 457 return false; 458 459 UsedICmps++; 460 Vals.push_back(C); 461 return ICI->getOperand(0); 462 } 463 464 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 465 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 466 ICI->getPredicate(), C->getValue()); 467 468 // Shift the range if the compare is fed by an add. This is the range 469 // compare idiom as emitted by instcombine. 470 Value *CandidateVal = I->getOperand(0); 471 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 472 Span = Span.subtract(RHSC->getValue()); 473 CandidateVal = RHSVal; 474 } 475 476 // If this is an and/!= check, then we are looking to build the set of 477 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 478 // x != 0 && x != 1. 479 if (!isEQ) 480 Span = Span.inverse(); 481 482 // If there are a ton of values, we don't want to make a ginormous switch. 483 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 484 return false; 485 } 486 487 // If we already have a value for the switch, it has to match! 488 if(!setValueOnce(CandidateVal)) 489 return false; 490 491 // Add all values from the range to the set 492 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 493 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 494 495 UsedICmps++; 496 return true; 497 498 } 499 500 /// Given a potentially 'or'd or 'and'd together collection of icmp 501 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 502 /// the value being compared, and stick the list constants into the Vals 503 /// vector. 504 /// One "Extra" case is allowed to differ from the other. 505 void gather(Value *V) { 506 Instruction *I = dyn_cast<Instruction>(V); 507 bool isEQ = (I->getOpcode() == Instruction::Or); 508 509 // Keep a stack (SmallVector for efficiency) for depth-first traversal 510 SmallVector<Value *, 8> DFT; 511 SmallPtrSet<Value *, 8> Visited; 512 513 // Initialize 514 Visited.insert(V); 515 DFT.push_back(V); 516 517 while(!DFT.empty()) { 518 V = DFT.pop_back_val(); 519 520 if (Instruction *I = dyn_cast<Instruction>(V)) { 521 // If it is a || (or && depending on isEQ), process the operands. 522 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 523 if (Visited.insert(I->getOperand(1)).second) 524 DFT.push_back(I->getOperand(1)); 525 if (Visited.insert(I->getOperand(0)).second) 526 DFT.push_back(I->getOperand(0)); 527 continue; 528 } 529 530 // Try to match the current instruction 531 if (matchInstruction(I, isEQ)) 532 // Match succeed, continue the loop 533 continue; 534 } 535 536 // One element of the sequence of || (or &&) could not be match as a 537 // comparison against the same value as the others. 538 // We allow only one "Extra" case to be checked before the switch 539 if (!Extra) { 540 Extra = V; 541 continue; 542 } 543 // Failed to parse a proper sequence, abort now 544 CompValue = nullptr; 545 break; 546 } 547 } 548 }; 549 550 } 551 552 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 553 Instruction *Cond = nullptr; 554 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 555 Cond = dyn_cast<Instruction>(SI->getCondition()); 556 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 557 if (BI->isConditional()) 558 Cond = dyn_cast<Instruction>(BI->getCondition()); 559 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 560 Cond = dyn_cast<Instruction>(IBI->getAddress()); 561 } 562 563 TI->eraseFromParent(); 564 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 565 } 566 567 /// Return true if the specified terminator checks 568 /// to see if a value is equal to constant integer value. 569 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 570 Value *CV = nullptr; 571 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 572 // Do not permit merging of large switch instructions into their 573 // predecessors unless there is only one predecessor. 574 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 575 pred_end(SI->getParent())) <= 128) 576 CV = SI->getCondition(); 577 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 578 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 579 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 580 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 581 CV = ICI->getOperand(0); 582 } 583 584 // Unwrap any lossless ptrtoint cast. 585 if (CV) { 586 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 587 Value *Ptr = PTII->getPointerOperand(); 588 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 589 CV = Ptr; 590 } 591 } 592 return CV; 593 } 594 595 /// Given a value comparison instruction, 596 /// decode all of the 'cases' that it represents and return the 'default' block. 597 BasicBlock *SimplifyCFGOpt:: 598 GetValueEqualityComparisonCases(TerminatorInst *TI, 599 std::vector<ValueEqualityComparisonCase> 600 &Cases) { 601 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 602 Cases.reserve(SI->getNumCases()); 603 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 604 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 605 i.getCaseSuccessor())); 606 return SI->getDefaultDest(); 607 } 608 609 BranchInst *BI = cast<BranchInst>(TI); 610 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 611 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 612 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 613 DL), 614 Succ)); 615 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 616 } 617 618 619 /// Given a vector of bb/value pairs, remove any entries 620 /// in the list that match the specified block. 621 static void EliminateBlockCases(BasicBlock *BB, 622 std::vector<ValueEqualityComparisonCase> &Cases) { 623 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 624 } 625 626 /// Return true if there are any keys in C1 that exist in C2 as well. 627 static bool 628 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 629 std::vector<ValueEqualityComparisonCase > &C2) { 630 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 631 632 // Make V1 be smaller than V2. 633 if (V1->size() > V2->size()) 634 std::swap(V1, V2); 635 636 if (V1->size() == 0) return false; 637 if (V1->size() == 1) { 638 // Just scan V2. 639 ConstantInt *TheVal = (*V1)[0].Value; 640 for (unsigned i = 0, e = V2->size(); i != e; ++i) 641 if (TheVal == (*V2)[i].Value) 642 return true; 643 } 644 645 // Otherwise, just sort both lists and compare element by element. 646 array_pod_sort(V1->begin(), V1->end()); 647 array_pod_sort(V2->begin(), V2->end()); 648 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 649 while (i1 != e1 && i2 != e2) { 650 if ((*V1)[i1].Value == (*V2)[i2].Value) 651 return true; 652 if ((*V1)[i1].Value < (*V2)[i2].Value) 653 ++i1; 654 else 655 ++i2; 656 } 657 return false; 658 } 659 660 /// If TI is known to be a terminator instruction and its block is known to 661 /// only have a single predecessor block, check to see if that predecessor is 662 /// also a value comparison with the same value, and if that comparison 663 /// determines the outcome of this comparison. If so, simplify TI. This does a 664 /// very limited form of jump threading. 665 bool SimplifyCFGOpt:: 666 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 667 BasicBlock *Pred, 668 IRBuilder<> &Builder) { 669 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 670 if (!PredVal) return false; // Not a value comparison in predecessor. 671 672 Value *ThisVal = isValueEqualityComparison(TI); 673 assert(ThisVal && "This isn't a value comparison!!"); 674 if (ThisVal != PredVal) return false; // Different predicates. 675 676 // TODO: Preserve branch weight metadata, similarly to how 677 // FoldValueComparisonIntoPredecessors preserves it. 678 679 // Find out information about when control will move from Pred to TI's block. 680 std::vector<ValueEqualityComparisonCase> PredCases; 681 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 682 PredCases); 683 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 684 685 // Find information about how control leaves this block. 686 std::vector<ValueEqualityComparisonCase> ThisCases; 687 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 688 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 689 690 // If TI's block is the default block from Pred's comparison, potentially 691 // simplify TI based on this knowledge. 692 if (PredDef == TI->getParent()) { 693 // If we are here, we know that the value is none of those cases listed in 694 // PredCases. If there are any cases in ThisCases that are in PredCases, we 695 // can simplify TI. 696 if (!ValuesOverlap(PredCases, ThisCases)) 697 return false; 698 699 if (isa<BranchInst>(TI)) { 700 // Okay, one of the successors of this condbr is dead. Convert it to a 701 // uncond br. 702 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 703 // Insert the new branch. 704 Instruction *NI = Builder.CreateBr(ThisDef); 705 (void) NI; 706 707 // Remove PHI node entries for the dead edge. 708 ThisCases[0].Dest->removePredecessor(TI->getParent()); 709 710 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 711 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 712 713 EraseTerminatorInstAndDCECond(TI); 714 return true; 715 } 716 717 SwitchInst *SI = cast<SwitchInst>(TI); 718 // Okay, TI has cases that are statically dead, prune them away. 719 SmallPtrSet<Constant*, 16> DeadCases; 720 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 721 DeadCases.insert(PredCases[i].Value); 722 723 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 724 << "Through successor TI: " << *TI); 725 726 // Collect branch weights into a vector. 727 SmallVector<uint32_t, 8> Weights; 728 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 729 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 730 if (HasWeight) 731 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 732 ++MD_i) { 733 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 734 Weights.push_back(CI->getValue().getZExtValue()); 735 } 736 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 737 --i; 738 if (DeadCases.count(i.getCaseValue())) { 739 if (HasWeight) { 740 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 741 Weights.pop_back(); 742 } 743 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 744 SI->removeCase(i); 745 } 746 } 747 if (HasWeight && Weights.size() >= 2) 748 SI->setMetadata(LLVMContext::MD_prof, 749 MDBuilder(SI->getParent()->getContext()). 750 createBranchWeights(Weights)); 751 752 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 753 return true; 754 } 755 756 // Otherwise, TI's block must correspond to some matched value. Find out 757 // which value (or set of values) this is. 758 ConstantInt *TIV = nullptr; 759 BasicBlock *TIBB = TI->getParent(); 760 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 761 if (PredCases[i].Dest == TIBB) { 762 if (TIV) 763 return false; // Cannot handle multiple values coming to this block. 764 TIV = PredCases[i].Value; 765 } 766 assert(TIV && "No edge from pred to succ?"); 767 768 // Okay, we found the one constant that our value can be if we get into TI's 769 // BB. Find out which successor will unconditionally be branched to. 770 BasicBlock *TheRealDest = nullptr; 771 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 772 if (ThisCases[i].Value == TIV) { 773 TheRealDest = ThisCases[i].Dest; 774 break; 775 } 776 777 // If not handled by any explicit cases, it is handled by the default case. 778 if (!TheRealDest) TheRealDest = ThisDef; 779 780 // Remove PHI node entries for dead edges. 781 BasicBlock *CheckEdge = TheRealDest; 782 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 783 if (*SI != CheckEdge) 784 (*SI)->removePredecessor(TIBB); 785 else 786 CheckEdge = nullptr; 787 788 // Insert the new branch. 789 Instruction *NI = Builder.CreateBr(TheRealDest); 790 (void) NI; 791 792 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 793 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 794 795 EraseTerminatorInstAndDCECond(TI); 796 return true; 797 } 798 799 namespace { 800 /// This class implements a stable ordering of constant 801 /// integers that does not depend on their address. This is important for 802 /// applications that sort ConstantInt's to ensure uniqueness. 803 struct ConstantIntOrdering { 804 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 805 return LHS->getValue().ult(RHS->getValue()); 806 } 807 }; 808 } 809 810 static int ConstantIntSortPredicate(ConstantInt *const *P1, 811 ConstantInt *const *P2) { 812 const ConstantInt *LHS = *P1; 813 const ConstantInt *RHS = *P2; 814 if (LHS->getValue().ult(RHS->getValue())) 815 return 1; 816 if (LHS->getValue() == RHS->getValue()) 817 return 0; 818 return -1; 819 } 820 821 static inline bool HasBranchWeights(const Instruction* I) { 822 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 823 if (ProfMD && ProfMD->getOperand(0)) 824 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 825 return MDS->getString().equals("branch_weights"); 826 827 return false; 828 } 829 830 /// Get Weights of a given TerminatorInst, the default weight is at the front 831 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 832 /// metadata. 833 static void GetBranchWeights(TerminatorInst *TI, 834 SmallVectorImpl<uint64_t> &Weights) { 835 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 836 assert(MD); 837 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 838 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 839 Weights.push_back(CI->getValue().getZExtValue()); 840 } 841 842 // If TI is a conditional eq, the default case is the false case, 843 // and the corresponding branch-weight data is at index 2. We swap the 844 // default weight to be the first entry. 845 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 846 assert(Weights.size() == 2); 847 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 848 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 849 std::swap(Weights.front(), Weights.back()); 850 } 851 } 852 853 /// Keep halving the weights until all can fit in uint32_t. 854 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 855 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 856 if (Max > UINT_MAX) { 857 unsigned Offset = 32 - countLeadingZeros(Max); 858 for (uint64_t &I : Weights) 859 I >>= Offset; 860 } 861 } 862 863 /// The specified terminator is a value equality comparison instruction 864 /// (either a switch or a branch on "X == c"). 865 /// See if any of the predecessors of the terminator block are value comparisons 866 /// on the same value. If so, and if safe to do so, fold them together. 867 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 868 IRBuilder<> &Builder) { 869 BasicBlock *BB = TI->getParent(); 870 Value *CV = isValueEqualityComparison(TI); // CondVal 871 assert(CV && "Not a comparison?"); 872 bool Changed = false; 873 874 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 875 while (!Preds.empty()) { 876 BasicBlock *Pred = Preds.pop_back_val(); 877 878 // See if the predecessor is a comparison with the same value. 879 TerminatorInst *PTI = Pred->getTerminator(); 880 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 881 882 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 883 // Figure out which 'cases' to copy from SI to PSI. 884 std::vector<ValueEqualityComparisonCase> BBCases; 885 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 886 887 std::vector<ValueEqualityComparisonCase> PredCases; 888 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 889 890 // Based on whether the default edge from PTI goes to BB or not, fill in 891 // PredCases and PredDefault with the new switch cases we would like to 892 // build. 893 SmallVector<BasicBlock*, 8> NewSuccessors; 894 895 // Update the branch weight metadata along the way 896 SmallVector<uint64_t, 8> Weights; 897 bool PredHasWeights = HasBranchWeights(PTI); 898 bool SuccHasWeights = HasBranchWeights(TI); 899 900 if (PredHasWeights) { 901 GetBranchWeights(PTI, Weights); 902 // branch-weight metadata is inconsistent here. 903 if (Weights.size() != 1 + PredCases.size()) 904 PredHasWeights = SuccHasWeights = false; 905 } else if (SuccHasWeights) 906 // If there are no predecessor weights but there are successor weights, 907 // populate Weights with 1, which will later be scaled to the sum of 908 // successor's weights 909 Weights.assign(1 + PredCases.size(), 1); 910 911 SmallVector<uint64_t, 8> SuccWeights; 912 if (SuccHasWeights) { 913 GetBranchWeights(TI, SuccWeights); 914 // branch-weight metadata is inconsistent here. 915 if (SuccWeights.size() != 1 + BBCases.size()) 916 PredHasWeights = SuccHasWeights = false; 917 } else if (PredHasWeights) 918 SuccWeights.assign(1 + BBCases.size(), 1); 919 920 if (PredDefault == BB) { 921 // If this is the default destination from PTI, only the edges in TI 922 // that don't occur in PTI, or that branch to BB will be activated. 923 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 924 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 925 if (PredCases[i].Dest != BB) 926 PTIHandled.insert(PredCases[i].Value); 927 else { 928 // The default destination is BB, we don't need explicit targets. 929 std::swap(PredCases[i], PredCases.back()); 930 931 if (PredHasWeights || SuccHasWeights) { 932 // Increase weight for the default case. 933 Weights[0] += Weights[i+1]; 934 std::swap(Weights[i+1], Weights.back()); 935 Weights.pop_back(); 936 } 937 938 PredCases.pop_back(); 939 --i; --e; 940 } 941 942 // Reconstruct the new switch statement we will be building. 943 if (PredDefault != BBDefault) { 944 PredDefault->removePredecessor(Pred); 945 PredDefault = BBDefault; 946 NewSuccessors.push_back(BBDefault); 947 } 948 949 unsigned CasesFromPred = Weights.size(); 950 uint64_t ValidTotalSuccWeight = 0; 951 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 952 if (!PTIHandled.count(BBCases[i].Value) && 953 BBCases[i].Dest != BBDefault) { 954 PredCases.push_back(BBCases[i]); 955 NewSuccessors.push_back(BBCases[i].Dest); 956 if (SuccHasWeights || PredHasWeights) { 957 // The default weight is at index 0, so weight for the ith case 958 // should be at index i+1. Scale the cases from successor by 959 // PredDefaultWeight (Weights[0]). 960 Weights.push_back(Weights[0] * SuccWeights[i+1]); 961 ValidTotalSuccWeight += SuccWeights[i+1]; 962 } 963 } 964 965 if (SuccHasWeights || PredHasWeights) { 966 ValidTotalSuccWeight += SuccWeights[0]; 967 // Scale the cases from predecessor by ValidTotalSuccWeight. 968 for (unsigned i = 1; i < CasesFromPred; ++i) 969 Weights[i] *= ValidTotalSuccWeight; 970 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 971 Weights[0] *= SuccWeights[0]; 972 } 973 } else { 974 // If this is not the default destination from PSI, only the edges 975 // in SI that occur in PSI with a destination of BB will be 976 // activated. 977 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 978 std::map<ConstantInt*, uint64_t> WeightsForHandled; 979 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 980 if (PredCases[i].Dest == BB) { 981 PTIHandled.insert(PredCases[i].Value); 982 983 if (PredHasWeights || SuccHasWeights) { 984 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 985 std::swap(Weights[i+1], Weights.back()); 986 Weights.pop_back(); 987 } 988 989 std::swap(PredCases[i], PredCases.back()); 990 PredCases.pop_back(); 991 --i; --e; 992 } 993 994 // Okay, now we know which constants were sent to BB from the 995 // predecessor. Figure out where they will all go now. 996 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 997 if (PTIHandled.count(BBCases[i].Value)) { 998 // If this is one we are capable of getting... 999 if (PredHasWeights || SuccHasWeights) 1000 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1001 PredCases.push_back(BBCases[i]); 1002 NewSuccessors.push_back(BBCases[i].Dest); 1003 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 1004 } 1005 1006 // If there are any constants vectored to BB that TI doesn't handle, 1007 // they must go to the default destination of TI. 1008 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 1009 PTIHandled.begin(), 1010 E = PTIHandled.end(); I != E; ++I) { 1011 if (PredHasWeights || SuccHasWeights) 1012 Weights.push_back(WeightsForHandled[*I]); 1013 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 1014 NewSuccessors.push_back(BBDefault); 1015 } 1016 } 1017 1018 // Okay, at this point, we know which new successor Pred will get. Make 1019 // sure we update the number of entries in the PHI nodes for these 1020 // successors. 1021 for (BasicBlock *NewSuccessor : NewSuccessors) 1022 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1023 1024 Builder.SetInsertPoint(PTI); 1025 // Convert pointer to int before we switch. 1026 if (CV->getType()->isPointerTy()) { 1027 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1028 "magicptr"); 1029 } 1030 1031 // Now that the successors are updated, create the new Switch instruction. 1032 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 1033 PredCases.size()); 1034 NewSI->setDebugLoc(PTI->getDebugLoc()); 1035 for (ValueEqualityComparisonCase &V : PredCases) 1036 NewSI->addCase(V.Value, V.Dest); 1037 1038 if (PredHasWeights || SuccHasWeights) { 1039 // Halve the weights if any of them cannot fit in an uint32_t 1040 FitWeights(Weights); 1041 1042 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1043 1044 NewSI->setMetadata(LLVMContext::MD_prof, 1045 MDBuilder(BB->getContext()). 1046 createBranchWeights(MDWeights)); 1047 } 1048 1049 EraseTerminatorInstAndDCECond(PTI); 1050 1051 // Okay, last check. If BB is still a successor of PSI, then we must 1052 // have an infinite loop case. If so, add an infinitely looping block 1053 // to handle the case to preserve the behavior of the code. 1054 BasicBlock *InfLoopBlock = nullptr; 1055 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1056 if (NewSI->getSuccessor(i) == BB) { 1057 if (!InfLoopBlock) { 1058 // Insert it at the end of the function, because it's either code, 1059 // or it won't matter if it's hot. :) 1060 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1061 "infloop", BB->getParent()); 1062 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1063 } 1064 NewSI->setSuccessor(i, InfLoopBlock); 1065 } 1066 1067 Changed = true; 1068 } 1069 } 1070 return Changed; 1071 } 1072 1073 // If we would need to insert a select that uses the value of this invoke 1074 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1075 // can't hoist the invoke, as there is nowhere to put the select in this case. 1076 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1077 Instruction *I1, Instruction *I2) { 1078 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1079 PHINode *PN; 1080 for (BasicBlock::iterator BBI = SI->begin(); 1081 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1082 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1083 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1084 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1085 return false; 1086 } 1087 } 1088 } 1089 return true; 1090 } 1091 1092 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1093 1094 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1095 /// in the two blocks up into the branch block. The caller of this function 1096 /// guarantees that BI's block dominates BB1 and BB2. 