1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/CallSite.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/NoFolder.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/PatternMatch.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<bool> DupRet( 98 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 99 cl::desc("Duplicate return instructions into unconditional branches")); 100 101 static cl::opt<bool> 102 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 103 cl::desc("Sink common instructions down to the end block")); 104 105 static cl::opt<bool> HoistCondStores( 106 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores if an unconditional store precedes")); 108 109 static cl::opt<bool> MergeCondStores( 110 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 111 cl::desc("Hoist conditional stores even if an unconditional store does not " 112 "precede - hoist multiple conditional stores into a single " 113 "predicated store")); 114 115 static cl::opt<bool> MergeCondStoresAggressively( 116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 117 cl::desc("When merging conditional stores, do so even if the resultant " 118 "basic blocks are unlikely to be if-converted as a result")); 119 120 static cl::opt<bool> SpeculateOneExpensiveInst( 121 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 122 cl::desc("Allow exactly one expensive instruction to be speculatively " 123 "executed")); 124 125 static cl::opt<unsigned> MaxSpeculationDepth( 126 "max-speculation-depth", cl::Hidden, cl::init(10), 127 cl::desc("Limit maximum recursion depth when calculating costs of " 128 "speculatively executed instructions")); 129 130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 131 STATISTIC(NumLinearMaps, 132 "Number of switch instructions turned into linear mapping"); 133 STATISTIC(NumLookupTables, 134 "Number of switch instructions turned into lookup tables"); 135 STATISTIC( 136 NumLookupTablesHoles, 137 "Number of switch instructions turned into lookup tables (holes checked)"); 138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 139 STATISTIC(NumSinkCommons, 140 "Number of common instructions sunk down to the end block"); 141 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 142 143 namespace { 144 145 // The first field contains the value that the switch produces when a certain 146 // case group is selected, and the second field is a vector containing the 147 // cases composing the case group. 148 using SwitchCaseResultVectorTy = 149 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 150 151 // The first field contains the phi node that generates a result of the switch 152 // and the second field contains the value generated for a certain case in the 153 // switch for that PHI. 154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 155 156 /// ValueEqualityComparisonCase - Represents a case of a switch. 157 struct ValueEqualityComparisonCase { 158 ConstantInt *Value; 159 BasicBlock *Dest; 160 161 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 162 : Value(Value), Dest(Dest) {} 163 164 bool operator<(ValueEqualityComparisonCase RHS) const { 165 // Comparing pointers is ok as we only rely on the order for uniquing. 166 return Value < RHS.Value; 167 } 168 169 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 170 }; 171 172 class SimplifyCFGOpt { 173 const TargetTransformInfo &TTI; 174 const DataLayout &DL; 175 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 176 const SimplifyCFGOptions &Options; 177 178 Value *isValueEqualityComparison(TerminatorInst *TI); 179 BasicBlock *GetValueEqualityComparisonCases( 180 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 181 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 182 BasicBlock *Pred, 183 IRBuilder<> &Builder); 184 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 185 IRBuilder<> &Builder); 186 187 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 188 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 189 bool SimplifySingleResume(ResumeInst *RI); 190 bool SimplifyCommonResume(ResumeInst *RI); 191 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 192 bool SimplifyUnreachable(UnreachableInst *UI); 193 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 194 bool SimplifyIndirectBr(IndirectBrInst *IBI); 195 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 198 public: 199 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 200 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 201 const SimplifyCFGOptions &Opts) 202 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 203 204 bool run(BasicBlock *BB); 205 }; 206 207 } // end anonymous namespace 208 209 /// Return true if it is safe to merge these two 210 /// terminator instructions together. 211 static bool 212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 213 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 214 if (SI1 == SI2) 215 return false; // Can't merge with self! 216 217 // It is not safe to merge these two switch instructions if they have a common 218 // successor, and if that successor has a PHI node, and if *that* PHI node has 219 // conflicting incoming values from the two switch blocks. 220 BasicBlock *SI1BB = SI1->getParent(); 221 BasicBlock *SI2BB = SI2->getParent(); 222 223 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 224 bool Fail = false; 225 for (BasicBlock *Succ : successors(SI2BB)) 226 if (SI1Succs.count(Succ)) 227 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 228 PHINode *PN = cast<PHINode>(BBI); 229 if (PN->getIncomingValueForBlock(SI1BB) != 230 PN->getIncomingValueForBlock(SI2BB)) { 231 if (FailBlocks) 232 FailBlocks->insert(Succ); 233 Fail = true; 234 } 235 } 236 237 return !Fail; 238 } 239 240 /// Return true if it is safe and profitable to merge these two terminator 241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 242 /// store all PHI nodes in common successors. 243 static bool 244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 245 Instruction *Cond, 246 SmallVectorImpl<PHINode *> &PhiNodes) { 247 if (SI1 == SI2) 248 return false; // Can't merge with self! 249 assert(SI1->isUnconditional() && SI2->isConditional()); 250 251 // We fold the unconditional branch if we can easily update all PHI nodes in 252 // common successors: 253 // 1> We have a constant incoming value for the conditional branch; 254 // 2> We have "Cond" as the incoming value for the unconditional branch; 255 // 3> SI2->getCondition() and Cond have same operands. 256 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 257 if (!Ci2) 258 return false; 259 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 260 Cond->getOperand(1) == Ci2->getOperand(1)) && 261 !(Cond->getOperand(0) == Ci2->getOperand(1) && 262 Cond->getOperand(1) == Ci2->getOperand(0))) 263 return false; 264 265 BasicBlock *SI1BB = SI1->getParent(); 266 BasicBlock *SI2BB = SI2->getParent(); 267 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 268 for (BasicBlock *Succ : successors(SI2BB)) 269 if (SI1Succs.count(Succ)) 270 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 271 PHINode *PN = cast<PHINode>(BBI); 272 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 273 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 274 return false; 275 PhiNodes.push_back(PN); 276 } 277 return true; 278 } 279 280 /// Update PHI nodes in Succ to indicate that there will now be entries in it 281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 282 /// will be the same as those coming in from ExistPred, an existing predecessor 283 /// of Succ. 284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 285 BasicBlock *ExistPred) { 286 for (PHINode &PN : Succ->phis()) 287 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 288 } 289 290 /// Compute an abstract "cost" of speculating the given instruction, 291 /// which is assumed to be safe to speculate. TCC_Free means cheap, 292 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 293 /// expensive. 294 static unsigned ComputeSpeculationCost(const User *I, 295 const TargetTransformInfo &TTI) { 296 assert(isSafeToSpeculativelyExecute(I) && 297 "Instruction is not safe to speculatively execute!"); 298 return TTI.getUserCost(I); 299 } 300 301 /// If we have a merge point of an "if condition" as accepted above, 302 /// return true if the specified value dominates the block. We 303 /// don't handle the true generality of domination here, just a special case 304 /// which works well enough for us. 305 /// 306 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 307 /// see if V (which must be an instruction) and its recursive operands 308 /// that do not dominate BB have a combined cost lower than CostRemaining and 309 /// are non-trapping. If both are true, the instruction is inserted into the 310 /// set and true is returned. 311 /// 312 /// The cost for most non-trapping instructions is defined as 1 except for 313 /// Select whose cost is 2. 314 /// 315 /// After this function returns, CostRemaining is decreased by the cost of 316 /// V plus its non-dominating operands. If that cost is greater than 317 /// CostRemaining, false is returned and CostRemaining is undefined. 318 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 319 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 320 unsigned &CostRemaining, 321 const TargetTransformInfo &TTI, 322 unsigned Depth = 0) { 323 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 324 // so limit the recursion depth. 325 // TODO: While this recursion limit does prevent pathological behavior, it 326 // would be better to track visited instructions to avoid cycles. 327 if (Depth == MaxSpeculationDepth) 328 return false; 329 330 Instruction *I = dyn_cast<Instruction>(V); 331 if (!I) { 332 // Non-instructions all dominate instructions, but not all constantexprs 333 // can be executed unconditionally. 334 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 335 if (C->canTrap()) 336 return false; 337 return true; 338 } 339 BasicBlock *PBB = I->getParent(); 340 341 // We don't want to allow weird loops that might have the "if condition" in 342 // the bottom of this block. 343 if (PBB == BB) 344 return false; 345 346 // If this instruction is defined in a block that contains an unconditional 347 // branch to BB, then it must be in the 'conditional' part of the "if 348 // statement". If not, it definitely dominates the region. 349 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 350 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 351 return true; 352 353 // If we aren't allowing aggressive promotion anymore, then don't consider 354 // instructions in the 'if region'. 355 if (!AggressiveInsts) 356 return false; 357 358 // If we have seen this instruction before, don't count it again. 359 if (AggressiveInsts->count(I)) 360 return true; 361 362 // Okay, it looks like the instruction IS in the "condition". Check to 363 // see if it's a cheap instruction to unconditionally compute, and if it 364 // only uses stuff defined outside of the condition. If so, hoist it out. 365 if (!isSafeToSpeculativelyExecute(I)) 366 return false; 367 368 unsigned Cost = ComputeSpeculationCost(I, TTI); 369 370 // Allow exactly one instruction to be speculated regardless of its cost 371 // (as long as it is safe to do so). 372 // This is intended to flatten the CFG even if the instruction is a division 373 // or other expensive operation. The speculation of an expensive instruction 374 // is expected to be undone in CodeGenPrepare if the speculation has not 375 // enabled further IR optimizations. 376 if (Cost > CostRemaining && 377 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 378 return false; 379 380 // Avoid unsigned wrap. 381 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 382 383 // Okay, we can only really hoist these out if their operands do 384 // not take us over the cost threshold. 385 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 386 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 387 Depth + 1)) 388 return false; 389 // Okay, it's safe to do this! Remember this instruction. 390 AggressiveInsts->insert(I); 391 return true; 392 } 393 394 /// Extract ConstantInt from value, looking through IntToPtr 395 /// and PointerNullValue. Return NULL if value is not a constant int. 396 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 397 // Normal constant int. 398 ConstantInt *CI = dyn_cast<ConstantInt>(V); 399 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 400 return CI; 401 402 // This is some kind of pointer constant. Turn it into a pointer-sized 403 // ConstantInt if possible. 404 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 405 406 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 407 if (isa<ConstantPointerNull>(V)) 408 return ConstantInt::get(PtrTy, 0); 409 410 // IntToPtr const int. 411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 412 if (CE->getOpcode() == Instruction::IntToPtr) 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 414 // The constant is very likely to have the right type already. 415 if (CI->getType() == PtrTy) 416 return CI; 417 else 418 return cast<ConstantInt>( 419 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 420 } 421 return nullptr; 422 } 423 424 namespace { 425 426 /// Given a chain of or (||) or and (&&) comparison of a value against a 427 /// constant, this will try to recover the information required for a switch 428 /// structure. 429 /// It will depth-first traverse the chain of comparison, seeking for patterns 430 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 431 /// representing the different cases for the switch. 432 /// Note that if the chain is composed of '||' it will build the set of elements 433 /// that matches the comparisons (i.e. any of this value validate the chain) 434 /// while for a chain of '&&' it will build the set elements that make the test 435 /// fail. 436 struct ConstantComparesGatherer { 437 const DataLayout &DL; 438 439 /// Value found for the switch comparison 440 Value *CompValue = nullptr; 441 442 /// Extra clause to be checked before the switch 443 Value *Extra = nullptr; 444 445 /// Set of integers to match in switch 446 SmallVector<ConstantInt *, 8> Vals; 447 448 /// Number of comparisons matched in the and/or chain 449 unsigned UsedICmps = 0; 450 451 /// Construct and compute the result for the comparison instruction Cond 452 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 453 gather(Cond); 454 } 455 456 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 457 ConstantComparesGatherer & 458 operator=(const ConstantComparesGatherer &) = delete; 459 460 private: 461 /// Try to set the current value used for the comparison, it succeeds only if 462 /// it wasn't set before or if the new value is the same as the old one 463 bool setValueOnce(Value *NewVal) { 464 if (CompValue && CompValue != NewVal) 465 return false; 466 CompValue = NewVal; 467 return (CompValue != nullptr); 468 } 469 470 /// Try to match Instruction "I" as a comparison against a constant and 471 /// populates the array Vals with the set of values that match (or do not 472 /// match depending on isEQ). 473 /// Return false on failure. On success, the Value the comparison matched 474 /// against is placed in CompValue. 475 /// If CompValue is already set, the function is expected to fail if a match 476 /// is found but the value compared to is different. 477 bool matchInstruction(Instruction *I, bool isEQ) { 478 // If this is an icmp against a constant, handle this as one of the cases. 479 ICmpInst *ICI; 480 ConstantInt *C; 481 if (!((ICI = dyn_cast<ICmpInst>(I)) && 482 (C = GetConstantInt(I->getOperand(1), DL)))) { 483 return false; 484 } 485 486 Value *RHSVal; 487 const APInt *RHSC; 488 489 // Pattern match a special case 490 // (x & ~2^z) == y --> x == y || x == y|2^z 491 // This undoes a transformation done by instcombine to fuse 2 compares. 492 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 493 // It's a little bit hard to see why the following transformations are 494 // correct. Here is a CVC3 program to verify them for 64-bit values: 495 496 /* 497 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 498 x : BITVECTOR(64); 499 y : BITVECTOR(64); 500 z : BITVECTOR(64); 501 mask : BITVECTOR(64) = BVSHL(ONE, z); 502 QUERY( (y & ~mask = y) => 503 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 504 ); 505 QUERY( (y | mask = y) => 506 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 507 ); 508 */ 509 510 // Please note that each pattern must be a dual implication (<--> or 511 // iff). One directional implication can create spurious matches. If the 512 // implication is only one-way, an unsatisfiable condition on the left 513 // side can imply a satisfiable condition on the right side. Dual 514 // implication ensures that satisfiable conditions are transformed to 515 // other satisfiable conditions and unsatisfiable conditions are 516 // transformed to other unsatisfiable conditions. 517 518 // Here is a concrete example of a unsatisfiable condition on the left 519 // implying a satisfiable condition on the right: 520 // 521 // mask = (1 << z) 522 // (x & ~mask) == y --> (x == y || x == (y | mask)) 523 // 524 // Substituting y = 3, z = 0 yields: 525 // (x & -2) == 3 --> (x == 3 || x == 2) 526 527 // Pattern match a special case: 528 /* 529 QUERY( (y & ~mask = y) => 530 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 531 ); 532 */ 533 if (match(ICI->getOperand(0), 534 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 535 APInt Mask = ~*RHSC; 536 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 537 // If we already have a value for the switch, it has to match! 538 if (!setValueOnce(RHSVal)) 539 return false; 540 541 Vals.push_back(C); 542 Vals.push_back( 543 ConstantInt::get(C->getContext(), 544 C->getValue() | Mask)); 545 UsedICmps++; 546 return true; 547 } 548 } 549 550 // Pattern match a special case: 551 /* 552 QUERY( (y | mask = y) => 553 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 554 ); 555 */ 556 if (match(ICI->getOperand(0), 557 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 558 APInt Mask = *RHSC; 559 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 560 // If we already have a value for the switch, it has to match! 561 if (!setValueOnce(RHSVal)) 562 return false; 563 564 Vals.push_back(C); 565 Vals.push_back(ConstantInt::get(C->getContext(), 566 C->getValue() & ~Mask)); 567 UsedICmps++; 568 return true; 569 } 570 } 571 572 // If we already have a value for the switch, it has to match! 573 if (!setValueOnce(ICI->getOperand(0))) 574 return false; 575 576 UsedICmps++; 577 Vals.push_back(C); 578 return ICI->getOperand(0); 579 } 580 581 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 582 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 583 ICI->getPredicate(), C->getValue()); 584 585 // Shift the range if the compare is fed by an add. This is the range 586 // compare idiom as emitted by instcombine. 587 Value *CandidateVal = I->getOperand(0); 588 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 589 Span = Span.subtract(*RHSC); 590 CandidateVal = RHSVal; 591 } 592 593 // If this is an and/!= check, then we are looking to build the set of 594 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 595 // x != 0 && x != 1. 596 if (!isEQ) 597 Span = Span.inverse(); 598 599 // If there are a ton of values, we don't want to make a ginormous switch. 600 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 601 return false; 602 } 603 604 // If we already have a value for the switch, it has to match! 605 if (!setValueOnce(CandidateVal)) 606 return false; 607 608 // Add all values from the range to the set 609 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 610 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 611 612 UsedICmps++; 613 return true; 614 } 615 616 /// Given a potentially 'or'd or 'and'd together collection of icmp 617 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 618 /// the value being compared, and stick the list constants into the Vals 619 /// vector. 620 /// One "Extra" case is allowed to differ from the other. 621 void gather(Value *V) { 622 Instruction *I = dyn_cast<Instruction>(V); 623 bool isEQ = (I->getOpcode() == Instruction::Or); 624 625 // Keep a stack (SmallVector for efficiency) for depth-first traversal 626 SmallVector<Value *, 8> DFT; 627 SmallPtrSet<Value *, 8> Visited; 628 629 // Initialize 630 Visited.insert(V); 631 DFT.push_back(V); 632 633 while (!DFT.empty()) { 634 V = DFT.pop_back_val(); 635 636 if (Instruction *I = dyn_cast<Instruction>(V)) { 637 // If it is a || (or && depending on isEQ), process the operands. 638 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 639 if (Visited.insert(I->getOperand(1)).second) 640 DFT.push_back(I->getOperand(1)); 641 if (Visited.insert(I->getOperand(0)).second) 642 DFT.push_back(I->getOperand(0)); 643 continue; 644 } 645 646 // Try to match the current instruction 647 if (matchInstruction(I, isEQ)) 648 // Match succeed, continue the loop 649 continue; 650 } 651 652 // One element of the sequence of || (or &&) could not be match as a 653 // comparison against the same value as the others. 654 // We allow only one "Extra" case to be checked before the switch 655 if (!Extra) { 656 Extra = V; 657 continue; 658 } 659 // Failed to parse a proper sequence, abort now 660 CompValue = nullptr; 661 break; 662 } 663 } 664 }; 665 666 } // end anonymous namespace 667 668 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 669 Instruction *Cond = nullptr; 670 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 671 Cond = dyn_cast<Instruction>(SI->getCondition()); 672 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 673 if (BI->isConditional()) 674 Cond = dyn_cast<Instruction>(BI->getCondition()); 675 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 676 Cond = dyn_cast<Instruction>(IBI->getAddress()); 677 } 678 679 TI->eraseFromParent(); 680 if (Cond) 681 RecursivelyDeleteTriviallyDeadInstructions(Cond); 682 } 683 684 /// Return true if the specified terminator checks 685 /// to see if a value is equal to constant integer value. 686 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 687 Value *CV = nullptr; 688 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 689 // Do not permit merging of large switch instructions into their 690 // predecessors unless there is only one predecessor. 691 if (SI->getNumSuccessors() * pred_size(SI->getParent()) <= 128) 692 CV = SI->getCondition(); 693 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 694 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 695 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 696 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 697 CV = ICI->getOperand(0); 698 } 699 700 // Unwrap any lossless ptrtoint cast. 701 if (CV) { 702 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 703 Value *Ptr = PTII->getPointerOperand(); 704 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 705 CV = Ptr; 706 } 707 } 708 return CV; 709 } 710 711 /// Given a value comparison instruction, 712 /// decode all of the 'cases' that it represents and return the 'default' block. 713 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 714 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 715 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 716 Cases.reserve(SI->getNumCases()); 717 for (auto Case : SI->cases()) 718 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 719 Case.getCaseSuccessor())); 720 return SI->getDefaultDest(); 721 } 722 723 BranchInst *BI = cast<BranchInst>(TI); 724 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 725 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 726 Cases.push_back(ValueEqualityComparisonCase( 727 GetConstantInt(ICI->getOperand(1), DL), Succ)); 728 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 729 } 730 731 /// Given a vector of bb/value pairs, remove any entries 732 /// in the list that match the specified block. 733 static void 734 EliminateBlockCases(BasicBlock *BB, 735 std::vector<ValueEqualityComparisonCase> &Cases) { 736 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 737 } 738 739 /// Return true if there are any keys in C1 that exist in C2 as well. 740 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 741 std::vector<ValueEqualityComparisonCase> &C2) { 742 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 743 744 // Make V1 be smaller than V2. 