1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/GuardUtils.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/MemorySSA.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/NoFolder.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/PseudoProbe.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/IR/ValueHandle.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/KnownBits.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 #include "llvm/Transforms/Utils/SSAUpdater.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <set> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 using namespace PatternMatch; 93 94 #define DEBUG_TYPE "simplifycfg" 95 96 cl::opt<bool> llvm::RequireAndPreserveDomTree( 97 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 98 cl::init(false), 99 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 100 "into preserving DomTree,")); 101 102 // Chosen as 2 so as to be cheap, but still to have enough power to fold 103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 104 // To catch this, we need to fold a compare and a select, hence '2' being the 105 // minimum reasonable default. 106 static cl::opt<unsigned> PHINodeFoldingThreshold( 107 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 108 cl::desc( 109 "Control the amount of phi node folding to perform (default = 2)")); 110 111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 112 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 113 cl::desc("Control the maximal total instruction cost that we are willing " 114 "to speculatively execute to fold a 2-entry PHI node into a " 115 "select (default = 4)")); 116 117 static cl::opt<bool> 118 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 119 cl::desc("Hoist common instructions up to the parent block")); 120 121 static cl::opt<bool> 122 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 123 cl::desc("Sink common instructions down to the end block")); 124 125 static cl::opt<bool> HoistCondStores( 126 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 127 cl::desc("Hoist conditional stores if an unconditional store precedes")); 128 129 static cl::opt<bool> MergeCondStores( 130 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 131 cl::desc("Hoist conditional stores even if an unconditional store does not " 132 "precede - hoist multiple conditional stores into a single " 133 "predicated store")); 134 135 static cl::opt<bool> MergeCondStoresAggressively( 136 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 137 cl::desc("When merging conditional stores, do so even if the resultant " 138 "basic blocks are unlikely to be if-converted as a result")); 139 140 static cl::opt<bool> SpeculateOneExpensiveInst( 141 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 142 cl::desc("Allow exactly one expensive instruction to be speculatively " 143 "executed")); 144 145 static cl::opt<unsigned> MaxSpeculationDepth( 146 "max-speculation-depth", cl::Hidden, cl::init(10), 147 cl::desc("Limit maximum recursion depth when calculating costs of " 148 "speculatively executed instructions")); 149 150 static cl::opt<int> 151 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 152 cl::init(10), 153 cl::desc("Max size of a block which is still considered " 154 "small enough to thread through")); 155 156 // Two is chosen to allow one negation and a logical combine. 157 static cl::opt<unsigned> 158 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 159 cl::init(2), 160 cl::desc("Maximum cost of combining conditions when " 161 "folding branches")); 162 163 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 164 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 165 cl::init(2), 166 cl::desc("Multiplier to apply to threshold when determining whether or not " 167 "to fold branch to common destination when vector operations are " 168 "present")); 169 170 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 171 STATISTIC(NumLinearMaps, 172 "Number of switch instructions turned into linear mapping"); 173 STATISTIC(NumLookupTables, 174 "Number of switch instructions turned into lookup tables"); 175 STATISTIC( 176 NumLookupTablesHoles, 177 "Number of switch instructions turned into lookup tables (holes checked)"); 178 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 179 STATISTIC(NumFoldValueComparisonIntoPredecessors, 180 "Number of value comparisons folded into predecessor basic blocks"); 181 STATISTIC(NumFoldBranchToCommonDest, 182 "Number of branches folded into predecessor basic block"); 183 STATISTIC( 184 NumHoistCommonCode, 185 "Number of common instruction 'blocks' hoisted up to the begin block"); 186 STATISTIC(NumHoistCommonInstrs, 187 "Number of common instructions hoisted up to the begin block"); 188 STATISTIC(NumSinkCommonCode, 189 "Number of common instruction 'blocks' sunk down to the end block"); 190 STATISTIC(NumSinkCommonInstrs, 191 "Number of common instructions sunk down to the end block"); 192 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 193 STATISTIC(NumInvokes, 194 "Number of invokes with empty resume blocks simplified into calls"); 195 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 196 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 197 198 namespace { 199 200 // The first field contains the value that the switch produces when a certain 201 // case group is selected, and the second field is a vector containing the 202 // cases composing the case group. 203 using SwitchCaseResultVectorTy = 204 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 205 206 // The first field contains the phi node that generates a result of the switch 207 // and the second field contains the value generated for a certain case in the 208 // switch for that PHI. 209 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 210 211 /// ValueEqualityComparisonCase - Represents a case of a switch. 212 struct ValueEqualityComparisonCase { 213 ConstantInt *Value; 214 BasicBlock *Dest; 215 216 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 217 : Value(Value), Dest(Dest) {} 218 219 bool operator<(ValueEqualityComparisonCase RHS) const { 220 // Comparing pointers is ok as we only rely on the order for uniquing. 221 return Value < RHS.Value; 222 } 223 224 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 225 }; 226 227 class SimplifyCFGOpt { 228 const TargetTransformInfo &TTI; 229 DomTreeUpdater *DTU; 230 const DataLayout &DL; 231 ArrayRef<WeakVH> LoopHeaders; 232 const SimplifyCFGOptions &Options; 233 bool Resimplify; 234 235 Value *isValueEqualityComparison(Instruction *TI); 236 BasicBlock *GetValueEqualityComparisonCases( 237 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 238 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 239 BasicBlock *Pred, 240 IRBuilder<> &Builder); 241 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 242 Instruction *PTI, 243 IRBuilder<> &Builder); 244 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 245 IRBuilder<> &Builder); 246 247 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 248 bool simplifySingleResume(ResumeInst *RI); 249 bool simplifyCommonResume(ResumeInst *RI); 250 bool simplifyCleanupReturn(CleanupReturnInst *RI); 251 bool simplifyUnreachable(UnreachableInst *UI); 252 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 253 bool simplifyIndirectBr(IndirectBrInst *IBI); 254 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 255 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 256 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 257 258 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 259 IRBuilder<> &Builder); 260 261 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 262 bool EqTermsOnly); 263 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 264 const TargetTransformInfo &TTI); 265 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 266 BasicBlock *TrueBB, BasicBlock *FalseBB, 267 uint32_t TrueWeight, uint32_t FalseWeight); 268 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 269 const DataLayout &DL); 270 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 271 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 272 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 273 274 public: 275 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 276 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 277 const SimplifyCFGOptions &Opts) 278 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 279 assert((!DTU || !DTU->hasPostDomTree()) && 280 "SimplifyCFG is not yet capable of maintaining validity of a " 281 "PostDomTree, so don't ask for it."); 282 } 283 284 bool simplifyOnce(BasicBlock *BB); 285 bool run(BasicBlock *BB); 286 287 // Helper to set Resimplify and return change indication. 288 bool requestResimplify() { 289 Resimplify = true; 290 return true; 291 } 292 }; 293 294 } // end anonymous namespace 295 296 /// Return true if all the PHI nodes in the basic block \p BB 297 /// receive compatible (identical) incoming values when coming from 298 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 299 /// 300 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 301 /// is provided, and *both* of the values are present in the set, 302 /// then they are considered equal. 303 static bool IncomingValuesAreCompatible( 304 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 305 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 306 assert(IncomingBlocks.size() == 2 && 307 "Only for a pair of incoming blocks at the time!"); 308 309 // FIXME: it is okay if one of the incoming values is an `undef` value, 310 // iff the other incoming value is guaranteed to be a non-poison value. 311 // FIXME: it is okay if one of the incoming values is a `poison` value. 312 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 313 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 314 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 315 if (IV0 == IV1) 316 return true; 317 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 318 EquivalenceSet->contains(IV1)) 319 return true; 320 return false; 321 }); 322 } 323 324 /// Return true if it is safe to merge these two 325 /// terminator instructions together. 326 static bool 327 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 328 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 329 if (SI1 == SI2) 330 return false; // Can't merge with self! 331 332 // It is not safe to merge these two switch instructions if they have a common 333 // successor, and if that successor has a PHI node, and if *that* PHI node has 334 // conflicting incoming values from the two switch blocks. 335 BasicBlock *SI1BB = SI1->getParent(); 336 BasicBlock *SI2BB = SI2->getParent(); 337 338 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 339 bool Fail = false; 340 for (BasicBlock *Succ : successors(SI2BB)) { 341 if (!SI1Succs.count(Succ)) 342 continue; 343 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 344 continue; 345 Fail = true; 346 if (FailBlocks) 347 FailBlocks->insert(Succ); 348 else 349 break; 350 } 351 352 return !Fail; 353 } 354 355 /// Update PHI nodes in Succ to indicate that there will now be entries in it 356 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 357 /// will be the same as those coming in from ExistPred, an existing predecessor 358 /// of Succ. 359 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 360 BasicBlock *ExistPred, 361 MemorySSAUpdater *MSSAU = nullptr) { 362 for (PHINode &PN : Succ->phis()) 363 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 364 if (MSSAU) 365 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 366 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 367 } 368 369 /// Compute an abstract "cost" of speculating the given instruction, 370 /// which is assumed to be safe to speculate. TCC_Free means cheap, 371 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 372 /// expensive. 373 static InstructionCost computeSpeculationCost(const User *I, 374 const TargetTransformInfo &TTI) { 375 assert(isSafeToSpeculativelyExecute(I) && 376 "Instruction is not safe to speculatively execute!"); 377 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 378 } 379 380 /// If we have a merge point of an "if condition" as accepted above, 381 /// return true if the specified value dominates the block. We 382 /// don't handle the true generality of domination here, just a special case 383 /// which works well enough for us. 384 /// 385 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 386 /// see if V (which must be an instruction) and its recursive operands 387 /// that do not dominate BB have a combined cost lower than Budget and 388 /// are non-trapping. If both are true, the instruction is inserted into the 389 /// set and true is returned. 390 /// 391 /// The cost for most non-trapping instructions is defined as 1 except for 392 /// Select whose cost is 2. 393 /// 394 /// After this function returns, Cost is increased by the cost of 395 /// V plus its non-dominating operands. If that cost is greater than 396 /// Budget, false is returned and Cost is undefined. 397 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 398 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 399 InstructionCost &Cost, 400 InstructionCost Budget, 401 const TargetTransformInfo &TTI, 402 unsigned Depth = 0) { 403 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 404 // so limit the recursion depth. 405 // TODO: While this recursion limit does prevent pathological behavior, it 406 // would be better to track visited instructions to avoid cycles. 407 if (Depth == MaxSpeculationDepth) 408 return false; 409 410 Instruction *I = dyn_cast<Instruction>(V); 411 if (!I) { 412 // Non-instructions all dominate instructions, but not all constantexprs 413 // can be executed unconditionally. 414 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 415 if (C->canTrap()) 416 return false; 417 return true; 418 } 419 BasicBlock *PBB = I->getParent(); 420 421 // We don't want to allow weird loops that might have the "if condition" in 422 // the bottom of this block. 423 if (PBB == BB) 424 return false; 425 426 // If this instruction is defined in a block that contains an unconditional 427 // branch to BB, then it must be in the 'conditional' part of the "if 428 // statement". If not, it definitely dominates the region. 429 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 430 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 431 return true; 432 433 // If we have seen this instruction before, don't count it again. 434 if (AggressiveInsts.count(I)) 435 return true; 436 437 // Okay, it looks like the instruction IS in the "condition". Check to 438 // see if it's a cheap instruction to unconditionally compute, and if it 439 // only uses stuff defined outside of the condition. If so, hoist it out. 440 if (!isSafeToSpeculativelyExecute(I)) 441 return false; 442 443 Cost += computeSpeculationCost(I, TTI); 444 445 // Allow exactly one instruction to be speculated regardless of its cost 446 // (as long as it is safe to do so). 447 // This is intended to flatten the CFG even if the instruction is a division 448 // or other expensive operation. The speculation of an expensive instruction 449 // is expected to be undone in CodeGenPrepare if the speculation has not 450 // enabled further IR optimizations. 451 if (Cost > Budget && 452 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 453 !Cost.isValid())) 454 return false; 455 456 // Okay, we can only really hoist these out if their operands do 457 // not take us over the cost threshold. 458 for (Use &Op : I->operands()) 459 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 460 Depth + 1)) 461 return false; 462 // Okay, it's safe to do this! Remember this instruction. 463 AggressiveInsts.insert(I); 464 return true; 465 } 466 467 /// Extract ConstantInt from value, looking through IntToPtr 468 /// and PointerNullValue. Return NULL if value is not a constant int. 469 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 470 // Normal constant int. 471 ConstantInt *CI = dyn_cast<ConstantInt>(V); 472 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 473 return CI; 474 475 // This is some kind of pointer constant. Turn it into a pointer-sized 476 // ConstantInt if possible. 477 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 478 479 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 480 if (isa<ConstantPointerNull>(V)) 481 return ConstantInt::get(PtrTy, 0); 482 483 // IntToPtr const int. 484 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 485 if (CE->getOpcode() == Instruction::IntToPtr) 486 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 487 // The constant is very likely to have the right type already. 488 if (CI->getType() == PtrTy) 489 return CI; 490 else 491 return cast<ConstantInt>( 492 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 493 } 494 return nullptr; 495 } 496 497 namespace { 498 499 /// Given a chain of or (||) or and (&&) comparison of a value against a 500 /// constant, this will try to recover the information required for a switch 501 /// structure. 502 /// It will depth-first traverse the chain of comparison, seeking for patterns 503 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 504 /// representing the different cases for the switch. 505 /// Note that if the chain is composed of '||' it will build the set of elements 506 /// that matches the comparisons (i.e. any of this value validate the chain) 507 /// while for a chain of '&&' it will build the set elements that make the test 508 /// fail. 509 struct ConstantComparesGatherer { 510 const DataLayout &DL; 511 512 /// Value found for the switch comparison 513 Value *CompValue = nullptr; 514 515 /// Extra clause to be checked before the switch 516 Value *Extra = nullptr; 517 518 /// Set of integers to match in switch 519 SmallVector<ConstantInt *, 8> Vals; 520 521 /// Number of comparisons matched in the and/or chain 522 unsigned UsedICmps = 0; 523 524 /// Construct and compute the result for the comparison instruction Cond 525 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 526 gather(Cond); 527 } 528 529 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 530 ConstantComparesGatherer & 531 operator=(const ConstantComparesGatherer &) = delete; 532 533 private: 534 /// Try to set the current value used for the comparison, it succeeds only if 535 /// it wasn't set before or if the new value is the same as the old one 536 bool setValueOnce(Value *NewVal) { 537 if (CompValue && CompValue != NewVal) 538 return false; 539 CompValue = NewVal; 540 return (CompValue != nullptr); 541 } 542 543 /// Try to match Instruction "I" as a comparison against a constant and 544 /// populates the array Vals with the set of values that match (or do not 545 /// match depending on isEQ). 546 /// Return false on failure. On success, the Value the comparison matched 547 /// against is placed in CompValue. 548 /// If CompValue is already set, the function is expected to fail if a match 549 /// is found but the value compared to is different. 550 bool matchInstruction(Instruction *I, bool isEQ) { 551 // If this is an icmp against a constant, handle this as one of the cases. 552 ICmpInst *ICI; 553 ConstantInt *C; 554 if (!((ICI = dyn_cast<ICmpInst>(I)) && 555 (C = GetConstantInt(I->getOperand(1), DL)))) { 556 return false; 557 } 558 559 Value *RHSVal; 560 const APInt *RHSC; 561 562 // Pattern match a special case 563 // (x & ~2^z) == y --> x == y || x == y|2^z 564 // This undoes a transformation done by instcombine to fuse 2 compares. 565 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 566 // It's a little bit hard to see why the following transformations are 567 // correct. Here is a CVC3 program to verify them for 64-bit values: 568 569 /* 570 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 571 x : BITVECTOR(64); 572 y : BITVECTOR(64); 573 z : BITVECTOR(64); 574 mask : BITVECTOR(64) = BVSHL(ONE, z); 575 QUERY( (y & ~mask = y) => 576 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 577 ); 578 QUERY( (y | mask = y) => 579 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 580 ); 581 */ 582 583 // Please note that each pattern must be a dual implication (<--> or 584 // iff). One directional implication can create spurious matches. If the 585 // implication is only one-way, an unsatisfiable condition on the left 586 // side can imply a satisfiable condition on the right side. Dual 587 // implication ensures that satisfiable conditions are transformed to 588 // other satisfiable conditions and unsatisfiable conditions are 589 // transformed to other unsatisfiable conditions. 590 591 // Here is a concrete example of a unsatisfiable condition on the left 592 // implying a satisfiable condition on the right: 593 // 594 // mask = (1 << z) 595 // (x & ~mask) == y --> (x == y || x == (y | mask)) 596 // 597 // Substituting y = 3, z = 0 yields: 598 // (x & -2) == 3 --> (x == 3 || x == 2) 599 600 // Pattern match a special case: 601 /* 602 QUERY( (y & ~mask = y) => 603 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 604 ); 605 */ 606 if (match(ICI->getOperand(0), 607 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 608 APInt Mask = ~*RHSC; 609 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 610 // If we already have a value for the switch, it has to match! 611 if (!setValueOnce(RHSVal)) 612 return false; 613 614 Vals.push_back(C); 615 Vals.push_back( 616 ConstantInt::get(C->getContext(), 617 C->getValue() | Mask)); 618 UsedICmps++; 619 return true; 620 } 621 } 622 623 // Pattern match a special case: 624 /* 625 QUERY( (y | mask = y) => 626 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 627 ); 628 */ 629 if (match(ICI->getOperand(0), 630 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 631 APInt Mask = *RHSC; 632 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 633 // If we already have a value for the switch, it has to match! 634 if (!setValueOnce(RHSVal)) 635 return false; 636 637 Vals.push_back(C); 638 Vals.push_back(ConstantInt::get(C->getContext(), 639 C->getValue() & ~Mask)); 640 UsedICmps++; 641 return true; 642 } 643 } 644 645 // If we already have a value for the switch, it has to match! 646 if (!setValueOnce(ICI->getOperand(0))) 647 return false; 648 649 UsedICmps++; 650 Vals.push_back(C); 651 return ICI->getOperand(0); 652 } 653 654 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 655 ConstantRange Span = 656 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 657 658 // Shift the range if the compare is fed by an add. This is the range 659 // compare idiom as emitted by instcombine. 660 Value *CandidateVal = I->getOperand(0); 661 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 662 Span = Span.subtract(*RHSC); 663 CandidateVal = RHSVal; 664 } 665 666 // If this is an and/!= check, then we are looking to build the set of 667 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 668 // x != 0 && x != 1. 669 if (!isEQ) 670 Span = Span.inverse(); 671 672 // If there are a ton of values, we don't want to make a ginormous switch. 673 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 674 return false; 675 } 676 677 // If we already have a value for the switch, it has to match! 678 if (!setValueOnce(CandidateVal)) 679 return false; 680 681 // Add all values from the range to the set 682 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 683 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 684 685 UsedICmps++; 686 return true; 687 } 688 689 /// Given a potentially 'or'd or 'and'd together collection of icmp 690 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 691 /// the value being compared, and stick the list constants into the Vals 692 /// vector. 693 /// One "Extra" case is allowed to differ from the other. 694 void gather(Value *V) { 695 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 696 697 // Keep a stack (SmallVector for efficiency) for depth-first traversal 698 SmallVector<Value *, 8> DFT; 699 SmallPtrSet<Value *, 8> Visited; 700 701 // Initialize 702 Visited.insert(V); 703 DFT.push_back(V); 704 705 while (!DFT.empty()) { 706 V = DFT.pop_back_val(); 707 708 if (Instruction *I = dyn_cast<Instruction>(V)) { 709 // If it is a || (or && depending on isEQ), process the operands. 710 Value *Op0, *Op1; 711 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 712 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 713 if (Visited.insert(Op1).second) 714 DFT.push_back(Op1); 715 if (Visited.insert(Op0).second) 716 DFT.push_back(Op0); 717 718 continue; 719 } 720 721 // Try to match the current instruction 722 if (matchInstruction(I, isEQ)) 723 // Match succeed, continue the loop 724 continue; 725 } 726 727 // One element of the sequence of || (or &&) could not be match as a 728 // comparison against the same value as the others. 729 // We allow only one "Extra" case to be checked before the switch 730 if (!Extra) { 731 Extra = V; 732 continue; 733 } 734 // Failed to parse a proper sequence, abort now 735 CompValue = nullptr; 736 break; 737 } 738 } 739 }; 740 741 } // end anonymous namespace 742 743 static void EraseTerminatorAndDCECond(Instruction *TI, 744 MemorySSAUpdater *MSSAU = nullptr) { 745 Instruction *Cond = nullptr; 746 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 747 Cond = dyn_cast<Instruction>(SI->getCondition()); 748 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 749 if (BI->isConditional()) 750 Cond = dyn_cast<Instruction>(BI->getCondition()); 751 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 752 Cond = dyn_cast<Instruction>(IBI->getAddress()); 753 } 754 755 TI->eraseFromParent(); 756 if (Cond) 757 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 758 } 759 760 /// Return true if the specified terminator checks 761 /// to see if a value is equal to constant integer value. 762 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 763 Value *CV = nullptr; 764 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 765 // Do not permit merging of large switch instructions into their 766 // predecessors unless there is only one predecessor. 767 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 768 CV = SI->getCondition(); 769 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 770 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 771 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 772 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 773 CV = ICI->getOperand(0); 774 } 775 776 // Unwrap any lossless ptrtoint cast. 777 if (CV) { 778 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 779 Value *Ptr = PTII->getPointerOperand(); 780 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 781 CV = Ptr; 782 } 783 } 784 return CV; 785 } 786 787 /// Given a value comparison instruction, 788 /// decode all of the 'cases' that it represents and return the 'default' block. 789 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 790 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 791 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 792 Cases.reserve(SI->getNumCases()); 793 for (auto Case : SI->cases()) 794 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 795 Case.getCaseSuccessor())); 796 return SI->getDefaultDest(); 797 } 798 799 BranchInst *BI = cast<BranchInst>(TI); 800 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 801 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 802 Cases.push_back(ValueEqualityComparisonCase( 803 GetConstantInt(ICI->getOperand(1), DL), Succ)); 804 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 805 } 806 807 /// Given a vector of bb/value pairs, remove any entries 808 /// in the list that match the specified block. 809 static void 810 EliminateBlockCases(BasicBlock *BB, 811 std::vector<ValueEqualityComparisonCase> &Cases) { 812 llvm::erase_value(Cases, BB); 813 } 814 815 /// Return true if there are any keys in C1 that exist in C2 as well. 816 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 817 std::vector<ValueEqualityComparisonCase> &C2) { 818 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 819 820 // Make V1 be smaller than V2. 821 if (V1->size() > V2->size()) 822 std::swap(V1, V2); 823 824 if (V1->empty()) 825 return false; 826 if (V1->size() == 1) { 827 // Just scan V2. 828 ConstantInt *TheVal = (*V1)[0].Value; 829 for (unsigned i = 0, e = V2->size(); i != e; ++i) 830 if (TheVal == (*V2)[i].Value) 831 return true; 832 } 833 834 // Otherwise, just sort both lists and compare element by element. 835 array_pod_sort(V1->begin(), V1->end()); 836 array_pod_sort(V2->begin(), V2->end()); 837 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 838 while (i1 != e1 && i2 != e2) { 839 if ((*V1)[i1].Value == (*V2)[i2].Value) 840 return true; 841 if ((*V1)[i1].Value < (*V2)[i2].Value) 842 ++i1; 843 else 844 ++i2; 845 } 846 return false; 847 } 848 849 // Set branch weights on SwitchInst. This sets the metadata if there is at 850 // least one non-zero weight. 851 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 852 // Check that there is at least one non-zero weight. Otherwise, pass 853 // nullptr to setMetadata which will erase the existing metadata. 854 MDNode *N = nullptr; 855 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 856 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 857 SI->setMetadata(LLVMContext::MD_prof, N); 858 } 859 860 // Similar to the above, but for branch and select instructions that take 861 // exactly 2 weights. 862 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 863 uint32_t FalseWeight) { 864 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 865 // Check that there is at least one non-zero weight. Otherwise, pass 866 // nullptr to setMetadata which will erase the existing metadata. 867 MDNode *N = nullptr; 868 if (TrueWeight || FalseWeight) 869 N = MDBuilder(I->getParent()->getContext()) 870 .createBranchWeights(TrueWeight, FalseWeight); 871 I->setMetadata(LLVMContext::MD_prof, N); 872 } 873 874 /// If TI is known to be a terminator instruction and its block is known to 875 /// only have a single predecessor block, check to see if that predecessor is 876 /// also a value comparison with the same value, and if that comparison 877 /// determines the outcome of this comparison. If so, simplify TI. This does a 878 /// very limited form of jump threading. 879 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 880 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 881 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 882 if (!PredVal) 883 return false; // Not a value comparison in predecessor. 884 885 Value *ThisVal = isValueEqualityComparison(TI); 886 assert(ThisVal && "This isn't a value comparison!!"); 887 if (ThisVal != PredVal) 888 return false; // Different predicates. 889 890 // TODO: Preserve branch weight metadata, similarly to how 891 // FoldValueComparisonIntoPredecessors preserves it. 892 893 // Find out information about when control will move from Pred to TI's block. 894 std::vector<ValueEqualityComparisonCase> PredCases; 895 BasicBlock *PredDef = 896 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 897 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 898 899 // Find information about how control leaves this block. 900 std::vector<ValueEqualityComparisonCase> ThisCases; 901 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 902 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 903 904 // If TI's block is the default block from Pred's comparison, potentially 905 // simplify TI based on this knowledge. 906 if (PredDef == TI->getParent()) { 907 // If we are here, we know that the value is none of those cases listed in 908 // PredCases. If there are any cases in ThisCases that are in PredCases, we 909 // can simplify TI. 910 if (!ValuesOverlap(PredCases, ThisCases)) 911 return false; 912 913 if (isa<BranchInst>(TI)) { 914 // Okay, one of the successors of this condbr is dead. Convert it to a 915 // uncond br. 916 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 917 // Insert the new branch. 918 Instruction *NI = Builder.CreateBr(ThisDef); 919 (void)NI; 920 921 // Remove PHI node entries for the dead edge. 922 ThisCases[0].Dest->removePredecessor(PredDef); 923 924 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 925 << "Through successor TI: " << *TI << "Leaving: " << *NI 926 << "\n"); 927 928 EraseTerminatorAndDCECond(TI); 929 930 if (DTU) 931 DTU->applyUpdates( 932 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 933 934 return true; 935 } 936 937 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 938 // Okay, TI has cases that are statically dead, prune them away. 939 SmallPtrSet<Constant *, 16> DeadCases; 940 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 941 DeadCases.insert(PredCases[i].Value); 942 943 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 944 << "Through successor TI: " << *TI); 945 946 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 947 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 948 --i; 949 auto *Successor = i->getCaseSuccessor(); 950 if (DTU) 951 ++NumPerSuccessorCases[Successor]; 952 if (DeadCases.count(i->getCaseValue())) { 953 Successor->removePredecessor(PredDef); 954 SI.removeCase(i); 955 if (DTU) 956 --NumPerSuccessorCases[Successor]; 957 } 958 } 959 960 if (DTU) { 961 std::vector<DominatorTree::UpdateType> Updates; 962 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 963 if (I.second == 0) 964 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 965 DTU->applyUpdates(Updates); 966 } 967 968 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 969 return true; 970 } 971 972 // Otherwise, TI's block must correspond to some matched value. Find out 973 // which value (or set of values) this is. 974 ConstantInt *TIV = nullptr; 975 BasicBlock *TIBB = TI->getParent(); 976 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 977 if (PredCases[i].Dest == TIBB) { 978 if (TIV) 979 return false; // Cannot handle multiple values coming to this block. 