1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include <algorithm> 47 #include <map> 48 #include <set> 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 #define DEBUG_TYPE "simplifycfg" 53 54 static cl::opt<unsigned> 55 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 56 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 57 58 static cl::opt<bool> 59 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 60 cl::desc("Duplicate return instructions into unconditional branches")); 61 62 static cl::opt<bool> 63 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 64 cl::desc("Sink common instructions down to the end block")); 65 66 static cl::opt<bool> HoistCondStores( 67 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 68 cl::desc("Hoist conditional stores if an unconditional store precedes")); 69 70 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 71 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 72 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 73 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 74 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 75 76 namespace { 77 /// ValueEqualityComparisonCase - Represents a case of a switch. 78 struct ValueEqualityComparisonCase { 79 ConstantInt *Value; 80 BasicBlock *Dest; 81 82 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 83 : Value(Value), Dest(Dest) {} 84 85 bool operator<(ValueEqualityComparisonCase RHS) const { 86 // Comparing pointers is ok as we only rely on the order for uniquing. 87 return Value < RHS.Value; 88 } 89 90 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 91 }; 92 93 class SimplifyCFGOpt { 94 const TargetTransformInfo &TTI; 95 const DataLayout *const DL; 96 Value *isValueEqualityComparison(TerminatorInst *TI); 97 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 98 std::vector<ValueEqualityComparisonCase> &Cases); 99 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 100 BasicBlock *Pred, 101 IRBuilder<> &Builder); 102 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 103 IRBuilder<> &Builder); 104 105 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 106 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 107 bool SimplifyUnreachable(UnreachableInst *UI); 108 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 109 bool SimplifyIndirectBr(IndirectBrInst *IBI); 110 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 111 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 112 113 public: 114 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *DL) 115 : TTI(TTI), DL(DL) {} 116 bool run(BasicBlock *BB); 117 }; 118 } 119 120 /// SafeToMergeTerminators - Return true if it is safe to merge these two 121 /// terminator instructions together. 122 /// 123 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 124 if (SI1 == SI2) return false; // Can't merge with self! 125 126 // It is not safe to merge these two switch instructions if they have a common 127 // successor, and if that successor has a PHI node, and if *that* PHI node has 128 // conflicting incoming values from the two switch blocks. 129 BasicBlock *SI1BB = SI1->getParent(); 130 BasicBlock *SI2BB = SI2->getParent(); 131 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 132 133 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 134 if (SI1Succs.count(*I)) 135 for (BasicBlock::iterator BBI = (*I)->begin(); 136 isa<PHINode>(BBI); ++BBI) { 137 PHINode *PN = cast<PHINode>(BBI); 138 if (PN->getIncomingValueForBlock(SI1BB) != 139 PN->getIncomingValueForBlock(SI2BB)) 140 return false; 141 } 142 143 return true; 144 } 145 146 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 147 /// to merge these two terminator instructions together, where SI1 is an 148 /// unconditional branch. PhiNodes will store all PHI nodes in common 149 /// successors. 150 /// 151 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 152 BranchInst *SI2, 153 Instruction *Cond, 154 SmallVectorImpl<PHINode*> &PhiNodes) { 155 if (SI1 == SI2) return false; // Can't merge with self! 156 assert(SI1->isUnconditional() && SI2->isConditional()); 157 158 // We fold the unconditional branch if we can easily update all PHI nodes in 159 // common successors: 160 // 1> We have a constant incoming value for the conditional branch; 161 // 2> We have "Cond" as the incoming value for the unconditional branch; 162 // 3> SI2->getCondition() and Cond have same operands. 163 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 164 if (!Ci2) return false; 165 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 166 Cond->getOperand(1) == Ci2->getOperand(1)) && 167 !(Cond->getOperand(0) == Ci2->getOperand(1) && 168 Cond->getOperand(1) == Ci2->getOperand(0))) 169 return false; 170 171 BasicBlock *SI1BB = SI1->getParent(); 172 BasicBlock *SI2BB = SI2->getParent(); 173 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 174 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 175 if (SI1Succs.count(*I)) 176 for (BasicBlock::iterator BBI = (*I)->begin(); 177 isa<PHINode>(BBI); ++BBI) { 178 PHINode *PN = cast<PHINode>(BBI); 179 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 180 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 181 return false; 182 PhiNodes.push_back(PN); 183 } 184 return true; 185 } 186 187 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 188 /// now be entries in it from the 'NewPred' block. The values that will be 189 /// flowing into the PHI nodes will be the same as those coming in from 190 /// ExistPred, an existing predecessor of Succ. 191 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 192 BasicBlock *ExistPred) { 193 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 194 195 PHINode *PN; 196 for (BasicBlock::iterator I = Succ->begin(); 197 (PN = dyn_cast<PHINode>(I)); ++I) 198 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 199 } 200 201 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 202 /// given instruction, which is assumed to be safe to speculate. 1 means 203 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 204 static unsigned ComputeSpeculationCost(const User *I) { 205 assert(isSafeToSpeculativelyExecute(I) && 206 "Instruction is not safe to speculatively execute!"); 207 switch (Operator::getOpcode(I)) { 208 default: 209 // In doubt, be conservative. 210 return UINT_MAX; 211 case Instruction::GetElementPtr: 212 // GEPs are cheap if all indices are constant. 213 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 214 return UINT_MAX; 215 return 1; 216 case Instruction::Load: 217 case Instruction::Add: 218 case Instruction::Sub: 219 case Instruction::And: 220 case Instruction::Or: 221 case Instruction::Xor: 222 case Instruction::Shl: 223 case Instruction::LShr: 224 case Instruction::AShr: 225 case Instruction::ICmp: 226 case Instruction::Trunc: 227 case Instruction::ZExt: 228 case Instruction::SExt: 229 return 1; // These are all cheap. 230 231 case Instruction::Call: 232 case Instruction::Select: 233 return 2; 234 } 235 } 236 237 /// DominatesMergePoint - If we have a merge point of an "if condition" as 238 /// accepted above, return true if the specified value dominates the block. We 239 /// don't handle the true generality of domination here, just a special case 240 /// which works well enough for us. 241 /// 242 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 243 /// see if V (which must be an instruction) and its recursive operands 244 /// that do not dominate BB have a combined cost lower than CostRemaining and 245 /// are non-trapping. If both are true, the instruction is inserted into the 246 /// set and true is returned. 247 /// 248 /// The cost for most non-trapping instructions is defined as 1 except for 249 /// Select whose cost is 2. 250 /// 251 /// After this function returns, CostRemaining is decreased by the cost of 252 /// V plus its non-dominating operands. If that cost is greater than 253 /// CostRemaining, false is returned and CostRemaining is undefined. 254 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 255 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 256 unsigned &CostRemaining) { 257 Instruction *I = dyn_cast<Instruction>(V); 258 if (!I) { 259 // Non-instructions all dominate instructions, but not all constantexprs 260 // can be executed unconditionally. 261 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 262 if (C->canTrap()) 263 return false; 264 return true; 265 } 266 BasicBlock *PBB = I->getParent(); 267 268 // We don't want to allow weird loops that might have the "if condition" in 269 // the bottom of this block. 270 if (PBB == BB) return false; 271 272 // If this instruction is defined in a block that contains an unconditional 273 // branch to BB, then it must be in the 'conditional' part of the "if 274 // statement". If not, it definitely dominates the region. 275 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 276 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 277 return true; 278 279 // If we aren't allowing aggressive promotion anymore, then don't consider 280 // instructions in the 'if region'. 281 if (!AggressiveInsts) return false; 282 283 // If we have seen this instruction before, don't count it again. 284 if (AggressiveInsts->count(I)) return true; 285 286 // Okay, it looks like the instruction IS in the "condition". Check to 287 // see if it's a cheap instruction to unconditionally compute, and if it 288 // only uses stuff defined outside of the condition. If so, hoist it out. 289 if (!isSafeToSpeculativelyExecute(I)) 290 return false; 291 292 unsigned Cost = ComputeSpeculationCost(I); 293 294 if (Cost > CostRemaining) 295 return false; 296 297 CostRemaining -= Cost; 298 299 // Okay, we can only really hoist these out if their operands do 300 // not take us over the cost threshold. 301 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 302 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 303 return false; 304 // Okay, it's safe to do this! Remember this instruction. 305 AggressiveInsts->insert(I); 306 return true; 307 } 308 309 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 310 /// and PointerNullValue. Return NULL if value is not a constant int. 311 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) { 312 // Normal constant int. 313 ConstantInt *CI = dyn_cast<ConstantInt>(V); 314 if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy()) 315 return CI; 316 317 // This is some kind of pointer constant. Turn it into a pointer-sized 318 // ConstantInt if possible. 319 IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType())); 320 321 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 322 if (isa<ConstantPointerNull>(V)) 323 return ConstantInt::get(PtrTy, 0); 324 325 // IntToPtr const int. 326 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 327 if (CE->getOpcode() == Instruction::IntToPtr) 328 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 329 // The constant is very likely to have the right type already. 330 if (CI->getType() == PtrTy) 331 return CI; 332 else 333 return cast<ConstantInt> 334 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 335 } 336 return nullptr; 337 } 338 339 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 340 /// collection of icmp eq/ne instructions that compare a value against a 341 /// constant, return the value being compared, and stick the constant into the 342 /// Values vector. 343 static Value * 344 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 345 const DataLayout *DL, bool isEQ, unsigned &UsedICmps) { 346 Instruction *I = dyn_cast<Instruction>(V); 347 if (!I) return nullptr; 348 349 // If this is an icmp against a constant, handle this as one of the cases. 350 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 351 if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) { 352 Value *RHSVal; 353 ConstantInt *RHSC; 354 355 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 356 // (x & ~2^x) == y --> x == y || x == y|2^x 357 // This undoes a transformation done by instcombine to fuse 2 compares. 358 if (match(ICI->getOperand(0), 359 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 360 APInt Not = ~RHSC->getValue(); 361 if (Not.isPowerOf2()) { 362 Vals.push_back(C); 363 Vals.push_back( 364 ConstantInt::get(C->getContext(), C->getValue() | Not)); 365 UsedICmps++; 366 return RHSVal; 367 } 368 } 369 370 UsedICmps++; 371 Vals.push_back(C); 372 return I->getOperand(0); 373 } 374 375 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 376 // the set. 377 ConstantRange Span = 378 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 379 380 // Shift the range if the compare is fed by an add. This is the range 381 // compare idiom as emitted by instcombine. 382 bool hasAdd = 383 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC))); 384 if (hasAdd) 385 Span = Span.subtract(RHSC->getValue()); 386 387 // If this is an and/!= check then we want to optimize "x ugt 2" into 388 // x != 0 && x != 1. 389 if (!isEQ) 390 Span = Span.inverse(); 391 392 // If there are a ton of values, we don't want to make a ginormous switch. 393 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 394 return nullptr; 395 396 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 397 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 398 UsedICmps++; 399 return hasAdd ? RHSVal : I->getOperand(0); 400 } 401 return nullptr; 402 } 403 404 // Otherwise, we can only handle an | or &, depending on isEQ. 405 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 406 return nullptr; 407 408 unsigned NumValsBeforeLHS = Vals.size(); 409 unsigned UsedICmpsBeforeLHS = UsedICmps; 410 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL, 411 isEQ, UsedICmps)) { 412 unsigned NumVals = Vals.size(); 413 unsigned UsedICmpsBeforeRHS = UsedICmps; 414 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 415 isEQ, UsedICmps)) { 416 if (LHS == RHS) 417 return LHS; 418 Vals.resize(NumVals); 419 UsedICmps = UsedICmpsBeforeRHS; 420 } 421 422 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 423 // set it and return success. 424 if (Extra == nullptr || Extra == I->getOperand(1)) { 425 Extra = I->getOperand(1); 426 return LHS; 427 } 428 429 Vals.resize(NumValsBeforeLHS); 430 UsedICmps = UsedICmpsBeforeLHS; 431 return nullptr; 432 } 433 434 // If the LHS can't be folded in, but Extra is available and RHS can, try to 435 // use LHS as Extra. 436 if (Extra == nullptr || Extra == I->getOperand(0)) { 437 Value *OldExtra = Extra; 438 Extra = I->getOperand(0); 439 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 440 isEQ, UsedICmps)) 441 return RHS; 442 assert(Vals.size() == NumValsBeforeLHS); 443 Extra = OldExtra; 444 } 445 446 return nullptr; 447 } 448 449 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 450 Instruction *Cond = nullptr; 451 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 452 Cond = dyn_cast<Instruction>(SI->getCondition()); 453 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 454 if (BI->isConditional()) 455 Cond = dyn_cast<Instruction>(BI->getCondition()); 456 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 457 Cond = dyn_cast<Instruction>(IBI->getAddress()); 458 } 459 460 TI->eraseFromParent(); 461 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 462 } 463 464 /// isValueEqualityComparison - Return true if the specified terminator checks 465 /// to see if a value is equal to constant integer value. 466 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 467 Value *CV = nullptr; 468 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 469 // Do not permit merging of large switch instructions into their 470 // predecessors unless there is only one predecessor. 471 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 472 pred_end(SI->getParent())) <= 128) 473 CV = SI->getCondition(); 474 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 475 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 476 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 477 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 478 CV = ICI->getOperand(0); 479 480 // Unwrap any lossless ptrtoint cast. 481 if (DL && CV) { 482 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 483 Value *Ptr = PTII->getPointerOperand(); 484 if (PTII->getType() == DL->getIntPtrType(Ptr->getType())) 485 CV = Ptr; 486 } 487 } 488 return CV; 489 } 490 491 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 492 /// decode all of the 'cases' that it represents and return the 'default' block. 493 BasicBlock *SimplifyCFGOpt:: 494 GetValueEqualityComparisonCases(TerminatorInst *TI, 495 std::vector<ValueEqualityComparisonCase> 496 &Cases) { 497 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 498 Cases.reserve(SI->getNumCases()); 499 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 500 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 501 i.getCaseSuccessor())); 502 return SI->getDefaultDest(); 503 } 504 505 BranchInst *BI = cast<BranchInst>(TI); 506 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 507 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 508 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 509 DL), 510 Succ)); 511 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 512 } 513 514 515 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 516 /// in the list that match the specified block. 517 static void EliminateBlockCases(BasicBlock *BB, 518 std::vector<ValueEqualityComparisonCase> &Cases) { 519 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 520 } 521 522 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 523 /// well. 524 static bool 525 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 526 std::vector<ValueEqualityComparisonCase > &C2) { 527 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 528 529 // Make V1 be smaller than V2. 530 if (V1->size() > V2->size()) 531 std::swap(V1, V2); 532 533 if (V1->size() == 0) return false; 534 if (V1->size() == 1) { 535 // Just scan V2. 536 ConstantInt *TheVal = (*V1)[0].Value; 537 for (unsigned i = 0, e = V2->size(); i != e; ++i) 538 if (TheVal == (*V2)[i].Value) 539 return true; 540 } 541 542 // Otherwise, just sort both lists and compare element by element. 543 array_pod_sort(V1->begin(), V1->end()); 544 array_pod_sort(V2->begin(), V2->end()); 545 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 546 while (i1 != e1 && i2 != e2) { 547 if ((*V1)[i1].Value == (*V2)[i2].Value) 548 return true; 549 if ((*V1)[i1].Value < (*V2)[i2].Value) 550 ++i1; 551 else 552 ++i2; 553 } 554 return false; 555 } 556 557 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 558 /// terminator instruction and its block is known to only have a single 559 /// predecessor block, check to see if that predecessor is also a value 560 /// comparison with the same value, and if that comparison determines the 561 /// outcome of this comparison. If so, simplify TI. This does a very limited 562 /// form of jump threading. 563 bool SimplifyCFGOpt:: 564 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 565 BasicBlock *Pred, 566 IRBuilder<> &Builder) { 567 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 568 if (!PredVal) return false; // Not a value comparison in predecessor. 569 570 Value *ThisVal = isValueEqualityComparison(TI); 571 assert(ThisVal && "This isn't a value comparison!!"); 572 if (ThisVal != PredVal) return false; // Different predicates. 573 574 // TODO: Preserve branch weight metadata, similarly to how 575 // FoldValueComparisonIntoPredecessors preserves it. 576 577 // Find out information about when control will move from Pred to TI's block. 