745 if (V1->size() > V2->size()) 746 std::swap(V1, V2); 747 748 if (V1->empty()) 749 return false; 750 if (V1->size() == 1) { 751 // Just scan V2. 752 ConstantInt *TheVal = (*V1)[0].Value; 753 for (unsigned i = 0, e = V2->size(); i != e; ++i) 754 if (TheVal == (*V2)[i].Value) 755 return true; 756 } 757 758 // Otherwise, just sort both lists and compare element by element. 759 array_pod_sort(V1->begin(), V1->end()); 760 array_pod_sort(V2->begin(), V2->end()); 761 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 762 while (i1 != e1 && i2 != e2) { 763 if ((*V1)[i1].Value == (*V2)[i2].Value) 764 return true; 765 if ((*V1)[i1].Value < (*V2)[i2].Value) 766 ++i1; 767 else 768 ++i2; 769 } 770 return false; 771 } 772 773 // Set branch weights on SwitchInst. This sets the metadata if there is at 774 // least one non-zero weight. 775 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 776 // Check that there is at least one non-zero weight. Otherwise, pass 777 // nullptr to setMetadata which will erase the existing metadata. 778 MDNode *N = nullptr; 779 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 780 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 781 SI->setMetadata(LLVMContext::MD_prof, N); 782 } 783 784 // Similar to the above, but for branch and select instructions that take 785 // exactly 2 weights. 786 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 787 uint32_t FalseWeight) { 788 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 789 // Check that there is at least one non-zero weight. Otherwise, pass 790 // nullptr to setMetadata which will erase the existing metadata. 791 MDNode *N = nullptr; 792 if (TrueWeight || FalseWeight) 793 N = MDBuilder(I->getParent()->getContext()) 794 .createBranchWeights(TrueWeight, FalseWeight); 795 I->setMetadata(LLVMContext::MD_prof, N); 796 } 797 798 /// If TI is known to be a terminator instruction and its block is known to 799 /// only have a single predecessor block, check to see if that predecessor is 800 /// also a value comparison with the same value, and if that comparison 801 /// determines the outcome of this comparison. If so, simplify TI. This does a 802 /// very limited form of jump threading. 803 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 804 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 805 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 806 if (!PredVal) 807 return false; // Not a value comparison in predecessor. 808 809 Value *ThisVal = isValueEqualityComparison(TI); 810 assert(ThisVal && "This isn't a value comparison!!"); 811 if (ThisVal != PredVal) 812 return false; // Different predicates. 813 814 // TODO: Preserve branch weight metadata, similarly to how 815 // FoldValueComparisonIntoPredecessors preserves it. 816 817 // Find out information about when control will move from Pred to TI's block. 818 std::vector<ValueEqualityComparisonCase> PredCases; 819 BasicBlock *PredDef = 820 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 821 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 822 823 // Find information about how control leaves this block. 824 std::vector<ValueEqualityComparisonCase> ThisCases; 825 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 826 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 827 828 // If TI's block is the default block from Pred's comparison, potentially 829 // simplify TI based on this knowledge. 830 if (PredDef == TI->getParent()) { 831 // If we are here, we know that the value is none of those cases listed in 832 // PredCases. If there are any cases in ThisCases that are in PredCases, we 833 // can simplify TI. 834 if (!ValuesOverlap(PredCases, ThisCases)) 835 return false; 836 837 if (isa<BranchInst>(TI)) { 838 // Okay, one of the successors of this condbr is dead. Convert it to a 839 // uncond br. 840 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 841 // Insert the new branch. 842 Instruction *NI = Builder.CreateBr(ThisDef); 843 (void)NI; 844 845 // Remove PHI node entries for the dead edge. 846 ThisCases[0].Dest->removePredecessor(TI->getParent()); 847 848 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 849 << "Through successor TI: " << *TI << "Leaving: " << *NI 850 << "\n"); 851 852 EraseTerminatorInstAndDCECond(TI); 853 return true; 854 } 855 856 SwitchInst *SI = cast<SwitchInst>(TI); 857 // Okay, TI has cases that are statically dead, prune them away. 858 SmallPtrSet<Constant *, 16> DeadCases; 859 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 860 DeadCases.insert(PredCases[i].Value); 861 862 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 863 << "Through successor TI: " << *TI); 864 865 // Collect branch weights into a vector. 866 SmallVector<uint32_t, 8> Weights; 867 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 868 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 869 if (HasWeight) 870 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 871 ++MD_i) { 872 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 873 Weights.push_back(CI->getValue().getZExtValue()); 874 } 875 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 876 --i; 877 if (DeadCases.count(i->getCaseValue())) { 878 if (HasWeight) { 879 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 880 Weights.pop_back(); 881 } 882 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 883 SI->removeCase(i); 884 } 885 } 886 if (HasWeight && Weights.size() >= 2) 887 setBranchWeights(SI, Weights); 888 889 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 890 return true; 891 } 892 893 // Otherwise, TI's block must correspond to some matched value. Find out 894 // which value (or set of values) this is. 895 ConstantInt *TIV = nullptr; 896 BasicBlock *TIBB = TI->getParent(); 897 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 898 if (PredCases[i].Dest == TIBB) { 899 if (TIV) 900 return false; // Cannot handle multiple values coming to this block. 901 TIV = PredCases[i].Value; 902 } 903 assert(TIV && "No edge from pred to succ?"); 904 905 // Okay, we found the one constant that our value can be if we get into TI's 906 // BB. Find out which successor will unconditionally be branched to. 907 BasicBlock *TheRealDest = nullptr; 908 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 909 if (ThisCases[i].Value == TIV) { 910 TheRealDest = ThisCases[i].Dest; 911 break; 912 } 913 914 // If not handled by any explicit cases, it is handled by the default case. 915 if (!TheRealDest) 916 TheRealDest = ThisDef; 917 918 // Remove PHI node entries for dead edges. 919 BasicBlock *CheckEdge = TheRealDest; 920 for (BasicBlock *Succ : successors(TIBB)) 921 if (Succ != CheckEdge) 922 Succ->removePredecessor(TIBB); 923 else 924 CheckEdge = nullptr; 925 926 // Insert the new branch. 927 Instruction *NI = Builder.CreateBr(TheRealDest); 928 (void)NI; 929 930 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 931 << "Through successor TI: " << *TI << "Leaving: " << *NI 932 << "\n"); 933 934 EraseTerminatorInstAndDCECond(TI); 935 return true; 936 } 937 938 namespace { 939 940 /// This class implements a stable ordering of constant 941 /// integers that does not depend on their address. This is important for 942 /// applications that sort ConstantInt's to ensure uniqueness. 943 struct ConstantIntOrdering { 944 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 945 return LHS->getValue().ult(RHS->getValue()); 946 } 947 }; 948 949 } // end anonymous namespace 950 951 static int ConstantIntSortPredicate(ConstantInt *const *P1, 952 ConstantInt *const *P2) { 953 const ConstantInt *LHS = *P1; 954 const ConstantInt *RHS = *P2; 955 if (LHS == RHS) 956 return 0; 957 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 958 } 959 960 static inline bool HasBranchWeights(const Instruction *I) { 961 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 962 if (ProfMD && ProfMD->getOperand(0)) 963 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 964 return MDS->getString().equals("branch_weights"); 965 966 return false; 967 } 968 969 /// Get Weights of a given TerminatorInst, the default weight is at the front 970 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 971 /// metadata. 972 static void GetBranchWeights(TerminatorInst *TI, 973 SmallVectorImpl<uint64_t> &Weights) { 974 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 975 assert(MD); 976 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 977 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 978 Weights.push_back(CI->getValue().getZExtValue()); 979 } 980 981 // If TI is a conditional eq, the default case is the false case, 982 // and the corresponding branch-weight data is at index 2. We swap the 983 // default weight to be the first entry. 984 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 985 assert(Weights.size() == 2); 986 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 987 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 988 std::swap(Weights.front(), Weights.back()); 989 } 990 } 991 992 /// Keep halving the weights until all can fit in uint32_t. 993 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 994 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 995 if (Max > UINT_MAX) { 996 unsigned Offset = 32 - countLeadingZeros(Max); 997 for (uint64_t &I : Weights) 998 I >>= Offset; 999 } 1000 } 1001 1002 /// The specified terminator is a value equality comparison instruction 1003 /// (either a switch or a branch on "X == c"). 1004 /// See if any of the predecessors of the terminator block are value comparisons 1005 /// on the same value. If so, and if safe to do so, fold them together. 1006 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 1007 IRBuilder<> &Builder) { 1008 BasicBlock *BB = TI->getParent(); 1009 Value *CV = isValueEqualityComparison(TI); // CondVal 1010 assert(CV && "Not a comparison?"); 1011 bool Changed = false; 1012 1013 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1014 while (!Preds.empty()) { 1015 BasicBlock *Pred = Preds.pop_back_val(); 1016 1017 // See if the predecessor is a comparison with the same value. 1018 TerminatorInst *PTI = Pred->getTerminator(); 1019 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1020 1021 if (PCV == CV && TI != PTI) { 1022 SmallSetVector<BasicBlock*, 4> FailBlocks; 1023 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1024 for (auto *Succ : FailBlocks) { 1025 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1026 return false; 1027 } 1028 } 1029 1030 // Figure out which 'cases' to copy from SI to PSI. 1031 std::vector<ValueEqualityComparisonCase> BBCases; 1032 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1033 1034 std::vector<ValueEqualityComparisonCase> PredCases; 1035 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1036 1037 // Based on whether the default edge from PTI goes to BB or not, fill in 1038 // PredCases and PredDefault with the new switch cases we would like to 1039 // build. 1040 SmallVector<BasicBlock *, 8> NewSuccessors; 1041 1042 // Update the branch weight metadata along the way 1043 SmallVector<uint64_t, 8> Weights; 1044 bool PredHasWeights = HasBranchWeights(PTI); 1045 bool SuccHasWeights = HasBranchWeights(TI); 1046 1047 if (PredHasWeights) { 1048 GetBranchWeights(PTI, Weights); 1049 // branch-weight metadata is inconsistent here. 1050 if (Weights.size() != 1 + PredCases.size()) 1051 PredHasWeights = SuccHasWeights = false; 1052 } else if (SuccHasWeights) 1053 // If there are no predecessor weights but there are successor weights, 1054 // populate Weights with 1, which will later be scaled to the sum of 1055 // successor's weights 1056 Weights.assign(1 + PredCases.size(), 1); 1057 1058 SmallVector<uint64_t, 8> SuccWeights; 1059 if (SuccHasWeights) { 1060 GetBranchWeights(TI, SuccWeights); 1061 // branch-weight metadata is inconsistent here. 1062 if (SuccWeights.size() != 1 + BBCases.size()) 1063 PredHasWeights = SuccHasWeights = false; 1064 } else if (PredHasWeights) 1065 SuccWeights.assign(1 + BBCases.size(), 1); 1066 1067 if (PredDefault == BB) { 1068 // If this is the default destination from PTI, only the edges in TI 1069 // that don't occur in PTI, or that branch to BB will be activated. 1070 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1071 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1072 if (PredCases[i].Dest != BB) 1073 PTIHandled.insert(PredCases[i].Value); 1074 else { 1075 // The default destination is BB, we don't need explicit targets. 1076 std::swap(PredCases[i], PredCases.back()); 1077 1078 if (PredHasWeights || SuccHasWeights) { 1079 // Increase weight for the default case. 1080 Weights[0] += Weights[i + 1]; 1081 std::swap(Weights[i + 1], Weights.back()); 1082 Weights.pop_back(); 1083 } 1084 1085 PredCases.pop_back(); 1086 --i; 1087 --e; 1088 } 1089 1090 // Reconstruct the new switch statement we will be building. 1091 if (PredDefault != BBDefault) { 1092 PredDefault->removePredecessor(Pred); 1093 PredDefault = BBDefault; 1094 NewSuccessors.push_back(BBDefault); 1095 } 1096 1097 unsigned CasesFromPred = Weights.size(); 1098 uint64_t ValidTotalSuccWeight = 0; 1099 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1100 if (!PTIHandled.count(BBCases[i].Value) && 1101 BBCases[i].Dest != BBDefault) { 1102 PredCases.push_back(BBCases[i]); 1103 NewSuccessors.push_back(BBCases[i].Dest); 1104 if (SuccHasWeights || PredHasWeights) { 1105 // The default weight is at index 0, so weight for the ith case 1106 // should be at index i+1. Scale the cases from successor by 1107 // PredDefaultWeight (Weights[0]). 1108 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1109 ValidTotalSuccWeight += SuccWeights[i + 1]; 1110 } 1111 } 1112 1113 if (SuccHasWeights || PredHasWeights) { 1114 ValidTotalSuccWeight += SuccWeights[0]; 1115 // Scale the cases from predecessor by ValidTotalSuccWeight. 1116 for (unsigned i = 1; i < CasesFromPred; ++i) 1117 Weights[i] *= ValidTotalSuccWeight; 1118 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1119 Weights[0] *= SuccWeights[0]; 1120 } 1121 } else { 1122 // If this is not the default destination from PSI, only the edges 1123 // in SI that occur in PSI with a destination of BB will be 1124 // activated. 1125 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1126 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1127 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1128 if (PredCases[i].Dest == BB) { 1129 PTIHandled.insert(PredCases[i].Value); 1130 1131 if (PredHasWeights || SuccHasWeights) { 1132 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1133 std::swap(Weights[i + 1], Weights.back()); 1134 Weights.pop_back(); 1135 } 1136 1137 std::swap(PredCases[i], PredCases.back()); 1138 PredCases.pop_back(); 1139 --i; 1140 --e; 1141 } 1142 1143 // Okay, now we know which constants were sent to BB from the 1144 // predecessor. Figure out where they will all go now. 1145 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1146 if (PTIHandled.count(BBCases[i].Value)) { 1147 // If this is one we are capable of getting... 1148 if (PredHasWeights || SuccHasWeights) 1149 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1150 PredCases.push_back(BBCases[i]); 1151 NewSuccessors.push_back(BBCases[i].Dest); 1152 PTIHandled.erase( 1153 BBCases[i].Value); // This constant is taken care of 1154 } 1155 1156 // If there are any constants vectored to BB that TI doesn't handle, 1157 // they must go to the default destination of TI. 1158 for (ConstantInt *I : PTIHandled) { 1159 if (PredHasWeights || SuccHasWeights) 1160 Weights.push_back(WeightsForHandled[I]); 1161 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1162 NewSuccessors.push_back(BBDefault); 1163 } 1164 } 1165 1166 // Okay, at this point, we know which new successor Pred will get. Make 1167 // sure we update the number of entries in the PHI nodes for these 1168 // successors. 1169 for (BasicBlock *NewSuccessor : NewSuccessors) 1170 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1171 1172 Builder.SetInsertPoint(PTI); 1173 // Convert pointer to int before we switch. 1174 if (CV->getType()->isPointerTy()) { 1175 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1176 "magicptr"); 1177 } 1178 1179 // Now that the successors are updated, create the new Switch instruction. 1180 SwitchInst *NewSI = 1181 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1182 NewSI->setDebugLoc(PTI->getDebugLoc()); 1183 for (ValueEqualityComparisonCase &V : PredCases) 1184 NewSI->addCase(V.Value, V.Dest); 1185 1186 if (PredHasWeights || SuccHasWeights) { 1187 // Halve the weights if any of them cannot fit in an uint32_t 1188 FitWeights(Weights); 1189 1190 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1191 1192 setBranchWeights(NewSI, MDWeights); 1193 } 1194 1195 EraseTerminatorInstAndDCECond(PTI); 1196 1197 // Okay, last check. If BB is still a successor of PSI, then we must 1198 // have an infinite loop case. If so, add an infinitely looping block 1199 // to handle the case to preserve the behavior of the code. 1200 BasicBlock *InfLoopBlock = nullptr; 1201 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1202 if (NewSI->getSuccessor(i) == BB) { 1203 if (!InfLoopBlock) { 1204 // Insert it at the end of the function, because it's either code, 1205 // or it won't matter if it's hot. :) 1206 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1207 BB->getParent()); 1208 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1209 } 1210 NewSI->setSuccessor(i, InfLoopBlock); 1211 } 1212 1213 Changed = true; 1214 } 1215 } 1216 return Changed; 1217 } 1218 1219 // If we would need to insert a select that uses the value of this invoke 1220 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1221 // can't hoist the invoke, as there is nowhere to put the select in this case. 1222 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1223 Instruction *I1, Instruction *I2) { 1224 for (BasicBlock *Succ : successors(BB1)) { 1225 for (const PHINode &PN : Succ->phis()) { 1226 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1227 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1228 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1229 return false; 1230 } 1231 } 1232 } 1233 return true; 1234 } 1235 1236 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1237 1238 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1239 /// in the two blocks up into the branch block. The caller of this function 1240 /// guarantees that BI's block dominates BB1 and BB2. 1241 static bool HoistThenElseCodeToIf(BranchInst *BI, 1242 const TargetTransformInfo &TTI) { 1243 // This does very trivial matching, with limited scanning, to find identical 1244 // instructions in the two blocks. In particular, we don't want to get into 1245 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1246 // such, we currently just scan for obviously identical instructions in an 1247 // identical order. 1248 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1249 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1250 1251 BasicBlock::iterator BB1_Itr = BB1->begin(); 1252 BasicBlock::iterator BB2_Itr = BB2->begin(); 1253 1254 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1255 // Skip debug info if it is not identical. 1256 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1257 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1258 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1259 while (isa<DbgInfoIntrinsic>(I1)) 1260 I1 = &*BB1_Itr++; 1261 while (isa<DbgInfoIntrinsic>(I2)) 1262 I2 = &*BB2_Itr++; 1263 } 1264 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1265 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1266 return false; 1267 1268 BasicBlock *BIParent = BI->getParent(); 1269 1270 bool Changed = false; 1271 do { 1272 // If we are hoisting the terminator instruction, don't move one (making a 1273 // broken BB), instead clone it, and remove BI. 1274 if (isa<TerminatorInst>(I1)) 1275 goto HoistTerminator; 1276 1277 // If we're going to hoist a call, make sure that the two instructions we're 1278 // commoning/hoisting are both marked with musttail, or neither of them is 1279 // marked as such. Otherwise, we might end up in a situation where we hoist 1280 // from a block where the terminator is a `ret` to a block where the terminator 1281 // is a `br`, and `musttail` calls expect to be followed by a return. 1282 auto *C1 = dyn_cast<CallInst>(I1); 1283 auto *C2 = dyn_cast<CallInst>(I2); 1284 if (C1 && C2) 1285 if (C1->isMustTailCall() != C2->isMustTailCall()) 1286 return Changed; 1287 1288 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1289 return Changed; 1290 1291 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1292 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1293 // The debug location is an integral part of a debug info intrinsic 1294 // and can't be separated from it or replaced. Instead of attempting 1295 // to merge locations, simply hoist both copies of the intrinsic. 1296 BIParent->getInstList().splice(BI->getIterator(), 1297 BB1->getInstList(), I1); 1298 BIParent->getInstList().splice(BI->getIterator(), 1299 BB2->getInstList(), I2); 1300 Changed = true; 1301 } else { 1302 // For a normal instruction, we just move one to right before the branch, 1303 // then replace all uses of the other with the first. Finally, we remove 1304 // the now redundant second instruction. 1305 BIParent->getInstList().splice(BI->getIterator(), 1306 BB1->getInstList(), I1); 1307 if (!I2->use_empty()) 1308 I2->replaceAllUsesWith(I1); 1309 I1->andIRFlags(I2); 1310 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1311 LLVMContext::MD_range, 1312 LLVMContext::MD_fpmath, 1313 LLVMContext::MD_invariant_load, 1314 LLVMContext::MD_nonnull, 1315 LLVMContext::MD_invariant_group, 1316 LLVMContext::MD_align, 1317 LLVMContext::MD_dereferenceable, 1318 LLVMContext::MD_dereferenceable_or_null, 1319 LLVMContext::MD_mem_parallel_loop_access}; 1320 combineMetadata(I1, I2, KnownIDs); 1321 1322 // I1 and I2 are being combined into a single instruction. Its debug 1323 // location is the merged locations of the original instructions. 1324 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1325 1326 I2->eraseFromParent(); 1327 Changed = true; 1328 } 1329 1330 I1 = &*BB1_Itr++; 1331 I2 = &*BB2_Itr++; 1332 // Skip debug info if it is not identical. 1333 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1334 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1335 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1336 while (isa<DbgInfoIntrinsic>(I1)) 1337 I1 = &*BB1_Itr++; 1338 while (isa<DbgInfoIntrinsic>(I2)) 1339 I2 = &*BB2_Itr++; 1340 } 1341 } while (I1->isIdenticalToWhenDefined(I2)); 1342 1343 return true; 1344 1345 HoistTerminator: 1346 // It may not be possible to hoist an invoke. 1347 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1348 return Changed; 1349 1350 for (BasicBlock *Succ : successors(BB1)) { 1351 for (PHINode &PN : Succ->phis()) { 1352 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1353 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1354 if (BB1V == BB2V) 1355 continue; 1356 1357 // Check for passingValueIsAlwaysUndefined here because we would rather 1358 // eliminate undefined control flow then converting it to a select. 1359 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1360 passingValueIsAlwaysUndefined(BB2V, &PN)) 1361 return Changed; 1362 1363 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1364 return Changed; 1365 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1366 return Changed; 1367 } 1368 } 1369 1370 // Okay, it is safe to hoist the terminator. 1371 Instruction *NT = I1->clone(); 1372 BIParent->getInstList().insert(BI->getIterator(), NT); 1373 if (!NT->getType()->isVoidTy()) { 1374 I1->replaceAllUsesWith(NT); 1375 I2->replaceAllUsesWith(NT); 1376 NT->takeName(I1); 1377 } 1378 1379 IRBuilder<NoFolder> Builder(NT); 1380 // Hoisting one of the terminators from our successor is a great thing. 1381 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1382 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1383 // nodes, so we insert select instruction to compute the final result. 