1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/PseudoProbe.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/SSAUpdater.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <set>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "simplifycfg"
95 
96 cl::opt<bool> llvm::RequireAndPreserveDomTree(
97     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
98     cl::init(false),
99     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
100              "into preserving DomTree,"));
101 
102 // Chosen as 2 so as to be cheap, but still to have enough power to fold
103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
104 // To catch this, we need to fold a compare and a select, hence '2' being the
105 // minimum reasonable default.
106 static cl::opt<unsigned> PHINodeFoldingThreshold(
107     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
108     cl::desc(
109         "Control the amount of phi node folding to perform (default = 2)"));
110 
111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
112     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
113     cl::desc("Control the maximal total instruction cost that we are willing "
114              "to speculatively execute to fold a 2-entry PHI node into a "
115              "select (default = 4)"));
116 
117 static cl::opt<bool>
118     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
119                 cl::desc("Hoist common instructions up to the parent block"));
120 
121 static cl::opt<bool>
122     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
123                cl::desc("Sink common instructions down to the end block"));
124 
125 static cl::opt<bool> HoistCondStores(
126     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
127     cl::desc("Hoist conditional stores if an unconditional store precedes"));
128 
129 static cl::opt<bool> MergeCondStores(
130     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
131     cl::desc("Hoist conditional stores even if an unconditional store does not "
132              "precede - hoist multiple conditional stores into a single "
133              "predicated store"));
134 
135 static cl::opt<bool> MergeCondStoresAggressively(
136     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
137     cl::desc("When merging conditional stores, do so even if the resultant "
138              "basic blocks are unlikely to be if-converted as a result"));
139 
140 static cl::opt<bool> SpeculateOneExpensiveInst(
141     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
142     cl::desc("Allow exactly one expensive instruction to be speculatively "
143              "executed"));
144 
145 static cl::opt<unsigned> MaxSpeculationDepth(
146     "max-speculation-depth", cl::Hidden, cl::init(10),
147     cl::desc("Limit maximum recursion depth when calculating costs of "
148              "speculatively executed instructions"));
149 
150 static cl::opt<int>
151     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
152                       cl::init(10),
153                       cl::desc("Max size of a block which is still considered "
154                                "small enough to thread through"));
155 
156 // Two is chosen to allow one negation and a logical combine.
157 static cl::opt<unsigned>
158     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
159                         cl::init(2),
160                         cl::desc("Maximum cost of combining conditions when "
161                                  "folding branches"));
162 
163 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
164     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
165     cl::init(2),
166     cl::desc("Multiplier to apply to threshold when determining whether or not "
167              "to fold branch to common destination when vector operations are "
168              "present"));
169 
170 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
171 STATISTIC(NumLinearMaps,
172           "Number of switch instructions turned into linear mapping");
173 STATISTIC(NumLookupTables,
174           "Number of switch instructions turned into lookup tables");
175 STATISTIC(
176     NumLookupTablesHoles,
177     "Number of switch instructions turned into lookup tables (holes checked)");
178 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
179 STATISTIC(NumFoldValueComparisonIntoPredecessors,
180           "Number of value comparisons folded into predecessor basic blocks");
181 STATISTIC(NumFoldBranchToCommonDest,
182           "Number of branches folded into predecessor basic block");
183 STATISTIC(
184     NumHoistCommonCode,
185     "Number of common instruction 'blocks' hoisted up to the begin block");
186 STATISTIC(NumHoistCommonInstrs,
187           "Number of common instructions hoisted up to the begin block");
188 STATISTIC(NumSinkCommonCode,
189           "Number of common instruction 'blocks' sunk down to the end block");
190 STATISTIC(NumSinkCommonInstrs,
191           "Number of common instructions sunk down to the end block");
192 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
193 STATISTIC(NumInvokes,
194           "Number of invokes with empty resume blocks simplified into calls");
195 
196 namespace {
197 
198 // The first field contains the value that the switch produces when a certain
199 // case group is selected, and the second field is a vector containing the
200 // cases composing the case group.
201 using SwitchCaseResultVectorTy =
202     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
203 
204 // The first field contains the phi node that generates a result of the switch
205 // and the second field contains the value generated for a certain case in the
206 // switch for that PHI.
207 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
208 
209 /// ValueEqualityComparisonCase - Represents a case of a switch.
210 struct ValueEqualityComparisonCase {
211   ConstantInt *Value;
212   BasicBlock *Dest;
213 
214   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
215       : Value(Value), Dest(Dest) {}
216 
217   bool operator<(ValueEqualityComparisonCase RHS) const {
218     // Comparing pointers is ok as we only rely on the order for uniquing.
219     return Value < RHS.Value;
220   }
221 
222   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
223 };
224 
225 class SimplifyCFGOpt {
226   const TargetTransformInfo &TTI;
227   DomTreeUpdater *DTU;
228   const DataLayout &DL;
229   ArrayRef<WeakVH> LoopHeaders;
230   const SimplifyCFGOptions &Options;
231   bool Resimplify;
232 
233   Value *isValueEqualityComparison(Instruction *TI);
234   BasicBlock *GetValueEqualityComparisonCases(
235       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
236   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
237                                                      BasicBlock *Pred,
238                                                      IRBuilder<> &Builder);
239   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
240                                                     Instruction *PTI,
241                                                     IRBuilder<> &Builder);
242   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
243                                            IRBuilder<> &Builder);
244 
245   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
246   bool simplifySingleResume(ResumeInst *RI);
247   bool simplifyCommonResume(ResumeInst *RI);
248   bool simplifyCleanupReturn(CleanupReturnInst *RI);
249   bool simplifyUnreachable(UnreachableInst *UI);
250   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
251   bool simplifyIndirectBr(IndirectBrInst *IBI);
252   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
253   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
254   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
255 
256   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
257                                              IRBuilder<> &Builder);
258 
259   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
260                              bool EqTermsOnly);
261   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
262                               const TargetTransformInfo &TTI);
263   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
264                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
265                                   uint32_t TrueWeight, uint32_t FalseWeight);
266   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
267                                  const DataLayout &DL);
268   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
269   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
270   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
271 
272 public:
273   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
274                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
275                  const SimplifyCFGOptions &Opts)
276       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
277     assert((!DTU || !DTU->hasPostDomTree()) &&
278            "SimplifyCFG is not yet capable of maintaining validity of a "
279            "PostDomTree, so don't ask for it.");
280   }
281 
282   bool simplifyOnce(BasicBlock *BB);
283   bool simplifyOnceImpl(BasicBlock *BB);
284   bool run(BasicBlock *BB);
285 
286   // Helper to set Resimplify and return change indication.
287   bool requestResimplify() {
288     Resimplify = true;
289     return true;
290   }
291 };
292 
293 } // end anonymous namespace
294 
295 /// Return true if it is safe to merge these two
296 /// terminator instructions together.
297 static bool
298 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
299                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
300   if (SI1 == SI2)
301     return false; // Can't merge with self!
302 
303   // It is not safe to merge these two switch instructions if they have a common
304   // successor, and if that successor has a PHI node, and if *that* PHI node has
305   // conflicting incoming values from the two switch blocks.
306   BasicBlock *SI1BB = SI1->getParent();
307   BasicBlock *SI2BB = SI2->getParent();
308 
309   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
310   bool Fail = false;
311   for (BasicBlock *Succ : successors(SI2BB))
312     if (SI1Succs.count(Succ))
313       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
314         PHINode *PN = cast<PHINode>(BBI);
315         if (PN->getIncomingValueForBlock(SI1BB) !=
316             PN->getIncomingValueForBlock(SI2BB)) {
317           if (FailBlocks)
318             FailBlocks->insert(Succ);
319           Fail = true;
320         }
321       }
322 
323   return !Fail;
324 }
325 
326 /// Update PHI nodes in Succ to indicate that there will now be entries in it
327 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
328 /// will be the same as those coming in from ExistPred, an existing predecessor
329 /// of Succ.
330 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
331                                   BasicBlock *ExistPred,
332                                   MemorySSAUpdater *MSSAU = nullptr) {
333   for (PHINode &PN : Succ->phis())
334     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
335   if (MSSAU)
336     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
337       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
338 }
339 
340 /// Compute an abstract "cost" of speculating the given instruction,
341 /// which is assumed to be safe to speculate. TCC_Free means cheap,
342 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
343 /// expensive.
344 static InstructionCost computeSpeculationCost(const User *I,
345                                               const TargetTransformInfo &TTI) {
346   assert(isSafeToSpeculativelyExecute(I) &&
347          "Instruction is not safe to speculatively execute!");
348   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
349 }
350 
351 /// If we have a merge point of an "if condition" as accepted above,
352 /// return true if the specified value dominates the block.  We
353 /// don't handle the true generality of domination here, just a special case
354 /// which works well enough for us.
355 ///
356 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
357 /// see if V (which must be an instruction) and its recursive operands
358 /// that do not dominate BB have a combined cost lower than Budget and
359 /// are non-trapping.  If both are true, the instruction is inserted into the
360 /// set and true is returned.
361 ///
362 /// The cost for most non-trapping instructions is defined as 1 except for
363 /// Select whose cost is 2.
364 ///
365 /// After this function returns, Cost is increased by the cost of
366 /// V plus its non-dominating operands.  If that cost is greater than
367 /// Budget, false is returned and Cost is undefined.
368 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
369                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
370                                 InstructionCost &Cost,
371                                 InstructionCost Budget,
372                                 const TargetTransformInfo &TTI,
373                                 unsigned Depth = 0) {
374   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
375   // so limit the recursion depth.
376   // TODO: While this recursion limit does prevent pathological behavior, it
377   // would be better to track visited instructions to avoid cycles.
378   if (Depth == MaxSpeculationDepth)
379     return false;
380 
381   Instruction *I = dyn_cast<Instruction>(V);
382   if (!I) {
383     // Non-instructions all dominate instructions, but not all constantexprs
384     // can be executed unconditionally.
385     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
386       if (C->canTrap())
387         return false;
388     return true;
389   }
390   BasicBlock *PBB = I->getParent();
391 
392   // We don't want to allow weird loops that might have the "if condition" in
393   // the bottom of this block.
394   if (PBB == BB)
395     return false;
396 
397   // If this instruction is defined in a block that contains an unconditional
398   // branch to BB, then it must be in the 'conditional' part of the "if
399   // statement".  If not, it definitely dominates the region.
400   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
401   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
402     return true;
403 
404   // If we have seen this instruction before, don't count it again.
405   if (AggressiveInsts.count(I))
406     return true;
407 
408   // Okay, it looks like the instruction IS in the "condition".  Check to
409   // see if it's a cheap instruction to unconditionally compute, and if it
410   // only uses stuff defined outside of the condition.  If so, hoist it out.
411   if (!isSafeToSpeculativelyExecute(I))
412     return false;
413 
414   Cost += computeSpeculationCost(I, TTI);
415 
416   // Allow exactly one instruction to be speculated regardless of its cost
417   // (as long as it is safe to do so).
418   // This is intended to flatten the CFG even if the instruction is a division
419   // or other expensive operation. The speculation of an expensive instruction
420   // is expected to be undone in CodeGenPrepare if the speculation has not
421   // enabled further IR optimizations.
422   if (Cost > Budget &&
423       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
424        !Cost.isValid()))
425     return false;
426 
427   // Okay, we can only really hoist these out if their operands do
428   // not take us over the cost threshold.
429   for (Use &Op : I->operands())
430     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
431                              Depth + 1))
432       return false;
433   // Okay, it's safe to do this!  Remember this instruction.
434   AggressiveInsts.insert(I);
435   return true;
436 }
437 
438 /// Extract ConstantInt from value, looking through IntToPtr
439 /// and PointerNullValue. Return NULL if value is not a constant int.
440 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
441   // Normal constant int.
442   ConstantInt *CI = dyn_cast<ConstantInt>(V);
443   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
444     return CI;
445 
446   // This is some kind of pointer constant. Turn it into a pointer-sized
447   // ConstantInt if possible.
448   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
449 
450   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
451   if (isa<ConstantPointerNull>(V))
452     return ConstantInt::get(PtrTy, 0);
453 
454   // IntToPtr const int.
455   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
456     if (CE->getOpcode() == Instruction::IntToPtr)
457       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
458         // The constant is very likely to have the right type already.
459         if (CI->getType() == PtrTy)
460           return CI;
461         else
462           return cast<ConstantInt>(
463               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
464       }
465   return nullptr;
466 }
467 
468 namespace {
469 
470 /// Given a chain of or (||) or and (&&) comparison of a value against a
471 /// constant, this will try to recover the information required for a switch
472 /// structure.
473 /// It will depth-first traverse the chain of comparison, seeking for patterns
474 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
475 /// representing the different cases for the switch.
476 /// Note that if the chain is composed of '||' it will build the set of elements
477 /// that matches the comparisons (i.e. any of this value validate the chain)
478 /// while for a chain of '&&' it will build the set elements that make the test
479 /// fail.
480 struct ConstantComparesGatherer {
481   const DataLayout &DL;
482 
483   /// Value found for the switch comparison
484   Value *CompValue = nullptr;
485 
486   /// Extra clause to be checked before the switch
487   Value *Extra = nullptr;
488 
489   /// Set of integers to match in switch
490   SmallVector<ConstantInt *, 8> Vals;
491 
492   /// Number of comparisons matched in the and/or chain
493   unsigned UsedICmps = 0;
494 
495   /// Construct and compute the result for the comparison instruction Cond
496   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
497     gather(Cond);
498   }
499 
500   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
501   ConstantComparesGatherer &
502   operator=(const ConstantComparesGatherer &) = delete;
503 
504 private:
505   /// Try to set the current value used for the comparison, it succeeds only if
506   /// it wasn't set before or if the new value is the same as the old one
507   bool setValueOnce(Value *NewVal) {
508     if (CompValue && CompValue != NewVal)
509       return false;
510     CompValue = NewVal;
511     return (CompValue != nullptr);
512   }
513 
514   /// Try to match Instruction "I" as a comparison against a constant and
515   /// populates the array Vals with the set of values that match (or do not
516   /// match depending on isEQ).
517   /// Return false on failure. On success, the Value the comparison matched
518   /// against is placed in CompValue.
519   /// If CompValue is already set, the function is expected to fail if a match
520   /// is found but the value compared to is different.
521   bool matchInstruction(Instruction *I, bool isEQ) {
522     // If this is an icmp against a constant, handle this as one of the cases.
523     ICmpInst *ICI;
524     ConstantInt *C;
525     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
526           (C = GetConstantInt(I->getOperand(1), DL)))) {
527       return false;
528     }
529 
530     Value *RHSVal;
531     const APInt *RHSC;
532 
533     // Pattern match a special case
534     // (x & ~2^z) == y --> x == y || x == y|2^z
535     // This undoes a transformation done by instcombine to fuse 2 compares.
536     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
537       // It's a little bit hard to see why the following transformations are
538       // correct. Here is a CVC3 program to verify them for 64-bit values:
539 
540       /*
541          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
542          x    : BITVECTOR(64);
543          y    : BITVECTOR(64);
544          z    : BITVECTOR(64);
545          mask : BITVECTOR(64) = BVSHL(ONE, z);
546          QUERY( (y & ~mask = y) =>
547                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
548          );
549          QUERY( (y |  mask = y) =>
550                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
551          );
552       */
553 
554       // Please note that each pattern must be a dual implication (<--> or
555       // iff). One directional implication can create spurious matches. If the
556       // implication is only one-way, an unsatisfiable condition on the left
557       // side can imply a satisfiable condition on the right side. Dual
558       // implication ensures that satisfiable conditions are transformed to
559       // other satisfiable conditions and unsatisfiable conditions are
560       // transformed to other unsatisfiable conditions.
561 
562       // Here is a concrete example of a unsatisfiable condition on the left
563       // implying a satisfiable condition on the right:
564       //
565       // mask = (1 << z)
566       // (x & ~mask) == y  --> (x == y || x == (y | mask))
567       //
568       // Substituting y = 3, z = 0 yields:
569       // (x & -2) == 3 --> (x == 3 || x == 2)
570 
571       // Pattern match a special case:
572       /*
573         QUERY( (y & ~mask = y) =>
574                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
575         );
576       */
577       if (match(ICI->getOperand(0),
578                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
579         APInt Mask = ~*RHSC;
580         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
581           // If we already have a value for the switch, it has to match!
582           if (!setValueOnce(RHSVal))
583             return false;
584 
585           Vals.push_back(C);
586           Vals.push_back(
587               ConstantInt::get(C->getContext(),
588                                C->getValue() | Mask));
589           UsedICmps++;
590           return true;
591         }
592       }
593 
594       // Pattern match a special case:
595       /*
596         QUERY( (y |  mask = y) =>
597                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
598         );
599       */
600       if (match(ICI->getOperand(0),
601                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
602         APInt Mask = *RHSC;
603         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
604           // If we already have a value for the switch, it has to match!
605           if (!setValueOnce(RHSVal))
606             return false;
607 
608           Vals.push_back(C);
609           Vals.push_back(ConstantInt::get(C->getContext(),
610                                           C->getValue() & ~Mask));
611           UsedICmps++;
612           return true;
613         }
614       }
615 
616       // If we already have a value for the switch, it has to match!
617       if (!setValueOnce(ICI->getOperand(0)))
618         return false;
619 
620       UsedICmps++;
621       Vals.push_back(C);
622       return ICI->getOperand(0);
623     }
624 
625     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
626     ConstantRange Span =
627         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
628 
629     // Shift the range if the compare is fed by an add. This is the range
630     // compare idiom as emitted by instcombine.
631     Value *CandidateVal = I->getOperand(0);
632     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
633       Span = Span.subtract(*RHSC);
634       CandidateVal = RHSVal;
635     }
636 
637     // If this is an and/!= check, then we are looking to build the set of
638     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
639     // x != 0 && x != 1.
640     if (!isEQ)
641       Span = Span.inverse();
642 
643     // If there are a ton of values, we don't want to make a ginormous switch.
644     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
645       return false;
646     }
647 
648     // If we already have a value for the switch, it has to match!
649     if (!setValueOnce(CandidateVal))
650       return false;
651 
652     // Add all values from the range to the set
653     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
654       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
655 
656     UsedICmps++;
657     return true;
658   }
659 
660   /// Given a potentially 'or'd or 'and'd together collection of icmp
661   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
662   /// the value being compared, and stick the list constants into the Vals
663   /// vector.
664   /// One "Extra" case is allowed to differ from the other.
665   void gather(Value *V) {
666     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
667 
668     // Keep a stack (SmallVector for efficiency) for depth-first traversal
669     SmallVector<Value *, 8> DFT;
670     SmallPtrSet<Value *, 8> Visited;
671 
672     // Initialize
673     Visited.insert(V);
674     DFT.push_back(V);
675 
676     while (!DFT.empty()) {
677       V = DFT.pop_back_val();
678 
679       if (Instruction *I = dyn_cast<Instruction>(V)) {
680         // If it is a || (or && depending on isEQ), process the operands.
681         Value *Op0, *Op1;
682         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
683                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
684           if (Visited.insert(Op1).second)
685             DFT.push_back(Op1);
686           if (Visited.insert(Op0).second)
687             DFT.push_back(Op0);
688 
689           continue;
690         }
691 
692         // Try to match the current instruction
693         if (matchInstruction(I, isEQ))
694           // Match succeed, continue the loop
695           continue;
696       }
697 
698       // One element of the sequence of || (or &&) could not be match as a
699       // comparison against the same value as the others.
700       // We allow only one "Extra" case to be checked before the switch
701       if (!Extra) {
702         Extra = V;
703         continue;
704       }
705       // Failed to parse a proper sequence, abort now
706       CompValue = nullptr;
707       break;
708     }
709   }
710 };
711 
712 } // end anonymous namespace
713 
714 static void EraseTerminatorAndDCECond(Instruction *TI,
715                                       MemorySSAUpdater *MSSAU = nullptr) {
716   Instruction *Cond = nullptr;
717   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
718     Cond = dyn_cast<Instruction>(SI->getCondition());
719   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
720     if (BI->isConditional())
721       Cond = dyn_cast<Instruction>(BI->getCondition());
722   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
723     Cond = dyn_cast<Instruction>(IBI->getAddress());
724   }
725 
726   TI->eraseFromParent();
727   if (Cond)
728     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
729 }
730 
731 /// Return true if the specified terminator checks
732 /// to see if a value is equal to constant integer value.
733 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
734   Value *CV = nullptr;
735   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
736     // Do not permit merging of large switch instructions into their
737     // predecessors unless there is only one predecessor.
738     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
739       CV = SI->getCondition();
740   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
741     if (BI->isConditional() && BI->getCondition()->hasOneUse())
742       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
743         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
744           CV = ICI->getOperand(0);
745       }
746 
747   // Unwrap any lossless ptrtoint cast.
748   if (CV) {
749     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
750       Value *Ptr = PTII->getPointerOperand();
751       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
752         CV = Ptr;
753     }
754   }
755   return CV;
756 }
757 
758 /// Given a value comparison instruction,
759 /// decode all of the 'cases' that it represents and return the 'default' block.
760 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
761     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
762   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
763     Cases.reserve(SI->getNumCases());
764     for (auto Case : SI->cases())
765       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
766                                                   Case.getCaseSuccessor()));
767     return SI->getDefaultDest();
768   }
769 
770   BranchInst *BI = cast<BranchInst>(TI);
771   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
772   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
773   Cases.push_back(ValueEqualityComparisonCase(
774       GetConstantInt(ICI->getOperand(1), DL), Succ));
775   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
776 }
777 
778 /// Given a vector of bb/value pairs, remove any entries
779 /// in the list that match the specified block.
780 static void
781 EliminateBlockCases(BasicBlock *BB,
782                     std::vector<ValueEqualityComparisonCase> &Cases) {
783   llvm::erase_value(Cases, BB);
784 }
785 
786 /// Return true if there are any keys in C1 that exist in C2 as well.
787 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
788                           std::vector<ValueEqualityComparisonCase> &C2) {
789   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
790 
791   // Make V1 be smaller than V2.
792   if (V1->size() > V2->size())
793     std::swap(V1, V2);
794 
795   if (V1->empty())
796     return false;
797   if (V1->size() == 1) {
798     // Just scan V2.
799     ConstantInt *TheVal = (*V1)[0].Value;
800     for (unsigned i = 0, e = V2->size(); i != e; ++i)
801       if (TheVal == (*V2)[i].Value)
802         return true;
803   }
804 
805   // Otherwise, just sort both lists and compare element by element.
806   array_pod_sort(V1->begin(), V1->end());
807   array_pod_sort(V2->begin(), V2->end());
808   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
809   while (i1 != e1 && i2 != e2) {
810     if ((*V1)[i1].Value == (*V2)[i2].Value)
811       return true;
812     if ((*V1)[i1].Value < (*V2)[i2].Value)
813       ++i1;
814     else
815       ++i2;
816   }
817   return false;
818 }
819 
820 // Set branch weights on SwitchInst. This sets the metadata if there is at
821 // least one non-zero weight.
822 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
823   // Check that there is at least one non-zero weight. Otherwise, pass
824   // nullptr to setMetadata which will erase the existing metadata.
825   MDNode *N = nullptr;
826   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
827     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
828   SI->setMetadata(LLVMContext::MD_prof, N);
829 }
830 
831 // Similar to the above, but for branch and select instructions that take
832 // exactly 2 weights.
833 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
834                              uint32_t FalseWeight) {
835   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
836   // Check that there is at least one non-zero weight. Otherwise, pass
837   // nullptr to setMetadata which will erase the existing metadata.
838   MDNode *N = nullptr;
839   if (TrueWeight || FalseWeight)
840     N = MDBuilder(I->getParent()->getContext())
841             .createBranchWeights(TrueWeight, FalseWeight);
842   I->setMetadata(LLVMContext::MD_prof, N);
843 }
844 
845 /// If TI is known to be a terminator instruction and its block is known to
846 /// only have a single predecessor block, check to see if that predecessor is
847 /// also a value comparison with the same value, and if that comparison
848 /// determines the outcome of this comparison. If so, simplify TI. This does a
849 /// very limited form of jump threading.
850 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
851     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
852   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
853   if (!PredVal)
854     return false; // Not a value comparison in predecessor.
855 
856   Value *ThisVal = isValueEqualityComparison(TI);
857   assert(ThisVal && "This isn't a value comparison!!");
858   if (ThisVal != PredVal)
859     return false; // Different predicates.
860 
861   // TODO: Preserve branch weight metadata, similarly to how
862   // FoldValueComparisonIntoPredecessors preserves it.
863 
864   // Find out information about when control will move from Pred to TI's block.
865   std::vector<ValueEqualityComparisonCase> PredCases;
866   BasicBlock *PredDef =
867       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
868   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
869 
870   // Find information about how control leaves this block.
871   std::vector<ValueEqualityComparisonCase> ThisCases;
872   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
873   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
874 
875   // If TI's block is the default block from Pred's comparison, potentially
876   // simplify TI based on this knowledge.
877   if (PredDef == TI->getParent()) {
878     // If we are here, we know that the value is none of those cases listed in
879     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
880     // can simplify TI.
881     if (!ValuesOverlap(PredCases, ThisCases))
882       return false;
883 
884     if (isa<BranchInst>(TI)) {
885       // Okay, one of the successors of this condbr is dead.  Convert it to a
886       // uncond br.
887       assert(ThisCases.size() == 1 && "Branch can only have one case!");
888       // Insert the new branch.
889       Instruction *NI = Builder.CreateBr(ThisDef);
890       (void)NI;
891 
892       // Remove PHI node entries for the dead edge.
893       ThisCases[0].Dest->removePredecessor(PredDef);
894 
895       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
896                         << "Through successor TI: " << *TI << "Leaving: " << *NI
897                         << "\n");
898 
899       EraseTerminatorAndDCECond(TI);
900 
901       if (DTU)
902         DTU->applyUpdates(
903             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
904 
905       return true;
906     }
907 
908     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
909     // Okay, TI has cases that are statically dead, prune them away.
910     SmallPtrSet<Constant *, 16> DeadCases;
911     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
912       DeadCases.insert(PredCases[i].Value);
913 
914     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
915                       << "Through successor TI: " << *TI);
916 
917     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
918     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
919       --i;
920       auto *Successor = i->getCaseSuccessor();
921       if (DTU)
922         ++NumPerSuccessorCases[Successor];
923       if (DeadCases.count(i->getCaseValue())) {
924         Successor->removePredecessor(PredDef);
925         SI.removeCase(i);
926         if (DTU)
927           --NumPerSuccessorCases[Successor];
928       }
929     }
930 
931     if (DTU) {
932       std::vector<DominatorTree::UpdateType> Updates;
933       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
934         if (I.second == 0)
935           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
936       DTU->applyUpdates(Updates);
937     }
938 
939     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
940     return true;
941   }
942 
943   // Otherwise, TI's block must correspond to some matched value.  Find out
944   // which value (or set of values) this is.
945   ConstantInt *TIV = nullptr;
946   BasicBlock *TIBB = TI->getParent();
947   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
948     if (PredCases[i].Dest == TIBB) {
949       if (TIV)
950         return false; // Cannot handle multiple values coming to this block.