578 std::vector<ValueEqualityComparisonCase> PredCases; 579 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 580 PredCases); 581 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 582 583 // Find information about how control leaves this block. 584 std::vector<ValueEqualityComparisonCase> ThisCases; 585 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 586 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 587 588 // If TI's block is the default block from Pred's comparison, potentially 589 // simplify TI based on this knowledge. 590 if (PredDef == TI->getParent()) { 591 // If we are here, we know that the value is none of those cases listed in 592 // PredCases. If there are any cases in ThisCases that are in PredCases, we 593 // can simplify TI. 594 if (!ValuesOverlap(PredCases, ThisCases)) 595 return false; 596 597 if (isa<BranchInst>(TI)) { 598 // Okay, one of the successors of this condbr is dead. Convert it to a 599 // uncond br. 600 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 601 // Insert the new branch. 602 Instruction *NI = Builder.CreateBr(ThisDef); 603 (void) NI; 604 605 // Remove PHI node entries for the dead edge. 606 ThisCases[0].Dest->removePredecessor(TI->getParent()); 607 608 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 609 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 610 611 EraseTerminatorInstAndDCECond(TI); 612 return true; 613 } 614 615 SwitchInst *SI = cast<SwitchInst>(TI); 616 // Okay, TI has cases that are statically dead, prune them away. 617 SmallPtrSet<Constant*, 16> DeadCases; 618 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 619 DeadCases.insert(PredCases[i].Value); 620 621 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 622 << "Through successor TI: " << *TI); 623 624 // Collect branch weights into a vector. 625 SmallVector<uint32_t, 8> Weights; 626 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 627 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 628 if (HasWeight) 629 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 630 ++MD_i) { 631 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 632 assert(CI); 633 Weights.push_back(CI->getValue().getZExtValue()); 634 } 635 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 636 --i; 637 if (DeadCases.count(i.getCaseValue())) { 638 if (HasWeight) { 639 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 640 Weights.pop_back(); 641 } 642 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 643 SI->removeCase(i); 644 } 645 } 646 if (HasWeight && Weights.size() >= 2) 647 SI->setMetadata(LLVMContext::MD_prof, 648 MDBuilder(SI->getParent()->getContext()). 649 createBranchWeights(Weights)); 650 651 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 652 return true; 653 } 654 655 // Otherwise, TI's block must correspond to some matched value. Find out 656 // which value (or set of values) this is. 657 ConstantInt *TIV = nullptr; 658 BasicBlock *TIBB = TI->getParent(); 659 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 660 if (PredCases[i].Dest == TIBB) { 661 if (TIV) 662 return false; // Cannot handle multiple values coming to this block. 663 TIV = PredCases[i].Value; 664 } 665 assert(TIV && "No edge from pred to succ?"); 666 667 // Okay, we found the one constant that our value can be if we get into TI's 668 // BB. Find out which successor will unconditionally be branched to. 669 BasicBlock *TheRealDest = nullptr; 670 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 671 if (ThisCases[i].Value == TIV) { 672 TheRealDest = ThisCases[i].Dest; 673 break; 674 } 675 676 // If not handled by any explicit cases, it is handled by the default case. 677 if (!TheRealDest) TheRealDest = ThisDef; 678 679 // Remove PHI node entries for dead edges. 680 BasicBlock *CheckEdge = TheRealDest; 681 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 682 if (*SI != CheckEdge) 683 (*SI)->removePredecessor(TIBB); 684 else 685 CheckEdge = nullptr; 686 687 // Insert the new branch. 688 Instruction *NI = Builder.CreateBr(TheRealDest); 689 (void) NI; 690 691 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 692 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 693 694 EraseTerminatorInstAndDCECond(TI); 695 return true; 696 } 697 698 namespace { 699 /// ConstantIntOrdering - This class implements a stable ordering of constant 700 /// integers that does not depend on their address. This is important for 701 /// applications that sort ConstantInt's to ensure uniqueness. 702 struct ConstantIntOrdering { 703 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 704 return LHS->getValue().ult(RHS->getValue()); 705 } 706 }; 707 } 708 709 static int ConstantIntSortPredicate(ConstantInt *const *P1, 710 ConstantInt *const *P2) { 711 const ConstantInt *LHS = *P1; 712 const ConstantInt *RHS = *P2; 713 if (LHS->getValue().ult(RHS->getValue())) 714 return 1; 715 if (LHS->getValue() == RHS->getValue()) 716 return 0; 717 return -1; 718 } 719 720 static inline bool HasBranchWeights(const Instruction* I) { 721 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 722 if (ProfMD && ProfMD->getOperand(0)) 723 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 724 return MDS->getString().equals("branch_weights"); 725 726 return false; 727 } 728 729 /// Get Weights of a given TerminatorInst, the default weight is at the front 730 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 731 /// metadata. 732 static void GetBranchWeights(TerminatorInst *TI, 733 SmallVectorImpl<uint64_t> &Weights) { 734 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 735 assert(MD); 736 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 737 ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i)); 738 Weights.push_back(CI->getValue().getZExtValue()); 739 } 740 741 // If TI is a conditional eq, the default case is the false case, 742 // and the corresponding branch-weight data is at index 2. We swap the 743 // default weight to be the first entry. 744 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 745 assert(Weights.size() == 2); 746 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 747 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 748 std::swap(Weights.front(), Weights.back()); 749 } 750 } 751 752 /// Keep halving the weights until all can fit in uint32_t. 753 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 754 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 755 if (Max > UINT_MAX) { 756 unsigned Offset = 32 - countLeadingZeros(Max); 757 for (uint64_t &I : Weights) 758 I >>= Offset; 759 } 760 } 761 762 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 763 /// equality comparison instruction (either a switch or a branch on "X == c"). 764 /// See if any of the predecessors of the terminator block are value comparisons 765 /// on the same value. If so, and if safe to do so, fold them together. 766 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 767 IRBuilder<> &Builder) { 768 BasicBlock *BB = TI->getParent(); 769 Value *CV = isValueEqualityComparison(TI); // CondVal 770 assert(CV && "Not a comparison?"); 771 bool Changed = false; 772 773 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 774 while (!Preds.empty()) { 775 BasicBlock *Pred = Preds.pop_back_val(); 776 777 // See if the predecessor is a comparison with the same value. 778 TerminatorInst *PTI = Pred->getTerminator(); 779 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 780 781 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 782 // Figure out which 'cases' to copy from SI to PSI. 783 std::vector<ValueEqualityComparisonCase> BBCases; 784 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 785 786 std::vector<ValueEqualityComparisonCase> PredCases; 787 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 788 789 // Based on whether the default edge from PTI goes to BB or not, fill in 790 // PredCases and PredDefault with the new switch cases we would like to 791 // build. 792 SmallVector<BasicBlock*, 8> NewSuccessors; 793 794 // Update the branch weight metadata along the way 795 SmallVector<uint64_t, 8> Weights; 796 bool PredHasWeights = HasBranchWeights(PTI); 797 bool SuccHasWeights = HasBranchWeights(TI); 798 799 if (PredHasWeights) { 800 GetBranchWeights(PTI, Weights); 801 // branch-weight metadata is inconsistent here. 802 if (Weights.size() != 1 + PredCases.size()) 803 PredHasWeights = SuccHasWeights = false; 804 } else if (SuccHasWeights) 805 // If there are no predecessor weights but there are successor weights, 806 // populate Weights with 1, which will later be scaled to the sum of 807 // successor's weights 808 Weights.assign(1 + PredCases.size(), 1); 809 810 SmallVector<uint64_t, 8> SuccWeights; 811 if (SuccHasWeights) { 812 GetBranchWeights(TI, SuccWeights); 813 // branch-weight metadata is inconsistent here. 814 if (SuccWeights.size() != 1 + BBCases.size()) 815 PredHasWeights = SuccHasWeights = false; 816 } else if (PredHasWeights) 817 SuccWeights.assign(1 + BBCases.size(), 1); 818 819 if (PredDefault == BB) { 820 // If this is the default destination from PTI, only the edges in TI 821 // that don't occur in PTI, or that branch to BB will be activated. 822 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 823 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 824 if (PredCases[i].Dest != BB) 825 PTIHandled.insert(PredCases[i].Value); 826 else { 827 // The default destination is BB, we don't need explicit targets. 828 std::swap(PredCases[i], PredCases.back()); 829 830 if (PredHasWeights || SuccHasWeights) { 831 // Increase weight for the default case. 832 Weights[0] += Weights[i+1]; 833 std::swap(Weights[i+1], Weights.back()); 834 Weights.pop_back(); 835 } 836 837 PredCases.pop_back(); 838 --i; --e; 839 } 840 841 // Reconstruct the new switch statement we will be building. 842 if (PredDefault != BBDefault) { 843 PredDefault->removePredecessor(Pred); 844 PredDefault = BBDefault; 845 NewSuccessors.push_back(BBDefault); 846 } 847 848 unsigned CasesFromPred = Weights.size(); 849 uint64_t ValidTotalSuccWeight = 0; 850 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 851 if (!PTIHandled.count(BBCases[i].Value) && 852 BBCases[i].Dest != BBDefault) { 853 PredCases.push_back(BBCases[i]); 854 NewSuccessors.push_back(BBCases[i].Dest); 855 if (SuccHasWeights || PredHasWeights) { 856 // The default weight is at index 0, so weight for the ith case 857 // should be at index i+1. Scale the cases from successor by 858 // PredDefaultWeight (Weights[0]). 859 Weights.push_back(Weights[0] * SuccWeights[i+1]); 860 ValidTotalSuccWeight += SuccWeights[i+1]; 861 } 862 } 863 864 if (SuccHasWeights || PredHasWeights) { 865 ValidTotalSuccWeight += SuccWeights[0]; 866 // Scale the cases from predecessor by ValidTotalSuccWeight. 867 for (unsigned i = 1; i < CasesFromPred; ++i) 868 Weights[i] *= ValidTotalSuccWeight; 869 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 870 Weights[0] *= SuccWeights[0]; 871 } 872 } else { 873 // If this is not the default destination from PSI, only the edges 874 // in SI that occur in PSI with a destination of BB will be 875 // activated. 876 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 877 std::map<ConstantInt*, uint64_t> WeightsForHandled; 878 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 879 if (PredCases[i].Dest == BB) { 880 PTIHandled.insert(PredCases[i].Value); 881 882 if (PredHasWeights || SuccHasWeights) { 883 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 884 std::swap(Weights[i+1], Weights.back()); 885 Weights.pop_back(); 886 } 887 888 std::swap(PredCases[i], PredCases.back()); 889 PredCases.pop_back(); 890 --i; --e; 891 } 892 893 // Okay, now we know which constants were sent to BB from the 894 // predecessor. Figure out where they will all go now. 895 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 896 if (PTIHandled.count(BBCases[i].Value)) { 897 // If this is one we are capable of getting... 898 if (PredHasWeights || SuccHasWeights) 899 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 900 PredCases.push_back(BBCases[i]); 901 NewSuccessors.push_back(BBCases[i].Dest); 902 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 903 } 904 905 // If there are any constants vectored to BB that TI doesn't handle, 906 // they must go to the default destination of TI. 907 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 908 PTIHandled.begin(), 909 E = PTIHandled.end(); I != E; ++I) { 910 if (PredHasWeights || SuccHasWeights) 911 Weights.push_back(WeightsForHandled[*I]); 912 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 913 NewSuccessors.push_back(BBDefault); 914 } 915 } 916 917 // Okay, at this point, we know which new successor Pred will get. Make 918 // sure we update the number of entries in the PHI nodes for these 919 // successors. 920 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 921 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 922 923 Builder.SetInsertPoint(PTI); 924 // Convert pointer to int before we switch. 925 if (CV->getType()->isPointerTy()) { 926 assert(DL && "Cannot switch on pointer without DataLayout"); 927 CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()), 928 "magicptr"); 929 } 930 931 // Now that the successors are updated, create the new Switch instruction. 932 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 933 PredCases.size()); 934 NewSI->setDebugLoc(PTI->getDebugLoc()); 935 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 936 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 937 938 if (PredHasWeights || SuccHasWeights) { 939 // Halve the weights if any of them cannot fit in an uint32_t 940 FitWeights(Weights); 941 942 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 943 944 NewSI->setMetadata(LLVMContext::MD_prof, 945 MDBuilder(BB->getContext()). 946 createBranchWeights(MDWeights)); 947 } 948 949 EraseTerminatorInstAndDCECond(PTI); 950 951 // Okay, last check. If BB is still a successor of PSI, then we must 952 // have an infinite loop case. If so, add an infinitely looping block 953 // to handle the case to preserve the behavior of the code. 954 BasicBlock *InfLoopBlock = nullptr; 955 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 956 if (NewSI->getSuccessor(i) == BB) { 957 if (!InfLoopBlock) { 958 // Insert it at the end of the function, because it's either code, 959 // or it won't matter if it's hot. :) 960 InfLoopBlock = BasicBlock::Create(BB->getContext(), 961 "infloop", BB->getParent()); 962 BranchInst::Create(InfLoopBlock, InfLoopBlock); 963 } 964 NewSI->setSuccessor(i, InfLoopBlock); 965 } 966 967 Changed = true; 968 } 969 } 970 return Changed; 971 } 972 973 // isSafeToHoistInvoke - If we would need to insert a select that uses the 974 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 975 // would need to do this), we can't hoist the invoke, as there is nowhere 976 // to put the select in this case. 977 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 978 Instruction *I1, Instruction *I2) { 979 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 980 PHINode *PN; 981 for (BasicBlock::iterator BBI = SI->begin(); 982 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 983 Value *BB1V = PN->getIncomingValueForBlock(BB1); 984 Value *BB2V = PN->getIncomingValueForBlock(BB2); 985 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 986 return false; 987 } 988 } 989 } 990 return true; 991 } 992 993 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 994 /// BB2, hoist any common code in the two blocks up into the branch block. The 995 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 996 static bool HoistThenElseCodeToIf(BranchInst *BI) { 997 // This does very trivial matching, with limited scanning, to find identical 998 // instructions in the two blocks. In particular, we don't want to get into 999 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1000 // such, we currently just scan for obviously identical instructions in an 1001 // identical order. 1002 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1003 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1004 1005 BasicBlock::iterator BB1_Itr = BB1->begin(); 1006 BasicBlock::iterator BB2_Itr = BB2->begin(); 1007 1008 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1009 // Skip debug info if it is not identical. 1010 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1011 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1012 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1013 while (isa<DbgInfoIntrinsic>(I1)) 1014 I1 = BB1_Itr++; 1015 while (isa<DbgInfoIntrinsic>(I2)) 1016 I2 = BB2_Itr++; 1017 } 1018 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1019 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1020 return false; 1021 1022 BasicBlock *BIParent = BI->getParent(); 1023 1024 bool Changed = false; 1025 do { 1026 // If we are hoisting the terminator instruction, don't move one (making a 1027 // broken BB), instead clone it, and remove BI. 1028 if (isa<TerminatorInst>(I1)) 1029 goto HoistTerminator; 1030 1031 // For a normal instruction, we just move one to right before the branch, 1032 // then replace all uses of the other with the first. Finally, we remove 1033 // the now redundant second instruction. 1034 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1035 if (!I2->use_empty()) 1036 I2->replaceAllUsesWith(I1); 1037 I1->intersectOptionalDataWith(I2); 1038 I2->eraseFromParent(); 1039 Changed = true; 1040 1041 I1 = BB1_Itr++; 1042 I2 = BB2_Itr++; 1043 // Skip debug info if it is not identical. 1044 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1045 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1046 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1047 while (isa<DbgInfoIntrinsic>(I1)) 1048 I1 = BB1_Itr++; 1049 while (isa<DbgInfoIntrinsic>(I2)) 1050 I2 = BB2_Itr++; 1051 } 1052 } while (I1->isIdenticalToWhenDefined(I2)); 1053 1054 return true; 1055 1056 HoistTerminator: 1057 // It may not be possible to hoist an invoke. 1058 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1059 return Changed; 1060 1061 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1062 PHINode *PN; 1063 for (BasicBlock::iterator BBI = SI->begin(); 1064 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1065 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1066 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1067 if (BB1V == BB2V) 1068 continue; 1069 1070 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1071 return Changed; 1072 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1073 return Changed; 1074 } 1075 } 1076 1077 // Okay, it is safe to hoist the terminator. 1078 Instruction *NT = I1->clone(); 1079 BIParent->getInstList().insert(BI, NT); 1080 if (!NT->getType()->isVoidTy()) { 1081 I1->replaceAllUsesWith(NT); 1082 I2->replaceAllUsesWith(NT); 1083 NT->takeName(I1); 1084 } 1085 1086 IRBuilder<true, NoFolder> Builder(NT); 1087 // Hoisting one of the terminators from our successor is a great thing. 1088 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1089 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1090 // nodes, so we insert select instruction to compute the final result. 1091 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1092 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1093 PHINode *PN; 1094 for (BasicBlock::iterator BBI = SI->begin(); 1095 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1096 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1097 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1098 if (BB1V == BB2V) continue; 1099 1100 // These values do not agree. Insert a select instruction before NT 1101 // that determines the right value. 