980 TIV = PredCases[i].Value; 981 } 982 assert(TIV && "No edge from pred to succ?"); 983 984 // Okay, we found the one constant that our value can be if we get into TI's 985 // BB. Find out which successor will unconditionally be branched to. 986 BasicBlock *TheRealDest = nullptr; 987 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 988 if (ThisCases[i].Value == TIV) { 989 TheRealDest = ThisCases[i].Dest; 990 break; 991 } 992 993 // If not handled by any explicit cases, it is handled by the default case. 994 if (!TheRealDest) 995 TheRealDest = ThisDef; 996 997 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 998 999 // Remove PHI node entries for dead edges. 1000 BasicBlock *CheckEdge = TheRealDest; 1001 for (BasicBlock *Succ : successors(TIBB)) 1002 if (Succ != CheckEdge) { 1003 if (Succ != TheRealDest) 1004 RemovedSuccs.insert(Succ); 1005 Succ->removePredecessor(TIBB); 1006 } else 1007 CheckEdge = nullptr; 1008 1009 // Insert the new branch. 1010 Instruction *NI = Builder.CreateBr(TheRealDest); 1011 (void)NI; 1012 1013 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1014 << "Through successor TI: " << *TI << "Leaving: " << *NI 1015 << "\n"); 1016 1017 EraseTerminatorAndDCECond(TI); 1018 if (DTU) { 1019 SmallVector<DominatorTree::UpdateType, 2> Updates; 1020 Updates.reserve(RemovedSuccs.size()); 1021 for (auto *RemovedSucc : RemovedSuccs) 1022 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1023 DTU->applyUpdates(Updates); 1024 } 1025 return true; 1026 } 1027 1028 namespace { 1029 1030 /// This class implements a stable ordering of constant 1031 /// integers that does not depend on their address. This is important for 1032 /// applications that sort ConstantInt's to ensure uniqueness. 1033 struct ConstantIntOrdering { 1034 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1035 return LHS->getValue().ult(RHS->getValue()); 1036 } 1037 }; 1038 1039 } // end anonymous namespace 1040 1041 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1042 ConstantInt *const *P2) { 1043 const ConstantInt *LHS = *P1; 1044 const ConstantInt *RHS = *P2; 1045 if (LHS == RHS) 1046 return 0; 1047 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1048 } 1049 1050 static inline bool HasBranchWeights(const Instruction *I) { 1051 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1052 if (ProfMD && ProfMD->getOperand(0)) 1053 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1054 return MDS->getString().equals("branch_weights"); 1055 1056 return false; 1057 } 1058 1059 /// Get Weights of a given terminator, the default weight is at the front 1060 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1061 /// metadata. 1062 static void GetBranchWeights(Instruction *TI, 1063 SmallVectorImpl<uint64_t> &Weights) { 1064 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1065 assert(MD); 1066 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1067 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1068 Weights.push_back(CI->getValue().getZExtValue()); 1069 } 1070 1071 // If TI is a conditional eq, the default case is the false case, 1072 // and the corresponding branch-weight data is at index 2. We swap the 1073 // default weight to be the first entry. 1074 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1075 assert(Weights.size() == 2); 1076 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1077 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1078 std::swap(Weights.front(), Weights.back()); 1079 } 1080 } 1081 1082 /// Keep halving the weights until all can fit in uint32_t. 1083 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1084 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1085 if (Max > UINT_MAX) { 1086 unsigned Offset = 32 - countLeadingZeros(Max); 1087 for (uint64_t &I : Weights) 1088 I >>= Offset; 1089 } 1090 } 1091 1092 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1093 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1094 Instruction *PTI = PredBlock->getTerminator(); 1095 1096 // If we have bonus instructions, clone them into the predecessor block. 1097 // Note that there may be multiple predecessor blocks, so we cannot move 1098 // bonus instructions to a predecessor block. 1099 for (Instruction &BonusInst : *BB) { 1100 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1101 continue; 1102 1103 Instruction *NewBonusInst = BonusInst.clone(); 1104 1105 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1106 // Unless the instruction has the same !dbg location as the original 1107 // branch, drop it. When we fold the bonus instructions we want to make 1108 // sure we reset their debug locations in order to avoid stepping on 1109 // dead code caused by folding dead branches. 1110 NewBonusInst->setDebugLoc(DebugLoc()); 1111 } 1112 1113 RemapInstruction(NewBonusInst, VMap, 1114 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1115 VMap[&BonusInst] = NewBonusInst; 1116 1117 // If we moved a load, we cannot any longer claim any knowledge about 1118 // its potential value. The previous information might have been valid 1119 // only given the branch precondition. 1120 // For an analogous reason, we must also drop all the metadata whose 1121 // semantics we don't understand. We *can* preserve !annotation, because 1122 // it is tied to the instruction itself, not the value or position. 1123 // Similarly strip attributes on call parameters that may cause UB in 1124 // location the call is moved to. 1125 NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata( 1126 LLVMContext::MD_annotation); 1127 1128 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1129 NewBonusInst->takeName(&BonusInst); 1130 BonusInst.setName(NewBonusInst->getName() + ".old"); 1131 1132 // Update (liveout) uses of bonus instructions, 1133 // now that the bonus instruction has been cloned into predecessor. 1134 // Note that we expect to be in a block-closed SSA form for this to work! 1135 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1136 auto *UI = cast<Instruction>(U.getUser()); 1137 auto *PN = dyn_cast<PHINode>(UI); 1138 if (!PN) { 1139 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1140 "If the user is not a PHI node, then it should be in the same " 1141 "block as, and come after, the original bonus instruction."); 1142 continue; // Keep using the original bonus instruction. 1143 } 1144 // Is this the block-closed SSA form PHI node? 1145 if (PN->getIncomingBlock(U) == BB) 1146 continue; // Great, keep using the original bonus instruction. 1147 // The only other alternative is an "use" when coming from 1148 // the predecessor block - here we should refer to the cloned bonus instr. 1149 assert(PN->getIncomingBlock(U) == PredBlock && 1150 "Not in block-closed SSA form?"); 1151 U.set(NewBonusInst); 1152 } 1153 } 1154 } 1155 1156 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1157 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1158 BasicBlock *BB = TI->getParent(); 1159 BasicBlock *Pred = PTI->getParent(); 1160 1161 SmallVector<DominatorTree::UpdateType, 32> Updates; 1162 1163 // Figure out which 'cases' to copy from SI to PSI. 1164 std::vector<ValueEqualityComparisonCase> BBCases; 1165 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1166 1167 std::vector<ValueEqualityComparisonCase> PredCases; 1168 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1169 1170 // Based on whether the default edge from PTI goes to BB or not, fill in 1171 // PredCases and PredDefault with the new switch cases we would like to 1172 // build. 1173 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1174 1175 // Update the branch weight metadata along the way 1176 SmallVector<uint64_t, 8> Weights; 1177 bool PredHasWeights = HasBranchWeights(PTI); 1178 bool SuccHasWeights = HasBranchWeights(TI); 1179 1180 if (PredHasWeights) { 1181 GetBranchWeights(PTI, Weights); 1182 // branch-weight metadata is inconsistent here. 1183 if (Weights.size() != 1 + PredCases.size()) 1184 PredHasWeights = SuccHasWeights = false; 1185 } else if (SuccHasWeights) 1186 // If there are no predecessor weights but there are successor weights, 1187 // populate Weights with 1, which will later be scaled to the sum of 1188 // successor's weights 1189 Weights.assign(1 + PredCases.size(), 1); 1190 1191 SmallVector<uint64_t, 8> SuccWeights; 1192 if (SuccHasWeights) { 1193 GetBranchWeights(TI, SuccWeights); 1194 // branch-weight metadata is inconsistent here. 1195 if (SuccWeights.size() != 1 + BBCases.size()) 1196 PredHasWeights = SuccHasWeights = false; 1197 } else if (PredHasWeights) 1198 SuccWeights.assign(1 + BBCases.size(), 1); 1199 1200 if (PredDefault == BB) { 1201 // If this is the default destination from PTI, only the edges in TI 1202 // that don't occur in PTI, or that branch to BB will be activated. 1203 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1204 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1205 if (PredCases[i].Dest != BB) 1206 PTIHandled.insert(PredCases[i].Value); 1207 else { 1208 // The default destination is BB, we don't need explicit targets. 1209 std::swap(PredCases[i], PredCases.back()); 1210 1211 if (PredHasWeights || SuccHasWeights) { 1212 // Increase weight for the default case. 1213 Weights[0] += Weights[i + 1]; 1214 std::swap(Weights[i + 1], Weights.back()); 1215 Weights.pop_back(); 1216 } 1217 1218 PredCases.pop_back(); 1219 --i; 1220 --e; 1221 } 1222 1223 // Reconstruct the new switch statement we will be building. 1224 if (PredDefault != BBDefault) { 1225 PredDefault->removePredecessor(Pred); 1226 if (DTU && PredDefault != BB) 1227 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1228 PredDefault = BBDefault; 1229 ++NewSuccessors[BBDefault]; 1230 } 1231 1232 unsigned CasesFromPred = Weights.size(); 1233 uint64_t ValidTotalSuccWeight = 0; 1234 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1235 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1236 PredCases.push_back(BBCases[i]); 1237 ++NewSuccessors[BBCases[i].Dest]; 1238 if (SuccHasWeights || PredHasWeights) { 1239 // The default weight is at index 0, so weight for the ith case 1240 // should be at index i+1. Scale the cases from successor by 1241 // PredDefaultWeight (Weights[0]). 1242 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1243 ValidTotalSuccWeight += SuccWeights[i + 1]; 1244 } 1245 } 1246 1247 if (SuccHasWeights || PredHasWeights) { 1248 ValidTotalSuccWeight += SuccWeights[0]; 1249 // Scale the cases from predecessor by ValidTotalSuccWeight. 1250 for (unsigned i = 1; i < CasesFromPred; ++i) 1251 Weights[i] *= ValidTotalSuccWeight; 1252 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1253 Weights[0] *= SuccWeights[0]; 1254 } 1255 } else { 1256 // If this is not the default destination from PSI, only the edges 1257 // in SI that occur in PSI with a destination of BB will be 1258 // activated. 1259 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1260 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1261 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1262 if (PredCases[i].Dest == BB) { 1263 PTIHandled.insert(PredCases[i].Value); 1264 1265 if (PredHasWeights || SuccHasWeights) { 1266 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1267 std::swap(Weights[i + 1], Weights.back()); 1268 Weights.pop_back(); 1269 } 1270 1271 std::swap(PredCases[i], PredCases.back()); 1272 PredCases.pop_back(); 1273 --i; 1274 --e; 1275 } 1276 1277 // Okay, now we know which constants were sent to BB from the 1278 // predecessor. Figure out where they will all go now. 1279 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1280 if (PTIHandled.count(BBCases[i].Value)) { 1281 // If this is one we are capable of getting... 1282 if (PredHasWeights || SuccHasWeights) 1283 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1284 PredCases.push_back(BBCases[i]); 1285 ++NewSuccessors[BBCases[i].Dest]; 1286 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1287 } 1288 1289 // If there are any constants vectored to BB that TI doesn't handle, 1290 // they must go to the default destination of TI. 1291 for (ConstantInt *I : PTIHandled) { 1292 if (PredHasWeights || SuccHasWeights) 1293 Weights.push_back(WeightsForHandled[I]); 1294 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1295 ++NewSuccessors[BBDefault]; 1296 } 1297 } 1298 1299 // Okay, at this point, we know which new successor Pred will get. Make 1300 // sure we update the number of entries in the PHI nodes for these 1301 // successors. 1302 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1303 if (DTU) { 1304 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1305 Updates.reserve(Updates.size() + NewSuccessors.size()); 1306 } 1307 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1308 NewSuccessors) { 1309 for (auto I : seq(0, NewSuccessor.second)) { 1310 (void)I; 1311 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1312 } 1313 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1314 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1315 } 1316 1317 Builder.SetInsertPoint(PTI); 1318 // Convert pointer to int before we switch. 1319 if (CV->getType()->isPointerTy()) { 1320 CV = 1321 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1322 } 1323 1324 // Now that the successors are updated, create the new Switch instruction. 1325 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1326 NewSI->setDebugLoc(PTI->getDebugLoc()); 1327 for (ValueEqualityComparisonCase &V : PredCases) 1328 NewSI->addCase(V.Value, V.Dest); 1329 1330 if (PredHasWeights || SuccHasWeights) { 1331 // Halve the weights if any of them cannot fit in an uint32_t 1332 FitWeights(Weights); 1333 1334 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1335 1336 setBranchWeights(NewSI, MDWeights); 1337 } 1338 1339 EraseTerminatorAndDCECond(PTI); 1340 1341 // Okay, last check. If BB is still a successor of PSI, then we must 1342 // have an infinite loop case. If so, add an infinitely looping block 1343 // to handle the case to preserve the behavior of the code. 1344 BasicBlock *InfLoopBlock = nullptr; 1345 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1346 if (NewSI->getSuccessor(i) == BB) { 1347 if (!InfLoopBlock) { 1348 // Insert it at the end of the function, because it's either code, 1349 // or it won't matter if it's hot. :) 1350 InfLoopBlock = 1351 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1352 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1353 if (DTU) 1354 Updates.push_back( 1355 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1356 } 1357 NewSI->setSuccessor(i, InfLoopBlock); 1358 } 1359 1360 if (DTU) { 1361 if (InfLoopBlock) 1362 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1363 1364 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1365 1366 DTU->applyUpdates(Updates); 1367 } 1368 1369 ++NumFoldValueComparisonIntoPredecessors; 1370 return true; 1371 } 1372 1373 /// The specified terminator is a value equality comparison instruction 1374 /// (either a switch or a branch on "X == c"). 1375 /// See if any of the predecessors of the terminator block are value comparisons 1376 /// on the same value. If so, and if safe to do so, fold them together. 1377 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1378 IRBuilder<> &Builder) { 1379 BasicBlock *BB = TI->getParent(); 1380 Value *CV = isValueEqualityComparison(TI); // CondVal 1381 assert(CV && "Not a comparison?"); 1382 1383 bool Changed = false; 1384 1385 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1386 while (!Preds.empty()) { 1387 BasicBlock *Pred = Preds.pop_back_val(); 1388 Instruction *PTI = Pred->getTerminator(); 1389 1390 // Don't try to fold into itself. 1391 if (Pred == BB) 1392 continue; 1393 1394 // See if the predecessor is a comparison with the same value. 1395 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1396 if (PCV != CV) 1397 continue; 1398 1399 SmallSetVector<BasicBlock *, 4> FailBlocks; 1400 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1401 for (auto *Succ : FailBlocks) { 1402 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1403 return false; 1404 } 1405 } 1406 1407 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1408 Changed = true; 1409 } 1410 return Changed; 1411 } 1412 1413 // If we would need to insert a select that uses the value of this invoke 1414 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1415 // can't hoist the invoke, as there is nowhere to put the select in this case. 1416 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1417 Instruction *I1, Instruction *I2) { 1418 for (BasicBlock *Succ : successors(BB1)) { 1419 for (const PHINode &PN : Succ->phis()) { 1420 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1421 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1422 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1423 return false; 1424 } 1425 } 1426 } 1427 return true; 1428 } 1429 1430 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1431 1432 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1433 /// in the two blocks up into the branch block. The caller of this function 1434 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1435 /// only perform hoisting in case both blocks only contain a terminator. In that 1436 /// case, only the original BI will be replaced and selects for PHIs are added. 1437 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1438 const TargetTransformInfo &TTI, 1439 bool EqTermsOnly) { 1440 // This does very trivial matching, with limited scanning, to find identical 1441 // instructions in the two blocks. In particular, we don't want to get into 1442 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1443 // such, we currently just scan for obviously identical instructions in an 1444 // identical order. 1445 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1446 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1447 1448 // If either of the blocks has it's address taken, then we can't do this fold, 1449 // because the code we'd hoist would no longer run when we jump into the block 1450 // by it's address. 1451 if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) 1452 return false; 1453 1454 BasicBlock::iterator BB1_Itr = BB1->begin(); 1455 BasicBlock::iterator BB2_Itr = BB2->begin(); 1456 1457 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1458 // Skip debug info if it is not identical. 1459 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1460 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1461 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1462 while (isa<DbgInfoIntrinsic>(I1)) 1463 I1 = &*BB1_Itr++; 1464 while (isa<DbgInfoIntrinsic>(I2)) 1465 I2 = &*BB2_Itr++; 1466 } 1467 // FIXME: Can we define a safety predicate for CallBr? 1468 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1469 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1470 isa<CallBrInst>(I1)) 1471 return false; 1472 1473 BasicBlock *BIParent = BI->getParent(); 1474 1475 bool Changed = false; 1476 1477 auto _ = make_scope_exit([&]() { 1478 if (Changed) 1479 ++NumHoistCommonCode; 1480 }); 1481 1482 // Check if only hoisting terminators is allowed. This does not add new 1483 // instructions to the hoist location. 1484 if (EqTermsOnly) { 1485 // Skip any debug intrinsics, as they are free to hoist. 1486 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1487 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1488 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1489 return false; 1490 if (!I1NonDbg->isTerminator()) 1491 return false; 1492 // Now we know that we only need to hoist debug instrinsics and the 1493 // terminator. Let the loop below handle those 2 cases. 1494 } 1495 1496 do { 1497 // If we are hoisting the terminator instruction, don't move one (making a 1498 // broken BB), instead clone it, and remove BI. 1499 if (I1->isTerminator()) 1500 goto HoistTerminator; 1501 1502 // If we're going to hoist a call, make sure that the two instructions we're 1503 // commoning/hoisting are both marked with musttail, or neither of them is 1504 // marked as such. Otherwise, we might end up in a situation where we hoist 1505 // from a block where the terminator is a `ret` to a block where the terminator 1506 // is a `br`, and `musttail` calls expect to be followed by a return. 1507 auto *C1 = dyn_cast<CallInst>(I1); 1508 auto *C2 = dyn_cast<CallInst>(I2); 1509 if (C1 && C2) 1510 if (C1->isMustTailCall() != C2->isMustTailCall()) 1511 return Changed; 1512 1513 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1514 return Changed; 1515 1516 // If any of the two call sites has nomerge attribute, stop hoisting. 1517 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1518 if (CB1->cannotMerge()) 1519 return Changed; 1520 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1521 if (CB2->cannotMerge()) 1522 return Changed; 1523 1524 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1525 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1526 // The debug location is an integral part of a debug info intrinsic 1527 // and can't be separated from it or replaced. Instead of attempting 1528 // to merge locations, simply hoist both copies of the intrinsic. 1529 BIParent->getInstList().splice(BI->getIterator(), 1530 BB1->getInstList(), I1); 1531 BIParent->getInstList().splice(BI->getIterator(), 1532 BB2->getInstList(), I2); 1533 Changed = true; 1534 } else { 1535 // For a normal instruction, we just move one to right before the branch, 1536 // then replace all uses of the other with the first. Finally, we remove 1537 // the now redundant second instruction. 1538 BIParent->getInstList().splice(BI->getIterator(), 1539 BB1->getInstList(), I1); 1540 if (!I2->use_empty()) 1541 I2->replaceAllUsesWith(I1); 1542 I1->andIRFlags(I2); 1543 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1544 LLVMContext::MD_range, 1545 LLVMContext::MD_fpmath, 1546 LLVMContext::MD_invariant_load, 1547 LLVMContext::MD_nonnull, 1548 LLVMContext::MD_invariant_group, 1549 LLVMContext::MD_align, 1550 LLVMContext::MD_dereferenceable, 1551 LLVMContext::MD_dereferenceable_or_null, 1552 LLVMContext::MD_mem_parallel_loop_access, 1553 LLVMContext::MD_access_group, 1554 LLVMContext::MD_preserve_access_index}; 1555 combineMetadata(I1, I2, KnownIDs, true); 1556 1557 // I1 and I2 are being combined into a single instruction. Its debug 1558 // location is the merged locations of the original instructions. 1559 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1560 1561 I2->eraseFromParent(); 1562 Changed = true; 1563 } 1564 ++NumHoistCommonInstrs; 1565 1566 I1 = &*BB1_Itr++; 1567 I2 = &*BB2_Itr++; 1568 // Skip debug info if it is not identical. 1569 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1570 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1571 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1572 while (isa<DbgInfoIntrinsic>(I1)) 1573 I1 = &*BB1_Itr++; 1574 while (isa<DbgInfoIntrinsic>(I2)) 1575 I2 = &*BB2_Itr++; 1576 } 1577 } while (I1->isIdenticalToWhenDefined(I2)); 1578 1579 return true; 1580 1581 HoistTerminator: 1582 // It may not be possible to hoist an invoke. 1583 // FIXME: Can we define a safety predicate for CallBr? 1584 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1585 return Changed; 1586 1587 // TODO: callbr hoisting currently disabled pending further study. 1588 if (isa<CallBrInst>(I1)) 1589 return Changed; 1590 1591 for (BasicBlock *Succ : successors(BB1)) { 1592 for (PHINode &PN : Succ->phis()) { 1593 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1594 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1595 if (BB1V == BB2V) 1596 continue; 1597 1598 // Check for passingValueIsAlwaysUndefined here because we would rather 1599 // eliminate undefined control flow then converting it to a select. 1600 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1601 passingValueIsAlwaysUndefined(BB2V, &PN)) 1602 return Changed; 1603 1604 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1605 return Changed; 1606 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1607 return Changed; 1608 } 1609 } 1610 1611 // Okay, it is safe to hoist the terminator. 1612 Instruction *NT = I1->clone(); 1613 BIParent->getInstList().insert(BI->getIterator(), NT); 1614 if (!NT->getType()->isVoidTy()) { 1615 I1->replaceAllUsesWith(NT); 1616 I2->replaceAllUsesWith(NT); 1617 NT->takeName(I1); 1618 } 1619 Changed = true; 1620 ++NumHoistCommonInstrs; 1621 1622 // Ensure terminator gets a debug location, even an unknown one, in case 1623 // it involves inlinable calls. 1624 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1625 1626 // PHIs created below will adopt NT's merged DebugLoc. 1627 IRBuilder<NoFolder> Builder(NT); 1628 1629 // Hoisting one of the terminators from our successor is a great thing. 1630 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1631 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1632 // nodes, so we insert select instruction to compute the final result. 1633 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1634 for (BasicBlock *Succ : successors(BB1)) { 1635 for (PHINode &PN : Succ->phis()) { 1636 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1637 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1638 if (BB1V == BB2V) 1639 continue; 1640 1641 // These values do not agree. Insert a select instruction before NT 1642 // that determines the right value. 1643 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1644 if (!SI) { 1645 // Propagate fast-math-flags from phi node to its replacement select. 1646 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1647 if (isa<FPMathOperator>(PN)) 1648 Builder.setFastMathFlags(PN.getFastMathFlags()); 1649 1650 SI = cast<SelectInst>( 1651 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1652 BB1V->getName() + "." + BB2V->getName(), BI)); 1653 } 1654 1655 // Make the PHI node use the select for all incoming values for BB1/BB2 1656 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1657 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1658 PN.setIncomingValue(i, SI); 1659 } 1660 } 1661 1662 SmallVector<DominatorTree::UpdateType, 4> Updates; 1663 1664 // Update any PHI nodes in our new successors. 1665 for (BasicBlock *Succ : successors(BB1)) { 1666 AddPredecessorToBlock(Succ, BIParent, BB1); 1667 if (DTU) 1668 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1669 } 1670 1671 if (DTU) 1672 for (BasicBlock *Succ : successors(BI)) 1673 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1674 1675 EraseTerminatorAndDCECond(BI); 1676 if (DTU) 1677 DTU->applyUpdates(Updates); 1678 return Changed; 1679 } 1680 1681 // Check lifetime markers. 1682 static bool isLifeTimeMarker(const Instruction *I) { 1683 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1684 switch (II->getIntrinsicID()) { 1685 default: 1686 break; 1687 case Intrinsic::lifetime_start: 1688 case Intrinsic::lifetime_end: 1689 return true; 1690 } 1691 } 1692 return false; 1693 } 1694 1695 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1696 // into variables. 1697 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1698 int OpIdx) { 1699 return !isa<IntrinsicInst>(I); 1700 } 1701 1702 // All instructions in Insts belong to different blocks that all unconditionally 1703 // branch to a common successor. Analyze each instruction and return true if it 1704 // would be possible to sink them into their successor, creating one common 1705 // instruction instead. For every value that would be required to be provided by 1706 // PHI node (because an operand varies in each input block), add to PHIOperands. 1707 static bool canSinkInstructions( 1708 ArrayRef<Instruction *> Insts, 1709 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1710 // Prune out obviously bad instructions to move. Each instruction must have 1711 // exactly zero or one use, and we check later that use is by a single, common 1712 // PHI instruction in the successor. 1713 bool HasUse = !Insts.front()->user_empty(); 1714 for (auto *I : Insts) { 1715 // These instructions may change or break semantics if moved. 1716 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1717 I->getType()->isTokenTy()) 1718 return false; 1719 1720 // Do not try to sink an instruction in an infinite loop - it can cause 1721 // this algorithm to infinite loop. 1722 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1723 return false; 1724 1725 // Conservatively return false if I is an inline-asm instruction. Sinking 1726 // and merging inline-asm instructions can potentially create arguments 1727 // that cannot satisfy the inline-asm constraints. 1728 // If the instruction has nomerge attribute, return false. 1729 if (const auto *C = dyn_cast<CallBase>(I)) 1730 if (C->isInlineAsm() || C->cannotMerge()) 1731 return false; 1732 1733 // Each instruction must have zero or one use. 1734 if (HasUse && !I->hasOneUse()) 1735 return false; 1736 if (!HasUse && !I->user_empty()) 1737 return false; 1738 } 1739 1740 const Instruction *I0 = Insts.front(); 1741 for (auto *I : Insts) 1742 if (!I->isSameOperationAs(I0)) 1743 return false; 1744 1745 // All instructions in Insts are known to be the same opcode. If they have a 1746 // use, check that the only user is a PHI or in the same block as the 1747 // instruction, because if a user is in the same block as an instruction we're 1748 // contemplating sinking, it must already be determined to be sinkable. 1749 if (HasUse) { 1750 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1751 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1752 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1753 auto *U = cast<Instruction>(*I->user_begin()); 1754 return (PNUse && 1755 PNUse->getParent() == Succ && 1756 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1757 U->getParent() == I->getParent(); 1758 })) 1759 return false; 1760 } 1761 1762 // Because SROA can't handle speculating stores of selects, try not to sink 1763 // loads, stores or lifetime markers of allocas when we'd have to create a 1764 // PHI for the address operand. Also, because it is likely that loads or 1765 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1766 // them. 1767 // This can cause code churn which can have unintended consequences down 1768 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1769 // FIXME: This is a workaround for a deficiency in SROA - see 1770 // https://llvm.org/bugs/show_bug.cgi?id=30188 1771 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1772 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1773 })) 1774 return false; 1775 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1776 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1777 })) 1778 return false; 1779 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1780 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1781 })) 1782 return false; 1783 1784 // For calls to be sinkable, they must all be indirect, or have same callee. 1785 // I.e. if we have two direct calls to different callees, we don't want to 1786 // turn that into an indirect call. Likewise, if we have an indirect call, 1787 // and a direct call, we don't actually want to have a single indirect call. 1788 if (isa<CallBase>(I0)) { 1789 auto IsIndirectCall = [](const Instruction *I) { 1790 return cast<CallBase>(I)->isIndirectCall(); 1791 }; 1792 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1793 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1794 if (HaveIndirectCalls) { 1795 if (!AllCallsAreIndirect) 1796 return false; 1797 } else { 1798 // All callees must be identical. 1799 Value *Callee = nullptr; 1800 for (const Instruction *I : Insts) { 1801 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1802 if (!Callee) 1803 Callee = CurrCallee; 1804 else if (Callee != CurrCallee) 1805 return false; 1806 } 1807 } 1808 } 1809 1810 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1811 Value *Op = I0->getOperand(OI); 1812 if (Op->getType()->isTokenTy()) 1813 // Don't touch any operand of token type. 1814 return false; 1815 1816 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1817 assert(I->getNumOperands() == I0->getNumOperands()); 1818 return I->getOperand(OI) == I0->getOperand(OI); 1819 }; 1820 if (!all_of(Insts, SameAsI0)) { 1821 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1822 !canReplaceOperandWithVariable(I0, OI)) 1823 // We can't create a PHI from this GEP. 1824 return false; 1825 for (auto *I : Insts) 1826 PHIOperands[I].push_back(I->getOperand(OI)); 1827 } 1828 } 1829 return true; 1830 } 1831 1832 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1833 // instruction of every block in Blocks to their common successor, commoning 1834 // into one instruction. 