951       TIV = PredCases[i].Value;
952     }
953   assert(TIV && "No edge from pred to succ?");
954 
955   // Okay, we found the one constant that our value can be if we get into TI's
956   // BB.  Find out which successor will unconditionally be branched to.
957   BasicBlock *TheRealDest = nullptr;
958   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
959     if (ThisCases[i].Value == TIV) {
960       TheRealDest = ThisCases[i].Dest;
961       break;
962     }
963 
964   // If not handled by any explicit cases, it is handled by the default case.
965   if (!TheRealDest)
966     TheRealDest = ThisDef;
967 
968   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
969 
970   // Remove PHI node entries for dead edges.
971   BasicBlock *CheckEdge = TheRealDest;
972   for (BasicBlock *Succ : successors(TIBB))
973     if (Succ != CheckEdge) {
974       if (Succ != TheRealDest)
975         RemovedSuccs.insert(Succ);
976       Succ->removePredecessor(TIBB);
977     } else
978       CheckEdge = nullptr;
979 
980   // Insert the new branch.
981   Instruction *NI = Builder.CreateBr(TheRealDest);
982   (void)NI;
983 
984   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
985                     << "Through successor TI: " << *TI << "Leaving: " << *NI
986                     << "\n");
987 
988   EraseTerminatorAndDCECond(TI);
989   if (DTU) {
990     SmallVector<DominatorTree::UpdateType, 2> Updates;
991     Updates.reserve(RemovedSuccs.size());
992     for (auto *RemovedSucc : RemovedSuccs)
993       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
994     DTU->applyUpdates(Updates);
995   }
996   return true;
997 }
998 
999 namespace {
1000 
1001 /// This class implements a stable ordering of constant
1002 /// integers that does not depend on their address.  This is important for
1003 /// applications that sort ConstantInt's to ensure uniqueness.
1004 struct ConstantIntOrdering {
1005   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1006     return LHS->getValue().ult(RHS->getValue());
1007   }
1008 };
1009 
1010 } // end anonymous namespace
1011 
1012 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1013                                     ConstantInt *const *P2) {
1014   const ConstantInt *LHS = *P1;
1015   const ConstantInt *RHS = *P2;
1016   if (LHS == RHS)
1017     return 0;
1018   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1019 }
1020 
1021 static inline bool HasBranchWeights(const Instruction *I) {
1022   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1023   if (ProfMD && ProfMD->getOperand(0))
1024     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1025       return MDS->getString().equals("branch_weights");
1026 
1027   return false;
1028 }
1029 
1030 /// Get Weights of a given terminator, the default weight is at the front
1031 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1032 /// metadata.
1033 static void GetBranchWeights(Instruction *TI,
1034                              SmallVectorImpl<uint64_t> &Weights) {
1035   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1036   assert(MD);
1037   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1038     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1039     Weights.push_back(CI->getValue().getZExtValue());
1040   }
1041 
1042   // If TI is a conditional eq, the default case is the false case,
1043   // and the corresponding branch-weight data is at index 2. We swap the
1044   // default weight to be the first entry.
1045   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1046     assert(Weights.size() == 2);
1047     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1048     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1049       std::swap(Weights.front(), Weights.back());
1050   }
1051 }
1052 
1053 /// Keep halving the weights until all can fit in uint32_t.
1054 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1055   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1056   if (Max > UINT_MAX) {
1057     unsigned Offset = 32 - countLeadingZeros(Max);
1058     for (uint64_t &I : Weights)
1059       I >>= Offset;
1060   }
1061 }
1062 
1063 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1064     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1065   Instruction *PTI = PredBlock->getTerminator();
1066 
1067   // If we have bonus instructions, clone them into the predecessor block.
1068   // Note that there may be multiple predecessor blocks, so we cannot move
1069   // bonus instructions to a predecessor block.
1070   for (Instruction &BonusInst : *BB) {
1071     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1072       continue;
1073 
1074     Instruction *NewBonusInst = BonusInst.clone();
1075 
1076     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1077       // Unless the instruction has the same !dbg location as the original
1078       // branch, drop it. When we fold the bonus instructions we want to make
1079       // sure we reset their debug locations in order to avoid stepping on
1080       // dead code caused by folding dead branches.
1081       NewBonusInst->setDebugLoc(DebugLoc());
1082     }
1083 
1084     RemapInstruction(NewBonusInst, VMap,
1085                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1086     VMap[&BonusInst] = NewBonusInst;
1087 
1088     // If we moved a load, we cannot any longer claim any knowledge about
1089     // its potential value. The previous information might have been valid
1090     // only given the branch precondition.
1091     // For an analogous reason, we must also drop all the metadata whose
1092     // semantics we don't understand. We *can* preserve !annotation, because
1093     // it is tied to the instruction itself, not the value or position.
1094     // Similarly strip attributes on call parameters that may cause UB in
1095     // location the call is moved to.
1096     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1097         LLVMContext::MD_annotation);
1098 
1099     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1100     NewBonusInst->takeName(&BonusInst);
1101     BonusInst.setName(NewBonusInst->getName() + ".old");
1102 
1103     // Update (liveout) uses of bonus instructions,
1104     // now that the bonus instruction has been cloned into predecessor.
1105     // Note that we expect to be in a block-closed SSA form for this to work!
1106     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1107       auto *UI = cast<Instruction>(U.getUser());
1108       auto *PN = dyn_cast<PHINode>(UI);
1109       if (!PN) {
1110         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1111                "If the user is not a PHI node, then it should be in the same "
1112                "block as, and come after, the original bonus instruction.");
1113         continue; // Keep using the original bonus instruction.
1114       }
1115       // Is this the block-closed SSA form PHI node?
1116       if (PN->getIncomingBlock(U) == BB)
1117         continue; // Great, keep using the original bonus instruction.
1118       // The only other alternative is an "use" when coming from
1119       // the predecessor block - here we should refer to the cloned bonus instr.
1120       assert(PN->getIncomingBlock(U) == PredBlock &&
1121              "Not in block-closed SSA form?");
1122       U.set(NewBonusInst);
1123     }
1124   }
1125 }
1126 
1127 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1128     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1129   BasicBlock *BB = TI->getParent();
1130   BasicBlock *Pred = PTI->getParent();
1131 
1132   SmallVector<DominatorTree::UpdateType, 32> Updates;
1133 
1134   // Figure out which 'cases' to copy from SI to PSI.
1135   std::vector<ValueEqualityComparisonCase> BBCases;
1136   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1137 
1138   std::vector<ValueEqualityComparisonCase> PredCases;
1139   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1140 
1141   // Based on whether the default edge from PTI goes to BB or not, fill in
1142   // PredCases and PredDefault with the new switch cases we would like to
1143   // build.
1144   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1145 
1146   // Update the branch weight metadata along the way
1147   SmallVector<uint64_t, 8> Weights;
1148   bool PredHasWeights = HasBranchWeights(PTI);
1149   bool SuccHasWeights = HasBranchWeights(TI);
1150 
1151   if (PredHasWeights) {
1152     GetBranchWeights(PTI, Weights);
1153     // branch-weight metadata is inconsistent here.
1154     if (Weights.size() != 1 + PredCases.size())
1155       PredHasWeights = SuccHasWeights = false;
1156   } else if (SuccHasWeights)
1157     // If there are no predecessor weights but there are successor weights,
1158     // populate Weights with 1, which will later be scaled to the sum of
1159     // successor's weights
1160     Weights.assign(1 + PredCases.size(), 1);
1161 
1162   SmallVector<uint64_t, 8> SuccWeights;
1163   if (SuccHasWeights) {
1164     GetBranchWeights(TI, SuccWeights);
1165     // branch-weight metadata is inconsistent here.
1166     if (SuccWeights.size() != 1 + BBCases.size())
1167       PredHasWeights = SuccHasWeights = false;
1168   } else if (PredHasWeights)
1169     SuccWeights.assign(1 + BBCases.size(), 1);
1170 
1171   if (PredDefault == BB) {
1172     // If this is the default destination from PTI, only the edges in TI
1173     // that don't occur in PTI, or that branch to BB will be activated.
1174     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1175     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1176       if (PredCases[i].Dest != BB)
1177         PTIHandled.insert(PredCases[i].Value);
1178       else {
1179         // The default destination is BB, we don't need explicit targets.
1180         std::swap(PredCases[i], PredCases.back());
1181 
1182         if (PredHasWeights || SuccHasWeights) {
1183           // Increase weight for the default case.
1184           Weights[0] += Weights[i + 1];
1185           std::swap(Weights[i + 1], Weights.back());
1186           Weights.pop_back();
1187         }
1188 
1189         PredCases.pop_back();
1190         --i;
1191         --e;
1192       }
1193 
1194     // Reconstruct the new switch statement we will be building.
1195     if (PredDefault != BBDefault) {
1196       PredDefault->removePredecessor(Pred);
1197       if (DTU && PredDefault != BB)
1198         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1199       PredDefault = BBDefault;
1200       ++NewSuccessors[BBDefault];
1201     }
1202 
1203     unsigned CasesFromPred = Weights.size();
1204     uint64_t ValidTotalSuccWeight = 0;
1205     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1206       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1207         PredCases.push_back(BBCases[i]);
1208         ++NewSuccessors[BBCases[i].Dest];
1209         if (SuccHasWeights || PredHasWeights) {
1210           // The default weight is at index 0, so weight for the ith case
1211           // should be at index i+1. Scale the cases from successor by
1212           // PredDefaultWeight (Weights[0]).
1213           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1214           ValidTotalSuccWeight += SuccWeights[i + 1];
1215         }
1216       }
1217 
1218     if (SuccHasWeights || PredHasWeights) {
1219       ValidTotalSuccWeight += SuccWeights[0];
1220       // Scale the cases from predecessor by ValidTotalSuccWeight.
1221       for (unsigned i = 1; i < CasesFromPred; ++i)
1222         Weights[i] *= ValidTotalSuccWeight;
1223       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1224       Weights[0] *= SuccWeights[0];
1225     }
1226   } else {
1227     // If this is not the default destination from PSI, only the edges
1228     // in SI that occur in PSI with a destination of BB will be
1229     // activated.
1230     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1231     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1232     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1233       if (PredCases[i].Dest == BB) {
1234         PTIHandled.insert(PredCases[i].Value);
1235 
1236         if (PredHasWeights || SuccHasWeights) {
1237           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1238           std::swap(Weights[i + 1], Weights.back());
1239           Weights.pop_back();
1240         }
1241 
1242         std::swap(PredCases[i], PredCases.back());
1243         PredCases.pop_back();
1244         --i;
1245         --e;
1246       }
1247 
1248     // Okay, now we know which constants were sent to BB from the
1249     // predecessor.  Figure out where they will all go now.
1250     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1251       if (PTIHandled.count(BBCases[i].Value)) {
1252         // If this is one we are capable of getting...
1253         if (PredHasWeights || SuccHasWeights)
1254           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1255         PredCases.push_back(BBCases[i]);
1256         ++NewSuccessors[BBCases[i].Dest];
1257         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1258       }
1259 
1260     // If there are any constants vectored to BB that TI doesn't handle,
1261     // they must go to the default destination of TI.
1262     for (ConstantInt *I : PTIHandled) {
1263       if (PredHasWeights || SuccHasWeights)
1264         Weights.push_back(WeightsForHandled[I]);
1265       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1266       ++NewSuccessors[BBDefault];
1267     }
1268   }
1269 
1270   // Okay, at this point, we know which new successor Pred will get.  Make
1271   // sure we update the number of entries in the PHI nodes for these
1272   // successors.
1273   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1274   if (DTU) {
1275     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1276     Updates.reserve(Updates.size() + NewSuccessors.size());
1277   }
1278   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1279        NewSuccessors) {
1280     for (auto I : seq(0, NewSuccessor.second)) {
1281       (void)I;
1282       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1283     }
1284     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1285       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1286   }
1287 
1288   Builder.SetInsertPoint(PTI);
1289   // Convert pointer to int before we switch.
1290   if (CV->getType()->isPointerTy()) {
1291     CV =
1292         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1293   }
1294 
1295   // Now that the successors are updated, create the new Switch instruction.
1296   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1297   NewSI->setDebugLoc(PTI->getDebugLoc());
1298   for (ValueEqualityComparisonCase &V : PredCases)
1299     NewSI->addCase(V.Value, V.Dest);
1300 
1301   if (PredHasWeights || SuccHasWeights) {
1302     // Halve the weights if any of them cannot fit in an uint32_t
1303     FitWeights(Weights);
1304 
1305     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1306 
1307     setBranchWeights(NewSI, MDWeights);
1308   }
1309 
1310   EraseTerminatorAndDCECond(PTI);
1311 
1312   // Okay, last check.  If BB is still a successor of PSI, then we must
1313   // have an infinite loop case.  If so, add an infinitely looping block
1314   // to handle the case to preserve the behavior of the code.
1315   BasicBlock *InfLoopBlock = nullptr;
1316   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1317     if (NewSI->getSuccessor(i) == BB) {
1318       if (!InfLoopBlock) {
1319         // Insert it at the end of the function, because it's either code,
1320         // or it won't matter if it's hot. :)
1321         InfLoopBlock =
1322             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1323         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1324         if (DTU)
1325           Updates.push_back(
1326               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1327       }
1328       NewSI->setSuccessor(i, InfLoopBlock);
1329     }
1330 
1331   if (DTU) {
1332     if (InfLoopBlock)
1333       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1334 
1335     Updates.push_back({DominatorTree::Delete, Pred, BB});
1336 
1337     DTU->applyUpdates(Updates);
1338   }
1339 
1340   ++NumFoldValueComparisonIntoPredecessors;
1341   return true;
1342 }
1343 
1344 /// The specified terminator is a value equality comparison instruction
1345 /// (either a switch or a branch on "X == c").
1346 /// See if any of the predecessors of the terminator block are value comparisons
1347 /// on the same value.  If so, and if safe to do so, fold them together.
1348 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1349                                                          IRBuilder<> &Builder) {
1350   BasicBlock *BB = TI->getParent();
1351   Value *CV = isValueEqualityComparison(TI); // CondVal
1352   assert(CV && "Not a comparison?");
1353 
1354   bool Changed = false;
1355 
1356   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1357   while (!Preds.empty()) {
1358     BasicBlock *Pred = Preds.pop_back_val();
1359     Instruction *PTI = Pred->getTerminator();
1360 
1361     // Don't try to fold into itself.
1362     if (Pred == BB)
1363       continue;
1364 
1365     // See if the predecessor is a comparison with the same value.
1366     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1367     if (PCV != CV)
1368       continue;
1369 
1370     SmallSetVector<BasicBlock *, 4> FailBlocks;
1371     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1372       for (auto *Succ : FailBlocks) {
1373         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1374           return false;
1375       }
1376     }
1377 
1378     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1379     Changed = true;
1380   }
1381   return Changed;
1382 }
1383 
1384 // If we would need to insert a select that uses the value of this invoke
1385 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1386 // can't hoist the invoke, as there is nowhere to put the select in this case.
1387 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1388                                 Instruction *I1, Instruction *I2) {
1389   for (BasicBlock *Succ : successors(BB1)) {
1390     for (const PHINode &PN : Succ->phis()) {
1391       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1392       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1393       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1394         return false;
1395       }
1396     }
1397   }
1398   return true;
1399 }
1400 
1401 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1402 
1403 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1404 /// in the two blocks up into the branch block. The caller of this function
1405 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1406 /// only perform hoisting in case both blocks only contain a terminator. In that
1407 /// case, only the original BI will be replaced and selects for PHIs are added.
1408 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1409                                            const TargetTransformInfo &TTI,
1410                                            bool EqTermsOnly) {
1411   // This does very trivial matching, with limited scanning, to find identical
1412   // instructions in the two blocks.  In particular, we don't want to get into
1413   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1414   // such, we currently just scan for obviously identical instructions in an
1415   // identical order.
1416   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1417   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1418 
1419   // If either of the blocks has it's address taken, then we can't do this fold,
1420   // because the code we'd hoist would no longer run when we jump into the block
1421   // by it's address.
1422   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1423     return false;
1424 
1425   BasicBlock::iterator BB1_Itr = BB1->begin();
1426   BasicBlock::iterator BB2_Itr = BB2->begin();
1427 
1428   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1429   // Skip debug info if it is not identical.
1430   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1431   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1432   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1433     while (isa<DbgInfoIntrinsic>(I1))
1434       I1 = &*BB1_Itr++;
1435     while (isa<DbgInfoIntrinsic>(I2))
1436       I2 = &*BB2_Itr++;
1437   }
1438   // FIXME: Can we define a safety predicate for CallBr?
1439   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1440       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1441       isa<CallBrInst>(I1))
1442     return false;
1443 
1444   BasicBlock *BIParent = BI->getParent();
1445 
1446   bool Changed = false;
1447 
1448   auto _ = make_scope_exit([&]() {
1449     if (Changed)
1450       ++NumHoistCommonCode;
1451   });
1452 
1453   // Check if only hoisting terminators is allowed. This does not add new
1454   // instructions to the hoist location.
1455   if (EqTermsOnly) {
1456     // Skip any debug intrinsics, as they are free to hoist.
1457     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1458     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1459     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1460       return false;
1461     if (!I1NonDbg->isTerminator())
1462       return false;
1463     // Now we know that we only need to hoist debug instrinsics and the
1464     // terminator. Let the loop below handle those 2 cases.
1465   }
1466 
1467   do {
1468     // If we are hoisting the terminator instruction, don't move one (making a
1469     // broken BB), instead clone it, and remove BI.
1470     if (I1->isTerminator())
1471       goto HoistTerminator;
1472 
1473     // If we're going to hoist a call, make sure that the two instructions we're
1474     // commoning/hoisting are both marked with musttail, or neither of them is
1475     // marked as such. Otherwise, we might end up in a situation where we hoist
1476     // from a block where the terminator is a `ret` to a block where the terminator
1477     // is a `br`, and `musttail` calls expect to be followed by a return.
1478     auto *C1 = dyn_cast<CallInst>(I1);
1479     auto *C2 = dyn_cast<CallInst>(I2);
1480     if (C1 && C2)
1481       if (C1->isMustTailCall() != C2->isMustTailCall())
1482         return Changed;
1483 
1484     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1485       return Changed;
1486 
1487     // If any of the two call sites has nomerge attribute, stop hoisting.
1488     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1489       if (CB1->cannotMerge())
1490         return Changed;
1491     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1492       if (CB2->cannotMerge())
1493         return Changed;
1494 
1495     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1496       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1497       // The debug location is an integral part of a debug info intrinsic
1498       // and can't be separated from it or replaced.  Instead of attempting
1499       // to merge locations, simply hoist both copies of the intrinsic.
1500       BIParent->getInstList().splice(BI->getIterator(),
1501                                      BB1->getInstList(), I1);
1502       BIParent->getInstList().splice(BI->getIterator(),
1503                                      BB2->getInstList(), I2);
1504       Changed = true;
1505     } else {
1506       // For a normal instruction, we just move one to right before the branch,
1507       // then replace all uses of the other with the first.  Finally, we remove
1508       // the now redundant second instruction.
1509       BIParent->getInstList().splice(BI->getIterator(),
1510                                      BB1->getInstList(), I1);
1511       if (!I2->use_empty())
1512         I2->replaceAllUsesWith(I1);
1513       I1->andIRFlags(I2);
1514       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1515                              LLVMContext::MD_range,
1516                              LLVMContext::MD_fpmath,
1517                              LLVMContext::MD_invariant_load,
1518                              LLVMContext::MD_nonnull,
1519                              LLVMContext::MD_invariant_group,
1520                              LLVMContext::MD_align,
1521                              LLVMContext::MD_dereferenceable,
1522                              LLVMContext::MD_dereferenceable_or_null,
1523                              LLVMContext::MD_mem_parallel_loop_access,
1524                              LLVMContext::MD_access_group,
1525                              LLVMContext::MD_preserve_access_index};
1526       combineMetadata(I1, I2, KnownIDs, true);
1527 
1528       // I1 and I2 are being combined into a single instruction.  Its debug
1529       // location is the merged locations of the original instructions.
1530       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1531 
1532       I2->eraseFromParent();
1533       Changed = true;
1534     }
1535     ++NumHoistCommonInstrs;
1536 
1537     I1 = &*BB1_Itr++;
1538     I2 = &*BB2_Itr++;
1539     // Skip debug info if it is not identical.
1540     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1541     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1542     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1543       while (isa<DbgInfoIntrinsic>(I1))
1544         I1 = &*BB1_Itr++;
1545       while (isa<DbgInfoIntrinsic>(I2))
1546         I2 = &*BB2_Itr++;
1547     }
1548   } while (I1->isIdenticalToWhenDefined(I2));
1549 
1550   return true;
1551 
1552 HoistTerminator:
1553   // It may not be possible to hoist an invoke.
1554   // FIXME: Can we define a safety predicate for CallBr?
1555   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1556     return Changed;
1557 
1558   // TODO: callbr hoisting currently disabled pending further study.
1559   if (isa<CallBrInst>(I1))
1560     return Changed;
1561 
1562   for (BasicBlock *Succ : successors(BB1)) {
1563     for (PHINode &PN : Succ->phis()) {
1564       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1565       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1566       if (BB1V == BB2V)
1567         continue;
1568 
1569       // Check for passingValueIsAlwaysUndefined here because we would rather
1570       // eliminate undefined control flow then converting it to a select.
1571       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1572           passingValueIsAlwaysUndefined(BB2V, &PN))
1573         return Changed;
1574 
1575       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1576         return Changed;
1577       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1578         return Changed;
1579     }
1580   }
1581 
1582   // Okay, it is safe to hoist the terminator.
1583   Instruction *NT = I1->clone();
1584   BIParent->getInstList().insert(BI->getIterator(), NT);
1585   if (!NT->getType()->isVoidTy()) {
1586     I1->replaceAllUsesWith(NT);
1587     I2->replaceAllUsesWith(NT);
1588     NT->takeName(I1);
1589   }
1590   Changed = true;
1591   ++NumHoistCommonInstrs;
1592 
1593   // Ensure terminator gets a debug location, even an unknown one, in case
1594   // it involves inlinable calls.
1595   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1596 
1597   // PHIs created below will adopt NT's merged DebugLoc.
1598   IRBuilder<NoFolder> Builder(NT);
1599 
1600   // Hoisting one of the terminators from our successor is a great thing.
1601   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1602   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1603   // nodes, so we insert select instruction to compute the final result.
1604   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1605   for (BasicBlock *Succ : successors(BB1)) {
1606     for (PHINode &PN : Succ->phis()) {
1607       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1608       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1609       if (BB1V == BB2V)
1610         continue;
1611 
1612       // These values do not agree.  Insert a select instruction before NT
1613       // that determines the right value.
1614       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1615       if (!SI) {
1616         // Propagate fast-math-flags from phi node to its replacement select.
1617         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1618         if (isa<FPMathOperator>(PN))
1619           Builder.setFastMathFlags(PN.getFastMathFlags());
1620 
1621         SI = cast<SelectInst>(
1622             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1623                                  BB1V->getName() + "." + BB2V->getName(), BI));
1624       }
1625 
1626       // Make the PHI node use the select for all incoming values for BB1/BB2
1627       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1628         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1629           PN.setIncomingValue(i, SI);
1630     }
1631   }
1632 
1633   SmallVector<DominatorTree::UpdateType, 4> Updates;
1634 
1635   // Update any PHI nodes in our new successors.
1636   for (BasicBlock *Succ : successors(BB1)) {
1637     AddPredecessorToBlock(Succ, BIParent, BB1);
1638     if (DTU)
1639       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1640   }
1641 
1642   if (DTU)
1643     for (BasicBlock *Succ : successors(BI))
1644       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1645 
1646   EraseTerminatorAndDCECond(BI);
1647   if (DTU)
1648     DTU->applyUpdates(Updates);
1649   return Changed;
1650 }
1651 
1652 // Check lifetime markers.
1653 static bool isLifeTimeMarker(const Instruction *I) {
1654   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1655     switch (II->getIntrinsicID()) {
1656     default:
1657       break;
1658     case Intrinsic::lifetime_start:
1659     case Intrinsic::lifetime_end:
1660       return true;
1661     }
1662   }
1663   return false;
1664 }
1665 
1666 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1667 // into variables.
1668 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1669                                                 int OpIdx) {
1670   return !isa<IntrinsicInst>(I);
1671 }
1672 
1673 // All instructions in Insts belong to different blocks that all unconditionally
1674 // branch to a common successor. Analyze each instruction and return true if it
1675 // would be possible to sink them into their successor, creating one common
1676 // instruction instead. For every value that would be required to be provided by
1677 // PHI node (because an operand varies in each input block), add to PHIOperands.
1678 static bool canSinkInstructions(
1679     ArrayRef<Instruction *> Insts,
1680     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1681   // Prune out obviously bad instructions to move. Each instruction must have
1682   // exactly zero or one use, and we check later that use is by a single, common
1683   // PHI instruction in the successor.
1684   bool HasUse = !Insts.front()->user_empty();
1685   for (auto *I : Insts) {
1686     // These instructions may change or break semantics if moved.
1687     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1688         I->getType()->isTokenTy())
1689       return false;
1690 
1691     // Do not try to sink an instruction in an infinite loop - it can cause
1692     // this algorithm to infinite loop.
1693     if (I->getParent()->getSingleSuccessor() == I->getParent())
1694       return false;
1695 
1696     // Conservatively return false if I is an inline-asm instruction. Sinking
1697     // and merging inline-asm instructions can potentially create arguments
1698     // that cannot satisfy the inline-asm constraints.
1699     // If the instruction has nomerge attribute, return false.
1700     if (const auto *C = dyn_cast<CallBase>(I))
1701       if (C->isInlineAsm() || C->cannotMerge())
1702         return false;
1703 
1704     // Each instruction must have zero or one use.
1705     if (HasUse && !I->hasOneUse())
1706       return false;
1707     if (!HasUse && !I->user_empty())
1708       return false;
1709   }
1710 
1711   const Instruction *I0 = Insts.front();
1712   for (auto *I : Insts)
1713     if (!I->isSameOperationAs(I0))
1714       return false;
1715 
1716   // All instructions in Insts are known to be the same opcode. If they have a
1717   // use, check that the only user is a PHI or in the same block as the
1718   // instruction, because if a user is in the same block as an instruction we're
1719   // contemplating sinking, it must already be determined to be sinkable.
1720   if (HasUse) {
1721     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1722     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1723     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1724           auto *U = cast<Instruction>(*I->user_begin());
1725           return (PNUse &&
1726                   PNUse->getParent() == Succ &&
1727                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1728                  U->getParent() == I->getParent();
1729         }))
1730       return false;
1731   }
1732 
1733   // Because SROA can't handle speculating stores of selects, try not to sink
1734   // loads, stores or lifetime markers of allocas when we'd have to create a
1735   // PHI for the address operand. Also, because it is likely that loads or
1736   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1737   // them.
1738   // This can cause code churn which can have unintended consequences down
1739   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1740   // FIXME: This is a workaround for a deficiency in SROA - see
1741   // https://llvm.org/bugs/show_bug.cgi?id=30188
1742   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1743         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1744       }))
1745     return false;
1746   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1747         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1748       }))
1749     return false;
1750   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1751         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1752       }))
1753     return false;
1754 
1755   // For calls to be sinkable, they must all be indirect, or have same callee.