1097 static bool HoistThenElseCodeToIf(BranchInst *BI, 1098 const TargetTransformInfo &TTI) { 1099 // This does very trivial matching, with limited scanning, to find identical 1100 // instructions in the two blocks. In particular, we don't want to get into 1101 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1102 // such, we currently just scan for obviously identical instructions in an 1103 // identical order. 1104 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1105 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1106 1107 BasicBlock::iterator BB1_Itr = BB1->begin(); 1108 BasicBlock::iterator BB2_Itr = BB2->begin(); 1109 1110 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1111 // Skip debug info if it is not identical. 1112 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1113 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1114 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1115 while (isa<DbgInfoIntrinsic>(I1)) 1116 I1 = &*BB1_Itr++; 1117 while (isa<DbgInfoIntrinsic>(I2)) 1118 I2 = &*BB2_Itr++; 1119 } 1120 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1121 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1122 return false; 1123 1124 BasicBlock *BIParent = BI->getParent(); 1125 1126 bool Changed = false; 1127 do { 1128 // If we are hoisting the terminator instruction, don't move one (making a 1129 // broken BB), instead clone it, and remove BI. 1130 if (isa<TerminatorInst>(I1)) 1131 goto HoistTerminator; 1132 1133 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1134 return Changed; 1135 1136 // For a normal instruction, we just move one to right before the branch, 1137 // then replace all uses of the other with the first. Finally, we remove 1138 // the now redundant second instruction. 1139 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1140 if (!I2->use_empty()) 1141 I2->replaceAllUsesWith(I1); 1142 I1->intersectOptionalDataWith(I2); 1143 unsigned KnownIDs[] = { 1144 LLVMContext::MD_tbaa, LLVMContext::MD_range, 1145 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 1146 LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group, 1147 LLVMContext::MD_align, LLVMContext::MD_dereferenceable, 1148 LLVMContext::MD_dereferenceable_or_null}; 1149 combineMetadata(I1, I2, KnownIDs); 1150 I2->eraseFromParent(); 1151 Changed = true; 1152 1153 I1 = &*BB1_Itr++; 1154 I2 = &*BB2_Itr++; 1155 // Skip debug info if it is not identical. 1156 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1157 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1158 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1159 while (isa<DbgInfoIntrinsic>(I1)) 1160 I1 = &*BB1_Itr++; 1161 while (isa<DbgInfoIntrinsic>(I2)) 1162 I2 = &*BB2_Itr++; 1163 } 1164 } while (I1->isIdenticalToWhenDefined(I2)); 1165 1166 return true; 1167 1168 HoistTerminator: 1169 // It may not be possible to hoist an invoke. 1170 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1171 return Changed; 1172 1173 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1174 PHINode *PN; 1175 for (BasicBlock::iterator BBI = SI->begin(); 1176 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1177 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1178 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1179 if (BB1V == BB2V) 1180 continue; 1181 1182 // Check for passingValueIsAlwaysUndefined here because we would rather 1183 // eliminate undefined control flow then converting it to a select. 1184 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1185 passingValueIsAlwaysUndefined(BB2V, PN)) 1186 return Changed; 1187 1188 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1189 return Changed; 1190 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1191 return Changed; 1192 } 1193 } 1194 1195 // Okay, it is safe to hoist the terminator. 1196 Instruction *NT = I1->clone(); 1197 BIParent->getInstList().insert(BI->getIterator(), NT); 1198 if (!NT->getType()->isVoidTy()) { 1199 I1->replaceAllUsesWith(NT); 1200 I2->replaceAllUsesWith(NT); 1201 NT->takeName(I1); 1202 } 1203 1204 IRBuilder<true, NoFolder> Builder(NT); 1205 // Hoisting one of the terminators from our successor is a great thing. 1206 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1207 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1208 // nodes, so we insert select instruction to compute the final result. 1209 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1210 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1211 PHINode *PN; 1212 for (BasicBlock::iterator BBI = SI->begin(); 1213 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1214 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1215 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1216 if (BB1V == BB2V) continue; 1217 1218 // These values do not agree. Insert a select instruction before NT 1219 // that determines the right value. 1220 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1221 if (!SI) 1222 SI = cast<SelectInst> 1223 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1224 BB1V->getName()+"."+BB2V->getName())); 1225 1226 // Make the PHI node use the select for all incoming values for BB1/BB2 1227 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1228 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1229 PN->setIncomingValue(i, SI); 1230 } 1231 } 1232 1233 // Update any PHI nodes in our new successors. 1234 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1235 AddPredecessorToBlock(*SI, BIParent, BB1); 1236 1237 EraseTerminatorInstAndDCECond(BI); 1238 return true; 1239 } 1240 1241 /// Given an unconditional branch that goes to BBEnd, 1242 /// check whether BBEnd has only two predecessors and the other predecessor 1243 /// ends with an unconditional branch. If it is true, sink any common code 1244 /// in the two predecessors to BBEnd. 1245 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1246 assert(BI1->isUnconditional()); 1247 BasicBlock *BB1 = BI1->getParent(); 1248 BasicBlock *BBEnd = BI1->getSuccessor(0); 1249 1250 // Check that BBEnd has two predecessors and the other predecessor ends with 1251 // an unconditional branch. 1252 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1253 BasicBlock *Pred0 = *PI++; 1254 if (PI == PE) // Only one predecessor. 1255 return false; 1256 BasicBlock *Pred1 = *PI++; 1257 if (PI != PE) // More than two predecessors. 1258 return false; 1259 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1260 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1261 if (!BI2 || !BI2->isUnconditional()) 1262 return false; 1263 1264 // Gather the PHI nodes in BBEnd. 1265 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1266 Instruction *FirstNonPhiInBBEnd = nullptr; 1267 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1268 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1269 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1270 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1271 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1272 } else { 1273 FirstNonPhiInBBEnd = &*I; 1274 break; 1275 } 1276 } 1277 if (!FirstNonPhiInBBEnd) 1278 return false; 1279 1280 // This does very trivial matching, with limited scanning, to find identical 1281 // instructions in the two blocks. We scan backward for obviously identical 1282 // instructions in an identical order. 1283 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1284 RE1 = BB1->getInstList().rend(), 1285 RI2 = BB2->getInstList().rbegin(), 1286 RE2 = BB2->getInstList().rend(); 1287 // Skip debug info. 1288 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1289 if (RI1 == RE1) 1290 return false; 1291 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1292 if (RI2 == RE2) 1293 return false; 1294 // Skip the unconditional branches. 1295 ++RI1; 1296 ++RI2; 1297 1298 bool Changed = false; 1299 while (RI1 != RE1 && RI2 != RE2) { 1300 // Skip debug info. 1301 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1302 if (RI1 == RE1) 1303 return Changed; 1304 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1305 if (RI2 == RE2) 1306 return Changed; 1307 1308 Instruction *I1 = &*RI1, *I2 = &*RI2; 1309 auto InstPair = std::make_pair(I1, I2); 1310 // I1 and I2 should have a single use in the same PHI node, and they 1311 // perform the same operation. 1312 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1313 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1314 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1315 I1->isEHPad() || I2->isEHPad() || 1316 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1317 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1318 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1319 !I1->hasOneUse() || !I2->hasOneUse() || 1320 !JointValueMap.count(InstPair)) 1321 return Changed; 1322 1323 // Check whether we should swap the operands of ICmpInst. 1324 // TODO: Add support of communativity. 1325 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1326 bool SwapOpnds = false; 1327 if (ICmp1 && ICmp2 && 1328 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1329 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1330 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1331 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1332 ICmp2->swapOperands(); 1333 SwapOpnds = true; 1334 } 1335 if (!I1->isSameOperationAs(I2)) { 1336 if (SwapOpnds) 1337 ICmp2->swapOperands(); 1338 return Changed; 1339 } 1340 1341 // The operands should be either the same or they need to be generated 1342 // with a PHI node after sinking. We only handle the case where there is 1343 // a single pair of different operands. 1344 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1345 unsigned Op1Idx = ~0U; 1346 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1347 if (I1->getOperand(I) == I2->getOperand(I)) 1348 continue; 1349 // Early exit if we have more-than one pair of different operands or if 1350 // we need a PHI node to replace a constant. 1351 if (Op1Idx != ~0U || 1352 isa<Constant>(I1->getOperand(I)) || 1353 isa<Constant>(I2->getOperand(I))) { 1354 // If we can't sink the instructions, undo the swapping. 1355 if (SwapOpnds) 1356 ICmp2->swapOperands(); 1357 return Changed; 1358 } 1359 DifferentOp1 = I1->getOperand(I); 1360 Op1Idx = I; 1361 DifferentOp2 = I2->getOperand(I); 1362 } 1363 1364 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1365 DEBUG(dbgs() << " " << *I2 << "\n"); 1366 1367 // We insert the pair of different operands to JointValueMap and 1368 // remove (I1, I2) from JointValueMap. 1369 if (Op1Idx != ~0U) { 1370 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1371 if (!NewPN) { 1372 NewPN = 1373 PHINode::Create(DifferentOp1->getType(), 2, 1374 DifferentOp1->getName() + ".sink", &BBEnd->front()); 1375 NewPN->addIncoming(DifferentOp1, BB1); 1376 NewPN->addIncoming(DifferentOp2, BB2); 1377 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1378 } 1379 // I1 should use NewPN instead of DifferentOp1. 1380 I1->setOperand(Op1Idx, NewPN); 1381 } 1382 PHINode *OldPN = JointValueMap[InstPair]; 1383 JointValueMap.erase(InstPair); 1384 1385 // We need to update RE1 and RE2 if we are going to sink the first 1386 // instruction in the basic block down. 1387 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1388 // Sink the instruction. 1389 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(), 1390 BB1->getInstList(), I1); 1391 if (!OldPN->use_empty()) 1392 OldPN->replaceAllUsesWith(I1); 1393 OldPN->eraseFromParent(); 1394 1395 if (!I2->use_empty()) 1396 I2->replaceAllUsesWith(I1); 1397 I1->intersectOptionalDataWith(I2); 1398 // TODO: Use combineMetadata here to preserve what metadata we can 1399 // (analogous to the hoisting case above). 1400 I2->eraseFromParent(); 1401 1402 if (UpdateRE1) 1403 RE1 = BB1->getInstList().rend(); 1404 if (UpdateRE2) 1405 RE2 = BB2->getInstList().rend(); 1406 FirstNonPhiInBBEnd = &*I1; 1407 NumSinkCommons++; 1408 Changed = true; 1409 } 1410 return Changed; 1411 } 1412 1413 /// \brief Determine if we can hoist sink a sole store instruction out of a 1414 /// conditional block. 1415 /// 1416 /// We are looking for code like the following: 1417 /// BrBB: 1418 /// store i32 %add, i32* %arrayidx2 1419 /// ... // No other stores or function calls (we could be calling a memory 1420 /// ... // function). 1421 /// %cmp = icmp ult %x, %y 1422 /// br i1 %cmp, label %EndBB, label %ThenBB 1423 /// ThenBB: 1424 /// store i32 %add5, i32* %arrayidx2 1425 /// br label EndBB 1426 /// EndBB: 1427 /// ... 1428 /// We are going to transform this into: 1429 /// BrBB: 1430 /// store i32 %add, i32* %arrayidx2 1431 /// ... // 1432 /// %cmp = icmp ult %x, %y 1433 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1434 /// store i32 %add.add5, i32* %arrayidx2 1435 /// ... 1436 /// 1437 /// \return The pointer to the value of the previous store if the store can be 1438 /// hoisted into the predecessor block. 0 otherwise. 1439 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1440 BasicBlock *StoreBB, BasicBlock *EndBB) { 1441 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1442 if (!StoreToHoist) 1443 return nullptr; 1444 1445 // Volatile or atomic. 1446 if (!StoreToHoist->isSimple()) 1447 return nullptr; 1448 1449 Value *StorePtr = StoreToHoist->getPointerOperand(); 1450 1451 // Look for a store to the same pointer in BrBB. 1452 unsigned MaxNumInstToLookAt = 10; 1453 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1454 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1455 Instruction *CurI = &*RI; 1456 1457 // Could be calling an instruction that effects memory like free(). 1458 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1459 return nullptr; 1460 1461 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1462 // Found the previous store make sure it stores to the same location. 1463 if (SI && SI->getPointerOperand() == StorePtr) 1464 // Found the previous store, return its value operand. 1465 return SI->getValueOperand(); 1466 else if (SI) 1467 return nullptr; // Unknown store. 1468 } 1469 1470 return nullptr; 1471 } 1472 1473 /// \brief Speculate a conditional basic block flattening the CFG. 1474 /// 1475 /// Note that this is a very risky transform currently. Speculating 1476 /// instructions like this is most often not desirable. Instead, there is an MI 1477 /// pass which can do it with full awareness of the resource constraints. 1478 /// However, some cases are "obvious" and we should do directly. An example of 1479 /// this is speculating a single, reasonably cheap instruction. 1480 /// 1481 /// There is only one distinct advantage to flattening the CFG at the IR level: 1482 /// it makes very common but simplistic optimizations such as are common in 1483 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1484 /// modeling their effects with easier to reason about SSA value graphs. 1485 /// 1486 /// 1487 /// An illustration of this transform is turning this IR: 1488 /// \code 1489 /// BB: 1490 /// %cmp = icmp ult %x, %y 1491 /// br i1 %cmp, label %EndBB, label %ThenBB 1492 /// ThenBB: 1493 /// %sub = sub %x, %y 1494 /// br label BB2 1495 /// EndBB: 1496 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1497 /// ... 1498 /// \endcode 1499 /// 1500 /// Into this IR: 1501 /// \code 1502 /// BB: 1503 /// %cmp = icmp ult %x, %y 1504 /// %sub = sub %x, %y 1505 /// %cond = select i1 %cmp, 0, %sub 1506 /// ... 1507 /// \endcode 1508 /// 1509 /// \returns true if the conditional block is removed. 1510 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1511 const TargetTransformInfo &TTI) { 1512 // Be conservative for now. FP select instruction can often be expensive. 1513 Value *BrCond = BI->getCondition(); 1514 if (isa<FCmpInst>(BrCond)) 1515 return false; 1516 1517 BasicBlock *BB = BI->getParent(); 1518 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1519 1520 // If ThenBB is actually on the false edge of the conditional branch, remember 1521 // to swap the select operands later. 1522 bool Invert = false; 1523 if (ThenBB != BI->getSuccessor(0)) { 1524 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1525 Invert = true; 1526 } 1527 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1528 1529 // Keep a count of how many times instructions are used within CondBB when 1530 // they are candidates for sinking into CondBB. Specifically: 1531 // - They are defined in BB, and 1532 // - They have no side effects, and 1533 // - All of their uses are in CondBB. 1534 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1535 1536 unsigned SpeculationCost = 0; 1537 Value *SpeculatedStoreValue = nullptr; 1538 StoreInst *SpeculatedStore = nullptr; 1539 for (BasicBlock::iterator BBI = ThenBB->begin(), 1540 BBE = std::prev(ThenBB->end()); 1541 BBI != BBE; ++BBI) { 1542 Instruction *I = &*BBI; 1543 // Skip debug info. 1544 if (isa<DbgInfoIntrinsic>(I)) 1545 continue; 1546 1547 // Only speculatively execute a single instruction (not counting the 1548 // terminator) for now. 1549 ++SpeculationCost; 1550 if (SpeculationCost > 1) 1551 return false; 1552 1553 // Don't hoist the instruction if it's unsafe or expensive. 1554 if (!isSafeToSpeculativelyExecute(I) && 1555 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1556 I, BB, ThenBB, EndBB)))) 1557 return false; 1558 if (!SpeculatedStoreValue && 1559 ComputeSpeculationCost(I, TTI) > 1560 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1561 return false; 1562 1563 // Store the store speculation candidate. 1564 if (SpeculatedStoreValue) 1565 SpeculatedStore = cast<StoreInst>(I); 1566 1567 // Do not hoist the instruction if any of its operands are defined but not 1568 // used in BB. The transformation will prevent the operand from 1569 // being sunk into the use block. 1570 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1571 i != e; ++i) { 1572 Instruction *OpI = dyn_cast<Instruction>(*i); 1573 if (!OpI || OpI->getParent() != BB || 1574 OpI->mayHaveSideEffects()) 1575 continue; // Not a candidate for sinking. 1576 1577 ++SinkCandidateUseCounts[OpI]; 1578 } 1579 } 1580 1581 // Consider any sink candidates which are only used in CondBB as costs for 1582 // speculation. Note, while we iterate over a DenseMap here, we are summing 1583 // and so iteration order isn't significant. 1584 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1585 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1586 I != E; ++I) 1587 if (I->first->getNumUses() == I->second) { 1588 ++SpeculationCost; 1589 if (SpeculationCost > 1) 1590 return false; 1591 } 1592 1593 // Check that the PHI nodes can be converted to selects. 1594 bool HaveRewritablePHIs = false; 1595 for (BasicBlock::iterator I = EndBB->begin(); 1596 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1597 Value *OrigV = PN->getIncomingValueForBlock(BB); 1598 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1599 1600 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1601 // Skip PHIs which are trivial. 1602 if (ThenV == OrigV) 1603 continue; 1604 1605 // Don't convert to selects if we could remove undefined behavior instead. 1606 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1607 passingValueIsAlwaysUndefined(ThenV, PN)) 1608 return false; 1609 1610 HaveRewritablePHIs = true; 1611 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1612 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1613 if (!OrigCE && !ThenCE) 1614 continue; // Known safe and cheap. 1615 1616 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1617 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1618 return false; 1619 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1620 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1621 unsigned MaxCost = 2 * PHINodeFoldingThreshold * 1622 TargetTransformInfo::TCC_Basic; 1623 if (OrigCost + ThenCost > MaxCost) 1624 return false; 1625 1626 // Account for the cost of an unfolded ConstantExpr which could end up 1627 // getting expanded into Instructions. 1628 // FIXME: This doesn't account for how many operations are combined in the 1629 // constant expression. 1630 ++SpeculationCost; 1631 if (SpeculationCost > 1) 1632 return false; 1633 } 1634 1635 // If there are no PHIs to process, bail early. This helps ensure idempotence 1636 // as well. 1637 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1638 return false; 1639 1640 // If we get here, we can hoist the instruction and if-convert. 1641 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1642 1643 // Insert a select of the value of the speculated store. 1644 if (SpeculatedStoreValue) { 1645 IRBuilder<true, NoFolder> Builder(BI); 1646 Value *TrueV = SpeculatedStore->getValueOperand(); 1647 Value *FalseV = SpeculatedStoreValue; 1648 if (Invert) 1649 std::swap(TrueV, FalseV); 1650 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1651 "." + FalseV->getName()); 1652 SpeculatedStore->setOperand(0, S); 1653 } 1654 1655 // Metadata can be dependent on the condition we are hoisting above. 1656 // Conservatively strip all metadata on the instruction. 1657 for (auto &I: *ThenBB) 1658 I.dropUnknownNonDebugMetadata(); 1659 1660 // Hoist the instructions. 1661 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1662 ThenBB->begin(), std::prev(ThenBB->end())); 1663 1664 // Insert selects and rewrite the PHI operands. 1665 IRBuilder<true, NoFolder> Builder(BI); 1666 for (BasicBlock::iterator I = EndBB->begin(); 1667 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1668 unsigned OrigI = PN->getBasicBlockIndex(BB); 1669 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1670 Value *OrigV = PN->getIncomingValue(OrigI); 1671 Value *ThenV = PN->getIncomingValue(ThenI); 1672 1673 // Skip PHIs which are trivial. 1674 if (OrigV == ThenV) 1675 continue; 1676 1677 // Create a select whose true value is the speculatively executed value and 1678 // false value is the preexisting value. Swap them if the branch 1679 // destinations were inverted. 1680 Value *TrueV = ThenV, *FalseV = OrigV; 1681 if (Invert) 1682 std::swap(TrueV, FalseV); 1683 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1684 TrueV->getName() + "." + FalseV->getName()); 1685 PN->setIncomingValue(OrigI, V); 1686 PN->setIncomingValue(ThenI, V); 1687 } 1688 1689 ++NumSpeculations; 1690 return true; 1691 } 1692 1693 /// \returns True if this block contains a CallInst with the NoDuplicate 1694 /// attribute. 