1835 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1836 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1837 1838 // canSinkInstructions returning true guarantees that every block has at 1839 // least one non-terminator instruction. 1840 SmallVector<Instruction*,4> Insts; 1841 for (auto *BB : Blocks) { 1842 Instruction *I = BB->getTerminator(); 1843 do { 1844 I = I->getPrevNode(); 1845 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1846 if (!isa<DbgInfoIntrinsic>(I)) 1847 Insts.push_back(I); 1848 } 1849 1850 // The only checking we need to do now is that all users of all instructions 1851 // are the same PHI node. canSinkInstructions should have checked this but 1852 // it is slightly over-aggressive - it gets confused by commutative 1853 // instructions so double-check it here. 1854 Instruction *I0 = Insts.front(); 1855 if (!I0->user_empty()) { 1856 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1857 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1858 auto *U = cast<Instruction>(*I->user_begin()); 1859 return U == PNUse; 1860 })) 1861 return false; 1862 } 1863 1864 // We don't need to do any more checking here; canSinkInstructions should 1865 // have done it all for us. 1866 SmallVector<Value*, 4> NewOperands; 1867 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1868 // This check is different to that in canSinkInstructions. There, we 1869 // cared about the global view once simplifycfg (and instcombine) have 1870 // completed - it takes into account PHIs that become trivially 1871 // simplifiable. However here we need a more local view; if an operand 1872 // differs we create a PHI and rely on instcombine to clean up the very 1873 // small mess we may make. 1874 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1875 return I->getOperand(O) != I0->getOperand(O); 1876 }); 1877 if (!NeedPHI) { 1878 NewOperands.push_back(I0->getOperand(O)); 1879 continue; 1880 } 1881 1882 // Create a new PHI in the successor block and populate it. 1883 auto *Op = I0->getOperand(O); 1884 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1885 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1886 Op->getName() + ".sink", &BBEnd->front()); 1887 for (auto *I : Insts) 1888 PN->addIncoming(I->getOperand(O), I->getParent()); 1889 NewOperands.push_back(PN); 1890 } 1891 1892 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1893 // and move it to the start of the successor block. 1894 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1895 I0->getOperandUse(O).set(NewOperands[O]); 1896 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1897 1898 // Update metadata and IR flags, and merge debug locations. 1899 for (auto *I : Insts) 1900 if (I != I0) { 1901 // The debug location for the "common" instruction is the merged locations 1902 // of all the commoned instructions. We start with the original location 1903 // of the "common" instruction and iteratively merge each location in the 1904 // loop below. 1905 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1906 // However, as N-way merge for CallInst is rare, so we use simplified API 1907 // instead of using complex API for N-way merge. 1908 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1909 combineMetadataForCSE(I0, I, true); 1910 I0->andIRFlags(I); 1911 } 1912 1913 if (!I0->user_empty()) { 1914 // canSinkLastInstruction checked that all instructions were used by 1915 // one and only one PHI node. Find that now, RAUW it to our common 1916 // instruction and nuke it. 1917 auto *PN = cast<PHINode>(*I0->user_begin()); 1918 PN->replaceAllUsesWith(I0); 1919 PN->eraseFromParent(); 1920 } 1921 1922 // Finally nuke all instructions apart from the common instruction. 1923 for (auto *I : Insts) 1924 if (I != I0) 1925 I->eraseFromParent(); 1926 1927 return true; 1928 } 1929 1930 namespace { 1931 1932 // LockstepReverseIterator - Iterates through instructions 1933 // in a set of blocks in reverse order from the first non-terminator. 1934 // For example (assume all blocks have size n): 1935 // LockstepReverseIterator I([B1, B2, B3]); 1936 // *I-- = [B1[n], B2[n], B3[n]]; 1937 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1938 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1939 // ... 1940 class LockstepReverseIterator { 1941 ArrayRef<BasicBlock*> Blocks; 1942 SmallVector<Instruction*,4> Insts; 1943 bool Fail; 1944 1945 public: 1946 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1947 reset(); 1948 } 1949 1950 void reset() { 1951 Fail = false; 1952 Insts.clear(); 1953 for (auto *BB : Blocks) { 1954 Instruction *Inst = BB->getTerminator(); 1955 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1956 Inst = Inst->getPrevNode(); 1957 if (!Inst) { 1958 // Block wasn't big enough. 1959 Fail = true; 1960 return; 1961 } 1962 Insts.push_back(Inst); 1963 } 1964 } 1965 1966 bool isValid() const { 1967 return !Fail; 1968 } 1969 1970 void operator--() { 1971 if (Fail) 1972 return; 1973 for (auto *&Inst : Insts) { 1974 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1975 Inst = Inst->getPrevNode(); 1976 // Already at beginning of block. 1977 if (!Inst) { 1978 Fail = true; 1979 return; 1980 } 1981 } 1982 } 1983 1984 void operator++() { 1985 if (Fail) 1986 return; 1987 for (auto *&Inst : Insts) { 1988 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1989 Inst = Inst->getNextNode(); 1990 // Already at end of block. 1991 if (!Inst) { 1992 Fail = true; 1993 return; 1994 } 1995 } 1996 } 1997 1998 ArrayRef<Instruction*> operator * () const { 1999 return Insts; 2000 } 2001 }; 2002 2003 } // end anonymous namespace 2004 2005 /// Check whether BB's predecessors end with unconditional branches. If it is 2006 /// true, sink any common code from the predecessors to BB. 2007 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 2008 DomTreeUpdater *DTU) { 2009 // We support two situations: 2010 // (1) all incoming arcs are unconditional 2011 // (2) there are non-unconditional incoming arcs 2012 // 2013 // (2) is very common in switch defaults and 2014 // else-if patterns; 2015 // 2016 // if (a) f(1); 2017 // else if (b) f(2); 2018 // 2019 // produces: 2020 // 2021 // [if] 2022 // / \ 2023 // [f(1)] [if] 2024 // | | \ 2025 // | | | 2026 // | [f(2)]| 2027 // \ | / 2028 // [ end ] 2029 // 2030 // [end] has two unconditional predecessor arcs and one conditional. The 2031 // conditional refers to the implicit empty 'else' arc. This conditional 2032 // arc can also be caused by an empty default block in a switch. 2033 // 2034 // In this case, we attempt to sink code from all *unconditional* arcs. 2035 // If we can sink instructions from these arcs (determined during the scan 2036 // phase below) we insert a common successor for all unconditional arcs and 2037 // connect that to [end], to enable sinking: 2038 // 2039 // [if] 2040 // / \ 2041 // [x(1)] [if] 2042 // | | \ 2043 // | | \ 2044 // | [x(2)] | 2045 // \ / | 2046 // [sink.split] | 2047 // \ / 2048 // [ end ] 2049 // 2050 SmallVector<BasicBlock*,4> UnconditionalPreds; 2051 bool HaveNonUnconditionalPredecessors = false; 2052 for (auto *PredBB : predecessors(BB)) { 2053 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2054 if (PredBr && PredBr->isUnconditional()) 2055 UnconditionalPreds.push_back(PredBB); 2056 else 2057 HaveNonUnconditionalPredecessors = true; 2058 } 2059 if (UnconditionalPreds.size() < 2) 2060 return false; 2061 2062 // We take a two-step approach to tail sinking. First we scan from the end of 2063 // each block upwards in lockstep. If the n'th instruction from the end of each 2064 // block can be sunk, those instructions are added to ValuesToSink and we 2065 // carry on. If we can sink an instruction but need to PHI-merge some operands 2066 // (because they're not identical in each instruction) we add these to 2067 // PHIOperands. 2068 int ScanIdx = 0; 2069 SmallPtrSet<Value*,4> InstructionsToSink; 2070 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2071 LockstepReverseIterator LRI(UnconditionalPreds); 2072 while (LRI.isValid() && 2073 canSinkInstructions(*LRI, PHIOperands)) { 2074 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2075 << "\n"); 2076 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2077 ++ScanIdx; 2078 --LRI; 2079 } 2080 2081 // If no instructions can be sunk, early-return. 2082 if (ScanIdx == 0) 2083 return false; 2084 2085 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2086 2087 if (!followedByDeoptOrUnreachable) { 2088 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2089 // actually sink before encountering instruction that is unprofitable to 2090 // sink? 2091 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2092 unsigned NumPHIdValues = 0; 2093 for (auto *I : *LRI) 2094 for (auto *V : PHIOperands[I]) { 2095 if (!InstructionsToSink.contains(V)) 2096 ++NumPHIdValues; 2097 // FIXME: this check is overly optimistic. We may end up not sinking 2098 // said instruction, due to the very same profitability check. 2099 // See @creating_too_many_phis in sink-common-code.ll. 2100 } 2101 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2102 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2103 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2104 NumPHIInsts++; 2105 2106 return NumPHIInsts <= 1; 2107 }; 2108 2109 // We've determined that we are going to sink last ScanIdx instructions, 2110 // and recorded them in InstructionsToSink. Now, some instructions may be 2111 // unprofitable to sink. But that determination depends on the instructions 2112 // that we are going to sink. 2113 2114 // First, forward scan: find the first instruction unprofitable to sink, 2115 // recording all the ones that are profitable to sink. 2116 // FIXME: would it be better, after we detect that not all are profitable. 2117 // to either record the profitable ones, or erase the unprofitable ones? 2118 // Maybe we need to choose (at runtime) the one that will touch least 2119 // instrs? 2120 LRI.reset(); 2121 int Idx = 0; 2122 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2123 while (Idx < ScanIdx) { 2124 if (!ProfitableToSinkInstruction(LRI)) { 2125 // Too many PHIs would be created. 2126 LLVM_DEBUG( 2127 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2128 break; 2129 } 2130 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2131 --LRI; 2132 ++Idx; 2133 } 2134 2135 // If no instructions can be sunk, early-return. 2136 if (Idx == 0) 2137 return false; 2138 2139 // Did we determine that (only) some instructions are unprofitable to sink? 2140 if (Idx < ScanIdx) { 2141 // Okay, some instructions are unprofitable. 2142 ScanIdx = Idx; 2143 InstructionsToSink = InstructionsProfitableToSink; 2144 2145 // But, that may make other instructions unprofitable, too. 2146 // So, do a backward scan, do any earlier instructions become 2147 // unprofitable? 2148 assert( 2149 !ProfitableToSinkInstruction(LRI) && 2150 "We already know that the last instruction is unprofitable to sink"); 2151 ++LRI; 2152 --Idx; 2153 while (Idx >= 0) { 2154 // If we detect that an instruction becomes unprofitable to sink, 2155 // all earlier instructions won't be sunk either, 2156 // so preemptively keep InstructionsProfitableToSink in sync. 2157 // FIXME: is this the most performant approach? 2158 for (auto *I : *LRI) 2159 InstructionsProfitableToSink.erase(I); 2160 if (!ProfitableToSinkInstruction(LRI)) { 2161 // Everything starting with this instruction won't be sunk. 2162 ScanIdx = Idx; 2163 InstructionsToSink = InstructionsProfitableToSink; 2164 } 2165 ++LRI; 2166 --Idx; 2167 } 2168 } 2169 2170 // If no instructions can be sunk, early-return. 2171 if (ScanIdx == 0) 2172 return false; 2173 } 2174 2175 bool Changed = false; 2176 2177 if (HaveNonUnconditionalPredecessors) { 2178 if (!followedByDeoptOrUnreachable) { 2179 // It is always legal to sink common instructions from unconditional 2180 // predecessors. However, if not all predecessors are unconditional, 2181 // this transformation might be pessimizing. So as a rule of thumb, 2182 // don't do it unless we'd sink at least one non-speculatable instruction. 2183 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2184 LRI.reset(); 2185 int Idx = 0; 2186 bool Profitable = false; 2187 while (Idx < ScanIdx) { 2188 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2189 Profitable = true; 2190 break; 2191 } 2192 --LRI; 2193 ++Idx; 2194 } 2195 if (!Profitable) 2196 return false; 2197 } 2198 2199 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2200 // We have a conditional edge and we're going to sink some instructions. 2201 // Insert a new block postdominating all blocks we're going to sink from. 2202 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2203 // Edges couldn't be split. 2204 return false; 2205 Changed = true; 2206 } 2207 2208 // Now that we've analyzed all potential sinking candidates, perform the 2209 // actual sink. We iteratively sink the last non-terminator of the source 2210 // blocks into their common successor unless doing so would require too 2211 // many PHI instructions to be generated (currently only one PHI is allowed 2212 // per sunk instruction). 2213 // 2214 // We can use InstructionsToSink to discount values needing PHI-merging that will 2215 // actually be sunk in a later iteration. This allows us to be more 2216 // aggressive in what we sink. This does allow a false positive where we 2217 // sink presuming a later value will also be sunk, but stop half way through 2218 // and never actually sink it which means we produce more PHIs than intended. 2219 // This is unlikely in practice though. 2220 int SinkIdx = 0; 2221 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2222 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2223 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2224 << "\n"); 2225 2226 // Because we've sunk every instruction in turn, the current instruction to 2227 // sink is always at index 0. 2228 LRI.reset(); 2229 2230 if (!sinkLastInstruction(UnconditionalPreds)) { 2231 LLVM_DEBUG( 2232 dbgs() 2233 << "SINK: stopping here, failed to actually sink instruction!\n"); 2234 break; 2235 } 2236 2237 NumSinkCommonInstrs++; 2238 Changed = true; 2239 } 2240 if (SinkIdx != 0) 2241 ++NumSinkCommonCode; 2242 return Changed; 2243 } 2244 2245 namespace { 2246 2247 struct CompatibleSets { 2248 using SetTy = SmallVector<InvokeInst *, 2>; 2249 2250 SmallVector<SetTy, 1> Sets; 2251 2252 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2253 2254 SetTy &getCompatibleSet(InvokeInst *II); 2255 2256 void insert(InvokeInst *II); 2257 }; 2258 2259 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2260 // Perform a linear scan over all the existing sets, see if the new `invoke` 2261 // is compatible with any particular set. Since we know that all the `invokes` 2262 // within a set are compatible, only check the first `invoke` in each set. 2263 // WARNING: at worst, this has quadratic complexity. 2264 for (CompatibleSets::SetTy &Set : Sets) { 2265 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2266 return Set; 2267 } 2268 2269 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2270 return Sets.emplace_back(); 2271 } 2272 2273 void CompatibleSets::insert(InvokeInst *II) { 2274 getCompatibleSet(II).emplace_back(II); 2275 } 2276 2277 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2278 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2279 2280 // Can we theoretically merge these `invoke`s? 2281 auto IsIllegalToMerge = [](InvokeInst *II) { 2282 return II->cannotMerge() || II->isInlineAsm(); 2283 }; 2284 if (any_of(Invokes, IsIllegalToMerge)) 2285 return false; 2286 2287 // Either both `invoke`s must be direct, 2288 // or both `invoke`s must be indirect. 2289 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2290 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2291 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2292 if (HaveIndirectCalls) { 2293 if (!AllCallsAreIndirect) 2294 return false; 2295 } else { 2296 // All callees must be identical. 2297 Value *Callee = nullptr; 2298 for (InvokeInst *II : Invokes) { 2299 Value *CurrCallee = II->getCalledOperand(); 2300 assert(CurrCallee && "There is always a called operand."); 2301 if (!Callee) 2302 Callee = CurrCallee; 2303 else if (Callee != CurrCallee) 2304 return false; 2305 } 2306 } 2307 2308 // Either both `invoke`s must not have a normal destination, 2309 // or both `invoke`s must have a normal destination, 2310 auto HasNormalDest = [](InvokeInst *II) { 2311 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2312 }; 2313 if (any_of(Invokes, HasNormalDest)) { 2314 // Do not merge `invoke` that does not have a normal destination with one 2315 // that does have a normal destination, even though doing so would be legal. 2316 if (!all_of(Invokes, HasNormalDest)) 2317 return false; 2318 2319 // All normal destinations must be identical. 2320 BasicBlock *NormalBB = nullptr; 2321 for (InvokeInst *II : Invokes) { 2322 BasicBlock *CurrNormalBB = II->getNormalDest(); 2323 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2324 if (!NormalBB) 2325 NormalBB = CurrNormalBB; 2326 else if (NormalBB != CurrNormalBB) 2327 return false; 2328 } 2329 2330 // In the normal destination, the incoming values for these two `invoke`s 2331 // must be compatible. 2332 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2333 if (!IncomingValuesAreCompatible( 2334 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2335 &EquivalenceSet)) 2336 return false; 2337 } 2338 2339 #ifndef NDEBUG 2340 // All unwind destinations must be identical. 2341 // We know that because we have started from said unwind destination. 2342 BasicBlock *UnwindBB = nullptr; 2343 for (InvokeInst *II : Invokes) { 2344 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2345 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2346 if (!UnwindBB) 2347 UnwindBB = CurrUnwindBB; 2348 else 2349 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2350 } 2351 #endif 2352 2353 // In the unwind destination, the incoming values for these two `invoke`s 2354 // must be compatible. 2355 if (!IncomingValuesAreCompatible( 2356 Invokes.front()->getUnwindDest(), 2357 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2358 return false; 2359 2360 // Ignoring arguments, these `invoke`s must be identical, 2361 // including operand bundles. 2362 const InvokeInst *II0 = Invokes.front(); 2363 for (auto *II : Invokes.drop_front()) 2364 if (!II->isSameOperationAs(II0)) 2365 return false; 2366 2367 // Can we theoretically form the data operands for the merged `invoke`? 2368 auto IsIllegalToMergeArguments = [](auto Ops) { 2369 Type *Ty = std::get<0>(Ops)->getType(); 2370 assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?"); 2371 return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops); 2372 }; 2373 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2374 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2375 IsIllegalToMergeArguments)) 2376 return false; 2377 2378 return true; 2379 } 2380 2381 } // namespace 2382 2383 // Merge all invokes in the provided set, all of which are compatible 2384 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2385 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2386 DomTreeUpdater *DTU) { 2387 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2388 2389 SmallVector<DominatorTree::UpdateType, 8> Updates; 2390 if (DTU) 2391 Updates.reserve(2 + 3 * Invokes.size()); 2392 2393 bool HasNormalDest = 2394 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2395 2396 // Clone one of the invokes into a new basic block. 2397 // Since they are all compatible, it doesn't matter which invoke is cloned. 2398 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2399 InvokeInst *II0 = Invokes.front(); 2400 BasicBlock *II0BB = II0->getParent(); 2401 BasicBlock *InsertBeforeBlock = 2402 II0->getParent()->getIterator()->getNextNode(); 2403 Function *Func = II0BB->getParent(); 2404 LLVMContext &Ctx = II0->getContext(); 2405 2406 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2407 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2408 2409 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2410 // NOTE: all invokes have the same attributes, so no handling needed. 2411 MergedInvokeBB->getInstList().push_back(MergedInvoke); 2412 2413 if (!HasNormalDest) { 2414 // This set does not have a normal destination, 2415 // so just form a new block with unreachable terminator. 2416 BasicBlock *MergedNormalDest = BasicBlock::Create( 2417 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2418 new UnreachableInst(Ctx, MergedNormalDest); 2419 MergedInvoke->setNormalDest(MergedNormalDest); 2420 } 2421 2422 // The unwind destination, however, remainds identical for all invokes here. 2423 2424 return MergedInvoke; 2425 }(); 2426 2427 if (DTU) { 2428 // Predecessor blocks that contained these invokes will now branch to 2429 // the new block that contains the merged invoke, ... 2430 for (InvokeInst *II : Invokes) 2431 Updates.push_back( 2432 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2433 2434 // ... which has the new `unreachable` block as normal destination, 2435 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2436 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2437 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2438 SuccBBOfMergedInvoke}); 2439 2440 // Since predecessor blocks now unconditionally branch to a new block, 2441 // they no longer branch to their original successors. 2442 for (InvokeInst *II : Invokes) 2443 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2444 Updates.push_back( 2445 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2446 } 2447 2448 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2449 2450 // Form the merged operands for the merged invoke. 2451 for (Use &U : MergedInvoke->operands()) { 2452 // Only PHI together the indirect callees and data operands. 2453 if (MergedInvoke->isCallee(&U)) { 2454 if (!IsIndirectCall) 2455 continue; 2456 } else if (!MergedInvoke->isDataOperand(&U)) 2457 continue; 2458 2459 // Don't create trivial PHI's with all-identical incoming values. 2460 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2461 return II->getOperand(U.getOperandNo()) != U.get(); 2462 }); 2463 if (!NeedPHI) 2464 continue; 2465 2466 // Form a PHI out of all the data ops under this index. 2467 PHINode *PN = PHINode::Create( 2468 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke); 2469 for (InvokeInst *II : Invokes) 2470 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2471 2472 U.set(PN); 2473 } 2474 2475 // We've ensured that each PHI node has compatible (identical) incoming values 2476 // when coming from each of the `invoke`s in the current merge set, 2477 // so update the PHI nodes accordingly. 2478 for (BasicBlock *Succ : successors(MergedInvoke)) 2479 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2480 /*ExistPred=*/Invokes.front()->getParent()); 2481 2482 // And finally, replace the original `invoke`s with an unconditional branch 2483 // to the block with the merged `invoke`. Also, give that merged `invoke` 2484 // the merged debugloc of all the original `invoke`s. 2485 const DILocation *MergedDebugLoc = nullptr; 2486 for (InvokeInst *II : Invokes) { 2487 // Compute the debug location common to all the original `invoke`s. 2488 if (!MergedDebugLoc) 2489 MergedDebugLoc = II->getDebugLoc(); 2490 else 2491 MergedDebugLoc = 2492 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2493 2494 // And replace the old `invoke` with an unconditionally branch 2495 // to the block with the merged `invoke`. 2496 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2497 OrigSuccBB->removePredecessor(II->getParent()); 2498 BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2499 II->replaceAllUsesWith(MergedInvoke); 2500 II->eraseFromParent(); 2501 ++NumInvokesMerged; 2502 } 2503 MergedInvoke->setDebugLoc(MergedDebugLoc); 2504 ++NumInvokeSetsFormed; 2505 2506 if (DTU) 2507 DTU->applyUpdates(Updates); 2508 } 2509 2510 /// If this block is a `landingpad` exception handling block, categorize all 2511 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2512 /// being "mergeable" together, and then merge invokes in each set together. 2513 /// 2514 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2515 /// [...] [...] 2516 /// | | 2517 /// [invoke0] [invoke1] 2518 /// / \ / \ 2519 /// [cont0] [landingpad] [cont1] 2520 /// to: 2521 /// [...] [...] 2522 /// \ / 2523 /// [invoke] 2524 /// / \ 2525 /// [cont] [landingpad] 2526 /// 2527 /// But of course we can only do that if the invokes share the `landingpad`, 2528 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2529 /// and the invoked functions are "compatible". 2530 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2531 bool Changed = false; 2532 2533 // FIXME: generalize to all exception handling blocks? 2534 if (!BB->isLandingPad()) 2535 return Changed; 2536 2537 CompatibleSets Grouper; 2538 2539 // Record all the predecessors of this `landingpad`. As per verifier, 2540 // the only allowed predecessor is the unwind edge of an `invoke`. 2541 // We want to group "compatible" `invokes` into the same set to be merged. 2542 for (BasicBlock *PredBB : predecessors(BB)) 2543 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 2544 2545 // And now, merge `invoke`s that were grouped togeter. 2546 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 2547 if (Invokes.size() < 2) 2548 continue; 2549 Changed = true; 2550 MergeCompatibleInvokesImpl(Invokes, DTU); 2551 } 2552 2553 return Changed; 2554 } 2555 2556 /// Determine if we can hoist sink a sole store instruction out of a 2557 /// conditional block. 2558 /// 2559 /// We are looking for code like the following: 2560 /// BrBB: 2561 /// store i32 %add, i32* %arrayidx2 2562 /// ... // No other stores or function calls (we could be calling a memory 2563 /// ... // function). 2564 /// %cmp = icmp ult %x, %y 2565 /// br i1 %cmp, label %EndBB, label %ThenBB 2566 /// ThenBB: 2567 /// store i32 %add5, i32* %arrayidx2 2568 /// br label EndBB 2569 /// EndBB: 2570 /// ... 2571 /// We are going to transform this into: 2572 /// BrBB: 2573 /// store i32 %add, i32* %arrayidx2 2574 /// ... // 2575 /// %cmp = icmp ult %x, %y 2576 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2577 /// store i32 %add.add5, i32* %arrayidx2 2578 /// ... 2579 /// 2580 /// \return The pointer to the value of the previous store if the store can be 2581 /// hoisted into the predecessor block. 0 otherwise. 2582 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2583 BasicBlock *StoreBB, BasicBlock *EndBB) { 2584 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2585 if (!StoreToHoist) 2586 return nullptr; 2587 2588 // Volatile or atomic. 2589 if (!StoreToHoist->isSimple()) 2590 return nullptr; 2591 2592 Value *StorePtr = StoreToHoist->getPointerOperand(); 2593 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2594 2595 // Look for a store to the same pointer in BrBB. 2596 unsigned MaxNumInstToLookAt = 9; 2597 // Skip pseudo probe intrinsic calls which are not really killing any memory 2598 // accesses. 2599 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2600 if (!MaxNumInstToLookAt) 2601 break; 2602 --MaxNumInstToLookAt; 2603 2604 // Could be calling an instruction that affects memory like free(). 2605 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 2606 return nullptr; 2607 2608 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2609 // Found the previous store to same location and type. Make sure it is 2610 // simple, to avoid introducing a spurious non-atomic write after an 2611 // atomic write. 2612 if (SI->getPointerOperand() == StorePtr && 2613 SI->getValueOperand()->getType() == StoreTy && SI->isSimple()) 2614 // Found the previous store, return its value operand. 2615 return SI->getValueOperand(); 2616 return nullptr; // Unknown store. 2617 } 2618 2619 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 2620 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 2621 LI->isSimple()) { 2622 // Local objects (created by an `alloca` instruction) are always 2623 // writable, so once we are past a read from a location it is valid to 2624 // also write to that same location. 2625 // If the address of the local object never escapes the function, that 2626 // means it's never concurrently read or written, hence moving the store 2627 // from under the condition will not introduce a data race. 2628 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); 2629 if (AI && !PointerMayBeCaptured(AI, false, true)) 2630 // Found a previous load, return it. 2631 return LI; 2632 } 2633 // The load didn't work out, but we may still find a store. 2634 } 2635 } 2636 2637 return nullptr; 2638 } 2639 2640 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2641 /// converted to selects. 2642 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2643 BasicBlock *EndBB, 2644 unsigned &SpeculatedInstructions, 2645 InstructionCost &Cost, 2646 const TargetTransformInfo &TTI) { 2647 TargetTransformInfo::TargetCostKind CostKind = 2648 BB->getParent()->hasMinSize() 2649 ? TargetTransformInfo::TCK_CodeSize 2650 : TargetTransformInfo::TCK_SizeAndLatency; 2651 2652 bool HaveRewritablePHIs = false; 2653 for (PHINode &PN : EndBB->phis()) { 2654 Value *OrigV = PN.getIncomingValueForBlock(BB); 2655 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2656 2657 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2658 // Skip PHIs which are trivial. 2659 if (ThenV == OrigV) 2660 continue; 2661 2662 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2663 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2664 2665 // Don't convert to selects if we could remove undefined behavior instead. 2666 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2667 passingValueIsAlwaysUndefined(ThenV, &PN)) 2668 return false; 2669 2670 HaveRewritablePHIs = true; 2671 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2672 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2673 if (!OrigCE && !ThenCE) 2674 continue; // Known safe and cheap. 2675 2676 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2677 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2678 return false; 2679 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2680 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2681 InstructionCost MaxCost = 2682 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2683 if (OrigCost + ThenCost > MaxCost) 2684 return false; 2685 2686 // Account for the cost of an unfolded ConstantExpr which could end up 2687 // getting expanded into Instructions. 2688 // FIXME: This doesn't account for how many operations are combined in the 2689 // constant expression. 2690 ++SpeculatedInstructions; 2691 if (SpeculatedInstructions > 1) 2692 return false; 2693 } 2694 2695 return HaveRewritablePHIs; 2696 } 2697 2698 /// Speculate a conditional basic block flattening the CFG. 2699 /// 2700 /// Note that this is a very risky transform currently. Speculating 2701 /// instructions like this is most often not desirable. Instead, there is an MI 2702 /// pass which can do it with full awareness of the resource constraints. 2703 /// However, some cases are "obvious" and we should do directly. An example of 2704 /// this is speculating a single, reasonably cheap instruction. 2705 /// 2706 /// There is only one distinct advantage to flattening the CFG at the IR level: 2707 /// it makes very common but simplistic optimizations such as are common in 2708 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2709 /// modeling their effects with easier to reason about SSA value graphs. 2710 /// 2711 /// 2712 /// An illustration of this transform is turning this IR: 2713 /// \code 2714 /// BB: 2715 /// %cmp = icmp ult %x, %y 2716 /// br i1 %cmp, label %EndBB, label %ThenBB 2717 /// ThenBB: 2718 /// %sub = sub %x, %y 2719 /// br label BB2 2720 /// EndBB: 2721 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2722 /// ... 2723 /// \endcode 2724 /// 2725 /// Into this IR: 2726 /// \code 2727 /// BB: 2728 /// %cmp = icmp ult %x, %y 2729 /// %sub = sub %x, %y 2730 /// %cond = select i1 %cmp, 0, %sub 2731 /// ... 2732 /// \endcode 2733 /// 2734 /// \returns true if the conditional block is removed. 2735 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2736 const TargetTransformInfo &TTI) { 2737 // Be conservative for now. FP select instruction can often be expensive. 2738 Value *BrCond = BI->getCondition(); 2739 if (isa<FCmpInst>(BrCond)) 2740 return false; 2741 2742 BasicBlock *BB = BI->getParent(); 2743 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2744 InstructionCost Budget = 2745 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2746 2747 // If ThenBB is actually on the false edge of the conditional branch, remember 2748 // to swap the select operands later. 