1756   // I.e. if we have two direct calls to different callees, we don't want to
1757   // turn that into an indirect call. Likewise, if we have an indirect call,
1758   // and a direct call, we don't actually want to have a single indirect call.
1759   if (isa<CallBase>(I0)) {
1760     auto IsIndirectCall = [](const Instruction *I) {
1761       return cast<CallBase>(I)->isIndirectCall();
1762     };
1763     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1764     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1765     if (HaveIndirectCalls) {
1766       if (!AllCallsAreIndirect)
1767         return false;
1768     } else {
1769       // All callees must be identical.
1770       Value *Callee = nullptr;
1771       for (const Instruction *I : Insts) {
1772         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1773         if (!Callee)
1774           Callee = CurrCallee;
1775         else if (Callee != CurrCallee)
1776           return false;
1777       }
1778     }
1779   }
1780 
1781   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1782     Value *Op = I0->getOperand(OI);
1783     if (Op->getType()->isTokenTy())
1784       // Don't touch any operand of token type.
1785       return false;
1786 
1787     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1788       assert(I->getNumOperands() == I0->getNumOperands());
1789       return I->getOperand(OI) == I0->getOperand(OI);
1790     };
1791     if (!all_of(Insts, SameAsI0)) {
1792       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1793           !canReplaceOperandWithVariable(I0, OI))
1794         // We can't create a PHI from this GEP.
1795         return false;
1796       for (auto *I : Insts)
1797         PHIOperands[I].push_back(I->getOperand(OI));
1798     }
1799   }
1800   return true;
1801 }
1802 
1803 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1804 // instruction of every block in Blocks to their common successor, commoning
1805 // into one instruction.
1806 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1807   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1808 
1809   // canSinkInstructions returning true guarantees that every block has at
1810   // least one non-terminator instruction.
1811   SmallVector<Instruction*,4> Insts;
1812   for (auto *BB : Blocks) {
1813     Instruction *I = BB->getTerminator();
1814     do {
1815       I = I->getPrevNode();
1816     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1817     if (!isa<DbgInfoIntrinsic>(I))
1818       Insts.push_back(I);
1819   }
1820 
1821   // The only checking we need to do now is that all users of all instructions
1822   // are the same PHI node. canSinkInstructions should have checked this but
1823   // it is slightly over-aggressive - it gets confused by commutative
1824   // instructions so double-check it here.
1825   Instruction *I0 = Insts.front();
1826   if (!I0->user_empty()) {
1827     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1828     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1829           auto *U = cast<Instruction>(*I->user_begin());
1830           return U == PNUse;
1831         }))
1832       return false;
1833   }
1834 
1835   // We don't need to do any more checking here; canSinkInstructions should
1836   // have done it all for us.
1837   SmallVector<Value*, 4> NewOperands;
1838   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1839     // This check is different to that in canSinkInstructions. There, we
1840     // cared about the global view once simplifycfg (and instcombine) have
1841     // completed - it takes into account PHIs that become trivially
1842     // simplifiable.  However here we need a more local view; if an operand
1843     // differs we create a PHI and rely on instcombine to clean up the very
1844     // small mess we may make.
1845     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1846       return I->getOperand(O) != I0->getOperand(O);
1847     });
1848     if (!NeedPHI) {
1849       NewOperands.push_back(I0->getOperand(O));
1850       continue;
1851     }
1852 
1853     // Create a new PHI in the successor block and populate it.
1854     auto *Op = I0->getOperand(O);
1855     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1856     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1857                                Op->getName() + ".sink", &BBEnd->front());
1858     for (auto *I : Insts)
1859       PN->addIncoming(I->getOperand(O), I->getParent());
1860     NewOperands.push_back(PN);
1861   }
1862 
1863   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1864   // and move it to the start of the successor block.
1865   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1866     I0->getOperandUse(O).set(NewOperands[O]);
1867   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1868 
1869   // Update metadata and IR flags, and merge debug locations.
1870   for (auto *I : Insts)
1871     if (I != I0) {
1872       // The debug location for the "common" instruction is the merged locations
1873       // of all the commoned instructions.  We start with the original location
1874       // of the "common" instruction and iteratively merge each location in the
1875       // loop below.
1876       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1877       // However, as N-way merge for CallInst is rare, so we use simplified API
1878       // instead of using complex API for N-way merge.
1879       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1880       combineMetadataForCSE(I0, I, true);
1881       I0->andIRFlags(I);
1882     }
1883 
1884   if (!I0->user_empty()) {
1885     // canSinkLastInstruction checked that all instructions were used by
1886     // one and only one PHI node. Find that now, RAUW it to our common
1887     // instruction and nuke it.
1888     auto *PN = cast<PHINode>(*I0->user_begin());
1889     PN->replaceAllUsesWith(I0);
1890     PN->eraseFromParent();
1891   }
1892 
1893   // Finally nuke all instructions apart from the common instruction.
1894   for (auto *I : Insts)
1895     if (I != I0)
1896       I->eraseFromParent();
1897 
1898   return true;
1899 }
1900 
1901 namespace {
1902 
1903   // LockstepReverseIterator - Iterates through instructions
1904   // in a set of blocks in reverse order from the first non-terminator.
1905   // For example (assume all blocks have size n):
1906   //   LockstepReverseIterator I([B1, B2, B3]);
1907   //   *I-- = [B1[n], B2[n], B3[n]];
1908   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1909   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1910   //   ...
1911   class LockstepReverseIterator {
1912     ArrayRef<BasicBlock*> Blocks;
1913     SmallVector<Instruction*,4> Insts;
1914     bool Fail;
1915 
1916   public:
1917     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1918       reset();
1919     }
1920 
1921     void reset() {
1922       Fail = false;
1923       Insts.clear();
1924       for (auto *BB : Blocks) {
1925         Instruction *Inst = BB->getTerminator();
1926         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1927           Inst = Inst->getPrevNode();
1928         if (!Inst) {
1929           // Block wasn't big enough.
1930           Fail = true;
1931           return;
1932         }
1933         Insts.push_back(Inst);
1934       }
1935     }
1936 
1937     bool isValid() const {
1938       return !Fail;
1939     }
1940 
1941     void operator--() {
1942       if (Fail)
1943         return;
1944       for (auto *&Inst : Insts) {
1945         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1946           Inst = Inst->getPrevNode();
1947         // Already at beginning of block.
1948         if (!Inst) {
1949           Fail = true;
1950           return;
1951         }
1952       }
1953     }
1954 
1955     void operator++() {
1956       if (Fail)
1957         return;
1958       for (auto *&Inst : Insts) {
1959         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1960           Inst = Inst->getNextNode();
1961         // Already at end of block.
1962         if (!Inst) {
1963           Fail = true;
1964           return;
1965         }
1966       }
1967     }
1968 
1969     ArrayRef<Instruction*> operator * () const {
1970       return Insts;
1971     }
1972   };
1973 
1974 } // end anonymous namespace
1975 
1976 /// Check whether BB's predecessors end with unconditional branches. If it is
1977 /// true, sink any common code from the predecessors to BB.
1978 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1979                                            DomTreeUpdater *DTU) {
1980   // We support two situations:
1981   //   (1) all incoming arcs are unconditional
1982   //   (2) there are non-unconditional incoming arcs
1983   //
1984   // (2) is very common in switch defaults and
1985   // else-if patterns;
1986   //
1987   //   if (a) f(1);
1988   //   else if (b) f(2);
1989   //
1990   // produces:
1991   //
1992   //       [if]
1993   //      /    \
1994   //    [f(1)] [if]
1995   //      |     | \
1996   //      |     |  |
1997   //      |  [f(2)]|
1998   //       \    | /
1999   //        [ end ]
2000   //
2001   // [end] has two unconditional predecessor arcs and one conditional. The
2002   // conditional refers to the implicit empty 'else' arc. This conditional
2003   // arc can also be caused by an empty default block in a switch.
2004   //
2005   // In this case, we attempt to sink code from all *unconditional* arcs.
2006   // If we can sink instructions from these arcs (determined during the scan
2007   // phase below) we insert a common successor for all unconditional arcs and
2008   // connect that to [end], to enable sinking:
2009   //
2010   //       [if]
2011   //      /    \
2012   //    [x(1)] [if]
2013   //      |     | \
2014   //      |     |  \
2015   //      |  [x(2)] |
2016   //       \   /    |
2017   //   [sink.split] |
2018   //         \     /
2019   //         [ end ]
2020   //
2021   SmallVector<BasicBlock*,4> UnconditionalPreds;
2022   bool HaveNonUnconditionalPredecessors = false;
2023   for (auto *PredBB : predecessors(BB)) {
2024     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2025     if (PredBr && PredBr->isUnconditional())
2026       UnconditionalPreds.push_back(PredBB);
2027     else
2028       HaveNonUnconditionalPredecessors = true;
2029   }
2030   if (UnconditionalPreds.size() < 2)
2031     return false;
2032 
2033   // We take a two-step approach to tail sinking. First we scan from the end of
2034   // each block upwards in lockstep. If the n'th instruction from the end of each
2035   // block can be sunk, those instructions are added to ValuesToSink and we
2036   // carry on. If we can sink an instruction but need to PHI-merge some operands
2037   // (because they're not identical in each instruction) we add these to
2038   // PHIOperands.
2039   int ScanIdx = 0;
2040   SmallPtrSet<Value*,4> InstructionsToSink;
2041   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2042   LockstepReverseIterator LRI(UnconditionalPreds);
2043   while (LRI.isValid() &&
2044          canSinkInstructions(*LRI, PHIOperands)) {
2045     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2046                       << "\n");
2047     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2048     ++ScanIdx;
2049     --LRI;
2050   }
2051 
2052   // If no instructions can be sunk, early-return.
2053   if (ScanIdx == 0)
2054     return false;
2055 
2056   // Okay, we *could* sink last ScanIdx instructions. But how many can we
2057   // actually sink before encountering instruction that is unprofitable to sink?
2058   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2059     unsigned NumPHIdValues = 0;
2060     for (auto *I : *LRI)
2061       for (auto *V : PHIOperands[I]) {
2062         if (InstructionsToSink.count(V) == 0)
2063           ++NumPHIdValues;
2064         // FIXME: this check is overly optimistic. We may end up not sinking
2065         // said instruction, due to the very same profitability check.
2066         // See @creating_too_many_phis in sink-common-code.ll.
2067       }
2068     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2069     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2070     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2071         NumPHIInsts++;
2072 
2073     return NumPHIInsts <= 1;
2074   };
2075 
2076   // We've determined that we are going to sink last ScanIdx instructions,
2077   // and recorded them in InstructionsToSink. Now, some instructions may be
2078   // unprofitable to sink. But that determination depends on the instructions
2079   // that we are going to sink.
2080 
2081   // First, forward scan: find the first instruction unprofitable to sink,
2082   // recording all the ones that are profitable to sink.
2083   // FIXME: would it be better, after we detect that not all are profitable.
2084   // to either record the profitable ones, or erase the unprofitable ones?
2085   // Maybe we need to choose (at runtime) the one that will touch least instrs?
2086   LRI.reset();
2087   int Idx = 0;
2088   SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2089   while (Idx < ScanIdx) {
2090     if (!ProfitableToSinkInstruction(LRI)) {
2091       // Too many PHIs would be created.
2092       LLVM_DEBUG(
2093           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2094       break;
2095     }
2096     InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2097     --LRI;
2098     ++Idx;
2099   }
2100 
2101   // If no instructions can be sunk, early-return.
2102   if (Idx == 0)
2103     return false;
2104 
2105   // Did we determine that (only) some instructions are unprofitable to sink?
2106   if (Idx < ScanIdx) {
2107     // Okay, some instructions are unprofitable.
2108     ScanIdx = Idx;
2109     InstructionsToSink = InstructionsProfitableToSink;
2110 
2111     // But, that may make other instructions unprofitable, too.
2112     // So, do a backward scan, do any earlier instructions become unprofitable?
2113     assert(!ProfitableToSinkInstruction(LRI) &&
2114            "We already know that the last instruction is unprofitable to sink");
2115     ++LRI;
2116     --Idx;
2117     while (Idx >= 0) {
2118       // If we detect that an instruction becomes unprofitable to sink,
2119       // all earlier instructions won't be sunk either,
2120       // so preemptively keep InstructionsProfitableToSink in sync.
2121       // FIXME: is this the most performant approach?
2122       for (auto *I : *LRI)
2123         InstructionsProfitableToSink.erase(I);
2124       if (!ProfitableToSinkInstruction(LRI)) {
2125         // Everything starting with this instruction won't be sunk.
2126         ScanIdx = Idx;
2127         InstructionsToSink = InstructionsProfitableToSink;
2128       }
2129       ++LRI;
2130       --Idx;
2131     }
2132   }
2133 
2134   // If no instructions can be sunk, early-return.
2135   if (ScanIdx == 0)
2136     return false;
2137 
2138   bool Changed = false;
2139 
2140   if (HaveNonUnconditionalPredecessors) {
2141     // It is always legal to sink common instructions from unconditional
2142     // predecessors. However, if not all predecessors are unconditional,
2143     // this transformation might be pessimizing. So as a rule of thumb,
2144     // don't do it unless we'd sink at least one non-speculatable instruction.
2145     // See https://bugs.llvm.org/show_bug.cgi?id=30244
2146     LRI.reset();
2147     int Idx = 0;
2148     bool Profitable = false;
2149     while (Idx < ScanIdx) {
2150       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2151         Profitable = true;
2152         break;
2153       }
2154       --LRI;
2155       ++Idx;
2156     }
2157     if (!Profitable)
2158       return false;
2159 
2160     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2161     // We have a conditional edge and we're going to sink some instructions.
2162     // Insert a new block postdominating all blocks we're going to sink from.
2163     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2164       // Edges couldn't be split.
2165       return false;
2166     Changed = true;
2167   }
2168 
2169   // Now that we've analyzed all potential sinking candidates, perform the
2170   // actual sink. We iteratively sink the last non-terminator of the source
2171   // blocks into their common successor unless doing so would require too
2172   // many PHI instructions to be generated (currently only one PHI is allowed
2173   // per sunk instruction).
2174   //
2175   // We can use InstructionsToSink to discount values needing PHI-merging that will
2176   // actually be sunk in a later iteration. This allows us to be more
2177   // aggressive in what we sink. This does allow a false positive where we
2178   // sink presuming a later value will also be sunk, but stop half way through
2179   // and never actually sink it which means we produce more PHIs than intended.
2180   // This is unlikely in practice though.
2181   int SinkIdx = 0;
2182   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2183     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2184                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2185                       << "\n");
2186 
2187     // Because we've sunk every instruction in turn, the current instruction to
2188     // sink is always at index 0.
2189     LRI.reset();
2190 
2191     if (!sinkLastInstruction(UnconditionalPreds)) {
2192       LLVM_DEBUG(
2193           dbgs()
2194           << "SINK: stopping here, failed to actually sink instruction!\n");
2195       break;
2196     }
2197 
2198     NumSinkCommonInstrs++;
2199     Changed = true;
2200   }
2201   if (SinkIdx != 0)
2202     ++NumSinkCommonCode;
2203   return Changed;
2204 }
2205 
2206 /// Determine if we can hoist sink a sole store instruction out of a
2207 /// conditional block.
2208 ///
2209 /// We are looking for code like the following:
2210 ///   BrBB:
2211 ///     store i32 %add, i32* %arrayidx2
2212 ///     ... // No other stores or function calls (we could be calling a memory
2213 ///     ... // function).
2214 ///     %cmp = icmp ult %x, %y
2215 ///     br i1 %cmp, label %EndBB, label %ThenBB
2216 ///   ThenBB:
2217 ///     store i32 %add5, i32* %arrayidx2
2218 ///     br label EndBB
2219 ///   EndBB:
2220 ///     ...
2221 ///   We are going to transform this into:
2222 ///   BrBB:
2223 ///     store i32 %add, i32* %arrayidx2
2224 ///     ... //
2225 ///     %cmp = icmp ult %x, %y
2226 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2227 ///     store i32 %add.add5, i32* %arrayidx2
2228 ///     ...
2229 ///
2230 /// \return The pointer to the value of the previous store if the store can be
2231 ///         hoisted into the predecessor block. 0 otherwise.
2232 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2233                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2234   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2235   if (!StoreToHoist)
2236     return nullptr;
2237 
2238   // Volatile or atomic.
2239   if (!StoreToHoist->isSimple())
2240     return nullptr;
2241 
2242   Value *StorePtr = StoreToHoist->getPointerOperand();
2243   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2244 
2245   // Look for a store to the same pointer in BrBB.
2246   unsigned MaxNumInstToLookAt = 9;
2247   // Skip pseudo probe intrinsic calls which are not really killing any memory
2248   // accesses.
2249   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2250     if (!MaxNumInstToLookAt)
2251       break;
2252     --MaxNumInstToLookAt;
2253 
2254     // Could be calling an instruction that affects memory like free().
2255     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2256       return nullptr;
2257 
2258     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2259       // Found the previous store to same location and type. Make sure it is
2260       // simple, to avoid introducing a spurious non-atomic write after an
2261       // atomic write.
2262       if (SI->getPointerOperand() == StorePtr &&
2263           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2264         // Found the previous store, return its value operand.
2265         return SI->getValueOperand();
2266       return nullptr; // Unknown store.
2267     }
2268 
2269     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2270       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2271           LI->isSimple()) {
2272         // Local objects (created by an `alloca` instruction) are always
2273         // writable, so once we are past a read from a location it is valid to
2274         // also write to that same location.
2275         // If the address of the local object never escapes the function, that
2276         // means it's never concurrently read or written, hence moving the store
2277         // from under the condition will not introduce a data race.
2278         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2279         if (AI && !PointerMayBeCaptured(AI, false, true))
2280           // Found a previous load, return it.
2281           return LI;
2282       }
2283       // The load didn't work out, but we may still find a store.
2284     }
2285   }
2286 
2287   return nullptr;
2288 }
2289 
2290 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2291 /// converted to selects.
2292 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2293                                            BasicBlock *EndBB,
2294                                            unsigned &SpeculatedInstructions,
2295                                            InstructionCost &Cost,
2296                                            const TargetTransformInfo &TTI) {
2297   TargetTransformInfo::TargetCostKind CostKind =
2298     BB->getParent()->hasMinSize()
2299     ? TargetTransformInfo::TCK_CodeSize
2300     : TargetTransformInfo::TCK_SizeAndLatency;
2301 
2302   bool HaveRewritablePHIs = false;
2303   for (PHINode &PN : EndBB->phis()) {
2304     Value *OrigV = PN.getIncomingValueForBlock(BB);
2305     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2306 
2307     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2308     // Skip PHIs which are trivial.
2309     if (ThenV == OrigV)
2310       continue;
2311 
2312     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2313                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2314 
2315     // Don't convert to selects if we could remove undefined behavior instead.
2316     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2317         passingValueIsAlwaysUndefined(ThenV, &PN))
2318       return false;
2319 
2320     HaveRewritablePHIs = true;
2321     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2322     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2323     if (!OrigCE && !ThenCE)
2324       continue; // Known safe and cheap.
2325 
2326     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2327         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2328       return false;
2329     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2330     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2331     InstructionCost MaxCost =
2332         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2333     if (OrigCost + ThenCost > MaxCost)
2334       return false;
2335 
2336     // Account for the cost of an unfolded ConstantExpr which could end up
2337     // getting expanded into Instructions.
2338     // FIXME: This doesn't account for how many operations are combined in the
2339     // constant expression.
2340     ++SpeculatedInstructions;
2341     if (SpeculatedInstructions > 1)
2342       return false;
2343   }
2344 
2345   return HaveRewritablePHIs;
2346 }
2347 
2348 /// Speculate a conditional basic block flattening the CFG.
2349 ///
2350 /// Note that this is a very risky transform currently. Speculating
2351 /// instructions like this is most often not desirable. Instead, there is an MI
2352 /// pass which can do it with full awareness of the resource constraints.
2353 /// However, some cases are "obvious" and we should do directly. An example of
2354 /// this is speculating a single, reasonably cheap instruction.
2355 ///
2356 /// There is only one distinct advantage to flattening the CFG at the IR level:
2357 /// it makes very common but simplistic optimizations such as are common in
2358 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2359 /// modeling their effects with easier to reason about SSA value graphs.
2360 ///
2361 ///
2362 /// An illustration of this transform is turning this IR:
2363 /// \code
2364 ///   BB:
2365 ///     %cmp = icmp ult %x, %y
2366 ///     br i1 %cmp, label %EndBB, label %ThenBB
2367 ///   ThenBB:
2368 ///     %sub = sub %x, %y
2369 ///     br label BB2
2370 ///   EndBB:
2371 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2372 ///     ...
2373 /// \endcode
2374 ///
2375 /// Into this IR:
2376 /// \code
2377 ///   BB:
2378 ///     %cmp = icmp ult %x, %y
2379 ///     %sub = sub %x, %y
2380 ///     %cond = select i1 %cmp, 0, %sub
2381 ///     ...
2382 /// \endcode
2383 ///
2384 /// \returns true if the conditional block is removed.
2385 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2386                                             const TargetTransformInfo &TTI) {
2387   // Be conservative for now. FP select instruction can often be expensive.
2388   Value *BrCond = BI->getCondition();
2389   if (isa<FCmpInst>(BrCond))
2390     return false;
2391 
2392   BasicBlock *BB = BI->getParent();
2393   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2394   InstructionCost Budget =
2395       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2396 
2397   // If ThenBB is actually on the false edge of the conditional branch, remember
2398   // to swap the select operands later.
2399   bool Invert = false;
2400   if (ThenBB != BI->getSuccessor(0)) {
2401     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2402     Invert = true;
2403   }
2404   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2405 
2406   // If the branch is non-unpredictable, and is predicted to *not* branch to
2407   // the `then` block, then avoid speculating it.
2408   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2409     uint64_t TWeight, FWeight;
2410     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2411       uint64_t EndWeight = Invert ? TWeight : FWeight;
2412       BranchProbability BIEndProb =
2413           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2414       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2415       if (BIEndProb >= Likely)
2416         return false;
2417     }
2418   }
2419 
2420   // Keep a count of how many times instructions are used within ThenBB when
2421   // they are candidates for sinking into ThenBB. Specifically:
2422   // - They are defined in BB, and
2423   // - They have no side effects, and
2424   // - All of their uses are in ThenBB.
2425   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2426 
2427   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2428 
2429   unsigned SpeculatedInstructions = 0;
2430   Value *SpeculatedStoreValue = nullptr;
2431   StoreInst *SpeculatedStore = nullptr;
2432   for (BasicBlock::iterator BBI = ThenBB->begin(),
2433                             BBE = std::prev(ThenBB->end());
2434        BBI != BBE; ++BBI) {
2435     Instruction *I = &*BBI;
2436     // Skip debug info.
2437     if (isa<DbgInfoIntrinsic>(I)) {
2438       SpeculatedDbgIntrinsics.push_back(I);
2439       continue;
2440     }
2441 
2442     // Skip pseudo probes. The consequence is we lose track of the branch
2443     // probability for ThenBB, which is fine since the optimization here takes
2444     // place regardless of the branch probability.
2445     if (isa<PseudoProbeInst>(I)) {
2446       // The probe should be deleted so that it will not be over-counted when
2447       // the samples collected on the non-conditional path are counted towards
2448       // the conditional path. We leave it for the counts inference algorithm to
2449       // figure out a proper count for an unknown probe.
2450       SpeculatedDbgIntrinsics.push_back(I);
2451       continue;
2452     }
2453 
2454     // Only speculatively execute a single instruction (not counting the
2455     // terminator) for now.
2456     ++SpeculatedInstructions;
2457     if (SpeculatedInstructions > 1)
2458       return false;
2459 
2460     // Don't hoist the instruction if it's unsafe or expensive.
2461     if (!isSafeToSpeculativelyExecute(I) &&
2462         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2463                                   I, BB, ThenBB, EndBB))))
2464       return false;
2465     if (!SpeculatedStoreValue &&
2466         computeSpeculationCost(I, TTI) >
2467             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2468       return false;
2469 
2470     // Store the store speculation candidate.
2471     if (SpeculatedStoreValue)
2472       SpeculatedStore = cast<StoreInst>(I);
2473 
2474     // Do not hoist the instruction if any of its operands are defined but not
2475     // used in BB. The transformation will prevent the operand from
2476     // being sunk into the use block.
2477     for (Use &Op : I->operands()) {
2478       Instruction *OpI = dyn_cast<Instruction>(Op);
2479       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2480         continue; // Not a candidate for sinking.
2481 
2482       ++SinkCandidateUseCounts[OpI];
2483     }
2484   }
2485 
2486   // Consider any sink candidates which are only used in ThenBB as costs for
2487   // speculation. Note, while we iterate over a DenseMap here, we are summing
2488   // and so iteration order isn't significant.
2489   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2490            I = SinkCandidateUseCounts.begin(),
2491            E = SinkCandidateUseCounts.end();
2492        I != E; ++I)
2493     if (I->first->hasNUses(I->second)) {
2494       ++SpeculatedInstructions;
2495       if (SpeculatedInstructions > 1)
2496         return false;
2497     }
2498 
2499   // Check that we can insert the selects and that it's not too expensive to do
2500   // so.
2501   bool Convert = SpeculatedStore != nullptr;
2502   InstructionCost Cost = 0;
2503   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2504                                             SpeculatedInstructions,
2505                                             Cost, TTI);
2506   if (!Convert || Cost > Budget)
2507     return false;
2508 
2509   // If we get here, we can hoist the instruction and if-convert.
2510   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2511 
2512   // Insert a select of the value of the speculated store.
2513   if (SpeculatedStoreValue) {
2514     IRBuilder<NoFolder> Builder(BI);
2515     Value *TrueV = SpeculatedStore->getValueOperand();
2516     Value *FalseV = SpeculatedStoreValue;
2517     if (Invert)
2518       std::swap(TrueV, FalseV);
2519     Value *S = Builder.CreateSelect(
2520         BrCond, TrueV, FalseV, "spec.store.select", BI);
2521     SpeculatedStore->setOperand(0, S);
2522     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2523                                          SpeculatedStore->getDebugLoc());
2524   }
2525 
2526   // Metadata can be dependent on the condition we are hoisting above.
2527   // Conservatively strip all metadata on the instruction. Drop the debug loc
2528   // to avoid making it appear as if the condition is a constant, which would
2529   // be misleading while debugging.
2530   // Similarly strip attributes that maybe dependent on condition we are
2531   // hoisting above.
2532   for (auto &I : *ThenBB) {
2533     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2534       I.setDebugLoc(DebugLoc());
2535     I.dropUndefImplyingAttrsAndUnknownMetadata();
2536   }
2537 
2538   // Hoist the instructions.
2539   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2540                            ThenBB->begin(), std::prev(ThenBB->end()));
2541 
2542   // Insert selects and rewrite the PHI operands.
2543   IRBuilder<NoFolder> Builder(BI);
2544   for (PHINode &PN : EndBB->phis()) {
2545     unsigned OrigI = PN.getBasicBlockIndex(BB);
2546     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2547     Value *OrigV = PN.getIncomingValue(OrigI);
2548     Value *ThenV = PN.getIncomingValue(ThenI);
2549 
2550     // Skip PHIs which are trivial.