1695 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1696 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1697 const CallInst *CI = dyn_cast<CallInst>(I); 1698 if (!CI) 1699 continue; 1700 if (CI->cannotDuplicate()) 1701 return true; 1702 } 1703 return false; 1704 } 1705 1706 /// Return true if we can thread a branch across this block. 1707 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1708 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1709 unsigned Size = 0; 1710 1711 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1712 if (isa<DbgInfoIntrinsic>(BBI)) 1713 continue; 1714 if (Size > 10) return false; // Don't clone large BB's. 1715 ++Size; 1716 1717 // We can only support instructions that do not define values that are 1718 // live outside of the current basic block. 1719 for (User *U : BBI->users()) { 1720 Instruction *UI = cast<Instruction>(U); 1721 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1722 } 1723 1724 // Looks ok, continue checking. 1725 } 1726 1727 return true; 1728 } 1729 1730 /// If we have a conditional branch on a PHI node value that is defined in the 1731 /// same block as the branch and if any PHI entries are constants, thread edges 1732 /// corresponding to that entry to be branches to their ultimate destination. 1733 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1734 BasicBlock *BB = BI->getParent(); 1735 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1736 // NOTE: we currently cannot transform this case if the PHI node is used 1737 // outside of the block. 1738 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1739 return false; 1740 1741 // Degenerate case of a single entry PHI. 1742 if (PN->getNumIncomingValues() == 1) { 1743 FoldSingleEntryPHINodes(PN->getParent()); 1744 return true; 1745 } 1746 1747 // Now we know that this block has multiple preds and two succs. 1748 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1749 1750 if (HasNoDuplicateCall(BB)) return false; 1751 1752 // Okay, this is a simple enough basic block. See if any phi values are 1753 // constants. 1754 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1755 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1756 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1757 1758 // Okay, we now know that all edges from PredBB should be revectored to 1759 // branch to RealDest. 1760 BasicBlock *PredBB = PN->getIncomingBlock(i); 1761 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1762 1763 if (RealDest == BB) continue; // Skip self loops. 1764 // Skip if the predecessor's terminator is an indirect branch. 1765 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1766 1767 // The dest block might have PHI nodes, other predecessors and other 1768 // difficult cases. Instead of being smart about this, just insert a new 1769 // block that jumps to the destination block, effectively splitting 1770 // the edge we are about to create. 1771 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1772 RealDest->getName()+".critedge", 1773 RealDest->getParent(), RealDest); 1774 BranchInst::Create(RealDest, EdgeBB); 1775 1776 // Update PHI nodes. 1777 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1778 1779 // BB may have instructions that are being threaded over. Clone these 1780 // instructions into EdgeBB. We know that there will be no uses of the 1781 // cloned instructions outside of EdgeBB. 1782 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1783 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1784 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1785 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1786 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1787 continue; 1788 } 1789 // Clone the instruction. 1790 Instruction *N = BBI->clone(); 1791 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1792 1793 // Update operands due to translation. 1794 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1795 i != e; ++i) { 1796 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1797 if (PI != TranslateMap.end()) 1798 *i = PI->second; 1799 } 1800 1801 // Check for trivial simplification. 1802 if (Value *V = SimplifyInstruction(N, DL)) { 1803 TranslateMap[&*BBI] = V; 1804 delete N; // Instruction folded away, don't need actual inst 1805 } else { 1806 // Insert the new instruction into its new home. 1807 EdgeBB->getInstList().insert(InsertPt, N); 1808 if (!BBI->use_empty()) 1809 TranslateMap[&*BBI] = N; 1810 } 1811 } 1812 1813 // Loop over all of the edges from PredBB to BB, changing them to branch 1814 // to EdgeBB instead. 1815 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1816 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1817 if (PredBBTI->getSuccessor(i) == BB) { 1818 BB->removePredecessor(PredBB); 1819 PredBBTI->setSuccessor(i, EdgeBB); 1820 } 1821 1822 // Recurse, simplifying any other constants. 1823 return FoldCondBranchOnPHI(BI, DL) | true; 1824 } 1825 1826 return false; 1827 } 1828 1829 /// Given a BB that starts with the specified two-entry PHI node, 1830 /// see if we can eliminate it. 1831 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1832 const DataLayout &DL) { 1833 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1834 // statement", which has a very simple dominance structure. Basically, we 1835 // are trying to find the condition that is being branched on, which 1836 // subsequently causes this merge to happen. We really want control 1837 // dependence information for this check, but simplifycfg can't keep it up 1838 // to date, and this catches most of the cases we care about anyway. 1839 BasicBlock *BB = PN->getParent(); 1840 BasicBlock *IfTrue, *IfFalse; 1841 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1842 if (!IfCond || 1843 // Don't bother if the branch will be constant folded trivially. 1844 isa<ConstantInt>(IfCond)) 1845 return false; 1846 1847 // Okay, we found that we can merge this two-entry phi node into a select. 1848 // Doing so would require us to fold *all* two entry phi nodes in this block. 1849 // At some point this becomes non-profitable (particularly if the target 1850 // doesn't support cmov's). Only do this transformation if there are two or 1851 // fewer PHI nodes in this block. 1852 unsigned NumPhis = 0; 1853 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1854 if (NumPhis > 2) 1855 return false; 1856 1857 // Loop over the PHI's seeing if we can promote them all to select 1858 // instructions. While we are at it, keep track of the instructions 1859 // that need to be moved to the dominating block. 1860 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1861 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1862 MaxCostVal1 = PHINodeFoldingThreshold; 1863 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1864 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1865 1866 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1867 PHINode *PN = cast<PHINode>(II++); 1868 if (Value *V = SimplifyInstruction(PN, DL)) { 1869 PN->replaceAllUsesWith(V); 1870 PN->eraseFromParent(); 1871 continue; 1872 } 1873 1874 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1875 MaxCostVal0, TTI) || 1876 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1877 MaxCostVal1, TTI)) 1878 return false; 1879 } 1880 1881 // If we folded the first phi, PN dangles at this point. Refresh it. If 1882 // we ran out of PHIs then we simplified them all. 1883 PN = dyn_cast<PHINode>(BB->begin()); 1884 if (!PN) return true; 1885 1886 // Don't fold i1 branches on PHIs which contain binary operators. These can 1887 // often be turned into switches and other things. 1888 if (PN->getType()->isIntegerTy(1) && 1889 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1890 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1891 isa<BinaryOperator>(IfCond))) 1892 return false; 1893 1894 // If we all PHI nodes are promotable, check to make sure that all 1895 // instructions in the predecessor blocks can be promoted as well. If 1896 // not, we won't be able to get rid of the control flow, so it's not 1897 // worth promoting to select instructions. 1898 BasicBlock *DomBlock = nullptr; 1899 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1900 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1901 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1902 IfBlock1 = nullptr; 1903 } else { 1904 DomBlock = *pred_begin(IfBlock1); 1905 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1906 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1907 // This is not an aggressive instruction that we can promote. 1908 // Because of this, we won't be able to get rid of the control 1909 // flow, so the xform is not worth it. 1910 return false; 1911 } 1912 } 1913 1914 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1915 IfBlock2 = nullptr; 1916 } else { 1917 DomBlock = *pred_begin(IfBlock2); 1918 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1919 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1920 // This is not an aggressive instruction that we can promote. 1921 // Because of this, we won't be able to get rid of the control 1922 // flow, so the xform is not worth it. 1923 return false; 1924 } 1925 } 1926 1927 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1928 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1929 1930 // If we can still promote the PHI nodes after this gauntlet of tests, 1931 // do all of the PHI's now. 1932 Instruction *InsertPt = DomBlock->getTerminator(); 1933 IRBuilder<true, NoFolder> Builder(InsertPt); 1934 1935 // Move all 'aggressive' instructions, which are defined in the 1936 // conditional parts of the if's up to the dominating block. 1937 if (IfBlock1) 1938 DomBlock->getInstList().splice(InsertPt->getIterator(), 1939 IfBlock1->getInstList(), IfBlock1->begin(), 1940 IfBlock1->getTerminator()->getIterator()); 1941 if (IfBlock2) 1942 DomBlock->getInstList().splice(InsertPt->getIterator(), 1943 IfBlock2->getInstList(), IfBlock2->begin(), 1944 IfBlock2->getTerminator()->getIterator()); 1945 1946 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1947 // Change the PHI node into a select instruction. 1948 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1949 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1950 1951 SelectInst *NV = 1952 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1953 PN->replaceAllUsesWith(NV); 1954 NV->takeName(PN); 1955 PN->eraseFromParent(); 1956 } 1957 1958 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1959 // has been flattened. Change DomBlock to jump directly to our new block to 1960 // avoid other simplifycfg's kicking in on the diamond. 1961 TerminatorInst *OldTI = DomBlock->getTerminator(); 1962 Builder.SetInsertPoint(OldTI); 1963 Builder.CreateBr(BB); 1964 OldTI->eraseFromParent(); 1965 return true; 1966 } 1967 1968 /// If we found a conditional branch that goes to two returning blocks, 1969 /// try to merge them together into one return, 1970 /// introducing a select if the return values disagree. 1971 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1972 IRBuilder<> &Builder) { 1973 assert(BI->isConditional() && "Must be a conditional branch"); 1974 BasicBlock *TrueSucc = BI->getSuccessor(0); 1975 BasicBlock *FalseSucc = BI->getSuccessor(1); 1976 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1977 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1978 1979 // Check to ensure both blocks are empty (just a return) or optionally empty 1980 // with PHI nodes. If there are other instructions, merging would cause extra 1981 // computation on one path or the other. 1982 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1983 return false; 1984 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1985 return false; 1986 1987 Builder.SetInsertPoint(BI); 1988 // Okay, we found a branch that is going to two return nodes. If 1989 // there is no return value for this function, just change the 1990 // branch into a return. 1991 if (FalseRet->getNumOperands() == 0) { 1992 TrueSucc->removePredecessor(BI->getParent()); 1993 FalseSucc->removePredecessor(BI->getParent()); 1994 Builder.CreateRetVoid(); 1995 EraseTerminatorInstAndDCECond(BI); 1996 return true; 1997 } 1998 1999 // Otherwise, figure out what the true and false return values are 2000 // so we can insert a new select instruction. 2001 Value *TrueValue = TrueRet->getReturnValue(); 2002 Value *FalseValue = FalseRet->getReturnValue(); 2003 2004 // Unwrap any PHI nodes in the return blocks. 2005 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2006 if (TVPN->getParent() == TrueSucc) 2007 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2008 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2009 if (FVPN->getParent() == FalseSucc) 2010 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2011 2012 // In order for this transformation to be safe, we must be able to 2013 // unconditionally execute both operands to the return. This is 2014 // normally the case, but we could have a potentially-trapping 2015 // constant expression that prevents this transformation from being 2016 // safe. 2017 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2018 if (TCV->canTrap()) 2019 return false; 2020 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2021 if (FCV->canTrap()) 2022 return false; 2023 2024 // Okay, we collected all the mapped values and checked them for sanity, and 2025 // defined to really do this transformation. First, update the CFG. 2026 TrueSucc->removePredecessor(BI->getParent()); 2027 FalseSucc->removePredecessor(BI->getParent()); 2028 2029 // Insert select instructions where needed. 2030 Value *BrCond = BI->getCondition(); 2031 if (TrueValue) { 2032 // Insert a select if the results differ. 2033 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2034 } else if (isa<UndefValue>(TrueValue)) { 2035 TrueValue = FalseValue; 2036 } else { 2037 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 2038 FalseValue, "retval"); 2039 } 2040 } 2041 2042 Value *RI = !TrueValue ? 2043 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2044 2045 (void) RI; 2046 2047 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2048 << "\n " << *BI << "NewRet = " << *RI 2049 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 2050 2051 EraseTerminatorInstAndDCECond(BI); 2052 2053 return true; 2054 } 2055 2056 /// Given a conditional BranchInstruction, retrieve the probabilities of the 2057 /// branch taking each edge. Fills in the two APInt parameters and returns true, 2058 /// or returns false if no or invalid metadata was found. 2059 static bool ExtractBranchMetadata(BranchInst *BI, 2060 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2061 assert(BI->isConditional() && 2062 "Looking for probabilities on unconditional branch?"); 2063 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2064 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2065 ConstantInt *CITrue = 2066 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 2067 ConstantInt *CIFalse = 2068 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 2069 if (!CITrue || !CIFalse) return false; 2070 ProbTrue = CITrue->getValue().getZExtValue(); 2071 ProbFalse = CIFalse->getValue().getZExtValue(); 2072 return true; 2073 } 2074 2075 /// Return true if the given instruction is available 2076 /// in its predecessor block. If yes, the instruction will be removed. 2077 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2078 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2079 return false; 2080 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2081 Instruction *PBI = &*I; 2082 // Check whether Inst and PBI generate the same value. 2083 if (Inst->isIdenticalTo(PBI)) { 2084 Inst->replaceAllUsesWith(PBI); 2085 Inst->eraseFromParent(); 2086 return true; 2087 } 2088 } 2089 return false; 2090 } 2091 2092 /// If this basic block is simple enough, and if a predecessor branches to us 2093 /// and one of our successors, fold the block into the predecessor and use 2094 /// logical operations to pick the right destination. 2095 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2096 BasicBlock *BB = BI->getParent(); 2097 2098 Instruction *Cond = nullptr; 2099 if (BI->isConditional()) 2100 Cond = dyn_cast<Instruction>(BI->getCondition()); 2101 else { 2102 // For unconditional branch, check for a simple CFG pattern, where 2103 // BB has a single predecessor and BB's successor is also its predecessor's 2104 // successor. If such pattern exisits, check for CSE between BB and its 2105 // predecessor. 2106 if (BasicBlock *PB = BB->getSinglePredecessor()) 2107 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2108 if (PBI->isConditional() && 2109 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2110 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2111 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2112 I != E; ) { 2113 Instruction *Curr = &*I++; 2114 if (isa<CmpInst>(Curr)) { 2115 Cond = Curr; 2116 break; 2117 } 2118 // Quit if we can't remove this instruction. 2119 if (!checkCSEInPredecessor(Curr, PB)) 2120 return false; 2121 } 2122 } 2123 2124 if (!Cond) 2125 return false; 2126 } 2127 2128 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2129 Cond->getParent() != BB || !Cond->hasOneUse()) 2130 return false; 2131 2132 // Make sure the instruction after the condition is the cond branch. 2133 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2134 2135 // Ignore dbg intrinsics. 2136 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2137 2138 if (&*CondIt != BI) 2139 return false; 2140 2141 // Only allow this transformation if computing the condition doesn't involve 2142 // too many instructions and these involved instructions can be executed 2143 // unconditionally. We denote all involved instructions except the condition 2144 // as "bonus instructions", and only allow this transformation when the 2145 // number of the bonus instructions does not exceed a certain threshold. 2146 unsigned NumBonusInsts = 0; 2147 for (auto I = BB->begin(); Cond != I; ++I) { 2148 // Ignore dbg intrinsics. 2149 if (isa<DbgInfoIntrinsic>(I)) 2150 continue; 2151 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2152 return false; 2153 // I has only one use and can be executed unconditionally. 2154 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2155 if (User == nullptr || User->getParent() != BB) 2156 return false; 2157 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2158 // to use any other instruction, User must be an instruction between next(I) 2159 // and Cond. 2160 ++NumBonusInsts; 2161 // Early exits once we reach the limit. 2162 if (NumBonusInsts > BonusInstThreshold) 2163 return false; 2164 } 2165 2166 // Cond is known to be a compare or binary operator. Check to make sure that 2167 // neither operand is a potentially-trapping constant expression. 2168 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2169 if (CE->canTrap()) 2170 return false; 2171 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2172 if (CE->canTrap()) 2173 return false; 2174 2175 // Finally, don't infinitely unroll conditional loops. 2176 BasicBlock *TrueDest = BI->getSuccessor(0); 2177 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2178 if (TrueDest == BB || FalseDest == BB) 2179 return false; 2180 2181 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2182 BasicBlock *PredBlock = *PI; 2183 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2184 2185 // Check that we have two conditional branches. If there is a PHI node in 2186 // the common successor, verify that the same value flows in from both 2187 // blocks. 2188 SmallVector<PHINode*, 4> PHIs; 2189 if (!PBI || PBI->isUnconditional() || 2190 (BI->isConditional() && 2191 !SafeToMergeTerminators(BI, PBI)) || 2192 (!BI->isConditional() && 2193 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2194 continue; 2195 2196 // Determine if the two branches share a common destination. 2197 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2198 bool InvertPredCond = false; 2199 2200 if (BI->isConditional()) { 2201 if (PBI->getSuccessor(0) == TrueDest) 2202 Opc = Instruction::Or; 2203 else if (PBI->getSuccessor(1) == FalseDest) 2204 Opc = Instruction::And; 2205 else if (PBI->getSuccessor(0) == FalseDest) 2206 Opc = Instruction::And, InvertPredCond = true; 2207 else if (PBI->getSuccessor(1) == TrueDest) 2208 Opc = Instruction::Or, InvertPredCond = true; 2209 else 2210 continue; 2211 } else { 2212 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2213 continue; 2214 } 2215 2216 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2217 IRBuilder<> Builder(PBI); 2218 2219 // If we need to invert the condition in the pred block to match, do so now. 2220 if (InvertPredCond) { 2221 Value *NewCond = PBI->getCondition(); 2222 2223 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2224 CmpInst *CI = cast<CmpInst>(NewCond); 2225 CI->setPredicate(CI->getInversePredicate()); 2226 } else { 2227 NewCond = Builder.CreateNot(NewCond, 2228 PBI->getCondition()->getName()+".not"); 2229 } 2230 2231 PBI->setCondition(NewCond); 2232 PBI->swapSuccessors(); 2233 } 2234 2235 // If we have bonus instructions, clone them into the predecessor block. 2236 // Note that there may be multiple predecessor blocks, so we cannot move 2237 // bonus instructions to a predecessor block. 2238 ValueToValueMapTy VMap; // maps original values to cloned values 2239 // We already make sure Cond is the last instruction before BI. Therefore, 2240 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2241 // instructions. 2242 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) { 2243 if (isa<DbgInfoIntrinsic>(BonusInst)) 2244 continue; 2245 Instruction *NewBonusInst = BonusInst->clone(); 2246 RemapInstruction(NewBonusInst, VMap, 2247 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2248 VMap[&*BonusInst] = NewBonusInst; 2249 2250 // If we moved a load, we cannot any longer claim any knowledge about 2251 // its potential value. The previous information might have been valid 2252 // only given the branch precondition. 2253 // For an analogous reason, we must also drop all the metadata whose 2254 // semantics we don't understand. 2255 NewBonusInst->dropUnknownNonDebugMetadata(); 2256 2257 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2258 NewBonusInst->takeName(&*BonusInst); 2259 BonusInst->setName(BonusInst->getName() + ".old"); 2260 } 2261 2262 // Clone Cond into the predecessor basic block, and or/and the 2263 // two conditions together. 