1384 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1385 for (BasicBlock *Succ : successors(BB1)) { 1386 for (PHINode &PN : Succ->phis()) { 1387 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1388 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1389 if (BB1V == BB2V) 1390 continue; 1391 1392 // These values do not agree. Insert a select instruction before NT 1393 // that determines the right value. 1394 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1395 if (!SI) 1396 SI = cast<SelectInst>( 1397 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1398 BB1V->getName() + "." + BB2V->getName(), BI)); 1399 1400 // Make the PHI node use the select for all incoming values for BB1/BB2 1401 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1402 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1403 PN.setIncomingValue(i, SI); 1404 } 1405 } 1406 1407 // Update any PHI nodes in our new successors. 1408 for (BasicBlock *Succ : successors(BB1)) 1409 AddPredecessorToBlock(Succ, BIParent, BB1); 1410 1411 EraseTerminatorInstAndDCECond(BI); 1412 return true; 1413 } 1414 1415 // All instructions in Insts belong to different blocks that all unconditionally 1416 // branch to a common successor. Analyze each instruction and return true if it 1417 // would be possible to sink them into their successor, creating one common 1418 // instruction instead. For every value that would be required to be provided by 1419 // PHI node (because an operand varies in each input block), add to PHIOperands. 1420 static bool canSinkInstructions( 1421 ArrayRef<Instruction *> Insts, 1422 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1423 // Prune out obviously bad instructions to move. Any non-store instruction 1424 // must have exactly one use, and we check later that use is by a single, 1425 // common PHI instruction in the successor. 1426 for (auto *I : Insts) { 1427 // These instructions may change or break semantics if moved. 1428 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1429 I->getType()->isTokenTy()) 1430 return false; 1431 1432 // Conservatively return false if I is an inline-asm instruction. Sinking 1433 // and merging inline-asm instructions can potentially create arguments 1434 // that cannot satisfy the inline-asm constraints. 1435 if (const auto *C = dyn_cast<CallInst>(I)) 1436 if (C->isInlineAsm()) 1437 return false; 1438 1439 // Everything must have only one use too, apart from stores which 1440 // have no uses. 1441 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1442 return false; 1443 } 1444 1445 const Instruction *I0 = Insts.front(); 1446 for (auto *I : Insts) 1447 if (!I->isSameOperationAs(I0)) 1448 return false; 1449 1450 // All instructions in Insts are known to be the same opcode. If they aren't 1451 // stores, check the only user of each is a PHI or in the same block as the 1452 // instruction, because if a user is in the same block as an instruction 1453 // we're contemplating sinking, it must already be determined to be sinkable. 1454 if (!isa<StoreInst>(I0)) { 1455 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1456 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1457 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1458 auto *U = cast<Instruction>(*I->user_begin()); 1459 return (PNUse && 1460 PNUse->getParent() == Succ && 1461 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1462 U->getParent() == I->getParent(); 1463 })) 1464 return false; 1465 } 1466 1467 // Because SROA can't handle speculating stores of selects, try not 1468 // to sink loads or stores of allocas when we'd have to create a PHI for 1469 // the address operand. Also, because it is likely that loads or stores 1470 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1471 // This can cause code churn which can have unintended consequences down 1472 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1473 // FIXME: This is a workaround for a deficiency in SROA - see 1474 // https://llvm.org/bugs/show_bug.cgi?id=30188 1475 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1476 return isa<AllocaInst>(I->getOperand(1)); 1477 })) 1478 return false; 1479 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1480 return isa<AllocaInst>(I->getOperand(0)); 1481 })) 1482 return false; 1483 1484 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1485 if (I0->getOperand(OI)->getType()->isTokenTy()) 1486 // Don't touch any operand of token type. 1487 return false; 1488 1489 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1490 assert(I->getNumOperands() == I0->getNumOperands()); 1491 return I->getOperand(OI) == I0->getOperand(OI); 1492 }; 1493 if (!all_of(Insts, SameAsI0)) { 1494 if (!canReplaceOperandWithVariable(I0, OI)) 1495 // We can't create a PHI from this GEP. 1496 return false; 1497 // Don't create indirect calls! The called value is the final operand. 1498 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1499 // FIXME: if the call was *already* indirect, we should do this. 1500 return false; 1501 } 1502 for (auto *I : Insts) 1503 PHIOperands[I].push_back(I->getOperand(OI)); 1504 } 1505 } 1506 return true; 1507 } 1508 1509 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1510 // instruction of every block in Blocks to their common successor, commoning 1511 // into one instruction. 1512 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1513 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1514 1515 // canSinkLastInstruction returning true guarantees that every block has at 1516 // least one non-terminator instruction. 1517 SmallVector<Instruction*,4> Insts; 1518 for (auto *BB : Blocks) { 1519 Instruction *I = BB->getTerminator(); 1520 do { 1521 I = I->getPrevNode(); 1522 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1523 if (!isa<DbgInfoIntrinsic>(I)) 1524 Insts.push_back(I); 1525 } 1526 1527 // The only checking we need to do now is that all users of all instructions 1528 // are the same PHI node. canSinkLastInstruction should have checked this but 1529 // it is slightly over-aggressive - it gets confused by commutative instructions 1530 // so double-check it here. 1531 Instruction *I0 = Insts.front(); 1532 if (!isa<StoreInst>(I0)) { 1533 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1534 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1535 auto *U = cast<Instruction>(*I->user_begin()); 1536 return U == PNUse; 1537 })) 1538 return false; 1539 } 1540 1541 // We don't need to do any more checking here; canSinkLastInstruction should 1542 // have done it all for us. 1543 SmallVector<Value*, 4> NewOperands; 1544 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1545 // This check is different to that in canSinkLastInstruction. There, we 1546 // cared about the global view once simplifycfg (and instcombine) have 1547 // completed - it takes into account PHIs that become trivially 1548 // simplifiable. However here we need a more local view; if an operand 1549 // differs we create a PHI and rely on instcombine to clean up the very 1550 // small mess we may make. 1551 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1552 return I->getOperand(O) != I0->getOperand(O); 1553 }); 1554 if (!NeedPHI) { 1555 NewOperands.push_back(I0->getOperand(O)); 1556 continue; 1557 } 1558 1559 // Create a new PHI in the successor block and populate it. 1560 auto *Op = I0->getOperand(O); 1561 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1562 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1563 Op->getName() + ".sink", &BBEnd->front()); 1564 for (auto *I : Insts) 1565 PN->addIncoming(I->getOperand(O), I->getParent()); 1566 NewOperands.push_back(PN); 1567 } 1568 1569 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1570 // and move it to the start of the successor block. 1571 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1572 I0->getOperandUse(O).set(NewOperands[O]); 1573 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1574 1575 // Update metadata and IR flags, and merge debug locations. 1576 for (auto *I : Insts) 1577 if (I != I0) { 1578 // The debug location for the "common" instruction is the merged locations 1579 // of all the commoned instructions. We start with the original location 1580 // of the "common" instruction and iteratively merge each location in the 1581 // loop below. 1582 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1583 // However, as N-way merge for CallInst is rare, so we use simplified API 1584 // instead of using complex API for N-way merge. 1585 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1586 combineMetadataForCSE(I0, I); 1587 I0->andIRFlags(I); 1588 } 1589 1590 if (!isa<StoreInst>(I0)) { 1591 // canSinkLastInstruction checked that all instructions were used by 1592 // one and only one PHI node. Find that now, RAUW it to our common 1593 // instruction and nuke it. 1594 assert(I0->hasOneUse()); 1595 auto *PN = cast<PHINode>(*I0->user_begin()); 1596 PN->replaceAllUsesWith(I0); 1597 PN->eraseFromParent(); 1598 } 1599 1600 // Finally nuke all instructions apart from the common instruction. 1601 for (auto *I : Insts) 1602 if (I != I0) 1603 I->eraseFromParent(); 1604 1605 return true; 1606 } 1607 1608 namespace { 1609 1610 // LockstepReverseIterator - Iterates through instructions 1611 // in a set of blocks in reverse order from the first non-terminator. 1612 // For example (assume all blocks have size n): 1613 // LockstepReverseIterator I([B1, B2, B3]); 1614 // *I-- = [B1[n], B2[n], B3[n]]; 1615 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1616 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1617 // ... 1618 class LockstepReverseIterator { 1619 ArrayRef<BasicBlock*> Blocks; 1620 SmallVector<Instruction*,4> Insts; 1621 bool Fail; 1622 1623 public: 1624 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1625 reset(); 1626 } 1627 1628 void reset() { 1629 Fail = false; 1630 Insts.clear(); 1631 for (auto *BB : Blocks) { 1632 Instruction *Inst = BB->getTerminator(); 1633 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1634 Inst = Inst->getPrevNode(); 1635 if (!Inst) { 1636 // Block wasn't big enough. 1637 Fail = true; 1638 return; 1639 } 1640 Insts.push_back(Inst); 1641 } 1642 } 1643 1644 bool isValid() const { 1645 return !Fail; 1646 } 1647 1648 void operator--() { 1649 if (Fail) 1650 return; 1651 for (auto *&Inst : Insts) { 1652 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1653 Inst = Inst->getPrevNode(); 1654 // Already at beginning of block. 1655 if (!Inst) { 1656 Fail = true; 1657 return; 1658 } 1659 } 1660 } 1661 1662 ArrayRef<Instruction*> operator * () const { 1663 return Insts; 1664 } 1665 }; 1666 1667 } // end anonymous namespace 1668 1669 /// Check whether BB's predecessors end with unconditional branches. If it is 1670 /// true, sink any common code from the predecessors to BB. 1671 /// We also allow one predecessor to end with conditional branch (but no more 1672 /// than one). 1673 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1674 // We support two situations: 1675 // (1) all incoming arcs are unconditional 1676 // (2) one incoming arc is conditional 1677 // 1678 // (2) is very common in switch defaults and 1679 // else-if patterns; 1680 // 1681 // if (a) f(1); 1682 // else if (b) f(2); 1683 // 1684 // produces: 1685 // 1686 // [if] 1687 // / \ 1688 // [f(1)] [if] 1689 // | | \ 1690 // | | | 1691 // | [f(2)]| 1692 // \ | / 1693 // [ end ] 1694 // 1695 // [end] has two unconditional predecessor arcs and one conditional. The 1696 // conditional refers to the implicit empty 'else' arc. This conditional 1697 // arc can also be caused by an empty default block in a switch. 1698 // 1699 // In this case, we attempt to sink code from all *unconditional* arcs. 1700 // If we can sink instructions from these arcs (determined during the scan 1701 // phase below) we insert a common successor for all unconditional arcs and 1702 // connect that to [end], to enable sinking: 1703 // 1704 // [if] 1705 // / \ 1706 // [x(1)] [if] 1707 // | | \ 1708 // | | \ 1709 // | [x(2)] | 1710 // \ / | 1711 // [sink.split] | 1712 // \ / 1713 // [ end ] 1714 // 1715 SmallVector<BasicBlock*,4> UnconditionalPreds; 1716 Instruction *Cond = nullptr; 1717 for (auto *B : predecessors(BB)) { 1718 auto *T = B->getTerminator(); 1719 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1720 UnconditionalPreds.push_back(B); 1721 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1722 Cond = T; 1723 else 1724 return false; 1725 } 1726 if (UnconditionalPreds.size() < 2) 1727 return false; 1728 1729 bool Changed = false; 1730 // We take a two-step approach to tail sinking. First we scan from the end of 1731 // each block upwards in lockstep. If the n'th instruction from the end of each 1732 // block can be sunk, those instructions are added to ValuesToSink and we 1733 // carry on. If we can sink an instruction but need to PHI-merge some operands 1734 // (because they're not identical in each instruction) we add these to 1735 // PHIOperands. 1736 unsigned ScanIdx = 0; 1737 SmallPtrSet<Value*,4> InstructionsToSink; 1738 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1739 LockstepReverseIterator LRI(UnconditionalPreds); 1740 while (LRI.isValid() && 1741 canSinkInstructions(*LRI, PHIOperands)) { 1742 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1743 << "\n"); 1744 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1745 ++ScanIdx; 1746 --LRI; 1747 } 1748 1749 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1750 unsigned NumPHIdValues = 0; 1751 for (auto *I : *LRI) 1752 for (auto *V : PHIOperands[I]) 1753 if (InstructionsToSink.count(V) == 0) 1754 ++NumPHIdValues; 1755 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1756 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1757 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1758 NumPHIInsts++; 1759 1760 return NumPHIInsts <= 1; 1761 }; 1762 1763 if (ScanIdx > 0 && Cond) { 1764 // Check if we would actually sink anything first! This mutates the CFG and 1765 // adds an extra block. The goal in doing this is to allow instructions that 1766 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1767 // (such as trunc, add) can be sunk and predicated already. So we check that 1768 // we're going to sink at least one non-speculatable instruction. 1769 LRI.reset(); 1770 unsigned Idx = 0; 1771 bool Profitable = false; 1772 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1773 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1774 Profitable = true; 1775 break; 1776 } 1777 --LRI; 1778 ++Idx; 1779 } 1780 if (!Profitable) 1781 return false; 1782 1783 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1784 // We have a conditional edge and we're going to sink some instructions. 1785 // Insert a new block postdominating all blocks we're going to sink from. 1786 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1787 // Edges couldn't be split. 1788 return false; 1789 Changed = true; 1790 } 1791 1792 // Now that we've analyzed all potential sinking candidates, perform the 1793 // actual sink. We iteratively sink the last non-terminator of the source 1794 // blocks into their common successor unless doing so would require too 1795 // many PHI instructions to be generated (currently only one PHI is allowed 1796 // per sunk instruction). 1797 // 1798 // We can use InstructionsToSink to discount values needing PHI-merging that will 1799 // actually be sunk in a later iteration. This allows us to be more 1800 // aggressive in what we sink. This does allow a false positive where we 1801 // sink presuming a later value will also be sunk, but stop half way through 1802 // and never actually sink it which means we produce more PHIs than intended. 1803 // This is unlikely in practice though. 1804 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1805 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1806 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1807 << "\n"); 1808 1809 // Because we've sunk every instruction in turn, the current instruction to 1810 // sink is always at index 0. 1811 LRI.reset(); 1812 if (!ProfitableToSinkInstruction(LRI)) { 1813 // Too many PHIs would be created. 1814 LLVM_DEBUG( 1815 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1816 break; 1817 } 1818 1819 if (!sinkLastInstruction(UnconditionalPreds)) 1820 return Changed; 1821 NumSinkCommons++; 1822 Changed = true; 1823 } 1824 return Changed; 1825 } 1826 1827 /// Determine if we can hoist sink a sole store instruction out of a 1828 /// conditional block. 1829 /// 1830 /// We are looking for code like the following: 1831 /// BrBB: 1832 /// store i32 %add, i32* %arrayidx2 1833 /// ... // No other stores or function calls (we could be calling a memory 1834 /// ... // function). 1835 /// %cmp = icmp ult %x, %y 1836 /// br i1 %cmp, label %EndBB, label %ThenBB 1837 /// ThenBB: 1838 /// store i32 %add5, i32* %arrayidx2 1839 /// br label EndBB 1840 /// EndBB: 1841 /// ... 1842 /// We are going to transform this into: 1843 /// BrBB: 1844 /// store i32 %add, i32* %arrayidx2 1845 /// ... // 1846 /// %cmp = icmp ult %x, %y 1847 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1848 /// store i32 %add.add5, i32* %arrayidx2 1849 /// ... 1850 /// 1851 /// \return The pointer to the value of the previous store if the store can be 1852 /// hoisted into the predecessor block. 0 otherwise. 1853 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1854 BasicBlock *StoreBB, BasicBlock *EndBB) { 1855 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1856 if (!StoreToHoist) 1857 return nullptr; 1858 1859 // Volatile or atomic. 1860 if (!StoreToHoist->isSimple()) 1861 return nullptr; 1862 1863 Value *StorePtr = StoreToHoist->getPointerOperand(); 1864 1865 // Look for a store to the same pointer in BrBB. 1866 unsigned MaxNumInstToLookAt = 9; 1867 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1868 if (!MaxNumInstToLookAt) 1869 break; 1870 --MaxNumInstToLookAt; 1871 1872 // Could be calling an instruction that affects memory like free(). 1873 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1874 return nullptr; 1875 1876 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1877 // Found the previous store make sure it stores to the same location. 1878 if (SI->getPointerOperand() == StorePtr) 1879 // Found the previous store, return its value operand. 1880 return SI->getValueOperand(); 1881 return nullptr; // Unknown store. 1882 } 1883 } 1884 1885 return nullptr; 1886 } 1887 1888 /// Speculate a conditional basic block flattening the CFG. 1889 /// 1890 /// Note that this is a very risky transform currently. Speculating 1891 /// instructions like this is most often not desirable. Instead, there is an MI 1892 /// pass which can do it with full awareness of the resource constraints. 1893 /// However, some cases are "obvious" and we should do directly. An example of 1894 /// this is speculating a single, reasonably cheap instruction. 1895 /// 1896 /// There is only one distinct advantage to flattening the CFG at the IR level: 1897 /// it makes very common but simplistic optimizations such as are common in 1898 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1899 /// modeling their effects with easier to reason about SSA value graphs. 1900 /// 1901 /// 1902 /// An illustration of this transform is turning this IR: 1903 /// \code 1904 /// BB: 1905 /// %cmp = icmp ult %x, %y 1906 /// br i1 %cmp, label %EndBB, label %ThenBB 1907 /// ThenBB: 1908 /// %sub = sub %x, %y 1909 /// br label BB2 1910 /// EndBB: 1911 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1912 /// ... 1913 /// \endcode 1914 /// 1915 /// Into this IR: 1916 /// \code 1917 /// BB: 1918 /// %cmp = icmp ult %x, %y 1919 /// %sub = sub %x, %y 1920 /// %cond = select i1 %cmp, 0, %sub 1921 /// ... 1922 /// \endcode 1923 /// 1924 /// \returns true if the conditional block is removed. 1925 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1926 const TargetTransformInfo &TTI) { 1927 // Be conservative for now. FP select instruction can often be expensive. 1928 Value *BrCond = BI->getCondition(); 1929 if (isa<FCmpInst>(BrCond)) 1930 return false; 1931 1932 BasicBlock *BB = BI->getParent(); 1933 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1934 1935 // If ThenBB is actually on the false edge of the conditional branch, remember 1936 // to swap the select operands later. 1937 bool Invert = false; 1938 if (ThenBB != BI->getSuccessor(0)) { 1939 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1940 Invert = true; 1941 } 1942 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1943 1944 // Keep a count of how many times instructions are used within CondBB when 1945 // they are candidates for sinking into CondBB. Specifically: 1946 // - They are defined in BB, and 1947 // - They have no side effects, and 1948 // - All of their uses are in CondBB. 1949 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1950 1951 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1952 1953 unsigned SpeculationCost = 0; 1954 Value *SpeculatedStoreValue = nullptr; 1955 StoreInst *SpeculatedStore = nullptr; 1956 for (BasicBlock::iterator BBI = ThenBB->begin(), 1957 BBE = std::prev(ThenBB->end()); 1958 BBI != BBE; ++BBI) { 1959 Instruction *I = &*BBI; 1960 // Skip debug info. 1961 if (isa<DbgInfoIntrinsic>(I)) { 1962 SpeculatedDbgIntrinsics.push_back(I); 1963 continue; 1964 } 1965 1966 // Only speculatively execute a single instruction (not counting the 1967 // terminator) for now. 1968 ++SpeculationCost; 1969 if (SpeculationCost > 1) 1970 return false; 1971 1972 // Don't hoist the instruction if it's unsafe or expensive. 1973 if (!isSafeToSpeculativelyExecute(I) && 1974 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1975 I, BB, ThenBB, EndBB)))) 1976 return false; 1977 if (!SpeculatedStoreValue && 1978 ComputeSpeculationCost(I, TTI) > 1979 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1980 return false; 1981 1982 // Store the store speculation candidate. 1983 if (SpeculatedStoreValue) 1984 SpeculatedStore = cast<StoreInst>(I); 1985 1986 // Do not hoist the instruction if any of its operands are defined but not 1987 // used in BB. The transformation will prevent the operand from 1988 // being sunk into the use block. 1989 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1990 Instruction *OpI = dyn_cast<Instruction>(*i); 1991 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1992 continue; // Not a candidate for sinking. 1993 1994 ++SinkCandidateUseCounts[OpI]; 1995 } 1996 } 1997 1998 // Consider any sink candidates which are only used in CondBB as costs for 1999 // speculation. Note, while we iterate over a DenseMap here, we are summing 2000 // and so iteration order isn't significant. 2001 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2002 I = SinkCandidateUseCounts.begin(), 2003 E = SinkCandidateUseCounts.end(); 2004 I != E; ++I) 2005 if (I->first->getNumUses() == I->second) { 2006 ++SpeculationCost; 2007 if (SpeculationCost > 1) 2008 return false; 2009 } 2010 2011 // Check that the PHI nodes can be converted to selects. 2012 bool HaveRewritablePHIs = false; 2013 for (PHINode &PN : EndBB->phis()) { 2014 Value *OrigV = PN.getIncomingValueForBlock(BB); 2015 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2016 2017 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2018 // Skip PHIs which are trivial. 2019 if (ThenV == OrigV) 2020 continue; 2021 2022 // Don't convert to selects if we could remove undefined behavior instead. 2023 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2024 passingValueIsAlwaysUndefined(ThenV, &PN)) 2025 return false; 2026 2027 HaveRewritablePHIs = true; 2028 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2029 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2030 if (!OrigCE && !ThenCE) 2031 continue; // Known safe and cheap. 2032 2033 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2034 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2035 return false; 2036 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2037 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2038 unsigned MaxCost = 2039 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2040 if (OrigCost + ThenCost > MaxCost) 2041 return false; 2042 2043 // Account for the cost of an unfolded ConstantExpr which could end up 2044 // getting expanded into Instructions. 2045 // FIXME: This doesn't account for how many operations are combined in the 2046 // constant expression. 