2551     if (OrigV == ThenV)
2552       continue;
2553 
2554     // Create a select whose true value is the speculatively executed value and
2555     // false value is the pre-existing value. Swap them if the branch
2556     // destinations were inverted.
2557     Value *TrueV = ThenV, *FalseV = OrigV;
2558     if (Invert)
2559       std::swap(TrueV, FalseV);
2560     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2561     PN.setIncomingValue(OrigI, V);
2562     PN.setIncomingValue(ThenI, V);
2563   }
2564 
2565   // Remove speculated dbg intrinsics.
2566   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2567   // dbg value for the different flows and inserting it after the select.
2568   for (Instruction *I : SpeculatedDbgIntrinsics)
2569     I->eraseFromParent();
2570 
2571   ++NumSpeculations;
2572   return true;
2573 }
2574 
2575 /// Return true if we can thread a branch across this block.
2576 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2577   int Size = 0;
2578 
2579   SmallPtrSet<const Value *, 32> EphValues;
2580   auto IsEphemeral = [&](const Value *V) {
2581     if (isa<AssumeInst>(V))
2582       return true;
2583     return isSafeToSpeculativelyExecute(V) &&
2584            all_of(V->users(),
2585                   [&](const User *U) { return EphValues.count(U); });
2586   };
2587 
2588   // Walk the loop in reverse so that we can identify ephemeral values properly
2589   // (values only feeding assumes).
2590   for (Instruction &I : reverse(BB->instructionsWithoutDebug())) {
2591     // Can't fold blocks that contain noduplicate or convergent calls.
2592     if (CallInst *CI = dyn_cast<CallInst>(&I))
2593       if (CI->cannotDuplicate() || CI->isConvergent())
2594         return false;
2595 
2596     // Ignore ephemeral values which are deleted during codegen.
2597     if (IsEphemeral(&I))
2598       EphValues.insert(&I);
2599     // We will delete Phis while threading, so Phis should not be accounted in
2600     // block's size.
2601     else if (!isa<PHINode>(I)) {
2602       if (Size++ > MaxSmallBlockSize)
2603         return false; // Don't clone large BB's.
2604     }
2605 
2606     // We can only support instructions that do not define values that are
2607     // live outside of the current basic block.
2608     for (User *U : I.users()) {
2609       Instruction *UI = cast<Instruction>(U);
2610       if (UI->getParent() != BB || isa<PHINode>(UI))
2611         return false;
2612     }
2613 
2614     // Looks ok, continue checking.
2615   }
2616 
2617   return true;
2618 }
2619 
2620 /// If we have a conditional branch on a PHI node value that is defined in the
2621 /// same block as the branch and if any PHI entries are constants, thread edges
2622 /// corresponding to that entry to be branches to their ultimate destination.
2623 static Optional<bool> FoldCondBranchOnPHIImpl(BranchInst *BI,
2624                                               DomTreeUpdater *DTU,
2625                                               const DataLayout &DL,
2626                                               AssumptionCache *AC) {
2627   BasicBlock *BB = BI->getParent();
2628   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2629   // NOTE: we currently cannot transform this case if the PHI node is used
2630   // outside of the block.
2631   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2632     return false;
2633 
2634   // Degenerate case of a single entry PHI.
2635   if (PN->getNumIncomingValues() == 1) {
2636     FoldSingleEntryPHINodes(PN->getParent());
2637     return true;
2638   }
2639 
2640   // Now we know that this block has multiple preds and two succs.
2641   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2642     return false;
2643 
2644   // Okay, this is a simple enough basic block.  See if any phi values are
2645   // constants.
2646   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2647     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2648     if (!CB || !CB->getType()->isIntegerTy(1))
2649       continue;
2650 
2651     // Okay, we now know that all edges from PredBB should be revectored to
2652     // branch to RealDest.
2653     BasicBlock *PredBB = PN->getIncomingBlock(i);
2654     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2655 
2656     if (RealDest == BB)
2657       continue; // Skip self loops.
2658     // Skip if the predecessor's terminator is an indirect branch.
2659     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2660       continue;
2661 
2662     SmallVector<DominatorTree::UpdateType, 3> Updates;
2663 
2664     // The dest block might have PHI nodes, other predecessors and other
2665     // difficult cases.  Instead of being smart about this, just insert a new
2666     // block that jumps to the destination block, effectively splitting
2667     // the edge we are about to create.
2668     BasicBlock *EdgeBB =
2669         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2670                            RealDest->getParent(), RealDest);
2671     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2672     if (DTU)
2673       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2674     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2675 
2676     // Update PHI nodes.
2677     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2678 
2679     // BB may have instructions that are being threaded over.  Clone these
2680     // instructions into EdgeBB.  We know that there will be no uses of the
2681     // cloned instructions outside of EdgeBB.
2682     BasicBlock::iterator InsertPt = EdgeBB->begin();
2683     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2684     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2685       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2686         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2687         continue;
2688       }
2689       // Clone the instruction.
2690       Instruction *N = BBI->clone();
2691       if (BBI->hasName())
2692         N->setName(BBI->getName() + ".c");
2693 
2694       // Update operands due to translation.
2695       for (Use &Op : N->operands()) {
2696         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2697         if (PI != TranslateMap.end())
2698           Op = PI->second;
2699       }
2700 
2701       // Check for trivial simplification.
2702       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2703         if (!BBI->use_empty())
2704           TranslateMap[&*BBI] = V;
2705         if (!N->mayHaveSideEffects()) {
2706           N->deleteValue(); // Instruction folded away, don't need actual inst
2707           N = nullptr;
2708         }
2709       } else {
2710         if (!BBI->use_empty())
2711           TranslateMap[&*BBI] = N;
2712       }
2713       if (N) {
2714         // Insert the new instruction into its new home.
2715         EdgeBB->getInstList().insert(InsertPt, N);
2716 
2717         // Register the new instruction with the assumption cache if necessary.
2718         if (auto *Assume = dyn_cast<AssumeInst>(N))
2719           if (AC)
2720             AC->registerAssumption(Assume);
2721       }
2722     }
2723 
2724     // Loop over all of the edges from PredBB to BB, changing them to branch
2725     // to EdgeBB instead.
2726     Instruction *PredBBTI = PredBB->getTerminator();
2727     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2728       if (PredBBTI->getSuccessor(i) == BB) {
2729         BB->removePredecessor(PredBB);
2730         PredBBTI->setSuccessor(i, EdgeBB);
2731       }
2732 
2733     if (DTU) {
2734       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2735       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2736 
2737       DTU->applyUpdates(Updates);
2738     }
2739 
2740     // Signal repeat, simplifying any other constants.
2741     return None;
2742   }
2743 
2744   return false;
2745 }
2746 
2747 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2748                                 const DataLayout &DL, AssumptionCache *AC) {
2749   Optional<bool> Result;
2750   bool EverChanged = false;
2751   do {
2752     // Note that None means "we changed things, but recurse further."
2753     Result = FoldCondBranchOnPHIImpl(BI, DTU, DL, AC);
2754     EverChanged |= Result == None || *Result;
2755   } while (Result == None);
2756   return EverChanged;
2757 }
2758 
2759 /// Given a BB that starts with the specified two-entry PHI node,
2760 /// see if we can eliminate it.
2761 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2762                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2763   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2764   // statement", which has a very simple dominance structure.  Basically, we
2765   // are trying to find the condition that is being branched on, which
2766   // subsequently causes this merge to happen.  We really want control
2767   // dependence information for this check, but simplifycfg can't keep it up
2768   // to date, and this catches most of the cases we care about anyway.
2769   BasicBlock *BB = PN->getParent();
2770 
2771   BasicBlock *IfTrue, *IfFalse;
2772   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
2773   if (!DomBI)
2774     return false;
2775   Value *IfCond = DomBI->getCondition();
2776   // Don't bother if the branch will be constant folded trivially.
2777   if (isa<ConstantInt>(IfCond))
2778     return false;
2779 
2780   BasicBlock *DomBlock = DomBI->getParent();
2781   SmallVector<BasicBlock *, 2> IfBlocks;
2782   llvm::copy_if(
2783       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
2784         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
2785       });
2786   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
2787          "Will have either one or two blocks to speculate.");
2788 
2789   // If the branch is non-unpredictable, see if we either predictably jump to
2790   // the merge bb (if we have only a single 'then' block), or if we predictably
2791   // jump to one specific 'then' block (if we have two of them).
2792   // It isn't beneficial to speculatively execute the code
2793   // from the block that we know is predictably not entered.
2794   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
2795     uint64_t TWeight, FWeight;
2796     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
2797         (TWeight + FWeight) != 0) {
2798       BranchProbability BITrueProb =
2799           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
2800       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2801       BranchProbability BIFalseProb = BITrueProb.getCompl();
2802       if (IfBlocks.size() == 1) {
2803         BranchProbability BIBBProb =
2804             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
2805         if (BIBBProb >= Likely)
2806           return false;
2807       } else {
2808         if (BITrueProb >= Likely || BIFalseProb >= Likely)
2809           return false;
2810       }
2811     }
2812   }
2813 
2814   // Don't try to fold an unreachable block. For example, the phi node itself
2815   // can't be the candidate if-condition for a select that we want to form.
2816   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
2817     if (IfCondPhiInst->getParent() == BB)
2818       return false;
2819 
2820   // Okay, we found that we can merge this two-entry phi node into a select.
2821   // Doing so would require us to fold *all* two entry phi nodes in this block.
2822   // At some point this becomes non-profitable (particularly if the target
2823   // doesn't support cmov's).  Only do this transformation if there are two or
2824   // fewer PHI nodes in this block.
2825   unsigned NumPhis = 0;
2826   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2827     if (NumPhis > 2)
2828       return false;
2829 
2830   // Loop over the PHI's seeing if we can promote them all to select
2831   // instructions.  While we are at it, keep track of the instructions
2832   // that need to be moved to the dominating block.
2833   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2834   InstructionCost Cost = 0;
2835   InstructionCost Budget =
2836       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2837 
2838   bool Changed = false;
2839   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2840     PHINode *PN = cast<PHINode>(II++);
2841     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2842       PN->replaceAllUsesWith(V);
2843       PN->eraseFromParent();
2844       Changed = true;
2845       continue;
2846     }
2847 
2848     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2849                              Cost, Budget, TTI) ||
2850         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2851                              Cost, Budget, TTI))
2852       return Changed;
2853   }
2854 
2855   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2856   // we ran out of PHIs then we simplified them all.
2857   PN = dyn_cast<PHINode>(BB->begin());
2858   if (!PN)
2859     return true;
2860 
2861   // Return true if at least one of these is a 'not', and another is either
2862   // a 'not' too, or a constant.
2863   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2864     if (!match(V0, m_Not(m_Value())))
2865       std::swap(V0, V1);
2866     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2867     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2868   };
2869 
2870   // Don't fold i1 branches on PHIs which contain binary operators or
2871   // (possibly inverted) select form of or/ands,  unless one of
2872   // the incoming values is an 'not' and another one is freely invertible.
2873   // These can often be turned into switches and other things.
2874   auto IsBinOpOrAnd = [](Value *V) {
2875     return match(
2876         V, m_CombineOr(
2877                m_BinOp(),
2878                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
2879                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
2880   };
2881   if (PN->getType()->isIntegerTy(1) &&
2882       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2883        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2884       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2885                                  PN->getIncomingValue(1)))
2886     return Changed;
2887 
2888   // If all PHI nodes are promotable, check to make sure that all instructions
2889   // in the predecessor blocks can be promoted as well. If not, we won't be able
2890   // to get rid of the control flow, so it's not worth promoting to select
2891   // instructions.
2892   for (BasicBlock *IfBlock : IfBlocks)
2893     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
2894       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2895           !isa<PseudoProbeInst>(I)) {
2896         // This is not an aggressive instruction that we can promote.
2897         // Because of this, we won't be able to get rid of the control flow, so
2898         // the xform is not worth it.
2899         return Changed;
2900       }
2901 
2902   // If either of the blocks has it's address taken, we can't do this fold.
2903   if (any_of(IfBlocks,
2904              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
2905     return Changed;
2906 
2907   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2908                     << "  T: " << IfTrue->getName()
2909                     << "  F: " << IfFalse->getName() << "\n");
2910 
2911   // If we can still promote the PHI nodes after this gauntlet of tests,
2912   // do all of the PHI's now.
2913 
2914   // Move all 'aggressive' instructions, which are defined in the
2915   // conditional parts of the if's up to the dominating block.
2916   for (BasicBlock *IfBlock : IfBlocks)
2917       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
2918 
2919   IRBuilder<NoFolder> Builder(DomBI);
2920   // Propagate fast-math-flags from phi nodes to replacement selects.
2921   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2922   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2923     if (isa<FPMathOperator>(PN))
2924       Builder.setFastMathFlags(PN->getFastMathFlags());
2925 
2926     // Change the PHI node into a select instruction.
2927     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
2928     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
2929 
2930     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
2931     PN->replaceAllUsesWith(Sel);
2932     Sel->takeName(PN);
2933     PN->eraseFromParent();
2934   }
2935 
2936   // At this point, all IfBlocks are empty, so our if statement
2937   // has been flattened.  Change DomBlock to jump directly to our new block to
2938   // avoid other simplifycfg's kicking in on the diamond.
2939   Builder.CreateBr(BB);
2940 
2941   SmallVector<DominatorTree::UpdateType, 3> Updates;
2942   if (DTU) {
2943     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2944     for (auto *Successor : successors(DomBlock))
2945       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2946   }
2947 
2948   DomBI->eraseFromParent();
2949   if (DTU)
2950     DTU->applyUpdates(Updates);
2951 
2952   return true;
2953 }
2954 
2955 static Value *createLogicalOp(IRBuilderBase &Builder,
2956                               Instruction::BinaryOps Opc, Value *LHS,
2957                               Value *RHS, const Twine &Name = "") {
2958   // Try to relax logical op to binary op.
2959   if (impliesPoison(RHS, LHS))
2960     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
2961   if (Opc == Instruction::And)
2962     return Builder.CreateLogicalAnd(LHS, RHS, Name);
2963   if (Opc == Instruction::Or)
2964     return Builder.CreateLogicalOr(LHS, RHS, Name);
2965   llvm_unreachable("Invalid logical opcode");
2966 }
2967 
2968 /// Return true if either PBI or BI has branch weight available, and store
2969 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2970 /// not have branch weight, use 1:1 as its weight.
2971 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2972                                    uint64_t &PredTrueWeight,
2973                                    uint64_t &PredFalseWeight,
2974                                    uint64_t &SuccTrueWeight,
2975                                    uint64_t &SuccFalseWeight) {
2976   bool PredHasWeights =
2977       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2978   bool SuccHasWeights =
2979       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2980   if (PredHasWeights || SuccHasWeights) {
2981     if (!PredHasWeights)
2982       PredTrueWeight = PredFalseWeight = 1;
2983     if (!SuccHasWeights)
2984       SuccTrueWeight = SuccFalseWeight = 1;
2985     return true;
2986   } else {
2987     return false;
2988   }
2989 }
2990 
2991 /// Determine if the two branches share a common destination and deduce a glue
2992 /// that joins the branches' conditions to arrive at the common destination if
2993 /// that would be profitable.
2994 static Optional<std::pair<Instruction::BinaryOps, bool>>
2995 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
2996                                           const TargetTransformInfo *TTI) {
2997   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2998          "Both blocks must end with a conditional branches.");
2999   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3000          "PredBB must be a predecessor of BB.");
3001 
3002   // We have the potential to fold the conditions together, but if the
3003   // predecessor branch is predictable, we may not want to merge them.
3004   uint64_t PTWeight, PFWeight;
3005   BranchProbability PBITrueProb, Likely;
3006   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3007       PBI->extractProfMetadata(PTWeight, PFWeight) &&
3008       (PTWeight + PFWeight) != 0) {
3009     PBITrueProb =
3010         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3011     Likely = TTI->getPredictableBranchThreshold();
3012   }
3013 
3014   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3015     // Speculate the 2nd condition unless the 1st is probably true.
3016     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3017       return {{Instruction::Or, false}};
3018   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3019     // Speculate the 2nd condition unless the 1st is probably false.
3020     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3021       return {{Instruction::And, false}};
3022   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3023     // Speculate the 2nd condition unless the 1st is probably true.
3024     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3025       return {{Instruction::And, true}};
3026   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3027     // Speculate the 2nd condition unless the 1st is probably false.
3028     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3029       return {{Instruction::Or, true}};
3030   }
3031   return None;
3032 }
3033 
3034 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3035                                              DomTreeUpdater *DTU,
3036                                              MemorySSAUpdater *MSSAU,
3037                                              const TargetTransformInfo *TTI) {
3038   BasicBlock *BB = BI->getParent();
3039   BasicBlock *PredBlock = PBI->getParent();
3040 
3041   // Determine if the two branches share a common destination.
3042   Instruction::BinaryOps Opc;
3043   bool InvertPredCond;
3044   std::tie(Opc, InvertPredCond) =
3045       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3046 
3047   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3048 
3049   IRBuilder<> Builder(PBI);
3050   // The builder is used to create instructions to eliminate the branch in BB.
3051   // If BB's terminator has !annotation metadata, add it to the new
3052   // instructions.
3053   Builder.CollectMetadataToCopy(BB->getTerminator(),
3054                                 {LLVMContext::MD_annotation});
3055 
3056   // If we need to invert the condition in the pred block to match, do so now.
3057   if (InvertPredCond) {
3058     Value *NewCond = PBI->getCondition();
3059     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3060       CmpInst *CI = cast<CmpInst>(NewCond);
3061       CI->setPredicate(CI->getInversePredicate());
3062     } else {
3063       NewCond =
3064           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3065     }
3066 
3067     PBI->setCondition(NewCond);
3068     PBI->swapSuccessors();
3069   }
3070 
3071   BasicBlock *UniqueSucc =
3072       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3073 
3074   // Before cloning instructions, notify the successor basic block that it
3075   // is about to have a new predecessor. This will update PHI nodes,
3076   // which will allow us to update live-out uses of bonus instructions.
3077   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3078 
3079   // Try to update branch weights.
3080   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3081   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3082                              SuccTrueWeight, SuccFalseWeight)) {
3083     SmallVector<uint64_t, 8> NewWeights;
3084 
3085     if (PBI->getSuccessor(0) == BB) {
3086       // PBI: br i1 %x, BB, FalseDest
3087       // BI:  br i1 %y, UniqueSucc, FalseDest
3088       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3089       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3090       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3091       //               TrueWeight for PBI * FalseWeight for BI.
3092       // We assume that total weights of a BranchInst can fit into 32 bits.
3093       // Therefore, we will not have overflow using 64-bit arithmetic.
3094       NewWeights.push_back(PredFalseWeight *
3095                                (SuccFalseWeight + SuccTrueWeight) +
3096                            PredTrueWeight * SuccFalseWeight);
3097     } else {
3098       // PBI: br i1 %x, TrueDest, BB
3099       // BI:  br i1 %y, TrueDest, UniqueSucc
3100       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3101       //              FalseWeight for PBI * TrueWeight for BI.
3102       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3103                            PredFalseWeight * SuccTrueWeight);
3104       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3105       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3106     }
3107 
3108     // Halve the weights if any of them cannot fit in an uint32_t
3109     FitWeights(NewWeights);
3110 
3111     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3112     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3113 
3114     // TODO: If BB is reachable from all paths through PredBlock, then we
3115     // could replace PBI's branch probabilities with BI's.
3116   } else
3117     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3118 
3119   // Now, update the CFG.
3120   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3121 
3122   if (DTU)
3123     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3124                        {DominatorTree::Delete, PredBlock, BB}});
3125 
3126   // If BI was a loop latch, it may have had associated loop metadata.
3127   // We need to copy it to the new latch, that is, PBI.
3128   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3129     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3130 
3131   ValueToValueMapTy VMap; // maps original values to cloned values
3132   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3133 
3134   // Now that the Cond was cloned into the predecessor basic block,
3135   // or/and the two conditions together.
3136   Value *BICond = VMap[BI->getCondition()];
3137   PBI->setCondition(
3138       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3139 
3140   // Copy any debug value intrinsics into the end of PredBlock.
3141   for (Instruction &I : *BB) {
3142     if (isa<DbgInfoIntrinsic>(I)) {
3143       Instruction *NewI = I.clone();
3144       RemapInstruction(NewI, VMap,
3145                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3146       NewI->insertBefore(PBI);
3147     }
3148   }
3149 
3150   ++NumFoldBranchToCommonDest;
3151   return true;
3152 }
3153 
3154 /// Return if an instruction's type or any of its operands' types are a vector
3155 /// type.
3156 static bool isVectorOp(Instruction &I) {
3157   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3158            return U->getType()->isVectorTy();
3159          });
3160 }
3161 
3162 /// If this basic block is simple enough, and if a predecessor branches to us
3163 /// and one of our successors, fold the block into the predecessor and use
3164 /// logical operations to pick the right destination.
3165 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3166                                   MemorySSAUpdater *MSSAU,
3167                                   const TargetTransformInfo *TTI,
3168                                   unsigned BonusInstThreshold) {
3169   // If this block ends with an unconditional branch,
3170   // let SpeculativelyExecuteBB() deal with it.
3171   if (!BI->isConditional())
3172     return false;
3173 
3174   BasicBlock *BB = BI->getParent();
3175   TargetTransformInfo::TargetCostKind CostKind =
3176     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3177                                   : TargetTransformInfo::TCK_SizeAndLatency;
3178 
3179   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3180 
3181   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3182       Cond->getParent() != BB || !Cond->hasOneUse())
3183     return false;
3184 
3185   // Cond is known to be a compare or binary operator.  Check to make sure that
3186   // neither operand is a potentially-trapping constant expression.
3187   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3188     if (CE->canTrap())
3189       return false;
3190   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3191     if (CE->canTrap())
3192       return false;
3193 
3194   // Finally, don't infinitely unroll conditional loops.
3195   if (is_contained(successors(BB), BB))
3196     return false;
3197 
3198   // With which predecessors will we want to deal with?
3199   SmallVector<BasicBlock *, 8> Preds;
3200   for (BasicBlock *PredBlock : predecessors(BB)) {
3201     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3202 
3203     // Check that we have two conditional branches.  If there is a PHI node in
3204     // the common successor, verify that the same value flows in from both
3205     // blocks.
3206     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3207       continue;
3208 
3209     // Determine if the two branches share a common destination.
3210     Instruction::BinaryOps Opc;
3211     bool InvertPredCond;
3212     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3213       std::tie(Opc, InvertPredCond) = *Recipe;
3214     else
3215       continue;
3216 
3217     // Check the cost of inserting the necessary logic before performing the
3218     // transformation.
3219     if (TTI) {
3220       Type *Ty = BI->getCondition()->getType();
3221       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3222       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3223           !isa<CmpInst>(PBI->getCondition())))
3224         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3225 
3226       if (Cost > BranchFoldThreshold)
3227         continue;
3228     }
3229 
3230     // Ok, we do want to deal with this predecessor. Record it.
3231     Preds.emplace_back(PredBlock);
3232   }
3233 
3234   // If there aren't any predecessors into which we can fold,
3235   // don't bother checking the cost.
3236   if (Preds.empty())
3237     return false;
3238 
3239   // Only allow this transformation if computing the condition doesn't involve
3240   // too many instructions and these involved instructions can be executed
3241   // unconditionally. We denote all involved instructions except the condition
3242   // as "bonus instructions", and only allow this transformation when the
3243   // number of the bonus instructions we'll need to create when cloning into
3244   // each predecessor does not exceed a certain threshold.
3245   unsigned NumBonusInsts = 0;
3246   bool SawVectorOp = false;
3247   const unsigned PredCount = Preds.size();
3248   for (Instruction &I : *BB) {
3249     // Don't check the branch condition comparison itself.
3250     if (&I == Cond)
3251       continue;
3252     // Ignore dbg intrinsics, and the terminator.
3253     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3254       continue;
3255     // I must be safe to execute unconditionally.
3256     if (!isSafeToSpeculativelyExecute(&I))
3257       return false;
3258     SawVectorOp |= isVectorOp(I);
3259 
3260     // Account for the cost of duplicating this instruction into each
3261     // predecessor. Ignore free instructions.
3262     if (!TTI ||
3263         TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
3264       NumBonusInsts += PredCount;
3265 
3266       // Early exits once we reach the limit.
3267       if (NumBonusInsts >
3268           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3269         return false;
3270     }
3271 
3272     auto IsBCSSAUse = [BB, &I](Use &U) {
3273       auto *UI = cast<Instruction>(U.getUser());
3274       if (auto *PN = dyn_cast<PHINode>(UI))
3275         return PN->getIncomingBlock(U) == BB;
3276       return UI->getParent() == BB && I.comesBefore(UI);
3277     };
3278 
3279     // Does this instruction require rewriting of uses?
3280     if (!all_of(I.uses(), IsBCSSAUse))
3281       return false;
3282   }
3283   if (NumBonusInsts >
3284       BonusInstThreshold *
3285           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3286     return false;
3287 
3288   // Ok, we have the budget. Perform the transformation.
3289   for (BasicBlock *PredBlock : Preds) {
3290     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3291     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3292   }
3293   return false;
3294 }
3295 
3296 // If there is only one store in BB1 and BB2, return it, otherwise return
3297 // nullptr.
3298 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3299   StoreInst *S = nullptr;
3300   for (auto *BB : {BB1, BB2}) {
3301     if (!BB)
3302       continue;
3303     for (auto &I : *BB)
3304       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3305         if (S)
3306           // Multiple stores seen.
3307           return nullptr;
3308         else
3309           S = SI;
3310       }
3311   }
3312   return S;
3313 }
3314 
3315 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3316                                               Value *AlternativeV = nullptr) {
3317   // PHI is going to be a PHI node that allows the value V that is defined in
3318   // BB to be referenced in BB's only successor.
3319   //
3320   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3321   // doesn't matter to us what the other operand is (it'll never get used). We
3322   // could just create a new PHI with an undef incoming value, but that could
3323   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3324   // other PHI. So here we directly look for some PHI in BB's successor with V
3325   // as an incoming operand. If we find one, we use it, else we create a new
3326   // one.
3327   //
3328   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3329   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3330   // where OtherBB is the single other predecessor of BB's only successor.
3331   PHINode *PHI = nullptr;
3332   BasicBlock *Succ = BB->getSingleSuccessor();
3333 
3334   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3335     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3336       PHI = cast<PHINode>(I);
3337       if (!AlternativeV)
3338         break;
3339 
3340       assert(Succ->hasNPredecessors(2));
3341       auto PredI = pred_begin(Succ);
3342       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3343       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3344         break;
3345       PHI = nullptr;
3346     }
3347   if (PHI)
3348     return PHI;
3349 
3350   // If V is not an instruction defined in BB, just return it.
3351   if (!AlternativeV &&
3352       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3353     return V;
3354 
3355   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3356   PHI->addIncoming(V, BB);
3357   for (BasicBlock *PredBB : predecessors(Succ))
3358     if (PredBB != BB)
3359       PHI->addIncoming(
3360           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3361   return PHI;
3362 }
3363 
3364 static bool mergeConditionalStoreToAddress(
3365     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3366     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3367     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3368   // For every pointer, there must be exactly two stores, one coming from
3369   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3370   // store (to any address) in PTB,PFB or QTB,QFB.