2264 Instruction *New = Cond->clone(); 2265 RemapInstruction(New, VMap, 2266 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2267 PredBlock->getInstList().insert(PBI->getIterator(), New); 2268 New->takeName(Cond); 2269 Cond->setName(New->getName() + ".old"); 2270 2271 if (BI->isConditional()) { 2272 Instruction *NewCond = 2273 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2274 New, "or.cond")); 2275 PBI->setCondition(NewCond); 2276 2277 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2278 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2279 PredFalseWeight); 2280 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2281 SuccFalseWeight); 2282 SmallVector<uint64_t, 8> NewWeights; 2283 2284 if (PBI->getSuccessor(0) == BB) { 2285 if (PredHasWeights && SuccHasWeights) { 2286 // PBI: br i1 %x, BB, FalseDest 2287 // BI: br i1 %y, TrueDest, FalseDest 2288 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2289 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2290 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2291 // TrueWeight for PBI * FalseWeight for BI. 2292 // We assume that total weights of a BranchInst can fit into 32 bits. 2293 // Therefore, we will not have overflow using 64-bit arithmetic. 2294 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2295 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2296 } 2297 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2298 PBI->setSuccessor(0, TrueDest); 2299 } 2300 if (PBI->getSuccessor(1) == BB) { 2301 if (PredHasWeights && SuccHasWeights) { 2302 // PBI: br i1 %x, TrueDest, BB 2303 // BI: br i1 %y, TrueDest, FalseDest 2304 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2305 // FalseWeight for PBI * TrueWeight for BI. 2306 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2307 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2308 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2309 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2310 } 2311 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2312 PBI->setSuccessor(1, FalseDest); 2313 } 2314 if (NewWeights.size() == 2) { 2315 // Halve the weights if any of them cannot fit in an uint32_t 2316 FitWeights(NewWeights); 2317 2318 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2319 PBI->setMetadata(LLVMContext::MD_prof, 2320 MDBuilder(BI->getContext()). 2321 createBranchWeights(MDWeights)); 2322 } else 2323 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2324 } else { 2325 // Update PHI nodes in the common successors. 2326 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2327 ConstantInt *PBI_C = cast<ConstantInt>( 2328 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2329 assert(PBI_C->getType()->isIntegerTy(1)); 2330 Instruction *MergedCond = nullptr; 2331 if (PBI->getSuccessor(0) == TrueDest) { 2332 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2333 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2334 // is false: !PBI_Cond and BI_Value 2335 Instruction *NotCond = 2336 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2337 "not.cond")); 2338 MergedCond = 2339 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2340 NotCond, New, 2341 "and.cond")); 2342 if (PBI_C->isOne()) 2343 MergedCond = 2344 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2345 PBI->getCondition(), MergedCond, 2346 "or.cond")); 2347 } else { 2348 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2349 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2350 // is false: PBI_Cond and BI_Value 2351 MergedCond = 2352 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2353 PBI->getCondition(), New, 2354 "and.cond")); 2355 if (PBI_C->isOne()) { 2356 Instruction *NotCond = 2357 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2358 "not.cond")); 2359 MergedCond = 2360 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2361 NotCond, MergedCond, 2362 "or.cond")); 2363 } 2364 } 2365 // Update PHI Node. 2366 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2367 MergedCond); 2368 } 2369 // Change PBI from Conditional to Unconditional. 2370 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2371 EraseTerminatorInstAndDCECond(PBI); 2372 PBI = New_PBI; 2373 } 2374 2375 // TODO: If BB is reachable from all paths through PredBlock, then we 2376 // could replace PBI's branch probabilities with BI's. 2377 2378 // Copy any debug value intrinsics into the end of PredBlock. 2379 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2380 if (isa<DbgInfoIntrinsic>(*I)) 2381 I->clone()->insertBefore(PBI); 2382 2383 return true; 2384 } 2385 return false; 2386 } 2387 2388 // If there is only one store in BB1 and BB2, return it, otherwise return 2389 // nullptr. 2390 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2391 StoreInst *S = nullptr; 2392 for (auto *BB : {BB1, BB2}) { 2393 if (!BB) 2394 continue; 2395 for (auto &I : *BB) 2396 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2397 if (S) 2398 // Multiple stores seen. 2399 return nullptr; 2400 else 2401 S = SI; 2402 } 2403 } 2404 return S; 2405 } 2406 2407 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2408 Value *AlternativeV = nullptr) { 2409 // PHI is going to be a PHI node that allows the value V that is defined in 2410 // BB to be referenced in BB's only successor. 2411 // 2412 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2413 // doesn't matter to us what the other operand is (it'll never get used). We 2414 // could just create a new PHI with an undef incoming value, but that could 2415 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2416 // other PHI. So here we directly look for some PHI in BB's successor with V 2417 // as an incoming operand. If we find one, we use it, else we create a new 2418 // one. 2419 // 2420 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2421 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2422 // where OtherBB is the single other predecessor of BB's only successor. 2423 PHINode *PHI = nullptr; 2424 BasicBlock *Succ = BB->getSingleSuccessor(); 2425 2426 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2427 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2428 PHI = cast<PHINode>(I); 2429 if (!AlternativeV) 2430 break; 2431 2432 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2433 auto PredI = pred_begin(Succ); 2434 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2435 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2436 break; 2437 PHI = nullptr; 2438 } 2439 if (PHI) 2440 return PHI; 2441 2442 // If V is not an instruction defined in BB, just return it. 2443 if (!AlternativeV && 2444 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2445 return V; 2446 2447 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2448 PHI->addIncoming(V, BB); 2449 for (BasicBlock *PredBB : predecessors(Succ)) 2450 if (PredBB != BB) 2451 PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()), 2452 PredBB); 2453 return PHI; 2454 } 2455 2456 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2457 BasicBlock *QTB, BasicBlock *QFB, 2458 BasicBlock *PostBB, Value *Address, 2459 bool InvertPCond, bool InvertQCond) { 2460 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2461 return Operator::getOpcode(&I) == Instruction::BitCast && 2462 I.getType()->isPointerTy(); 2463 }; 2464 2465 // If we're not in aggressive mode, we only optimize if we have some 2466 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2467 auto IsWorthwhile = [&](BasicBlock *BB) { 2468 if (!BB) 2469 return true; 2470 // Heuristic: if the block can be if-converted/phi-folded and the 2471 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2472 // thread this store. 2473 unsigned N = 0; 2474 for (auto &I : *BB) { 2475 // Cheap instructions viable for folding. 2476 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2477 isa<StoreInst>(I)) 2478 ++N; 2479 // Free instructions. 2480 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2481 IsaBitcastOfPointerType(I)) 2482 continue; 2483 else 2484 return false; 2485 } 2486 return N <= PHINodeFoldingThreshold; 2487 }; 2488 2489 if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) || 2490 !IsWorthwhile(PFB) || 2491 !IsWorthwhile(QTB) || 2492 !IsWorthwhile(QFB))) 2493 return false; 2494 2495 // For every pointer, there must be exactly two stores, one coming from 2496 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2497 // store (to any address) in PTB,PFB or QTB,QFB. 2498 // FIXME: We could relax this restriction with a bit more work and performance 2499 // testing. 2500 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2501 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2502 if (!PStore || !QStore) 2503 return false; 2504 2505 // Now check the stores are compatible. 2506 if (!QStore->isUnordered() || !PStore->isUnordered()) 2507 return false; 2508 2509 // Check that sinking the store won't cause program behavior changes. Sinking 2510 // the store out of the Q blocks won't change any behavior as we're sinking 2511 // from a block to its unconditional successor. But we're moving a store from 2512 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2513 // So we need to check that there are no aliasing loads or stores in 2514 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2515 // operations between PStore and the end of its parent block. 2516 // 2517 // The ideal way to do this is to query AliasAnalysis, but we don't 2518 // preserve AA currently so that is dangerous. Be super safe and just 2519 // check there are no other memory operations at all. 2520 for (auto &I : *QFB->getSinglePredecessor()) 2521 if (I.mayReadOrWriteMemory()) 2522 return false; 2523 for (auto &I : *QFB) 2524 if (&I != QStore && I.mayReadOrWriteMemory()) 2525 return false; 2526 if (QTB) 2527 for (auto &I : *QTB) 2528 if (&I != QStore && I.mayReadOrWriteMemory()) 2529 return false; 2530 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2531 I != E; ++I) 2532 if (&*I != PStore && I->mayReadOrWriteMemory()) 2533 return false; 2534 2535 // OK, we're going to sink the stores to PostBB. The store has to be 2536 // conditional though, so first create the predicate. 2537 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2538 ->getCondition(); 2539 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2540 ->getCondition(); 2541 2542 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2543 PStore->getParent()); 2544 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2545 QStore->getParent(), PPHI); 2546 2547 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2548 2549 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2550 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2551 2552 if (InvertPCond) 2553 PPred = QB.CreateNot(PPred); 2554 if (InvertQCond) 2555 QPred = QB.CreateNot(QPred); 2556 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2557 2558 auto *T = 2559 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2560 QB.SetInsertPoint(T); 2561 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2562 AAMDNodes AAMD; 2563 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2564 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2565 SI->setAAMetadata(AAMD); 2566 2567 QStore->eraseFromParent(); 2568 PStore->eraseFromParent(); 2569 2570 return true; 2571 } 2572 2573 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2574 // The intention here is to find diamonds or triangles (see below) where each 2575 // conditional block contains a store to the same address. Both of these 2576 // stores are conditional, so they can't be unconditionally sunk. But it may 2577 // be profitable to speculatively sink the stores into one merged store at the 2578 // end, and predicate the merged store on the union of the two conditions of 2579 // PBI and QBI. 2580 // 2581 // This can reduce the number of stores executed if both of the conditions are 2582 // true, and can allow the blocks to become small enough to be if-converted. 2583 // This optimization will also chain, so that ladders of test-and-set 2584 // sequences can be if-converted away. 2585 // 2586 // We only deal with simple diamonds or triangles: 2587 // 2588 // PBI or PBI or a combination of the two 2589 // / \ | \ 2590 // PTB PFB | PFB 2591 // \ / | / 2592 // QBI QBI 2593 // / \ | \ 2594 // QTB QFB | QFB 2595 // \ / | / 2596 // PostBB PostBB 2597 // 2598 // We model triangles as a type of diamond with a nullptr "true" block. 2599 // Triangles are canonicalized so that the fallthrough edge is represented by 2600 // a true condition, as in the diagram above. 2601 // 2602 BasicBlock *PTB = PBI->getSuccessor(0); 2603 BasicBlock *PFB = PBI->getSuccessor(1); 2604 BasicBlock *QTB = QBI->getSuccessor(0); 2605 BasicBlock *QFB = QBI->getSuccessor(1); 2606 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2607 2608 bool InvertPCond = false, InvertQCond = false; 2609 // Canonicalize fallthroughs to the true branches. 2610 if (PFB == QBI->getParent()) { 2611 std::swap(PFB, PTB); 2612 InvertPCond = true; 2613 } 2614 if (QFB == PostBB) { 2615 std::swap(QFB, QTB); 2616 InvertQCond = true; 2617 } 2618 2619 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2620 // and QFB may not. Model fallthroughs as a nullptr block. 2621 if (PTB == QBI->getParent()) 2622 PTB = nullptr; 2623 if (QTB == PostBB) 2624 QTB = nullptr; 2625 2626 // Legality bailouts. We must have at least the non-fallthrough blocks and 2627 // the post-dominating block, and the non-fallthroughs must only have one 2628 // predecessor. 2629 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2630 return BB->getSinglePredecessor() == P && 2631 BB->getSingleSuccessor() == S; 2632 }; 2633 if (!PostBB || 2634 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2635 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2636 return false; 2637 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2638 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2639 return false; 2640 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2641 return false; 2642 2643 // OK, this is a sequence of two diamonds or triangles. 2644 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2645 SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses; 2646 for (auto *BB : {PTB, PFB}) { 2647 if (!BB) 2648 continue; 2649 for (auto &I : *BB) 2650 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2651 PStoreAddresses.insert(SI->getPointerOperand()); 2652 } 2653 for (auto *BB : {QTB, QFB}) { 2654 if (!BB) 2655 continue; 2656 for (auto &I : *BB) 2657 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2658 QStoreAddresses.insert(SI->getPointerOperand()); 2659 } 2660 2661 set_intersect(PStoreAddresses, QStoreAddresses); 2662 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2663 // clear what it contains. 2664 auto &CommonAddresses = PStoreAddresses; 2665 2666 bool Changed = false; 2667 for (auto *Address : CommonAddresses) 2668 Changed |= mergeConditionalStoreToAddress( 2669 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2670 return Changed; 2671 } 2672 2673 /// If we have a conditional branch as a predecessor of another block, 2674 /// this function tries to simplify it. We know 2675 /// that PBI and BI are both conditional branches, and BI is in one of the 2676 /// successor blocks of PBI - PBI branches to BI. 2677 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2678 const DataLayout &DL) { 2679 assert(PBI->isConditional() && BI->isConditional()); 2680 BasicBlock *BB = BI->getParent(); 2681 2682 // If this block ends with a branch instruction, and if there is a 2683 // predecessor that ends on a branch of the same condition, make 2684 // this conditional branch redundant. 2685 if (PBI->getCondition() == BI->getCondition() && 2686 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2687 // Okay, the outcome of this conditional branch is statically 2688 // knowable. If this block had a single pred, handle specially. 2689 if (BB->getSinglePredecessor()) { 2690 // Turn this into a branch on constant. 2691 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2692 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2693 CondIsTrue)); 2694 return true; // Nuke the branch on constant. 2695 } 2696 2697 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2698 // in the constant and simplify the block result. Subsequent passes of 2699 // simplifycfg will thread the block. 2700 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2701 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2702 PHINode *NewPN = PHINode::Create( 2703 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2704 BI->getCondition()->getName() + ".pr", &BB->front()); 2705 // Okay, we're going to insert the PHI node. Since PBI is not the only 2706 // predecessor, compute the PHI'd conditional value for all of the preds. 2707 // Any predecessor where the condition is not computable we keep symbolic. 2708 for (pred_iterator PI = PB; PI != PE; ++PI) { 2709 BasicBlock *P = *PI; 2710 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2711 PBI != BI && PBI->isConditional() && 2712 PBI->getCondition() == BI->getCondition() && 2713 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2714 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2715 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2716 CondIsTrue), P); 2717 } else { 2718 NewPN->addIncoming(BI->getCondition(), P); 2719 } 2720 } 2721 2722 BI->setCondition(NewPN); 2723 return true; 2724 } 2725 } 2726 2727 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2728 if (CE->canTrap()) 2729 return false; 2730 2731 // If BI is reached from the true path of PBI and PBI's condition implies 2732 // BI's condition, we know the direction of the BI branch. 2733 if (PBI->getSuccessor(0) == BI->getParent() && 2734 isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) && 2735 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 2736 BB->getSinglePredecessor()) { 2737 // Turn this into a branch on constant. 2738 auto *OldCond = BI->getCondition(); 2739 BI->setCondition(ConstantInt::getTrue(BB->getContext())); 2740 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 2741 return true; // Nuke the branch on constant. 2742 } 2743 2744 // If both branches are conditional and both contain stores to the same 2745 // address, remove the stores from the conditionals and create a conditional 2746 // merged store at the end. 2747 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2748 return true; 2749 2750 // If this is a conditional branch in an empty block, and if any 2751 // predecessors are a conditional branch to one of our destinations, 2752 // fold the conditions into logical ops and one cond br. 2753 BasicBlock::iterator BBI = BB->begin(); 2754 // Ignore dbg intrinsics. 2755 while (isa<DbgInfoIntrinsic>(BBI)) 2756 ++BBI; 2757 if (&*BBI != BI) 2758 return false; 2759 2760 int PBIOp, BIOp; 2761 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2762 PBIOp = BIOp = 0; 2763 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2764 PBIOp = 0, BIOp = 1; 2765 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2766 PBIOp = 1, BIOp = 0; 2767 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2768 PBIOp = BIOp = 1; 2769 else 2770 return false; 2771 2772 // Check to make sure that the other destination of this branch 2773 // isn't BB itself. If so, this is an infinite loop that will 2774 // keep getting unwound. 2775 if (PBI->getSuccessor(PBIOp) == BB) 2776 return false; 2777 2778 // Do not perform this transformation if it would require 2779 // insertion of a large number of select instructions. For targets 2780 // without predication/cmovs, this is a big pessimization. 2781 2782 // Also do not perform this transformation if any phi node in the common 2783 // destination block can trap when reached by BB or PBB (PR17073). In that 2784 // case, it would be unsafe to hoist the operation into a select instruction. 2785 2786 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2787 unsigned NumPhis = 0; 2788 for (BasicBlock::iterator II = CommonDest->begin(); 2789 isa<PHINode>(II); ++II, ++NumPhis) { 2790 if (NumPhis > 2) // Disable this xform. 2791 return false; 2792 2793 PHINode *PN = cast<PHINode>(II); 2794 Value *BIV = PN->getIncomingValueForBlock(BB); 2795 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2796 if (CE->canTrap()) 2797 return false; 2798 2799 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2800 Value *PBIV = PN->getIncomingValue(PBBIdx); 2801 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2802 if (CE->canTrap()) 2803 return false; 2804 } 2805 2806 // Finally, if everything is ok, fold the branches to logical ops. 2807 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2808 2809 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2810 << "AND: " << *BI->getParent()); 2811 2812 2813 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2814 // branch in it, where one edge (OtherDest) goes back to itself but the other 2815 // exits. We don't *know* that the program avoids the infinite loop 2816 // (even though that seems likely). If we do this xform naively, we'll end up 2817 // recursively unpeeling the loop. Since we know that (after the xform is 2818 // done) that the block *is* infinite if reached, we just make it an obviously 2819 // infinite loop with no cond branch. 2820 if (OtherDest == BB) { 2821 // Insert it at the end of the function, because it's either code, 2822 // or it won't matter if it's hot. :) 2823 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2824 "infloop", BB->getParent()); 2825 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2826 OtherDest = InfLoopBlock; 2827 } 2828 2829 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2830 2831 // BI may have other predecessors. Because of this, we leave 2832 // it alone, but modify PBI. 2833 2834 // Make sure we get to CommonDest on True&True directions. 2835 Value *PBICond = PBI->getCondition(); 2836 IRBuilder<true, NoFolder> Builder(PBI); 2837 if (PBIOp) 2838 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2839 2840 Value *BICond = BI->getCondition(); 2841 if (BIOp) 2842 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2843 2844 // Merge the conditions. 2845 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2846 2847 // Modify PBI to branch on the new condition to the new dests. 2848 PBI->setCondition(Cond); 2849 PBI->setSuccessor(0, CommonDest); 2850 PBI->setSuccessor(1, OtherDest); 2851 2852 // Update branch weight for PBI. 2853 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2854 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2855 PredFalseWeight); 2856 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2857 SuccFalseWeight); 2858 if (PredHasWeights && SuccHasWeights) { 2859 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2860 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2861 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2862 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2863 // The weight to CommonDest should be PredCommon * SuccTotal + 2864 // PredOther * SuccCommon. 2865 // The weight to OtherDest should be PredOther * SuccOther. 