2749 bool Invert = false; 2750 if (ThenBB != BI->getSuccessor(0)) { 2751 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2752 Invert = true; 2753 } 2754 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2755 2756 // If the branch is non-unpredictable, and is predicted to *not* branch to 2757 // the `then` block, then avoid speculating it. 2758 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { 2759 uint64_t TWeight, FWeight; 2760 if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) { 2761 uint64_t EndWeight = Invert ? TWeight : FWeight; 2762 BranchProbability BIEndProb = 2763 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 2764 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 2765 if (BIEndProb >= Likely) 2766 return false; 2767 } 2768 } 2769 2770 // Keep a count of how many times instructions are used within ThenBB when 2771 // they are candidates for sinking into ThenBB. Specifically: 2772 // - They are defined in BB, and 2773 // - They have no side effects, and 2774 // - All of their uses are in ThenBB. 2775 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2776 2777 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2778 2779 unsigned SpeculatedInstructions = 0; 2780 Value *SpeculatedStoreValue = nullptr; 2781 StoreInst *SpeculatedStore = nullptr; 2782 for (BasicBlock::iterator BBI = ThenBB->begin(), 2783 BBE = std::prev(ThenBB->end()); 2784 BBI != BBE; ++BBI) { 2785 Instruction *I = &*BBI; 2786 // Skip debug info. 2787 if (isa<DbgInfoIntrinsic>(I)) { 2788 SpeculatedDbgIntrinsics.push_back(I); 2789 continue; 2790 } 2791 2792 // Skip pseudo probes. The consequence is we lose track of the branch 2793 // probability for ThenBB, which is fine since the optimization here takes 2794 // place regardless of the branch probability. 2795 if (isa<PseudoProbeInst>(I)) { 2796 // The probe should be deleted so that it will not be over-counted when 2797 // the samples collected on the non-conditional path are counted towards 2798 // the conditional path. We leave it for the counts inference algorithm to 2799 // figure out a proper count for an unknown probe. 2800 SpeculatedDbgIntrinsics.push_back(I); 2801 continue; 2802 } 2803 2804 // Only speculatively execute a single instruction (not counting the 2805 // terminator) for now. 2806 ++SpeculatedInstructions; 2807 if (SpeculatedInstructions > 1) 2808 return false; 2809 2810 // Don't hoist the instruction if it's unsafe or expensive. 2811 if (!isSafeToSpeculativelyExecute(I) && 2812 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2813 I, BB, ThenBB, EndBB)))) 2814 return false; 2815 if (!SpeculatedStoreValue && 2816 computeSpeculationCost(I, TTI) > 2817 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2818 return false; 2819 2820 // Store the store speculation candidate. 2821 if (SpeculatedStoreValue) 2822 SpeculatedStore = cast<StoreInst>(I); 2823 2824 // Do not hoist the instruction if any of its operands are defined but not 2825 // used in BB. The transformation will prevent the operand from 2826 // being sunk into the use block. 2827 for (Use &Op : I->operands()) { 2828 Instruction *OpI = dyn_cast<Instruction>(Op); 2829 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2830 continue; // Not a candidate for sinking. 2831 2832 ++SinkCandidateUseCounts[OpI]; 2833 } 2834 } 2835 2836 // Consider any sink candidates which are only used in ThenBB as costs for 2837 // speculation. Note, while we iterate over a DenseMap here, we are summing 2838 // and so iteration order isn't significant. 2839 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2840 I = SinkCandidateUseCounts.begin(), 2841 E = SinkCandidateUseCounts.end(); 2842 I != E; ++I) 2843 if (I->first->hasNUses(I->second)) { 2844 ++SpeculatedInstructions; 2845 if (SpeculatedInstructions > 1) 2846 return false; 2847 } 2848 2849 // Check that we can insert the selects and that it's not too expensive to do 2850 // so. 2851 bool Convert = SpeculatedStore != nullptr; 2852 InstructionCost Cost = 0; 2853 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2854 SpeculatedInstructions, 2855 Cost, TTI); 2856 if (!Convert || Cost > Budget) 2857 return false; 2858 2859 // If we get here, we can hoist the instruction and if-convert. 2860 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2861 2862 // Insert a select of the value of the speculated store. 2863 if (SpeculatedStoreValue) { 2864 IRBuilder<NoFolder> Builder(BI); 2865 Value *TrueV = SpeculatedStore->getValueOperand(); 2866 Value *FalseV = SpeculatedStoreValue; 2867 if (Invert) 2868 std::swap(TrueV, FalseV); 2869 Value *S = Builder.CreateSelect( 2870 BrCond, TrueV, FalseV, "spec.store.select", BI); 2871 SpeculatedStore->setOperand(0, S); 2872 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2873 SpeculatedStore->getDebugLoc()); 2874 } 2875 2876 // Metadata can be dependent on the condition we are hoisting above. 2877 // Conservatively strip all metadata on the instruction. Drop the debug loc 2878 // to avoid making it appear as if the condition is a constant, which would 2879 // be misleading while debugging. 2880 // Similarly strip attributes that maybe dependent on condition we are 2881 // hoisting above. 2882 for (auto &I : *ThenBB) { 2883 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2884 I.setDebugLoc(DebugLoc()); 2885 I.dropUndefImplyingAttrsAndUnknownMetadata(); 2886 } 2887 2888 // Hoist the instructions. 2889 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2890 ThenBB->begin(), std::prev(ThenBB->end())); 2891 2892 // Insert selects and rewrite the PHI operands. 2893 IRBuilder<NoFolder> Builder(BI); 2894 for (PHINode &PN : EndBB->phis()) { 2895 unsigned OrigI = PN.getBasicBlockIndex(BB); 2896 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2897 Value *OrigV = PN.getIncomingValue(OrigI); 2898 Value *ThenV = PN.getIncomingValue(ThenI); 2899 2900 // Skip PHIs which are trivial. 2901 if (OrigV == ThenV) 2902 continue; 2903 2904 // Create a select whose true value is the speculatively executed value and 2905 // false value is the pre-existing value. Swap them if the branch 2906 // destinations were inverted. 2907 Value *TrueV = ThenV, *FalseV = OrigV; 2908 if (Invert) 2909 std::swap(TrueV, FalseV); 2910 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2911 PN.setIncomingValue(OrigI, V); 2912 PN.setIncomingValue(ThenI, V); 2913 } 2914 2915 // Remove speculated dbg intrinsics. 2916 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2917 // dbg value for the different flows and inserting it after the select. 2918 for (Instruction *I : SpeculatedDbgIntrinsics) 2919 I->eraseFromParent(); 2920 2921 ++NumSpeculations; 2922 return true; 2923 } 2924 2925 /// Return true if we can thread a branch across this block. 2926 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2927 int Size = 0; 2928 2929 SmallPtrSet<const Value *, 32> EphValues; 2930 auto IsEphemeral = [&](const Instruction *I) { 2931 if (isa<AssumeInst>(I)) 2932 return true; 2933 return !I->mayHaveSideEffects() && !I->isTerminator() && 2934 all_of(I->users(), 2935 [&](const User *U) { return EphValues.count(U); }); 2936 }; 2937 2938 // Walk the loop in reverse so that we can identify ephemeral values properly 2939 // (values only feeding assumes). 2940 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 2941 // Can't fold blocks that contain noduplicate or convergent calls. 2942 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2943 if (CI->cannotDuplicate() || CI->isConvergent()) 2944 return false; 2945 2946 // Ignore ephemeral values which are deleted during codegen. 2947 if (IsEphemeral(&I)) 2948 EphValues.insert(&I); 2949 // We will delete Phis while threading, so Phis should not be accounted in 2950 // block's size. 2951 else if (!isa<PHINode>(I)) { 2952 if (Size++ > MaxSmallBlockSize) 2953 return false; // Don't clone large BB's. 2954 } 2955 2956 // We can only support instructions that do not define values that are 2957 // live outside of the current basic block. 2958 for (User *U : I.users()) { 2959 Instruction *UI = cast<Instruction>(U); 2960 if (UI->getParent() != BB || isa<PHINode>(UI)) 2961 return false; 2962 } 2963 2964 // Looks ok, continue checking. 2965 } 2966 2967 return true; 2968 } 2969 2970 /// If we have a conditional branch on a PHI node value that is defined in the 2971 /// same block as the branch and if any PHI entries are constants, thread edges 2972 /// corresponding to that entry to be branches to their ultimate destination. 2973 static Optional<bool> FoldCondBranchOnPHIImpl(BranchInst *BI, 2974 DomTreeUpdater *DTU, 2975 const DataLayout &DL, 2976 AssumptionCache *AC) { 2977 BasicBlock *BB = BI->getParent(); 2978 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2979 // NOTE: we currently cannot transform this case if the PHI node is used 2980 // outside of the block. 2981 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2982 return false; 2983 2984 // Degenerate case of a single entry PHI. 2985 if (PN->getNumIncomingValues() == 1) { 2986 FoldSingleEntryPHINodes(PN->getParent()); 2987 return true; 2988 } 2989 2990 // Now we know that this block has multiple preds and two succs. 2991 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2992 return false; 2993 2994 // Okay, this is a simple enough basic block. See if any phi values are 2995 // constants. 2996 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2997 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2998 if (!CB || !CB->getType()->isIntegerTy(1)) 2999 continue; 3000 3001 // Okay, we now know that all edges from PredBB should be revectored to 3002 // branch to RealDest. 3003 BasicBlock *PredBB = PN->getIncomingBlock(i); 3004 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3005 3006 if (RealDest == BB) 3007 continue; // Skip self loops. 3008 // Skip if the predecessor's terminator is an indirect branch. 3009 if (isa<IndirectBrInst>(PredBB->getTerminator())) 3010 continue; 3011 3012 SmallVector<DominatorTree::UpdateType, 3> Updates; 3013 3014 // The dest block might have PHI nodes, other predecessors and other 3015 // difficult cases. Instead of being smart about this, just insert a new 3016 // block that jumps to the destination block, effectively splitting 3017 // the edge we are about to create. 3018 BasicBlock *EdgeBB = 3019 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 3020 RealDest->getParent(), RealDest); 3021 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 3022 if (DTU) 3023 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3024 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 3025 3026 // Update PHI nodes. 3027 AddPredecessorToBlock(RealDest, EdgeBB, BB); 3028 3029 // BB may have instructions that are being threaded over. Clone these 3030 // instructions into EdgeBB. We know that there will be no uses of the 3031 // cloned instructions outside of EdgeBB. 3032 BasicBlock::iterator InsertPt = EdgeBB->begin(); 3033 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3034 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3035 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3036 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 3037 continue; 3038 } 3039 // Clone the instruction. 3040 Instruction *N = BBI->clone(); 3041 if (BBI->hasName()) 3042 N->setName(BBI->getName() + ".c"); 3043 3044 // Update operands due to translation. 3045 for (Use &Op : N->operands()) { 3046 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3047 if (PI != TranslateMap.end()) 3048 Op = PI->second; 3049 } 3050 3051 // Check for trivial simplification. 3052 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3053 if (!BBI->use_empty()) 3054 TranslateMap[&*BBI] = V; 3055 if (!N->mayHaveSideEffects()) { 3056 N->deleteValue(); // Instruction folded away, don't need actual inst 3057 N = nullptr; 3058 } 3059 } else { 3060 if (!BBI->use_empty()) 3061 TranslateMap[&*BBI] = N; 3062 } 3063 if (N) { 3064 // Insert the new instruction into its new home. 3065 EdgeBB->getInstList().insert(InsertPt, N); 3066 3067 // Register the new instruction with the assumption cache if necessary. 3068 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3069 if (AC) 3070 AC->registerAssumption(Assume); 3071 } 3072 } 3073 3074 // Loop over all of the edges from PredBB to BB, changing them to branch 3075 // to EdgeBB instead. 3076 Instruction *PredBBTI = PredBB->getTerminator(); 3077 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 3078 if (PredBBTI->getSuccessor(i) == BB) { 3079 BB->removePredecessor(PredBB); 3080 PredBBTI->setSuccessor(i, EdgeBB); 3081 } 3082 3083 if (DTU) { 3084 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 3085 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 3086 3087 DTU->applyUpdates(Updates); 3088 } 3089 3090 // Signal repeat, simplifying any other constants. 3091 return None; 3092 } 3093 3094 return false; 3095 } 3096 3097 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 3098 const DataLayout &DL, AssumptionCache *AC) { 3099 Optional<bool> Result; 3100 bool EverChanged = false; 3101 do { 3102 // Note that None means "we changed things, but recurse further." 3103 Result = FoldCondBranchOnPHIImpl(BI, DTU, DL, AC); 3104 EverChanged |= Result == None || *Result; 3105 } while (Result == None); 3106 return EverChanged; 3107 } 3108 3109 /// Given a BB that starts with the specified two-entry PHI node, 3110 /// see if we can eliminate it. 3111 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3112 DomTreeUpdater *DTU, const DataLayout &DL) { 3113 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3114 // statement", which has a very simple dominance structure. Basically, we 3115 // are trying to find the condition that is being branched on, which 3116 // subsequently causes this merge to happen. We really want control 3117 // dependence information for this check, but simplifycfg can't keep it up 3118 // to date, and this catches most of the cases we care about anyway. 3119 BasicBlock *BB = PN->getParent(); 3120 3121 BasicBlock *IfTrue, *IfFalse; 3122 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3123 if (!DomBI) 3124 return false; 3125 Value *IfCond = DomBI->getCondition(); 3126 // Don't bother if the branch will be constant folded trivially. 3127 if (isa<ConstantInt>(IfCond)) 3128 return false; 3129 3130 BasicBlock *DomBlock = DomBI->getParent(); 3131 SmallVector<BasicBlock *, 2> IfBlocks; 3132 llvm::copy_if( 3133 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3134 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3135 }); 3136 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3137 "Will have either one or two blocks to speculate."); 3138 3139 // If the branch is non-unpredictable, see if we either predictably jump to 3140 // the merge bb (if we have only a single 'then' block), or if we predictably 3141 // jump to one specific 'then' block (if we have two of them). 3142 // It isn't beneficial to speculatively execute the code 3143 // from the block that we know is predictably not entered. 3144 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) { 3145 uint64_t TWeight, FWeight; 3146 if (DomBI->extractProfMetadata(TWeight, FWeight) && 3147 (TWeight + FWeight) != 0) { 3148 BranchProbability BITrueProb = 3149 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3150 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3151 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3152 if (IfBlocks.size() == 1) { 3153 BranchProbability BIBBProb = 3154 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3155 if (BIBBProb >= Likely) 3156 return false; 3157 } else { 3158 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3159 return false; 3160 } 3161 } 3162 } 3163 3164 // Don't try to fold an unreachable block. For example, the phi node itself 3165 // can't be the candidate if-condition for a select that we want to form. 3166 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3167 if (IfCondPhiInst->getParent() == BB) 3168 return false; 3169 3170 // Okay, we found that we can merge this two-entry phi node into a select. 3171 // Doing so would require us to fold *all* two entry phi nodes in this block. 3172 // At some point this becomes non-profitable (particularly if the target 3173 // doesn't support cmov's). Only do this transformation if there are two or 3174 // fewer PHI nodes in this block. 3175 unsigned NumPhis = 0; 3176 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3177 if (NumPhis > 2) 3178 return false; 3179 3180 // Loop over the PHI's seeing if we can promote them all to select 3181 // instructions. While we are at it, keep track of the instructions 3182 // that need to be moved to the dominating block. 3183 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3184 InstructionCost Cost = 0; 3185 InstructionCost Budget = 3186 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3187 3188 bool Changed = false; 3189 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3190 PHINode *PN = cast<PHINode>(II++); 3191 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 3192 PN->replaceAllUsesWith(V); 3193 PN->eraseFromParent(); 3194 Changed = true; 3195 continue; 3196 } 3197 3198 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 3199 Cost, Budget, TTI) || 3200 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 3201 Cost, Budget, TTI)) 3202 return Changed; 3203 } 3204 3205 // If we folded the first phi, PN dangles at this point. Refresh it. If 3206 // we ran out of PHIs then we simplified them all. 3207 PN = dyn_cast<PHINode>(BB->begin()); 3208 if (!PN) 3209 return true; 3210 3211 // Return true if at least one of these is a 'not', and another is either 3212 // a 'not' too, or a constant. 3213 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3214 if (!match(V0, m_Not(m_Value()))) 3215 std::swap(V0, V1); 3216 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3217 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3218 }; 3219 3220 // Don't fold i1 branches on PHIs which contain binary operators or 3221 // (possibly inverted) select form of or/ands, unless one of 3222 // the incoming values is an 'not' and another one is freely invertible. 3223 // These can often be turned into switches and other things. 3224 auto IsBinOpOrAnd = [](Value *V) { 3225 return match( 3226 V, m_CombineOr( 3227 m_BinOp(), 3228 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3229 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3230 }; 3231 if (PN->getType()->isIntegerTy(1) && 3232 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3233 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3234 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3235 PN->getIncomingValue(1))) 3236 return Changed; 3237 3238 // If all PHI nodes are promotable, check to make sure that all instructions 3239 // in the predecessor blocks can be promoted as well. If not, we won't be able 3240 // to get rid of the control flow, so it's not worth promoting to select 3241 // instructions. 3242 for (BasicBlock *IfBlock : IfBlocks) 3243 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3244 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3245 // This is not an aggressive instruction that we can promote. 3246 // Because of this, we won't be able to get rid of the control flow, so 3247 // the xform is not worth it. 3248 return Changed; 3249 } 3250 3251 // If either of the blocks has it's address taken, we can't do this fold. 3252 if (any_of(IfBlocks, 3253 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3254 return Changed; 3255 3256 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 3257 << " T: " << IfTrue->getName() 3258 << " F: " << IfFalse->getName() << "\n"); 3259 3260 // If we can still promote the PHI nodes after this gauntlet of tests, 3261 // do all of the PHI's now. 3262 3263 // Move all 'aggressive' instructions, which are defined in the 3264 // conditional parts of the if's up to the dominating block. 3265 for (BasicBlock *IfBlock : IfBlocks) 3266 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3267 3268 IRBuilder<NoFolder> Builder(DomBI); 3269 // Propagate fast-math-flags from phi nodes to replacement selects. 3270 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3271 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3272 if (isa<FPMathOperator>(PN)) 3273 Builder.setFastMathFlags(PN->getFastMathFlags()); 3274 3275 // Change the PHI node into a select instruction. 3276 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3277 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3278 3279 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3280 PN->replaceAllUsesWith(Sel); 3281 Sel->takeName(PN); 3282 PN->eraseFromParent(); 3283 } 3284 3285 // At this point, all IfBlocks are empty, so our if statement 3286 // has been flattened. Change DomBlock to jump directly to our new block to 3287 // avoid other simplifycfg's kicking in on the diamond. 3288 Builder.CreateBr(BB); 3289 3290 SmallVector<DominatorTree::UpdateType, 3> Updates; 3291 if (DTU) { 3292 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3293 for (auto *Successor : successors(DomBlock)) 3294 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3295 } 3296 3297 DomBI->eraseFromParent(); 3298 if (DTU) 3299 DTU->applyUpdates(Updates); 3300 3301 return true; 3302 } 3303 3304 static Value *createLogicalOp(IRBuilderBase &Builder, 3305 Instruction::BinaryOps Opc, Value *LHS, 3306 Value *RHS, const Twine &Name = "") { 3307 // Try to relax logical op to binary op. 3308 if (impliesPoison(RHS, LHS)) 3309 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3310 if (Opc == Instruction::And) 3311 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3312 if (Opc == Instruction::Or) 3313 return Builder.CreateLogicalOr(LHS, RHS, Name); 3314 llvm_unreachable("Invalid logical opcode"); 3315 } 3316 3317 /// Return true if either PBI or BI has branch weight available, and store 3318 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3319 /// not have branch weight, use 1:1 as its weight. 3320 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3321 uint64_t &PredTrueWeight, 3322 uint64_t &PredFalseWeight, 3323 uint64_t &SuccTrueWeight, 3324 uint64_t &SuccFalseWeight) { 3325 bool PredHasWeights = 3326 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 3327 bool SuccHasWeights = 3328 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 3329 if (PredHasWeights || SuccHasWeights) { 3330 if (!PredHasWeights) 3331 PredTrueWeight = PredFalseWeight = 1; 3332 if (!SuccHasWeights) 3333 SuccTrueWeight = SuccFalseWeight = 1; 3334 return true; 3335 } else { 3336 return false; 3337 } 3338 } 3339 3340 /// Determine if the two branches share a common destination and deduce a glue 3341 /// that joins the branches' conditions to arrive at the common destination if 3342 /// that would be profitable. 3343 static Optional<std::pair<Instruction::BinaryOps, bool>> 3344 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3345 const TargetTransformInfo *TTI) { 3346 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3347 "Both blocks must end with a conditional branches."); 3348 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3349 "PredBB must be a predecessor of BB."); 3350 3351 // We have the potential to fold the conditions together, but if the 3352 // predecessor branch is predictable, we may not want to merge them. 3353 uint64_t PTWeight, PFWeight; 3354 BranchProbability PBITrueProb, Likely; 3355 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3356 PBI->extractProfMetadata(PTWeight, PFWeight) && 3357 (PTWeight + PFWeight) != 0) { 3358 PBITrueProb = 3359 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3360 Likely = TTI->getPredictableBranchThreshold(); 3361 } 3362 3363 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3364 // Speculate the 2nd condition unless the 1st is probably true. 3365 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3366 return {{Instruction::Or, false}}; 3367 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3368 // Speculate the 2nd condition unless the 1st is probably false. 3369 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3370 return {{Instruction::And, false}}; 3371 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3372 // Speculate the 2nd condition unless the 1st is probably true. 3373 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3374 return {{Instruction::And, true}}; 3375 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3376 // Speculate the 2nd condition unless the 1st is probably false. 3377 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3378 return {{Instruction::Or, true}}; 3379 } 3380 return None; 3381 } 3382 3383 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3384 DomTreeUpdater *DTU, 3385 MemorySSAUpdater *MSSAU, 3386 const TargetTransformInfo *TTI) { 3387 BasicBlock *BB = BI->getParent(); 3388 BasicBlock *PredBlock = PBI->getParent(); 3389 3390 // Determine if the two branches share a common destination. 3391 Instruction::BinaryOps Opc; 3392 bool InvertPredCond; 3393 std::tie(Opc, InvertPredCond) = 3394 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3395 3396 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3397 3398 IRBuilder<> Builder(PBI); 3399 // The builder is used to create instructions to eliminate the branch in BB. 3400 // If BB's terminator has !annotation metadata, add it to the new 3401 // instructions. 3402 Builder.CollectMetadataToCopy(BB->getTerminator(), 3403 {LLVMContext::MD_annotation}); 3404 3405 // If we need to invert the condition in the pred block to match, do so now. 3406 if (InvertPredCond) { 3407 Value *NewCond = PBI->getCondition(); 3408 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3409 CmpInst *CI = cast<CmpInst>(NewCond); 3410 CI->setPredicate(CI->getInversePredicate()); 3411 } else { 3412 NewCond = 3413 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3414 } 3415 3416 PBI->setCondition(NewCond); 3417 PBI->swapSuccessors(); 3418 } 3419 3420 BasicBlock *UniqueSucc = 3421 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3422 3423 // Before cloning instructions, notify the successor basic block that it 3424 // is about to have a new predecessor. This will update PHI nodes, 3425 // which will allow us to update live-out uses of bonus instructions. 3426 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3427 3428 // Try to update branch weights. 3429 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3430 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3431 SuccTrueWeight, SuccFalseWeight)) { 3432 SmallVector<uint64_t, 8> NewWeights; 3433 3434 if (PBI->getSuccessor(0) == BB) { 3435 // PBI: br i1 %x, BB, FalseDest 3436 // BI: br i1 %y, UniqueSucc, FalseDest 3437 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3438 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3439 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3440 // TrueWeight for PBI * FalseWeight for BI. 3441 // We assume that total weights of a BranchInst can fit into 32 bits. 3442 // Therefore, we will not have overflow using 64-bit arithmetic. 3443 NewWeights.push_back(PredFalseWeight * 3444 (SuccFalseWeight + SuccTrueWeight) + 3445 PredTrueWeight * SuccFalseWeight); 3446 } else { 3447 // PBI: br i1 %x, TrueDest, BB 3448 // BI: br i1 %y, TrueDest, UniqueSucc 3449 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3450 // FalseWeight for PBI * TrueWeight for BI. 3451 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3452 PredFalseWeight * SuccTrueWeight); 3453 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3454 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3455 } 3456 3457 // Halve the weights if any of them cannot fit in an uint32_t 3458 FitWeights(NewWeights); 3459 3460 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3461 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3462 3463 // TODO: If BB is reachable from all paths through PredBlock, then we 3464 // could replace PBI's branch probabilities with BI's. 3465 } else 3466 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3467 3468 // Now, update the CFG. 3469 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3470 3471 if (DTU) 3472 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3473 {DominatorTree::Delete, PredBlock, BB}}); 3474 3475 // If BI was a loop latch, it may have had associated loop metadata. 3476 // We need to copy it to the new latch, that is, PBI. 3477 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3478 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3479 3480 ValueToValueMapTy VMap; // maps original values to cloned values 3481 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3482 3483 // Now that the Cond was cloned into the predecessor basic block, 3484 // or/and the two conditions together. 3485 Value *BICond = VMap[BI->getCondition()]; 3486 PBI->setCondition( 3487 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3488 3489 // Copy any debug value intrinsics into the end of PredBlock. 3490 for (Instruction &I : *BB) { 3491 if (isa<DbgInfoIntrinsic>(I)) { 3492 Instruction *NewI = I.clone(); 3493 RemapInstruction(NewI, VMap, 3494 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3495 NewI->insertBefore(PBI); 3496 } 3497 } 3498 3499 ++NumFoldBranchToCommonDest; 3500 return true; 3501 } 3502 3503 /// Return if an instruction's type or any of its operands' types are a vector 3504 /// type. 3505 static bool isVectorOp(Instruction &I) { 3506 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 3507 return U->getType()->isVectorTy(); 3508 }); 3509 } 3510 3511 /// If this basic block is simple enough, and if a predecessor branches to us 3512 /// and one of our successors, fold the block into the predecessor and use 3513 /// logical operations to pick the right destination. 3514 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3515 MemorySSAUpdater *MSSAU, 3516 const TargetTransformInfo *TTI, 3517 unsigned BonusInstThreshold) { 3518 // If this block ends with an unconditional branch, 3519 // let SpeculativelyExecuteBB() deal with it. 3520 if (!BI->isConditional()) 3521 return false; 3522 3523 BasicBlock *BB = BI->getParent(); 3524 TargetTransformInfo::TargetCostKind CostKind = 3525 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3526 : TargetTransformInfo::TCK_SizeAndLatency; 3527 3528 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3529 3530 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3531 Cond->getParent() != BB || !Cond->hasOneUse()) 3532 return false; 3533 3534 // Cond is known to be a compare or binary operator. Check to make sure that 3535 // neither operand is a potentially-trapping constant expression. 3536 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3537 if (CE->canTrap()) 3538 return false; 3539 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3540 if (CE->canTrap()) 3541 return false; 3542 3543 // Finally, don't infinitely unroll conditional loops. 3544 if (is_contained(successors(BB), BB)) 3545 return false; 3546 3547 // With which predecessors will we want to deal with? 3548 SmallVector<BasicBlock *, 8> Preds; 3549 for (BasicBlock *PredBlock : predecessors(BB)) { 3550 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3551 3552 // Check that we have two conditional branches. If there is a PHI node in 3553 // the common successor, verify that the same value flows in from both 3554 // blocks. 3555 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3556 continue; 3557 3558 // Determine if the two branches share a common destination. 3559 Instruction::BinaryOps Opc; 3560 bool InvertPredCond; 3561 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3562 std::tie(Opc, InvertPredCond) = *Recipe; 3563 else 3564 continue; 3565 3566 // Check the cost of inserting the necessary logic before performing the 3567 // transformation. 3568 if (TTI) { 3569 Type *Ty = BI->getCondition()->getType(); 3570 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3571 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3572 !isa<CmpInst>(PBI->getCondition()))) 3573 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3574 3575 if (Cost > BranchFoldThreshold) 3576 continue; 3577 } 3578 3579 // Ok, we do want to deal with this predecessor. Record it. 3580 Preds.emplace_back(PredBlock); 3581 } 3582 3583 // If there aren't any predecessors into which we can fold, 3584 // don't bother checking the cost. 3585 if (Preds.empty()) 3586 return false; 3587 3588 // Only allow this transformation if computing the condition doesn't involve 3589 // too many instructions and these involved instructions can be executed 3590 // unconditionally. We denote all involved instructions except the condition 3591 // as "bonus instructions", and only allow this transformation when the 3592 // number of the bonus instructions we'll need to create when cloning into 3593 // each predecessor does not exceed a certain threshold. 3594 unsigned NumBonusInsts = 0; 3595 bool SawVectorOp = false; 3596 const unsigned PredCount = Preds.size(); 3597 for (Instruction &I : *BB) { 3598 // Don't check the branch condition comparison itself. 3599 if (&I == Cond) 3600 continue; 3601 // Ignore dbg intrinsics, and the terminator. 3602 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3603 continue; 3604 // I must be safe to execute unconditionally. 3605 if (!isSafeToSpeculativelyExecute(&I)) 3606 return false; 3607 SawVectorOp |= isVectorOp(I); 3608 3609 // Account for the cost of duplicating this instruction into each 3610 // predecessor. Ignore free instructions. 