1102 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1103 if (!SI) 1104 SI = cast<SelectInst> 1105 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1106 BB1V->getName()+"."+BB2V->getName())); 1107 1108 // Make the PHI node use the select for all incoming values for BB1/BB2 1109 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1110 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1111 PN->setIncomingValue(i, SI); 1112 } 1113 } 1114 1115 // Update any PHI nodes in our new successors. 1116 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1117 AddPredecessorToBlock(*SI, BIParent, BB1); 1118 1119 EraseTerminatorInstAndDCECond(BI); 1120 return true; 1121 } 1122 1123 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1124 /// check whether BBEnd has only two predecessors and the other predecessor 1125 /// ends with an unconditional branch. If it is true, sink any common code 1126 /// in the two predecessors to BBEnd. 1127 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1128 assert(BI1->isUnconditional()); 1129 BasicBlock *BB1 = BI1->getParent(); 1130 BasicBlock *BBEnd = BI1->getSuccessor(0); 1131 1132 // Check that BBEnd has two predecessors and the other predecessor ends with 1133 // an unconditional branch. 1134 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1135 BasicBlock *Pred0 = *PI++; 1136 if (PI == PE) // Only one predecessor. 1137 return false; 1138 BasicBlock *Pred1 = *PI++; 1139 if (PI != PE) // More than two predecessors. 1140 return false; 1141 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1142 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1143 if (!BI2 || !BI2->isUnconditional()) 1144 return false; 1145 1146 // Gather the PHI nodes in BBEnd. 1147 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1148 Instruction *FirstNonPhiInBBEnd = nullptr; 1149 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1150 I != E; ++I) { 1151 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1152 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1153 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1154 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1155 } else { 1156 FirstNonPhiInBBEnd = &*I; 1157 break; 1158 } 1159 } 1160 if (!FirstNonPhiInBBEnd) 1161 return false; 1162 1163 1164 // This does very trivial matching, with limited scanning, to find identical 1165 // instructions in the two blocks. We scan backward for obviously identical 1166 // instructions in an identical order. 1167 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1168 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1169 RE2 = BB2->getInstList().rend(); 1170 // Skip debug info. 1171 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1172 if (RI1 == RE1) 1173 return false; 1174 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1175 if (RI2 == RE2) 1176 return false; 1177 // Skip the unconditional branches. 1178 ++RI1; 1179 ++RI2; 1180 1181 bool Changed = false; 1182 while (RI1 != RE1 && RI2 != RE2) { 1183 // Skip debug info. 1184 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1185 if (RI1 == RE1) 1186 return Changed; 1187 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1188 if (RI2 == RE2) 1189 return Changed; 1190 1191 Instruction *I1 = &*RI1, *I2 = &*RI2; 1192 // I1 and I2 should have a single use in the same PHI node, and they 1193 // perform the same operation. 1194 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1195 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1196 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1197 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1198 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1199 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1200 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1201 !I1->hasOneUse() || !I2->hasOneUse() || 1202 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1203 MapValueFromBB1ToBB2[I1].first != I2) 1204 return Changed; 1205 1206 // Check whether we should swap the operands of ICmpInst. 1207 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1208 bool SwapOpnds = false; 1209 if (ICmp1 && ICmp2 && 1210 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1211 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1212 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1213 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1214 ICmp2->swapOperands(); 1215 SwapOpnds = true; 1216 } 1217 if (!I1->isSameOperationAs(I2)) { 1218 if (SwapOpnds) 1219 ICmp2->swapOperands(); 1220 return Changed; 1221 } 1222 1223 // The operands should be either the same or they need to be generated 1224 // with a PHI node after sinking. We only handle the case where there is 1225 // a single pair of different operands. 1226 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1227 unsigned Op1Idx = 0; 1228 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1229 if (I1->getOperand(I) == I2->getOperand(I)) 1230 continue; 1231 // Early exit if we have more-than one pair of different operands or 1232 // the different operand is already in MapValueFromBB1ToBB2. 1233 // Early exit if we need a PHI node to replace a constant. 1234 if (DifferentOp1 || 1235 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1236 MapValueFromBB1ToBB2.end() || 1237 isa<Constant>(I1->getOperand(I)) || 1238 isa<Constant>(I2->getOperand(I))) { 1239 // If we can't sink the instructions, undo the swapping. 1240 if (SwapOpnds) 1241 ICmp2->swapOperands(); 1242 return Changed; 1243 } 1244 DifferentOp1 = I1->getOperand(I); 1245 Op1Idx = I; 1246 DifferentOp2 = I2->getOperand(I); 1247 } 1248 1249 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1250 // remove (I1, I2) from MapValueFromBB1ToBB2. 1251 if (DifferentOp1) { 1252 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1253 DifferentOp1->getName() + ".sink", 1254 BBEnd->begin()); 1255 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1256 // I1 should use NewPN instead of DifferentOp1. 1257 I1->setOperand(Op1Idx, NewPN); 1258 NewPN->addIncoming(DifferentOp1, BB1); 1259 NewPN->addIncoming(DifferentOp2, BB2); 1260 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1261 } 1262 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1263 MapValueFromBB1ToBB2.erase(I1); 1264 1265 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1266 DEBUG(dbgs() << " " << *I2 << "\n";); 1267 // We need to update RE1 and RE2 if we are going to sink the first 1268 // instruction in the basic block down. 1269 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1270 // Sink the instruction. 1271 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1272 if (!OldPN->use_empty()) 1273 OldPN->replaceAllUsesWith(I1); 1274 OldPN->eraseFromParent(); 1275 1276 if (!I2->use_empty()) 1277 I2->replaceAllUsesWith(I1); 1278 I1->intersectOptionalDataWith(I2); 1279 I2->eraseFromParent(); 1280 1281 if (UpdateRE1) 1282 RE1 = BB1->getInstList().rend(); 1283 if (UpdateRE2) 1284 RE2 = BB2->getInstList().rend(); 1285 FirstNonPhiInBBEnd = I1; 1286 NumSinkCommons++; 1287 Changed = true; 1288 } 1289 return Changed; 1290 } 1291 1292 /// \brief Determine if we can hoist sink a sole store instruction out of a 1293 /// conditional block. 1294 /// 1295 /// We are looking for code like the following: 1296 /// BrBB: 1297 /// store i32 %add, i32* %arrayidx2 1298 /// ... // No other stores or function calls (we could be calling a memory 1299 /// ... // function). 1300 /// %cmp = icmp ult %x, %y 1301 /// br i1 %cmp, label %EndBB, label %ThenBB 1302 /// ThenBB: 1303 /// store i32 %add5, i32* %arrayidx2 1304 /// br label EndBB 1305 /// EndBB: 1306 /// ... 1307 /// We are going to transform this into: 1308 /// BrBB: 1309 /// store i32 %add, i32* %arrayidx2 1310 /// ... // 1311 /// %cmp = icmp ult %x, %y 1312 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1313 /// store i32 %add.add5, i32* %arrayidx2 1314 /// ... 1315 /// 1316 /// \return The pointer to the value of the previous store if the store can be 1317 /// hoisted into the predecessor block. 0 otherwise. 1318 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1319 BasicBlock *StoreBB, BasicBlock *EndBB) { 1320 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1321 if (!StoreToHoist) 1322 return nullptr; 1323 1324 // Volatile or atomic. 1325 if (!StoreToHoist->isSimple()) 1326 return nullptr; 1327 1328 Value *StorePtr = StoreToHoist->getPointerOperand(); 1329 1330 // Look for a store to the same pointer in BrBB. 1331 unsigned MaxNumInstToLookAt = 10; 1332 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1333 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1334 Instruction *CurI = &*RI; 1335 1336 // Could be calling an instruction that effects memory like free(). 1337 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1338 return nullptr; 1339 1340 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1341 // Found the previous store make sure it stores to the same location. 1342 if (SI && SI->getPointerOperand() == StorePtr) 1343 // Found the previous store, return its value operand. 1344 return SI->getValueOperand(); 1345 else if (SI) 1346 return nullptr; // Unknown store. 1347 } 1348 1349 return nullptr; 1350 } 1351 1352 /// \brief Speculate a conditional basic block flattening the CFG. 1353 /// 1354 /// Note that this is a very risky transform currently. Speculating 1355 /// instructions like this is most often not desirable. Instead, there is an MI 1356 /// pass which can do it with full awareness of the resource constraints. 1357 /// However, some cases are "obvious" and we should do directly. An example of 1358 /// this is speculating a single, reasonably cheap instruction. 1359 /// 1360 /// There is only one distinct advantage to flattening the CFG at the IR level: 1361 /// it makes very common but simplistic optimizations such as are common in 1362 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1363 /// modeling their effects with easier to reason about SSA value graphs. 1364 /// 1365 /// 1366 /// An illustration of this transform is turning this IR: 1367 /// \code 1368 /// BB: 1369 /// %cmp = icmp ult %x, %y 1370 /// br i1 %cmp, label %EndBB, label %ThenBB 1371 /// ThenBB: 1372 /// %sub = sub %x, %y 1373 /// br label BB2 1374 /// EndBB: 1375 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1376 /// ... 1377 /// \endcode 1378 /// 1379 /// Into this IR: 1380 /// \code 1381 /// BB: 1382 /// %cmp = icmp ult %x, %y 1383 /// %sub = sub %x, %y 1384 /// %cond = select i1 %cmp, 0, %sub 1385 /// ... 1386 /// \endcode 1387 /// 1388 /// \returns true if the conditional block is removed. 1389 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) { 1390 // Be conservative for now. FP select instruction can often be expensive. 1391 Value *BrCond = BI->getCondition(); 1392 if (isa<FCmpInst>(BrCond)) 1393 return false; 1394 1395 BasicBlock *BB = BI->getParent(); 1396 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1397 1398 // If ThenBB is actually on the false edge of the conditional branch, remember 1399 // to swap the select operands later. 1400 bool Invert = false; 1401 if (ThenBB != BI->getSuccessor(0)) { 1402 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1403 Invert = true; 1404 } 1405 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1406 1407 // Keep a count of how many times instructions are used within CondBB when 1408 // they are candidates for sinking into CondBB. Specifically: 1409 // - They are defined in BB, and 1410 // - They have no side effects, and 1411 // - All of their uses are in CondBB. 1412 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1413 1414 unsigned SpeculationCost = 0; 1415 Value *SpeculatedStoreValue = nullptr; 1416 StoreInst *SpeculatedStore = nullptr; 1417 for (BasicBlock::iterator BBI = ThenBB->begin(), 1418 BBE = std::prev(ThenBB->end()); 1419 BBI != BBE; ++BBI) { 1420 Instruction *I = BBI; 1421 // Skip debug info. 1422 if (isa<DbgInfoIntrinsic>(I)) 1423 continue; 1424 1425 // Only speculatively execution a single instruction (not counting the 1426 // terminator) for now. 1427 ++SpeculationCost; 1428 if (SpeculationCost > 1) 1429 return false; 1430 1431 // Don't hoist the instruction if it's unsafe or expensive. 1432 if (!isSafeToSpeculativelyExecute(I) && 1433 !(HoistCondStores && 1434 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1435 EndBB)))) 1436 return false; 1437 if (!SpeculatedStoreValue && 1438 ComputeSpeculationCost(I) > PHINodeFoldingThreshold) 1439 return false; 1440 1441 // Store the store speculation candidate. 1442 if (SpeculatedStoreValue) 1443 SpeculatedStore = cast<StoreInst>(I); 1444 1445 // Do not hoist the instruction if any of its operands are defined but not 1446 // used in BB. The transformation will prevent the operand from 1447 // being sunk into the use block. 1448 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1449 i != e; ++i) { 1450 Instruction *OpI = dyn_cast<Instruction>(*i); 1451 if (!OpI || OpI->getParent() != BB || 1452 OpI->mayHaveSideEffects()) 1453 continue; // Not a candidate for sinking. 1454 1455 ++SinkCandidateUseCounts[OpI]; 1456 } 1457 } 1458 1459 // Consider any sink candidates which are only used in CondBB as costs for 1460 // speculation. Note, while we iterate over a DenseMap here, we are summing 1461 // and so iteration order isn't significant. 1462 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1463 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1464 I != E; ++I) 1465 if (I->first->getNumUses() == I->second) { 1466 ++SpeculationCost; 1467 if (SpeculationCost > 1) 1468 return false; 1469 } 1470 1471 // Check that the PHI nodes can be converted to selects. 1472 bool HaveRewritablePHIs = false; 1473 for (BasicBlock::iterator I = EndBB->begin(); 1474 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1475 Value *OrigV = PN->getIncomingValueForBlock(BB); 1476 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1477 1478 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1479 // Skip PHIs which are trivial. 1480 if (ThenV == OrigV) 1481 continue; 1482 1483 HaveRewritablePHIs = true; 1484 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1485 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1486 if (!OrigCE && !ThenCE) 1487 continue; // Known safe and cheap. 1488 1489 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1490 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1491 return false; 1492 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0; 1493 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0; 1494 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1495 return false; 1496 1497 // Account for the cost of an unfolded ConstantExpr which could end up 1498 // getting expanded into Instructions. 1499 // FIXME: This doesn't account for how many operations are combined in the 1500 // constant expression. 1501 ++SpeculationCost; 1502 if (SpeculationCost > 1) 1503 return false; 1504 } 1505 1506 // If there are no PHIs to process, bail early. This helps ensure idempotence 1507 // as well. 1508 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1509 return false; 1510 1511 // If we get here, we can hoist the instruction and if-convert. 1512 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1513 1514 // Insert a select of the value of the speculated store. 1515 if (SpeculatedStoreValue) { 1516 IRBuilder<true, NoFolder> Builder(BI); 1517 Value *TrueV = SpeculatedStore->getValueOperand(); 1518 Value *FalseV = SpeculatedStoreValue; 1519 if (Invert) 1520 std::swap(TrueV, FalseV); 1521 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1522 "." + FalseV->getName()); 1523 SpeculatedStore->setOperand(0, S); 1524 } 1525 1526 // Hoist the instructions. 1527 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1528 std::prev(ThenBB->end())); 1529 1530 // Insert selects and rewrite the PHI operands. 1531 IRBuilder<true, NoFolder> Builder(BI); 1532 for (BasicBlock::iterator I = EndBB->begin(); 1533 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1534 unsigned OrigI = PN->getBasicBlockIndex(BB); 1535 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1536 Value *OrigV = PN->getIncomingValue(OrigI); 1537 Value *ThenV = PN->getIncomingValue(ThenI); 1538 1539 // Skip PHIs which are trivial. 1540 if (OrigV == ThenV) 1541 continue; 1542 1543 // Create a select whose true value is the speculatively executed value and 1544 // false value is the preexisting value. Swap them if the branch 1545 // destinations were inverted. 1546 Value *TrueV = ThenV, *FalseV = OrigV; 1547 if (Invert) 1548 std::swap(TrueV, FalseV); 1549 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1550 TrueV->getName() + "." + FalseV->getName()); 1551 PN->setIncomingValue(OrigI, V); 1552 PN->setIncomingValue(ThenI, V); 1553 } 1554 1555 ++NumSpeculations; 1556 return true; 1557 } 1558 1559 /// \returns True if this block contains a CallInst with the NoDuplicate 1560 /// attribute. 1561 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1562 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1563 const CallInst *CI = dyn_cast<CallInst>(I); 1564 if (!CI) 1565 continue; 1566 if (CI->cannotDuplicate()) 1567 return true; 1568 } 1569 return false; 1570 } 1571 1572 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1573 /// across this block. 1574 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1575 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1576 unsigned Size = 0; 1577 1578 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1579 if (isa<DbgInfoIntrinsic>(BBI)) 1580 continue; 1581 if (Size > 10) return false; // Don't clone large BB's. 1582 ++Size; 1583 1584 // We can only support instructions that do not define values that are 1585 // live outside of the current basic block. 1586 for (User *U : BBI->users()) { 1587 Instruction *UI = cast<Instruction>(U); 1588 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1589 } 1590 1591 // Looks ok, continue checking. 1592 } 1593 1594 return true; 1595 } 1596 1597 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1598 /// that is defined in the same block as the branch and if any PHI entries are 1599 /// constants, thread edges corresponding to that entry to be branches to their 1600 /// ultimate destination. 1601 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) { 1602 BasicBlock *BB = BI->getParent(); 1603 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1604 // NOTE: we currently cannot transform this case if the PHI node is used 1605 // outside of the block. 1606 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1607 return false; 1608 1609 // Degenerate case of a single entry PHI. 1610 if (PN->getNumIncomingValues() == 1) { 1611 FoldSingleEntryPHINodes(PN->getParent()); 1612 return true; 1613 } 1614 1615 // Now we know that this block has multiple preds and two succs. 1616 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1617 1618 if (HasNoDuplicateCall(BB)) return false; 1619 1620 // Okay, this is a simple enough basic block. See if any phi values are 1621 // constants. 1622 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1623 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1624 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1625 1626 // Okay, we now know that all edges from PredBB should be revectored to 1627 // branch to RealDest. 1628 BasicBlock *PredBB = PN->getIncomingBlock(i); 1629 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1630 1631 if (RealDest == BB) continue; // Skip self loops. 1632 // Skip if the predecessor's terminator is an indirect branch. 