2047 ++SpeculationCost; 2048 if (SpeculationCost > 1) 2049 return false; 2050 } 2051 2052 // If there are no PHIs to process, bail early. This helps ensure idempotence 2053 // as well. 2054 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2055 return false; 2056 2057 // If we get here, we can hoist the instruction and if-convert. 2058 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2059 2060 // Insert a select of the value of the speculated store. 2061 if (SpeculatedStoreValue) { 2062 IRBuilder<NoFolder> Builder(BI); 2063 Value *TrueV = SpeculatedStore->getValueOperand(); 2064 Value *FalseV = SpeculatedStoreValue; 2065 if (Invert) 2066 std::swap(TrueV, FalseV); 2067 Value *S = Builder.CreateSelect( 2068 BrCond, TrueV, FalseV, "spec.store.select", BI); 2069 SpeculatedStore->setOperand(0, S); 2070 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2071 SpeculatedStore->getDebugLoc()); 2072 } 2073 2074 // Metadata can be dependent on the condition we are hoisting above. 2075 // Conservatively strip all metadata on the instruction. 2076 for (auto &I : *ThenBB) 2077 I.dropUnknownNonDebugMetadata(); 2078 2079 // Hoist the instructions. 2080 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2081 ThenBB->begin(), std::prev(ThenBB->end())); 2082 2083 // Insert selects and rewrite the PHI operands. 2084 IRBuilder<NoFolder> Builder(BI); 2085 for (PHINode &PN : EndBB->phis()) { 2086 unsigned OrigI = PN.getBasicBlockIndex(BB); 2087 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2088 Value *OrigV = PN.getIncomingValue(OrigI); 2089 Value *ThenV = PN.getIncomingValue(ThenI); 2090 2091 // Skip PHIs which are trivial. 2092 if (OrigV == ThenV) 2093 continue; 2094 2095 // Create a select whose true value is the speculatively executed value and 2096 // false value is the preexisting value. Swap them if the branch 2097 // destinations were inverted. 2098 Value *TrueV = ThenV, *FalseV = OrigV; 2099 if (Invert) 2100 std::swap(TrueV, FalseV); 2101 Value *V = Builder.CreateSelect( 2102 BrCond, TrueV, FalseV, "spec.select", BI); 2103 PN.setIncomingValue(OrigI, V); 2104 PN.setIncomingValue(ThenI, V); 2105 } 2106 2107 // Remove speculated dbg intrinsics. 2108 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2109 // dbg value for the different flows and inserting it after the select. 2110 for (Instruction *I : SpeculatedDbgIntrinsics) 2111 I->eraseFromParent(); 2112 2113 ++NumSpeculations; 2114 return true; 2115 } 2116 2117 /// Return true if we can thread a branch across this block. 2118 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2119 unsigned Size = 0; 2120 2121 for (Instruction &I : BB->instructionsWithoutDebug()) { 2122 if (Size > 10) 2123 return false; // Don't clone large BB's. 2124 ++Size; 2125 2126 // We can only support instructions that do not define values that are 2127 // live outside of the current basic block. 2128 for (User *U : I.users()) { 2129 Instruction *UI = cast<Instruction>(U); 2130 if (UI->getParent() != BB || isa<PHINode>(UI)) 2131 return false; 2132 } 2133 2134 // Looks ok, continue checking. 2135 } 2136 2137 return true; 2138 } 2139 2140 /// If we have a conditional branch on a PHI node value that is defined in the 2141 /// same block as the branch and if any PHI entries are constants, thread edges 2142 /// corresponding to that entry to be branches to their ultimate destination. 2143 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2144 AssumptionCache *AC) { 2145 BasicBlock *BB = BI->getParent(); 2146 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2147 // NOTE: we currently cannot transform this case if the PHI node is used 2148 // outside of the block. 2149 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2150 return false; 2151 2152 // Degenerate case of a single entry PHI. 2153 if (PN->getNumIncomingValues() == 1) { 2154 FoldSingleEntryPHINodes(PN->getParent()); 2155 return true; 2156 } 2157 2158 // Now we know that this block has multiple preds and two succs. 2159 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2160 return false; 2161 2162 // Can't fold blocks that contain noduplicate or convergent calls. 2163 if (any_of(*BB, [](const Instruction &I) { 2164 const CallInst *CI = dyn_cast<CallInst>(&I); 2165 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2166 })) 2167 return false; 2168 2169 // Okay, this is a simple enough basic block. See if any phi values are 2170 // constants. 2171 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2172 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2173 if (!CB || !CB->getType()->isIntegerTy(1)) 2174 continue; 2175 2176 // Okay, we now know that all edges from PredBB should be revectored to 2177 // branch to RealDest. 2178 BasicBlock *PredBB = PN->getIncomingBlock(i); 2179 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2180 2181 if (RealDest == BB) 2182 continue; // Skip self loops. 2183 // Skip if the predecessor's terminator is an indirect branch. 2184 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2185 continue; 2186 2187 // The dest block might have PHI nodes, other predecessors and other 2188 // difficult cases. Instead of being smart about this, just insert a new 2189 // block that jumps to the destination block, effectively splitting 2190 // the edge we are about to create. 2191 BasicBlock *EdgeBB = 2192 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2193 RealDest->getParent(), RealDest); 2194 BranchInst::Create(RealDest, EdgeBB); 2195 2196 // Update PHI nodes. 2197 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2198 2199 // BB may have instructions that are being threaded over. Clone these 2200 // instructions into EdgeBB. We know that there will be no uses of the 2201 // cloned instructions outside of EdgeBB. 2202 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2203 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2204 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2205 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2206 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2207 continue; 2208 } 2209 // Clone the instruction. 2210 Instruction *N = BBI->clone(); 2211 if (BBI->hasName()) 2212 N->setName(BBI->getName() + ".c"); 2213 2214 // Update operands due to translation. 2215 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2216 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2217 if (PI != TranslateMap.end()) 2218 *i = PI->second; 2219 } 2220 2221 // Check for trivial simplification. 2222 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2223 if (!BBI->use_empty()) 2224 TranslateMap[&*BBI] = V; 2225 if (!N->mayHaveSideEffects()) { 2226 N->deleteValue(); // Instruction folded away, don't need actual inst 2227 N = nullptr; 2228 } 2229 } else { 2230 if (!BBI->use_empty()) 2231 TranslateMap[&*BBI] = N; 2232 } 2233 // Insert the new instruction into its new home. 2234 if (N) 2235 EdgeBB->getInstList().insert(InsertPt, N); 2236 2237 // Register the new instruction with the assumption cache if necessary. 2238 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2239 if (II->getIntrinsicID() == Intrinsic::assume) 2240 AC->registerAssumption(II); 2241 } 2242 2243 // Loop over all of the edges from PredBB to BB, changing them to branch 2244 // to EdgeBB instead. 2245 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2246 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2247 if (PredBBTI->getSuccessor(i) == BB) { 2248 BB->removePredecessor(PredBB); 2249 PredBBTI->setSuccessor(i, EdgeBB); 2250 } 2251 2252 // Recurse, simplifying any other constants. 2253 return FoldCondBranchOnPHI(BI, DL, AC) | true; 2254 } 2255 2256 return false; 2257 } 2258 2259 /// Given a BB that starts with the specified two-entry PHI node, 2260 /// see if we can eliminate it. 2261 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2262 const DataLayout &DL) { 2263 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2264 // statement", which has a very simple dominance structure. Basically, we 2265 // are trying to find the condition that is being branched on, which 2266 // subsequently causes this merge to happen. We really want control 2267 // dependence information for this check, but simplifycfg can't keep it up 2268 // to date, and this catches most of the cases we care about anyway. 2269 BasicBlock *BB = PN->getParent(); 2270 const Function *Fn = BB->getParent(); 2271 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2272 return false; 2273 2274 BasicBlock *IfTrue, *IfFalse; 2275 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2276 if (!IfCond || 2277 // Don't bother if the branch will be constant folded trivially. 2278 isa<ConstantInt>(IfCond)) 2279 return false; 2280 2281 // Okay, we found that we can merge this two-entry phi node into a select. 2282 // Doing so would require us to fold *all* two entry phi nodes in this block. 2283 // At some point this becomes non-profitable (particularly if the target 2284 // doesn't support cmov's). Only do this transformation if there are two or 2285 // fewer PHI nodes in this block. 2286 unsigned NumPhis = 0; 2287 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2288 if (NumPhis > 2) 2289 return false; 2290 2291 // Loop over the PHI's seeing if we can promote them all to select 2292 // instructions. While we are at it, keep track of the instructions 2293 // that need to be moved to the dominating block. 2294 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2295 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2296 MaxCostVal1 = PHINodeFoldingThreshold; 2297 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2298 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2299 2300 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2301 PHINode *PN = cast<PHINode>(II++); 2302 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2303 PN->replaceAllUsesWith(V); 2304 PN->eraseFromParent(); 2305 continue; 2306 } 2307 2308 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2309 MaxCostVal0, TTI) || 2310 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2311 MaxCostVal1, TTI)) 2312 return false; 2313 } 2314 2315 // If we folded the first phi, PN dangles at this point. Refresh it. If 2316 // we ran out of PHIs then we simplified them all. 2317 PN = dyn_cast<PHINode>(BB->begin()); 2318 if (!PN) 2319 return true; 2320 2321 // Don't fold i1 branches on PHIs which contain binary operators. These can 2322 // often be turned into switches and other things. 2323 if (PN->getType()->isIntegerTy(1) && 2324 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2325 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2326 isa<BinaryOperator>(IfCond))) 2327 return false; 2328 2329 // If all PHI nodes are promotable, check to make sure that all instructions 2330 // in the predecessor blocks can be promoted as well. If not, we won't be able 2331 // to get rid of the control flow, so it's not worth promoting to select 2332 // instructions. 2333 BasicBlock *DomBlock = nullptr; 2334 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2335 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2336 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2337 IfBlock1 = nullptr; 2338 } else { 2339 DomBlock = *pred_begin(IfBlock1); 2340 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2341 ++I) 2342 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2343 // This is not an aggressive instruction that we can promote. 2344 // Because of this, we won't be able to get rid of the control flow, so 2345 // the xform is not worth it. 2346 return false; 2347 } 2348 } 2349 2350 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2351 IfBlock2 = nullptr; 2352 } else { 2353 DomBlock = *pred_begin(IfBlock2); 2354 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2355 ++I) 2356 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2357 // This is not an aggressive instruction that we can promote. 2358 // Because of this, we won't be able to get rid of the control flow, so 2359 // the xform is not worth it. 2360 return false; 2361 } 2362 } 2363 2364 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2365 << " T: " << IfTrue->getName() 2366 << " F: " << IfFalse->getName() << "\n"); 2367 2368 // If we can still promote the PHI nodes after this gauntlet of tests, 2369 // do all of the PHI's now. 2370 Instruction *InsertPt = DomBlock->getTerminator(); 2371 IRBuilder<NoFolder> Builder(InsertPt); 2372 2373 // Move all 'aggressive' instructions, which are defined in the 2374 // conditional parts of the if's up to the dominating block. 2375 if (IfBlock1) { 2376 for (auto &I : *IfBlock1) 2377 I.dropUnknownNonDebugMetadata(); 2378 DomBlock->getInstList().splice(InsertPt->getIterator(), 2379 IfBlock1->getInstList(), IfBlock1->begin(), 2380 IfBlock1->getTerminator()->getIterator()); 2381 } 2382 if (IfBlock2) { 2383 for (auto &I : *IfBlock2) 2384 I.dropUnknownNonDebugMetadata(); 2385 DomBlock->getInstList().splice(InsertPt->getIterator(), 2386 IfBlock2->getInstList(), IfBlock2->begin(), 2387 IfBlock2->getTerminator()->getIterator()); 2388 } 2389 2390 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2391 // Change the PHI node into a select instruction. 2392 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2393 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2394 2395 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2396 PN->replaceAllUsesWith(Sel); 2397 Sel->takeName(PN); 2398 PN->eraseFromParent(); 2399 } 2400 2401 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2402 // has been flattened. Change DomBlock to jump directly to our new block to 2403 // avoid other simplifycfg's kicking in on the diamond. 2404 TerminatorInst *OldTI = DomBlock->getTerminator(); 2405 Builder.SetInsertPoint(OldTI); 2406 Builder.CreateBr(BB); 2407 OldTI->eraseFromParent(); 2408 return true; 2409 } 2410 2411 /// If we found a conditional branch that goes to two returning blocks, 2412 /// try to merge them together into one return, 2413 /// introducing a select if the return values disagree. 2414 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2415 IRBuilder<> &Builder) { 2416 assert(BI->isConditional() && "Must be a conditional branch"); 2417 BasicBlock *TrueSucc = BI->getSuccessor(0); 2418 BasicBlock *FalseSucc = BI->getSuccessor(1); 2419 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2420 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2421 2422 // Check to ensure both blocks are empty (just a return) or optionally empty 2423 // with PHI nodes. If there are other instructions, merging would cause extra 2424 // computation on one path or the other. 2425 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2426 return false; 2427 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2428 return false; 2429 2430 Builder.SetInsertPoint(BI); 2431 // Okay, we found a branch that is going to two return nodes. If 2432 // there is no return value for this function, just change the 2433 // branch into a return. 2434 if (FalseRet->getNumOperands() == 0) { 2435 TrueSucc->removePredecessor(BI->getParent()); 2436 FalseSucc->removePredecessor(BI->getParent()); 2437 Builder.CreateRetVoid(); 2438 EraseTerminatorInstAndDCECond(BI); 2439 return true; 2440 } 2441 2442 // Otherwise, figure out what the true and false return values are 2443 // so we can insert a new select instruction. 2444 Value *TrueValue = TrueRet->getReturnValue(); 2445 Value *FalseValue = FalseRet->getReturnValue(); 2446 2447 // Unwrap any PHI nodes in the return blocks. 2448 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2449 if (TVPN->getParent() == TrueSucc) 2450 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2451 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2452 if (FVPN->getParent() == FalseSucc) 2453 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2454 2455 // In order for this transformation to be safe, we must be able to 2456 // unconditionally execute both operands to the return. This is 2457 // normally the case, but we could have a potentially-trapping 2458 // constant expression that prevents this transformation from being 2459 // safe. 2460 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2461 if (TCV->canTrap()) 2462 return false; 2463 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2464 if (FCV->canTrap()) 2465 return false; 2466 2467 // Okay, we collected all the mapped values and checked them for sanity, and 2468 // defined to really do this transformation. First, update the CFG. 2469 TrueSucc->removePredecessor(BI->getParent()); 2470 FalseSucc->removePredecessor(BI->getParent()); 2471 2472 // Insert select instructions where needed. 2473 Value *BrCond = BI->getCondition(); 2474 if (TrueValue) { 2475 // Insert a select if the results differ. 2476 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2477 } else if (isa<UndefValue>(TrueValue)) { 2478 TrueValue = FalseValue; 2479 } else { 2480 TrueValue = 2481 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2482 } 2483 } 2484 2485 Value *RI = 2486 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2487 2488 (void)RI; 2489 2490 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2491 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2492 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2493 2494 EraseTerminatorInstAndDCECond(BI); 2495 2496 return true; 2497 } 2498 2499 /// Return true if the given instruction is available 2500 /// in its predecessor block. If yes, the instruction will be removed. 2501 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2502 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2503 return false; 2504 for (Instruction &I : *PB) { 2505 Instruction *PBI = &I; 2506 // Check whether Inst and PBI generate the same value. 2507 if (Inst->isIdenticalTo(PBI)) { 2508 Inst->replaceAllUsesWith(PBI); 2509 Inst->eraseFromParent(); 2510 return true; 2511 } 2512 } 2513 return false; 2514 } 2515 2516 /// Return true if either PBI or BI has branch weight available, and store 2517 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2518 /// not have branch weight, use 1:1 as its weight. 2519 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2520 uint64_t &PredTrueWeight, 2521 uint64_t &PredFalseWeight, 2522 uint64_t &SuccTrueWeight, 2523 uint64_t &SuccFalseWeight) { 2524 bool PredHasWeights = 2525 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2526 bool SuccHasWeights = 2527 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2528 if (PredHasWeights || SuccHasWeights) { 2529 if (!PredHasWeights) 2530 PredTrueWeight = PredFalseWeight = 1; 2531 if (!SuccHasWeights) 2532 SuccTrueWeight = SuccFalseWeight = 1; 2533 return true; 2534 } else { 2535 return false; 2536 } 2537 } 2538 2539 /// If this basic block is simple enough, and if a predecessor branches to us 2540 /// and one of our successors, fold the block into the predecessor and use 2541 /// logical operations to pick the right destination. 2542 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2543 BasicBlock *BB = BI->getParent(); 2544 2545 Instruction *Cond = nullptr; 2546 if (BI->isConditional()) 2547 Cond = dyn_cast<Instruction>(BI->getCondition()); 2548 else { 2549 // For unconditional branch, check for a simple CFG pattern, where 2550 // BB has a single predecessor and BB's successor is also its predecessor's 2551 // successor. If such pattern exists, check for CSE between BB and its 2552 // predecessor. 2553 if (BasicBlock *PB = BB->getSinglePredecessor()) 2554 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2555 if (PBI->isConditional() && 2556 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2557 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2558 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2559 Instruction *Curr = &*I++; 2560 if (isa<CmpInst>(Curr)) { 2561 Cond = Curr; 2562 break; 2563 } 2564 // Quit if we can't remove this instruction. 2565 if (!checkCSEInPredecessor(Curr, PB)) 2566 return false; 2567 } 2568 } 2569 2570 if (!Cond) 2571 return false; 2572 } 2573 2574 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2575 Cond->getParent() != BB || !Cond->hasOneUse()) 2576 return false; 2577 2578 // Make sure the instruction after the condition is the cond branch. 2579 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2580 2581 // Ignore dbg intrinsics. 2582 while (isa<DbgInfoIntrinsic>(CondIt)) 2583 ++CondIt; 2584 2585 if (&*CondIt != BI) 2586 return false; 2587 2588 // Only allow this transformation if computing the condition doesn't involve 2589 // too many instructions and these involved instructions can be executed 2590 // unconditionally. We denote all involved instructions except the condition 2591 // as "bonus instructions", and only allow this transformation when the 2592 // number of the bonus instructions does not exceed a certain threshold. 2593 unsigned NumBonusInsts = 0; 2594 for (auto I = BB->begin(); Cond != &*I; ++I) { 2595 // Ignore dbg intrinsics. 2596 if (isa<DbgInfoIntrinsic>(I)) 2597 continue; 2598 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2599 return false; 2600 // I has only one use and can be executed unconditionally. 2601 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2602 if (User == nullptr || User->getParent() != BB) 2603 return false; 2604 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2605 // to use any other instruction, User must be an instruction between next(I) 2606 // and Cond. 2607 ++NumBonusInsts; 2608 // Early exits once we reach the limit. 2609 if (NumBonusInsts > BonusInstThreshold) 2610 return false; 2611 } 2612 2613 // Cond is known to be a compare or binary operator. Check to make sure that 2614 // neither operand is a potentially-trapping constant expression. 2615 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2616 if (CE->canTrap()) 2617 return false; 2618 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2619 if (CE->canTrap()) 2620 return false; 2621 2622 // Finally, don't infinitely unroll conditional loops. 2623 BasicBlock *TrueDest = BI->getSuccessor(0); 2624 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2625 if (TrueDest == BB || FalseDest == BB) 2626 return false; 2627 2628 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2629 BasicBlock *PredBlock = *PI; 2630 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2631 2632 // Check that we have two conditional branches. If there is a PHI node in 2633 // the common successor, verify that the same value flows in from both 2634 // blocks. 2635 SmallVector<PHINode *, 4> PHIs; 2636 if (!PBI || PBI->isUnconditional() || 2637 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2638 (!BI->isConditional() && 2639 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2640 continue; 2641 2642 // Determine if the two branches share a common destination. 2643 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2644 bool InvertPredCond = false; 2645 2646 if (BI->isConditional()) { 2647 if (PBI->getSuccessor(0) == TrueDest) { 2648 Opc = Instruction::Or; 2649 } else if (PBI->getSuccessor(1) == FalseDest) { 2650 Opc = Instruction::And; 2651 } else if (PBI->getSuccessor(0) == FalseDest) { 2652 Opc = Instruction::And; 2653 InvertPredCond = true; 2654 } else if (PBI->getSuccessor(1) == TrueDest) { 2655 Opc = Instruction::Or; 2656 InvertPredCond = true; 2657 } else { 2658 continue; 2659 } 2660 } else { 2661 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2662 continue; 2663 } 2664 2665 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2666 IRBuilder<> Builder(PBI); 2667 2668 // If we need to invert the condition in the pred block to match, do so now. 2669 if (InvertPredCond) { 2670 Value *NewCond = PBI->getCondition(); 2671 2672 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2673 CmpInst *CI = cast<CmpInst>(NewCond); 2674 CI->setPredicate(CI->getInversePredicate()); 2675 } else { 2676 NewCond = 2677 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2678 } 2679 2680 PBI->setCondition(NewCond); 2681 PBI->swapSuccessors(); 2682 } 2683 2684 // If we have bonus instructions, clone them into the predecessor block. 2685 // Note that there may be multiple predecessor blocks, so we cannot move 2686 // bonus instructions to a predecessor block. 2687 ValueToValueMapTy VMap; // maps original values to cloned values 2688 // We already make sure Cond is the last instruction before BI. Therefore, 2689 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2690 // instructions. 