3611 if (!TTI || 3612 TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) { 3613 NumBonusInsts += PredCount; 3614 3615 // Early exits once we reach the limit. 3616 if (NumBonusInsts > 3617 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 3618 return false; 3619 } 3620 3621 auto IsBCSSAUse = [BB, &I](Use &U) { 3622 auto *UI = cast<Instruction>(U.getUser()); 3623 if (auto *PN = dyn_cast<PHINode>(UI)) 3624 return PN->getIncomingBlock(U) == BB; 3625 return UI->getParent() == BB && I.comesBefore(UI); 3626 }; 3627 3628 // Does this instruction require rewriting of uses? 3629 if (!all_of(I.uses(), IsBCSSAUse)) 3630 return false; 3631 } 3632 if (NumBonusInsts > 3633 BonusInstThreshold * 3634 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 3635 return false; 3636 3637 // Ok, we have the budget. Perform the transformation. 3638 for (BasicBlock *PredBlock : Preds) { 3639 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3640 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3641 } 3642 return false; 3643 } 3644 3645 // If there is only one store in BB1 and BB2, return it, otherwise return 3646 // nullptr. 3647 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3648 StoreInst *S = nullptr; 3649 for (auto *BB : {BB1, BB2}) { 3650 if (!BB) 3651 continue; 3652 for (auto &I : *BB) 3653 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3654 if (S) 3655 // Multiple stores seen. 3656 return nullptr; 3657 else 3658 S = SI; 3659 } 3660 } 3661 return S; 3662 } 3663 3664 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3665 Value *AlternativeV = nullptr) { 3666 // PHI is going to be a PHI node that allows the value V that is defined in 3667 // BB to be referenced in BB's only successor. 3668 // 3669 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3670 // doesn't matter to us what the other operand is (it'll never get used). We 3671 // could just create a new PHI with an undef incoming value, but that could 3672 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3673 // other PHI. So here we directly look for some PHI in BB's successor with V 3674 // as an incoming operand. If we find one, we use it, else we create a new 3675 // one. 3676 // 3677 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3678 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3679 // where OtherBB is the single other predecessor of BB's only successor. 3680 PHINode *PHI = nullptr; 3681 BasicBlock *Succ = BB->getSingleSuccessor(); 3682 3683 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3684 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3685 PHI = cast<PHINode>(I); 3686 if (!AlternativeV) 3687 break; 3688 3689 assert(Succ->hasNPredecessors(2)); 3690 auto PredI = pred_begin(Succ); 3691 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3692 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3693 break; 3694 PHI = nullptr; 3695 } 3696 if (PHI) 3697 return PHI; 3698 3699 // If V is not an instruction defined in BB, just return it. 3700 if (!AlternativeV && 3701 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3702 return V; 3703 3704 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3705 PHI->addIncoming(V, BB); 3706 for (BasicBlock *PredBB : predecessors(Succ)) 3707 if (PredBB != BB) 3708 PHI->addIncoming( 3709 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3710 return PHI; 3711 } 3712 3713 static bool mergeConditionalStoreToAddress( 3714 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3715 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3716 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3717 // For every pointer, there must be exactly two stores, one coming from 3718 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3719 // store (to any address) in PTB,PFB or QTB,QFB. 3720 // FIXME: We could relax this restriction with a bit more work and performance 3721 // testing. 3722 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3723 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3724 if (!PStore || !QStore) 3725 return false; 3726 3727 // Now check the stores are compatible. 3728 if (!QStore->isUnordered() || !PStore->isUnordered()) 3729 return false; 3730 3731 // Check that sinking the store won't cause program behavior changes. Sinking 3732 // the store out of the Q blocks won't change any behavior as we're sinking 3733 // from a block to its unconditional successor. But we're moving a store from 3734 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3735 // So we need to check that there are no aliasing loads or stores in 3736 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3737 // operations between PStore and the end of its parent block. 3738 // 3739 // The ideal way to do this is to query AliasAnalysis, but we don't 3740 // preserve AA currently so that is dangerous. Be super safe and just 3741 // check there are no other memory operations at all. 3742 for (auto &I : *QFB->getSinglePredecessor()) 3743 if (I.mayReadOrWriteMemory()) 3744 return false; 3745 for (auto &I : *QFB) 3746 if (&I != QStore && I.mayReadOrWriteMemory()) 3747 return false; 3748 if (QTB) 3749 for (auto &I : *QTB) 3750 if (&I != QStore && I.mayReadOrWriteMemory()) 3751 return false; 3752 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3753 I != E; ++I) 3754 if (&*I != PStore && I->mayReadOrWriteMemory()) 3755 return false; 3756 3757 // If we're not in aggressive mode, we only optimize if we have some 3758 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3759 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3760 if (!BB) 3761 return true; 3762 // Heuristic: if the block can be if-converted/phi-folded and the 3763 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3764 // thread this store. 3765 InstructionCost Cost = 0; 3766 InstructionCost Budget = 3767 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3768 for (auto &I : BB->instructionsWithoutDebug(false)) { 3769 // Consider terminator instruction to be free. 3770 if (I.isTerminator()) 3771 continue; 3772 // If this is one the stores that we want to speculate out of this BB, 3773 // then don't count it's cost, consider it to be free. 3774 if (auto *S = dyn_cast<StoreInst>(&I)) 3775 if (llvm::find(FreeStores, S)) 3776 continue; 3777 // Else, we have a white-list of instructions that we are ak speculating. 3778 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3779 return false; // Not in white-list - not worthwhile folding. 3780 // And finally, if this is a non-free instruction that we are okay 3781 // speculating, ensure that we consider the speculation budget. 3782 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3783 if (Cost > Budget) 3784 return false; // Eagerly refuse to fold as soon as we're out of budget. 3785 } 3786 assert(Cost <= Budget && 3787 "When we run out of budget we will eagerly return from within the " 3788 "per-instruction loop."); 3789 return true; 3790 }; 3791 3792 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3793 if (!MergeCondStoresAggressively && 3794 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3795 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3796 return false; 3797 3798 // If PostBB has more than two predecessors, we need to split it so we can 3799 // sink the store. 3800 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3801 // We know that QFB's only successor is PostBB. And QFB has a single 3802 // predecessor. If QTB exists, then its only successor is also PostBB. 3803 // If QTB does not exist, then QFB's only predecessor has a conditional 3804 // branch to QFB and PostBB. 3805 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3806 BasicBlock *NewBB = 3807 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3808 if (!NewBB) 3809 return false; 3810 PostBB = NewBB; 3811 } 3812 3813 // OK, we're going to sink the stores to PostBB. The store has to be 3814 // conditional though, so first create the predicate. 3815 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3816 ->getCondition(); 3817 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3818 ->getCondition(); 3819 3820 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3821 PStore->getParent()); 3822 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3823 QStore->getParent(), PPHI); 3824 3825 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3826 3827 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3828 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3829 3830 if (InvertPCond) 3831 PPred = QB.CreateNot(PPred); 3832 if (InvertQCond) 3833 QPred = QB.CreateNot(QPred); 3834 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3835 3836 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3837 /*Unreachable=*/false, 3838 /*BranchWeights=*/nullptr, DTU); 3839 QB.SetInsertPoint(T); 3840 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3841 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 3842 // Choose the minimum alignment. If we could prove both stores execute, we 3843 // could use biggest one. In this case, though, we only know that one of the 3844 // stores executes. And we don't know it's safe to take the alignment from a 3845 // store that doesn't execute. 3846 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3847 3848 QStore->eraseFromParent(); 3849 PStore->eraseFromParent(); 3850 3851 return true; 3852 } 3853 3854 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3855 DomTreeUpdater *DTU, const DataLayout &DL, 3856 const TargetTransformInfo &TTI) { 3857 // The intention here is to find diamonds or triangles (see below) where each 3858 // conditional block contains a store to the same address. Both of these 3859 // stores are conditional, so they can't be unconditionally sunk. But it may 3860 // be profitable to speculatively sink the stores into one merged store at the 3861 // end, and predicate the merged store on the union of the two conditions of 3862 // PBI and QBI. 3863 // 3864 // This can reduce the number of stores executed if both of the conditions are 3865 // true, and can allow the blocks to become small enough to be if-converted. 3866 // This optimization will also chain, so that ladders of test-and-set 3867 // sequences can be if-converted away. 3868 // 3869 // We only deal with simple diamonds or triangles: 3870 // 3871 // PBI or PBI or a combination of the two 3872 // / \ | \ 3873 // PTB PFB | PFB 3874 // \ / | / 3875 // QBI QBI 3876 // / \ | \ 3877 // QTB QFB | QFB 3878 // \ / | / 3879 // PostBB PostBB 3880 // 3881 // We model triangles as a type of diamond with a nullptr "true" block. 3882 // Triangles are canonicalized so that the fallthrough edge is represented by 3883 // a true condition, as in the diagram above. 3884 BasicBlock *PTB = PBI->getSuccessor(0); 3885 BasicBlock *PFB = PBI->getSuccessor(1); 3886 BasicBlock *QTB = QBI->getSuccessor(0); 3887 BasicBlock *QFB = QBI->getSuccessor(1); 3888 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3889 3890 // Make sure we have a good guess for PostBB. If QTB's only successor is 3891 // QFB, then QFB is a better PostBB. 3892 if (QTB->getSingleSuccessor() == QFB) 3893 PostBB = QFB; 3894 3895 // If we couldn't find a good PostBB, stop. 3896 if (!PostBB) 3897 return false; 3898 3899 bool InvertPCond = false, InvertQCond = false; 3900 // Canonicalize fallthroughs to the true branches. 3901 if (PFB == QBI->getParent()) { 3902 std::swap(PFB, PTB); 3903 InvertPCond = true; 3904 } 3905 if (QFB == PostBB) { 3906 std::swap(QFB, QTB); 3907 InvertQCond = true; 3908 } 3909 3910 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3911 // and QFB may not. Model fallthroughs as a nullptr block. 3912 if (PTB == QBI->getParent()) 3913 PTB = nullptr; 3914 if (QTB == PostBB) 3915 QTB = nullptr; 3916 3917 // Legality bailouts. We must have at least the non-fallthrough blocks and 3918 // the post-dominating block, and the non-fallthroughs must only have one 3919 // predecessor. 3920 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3921 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3922 }; 3923 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3924 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3925 return false; 3926 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3927 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3928 return false; 3929 if (!QBI->getParent()->hasNUses(2)) 3930 return false; 3931 3932 // OK, this is a sequence of two diamonds or triangles. 3933 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3934 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3935 for (auto *BB : {PTB, PFB}) { 3936 if (!BB) 3937 continue; 3938 for (auto &I : *BB) 3939 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3940 PStoreAddresses.insert(SI->getPointerOperand()); 3941 } 3942 for (auto *BB : {QTB, QFB}) { 3943 if (!BB) 3944 continue; 3945 for (auto &I : *BB) 3946 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3947 QStoreAddresses.insert(SI->getPointerOperand()); 3948 } 3949 3950 set_intersect(PStoreAddresses, QStoreAddresses); 3951 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3952 // clear what it contains. 3953 auto &CommonAddresses = PStoreAddresses; 3954 3955 bool Changed = false; 3956 for (auto *Address : CommonAddresses) 3957 Changed |= 3958 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3959 InvertPCond, InvertQCond, DTU, DL, TTI); 3960 return Changed; 3961 } 3962 3963 /// If the previous block ended with a widenable branch, determine if reusing 3964 /// the target block is profitable and legal. This will have the effect of 3965 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3966 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3967 DomTreeUpdater *DTU) { 3968 // TODO: This can be generalized in two important ways: 3969 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3970 // values from the PBI edge. 3971 // 2) We can sink side effecting instructions into BI's fallthrough 3972 // successor provided they doesn't contribute to computation of 3973 // BI's condition. 3974 Value *CondWB, *WC; 3975 BasicBlock *IfTrueBB, *IfFalseBB; 3976 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3977 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3978 return false; 3979 if (!IfFalseBB->phis().empty()) 3980 return false; // TODO 3981 // Use lambda to lazily compute expensive condition after cheap ones. 3982 auto NoSideEffects = [](BasicBlock &BB) { 3983 return llvm::none_of(BB, [](const Instruction &I) { 3984 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3985 }); 3986 }; 3987 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3988 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3989 NoSideEffects(*BI->getParent())) { 3990 auto *OldSuccessor = BI->getSuccessor(1); 3991 OldSuccessor->removePredecessor(BI->getParent()); 3992 BI->setSuccessor(1, IfFalseBB); 3993 if (DTU) 3994 DTU->applyUpdates( 3995 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3996 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3997 return true; 3998 } 3999 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4000 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4001 NoSideEffects(*BI->getParent())) { 4002 auto *OldSuccessor = BI->getSuccessor(0); 4003 OldSuccessor->removePredecessor(BI->getParent()); 4004 BI->setSuccessor(0, IfFalseBB); 4005 if (DTU) 4006 DTU->applyUpdates( 4007 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4008 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4009 return true; 4010 } 4011 return false; 4012 } 4013 4014 /// If we have a conditional branch as a predecessor of another block, 4015 /// this function tries to simplify it. We know 4016 /// that PBI and BI are both conditional branches, and BI is in one of the 4017 /// successor blocks of PBI - PBI branches to BI. 4018 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4019 DomTreeUpdater *DTU, 4020 const DataLayout &DL, 4021 const TargetTransformInfo &TTI) { 4022 assert(PBI->isConditional() && BI->isConditional()); 4023 BasicBlock *BB = BI->getParent(); 4024 4025 // If this block ends with a branch instruction, and if there is a 4026 // predecessor that ends on a branch of the same condition, make 4027 // this conditional branch redundant. 4028 if (PBI->getCondition() == BI->getCondition() && 4029 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4030 // Okay, the outcome of this conditional branch is statically 4031 // knowable. If this block had a single pred, handle specially. 4032 if (BB->getSinglePredecessor()) { 4033 // Turn this into a branch on constant. 4034 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4035 BI->setCondition( 4036 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4037 return true; // Nuke the branch on constant. 4038 } 4039 4040 // Otherwise, if there are multiple predecessors, insert a PHI that merges 4041 // in the constant and simplify the block result. Subsequent passes of 4042 // simplifycfg will thread the block. 4043 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 4044 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 4045 PHINode *NewPN = PHINode::Create( 4046 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 4047 BI->getCondition()->getName() + ".pr", &BB->front()); 4048 // Okay, we're going to insert the PHI node. Since PBI is not the only 4049 // predecessor, compute the PHI'd conditional value for all of the preds. 4050 // Any predecessor where the condition is not computable we keep symbolic. 4051 for (pred_iterator PI = PB; PI != PE; ++PI) { 4052 BasicBlock *P = *PI; 4053 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 4054 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 4055 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4056 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4057 NewPN->addIncoming( 4058 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 4059 P); 4060 } else { 4061 NewPN->addIncoming(BI->getCondition(), P); 4062 } 4063 } 4064 4065 BI->setCondition(NewPN); 4066 return true; 4067 } 4068 } 4069 4070 // If the previous block ended with a widenable branch, determine if reusing 4071 // the target block is profitable and legal. This will have the effect of 4072 // "widening" PBI, but doesn't require us to reason about hosting safety. 4073 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4074 return true; 4075 4076 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 4077 if (CE->canTrap()) 4078 return false; 4079 4080 // If both branches are conditional and both contain stores to the same 4081 // address, remove the stores from the conditionals and create a conditional 4082 // merged store at the end. 4083 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4084 return true; 4085 4086 // If this is a conditional branch in an empty block, and if any 4087 // predecessors are a conditional branch to one of our destinations, 4088 // fold the conditions into logical ops and one cond br. 4089 4090 // Ignore dbg intrinsics. 4091 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4092 return false; 4093 4094 int PBIOp, BIOp; 4095 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4096 PBIOp = 0; 4097 BIOp = 0; 4098 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4099 PBIOp = 0; 4100 BIOp = 1; 4101 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4102 PBIOp = 1; 4103 BIOp = 0; 4104 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4105 PBIOp = 1; 4106 BIOp = 1; 4107 } else { 4108 return false; 4109 } 4110 4111 // Check to make sure that the other destination of this branch 4112 // isn't BB itself. If so, this is an infinite loop that will 4113 // keep getting unwound. 4114 if (PBI->getSuccessor(PBIOp) == BB) 4115 return false; 4116 4117 // Do not perform this transformation if it would require 4118 // insertion of a large number of select instructions. For targets 4119 // without predication/cmovs, this is a big pessimization. 4120 4121 // Also do not perform this transformation if any phi node in the common 4122 // destination block can trap when reached by BB or PBB (PR17073). In that 4123 // case, it would be unsafe to hoist the operation into a select instruction. 4124 4125 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4126 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4127 unsigned NumPhis = 0; 4128 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4129 ++II, ++NumPhis) { 4130 if (NumPhis > 2) // Disable this xform. 4131 return false; 4132 4133 PHINode *PN = cast<PHINode>(II); 4134 Value *BIV = PN->getIncomingValueForBlock(BB); 4135 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 4136 if (CE->canTrap()) 4137 return false; 4138 4139 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 4140 Value *PBIV = PN->getIncomingValue(PBBIdx); 4141 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 4142 if (CE->canTrap()) 4143 return false; 4144 } 4145 4146 // Finally, if everything is ok, fold the branches to logical ops. 4147 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4148 4149 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4150 << "AND: " << *BI->getParent()); 4151 4152 SmallVector<DominatorTree::UpdateType, 5> Updates; 4153 4154 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4155 // branch in it, where one edge (OtherDest) goes back to itself but the other 4156 // exits. We don't *know* that the program avoids the infinite loop 4157 // (even though that seems likely). If we do this xform naively, we'll end up 4158 // recursively unpeeling the loop. Since we know that (after the xform is 4159 // done) that the block *is* infinite if reached, we just make it an obviously 4160 // infinite loop with no cond branch. 4161 if (OtherDest == BB) { 4162 // Insert it at the end of the function, because it's either code, 4163 // or it won't matter if it's hot. :) 4164 BasicBlock *InfLoopBlock = 4165 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4166 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4167 if (DTU) 4168 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4169 OtherDest = InfLoopBlock; 4170 } 4171 4172 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4173 4174 // BI may have other predecessors. Because of this, we leave 4175 // it alone, but modify PBI. 4176 4177 // Make sure we get to CommonDest on True&True directions. 4178 Value *PBICond = PBI->getCondition(); 4179 IRBuilder<NoFolder> Builder(PBI); 4180 if (PBIOp) 4181 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4182 4183 Value *BICond = BI->getCondition(); 4184 if (BIOp) 4185 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4186 4187 // Merge the conditions. 4188 Value *Cond = 4189 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4190 4191 // Modify PBI to branch on the new condition to the new dests. 4192 PBI->setCondition(Cond); 4193 PBI->setSuccessor(0, CommonDest); 4194 PBI->setSuccessor(1, OtherDest); 4195 4196 if (DTU) { 4197 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4198 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4199 4200 DTU->applyUpdates(Updates); 4201 } 4202 4203 // Update branch weight for PBI. 4204 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4205 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4206 bool HasWeights = 4207 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4208 SuccTrueWeight, SuccFalseWeight); 4209 if (HasWeights) { 4210 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4211 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4212 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4213 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4214 // The weight to CommonDest should be PredCommon * SuccTotal + 4215 // PredOther * SuccCommon. 4216 // The weight to OtherDest should be PredOther * SuccOther. 4217 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4218 PredOther * SuccCommon, 4219 PredOther * SuccOther}; 4220 // Halve the weights if any of them cannot fit in an uint32_t 4221 FitWeights(NewWeights); 4222 4223 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 4224 } 4225 4226 // OtherDest may have phi nodes. If so, add an entry from PBI's 4227 // block that are identical to the entries for BI's block. 4228 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4229 4230 // We know that the CommonDest already had an edge from PBI to 4231 // it. If it has PHIs though, the PHIs may have different 4232 // entries for BB and PBI's BB. If so, insert a select to make 4233 // them agree. 4234 for (PHINode &PN : CommonDest->phis()) { 4235 Value *BIV = PN.getIncomingValueForBlock(BB); 4236 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4237 Value *PBIV = PN.getIncomingValue(PBBIdx); 4238 if (BIV != PBIV) { 4239 // Insert a select in PBI to pick the right value. 4240 SelectInst *NV = cast<SelectInst>( 4241 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4242 PN.setIncomingValue(PBBIdx, NV); 4243 // Although the select has the same condition as PBI, the original branch 4244 // weights for PBI do not apply to the new select because the select's 4245 // 'logical' edges are incoming edges of the phi that is eliminated, not 4246 // the outgoing edges of PBI. 4247 if (HasWeights) { 4248 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4249 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4250 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4251 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4252 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4253 // The weight to PredOtherDest should be PredOther * SuccCommon. 4254 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4255 PredOther * SuccCommon}; 4256 4257 FitWeights(NewWeights); 4258 4259 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 4260 } 4261 } 4262 } 4263 4264 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4265 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4266 4267 // This basic block is probably dead. We know it has at least 4268 // one fewer predecessor. 4269 return true; 4270 } 4271 4272 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4273 // true or to FalseBB if Cond is false. 4274 // Takes care of updating the successors and removing the old terminator. 4275 // Also makes sure not to introduce new successors by assuming that edges to 4276 // non-successor TrueBBs and FalseBBs aren't reachable. 4277 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 4278 Value *Cond, BasicBlock *TrueBB, 4279 BasicBlock *FalseBB, 4280 uint32_t TrueWeight, 4281 uint32_t FalseWeight) { 4282 auto *BB = OldTerm->getParent(); 4283 // Remove any superfluous successor edges from the CFG. 4284 // First, figure out which successors to preserve. 4285 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4286 // successor. 4287 BasicBlock *KeepEdge1 = TrueBB; 4288 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4289 4290 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4291 4292 // Then remove the rest. 4293 for (BasicBlock *Succ : successors(OldTerm)) { 4294 // Make sure only to keep exactly one copy of each edge. 4295 if (Succ == KeepEdge1) 4296 KeepEdge1 = nullptr; 4297 else if (Succ == KeepEdge2) 4298 KeepEdge2 = nullptr; 4299 else { 4300 Succ->removePredecessor(BB, 4301 /*KeepOneInputPHIs=*/true); 4302 4303 if (Succ != TrueBB && Succ != FalseBB) 4304 RemovedSuccessors.insert(Succ); 4305 } 4306 } 4307 4308 IRBuilder<> Builder(OldTerm); 4309 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4310 4311 // Insert an appropriate new terminator. 4312 if (!KeepEdge1 && !KeepEdge2) { 4313 if (TrueBB == FalseBB) { 4314 // We were only looking for one successor, and it was present. 4315 // Create an unconditional branch to it. 4316 Builder.CreateBr(TrueBB); 4317 } else { 4318 // We found both of the successors we were looking for. 4319 // Create a conditional branch sharing the condition of the select. 4320 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4321 if (TrueWeight != FalseWeight) 4322 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4323 } 4324 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4325 // Neither of the selected blocks were successors, so this 4326 // terminator must be unreachable. 4327 new UnreachableInst(OldTerm->getContext(), OldTerm); 4328 } else { 4329 // One of the selected values was a successor, but the other wasn't. 4330 // Insert an unconditional branch to the one that was found; 4331 // the edge to the one that wasn't must be unreachable. 4332 if (!KeepEdge1) { 4333 // Only TrueBB was found. 4334 Builder.CreateBr(TrueBB); 4335 } else { 4336 // Only FalseBB was found. 4337 Builder.CreateBr(FalseBB); 4338 } 4339 } 4340 4341 EraseTerminatorAndDCECond(OldTerm); 4342 4343 if (DTU) { 4344 SmallVector<DominatorTree::UpdateType, 2> Updates; 4345 Updates.reserve(RemovedSuccessors.size()); 4346 for (auto *RemovedSuccessor : RemovedSuccessors) 4347 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4348 DTU->applyUpdates(Updates); 4349 } 4350 4351 return true; 4352 } 4353 4354 // Replaces 4355 // (switch (select cond, X, Y)) on constant X, Y 4356 // with a branch - conditional if X and Y lead to distinct BBs, 4357 // unconditional otherwise. 4358 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4359 SelectInst *Select) { 4360 // Check for constant integer values in the select. 4361 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4362 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4363 if (!TrueVal || !FalseVal) 4364 return false; 4365 4366 // Find the relevant condition and destinations. 4367 Value *Condition = Select->getCondition(); 4368 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4369 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4370 4371 // Get weight for TrueBB and FalseBB. 4372 uint32_t TrueWeight = 0, FalseWeight = 0; 4373 SmallVector<uint64_t, 8> Weights; 4374 bool HasWeights = HasBranchWeights(SI); 4375 if (HasWeights) { 4376 GetBranchWeights(SI, Weights); 4377 if (Weights.size() == 1 + SI->getNumCases()) { 4378 TrueWeight = 4379 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4380 FalseWeight = 4381 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4382 } 4383 } 4384 4385 // Perform the actual simplification. 4386 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4387 FalseWeight); 4388 } 4389 4390 // Replaces 4391 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4392 // blockaddress(@fn, BlockB))) 4393 // with 4394 // (br cond, BlockA, BlockB). 4395 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4396 SelectInst *SI) { 4397 // Check that both operands of the select are block addresses. 4398 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4399 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4400 if (!TBA || !FBA) 4401 return false; 4402 4403 // Extract the actual blocks. 4404 BasicBlock *TrueBB = TBA->getBasicBlock(); 4405 BasicBlock *FalseBB = FBA->getBasicBlock(); 4406 4407 // Perform the actual simplification. 4408 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4409 0); 4410 } 4411 4412 /// This is called when we find an icmp instruction 4413 /// (a seteq/setne with a constant) as the only instruction in a 4414 /// block that ends with an uncond branch. We are looking for a very specific 4415 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4416 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4417 /// default value goes to an uncond block with a seteq in it, we get something 4418 /// like: 4419 /// 4420 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4421 /// DEFAULT: 4422 /// %tmp = icmp eq i8 %A, 92 4423 /// br label %end 4424 /// end: 4425 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4426 /// 4427 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4428 /// the PHI, merging the third icmp into the switch. 4429 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4430 ICmpInst *ICI, IRBuilder<> &Builder) { 4431 BasicBlock *BB = ICI->getParent(); 4432 4433 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4434 // complex. 4435 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4436 return false; 4437 4438 Value *V = ICI->getOperand(0); 4439 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4440 4441 // The pattern we're looking for is where our only predecessor is a switch on 4442 // 'V' and this block is the default case for the switch. In this case we can 4443 // fold the compared value into the switch to simplify things. 4444 BasicBlock *Pred = BB->getSinglePredecessor(); 4445 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4446 return false; 4447 4448 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4449 if (SI->getCondition() != V) 4450 return false; 4451 4452 // If BB is reachable on a non-default case, then we simply know the value of 4453 // V in this block. Substitute it and constant fold the icmp instruction 4454 // away. 4455 if (SI->getDefaultDest() != BB) { 4456 ConstantInt *VVal = SI->findCaseDest(BB); 4457 assert(VVal && "Should have a unique destination value"); 4458 ICI->setOperand(0, VVal); 4459 4460 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4461 ICI->replaceAllUsesWith(V); 4462 ICI->eraseFromParent(); 4463 } 4464 // BB is now empty, so it is likely to simplify away. 4465 return requestResimplify(); 4466 } 4467 4468 // Ok, the block is reachable from the default dest. If the constant we're 4469 // comparing exists in one of the other edges, then we can constant fold ICI 4470 // and zap it. 4471 if (SI->findCaseValue(Cst) != SI->case_default()) { 4472 Value *V; 4473 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4474 V = ConstantInt::getFalse(BB->getContext()); 4475 else 4476 V = ConstantInt::getTrue(BB->getContext()); 4477 4478 ICI->replaceAllUsesWith(V); 4479 ICI->eraseFromParent(); 4480 // BB is now empty, so it is likely to simplify away. 4481 return requestResimplify(); 4482 } 4483 4484 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4485 // the block. 