1633 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1634 1635 // The dest block might have PHI nodes, other predecessors and other 1636 // difficult cases. Instead of being smart about this, just insert a new 1637 // block that jumps to the destination block, effectively splitting 1638 // the edge we are about to create. 1639 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1640 RealDest->getName()+".critedge", 1641 RealDest->getParent(), RealDest); 1642 BranchInst::Create(RealDest, EdgeBB); 1643 1644 // Update PHI nodes. 1645 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1646 1647 // BB may have instructions that are being threaded over. Clone these 1648 // instructions into EdgeBB. We know that there will be no uses of the 1649 // cloned instructions outside of EdgeBB. 1650 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1651 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1652 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1653 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1654 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1655 continue; 1656 } 1657 // Clone the instruction. 1658 Instruction *N = BBI->clone(); 1659 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1660 1661 // Update operands due to translation. 1662 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1663 i != e; ++i) { 1664 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1665 if (PI != TranslateMap.end()) 1666 *i = PI->second; 1667 } 1668 1669 // Check for trivial simplification. 1670 if (Value *V = SimplifyInstruction(N, DL)) { 1671 TranslateMap[BBI] = V; 1672 delete N; // Instruction folded away, don't need actual inst 1673 } else { 1674 // Insert the new instruction into its new home. 1675 EdgeBB->getInstList().insert(InsertPt, N); 1676 if (!BBI->use_empty()) 1677 TranslateMap[BBI] = N; 1678 } 1679 } 1680 1681 // Loop over all of the edges from PredBB to BB, changing them to branch 1682 // to EdgeBB instead. 1683 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1684 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1685 if (PredBBTI->getSuccessor(i) == BB) { 1686 BB->removePredecessor(PredBB); 1687 PredBBTI->setSuccessor(i, EdgeBB); 1688 } 1689 1690 // Recurse, simplifying any other constants. 1691 return FoldCondBranchOnPHI(BI, DL) | true; 1692 } 1693 1694 return false; 1695 } 1696 1697 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1698 /// PHI node, see if we can eliminate it. 1699 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) { 1700 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1701 // statement", which has a very simple dominance structure. Basically, we 1702 // are trying to find the condition that is being branched on, which 1703 // subsequently causes this merge to happen. We really want control 1704 // dependence information for this check, but simplifycfg can't keep it up 1705 // to date, and this catches most of the cases we care about anyway. 1706 BasicBlock *BB = PN->getParent(); 1707 BasicBlock *IfTrue, *IfFalse; 1708 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1709 if (!IfCond || 1710 // Don't bother if the branch will be constant folded trivially. 1711 isa<ConstantInt>(IfCond)) 1712 return false; 1713 1714 // Okay, we found that we can merge this two-entry phi node into a select. 1715 // Doing so would require us to fold *all* two entry phi nodes in this block. 1716 // At some point this becomes non-profitable (particularly if the target 1717 // doesn't support cmov's). Only do this transformation if there are two or 1718 // fewer PHI nodes in this block. 1719 unsigned NumPhis = 0; 1720 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1721 if (NumPhis > 2) 1722 return false; 1723 1724 // Loop over the PHI's seeing if we can promote them all to select 1725 // instructions. While we are at it, keep track of the instructions 1726 // that need to be moved to the dominating block. 1727 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1728 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1729 MaxCostVal1 = PHINodeFoldingThreshold; 1730 1731 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1732 PHINode *PN = cast<PHINode>(II++); 1733 if (Value *V = SimplifyInstruction(PN, DL)) { 1734 PN->replaceAllUsesWith(V); 1735 PN->eraseFromParent(); 1736 continue; 1737 } 1738 1739 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1740 MaxCostVal0) || 1741 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1742 MaxCostVal1)) 1743 return false; 1744 } 1745 1746 // If we folded the first phi, PN dangles at this point. Refresh it. If 1747 // we ran out of PHIs then we simplified them all. 1748 PN = dyn_cast<PHINode>(BB->begin()); 1749 if (!PN) return true; 1750 1751 // Don't fold i1 branches on PHIs which contain binary operators. These can 1752 // often be turned into switches and other things. 1753 if (PN->getType()->isIntegerTy(1) && 1754 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1755 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1756 isa<BinaryOperator>(IfCond))) 1757 return false; 1758 1759 // If we all PHI nodes are promotable, check to make sure that all 1760 // instructions in the predecessor blocks can be promoted as well. If 1761 // not, we won't be able to get rid of the control flow, so it's not 1762 // worth promoting to select instructions. 1763 BasicBlock *DomBlock = nullptr; 1764 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1765 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1766 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1767 IfBlock1 = nullptr; 1768 } else { 1769 DomBlock = *pred_begin(IfBlock1); 1770 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1771 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1772 // This is not an aggressive instruction that we can promote. 1773 // Because of this, we won't be able to get rid of the control 1774 // flow, so the xform is not worth it. 1775 return false; 1776 } 1777 } 1778 1779 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1780 IfBlock2 = nullptr; 1781 } else { 1782 DomBlock = *pred_begin(IfBlock2); 1783 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1784 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1785 // This is not an aggressive instruction that we can promote. 1786 // Because of this, we won't be able to get rid of the control 1787 // flow, so the xform is not worth it. 1788 return false; 1789 } 1790 } 1791 1792 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1793 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1794 1795 // If we can still promote the PHI nodes after this gauntlet of tests, 1796 // do all of the PHI's now. 1797 Instruction *InsertPt = DomBlock->getTerminator(); 1798 IRBuilder<true, NoFolder> Builder(InsertPt); 1799 1800 // Move all 'aggressive' instructions, which are defined in the 1801 // conditional parts of the if's up to the dominating block. 1802 if (IfBlock1) 1803 DomBlock->getInstList().splice(InsertPt, 1804 IfBlock1->getInstList(), IfBlock1->begin(), 1805 IfBlock1->getTerminator()); 1806 if (IfBlock2) 1807 DomBlock->getInstList().splice(InsertPt, 1808 IfBlock2->getInstList(), IfBlock2->begin(), 1809 IfBlock2->getTerminator()); 1810 1811 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1812 // Change the PHI node into a select instruction. 1813 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1814 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1815 1816 SelectInst *NV = 1817 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1818 PN->replaceAllUsesWith(NV); 1819 NV->takeName(PN); 1820 PN->eraseFromParent(); 1821 } 1822 1823 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1824 // has been flattened. Change DomBlock to jump directly to our new block to 1825 // avoid other simplifycfg's kicking in on the diamond. 1826 TerminatorInst *OldTI = DomBlock->getTerminator(); 1827 Builder.SetInsertPoint(OldTI); 1828 Builder.CreateBr(BB); 1829 OldTI->eraseFromParent(); 1830 return true; 1831 } 1832 1833 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1834 /// to two returning blocks, try to merge them together into one return, 1835 /// introducing a select if the return values disagree. 1836 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1837 IRBuilder<> &Builder) { 1838 assert(BI->isConditional() && "Must be a conditional branch"); 1839 BasicBlock *TrueSucc = BI->getSuccessor(0); 1840 BasicBlock *FalseSucc = BI->getSuccessor(1); 1841 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1842 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1843 1844 // Check to ensure both blocks are empty (just a return) or optionally empty 1845 // with PHI nodes. If there are other instructions, merging would cause extra 1846 // computation on one path or the other. 1847 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1848 return false; 1849 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1850 return false; 1851 1852 Builder.SetInsertPoint(BI); 1853 // Okay, we found a branch that is going to two return nodes. If 1854 // there is no return value for this function, just change the 1855 // branch into a return. 1856 if (FalseRet->getNumOperands() == 0) { 1857 TrueSucc->removePredecessor(BI->getParent()); 1858 FalseSucc->removePredecessor(BI->getParent()); 1859 Builder.CreateRetVoid(); 1860 EraseTerminatorInstAndDCECond(BI); 1861 return true; 1862 } 1863 1864 // Otherwise, figure out what the true and false return values are 1865 // so we can insert a new select instruction. 1866 Value *TrueValue = TrueRet->getReturnValue(); 1867 Value *FalseValue = FalseRet->getReturnValue(); 1868 1869 // Unwrap any PHI nodes in the return blocks. 1870 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1871 if (TVPN->getParent() == TrueSucc) 1872 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1873 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1874 if (FVPN->getParent() == FalseSucc) 1875 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1876 1877 // In order for this transformation to be safe, we must be able to 1878 // unconditionally execute both operands to the return. This is 1879 // normally the case, but we could have a potentially-trapping 1880 // constant expression that prevents this transformation from being 1881 // safe. 1882 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1883 if (TCV->canTrap()) 1884 return false; 1885 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1886 if (FCV->canTrap()) 1887 return false; 1888 1889 // Okay, we collected all the mapped values and checked them for sanity, and 1890 // defined to really do this transformation. First, update the CFG. 1891 TrueSucc->removePredecessor(BI->getParent()); 1892 FalseSucc->removePredecessor(BI->getParent()); 1893 1894 // Insert select instructions where needed. 1895 Value *BrCond = BI->getCondition(); 1896 if (TrueValue) { 1897 // Insert a select if the results differ. 1898 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1899 } else if (isa<UndefValue>(TrueValue)) { 1900 TrueValue = FalseValue; 1901 } else { 1902 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1903 FalseValue, "retval"); 1904 } 1905 } 1906 1907 Value *RI = !TrueValue ? 1908 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1909 1910 (void) RI; 1911 1912 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1913 << "\n " << *BI << "NewRet = " << *RI 1914 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1915 1916 EraseTerminatorInstAndDCECond(BI); 1917 1918 return true; 1919 } 1920 1921 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1922 /// probabilities of the branch taking each edge. Fills in the two APInt 1923 /// parameters and return true, or returns false if no or invalid metadata was 1924 /// found. 1925 static bool ExtractBranchMetadata(BranchInst *BI, 1926 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1927 assert(BI->isConditional() && 1928 "Looking for probabilities on unconditional branch?"); 1929 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1930 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1931 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1932 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1933 if (!CITrue || !CIFalse) return false; 1934 ProbTrue = CITrue->getValue().getZExtValue(); 1935 ProbFalse = CIFalse->getValue().getZExtValue(); 1936 return true; 1937 } 1938 1939 /// checkCSEInPredecessor - Return true if the given instruction is available 1940 /// in its predecessor block. If yes, the instruction will be removed. 1941 /// 1942 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1943 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1944 return false; 1945 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1946 Instruction *PBI = &*I; 1947 // Check whether Inst and PBI generate the same value. 1948 if (Inst->isIdenticalTo(PBI)) { 1949 Inst->replaceAllUsesWith(PBI); 1950 Inst->eraseFromParent(); 1951 return true; 1952 } 1953 } 1954 return false; 1955 } 1956 1957 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1958 /// predecessor branches to us and one of our successors, fold the block into 1959 /// the predecessor and use logical operations to pick the right destination. 1960 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1961 BasicBlock *BB = BI->getParent(); 1962 1963 Instruction *Cond = nullptr; 1964 if (BI->isConditional()) 1965 Cond = dyn_cast<Instruction>(BI->getCondition()); 1966 else { 1967 // For unconditional branch, check for a simple CFG pattern, where 1968 // BB has a single predecessor and BB's successor is also its predecessor's 1969 // successor. If such pattern exisits, check for CSE between BB and its 1970 // predecessor. 1971 if (BasicBlock *PB = BB->getSinglePredecessor()) 1972 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 1973 if (PBI->isConditional() && 1974 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 1975 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 1976 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 1977 I != E; ) { 1978 Instruction *Curr = I++; 1979 if (isa<CmpInst>(Curr)) { 1980 Cond = Curr; 1981 break; 1982 } 1983 // Quit if we can't remove this instruction. 1984 if (!checkCSEInPredecessor(Curr, PB)) 1985 return false; 1986 } 1987 } 1988 1989 if (!Cond) 1990 return false; 1991 } 1992 1993 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1994 Cond->getParent() != BB || !Cond->hasOneUse()) 1995 return false; 1996 1997 // Only allow this if the condition is a simple instruction that can be 1998 // executed unconditionally. It must be in the same block as the branch, and 1999 // must be at the front of the block. 2000 BasicBlock::iterator FrontIt = BB->front(); 2001 2002 // Ignore dbg intrinsics. 2003 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2004 2005 // Allow a single instruction to be hoisted in addition to the compare 2006 // that feeds the branch. We later ensure that any values that _it_ uses 2007 // were also live in the predecessor, so that we don't unnecessarily create 2008 // register pressure or inhibit out-of-order execution. 2009 Instruction *BonusInst = nullptr; 2010 if (&*FrontIt != Cond && 2011 FrontIt->hasOneUse() && FrontIt->user_back() == Cond && 2012 isSafeToSpeculativelyExecute(FrontIt)) { 2013 BonusInst = &*FrontIt; 2014 ++FrontIt; 2015 2016 // Ignore dbg intrinsics. 2017 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2018 } 2019 2020 // Only a single bonus inst is allowed. 2021 if (&*FrontIt != Cond) 2022 return false; 2023 2024 // Make sure the instruction after the condition is the cond branch. 2025 BasicBlock::iterator CondIt = Cond; ++CondIt; 2026 2027 // Ingore dbg intrinsics. 2028 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2029 2030 if (&*CondIt != BI) 2031 return false; 2032 2033 // Cond is known to be a compare or binary operator. Check to make sure that 2034 // neither operand is a potentially-trapping constant expression. 2035 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2036 if (CE->canTrap()) 2037 return false; 2038 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2039 if (CE->canTrap()) 2040 return false; 2041 2042 // Finally, don't infinitely unroll conditional loops. 2043 BasicBlock *TrueDest = BI->getSuccessor(0); 2044 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2045 if (TrueDest == BB || FalseDest == BB) 2046 return false; 2047 2048 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2049 BasicBlock *PredBlock = *PI; 2050 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2051 2052 // Check that we have two conditional branches. If there is a PHI node in 2053 // the common successor, verify that the same value flows in from both 2054 // blocks. 2055 SmallVector<PHINode*, 4> PHIs; 2056 if (!PBI || PBI->isUnconditional() || 2057 (BI->isConditional() && 2058 !SafeToMergeTerminators(BI, PBI)) || 2059 (!BI->isConditional() && 2060 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2061 continue; 2062 2063 // Determine if the two branches share a common destination. 2064 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2065 bool InvertPredCond = false; 2066 2067 if (BI->isConditional()) { 2068 if (PBI->getSuccessor(0) == TrueDest) 2069 Opc = Instruction::Or; 2070 else if (PBI->getSuccessor(1) == FalseDest) 2071 Opc = Instruction::And; 2072 else if (PBI->getSuccessor(0) == FalseDest) 2073 Opc = Instruction::And, InvertPredCond = true; 2074 else if (PBI->getSuccessor(1) == TrueDest) 2075 Opc = Instruction::Or, InvertPredCond = true; 2076 else 2077 continue; 2078 } else { 2079 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2080 continue; 2081 } 2082 2083 // Ensure that any values used in the bonus instruction are also used 2084 // by the terminator of the predecessor. This means that those values 2085 // must already have been resolved, so we won't be inhibiting the 2086 // out-of-order core by speculating them earlier. We also allow 2087 // instructions that are used by the terminator's condition because it 2088 // exposes more merging opportunities. 2089 bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() && 2090 BonusInst->user_back() == Cond); 2091 2092 if (BonusInst && !UsedByBranch) { 2093 // Collect the values used by the bonus inst 2094 SmallPtrSet<Value*, 4> UsedValues; 2095 for (Instruction::op_iterator OI = BonusInst->op_begin(), 2096 OE = BonusInst->op_end(); OI != OE; ++OI) { 2097 Value *V = *OI; 2098 if (!isa<Constant>(V) && !isa<Argument>(V)) 2099 UsedValues.insert(V); 2100 } 2101 2102 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2103 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2104 2105 // Walk up to four levels back up the use-def chain of the predecessor's 2106 // terminator to see if all those values were used. The choice of four 2107 // levels is arbitrary, to provide a compile-time-cost bound. 2108 while (!Worklist.empty()) { 2109 std::pair<Value*, unsigned> Pair = Worklist.back(); 2110 Worklist.pop_back(); 2111 2112 if (Pair.second >= 4) continue; 2113 UsedValues.erase(Pair.first); 2114 if (UsedValues.empty()) break; 2115 2116 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2117 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2118 OI != OE; ++OI) 2119 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2120 } 2121 } 2122 2123 if (!UsedValues.empty()) return false; 2124 } 2125 2126 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2127 IRBuilder<> Builder(PBI); 2128 2129 // If we need to invert the condition in the pred block to match, do so now. 2130 if (InvertPredCond) { 2131 Value *NewCond = PBI->getCondition(); 2132 2133 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2134 CmpInst *CI = cast<CmpInst>(NewCond); 2135 CI->setPredicate(CI->getInversePredicate()); 2136 } else { 2137 NewCond = Builder.CreateNot(NewCond, 2138 PBI->getCondition()->getName()+".not"); 2139 } 2140 2141 PBI->setCondition(NewCond); 2142 PBI->swapSuccessors(); 2143 } 2144 2145 // If we have a bonus inst, clone it into the predecessor block. 