2691 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2692 if (isa<DbgInfoIntrinsic>(BonusInst)) 2693 continue; 2694 Instruction *NewBonusInst = BonusInst->clone(); 2695 RemapInstruction(NewBonusInst, VMap, 2696 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2697 VMap[&*BonusInst] = NewBonusInst; 2698 2699 // If we moved a load, we cannot any longer claim any knowledge about 2700 // its potential value. The previous information might have been valid 2701 // only given the branch precondition. 2702 // For an analogous reason, we must also drop all the metadata whose 2703 // semantics we don't understand. 2704 NewBonusInst->dropUnknownNonDebugMetadata(); 2705 2706 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2707 NewBonusInst->takeName(&*BonusInst); 2708 BonusInst->setName(BonusInst->getName() + ".old"); 2709 } 2710 2711 // Clone Cond into the predecessor basic block, and or/and the 2712 // two conditions together. 2713 Instruction *New = Cond->clone(); 2714 RemapInstruction(New, VMap, 2715 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2716 PredBlock->getInstList().insert(PBI->getIterator(), New); 2717 New->takeName(Cond); 2718 Cond->setName(New->getName() + ".old"); 2719 2720 if (BI->isConditional()) { 2721 Instruction *NewCond = cast<Instruction>( 2722 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2723 PBI->setCondition(NewCond); 2724 2725 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2726 bool HasWeights = 2727 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2728 SuccTrueWeight, SuccFalseWeight); 2729 SmallVector<uint64_t, 8> NewWeights; 2730 2731 if (PBI->getSuccessor(0) == BB) { 2732 if (HasWeights) { 2733 // PBI: br i1 %x, BB, FalseDest 2734 // BI: br i1 %y, TrueDest, FalseDest 2735 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2736 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2737 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2738 // TrueWeight for PBI * FalseWeight for BI. 2739 // We assume that total weights of a BranchInst can fit into 32 bits. 2740 // Therefore, we will not have overflow using 64-bit arithmetic. 2741 NewWeights.push_back(PredFalseWeight * 2742 (SuccFalseWeight + SuccTrueWeight) + 2743 PredTrueWeight * SuccFalseWeight); 2744 } 2745 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2746 PBI->setSuccessor(0, TrueDest); 2747 } 2748 if (PBI->getSuccessor(1) == BB) { 2749 if (HasWeights) { 2750 // PBI: br i1 %x, TrueDest, BB 2751 // BI: br i1 %y, TrueDest, FalseDest 2752 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2753 // FalseWeight for PBI * TrueWeight for BI. 2754 NewWeights.push_back(PredTrueWeight * 2755 (SuccFalseWeight + SuccTrueWeight) + 2756 PredFalseWeight * SuccTrueWeight); 2757 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2758 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2759 } 2760 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2761 PBI->setSuccessor(1, FalseDest); 2762 } 2763 if (NewWeights.size() == 2) { 2764 // Halve the weights if any of them cannot fit in an uint32_t 2765 FitWeights(NewWeights); 2766 2767 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2768 NewWeights.end()); 2769 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2770 } else 2771 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2772 } else { 2773 // Update PHI nodes in the common successors. 2774 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2775 ConstantInt *PBI_C = cast<ConstantInt>( 2776 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2777 assert(PBI_C->getType()->isIntegerTy(1)); 2778 Instruction *MergedCond = nullptr; 2779 if (PBI->getSuccessor(0) == TrueDest) { 2780 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2781 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2782 // is false: !PBI_Cond and BI_Value 2783 Instruction *NotCond = cast<Instruction>( 2784 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2785 MergedCond = cast<Instruction>( 2786 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2787 if (PBI_C->isOne()) 2788 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2789 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2790 } else { 2791 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2792 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2793 // is false: PBI_Cond and BI_Value 2794 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2795 Instruction::And, PBI->getCondition(), New, "and.cond")); 2796 if (PBI_C->isOne()) { 2797 Instruction *NotCond = cast<Instruction>( 2798 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2799 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2800 Instruction::Or, NotCond, MergedCond, "or.cond")); 2801 } 2802 } 2803 // Update PHI Node. 2804 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2805 MergedCond); 2806 } 2807 // Change PBI from Conditional to Unconditional. 2808 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2809 EraseTerminatorInstAndDCECond(PBI); 2810 PBI = New_PBI; 2811 } 2812 2813 // If BI was a loop latch, it may have had associated loop metadata. 2814 // We need to copy it to the new latch, that is, PBI. 2815 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2816 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2817 2818 // TODO: If BB is reachable from all paths through PredBlock, then we 2819 // could replace PBI's branch probabilities with BI's. 2820 2821 // Copy any debug value intrinsics into the end of PredBlock. 2822 for (Instruction &I : *BB) 2823 if (isa<DbgInfoIntrinsic>(I)) 2824 I.clone()->insertBefore(PBI); 2825 2826 return true; 2827 } 2828 return false; 2829 } 2830 2831 // If there is only one store in BB1 and BB2, return it, otherwise return 2832 // nullptr. 2833 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2834 StoreInst *S = nullptr; 2835 for (auto *BB : {BB1, BB2}) { 2836 if (!BB) 2837 continue; 2838 for (auto &I : *BB) 2839 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2840 if (S) 2841 // Multiple stores seen. 2842 return nullptr; 2843 else 2844 S = SI; 2845 } 2846 } 2847 return S; 2848 } 2849 2850 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2851 Value *AlternativeV = nullptr) { 2852 // PHI is going to be a PHI node that allows the value V that is defined in 2853 // BB to be referenced in BB's only successor. 2854 // 2855 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2856 // doesn't matter to us what the other operand is (it'll never get used). We 2857 // could just create a new PHI with an undef incoming value, but that could 2858 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2859 // other PHI. So here we directly look for some PHI in BB's successor with V 2860 // as an incoming operand. If we find one, we use it, else we create a new 2861 // one. 2862 // 2863 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2864 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2865 // where OtherBB is the single other predecessor of BB's only successor. 2866 PHINode *PHI = nullptr; 2867 BasicBlock *Succ = BB->getSingleSuccessor(); 2868 2869 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2870 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2871 PHI = cast<PHINode>(I); 2872 if (!AlternativeV) 2873 break; 2874 2875 assert(pred_size(Succ) == 2); 2876 auto PredI = pred_begin(Succ); 2877 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2878 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2879 break; 2880 PHI = nullptr; 2881 } 2882 if (PHI) 2883 return PHI; 2884 2885 // If V is not an instruction defined in BB, just return it. 2886 if (!AlternativeV && 2887 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2888 return V; 2889 2890 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2891 PHI->addIncoming(V, BB); 2892 for (BasicBlock *PredBB : predecessors(Succ)) 2893 if (PredBB != BB) 2894 PHI->addIncoming( 2895 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2896 return PHI; 2897 } 2898 2899 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2900 BasicBlock *QTB, BasicBlock *QFB, 2901 BasicBlock *PostBB, Value *Address, 2902 bool InvertPCond, bool InvertQCond, 2903 const DataLayout &DL) { 2904 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2905 return Operator::getOpcode(&I) == Instruction::BitCast && 2906 I.getType()->isPointerTy(); 2907 }; 2908 2909 // If we're not in aggressive mode, we only optimize if we have some 2910 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2911 auto IsWorthwhile = [&](BasicBlock *BB) { 2912 if (!BB) 2913 return true; 2914 // Heuristic: if the block can be if-converted/phi-folded and the 2915 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2916 // thread this store. 2917 unsigned N = 0; 2918 for (auto &I : BB->instructionsWithoutDebug()) { 2919 // Cheap instructions viable for folding. 2920 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2921 isa<StoreInst>(I)) 2922 ++N; 2923 // Free instructions. 2924 else if (isa<TerminatorInst>(I) || IsaBitcastOfPointerType(I)) 2925 continue; 2926 else 2927 return false; 2928 } 2929 // The store we want to merge is counted in N, so add 1 to make sure 2930 // we're counting the instructions that would be left. 2931 return N <= (PHINodeFoldingThreshold + 1); 2932 }; 2933 2934 if (!MergeCondStoresAggressively && 2935 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2936 !IsWorthwhile(QFB))) 2937 return false; 2938 2939 // For every pointer, there must be exactly two stores, one coming from 2940 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2941 // store (to any address) in PTB,PFB or QTB,QFB. 2942 // FIXME: We could relax this restriction with a bit more work and performance 2943 // testing. 2944 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2945 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2946 if (!PStore || !QStore) 2947 return false; 2948 2949 // Now check the stores are compatible. 2950 if (!QStore->isUnordered() || !PStore->isUnordered()) 2951 return false; 2952 2953 // Check that sinking the store won't cause program behavior changes. Sinking 2954 // the store out of the Q blocks won't change any behavior as we're sinking 2955 // from a block to its unconditional successor. But we're moving a store from 2956 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2957 // So we need to check that there are no aliasing loads or stores in 2958 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2959 // operations between PStore and the end of its parent block. 2960 // 2961 // The ideal way to do this is to query AliasAnalysis, but we don't 2962 // preserve AA currently so that is dangerous. Be super safe and just 2963 // check there are no other memory operations at all. 2964 for (auto &I : *QFB->getSinglePredecessor()) 2965 if (I.mayReadOrWriteMemory()) 2966 return false; 2967 for (auto &I : *QFB) 2968 if (&I != QStore && I.mayReadOrWriteMemory()) 2969 return false; 2970 if (QTB) 2971 for (auto &I : *QTB) 2972 if (&I != QStore && I.mayReadOrWriteMemory()) 2973 return false; 2974 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2975 I != E; ++I) 2976 if (&*I != PStore && I->mayReadOrWriteMemory()) 2977 return false; 2978 2979 // If PostBB has more than two predecessors, we need to split it so we can 2980 // sink the store. 2981 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2982 // We know that QFB's only successor is PostBB. And QFB has a single 2983 // predecessor. If QTB exists, then its only successor is also PostBB. 2984 // If QTB does not exist, then QFB's only predecessor has a conditional 2985 // branch to QFB and PostBB. 2986 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 2987 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 2988 "condstore.split"); 2989 if (!NewBB) 2990 return false; 2991 PostBB = NewBB; 2992 } 2993 2994 // OK, we're going to sink the stores to PostBB. The store has to be 2995 // conditional though, so first create the predicate. 2996 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2997 ->getCondition(); 2998 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2999 ->getCondition(); 3000 3001 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3002 PStore->getParent()); 3003 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3004 QStore->getParent(), PPHI); 3005 3006 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3007 3008 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3009 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3010 3011 if (InvertPCond) 3012 PPred = QB.CreateNot(PPred); 3013 if (InvertQCond) 3014 QPred = QB.CreateNot(QPred); 3015 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3016 3017 auto *T = 3018 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3019 QB.SetInsertPoint(T); 3020 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3021 AAMDNodes AAMD; 3022 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3023 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3024 SI->setAAMetadata(AAMD); 3025 unsigned PAlignment = PStore->getAlignment(); 3026 unsigned QAlignment = QStore->getAlignment(); 3027 unsigned TypeAlignment = 3028 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3029 unsigned MinAlignment; 3030 unsigned MaxAlignment; 3031 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3032 // Choose the minimum alignment. If we could prove both stores execute, we 3033 // could use biggest one. In this case, though, we only know that one of the 3034 // stores executes. And we don't know it's safe to take the alignment from a 3035 // store that doesn't execute. 3036 if (MinAlignment != 0) { 3037 // Choose the minimum of all non-zero alignments. 3038 SI->setAlignment(MinAlignment); 3039 } else if (MaxAlignment != 0) { 3040 // Choose the minimal alignment between the non-zero alignment and the ABI 3041 // default alignment for the type of the stored value. 3042 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3043 } else { 3044 // If both alignments are zero, use ABI default alignment for the type of 3045 // the stored value. 3046 SI->setAlignment(TypeAlignment); 3047 } 3048 3049 QStore->eraseFromParent(); 3050 PStore->eraseFromParent(); 3051 3052 return true; 3053 } 3054 3055 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3056 const DataLayout &DL) { 3057 // The intention here is to find diamonds or triangles (see below) where each 3058 // conditional block contains a store to the same address. Both of these 3059 // stores are conditional, so they can't be unconditionally sunk. But it may 3060 // be profitable to speculatively sink the stores into one merged store at the 3061 // end, and predicate the merged store on the union of the two conditions of 3062 // PBI and QBI. 3063 // 3064 // This can reduce the number of stores executed if both of the conditions are 3065 // true, and can allow the blocks to become small enough to be if-converted. 3066 // This optimization will also chain, so that ladders of test-and-set 3067 // sequences can be if-converted away. 3068 // 3069 // We only deal with simple diamonds or triangles: 3070 // 3071 // PBI or PBI or a combination of the two 3072 // / \ | \ 3073 // PTB PFB | PFB 3074 // \ / | / 3075 // QBI QBI 3076 // / \ | \ 3077 // QTB QFB | QFB 3078 // \ / | / 3079 // PostBB PostBB 3080 // 3081 // We model triangles as a type of diamond with a nullptr "true" block. 3082 // Triangles are canonicalized so that the fallthrough edge is represented by 3083 // a true condition, as in the diagram above. 3084 BasicBlock *PTB = PBI->getSuccessor(0); 3085 BasicBlock *PFB = PBI->getSuccessor(1); 3086 BasicBlock *QTB = QBI->getSuccessor(0); 3087 BasicBlock *QFB = QBI->getSuccessor(1); 3088 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3089 3090 // Make sure we have a good guess for PostBB. If QTB's only successor is 3091 // QFB, then QFB is a better PostBB. 3092 if (QTB->getSingleSuccessor() == QFB) 3093 PostBB = QFB; 3094 3095 // If we couldn't find a good PostBB, stop. 3096 if (!PostBB) 3097 return false; 3098 3099 bool InvertPCond = false, InvertQCond = false; 3100 // Canonicalize fallthroughs to the true branches. 3101 if (PFB == QBI->getParent()) { 3102 std::swap(PFB, PTB); 3103 InvertPCond = true; 3104 } 3105 if (QFB == PostBB) { 3106 std::swap(QFB, QTB); 3107 InvertQCond = true; 3108 } 3109 3110 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3111 // and QFB may not. Model fallthroughs as a nullptr block. 3112 if (PTB == QBI->getParent()) 3113 PTB = nullptr; 3114 if (QTB == PostBB) 3115 QTB = nullptr; 3116 3117 // Legality bailouts. We must have at least the non-fallthrough blocks and 3118 // the post-dominating block, and the non-fallthroughs must only have one 3119 // predecessor. 3120 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3121 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3122 }; 3123 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3124 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3125 return false; 3126 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3127 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3128 return false; 3129 if (!QBI->getParent()->hasNUses(2)) 3130 return false; 3131 3132 // OK, this is a sequence of two diamonds or triangles. 3133 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3134 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3135 for (auto *BB : {PTB, PFB}) { 3136 if (!BB) 3137 continue; 3138 for (auto &I : *BB) 3139 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3140 PStoreAddresses.insert(SI->getPointerOperand()); 3141 } 3142 for (auto *BB : {QTB, QFB}) { 3143 if (!BB) 3144 continue; 3145 for (auto &I : *BB) 3146 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3147 QStoreAddresses.insert(SI->getPointerOperand()); 3148 } 3149 3150 set_intersect(PStoreAddresses, QStoreAddresses); 3151 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3152 // clear what it contains. 3153 auto &CommonAddresses = PStoreAddresses; 3154 3155 bool Changed = false; 3156 for (auto *Address : CommonAddresses) 3157 Changed |= mergeConditionalStoreToAddress( 3158 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3159 return Changed; 3160 } 3161 3162 /// If we have a conditional branch as a predecessor of another block, 3163 /// this function tries to simplify it. We know 3164 /// that PBI and BI are both conditional branches, and BI is in one of the 3165 /// successor blocks of PBI - PBI branches to BI. 3166 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3167 const DataLayout &DL) { 3168 assert(PBI->isConditional() && BI->isConditional()); 3169 BasicBlock *BB = BI->getParent(); 3170 3171 // If this block ends with a branch instruction, and if there is a 3172 // predecessor that ends on a branch of the same condition, make 3173 // this conditional branch redundant. 3174 if (PBI->getCondition() == BI->getCondition() && 3175 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3176 // Okay, the outcome of this conditional branch is statically 3177 // knowable. If this block had a single pred, handle specially. 3178 if (BB->getSinglePredecessor()) { 3179 // Turn this into a branch on constant. 3180 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3181 BI->setCondition( 3182 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3183 return true; // Nuke the branch on constant. 3184 } 3185 3186 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3187 // in the constant and simplify the block result. Subsequent passes of 3188 // simplifycfg will thread the block. 3189 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3190 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3191 PHINode *NewPN = PHINode::Create( 3192 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3193 BI->getCondition()->getName() + ".pr", &BB->front()); 3194 // Okay, we're going to insert the PHI node. Since PBI is not the only 3195 // predecessor, compute the PHI'd conditional value for all of the preds. 3196 // Any predecessor where the condition is not computable we keep symbolic. 3197 for (pred_iterator PI = PB; PI != PE; ++PI) { 3198 BasicBlock *P = *PI; 3199 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3200 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3201 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3202 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3203 NewPN->addIncoming( 3204 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3205 P); 3206 } else { 3207 NewPN->addIncoming(BI->getCondition(), P); 3208 } 3209 } 3210 3211 BI->setCondition(NewPN); 3212 return true; 3213 } 3214 } 3215 3216 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3217 if (CE->canTrap()) 3218 return false; 3219 3220 // If both branches are conditional and both contain stores to the same 3221 // address, remove the stores from the conditionals and create a conditional 3222 // merged store at the end. 3223 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3224 return true; 3225 3226 // If this is a conditional branch in an empty block, and if any 3227 // predecessors are a conditional branch to one of our destinations, 3228 // fold the conditions into logical ops and one cond br. 3229 3230 // Ignore dbg intrinsics. 3231 if (&*BB->instructionsWithoutDebug().begin() != BI) 3232 return false; 3233 3234 int PBIOp, BIOp; 3235 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3236 PBIOp = 0; 3237 BIOp = 0; 3238 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3239 PBIOp = 0; 3240 BIOp = 1; 3241 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3242 PBIOp = 1; 3243 BIOp = 0; 3244 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3245 PBIOp = 1; 3246 BIOp = 1; 3247 } else { 3248 return false; 3249 } 3250 3251 // Check to make sure that the other destination of this branch 3252 // isn't BB itself. If so, this is an infinite loop that will 3253 // keep getting unwound. 3254 if (PBI->getSuccessor(PBIOp) == BB) 3255 return false; 3256 3257 // Do not perform this transformation if it would require 3258 // insertion of a large number of select instructions. For targets 3259 // without predication/cmovs, this is a big pessimization. 3260 3261 // Also do not perform this transformation if any phi node in the common 3262 // destination block can trap when reached by BB or PBB (PR17073). In that 3263 // case, it would be unsafe to hoist the operation into a select instruction. 3264 3265 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3266 unsigned NumPhis = 0; 3267 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3268 ++II, ++NumPhis) { 3269 if (NumPhis > 2) // Disable this xform. 3270 return false; 3271 3272 PHINode *PN = cast<PHINode>(II); 3273 Value *BIV = PN->getIncomingValueForBlock(BB); 3274 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3275 if (CE->canTrap()) 3276 return false; 3277 3278 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3279 Value *PBIV = PN->getIncomingValue(PBBIdx); 3280 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3281 if (CE->canTrap()) 3282 return false; 3283 } 3284 3285 // Finally, if everything is ok, fold the branches to logical ops. 3286 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3287 3288 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3289 << "AND: " << *BI->getParent()); 3290 3291 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3292 // branch in it, where one edge (OtherDest) goes back to itself but the other 3293 // exits. We don't *know* that the program avoids the infinite loop 3294 // (even though that seems likely). If we do this xform naively, we'll end up 3295 // recursively unpeeling the loop. Since we know that (after the xform is 3296 // done) that the block *is* infinite if reached, we just make it an obviously 3297 // infinite loop with no cond branch. 3298 if (OtherDest == BB) { 3299 // Insert it at the end of the function, because it's either code, 3300 // or it won't matter if it's hot. :) 3301 BasicBlock *InfLoopBlock = 3302 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3303 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3304 OtherDest = InfLoopBlock; 3305 } 3306 3307 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3308 3309 // BI may have other predecessors. Because of this, we leave 3310 // it alone, but modify PBI. 3311 3312 // Make sure we get to CommonDest on True&True directions. 3313 Value *PBICond = PBI->getCondition(); 3314 IRBuilder<NoFolder> Builder(PBI); 3315 if (PBIOp) 3316 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3317 3318 Value *BICond = BI->getCondition(); 3319 if (BIOp) 3320 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3321 3322 // Merge the conditions. 