4486 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4487 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4488 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4489 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4490 return false; 4491 4492 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4493 // true in the PHI. 4494 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4495 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4496 4497 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4498 std::swap(DefaultCst, NewCst); 4499 4500 // Replace ICI (which is used by the PHI for the default value) with true or 4501 // false depending on if it is EQ or NE. 4502 ICI->replaceAllUsesWith(DefaultCst); 4503 ICI->eraseFromParent(); 4504 4505 SmallVector<DominatorTree::UpdateType, 2> Updates; 4506 4507 // Okay, the switch goes to this block on a default value. Add an edge from 4508 // the switch to the merge point on the compared value. 4509 BasicBlock *NewBB = 4510 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4511 { 4512 SwitchInstProfUpdateWrapper SIW(*SI); 4513 auto W0 = SIW.getSuccessorWeight(0); 4514 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4515 if (W0) { 4516 NewW = ((uint64_t(*W0) + 1) >> 1); 4517 SIW.setSuccessorWeight(0, *NewW); 4518 } 4519 SIW.addCase(Cst, NewBB, NewW); 4520 if (DTU) 4521 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4522 } 4523 4524 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4525 Builder.SetInsertPoint(NewBB); 4526 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4527 Builder.CreateBr(SuccBlock); 4528 PHIUse->addIncoming(NewCst, NewBB); 4529 if (DTU) { 4530 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4531 DTU->applyUpdates(Updates); 4532 } 4533 return true; 4534 } 4535 4536 /// The specified branch is a conditional branch. 4537 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4538 /// fold it into a switch instruction if so. 4539 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4540 IRBuilder<> &Builder, 4541 const DataLayout &DL) { 4542 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4543 if (!Cond) 4544 return false; 4545 4546 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4547 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4548 // 'setne's and'ed together, collect them. 4549 4550 // Try to gather values from a chain of and/or to be turned into a switch 4551 ConstantComparesGatherer ConstantCompare(Cond, DL); 4552 // Unpack the result 4553 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4554 Value *CompVal = ConstantCompare.CompValue; 4555 unsigned UsedICmps = ConstantCompare.UsedICmps; 4556 Value *ExtraCase = ConstantCompare.Extra; 4557 4558 // If we didn't have a multiply compared value, fail. 4559 if (!CompVal) 4560 return false; 4561 4562 // Avoid turning single icmps into a switch. 4563 if (UsedICmps <= 1) 4564 return false; 4565 4566 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4567 4568 // There might be duplicate constants in the list, which the switch 4569 // instruction can't handle, remove them now. 4570 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4571 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4572 4573 // If Extra was used, we require at least two switch values to do the 4574 // transformation. A switch with one value is just a conditional branch. 4575 if (ExtraCase && Values.size() < 2) 4576 return false; 4577 4578 // TODO: Preserve branch weight metadata, similarly to how 4579 // FoldValueComparisonIntoPredecessors preserves it. 4580 4581 // Figure out which block is which destination. 4582 BasicBlock *DefaultBB = BI->getSuccessor(1); 4583 BasicBlock *EdgeBB = BI->getSuccessor(0); 4584 if (!TrueWhenEqual) 4585 std::swap(DefaultBB, EdgeBB); 4586 4587 BasicBlock *BB = BI->getParent(); 4588 4589 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4590 << " cases into SWITCH. BB is:\n" 4591 << *BB); 4592 4593 SmallVector<DominatorTree::UpdateType, 2> Updates; 4594 4595 // If there are any extra values that couldn't be folded into the switch 4596 // then we evaluate them with an explicit branch first. Split the block 4597 // right before the condbr to handle it. 4598 if (ExtraCase) { 4599 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4600 /*MSSAU=*/nullptr, "switch.early.test"); 4601 4602 // Remove the uncond branch added to the old block. 4603 Instruction *OldTI = BB->getTerminator(); 4604 Builder.SetInsertPoint(OldTI); 4605 4606 // There can be an unintended UB if extra values are Poison. Before the 4607 // transformation, extra values may not be evaluated according to the 4608 // condition, and it will not raise UB. But after transformation, we are 4609 // evaluating extra values before checking the condition, and it will raise 4610 // UB. It can be solved by adding freeze instruction to extra values. 4611 AssumptionCache *AC = Options.AC; 4612 4613 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4614 ExtraCase = Builder.CreateFreeze(ExtraCase); 4615 4616 if (TrueWhenEqual) 4617 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4618 else 4619 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4620 4621 OldTI->eraseFromParent(); 4622 4623 if (DTU) 4624 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4625 4626 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4627 // for the edge we just added. 4628 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4629 4630 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4631 << "\nEXTRABB = " << *BB); 4632 BB = NewBB; 4633 } 4634 4635 Builder.SetInsertPoint(BI); 4636 // Convert pointer to int before we switch. 4637 if (CompVal->getType()->isPointerTy()) { 4638 CompVal = Builder.CreatePtrToInt( 4639 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4640 } 4641 4642 // Create the new switch instruction now. 4643 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4644 4645 // Add all of the 'cases' to the switch instruction. 4646 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4647 New->addCase(Values[i], EdgeBB); 4648 4649 // We added edges from PI to the EdgeBB. As such, if there were any 4650 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4651 // the number of edges added. 4652 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4653 PHINode *PN = cast<PHINode>(BBI); 4654 Value *InVal = PN->getIncomingValueForBlock(BB); 4655 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4656 PN->addIncoming(InVal, BB); 4657 } 4658 4659 // Erase the old branch instruction. 4660 EraseTerminatorAndDCECond(BI); 4661 if (DTU) 4662 DTU->applyUpdates(Updates); 4663 4664 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4665 return true; 4666 } 4667 4668 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4669 if (isa<PHINode>(RI->getValue())) 4670 return simplifyCommonResume(RI); 4671 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4672 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4673 // The resume must unwind the exception that caused control to branch here. 4674 return simplifySingleResume(RI); 4675 4676 return false; 4677 } 4678 4679 // Check if cleanup block is empty 4680 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4681 for (Instruction &I : R) { 4682 auto *II = dyn_cast<IntrinsicInst>(&I); 4683 if (!II) 4684 return false; 4685 4686 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4687 switch (IntrinsicID) { 4688 case Intrinsic::dbg_declare: 4689 case Intrinsic::dbg_value: 4690 case Intrinsic::dbg_label: 4691 case Intrinsic::lifetime_end: 4692 break; 4693 default: 4694 return false; 4695 } 4696 } 4697 return true; 4698 } 4699 4700 // Simplify resume that is shared by several landing pads (phi of landing pad). 4701 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4702 BasicBlock *BB = RI->getParent(); 4703 4704 // Check that there are no other instructions except for debug and lifetime 4705 // intrinsics between the phi's and resume instruction. 4706 if (!isCleanupBlockEmpty( 4707 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4708 return false; 4709 4710 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4711 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4712 4713 // Check incoming blocks to see if any of them are trivial. 4714 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4715 Idx++) { 4716 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4717 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4718 4719 // If the block has other successors, we can not delete it because 4720 // it has other dependents. 4721 if (IncomingBB->getUniqueSuccessor() != BB) 4722 continue; 4723 4724 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4725 // Not the landing pad that caused the control to branch here. 4726 if (IncomingValue != LandingPad) 4727 continue; 4728 4729 if (isCleanupBlockEmpty( 4730 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4731 TrivialUnwindBlocks.insert(IncomingBB); 4732 } 4733 4734 // If no trivial unwind blocks, don't do any simplifications. 4735 if (TrivialUnwindBlocks.empty()) 4736 return false; 4737 4738 // Turn all invokes that unwind here into calls. 4739 for (auto *TrivialBB : TrivialUnwindBlocks) { 4740 // Blocks that will be simplified should be removed from the phi node. 4741 // Note there could be multiple edges to the resume block, and we need 4742 // to remove them all. 4743 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4744 BB->removePredecessor(TrivialBB, true); 4745 4746 for (BasicBlock *Pred : 4747 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4748 removeUnwindEdge(Pred, DTU); 4749 ++NumInvokes; 4750 } 4751 4752 // In each SimplifyCFG run, only the current processed block can be erased. 4753 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4754 // of erasing TrivialBB, we only remove the branch to the common resume 4755 // block so that we can later erase the resume block since it has no 4756 // predecessors. 4757 TrivialBB->getTerminator()->eraseFromParent(); 4758 new UnreachableInst(RI->getContext(), TrivialBB); 4759 if (DTU) 4760 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4761 } 4762 4763 // Delete the resume block if all its predecessors have been removed. 4764 if (pred_empty(BB)) 4765 DeleteDeadBlock(BB, DTU); 4766 4767 return !TrivialUnwindBlocks.empty(); 4768 } 4769 4770 // Simplify resume that is only used by a single (non-phi) landing pad. 4771 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4772 BasicBlock *BB = RI->getParent(); 4773 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4774 assert(RI->getValue() == LPInst && 4775 "Resume must unwind the exception that caused control to here"); 4776 4777 // Check that there are no other instructions except for debug intrinsics. 4778 if (!isCleanupBlockEmpty( 4779 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4780 return false; 4781 4782 // Turn all invokes that unwind here into calls and delete the basic block. 4783 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4784 removeUnwindEdge(Pred, DTU); 4785 ++NumInvokes; 4786 } 4787 4788 // The landingpad is now unreachable. Zap it. 4789 DeleteDeadBlock(BB, DTU); 4790 return true; 4791 } 4792 4793 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4794 // If this is a trivial cleanup pad that executes no instructions, it can be 4795 // eliminated. If the cleanup pad continues to the caller, any predecessor 4796 // that is an EH pad will be updated to continue to the caller and any 4797 // predecessor that terminates with an invoke instruction will have its invoke 4798 // instruction converted to a call instruction. If the cleanup pad being 4799 // simplified does not continue to the caller, each predecessor will be 4800 // updated to continue to the unwind destination of the cleanup pad being 4801 // simplified. 4802 BasicBlock *BB = RI->getParent(); 4803 CleanupPadInst *CPInst = RI->getCleanupPad(); 4804 if (CPInst->getParent() != BB) 4805 // This isn't an empty cleanup. 4806 return false; 4807 4808 // We cannot kill the pad if it has multiple uses. This typically arises 4809 // from unreachable basic blocks. 4810 if (!CPInst->hasOneUse()) 4811 return false; 4812 4813 // Check that there are no other instructions except for benign intrinsics. 4814 if (!isCleanupBlockEmpty( 4815 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4816 return false; 4817 4818 // If the cleanup return we are simplifying unwinds to the caller, this will 4819 // set UnwindDest to nullptr. 4820 BasicBlock *UnwindDest = RI->getUnwindDest(); 4821 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4822 4823 // We're about to remove BB from the control flow. Before we do, sink any 4824 // PHINodes into the unwind destination. Doing this before changing the 4825 // control flow avoids some potentially slow checks, since we can currently 4826 // be certain that UnwindDest and BB have no common predecessors (since they 4827 // are both EH pads). 4828 if (UnwindDest) { 4829 // First, go through the PHI nodes in UnwindDest and update any nodes that 4830 // reference the block we are removing 4831 for (PHINode &DestPN : UnwindDest->phis()) { 4832 int Idx = DestPN.getBasicBlockIndex(BB); 4833 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4834 assert(Idx != -1); 4835 // This PHI node has an incoming value that corresponds to a control 4836 // path through the cleanup pad we are removing. If the incoming 4837 // value is in the cleanup pad, it must be a PHINode (because we 4838 // verified above that the block is otherwise empty). Otherwise, the 4839 // value is either a constant or a value that dominates the cleanup 4840 // pad being removed. 4841 // 4842 // Because BB and UnwindDest are both EH pads, all of their 4843 // predecessors must unwind to these blocks, and since no instruction 4844 // can have multiple unwind destinations, there will be no overlap in 4845 // incoming blocks between SrcPN and DestPN. 4846 Value *SrcVal = DestPN.getIncomingValue(Idx); 4847 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4848 4849 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4850 for (auto *Pred : predecessors(BB)) { 4851 Value *Incoming = 4852 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4853 DestPN.addIncoming(Incoming, Pred); 4854 } 4855 } 4856 4857 // Sink any remaining PHI nodes directly into UnwindDest. 4858 Instruction *InsertPt = DestEHPad; 4859 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4860 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4861 // If the PHI node has no uses or all of its uses are in this basic 4862 // block (meaning they are debug or lifetime intrinsics), just leave 4863 // it. It will be erased when we erase BB below. 4864 continue; 4865 4866 // Otherwise, sink this PHI node into UnwindDest. 4867 // Any predecessors to UnwindDest which are not already represented 4868 // must be back edges which inherit the value from the path through 4869 // BB. In this case, the PHI value must reference itself. 4870 for (auto *pred : predecessors(UnwindDest)) 4871 if (pred != BB) 4872 PN.addIncoming(&PN, pred); 4873 PN.moveBefore(InsertPt); 4874 // Also, add a dummy incoming value for the original BB itself, 4875 // so that the PHI is well-formed until we drop said predecessor. 4876 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4877 } 4878 } 4879 4880 std::vector<DominatorTree::UpdateType> Updates; 4881 4882 // We use make_early_inc_range here because we will remove all predecessors. 4883 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4884 if (UnwindDest == nullptr) { 4885 if (DTU) { 4886 DTU->applyUpdates(Updates); 4887 Updates.clear(); 4888 } 4889 removeUnwindEdge(PredBB, DTU); 4890 ++NumInvokes; 4891 } else { 4892 BB->removePredecessor(PredBB); 4893 Instruction *TI = PredBB->getTerminator(); 4894 TI->replaceUsesOfWith(BB, UnwindDest); 4895 if (DTU) { 4896 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4897 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4898 } 4899 } 4900 } 4901 4902 if (DTU) 4903 DTU->applyUpdates(Updates); 4904 4905 DeleteDeadBlock(BB, DTU); 4906 4907 return true; 4908 } 4909 4910 // Try to merge two cleanuppads together. 4911 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4912 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4913 // with. 4914 BasicBlock *UnwindDest = RI->getUnwindDest(); 4915 if (!UnwindDest) 4916 return false; 4917 4918 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4919 // be safe to merge without code duplication. 4920 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4921 return false; 4922 4923 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4924 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4925 if (!SuccessorCleanupPad) 4926 return false; 4927 4928 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4929 // Replace any uses of the successor cleanupad with the predecessor pad 4930 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4931 // funclet bundle operands. 4932 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4933 // Remove the old cleanuppad. 4934 SuccessorCleanupPad->eraseFromParent(); 4935 // Now, we simply replace the cleanupret with a branch to the unwind 4936 // destination. 4937 BranchInst::Create(UnwindDest, RI->getParent()); 4938 RI->eraseFromParent(); 4939 4940 return true; 4941 } 4942 4943 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4944 // It is possible to transiantly have an undef cleanuppad operand because we 4945 // have deleted some, but not all, dead blocks. 4946 // Eventually, this block will be deleted. 4947 if (isa<UndefValue>(RI->getOperand(0))) 4948 return false; 4949 4950 if (mergeCleanupPad(RI)) 4951 return true; 4952 4953 if (removeEmptyCleanup(RI, DTU)) 4954 return true; 4955 4956 return false; 4957 } 4958 4959 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 4960 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4961 BasicBlock *BB = UI->getParent(); 4962 4963 bool Changed = false; 4964 4965 // If there are any instructions immediately before the unreachable that can 4966 // be removed, do so. 4967 while (UI->getIterator() != BB->begin()) { 4968 BasicBlock::iterator BBI = UI->getIterator(); 4969 --BBI; 4970 4971 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 4972 break; // Can not drop any more instructions. We're done here. 4973 // Otherwise, this instruction can be freely erased, 4974 // even if it is not side-effect free. 4975 4976 // Note that deleting EH's here is in fact okay, although it involves a bit 4977 // of subtle reasoning. If this inst is an EH, all the predecessors of this 4978 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 4979 // and we can therefore guarantee this block will be erased. 4980 4981 // Delete this instruction (any uses are guaranteed to be dead) 4982 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 4983 BBI->eraseFromParent(); 4984 Changed = true; 4985 } 4986 4987 // If the unreachable instruction is the first in the block, take a gander 4988 // at all of the predecessors of this instruction, and simplify them. 4989 if (&BB->front() != UI) 4990 return Changed; 4991 4992 std::vector<DominatorTree::UpdateType> Updates; 4993 4994 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4995 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4996 auto *Predecessor = Preds[i]; 4997 Instruction *TI = Predecessor->getTerminator(); 4998 IRBuilder<> Builder(TI); 4999 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5000 // We could either have a proper unconditional branch, 5001 // or a degenerate conditional branch with matching destinations. 5002 if (all_of(BI->successors(), 5003 [BB](auto *Successor) { return Successor == BB; })) { 5004 new UnreachableInst(TI->getContext(), TI); 5005 TI->eraseFromParent(); 5006 Changed = true; 5007 } else { 5008 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5009 Value* Cond = BI->getCondition(); 5010 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5011 "The destinations are guaranteed to be different here."); 5012 if (BI->getSuccessor(0) == BB) { 5013 Builder.CreateAssumption(Builder.CreateNot(Cond)); 5014 Builder.CreateBr(BI->getSuccessor(1)); 5015 } else { 5016 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5017 Builder.CreateAssumption(Cond); 5018 Builder.CreateBr(BI->getSuccessor(0)); 5019 } 5020 EraseTerminatorAndDCECond(BI); 5021 Changed = true; 5022 } 5023 if (DTU) 5024 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5025 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5026 SwitchInstProfUpdateWrapper SU(*SI); 5027 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5028 if (i->getCaseSuccessor() != BB) { 5029 ++i; 5030 continue; 5031 } 5032 BB->removePredecessor(SU->getParent()); 5033 i = SU.removeCase(i); 5034 e = SU->case_end(); 5035 Changed = true; 5036 } 5037 // Note that the default destination can't be removed! 5038 if (DTU && SI->getDefaultDest() != BB) 5039 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5040 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5041 if (II->getUnwindDest() == BB) { 5042 if (DTU) { 5043 DTU->applyUpdates(Updates); 5044 Updates.clear(); 5045 } 5046 removeUnwindEdge(TI->getParent(), DTU); 5047 Changed = true; 5048 } 5049 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5050 if (CSI->getUnwindDest() == BB) { 5051 if (DTU) { 5052 DTU->applyUpdates(Updates); 5053 Updates.clear(); 5054 } 5055 removeUnwindEdge(TI->getParent(), DTU); 5056 Changed = true; 5057 continue; 5058 } 5059 5060 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5061 E = CSI->handler_end(); 5062 I != E; ++I) { 5063 if (*I == BB) { 5064 CSI->removeHandler(I); 5065 --I; 5066 --E; 5067 Changed = true; 5068 } 5069 } 5070 if (DTU) 5071 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5072 if (CSI->getNumHandlers() == 0) { 5073 if (CSI->hasUnwindDest()) { 5074 // Redirect all predecessors of the block containing CatchSwitchInst 5075 // to instead branch to the CatchSwitchInst's unwind destination. 5076 if (DTU) { 5077 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5078 Updates.push_back({DominatorTree::Insert, 5079 PredecessorOfPredecessor, 5080 CSI->getUnwindDest()}); 5081 Updates.push_back({DominatorTree::Delete, 5082 PredecessorOfPredecessor, Predecessor}); 5083 } 5084 } 5085 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5086 } else { 5087 // Rewrite all preds to unwind to caller (or from invoke to call). 5088 if (DTU) { 5089 DTU->applyUpdates(Updates); 5090 Updates.clear(); 5091 } 5092 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5093 for (BasicBlock *EHPred : EHPreds) 5094 removeUnwindEdge(EHPred, DTU); 5095 } 5096 // The catchswitch is no longer reachable. 5097 new UnreachableInst(CSI->getContext(), CSI); 5098 CSI->eraseFromParent(); 5099 Changed = true; 5100 } 5101 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5102 (void)CRI; 5103 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5104 "Expected to always have an unwind to BB."); 5105 if (DTU) 5106 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5107 new UnreachableInst(TI->getContext(), TI); 5108 TI->eraseFromParent(); 5109 Changed = true; 5110 } 5111 } 5112 5113 if (DTU) 5114 DTU->applyUpdates(Updates); 5115 5116 // If this block is now dead, remove it. 5117 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5118 DeleteDeadBlock(BB, DTU); 5119 return true; 5120 } 5121 5122 return Changed; 5123 } 5124 5125 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5126 assert(Cases.size() >= 1); 5127 5128 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 5129 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5130 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5131 return false; 5132 } 5133 return true; 5134 } 5135 5136 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5137 DomTreeUpdater *DTU) { 5138 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5139 auto *BB = Switch->getParent(); 5140 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5141 OrigDefaultBlock->removePredecessor(BB); 5142 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5143 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5144 OrigDefaultBlock); 5145 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5146 Switch->setDefaultDest(&*NewDefaultBlock); 5147 if (DTU) { 5148 SmallVector<DominatorTree::UpdateType, 2> Updates; 5149 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5150 if (!is_contained(successors(BB), OrigDefaultBlock)) 5151 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5152 DTU->applyUpdates(Updates); 5153 } 5154 } 5155 5156 /// Turn a switch with two reachable destinations into an integer range 5157 /// comparison and branch. 5158 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 5159 IRBuilder<> &Builder) { 5160 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5161 5162 bool HasDefault = 5163 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5164 5165 auto *BB = SI->getParent(); 5166 5167 // Partition the cases into two sets with different destinations. 5168 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5169 BasicBlock *DestB = nullptr; 5170 SmallVector<ConstantInt *, 16> CasesA; 5171 SmallVector<ConstantInt *, 16> CasesB; 5172 5173 for (auto Case : SI->cases()) { 5174 BasicBlock *Dest = Case.getCaseSuccessor(); 5175 if (!DestA) 5176 DestA = Dest; 5177 if (Dest == DestA) { 5178 CasesA.push_back(Case.getCaseValue()); 5179 continue; 5180 } 5181 if (!DestB) 5182 DestB = Dest; 5183 if (Dest == DestB) { 5184 CasesB.push_back(Case.getCaseValue()); 5185 continue; 5186 } 5187 return false; // More than two destinations. 5188 } 5189 5190 assert(DestA && DestB && 5191 "Single-destination switch should have been folded."); 5192 assert(DestA != DestB); 5193 assert(DestB != SI->getDefaultDest()); 5194 assert(!CasesB.empty() && "There must be non-default cases."); 5195 assert(!CasesA.empty() || HasDefault); 5196 5197 // Figure out if one of the sets of cases form a contiguous range. 5198 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5199 BasicBlock *ContiguousDest = nullptr; 5200 BasicBlock *OtherDest = nullptr; 5201 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 5202 ContiguousCases = &CasesA; 5203 ContiguousDest = DestA; 5204 OtherDest = DestB; 5205 } else if (CasesAreContiguous(CasesB)) { 5206 ContiguousCases = &CasesB; 5207 ContiguousDest = DestB; 5208 OtherDest = DestA; 5209 } else 5210 return false; 5211 5212 // Start building the compare and branch. 5213 5214 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5215 Constant *NumCases = 5216 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5217 5218 Value *Sub = SI->getCondition(); 5219 if (!Offset->isNullValue()) 5220 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5221 5222 Value *Cmp; 5223 // If NumCases overflowed, then all possible values jump to the successor. 5224 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5225 Cmp = ConstantInt::getTrue(SI->getContext()); 5226 else 5227 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5228 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5229 5230 // Update weight for the newly-created conditional branch. 5231 if (HasBranchWeights(SI)) { 5232 SmallVector<uint64_t, 8> Weights; 5233 GetBranchWeights(SI, Weights); 5234 if (Weights.size() == 1 + SI->getNumCases()) { 5235 uint64_t TrueWeight = 0; 5236 uint64_t FalseWeight = 0; 5237 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5238 if (SI->getSuccessor(I) == ContiguousDest) 5239 TrueWeight += Weights[I]; 5240 else 5241 FalseWeight += Weights[I]; 5242 } 5243 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5244 TrueWeight /= 2; 5245 FalseWeight /= 2; 5246 } 5247 setBranchWeights(NewBI, TrueWeight, FalseWeight); 5248 } 5249 } 5250 5251 // Prune obsolete incoming values off the successors' PHI nodes. 5252 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5253 unsigned PreviousEdges = ContiguousCases->size(); 5254 if (ContiguousDest == SI->getDefaultDest()) 5255 ++PreviousEdges; 5256 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5257 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5258 } 5259 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5260 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5261 if (OtherDest == SI->getDefaultDest()) 5262 ++PreviousEdges; 5263 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5264 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5265 } 5266 5267 // Clean up the default block - it may have phis or other instructions before 5268 // the unreachable terminator. 5269 if (!HasDefault) 5270 createUnreachableSwitchDefault(SI, DTU); 5271 5272 auto *UnreachableDefault = SI->getDefaultDest(); 5273 5274 // Drop the switch. 5275 SI->eraseFromParent(); 5276 5277 if (!HasDefault && DTU) 5278 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5279 5280 return true; 5281 } 5282 5283 /// Compute masked bits for the condition of a switch 5284 /// and use it to remove dead cases. 5285 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5286 AssumptionCache *AC, 5287 const DataLayout &DL) { 5288 Value *Cond = SI->getCondition(); 5289 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5290 5291 // We can also eliminate cases by determining that their values are outside of 5292 // the limited range of the condition based on how many significant (non-sign) 5293 // bits are in the condition value. 5294 unsigned MaxSignificantBitsInCond = 5295 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5296 5297 // Gather dead cases. 5298 SmallVector<ConstantInt *, 8> DeadCases; 5299 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5300 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5301 for (auto &Case : SI->cases()) { 5302 auto *Successor = Case.getCaseSuccessor(); 5303 if (DTU) { 5304 if (!NumPerSuccessorCases.count(Successor)) 5305 UniqueSuccessors.push_back(Successor); 5306 ++NumPerSuccessorCases[Successor]; 5307 } 5308 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5309 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5310 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5311 DeadCases.push_back(Case.getCaseValue()); 5312 if (DTU) 5313 --NumPerSuccessorCases[Successor]; 5314 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5315 << " is dead.\n"); 5316 } 5317 } 5318 5319 // If we can prove that the cases must cover all possible values, the 5320 // default destination becomes dead and we can remove it. If we know some 5321 // of the bits in the value, we can use that to more precisely compute the 5322 // number of possible unique case values. 5323 bool HasDefault = 5324 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5325 const unsigned NumUnknownBits = 5326 Known.getBitWidth() - (Known.Zero | Known.One).countPopulation(); 5327 assert(NumUnknownBits <= Known.getBitWidth()); 5328 if (HasDefault && DeadCases.empty() && 5329 NumUnknownBits < 64 /* avoid overflow */ && 5330 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5331 createUnreachableSwitchDefault(SI, DTU); 5332 return true; 5333 } 5334 5335 if (DeadCases.empty()) 5336 return false; 5337 5338 SwitchInstProfUpdateWrapper SIW(*SI); 5339 for (ConstantInt *DeadCase : DeadCases) { 5340 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5341 assert(CaseI != SI->case_default() && 5342 "Case was not found. Probably mistake in DeadCases forming."); 5343 // Prune unused values from PHI nodes. 5344 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5345 SIW.removeCase(CaseI); 5346 } 5347 5348 if (DTU) { 5349 std::vector<DominatorTree::UpdateType> Updates; 5350 for (auto *Successor : UniqueSuccessors) 5351 if (NumPerSuccessorCases[Successor] == 0) 5352 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5353 DTU->applyUpdates(Updates); 5354 } 5355 5356 return true; 5357 } 5358 5359 /// If BB would be eligible for simplification by 5360 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5361 /// by an unconditional branch), look at the phi node for BB in the successor 5362 /// block and see if the incoming value is equal to CaseValue. If so, return 5363 /// the phi node, and set PhiIndex to BB's index in the phi node. 5364 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5365 BasicBlock *BB, int *PhiIndex) { 5366 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5367 return nullptr; // BB must be empty to be a candidate for simplification. 5368 if (!BB->getSinglePredecessor()) 5369 return nullptr; // BB must be dominated by the switch. 5370 5371 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5372 if (!Branch || !Branch->isUnconditional()) 5373 return nullptr; // Terminator must be unconditional branch. 