3371   // FIXME: We could relax this restriction with a bit more work and performance
3372   // testing.
3373   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3374   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3375   if (!PStore || !QStore)
3376     return false;
3377 
3378   // Now check the stores are compatible.
3379   if (!QStore->isUnordered() || !PStore->isUnordered())
3380     return false;
3381 
3382   // Check that sinking the store won't cause program behavior changes. Sinking
3383   // the store out of the Q blocks won't change any behavior as we're sinking
3384   // from a block to its unconditional successor. But we're moving a store from
3385   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3386   // So we need to check that there are no aliasing loads or stores in
3387   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3388   // operations between PStore and the end of its parent block.
3389   //
3390   // The ideal way to do this is to query AliasAnalysis, but we don't
3391   // preserve AA currently so that is dangerous. Be super safe and just
3392   // check there are no other memory operations at all.
3393   for (auto &I : *QFB->getSinglePredecessor())
3394     if (I.mayReadOrWriteMemory())
3395       return false;
3396   for (auto &I : *QFB)
3397     if (&I != QStore && I.mayReadOrWriteMemory())
3398       return false;
3399   if (QTB)
3400     for (auto &I : *QTB)
3401       if (&I != QStore && I.mayReadOrWriteMemory())
3402         return false;
3403   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3404        I != E; ++I)
3405     if (&*I != PStore && I->mayReadOrWriteMemory())
3406       return false;
3407 
3408   // If we're not in aggressive mode, we only optimize if we have some
3409   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3410   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3411     if (!BB)
3412       return true;
3413     // Heuristic: if the block can be if-converted/phi-folded and the
3414     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3415     // thread this store.
3416     InstructionCost Cost = 0;
3417     InstructionCost Budget =
3418         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3419     for (auto &I : BB->instructionsWithoutDebug()) {
3420       // Consider terminator instruction to be free.
3421       if (I.isTerminator())
3422         continue;
3423       // If this is one the stores that we want to speculate out of this BB,
3424       // then don't count it's cost, consider it to be free.
3425       if (auto *S = dyn_cast<StoreInst>(&I))
3426         if (llvm::find(FreeStores, S))
3427           continue;
3428       // Else, we have a white-list of instructions that we are ak speculating.
3429       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3430         return false; // Not in white-list - not worthwhile folding.
3431       // And finally, if this is a non-free instruction that we are okay
3432       // speculating, ensure that we consider the speculation budget.
3433       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3434       if (Cost > Budget)
3435         return false; // Eagerly refuse to fold as soon as we're out of budget.
3436     }
3437     assert(Cost <= Budget &&
3438            "When we run out of budget we will eagerly return from within the "
3439            "per-instruction loop.");
3440     return true;
3441   };
3442 
3443   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3444   if (!MergeCondStoresAggressively &&
3445       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3446        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3447     return false;
3448 
3449   // If PostBB has more than two predecessors, we need to split it so we can
3450   // sink the store.
3451   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3452     // We know that QFB's only successor is PostBB. And QFB has a single
3453     // predecessor. If QTB exists, then its only successor is also PostBB.
3454     // If QTB does not exist, then QFB's only predecessor has a conditional
3455     // branch to QFB and PostBB.
3456     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3457     BasicBlock *NewBB =
3458         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3459     if (!NewBB)
3460       return false;
3461     PostBB = NewBB;
3462   }
3463 
3464   // OK, we're going to sink the stores to PostBB. The store has to be
3465   // conditional though, so first create the predicate.
3466   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3467                      ->getCondition();
3468   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3469                      ->getCondition();
3470 
3471   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3472                                                 PStore->getParent());
3473   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3474                                                 QStore->getParent(), PPHI);
3475 
3476   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3477 
3478   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3479   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3480 
3481   if (InvertPCond)
3482     PPred = QB.CreateNot(PPred);
3483   if (InvertQCond)
3484     QPred = QB.CreateNot(QPred);
3485   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3486 
3487   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3488                                       /*Unreachable=*/false,
3489                                       /*BranchWeights=*/nullptr, DTU);
3490   QB.SetInsertPoint(T);
3491   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3492   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
3493   // Choose the minimum alignment. If we could prove both stores execute, we
3494   // could use biggest one.  In this case, though, we only know that one of the
3495   // stores executes.  And we don't know it's safe to take the alignment from a
3496   // store that doesn't execute.
3497   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3498 
3499   QStore->eraseFromParent();
3500   PStore->eraseFromParent();
3501 
3502   return true;
3503 }
3504 
3505 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3506                                    DomTreeUpdater *DTU, const DataLayout &DL,
3507                                    const TargetTransformInfo &TTI) {
3508   // The intention here is to find diamonds or triangles (see below) where each
3509   // conditional block contains a store to the same address. Both of these
3510   // stores are conditional, so they can't be unconditionally sunk. But it may
3511   // be profitable to speculatively sink the stores into one merged store at the
3512   // end, and predicate the merged store on the union of the two conditions of
3513   // PBI and QBI.
3514   //
3515   // This can reduce the number of stores executed if both of the conditions are
3516   // true, and can allow the blocks to become small enough to be if-converted.
3517   // This optimization will also chain, so that ladders of test-and-set
3518   // sequences can be if-converted away.
3519   //
3520   // We only deal with simple diamonds or triangles:
3521   //
3522   //     PBI       or      PBI        or a combination of the two
3523   //    /   \               | \
3524   //   PTB  PFB             |  PFB
3525   //    \   /               | /
3526   //     QBI                QBI
3527   //    /  \                | \
3528   //   QTB  QFB             |  QFB
3529   //    \  /                | /
3530   //    PostBB            PostBB
3531   //
3532   // We model triangles as a type of diamond with a nullptr "true" block.
3533   // Triangles are canonicalized so that the fallthrough edge is represented by
3534   // a true condition, as in the diagram above.
3535   BasicBlock *PTB = PBI->getSuccessor(0);
3536   BasicBlock *PFB = PBI->getSuccessor(1);
3537   BasicBlock *QTB = QBI->getSuccessor(0);
3538   BasicBlock *QFB = QBI->getSuccessor(1);
3539   BasicBlock *PostBB = QFB->getSingleSuccessor();
3540 
3541   // Make sure we have a good guess for PostBB. If QTB's only successor is
3542   // QFB, then QFB is a better PostBB.
3543   if (QTB->getSingleSuccessor() == QFB)
3544     PostBB = QFB;
3545 
3546   // If we couldn't find a good PostBB, stop.
3547   if (!PostBB)
3548     return false;
3549 
3550   bool InvertPCond = false, InvertQCond = false;
3551   // Canonicalize fallthroughs to the true branches.
3552   if (PFB == QBI->getParent()) {
3553     std::swap(PFB, PTB);
3554     InvertPCond = true;
3555   }
3556   if (QFB == PostBB) {
3557     std::swap(QFB, QTB);
3558     InvertQCond = true;
3559   }
3560 
3561   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3562   // and QFB may not. Model fallthroughs as a nullptr block.
3563   if (PTB == QBI->getParent())
3564     PTB = nullptr;
3565   if (QTB == PostBB)
3566     QTB = nullptr;
3567 
3568   // Legality bailouts. We must have at least the non-fallthrough blocks and
3569   // the post-dominating block, and the non-fallthroughs must only have one
3570   // predecessor.
3571   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3572     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3573   };
3574   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3575       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3576     return false;
3577   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3578       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3579     return false;
3580   if (!QBI->getParent()->hasNUses(2))
3581     return false;
3582 
3583   // OK, this is a sequence of two diamonds or triangles.
3584   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3585   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3586   for (auto *BB : {PTB, PFB}) {
3587     if (!BB)
3588       continue;
3589     for (auto &I : *BB)
3590       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3591         PStoreAddresses.insert(SI->getPointerOperand());
3592   }
3593   for (auto *BB : {QTB, QFB}) {
3594     if (!BB)
3595       continue;
3596     for (auto &I : *BB)
3597       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3598         QStoreAddresses.insert(SI->getPointerOperand());
3599   }
3600 
3601   set_intersect(PStoreAddresses, QStoreAddresses);
3602   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3603   // clear what it contains.
3604   auto &CommonAddresses = PStoreAddresses;
3605 
3606   bool Changed = false;
3607   for (auto *Address : CommonAddresses)
3608     Changed |=
3609         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3610                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3611   return Changed;
3612 }
3613 
3614 /// If the previous block ended with a widenable branch, determine if reusing
3615 /// the target block is profitable and legal.  This will have the effect of
3616 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3617 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3618                                            DomTreeUpdater *DTU) {
3619   // TODO: This can be generalized in two important ways:
3620   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3621   //    values from the PBI edge.
3622   // 2) We can sink side effecting instructions into BI's fallthrough
3623   //    successor provided they doesn't contribute to computation of
3624   //    BI's condition.
3625   Value *CondWB, *WC;
3626   BasicBlock *IfTrueBB, *IfFalseBB;
3627   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3628       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3629     return false;
3630   if (!IfFalseBB->phis().empty())
3631     return false; // TODO
3632   // Use lambda to lazily compute expensive condition after cheap ones.
3633   auto NoSideEffects = [](BasicBlock &BB) {
3634     return !llvm::any_of(BB, [](const Instruction &I) {
3635         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3636       });
3637   };
3638   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3639       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3640       NoSideEffects(*BI->getParent())) {
3641     auto *OldSuccessor = BI->getSuccessor(1);
3642     OldSuccessor->removePredecessor(BI->getParent());
3643     BI->setSuccessor(1, IfFalseBB);
3644     if (DTU)
3645       DTU->applyUpdates(
3646           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3647            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3648     return true;
3649   }
3650   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3651       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3652       NoSideEffects(*BI->getParent())) {
3653     auto *OldSuccessor = BI->getSuccessor(0);
3654     OldSuccessor->removePredecessor(BI->getParent());
3655     BI->setSuccessor(0, IfFalseBB);
3656     if (DTU)
3657       DTU->applyUpdates(
3658           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3659            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3660     return true;
3661   }
3662   return false;
3663 }
3664 
3665 /// If we have a conditional branch as a predecessor of another block,
3666 /// this function tries to simplify it.  We know
3667 /// that PBI and BI are both conditional branches, and BI is in one of the
3668 /// successor blocks of PBI - PBI branches to BI.
3669 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3670                                            DomTreeUpdater *DTU,
3671                                            const DataLayout &DL,
3672                                            const TargetTransformInfo &TTI) {
3673   assert(PBI->isConditional() && BI->isConditional());
3674   BasicBlock *BB = BI->getParent();
3675 
3676   // If this block ends with a branch instruction, and if there is a
3677   // predecessor that ends on a branch of the same condition, make
3678   // this conditional branch redundant.
3679   if (PBI->getCondition() == BI->getCondition() &&
3680       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3681     // Okay, the outcome of this conditional branch is statically
3682     // knowable.  If this block had a single pred, handle specially.
3683     if (BB->getSinglePredecessor()) {
3684       // Turn this into a branch on constant.
3685       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3686       BI->setCondition(
3687           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3688       return true; // Nuke the branch on constant.
3689     }
3690 
3691     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3692     // in the constant and simplify the block result.  Subsequent passes of
3693     // simplifycfg will thread the block.
3694     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3695       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3696       PHINode *NewPN = PHINode::Create(
3697           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3698           BI->getCondition()->getName() + ".pr", &BB->front());
3699       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3700       // predecessor, compute the PHI'd conditional value for all of the preds.
3701       // Any predecessor where the condition is not computable we keep symbolic.
3702       for (pred_iterator PI = PB; PI != PE; ++PI) {
3703         BasicBlock *P = *PI;
3704         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3705             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3706             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3707           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3708           NewPN->addIncoming(
3709               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3710               P);
3711         } else {
3712           NewPN->addIncoming(BI->getCondition(), P);
3713         }
3714       }
3715 
3716       BI->setCondition(NewPN);
3717       return true;
3718     }
3719   }
3720 
3721   // If the previous block ended with a widenable branch, determine if reusing
3722   // the target block is profitable and legal.  This will have the effect of
3723   // "widening" PBI, but doesn't require us to reason about hosting safety.
3724   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3725     return true;
3726 
3727   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3728     if (CE->canTrap())
3729       return false;
3730 
3731   // If both branches are conditional and both contain stores to the same
3732   // address, remove the stores from the conditionals and create a conditional
3733   // merged store at the end.
3734   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3735     return true;
3736 
3737   // If this is a conditional branch in an empty block, and if any
3738   // predecessors are a conditional branch to one of our destinations,
3739   // fold the conditions into logical ops and one cond br.
3740 
3741   // Ignore dbg intrinsics.
3742   if (&*BB->instructionsWithoutDebug().begin() != BI)
3743     return false;
3744 
3745   int PBIOp, BIOp;
3746   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3747     PBIOp = 0;
3748     BIOp = 0;
3749   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3750     PBIOp = 0;
3751     BIOp = 1;
3752   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3753     PBIOp = 1;
3754     BIOp = 0;
3755   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3756     PBIOp = 1;
3757     BIOp = 1;
3758   } else {
3759     return false;
3760   }
3761 
3762   // Check to make sure that the other destination of this branch
3763   // isn't BB itself.  If so, this is an infinite loop that will
3764   // keep getting unwound.
3765   if (PBI->getSuccessor(PBIOp) == BB)
3766     return false;
3767 
3768   // Do not perform this transformation if it would require
3769   // insertion of a large number of select instructions. For targets
3770   // without predication/cmovs, this is a big pessimization.
3771 
3772   // Also do not perform this transformation if any phi node in the common
3773   // destination block can trap when reached by BB or PBB (PR17073). In that
3774   // case, it would be unsafe to hoist the operation into a select instruction.
3775 
3776   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3777   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3778   unsigned NumPhis = 0;
3779   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3780        ++II, ++NumPhis) {
3781     if (NumPhis > 2) // Disable this xform.
3782       return false;
3783 
3784     PHINode *PN = cast<PHINode>(II);
3785     Value *BIV = PN->getIncomingValueForBlock(BB);
3786     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3787       if (CE->canTrap())
3788         return false;
3789 
3790     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3791     Value *PBIV = PN->getIncomingValue(PBBIdx);
3792     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3793       if (CE->canTrap())
3794         return false;
3795   }
3796 
3797   // Finally, if everything is ok, fold the branches to logical ops.
3798   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3799 
3800   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3801                     << "AND: " << *BI->getParent());
3802 
3803   SmallVector<DominatorTree::UpdateType, 5> Updates;
3804 
3805   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3806   // branch in it, where one edge (OtherDest) goes back to itself but the other
3807   // exits.  We don't *know* that the program avoids the infinite loop
3808   // (even though that seems likely).  If we do this xform naively, we'll end up
3809   // recursively unpeeling the loop.  Since we know that (after the xform is
3810   // done) that the block *is* infinite if reached, we just make it an obviously
3811   // infinite loop with no cond branch.
3812   if (OtherDest == BB) {
3813     // Insert it at the end of the function, because it's either code,
3814     // or it won't matter if it's hot. :)
3815     BasicBlock *InfLoopBlock =
3816         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3817     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3818     if (DTU)
3819       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3820     OtherDest = InfLoopBlock;
3821   }
3822 
3823   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3824 
3825   // BI may have other predecessors.  Because of this, we leave
3826   // it alone, but modify PBI.
3827 
3828   // Make sure we get to CommonDest on True&True directions.
3829   Value *PBICond = PBI->getCondition();
3830   IRBuilder<NoFolder> Builder(PBI);
3831   if (PBIOp)
3832     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3833 
3834   Value *BICond = BI->getCondition();
3835   if (BIOp)
3836     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3837 
3838   // Merge the conditions.
3839   Value *Cond =
3840       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
3841 
3842   // Modify PBI to branch on the new condition to the new dests.
3843   PBI->setCondition(Cond);
3844   PBI->setSuccessor(0, CommonDest);
3845   PBI->setSuccessor(1, OtherDest);
3846 
3847   if (DTU) {
3848     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3849     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3850 
3851     DTU->applyUpdates(Updates);
3852   }
3853 
3854   // Update branch weight for PBI.
3855   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3856   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3857   bool HasWeights =
3858       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3859                              SuccTrueWeight, SuccFalseWeight);
3860   if (HasWeights) {
3861     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3862     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3863     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3864     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3865     // The weight to CommonDest should be PredCommon * SuccTotal +
3866     //                                    PredOther * SuccCommon.
3867     // The weight to OtherDest should be PredOther * SuccOther.
3868     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3869                                   PredOther * SuccCommon,
3870                               PredOther * SuccOther};
3871     // Halve the weights if any of them cannot fit in an uint32_t
3872     FitWeights(NewWeights);
3873 
3874     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3875   }
3876 
3877   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3878   // block that are identical to the entries for BI's block.
3879   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3880 
3881   // We know that the CommonDest already had an edge from PBI to
3882   // it.  If it has PHIs though, the PHIs may have different
3883   // entries for BB and PBI's BB.  If so, insert a select to make
3884   // them agree.
3885   for (PHINode &PN : CommonDest->phis()) {
3886     Value *BIV = PN.getIncomingValueForBlock(BB);
3887     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3888     Value *PBIV = PN.getIncomingValue(PBBIdx);
3889     if (BIV != PBIV) {
3890       // Insert a select in PBI to pick the right value.
3891       SelectInst *NV = cast<SelectInst>(
3892           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3893       PN.setIncomingValue(PBBIdx, NV);
3894       // Although the select has the same condition as PBI, the original branch
3895       // weights for PBI do not apply to the new select because the select's
3896       // 'logical' edges are incoming edges of the phi that is eliminated, not
3897       // the outgoing edges of PBI.
3898       if (HasWeights) {
3899         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3900         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3901         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3902         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3903         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3904         // The weight to PredOtherDest should be PredOther * SuccCommon.
3905         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3906                                   PredOther * SuccCommon};
3907 
3908         FitWeights(NewWeights);
3909 
3910         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3911       }
3912     }
3913   }
3914 
3915   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3916   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3917 
3918   // This basic block is probably dead.  We know it has at least
3919   // one fewer predecessor.
3920   return true;
3921 }
3922 
3923 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3924 // true or to FalseBB if Cond is false.
3925 // Takes care of updating the successors and removing the old terminator.
3926 // Also makes sure not to introduce new successors by assuming that edges to
3927 // non-successor TrueBBs and FalseBBs aren't reachable.
3928 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3929                                                 Value *Cond, BasicBlock *TrueBB,
3930                                                 BasicBlock *FalseBB,
3931                                                 uint32_t TrueWeight,
3932                                                 uint32_t FalseWeight) {
3933   auto *BB = OldTerm->getParent();
3934   // Remove any superfluous successor edges from the CFG.
3935   // First, figure out which successors to preserve.
3936   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3937   // successor.
3938   BasicBlock *KeepEdge1 = TrueBB;
3939   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3940 
3941   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3942 
3943   // Then remove the rest.
3944   for (BasicBlock *Succ : successors(OldTerm)) {
3945     // Make sure only to keep exactly one copy of each edge.
3946     if (Succ == KeepEdge1)
3947       KeepEdge1 = nullptr;
3948     else if (Succ == KeepEdge2)
3949       KeepEdge2 = nullptr;
3950     else {
3951       Succ->removePredecessor(BB,
3952                               /*KeepOneInputPHIs=*/true);
3953 
3954       if (Succ != TrueBB && Succ != FalseBB)
3955         RemovedSuccessors.insert(Succ);
3956     }
3957   }
3958 
3959   IRBuilder<> Builder(OldTerm);
3960   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3961 
3962   // Insert an appropriate new terminator.
3963   if (!KeepEdge1 && !KeepEdge2) {
3964     if (TrueBB == FalseBB) {
3965       // We were only looking for one successor, and it was present.
3966       // Create an unconditional branch to it.
3967       Builder.CreateBr(TrueBB);
3968     } else {
3969       // We found both of the successors we were looking for.
3970       // Create a conditional branch sharing the condition of the select.
3971       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3972       if (TrueWeight != FalseWeight)
3973         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3974     }
3975   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3976     // Neither of the selected blocks were successors, so this
3977     // terminator must be unreachable.
3978     new UnreachableInst(OldTerm->getContext(), OldTerm);
3979   } else {
3980     // One of the selected values was a successor, but the other wasn't.
3981     // Insert an unconditional branch to the one that was found;
3982     // the edge to the one that wasn't must be unreachable.
3983     if (!KeepEdge1) {
3984       // Only TrueBB was found.
3985       Builder.CreateBr(TrueBB);
3986     } else {
3987       // Only FalseBB was found.
3988       Builder.CreateBr(FalseBB);
3989     }
3990   }
3991 
3992   EraseTerminatorAndDCECond(OldTerm);
3993 
3994   if (DTU) {
3995     SmallVector<DominatorTree::UpdateType, 2> Updates;
3996     Updates.reserve(RemovedSuccessors.size());
3997     for (auto *RemovedSuccessor : RemovedSuccessors)
3998       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3999     DTU->applyUpdates(Updates);
4000   }
4001 
4002   return true;
4003 }
4004 
4005 // Replaces
4006 //   (switch (select cond, X, Y)) on constant X, Y
4007 // with a branch - conditional if X and Y lead to distinct BBs,
4008 // unconditional otherwise.
4009 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4010                                             SelectInst *Select) {
4011   // Check for constant integer values in the select.
4012   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4013   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4014   if (!TrueVal || !FalseVal)
4015     return false;
4016 
4017   // Find the relevant condition and destinations.
4018   Value *Condition = Select->getCondition();
4019   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4020   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4021 
4022   // Get weight for TrueBB and FalseBB.
4023   uint32_t TrueWeight = 0, FalseWeight = 0;
4024   SmallVector<uint64_t, 8> Weights;
4025   bool HasWeights = HasBranchWeights(SI);
4026   if (HasWeights) {
4027     GetBranchWeights(SI, Weights);
4028     if (Weights.size() == 1 + SI->getNumCases()) {
4029       TrueWeight =
4030           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4031       FalseWeight =
4032           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4033     }
4034   }
4035 
4036   // Perform the actual simplification.
4037   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4038                                     FalseWeight);
4039 }
4040 
4041 // Replaces
4042 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4043 //                             blockaddress(@fn, BlockB)))
4044 // with
4045 //   (br cond, BlockA, BlockB).
4046 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4047                                                 SelectInst *SI) {
4048   // Check that both operands of the select are block addresses.
4049   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4050   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4051   if (!TBA || !FBA)
4052     return false;
4053 
4054   // Extract the actual blocks.
4055   BasicBlock *TrueBB = TBA->getBasicBlock();
4056   BasicBlock *FalseBB = FBA->getBasicBlock();
4057 
4058   // Perform the actual simplification.
4059   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4060                                     0);
4061 }
4062 
4063 /// This is called when we find an icmp instruction
4064 /// (a seteq/setne with a constant) as the only instruction in a
4065 /// block that ends with an uncond branch.  We are looking for a very specific
4066 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4067 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4068 /// default value goes to an uncond block with a seteq in it, we get something
4069 /// like:
4070 ///
4071 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4072 /// DEFAULT:
4073 ///   %tmp = icmp eq i8 %A, 92
4074 ///   br label %end
4075 /// end:
4076 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4077 ///
4078 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4079 /// the PHI, merging the third icmp into the switch.
4080 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4081     ICmpInst *ICI, IRBuilder<> &Builder) {
4082   BasicBlock *BB = ICI->getParent();
4083 
4084   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4085   // complex.
4086   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4087     return false;
4088 
4089   Value *V = ICI->getOperand(0);
4090   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4091 
4092   // The pattern we're looking for is where our only predecessor is a switch on
4093   // 'V' and this block is the default case for the switch.  In this case we can
4094   // fold the compared value into the switch to simplify things.
4095   BasicBlock *Pred = BB->getSinglePredecessor();
4096   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4097     return false;
4098 
4099   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4100   if (SI->getCondition() != V)
4101     return false;
4102 
4103   // If BB is reachable on a non-default case, then we simply know the value of
4104   // V in this block.  Substitute it and constant fold the icmp instruction
4105   // away.
4106   if (SI->getDefaultDest() != BB) {
4107     ConstantInt *VVal = SI->findCaseDest(BB);
4108     assert(VVal && "Should have a unique destination value");
4109     ICI->setOperand(0, VVal);
4110 
4111     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4112       ICI->replaceAllUsesWith(V);
4113       ICI->eraseFromParent();
4114     }
4115     // BB is now empty, so it is likely to simplify away.
4116     return requestResimplify();
4117   }
4118 
4119   // Ok, the block is reachable from the default dest.  If the constant we're
4120   // comparing exists in one of the other edges, then we can constant fold ICI
4121   // and zap it.
4122   if (SI->findCaseValue(Cst) != SI->case_default()) {
4123     Value *V;
4124     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4125       V = ConstantInt::getFalse(BB->getContext());
4126     else
4127       V = ConstantInt::getTrue(BB->getContext());
4128 
4129     ICI->replaceAllUsesWith(V);
4130     ICI->eraseFromParent();
4131     // BB is now empty, so it is likely to simplify away.
4132     return requestResimplify();
4133   }
4134 
4135   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4136   // the block.
4137   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4138   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4139   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4140       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4141     return false;
4142 
4143   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4144   // true in the PHI.
4145   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4146   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4147 
4148   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4149     std::swap(DefaultCst, NewCst);
4150 
4151   // Replace ICI (which is used by the PHI for the default value) with true or
4152   // false depending on if it is EQ or NE.
4153   ICI->replaceAllUsesWith(DefaultCst);
4154   ICI->eraseFromParent();
4155 
4156   SmallVector<DominatorTree::UpdateType, 2> Updates;
4157 
4158   // Okay, the switch goes to this block on a default value.  Add an edge from
4159   // the switch to the merge point on the compared value.
4160   BasicBlock *NewBB =
4161       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4162   {
4163     SwitchInstProfUpdateWrapper SIW(*SI);
4164     auto W0 = SIW.getSuccessorWeight(0);
4165     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4166     if (W0) {
4167       NewW = ((uint64_t(*W0) + 1) >> 1);
4168       SIW.setSuccessorWeight(0, *NewW);
4169     }
4170     SIW.addCase(Cst, NewBB, NewW);
4171     if (DTU)
4172       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4173   }
4174 
4175   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4176   Builder.SetInsertPoint(NewBB);
4177   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4178   Builder.CreateBr(SuccBlock);
4179   PHIUse->addIncoming(NewCst, NewBB);
4180   if (DTU) {
4181     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4182     DTU->applyUpdates(Updates);
4183   }
4184   return true;
4185 }
4186 
4187 /// The specified branch is a conditional branch.
4188 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4189 /// fold it into a switch instruction if so.
4190 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4191                                                IRBuilder<> &Builder,
4192                                                const DataLayout &DL) {
4193   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4194   if (!Cond)
4195     return false;
4196 
4197   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4198   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4199   // 'setne's and'ed together, collect them.
4200 
4201   // Try to gather values from a chain of and/or to be turned into a switch
4202   ConstantComparesGatherer ConstantCompare(Cond, DL);
4203   // Unpack the result
4204   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4205   Value *CompVal = ConstantCompare.CompValue;
4206   unsigned UsedICmps = ConstantCompare.UsedICmps;
4207   Value *ExtraCase = ConstantCompare.Extra;
4208 
4209   // If we didn't have a multiply compared value, fail.