3323 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3324 3325 // Modify PBI to branch on the new condition to the new dests. 3326 PBI->setCondition(Cond); 3327 PBI->setSuccessor(0, CommonDest); 3328 PBI->setSuccessor(1, OtherDest); 3329 3330 // Update branch weight for PBI. 3331 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3332 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3333 bool HasWeights = 3334 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3335 SuccTrueWeight, SuccFalseWeight); 3336 if (HasWeights) { 3337 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3338 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3339 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3340 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3341 // The weight to CommonDest should be PredCommon * SuccTotal + 3342 // PredOther * SuccCommon. 3343 // The weight to OtherDest should be PredOther * SuccOther. 3344 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3345 PredOther * SuccCommon, 3346 PredOther * SuccOther}; 3347 // Halve the weights if any of them cannot fit in an uint32_t 3348 FitWeights(NewWeights); 3349 3350 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3351 } 3352 3353 // OtherDest may have phi nodes. If so, add an entry from PBI's 3354 // block that are identical to the entries for BI's block. 3355 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3356 3357 // We know that the CommonDest already had an edge from PBI to 3358 // it. If it has PHIs though, the PHIs may have different 3359 // entries for BB and PBI's BB. If so, insert a select to make 3360 // them agree. 3361 for (PHINode &PN : CommonDest->phis()) { 3362 Value *BIV = PN.getIncomingValueForBlock(BB); 3363 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3364 Value *PBIV = PN.getIncomingValue(PBBIdx); 3365 if (BIV != PBIV) { 3366 // Insert a select in PBI to pick the right value. 3367 SelectInst *NV = cast<SelectInst>( 3368 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3369 PN.setIncomingValue(PBBIdx, NV); 3370 // Although the select has the same condition as PBI, the original branch 3371 // weights for PBI do not apply to the new select because the select's 3372 // 'logical' edges are incoming edges of the phi that is eliminated, not 3373 // the outgoing edges of PBI. 3374 if (HasWeights) { 3375 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3376 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3377 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3378 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3379 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3380 // The weight to PredOtherDest should be PredOther * SuccCommon. 3381 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3382 PredOther * SuccCommon}; 3383 3384 FitWeights(NewWeights); 3385 3386 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3387 } 3388 } 3389 } 3390 3391 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3392 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3393 3394 // This basic block is probably dead. We know it has at least 3395 // one fewer predecessor. 3396 return true; 3397 } 3398 3399 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3400 // true or to FalseBB if Cond is false. 3401 // Takes care of updating the successors and removing the old terminator. 3402 // Also makes sure not to introduce new successors by assuming that edges to 3403 // non-successor TrueBBs and FalseBBs aren't reachable. 3404 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3405 BasicBlock *TrueBB, BasicBlock *FalseBB, 3406 uint32_t TrueWeight, 3407 uint32_t FalseWeight) { 3408 // Remove any superfluous successor edges from the CFG. 3409 // First, figure out which successors to preserve. 3410 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3411 // successor. 3412 BasicBlock *KeepEdge1 = TrueBB; 3413 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3414 3415 // Then remove the rest. 3416 for (BasicBlock *Succ : OldTerm->successors()) { 3417 // Make sure only to keep exactly one copy of each edge. 3418 if (Succ == KeepEdge1) 3419 KeepEdge1 = nullptr; 3420 else if (Succ == KeepEdge2) 3421 KeepEdge2 = nullptr; 3422 else 3423 Succ->removePredecessor(OldTerm->getParent(), 3424 /*DontDeleteUselessPHIs=*/true); 3425 } 3426 3427 IRBuilder<> Builder(OldTerm); 3428 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3429 3430 // Insert an appropriate new terminator. 3431 if (!KeepEdge1 && !KeepEdge2) { 3432 if (TrueBB == FalseBB) 3433 // We were only looking for one successor, and it was present. 3434 // Create an unconditional branch to it. 3435 Builder.CreateBr(TrueBB); 3436 else { 3437 // We found both of the successors we were looking for. 3438 // Create a conditional branch sharing the condition of the select. 3439 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3440 if (TrueWeight != FalseWeight) 3441 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3442 } 3443 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3444 // Neither of the selected blocks were successors, so this 3445 // terminator must be unreachable. 3446 new UnreachableInst(OldTerm->getContext(), OldTerm); 3447 } else { 3448 // One of the selected values was a successor, but the other wasn't. 3449 // Insert an unconditional branch to the one that was found; 3450 // the edge to the one that wasn't must be unreachable. 3451 if (!KeepEdge1) 3452 // Only TrueBB was found. 3453 Builder.CreateBr(TrueBB); 3454 else 3455 // Only FalseBB was found. 3456 Builder.CreateBr(FalseBB); 3457 } 3458 3459 EraseTerminatorInstAndDCECond(OldTerm); 3460 return true; 3461 } 3462 3463 // Replaces 3464 // (switch (select cond, X, Y)) on constant X, Y 3465 // with a branch - conditional if X and Y lead to distinct BBs, 3466 // unconditional otherwise. 3467 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3468 // Check for constant integer values in the select. 3469 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3470 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3471 if (!TrueVal || !FalseVal) 3472 return false; 3473 3474 // Find the relevant condition and destinations. 3475 Value *Condition = Select->getCondition(); 3476 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3477 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3478 3479 // Get weight for TrueBB and FalseBB. 3480 uint32_t TrueWeight = 0, FalseWeight = 0; 3481 SmallVector<uint64_t, 8> Weights; 3482 bool HasWeights = HasBranchWeights(SI); 3483 if (HasWeights) { 3484 GetBranchWeights(SI, Weights); 3485 if (Weights.size() == 1 + SI->getNumCases()) { 3486 TrueWeight = 3487 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3488 FalseWeight = 3489 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3490 } 3491 } 3492 3493 // Perform the actual simplification. 3494 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3495 FalseWeight); 3496 } 3497 3498 // Replaces 3499 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3500 // blockaddress(@fn, BlockB))) 3501 // with 3502 // (br cond, BlockA, BlockB). 3503 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3504 // Check that both operands of the select are block addresses. 3505 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3506 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3507 if (!TBA || !FBA) 3508 return false; 3509 3510 // Extract the actual blocks. 3511 BasicBlock *TrueBB = TBA->getBasicBlock(); 3512 BasicBlock *FalseBB = FBA->getBasicBlock(); 3513 3514 // Perform the actual simplification. 3515 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3516 0); 3517 } 3518 3519 /// This is called when we find an icmp instruction 3520 /// (a seteq/setne with a constant) as the only instruction in a 3521 /// block that ends with an uncond branch. We are looking for a very specific 3522 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3523 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3524 /// default value goes to an uncond block with a seteq in it, we get something 3525 /// like: 3526 /// 3527 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3528 /// DEFAULT: 3529 /// %tmp = icmp eq i8 %A, 92 3530 /// br label %end 3531 /// end: 3532 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3533 /// 3534 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3535 /// the PHI, merging the third icmp into the switch. 3536 static bool tryToSimplifyUncondBranchWithICmpInIt( 3537 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3538 const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) { 3539 BasicBlock *BB = ICI->getParent(); 3540 3541 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3542 // complex. 3543 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3544 return false; 3545 3546 Value *V = ICI->getOperand(0); 3547 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3548 3549 // The pattern we're looking for is where our only predecessor is a switch on 3550 // 'V' and this block is the default case for the switch. In this case we can 3551 // fold the compared value into the switch to simplify things. 3552 BasicBlock *Pred = BB->getSinglePredecessor(); 3553 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3554 return false; 3555 3556 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3557 if (SI->getCondition() != V) 3558 return false; 3559 3560 // If BB is reachable on a non-default case, then we simply know the value of 3561 // V in this block. Substitute it and constant fold the icmp instruction 3562 // away. 3563 if (SI->getDefaultDest() != BB) { 3564 ConstantInt *VVal = SI->findCaseDest(BB); 3565 assert(VVal && "Should have a unique destination value"); 3566 ICI->setOperand(0, VVal); 3567 3568 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3569 ICI->replaceAllUsesWith(V); 3570 ICI->eraseFromParent(); 3571 } 3572 // BB is now empty, so it is likely to simplify away. 3573 return simplifyCFG(BB, TTI, Options) | true; 3574 } 3575 3576 // Ok, the block is reachable from the default dest. If the constant we're 3577 // comparing exists in one of the other edges, then we can constant fold ICI 3578 // and zap it. 3579 if (SI->findCaseValue(Cst) != SI->case_default()) { 3580 Value *V; 3581 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3582 V = ConstantInt::getFalse(BB->getContext()); 3583 else 3584 V = ConstantInt::getTrue(BB->getContext()); 3585 3586 ICI->replaceAllUsesWith(V); 3587 ICI->eraseFromParent(); 3588 // BB is now empty, so it is likely to simplify away. 3589 return simplifyCFG(BB, TTI, Options) | true; 3590 } 3591 3592 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3593 // the block. 3594 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3595 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3596 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3597 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3598 return false; 3599 3600 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3601 // true in the PHI. 3602 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3603 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3604 3605 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3606 std::swap(DefaultCst, NewCst); 3607 3608 // Replace ICI (which is used by the PHI for the default value) with true or 3609 // false depending on if it is EQ or NE. 3610 ICI->replaceAllUsesWith(DefaultCst); 3611 ICI->eraseFromParent(); 3612 3613 // Okay, the switch goes to this block on a default value. Add an edge from 3614 // the switch to the merge point on the compared value. 3615 BasicBlock *NewBB = 3616 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3617 SmallVector<uint64_t, 8> Weights; 3618 bool HasWeights = HasBranchWeights(SI); 3619 if (HasWeights) { 3620 GetBranchWeights(SI, Weights); 3621 if (Weights.size() == 1 + SI->getNumCases()) { 3622 // Split weight for default case to case for "Cst". 3623 Weights[0] = (Weights[0] + 1) >> 1; 3624 Weights.push_back(Weights[0]); 3625 3626 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3627 setBranchWeights(SI, MDWeights); 3628 } 3629 } 3630 SI->addCase(Cst, NewBB); 3631 3632 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3633 Builder.SetInsertPoint(NewBB); 3634 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3635 Builder.CreateBr(SuccBlock); 3636 PHIUse->addIncoming(NewCst, NewBB); 3637 return true; 3638 } 3639 3640 /// The specified branch is a conditional branch. 3641 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3642 /// fold it into a switch instruction if so. 3643 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3644 const DataLayout &DL) { 3645 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3646 if (!Cond) 3647 return false; 3648 3649 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3650 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3651 // 'setne's and'ed together, collect them. 3652 3653 // Try to gather values from a chain of and/or to be turned into a switch 3654 ConstantComparesGatherer ConstantCompare(Cond, DL); 3655 // Unpack the result 3656 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3657 Value *CompVal = ConstantCompare.CompValue; 3658 unsigned UsedICmps = ConstantCompare.UsedICmps; 3659 Value *ExtraCase = ConstantCompare.Extra; 3660 3661 // If we didn't have a multiply compared value, fail. 3662 if (!CompVal) 3663 return false; 3664 3665 // Avoid turning single icmps into a switch. 3666 if (UsedICmps <= 1) 3667 return false; 3668 3669 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3670 3671 // There might be duplicate constants in the list, which the switch 3672 // instruction can't handle, remove them now. 3673 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3674 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3675 3676 // If Extra was used, we require at least two switch values to do the 3677 // transformation. A switch with one value is just a conditional branch. 3678 if (ExtraCase && Values.size() < 2) 3679 return false; 3680 3681 // TODO: Preserve branch weight metadata, similarly to how 3682 // FoldValueComparisonIntoPredecessors preserves it. 3683 3684 // Figure out which block is which destination. 3685 BasicBlock *DefaultBB = BI->getSuccessor(1); 3686 BasicBlock *EdgeBB = BI->getSuccessor(0); 3687 if (!TrueWhenEqual) 3688 std::swap(DefaultBB, EdgeBB); 3689 3690 BasicBlock *BB = BI->getParent(); 3691 3692 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3693 << " cases into SWITCH. BB is:\n" 3694 << *BB); 3695 3696 // If there are any extra values that couldn't be folded into the switch 3697 // then we evaluate them with an explicit branch first. Split the block 3698 // right before the condbr to handle it. 3699 if (ExtraCase) { 3700 BasicBlock *NewBB = 3701 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3702 // Remove the uncond branch added to the old block. 3703 TerminatorInst *OldTI = BB->getTerminator(); 3704 Builder.SetInsertPoint(OldTI); 3705 3706 if (TrueWhenEqual) 3707 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3708 else 3709 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3710 3711 OldTI->eraseFromParent(); 3712 3713 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3714 // for the edge we just added. 3715 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3716 3717 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3718 << "\nEXTRABB = " << *BB); 3719 BB = NewBB; 3720 } 3721 3722 Builder.SetInsertPoint(BI); 3723 // Convert pointer to int before we switch. 3724 if (CompVal->getType()->isPointerTy()) { 3725 CompVal = Builder.CreatePtrToInt( 3726 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3727 } 3728 3729 // Create the new switch instruction now. 3730 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3731 3732 // Add all of the 'cases' to the switch instruction. 3733 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3734 New->addCase(Values[i], EdgeBB); 3735 3736 // We added edges from PI to the EdgeBB. As such, if there were any 3737 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3738 // the number of edges added. 3739 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3740 PHINode *PN = cast<PHINode>(BBI); 3741 Value *InVal = PN->getIncomingValueForBlock(BB); 3742 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3743 PN->addIncoming(InVal, BB); 3744 } 3745 3746 // Erase the old branch instruction. 3747 EraseTerminatorInstAndDCECond(BI); 3748 3749 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3750 return true; 3751 } 3752 3753 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3754 if (isa<PHINode>(RI->getValue())) 3755 return SimplifyCommonResume(RI); 3756 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3757 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3758 // The resume must unwind the exception that caused control to branch here. 3759 return SimplifySingleResume(RI); 3760 3761 return false; 3762 } 3763 3764 // Simplify resume that is shared by several landing pads (phi of landing pad). 3765 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3766 BasicBlock *BB = RI->getParent(); 3767 3768 // Check that there are no other instructions except for debug intrinsics 3769 // between the phi of landing pads (RI->getValue()) and resume instruction. 3770 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3771 E = RI->getIterator(); 3772 while (++I != E) 3773 if (!isa<DbgInfoIntrinsic>(I)) 3774 return false; 3775 3776 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3777 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3778 3779 // Check incoming blocks to see if any of them are trivial. 3780 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3781 Idx++) { 3782 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3783 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3784 3785 // If the block has other successors, we can not delete it because 3786 // it has other dependents. 3787 if (IncomingBB->getUniqueSuccessor() != BB) 3788 continue; 3789 3790 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3791 // Not the landing pad that caused the control to branch here. 3792 if (IncomingValue != LandingPad) 3793 continue; 3794 3795 bool isTrivial = true; 3796 3797 I = IncomingBB->getFirstNonPHI()->getIterator(); 3798 E = IncomingBB->getTerminator()->getIterator(); 3799 while (++I != E) 3800 if (!isa<DbgInfoIntrinsic>(I)) { 3801 isTrivial = false; 3802 break; 3803 } 3804 3805 if (isTrivial) 3806 TrivialUnwindBlocks.insert(IncomingBB); 3807 } 3808 3809 // If no trivial unwind blocks, don't do any simplifications. 3810 if (TrivialUnwindBlocks.empty()) 3811 return false; 3812 3813 // Turn all invokes that unwind here into calls. 3814 for (auto *TrivialBB : TrivialUnwindBlocks) { 3815 // Blocks that will be simplified should be removed from the phi node. 3816 // Note there could be multiple edges to the resume block, and we need 3817 // to remove them all. 3818 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3819 BB->removePredecessor(TrivialBB, true); 3820 3821 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3822 PI != PE;) { 3823 BasicBlock *Pred = *PI++; 3824 removeUnwindEdge(Pred); 3825 } 3826 3827 // In each SimplifyCFG run, only the current processed block can be erased. 3828 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3829 // of erasing TrivialBB, we only remove the branch to the common resume 3830 // block so that we can later erase the resume block since it has no 3831 // predecessors. 3832 TrivialBB->getTerminator()->eraseFromParent(); 3833 new UnreachableInst(RI->getContext(), TrivialBB); 3834 } 3835 3836 // Delete the resume block if all its predecessors have been removed. 3837 if (pred_empty(BB)) 3838 BB->eraseFromParent(); 3839 3840 return !TrivialUnwindBlocks.empty(); 3841 } 3842 3843 // Simplify resume that is only used by a single (non-phi) landing pad. 3844 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3845 BasicBlock *BB = RI->getParent(); 3846 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3847 assert(RI->getValue() == LPInst && 3848 "Resume must unwind the exception that caused control to here"); 3849 3850 // Check that there are no other instructions except for debug intrinsics. 3851 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3852 while (++I != E) 3853 if (!isa<DbgInfoIntrinsic>(I)) 3854 return false; 3855 3856 // Turn all invokes that unwind here into calls and delete the basic block. 3857 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3858 BasicBlock *Pred = *PI++; 3859 removeUnwindEdge(Pred); 3860 } 3861 3862 // The landingpad is now unreachable. Zap it. 3863 BB->eraseFromParent(); 3864 if (LoopHeaders) 3865 LoopHeaders->erase(BB); 3866 return true; 3867 } 3868 3869 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3870 // If this is a trivial cleanup pad that executes no instructions, it can be 3871 // eliminated. If the cleanup pad continues to the caller, any predecessor 3872 // that is an EH pad will be updated to continue to the caller and any 3873 // predecessor that terminates with an invoke instruction will have its invoke 3874 // instruction converted to a call instruction. If the cleanup pad being 3875 // simplified does not continue to the caller, each predecessor will be 3876 // updated to continue to the unwind destination of the cleanup pad being 3877 // simplified. 3878 BasicBlock *BB = RI->getParent(); 3879 CleanupPadInst *CPInst = RI->getCleanupPad(); 3880 if (CPInst->getParent() != BB) 3881 // This isn't an empty cleanup. 3882 return false; 3883 3884 // We cannot kill the pad if it has multiple uses. This typically arises 3885 // from unreachable basic blocks. 3886 if (!CPInst->hasOneUse()) 3887 return false; 3888 3889 // Check that there are no other instructions except for benign intrinsics. 3890 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3891 while (++I != E) { 3892 auto *II = dyn_cast<IntrinsicInst>(I); 3893 if (!II) 3894 return false; 3895 3896 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3897 switch (IntrinsicID) { 3898 case Intrinsic::dbg_declare: 3899 case Intrinsic::dbg_value: 3900 case Intrinsic::dbg_label: 3901 case Intrinsic::lifetime_end: 3902 break; 3903 default: 3904 return false; 3905 } 3906 } 3907 3908 // If the cleanup return we are simplifying unwinds to the caller, this will 3909 // set UnwindDest to nullptr. 3910 BasicBlock *UnwindDest = RI->getUnwindDest(); 3911 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3912 3913 // We're about to remove BB from the control flow. Before we do, sink any 3914 // PHINodes into the unwind destination. Doing this before changing the 3915 // control flow avoids some potentially slow checks, since we can currently 3916 // be certain that UnwindDest and BB have no common predecessors (since they 3917 // are both EH pads). 3918 if (UnwindDest) { 3919 // First, go through the PHI nodes in UnwindDest and update any nodes that 3920 // reference the block we are removing 3921 for (BasicBlock::iterator I = UnwindDest->begin(), 3922 IE = DestEHPad->getIterator(); 3923 I != IE; ++I) { 3924 PHINode *DestPN = cast<PHINode>(I); 3925 3926 int Idx = DestPN->getBasicBlockIndex(BB); 3927 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3928 assert(Idx != -1); 3929 // This PHI node has an incoming value that corresponds to a control 3930 // path through the cleanup pad we are removing. If the incoming 3931 // value is in the cleanup pad, it must be a PHINode (because we 3932 // verified above that the block is otherwise empty). Otherwise, the 3933 // value is either a constant or a value that dominates the cleanup 3934 // pad being removed. 3935 // 3936 // Because BB and UnwindDest are both EH pads, all of their 3937 // predecessors must unwind to these blocks, and since no instruction 3938 // can have multiple unwind destinations, there will be no overlap in 3939 // incoming blocks between SrcPN and DestPN. 3940 Value *SrcVal = DestPN->getIncomingValue(Idx); 3941 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3942 3943 // Remove the entry for the block we are deleting. 3944 DestPN->removeIncomingValue(Idx, false); 3945 3946 if (SrcPN && SrcPN->getParent() == BB) { 3947 // If the incoming value was a PHI node in the cleanup pad we are 3948 // removing, we need to merge that PHI node's incoming values into 3949 // DestPN. 