2146 Instruction *NewBonus = nullptr; 2147 if (BonusInst) { 2148 NewBonus = BonusInst->clone(); 2149 2150 // If we moved a load, we cannot any longer claim any knowledge about 2151 // its potential value. The previous information might have been valid 2152 // only given the branch precondition. 2153 // For an analogous reason, we must also drop all the metadata whose 2154 // semantics we don't understand. 2155 NewBonus->dropUnknownMetadata(LLVMContext::MD_dbg); 2156 2157 PredBlock->getInstList().insert(PBI, NewBonus); 2158 NewBonus->takeName(BonusInst); 2159 BonusInst->setName(BonusInst->getName()+".old"); 2160 } 2161 2162 // Clone Cond into the predecessor basic block, and or/and the 2163 // two conditions together. 2164 Instruction *New = Cond->clone(); 2165 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2166 PredBlock->getInstList().insert(PBI, New); 2167 New->takeName(Cond); 2168 Cond->setName(New->getName()+".old"); 2169 2170 if (BI->isConditional()) { 2171 Instruction *NewCond = 2172 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2173 New, "or.cond")); 2174 PBI->setCondition(NewCond); 2175 2176 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2177 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2178 PredFalseWeight); 2179 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2180 SuccFalseWeight); 2181 SmallVector<uint64_t, 8> NewWeights; 2182 2183 if (PBI->getSuccessor(0) == BB) { 2184 if (PredHasWeights && SuccHasWeights) { 2185 // PBI: br i1 %x, BB, FalseDest 2186 // BI: br i1 %y, TrueDest, FalseDest 2187 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2188 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2189 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2190 // TrueWeight for PBI * FalseWeight for BI. 2191 // We assume that total weights of a BranchInst can fit into 32 bits. 2192 // Therefore, we will not have overflow using 64-bit arithmetic. 2193 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2194 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2195 } 2196 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2197 PBI->setSuccessor(0, TrueDest); 2198 } 2199 if (PBI->getSuccessor(1) == BB) { 2200 if (PredHasWeights && SuccHasWeights) { 2201 // PBI: br i1 %x, TrueDest, BB 2202 // BI: br i1 %y, TrueDest, FalseDest 2203 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2204 // FalseWeight for PBI * TrueWeight for BI. 2205 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2206 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2207 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2208 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2209 } 2210 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2211 PBI->setSuccessor(1, FalseDest); 2212 } 2213 if (NewWeights.size() == 2) { 2214 // Halve the weights if any of them cannot fit in an uint32_t 2215 FitWeights(NewWeights); 2216 2217 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2218 PBI->setMetadata(LLVMContext::MD_prof, 2219 MDBuilder(BI->getContext()). 2220 createBranchWeights(MDWeights)); 2221 } else 2222 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2223 } else { 2224 // Update PHI nodes in the common successors. 2225 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2226 ConstantInt *PBI_C = cast<ConstantInt>( 2227 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2228 assert(PBI_C->getType()->isIntegerTy(1)); 2229 Instruction *MergedCond = nullptr; 2230 if (PBI->getSuccessor(0) == TrueDest) { 2231 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2232 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2233 // is false: !PBI_Cond and BI_Value 2234 Instruction *NotCond = 2235 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2236 "not.cond")); 2237 MergedCond = 2238 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2239 NotCond, New, 2240 "and.cond")); 2241 if (PBI_C->isOne()) 2242 MergedCond = 2243 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2244 PBI->getCondition(), MergedCond, 2245 "or.cond")); 2246 } else { 2247 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2248 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2249 // is false: PBI_Cond and BI_Value 2250 MergedCond = 2251 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2252 PBI->getCondition(), New, 2253 "and.cond")); 2254 if (PBI_C->isOne()) { 2255 Instruction *NotCond = 2256 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2257 "not.cond")); 2258 MergedCond = 2259 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2260 NotCond, MergedCond, 2261 "or.cond")); 2262 } 2263 } 2264 // Update PHI Node. 2265 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2266 MergedCond); 2267 } 2268 // Change PBI from Conditional to Unconditional. 2269 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2270 EraseTerminatorInstAndDCECond(PBI); 2271 PBI = New_PBI; 2272 } 2273 2274 // TODO: If BB is reachable from all paths through PredBlock, then we 2275 // could replace PBI's branch probabilities with BI's. 2276 2277 // Copy any debug value intrinsics into the end of PredBlock. 2278 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2279 if (isa<DbgInfoIntrinsic>(*I)) 2280 I->clone()->insertBefore(PBI); 2281 2282 return true; 2283 } 2284 return false; 2285 } 2286 2287 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2288 /// predecessor of another block, this function tries to simplify it. We know 2289 /// that PBI and BI are both conditional branches, and BI is in one of the 2290 /// successor blocks of PBI - PBI branches to BI. 2291 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2292 assert(PBI->isConditional() && BI->isConditional()); 2293 BasicBlock *BB = BI->getParent(); 2294 2295 // If this block ends with a branch instruction, and if there is a 2296 // predecessor that ends on a branch of the same condition, make 2297 // this conditional branch redundant. 2298 if (PBI->getCondition() == BI->getCondition() && 2299 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2300 // Okay, the outcome of this conditional branch is statically 2301 // knowable. If this block had a single pred, handle specially. 2302 if (BB->getSinglePredecessor()) { 2303 // Turn this into a branch on constant. 2304 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2305 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2306 CondIsTrue)); 2307 return true; // Nuke the branch on constant. 2308 } 2309 2310 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2311 // in the constant and simplify the block result. Subsequent passes of 2312 // simplifycfg will thread the block. 2313 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2314 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2315 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2316 std::distance(PB, PE), 2317 BI->getCondition()->getName() + ".pr", 2318 BB->begin()); 2319 // Okay, we're going to insert the PHI node. Since PBI is not the only 2320 // predecessor, compute the PHI'd conditional value for all of the preds. 2321 // Any predecessor where the condition is not computable we keep symbolic. 2322 for (pred_iterator PI = PB; PI != PE; ++PI) { 2323 BasicBlock *P = *PI; 2324 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2325 PBI != BI && PBI->isConditional() && 2326 PBI->getCondition() == BI->getCondition() && 2327 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2328 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2329 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2330 CondIsTrue), P); 2331 } else { 2332 NewPN->addIncoming(BI->getCondition(), P); 2333 } 2334 } 2335 2336 BI->setCondition(NewPN); 2337 return true; 2338 } 2339 } 2340 2341 // If this is a conditional branch in an empty block, and if any 2342 // predecessors is a conditional branch to one of our destinations, 2343 // fold the conditions into logical ops and one cond br. 2344 BasicBlock::iterator BBI = BB->begin(); 2345 // Ignore dbg intrinsics. 2346 while (isa<DbgInfoIntrinsic>(BBI)) 2347 ++BBI; 2348 if (&*BBI != BI) 2349 return false; 2350 2351 2352 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2353 if (CE->canTrap()) 2354 return false; 2355 2356 int PBIOp, BIOp; 2357 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2358 PBIOp = BIOp = 0; 2359 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2360 PBIOp = 0, BIOp = 1; 2361 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2362 PBIOp = 1, BIOp = 0; 2363 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2364 PBIOp = BIOp = 1; 2365 else 2366 return false; 2367 2368 // Check to make sure that the other destination of this branch 2369 // isn't BB itself. If so, this is an infinite loop that will 2370 // keep getting unwound. 2371 if (PBI->getSuccessor(PBIOp) == BB) 2372 return false; 2373 2374 // Do not perform this transformation if it would require 2375 // insertion of a large number of select instructions. For targets 2376 // without predication/cmovs, this is a big pessimization. 2377 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2378 2379 unsigned NumPhis = 0; 2380 for (BasicBlock::iterator II = CommonDest->begin(); 2381 isa<PHINode>(II); ++II, ++NumPhis) 2382 if (NumPhis > 2) // Disable this xform. 2383 return false; 2384 2385 // Finally, if everything is ok, fold the branches to logical ops. 2386 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2387 2388 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2389 << "AND: " << *BI->getParent()); 2390 2391 2392 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2393 // branch in it, where one edge (OtherDest) goes back to itself but the other 2394 // exits. We don't *know* that the program avoids the infinite loop 2395 // (even though that seems likely). If we do this xform naively, we'll end up 2396 // recursively unpeeling the loop. Since we know that (after the xform is 2397 // done) that the block *is* infinite if reached, we just make it an obviously 2398 // infinite loop with no cond branch. 2399 if (OtherDest == BB) { 2400 // Insert it at the end of the function, because it's either code, 2401 // or it won't matter if it's hot. :) 2402 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2403 "infloop", BB->getParent()); 2404 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2405 OtherDest = InfLoopBlock; 2406 } 2407 2408 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2409 2410 // BI may have other predecessors. Because of this, we leave 2411 // it alone, but modify PBI. 2412 2413 // Make sure we get to CommonDest on True&True directions. 2414 Value *PBICond = PBI->getCondition(); 2415 IRBuilder<true, NoFolder> Builder(PBI); 2416 if (PBIOp) 2417 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2418 2419 Value *BICond = BI->getCondition(); 2420 if (BIOp) 2421 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2422 2423 // Merge the conditions. 2424 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2425 2426 // Modify PBI to branch on the new condition to the new dests. 2427 PBI->setCondition(Cond); 2428 PBI->setSuccessor(0, CommonDest); 2429 PBI->setSuccessor(1, OtherDest); 2430 2431 // Update branch weight for PBI. 2432 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2433 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2434 PredFalseWeight); 2435 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2436 SuccFalseWeight); 2437 if (PredHasWeights && SuccHasWeights) { 2438 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2439 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2440 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2441 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2442 // The weight to CommonDest should be PredCommon * SuccTotal + 2443 // PredOther * SuccCommon. 2444 // The weight to OtherDest should be PredOther * SuccOther. 2445 SmallVector<uint64_t, 2> NewWeights; 2446 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2447 PredOther * SuccCommon); 2448 NewWeights.push_back(PredOther * SuccOther); 2449 // Halve the weights if any of them cannot fit in an uint32_t 2450 FitWeights(NewWeights); 2451 2452 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2453 PBI->setMetadata(LLVMContext::MD_prof, 2454 MDBuilder(BI->getContext()). 2455 createBranchWeights(MDWeights)); 2456 } 2457 2458 // OtherDest may have phi nodes. If so, add an entry from PBI's 2459 // block that are identical to the entries for BI's block. 2460 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2461 2462 // We know that the CommonDest already had an edge from PBI to 2463 // it. If it has PHIs though, the PHIs may have different 2464 // entries for BB and PBI's BB. If so, insert a select to make 2465 // them agree. 2466 PHINode *PN; 2467 for (BasicBlock::iterator II = CommonDest->begin(); 2468 (PN = dyn_cast<PHINode>(II)); ++II) { 2469 Value *BIV = PN->getIncomingValueForBlock(BB); 2470 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2471 Value *PBIV = PN->getIncomingValue(PBBIdx); 2472 if (BIV != PBIV) { 2473 // Insert a select in PBI to pick the right value. 2474 Value *NV = cast<SelectInst> 2475 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2476 PN->setIncomingValue(PBBIdx, NV); 2477 } 2478 } 2479 2480 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2481 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2482 2483 // This basic block is probably dead. We know it has at least 2484 // one fewer predecessor. 2485 return true; 2486 } 2487 2488 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2489 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2490 // Takes care of updating the successors and removing the old terminator. 2491 // Also makes sure not to introduce new successors by assuming that edges to 2492 // non-successor TrueBBs and FalseBBs aren't reachable. 2493 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2494 BasicBlock *TrueBB, BasicBlock *FalseBB, 2495 uint32_t TrueWeight, 2496 uint32_t FalseWeight){ 2497 // Remove any superfluous successor edges from the CFG. 2498 // First, figure out which successors to preserve. 2499 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2500 // successor. 2501 BasicBlock *KeepEdge1 = TrueBB; 2502 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2503 2504 // Then remove the rest. 2505 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2506 BasicBlock *Succ = OldTerm->getSuccessor(I); 2507 // Make sure only to keep exactly one copy of each edge. 2508 if (Succ == KeepEdge1) 2509 KeepEdge1 = nullptr; 2510 else if (Succ == KeepEdge2) 2511 KeepEdge2 = nullptr; 2512 else 2513 Succ->removePredecessor(OldTerm->getParent()); 2514 } 2515 2516 IRBuilder<> Builder(OldTerm); 2517 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2518 2519 // Insert an appropriate new terminator. 2520 if (!KeepEdge1 && !KeepEdge2) { 2521 if (TrueBB == FalseBB) 2522 // We were only looking for one successor, and it was present. 2523 // Create an unconditional branch to it. 2524 Builder.CreateBr(TrueBB); 2525 else { 2526 // We found both of the successors we were looking for. 2527 // Create a conditional branch sharing the condition of the select. 2528 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2529 if (TrueWeight != FalseWeight) 2530 NewBI->setMetadata(LLVMContext::MD_prof, 2531 MDBuilder(OldTerm->getContext()). 2532 createBranchWeights(TrueWeight, FalseWeight)); 2533 } 2534 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2535 // Neither of the selected blocks were successors, so this 2536 // terminator must be unreachable. 2537 new UnreachableInst(OldTerm->getContext(), OldTerm); 2538 } else { 2539 // One of the selected values was a successor, but the other wasn't. 2540 // Insert an unconditional branch to the one that was found; 2541 // the edge to the one that wasn't must be unreachable. 2542 if (!KeepEdge1) 2543 // Only TrueBB was found. 2544 Builder.CreateBr(TrueBB); 2545 else 2546 // Only FalseBB was found. 2547 Builder.CreateBr(FalseBB); 2548 } 2549 2550 EraseTerminatorInstAndDCECond(OldTerm); 2551 return true; 2552 } 2553 2554 // SimplifySwitchOnSelect - Replaces 2555 // (switch (select cond, X, Y)) on constant X, Y 2556 // with a branch - conditional if X and Y lead to distinct BBs, 2557 // unconditional otherwise. 2558 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2559 // Check for constant integer values in the select. 2560 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2561 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2562 if (!TrueVal || !FalseVal) 2563 return false; 2564 2565 // Find the relevant condition and destinations. 2566 Value *Condition = Select->getCondition(); 2567 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2568 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2569 2570 // Get weight for TrueBB and FalseBB. 2571 uint32_t TrueWeight = 0, FalseWeight = 0; 2572 SmallVector<uint64_t, 8> Weights; 2573 bool HasWeights = HasBranchWeights(SI); 2574 if (HasWeights) { 2575 GetBranchWeights(SI, Weights); 2576 if (Weights.size() == 1 + SI->getNumCases()) { 2577 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2578 getSuccessorIndex()]; 2579 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2580 getSuccessorIndex()]; 2581 } 2582 } 2583 2584 // Perform the actual simplification. 2585 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2586 TrueWeight, FalseWeight); 2587 } 2588 2589 // SimplifyIndirectBrOnSelect - Replaces 2590 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2591 // blockaddress(@fn, BlockB))) 2592 // with 2593 // (br cond, BlockA, BlockB). 2594 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2595 // Check that both operands of the select are block addresses. 2596 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2597 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2598 if (!TBA || !FBA) 2599 return false; 2600 2601 // Extract the actual blocks. 2602 BasicBlock *TrueBB = TBA->getBasicBlock(); 2603 BasicBlock *FalseBB = FBA->getBasicBlock(); 2604 2605 // Perform the actual simplification. 2606 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2607 0, 0); 2608 } 2609 2610 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2611 /// instruction (a seteq/setne with a constant) as the only instruction in a 2612 /// block that ends with an uncond branch. We are looking for a very specific 2613 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2614 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2615 /// default value goes to an uncond block with a seteq in it, we get something 2616 /// like: 2617 /// 2618 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2619 /// DEFAULT: 2620 /// %tmp = icmp eq i8 %A, 92 2621 /// br label %end 2622 /// end: 2623 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2624 /// 2625 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2626 /// the PHI, merging the third icmp into the switch. 2627 static bool TryToSimplifyUncondBranchWithICmpInIt( 2628 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2629 const DataLayout *DL) { 2630 BasicBlock *BB = ICI->getParent(); 2631 2632 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2633 // complex. 