4210   if (!CompVal)
4211     return false;
4212 
4213   // Avoid turning single icmps into a switch.
4214   if (UsedICmps <= 1)
4215     return false;
4216 
4217   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4218 
4219   // There might be duplicate constants in the list, which the switch
4220   // instruction can't handle, remove them now.
4221   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4222   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4223 
4224   // If Extra was used, we require at least two switch values to do the
4225   // transformation.  A switch with one value is just a conditional branch.
4226   if (ExtraCase && Values.size() < 2)
4227     return false;
4228 
4229   // TODO: Preserve branch weight metadata, similarly to how
4230   // FoldValueComparisonIntoPredecessors preserves it.
4231 
4232   // Figure out which block is which destination.
4233   BasicBlock *DefaultBB = BI->getSuccessor(1);
4234   BasicBlock *EdgeBB = BI->getSuccessor(0);
4235   if (!TrueWhenEqual)
4236     std::swap(DefaultBB, EdgeBB);
4237 
4238   BasicBlock *BB = BI->getParent();
4239 
4240   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4241                     << " cases into SWITCH.  BB is:\n"
4242                     << *BB);
4243 
4244   SmallVector<DominatorTree::UpdateType, 2> Updates;
4245 
4246   // If there are any extra values that couldn't be folded into the switch
4247   // then we evaluate them with an explicit branch first. Split the block
4248   // right before the condbr to handle it.
4249   if (ExtraCase) {
4250     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4251                                    /*MSSAU=*/nullptr, "switch.early.test");
4252 
4253     // Remove the uncond branch added to the old block.
4254     Instruction *OldTI = BB->getTerminator();
4255     Builder.SetInsertPoint(OldTI);
4256 
4257     // There can be an unintended UB if extra values are Poison. Before the
4258     // transformation, extra values may not be evaluated according to the
4259     // condition, and it will not raise UB. But after transformation, we are
4260     // evaluating extra values before checking the condition, and it will raise
4261     // UB. It can be solved by adding freeze instruction to extra values.
4262     AssumptionCache *AC = Options.AC;
4263 
4264     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4265       ExtraCase = Builder.CreateFreeze(ExtraCase);
4266 
4267     if (TrueWhenEqual)
4268       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4269     else
4270       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4271 
4272     OldTI->eraseFromParent();
4273 
4274     if (DTU)
4275       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4276 
4277     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4278     // for the edge we just added.
4279     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4280 
4281     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4282                       << "\nEXTRABB = " << *BB);
4283     BB = NewBB;
4284   }
4285 
4286   Builder.SetInsertPoint(BI);
4287   // Convert pointer to int before we switch.
4288   if (CompVal->getType()->isPointerTy()) {
4289     CompVal = Builder.CreatePtrToInt(
4290         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4291   }
4292 
4293   // Create the new switch instruction now.
4294   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4295 
4296   // Add all of the 'cases' to the switch instruction.
4297   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4298     New->addCase(Values[i], EdgeBB);
4299 
4300   // We added edges from PI to the EdgeBB.  As such, if there were any
4301   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4302   // the number of edges added.
4303   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4304     PHINode *PN = cast<PHINode>(BBI);
4305     Value *InVal = PN->getIncomingValueForBlock(BB);
4306     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4307       PN->addIncoming(InVal, BB);
4308   }
4309 
4310   // Erase the old branch instruction.
4311   EraseTerminatorAndDCECond(BI);
4312   if (DTU)
4313     DTU->applyUpdates(Updates);
4314 
4315   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4316   return true;
4317 }
4318 
4319 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4320   if (isa<PHINode>(RI->getValue()))
4321     return simplifyCommonResume(RI);
4322   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4323            RI->getValue() == RI->getParent()->getFirstNonPHI())
4324     // The resume must unwind the exception that caused control to branch here.
4325     return simplifySingleResume(RI);
4326 
4327   return false;
4328 }
4329 
4330 // Check if cleanup block is empty
4331 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4332   for (Instruction &I : R) {
4333     auto *II = dyn_cast<IntrinsicInst>(&I);
4334     if (!II)
4335       return false;
4336 
4337     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4338     switch (IntrinsicID) {
4339     case Intrinsic::dbg_declare:
4340     case Intrinsic::dbg_value:
4341     case Intrinsic::dbg_label:
4342     case Intrinsic::lifetime_end:
4343       break;
4344     default:
4345       return false;
4346     }
4347   }
4348   return true;
4349 }
4350 
4351 // Simplify resume that is shared by several landing pads (phi of landing pad).
4352 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4353   BasicBlock *BB = RI->getParent();
4354 
4355   // Check that there are no other instructions except for debug and lifetime
4356   // intrinsics between the phi's and resume instruction.
4357   if (!isCleanupBlockEmpty(
4358           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4359     return false;
4360 
4361   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4362   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4363 
4364   // Check incoming blocks to see if any of them are trivial.
4365   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4366        Idx++) {
4367     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4368     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4369 
4370     // If the block has other successors, we can not delete it because
4371     // it has other dependents.
4372     if (IncomingBB->getUniqueSuccessor() != BB)
4373       continue;
4374 
4375     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4376     // Not the landing pad that caused the control to branch here.
4377     if (IncomingValue != LandingPad)
4378       continue;
4379 
4380     if (isCleanupBlockEmpty(
4381             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4382       TrivialUnwindBlocks.insert(IncomingBB);
4383   }
4384 
4385   // If no trivial unwind blocks, don't do any simplifications.
4386   if (TrivialUnwindBlocks.empty())
4387     return false;
4388 
4389   // Turn all invokes that unwind here into calls.
4390   for (auto *TrivialBB : TrivialUnwindBlocks) {
4391     // Blocks that will be simplified should be removed from the phi node.
4392     // Note there could be multiple edges to the resume block, and we need
4393     // to remove them all.
4394     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4395       BB->removePredecessor(TrivialBB, true);
4396 
4397     for (BasicBlock *Pred :
4398          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4399       removeUnwindEdge(Pred, DTU);
4400       ++NumInvokes;
4401     }
4402 
4403     // In each SimplifyCFG run, only the current processed block can be erased.
4404     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4405     // of erasing TrivialBB, we only remove the branch to the common resume
4406     // block so that we can later erase the resume block since it has no
4407     // predecessors.
4408     TrivialBB->getTerminator()->eraseFromParent();
4409     new UnreachableInst(RI->getContext(), TrivialBB);
4410     if (DTU)
4411       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4412   }
4413 
4414   // Delete the resume block if all its predecessors have been removed.
4415   if (pred_empty(BB))
4416     DeleteDeadBlock(BB, DTU);
4417 
4418   return !TrivialUnwindBlocks.empty();
4419 }
4420 
4421 // Simplify resume that is only used by a single (non-phi) landing pad.
4422 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4423   BasicBlock *BB = RI->getParent();
4424   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4425   assert(RI->getValue() == LPInst &&
4426          "Resume must unwind the exception that caused control to here");
4427 
4428   // Check that there are no other instructions except for debug intrinsics.
4429   if (!isCleanupBlockEmpty(
4430           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4431     return false;
4432 
4433   // Turn all invokes that unwind here into calls and delete the basic block.
4434   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4435     removeUnwindEdge(Pred, DTU);
4436     ++NumInvokes;
4437   }
4438 
4439   // The landingpad is now unreachable.  Zap it.
4440   DeleteDeadBlock(BB, DTU);
4441   return true;
4442 }
4443 
4444 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4445   // If this is a trivial cleanup pad that executes no instructions, it can be
4446   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4447   // that is an EH pad will be updated to continue to the caller and any
4448   // predecessor that terminates with an invoke instruction will have its invoke
4449   // instruction converted to a call instruction.  If the cleanup pad being
4450   // simplified does not continue to the caller, each predecessor will be
4451   // updated to continue to the unwind destination of the cleanup pad being
4452   // simplified.
4453   BasicBlock *BB = RI->getParent();
4454   CleanupPadInst *CPInst = RI->getCleanupPad();
4455   if (CPInst->getParent() != BB)
4456     // This isn't an empty cleanup.
4457     return false;
4458 
4459   // We cannot kill the pad if it has multiple uses.  This typically arises
4460   // from unreachable basic blocks.
4461   if (!CPInst->hasOneUse())
4462     return false;
4463 
4464   // Check that there are no other instructions except for benign intrinsics.
4465   if (!isCleanupBlockEmpty(
4466           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4467     return false;
4468 
4469   // If the cleanup return we are simplifying unwinds to the caller, this will
4470   // set UnwindDest to nullptr.
4471   BasicBlock *UnwindDest = RI->getUnwindDest();
4472   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4473 
4474   // We're about to remove BB from the control flow.  Before we do, sink any
4475   // PHINodes into the unwind destination.  Doing this before changing the
4476   // control flow avoids some potentially slow checks, since we can currently
4477   // be certain that UnwindDest and BB have no common predecessors (since they
4478   // are both EH pads).
4479   if (UnwindDest) {
4480     // First, go through the PHI nodes in UnwindDest and update any nodes that
4481     // reference the block we are removing
4482     for (PHINode &DestPN : UnwindDest->phis()) {
4483       int Idx = DestPN.getBasicBlockIndex(BB);
4484       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4485       assert(Idx != -1);
4486       // This PHI node has an incoming value that corresponds to a control
4487       // path through the cleanup pad we are removing.  If the incoming
4488       // value is in the cleanup pad, it must be a PHINode (because we
4489       // verified above that the block is otherwise empty).  Otherwise, the
4490       // value is either a constant or a value that dominates the cleanup
4491       // pad being removed.
4492       //
4493       // Because BB and UnwindDest are both EH pads, all of their
4494       // predecessors must unwind to these blocks, and since no instruction
4495       // can have multiple unwind destinations, there will be no overlap in
4496       // incoming blocks between SrcPN and DestPN.
4497       Value *SrcVal = DestPN.getIncomingValue(Idx);
4498       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4499 
4500       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4501       for (auto *Pred : predecessors(BB)) {
4502         Value *Incoming =
4503             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4504         DestPN.addIncoming(Incoming, Pred);
4505       }
4506     }
4507 
4508     // Sink any remaining PHI nodes directly into UnwindDest.
4509     Instruction *InsertPt = DestEHPad;
4510     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4511       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4512         // If the PHI node has no uses or all of its uses are in this basic
4513         // block (meaning they are debug or lifetime intrinsics), just leave
4514         // it.  It will be erased when we erase BB below.
4515         continue;
4516 
4517       // Otherwise, sink this PHI node into UnwindDest.
4518       // Any predecessors to UnwindDest which are not already represented
4519       // must be back edges which inherit the value from the path through
4520       // BB.  In this case, the PHI value must reference itself.
4521       for (auto *pred : predecessors(UnwindDest))
4522         if (pred != BB)
4523           PN.addIncoming(&PN, pred);
4524       PN.moveBefore(InsertPt);
4525       // Also, add a dummy incoming value for the original BB itself,
4526       // so that the PHI is well-formed until we drop said predecessor.
4527       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4528     }
4529   }
4530 
4531   std::vector<DominatorTree::UpdateType> Updates;
4532 
4533   // We use make_early_inc_range here because we will remove all predecessors.
4534   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4535     if (UnwindDest == nullptr) {
4536       if (DTU) {
4537         DTU->applyUpdates(Updates);
4538         Updates.clear();
4539       }
4540       removeUnwindEdge(PredBB, DTU);
4541       ++NumInvokes;
4542     } else {
4543       BB->removePredecessor(PredBB);
4544       Instruction *TI = PredBB->getTerminator();
4545       TI->replaceUsesOfWith(BB, UnwindDest);
4546       if (DTU) {
4547         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4548         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4549       }
4550     }
4551   }
4552 
4553   if (DTU)
4554     DTU->applyUpdates(Updates);
4555 
4556   DeleteDeadBlock(BB, DTU);
4557 
4558   return true;
4559 }
4560 
4561 // Try to merge two cleanuppads together.
4562 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4563   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4564   // with.
4565   BasicBlock *UnwindDest = RI->getUnwindDest();
4566   if (!UnwindDest)
4567     return false;
4568 
4569   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4570   // be safe to merge without code duplication.
4571   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4572     return false;
4573 
4574   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4575   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4576   if (!SuccessorCleanupPad)
4577     return false;
4578 
4579   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4580   // Replace any uses of the successor cleanupad with the predecessor pad
4581   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4582   // funclet bundle operands.
4583   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4584   // Remove the old cleanuppad.
4585   SuccessorCleanupPad->eraseFromParent();
4586   // Now, we simply replace the cleanupret with a branch to the unwind
4587   // destination.
4588   BranchInst::Create(UnwindDest, RI->getParent());
4589   RI->eraseFromParent();
4590 
4591   return true;
4592 }
4593 
4594 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4595   // It is possible to transiantly have an undef cleanuppad operand because we
4596   // have deleted some, but not all, dead blocks.
4597   // Eventually, this block will be deleted.
4598   if (isa<UndefValue>(RI->getOperand(0)))
4599     return false;
4600 
4601   if (mergeCleanupPad(RI))
4602     return true;
4603 
4604   if (removeEmptyCleanup(RI, DTU))
4605     return true;
4606 
4607   return false;
4608 }
4609 
4610 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4611 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4612   BasicBlock *BB = UI->getParent();
4613 
4614   bool Changed = false;
4615 
4616   // If there are any instructions immediately before the unreachable that can
4617   // be removed, do so.
4618   while (UI->getIterator() != BB->begin()) {
4619     BasicBlock::iterator BBI = UI->getIterator();
4620     --BBI;
4621 
4622     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4623       break; // Can not drop any more instructions. We're done here.
4624     // Otherwise, this instruction can be freely erased,
4625     // even if it is not side-effect free.
4626 
4627     // Note that deleting EH's here is in fact okay, although it involves a bit
4628     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4629     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4630     // and we can therefore guarantee this block will be erased.
4631 
4632     // Delete this instruction (any uses are guaranteed to be dead)
4633     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4634     BBI->eraseFromParent();
4635     Changed = true;
4636   }
4637 
4638   // If the unreachable instruction is the first in the block, take a gander
4639   // at all of the predecessors of this instruction, and simplify them.
4640   if (&BB->front() != UI)
4641     return Changed;
4642 
4643   std::vector<DominatorTree::UpdateType> Updates;
4644 
4645   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4646   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4647     auto *Predecessor = Preds[i];
4648     Instruction *TI = Predecessor->getTerminator();
4649     IRBuilder<> Builder(TI);
4650     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4651       // We could either have a proper unconditional branch,
4652       // or a degenerate conditional branch with matching destinations.
4653       if (all_of(BI->successors(),
4654                  [BB](auto *Successor) { return Successor == BB; })) {
4655         new UnreachableInst(TI->getContext(), TI);
4656         TI->eraseFromParent();
4657         Changed = true;
4658       } else {
4659         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4660         Value* Cond = BI->getCondition();
4661         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4662                "The destinations are guaranteed to be different here.");
4663         if (BI->getSuccessor(0) == BB) {
4664           Builder.CreateAssumption(Builder.CreateNot(Cond));
4665           Builder.CreateBr(BI->getSuccessor(1));
4666         } else {
4667           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4668           Builder.CreateAssumption(Cond);
4669           Builder.CreateBr(BI->getSuccessor(0));
4670         }
4671         EraseTerminatorAndDCECond(BI);
4672         Changed = true;
4673       }
4674       if (DTU)
4675         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4676     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4677       SwitchInstProfUpdateWrapper SU(*SI);
4678       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4679         if (i->getCaseSuccessor() != BB) {
4680           ++i;
4681           continue;
4682         }
4683         BB->removePredecessor(SU->getParent());
4684         i = SU.removeCase(i);
4685         e = SU->case_end();
4686         Changed = true;
4687       }
4688       // Note that the default destination can't be removed!
4689       if (DTU && SI->getDefaultDest() != BB)
4690         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4691     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4692       if (II->getUnwindDest() == BB) {
4693         if (DTU) {
4694           DTU->applyUpdates(Updates);
4695           Updates.clear();
4696         }
4697         removeUnwindEdge(TI->getParent(), DTU);
4698         Changed = true;
4699       }
4700     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4701       if (CSI->getUnwindDest() == BB) {
4702         if (DTU) {
4703           DTU->applyUpdates(Updates);
4704           Updates.clear();
4705         }
4706         removeUnwindEdge(TI->getParent(), DTU);
4707         Changed = true;
4708         continue;
4709       }
4710 
4711       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4712                                              E = CSI->handler_end();
4713            I != E; ++I) {
4714         if (*I == BB) {
4715           CSI->removeHandler(I);
4716           --I;
4717           --E;
4718           Changed = true;
4719         }
4720       }
4721       if (DTU)
4722         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4723       if (CSI->getNumHandlers() == 0) {
4724         if (CSI->hasUnwindDest()) {
4725           // Redirect all predecessors of the block containing CatchSwitchInst
4726           // to instead branch to the CatchSwitchInst's unwind destination.
4727           if (DTU) {
4728             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4729               Updates.push_back({DominatorTree::Insert,
4730                                  PredecessorOfPredecessor,
4731                                  CSI->getUnwindDest()});
4732               Updates.push_back({DominatorTree::Delete,
4733                                  PredecessorOfPredecessor, Predecessor});
4734             }
4735           }
4736           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4737         } else {
4738           // Rewrite all preds to unwind to caller (or from invoke to call).
4739           if (DTU) {
4740             DTU->applyUpdates(Updates);
4741             Updates.clear();
4742           }
4743           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4744           for (BasicBlock *EHPred : EHPreds)
4745             removeUnwindEdge(EHPred, DTU);
4746         }
4747         // The catchswitch is no longer reachable.
4748         new UnreachableInst(CSI->getContext(), CSI);
4749         CSI->eraseFromParent();
4750         Changed = true;
4751       }
4752     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4753       (void)CRI;
4754       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4755              "Expected to always have an unwind to BB.");
4756       if (DTU)
4757         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4758       new UnreachableInst(TI->getContext(), TI);
4759       TI->eraseFromParent();
4760       Changed = true;
4761     }
4762   }
4763 
4764   if (DTU)
4765     DTU->applyUpdates(Updates);
4766 
4767   // If this block is now dead, remove it.
4768   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4769     DeleteDeadBlock(BB, DTU);
4770     return true;
4771   }
4772 
4773   return Changed;
4774 }
4775 
4776 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4777   assert(Cases.size() >= 1);
4778 
4779   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4780   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4781     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4782       return false;
4783   }
4784   return true;
4785 }
4786 
4787 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4788                                            DomTreeUpdater *DTU) {
4789   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4790   auto *BB = Switch->getParent();
4791   auto *OrigDefaultBlock = Switch->getDefaultDest();
4792   OrigDefaultBlock->removePredecessor(BB);
4793   BasicBlock *NewDefaultBlock = BasicBlock::Create(
4794       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
4795       OrigDefaultBlock);
4796   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
4797   Switch->setDefaultDest(&*NewDefaultBlock);
4798   if (DTU) {
4799     SmallVector<DominatorTree::UpdateType, 2> Updates;
4800     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
4801     if (!is_contained(successors(BB), OrigDefaultBlock))
4802       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
4803     DTU->applyUpdates(Updates);
4804   }
4805 }
4806 
4807 /// Turn a switch with two reachable destinations into an integer range
4808 /// comparison and branch.
4809 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4810                                              IRBuilder<> &Builder) {
4811   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4812 
4813   bool HasDefault =
4814       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4815 
4816   auto *BB = SI->getParent();
4817 
4818   // Partition the cases into two sets with different destinations.
4819   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4820   BasicBlock *DestB = nullptr;
4821   SmallVector<ConstantInt *, 16> CasesA;
4822   SmallVector<ConstantInt *, 16> CasesB;
4823 
4824   for (auto Case : SI->cases()) {
4825     BasicBlock *Dest = Case.getCaseSuccessor();
4826     if (!DestA)
4827       DestA = Dest;
4828     if (Dest == DestA) {
4829       CasesA.push_back(Case.getCaseValue());
4830       continue;
4831     }
4832     if (!DestB)
4833       DestB = Dest;
4834     if (Dest == DestB) {
4835       CasesB.push_back(Case.getCaseValue());
4836       continue;
4837     }
4838     return false; // More than two destinations.
4839   }
4840 
4841   assert(DestA && DestB &&
4842          "Single-destination switch should have been folded.");
4843   assert(DestA != DestB);
4844   assert(DestB != SI->getDefaultDest());
4845   assert(!CasesB.empty() && "There must be non-default cases.");
4846   assert(!CasesA.empty() || HasDefault);
4847 
4848   // Figure out if one of the sets of cases form a contiguous range.
4849   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4850   BasicBlock *ContiguousDest = nullptr;
4851   BasicBlock *OtherDest = nullptr;
4852   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4853     ContiguousCases = &CasesA;
4854     ContiguousDest = DestA;
4855     OtherDest = DestB;
4856   } else if (CasesAreContiguous(CasesB)) {
4857     ContiguousCases = &CasesB;
4858     ContiguousDest = DestB;
4859     OtherDest = DestA;
4860   } else
4861     return false;
4862 
4863   // Start building the compare and branch.
4864 
4865   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4866   Constant *NumCases =
4867       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4868 
4869   Value *Sub = SI->getCondition();
4870   if (!Offset->isNullValue())
4871     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4872 
4873   Value *Cmp;
4874   // If NumCases overflowed, then all possible values jump to the successor.
4875   if (NumCases->isNullValue() && !ContiguousCases->empty())
4876     Cmp = ConstantInt::getTrue(SI->getContext());
4877   else
4878     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4879   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4880 
4881   // Update weight for the newly-created conditional branch.
4882   if (HasBranchWeights(SI)) {
4883     SmallVector<uint64_t, 8> Weights;
4884     GetBranchWeights(SI, Weights);
4885     if (Weights.size() == 1 + SI->getNumCases()) {
4886       uint64_t TrueWeight = 0;
4887       uint64_t FalseWeight = 0;
4888       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4889         if (SI->getSuccessor(I) == ContiguousDest)
4890           TrueWeight += Weights[I];
4891         else
4892           FalseWeight += Weights[I];
4893       }
4894       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4895         TrueWeight /= 2;
4896         FalseWeight /= 2;
4897       }
4898       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4899     }
4900   }
4901 
4902   // Prune obsolete incoming values off the successors' PHI nodes.
4903   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4904     unsigned PreviousEdges = ContiguousCases->size();
4905     if (ContiguousDest == SI->getDefaultDest())
4906       ++PreviousEdges;
4907     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4908       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4909   }
4910   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4911     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4912     if (OtherDest == SI->getDefaultDest())
4913       ++PreviousEdges;
4914     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4915       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4916   }
4917 
4918   // Clean up the default block - it may have phis or other instructions before
4919   // the unreachable terminator.
4920   if (!HasDefault)
4921     createUnreachableSwitchDefault(SI, DTU);
4922 
4923   auto *UnreachableDefault = SI->getDefaultDest();
4924 
4925   // Drop the switch.
4926   SI->eraseFromParent();
4927 
4928   if (!HasDefault && DTU)
4929     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4930 
4931   return true;
4932 }
4933 
4934 /// Compute masked bits for the condition of a switch
4935 /// and use it to remove dead cases.
4936 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4937                                      AssumptionCache *AC,
4938                                      const DataLayout &DL) {
4939   Value *Cond = SI->getCondition();
4940   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4941   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4942 
4943   // We can also eliminate cases by determining that their values are outside of
4944   // the limited range of the condition based on how many significant (non-sign)
4945   // bits are in the condition value.
4946   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4947   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4948 
4949   // Gather dead cases.
4950   SmallVector<ConstantInt *, 8> DeadCases;
4951   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
4952   for (auto &Case : SI->cases()) {
4953     auto *Successor = Case.getCaseSuccessor();
4954     if (DTU)
4955       ++NumPerSuccessorCases[Successor];
4956     const APInt &CaseVal = Case.getCaseValue()->getValue();
4957     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4958         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4959       DeadCases.push_back(Case.getCaseValue());
4960       if (DTU)
4961         --NumPerSuccessorCases[Successor];
4962       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4963                         << " is dead.\n");
4964     }
4965   }
4966 
4967   // If we can prove that the cases must cover all possible values, the
4968   // default destination becomes dead and we can remove it.  If we know some
4969   // of the bits in the value, we can use that to more precisely compute the
4970   // number of possible unique case values.
4971   bool HasDefault =
4972       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4973   const unsigned NumUnknownBits =
4974       Bits - (Known.Zero | Known.One).countPopulation();
4975   assert(NumUnknownBits <= Bits);
4976   if (HasDefault && DeadCases.empty() &&
4977       NumUnknownBits < 64 /* avoid overflow */ &&
4978       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4979     createUnreachableSwitchDefault(SI, DTU);
4980     return true;
4981   }
4982 
4983   if (DeadCases.empty())
4984     return false;
4985 
4986   SwitchInstProfUpdateWrapper SIW(*SI);
4987   for (ConstantInt *DeadCase : DeadCases) {
4988     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4989     assert(CaseI != SI->case_default() &&
4990            "Case was not found. Probably mistake in DeadCases forming.");
4991     // Prune unused values from PHI nodes.
4992     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4993     SIW.removeCase(CaseI);
4994   }
4995 
4996   if (DTU) {
4997     std::vector<DominatorTree::UpdateType> Updates;
4998     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4999       if (I.second == 0)
5000         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
5001     DTU->applyUpdates(Updates);
5002   }
5003 
5004   return true;
5005 }
5006 
5007 /// If BB would be eligible for simplification by
5008 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5009 /// by an unconditional branch), look at the phi node for BB in the successor
5010 /// block and see if the incoming value is equal to CaseValue. If so, return
5011 /// the phi node, and set PhiIndex to BB's index in the phi node.
5012 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5013                                               BasicBlock *BB, int *PhiIndex) {
5014   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5015     return nullptr; // BB must be empty to be a candidate for simplification.
5016   if (!BB->getSinglePredecessor())
5017     return nullptr; // BB must be dominated by the switch.
5018 
5019   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5020   if (!Branch || !Branch->isUnconditional())
5021     return nullptr; // Terminator must be unconditional branch.
5022 
5023   BasicBlock *Succ = Branch->getSuccessor(0);
5024 
5025   for (PHINode &PHI : Succ->phis()) {
5026     int Idx = PHI.getBasicBlockIndex(BB);
5027     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5028 
5029     Value *InValue = PHI.getIncomingValue(Idx);
5030     if (InValue != CaseValue)
5031       continue;
5032 
5033     *PhiIndex = Idx;
5034     return &PHI;
5035   }
5036 
5037   return nullptr;
5038 }
5039 
5040 /// Try to forward the condition of a switch instruction to a phi node
5041 /// dominated by the switch, if that would mean that some of the destination
5042 /// blocks of the switch can be folded away. Return true if a change is made.
5043 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5044   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5045 
5046   ForwardingNodesMap ForwardingNodes;
5047   BasicBlock *SwitchBlock = SI->getParent();
5048   bool Changed = false;
5049   for (auto &Case : SI->cases()) {
5050     ConstantInt *CaseValue = Case.getCaseValue();
5051     BasicBlock *CaseDest = Case.getCaseSuccessor();
5052 
5053     // Replace phi operands in successor blocks that are using the constant case
5054     // value rather than the switch condition variable:
5055     //   switchbb:
5056     //   switch i32 %x, label %default [
5057     //     i32 17, label %succ
5058     //   ...