5374 5375 BasicBlock *Succ = Branch->getSuccessor(0); 5376 5377 for (PHINode &PHI : Succ->phis()) { 5378 int Idx = PHI.getBasicBlockIndex(BB); 5379 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5380 5381 Value *InValue = PHI.getIncomingValue(Idx); 5382 if (InValue != CaseValue) 5383 continue; 5384 5385 *PhiIndex = Idx; 5386 return &PHI; 5387 } 5388 5389 return nullptr; 5390 } 5391 5392 /// Try to forward the condition of a switch instruction to a phi node 5393 /// dominated by the switch, if that would mean that some of the destination 5394 /// blocks of the switch can be folded away. Return true if a change is made. 5395 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5396 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5397 5398 ForwardingNodesMap ForwardingNodes; 5399 BasicBlock *SwitchBlock = SI->getParent(); 5400 bool Changed = false; 5401 for (auto &Case : SI->cases()) { 5402 ConstantInt *CaseValue = Case.getCaseValue(); 5403 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5404 5405 // Replace phi operands in successor blocks that are using the constant case 5406 // value rather than the switch condition variable: 5407 // switchbb: 5408 // switch i32 %x, label %default [ 5409 // i32 17, label %succ 5410 // ... 5411 // succ: 5412 // %r = phi i32 ... [ 17, %switchbb ] ... 5413 // --> 5414 // %r = phi i32 ... [ %x, %switchbb ] ... 5415 5416 for (PHINode &Phi : CaseDest->phis()) { 5417 // This only works if there is exactly 1 incoming edge from the switch to 5418 // a phi. If there is >1, that means multiple cases of the switch map to 1 5419 // value in the phi, and that phi value is not the switch condition. Thus, 5420 // this transform would not make sense (the phi would be invalid because 5421 // a phi can't have different incoming values from the same block). 5422 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5423 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5424 count(Phi.blocks(), SwitchBlock) == 1) { 5425 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5426 Changed = true; 5427 } 5428 } 5429 5430 // Collect phi nodes that are indirectly using this switch's case constants. 5431 int PhiIdx; 5432 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5433 ForwardingNodes[Phi].push_back(PhiIdx); 5434 } 5435 5436 for (auto &ForwardingNode : ForwardingNodes) { 5437 PHINode *Phi = ForwardingNode.first; 5438 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5439 if (Indexes.size() < 2) 5440 continue; 5441 5442 for (int Index : Indexes) 5443 Phi->setIncomingValue(Index, SI->getCondition()); 5444 Changed = true; 5445 } 5446 5447 return Changed; 5448 } 5449 5450 /// Return true if the backend will be able to handle 5451 /// initializing an array of constants like C. 5452 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5453 if (C->isThreadDependent()) 5454 return false; 5455 if (C->isDLLImportDependent()) 5456 return false; 5457 5458 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5459 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5460 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5461 return false; 5462 5463 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5464 // Pointer casts and in-bounds GEPs will not prohibit the backend from 5465 // materializing the array of constants. 5466 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 5467 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI)) 5468 return false; 5469 } 5470 5471 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5472 return false; 5473 5474 return true; 5475 } 5476 5477 /// If V is a Constant, return it. Otherwise, try to look up 5478 /// its constant value in ConstantPool, returning 0 if it's not there. 5479 static Constant * 5480 LookupConstant(Value *V, 5481 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5482 if (Constant *C = dyn_cast<Constant>(V)) 5483 return C; 5484 return ConstantPool.lookup(V); 5485 } 5486 5487 /// Try to fold instruction I into a constant. This works for 5488 /// simple instructions such as binary operations where both operands are 5489 /// constant or can be replaced by constants from the ConstantPool. Returns the 5490 /// resulting constant on success, 0 otherwise. 5491 static Constant * 5492 ConstantFold(Instruction *I, const DataLayout &DL, 5493 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5494 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5495 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5496 if (!A) 5497 return nullptr; 5498 if (A->isAllOnesValue()) 5499 return LookupConstant(Select->getTrueValue(), ConstantPool); 5500 if (A->isNullValue()) 5501 return LookupConstant(Select->getFalseValue(), ConstantPool); 5502 return nullptr; 5503 } 5504 5505 SmallVector<Constant *, 4> COps; 5506 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5507 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5508 COps.push_back(A); 5509 else 5510 return nullptr; 5511 } 5512 5513 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5514 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5515 COps[1], DL); 5516 } 5517 5518 return ConstantFoldInstOperands(I, COps, DL); 5519 } 5520 5521 /// Try to determine the resulting constant values in phi nodes 5522 /// at the common destination basic block, *CommonDest, for one of the case 5523 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5524 /// case), of a switch instruction SI. 5525 static bool 5526 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5527 BasicBlock **CommonDest, 5528 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5529 const DataLayout &DL, const TargetTransformInfo &TTI) { 5530 // The block from which we enter the common destination. 5531 BasicBlock *Pred = SI->getParent(); 5532 5533 // If CaseDest is empty except for some side-effect free instructions through 5534 // which we can constant-propagate the CaseVal, continue to its successor. 5535 SmallDenseMap<Value *, Constant *> ConstantPool; 5536 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5537 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 5538 if (I.isTerminator()) { 5539 // If the terminator is a simple branch, continue to the next block. 5540 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5541 return false; 5542 Pred = CaseDest; 5543 CaseDest = I.getSuccessor(0); 5544 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5545 // Instruction is side-effect free and constant. 5546 5547 // If the instruction has uses outside this block or a phi node slot for 5548 // the block, it is not safe to bypass the instruction since it would then 5549 // no longer dominate all its uses. 5550 for (auto &Use : I.uses()) { 5551 User *User = Use.getUser(); 5552 if (Instruction *I = dyn_cast<Instruction>(User)) 5553 if (I->getParent() == CaseDest) 5554 continue; 5555 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5556 if (Phi->getIncomingBlock(Use) == CaseDest) 5557 continue; 5558 return false; 5559 } 5560 5561 ConstantPool.insert(std::make_pair(&I, C)); 5562 } else { 5563 break; 5564 } 5565 } 5566 5567 // If we did not have a CommonDest before, use the current one. 5568 if (!*CommonDest) 5569 *CommonDest = CaseDest; 5570 // If the destination isn't the common one, abort. 5571 if (CaseDest != *CommonDest) 5572 return false; 5573 5574 // Get the values for this case from phi nodes in the destination block. 5575 for (PHINode &PHI : (*CommonDest)->phis()) { 5576 int Idx = PHI.getBasicBlockIndex(Pred); 5577 if (Idx == -1) 5578 continue; 5579 5580 Constant *ConstVal = 5581 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5582 if (!ConstVal) 5583 return false; 5584 5585 // Be conservative about which kinds of constants we support. 5586 if (!ValidLookupTableConstant(ConstVal, TTI)) 5587 return false; 5588 5589 Res.push_back(std::make_pair(&PHI, ConstVal)); 5590 } 5591 5592 return Res.size() > 0; 5593 } 5594 5595 // Helper function used to add CaseVal to the list of cases that generate 5596 // Result. Returns the updated number of cases that generate this result. 5597 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5598 SwitchCaseResultVectorTy &UniqueResults, 5599 Constant *Result) { 5600 for (auto &I : UniqueResults) { 5601 if (I.first == Result) { 5602 I.second.push_back(CaseVal); 5603 return I.second.size(); 5604 } 5605 } 5606 UniqueResults.push_back( 5607 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5608 return 1; 5609 } 5610 5611 // Helper function that initializes a map containing 5612 // results for the PHI node of the common destination block for a switch 5613 // instruction. Returns false if multiple PHI nodes have been found or if 5614 // there is not a common destination block for the switch. 5615 static bool 5616 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5617 SwitchCaseResultVectorTy &UniqueResults, 5618 Constant *&DefaultResult, const DataLayout &DL, 5619 const TargetTransformInfo &TTI, 5620 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5621 for (auto &I : SI->cases()) { 5622 ConstantInt *CaseVal = I.getCaseValue(); 5623 5624 // Resulting value at phi nodes for this case value. 5625 SwitchCaseResultsTy Results; 5626 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5627 DL, TTI)) 5628 return false; 5629 5630 // Only one value per case is permitted. 5631 if (Results.size() > 1) 5632 return false; 5633 5634 // Add the case->result mapping to UniqueResults. 5635 const uintptr_t NumCasesForResult = 5636 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5637 5638 // Early out if there are too many cases for this result. 5639 if (NumCasesForResult > MaxCasesPerResult) 5640 return false; 5641 5642 // Early out if there are too many unique results. 5643 if (UniqueResults.size() > MaxUniqueResults) 5644 return false; 5645 5646 // Check the PHI consistency. 5647 if (!PHI) 5648 PHI = Results[0].first; 5649 else if (PHI != Results[0].first) 5650 return false; 5651 } 5652 // Find the default result value. 5653 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5654 BasicBlock *DefaultDest = SI->getDefaultDest(); 5655 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5656 DL, TTI); 5657 // If the default value is not found abort unless the default destination 5658 // is unreachable. 5659 DefaultResult = 5660 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5661 if ((!DefaultResult && 5662 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5663 return false; 5664 5665 return true; 5666 } 5667 5668 // Helper function that checks if it is possible to transform a switch with only 5669 // two cases (or two cases + default) that produces a result into a select. 5670 // Example: 5671 // switch (a) { 5672 // case 10: %0 = icmp eq i32 %a, 10 5673 // return 10; %1 = select i1 %0, i32 10, i32 4 5674 // case 20: ----> %2 = icmp eq i32 %a, 20 5675 // return 2; %3 = select i1 %2, i32 2, i32 %1 5676 // default: 5677 // return 4; 5678 // } 5679 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5680 Constant *DefaultResult, Value *Condition, 5681 IRBuilder<> &Builder) { 5682 // If we are selecting between only two cases transform into a simple 5683 // select or a two-way select if default is possible. 5684 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5685 ResultVector[1].second.size() == 1) { 5686 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5687 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5688 5689 bool DefaultCanTrigger = DefaultResult; 5690 Value *SelectValue = ResultVector[1].first; 5691 if (DefaultCanTrigger) { 5692 Value *const ValueCompare = 5693 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5694 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5695 DefaultResult, "switch.select"); 5696 } 5697 Value *const ValueCompare = 5698 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5699 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5700 SelectValue, "switch.select"); 5701 } 5702 5703 // Handle the degenerate case where two cases have the same value. 5704 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5705 DefaultResult) { 5706 Value *Cmp1 = Builder.CreateICmpEQ( 5707 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5708 Value *Cmp2 = Builder.CreateICmpEQ( 5709 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5710 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5711 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5712 } 5713 5714 return nullptr; 5715 } 5716 5717 // Helper function to cleanup a switch instruction that has been converted into 5718 // a select, fixing up PHI nodes and basic blocks. 5719 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5720 Value *SelectValue, 5721 IRBuilder<> &Builder, 5722 DomTreeUpdater *DTU) { 5723 std::vector<DominatorTree::UpdateType> Updates; 5724 5725 BasicBlock *SelectBB = SI->getParent(); 5726 BasicBlock *DestBB = PHI->getParent(); 5727 5728 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5729 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5730 Builder.CreateBr(DestBB); 5731 5732 // Remove the switch. 5733 5734 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5735 PHI->removeIncomingValue(SelectBB); 5736 PHI->addIncoming(SelectValue, SelectBB); 5737 5738 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5739 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5740 BasicBlock *Succ = SI->getSuccessor(i); 5741 5742 if (Succ == DestBB) 5743 continue; 5744 Succ->removePredecessor(SelectBB); 5745 if (DTU && RemovedSuccessors.insert(Succ).second) 5746 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5747 } 5748 SI->eraseFromParent(); 5749 if (DTU) 5750 DTU->applyUpdates(Updates); 5751 } 5752 5753 /// If the switch is only used to initialize one or more 5754 /// phi nodes in a common successor block with only two different 5755 /// constant values, replace the switch with select. 5756 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5757 DomTreeUpdater *DTU, const DataLayout &DL, 5758 const TargetTransformInfo &TTI) { 5759 Value *const Cond = SI->getCondition(); 5760 PHINode *PHI = nullptr; 5761 BasicBlock *CommonDest = nullptr; 5762 Constant *DefaultResult; 5763 SwitchCaseResultVectorTy UniqueResults; 5764 // Collect all the cases that will deliver the same value from the switch. 5765 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5766 DL, TTI, /*MaxUniqueResults*/2, 5767 /*MaxCasesPerResult*/2)) 5768 return false; 5769 assert(PHI != nullptr && "PHI for value select not found"); 5770 5771 Builder.SetInsertPoint(SI); 5772 Value *SelectValue = 5773 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5774 if (SelectValue) { 5775 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5776 return true; 5777 } 5778 // The switch couldn't be converted into a select. 5779 return false; 5780 } 5781 5782 namespace { 5783 5784 /// This class represents a lookup table that can be used to replace a switch. 5785 class SwitchLookupTable { 5786 public: 5787 /// Create a lookup table to use as a switch replacement with the contents 5788 /// of Values, using DefaultValue to fill any holes in the table. 5789 SwitchLookupTable( 5790 Module &M, uint64_t TableSize, ConstantInt *Offset, 5791 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5792 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5793 5794 /// Build instructions with Builder to retrieve the value at 5795 /// the position given by Index in the lookup table. 5796 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5797 5798 /// Return true if a table with TableSize elements of 5799 /// type ElementType would fit in a target-legal register. 5800 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5801 Type *ElementType); 5802 5803 private: 5804 // Depending on the contents of the table, it can be represented in 5805 // different ways. 5806 enum { 5807 // For tables where each element contains the same value, we just have to 5808 // store that single value and return it for each lookup. 5809 SingleValueKind, 5810 5811 // For tables where there is a linear relationship between table index 5812 // and values. We calculate the result with a simple multiplication 5813 // and addition instead of a table lookup. 5814 LinearMapKind, 5815 5816 // For small tables with integer elements, we can pack them into a bitmap 5817 // that fits into a target-legal register. Values are retrieved by 5818 // shift and mask operations. 5819 BitMapKind, 5820 5821 // The table is stored as an array of values. Values are retrieved by load 5822 // instructions from the table. 5823 ArrayKind 5824 } Kind; 5825 5826 // For SingleValueKind, this is the single value. 5827 Constant *SingleValue = nullptr; 5828 5829 // For BitMapKind, this is the bitmap. 5830 ConstantInt *BitMap = nullptr; 5831 IntegerType *BitMapElementTy = nullptr; 5832 5833 // For LinearMapKind, these are the constants used to derive the value. 5834 ConstantInt *LinearOffset = nullptr; 5835 ConstantInt *LinearMultiplier = nullptr; 5836 5837 // For ArrayKind, this is the array. 5838 GlobalVariable *Array = nullptr; 5839 }; 5840 5841 } // end anonymous namespace 5842 5843 SwitchLookupTable::SwitchLookupTable( 5844 Module &M, uint64_t TableSize, ConstantInt *Offset, 5845 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5846 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5847 assert(Values.size() && "Can't build lookup table without values!"); 5848 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5849 5850 // If all values in the table are equal, this is that value. 5851 SingleValue = Values.begin()->second; 5852 5853 Type *ValueType = Values.begin()->second->getType(); 5854 5855 // Build up the table contents. 5856 SmallVector<Constant *, 64> TableContents(TableSize); 5857 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5858 ConstantInt *CaseVal = Values[I].first; 5859 Constant *CaseRes = Values[I].second; 5860 assert(CaseRes->getType() == ValueType); 5861 5862 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5863 TableContents[Idx] = CaseRes; 5864 5865 if (CaseRes != SingleValue) 5866 SingleValue = nullptr; 5867 } 5868 5869 // Fill in any holes in the table with the default result. 5870 if (Values.size() < TableSize) { 5871 assert(DefaultValue && 5872 "Need a default value to fill the lookup table holes."); 5873 assert(DefaultValue->getType() == ValueType); 5874 for (uint64_t I = 0; I < TableSize; ++I) { 5875 if (!TableContents[I]) 5876 TableContents[I] = DefaultValue; 5877 } 5878 5879 if (DefaultValue != SingleValue) 5880 SingleValue = nullptr; 5881 } 5882 5883 // If each element in the table contains the same value, we only need to store 5884 // that single value. 5885 if (SingleValue) { 5886 Kind = SingleValueKind; 5887 return; 5888 } 5889 5890 // Check if we can derive the value with a linear transformation from the 5891 // table index. 5892 if (isa<IntegerType>(ValueType)) { 5893 bool LinearMappingPossible = true; 5894 APInt PrevVal; 5895 APInt DistToPrev; 5896 assert(TableSize >= 2 && "Should be a SingleValue table."); 5897 // Check if there is the same distance between two consecutive values. 5898 for (uint64_t I = 0; I < TableSize; ++I) { 5899 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5900 if (!ConstVal) { 5901 // This is an undef. We could deal with it, but undefs in lookup tables 5902 // are very seldom. It's probably not worth the additional complexity. 5903 LinearMappingPossible = false; 5904 break; 5905 } 5906 const APInt &Val = ConstVal->getValue(); 5907 if (I != 0) { 5908 APInt Dist = Val - PrevVal; 5909 if (I == 1) { 5910 DistToPrev = Dist; 5911 } else if (Dist != DistToPrev) { 5912 LinearMappingPossible = false; 5913 break; 5914 } 5915 } 5916 PrevVal = Val; 5917 } 5918 if (LinearMappingPossible) { 5919 LinearOffset = cast<ConstantInt>(TableContents[0]); 5920 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5921 Kind = LinearMapKind; 5922 ++NumLinearMaps; 5923 return; 5924 } 5925 } 5926 5927 // If the type is integer and the table fits in a register, build a bitmap. 5928 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5929 IntegerType *IT = cast<IntegerType>(ValueType); 5930 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5931 for (uint64_t I = TableSize; I > 0; --I) { 5932 TableInt <<= IT->getBitWidth(); 5933 // Insert values into the bitmap. Undef values are set to zero. 5934 if (!isa<UndefValue>(TableContents[I - 1])) { 5935 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5936 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5937 } 5938 } 5939 BitMap = ConstantInt::get(M.getContext(), TableInt); 5940 BitMapElementTy = IT; 5941 Kind = BitMapKind; 5942 ++NumBitMaps; 5943 return; 5944 } 5945 5946 // Store the table in an array. 5947 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5948 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5949 5950 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5951 GlobalVariable::PrivateLinkage, Initializer, 5952 "switch.table." + FuncName); 5953 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5954 // Set the alignment to that of an array items. We will be only loading one 5955 // value out of it. 5956 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5957 Kind = ArrayKind; 5958 } 5959 5960 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5961 switch (Kind) { 5962 case SingleValueKind: 5963 return SingleValue; 5964 case LinearMapKind: { 5965 // Derive the result value from the input value. 5966 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5967 false, "switch.idx.cast"); 5968 if (!LinearMultiplier->isOne()) 5969 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5970 if (!LinearOffset->isZero()) 5971 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5972 return Result; 5973 } 5974 case BitMapKind: { 5975 // Type of the bitmap (e.g. i59). 5976 IntegerType *MapTy = BitMap->getType(); 5977 5978 // Cast Index to the same type as the bitmap. 5979 // Note: The Index is <= the number of elements in the table, so 5980 // truncating it to the width of the bitmask is safe. 5981 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5982 5983 // Multiply the shift amount by the element width. 5984 ShiftAmt = Builder.CreateMul( 5985 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5986 "switch.shiftamt"); 5987 5988 // Shift down. 5989 Value *DownShifted = 5990 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5991 // Mask off. 5992 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5993 } 5994 case ArrayKind: { 5995 // Make sure the table index will not overflow when treated as signed. 5996 IntegerType *IT = cast<IntegerType>(Index->getType()); 5997 uint64_t TableSize = 5998 Array->getInitializer()->getType()->getArrayNumElements(); 5999 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 6000 Index = Builder.CreateZExt( 6001 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6002 "switch.tableidx.zext"); 6003 6004 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6005 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6006 GEPIndices, "switch.gep"); 6007 return Builder.CreateLoad( 6008 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6009 "switch.load"); 6010 } 6011 } 6012 llvm_unreachable("Unknown lookup table kind!"); 6013 } 6014 6015 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 6016 uint64_t TableSize, 6017 Type *ElementType) { 6018 auto *IT = dyn_cast<IntegerType>(ElementType); 6019 if (!IT) 6020 return false; 6021 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6022 // are <= 15, we could try to narrow the type. 6023 6024 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6025 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6026 return false; 6027 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6028 } 6029 6030 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6031 const DataLayout &DL) { 6032 // Allow any legal type. 6033 if (TTI.isTypeLegal(Ty)) 6034 return true; 6035 6036 auto *IT = dyn_cast<IntegerType>(Ty); 6037 if (!IT) 6038 return false; 6039 6040 // Also allow power of 2 integer types that have at least 8 bits and fit in 6041 // a register. These types are common in frontend languages and targets 6042 // usually support loads of these types. 6043 // TODO: We could relax this to any integer that fits in a register and rely 6044 // on ABI alignment and padding in the table to allow the load to be widened. 6045 // Or we could widen the constants and truncate the load. 6046 unsigned BitWidth = IT->getBitWidth(); 6047 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6048 DL.fitsInLegalInteger(IT->getBitWidth()); 6049 } 6050 6051 /// Determine whether a lookup table should be built for this switch, based on 6052 /// the number of cases, size of the table, and the types of the results. 6053 // TODO: We could support larger than legal types by limiting based on the 6054 // number of loads required and/or table size. If the constants are small we 6055 // could use smaller table entries and extend after the load. 6056 static bool 6057 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6058 const TargetTransformInfo &TTI, const DataLayout &DL, 6059 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6060 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 6061 return false; // TableSize overflowed, or mul below might overflow. 6062 6063 bool AllTablesFitInRegister = true; 6064 bool HasIllegalType = false; 6065 for (const auto &I : ResultTypes) { 6066 Type *Ty = I.second; 6067 6068 // Saturate this flag to true. 6069 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6070 6071 // Saturate this flag to false. 6072 AllTablesFitInRegister = 6073 AllTablesFitInRegister && 6074 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 6075 6076 // If both flags saturate, we're done. NOTE: This *only* works with 6077 // saturating flags, and all flags have to saturate first due to the 6078 // non-deterministic behavior of iterating over a dense map. 6079 if (HasIllegalType && !AllTablesFitInRegister) 6080 break; 6081 } 6082 6083 // If each table would fit in a register, we should build it anyway. 6084 if (AllTablesFitInRegister) 6085 return true; 6086 6087 // Don't build a table that doesn't fit in-register if it has illegal types. 6088 if (HasIllegalType) 6089 return false; 6090 6091 // The table density should be at least 40%. This is the same criterion as for 6092 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 6093 // FIXME: Find the best cut-off. 6094 return SI->getNumCases() * 10 >= TableSize * 4; 6095 } 6096 6097 /// Try to reuse the switch table index compare. Following pattern: 6098 /// \code 6099 /// if (idx < tablesize) 6100 /// r = table[idx]; // table does not contain default_value 6101 /// else 6102 /// r = default_value; 6103 /// if (r != default_value) 6104 /// ... 6105 /// \endcode 6106 /// Is optimized to: 6107 /// \code 6108 /// cond = idx < tablesize; 6109 /// if (cond) 6110 /// r = table[idx]; 6111 /// else 6112 /// r = default_value; 6113 /// if (cond) 6114 /// ... 6115 /// \endcode 6116 /// Jump threading will then eliminate the second if(cond). 6117 static void reuseTableCompare( 6118 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6119 Constant *DefaultValue, 6120 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6121 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6122 if (!CmpInst) 6123 return; 6124 6125 // We require that the compare is in the same block as the phi so that jump 6126 // threading can do its work afterwards. 6127 if (CmpInst->getParent() != PhiBlock) 6128 return; 6129 6130 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6131 if (!CmpOp1) 6132 return; 6133 6134 Value *RangeCmp = RangeCheckBranch->getCondition(); 6135 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6136 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6137 6138 // Check if the compare with the default value is constant true or false. 6139 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6140 DefaultValue, CmpOp1, true); 6141 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6142 return; 6143 6144 // Check if the compare with the case values is distinct from the default 6145 // compare result. 6146 for (auto ValuePair : Values) { 6147 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6148 ValuePair.second, CmpOp1, true); 6149 if (!CaseConst || CaseConst == DefaultConst || 6150 (CaseConst != TrueConst && CaseConst != FalseConst)) 6151 return; 6152 } 6153 6154 // Check if the branch instruction dominates the phi node. It's a simple 6155 // dominance check, but sufficient for our needs. 6156 // Although this check is invariant in the calling loops, it's better to do it 6157 // at this late stage. Practically we do it at most once for a switch. 6158 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6159 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6160 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6161 return; 6162 } 6163 6164 if (DefaultConst == FalseConst) { 6165 // The compare yields the same result. We can replace it. 6166 CmpInst->replaceAllUsesWith(RangeCmp); 6167 ++NumTableCmpReuses; 6168 } else { 6169 // The compare yields the same result, just inverted. We can replace it. 6170 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6171 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6172 RangeCheckBranch); 6173 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6174 ++NumTableCmpReuses; 6175 } 6176 } 6177 6178 /// If the switch is only used to initialize one or more phi nodes in a common 6179 /// successor block with different constant values, replace the switch with 6180 /// lookup tables. 6181 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6182 DomTreeUpdater *DTU, const DataLayout &DL, 6183 const TargetTransformInfo &TTI) { 6184 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6185 6186 BasicBlock *BB = SI->getParent(); 6187 Function *Fn = BB->getParent(); 6188 // Only build lookup table when we have a target that supports it or the 6189 // attribute is not set. 6190 if (!TTI.shouldBuildLookupTables() || 6191 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6192 return false; 6193 6194 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6195 // split off a dense part and build a lookup table for that. 6196 6197 // FIXME: This creates arrays of GEPs to constant strings, which means each 6198 // GEP needs a runtime relocation in PIC code. We should just build one big 6199 // string and lookup indices into that. 6200 6201 // Ignore switches with less than three cases. Lookup tables will not make 6202 // them faster, so we don't analyze them. 6203 if (SI->getNumCases() < 3) 6204 return false; 6205 6206 // Figure out the corresponding result for each case value and phi node in the 6207 // common destination, as well as the min and max case values. 6208 assert(!SI->cases().empty()); 6209 SwitchInst::CaseIt CI = SI->case_begin(); 6210 ConstantInt *MinCaseVal = CI->getCaseValue(); 6211 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6212 6213 BasicBlock *CommonDest = nullptr; 6214 6215 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6216 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6217 6218 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6219 SmallDenseMap<PHINode *, Type *> ResultTypes; 6220 SmallVector<PHINode *, 4> PHIs; 6221 6222 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6223 ConstantInt *CaseVal = CI->getCaseValue(); 6224 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6225 MinCaseVal = CaseVal; 6226 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6227 MaxCaseVal = CaseVal; 6228 6229 // Resulting value at phi nodes for this case value. 6230 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6231 ResultsTy Results; 6232 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6233 Results, DL, TTI)) 6234 return false; 6235 6236 // Append the result from this case to the list for each phi. 6237 for (const auto &I : Results) { 6238 PHINode *PHI = I.first; 6239 Constant *Value = I.second; 6240 if (!ResultLists.count(PHI)) 6241 PHIs.push_back(PHI); 6242 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6243 } 6244 } 6245 6246 // Keep track of the result types. 6247 for (PHINode *PHI : PHIs) { 6248 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6249 } 6250 6251 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6252 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 6253 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 6254 bool TableHasHoles = (NumResults < TableSize); 6255 6256 // If the table has holes, we need a constant result for the default case 6257 // or a bitmask that fits in a register. 6258 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6259 bool HasDefaultResults = 6260 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6261 DefaultResultsList, DL, TTI); 6262 6263 bool NeedMask = (TableHasHoles && !HasDefaultResults); 6264 if (NeedMask) { 6265 // As an extra penalty for the validity test we require more cases. 