2866 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2867 PredOther * SuccCommon, 2868 PredOther * SuccOther}; 2869 // Halve the weights if any of them cannot fit in an uint32_t 2870 FitWeights(NewWeights); 2871 2872 PBI->setMetadata(LLVMContext::MD_prof, 2873 MDBuilder(BI->getContext()) 2874 .createBranchWeights(NewWeights[0], NewWeights[1])); 2875 } 2876 2877 // OtherDest may have phi nodes. If so, add an entry from PBI's 2878 // block that are identical to the entries for BI's block. 2879 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2880 2881 // We know that the CommonDest already had an edge from PBI to 2882 // it. If it has PHIs though, the PHIs may have different 2883 // entries for BB and PBI's BB. If so, insert a select to make 2884 // them agree. 2885 PHINode *PN; 2886 for (BasicBlock::iterator II = CommonDest->begin(); 2887 (PN = dyn_cast<PHINode>(II)); ++II) { 2888 Value *BIV = PN->getIncomingValueForBlock(BB); 2889 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2890 Value *PBIV = PN->getIncomingValue(PBBIdx); 2891 if (BIV != PBIV) { 2892 // Insert a select in PBI to pick the right value. 2893 Value *NV = cast<SelectInst> 2894 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2895 PN->setIncomingValue(PBBIdx, NV); 2896 } 2897 } 2898 2899 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2900 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2901 2902 // This basic block is probably dead. We know it has at least 2903 // one fewer predecessor. 2904 return true; 2905 } 2906 2907 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 2908 // true or to FalseBB if Cond is false. 2909 // Takes care of updating the successors and removing the old terminator. 2910 // Also makes sure not to introduce new successors by assuming that edges to 2911 // non-successor TrueBBs and FalseBBs aren't reachable. 2912 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2913 BasicBlock *TrueBB, BasicBlock *FalseBB, 2914 uint32_t TrueWeight, 2915 uint32_t FalseWeight){ 2916 // Remove any superfluous successor edges from the CFG. 2917 // First, figure out which successors to preserve. 2918 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2919 // successor. 2920 BasicBlock *KeepEdge1 = TrueBB; 2921 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2922 2923 // Then remove the rest. 2924 for (BasicBlock *Succ : OldTerm->successors()) { 2925 // Make sure only to keep exactly one copy of each edge. 2926 if (Succ == KeepEdge1) 2927 KeepEdge1 = nullptr; 2928 else if (Succ == KeepEdge2) 2929 KeepEdge2 = nullptr; 2930 else 2931 Succ->removePredecessor(OldTerm->getParent(), 2932 /*DontDeleteUselessPHIs=*/true); 2933 } 2934 2935 IRBuilder<> Builder(OldTerm); 2936 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2937 2938 // Insert an appropriate new terminator. 2939 if (!KeepEdge1 && !KeepEdge2) { 2940 if (TrueBB == FalseBB) 2941 // We were only looking for one successor, and it was present. 2942 // Create an unconditional branch to it. 2943 Builder.CreateBr(TrueBB); 2944 else { 2945 // We found both of the successors we were looking for. 2946 // Create a conditional branch sharing the condition of the select. 2947 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2948 if (TrueWeight != FalseWeight) 2949 NewBI->setMetadata(LLVMContext::MD_prof, 2950 MDBuilder(OldTerm->getContext()). 2951 createBranchWeights(TrueWeight, FalseWeight)); 2952 } 2953 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2954 // Neither of the selected blocks were successors, so this 2955 // terminator must be unreachable. 2956 new UnreachableInst(OldTerm->getContext(), OldTerm); 2957 } else { 2958 // One of the selected values was a successor, but the other wasn't. 2959 // Insert an unconditional branch to the one that was found; 2960 // the edge to the one that wasn't must be unreachable. 2961 if (!KeepEdge1) 2962 // Only TrueBB was found. 2963 Builder.CreateBr(TrueBB); 2964 else 2965 // Only FalseBB was found. 2966 Builder.CreateBr(FalseBB); 2967 } 2968 2969 EraseTerminatorInstAndDCECond(OldTerm); 2970 return true; 2971 } 2972 2973 // Replaces 2974 // (switch (select cond, X, Y)) on constant X, Y 2975 // with a branch - conditional if X and Y lead to distinct BBs, 2976 // unconditional otherwise. 2977 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2978 // Check for constant integer values in the select. 2979 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2980 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2981 if (!TrueVal || !FalseVal) 2982 return false; 2983 2984 // Find the relevant condition and destinations. 2985 Value *Condition = Select->getCondition(); 2986 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2987 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2988 2989 // Get weight for TrueBB and FalseBB. 2990 uint32_t TrueWeight = 0, FalseWeight = 0; 2991 SmallVector<uint64_t, 8> Weights; 2992 bool HasWeights = HasBranchWeights(SI); 2993 if (HasWeights) { 2994 GetBranchWeights(SI, Weights); 2995 if (Weights.size() == 1 + SI->getNumCases()) { 2996 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2997 getSuccessorIndex()]; 2998 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2999 getSuccessorIndex()]; 3000 } 3001 } 3002 3003 // Perform the actual simplification. 3004 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 3005 TrueWeight, FalseWeight); 3006 } 3007 3008 // Replaces 3009 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3010 // blockaddress(@fn, BlockB))) 3011 // with 3012 // (br cond, BlockA, BlockB). 3013 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3014 // Check that both operands of the select are block addresses. 3015 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3016 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3017 if (!TBA || !FBA) 3018 return false; 3019 3020 // Extract the actual blocks. 3021 BasicBlock *TrueBB = TBA->getBasicBlock(); 3022 BasicBlock *FalseBB = FBA->getBasicBlock(); 3023 3024 // Perform the actual simplification. 3025 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 3026 0, 0); 3027 } 3028 3029 /// This is called when we find an icmp instruction 3030 /// (a seteq/setne with a constant) as the only instruction in a 3031 /// block that ends with an uncond branch. We are looking for a very specific 3032 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3033 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3034 /// default value goes to an uncond block with a seteq in it, we get something 3035 /// like: 3036 /// 3037 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3038 /// DEFAULT: 3039 /// %tmp = icmp eq i8 %A, 92 3040 /// br label %end 3041 /// end: 3042 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3043 /// 3044 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3045 /// the PHI, merging the third icmp into the switch. 3046 static bool TryToSimplifyUncondBranchWithICmpInIt( 3047 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3048 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3049 AssumptionCache *AC) { 3050 BasicBlock *BB = ICI->getParent(); 3051 3052 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3053 // complex. 3054 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 3055 3056 Value *V = ICI->getOperand(0); 3057 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3058 3059 // The pattern we're looking for is where our only predecessor is a switch on 3060 // 'V' and this block is the default case for the switch. In this case we can 3061 // fold the compared value into the switch to simplify things. 3062 BasicBlock *Pred = BB->getSinglePredecessor(); 3063 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 3064 3065 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3066 if (SI->getCondition() != V) 3067 return false; 3068 3069 // If BB is reachable on a non-default case, then we simply know the value of 3070 // V in this block. Substitute it and constant fold the icmp instruction 3071 // away. 3072 if (SI->getDefaultDest() != BB) { 3073 ConstantInt *VVal = SI->findCaseDest(BB); 3074 assert(VVal && "Should have a unique destination value"); 3075 ICI->setOperand(0, VVal); 3076 3077 if (Value *V = SimplifyInstruction(ICI, DL)) { 3078 ICI->replaceAllUsesWith(V); 3079 ICI->eraseFromParent(); 3080 } 3081 // BB is now empty, so it is likely to simplify away. 3082 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3083 } 3084 3085 // Ok, the block is reachable from the default dest. If the constant we're 3086 // comparing exists in one of the other edges, then we can constant fold ICI 3087 // and zap it. 3088 if (SI->findCaseValue(Cst) != SI->case_default()) { 3089 Value *V; 3090 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3091 V = ConstantInt::getFalse(BB->getContext()); 3092 else 3093 V = ConstantInt::getTrue(BB->getContext()); 3094 3095 ICI->replaceAllUsesWith(V); 3096 ICI->eraseFromParent(); 3097 // BB is now empty, so it is likely to simplify away. 3098 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3099 } 3100 3101 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3102 // the block. 3103 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3104 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3105 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3106 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3107 return false; 3108 3109 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3110 // true in the PHI. 3111 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3112 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3113 3114 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3115 std::swap(DefaultCst, NewCst); 3116 3117 // Replace ICI (which is used by the PHI for the default value) with true or 3118 // false depending on if it is EQ or NE. 3119 ICI->replaceAllUsesWith(DefaultCst); 3120 ICI->eraseFromParent(); 3121 3122 // Okay, the switch goes to this block on a default value. Add an edge from 3123 // the switch to the merge point on the compared value. 3124 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 3125 BB->getParent(), BB); 3126 SmallVector<uint64_t, 8> Weights; 3127 bool HasWeights = HasBranchWeights(SI); 3128 if (HasWeights) { 3129 GetBranchWeights(SI, Weights); 3130 if (Weights.size() == 1 + SI->getNumCases()) { 3131 // Split weight for default case to case for "Cst". 3132 Weights[0] = (Weights[0]+1) >> 1; 3133 Weights.push_back(Weights[0]); 3134 3135 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3136 SI->setMetadata(LLVMContext::MD_prof, 3137 MDBuilder(SI->getContext()). 3138 createBranchWeights(MDWeights)); 3139 } 3140 } 3141 SI->addCase(Cst, NewBB); 3142 3143 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3144 Builder.SetInsertPoint(NewBB); 3145 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3146 Builder.CreateBr(SuccBlock); 3147 PHIUse->addIncoming(NewCst, NewBB); 3148 return true; 3149 } 3150 3151 /// The specified branch is a conditional branch. 3152 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3153 /// fold it into a switch instruction if so. 3154 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3155 const DataLayout &DL) { 3156 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3157 if (!Cond) return false; 3158 3159 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3160 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3161 // 'setne's and'ed together, collect them. 3162 3163 // Try to gather values from a chain of and/or to be turned into a switch 3164 ConstantComparesGatherer ConstantCompare(Cond, DL); 3165 // Unpack the result 3166 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals; 3167 Value *CompVal = ConstantCompare.CompValue; 3168 unsigned UsedICmps = ConstantCompare.UsedICmps; 3169 Value *ExtraCase = ConstantCompare.Extra; 3170 3171 // If we didn't have a multiply compared value, fail. 3172 if (!CompVal) return false; 3173 3174 // Avoid turning single icmps into a switch. 3175 if (UsedICmps <= 1) 3176 return false; 3177 3178 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3179 3180 // There might be duplicate constants in the list, which the switch 3181 // instruction can't handle, remove them now. 3182 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3183 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3184 3185 // If Extra was used, we require at least two switch values to do the 3186 // transformation. A switch with one value is just a conditional branch. 3187 if (ExtraCase && Values.size() < 2) return false; 3188 3189 // TODO: Preserve branch weight metadata, similarly to how 3190 // FoldValueComparisonIntoPredecessors preserves it. 3191 3192 // Figure out which block is which destination. 3193 BasicBlock *DefaultBB = BI->getSuccessor(1); 3194 BasicBlock *EdgeBB = BI->getSuccessor(0); 3195 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 3196 3197 BasicBlock *BB = BI->getParent(); 3198 3199 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3200 << " cases into SWITCH. BB is:\n" << *BB); 3201 3202 // If there are any extra values that couldn't be folded into the switch 3203 // then we evaluate them with an explicit branch first. Split the block 3204 // right before the condbr to handle it. 3205 if (ExtraCase) { 3206 BasicBlock *NewBB = 3207 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3208 // Remove the uncond branch added to the old block. 3209 TerminatorInst *OldTI = BB->getTerminator(); 3210 Builder.SetInsertPoint(OldTI); 3211 3212 if (TrueWhenEqual) 3213 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3214 else 3215 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3216 3217 OldTI->eraseFromParent(); 3218 3219 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3220 // for the edge we just added. 3221 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3222 3223 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3224 << "\nEXTRABB = " << *BB); 3225 BB = NewBB; 3226 } 3227 3228 Builder.SetInsertPoint(BI); 3229 // Convert pointer to int before we switch. 3230 if (CompVal->getType()->isPointerTy()) { 3231 CompVal = Builder.CreatePtrToInt( 3232 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3233 } 3234 3235 // Create the new switch instruction now. 3236 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3237 3238 // Add all of the 'cases' to the switch instruction. 3239 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3240 New->addCase(Values[i], EdgeBB); 3241 3242 // We added edges from PI to the EdgeBB. As such, if there were any 3243 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3244 // the number of edges added. 3245 for (BasicBlock::iterator BBI = EdgeBB->begin(); 3246 isa<PHINode>(BBI); ++BBI) { 3247 PHINode *PN = cast<PHINode>(BBI); 3248 Value *InVal = PN->getIncomingValueForBlock(BB); 3249 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 3250 PN->addIncoming(InVal, BB); 3251 } 3252 3253 // Erase the old branch instruction. 3254 EraseTerminatorInstAndDCECond(BI); 3255 3256 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3257 return true; 3258 } 3259 3260 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3261 if (isa<PHINode>(RI->getValue())) 3262 return SimplifyCommonResume(RI); 3263 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3264 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3265 // The resume must unwind the exception that caused control to branch here. 3266 return SimplifySingleResume(RI); 3267 3268 return false; 3269 } 3270 3271 // Simplify resume that is shared by several landing pads (phi of landing pad). 3272 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3273 BasicBlock *BB = RI->getParent(); 3274 3275 // Check that there are no other instructions except for debug intrinsics 3276 // between the phi of landing pads (RI->getValue()) and resume instruction. 3277 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3278 E = RI->getIterator(); 3279 while (++I != E) 3280 if (!isa<DbgInfoIntrinsic>(I)) 3281 return false; 3282 3283 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3284 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3285 3286 // Check incoming blocks to see if any of them are trivial. 3287 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); 3288 Idx != End; Idx++) { 3289 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3290 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3291 3292 // If the block has other successors, we can not delete it because 3293 // it has other dependents. 3294 if (IncomingBB->getUniqueSuccessor() != BB) 3295 continue; 3296 3297 auto *LandingPad = 3298 dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3299 // Not the landing pad that caused the control to branch here. 3300 if (IncomingValue != LandingPad) 3301 continue; 3302 3303 bool isTrivial = true; 3304 3305 I = IncomingBB->getFirstNonPHI()->getIterator(); 3306 E = IncomingBB->getTerminator()->getIterator(); 3307 while (++I != E) 3308 if (!isa<DbgInfoIntrinsic>(I)) { 3309 isTrivial = false; 3310 break; 3311 } 3312 3313 if (isTrivial) 3314 TrivialUnwindBlocks.insert(IncomingBB); 3315 } 3316 3317 // If no trivial unwind blocks, don't do any simplifications. 3318 if (TrivialUnwindBlocks.empty()) return false; 3319 3320 // Turn all invokes that unwind here into calls. 3321 for (auto *TrivialBB : TrivialUnwindBlocks) { 3322 // Blocks that will be simplified should be removed from the phi node. 3323 // Note there could be multiple edges to the resume block, and we need 3324 // to remove them all. 3325 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3326 BB->removePredecessor(TrivialBB, true); 3327 3328 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3329 PI != PE;) { 3330 BasicBlock *Pred = *PI++; 3331 removeUnwindEdge(Pred); 3332 } 3333 3334 // In each SimplifyCFG run, only the current processed block can be erased. 3335 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3336 // of erasing TrivialBB, we only remove the branch to the common resume 3337 // block so that we can later erase the resume block since it has no 3338 // predecessors. 3339 TrivialBB->getTerminator()->eraseFromParent(); 3340 new UnreachableInst(RI->getContext(), TrivialBB); 3341 } 3342 3343 // Delete the resume block if all its predecessors have been removed. 3344 if (pred_empty(BB)) 3345 BB->eraseFromParent(); 3346 3347 return !TrivialUnwindBlocks.empty(); 3348 } 3349 3350 // Simplify resume that is only used by a single (non-phi) landing pad. 3351 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3352 BasicBlock *BB = RI->getParent(); 3353 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3354 assert (RI->getValue() == LPInst && 3355 "Resume must unwind the exception that caused control to here"); 3356 3357 // Check that there are no other instructions except for debug intrinsics. 3358 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3359 while (++I != E) 3360 if (!isa<DbgInfoIntrinsic>(I)) 3361 return false; 3362 3363 // Turn all invokes that unwind here into calls and delete the basic block. 3364 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3365 BasicBlock *Pred = *PI++; 3366 removeUnwindEdge(Pred); 3367 } 3368 3369 // The landingpad is now unreachable. Zap it. 3370 BB->eraseFromParent(); 3371 return true; 3372 } 3373 3374 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3375 // If this is a trivial cleanup pad that executes no instructions, it can be 3376 // eliminated. If the cleanup pad continues to the caller, any predecessor 3377 // that is an EH pad will be updated to continue to the caller and any 3378 // predecessor that terminates with an invoke instruction will have its invoke 3379 // instruction converted to a call instruction. If the cleanup pad being 3380 // simplified does not continue to the caller, each predecessor will be 3381 // updated to continue to the unwind destination of the cleanup pad being 3382 // simplified. 3383 BasicBlock *BB = RI->getParent(); 3384 CleanupPadInst *CPInst = RI->getCleanupPad(); 3385 if (CPInst->getParent() != BB) 3386 // This isn't an empty cleanup. 3387 return false; 3388 3389 // Check that there are no other instructions except for debug intrinsics. 3390 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3391 while (++I != E) 3392 if (!isa<DbgInfoIntrinsic>(I)) 3393 return false; 3394 3395 // If the cleanup return we are simplifying unwinds to the caller, this will 3396 // set UnwindDest to nullptr. 3397 BasicBlock *UnwindDest = RI->getUnwindDest(); 3398 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3399 3400 // We're about to remove BB from the control flow. Before we do, sink any 3401 // PHINodes into the unwind destination. Doing this before changing the 3402 // control flow avoids some potentially slow checks, since we can currently 3403 // be certain that UnwindDest and BB have no common predecessors (since they 3404 // are both EH pads). 3405 if (UnwindDest) { 3406 // First, go through the PHI nodes in UnwindDest and update any nodes that 3407 // reference the block we are removing 3408 for (BasicBlock::iterator I = UnwindDest->begin(), 3409 IE = DestEHPad->getIterator(); 3410 I != IE; ++I) { 3411 PHINode *DestPN = cast<PHINode>(I); 3412 3413 int Idx = DestPN->getBasicBlockIndex(BB); 3414 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3415 assert(Idx != -1); 3416 // This PHI node has an incoming value that corresponds to a control 3417 // path through the cleanup pad we are removing. If the incoming 3418 // value is in the cleanup pad, it must be a PHINode (because we 3419 // verified above that the block is otherwise empty). Otherwise, the 3420 // value is either a constant or a value that dominates the cleanup 3421 // pad being removed. 3422 // 3423 // Because BB and UnwindDest are both EH pads, all of their 3424 // predecessors must unwind to these blocks, and since no instruction 3425 // can have multiple unwind destinations, there will be no overlap in 3426 // incoming blocks between SrcPN and DestPN. 3427 Value *SrcVal = DestPN->getIncomingValue(Idx); 3428 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3429 3430 // Remove the entry for the block we are deleting. 3431 DestPN->removeIncomingValue(Idx, false); 3432 3433 if (SrcPN && SrcPN->getParent() == BB) { 3434 // If the incoming value was a PHI node in the cleanup pad we are 3435 // removing, we need to merge that PHI node's incoming values into 3436 // DestPN. 3437 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3438 SrcIdx != SrcE; ++SrcIdx) { 3439 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3440 SrcPN->getIncomingBlock(SrcIdx)); 3441 } 3442 } else { 3443 // Otherwise, the incoming value came from above BB and 3444 // so we can just reuse it. We must associate all of BB's 3445 // predecessors with this value. 3446 for (auto *pred : predecessors(BB)) { 3447 DestPN->addIncoming(SrcVal, pred); 3448 } 3449 } 3450 } 3451 3452 // Sink any remaining PHI nodes directly into UnwindDest. 