5059     //   succ:
5060     //     %r = phi i32 ... [ 17, %switchbb ] ...
5061     // -->
5062     //     %r = phi i32 ... [ %x, %switchbb ] ...
5063 
5064     for (PHINode &Phi : CaseDest->phis()) {
5065       // This only works if there is exactly 1 incoming edge from the switch to
5066       // a phi. If there is >1, that means multiple cases of the switch map to 1
5067       // value in the phi, and that phi value is not the switch condition. Thus,
5068       // this transform would not make sense (the phi would be invalid because
5069       // a phi can't have different incoming values from the same block).
5070       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5071       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5072           count(Phi.blocks(), SwitchBlock) == 1) {
5073         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5074         Changed = true;
5075       }
5076     }
5077 
5078     // Collect phi nodes that are indirectly using this switch's case constants.
5079     int PhiIdx;
5080     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5081       ForwardingNodes[Phi].push_back(PhiIdx);
5082   }
5083 
5084   for (auto &ForwardingNode : ForwardingNodes) {
5085     PHINode *Phi = ForwardingNode.first;
5086     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5087     if (Indexes.size() < 2)
5088       continue;
5089 
5090     for (int Index : Indexes)
5091       Phi->setIncomingValue(Index, SI->getCondition());
5092     Changed = true;
5093   }
5094 
5095   return Changed;
5096 }
5097 
5098 /// Return true if the backend will be able to handle
5099 /// initializing an array of constants like C.
5100 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5101   if (C->isThreadDependent())
5102     return false;
5103   if (C->isDLLImportDependent())
5104     return false;
5105 
5106   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5107       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5108       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5109     return false;
5110 
5111   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5112     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5113     // materializing the array of constants.
5114     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5115     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5116       return false;
5117   }
5118 
5119   if (!TTI.shouldBuildLookupTablesForConstant(C))
5120     return false;
5121 
5122   return true;
5123 }
5124 
5125 /// If V is a Constant, return it. Otherwise, try to look up
5126 /// its constant value in ConstantPool, returning 0 if it's not there.
5127 static Constant *
5128 LookupConstant(Value *V,
5129                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5130   if (Constant *C = dyn_cast<Constant>(V))
5131     return C;
5132   return ConstantPool.lookup(V);
5133 }
5134 
5135 /// Try to fold instruction I into a constant. This works for
5136 /// simple instructions such as binary operations where both operands are
5137 /// constant or can be replaced by constants from the ConstantPool. Returns the
5138 /// resulting constant on success, 0 otherwise.
5139 static Constant *
5140 ConstantFold(Instruction *I, const DataLayout &DL,
5141              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5142   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5143     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5144     if (!A)
5145       return nullptr;
5146     if (A->isAllOnesValue())
5147       return LookupConstant(Select->getTrueValue(), ConstantPool);
5148     if (A->isNullValue())
5149       return LookupConstant(Select->getFalseValue(), ConstantPool);
5150     return nullptr;
5151   }
5152 
5153   SmallVector<Constant *, 4> COps;
5154   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5155     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5156       COps.push_back(A);
5157     else
5158       return nullptr;
5159   }
5160 
5161   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5162     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5163                                            COps[1], DL);
5164   }
5165 
5166   return ConstantFoldInstOperands(I, COps, DL);
5167 }
5168 
5169 /// Try to determine the resulting constant values in phi nodes
5170 /// at the common destination basic block, *CommonDest, for one of the case
5171 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5172 /// case), of a switch instruction SI.
5173 static bool
5174 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5175                BasicBlock **CommonDest,
5176                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5177                const DataLayout &DL, const TargetTransformInfo &TTI) {
5178   // The block from which we enter the common destination.
5179   BasicBlock *Pred = SI->getParent();
5180 
5181   // If CaseDest is empty except for some side-effect free instructions through
5182   // which we can constant-propagate the CaseVal, continue to its successor.
5183   SmallDenseMap<Value *, Constant *> ConstantPool;
5184   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5185   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5186     if (I.isTerminator()) {
5187       // If the terminator is a simple branch, continue to the next block.
5188       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5189         return false;
5190       Pred = CaseDest;
5191       CaseDest = I.getSuccessor(0);
5192     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5193       // Instruction is side-effect free and constant.
5194 
5195       // If the instruction has uses outside this block or a phi node slot for
5196       // the block, it is not safe to bypass the instruction since it would then
5197       // no longer dominate all its uses.
5198       for (auto &Use : I.uses()) {
5199         User *User = Use.getUser();
5200         if (Instruction *I = dyn_cast<Instruction>(User))
5201           if (I->getParent() == CaseDest)
5202             continue;
5203         if (PHINode *Phi = dyn_cast<PHINode>(User))
5204           if (Phi->getIncomingBlock(Use) == CaseDest)
5205             continue;
5206         return false;
5207       }
5208 
5209       ConstantPool.insert(std::make_pair(&I, C));
5210     } else {
5211       break;
5212     }
5213   }
5214 
5215   // If we did not have a CommonDest before, use the current one.
5216   if (!*CommonDest)
5217     *CommonDest = CaseDest;
5218   // If the destination isn't the common one, abort.
5219   if (CaseDest != *CommonDest)
5220     return false;
5221 
5222   // Get the values for this case from phi nodes in the destination block.
5223   for (PHINode &PHI : (*CommonDest)->phis()) {
5224     int Idx = PHI.getBasicBlockIndex(Pred);
5225     if (Idx == -1)
5226       continue;
5227 
5228     Constant *ConstVal =
5229         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5230     if (!ConstVal)
5231       return false;
5232 
5233     // Be conservative about which kinds of constants we support.
5234     if (!ValidLookupTableConstant(ConstVal, TTI))
5235       return false;
5236 
5237     Res.push_back(std::make_pair(&PHI, ConstVal));
5238   }
5239 
5240   return Res.size() > 0;
5241 }
5242 
5243 // Helper function used to add CaseVal to the list of cases that generate
5244 // Result. Returns the updated number of cases that generate this result.
5245 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5246                                  SwitchCaseResultVectorTy &UniqueResults,
5247                                  Constant *Result) {
5248   for (auto &I : UniqueResults) {
5249     if (I.first == Result) {
5250       I.second.push_back(CaseVal);
5251       return I.second.size();
5252     }
5253   }
5254   UniqueResults.push_back(
5255       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5256   return 1;
5257 }
5258 
5259 // Helper function that initializes a map containing
5260 // results for the PHI node of the common destination block for a switch
5261 // instruction. Returns false if multiple PHI nodes have been found or if
5262 // there is not a common destination block for the switch.
5263 static bool
5264 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5265                       SwitchCaseResultVectorTy &UniqueResults,
5266                       Constant *&DefaultResult, const DataLayout &DL,
5267                       const TargetTransformInfo &TTI,
5268                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5269   for (auto &I : SI->cases()) {
5270     ConstantInt *CaseVal = I.getCaseValue();
5271 
5272     // Resulting value at phi nodes for this case value.
5273     SwitchCaseResultsTy Results;
5274     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5275                         DL, TTI))
5276       return false;
5277 
5278     // Only one value per case is permitted.
5279     if (Results.size() > 1)
5280       return false;
5281 
5282     // Add the case->result mapping to UniqueResults.
5283     const uintptr_t NumCasesForResult =
5284         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5285 
5286     // Early out if there are too many cases for this result.
5287     if (NumCasesForResult > MaxCasesPerResult)
5288       return false;
5289 
5290     // Early out if there are too many unique results.
5291     if (UniqueResults.size() > MaxUniqueResults)
5292       return false;
5293 
5294     // Check the PHI consistency.
5295     if (!PHI)
5296       PHI = Results[0].first;
5297     else if (PHI != Results[0].first)
5298       return false;
5299   }
5300   // Find the default result value.
5301   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5302   BasicBlock *DefaultDest = SI->getDefaultDest();
5303   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5304                  DL, TTI);
5305   // If the default value is not found abort unless the default destination
5306   // is unreachable.
5307   DefaultResult =
5308       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5309   if ((!DefaultResult &&
5310        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5311     return false;
5312 
5313   return true;
5314 }
5315 
5316 // Helper function that checks if it is possible to transform a switch with only
5317 // two cases (or two cases + default) that produces a result into a select.
5318 // Example:
5319 // switch (a) {
5320 //   case 10:                %0 = icmp eq i32 %a, 10
5321 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5322 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5323 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5324 //   default:
5325 //     return 4;
5326 // }
5327 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5328                                    Constant *DefaultResult, Value *Condition,
5329                                    IRBuilder<> &Builder) {
5330   // If we are selecting between only two cases transform into a simple
5331   // select or a two-way select if default is possible.
5332   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5333       ResultVector[1].second.size() == 1) {
5334     ConstantInt *const FirstCase = ResultVector[0].second[0];
5335     ConstantInt *const SecondCase = ResultVector[1].second[0];
5336 
5337     bool DefaultCanTrigger = DefaultResult;
5338     Value *SelectValue = ResultVector[1].first;
5339     if (DefaultCanTrigger) {
5340       Value *const ValueCompare =
5341           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5342       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5343                                          DefaultResult, "switch.select");
5344     }
5345     Value *const ValueCompare =
5346         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5347     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5348                                 SelectValue, "switch.select");
5349   }
5350 
5351   // Handle the degenerate case where two cases have the same value.
5352   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5353       DefaultResult) {
5354     Value *Cmp1 = Builder.CreateICmpEQ(
5355         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5356     Value *Cmp2 = Builder.CreateICmpEQ(
5357         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5358     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5359     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5360   }
5361 
5362   return nullptr;
5363 }
5364 
5365 // Helper function to cleanup a switch instruction that has been converted into
5366 // a select, fixing up PHI nodes and basic blocks.
5367 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5368                                               Value *SelectValue,
5369                                               IRBuilder<> &Builder,
5370                                               DomTreeUpdater *DTU) {
5371   std::vector<DominatorTree::UpdateType> Updates;
5372 
5373   BasicBlock *SelectBB = SI->getParent();
5374   BasicBlock *DestBB = PHI->getParent();
5375 
5376   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5377     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5378   Builder.CreateBr(DestBB);
5379 
5380   // Remove the switch.
5381 
5382   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5383     PHI->removeIncomingValue(SelectBB);
5384   PHI->addIncoming(SelectValue, SelectBB);
5385 
5386   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5387   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5388     BasicBlock *Succ = SI->getSuccessor(i);
5389 
5390     if (Succ == DestBB)
5391       continue;
5392     Succ->removePredecessor(SelectBB);
5393     if (DTU && RemovedSuccessors.insert(Succ).second)
5394       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5395   }
5396   SI->eraseFromParent();
5397   if (DTU)
5398     DTU->applyUpdates(Updates);
5399 }
5400 
5401 /// If the switch is only used to initialize one or more
5402 /// phi nodes in a common successor block with only two different
5403 /// constant values, replace the switch with select.
5404 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5405                            DomTreeUpdater *DTU, const DataLayout &DL,
5406                            const TargetTransformInfo &TTI) {
5407   Value *const Cond = SI->getCondition();
5408   PHINode *PHI = nullptr;
5409   BasicBlock *CommonDest = nullptr;
5410   Constant *DefaultResult;
5411   SwitchCaseResultVectorTy UniqueResults;
5412   // Collect all the cases that will deliver the same value from the switch.
5413   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5414                              DL, TTI, /*MaxUniqueResults*/2,
5415                              /*MaxCasesPerResult*/2))
5416     return false;
5417   assert(PHI != nullptr && "PHI for value select not found");
5418 
5419   Builder.SetInsertPoint(SI);
5420   Value *SelectValue =
5421       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5422   if (SelectValue) {
5423     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5424     return true;
5425   }
5426   // The switch couldn't be converted into a select.
5427   return false;
5428 }
5429 
5430 namespace {
5431 
5432 /// This class represents a lookup table that can be used to replace a switch.
5433 class SwitchLookupTable {
5434 public:
5435   /// Create a lookup table to use as a switch replacement with the contents
5436   /// of Values, using DefaultValue to fill any holes in the table.
5437   SwitchLookupTable(
5438       Module &M, uint64_t TableSize, ConstantInt *Offset,
5439       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5440       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5441 
5442   /// Build instructions with Builder to retrieve the value at
5443   /// the position given by Index in the lookup table.
5444   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5445 
5446   /// Return true if a table with TableSize elements of
5447   /// type ElementType would fit in a target-legal register.
5448   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5449                                  Type *ElementType);
5450 
5451 private:
5452   // Depending on the contents of the table, it can be represented in
5453   // different ways.
5454   enum {
5455     // For tables where each element contains the same value, we just have to
5456     // store that single value and return it for each lookup.
5457     SingleValueKind,
5458 
5459     // For tables where there is a linear relationship between table index
5460     // and values. We calculate the result with a simple multiplication
5461     // and addition instead of a table lookup.
5462     LinearMapKind,
5463 
5464     // For small tables with integer elements, we can pack them into a bitmap
5465     // that fits into a target-legal register. Values are retrieved by
5466     // shift and mask operations.
5467     BitMapKind,
5468 
5469     // The table is stored as an array of values. Values are retrieved by load
5470     // instructions from the table.
5471     ArrayKind
5472   } Kind;
5473 
5474   // For SingleValueKind, this is the single value.
5475   Constant *SingleValue = nullptr;
5476 
5477   // For BitMapKind, this is the bitmap.
5478   ConstantInt *BitMap = nullptr;
5479   IntegerType *BitMapElementTy = nullptr;
5480 
5481   // For LinearMapKind, these are the constants used to derive the value.
5482   ConstantInt *LinearOffset = nullptr;
5483   ConstantInt *LinearMultiplier = nullptr;
5484 
5485   // For ArrayKind, this is the array.
5486   GlobalVariable *Array = nullptr;
5487 };
5488 
5489 } // end anonymous namespace
5490 
5491 SwitchLookupTable::SwitchLookupTable(
5492     Module &M, uint64_t TableSize, ConstantInt *Offset,
5493     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5494     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5495   assert(Values.size() && "Can't build lookup table without values!");
5496   assert(TableSize >= Values.size() && "Can't fit values in table!");
5497 
5498   // If all values in the table are equal, this is that value.
5499   SingleValue = Values.begin()->second;
5500 
5501   Type *ValueType = Values.begin()->second->getType();
5502 
5503   // Build up the table contents.
5504   SmallVector<Constant *, 64> TableContents(TableSize);
5505   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5506     ConstantInt *CaseVal = Values[I].first;
5507     Constant *CaseRes = Values[I].second;
5508     assert(CaseRes->getType() == ValueType);
5509 
5510     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5511     TableContents[Idx] = CaseRes;
5512 
5513     if (CaseRes != SingleValue)
5514       SingleValue = nullptr;
5515   }
5516 
5517   // Fill in any holes in the table with the default result.
5518   if (Values.size() < TableSize) {
5519     assert(DefaultValue &&
5520            "Need a default value to fill the lookup table holes.");
5521     assert(DefaultValue->getType() == ValueType);
5522     for (uint64_t I = 0; I < TableSize; ++I) {
5523       if (!TableContents[I])
5524         TableContents[I] = DefaultValue;
5525     }
5526 
5527     if (DefaultValue != SingleValue)
5528       SingleValue = nullptr;
5529   }
5530 
5531   // If each element in the table contains the same value, we only need to store
5532   // that single value.
5533   if (SingleValue) {
5534     Kind = SingleValueKind;
5535     return;
5536   }
5537 
5538   // Check if we can derive the value with a linear transformation from the
5539   // table index.
5540   if (isa<IntegerType>(ValueType)) {
5541     bool LinearMappingPossible = true;
5542     APInt PrevVal;
5543     APInt DistToPrev;
5544     assert(TableSize >= 2 && "Should be a SingleValue table.");
5545     // Check if there is the same distance between two consecutive values.
5546     for (uint64_t I = 0; I < TableSize; ++I) {
5547       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5548       if (!ConstVal) {
5549         // This is an undef. We could deal with it, but undefs in lookup tables
5550         // are very seldom. It's probably not worth the additional complexity.
5551         LinearMappingPossible = false;
5552         break;
5553       }
5554       const APInt &Val = ConstVal->getValue();
5555       if (I != 0) {
5556         APInt Dist = Val - PrevVal;
5557         if (I == 1) {
5558           DistToPrev = Dist;
5559         } else if (Dist != DistToPrev) {
5560           LinearMappingPossible = false;
5561           break;
5562         }
5563       }
5564       PrevVal = Val;
5565     }
5566     if (LinearMappingPossible) {
5567       LinearOffset = cast<ConstantInt>(TableContents[0]);
5568       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5569       Kind = LinearMapKind;
5570       ++NumLinearMaps;
5571       return;
5572     }
5573   }
5574 
5575   // If the type is integer and the table fits in a register, build a bitmap.
5576   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5577     IntegerType *IT = cast<IntegerType>(ValueType);
5578     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5579     for (uint64_t I = TableSize; I > 0; --I) {
5580       TableInt <<= IT->getBitWidth();
5581       // Insert values into the bitmap. Undef values are set to zero.
5582       if (!isa<UndefValue>(TableContents[I - 1])) {
5583         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5584         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5585       }
5586     }
5587     BitMap = ConstantInt::get(M.getContext(), TableInt);
5588     BitMapElementTy = IT;
5589     Kind = BitMapKind;
5590     ++NumBitMaps;
5591     return;
5592   }
5593 
5594   // Store the table in an array.
5595   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5596   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5597 
5598   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5599                              GlobalVariable::PrivateLinkage, Initializer,
5600                              "switch.table." + FuncName);
5601   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5602   // Set the alignment to that of an array items. We will be only loading one
5603   // value out of it.
5604   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5605   Kind = ArrayKind;
5606 }
5607 
5608 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5609   switch (Kind) {
5610   case SingleValueKind:
5611     return SingleValue;
5612   case LinearMapKind: {
5613     // Derive the result value from the input value.
5614     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5615                                           false, "switch.idx.cast");
5616     if (!LinearMultiplier->isOne())
5617       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5618     if (!LinearOffset->isZero())
5619       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5620     return Result;
5621   }
5622   case BitMapKind: {
5623     // Type of the bitmap (e.g. i59).
5624     IntegerType *MapTy = BitMap->getType();
5625 
5626     // Cast Index to the same type as the bitmap.
5627     // Note: The Index is <= the number of elements in the table, so
5628     // truncating it to the width of the bitmask is safe.
5629     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5630 
5631     // Multiply the shift amount by the element width.
5632     ShiftAmt = Builder.CreateMul(
5633         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5634         "switch.shiftamt");
5635 
5636     // Shift down.
5637     Value *DownShifted =
5638         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5639     // Mask off.
5640     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5641   }
5642   case ArrayKind: {
5643     // Make sure the table index will not overflow when treated as signed.
5644     IntegerType *IT = cast<IntegerType>(Index->getType());
5645     uint64_t TableSize =
5646         Array->getInitializer()->getType()->getArrayNumElements();
5647     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5648       Index = Builder.CreateZExt(
5649           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5650           "switch.tableidx.zext");
5651 
5652     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5653     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5654                                            GEPIndices, "switch.gep");
5655     return Builder.CreateLoad(
5656         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5657         "switch.load");
5658   }
5659   }
5660   llvm_unreachable("Unknown lookup table kind!");
5661 }
5662 
5663 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5664                                            uint64_t TableSize,
5665                                            Type *ElementType) {
5666   auto *IT = dyn_cast<IntegerType>(ElementType);
5667   if (!IT)
5668     return false;
5669   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5670   // are <= 15, we could try to narrow the type.
5671 
5672   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5673   if (TableSize >= UINT_MAX / IT->getBitWidth())
5674     return false;
5675   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5676 }
5677 
5678 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
5679                                       const DataLayout &DL) {
5680   // Allow any legal type.
5681   if (TTI.isTypeLegal(Ty))
5682     return true;
5683 
5684   auto *IT = dyn_cast<IntegerType>(Ty);
5685   if (!IT)
5686     return false;
5687 
5688   // Also allow power of 2 integer types that have at least 8 bits and fit in
5689   // a register. These types are common in frontend languages and targets
5690   // usually support loads of these types.
5691   // TODO: We could relax this to any integer that fits in a register and rely
5692   // on ABI alignment and padding in the table to allow the load to be widened.
5693   // Or we could widen the constants and truncate the load.
5694   unsigned BitWidth = IT->getBitWidth();
5695   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
5696          DL.fitsInLegalInteger(IT->getBitWidth());
5697 }
5698 
5699 /// Determine whether a lookup table should be built for this switch, based on
5700 /// the number of cases, size of the table, and the types of the results.
5701 // TODO: We could support larger than legal types by limiting based on the
5702 // number of loads required and/or table size. If the constants are small we
5703 // could use smaller table entries and extend after the load.
5704 static bool
5705 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5706                        const TargetTransformInfo &TTI, const DataLayout &DL,
5707                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5708   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5709     return false; // TableSize overflowed, or mul below might overflow.
5710 
5711   bool AllTablesFitInRegister = true;
5712   bool HasIllegalType = false;
5713   for (const auto &I : ResultTypes) {
5714     Type *Ty = I.second;
5715 
5716     // Saturate this flag to true.
5717     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
5718 
5719     // Saturate this flag to false.
5720     AllTablesFitInRegister =
5721         AllTablesFitInRegister &&
5722         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5723 
5724     // If both flags saturate, we're done. NOTE: This *only* works with
5725     // saturating flags, and all flags have to saturate first due to the
5726     // non-deterministic behavior of iterating over a dense map.
5727     if (HasIllegalType && !AllTablesFitInRegister)
5728       break;
5729   }
5730 
5731   // If each table would fit in a register, we should build it anyway.
5732   if (AllTablesFitInRegister)
5733     return true;
5734 
5735   // Don't build a table that doesn't fit in-register if it has illegal types.
5736   if (HasIllegalType)
5737     return false;
5738 
5739   // The table density should be at least 40%. This is the same criterion as for
5740   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5741   // FIXME: Find the best cut-off.
5742   return SI->getNumCases() * 10 >= TableSize * 4;
5743 }
5744 
5745 /// Try to reuse the switch table index compare. Following pattern:
5746 /// \code
5747 ///     if (idx < tablesize)
5748 ///        r = table[idx]; // table does not contain default_value
5749 ///     else
5750 ///        r = default_value;
5751 ///     if (r != default_value)
5752 ///        ...
5753 /// \endcode
5754 /// Is optimized to:
5755 /// \code
5756 ///     cond = idx < tablesize;
5757 ///     if (cond)
5758 ///        r = table[idx];
5759 ///     else
5760 ///        r = default_value;
5761 ///     if (cond)
5762 ///        ...
5763 /// \endcode
5764 /// Jump threading will then eliminate the second if(cond).
5765 static void reuseTableCompare(
5766     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5767     Constant *DefaultValue,
5768     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5769   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5770   if (!CmpInst)
5771     return;
5772 
5773   // We require that the compare is in the same block as the phi so that jump
5774   // threading can do its work afterwards.
5775   if (CmpInst->getParent() != PhiBlock)
5776     return;
5777 
5778   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5779   if (!CmpOp1)
5780     return;
5781 
5782   Value *RangeCmp = RangeCheckBranch->getCondition();
5783   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5784   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5785 
5786   // Check if the compare with the default value is constant true or false.
5787   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5788                                                  DefaultValue, CmpOp1, true);
5789   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5790     return;
5791 
5792   // Check if the compare with the case values is distinct from the default
5793   // compare result.
5794   for (auto ValuePair : Values) {
5795     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5796                                                 ValuePair.second, CmpOp1, true);
5797     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5798       return;
5799     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5800            "Expect true or false as compare result.");
5801   }
5802 
5803   // Check if the branch instruction dominates the phi node. It's a simple
5804   // dominance check, but sufficient for our needs.
5805   // Although this check is invariant in the calling loops, it's better to do it
5806   // at this late stage. Practically we do it at most once for a switch.
5807   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5808   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5809     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5810       return;
5811   }
5812 
5813   if (DefaultConst == FalseConst) {
5814     // The compare yields the same result. We can replace it.
5815     CmpInst->replaceAllUsesWith(RangeCmp);
5816     ++NumTableCmpReuses;
5817   } else {
5818     // The compare yields the same result, just inverted. We can replace it.
5819     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5820         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5821         RangeCheckBranch);
5822     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5823     ++NumTableCmpReuses;
5824   }
5825 }
5826 
5827 /// If the switch is only used to initialize one or more phi nodes in a common
5828 /// successor block with different constant values, replace the switch with
5829 /// lookup tables.
5830 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5831                                 DomTreeUpdater *DTU, const DataLayout &DL,
5832                                 const TargetTransformInfo &TTI) {
5833   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5834 
5835   BasicBlock *BB = SI->getParent();
5836   Function *Fn = BB->getParent();
5837   // Only build lookup table when we have a target that supports it or the
5838   // attribute is not set.
5839   if (!TTI.shouldBuildLookupTables() ||
5840       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5841     return false;
5842 
5843   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5844   // split off a dense part and build a lookup table for that.
5845 
5846   // FIXME: This creates arrays of GEPs to constant strings, which means each
5847   // GEP needs a runtime relocation in PIC code. We should just build one big
5848   // string and lookup indices into that.
5849 
5850   // Ignore switches with less than three cases. Lookup tables will not make
5851   // them faster, so we don't analyze them.
5852   if (SI->getNumCases() < 3)
5853     return false;
5854 
5855   // Figure out the corresponding result for each case value and phi node in the
5856   // common destination, as well as the min and max case values.
5857   assert(!SI->cases().empty());
5858   SwitchInst::CaseIt CI = SI->case_begin();
5859   ConstantInt *MinCaseVal = CI->getCaseValue();
5860   ConstantInt *MaxCaseVal = CI->getCaseValue();
5861 
5862   BasicBlock *CommonDest = nullptr;
5863 
5864   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5865   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5866 
5867   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5868   SmallDenseMap<PHINode *, Type *> ResultTypes;
5869   SmallVector<PHINode *, 4> PHIs;
5870 
5871   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5872     ConstantInt *CaseVal = CI->getCaseValue();
5873     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5874       MinCaseVal = CaseVal;
5875     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5876       MaxCaseVal = CaseVal;
5877 
5878     // Resulting value at phi nodes for this case value.
5879     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5880     ResultsTy Results;
5881     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5882                         Results, DL, TTI))
5883       return false;
5884 
5885     // Append the result from this case to the list for each phi.
5886     for (const auto &I : Results) {
5887       PHINode *PHI = I.first;
5888       Constant *Value = I.second;
5889       if (!ResultLists.count(PHI))
5890         PHIs.push_back(PHI);
5891       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5892     }
5893   }
5894 
5895   // Keep track of the result types.
5896   for (PHINode *PHI : PHIs) {
5897     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5898   }
5899 
5900   uint64_t NumResults = ResultLists[PHIs[0]].size();
5901   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5902   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5903   bool TableHasHoles = (NumResults < TableSize);
5904 
5905   // If the table has holes, we need a constant result for the default case
5906   // or a bitmask that fits in a register.