6266 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 6267 return false; 6268 if (!DL.fitsInLegalInteger(TableSize)) 6269 return false; 6270 } 6271 6272 for (const auto &I : DefaultResultsList) { 6273 PHINode *PHI = I.first; 6274 Constant *Result = I.second; 6275 DefaultResults[PHI] = Result; 6276 } 6277 6278 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 6279 return false; 6280 6281 std::vector<DominatorTree::UpdateType> Updates; 6282 6283 // Create the BB that does the lookups. 6284 Module &Mod = *CommonDest->getParent()->getParent(); 6285 BasicBlock *LookupBB = BasicBlock::Create( 6286 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6287 6288 // Compute the table index value. 6289 Builder.SetInsertPoint(SI); 6290 Value *TableIndex; 6291 if (MinCaseVal->isNullValue()) 6292 TableIndex = SI->getCondition(); 6293 else 6294 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 6295 "switch.tableidx"); 6296 6297 // Compute the maximum table size representable by the integer type we are 6298 // switching upon. 6299 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6300 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6301 assert(MaxTableSize >= TableSize && 6302 "It is impossible for a switch to have more entries than the max " 6303 "representable value of its input integer type's size."); 6304 6305 // If the default destination is unreachable, or if the lookup table covers 6306 // all values of the conditional variable, branch directly to the lookup table 6307 // BB. Otherwise, check that the condition is within the case range. 6308 const bool DefaultIsReachable = 6309 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6310 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6311 BranchInst *RangeCheckBranch = nullptr; 6312 6313 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6314 Builder.CreateBr(LookupBB); 6315 if (DTU) 6316 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6317 // Note: We call removeProdecessor later since we need to be able to get the 6318 // PHI value for the default case in case we're using a bit mask. 6319 } else { 6320 Value *Cmp = Builder.CreateICmpULT( 6321 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6322 RangeCheckBranch = 6323 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6324 if (DTU) 6325 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6326 } 6327 6328 // Populate the BB that does the lookups. 6329 Builder.SetInsertPoint(LookupBB); 6330 6331 if (NeedMask) { 6332 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6333 // re-purposed to do the hole check, and we create a new LookupBB. 6334 BasicBlock *MaskBB = LookupBB; 6335 MaskBB->setName("switch.hole_check"); 6336 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6337 CommonDest->getParent(), CommonDest); 6338 6339 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6340 // unnecessary illegal types. 6341 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6342 APInt MaskInt(TableSizePowOf2, 0); 6343 APInt One(TableSizePowOf2, 1); 6344 // Build bitmask; fill in a 1 bit for every case. 6345 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6346 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6347 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6348 .getLimitedValue(); 6349 MaskInt |= One << Idx; 6350 } 6351 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6352 6353 // Get the TableIndex'th bit of the bitmask. 6354 // If this bit is 0 (meaning hole) jump to the default destination, 6355 // else continue with table lookup. 6356 IntegerType *MapTy = TableMask->getType(); 6357 Value *MaskIndex = 6358 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6359 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6360 Value *LoBit = Builder.CreateTrunc( 6361 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6362 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6363 if (DTU) { 6364 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6365 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6366 } 6367 Builder.SetInsertPoint(LookupBB); 6368 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6369 } 6370 6371 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6372 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6373 // do not delete PHINodes here. 6374 SI->getDefaultDest()->removePredecessor(BB, 6375 /*KeepOneInputPHIs=*/true); 6376 if (DTU) 6377 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6378 } 6379 6380 for (PHINode *PHI : PHIs) { 6381 const ResultListTy &ResultList = ResultLists[PHI]; 6382 6383 // If using a bitmask, use any value to fill the lookup table holes. 6384 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6385 StringRef FuncName = Fn->getName(); 6386 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6387 FuncName); 6388 6389 Value *Result = Table.BuildLookup(TableIndex, Builder); 6390 6391 // Do a small peephole optimization: re-use the switch table compare if 6392 // possible. 6393 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6394 BasicBlock *PhiBlock = PHI->getParent(); 6395 // Search for compare instructions which use the phi. 6396 for (auto *User : PHI->users()) { 6397 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6398 } 6399 } 6400 6401 PHI->addIncoming(Result, LookupBB); 6402 } 6403 6404 Builder.CreateBr(CommonDest); 6405 if (DTU) 6406 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6407 6408 // Remove the switch. 6409 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6410 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6411 BasicBlock *Succ = SI->getSuccessor(i); 6412 6413 if (Succ == SI->getDefaultDest()) 6414 continue; 6415 Succ->removePredecessor(BB); 6416 if (DTU && RemovedSuccessors.insert(Succ).second) 6417 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6418 } 6419 SI->eraseFromParent(); 6420 6421 if (DTU) 6422 DTU->applyUpdates(Updates); 6423 6424 ++NumLookupTables; 6425 if (NeedMask) 6426 ++NumLookupTablesHoles; 6427 return true; 6428 } 6429 6430 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6431 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6432 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6433 uint64_t Range = Diff + 1; 6434 uint64_t NumCases = Values.size(); 6435 // 40% is the default density for building a jump table in optsize/minsize mode. 6436 uint64_t MinDensity = 40; 6437 6438 return NumCases * 100 >= Range * MinDensity; 6439 } 6440 6441 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6442 /// of cases. 6443 /// 6444 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6445 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6446 /// 6447 /// This converts a sparse switch into a dense switch which allows better 6448 /// lowering and could also allow transforming into a lookup table. 6449 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6450 const DataLayout &DL, 6451 const TargetTransformInfo &TTI) { 6452 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6453 if (CondTy->getIntegerBitWidth() > 64 || 6454 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6455 return false; 6456 // Only bother with this optimization if there are more than 3 switch cases; 6457 // SDAG will only bother creating jump tables for 4 or more cases. 6458 if (SI->getNumCases() < 4) 6459 return false; 6460 6461 // This transform is agnostic to the signedness of the input or case values. We 6462 // can treat the case values as signed or unsigned. We can optimize more common 6463 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6464 // as signed. 6465 SmallVector<int64_t,4> Values; 6466 for (auto &C : SI->cases()) 6467 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6468 llvm::sort(Values); 6469 6470 // If the switch is already dense, there's nothing useful to do here. 6471 if (isSwitchDense(Values)) 6472 return false; 6473 6474 // First, transform the values such that they start at zero and ascend. 6475 int64_t Base = Values[0]; 6476 for (auto &V : Values) 6477 V -= (uint64_t)(Base); 6478 6479 // Now we have signed numbers that have been shifted so that, given enough 6480 // precision, there are no negative values. Since the rest of the transform 6481 // is bitwise only, we switch now to an unsigned representation. 6482 6483 // This transform can be done speculatively because it is so cheap - it 6484 // results in a single rotate operation being inserted. 6485 // FIXME: It's possible that optimizing a switch on powers of two might also 6486 // be beneficial - flag values are often powers of two and we could use a CLZ 6487 // as the key function. 6488 6489 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6490 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6491 // less than 64. 6492 unsigned Shift = 64; 6493 for (auto &V : Values) 6494 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6495 assert(Shift < 64); 6496 if (Shift > 0) 6497 for (auto &V : Values) 6498 V = (int64_t)((uint64_t)V >> Shift); 6499 6500 if (!isSwitchDense(Values)) 6501 // Transform didn't create a dense switch. 6502 return false; 6503 6504 // The obvious transform is to shift the switch condition right and emit a 6505 // check that the condition actually cleanly divided by GCD, i.e. 6506 // C & (1 << Shift - 1) == 0 6507 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6508 // 6509 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6510 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6511 // are nonzero then the switch condition will be very large and will hit the 6512 // default case. 6513 6514 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6515 Builder.SetInsertPoint(SI); 6516 auto *ShiftC = ConstantInt::get(Ty, Shift); 6517 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6518 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6519 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6520 auto *Rot = Builder.CreateOr(LShr, Shl); 6521 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6522 6523 for (auto Case : SI->cases()) { 6524 auto *Orig = Case.getCaseValue(); 6525 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6526 Case.setValue( 6527 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6528 } 6529 return true; 6530 } 6531 6532 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6533 BasicBlock *BB = SI->getParent(); 6534 6535 if (isValueEqualityComparison(SI)) { 6536 // If we only have one predecessor, and if it is a branch on this value, 6537 // see if that predecessor totally determines the outcome of this switch. 6538 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6539 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6540 return requestResimplify(); 6541 6542 Value *Cond = SI->getCondition(); 6543 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6544 if (SimplifySwitchOnSelect(SI, Select)) 6545 return requestResimplify(); 6546 6547 // If the block only contains the switch, see if we can fold the block 6548 // away into any preds. 6549 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 6550 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6551 return requestResimplify(); 6552 } 6553 6554 // Try to transform the switch into an icmp and a branch. 6555 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6556 return requestResimplify(); 6557 6558 // Remove unreachable cases. 6559 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6560 return requestResimplify(); 6561 6562 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6563 return requestResimplify(); 6564 6565 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6566 return requestResimplify(); 6567 6568 // The conversion from switch to lookup tables results in difficult-to-analyze 6569 // code and makes pruning branches much harder. This is a problem if the 6570 // switch expression itself can still be restricted as a result of inlining or 6571 // CVP. Therefore, only apply this transformation during late stages of the 6572 // optimisation pipeline. 6573 if (Options.ConvertSwitchToLookupTable && 6574 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6575 return requestResimplify(); 6576 6577 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6578 return requestResimplify(); 6579 6580 return false; 6581 } 6582 6583 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6584 BasicBlock *BB = IBI->getParent(); 6585 bool Changed = false; 6586 6587 // Eliminate redundant destinations. 6588 SmallPtrSet<Value *, 8> Succs; 6589 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6590 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6591 BasicBlock *Dest = IBI->getDestination(i); 6592 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6593 if (!Dest->hasAddressTaken()) 6594 RemovedSuccs.insert(Dest); 6595 Dest->removePredecessor(BB); 6596 IBI->removeDestination(i); 6597 --i; 6598 --e; 6599 Changed = true; 6600 } 6601 } 6602 6603 if (DTU) { 6604 std::vector<DominatorTree::UpdateType> Updates; 6605 Updates.reserve(RemovedSuccs.size()); 6606 for (auto *RemovedSucc : RemovedSuccs) 6607 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6608 DTU->applyUpdates(Updates); 6609 } 6610 6611 if (IBI->getNumDestinations() == 0) { 6612 // If the indirectbr has no successors, change it to unreachable. 6613 new UnreachableInst(IBI->getContext(), IBI); 6614 EraseTerminatorAndDCECond(IBI); 6615 return true; 6616 } 6617 6618 if (IBI->getNumDestinations() == 1) { 6619 // If the indirectbr has one successor, change it to a direct branch. 6620 BranchInst::Create(IBI->getDestination(0), IBI); 6621 EraseTerminatorAndDCECond(IBI); 6622 return true; 6623 } 6624 6625 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6626 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6627 return requestResimplify(); 6628 } 6629 return Changed; 6630 } 6631 6632 /// Given an block with only a single landing pad and a unconditional branch 6633 /// try to find another basic block which this one can be merged with. This 6634 /// handles cases where we have multiple invokes with unique landing pads, but 6635 /// a shared handler. 6636 /// 6637 /// We specifically choose to not worry about merging non-empty blocks 6638 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6639 /// practice, the optimizer produces empty landing pad blocks quite frequently 6640 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6641 /// sinking in this file) 6642 /// 6643 /// This is primarily a code size optimization. We need to avoid performing 6644 /// any transform which might inhibit optimization (such as our ability to 6645 /// specialize a particular handler via tail commoning). We do this by not 6646 /// merging any blocks which require us to introduce a phi. Since the same 6647 /// values are flowing through both blocks, we don't lose any ability to 6648 /// specialize. If anything, we make such specialization more likely. 6649 /// 6650 /// TODO - This transformation could remove entries from a phi in the target 6651 /// block when the inputs in the phi are the same for the two blocks being 6652 /// merged. In some cases, this could result in removal of the PHI entirely. 6653 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6654 BasicBlock *BB, DomTreeUpdater *DTU) { 6655 auto Succ = BB->getUniqueSuccessor(); 6656 assert(Succ); 6657 // If there's a phi in the successor block, we'd likely have to introduce 6658 // a phi into the merged landing pad block. 6659 if (isa<PHINode>(*Succ->begin())) 6660 return false; 6661 6662 for (BasicBlock *OtherPred : predecessors(Succ)) { 6663 if (BB == OtherPred) 6664 continue; 6665 BasicBlock::iterator I = OtherPred->begin(); 6666 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6667 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6668 continue; 6669 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6670 ; 6671 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6672 if (!BI2 || !BI2->isIdenticalTo(BI)) 6673 continue; 6674 6675 std::vector<DominatorTree::UpdateType> Updates; 6676 6677 // We've found an identical block. Update our predecessors to take that 6678 // path instead and make ourselves dead. 6679 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 6680 for (BasicBlock *Pred : UniquePreds) { 6681 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6682 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6683 "unexpected successor"); 6684 II->setUnwindDest(OtherPred); 6685 if (DTU) { 6686 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6687 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6688 } 6689 } 6690 6691 // The debug info in OtherPred doesn't cover the merged control flow that 6692 // used to go through BB. We need to delete it or update it. 6693 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 6694 if (isa<DbgInfoIntrinsic>(Inst)) 6695 Inst.eraseFromParent(); 6696 6697 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 6698 for (BasicBlock *Succ : UniqueSuccs) { 6699 Succ->removePredecessor(BB); 6700 if (DTU) 6701 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6702 } 6703 6704 IRBuilder<> Builder(BI); 6705 Builder.CreateUnreachable(); 6706 BI->eraseFromParent(); 6707 if (DTU) 6708 DTU->applyUpdates(Updates); 6709 return true; 6710 } 6711 return false; 6712 } 6713 6714 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6715 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6716 : simplifyCondBranch(Branch, Builder); 6717 } 6718 6719 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6720 IRBuilder<> &Builder) { 6721 BasicBlock *BB = BI->getParent(); 6722 BasicBlock *Succ = BI->getSuccessor(0); 6723 6724 // If the Terminator is the only non-phi instruction, simplify the block. 6725 // If LoopHeader is provided, check if the block or its successor is a loop 6726 // header. (This is for early invocations before loop simplify and 6727 // vectorization to keep canonical loop forms for nested loops. These blocks 6728 // can be eliminated when the pass is invoked later in the back-end.) 6729 // Note that if BB has only one predecessor then we do not introduce new 6730 // backedge, so we can eliminate BB. 6731 bool NeedCanonicalLoop = 6732 Options.NeedCanonicalLoop && 6733 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6734 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6735 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6736 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6737 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6738 return true; 6739 6740 // If the only instruction in the block is a seteq/setne comparison against a 6741 // constant, try to simplify the block. 6742 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6743 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6744 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6745 ; 6746 if (I->isTerminator() && 6747 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6748 return true; 6749 } 6750 6751 // See if we can merge an empty landing pad block with another which is 6752 // equivalent. 6753 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6754 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6755 ; 6756 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6757 return true; 6758 } 6759 6760 // If this basic block is ONLY a compare and a branch, and if a predecessor 6761 // branches to us and our successor, fold the comparison into the 6762 // predecessor and use logical operations to update the incoming value 6763 // for PHI nodes in common successor. 6764 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6765 Options.BonusInstThreshold)) 6766 return requestResimplify(); 6767 return false; 6768 } 6769 6770 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6771 BasicBlock *PredPred = nullptr; 6772 for (auto *P : predecessors(BB)) { 6773 BasicBlock *PPred = P->getSinglePredecessor(); 6774 if (!PPred || (PredPred && PredPred != PPred)) 6775 return nullptr; 6776 PredPred = PPred; 6777 } 6778 return PredPred; 6779 } 6780 6781 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6782 assert( 6783 !isa<ConstantInt>(BI->getCondition()) && 6784 BI->getSuccessor(0) != BI->getSuccessor(1) && 6785 "Tautological conditional branch should have been eliminated already."); 6786 6787 BasicBlock *BB = BI->getParent(); 6788 if (!Options.SimplifyCondBranch) 6789 return false; 6790 6791 // Conditional branch 6792 if (isValueEqualityComparison(BI)) { 6793 // If we only have one predecessor, and if it is a branch on this value, 6794 // see if that predecessor totally determines the outcome of this 6795 // switch. 6796 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6797 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6798 return requestResimplify(); 6799 6800 // This block must be empty, except for the setcond inst, if it exists. 6801 // Ignore dbg and pseudo intrinsics. 6802 auto I = BB->instructionsWithoutDebug(true).begin(); 6803 if (&*I == BI) { 6804 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6805 return requestResimplify(); 6806 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6807 ++I; 6808 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6809 return requestResimplify(); 6810 } 6811 } 6812 6813 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6814 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6815 return true; 6816 6817 // If this basic block has dominating predecessor blocks and the dominating 6818 // blocks' conditions imply BI's condition, we know the direction of BI. 6819 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6820 if (Imp) { 6821 // Turn this into a branch on constant. 6822 auto *OldCond = BI->getCondition(); 6823 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6824 : ConstantInt::getFalse(BB->getContext()); 6825 BI->setCondition(TorF); 6826 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6827 return requestResimplify(); 6828 } 6829 6830 // If this basic block is ONLY a compare and a branch, and if a predecessor 6831 // branches to us and one of our successors, fold the comparison into the 6832 // predecessor and use logical operations to pick the right destination. 6833 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6834 Options.BonusInstThreshold)) 6835 return requestResimplify(); 6836 6837 // We have a conditional branch to two blocks that are only reachable 6838 // from BI. We know that the condbr dominates the two blocks, so see if 6839 // there is any identical code in the "then" and "else" blocks. If so, we 6840 // can hoist it up to the branching block. 6841 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6842 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6843 if (HoistCommon && 6844 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6845 return requestResimplify(); 6846 } else { 6847 // If Successor #1 has multiple preds, we may be able to conditionally 6848 // execute Successor #0 if it branches to Successor #1. 6849 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6850 if (Succ0TI->getNumSuccessors() == 1 && 6851 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6852 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6853 return requestResimplify(); 6854 } 6855 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6856 // If Successor #0 has multiple preds, we may be able to conditionally 6857 // execute Successor #1 if it branches to Successor #0. 6858 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6859 if (Succ1TI->getNumSuccessors() == 1 && 6860 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6861 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6862 return requestResimplify(); 6863 } 6864 6865 // If this is a branch on a phi node in the current block, thread control 6866 // through this block if any PHI node entries are constants. 6867 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6868 if (PN->getParent() == BI->getParent()) 6869 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6870 return requestResimplify(); 6871 6872 // Scan predecessor blocks for conditional branches. 6873 for (BasicBlock *Pred : predecessors(BB)) 6874 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6875 if (PBI != BI && PBI->isConditional()) 6876 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6877 return requestResimplify(); 6878 6879 // Look for diamond patterns. 6880 if (MergeCondStores) 6881 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6882 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6883 if (PBI != BI && PBI->isConditional()) 6884 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6885 return requestResimplify(); 6886 6887 return false; 6888 } 6889 6890 /// Check if passing a value to an instruction will cause undefined behavior. 6891 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6892 Constant *C = dyn_cast<Constant>(V); 6893 if (!C) 6894 return false; 6895 6896 if (I->use_empty()) 6897 return false; 6898 6899 if (C->isNullValue() || isa<UndefValue>(C)) { 6900 // Only look at the first use, avoid hurting compile time with long uselists 6901 auto *Use = cast<Instruction>(*I->user_begin()); 6902 // Bail out if Use is not in the same BB as I or Use == I or Use comes 6903 // before I in the block. The latter two can be the case if Use is a PHI 6904 // node. 6905 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 6906 return false; 6907 6908 // Now make sure that there are no instructions in between that can alter 6909 // control flow (eg. calls) 6910 auto InstrRange = 6911 make_range(std::next(I->getIterator()), Use->getIterator()); 6912 if (any_of(InstrRange, [](Instruction &I) { 6913 return !isGuaranteedToTransferExecutionToSuccessor(&I); 6914 })) 6915 return false; 6916 6917 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6918 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6919 if (GEP->getPointerOperand() == I) { 6920 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6921 PtrValueMayBeModified = true; 6922 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6923 } 6924 6925 // Look through bitcasts. 6926 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6927 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6928 6929 // Load from null is undefined. 6930 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6931 if (!LI->isVolatile()) 6932 return !NullPointerIsDefined(LI->getFunction(), 6933 LI->getPointerAddressSpace()); 6934 6935 // Store to null is undefined. 6936 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6937 if (!SI->isVolatile()) 6938 return (!NullPointerIsDefined(SI->getFunction(), 6939 SI->getPointerAddressSpace())) && 6940 SI->getPointerOperand() == I; 6941 6942 if (auto *CB = dyn_cast<CallBase>(Use)) { 6943 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6944 return false; 6945 // A call to null is undefined. 6946 if (CB->getCalledOperand() == I) 6947 return true; 6948 6949 if (C->isNullValue()) { 6950 for (const llvm::Use &Arg : CB->args()) 6951 if (Arg == I) { 6952 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6953 if (CB->isPassingUndefUB(ArgIdx) && 6954 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6955 // Passing null to a nonnnull+noundef argument is undefined. 6956 return !PtrValueMayBeModified; 6957 } 6958 } 6959 } else if (isa<UndefValue>(C)) { 6960 // Passing undef to a noundef argument is undefined. 6961 for (const llvm::Use &Arg : CB->args()) 6962 if (Arg == I) { 6963 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6964 if (CB->isPassingUndefUB(ArgIdx)) { 6965 // Passing undef to a noundef argument is undefined. 6966 return true; 6967 } 6968 } 6969 } 6970 } 6971 } 6972 return false; 6973 } 6974 6975 /// If BB has an incoming value that will always trigger undefined behavior 6976 /// (eg. null pointer dereference), remove the branch leading here. 6977 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6978 DomTreeUpdater *DTU) { 6979 for (PHINode &PHI : BB->phis()) 6980 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6981 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6982 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6983 Instruction *T = Predecessor->getTerminator(); 6984 IRBuilder<> Builder(T); 6985 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6986 BB->removePredecessor(Predecessor); 6987 // Turn uncoditional branches into unreachables and remove the dead 6988 // destination from conditional branches. 6989 if (BI->isUnconditional()) 6990 Builder.CreateUnreachable(); 6991 else { 6992 // Preserve guarding condition in assume, because it might not be 6993 // inferrable from any dominating condition. 6994 Value *Cond = BI->getCondition(); 6995 if (BI->getSuccessor(0) == BB) 6996 Builder.CreateAssumption(Builder.CreateNot(Cond)); 6997 else 6998 Builder.CreateAssumption(Cond); 6999 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 7000 : BI->getSuccessor(0)); 7001 } 7002 BI->eraseFromParent(); 7003 if (DTU) 7004 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 7005 return true; 7006 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 7007 // Redirect all branches leading to UB into 7008 // a newly created unreachable block. 7009 BasicBlock *Unreachable = BasicBlock::Create( 7010 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 7011 Builder.SetInsertPoint(Unreachable); 7012 // The new block contains only one instruction: Unreachable 7013 Builder.CreateUnreachable(); 7014 for (auto &Case : SI->cases()) 7015 if (Case.getCaseSuccessor() == BB) { 7016 BB->removePredecessor(Predecessor); 7017 Case.setSuccessor(Unreachable); 7018 } 7019 if (SI->getDefaultDest() == BB) { 7020 BB->removePredecessor(Predecessor); 7021 SI->setDefaultDest(Unreachable); 7022 } 7023 7024 if (DTU) 7025 DTU->applyUpdates( 7026 { { DominatorTree::Insert, Predecessor, Unreachable }, 7027 { DominatorTree::Delete, Predecessor, BB } }); 7028 return true; 7029 } 7030 } 7031 7032 return false; 7033 } 7034 7035 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 7036 bool Changed = false; 7037 7038 assert(BB && BB->getParent() && "Block not embedded in function!"); 7039 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 7040 7041 // Remove basic blocks that have no predecessors (except the entry block)... 7042 // or that just have themself as a predecessor. These are unreachable. 7043 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 7044 BB->getSinglePredecessor() == BB) { 7045 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 7046 DeleteDeadBlock(BB, DTU); 7047 return true; 7048 } 7049 7050 // Check to see if we can constant propagate this terminator instruction 7051 // away... 7052 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 7053 /*TLI=*/nullptr, DTU); 7054 7055 // Check for and eliminate duplicate PHI nodes in this block. 7056 Changed |= EliminateDuplicatePHINodes(BB); 7057 7058 // Check for and remove branches that will always cause undefined behavior. 7059 if (removeUndefIntroducingPredecessor(BB, DTU)) 7060 return requestResimplify(); 7061 7062 // Merge basic blocks into their predecessor if there is only one distinct 7063 // pred, and if there is only one distinct successor of the predecessor, and 7064 // if there are no PHI nodes. 7065 if (MergeBlockIntoPredecessor(BB, DTU)) 7066 return true; 7067 7068 if (SinkCommon && Options.SinkCommonInsts) 7069 if (SinkCommonCodeFromPredecessors(BB, DTU) || 7070 MergeCompatibleInvokes(BB, DTU)) { 7071 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 7072 // so we may now how duplicate PHI's. 7073 // Let's rerun EliminateDuplicatePHINodes() first, 7074 // before FoldTwoEntryPHINode() potentially converts them into select's, 7075 // after which we'd need a whole EarlyCSE pass run to cleanup them. 7076 return true; 7077 } 7078 7079 IRBuilder<> Builder(BB); 7080 7081 if (Options.FoldTwoEntryPHINode) { 7082 // If there is a trivial two-entry PHI node in this basic block, and we can 7083 // eliminate it, do so now. 7084 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 7085 if (PN->getNumIncomingValues() == 2) 7086 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL)) 7087 return true; 7088 } 7089 7090 Instruction *Terminator = BB->getTerminator(); 7091 Builder.SetInsertPoint(Terminator); 7092 switch (Terminator->getOpcode()) { 7093 case Instruction::Br: 7094 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 7095 break; 7096 case Instruction::Resume: 7097 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 7098 break; 7099 case Instruction::CleanupRet: 7100 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 7101 break; 7102 case Instruction::Switch: 7103 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 7104 break; 7105 case Instruction::Unreachable: 7106 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 7107 break; 7108 case Instruction::IndirectBr: 7109 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 7110 break; 7111 } 7112 7113 return Changed; 7114 } 7115 7116 bool SimplifyCFGOpt::run(BasicBlock *BB) { 7117 bool Changed = false; 7118 7119 // Repeated simplify BB as long as resimplification is requested. 7120 do { 7121 Resimplify = false; 7122 7123 // Perform one round of simplifcation. Resimplify flag will be set if 7124 // another iteration is requested. 7125 Changed |= simplifyOnce(BB); 7126 } while (Resimplify); 7127 7128 return Changed; 7129 } 7130 7131 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 7132 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 7133 ArrayRef<WeakVH> LoopHeaders) { 7134 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 7135 Options) 7136 .run(BB); 7137 } 7138