3453 Instruction *InsertPt = DestEHPad; 3454 for (BasicBlock::iterator I = BB->begin(), 3455 IE = BB->getFirstNonPHI()->getIterator(); 3456 I != IE;) { 3457 // The iterator must be incremented here because the instructions are 3458 // being moved to another block. 3459 PHINode *PN = cast<PHINode>(I++); 3460 if (PN->use_empty()) 3461 // If the PHI node has no uses, just leave it. It will be erased 3462 // when we erase BB below. 3463 continue; 3464 3465 // Otherwise, sink this PHI node into UnwindDest. 3466 // Any predecessors to UnwindDest which are not already represented 3467 // must be back edges which inherit the value from the path through 3468 // BB. In this case, the PHI value must reference itself. 3469 for (auto *pred : predecessors(UnwindDest)) 3470 if (pred != BB) 3471 PN->addIncoming(PN, pred); 3472 PN->moveBefore(InsertPt); 3473 } 3474 } 3475 3476 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3477 // The iterator must be updated here because we are removing this pred. 3478 BasicBlock *PredBB = *PI++; 3479 if (UnwindDest == nullptr) { 3480 removeUnwindEdge(PredBB); 3481 } else { 3482 TerminatorInst *TI = PredBB->getTerminator(); 3483 TI->replaceUsesOfWith(BB, UnwindDest); 3484 } 3485 } 3486 3487 // The cleanup pad is now unreachable. Zap it. 3488 BB->eraseFromParent(); 3489 return true; 3490 } 3491 3492 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3493 BasicBlock *BB = RI->getParent(); 3494 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 3495 3496 // Find predecessors that end with branches. 3497 SmallVector<BasicBlock*, 8> UncondBranchPreds; 3498 SmallVector<BranchInst*, 8> CondBranchPreds; 3499 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3500 BasicBlock *P = *PI; 3501 TerminatorInst *PTI = P->getTerminator(); 3502 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3503 if (BI->isUnconditional()) 3504 UncondBranchPreds.push_back(P); 3505 else 3506 CondBranchPreds.push_back(BI); 3507 } 3508 } 3509 3510 // If we found some, do the transformation! 3511 if (!UncondBranchPreds.empty() && DupRet) { 3512 while (!UncondBranchPreds.empty()) { 3513 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3514 DEBUG(dbgs() << "FOLDING: " << *BB 3515 << "INTO UNCOND BRANCH PRED: " << *Pred); 3516 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3517 } 3518 3519 // If we eliminated all predecessors of the block, delete the block now. 3520 if (pred_empty(BB)) 3521 // We know there are no successors, so just nuke the block. 3522 BB->eraseFromParent(); 3523 3524 return true; 3525 } 3526 3527 // Check out all of the conditional branches going to this return 3528 // instruction. If any of them just select between returns, change the 3529 // branch itself into a select/return pair. 3530 while (!CondBranchPreds.empty()) { 3531 BranchInst *BI = CondBranchPreds.pop_back_val(); 3532 3533 // Check to see if the non-BB successor is also a return block. 3534 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3535 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3536 SimplifyCondBranchToTwoReturns(BI, Builder)) 3537 return true; 3538 } 3539 return false; 3540 } 3541 3542 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3543 BasicBlock *BB = UI->getParent(); 3544 3545 bool Changed = false; 3546 3547 // If there are any instructions immediately before the unreachable that can 3548 // be removed, do so. 3549 while (UI->getIterator() != BB->begin()) { 3550 BasicBlock::iterator BBI = UI->getIterator(); 3551 --BBI; 3552 // Do not delete instructions that can have side effects which might cause 3553 // the unreachable to not be reachable; specifically, calls and volatile 3554 // operations may have this effect. 3555 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3556 3557 if (BBI->mayHaveSideEffects()) { 3558 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3559 if (SI->isVolatile()) 3560 break; 3561 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3562 if (LI->isVolatile()) 3563 break; 3564 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3565 if (RMWI->isVolatile()) 3566 break; 3567 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3568 if (CXI->isVolatile()) 3569 break; 3570 } else if (isa<CatchPadInst>(BBI)) { 3571 // A catchpad may invoke exception object constructors and such, which 3572 // in some languages can be arbitrary code, so be conservative by 3573 // default. 3574 // For CoreCLR, it just involves a type test, so can be removed. 3575 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3576 EHPersonality::CoreCLR) 3577 break; 3578 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3579 !isa<LandingPadInst>(BBI)) { 3580 break; 3581 } 3582 // Note that deleting LandingPad's here is in fact okay, although it 3583 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3584 // all the predecessors of this block will be the unwind edges of Invokes, 3585 // and we can therefore guarantee this block will be erased. 3586 } 3587 3588 // Delete this instruction (any uses are guaranteed to be dead) 3589 if (!BBI->use_empty()) 3590 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3591 BBI->eraseFromParent(); 3592 Changed = true; 3593 } 3594 3595 // If the unreachable instruction is the first in the block, take a gander 3596 // at all of the predecessors of this instruction, and simplify them. 3597 if (&BB->front() != UI) return Changed; 3598 3599 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3600 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3601 TerminatorInst *TI = Preds[i]->getTerminator(); 3602 IRBuilder<> Builder(TI); 3603 if (auto *BI = dyn_cast<BranchInst>(TI)) { 3604 if (BI->isUnconditional()) { 3605 if (BI->getSuccessor(0) == BB) { 3606 new UnreachableInst(TI->getContext(), TI); 3607 TI->eraseFromParent(); 3608 Changed = true; 3609 } 3610 } else { 3611 if (BI->getSuccessor(0) == BB) { 3612 Builder.CreateBr(BI->getSuccessor(1)); 3613 EraseTerminatorInstAndDCECond(BI); 3614 } else if (BI->getSuccessor(1) == BB) { 3615 Builder.CreateBr(BI->getSuccessor(0)); 3616 EraseTerminatorInstAndDCECond(BI); 3617 Changed = true; 3618 } 3619 } 3620 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 3621 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3622 i != e; ++i) 3623 if (i.getCaseSuccessor() == BB) { 3624 BB->removePredecessor(SI->getParent()); 3625 SI->removeCase(i); 3626 --i; --e; 3627 Changed = true; 3628 } 3629 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 3630 if (II->getUnwindDest() == BB) { 3631 removeUnwindEdge(TI->getParent()); 3632 Changed = true; 3633 } 3634 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3635 if (CSI->getUnwindDest() == BB) { 3636 removeUnwindEdge(TI->getParent()); 3637 Changed = true; 3638 continue; 3639 } 3640 3641 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 3642 E = CSI->handler_end(); 3643 I != E; ++I) { 3644 if (*I == BB) { 3645 CSI->removeHandler(I); 3646 --I; 3647 --E; 3648 Changed = true; 3649 } 3650 } 3651 if (CSI->getNumHandlers() == 0) { 3652 BasicBlock *CatchSwitchBB = CSI->getParent(); 3653 if (CSI->hasUnwindDest()) { 3654 // Redirect preds to the unwind dest 3655 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 3656 } else { 3657 // Rewrite all preds to unwind to caller (or from invoke to call). 3658 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 3659 for (BasicBlock *EHPred : EHPreds) 3660 removeUnwindEdge(EHPred); 3661 } 3662 // The catchswitch is no longer reachable. 3663 new UnreachableInst(CSI->getContext(), CSI); 3664 CSI->eraseFromParent(); 3665 Changed = true; 3666 } 3667 } else if (isa<CleanupReturnInst>(TI)) { 3668 new UnreachableInst(TI->getContext(), TI); 3669 TI->eraseFromParent(); 3670 Changed = true; 3671 } 3672 } 3673 3674 // If this block is now dead, remove it. 3675 if (pred_empty(BB) && 3676 BB != &BB->getParent()->getEntryBlock()) { 3677 // We know there are no successors, so just nuke the block. 3678 BB->eraseFromParent(); 3679 return true; 3680 } 3681 3682 return Changed; 3683 } 3684 3685 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3686 assert(Cases.size() >= 1); 3687 3688 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3689 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3690 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3691 return false; 3692 } 3693 return true; 3694 } 3695 3696 /// Turn a switch with two reachable destinations into an integer range 3697 /// comparison and branch. 3698 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3699 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3700 3701 bool HasDefault = 3702 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3703 3704 // Partition the cases into two sets with different destinations. 3705 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3706 BasicBlock *DestB = nullptr; 3707 SmallVector <ConstantInt *, 16> CasesA; 3708 SmallVector <ConstantInt *, 16> CasesB; 3709 3710 for (SwitchInst::CaseIt I : SI->cases()) { 3711 BasicBlock *Dest = I.getCaseSuccessor(); 3712 if (!DestA) DestA = Dest; 3713 if (Dest == DestA) { 3714 CasesA.push_back(I.getCaseValue()); 3715 continue; 3716 } 3717 if (!DestB) DestB = Dest; 3718 if (Dest == DestB) { 3719 CasesB.push_back(I.getCaseValue()); 3720 continue; 3721 } 3722 return false; // More than two destinations. 3723 } 3724 3725 assert(DestA && DestB && "Single-destination switch should have been folded."); 3726 assert(DestA != DestB); 3727 assert(DestB != SI->getDefaultDest()); 3728 assert(!CasesB.empty() && "There must be non-default cases."); 3729 assert(!CasesA.empty() || HasDefault); 3730 3731 // Figure out if one of the sets of cases form a contiguous range. 3732 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3733 BasicBlock *ContiguousDest = nullptr; 3734 BasicBlock *OtherDest = nullptr; 3735 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3736 ContiguousCases = &CasesA; 3737 ContiguousDest = DestA; 3738 OtherDest = DestB; 3739 } else if (CasesAreContiguous(CasesB)) { 3740 ContiguousCases = &CasesB; 3741 ContiguousDest = DestB; 3742 OtherDest = DestA; 3743 } else 3744 return false; 3745 3746 // Start building the compare and branch. 3747 3748 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3749 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3750 3751 Value *Sub = SI->getCondition(); 3752 if (!Offset->isNullValue()) 3753 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3754 3755 Value *Cmp; 3756 // If NumCases overflowed, then all possible values jump to the successor. 3757 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3758 Cmp = ConstantInt::getTrue(SI->getContext()); 3759 else 3760 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3761 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3762 3763 // Update weight for the newly-created conditional branch. 3764 if (HasBranchWeights(SI)) { 3765 SmallVector<uint64_t, 8> Weights; 3766 GetBranchWeights(SI, Weights); 3767 if (Weights.size() == 1 + SI->getNumCases()) { 3768 uint64_t TrueWeight = 0; 3769 uint64_t FalseWeight = 0; 3770 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3771 if (SI->getSuccessor(I) == ContiguousDest) 3772 TrueWeight += Weights[I]; 3773 else 3774 FalseWeight += Weights[I]; 3775 } 3776 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3777 TrueWeight /= 2; 3778 FalseWeight /= 2; 3779 } 3780 NewBI->setMetadata(LLVMContext::MD_prof, 3781 MDBuilder(SI->getContext()).createBranchWeights( 3782 (uint32_t)TrueWeight, (uint32_t)FalseWeight)); 3783 } 3784 } 3785 3786 // Prune obsolete incoming values off the successors' PHI nodes. 3787 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3788 unsigned PreviousEdges = ContiguousCases->size(); 3789 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges; 3790 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3791 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3792 } 3793 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3794 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3795 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges; 3796 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3797 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3798 } 3799 3800 // Drop the switch. 3801 SI->eraseFromParent(); 3802 3803 return true; 3804 } 3805 3806 /// Compute masked bits for the condition of a switch 3807 /// and use it to remove dead cases. 3808 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3809 const DataLayout &DL) { 3810 Value *Cond = SI->getCondition(); 3811 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3812 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3813 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3814 3815 // Gather dead cases. 3816 SmallVector<ConstantInt*, 8> DeadCases; 3817 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3818 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3819 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3820 DeadCases.push_back(I.getCaseValue()); 3821 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3822 << I.getCaseValue() << "' is dead.\n"); 3823 } 3824 } 3825 3826 // If we can prove that the cases must cover all possible values, the 3827 // default destination becomes dead and we can remove it. If we know some 3828 // of the bits in the value, we can use that to more precisely compute the 3829 // number of possible unique case values. 3830 bool HasDefault = 3831 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3832 const unsigned NumUnknownBits = Bits - 3833 (KnownZero.Or(KnownOne)).countPopulation(); 3834 assert(NumUnknownBits <= Bits); 3835 if (HasDefault && DeadCases.empty() && 3836 NumUnknownBits < 64 /* avoid overflow */ && 3837 SI->getNumCases() == (1ULL << NumUnknownBits)) { 3838 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 3839 BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(), 3840 SI->getParent(), ""); 3841 SI->setDefaultDest(&*NewDefault); 3842 SplitBlock(&*NewDefault, &NewDefault->front()); 3843 auto *OldTI = NewDefault->getTerminator(); 3844 new UnreachableInst(SI->getContext(), OldTI); 3845 EraseTerminatorInstAndDCECond(OldTI); 3846 return true; 3847 } 3848 3849 SmallVector<uint64_t, 8> Weights; 3850 bool HasWeight = HasBranchWeights(SI); 3851 if (HasWeight) { 3852 GetBranchWeights(SI, Weights); 3853 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3854 } 3855 3856 // Remove dead cases from the switch. 3857 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3858 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3859 assert(Case != SI->case_default() && 3860 "Case was not found. Probably mistake in DeadCases forming."); 3861 if (HasWeight) { 3862 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3863 Weights.pop_back(); 3864 } 3865 3866 // Prune unused values from PHI nodes. 3867 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3868 SI->removeCase(Case); 3869 } 3870 if (HasWeight && Weights.size() >= 2) { 3871 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3872 SI->setMetadata(LLVMContext::MD_prof, 3873 MDBuilder(SI->getParent()->getContext()). 3874 createBranchWeights(MDWeights)); 3875 } 3876 3877 return !DeadCases.empty(); 3878 } 3879 3880 /// If BB would be eligible for simplification by 3881 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3882 /// by an unconditional branch), look at the phi node for BB in the successor 3883 /// block and see if the incoming value is equal to CaseValue. If so, return 3884 /// the phi node, and set PhiIndex to BB's index in the phi node. 3885 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3886 BasicBlock *BB, 3887 int *PhiIndex) { 3888 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3889 return nullptr; // BB must be empty to be a candidate for simplification. 3890 if (!BB->getSinglePredecessor()) 3891 return nullptr; // BB must be dominated by the switch. 3892 3893 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3894 if (!Branch || !Branch->isUnconditional()) 3895 return nullptr; // Terminator must be unconditional branch. 3896 3897 BasicBlock *Succ = Branch->getSuccessor(0); 3898 3899 BasicBlock::iterator I = Succ->begin(); 3900 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3901 int Idx = PHI->getBasicBlockIndex(BB); 3902 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3903 3904 Value *InValue = PHI->getIncomingValue(Idx); 3905 if (InValue != CaseValue) continue; 3906 3907 *PhiIndex = Idx; 3908 return PHI; 3909 } 3910 3911 return nullptr; 3912 } 3913 3914 /// Try to forward the condition of a switch instruction to a phi node 3915 /// dominated by the switch, if that would mean that some of the destination 3916 /// blocks of the switch can be folded away. 3917 /// Returns true if a change is made. 3918 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3919 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3920 ForwardingNodesMap ForwardingNodes; 3921 3922 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3923 ConstantInt *CaseValue = I.getCaseValue(); 3924 BasicBlock *CaseDest = I.getCaseSuccessor(); 3925 3926 int PhiIndex; 3927 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3928 &PhiIndex); 3929 if (!PHI) continue; 3930 3931 ForwardingNodes[PHI].push_back(PhiIndex); 3932 } 3933 3934 bool Changed = false; 3935 3936 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3937 E = ForwardingNodes.end(); I != E; ++I) { 3938 PHINode *Phi = I->first; 3939 SmallVectorImpl<int> &Indexes = I->second; 3940 3941 if (Indexes.size() < 2) continue; 3942 3943 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3944 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3945 Changed = true; 3946 } 3947 3948 return Changed; 3949 } 3950 3951 /// Return true if the backend will be able to handle 3952 /// initializing an array of constants like C. 3953 static bool ValidLookupTableConstant(Constant *C) { 3954 if (C->isThreadDependent()) 3955 return false; 3956 if (C->isDLLImportDependent()) 3957 return false; 3958 3959 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3960 return CE->isGEPWithNoNotionalOverIndexing(); 3961 3962 return isa<ConstantFP>(C) || 3963 isa<ConstantInt>(C) || 3964 isa<ConstantPointerNull>(C) || 3965 isa<GlobalValue>(C) || 3966 isa<UndefValue>(C); 3967 } 3968 3969 /// If V is a Constant, return it. Otherwise, try to look up 3970 /// its constant value in ConstantPool, returning 0 if it's not there. 3971 static Constant *LookupConstant(Value *V, 3972 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3973 if (Constant *C = dyn_cast<Constant>(V)) 3974 return C; 3975 return ConstantPool.lookup(V); 3976 } 3977 3978 /// Try to fold instruction I into a constant. This works for 3979 /// simple instructions such as binary operations where both operands are 3980 /// constant or can be replaced by constants from the ConstantPool. Returns the 3981 /// resulting constant on success, 0 otherwise. 3982 static Constant * 3983 ConstantFold(Instruction *I, const DataLayout &DL, 3984 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 3985 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3986 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3987 if (!A) 3988 return nullptr; 3989 if (A->isAllOnesValue()) 3990 return LookupConstant(Select->getTrueValue(), ConstantPool); 3991 if (A->isNullValue()) 3992 return LookupConstant(Select->getFalseValue(), ConstantPool); 3993 return nullptr; 3994 } 3995 3996 SmallVector<Constant *, 4> COps; 3997 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3998 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3999 COps.push_back(A); 4000 else 4001 return nullptr; 4002 } 4003 4004 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4005 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4006 COps[1], DL); 4007 } 4008 4009 return ConstantFoldInstOperands(I, COps, DL); 4010 } 4011 4012 /// Try to determine the resulting constant values in phi nodes 4013 /// at the common destination basic block, *CommonDest, for one of the case 4014 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4015 /// case), of a switch instruction SI. 4016 static bool 4017 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4018 BasicBlock **CommonDest, 4019 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4020 const DataLayout &DL) { 4021 // The block from which we enter the common destination. 4022 BasicBlock *Pred = SI->getParent(); 4023 4024 // If CaseDest is empty except for some side-effect free instructions through 4025 // which we can constant-propagate the CaseVal, continue to its successor. 4026 SmallDenseMap<Value*, Constant*> ConstantPool; 4027 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4028 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4029 ++I) { 4030 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4031 // If the terminator is a simple branch, continue to the next block. 4032 if (T->getNumSuccessors() != 1) 4033 return false; 4034 Pred = CaseDest; 4035 CaseDest = T->getSuccessor(0); 4036 } else if (isa<DbgInfoIntrinsic>(I)) { 4037 // Skip debug intrinsic. 4038 continue; 4039 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4040 // Instruction is side-effect free and constant. 4041 4042 // If the instruction has uses outside this block or a phi node slot for 4043 // the block, it is not safe to bypass the instruction since it would then 4044 // no longer dominate all its uses. 4045 for (auto &Use : I->uses()) { 4046 User *User = Use.getUser(); 4047 if (Instruction *I = dyn_cast<Instruction>(User)) 4048 if (I->getParent() == CaseDest) 4049 continue; 4050 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4051 if (Phi->getIncomingBlock(Use) == CaseDest) 4052 continue; 4053 return false; 4054 } 4055 4056 ConstantPool.insert(std::make_pair(&*I, C)); 4057 } else { 4058 break; 4059 } 4060 } 4061 4062 // If we did not have a CommonDest before, use the current one. 4063 if (!*CommonDest) 4064 *CommonDest = CaseDest; 4065 // If the destination isn't the common one, abort. 4066 if (CaseDest != *CommonDest) 4067 return false; 4068 4069 // Get the values for this case from phi nodes in the destination block. 4070 BasicBlock::iterator I = (*CommonDest)->begin(); 4071 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4072 int Idx = PHI->getBasicBlockIndex(Pred); 4073 if (Idx == -1) 4074 continue; 4075 4076 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 4077 ConstantPool); 4078 if (!ConstVal) 4079 return false; 4080 4081 // Be conservative about which kinds of constants we support. 4082 if (!ValidLookupTableConstant(ConstVal)) 4083 return false; 4084 4085 Res.push_back(std::make_pair(PHI, ConstVal)); 4086 } 4087 4088 return Res.size() > 0; 4089 } 4090 4091 // Helper function used to add CaseVal to the list of cases that generate 4092 // Result. 