2634 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2635 2636 Value *V = ICI->getOperand(0); 2637 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2638 2639 // The pattern we're looking for is where our only predecessor is a switch on 2640 // 'V' and this block is the default case for the switch. In this case we can 2641 // fold the compared value into the switch to simplify things. 2642 BasicBlock *Pred = BB->getSinglePredecessor(); 2643 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 2644 2645 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2646 if (SI->getCondition() != V) 2647 return false; 2648 2649 // If BB is reachable on a non-default case, then we simply know the value of 2650 // V in this block. Substitute it and constant fold the icmp instruction 2651 // away. 2652 if (SI->getDefaultDest() != BB) { 2653 ConstantInt *VVal = SI->findCaseDest(BB); 2654 assert(VVal && "Should have a unique destination value"); 2655 ICI->setOperand(0, VVal); 2656 2657 if (Value *V = SimplifyInstruction(ICI, DL)) { 2658 ICI->replaceAllUsesWith(V); 2659 ICI->eraseFromParent(); 2660 } 2661 // BB is now empty, so it is likely to simplify away. 2662 return SimplifyCFG(BB, TTI, DL) | true; 2663 } 2664 2665 // Ok, the block is reachable from the default dest. If the constant we're 2666 // comparing exists in one of the other edges, then we can constant fold ICI 2667 // and zap it. 2668 if (SI->findCaseValue(Cst) != SI->case_default()) { 2669 Value *V; 2670 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2671 V = ConstantInt::getFalse(BB->getContext()); 2672 else 2673 V = ConstantInt::getTrue(BB->getContext()); 2674 2675 ICI->replaceAllUsesWith(V); 2676 ICI->eraseFromParent(); 2677 // BB is now empty, so it is likely to simplify away. 2678 return SimplifyCFG(BB, TTI, DL) | true; 2679 } 2680 2681 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2682 // the block. 2683 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2684 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 2685 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 2686 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2687 return false; 2688 2689 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2690 // true in the PHI. 2691 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2692 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2693 2694 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2695 std::swap(DefaultCst, NewCst); 2696 2697 // Replace ICI (which is used by the PHI for the default value) with true or 2698 // false depending on if it is EQ or NE. 2699 ICI->replaceAllUsesWith(DefaultCst); 2700 ICI->eraseFromParent(); 2701 2702 // Okay, the switch goes to this block on a default value. Add an edge from 2703 // the switch to the merge point on the compared value. 2704 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2705 BB->getParent(), BB); 2706 SmallVector<uint64_t, 8> Weights; 2707 bool HasWeights = HasBranchWeights(SI); 2708 if (HasWeights) { 2709 GetBranchWeights(SI, Weights); 2710 if (Weights.size() == 1 + SI->getNumCases()) { 2711 // Split weight for default case to case for "Cst". 2712 Weights[0] = (Weights[0]+1) >> 1; 2713 Weights.push_back(Weights[0]); 2714 2715 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2716 SI->setMetadata(LLVMContext::MD_prof, 2717 MDBuilder(SI->getContext()). 2718 createBranchWeights(MDWeights)); 2719 } 2720 } 2721 SI->addCase(Cst, NewBB); 2722 2723 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2724 Builder.SetInsertPoint(NewBB); 2725 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2726 Builder.CreateBr(SuccBlock); 2727 PHIUse->addIncoming(NewCst, NewBB); 2728 return true; 2729 } 2730 2731 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2732 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2733 /// fold it into a switch instruction if so. 2734 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL, 2735 IRBuilder<> &Builder) { 2736 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2737 if (!Cond) return false; 2738 2739 2740 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2741 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2742 // 'setne's and'ed together, collect them. 2743 Value *CompVal = nullptr; 2744 std::vector<ConstantInt*> Values; 2745 bool TrueWhenEqual = true; 2746 Value *ExtraCase = nullptr; 2747 unsigned UsedICmps = 0; 2748 2749 if (Cond->getOpcode() == Instruction::Or) { 2750 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true, 2751 UsedICmps); 2752 } else if (Cond->getOpcode() == Instruction::And) { 2753 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false, 2754 UsedICmps); 2755 TrueWhenEqual = false; 2756 } 2757 2758 // If we didn't have a multiply compared value, fail. 2759 if (!CompVal) return false; 2760 2761 // Avoid turning single icmps into a switch. 2762 if (UsedICmps <= 1) 2763 return false; 2764 2765 // There might be duplicate constants in the list, which the switch 2766 // instruction can't handle, remove them now. 2767 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2768 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2769 2770 // If Extra was used, we require at least two switch values to do the 2771 // transformation. A switch with one value is just an cond branch. 2772 if (ExtraCase && Values.size() < 2) return false; 2773 2774 // TODO: Preserve branch weight metadata, similarly to how 2775 // FoldValueComparisonIntoPredecessors preserves it. 2776 2777 // Figure out which block is which destination. 2778 BasicBlock *DefaultBB = BI->getSuccessor(1); 2779 BasicBlock *EdgeBB = BI->getSuccessor(0); 2780 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2781 2782 BasicBlock *BB = BI->getParent(); 2783 2784 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2785 << " cases into SWITCH. BB is:\n" << *BB); 2786 2787 // If there are any extra values that couldn't be folded into the switch 2788 // then we evaluate them with an explicit branch first. Split the block 2789 // right before the condbr to handle it. 2790 if (ExtraCase) { 2791 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2792 // Remove the uncond branch added to the old block. 2793 TerminatorInst *OldTI = BB->getTerminator(); 2794 Builder.SetInsertPoint(OldTI); 2795 2796 if (TrueWhenEqual) 2797 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2798 else 2799 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2800 2801 OldTI->eraseFromParent(); 2802 2803 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2804 // for the edge we just added. 2805 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2806 2807 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2808 << "\nEXTRABB = " << *BB); 2809 BB = NewBB; 2810 } 2811 2812 Builder.SetInsertPoint(BI); 2813 // Convert pointer to int before we switch. 2814 if (CompVal->getType()->isPointerTy()) { 2815 assert(DL && "Cannot switch on pointer without DataLayout"); 2816 CompVal = Builder.CreatePtrToInt(CompVal, 2817 DL->getIntPtrType(CompVal->getType()), 2818 "magicptr"); 2819 } 2820 2821 // Create the new switch instruction now. 2822 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2823 2824 // Add all of the 'cases' to the switch instruction. 2825 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2826 New->addCase(Values[i], EdgeBB); 2827 2828 // We added edges from PI to the EdgeBB. As such, if there were any 2829 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2830 // the number of edges added. 2831 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2832 isa<PHINode>(BBI); ++BBI) { 2833 PHINode *PN = cast<PHINode>(BBI); 2834 Value *InVal = PN->getIncomingValueForBlock(BB); 2835 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2836 PN->addIncoming(InVal, BB); 2837 } 2838 2839 // Erase the old branch instruction. 2840 EraseTerminatorInstAndDCECond(BI); 2841 2842 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2843 return true; 2844 } 2845 2846 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2847 // If this is a trivial landing pad that just continues unwinding the caught 2848 // exception then zap the landing pad, turning its invokes into calls. 2849 BasicBlock *BB = RI->getParent(); 2850 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2851 if (RI->getValue() != LPInst) 2852 // Not a landing pad, or the resume is not unwinding the exception that 2853 // caused control to branch here. 2854 return false; 2855 2856 // Check that there are no other instructions except for debug intrinsics. 2857 BasicBlock::iterator I = LPInst, E = RI; 2858 while (++I != E) 2859 if (!isa<DbgInfoIntrinsic>(I)) 2860 return false; 2861 2862 // Turn all invokes that unwind here into calls and delete the basic block. 2863 bool InvokeRequiresTableEntry = false; 2864 bool Changed = false; 2865 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2866 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2867 2868 if (II->hasFnAttr(Attribute::UWTable)) { 2869 // Don't remove an `invoke' instruction if the ABI requires an entry into 2870 // the table. 2871 InvokeRequiresTableEntry = true; 2872 continue; 2873 } 2874 2875 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2876 2877 // Insert a call instruction before the invoke. 2878 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2879 Call->takeName(II); 2880 Call->setCallingConv(II->getCallingConv()); 2881 Call->setAttributes(II->getAttributes()); 2882 Call->setDebugLoc(II->getDebugLoc()); 2883 2884 // Anything that used the value produced by the invoke instruction now uses 2885 // the value produced by the call instruction. Note that we do this even 2886 // for void functions and calls with no uses so that the callgraph edge is 2887 // updated. 2888 II->replaceAllUsesWith(Call); 2889 BB->removePredecessor(II->getParent()); 2890 2891 // Insert a branch to the normal destination right before the invoke. 2892 BranchInst::Create(II->getNormalDest(), II); 2893 2894 // Finally, delete the invoke instruction! 2895 II->eraseFromParent(); 2896 Changed = true; 2897 } 2898 2899 if (!InvokeRequiresTableEntry) 2900 // The landingpad is now unreachable. Zap it. 2901 BB->eraseFromParent(); 2902 2903 return Changed; 2904 } 2905 2906 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2907 BasicBlock *BB = RI->getParent(); 2908 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2909 2910 // Find predecessors that end with branches. 2911 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2912 SmallVector<BranchInst*, 8> CondBranchPreds; 2913 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2914 BasicBlock *P = *PI; 2915 TerminatorInst *PTI = P->getTerminator(); 2916 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2917 if (BI->isUnconditional()) 2918 UncondBranchPreds.push_back(P); 2919 else 2920 CondBranchPreds.push_back(BI); 2921 } 2922 } 2923 2924 // If we found some, do the transformation! 2925 if (!UncondBranchPreds.empty() && DupRet) { 2926 while (!UncondBranchPreds.empty()) { 2927 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2928 DEBUG(dbgs() << "FOLDING: " << *BB 2929 << "INTO UNCOND BRANCH PRED: " << *Pred); 2930 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2931 } 2932 2933 // If we eliminated all predecessors of the block, delete the block now. 2934 if (pred_begin(BB) == pred_end(BB)) 2935 // We know there are no successors, so just nuke the block. 2936 BB->eraseFromParent(); 2937 2938 return true; 2939 } 2940 2941 // Check out all of the conditional branches going to this return 2942 // instruction. If any of them just select between returns, change the 2943 // branch itself into a select/return pair. 2944 while (!CondBranchPreds.empty()) { 2945 BranchInst *BI = CondBranchPreds.pop_back_val(); 2946 2947 // Check to see if the non-BB successor is also a return block. 2948 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2949 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2950 SimplifyCondBranchToTwoReturns(BI, Builder)) 2951 return true; 2952 } 2953 return false; 2954 } 2955 2956 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2957 BasicBlock *BB = UI->getParent(); 2958 2959 bool Changed = false; 2960 2961 // If there are any instructions immediately before the unreachable that can 2962 // be removed, do so. 2963 while (UI != BB->begin()) { 2964 BasicBlock::iterator BBI = UI; 2965 --BBI; 2966 // Do not delete instructions that can have side effects which might cause 2967 // the unreachable to not be reachable; specifically, calls and volatile 2968 // operations may have this effect. 2969 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2970 2971 if (BBI->mayHaveSideEffects()) { 2972 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2973 if (SI->isVolatile()) 2974 break; 2975 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2976 if (LI->isVolatile()) 2977 break; 2978 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2979 if (RMWI->isVolatile()) 2980 break; 2981 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2982 if (CXI->isVolatile()) 2983 break; 2984 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2985 !isa<LandingPadInst>(BBI)) { 2986 break; 2987 } 2988 // Note that deleting LandingPad's here is in fact okay, although it 2989 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2990 // all the predecessors of this block will be the unwind edges of Invokes, 2991 // and we can therefore guarantee this block will be erased. 2992 } 2993 2994 // Delete this instruction (any uses are guaranteed to be dead) 2995 if (!BBI->use_empty()) 2996 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2997 BBI->eraseFromParent(); 2998 Changed = true; 2999 } 3000 3001 // If the unreachable instruction is the first in the block, take a gander 3002 // at all of the predecessors of this instruction, and simplify them. 3003 if (&BB->front() != UI) return Changed; 3004 3005 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3006 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3007 TerminatorInst *TI = Preds[i]->getTerminator(); 3008 IRBuilder<> Builder(TI); 3009 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3010 if (BI->isUnconditional()) { 3011 if (BI->getSuccessor(0) == BB) { 3012 new UnreachableInst(TI->getContext(), TI); 3013 TI->eraseFromParent(); 3014 Changed = true; 3015 } 3016 } else { 3017 if (BI->getSuccessor(0) == BB) { 3018 Builder.CreateBr(BI->getSuccessor(1)); 3019 EraseTerminatorInstAndDCECond(BI); 3020 } else if (BI->getSuccessor(1) == BB) { 3021 Builder.CreateBr(BI->getSuccessor(0)); 3022 EraseTerminatorInstAndDCECond(BI); 3023 Changed = true; 3024 } 3025 } 3026 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3027 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3028 i != e; ++i) 3029 if (i.getCaseSuccessor() == BB) { 3030 BB->removePredecessor(SI->getParent()); 3031 SI->removeCase(i); 3032 --i; --e; 3033 Changed = true; 3034 } 3035 // If the default value is unreachable, figure out the most popular 3036 // destination and make it the default. 3037 if (SI->getDefaultDest() == BB) { 3038 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 3039 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3040 i != e; ++i) { 3041 std::pair<unsigned, unsigned> &entry = 3042 Popularity[i.getCaseSuccessor()]; 3043 if (entry.first == 0) { 3044 entry.first = 1; 3045 entry.second = i.getCaseIndex(); 3046 } else { 3047 entry.first++; 3048 } 3049 } 3050 3051 // Find the most popular block. 3052 unsigned MaxPop = 0; 3053 unsigned MaxIndex = 0; 3054 BasicBlock *MaxBlock = nullptr; 3055 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 3056 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 3057 if (I->second.first > MaxPop || 3058 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 3059 MaxPop = I->second.first; 3060 MaxIndex = I->second.second; 3061 MaxBlock = I->first; 3062 } 3063 } 3064 if (MaxBlock) { 3065 // Make this the new default, allowing us to delete any explicit 3066 // edges to it. 3067 SI->setDefaultDest(MaxBlock); 3068 Changed = true; 3069 3070 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 3071 // it. 3072 if (isa<PHINode>(MaxBlock->begin())) 3073 for (unsigned i = 0; i != MaxPop-1; ++i) 3074 MaxBlock->removePredecessor(SI->getParent()); 3075 3076 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3077 i != e; ++i) 3078 if (i.getCaseSuccessor() == MaxBlock) { 3079 SI->removeCase(i); 3080 --i; --e; 3081 } 3082 } 3083 } 3084 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3085 if (II->getUnwindDest() == BB) { 3086 // Convert the invoke to a call instruction. This would be a good 3087 // place to note that the call does not throw though. 3088 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3089 II->removeFromParent(); // Take out of symbol table 3090 3091 // Insert the call now... 3092 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3093 Builder.SetInsertPoint(BI); 3094 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3095 Args, II->getName()); 3096 CI->setCallingConv(II->getCallingConv()); 3097 CI->setAttributes(II->getAttributes()); 3098 // If the invoke produced a value, the call does now instead. 3099 II->replaceAllUsesWith(CI); 3100 delete II; 3101 Changed = true; 3102 } 3103 } 3104 } 3105 3106 // If this block is now dead, remove it. 3107 if (pred_begin(BB) == pred_end(BB) && 3108 BB != &BB->getParent()->getEntryBlock()) { 3109 // We know there are no successors, so just nuke the block. 3110 BB->eraseFromParent(); 3111 return true; 3112 } 3113 3114 return Changed; 3115 } 3116 3117 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 3118 /// integer range comparison into a sub, an icmp and a branch. 3119 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3120 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3121 3122 // Make sure all cases point to the same destination and gather the values. 3123 SmallVector<ConstantInt *, 16> Cases; 3124 SwitchInst::CaseIt I = SI->case_begin(); 3125 Cases.push_back(I.getCaseValue()); 3126 SwitchInst::CaseIt PrevI = I++; 3127 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3128 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3129 return false; 3130 Cases.push_back(I.getCaseValue()); 3131 } 3132 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3133 3134 // Sort the case values, then check if they form a range we can transform. 3135 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3136 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3137 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3138 return false; 3139 } 3140 3141 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3142 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3143 3144 Value *Sub = SI->getCondition(); 3145 if (!Offset->isNullValue()) 3146 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3147 Value *Cmp; 3148 // If NumCases overflowed, then all possible values jump to the successor. 3149 if (NumCases->isNullValue() && SI->getNumCases() != 0) 3150 Cmp = ConstantInt::getTrue(SI->getContext()); 3151 else 3152 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3153 BranchInst *NewBI = Builder.CreateCondBr( 3154 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3155 3156 // Update weight for the newly-created conditional branch. 3157 SmallVector<uint64_t, 8> Weights; 3158 bool HasWeights = HasBranchWeights(SI); 3159 if (HasWeights) { 3160 GetBranchWeights(SI, Weights); 3161 if (Weights.size() == 1 + SI->getNumCases()) { 3162 // Combine all weights for the cases to be the true weight of NewBI. 