5907   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5908   bool HasDefaultResults =
5909       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5910                      DefaultResultsList, DL, TTI);
5911 
5912   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5913   if (NeedMask) {
5914     // As an extra penalty for the validity test we require more cases.
5915     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5916       return false;
5917     if (!DL.fitsInLegalInteger(TableSize))
5918       return false;
5919   }
5920 
5921   for (const auto &I : DefaultResultsList) {
5922     PHINode *PHI = I.first;
5923     Constant *Result = I.second;
5924     DefaultResults[PHI] = Result;
5925   }
5926 
5927   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5928     return false;
5929 
5930   std::vector<DominatorTree::UpdateType> Updates;
5931 
5932   // Create the BB that does the lookups.
5933   Module &Mod = *CommonDest->getParent()->getParent();
5934   BasicBlock *LookupBB = BasicBlock::Create(
5935       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5936 
5937   // Compute the table index value.
5938   Builder.SetInsertPoint(SI);
5939   Value *TableIndex;
5940   if (MinCaseVal->isNullValue())
5941     TableIndex = SI->getCondition();
5942   else
5943     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5944                                    "switch.tableidx");
5945 
5946   // Compute the maximum table size representable by the integer type we are
5947   // switching upon.
5948   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5949   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5950   assert(MaxTableSize >= TableSize &&
5951          "It is impossible for a switch to have more entries than the max "
5952          "representable value of its input integer type's size.");
5953 
5954   // If the default destination is unreachable, or if the lookup table covers
5955   // all values of the conditional variable, branch directly to the lookup table
5956   // BB. Otherwise, check that the condition is within the case range.
5957   const bool DefaultIsReachable =
5958       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5959   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5960   BranchInst *RangeCheckBranch = nullptr;
5961 
5962   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5963     Builder.CreateBr(LookupBB);
5964     if (DTU)
5965       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5966     // Note: We call removeProdecessor later since we need to be able to get the
5967     // PHI value for the default case in case we're using a bit mask.
5968   } else {
5969     Value *Cmp = Builder.CreateICmpULT(
5970         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5971     RangeCheckBranch =
5972         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5973     if (DTU)
5974       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5975   }
5976 
5977   // Populate the BB that does the lookups.
5978   Builder.SetInsertPoint(LookupBB);
5979 
5980   if (NeedMask) {
5981     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5982     // re-purposed to do the hole check, and we create a new LookupBB.
5983     BasicBlock *MaskBB = LookupBB;
5984     MaskBB->setName("switch.hole_check");
5985     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5986                                   CommonDest->getParent(), CommonDest);
5987 
5988     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5989     // unnecessary illegal types.
5990     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5991     APInt MaskInt(TableSizePowOf2, 0);
5992     APInt One(TableSizePowOf2, 1);
5993     // Build bitmask; fill in a 1 bit for every case.
5994     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5995     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5996       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5997                          .getLimitedValue();
5998       MaskInt |= One << Idx;
5999     }
6000     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6001 
6002     // Get the TableIndex'th bit of the bitmask.
6003     // If this bit is 0 (meaning hole) jump to the default destination,
6004     // else continue with table lookup.
6005     IntegerType *MapTy = TableMask->getType();
6006     Value *MaskIndex =
6007         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6008     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6009     Value *LoBit = Builder.CreateTrunc(
6010         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6011     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6012     if (DTU) {
6013       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6014       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6015     }
6016     Builder.SetInsertPoint(LookupBB);
6017     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6018   }
6019 
6020   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6021     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6022     // do not delete PHINodes here.
6023     SI->getDefaultDest()->removePredecessor(BB,
6024                                             /*KeepOneInputPHIs=*/true);
6025     if (DTU)
6026       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6027   }
6028 
6029   for (PHINode *PHI : PHIs) {
6030     const ResultListTy &ResultList = ResultLists[PHI];
6031 
6032     // If using a bitmask, use any value to fill the lookup table holes.
6033     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6034     StringRef FuncName = Fn->getName();
6035     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6036                             FuncName);
6037 
6038     Value *Result = Table.BuildLookup(TableIndex, Builder);
6039 
6040     // Do a small peephole optimization: re-use the switch table compare if
6041     // possible.
6042     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6043       BasicBlock *PhiBlock = PHI->getParent();
6044       // Search for compare instructions which use the phi.
6045       for (auto *User : PHI->users()) {
6046         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6047       }
6048     }
6049 
6050     PHI->addIncoming(Result, LookupBB);
6051   }
6052 
6053   Builder.CreateBr(CommonDest);
6054   if (DTU)
6055     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6056 
6057   // Remove the switch.
6058   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6059   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6060     BasicBlock *Succ = SI->getSuccessor(i);
6061 
6062     if (Succ == SI->getDefaultDest())
6063       continue;
6064     Succ->removePredecessor(BB);
6065     RemovedSuccessors.insert(Succ);
6066   }
6067   SI->eraseFromParent();
6068 
6069   if (DTU) {
6070     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6071       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6072     DTU->applyUpdates(Updates);
6073   }
6074 
6075   ++NumLookupTables;
6076   if (NeedMask)
6077     ++NumLookupTablesHoles;
6078   return true;
6079 }
6080 
6081 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6082   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6083   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6084   uint64_t Range = Diff + 1;
6085   uint64_t NumCases = Values.size();
6086   // 40% is the default density for building a jump table in optsize/minsize mode.
6087   uint64_t MinDensity = 40;
6088 
6089   return NumCases * 100 >= Range * MinDensity;
6090 }
6091 
6092 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6093 /// of cases.
6094 ///
6095 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6096 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6097 ///
6098 /// This converts a sparse switch into a dense switch which allows better
6099 /// lowering and could also allow transforming into a lookup table.
6100 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6101                               const DataLayout &DL,
6102                               const TargetTransformInfo &TTI) {
6103   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6104   if (CondTy->getIntegerBitWidth() > 64 ||
6105       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6106     return false;
6107   // Only bother with this optimization if there are more than 3 switch cases;
6108   // SDAG will only bother creating jump tables for 4 or more cases.
6109   if (SI->getNumCases() < 4)
6110     return false;
6111 
6112   // This transform is agnostic to the signedness of the input or case values. We
6113   // can treat the case values as signed or unsigned. We can optimize more common
6114   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6115   // as signed.
6116   SmallVector<int64_t,4> Values;
6117   for (auto &C : SI->cases())
6118     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6119   llvm::sort(Values);
6120 
6121   // If the switch is already dense, there's nothing useful to do here.
6122   if (isSwitchDense(Values))
6123     return false;
6124 
6125   // First, transform the values such that they start at zero and ascend.
6126   int64_t Base = Values[0];
6127   for (auto &V : Values)
6128     V -= (uint64_t)(Base);
6129 
6130   // Now we have signed numbers that have been shifted so that, given enough
6131   // precision, there are no negative values. Since the rest of the transform
6132   // is bitwise only, we switch now to an unsigned representation.
6133 
6134   // This transform can be done speculatively because it is so cheap - it
6135   // results in a single rotate operation being inserted.
6136   // FIXME: It's possible that optimizing a switch on powers of two might also
6137   // be beneficial - flag values are often powers of two and we could use a CLZ
6138   // as the key function.
6139 
6140   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6141   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6142   // less than 64.
6143   unsigned Shift = 64;
6144   for (auto &V : Values)
6145     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6146   assert(Shift < 64);
6147   if (Shift > 0)
6148     for (auto &V : Values)
6149       V = (int64_t)((uint64_t)V >> Shift);
6150 
6151   if (!isSwitchDense(Values))
6152     // Transform didn't create a dense switch.
6153     return false;
6154 
6155   // The obvious transform is to shift the switch condition right and emit a
6156   // check that the condition actually cleanly divided by GCD, i.e.
6157   //   C & (1 << Shift - 1) == 0
6158   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6159   //
6160   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6161   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6162   // are nonzero then the switch condition will be very large and will hit the
6163   // default case.
6164 
6165   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6166   Builder.SetInsertPoint(SI);
6167   auto *ShiftC = ConstantInt::get(Ty, Shift);
6168   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6169   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6170   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6171   auto *Rot = Builder.CreateOr(LShr, Shl);
6172   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6173 
6174   for (auto Case : SI->cases()) {
6175     auto *Orig = Case.getCaseValue();
6176     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6177     Case.setValue(
6178         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6179   }
6180   return true;
6181 }
6182 
6183 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6184   BasicBlock *BB = SI->getParent();
6185 
6186   if (isValueEqualityComparison(SI)) {
6187     // If we only have one predecessor, and if it is a branch on this value,
6188     // see if that predecessor totally determines the outcome of this switch.
6189     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6190       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6191         return requestResimplify();
6192 
6193     Value *Cond = SI->getCondition();
6194     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6195       if (SimplifySwitchOnSelect(SI, Select))
6196         return requestResimplify();
6197 
6198     // If the block only contains the switch, see if we can fold the block
6199     // away into any preds.
6200     if (SI == &*BB->instructionsWithoutDebug().begin())
6201       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6202         return requestResimplify();
6203   }
6204 
6205   // Try to transform the switch into an icmp and a branch.
6206   if (TurnSwitchRangeIntoICmp(SI, Builder))
6207     return requestResimplify();
6208 
6209   // Remove unreachable cases.
6210   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6211     return requestResimplify();
6212 
6213   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6214     return requestResimplify();
6215 
6216   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6217     return requestResimplify();
6218 
6219   // The conversion from switch to lookup tables results in difficult-to-analyze
6220   // code and makes pruning branches much harder. This is a problem if the
6221   // switch expression itself can still be restricted as a result of inlining or
6222   // CVP. Therefore, only apply this transformation during late stages of the
6223   // optimisation pipeline.
6224   if (Options.ConvertSwitchToLookupTable &&
6225       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6226     return requestResimplify();
6227 
6228   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6229     return requestResimplify();
6230 
6231   return false;
6232 }
6233 
6234 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6235   BasicBlock *BB = IBI->getParent();
6236   bool Changed = false;
6237 
6238   // Eliminate redundant destinations.
6239   SmallPtrSet<Value *, 8> Succs;
6240   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6241   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6242     BasicBlock *Dest = IBI->getDestination(i);
6243     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6244       if (!Dest->hasAddressTaken())
6245         RemovedSuccs.insert(Dest);
6246       Dest->removePredecessor(BB);
6247       IBI->removeDestination(i);
6248       --i;
6249       --e;
6250       Changed = true;
6251     }
6252   }
6253 
6254   if (DTU) {
6255     std::vector<DominatorTree::UpdateType> Updates;
6256     Updates.reserve(RemovedSuccs.size());
6257     for (auto *RemovedSucc : RemovedSuccs)
6258       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6259     DTU->applyUpdates(Updates);
6260   }
6261 
6262   if (IBI->getNumDestinations() == 0) {
6263     // If the indirectbr has no successors, change it to unreachable.
6264     new UnreachableInst(IBI->getContext(), IBI);
6265     EraseTerminatorAndDCECond(IBI);
6266     return true;
6267   }
6268 
6269   if (IBI->getNumDestinations() == 1) {
6270     // If the indirectbr has one successor, change it to a direct branch.
6271     BranchInst::Create(IBI->getDestination(0), IBI);
6272     EraseTerminatorAndDCECond(IBI);
6273     return true;
6274   }
6275 
6276   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6277     if (SimplifyIndirectBrOnSelect(IBI, SI))
6278       return requestResimplify();
6279   }
6280   return Changed;
6281 }
6282 
6283 /// Given an block with only a single landing pad and a unconditional branch
6284 /// try to find another basic block which this one can be merged with.  This
6285 /// handles cases where we have multiple invokes with unique landing pads, but
6286 /// a shared handler.
6287 ///
6288 /// We specifically choose to not worry about merging non-empty blocks
6289 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6290 /// practice, the optimizer produces empty landing pad blocks quite frequently
6291 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6292 /// sinking in this file)
6293 ///
6294 /// This is primarily a code size optimization.  We need to avoid performing
6295 /// any transform which might inhibit optimization (such as our ability to
6296 /// specialize a particular handler via tail commoning).  We do this by not
6297 /// merging any blocks which require us to introduce a phi.  Since the same
6298 /// values are flowing through both blocks, we don't lose any ability to
6299 /// specialize.  If anything, we make such specialization more likely.
6300 ///
6301 /// TODO - This transformation could remove entries from a phi in the target
6302 /// block when the inputs in the phi are the same for the two blocks being
6303 /// merged.  In some cases, this could result in removal of the PHI entirely.
6304 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6305                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6306   auto Succ = BB->getUniqueSuccessor();
6307   assert(Succ);
6308   // If there's a phi in the successor block, we'd likely have to introduce
6309   // a phi into the merged landing pad block.
6310   if (isa<PHINode>(*Succ->begin()))
6311     return false;
6312 
6313   for (BasicBlock *OtherPred : predecessors(Succ)) {
6314     if (BB == OtherPred)
6315       continue;
6316     BasicBlock::iterator I = OtherPred->begin();
6317     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6318     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6319       continue;
6320     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6321       ;
6322     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6323     if (!BI2 || !BI2->isIdenticalTo(BI))
6324       continue;
6325 
6326     std::vector<DominatorTree::UpdateType> Updates;
6327 
6328     // We've found an identical block.  Update our predecessors to take that
6329     // path instead and make ourselves dead.
6330     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6331     for (BasicBlock *Pred : Preds) {
6332       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6333       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6334              "unexpected successor");
6335       II->setUnwindDest(OtherPred);
6336       if (DTU) {
6337         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6338         Updates.push_back({DominatorTree::Delete, Pred, BB});
6339       }
6340     }
6341 
6342     // The debug info in OtherPred doesn't cover the merged control flow that
6343     // used to go through BB.  We need to delete it or update it.
6344     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6345       if (isa<DbgInfoIntrinsic>(Inst))
6346         Inst.eraseFromParent();
6347 
6348     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6349     for (BasicBlock *Succ : Succs) {
6350       Succ->removePredecessor(BB);
6351       if (DTU)
6352         Updates.push_back({DominatorTree::Delete, BB, Succ});
6353     }
6354 
6355     IRBuilder<> Builder(BI);
6356     Builder.CreateUnreachable();
6357     BI->eraseFromParent();
6358     if (DTU)
6359       DTU->applyUpdates(Updates);
6360     return true;
6361   }
6362   return false;
6363 }
6364 
6365 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6366   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6367                                    : simplifyCondBranch(Branch, Builder);
6368 }
6369 
6370 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6371                                           IRBuilder<> &Builder) {
6372   BasicBlock *BB = BI->getParent();
6373   BasicBlock *Succ = BI->getSuccessor(0);
6374 
6375   // If the Terminator is the only non-phi instruction, simplify the block.
6376   // If LoopHeader is provided, check if the block or its successor is a loop
6377   // header. (This is for early invocations before loop simplify and
6378   // vectorization to keep canonical loop forms for nested loops. These blocks
6379   // can be eliminated when the pass is invoked later in the back-end.)
6380   // Note that if BB has only one predecessor then we do not introduce new
6381   // backedge, so we can eliminate BB.
6382   bool NeedCanonicalLoop =
6383       Options.NeedCanonicalLoop &&
6384       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6385        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6386   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6387   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6388       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6389     return true;
6390 
6391   // If the only instruction in the block is a seteq/setne comparison against a
6392   // constant, try to simplify the block.
6393   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6394     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6395       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6396         ;
6397       if (I->isTerminator() &&
6398           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6399         return true;
6400     }
6401 
6402   // See if we can merge an empty landing pad block with another which is
6403   // equivalent.
6404   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6405     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6406       ;
6407     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6408       return true;
6409   }
6410 
6411   // If this basic block is ONLY a compare and a branch, and if a predecessor
6412   // branches to us and our successor, fold the comparison into the
6413   // predecessor and use logical operations to update the incoming value
6414   // for PHI nodes in common successor.
6415   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6416                              Options.BonusInstThreshold))
6417     return requestResimplify();
6418   return false;
6419 }
6420 
6421 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6422   BasicBlock *PredPred = nullptr;
6423   for (auto *P : predecessors(BB)) {
6424     BasicBlock *PPred = P->getSinglePredecessor();
6425     if (!PPred || (PredPred && PredPred != PPred))
6426       return nullptr;
6427     PredPred = PPred;
6428   }
6429   return PredPred;
6430 }
6431 
6432 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6433   assert(
6434       !isa<ConstantInt>(BI->getCondition()) &&
6435       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6436       "Tautological conditional branch should have been eliminated already.");
6437 
6438   BasicBlock *BB = BI->getParent();
6439   if (!Options.SimplifyCondBranch)
6440     return false;
6441 
6442   // Conditional branch
6443   if (isValueEqualityComparison(BI)) {
6444     // If we only have one predecessor, and if it is a branch on this value,
6445     // see if that predecessor totally determines the outcome of this
6446     // switch.
6447     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6448       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6449         return requestResimplify();
6450 
6451     // This block must be empty, except for the setcond inst, if it exists.
6452     // Ignore dbg and pseudo intrinsics.
6453     auto I = BB->instructionsWithoutDebug(true).begin();
6454     if (&*I == BI) {
6455       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6456         return requestResimplify();
6457     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6458       ++I;
6459       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6460         return requestResimplify();
6461     }
6462   }
6463 
6464   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6465   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6466     return true;
6467 
6468   // If this basic block has dominating predecessor blocks and the dominating
6469   // blocks' conditions imply BI's condition, we know the direction of BI.
6470   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6471   if (Imp) {
6472     // Turn this into a branch on constant.
6473     auto *OldCond = BI->getCondition();
6474     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6475                              : ConstantInt::getFalse(BB->getContext());
6476     BI->setCondition(TorF);
6477     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6478     return requestResimplify();
6479   }
6480 
6481   // If this basic block is ONLY a compare and a branch, and if a predecessor
6482   // branches to us and one of our successors, fold the comparison into the
6483   // predecessor and use logical operations to pick the right destination.
6484   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6485                              Options.BonusInstThreshold))
6486     return requestResimplify();
6487 
6488   // We have a conditional branch to two blocks that are only reachable
6489   // from BI.  We know that the condbr dominates the two blocks, so see if
6490   // there is any identical code in the "then" and "else" blocks.  If so, we
6491   // can hoist it up to the branching block.
6492   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6493     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6494       if (HoistCommon &&
6495           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6496         return requestResimplify();
6497     } else {
6498       // If Successor #1 has multiple preds, we may be able to conditionally
6499       // execute Successor #0 if it branches to Successor #1.
6500       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6501       if (Succ0TI->getNumSuccessors() == 1 &&
6502           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6503         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6504           return requestResimplify();
6505     }
6506   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6507     // If Successor #0 has multiple preds, we may be able to conditionally
6508     // execute Successor #1 if it branches to Successor #0.
6509     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6510     if (Succ1TI->getNumSuccessors() == 1 &&
6511         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6512       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6513         return requestResimplify();
6514   }
6515 
6516   // If this is a branch on a phi node in the current block, thread control
6517   // through this block if any PHI node entries are constants.
6518   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6519     if (PN->getParent() == BI->getParent())
6520       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6521         return requestResimplify();
6522 
6523   // Scan predecessor blocks for conditional branches.
6524   for (BasicBlock *Pred : predecessors(BB))
6525     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6526       if (PBI != BI && PBI->isConditional())
6527         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6528           return requestResimplify();
6529 
6530   // Look for diamond patterns.
6531   if (MergeCondStores)
6532     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6533       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6534         if (PBI != BI && PBI->isConditional())
6535           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6536             return requestResimplify();
6537 
6538   return false;
6539 }
6540 
6541 /// Check if passing a value to an instruction will cause undefined behavior.
6542 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6543   Constant *C = dyn_cast<Constant>(V);
6544   if (!C)
6545     return false;
6546 
6547   if (I->use_empty())
6548     return false;
6549 
6550   if (C->isNullValue() || isa<UndefValue>(C)) {
6551     // Only look at the first use, avoid hurting compile time with long uselists
6552     User *Use = *I->user_begin();
6553 
6554     // Now make sure that there are no instructions in between that can alter
6555     // control flow (eg. calls)
6556     for (BasicBlock::iterator
6557              i = ++BasicBlock::iterator(I),
6558              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6559          i != UI; ++i) {
6560       if (i == I->getParent()->end())
6561         return false;
6562       if (!isGuaranteedToTransferExecutionToSuccessor(&*i))
6563         return false;
6564     }
6565 
6566     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6567     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6568       if (GEP->getPointerOperand() == I) {
6569         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6570           PtrValueMayBeModified = true;
6571         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6572       }
6573 
6574     // Look through bitcasts.
6575     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6576       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6577 
6578     // Load from null is undefined.
6579     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6580       if (!LI->isVolatile())
6581         return !NullPointerIsDefined(LI->getFunction(),
6582                                      LI->getPointerAddressSpace());
6583 
6584     // Store to null is undefined.
6585     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6586       if (!SI->isVolatile())
6587         return (!NullPointerIsDefined(SI->getFunction(),
6588                                       SI->getPointerAddressSpace())) &&
6589                SI->getPointerOperand() == I;
6590 
6591     if (auto *CB = dyn_cast<CallBase>(Use)) {
6592       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6593         return false;
6594       // A call to null is undefined.
6595       if (CB->getCalledOperand() == I)
6596         return true;
6597 
6598       if (C->isNullValue()) {
6599         for (const llvm::Use &Arg : CB->args())
6600           if (Arg == I) {
6601             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6602             if (CB->isPassingUndefUB(ArgIdx) &&
6603                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6604               // Passing null to a nonnnull+noundef argument is undefined.
6605               return !PtrValueMayBeModified;
6606             }
6607           }
6608       } else if (isa<UndefValue>(C)) {
6609         // Passing undef to a noundef argument is undefined.
6610         for (const llvm::Use &Arg : CB->args())
6611           if (Arg == I) {
6612             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6613             if (CB->isPassingUndefUB(ArgIdx)) {
6614               // Passing undef to a noundef argument is undefined.
6615               return true;
6616             }
6617           }
6618       }
6619     }
6620   }
6621   return false;
6622 }
6623 
6624 /// If BB has an incoming value that will always trigger undefined behavior
6625 /// (eg. null pointer dereference), remove the branch leading here.
6626 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6627                                               DomTreeUpdater *DTU) {
6628   for (PHINode &PHI : BB->phis())
6629     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6630       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6631         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6632         Instruction *T = Predecessor->getTerminator();
6633         IRBuilder<> Builder(T);
6634         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6635           BB->removePredecessor(Predecessor);
6636           // Turn uncoditional branches into unreachables and remove the dead
6637           // destination from conditional branches.
6638           if (BI->isUnconditional())
6639             Builder.CreateUnreachable();
6640           else {
6641             // Preserve guarding condition in assume, because it might not be
6642             // inferrable from any dominating condition.
6643             Value *Cond = BI->getCondition();
6644             if (BI->getSuccessor(0) == BB)
6645               Builder.CreateAssumption(Builder.CreateNot(Cond));
6646             else
6647               Builder.CreateAssumption(Cond);
6648             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6649                                                        : BI->getSuccessor(0));
6650           }
6651           BI->eraseFromParent();
6652           if (DTU)
6653             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6654           return true;
6655         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
6656           // Redirect all branches leading to UB into
6657           // a newly created unreachable block.
6658           BasicBlock *Unreachable = BasicBlock::Create(
6659               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
6660           Builder.SetInsertPoint(Unreachable);
6661           // The new block contains only one instruction: Unreachable
6662           Builder.CreateUnreachable();
6663           for (auto &Case : SI->cases())
6664             if (Case.getCaseSuccessor() == BB) {
6665               BB->removePredecessor(Predecessor);
6666               Case.setSuccessor(Unreachable);
6667             }
6668           if (SI->getDefaultDest() == BB) {
6669             BB->removePredecessor(Predecessor);
6670             SI->setDefaultDest(Unreachable);
6671           }
6672 
6673           if (DTU)
6674             DTU->applyUpdates(
6675                 { { DominatorTree::Insert, Predecessor, Unreachable },
6676                   { DominatorTree::Delete, Predecessor, BB } });
6677           return true;
6678         }
6679       }
6680 
6681   return false;
6682 }
6683 
6684 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6685   bool Changed = false;
6686 
6687   assert(BB && BB->getParent() && "Block not embedded in function!");
6688   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6689 
6690   // Remove basic blocks that have no predecessors (except the entry block)...
6691   // or that just have themself as a predecessor.  These are unreachable.
6692   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6693       BB->getSinglePredecessor() == BB) {
6694     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6695     DeleteDeadBlock(BB, DTU);
6696     return true;
6697   }
6698 
6699   // Check to see if we can constant propagate this terminator instruction
6700   // away...
6701   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6702                                     /*TLI=*/nullptr, DTU);
6703 
6704   // Check for and eliminate duplicate PHI nodes in this block.
6705   Changed |= EliminateDuplicatePHINodes(BB);
6706 
6707   // Check for and remove branches that will always cause undefined behavior.
6708   if (removeUndefIntroducingPredecessor(BB, DTU))
6709     return requestResimplify();
6710 
6711   // Merge basic blocks into their predecessor if there is only one distinct
6712   // pred, and if there is only one distinct successor of the predecessor, and
6713   // if there are no PHI nodes.
6714   if (MergeBlockIntoPredecessor(BB, DTU))
6715     return true;
6716 
6717   if (SinkCommon && Options.SinkCommonInsts)
6718     if (SinkCommonCodeFromPredecessors(BB, DTU)) {
6719       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
6720       // so we may now how duplicate PHI's.
6721       // Let's rerun EliminateDuplicatePHINodes() first,
6722       // before FoldTwoEntryPHINode() potentially converts them into select's,
6723       // after which we'd need a whole EarlyCSE pass run to cleanup them.
6724       return true;
6725     }
6726 
6727   IRBuilder<> Builder(BB);
6728 
6729   if (Options.FoldTwoEntryPHINode) {
6730     // If there is a trivial two-entry PHI node in this basic block, and we can
6731     // eliminate it, do so now.
6732     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6733       if (PN->getNumIncomingValues() == 2)
6734         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
6735           return true;
6736   }
6737 
6738   Instruction *Terminator = BB->getTerminator();
6739   Builder.SetInsertPoint(Terminator);
6740   switch (Terminator->getOpcode()) {
6741   case Instruction::Br:
6742     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6743     break;
6744   case Instruction::Resume:
6745     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6746     break;
6747   case Instruction::CleanupRet:
6748     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6749     break;
6750   case Instruction::Switch:
6751     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6752     break;
6753   case Instruction::Unreachable:
6754     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6755     break;
6756   case Instruction::IndirectBr:
6757     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6758     break;
6759   }
6760 
6761   return Changed;
6762 }
6763 
6764 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6765   bool Changed = simplifyOnceImpl(BB);
6766 
6767   return Changed;
6768 }
6769 
6770 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6771   bool Changed = false;
6772 
6773   // Repeated simplify BB as long as resimplification is requested.
6774   do {
6775     Resimplify = false;
6776 
6777     // Perform one round of simplifcation. Resimplify flag will be set if
6778     // another iteration is requested.
6779     Changed |= simplifyOnce(BB);
6780   } while (Resimplify);
6781 
6782   return Changed;
6783 }
6784 
6785 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6786                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6787                        ArrayRef<WeakVH> LoopHeaders) {
6788   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6789                         Options)
6790       .run(BB);
6791 }
6792