4093 static void MapCaseToResult(ConstantInt *CaseVal, 4094 SwitchCaseResultVectorTy &UniqueResults, 4095 Constant *Result) { 4096 for (auto &I : UniqueResults) { 4097 if (I.first == Result) { 4098 I.second.push_back(CaseVal); 4099 return; 4100 } 4101 } 4102 UniqueResults.push_back(std::make_pair(Result, 4103 SmallVector<ConstantInt*, 4>(1, CaseVal))); 4104 } 4105 4106 // Helper function that initializes a map containing 4107 // results for the PHI node of the common destination block for a switch 4108 // instruction. Returns false if multiple PHI nodes have been found or if 4109 // there is not a common destination block for the switch. 4110 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4111 BasicBlock *&CommonDest, 4112 SwitchCaseResultVectorTy &UniqueResults, 4113 Constant *&DefaultResult, 4114 const DataLayout &DL) { 4115 for (auto &I : SI->cases()) { 4116 ConstantInt *CaseVal = I.getCaseValue(); 4117 4118 // Resulting value at phi nodes for this case value. 4119 SwitchCaseResultsTy Results; 4120 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4121 DL)) 4122 return false; 4123 4124 // Only one value per case is permitted 4125 if (Results.size() > 1) 4126 return false; 4127 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4128 4129 // Check the PHI consistency. 4130 if (!PHI) 4131 PHI = Results[0].first; 4132 else if (PHI != Results[0].first) 4133 return false; 4134 } 4135 // Find the default result value. 4136 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4137 BasicBlock *DefaultDest = SI->getDefaultDest(); 4138 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4139 DL); 4140 // If the default value is not found abort unless the default destination 4141 // is unreachable. 4142 DefaultResult = 4143 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4144 if ((!DefaultResult && 4145 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4146 return false; 4147 4148 return true; 4149 } 4150 4151 // Helper function that checks if it is possible to transform a switch with only 4152 // two cases (or two cases + default) that produces a result into a select. 4153 // Example: 4154 // switch (a) { 4155 // case 10: %0 = icmp eq i32 %a, 10 4156 // return 10; %1 = select i1 %0, i32 10, i32 4 4157 // case 20: ----> %2 = icmp eq i32 %a, 20 4158 // return 2; %3 = select i1 %2, i32 2, i32 %1 4159 // default: 4160 // return 4; 4161 // } 4162 static Value * 4163 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4164 Constant *DefaultResult, Value *Condition, 4165 IRBuilder<> &Builder) { 4166 assert(ResultVector.size() == 2 && 4167 "We should have exactly two unique results at this point"); 4168 // If we are selecting between only two cases transform into a simple 4169 // select or a two-way select if default is possible. 4170 if (ResultVector[0].second.size() == 1 && 4171 ResultVector[1].second.size() == 1) { 4172 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4173 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4174 4175 bool DefaultCanTrigger = DefaultResult; 4176 Value *SelectValue = ResultVector[1].first; 4177 if (DefaultCanTrigger) { 4178 Value *const ValueCompare = 4179 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4180 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4181 DefaultResult, "switch.select"); 4182 } 4183 Value *const ValueCompare = 4184 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4185 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 4186 "switch.select"); 4187 } 4188 4189 return nullptr; 4190 } 4191 4192 // Helper function to cleanup a switch instruction that has been converted into 4193 // a select, fixing up PHI nodes and basic blocks. 4194 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4195 Value *SelectValue, 4196 IRBuilder<> &Builder) { 4197 BasicBlock *SelectBB = SI->getParent(); 4198 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4199 PHI->removeIncomingValue(SelectBB); 4200 PHI->addIncoming(SelectValue, SelectBB); 4201 4202 Builder.CreateBr(PHI->getParent()); 4203 4204 // Remove the switch. 4205 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4206 BasicBlock *Succ = SI->getSuccessor(i); 4207 4208 if (Succ == PHI->getParent()) 4209 continue; 4210 Succ->removePredecessor(SelectBB); 4211 } 4212 SI->eraseFromParent(); 4213 } 4214 4215 /// If the switch is only used to initialize one or more 4216 /// phi nodes in a common successor block with only two different 4217 /// constant values, replace the switch with select. 4218 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4219 AssumptionCache *AC, const DataLayout &DL) { 4220 Value *const Cond = SI->getCondition(); 4221 PHINode *PHI = nullptr; 4222 BasicBlock *CommonDest = nullptr; 4223 Constant *DefaultResult; 4224 SwitchCaseResultVectorTy UniqueResults; 4225 // Collect all the cases that will deliver the same value from the switch. 4226 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4227 DL)) 4228 return false; 4229 // Selects choose between maximum two values. 4230 if (UniqueResults.size() != 2) 4231 return false; 4232 assert(PHI != nullptr && "PHI for value select not found"); 4233 4234 Builder.SetInsertPoint(SI); 4235 Value *SelectValue = ConvertTwoCaseSwitch( 4236 UniqueResults, 4237 DefaultResult, Cond, Builder); 4238 if (SelectValue) { 4239 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4240 return true; 4241 } 4242 // The switch couldn't be converted into a select. 4243 return false; 4244 } 4245 4246 namespace { 4247 /// This class represents a lookup table that can be used to replace a switch. 4248 class SwitchLookupTable { 4249 public: 4250 /// Create a lookup table to use as a switch replacement with the contents 4251 /// of Values, using DefaultValue to fill any holes in the table. 4252 SwitchLookupTable( 4253 Module &M, uint64_t TableSize, ConstantInt *Offset, 4254 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4255 Constant *DefaultValue, const DataLayout &DL); 4256 4257 /// Build instructions with Builder to retrieve the value at 4258 /// the position given by Index in the lookup table. 4259 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4260 4261 /// Return true if a table with TableSize elements of 4262 /// type ElementType would fit in a target-legal register. 4263 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4264 Type *ElementType); 4265 4266 private: 4267 // Depending on the contents of the table, it can be represented in 4268 // different ways. 4269 enum { 4270 // For tables where each element contains the same value, we just have to 4271 // store that single value and return it for each lookup. 4272 SingleValueKind, 4273 4274 // For tables where there is a linear relationship between table index 4275 // and values. We calculate the result with a simple multiplication 4276 // and addition instead of a table lookup. 4277 LinearMapKind, 4278 4279 // For small tables with integer elements, we can pack them into a bitmap 4280 // that fits into a target-legal register. Values are retrieved by 4281 // shift and mask operations. 4282 BitMapKind, 4283 4284 // The table is stored as an array of values. Values are retrieved by load 4285 // instructions from the table. 4286 ArrayKind 4287 } Kind; 4288 4289 // For SingleValueKind, this is the single value. 4290 Constant *SingleValue; 4291 4292 // For BitMapKind, this is the bitmap. 4293 ConstantInt *BitMap; 4294 IntegerType *BitMapElementTy; 4295 4296 // For LinearMapKind, these are the constants used to derive the value. 4297 ConstantInt *LinearOffset; 4298 ConstantInt *LinearMultiplier; 4299 4300 // For ArrayKind, this is the array. 4301 GlobalVariable *Array; 4302 }; 4303 } 4304 4305 SwitchLookupTable::SwitchLookupTable( 4306 Module &M, uint64_t TableSize, ConstantInt *Offset, 4307 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4308 Constant *DefaultValue, const DataLayout &DL) 4309 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4310 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4311 assert(Values.size() && "Can't build lookup table without values!"); 4312 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4313 4314 // If all values in the table are equal, this is that value. 4315 SingleValue = Values.begin()->second; 4316 4317 Type *ValueType = Values.begin()->second->getType(); 4318 4319 // Build up the table contents. 4320 SmallVector<Constant*, 64> TableContents(TableSize); 4321 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4322 ConstantInt *CaseVal = Values[I].first; 4323 Constant *CaseRes = Values[I].second; 4324 assert(CaseRes->getType() == ValueType); 4325 4326 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 4327 .getLimitedValue(); 4328 TableContents[Idx] = CaseRes; 4329 4330 if (CaseRes != SingleValue) 4331 SingleValue = nullptr; 4332 } 4333 4334 // Fill in any holes in the table with the default result. 4335 if (Values.size() < TableSize) { 4336 assert(DefaultValue && 4337 "Need a default value to fill the lookup table holes."); 4338 assert(DefaultValue->getType() == ValueType); 4339 for (uint64_t I = 0; I < TableSize; ++I) { 4340 if (!TableContents[I]) 4341 TableContents[I] = DefaultValue; 4342 } 4343 4344 if (DefaultValue != SingleValue) 4345 SingleValue = nullptr; 4346 } 4347 4348 // If each element in the table contains the same value, we only need to store 4349 // that single value. 4350 if (SingleValue) { 4351 Kind = SingleValueKind; 4352 return; 4353 } 4354 4355 // Check if we can derive the value with a linear transformation from the 4356 // table index. 4357 if (isa<IntegerType>(ValueType)) { 4358 bool LinearMappingPossible = true; 4359 APInt PrevVal; 4360 APInt DistToPrev; 4361 assert(TableSize >= 2 && "Should be a SingleValue table."); 4362 // Check if there is the same distance between two consecutive values. 4363 for (uint64_t I = 0; I < TableSize; ++I) { 4364 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4365 if (!ConstVal) { 4366 // This is an undef. We could deal with it, but undefs in lookup tables 4367 // are very seldom. It's probably not worth the additional complexity. 4368 LinearMappingPossible = false; 4369 break; 4370 } 4371 APInt Val = ConstVal->getValue(); 4372 if (I != 0) { 4373 APInt Dist = Val - PrevVal; 4374 if (I == 1) { 4375 DistToPrev = Dist; 4376 } else if (Dist != DistToPrev) { 4377 LinearMappingPossible = false; 4378 break; 4379 } 4380 } 4381 PrevVal = Val; 4382 } 4383 if (LinearMappingPossible) { 4384 LinearOffset = cast<ConstantInt>(TableContents[0]); 4385 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4386 Kind = LinearMapKind; 4387 ++NumLinearMaps; 4388 return; 4389 } 4390 } 4391 4392 // If the type is integer and the table fits in a register, build a bitmap. 4393 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4394 IntegerType *IT = cast<IntegerType>(ValueType); 4395 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4396 for (uint64_t I = TableSize; I > 0; --I) { 4397 TableInt <<= IT->getBitWidth(); 4398 // Insert values into the bitmap. Undef values are set to zero. 4399 if (!isa<UndefValue>(TableContents[I - 1])) { 4400 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4401 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4402 } 4403 } 4404 BitMap = ConstantInt::get(M.getContext(), TableInt); 4405 BitMapElementTy = IT; 4406 Kind = BitMapKind; 4407 ++NumBitMaps; 4408 return; 4409 } 4410 4411 // Store the table in an array. 4412 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4413 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4414 4415 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 4416 GlobalVariable::PrivateLinkage, 4417 Initializer, 4418 "switch.table"); 4419 Array->setUnnamedAddr(true); 4420 Kind = ArrayKind; 4421 } 4422 4423 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4424 switch (Kind) { 4425 case SingleValueKind: 4426 return SingleValue; 4427 case LinearMapKind: { 4428 // Derive the result value from the input value. 4429 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4430 false, "switch.idx.cast"); 4431 if (!LinearMultiplier->isOne()) 4432 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4433 if (!LinearOffset->isZero()) 4434 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4435 return Result; 4436 } 4437 case BitMapKind: { 4438 // Type of the bitmap (e.g. i59). 4439 IntegerType *MapTy = BitMap->getType(); 4440 4441 // Cast Index to the same type as the bitmap. 4442 // Note: The Index is <= the number of elements in the table, so 4443 // truncating it to the width of the bitmask is safe. 4444 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4445 4446 // Multiply the shift amount by the element width. 4447 ShiftAmt = Builder.CreateMul(ShiftAmt, 4448 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4449 "switch.shiftamt"); 4450 4451 // Shift down. 4452 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 4453 "switch.downshift"); 4454 // Mask off. 4455 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 4456 "switch.masked"); 4457 } 4458 case ArrayKind: { 4459 // Make sure the table index will not overflow when treated as signed. 4460 IntegerType *IT = cast<IntegerType>(Index->getType()); 4461 uint64_t TableSize = Array->getInitializer()->getType() 4462 ->getArrayNumElements(); 4463 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4464 Index = Builder.CreateZExt(Index, 4465 IntegerType::get(IT->getContext(), 4466 IT->getBitWidth() + 1), 4467 "switch.tableidx.zext"); 4468 4469 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 4470 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4471 GEPIndices, "switch.gep"); 4472 return Builder.CreateLoad(GEP, "switch.load"); 4473 } 4474 } 4475 llvm_unreachable("Unknown lookup table kind!"); 4476 } 4477 4478 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4479 uint64_t TableSize, 4480 Type *ElementType) { 4481 auto *IT = dyn_cast<IntegerType>(ElementType); 4482 if (!IT) 4483 return false; 4484 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4485 // are <= 15, we could try to narrow the type. 4486 4487 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4488 if (TableSize >= UINT_MAX/IT->getBitWidth()) 4489 return false; 4490 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4491 } 4492 4493 /// Determine whether a lookup table should be built for this switch, based on 4494 /// the number of cases, size of the table, and the types of the results. 4495 static bool 4496 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4497 const TargetTransformInfo &TTI, const DataLayout &DL, 4498 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4499 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4500 return false; // TableSize overflowed, or mul below might overflow. 4501 4502 bool AllTablesFitInRegister = true; 4503 bool HasIllegalType = false; 4504 for (const auto &I : ResultTypes) { 4505 Type *Ty = I.second; 4506 4507 // Saturate this flag to true. 4508 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4509 4510 // Saturate this flag to false. 4511 AllTablesFitInRegister = AllTablesFitInRegister && 4512 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4513 4514 // If both flags saturate, we're done. NOTE: This *only* works with 4515 // saturating flags, and all flags have to saturate first due to the 4516 // non-deterministic behavior of iterating over a dense map. 4517 if (HasIllegalType && !AllTablesFitInRegister) 4518 break; 4519 } 4520 4521 // If each table would fit in a register, we should build it anyway. 4522 if (AllTablesFitInRegister) 4523 return true; 4524 4525 // Don't build a table that doesn't fit in-register if it has illegal types. 4526 if (HasIllegalType) 4527 return false; 4528 4529 // The table density should be at least 40%. This is the same criterion as for 4530 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4531 // FIXME: Find the best cut-off. 4532 return SI->getNumCases() * 10 >= TableSize * 4; 4533 } 4534 4535 /// Try to reuse the switch table index compare. Following pattern: 4536 /// \code 4537 /// if (idx < tablesize) 4538 /// r = table[idx]; // table does not contain default_value 4539 /// else 4540 /// r = default_value; 4541 /// if (r != default_value) 4542 /// ... 4543 /// \endcode 4544 /// Is optimized to: 4545 /// \code 4546 /// cond = idx < tablesize; 4547 /// if (cond) 4548 /// r = table[idx]; 4549 /// else 4550 /// r = default_value; 4551 /// if (cond) 4552 /// ... 4553 /// \endcode 4554 /// Jump threading will then eliminate the second if(cond). 4555 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock, 4556 BranchInst *RangeCheckBranch, Constant *DefaultValue, 4557 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) { 4558 4559 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4560 if (!CmpInst) 4561 return; 4562 4563 // We require that the compare is in the same block as the phi so that jump 4564 // threading can do its work afterwards. 4565 if (CmpInst->getParent() != PhiBlock) 4566 return; 4567 4568 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4569 if (!CmpOp1) 4570 return; 4571 4572 Value *RangeCmp = RangeCheckBranch->getCondition(); 4573 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4574 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4575 4576 // Check if the compare with the default value is constant true or false. 4577 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4578 DefaultValue, CmpOp1, true); 4579 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4580 return; 4581 4582 // Check if the compare with the case values is distinct from the default 4583 // compare result. 4584 for (auto ValuePair : Values) { 4585 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4586 ValuePair.second, CmpOp1, true); 4587 if (!CaseConst || CaseConst == DefaultConst) 4588 return; 4589 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4590 "Expect true or false as compare result."); 4591 } 4592 4593 // Check if the branch instruction dominates the phi node. It's a simple 4594 // dominance check, but sufficient for our needs. 4595 // Although this check is invariant in the calling loops, it's better to do it 4596 // at this late stage. Practically we do it at most once for a switch. 4597 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4598 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4599 BasicBlock *Pred = *PI; 4600 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4601 return; 4602 } 4603 4604 if (DefaultConst == FalseConst) { 4605 // The compare yields the same result. We can replace it. 4606 CmpInst->replaceAllUsesWith(RangeCmp); 4607 ++NumTableCmpReuses; 4608 } else { 4609 // The compare yields the same result, just inverted. We can replace it. 4610 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp, 4611 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4612 RangeCheckBranch); 4613 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4614 ++NumTableCmpReuses; 4615 } 4616 } 4617 4618 /// If the switch is only used to initialize one or more phi nodes in a common 4619 /// successor block with different constant values, replace the switch with 4620 /// lookup tables. 4621 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4622 const DataLayout &DL, 4623 const TargetTransformInfo &TTI) { 4624 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4625 4626 // Only build lookup table when we have a target that supports it. 4627 if (!TTI.shouldBuildLookupTables()) 4628 return false; 4629 4630 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4631 // split off a dense part and build a lookup table for that. 4632 4633 // FIXME: This creates arrays of GEPs to constant strings, which means each 4634 // GEP needs a runtime relocation in PIC code. We should just build one big 4635 // string and lookup indices into that. 4636 4637 // Ignore switches with less than three cases. Lookup tables will not make them 4638 // faster, so we don't analyze them. 4639 if (SI->getNumCases() < 3) 4640 return false; 4641 4642 // Figure out the corresponding result for each case value and phi node in the 4643 // common destination, as well as the min and max case values. 4644 assert(SI->case_begin() != SI->case_end()); 4645 SwitchInst::CaseIt CI = SI->case_begin(); 4646 ConstantInt *MinCaseVal = CI.getCaseValue(); 4647 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4648 4649 BasicBlock *CommonDest = nullptr; 4650 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 4651 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 4652 SmallDenseMap<PHINode*, Constant*> DefaultResults; 4653 SmallDenseMap<PHINode*, Type*> ResultTypes; 4654 SmallVector<PHINode*, 4> PHIs; 4655 4656 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4657 ConstantInt *CaseVal = CI.getCaseValue(); 4658 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4659 MinCaseVal = CaseVal; 4660 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4661 MaxCaseVal = CaseVal; 4662 4663 // Resulting value at phi nodes for this case value. 4664 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 4665 ResultsTy Results; 4666 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4667 Results, DL)) 4668 return false; 4669 4670 // Append the result from this case to the list for each phi. 4671 for (const auto &I : Results) { 4672 PHINode *PHI = I.first; 4673 Constant *Value = I.second; 4674 if (!ResultLists.count(PHI)) 4675 PHIs.push_back(PHI); 4676 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4677 } 4678 } 4679 4680 // Keep track of the result types. 4681 for (PHINode *PHI : PHIs) { 4682 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4683 } 4684 4685 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4686 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4687 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4688 bool TableHasHoles = (NumResults < TableSize); 4689 4690 // If the table has holes, we need a constant result for the default case 4691 // or a bitmask that fits in a register. 4692 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 4693 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4694 &CommonDest, DefaultResultsList, DL); 4695 4696 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4697 if (NeedMask) { 4698 // As an extra penalty for the validity test we require more cases. 4699 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4700 return false; 4701 if (!DL.fitsInLegalInteger(TableSize)) 4702 return false; 4703 } 4704 4705 for (const auto &I : DefaultResultsList) { 4706 PHINode *PHI = I.first; 4707 Constant *Result = I.second; 4708 DefaultResults[PHI] = Result; 4709 } 4710 4711 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4712 return false; 4713 4714 // Create the BB that does the lookups. 4715 Module &Mod = *CommonDest->getParent()->getParent(); 4716 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 4717 "switch.lookup", 4718 CommonDest->getParent(), 4719 CommonDest); 4720 4721 // Compute the table index value. 