3950 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3951 SrcIdx != SrcE; ++SrcIdx) { 3952 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3953 SrcPN->getIncomingBlock(SrcIdx)); 3954 } 3955 } else { 3956 // Otherwise, the incoming value came from above BB and 3957 // so we can just reuse it. We must associate all of BB's 3958 // predecessors with this value. 3959 for (auto *pred : predecessors(BB)) { 3960 DestPN->addIncoming(SrcVal, pred); 3961 } 3962 } 3963 } 3964 3965 // Sink any remaining PHI nodes directly into UnwindDest. 3966 Instruction *InsertPt = DestEHPad; 3967 for (BasicBlock::iterator I = BB->begin(), 3968 IE = BB->getFirstNonPHI()->getIterator(); 3969 I != IE;) { 3970 // The iterator must be incremented here because the instructions are 3971 // being moved to another block. 3972 PHINode *PN = cast<PHINode>(I++); 3973 if (PN->use_empty()) 3974 // If the PHI node has no uses, just leave it. It will be erased 3975 // when we erase BB below. 3976 continue; 3977 3978 // Otherwise, sink this PHI node into UnwindDest. 3979 // Any predecessors to UnwindDest which are not already represented 3980 // must be back edges which inherit the value from the path through 3981 // BB. In this case, the PHI value must reference itself. 3982 for (auto *pred : predecessors(UnwindDest)) 3983 if (pred != BB) 3984 PN->addIncoming(PN, pred); 3985 PN->moveBefore(InsertPt); 3986 } 3987 } 3988 3989 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3990 // The iterator must be updated here because we are removing this pred. 3991 BasicBlock *PredBB = *PI++; 3992 if (UnwindDest == nullptr) { 3993 removeUnwindEdge(PredBB); 3994 } else { 3995 TerminatorInst *TI = PredBB->getTerminator(); 3996 TI->replaceUsesOfWith(BB, UnwindDest); 3997 } 3998 } 3999 4000 // The cleanup pad is now unreachable. Zap it. 4001 BB->eraseFromParent(); 4002 return true; 4003 } 4004 4005 // Try to merge two cleanuppads together. 4006 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4007 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4008 // with. 4009 BasicBlock *UnwindDest = RI->getUnwindDest(); 4010 if (!UnwindDest) 4011 return false; 4012 4013 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4014 // be safe to merge without code duplication. 4015 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4016 return false; 4017 4018 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4019 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4020 if (!SuccessorCleanupPad) 4021 return false; 4022 4023 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4024 // Replace any uses of the successor cleanupad with the predecessor pad 4025 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4026 // funclet bundle operands. 4027 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4028 // Remove the old cleanuppad. 4029 SuccessorCleanupPad->eraseFromParent(); 4030 // Now, we simply replace the cleanupret with a branch to the unwind 4031 // destination. 4032 BranchInst::Create(UnwindDest, RI->getParent()); 4033 RI->eraseFromParent(); 4034 4035 return true; 4036 } 4037 4038 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4039 // It is possible to transiantly have an undef cleanuppad operand because we 4040 // have deleted some, but not all, dead blocks. 4041 // Eventually, this block will be deleted. 4042 if (isa<UndefValue>(RI->getOperand(0))) 4043 return false; 4044 4045 if (mergeCleanupPad(RI)) 4046 return true; 4047 4048 if (removeEmptyCleanup(RI)) 4049 return true; 4050 4051 return false; 4052 } 4053 4054 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4055 BasicBlock *BB = RI->getParent(); 4056 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4057 return false; 4058 4059 // Find predecessors that end with branches. 4060 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4061 SmallVector<BranchInst *, 8> CondBranchPreds; 4062 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4063 BasicBlock *P = *PI; 4064 TerminatorInst *PTI = P->getTerminator(); 4065 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4066 if (BI->isUnconditional()) 4067 UncondBranchPreds.push_back(P); 4068 else 4069 CondBranchPreds.push_back(BI); 4070 } 4071 } 4072 4073 // If we found some, do the transformation! 4074 if (!UncondBranchPreds.empty() && DupRet) { 4075 while (!UncondBranchPreds.empty()) { 4076 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4077 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4078 << "INTO UNCOND BRANCH PRED: " << *Pred); 4079 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4080 } 4081 4082 // If we eliminated all predecessors of the block, delete the block now. 4083 if (pred_empty(BB)) { 4084 // We know there are no successors, so just nuke the block. 4085 BB->eraseFromParent(); 4086 if (LoopHeaders) 4087 LoopHeaders->erase(BB); 4088 } 4089 4090 return true; 4091 } 4092 4093 // Check out all of the conditional branches going to this return 4094 // instruction. If any of them just select between returns, change the 4095 // branch itself into a select/return pair. 4096 while (!CondBranchPreds.empty()) { 4097 BranchInst *BI = CondBranchPreds.pop_back_val(); 4098 4099 // Check to see if the non-BB successor is also a return block. 4100 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4101 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4102 SimplifyCondBranchToTwoReturns(BI, Builder)) 4103 return true; 4104 } 4105 return false; 4106 } 4107 4108 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4109 BasicBlock *BB = UI->getParent(); 4110 4111 bool Changed = false; 4112 4113 // If there are any instructions immediately before the unreachable that can 4114 // be removed, do so. 4115 while (UI->getIterator() != BB->begin()) { 4116 BasicBlock::iterator BBI = UI->getIterator(); 4117 --BBI; 4118 // Do not delete instructions that can have side effects which might cause 4119 // the unreachable to not be reachable; specifically, calls and volatile 4120 // operations may have this effect. 4121 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4122 break; 4123 4124 if (BBI->mayHaveSideEffects()) { 4125 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4126 if (SI->isVolatile()) 4127 break; 4128 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4129 if (LI->isVolatile()) 4130 break; 4131 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4132 if (RMWI->isVolatile()) 4133 break; 4134 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4135 if (CXI->isVolatile()) 4136 break; 4137 } else if (isa<CatchPadInst>(BBI)) { 4138 // A catchpad may invoke exception object constructors and such, which 4139 // in some languages can be arbitrary code, so be conservative by 4140 // default. 4141 // For CoreCLR, it just involves a type test, so can be removed. 4142 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4143 EHPersonality::CoreCLR) 4144 break; 4145 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4146 !isa<LandingPadInst>(BBI)) { 4147 break; 4148 } 4149 // Note that deleting LandingPad's here is in fact okay, although it 4150 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4151 // all the predecessors of this block will be the unwind edges of Invokes, 4152 // and we can therefore guarantee this block will be erased. 4153 } 4154 4155 // Delete this instruction (any uses are guaranteed to be dead) 4156 if (!BBI->use_empty()) 4157 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4158 BBI->eraseFromParent(); 4159 Changed = true; 4160 } 4161 4162 // If the unreachable instruction is the first in the block, take a gander 4163 // at all of the predecessors of this instruction, and simplify them. 4164 if (&BB->front() != UI) 4165 return Changed; 4166 4167 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4168 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4169 TerminatorInst *TI = Preds[i]->getTerminator(); 4170 IRBuilder<> Builder(TI); 4171 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4172 if (BI->isUnconditional()) { 4173 if (BI->getSuccessor(0) == BB) { 4174 new UnreachableInst(TI->getContext(), TI); 4175 TI->eraseFromParent(); 4176 Changed = true; 4177 } 4178 } else { 4179 if (BI->getSuccessor(0) == BB) { 4180 Builder.CreateBr(BI->getSuccessor(1)); 4181 EraseTerminatorInstAndDCECond(BI); 4182 } else if (BI->getSuccessor(1) == BB) { 4183 Builder.CreateBr(BI->getSuccessor(0)); 4184 EraseTerminatorInstAndDCECond(BI); 4185 Changed = true; 4186 } 4187 } 4188 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4189 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4190 if (i->getCaseSuccessor() != BB) { 4191 ++i; 4192 continue; 4193 } 4194 BB->removePredecessor(SI->getParent()); 4195 i = SI->removeCase(i); 4196 e = SI->case_end(); 4197 Changed = true; 4198 } 4199 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4200 if (II->getUnwindDest() == BB) { 4201 removeUnwindEdge(TI->getParent()); 4202 Changed = true; 4203 } 4204 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4205 if (CSI->getUnwindDest() == BB) { 4206 removeUnwindEdge(TI->getParent()); 4207 Changed = true; 4208 continue; 4209 } 4210 4211 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4212 E = CSI->handler_end(); 4213 I != E; ++I) { 4214 if (*I == BB) { 4215 CSI->removeHandler(I); 4216 --I; 4217 --E; 4218 Changed = true; 4219 } 4220 } 4221 if (CSI->getNumHandlers() == 0) { 4222 BasicBlock *CatchSwitchBB = CSI->getParent(); 4223 if (CSI->hasUnwindDest()) { 4224 // Redirect preds to the unwind dest 4225 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4226 } else { 4227 // Rewrite all preds to unwind to caller (or from invoke to call). 4228 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4229 for (BasicBlock *EHPred : EHPreds) 4230 removeUnwindEdge(EHPred); 4231 } 4232 // The catchswitch is no longer reachable. 4233 new UnreachableInst(CSI->getContext(), CSI); 4234 CSI->eraseFromParent(); 4235 Changed = true; 4236 } 4237 } else if (isa<CleanupReturnInst>(TI)) { 4238 new UnreachableInst(TI->getContext(), TI); 4239 TI->eraseFromParent(); 4240 Changed = true; 4241 } 4242 } 4243 4244 // If this block is now dead, remove it. 4245 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4246 // We know there are no successors, so just nuke the block. 4247 BB->eraseFromParent(); 4248 if (LoopHeaders) 4249 LoopHeaders->erase(BB); 4250 return true; 4251 } 4252 4253 return Changed; 4254 } 4255 4256 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4257 assert(Cases.size() >= 1); 4258 4259 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4260 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4261 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4262 return false; 4263 } 4264 return true; 4265 } 4266 4267 /// Turn a switch with two reachable destinations into an integer range 4268 /// comparison and branch. 4269 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4270 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4271 4272 bool HasDefault = 4273 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4274 4275 // Partition the cases into two sets with different destinations. 4276 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4277 BasicBlock *DestB = nullptr; 4278 SmallVector<ConstantInt *, 16> CasesA; 4279 SmallVector<ConstantInt *, 16> CasesB; 4280 4281 for (auto Case : SI->cases()) { 4282 BasicBlock *Dest = Case.getCaseSuccessor(); 4283 if (!DestA) 4284 DestA = Dest; 4285 if (Dest == DestA) { 4286 CasesA.push_back(Case.getCaseValue()); 4287 continue; 4288 } 4289 if (!DestB) 4290 DestB = Dest; 4291 if (Dest == DestB) { 4292 CasesB.push_back(Case.getCaseValue()); 4293 continue; 4294 } 4295 return false; // More than two destinations. 4296 } 4297 4298 assert(DestA && DestB && 4299 "Single-destination switch should have been folded."); 4300 assert(DestA != DestB); 4301 assert(DestB != SI->getDefaultDest()); 4302 assert(!CasesB.empty() && "There must be non-default cases."); 4303 assert(!CasesA.empty() || HasDefault); 4304 4305 // Figure out if one of the sets of cases form a contiguous range. 4306 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4307 BasicBlock *ContiguousDest = nullptr; 4308 BasicBlock *OtherDest = nullptr; 4309 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4310 ContiguousCases = &CasesA; 4311 ContiguousDest = DestA; 4312 OtherDest = DestB; 4313 } else if (CasesAreContiguous(CasesB)) { 4314 ContiguousCases = &CasesB; 4315 ContiguousDest = DestB; 4316 OtherDest = DestA; 4317 } else 4318 return false; 4319 4320 // Start building the compare and branch. 4321 4322 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4323 Constant *NumCases = 4324 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4325 4326 Value *Sub = SI->getCondition(); 4327 if (!Offset->isNullValue()) 4328 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4329 4330 Value *Cmp; 4331 // If NumCases overflowed, then all possible values jump to the successor. 4332 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4333 Cmp = ConstantInt::getTrue(SI->getContext()); 4334 else 4335 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4336 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4337 4338 // Update weight for the newly-created conditional branch. 4339 if (HasBranchWeights(SI)) { 4340 SmallVector<uint64_t, 8> Weights; 4341 GetBranchWeights(SI, Weights); 4342 if (Weights.size() == 1 + SI->getNumCases()) { 4343 uint64_t TrueWeight = 0; 4344 uint64_t FalseWeight = 0; 4345 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4346 if (SI->getSuccessor(I) == ContiguousDest) 4347 TrueWeight += Weights[I]; 4348 else 4349 FalseWeight += Weights[I]; 4350 } 4351 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4352 TrueWeight /= 2; 4353 FalseWeight /= 2; 4354 } 4355 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4356 } 4357 } 4358 4359 // Prune obsolete incoming values off the successors' PHI nodes. 4360 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4361 unsigned PreviousEdges = ContiguousCases->size(); 4362 if (ContiguousDest == SI->getDefaultDest()) 4363 ++PreviousEdges; 4364 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4365 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4366 } 4367 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4368 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4369 if (OtherDest == SI->getDefaultDest()) 4370 ++PreviousEdges; 4371 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4372 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4373 } 4374 4375 // Drop the switch. 4376 SI->eraseFromParent(); 4377 4378 return true; 4379 } 4380 4381 /// Compute masked bits for the condition of a switch 4382 /// and use it to remove dead cases. 4383 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4384 const DataLayout &DL) { 4385 Value *Cond = SI->getCondition(); 4386 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4387 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4388 4389 // We can also eliminate cases by determining that their values are outside of 4390 // the limited range of the condition based on how many significant (non-sign) 4391 // bits are in the condition value. 4392 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4393 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4394 4395 // Gather dead cases. 4396 SmallVector<ConstantInt *, 8> DeadCases; 4397 for (auto &Case : SI->cases()) { 4398 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4399 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4400 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4401 DeadCases.push_back(Case.getCaseValue()); 4402 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4403 << " is dead.\n"); 4404 } 4405 } 4406 4407 // If we can prove that the cases must cover all possible values, the 4408 // default destination becomes dead and we can remove it. If we know some 4409 // of the bits in the value, we can use that to more precisely compute the 4410 // number of possible unique case values. 4411 bool HasDefault = 4412 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4413 const unsigned NumUnknownBits = 4414 Bits - (Known.Zero | Known.One).countPopulation(); 4415 assert(NumUnknownBits <= Bits); 4416 if (HasDefault && DeadCases.empty() && 4417 NumUnknownBits < 64 /* avoid overflow */ && 4418 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4419 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4420 BasicBlock *NewDefault = 4421 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4422 SI->setDefaultDest(&*NewDefault); 4423 SplitBlock(&*NewDefault, &NewDefault->front()); 4424 auto *OldTI = NewDefault->getTerminator(); 4425 new UnreachableInst(SI->getContext(), OldTI); 4426 EraseTerminatorInstAndDCECond(OldTI); 4427 return true; 4428 } 4429 4430 SmallVector<uint64_t, 8> Weights; 4431 bool HasWeight = HasBranchWeights(SI); 4432 if (HasWeight) { 4433 GetBranchWeights(SI, Weights); 4434 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4435 } 4436 4437 // Remove dead cases from the switch. 4438 for (ConstantInt *DeadCase : DeadCases) { 4439 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4440 assert(CaseI != SI->case_default() && 4441 "Case was not found. Probably mistake in DeadCases forming."); 4442 if (HasWeight) { 4443 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4444 Weights.pop_back(); 4445 } 4446 4447 // Prune unused values from PHI nodes. 4448 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4449 SI->removeCase(CaseI); 4450 } 4451 if (HasWeight && Weights.size() >= 2) { 4452 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4453 setBranchWeights(SI, MDWeights); 4454 } 4455 4456 return !DeadCases.empty(); 4457 } 4458 4459 /// If BB would be eligible for simplification by 4460 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4461 /// by an unconditional branch), look at the phi node for BB in the successor 4462 /// block and see if the incoming value is equal to CaseValue. If so, return 4463 /// the phi node, and set PhiIndex to BB's index in the phi node. 4464 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4465 BasicBlock *BB, int *PhiIndex) { 4466 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4467 return nullptr; // BB must be empty to be a candidate for simplification. 4468 if (!BB->getSinglePredecessor()) 4469 return nullptr; // BB must be dominated by the switch. 4470 4471 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4472 if (!Branch || !Branch->isUnconditional()) 4473 return nullptr; // Terminator must be unconditional branch. 4474 4475 BasicBlock *Succ = Branch->getSuccessor(0); 4476 4477 for (PHINode &PHI : Succ->phis()) { 4478 int Idx = PHI.getBasicBlockIndex(BB); 4479 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4480 4481 Value *InValue = PHI.getIncomingValue(Idx); 4482 if (InValue != CaseValue) 4483 continue; 4484 4485 *PhiIndex = Idx; 4486 return &PHI; 4487 } 4488 4489 return nullptr; 4490 } 4491 4492 /// Try to forward the condition of a switch instruction to a phi node 4493 /// dominated by the switch, if that would mean that some of the destination 4494 /// blocks of the switch can be folded away. Return true if a change is made. 4495 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4496 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4497 4498 ForwardingNodesMap ForwardingNodes; 4499 BasicBlock *SwitchBlock = SI->getParent(); 4500 bool Changed = false; 4501 for (auto &Case : SI->cases()) { 4502 ConstantInt *CaseValue = Case.getCaseValue(); 4503 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4504 4505 // Replace phi operands in successor blocks that are using the constant case 4506 // value rather than the switch condition variable: 4507 // switchbb: 4508 // switch i32 %x, label %default [ 4509 // i32 17, label %succ 4510 // ... 4511 // succ: 4512 // %r = phi i32 ... [ 17, %switchbb ] ... 4513 // --> 4514 // %r = phi i32 ... [ %x, %switchbb ] ... 4515 4516 for (PHINode &Phi : CaseDest->phis()) { 4517 // This only works if there is exactly 1 incoming edge from the switch to 4518 // a phi. If there is >1, that means multiple cases of the switch map to 1 4519 // value in the phi, and that phi value is not the switch condition. Thus, 4520 // this transform would not make sense (the phi would be invalid because 4521 // a phi can't have different incoming values from the same block). 4522 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4523 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4524 count(Phi.blocks(), SwitchBlock) == 1) { 4525 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4526 Changed = true; 4527 } 4528 } 4529 4530 // Collect phi nodes that are indirectly using this switch's case constants. 4531 int PhiIdx; 4532 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4533 ForwardingNodes[Phi].push_back(PhiIdx); 4534 } 4535 4536 for (auto &ForwardingNode : ForwardingNodes) { 4537 PHINode *Phi = ForwardingNode.first; 4538 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4539 if (Indexes.size() < 2) 4540 continue; 4541 4542 for (int Index : Indexes) 4543 Phi->setIncomingValue(Index, SI->getCondition()); 4544 Changed = true; 4545 } 4546 4547 return Changed; 4548 } 4549 4550 /// Return true if the backend will be able to handle 4551 /// initializing an array of constants like C. 4552 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4553 if (C->isThreadDependent()) 4554 return false; 4555 if (C->isDLLImportDependent()) 4556 return false; 4557 4558 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4559 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4560 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4561 return false; 4562 4563 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4564 if (!CE->isGEPWithNoNotionalOverIndexing()) 4565 return false; 4566 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4567 return false; 4568 } 4569 4570 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4571 return false; 4572 4573 return true; 4574 } 4575 4576 /// If V is a Constant, return it. Otherwise, try to look up 4577 /// its constant value in ConstantPool, returning 0 if it's not there. 4578 static Constant * 4579 LookupConstant(Value *V, 4580 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4581 if (Constant *C = dyn_cast<Constant>(V)) 4582 return C; 4583 return ConstantPool.lookup(V); 4584 } 4585 4586 /// Try to fold instruction I into a constant. This works for 4587 /// simple instructions such as binary operations where both operands are 4588 /// constant or can be replaced by constants from the ConstantPool. Returns the 4589 /// resulting constant on success, 0 otherwise. 4590 static Constant * 4591 ConstantFold(Instruction *I, const DataLayout &DL, 4592 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4593 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4594 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4595 if (!A) 4596 return nullptr; 4597 if (A->isAllOnesValue()) 4598 return LookupConstant(Select->getTrueValue(), ConstantPool); 4599 if (A->isNullValue()) 4600 return LookupConstant(Select->getFalseValue(), ConstantPool); 4601 return nullptr; 4602 } 4603 4604 SmallVector<Constant *, 4> COps; 4605 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4606 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4607 COps.push_back(A); 4608 else 4609 return nullptr; 4610 } 4611 4612 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4613 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4614 COps[1], DL); 4615 } 4616 4617 return ConstantFoldInstOperands(I, COps, DL); 4618 } 4619 4620 /// Try to determine the resulting constant values in phi nodes 4621 /// at the common destination basic block, *CommonDest, for one of the case 4622 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4623 /// case), of a switch instruction SI. 4624 static bool 4625 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4626 BasicBlock **CommonDest, 4627 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4628 const DataLayout &DL, const TargetTransformInfo &TTI) { 4629 // The block from which we enter the common destination. 4630 BasicBlock *Pred = SI->getParent(); 4631 4632 // If CaseDest is empty except for some side-effect free instructions through 4633 // which we can constant-propagate the CaseVal, continue to its successor. 