3163 // We assume that the sum of all weights for a Terminator can fit into 32 3164 // bits. 3165 uint32_t NewTrueWeight = 0; 3166 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3167 NewTrueWeight += (uint32_t)Weights[I]; 3168 NewBI->setMetadata(LLVMContext::MD_prof, 3169 MDBuilder(SI->getContext()). 3170 createBranchWeights(NewTrueWeight, 3171 (uint32_t)Weights[0])); 3172 } 3173 } 3174 3175 // Prune obsolete incoming values off the successor's PHI nodes. 3176 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3177 isa<PHINode>(BBI); ++BBI) { 3178 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3179 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3180 } 3181 SI->eraseFromParent(); 3182 3183 return true; 3184 } 3185 3186 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3187 /// and use it to remove dead cases. 3188 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3189 Value *Cond = SI->getCondition(); 3190 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3191 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3192 ComputeMaskedBits(Cond, KnownZero, KnownOne); 3193 3194 // Gather dead cases. 3195 SmallVector<ConstantInt*, 8> DeadCases; 3196 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3197 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3198 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3199 DeadCases.push_back(I.getCaseValue()); 3200 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3201 << I.getCaseValue() << "' is dead.\n"); 3202 } 3203 } 3204 3205 SmallVector<uint64_t, 8> Weights; 3206 bool HasWeight = HasBranchWeights(SI); 3207 if (HasWeight) { 3208 GetBranchWeights(SI, Weights); 3209 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3210 } 3211 3212 // Remove dead cases from the switch. 3213 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3214 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3215 assert(Case != SI->case_default() && 3216 "Case was not found. Probably mistake in DeadCases forming."); 3217 if (HasWeight) { 3218 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3219 Weights.pop_back(); 3220 } 3221 3222 // Prune unused values from PHI nodes. 3223 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3224 SI->removeCase(Case); 3225 } 3226 if (HasWeight && Weights.size() >= 2) { 3227 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3228 SI->setMetadata(LLVMContext::MD_prof, 3229 MDBuilder(SI->getParent()->getContext()). 3230 createBranchWeights(MDWeights)); 3231 } 3232 3233 return !DeadCases.empty(); 3234 } 3235 3236 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3237 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3238 /// by an unconditional branch), look at the phi node for BB in the successor 3239 /// block and see if the incoming value is equal to CaseValue. If so, return 3240 /// the phi node, and set PhiIndex to BB's index in the phi node. 3241 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3242 BasicBlock *BB, 3243 int *PhiIndex) { 3244 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3245 return nullptr; // BB must be empty to be a candidate for simplification. 3246 if (!BB->getSinglePredecessor()) 3247 return nullptr; // BB must be dominated by the switch. 3248 3249 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3250 if (!Branch || !Branch->isUnconditional()) 3251 return nullptr; // Terminator must be unconditional branch. 3252 3253 BasicBlock *Succ = Branch->getSuccessor(0); 3254 3255 BasicBlock::iterator I = Succ->begin(); 3256 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3257 int Idx = PHI->getBasicBlockIndex(BB); 3258 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3259 3260 Value *InValue = PHI->getIncomingValue(Idx); 3261 if (InValue != CaseValue) continue; 3262 3263 *PhiIndex = Idx; 3264 return PHI; 3265 } 3266 3267 return nullptr; 3268 } 3269 3270 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3271 /// instruction to a phi node dominated by the switch, if that would mean that 3272 /// some of the destination blocks of the switch can be folded away. 3273 /// Returns true if a change is made. 3274 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3275 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3276 ForwardingNodesMap ForwardingNodes; 3277 3278 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3279 ConstantInt *CaseValue = I.getCaseValue(); 3280 BasicBlock *CaseDest = I.getCaseSuccessor(); 3281 3282 int PhiIndex; 3283 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3284 &PhiIndex); 3285 if (!PHI) continue; 3286 3287 ForwardingNodes[PHI].push_back(PhiIndex); 3288 } 3289 3290 bool Changed = false; 3291 3292 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3293 E = ForwardingNodes.end(); I != E; ++I) { 3294 PHINode *Phi = I->first; 3295 SmallVectorImpl<int> &Indexes = I->second; 3296 3297 if (Indexes.size() < 2) continue; 3298 3299 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3300 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3301 Changed = true; 3302 } 3303 3304 return Changed; 3305 } 3306 3307 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3308 /// initializing an array of constants like C. 3309 static bool ValidLookupTableConstant(Constant *C) { 3310 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3311 return CE->isGEPWithNoNotionalOverIndexing(); 3312 3313 return isa<ConstantFP>(C) || 3314 isa<ConstantInt>(C) || 3315 isa<ConstantPointerNull>(C) || 3316 isa<GlobalValue>(C) || 3317 isa<UndefValue>(C); 3318 } 3319 3320 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3321 /// its constant value in ConstantPool, returning 0 if it's not there. 3322 static Constant *LookupConstant(Value *V, 3323 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3324 if (Constant *C = dyn_cast<Constant>(V)) 3325 return C; 3326 return ConstantPool.lookup(V); 3327 } 3328 3329 /// ConstantFold - Try to fold instruction I into a constant. This works for 3330 /// simple instructions such as binary operations where both operands are 3331 /// constant or can be replaced by constants from the ConstantPool. Returns the 3332 /// resulting constant on success, 0 otherwise. 3333 static Constant * 3334 ConstantFold(Instruction *I, 3335 const SmallDenseMap<Value *, Constant *> &ConstantPool, 3336 const DataLayout *DL) { 3337 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3338 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3339 if (!A) 3340 return nullptr; 3341 if (A->isAllOnesValue()) 3342 return LookupConstant(Select->getTrueValue(), ConstantPool); 3343 if (A->isNullValue()) 3344 return LookupConstant(Select->getFalseValue(), ConstantPool); 3345 return nullptr; 3346 } 3347 3348 SmallVector<Constant *, 4> COps; 3349 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3350 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3351 COps.push_back(A); 3352 else 3353 return nullptr; 3354 } 3355 3356 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) 3357 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3358 COps[1], DL); 3359 3360 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 3361 } 3362 3363 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3364 /// at the common destination basic block, *CommonDest, for one of the case 3365 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3366 /// case), of a switch instruction SI. 3367 static bool 3368 GetCaseResults(SwitchInst *SI, 3369 ConstantInt *CaseVal, 3370 BasicBlock *CaseDest, 3371 BasicBlock **CommonDest, 3372 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res, 3373 const DataLayout *DL) { 3374 // The block from which we enter the common destination. 3375 BasicBlock *Pred = SI->getParent(); 3376 3377 // If CaseDest is empty except for some side-effect free instructions through 3378 // which we can constant-propagate the CaseVal, continue to its successor. 3379 SmallDenseMap<Value*, Constant*> ConstantPool; 3380 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3381 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3382 ++I) { 3383 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3384 // If the terminator is a simple branch, continue to the next block. 3385 if (T->getNumSuccessors() != 1) 3386 return false; 3387 Pred = CaseDest; 3388 CaseDest = T->getSuccessor(0); 3389 } else if (isa<DbgInfoIntrinsic>(I)) { 3390 // Skip debug intrinsic. 3391 continue; 3392 } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) { 3393 // Instruction is side-effect free and constant. 3394 ConstantPool.insert(std::make_pair(I, C)); 3395 } else { 3396 break; 3397 } 3398 } 3399 3400 // If we did not have a CommonDest before, use the current one. 3401 if (!*CommonDest) 3402 *CommonDest = CaseDest; 3403 // If the destination isn't the common one, abort. 3404 if (CaseDest != *CommonDest) 3405 return false; 3406 3407 // Get the values for this case from phi nodes in the destination block. 3408 BasicBlock::iterator I = (*CommonDest)->begin(); 3409 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3410 int Idx = PHI->getBasicBlockIndex(Pred); 3411 if (Idx == -1) 3412 continue; 3413 3414 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3415 ConstantPool); 3416 if (!ConstVal) 3417 return false; 3418 3419 // Note: If the constant comes from constant-propagating the case value 3420 // through the CaseDest basic block, it will be safe to remove the 3421 // instructions in that block. They cannot be used (except in the phi nodes 3422 // we visit) outside CaseDest, because that block does not dominate its 3423 // successor. If it did, we would not be in this phi node. 3424 3425 // Be conservative about which kinds of constants we support. 3426 if (!ValidLookupTableConstant(ConstVal)) 3427 return false; 3428 3429 Res.push_back(std::make_pair(PHI, ConstVal)); 3430 } 3431 3432 return Res.size() > 0; 3433 } 3434 3435 namespace { 3436 /// SwitchLookupTable - This class represents a lookup table that can be used 3437 /// to replace a switch. 3438 class SwitchLookupTable { 3439 public: 3440 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3441 /// with the contents of Values, using DefaultValue to fill any holes in the 3442 /// table. 3443 SwitchLookupTable(Module &M, 3444 uint64_t TableSize, 3445 ConstantInt *Offset, 3446 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3447 Constant *DefaultValue, 3448 const DataLayout *DL); 3449 3450 /// BuildLookup - Build instructions with Builder to retrieve the value at 3451 /// the position given by Index in the lookup table. 3452 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3453 3454 /// WouldFitInRegister - Return true if a table with TableSize elements of 3455 /// type ElementType would fit in a target-legal register. 3456 static bool WouldFitInRegister(const DataLayout *DL, 3457 uint64_t TableSize, 3458 const Type *ElementType); 3459 3460 private: 3461 // Depending on the contents of the table, it can be represented in 3462 // different ways. 3463 enum { 3464 // For tables where each element contains the same value, we just have to 3465 // store that single value and return it for each lookup. 3466 SingleValueKind, 3467 3468 // For small tables with integer elements, we can pack them into a bitmap 3469 // that fits into a target-legal register. Values are retrieved by 3470 // shift and mask operations. 3471 BitMapKind, 3472 3473 // The table is stored as an array of values. Values are retrieved by load 3474 // instructions from the table. 3475 ArrayKind 3476 } Kind; 3477 3478 // For SingleValueKind, this is the single value. 3479 Constant *SingleValue; 3480 3481 // For BitMapKind, this is the bitmap. 3482 ConstantInt *BitMap; 3483 IntegerType *BitMapElementTy; 3484 3485 // For ArrayKind, this is the array. 3486 GlobalVariable *Array; 3487 }; 3488 } 3489 3490 SwitchLookupTable::SwitchLookupTable(Module &M, 3491 uint64_t TableSize, 3492 ConstantInt *Offset, 3493 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3494 Constant *DefaultValue, 3495 const DataLayout *DL) 3496 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 3497 Array(nullptr) { 3498 assert(Values.size() && "Can't build lookup table without values!"); 3499 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3500 3501 // If all values in the table are equal, this is that value. 3502 SingleValue = Values.begin()->second; 3503 3504 Type *ValueType = Values.begin()->second->getType(); 3505 3506 // Build up the table contents. 3507 SmallVector<Constant*, 64> TableContents(TableSize); 3508 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3509 ConstantInt *CaseVal = Values[I].first; 3510 Constant *CaseRes = Values[I].second; 3511 assert(CaseRes->getType() == ValueType); 3512 3513 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3514 .getLimitedValue(); 3515 TableContents[Idx] = CaseRes; 3516 3517 if (CaseRes != SingleValue) 3518 SingleValue = nullptr; 3519 } 3520 3521 // Fill in any holes in the table with the default result. 3522 if (Values.size() < TableSize) { 3523 assert(DefaultValue && "Need a default value to fill the lookup table holes."); 3524 assert(DefaultValue->getType() == ValueType); 3525 for (uint64_t I = 0; I < TableSize; ++I) { 3526 if (!TableContents[I]) 3527 TableContents[I] = DefaultValue; 3528 } 3529 3530 if (DefaultValue != SingleValue) 3531 SingleValue = nullptr; 3532 } 3533 3534 // If each element in the table contains the same value, we only need to store 3535 // that single value. 3536 if (SingleValue) { 3537 Kind = SingleValueKind; 3538 return; 3539 } 3540 3541 // If the type is integer and the table fits in a register, build a bitmap. 3542 if (WouldFitInRegister(DL, TableSize, ValueType)) { 3543 IntegerType *IT = cast<IntegerType>(ValueType); 3544 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3545 for (uint64_t I = TableSize; I > 0; --I) { 3546 TableInt <<= IT->getBitWidth(); 3547 // Insert values into the bitmap. Undef values are set to zero. 3548 if (!isa<UndefValue>(TableContents[I - 1])) { 3549 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3550 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3551 } 3552 } 3553 BitMap = ConstantInt::get(M.getContext(), TableInt); 3554 BitMapElementTy = IT; 3555 Kind = BitMapKind; 3556 ++NumBitMaps; 3557 return; 3558 } 3559 3560 // Store the table in an array. 3561 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 3562 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3563 3564 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3565 GlobalVariable::PrivateLinkage, 3566 Initializer, 3567 "switch.table"); 3568 Array->setUnnamedAddr(true); 3569 Kind = ArrayKind; 3570 } 3571 3572 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3573 switch (Kind) { 3574 case SingleValueKind: 3575 return SingleValue; 3576 case BitMapKind: { 3577 // Type of the bitmap (e.g. i59). 3578 IntegerType *MapTy = BitMap->getType(); 3579 3580 // Cast Index to the same type as the bitmap. 3581 // Note: The Index is <= the number of elements in the table, so 3582 // truncating it to the width of the bitmask is safe. 3583 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3584 3585 // Multiply the shift amount by the element width. 3586 ShiftAmt = Builder.CreateMul(ShiftAmt, 3587 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3588 "switch.shiftamt"); 3589 3590 // Shift down. 3591 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3592 "switch.downshift"); 3593 // Mask off. 3594 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3595 "switch.masked"); 3596 } 3597 case ArrayKind: { 3598 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3599 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3600 "switch.gep"); 3601 return Builder.CreateLoad(GEP, "switch.load"); 3602 } 3603 } 3604 llvm_unreachable("Unknown lookup table kind!"); 3605 } 3606 3607 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL, 3608 uint64_t TableSize, 3609 const Type *ElementType) { 3610 if (!DL) 3611 return false; 3612 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3613 if (!IT) 3614 return false; 3615 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3616 // are <= 15, we could try to narrow the type. 3617 3618 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3619 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3620 return false; 3621 return DL->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3622 } 3623 3624 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3625 /// for this switch, based on the number of cases, size of the table and the 3626 /// types of the results. 3627 static bool ShouldBuildLookupTable(SwitchInst *SI, 3628 uint64_t TableSize, 3629 const TargetTransformInfo &TTI, 3630 const DataLayout *DL, 3631 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3632 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3633 return false; // TableSize overflowed, or mul below might overflow. 3634 3635 bool AllTablesFitInRegister = true; 3636 bool HasIllegalType = false; 3637 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3638 E = ResultTypes.end(); I != E; ++I) { 3639 Type *Ty = I->second; 3640 3641 // Saturate this flag to true. 3642 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3643 3644 // Saturate this flag to false. 3645 AllTablesFitInRegister = AllTablesFitInRegister && 3646 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 3647 3648 // If both flags saturate, we're done. NOTE: This *only* works with 3649 // saturating flags, and all flags have to saturate first due to the 3650 // non-deterministic behavior of iterating over a dense map. 3651 if (HasIllegalType && !AllTablesFitInRegister) 3652 break; 3653 } 3654 3655 // If each table would fit in a register, we should build it anyway. 3656 if (AllTablesFitInRegister) 3657 return true; 3658 3659 // Don't build a table that doesn't fit in-register if it has illegal types. 3660 if (HasIllegalType) 3661 return false; 3662 3663 // The table density should be at least 40%. This is the same criterion as for 3664 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3665 // FIXME: Find the best cut-off. 3666 return SI->getNumCases() * 10 >= TableSize * 4; 3667 } 3668 3669 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3670 /// phi nodes in a common successor block with different constant values, 3671 /// replace the switch with lookup tables. 3672 static bool SwitchToLookupTable(SwitchInst *SI, 3673 IRBuilder<> &Builder, 3674 const TargetTransformInfo &TTI, 3675 const DataLayout* DL) { 3676 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3677 3678 // Only build lookup table when we have a target that supports it. 3679 if (!TTI.shouldBuildLookupTables()) 3680 return false; 3681 3682 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3683 // split off a dense part and build a lookup table for that. 3684 3685 // FIXME: This creates arrays of GEPs to constant strings, which means each 3686 // GEP needs a runtime relocation in PIC code. We should just build one big 3687 // string and lookup indices into that. 3688 3689 // Ignore switches with less than three cases. Lookup tables will not make them 3690 // faster, so we don't analyze them. 3691 if (SI->getNumCases() < 3) 3692 return false; 3693 3694 // Figure out the corresponding result for each case value and phi node in the 3695 // common destination, as well as the the min and max case values. 