4722 Builder.SetInsertPoint(SI); 4723 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 4724 "switch.tableidx"); 4725 4726 // Compute the maximum table size representable by the integer type we are 4727 // switching upon. 4728 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4729 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4730 assert(MaxTableSize >= TableSize && 4731 "It is impossible for a switch to have more entries than the max " 4732 "representable value of its input integer type's size."); 4733 4734 // If the default destination is unreachable, or if the lookup table covers 4735 // all values of the conditional variable, branch directly to the lookup table 4736 // BB. Otherwise, check that the condition is within the case range. 4737 const bool DefaultIsReachable = 4738 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4739 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4740 BranchInst *RangeCheckBranch = nullptr; 4741 4742 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4743 Builder.CreateBr(LookupBB); 4744 // Note: We call removeProdecessor later since we need to be able to get the 4745 // PHI value for the default case in case we're using a bit mask. 4746 } else { 4747 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 4748 MinCaseVal->getType(), TableSize)); 4749 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4750 } 4751 4752 // Populate the BB that does the lookups. 4753 Builder.SetInsertPoint(LookupBB); 4754 4755 if (NeedMask) { 4756 // Before doing the lookup we do the hole check. 4757 // The LookupBB is therefore re-purposed to do the hole check 4758 // and we create a new LookupBB. 4759 BasicBlock *MaskBB = LookupBB; 4760 MaskBB->setName("switch.hole_check"); 4761 LookupBB = BasicBlock::Create(Mod.getContext(), 4762 "switch.lookup", 4763 CommonDest->getParent(), 4764 CommonDest); 4765 4766 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4767 // unnecessary illegal types. 4768 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4769 APInt MaskInt(TableSizePowOf2, 0); 4770 APInt One(TableSizePowOf2, 1); 4771 // Build bitmask; fill in a 1 bit for every case. 4772 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4773 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4774 uint64_t Idx = (ResultList[I].first->getValue() - 4775 MinCaseVal->getValue()).getLimitedValue(); 4776 MaskInt |= One << Idx; 4777 } 4778 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4779 4780 // Get the TableIndex'th bit of the bitmask. 4781 // If this bit is 0 (meaning hole) jump to the default destination, 4782 // else continue with table lookup. 4783 IntegerType *MapTy = TableMask->getType(); 4784 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4785 "switch.maskindex"); 4786 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4787 "switch.shifted"); 4788 Value *LoBit = Builder.CreateTrunc(Shifted, 4789 Type::getInt1Ty(Mod.getContext()), 4790 "switch.lobit"); 4791 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4792 4793 Builder.SetInsertPoint(LookupBB); 4794 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4795 } 4796 4797 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4798 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4799 // do not delete PHINodes here. 4800 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4801 /*DontDeleteUselessPHIs=*/true); 4802 } 4803 4804 bool ReturnedEarly = false; 4805 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4806 PHINode *PHI = PHIs[I]; 4807 const ResultListTy &ResultList = ResultLists[PHI]; 4808 4809 // If using a bitmask, use any value to fill the lookup table holes. 4810 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4811 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4812 4813 Value *Result = Table.BuildLookup(TableIndex, Builder); 4814 4815 // If the result is used to return immediately from the function, we want to 4816 // do that right here. 4817 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4818 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4819 Builder.CreateRet(Result); 4820 ReturnedEarly = true; 4821 break; 4822 } 4823 4824 // Do a small peephole optimization: re-use the switch table compare if 4825 // possible. 4826 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4827 BasicBlock *PhiBlock = PHI->getParent(); 4828 // Search for compare instructions which use the phi. 4829 for (auto *User : PHI->users()) { 4830 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4831 } 4832 } 4833 4834 PHI->addIncoming(Result, LookupBB); 4835 } 4836 4837 if (!ReturnedEarly) 4838 Builder.CreateBr(CommonDest); 4839 4840 // Remove the switch. 4841 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4842 BasicBlock *Succ = SI->getSuccessor(i); 4843 4844 if (Succ == SI->getDefaultDest()) 4845 continue; 4846 Succ->removePredecessor(SI->getParent()); 4847 } 4848 SI->eraseFromParent(); 4849 4850 ++NumLookupTables; 4851 if (NeedMask) 4852 ++NumLookupTablesHoles; 4853 return true; 4854 } 4855 4856 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4857 BasicBlock *BB = SI->getParent(); 4858 4859 if (isValueEqualityComparison(SI)) { 4860 // If we only have one predecessor, and if it is a branch on this value, 4861 // see if that predecessor totally determines the outcome of this switch. 4862 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4863 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4864 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4865 4866 Value *Cond = SI->getCondition(); 4867 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4868 if (SimplifySwitchOnSelect(SI, Select)) 4869 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4870 4871 // If the block only contains the switch, see if we can fold the block 4872 // away into any preds. 4873 BasicBlock::iterator BBI = BB->begin(); 4874 // Ignore dbg intrinsics. 4875 while (isa<DbgInfoIntrinsic>(BBI)) 4876 ++BBI; 4877 if (SI == &*BBI) 4878 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4879 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4880 } 4881 4882 // Try to transform the switch into an icmp and a branch. 4883 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4884 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4885 4886 // Remove unreachable cases. 4887 if (EliminateDeadSwitchCases(SI, AC, DL)) 4888 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4889 4890 if (SwitchToSelect(SI, Builder, AC, DL)) 4891 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4892 4893 if (ForwardSwitchConditionToPHI(SI)) 4894 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4895 4896 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 4897 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4898 4899 return false; 4900 } 4901 4902 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4903 BasicBlock *BB = IBI->getParent(); 4904 bool Changed = false; 4905 4906 // Eliminate redundant destinations. 4907 SmallPtrSet<Value *, 8> Succs; 4908 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4909 BasicBlock *Dest = IBI->getDestination(i); 4910 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 4911 Dest->removePredecessor(BB); 4912 IBI->removeDestination(i); 4913 --i; --e; 4914 Changed = true; 4915 } 4916 } 4917 4918 if (IBI->getNumDestinations() == 0) { 4919 // If the indirectbr has no successors, change it to unreachable. 4920 new UnreachableInst(IBI->getContext(), IBI); 4921 EraseTerminatorInstAndDCECond(IBI); 4922 return true; 4923 } 4924 4925 if (IBI->getNumDestinations() == 1) { 4926 // If the indirectbr has one successor, change it to a direct branch. 4927 BranchInst::Create(IBI->getDestination(0), IBI); 4928 EraseTerminatorInstAndDCECond(IBI); 4929 return true; 4930 } 4931 4932 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4933 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4934 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4935 } 4936 return Changed; 4937 } 4938 4939 /// Given an block with only a single landing pad and a unconditional branch 4940 /// try to find another basic block which this one can be merged with. This 4941 /// handles cases where we have multiple invokes with unique landing pads, but 4942 /// a shared handler. 4943 /// 4944 /// We specifically choose to not worry about merging non-empty blocks 4945 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 4946 /// practice, the optimizer produces empty landing pad blocks quite frequently 4947 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 4948 /// sinking in this file) 4949 /// 4950 /// This is primarily a code size optimization. We need to avoid performing 4951 /// any transform which might inhibit optimization (such as our ability to 4952 /// specialize a particular handler via tail commoning). We do this by not 4953 /// merging any blocks which require us to introduce a phi. Since the same 4954 /// values are flowing through both blocks, we don't loose any ability to 4955 /// specialize. If anything, we make such specialization more likely. 4956 /// 4957 /// TODO - This transformation could remove entries from a phi in the target 4958 /// block when the inputs in the phi are the same for the two blocks being 4959 /// merged. In some cases, this could result in removal of the PHI entirely. 4960 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 4961 BasicBlock *BB) { 4962 auto Succ = BB->getUniqueSuccessor(); 4963 assert(Succ); 4964 // If there's a phi in the successor block, we'd likely have to introduce 4965 // a phi into the merged landing pad block. 4966 if (isa<PHINode>(*Succ->begin())) 4967 return false; 4968 4969 for (BasicBlock *OtherPred : predecessors(Succ)) { 4970 if (BB == OtherPred) 4971 continue; 4972 BasicBlock::iterator I = OtherPred->begin(); 4973 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 4974 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 4975 continue; 4976 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 4977 BranchInst *BI2 = dyn_cast<BranchInst>(I); 4978 if (!BI2 || !BI2->isIdenticalTo(BI)) 4979 continue; 4980 4981 // We've found an identical block. Update our predeccessors to take that 4982 // path instead and make ourselves dead. 4983 SmallSet<BasicBlock *, 16> Preds; 4984 Preds.insert(pred_begin(BB), pred_end(BB)); 4985 for (BasicBlock *Pred : Preds) { 4986 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 4987 assert(II->getNormalDest() != BB && 4988 II->getUnwindDest() == BB && "unexpected successor"); 4989 II->setUnwindDest(OtherPred); 4990 } 4991 4992 // The debug info in OtherPred doesn't cover the merged control flow that 4993 // used to go through BB. We need to delete it or update it. 4994 for (auto I = OtherPred->begin(), E = OtherPred->end(); 4995 I != E;) { 4996 Instruction &Inst = *I; I++; 4997 if (isa<DbgInfoIntrinsic>(Inst)) 4998 Inst.eraseFromParent(); 4999 } 5000 5001 SmallSet<BasicBlock *, 16> Succs; 5002 Succs.insert(succ_begin(BB), succ_end(BB)); 5003 for (BasicBlock *Succ : Succs) { 5004 Succ->removePredecessor(BB); 5005 } 5006 5007 IRBuilder<> Builder(BI); 5008 Builder.CreateUnreachable(); 5009 BI->eraseFromParent(); 5010 return true; 5011 } 5012 return false; 5013 } 5014 5015 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 5016 BasicBlock *BB = BI->getParent(); 5017 5018 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5019 return true; 5020 5021 // If the Terminator is the only non-phi instruction, simplify the block. 5022 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5023 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5024 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5025 return true; 5026 5027 // If the only instruction in the block is a seteq/setne comparison 5028 // against a constant, try to simplify the block. 5029 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5030 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5031 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5032 ; 5033 if (I->isTerminator() && 5034 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5035 BonusInstThreshold, AC)) 5036 return true; 5037 } 5038 5039 // See if we can merge an empty landing pad block with another which is 5040 // equivalent. 5041 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5042 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 5043 if (I->isTerminator() && 5044 TryToMergeLandingPad(LPad, BI, BB)) 5045 return true; 5046 } 5047 5048 // If this basic block is ONLY a compare and a branch, and if a predecessor 5049 // branches to us and our successor, fold the comparison into the 5050 // predecessor and use logical operations to update the incoming value 5051 // for PHI nodes in common successor. 5052 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5053 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5054 return false; 5055 } 5056 5057 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5058 BasicBlock *PredPred = nullptr; 5059 for (auto *P : predecessors(BB)) { 5060 BasicBlock *PPred = P->getSinglePredecessor(); 5061 if (!PPred || (PredPred && PredPred != PPred)) 5062 return nullptr; 5063 PredPred = PPred; 5064 } 5065 return PredPred; 5066 } 5067 5068 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5069 BasicBlock *BB = BI->getParent(); 5070 5071 // Conditional branch 5072 if (isValueEqualityComparison(BI)) { 5073 // If we only have one predecessor, and if it is a branch on this value, 5074 // see if that predecessor totally determines the outcome of this 5075 // switch. 5076 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5077 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5078 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5079 5080 // This block must be empty, except for the setcond inst, if it exists. 5081 // Ignore dbg intrinsics. 5082 BasicBlock::iterator I = BB->begin(); 5083 // Ignore dbg intrinsics. 5084 while (isa<DbgInfoIntrinsic>(I)) 5085 ++I; 5086 if (&*I == BI) { 5087 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5088 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5089 } else if (&*I == cast<Instruction>(BI->getCondition())){ 5090 ++I; 5091 // Ignore dbg intrinsics. 5092 while (isa<DbgInfoIntrinsic>(I)) 5093 ++I; 5094 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5095 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5096 } 5097 } 5098 5099 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5100 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5101 return true; 5102 5103 // If this basic block is ONLY a compare and a branch, and if a predecessor 5104 // branches to us and one of our successors, fold the comparison into the 5105 // predecessor and use logical operations to pick the right destination. 5106 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5107 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5108 5109 // We have a conditional branch to two blocks that are only reachable 5110 // from BI. We know that the condbr dominates the two blocks, so see if 5111 // there is any identical code in the "then" and "else" blocks. If so, we 5112 // can hoist it up to the branching block. 5113 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5114 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5115 if (HoistThenElseCodeToIf(BI, TTI)) 5116 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5117 } else { 5118 // If Successor #1 has multiple preds, we may be able to conditionally 5119 // execute Successor #0 if it branches to Successor #1. 5120 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5121 if (Succ0TI->getNumSuccessors() == 1 && 5122 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5123 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5124 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5125 } 5126 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5127 // If Successor #0 has multiple preds, we may be able to conditionally 5128 // execute Successor #1 if it branches to Successor #0. 5129 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5130 if (Succ1TI->getNumSuccessors() == 1 && 5131 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5132 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5133 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5134 } 5135 5136 // If this is a branch on a phi node in the current block, thread control 5137 // through this block if any PHI node entries are constants. 5138 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5139 if (PN->getParent() == BI->getParent()) 5140 if (FoldCondBranchOnPHI(BI, DL)) 5141 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5142 5143 // Scan predecessor blocks for conditional branches. 5144 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5145 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5146 if (PBI != BI && PBI->isConditional()) 5147 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5148 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5149 5150 // Look for diamond patterns. 5151 if (MergeCondStores) 5152 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5153 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5154 if (PBI != BI && PBI->isConditional()) 5155 if (mergeConditionalStores(PBI, BI)) 5156 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5157 5158 return false; 5159 } 5160 5161 /// Check if passing a value to an instruction will cause undefined behavior. 5162 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5163 Constant *C = dyn_cast<Constant>(V); 5164 if (!C) 5165 return false; 5166 5167 if (I->use_empty()) 5168 return false; 5169 5170 if (C->isNullValue()) { 5171 // Only look at the first use, avoid hurting compile time with long uselists 5172 User *Use = *I->user_begin(); 5173 5174 // Now make sure that there are no instructions in between that can alter 5175 // control flow (eg. calls) 5176 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 5177 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5178 return false; 5179 5180 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5181 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5182 if (GEP->getPointerOperand() == I) 5183 return passingValueIsAlwaysUndefined(V, GEP); 5184 5185 // Look through bitcasts. 5186 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5187 return passingValueIsAlwaysUndefined(V, BC); 5188 5189 // Load from null is undefined. 5190 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5191 if (!LI->isVolatile()) 5192 return LI->getPointerAddressSpace() == 0; 5193 5194 // Store to null is undefined. 5195 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5196 if (!SI->isVolatile()) 5197 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 5198 } 5199 return false; 5200 } 5201 5202 /// If BB has an incoming value that will always trigger undefined behavior 5203 /// (eg. null pointer dereference), remove the branch leading here. 5204 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5205 for (BasicBlock::iterator i = BB->begin(); 5206 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5207 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5208 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5209 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5210 IRBuilder<> Builder(T); 5211 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5212 BB->removePredecessor(PHI->getIncomingBlock(i)); 5213 // Turn uncoditional branches into unreachables and remove the dead 5214 // destination from conditional branches. 5215 if (BI->isUnconditional()) 5216 Builder.CreateUnreachable(); 5217 else 5218 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 5219 BI->getSuccessor(0)); 5220 BI->eraseFromParent(); 5221 return true; 5222 } 5223 // TODO: SwitchInst. 5224 } 5225 5226 return false; 5227 } 5228 5229 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5230 bool Changed = false; 5231 5232 assert(BB && BB->getParent() && "Block not embedded in function!"); 5233 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5234 5235 // Remove basic blocks that have no predecessors (except the entry block)... 5236 // or that just have themself as a predecessor. These are unreachable. 5237 if ((pred_empty(BB) && 5238 BB != &BB->getParent()->getEntryBlock()) || 5239 BB->getSinglePredecessor() == BB) { 5240 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5241 DeleteDeadBlock(BB); 5242 return true; 5243 } 5244 5245 // Check to see if we can constant propagate this terminator instruction 5246 // away... 5247 Changed |= ConstantFoldTerminator(BB, true); 5248 5249 // Check for and eliminate duplicate PHI nodes in this block. 5250 Changed |= EliminateDuplicatePHINodes(BB); 5251 5252 // Check for and remove branches that will always cause undefined behavior. 5253 Changed |= removeUndefIntroducingPredecessor(BB); 5254 5255 // Merge basic blocks into their predecessor if there is only one distinct 5256 // pred, and if there is only one distinct successor of the predecessor, and 5257 // if there are no PHI nodes. 5258 // 5259 if (MergeBlockIntoPredecessor(BB)) 5260 return true; 5261 5262 IRBuilder<> Builder(BB); 5263 5264 // If there is a trivial two-entry PHI node in this basic block, and we can 5265 // eliminate it, do so now. 5266 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5267 if (PN->getNumIncomingValues() == 2) 5268 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5269 5270 Builder.SetInsertPoint(BB->getTerminator()); 5271 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5272 if (BI->isUnconditional()) { 5273 if (SimplifyUncondBranch(BI, Builder)) return true; 5274 } else { 5275 if (SimplifyCondBranch(BI, Builder)) return true; 5276 } 5277 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5278 if (SimplifyReturn(RI, Builder)) return true; 5279 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5280 if (SimplifyResume(RI, Builder)) return true; 5281 } else if (CleanupReturnInst *RI = 5282 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5283 if (SimplifyCleanupReturn(RI)) return true; 5284 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5285 if (SimplifySwitch(SI, Builder)) return true; 5286 } else if (UnreachableInst *UI = 5287 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5288 if (SimplifyUnreachable(UI)) return true; 5289 } else if (IndirectBrInst *IBI = 5290 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5291 if (SimplifyIndirectBr(IBI)) return true; 5292 } 5293 5294 return Changed; 5295 } 5296 5297 /// This function is used to do simplification of a CFG. 5298 /// For example, it adjusts branches to branches to eliminate the extra hop, 5299 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5300 /// of the CFG. It returns true if a modification was made. 5301 /// 5302 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5303 unsigned BonusInstThreshold, AssumptionCache *AC) { 5304 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5305 BonusInstThreshold, AC).run(BB); 5306 } 5307