3696 assert(SI->case_begin() != SI->case_end()); 3697 SwitchInst::CaseIt CI = SI->case_begin(); 3698 ConstantInt *MinCaseVal = CI.getCaseValue(); 3699 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3700 3701 BasicBlock *CommonDest = nullptr; 3702 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3703 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3704 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3705 SmallDenseMap<PHINode*, Type*> ResultTypes; 3706 SmallVector<PHINode*, 4> PHIs; 3707 3708 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3709 ConstantInt *CaseVal = CI.getCaseValue(); 3710 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3711 MinCaseVal = CaseVal; 3712 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3713 MaxCaseVal = CaseVal; 3714 3715 // Resulting value at phi nodes for this case value. 3716 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3717 ResultsTy Results; 3718 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 3719 Results, DL)) 3720 return false; 3721 3722 // Append the result from this case to the list for each phi. 3723 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3724 if (!ResultLists.count(I->first)) 3725 PHIs.push_back(I->first); 3726 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3727 } 3728 } 3729 3730 // Keep track of the result types. 3731 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3732 PHINode *PHI = PHIs[I]; 3733 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 3734 } 3735 3736 uint64_t NumResults = ResultLists[PHIs[0]].size(); 3737 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3738 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3739 bool TableHasHoles = (NumResults < TableSize); 3740 3741 // If the table has holes, we need a constant result for the default case 3742 // or a bitmask that fits in a register. 3743 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3744 bool HasDefaultResults = false; 3745 if (TableHasHoles) { 3746 HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 3747 &CommonDest, DefaultResultsList, DL); 3748 } 3749 bool NeedMask = (TableHasHoles && !HasDefaultResults); 3750 if (NeedMask) { 3751 // As an extra penalty for the validity test we require more cases. 3752 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 3753 return false; 3754 if (!(DL && DL->fitsInLegalInteger(TableSize))) 3755 return false; 3756 } 3757 3758 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3759 PHINode *PHI = DefaultResultsList[I].first; 3760 Constant *Result = DefaultResultsList[I].second; 3761 DefaultResults[PHI] = Result; 3762 } 3763 3764 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 3765 return false; 3766 3767 // Create the BB that does the lookups. 3768 Module &Mod = *CommonDest->getParent()->getParent(); 3769 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3770 "switch.lookup", 3771 CommonDest->getParent(), 3772 CommonDest); 3773 3774 // Compute the table index value. 3775 Builder.SetInsertPoint(SI); 3776 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3777 "switch.tableidx"); 3778 3779 // Compute the maximum table size representable by the integer type we are 3780 // switching upon. 3781 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 3782 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 3783 assert(MaxTableSize >= TableSize && 3784 "It is impossible for a switch to have more entries than the max " 3785 "representable value of its input integer type's size."); 3786 3787 // If we have a fully covered lookup table, unconditionally branch to the 3788 // lookup table BB. Otherwise, check if the condition value is within the case 3789 // range. If it is so, branch to the new BB. Otherwise branch to SI's default 3790 // destination. 3791 const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize; 3792 if (GeneratingCoveredLookupTable) { 3793 Builder.CreateBr(LookupBB); 3794 SI->getDefaultDest()->removePredecessor(SI->getParent()); 3795 } else { 3796 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3797 MinCaseVal->getType(), TableSize)); 3798 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3799 } 3800 3801 // Populate the BB that does the lookups. 3802 Builder.SetInsertPoint(LookupBB); 3803 3804 if (NeedMask) { 3805 // Before doing the lookup we do the hole check. 3806 // The LookupBB is therefore re-purposed to do the hole check 3807 // and we create a new LookupBB. 3808 BasicBlock *MaskBB = LookupBB; 3809 MaskBB->setName("switch.hole_check"); 3810 LookupBB = BasicBlock::Create(Mod.getContext(), 3811 "switch.lookup", 3812 CommonDest->getParent(), 3813 CommonDest); 3814 3815 // Build bitmask; fill in a 1 bit for every case. 3816 APInt MaskInt(TableSize, 0); 3817 APInt One(TableSize, 1); 3818 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 3819 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 3820 uint64_t Idx = (ResultList[I].first->getValue() - 3821 MinCaseVal->getValue()).getLimitedValue(); 3822 MaskInt |= One << Idx; 3823 } 3824 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 3825 3826 // Get the TableIndex'th bit of the bitmask. 3827 // If this bit is 0 (meaning hole) jump to the default destination, 3828 // else continue with table lookup. 3829 IntegerType *MapTy = TableMask->getType(); 3830 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 3831 "switch.maskindex"); 3832 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 3833 "switch.shifted"); 3834 Value *LoBit = Builder.CreateTrunc(Shifted, 3835 Type::getInt1Ty(Mod.getContext()), 3836 "switch.lobit"); 3837 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 3838 3839 Builder.SetInsertPoint(LookupBB); 3840 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 3841 } 3842 3843 bool ReturnedEarly = false; 3844 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3845 PHINode *PHI = PHIs[I]; 3846 3847 // If using a bitmask, use any value to fill the lookup table holes. 3848 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 3849 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3850 DV, DL); 3851 3852 Value *Result = Table.BuildLookup(TableIndex, Builder); 3853 3854 // If the result is used to return immediately from the function, we want to 3855 // do that right here. 3856 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 3857 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 3858 Builder.CreateRet(Result); 3859 ReturnedEarly = true; 3860 break; 3861 } 3862 3863 PHI->addIncoming(Result, LookupBB); 3864 } 3865 3866 if (!ReturnedEarly) 3867 Builder.CreateBr(CommonDest); 3868 3869 // Remove the switch. 3870 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 3871 BasicBlock *Succ = SI->getSuccessor(i); 3872 3873 if (Succ == SI->getDefaultDest()) 3874 continue; 3875 Succ->removePredecessor(SI->getParent()); 3876 } 3877 SI->eraseFromParent(); 3878 3879 ++NumLookupTables; 3880 if (NeedMask) 3881 ++NumLookupTablesHoles; 3882 return true; 3883 } 3884 3885 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3886 BasicBlock *BB = SI->getParent(); 3887 3888 if (isValueEqualityComparison(SI)) { 3889 // If we only have one predecessor, and if it is a branch on this value, 3890 // see if that predecessor totally determines the outcome of this switch. 3891 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3892 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3893 return SimplifyCFG(BB, TTI, DL) | true; 3894 3895 Value *Cond = SI->getCondition(); 3896 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3897 if (SimplifySwitchOnSelect(SI, Select)) 3898 return SimplifyCFG(BB, TTI, DL) | true; 3899 3900 // If the block only contains the switch, see if we can fold the block 3901 // away into any preds. 3902 BasicBlock::iterator BBI = BB->begin(); 3903 // Ignore dbg intrinsics. 3904 while (isa<DbgInfoIntrinsic>(BBI)) 3905 ++BBI; 3906 if (SI == &*BBI) 3907 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3908 return SimplifyCFG(BB, TTI, DL) | true; 3909 } 3910 3911 // Try to transform the switch into an icmp and a branch. 3912 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3913 return SimplifyCFG(BB, TTI, DL) | true; 3914 3915 // Remove unreachable cases. 3916 if (EliminateDeadSwitchCases(SI)) 3917 return SimplifyCFG(BB, TTI, DL) | true; 3918 3919 if (ForwardSwitchConditionToPHI(SI)) 3920 return SimplifyCFG(BB, TTI, DL) | true; 3921 3922 if (SwitchToLookupTable(SI, Builder, TTI, DL)) 3923 return SimplifyCFG(BB, TTI, DL) | true; 3924 3925 return false; 3926 } 3927 3928 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3929 BasicBlock *BB = IBI->getParent(); 3930 bool Changed = false; 3931 3932 // Eliminate redundant destinations. 3933 SmallPtrSet<Value *, 8> Succs; 3934 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3935 BasicBlock *Dest = IBI->getDestination(i); 3936 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3937 Dest->removePredecessor(BB); 3938 IBI->removeDestination(i); 3939 --i; --e; 3940 Changed = true; 3941 } 3942 } 3943 3944 if (IBI->getNumDestinations() == 0) { 3945 // If the indirectbr has no successors, change it to unreachable. 3946 new UnreachableInst(IBI->getContext(), IBI); 3947 EraseTerminatorInstAndDCECond(IBI); 3948 return true; 3949 } 3950 3951 if (IBI->getNumDestinations() == 1) { 3952 // If the indirectbr has one successor, change it to a direct branch. 3953 BranchInst::Create(IBI->getDestination(0), IBI); 3954 EraseTerminatorInstAndDCECond(IBI); 3955 return true; 3956 } 3957 3958 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3959 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3960 return SimplifyCFG(BB, TTI, DL) | true; 3961 } 3962 return Changed; 3963 } 3964 3965 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3966 BasicBlock *BB = BI->getParent(); 3967 3968 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3969 return true; 3970 3971 // If the Terminator is the only non-phi instruction, simplify the block. 3972 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3973 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3974 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3975 return true; 3976 3977 // If the only instruction in the block is a seteq/setne comparison 3978 // against a constant, try to simplify the block. 3979 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3980 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3981 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3982 ; 3983 if (I->isTerminator() && 3984 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, DL)) 3985 return true; 3986 } 3987 3988 // If this basic block is ONLY a compare and a branch, and if a predecessor 3989 // branches to us and our successor, fold the comparison into the 3990 // predecessor and use logical operations to update the incoming value 3991 // for PHI nodes in common successor. 3992 if (FoldBranchToCommonDest(BI)) 3993 return SimplifyCFG(BB, TTI, DL) | true; 3994 return false; 3995 } 3996 3997 3998 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 3999 BasicBlock *BB = BI->getParent(); 4000 4001 // Conditional branch 4002 if (isValueEqualityComparison(BI)) { 4003 // If we only have one predecessor, and if it is a branch on this value, 4004 // see if that predecessor totally determines the outcome of this 4005 // switch. 4006 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4007 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 4008 return SimplifyCFG(BB, TTI, DL) | true; 4009 4010 // This block must be empty, except for the setcond inst, if it exists. 4011 // Ignore dbg intrinsics. 4012 BasicBlock::iterator I = BB->begin(); 4013 // Ignore dbg intrinsics. 4014 while (isa<DbgInfoIntrinsic>(I)) 4015 ++I; 4016 if (&*I == BI) { 4017 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 4018 return SimplifyCFG(BB, TTI, DL) | true; 4019 } else if (&*I == cast<Instruction>(BI->getCondition())){ 4020 ++I; 4021 // Ignore dbg intrinsics. 4022 while (isa<DbgInfoIntrinsic>(I)) 4023 ++I; 4024 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 4025 return SimplifyCFG(BB, TTI, DL) | true; 4026 } 4027 } 4028 4029 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 4030 if (SimplifyBranchOnICmpChain(BI, DL, Builder)) 4031 return true; 4032 4033 // If this basic block is ONLY a compare and a branch, and if a predecessor 4034 // branches to us and one of our successors, fold the comparison into the 4035 // predecessor and use logical operations to pick the right destination. 4036 if (FoldBranchToCommonDest(BI)) 4037 return SimplifyCFG(BB, TTI, DL) | true; 4038 4039 // We have a conditional branch to two blocks that are only reachable 4040 // from BI. We know that the condbr dominates the two blocks, so see if 4041 // there is any identical code in the "then" and "else" blocks. If so, we 4042 // can hoist it up to the branching block. 4043 if (BI->getSuccessor(0)->getSinglePredecessor()) { 4044 if (BI->getSuccessor(1)->getSinglePredecessor()) { 4045 if (HoistThenElseCodeToIf(BI)) 4046 return SimplifyCFG(BB, TTI, DL) | true; 4047 } else { 4048 // If Successor #1 has multiple preds, we may be able to conditionally 4049 // execute Successor #0 if it branches to successor #1. 4050 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4051 if (Succ0TI->getNumSuccessors() == 1 && 4052 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4053 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 4054 return SimplifyCFG(BB, TTI, DL) | true; 4055 } 4056 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 4057 // If Successor #0 has multiple preds, we may be able to conditionally 4058 // execute Successor #1 if it branches to successor #0. 4059 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4060 if (Succ1TI->getNumSuccessors() == 1 && 4061 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4062 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 4063 return SimplifyCFG(BB, TTI, DL) | true; 4064 } 4065 4066 // If this is a branch on a phi node in the current block, thread control 4067 // through this block if any PHI node entries are constants. 4068 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4069 if (PN->getParent() == BI->getParent()) 4070 if (FoldCondBranchOnPHI(BI, DL)) 4071 return SimplifyCFG(BB, TTI, DL) | true; 4072 4073 // Scan predecessor blocks for conditional branches. 4074 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4075 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4076 if (PBI != BI && PBI->isConditional()) 4077 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4078 return SimplifyCFG(BB, TTI, DL) | true; 4079 4080 return false; 4081 } 4082 4083 /// Check if passing a value to an instruction will cause undefined behavior. 4084 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4085 Constant *C = dyn_cast<Constant>(V); 4086 if (!C) 4087 return false; 4088 4089 if (I->use_empty()) 4090 return false; 4091 4092 if (C->isNullValue()) { 4093 // Only look at the first use, avoid hurting compile time with long uselists 4094 User *Use = *I->user_begin(); 4095 4096 // Now make sure that there are no instructions in between that can alter 4097 // control flow (eg. calls) 4098 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4099 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4100 return false; 4101 4102 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4103 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4104 if (GEP->getPointerOperand() == I) 4105 return passingValueIsAlwaysUndefined(V, GEP); 4106 4107 // Look through bitcasts. 4108 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4109 return passingValueIsAlwaysUndefined(V, BC); 4110 4111 // Load from null is undefined. 4112 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4113 if (!LI->isVolatile()) 4114 return LI->getPointerAddressSpace() == 0; 4115 4116 // Store to null is undefined. 4117 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4118 if (!SI->isVolatile()) 4119 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4120 } 4121 return false; 4122 } 4123 4124 /// If BB has an incoming value that will always trigger undefined behavior 4125 /// (eg. null pointer dereference), remove the branch leading here. 4126 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4127 for (BasicBlock::iterator i = BB->begin(); 4128 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4129 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4130 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4131 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4132 IRBuilder<> Builder(T); 4133 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4134 BB->removePredecessor(PHI->getIncomingBlock(i)); 4135 // Turn uncoditional branches into unreachables and remove the dead 4136 // destination from conditional branches. 4137 if (BI->isUnconditional()) 4138 Builder.CreateUnreachable(); 4139 else 4140 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4141 BI->getSuccessor(0)); 4142 BI->eraseFromParent(); 4143 return true; 4144 } 4145 // TODO: SwitchInst. 4146 } 4147 4148 return false; 4149 } 4150 4151 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4152 bool Changed = false; 4153 4154 assert(BB && BB->getParent() && "Block not embedded in function!"); 4155 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4156 4157 // Remove basic blocks that have no predecessors (except the entry block)... 4158 // or that just have themself as a predecessor. These are unreachable. 4159 if ((pred_begin(BB) == pred_end(BB) && 4160 BB != &BB->getParent()->getEntryBlock()) || 4161 BB->getSinglePredecessor() == BB) { 4162 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4163 DeleteDeadBlock(BB); 4164 return true; 4165 } 4166 4167 // Check to see if we can constant propagate this terminator instruction 4168 // away... 4169 Changed |= ConstantFoldTerminator(BB, true); 4170 4171 // Check for and eliminate duplicate PHI nodes in this block. 4172 Changed |= EliminateDuplicatePHINodes(BB); 4173 4174 // Check for and remove branches that will always cause undefined behavior. 4175 Changed |= removeUndefIntroducingPredecessor(BB); 4176 4177 // Merge basic blocks into their predecessor if there is only one distinct 4178 // pred, and if there is only one distinct successor of the predecessor, and 4179 // if there are no PHI nodes. 4180 // 4181 if (MergeBlockIntoPredecessor(BB)) 4182 return true; 4183 4184 IRBuilder<> Builder(BB); 4185 4186 // If there is a trivial two-entry PHI node in this basic block, and we can 4187 // eliminate it, do so now. 4188 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4189 if (PN->getNumIncomingValues() == 2) 4190 Changed |= FoldTwoEntryPHINode(PN, DL); 4191 4192 Builder.SetInsertPoint(BB->getTerminator()); 4193 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4194 if (BI->isUnconditional()) { 4195 if (SimplifyUncondBranch(BI, Builder)) return true; 4196 } else { 4197 if (SimplifyCondBranch(BI, Builder)) return true; 4198 } 4199 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4200 if (SimplifyReturn(RI, Builder)) return true; 4201 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4202 if (SimplifyResume(RI, Builder)) return true; 4203 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4204 if (SimplifySwitch(SI, Builder)) return true; 4205 } else if (UnreachableInst *UI = 4206 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4207 if (SimplifyUnreachable(UI)) return true; 4208 } else if (IndirectBrInst *IBI = 4209 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4210 if (SimplifyIndirectBr(IBI)) return true; 4211 } 4212 4213 return Changed; 4214 } 4215 4216 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4217 /// example, it adjusts branches to branches to eliminate the extra hop, it 4218 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4219 /// of the CFG. It returns true if a modification was made. 4220 /// 4221 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4222 const DataLayout *DL) { 4223 return SimplifyCFGOpt(TTI, DL).run(BB); 4224 } 4225