4634 SmallDenseMap<Value *, Constant *> ConstantPool; 4635 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4636 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4637 if (TerminatorInst *T = dyn_cast<TerminatorInst>(&I)) { 4638 // If the terminator is a simple branch, continue to the next block. 4639 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4640 return false; 4641 Pred = CaseDest; 4642 CaseDest = T->getSuccessor(0); 4643 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4644 // Instruction is side-effect free and constant. 4645 4646 // If the instruction has uses outside this block or a phi node slot for 4647 // the block, it is not safe to bypass the instruction since it would then 4648 // no longer dominate all its uses. 4649 for (auto &Use : I.uses()) { 4650 User *User = Use.getUser(); 4651 if (Instruction *I = dyn_cast<Instruction>(User)) 4652 if (I->getParent() == CaseDest) 4653 continue; 4654 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4655 if (Phi->getIncomingBlock(Use) == CaseDest) 4656 continue; 4657 return false; 4658 } 4659 4660 ConstantPool.insert(std::make_pair(&I, C)); 4661 } else { 4662 break; 4663 } 4664 } 4665 4666 // If we did not have a CommonDest before, use the current one. 4667 if (!*CommonDest) 4668 *CommonDest = CaseDest; 4669 // If the destination isn't the common one, abort. 4670 if (CaseDest != *CommonDest) 4671 return false; 4672 4673 // Get the values for this case from phi nodes in the destination block. 4674 for (PHINode &PHI : (*CommonDest)->phis()) { 4675 int Idx = PHI.getBasicBlockIndex(Pred); 4676 if (Idx == -1) 4677 continue; 4678 4679 Constant *ConstVal = 4680 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4681 if (!ConstVal) 4682 return false; 4683 4684 // Be conservative about which kinds of constants we support. 4685 if (!ValidLookupTableConstant(ConstVal, TTI)) 4686 return false; 4687 4688 Res.push_back(std::make_pair(&PHI, ConstVal)); 4689 } 4690 4691 return Res.size() > 0; 4692 } 4693 4694 // Helper function used to add CaseVal to the list of cases that generate 4695 // Result. Returns the updated number of cases that generate this result. 4696 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4697 SwitchCaseResultVectorTy &UniqueResults, 4698 Constant *Result) { 4699 for (auto &I : UniqueResults) { 4700 if (I.first == Result) { 4701 I.second.push_back(CaseVal); 4702 return I.second.size(); 4703 } 4704 } 4705 UniqueResults.push_back( 4706 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4707 return 1; 4708 } 4709 4710 // Helper function that initializes a map containing 4711 // results for the PHI node of the common destination block for a switch 4712 // instruction. Returns false if multiple PHI nodes have been found or if 4713 // there is not a common destination block for the switch. 4714 static bool 4715 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4716 SwitchCaseResultVectorTy &UniqueResults, 4717 Constant *&DefaultResult, const DataLayout &DL, 4718 const TargetTransformInfo &TTI, 4719 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4720 for (auto &I : SI->cases()) { 4721 ConstantInt *CaseVal = I.getCaseValue(); 4722 4723 // Resulting value at phi nodes for this case value. 4724 SwitchCaseResultsTy Results; 4725 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4726 DL, TTI)) 4727 return false; 4728 4729 // Only one value per case is permitted. 4730 if (Results.size() > 1) 4731 return false; 4732 4733 // Add the case->result mapping to UniqueResults. 4734 const uintptr_t NumCasesForResult = 4735 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4736 4737 // Early out if there are too many cases for this result. 4738 if (NumCasesForResult > MaxCasesPerResult) 4739 return false; 4740 4741 // Early out if there are too many unique results. 4742 if (UniqueResults.size() > MaxUniqueResults) 4743 return false; 4744 4745 // Check the PHI consistency. 4746 if (!PHI) 4747 PHI = Results[0].first; 4748 else if (PHI != Results[0].first) 4749 return false; 4750 } 4751 // Find the default result value. 4752 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4753 BasicBlock *DefaultDest = SI->getDefaultDest(); 4754 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4755 DL, TTI); 4756 // If the default value is not found abort unless the default destination 4757 // is unreachable. 4758 DefaultResult = 4759 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4760 if ((!DefaultResult && 4761 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4762 return false; 4763 4764 return true; 4765 } 4766 4767 // Helper function that checks if it is possible to transform a switch with only 4768 // two cases (or two cases + default) that produces a result into a select. 4769 // Example: 4770 // switch (a) { 4771 // case 10: %0 = icmp eq i32 %a, 10 4772 // return 10; %1 = select i1 %0, i32 10, i32 4 4773 // case 20: ----> %2 = icmp eq i32 %a, 20 4774 // return 2; %3 = select i1 %2, i32 2, i32 %1 4775 // default: 4776 // return 4; 4777 // } 4778 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4779 Constant *DefaultResult, Value *Condition, 4780 IRBuilder<> &Builder) { 4781 assert(ResultVector.size() == 2 && 4782 "We should have exactly two unique results at this point"); 4783 // If we are selecting between only two cases transform into a simple 4784 // select or a two-way select if default is possible. 4785 if (ResultVector[0].second.size() == 1 && 4786 ResultVector[1].second.size() == 1) { 4787 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4788 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4789 4790 bool DefaultCanTrigger = DefaultResult; 4791 Value *SelectValue = ResultVector[1].first; 4792 if (DefaultCanTrigger) { 4793 Value *const ValueCompare = 4794 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4795 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4796 DefaultResult, "switch.select"); 4797 } 4798 Value *const ValueCompare = 4799 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4800 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4801 SelectValue, "switch.select"); 4802 } 4803 4804 return nullptr; 4805 } 4806 4807 // Helper function to cleanup a switch instruction that has been converted into 4808 // a select, fixing up PHI nodes and basic blocks. 4809 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4810 Value *SelectValue, 4811 IRBuilder<> &Builder) { 4812 BasicBlock *SelectBB = SI->getParent(); 4813 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4814 PHI->removeIncomingValue(SelectBB); 4815 PHI->addIncoming(SelectValue, SelectBB); 4816 4817 Builder.CreateBr(PHI->getParent()); 4818 4819 // Remove the switch. 4820 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4821 BasicBlock *Succ = SI->getSuccessor(i); 4822 4823 if (Succ == PHI->getParent()) 4824 continue; 4825 Succ->removePredecessor(SelectBB); 4826 } 4827 SI->eraseFromParent(); 4828 } 4829 4830 /// If the switch is only used to initialize one or more 4831 /// phi nodes in a common successor block with only two different 4832 /// constant values, replace the switch with select. 4833 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4834 const DataLayout &DL, 4835 const TargetTransformInfo &TTI) { 4836 Value *const Cond = SI->getCondition(); 4837 PHINode *PHI = nullptr; 4838 BasicBlock *CommonDest = nullptr; 4839 Constant *DefaultResult; 4840 SwitchCaseResultVectorTy UniqueResults; 4841 // Collect all the cases that will deliver the same value from the switch. 4842 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4843 DL, TTI, 2, 1)) 4844 return false; 4845 // Selects choose between maximum two values. 4846 if (UniqueResults.size() != 2) 4847 return false; 4848 assert(PHI != nullptr && "PHI for value select not found"); 4849 4850 Builder.SetInsertPoint(SI); 4851 Value *SelectValue = 4852 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4853 if (SelectValue) { 4854 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4855 return true; 4856 } 4857 // The switch couldn't be converted into a select. 4858 return false; 4859 } 4860 4861 namespace { 4862 4863 /// This class represents a lookup table that can be used to replace a switch. 4864 class SwitchLookupTable { 4865 public: 4866 /// Create a lookup table to use as a switch replacement with the contents 4867 /// of Values, using DefaultValue to fill any holes in the table. 4868 SwitchLookupTable( 4869 Module &M, uint64_t TableSize, ConstantInt *Offset, 4870 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4871 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4872 4873 /// Build instructions with Builder to retrieve the value at 4874 /// the position given by Index in the lookup table. 4875 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4876 4877 /// Return true if a table with TableSize elements of 4878 /// type ElementType would fit in a target-legal register. 4879 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4880 Type *ElementType); 4881 4882 private: 4883 // Depending on the contents of the table, it can be represented in 4884 // different ways. 4885 enum { 4886 // For tables where each element contains the same value, we just have to 4887 // store that single value and return it for each lookup. 4888 SingleValueKind, 4889 4890 // For tables where there is a linear relationship between table index 4891 // and values. We calculate the result with a simple multiplication 4892 // and addition instead of a table lookup. 4893 LinearMapKind, 4894 4895 // For small tables with integer elements, we can pack them into a bitmap 4896 // that fits into a target-legal register. Values are retrieved by 4897 // shift and mask operations. 4898 BitMapKind, 4899 4900 // The table is stored as an array of values. Values are retrieved by load 4901 // instructions from the table. 4902 ArrayKind 4903 } Kind; 4904 4905 // For SingleValueKind, this is the single value. 4906 Constant *SingleValue = nullptr; 4907 4908 // For BitMapKind, this is the bitmap. 4909 ConstantInt *BitMap = nullptr; 4910 IntegerType *BitMapElementTy = nullptr; 4911 4912 // For LinearMapKind, these are the constants used to derive the value. 4913 ConstantInt *LinearOffset = nullptr; 4914 ConstantInt *LinearMultiplier = nullptr; 4915 4916 // For ArrayKind, this is the array. 4917 GlobalVariable *Array = nullptr; 4918 }; 4919 4920 } // end anonymous namespace 4921 4922 SwitchLookupTable::SwitchLookupTable( 4923 Module &M, uint64_t TableSize, ConstantInt *Offset, 4924 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4925 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4926 assert(Values.size() && "Can't build lookup table without values!"); 4927 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4928 4929 // If all values in the table are equal, this is that value. 4930 SingleValue = Values.begin()->second; 4931 4932 Type *ValueType = Values.begin()->second->getType(); 4933 4934 // Build up the table contents. 4935 SmallVector<Constant *, 64> TableContents(TableSize); 4936 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4937 ConstantInt *CaseVal = Values[I].first; 4938 Constant *CaseRes = Values[I].second; 4939 assert(CaseRes->getType() == ValueType); 4940 4941 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4942 TableContents[Idx] = CaseRes; 4943 4944 if (CaseRes != SingleValue) 4945 SingleValue = nullptr; 4946 } 4947 4948 // Fill in any holes in the table with the default result. 4949 if (Values.size() < TableSize) { 4950 assert(DefaultValue && 4951 "Need a default value to fill the lookup table holes."); 4952 assert(DefaultValue->getType() == ValueType); 4953 for (uint64_t I = 0; I < TableSize; ++I) { 4954 if (!TableContents[I]) 4955 TableContents[I] = DefaultValue; 4956 } 4957 4958 if (DefaultValue != SingleValue) 4959 SingleValue = nullptr; 4960 } 4961 4962 // If each element in the table contains the same value, we only need to store 4963 // that single value. 4964 if (SingleValue) { 4965 Kind = SingleValueKind; 4966 return; 4967 } 4968 4969 // Check if we can derive the value with a linear transformation from the 4970 // table index. 4971 if (isa<IntegerType>(ValueType)) { 4972 bool LinearMappingPossible = true; 4973 APInt PrevVal; 4974 APInt DistToPrev; 4975 assert(TableSize >= 2 && "Should be a SingleValue table."); 4976 // Check if there is the same distance between two consecutive values. 4977 for (uint64_t I = 0; I < TableSize; ++I) { 4978 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4979 if (!ConstVal) { 4980 // This is an undef. We could deal with it, but undefs in lookup tables 4981 // are very seldom. It's probably not worth the additional complexity. 4982 LinearMappingPossible = false; 4983 break; 4984 } 4985 const APInt &Val = ConstVal->getValue(); 4986 if (I != 0) { 4987 APInt Dist = Val - PrevVal; 4988 if (I == 1) { 4989 DistToPrev = Dist; 4990 } else if (Dist != DistToPrev) { 4991 LinearMappingPossible = false; 4992 break; 4993 } 4994 } 4995 PrevVal = Val; 4996 } 4997 if (LinearMappingPossible) { 4998 LinearOffset = cast<ConstantInt>(TableContents[0]); 4999 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5000 Kind = LinearMapKind; 5001 ++NumLinearMaps; 5002 return; 5003 } 5004 } 5005 5006 // If the type is integer and the table fits in a register, build a bitmap. 5007 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5008 IntegerType *IT = cast<IntegerType>(ValueType); 5009 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5010 for (uint64_t I = TableSize; I > 0; --I) { 5011 TableInt <<= IT->getBitWidth(); 5012 // Insert values into the bitmap. Undef values are set to zero. 5013 if (!isa<UndefValue>(TableContents[I - 1])) { 5014 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5015 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5016 } 5017 } 5018 BitMap = ConstantInt::get(M.getContext(), TableInt); 5019 BitMapElementTy = IT; 5020 Kind = BitMapKind; 5021 ++NumBitMaps; 5022 return; 5023 } 5024 5025 // Store the table in an array. 5026 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5027 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5028 5029 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5030 GlobalVariable::PrivateLinkage, Initializer, 5031 "switch.table." + FuncName); 5032 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5033 Kind = ArrayKind; 5034 } 5035 5036 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5037 switch (Kind) { 5038 case SingleValueKind: 5039 return SingleValue; 5040 case LinearMapKind: { 5041 // Derive the result value from the input value. 5042 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5043 false, "switch.idx.cast"); 5044 if (!LinearMultiplier->isOne()) 5045 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5046 if (!LinearOffset->isZero()) 5047 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5048 return Result; 5049 } 5050 case BitMapKind: { 5051 // Type of the bitmap (e.g. i59). 5052 IntegerType *MapTy = BitMap->getType(); 5053 5054 // Cast Index to the same type as the bitmap. 5055 // Note: The Index is <= the number of elements in the table, so 5056 // truncating it to the width of the bitmask is safe. 5057 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5058 5059 // Multiply the shift amount by the element width. 5060 ShiftAmt = Builder.CreateMul( 5061 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5062 "switch.shiftamt"); 5063 5064 // Shift down. 5065 Value *DownShifted = 5066 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5067 // Mask off. 5068 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5069 } 5070 case ArrayKind: { 5071 // Make sure the table index will not overflow when treated as signed. 5072 IntegerType *IT = cast<IntegerType>(Index->getType()); 5073 uint64_t TableSize = 5074 Array->getInitializer()->getType()->getArrayNumElements(); 5075 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5076 Index = Builder.CreateZExt( 5077 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5078 "switch.tableidx.zext"); 5079 5080 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5081 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5082 GEPIndices, "switch.gep"); 5083 return Builder.CreateLoad(GEP, "switch.load"); 5084 } 5085 } 5086 llvm_unreachable("Unknown lookup table kind!"); 5087 } 5088 5089 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5090 uint64_t TableSize, 5091 Type *ElementType) { 5092 auto *IT = dyn_cast<IntegerType>(ElementType); 5093 if (!IT) 5094 return false; 5095 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5096 // are <= 15, we could try to narrow the type. 5097 5098 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5099 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5100 return false; 5101 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5102 } 5103 5104 /// Determine whether a lookup table should be built for this switch, based on 5105 /// the number of cases, size of the table, and the types of the results. 5106 static bool 5107 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5108 const TargetTransformInfo &TTI, const DataLayout &DL, 5109 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5110 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5111 return false; // TableSize overflowed, or mul below might overflow. 5112 5113 bool AllTablesFitInRegister = true; 5114 bool HasIllegalType = false; 5115 for (const auto &I : ResultTypes) { 5116 Type *Ty = I.second; 5117 5118 // Saturate this flag to true. 5119 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5120 5121 // Saturate this flag to false. 5122 AllTablesFitInRegister = 5123 AllTablesFitInRegister && 5124 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5125 5126 // If both flags saturate, we're done. NOTE: This *only* works with 5127 // saturating flags, and all flags have to saturate first due to the 5128 // non-deterministic behavior of iterating over a dense map. 5129 if (HasIllegalType && !AllTablesFitInRegister) 5130 break; 5131 } 5132 5133 // If each table would fit in a register, we should build it anyway. 5134 if (AllTablesFitInRegister) 5135 return true; 5136 5137 // Don't build a table that doesn't fit in-register if it has illegal types. 5138 if (HasIllegalType) 5139 return false; 5140 5141 // The table density should be at least 40%. This is the same criterion as for 5142 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5143 // FIXME: Find the best cut-off. 5144 return SI->getNumCases() * 10 >= TableSize * 4; 5145 } 5146 5147 /// Try to reuse the switch table index compare. Following pattern: 5148 /// \code 5149 /// if (idx < tablesize) 5150 /// r = table[idx]; // table does not contain default_value 5151 /// else 5152 /// r = default_value; 5153 /// if (r != default_value) 5154 /// ... 5155 /// \endcode 5156 /// Is optimized to: 5157 /// \code 5158 /// cond = idx < tablesize; 5159 /// if (cond) 5160 /// r = table[idx]; 5161 /// else 5162 /// r = default_value; 5163 /// if (cond) 5164 /// ... 5165 /// \endcode 5166 /// Jump threading will then eliminate the second if(cond). 5167 static void reuseTableCompare( 5168 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5169 Constant *DefaultValue, 5170 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5171 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5172 if (!CmpInst) 5173 return; 5174 5175 // We require that the compare is in the same block as the phi so that jump 5176 // threading can do its work afterwards. 5177 if (CmpInst->getParent() != PhiBlock) 5178 return; 5179 5180 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5181 if (!CmpOp1) 5182 return; 5183 5184 Value *RangeCmp = RangeCheckBranch->getCondition(); 5185 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5186 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5187 5188 // Check if the compare with the default value is constant true or false. 5189 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5190 DefaultValue, CmpOp1, true); 5191 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5192 return; 5193 5194 // Check if the compare with the case values is distinct from the default 5195 // compare result. 5196 for (auto ValuePair : Values) { 5197 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5198 ValuePair.second, CmpOp1, true); 5199 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5200 return; 5201 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5202 "Expect true or false as compare result."); 5203 } 5204 5205 // Check if the branch instruction dominates the phi node. It's a simple 5206 // dominance check, but sufficient for our needs. 5207 // Although this check is invariant in the calling loops, it's better to do it 5208 // at this late stage. Practically we do it at most once for a switch. 5209 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5210 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5211 BasicBlock *Pred = *PI; 5212 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5213 return; 5214 } 5215 5216 if (DefaultConst == FalseConst) { 5217 // The compare yields the same result. We can replace it. 5218 CmpInst->replaceAllUsesWith(RangeCmp); 5219 ++NumTableCmpReuses; 5220 } else { 5221 // The compare yields the same result, just inverted. We can replace it. 5222 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5223 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5224 RangeCheckBranch); 5225 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5226 ++NumTableCmpReuses; 5227 } 5228 } 5229 5230 /// If the switch is only used to initialize one or more phi nodes in a common 5231 /// successor block with different constant values, replace the switch with 5232 /// lookup tables. 5233 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5234 const DataLayout &DL, 5235 const TargetTransformInfo &TTI) { 5236 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5237 5238 Function *Fn = SI->getParent()->getParent(); 5239 // Only build lookup table when we have a target that supports it or the 5240 // attribute is not set. 5241 if (!TTI.shouldBuildLookupTables() || 5242 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5243 return false; 5244 5245 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5246 // split off a dense part and build a lookup table for that. 5247 5248 // FIXME: This creates arrays of GEPs to constant strings, which means each 5249 // GEP needs a runtime relocation in PIC code. We should just build one big 5250 // string and lookup indices into that. 5251 5252 // Ignore switches with less than three cases. Lookup tables will not make 5253 // them faster, so we don't analyze them. 5254 if (SI->getNumCases() < 3) 5255 return false; 5256 5257 // Figure out the corresponding result for each case value and phi node in the 5258 // common destination, as well as the min and max case values. 5259 assert(SI->case_begin() != SI->case_end()); 5260 SwitchInst::CaseIt CI = SI->case_begin(); 5261 ConstantInt *MinCaseVal = CI->getCaseValue(); 5262 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5263 5264 BasicBlock *CommonDest = nullptr; 5265 5266 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5267 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5268 5269 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5270 SmallDenseMap<PHINode *, Type *> ResultTypes; 5271 SmallVector<PHINode *, 4> PHIs; 5272 5273 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5274 ConstantInt *CaseVal = CI->getCaseValue(); 5275 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5276 MinCaseVal = CaseVal; 5277 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5278 MaxCaseVal = CaseVal; 5279 5280 // Resulting value at phi nodes for this case value. 5281 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5282 ResultsTy Results; 5283 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5284 Results, DL, TTI)) 5285 return false; 5286 5287 // Append the result from this case to the list for each phi. 5288 for (const auto &I : Results) { 5289 PHINode *PHI = I.first; 5290 Constant *Value = I.second; 5291 if (!ResultLists.count(PHI)) 5292 PHIs.push_back(PHI); 5293 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5294 } 5295 } 5296 5297 // Keep track of the result types. 5298 for (PHINode *PHI : PHIs) { 5299 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5300 } 5301 5302 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5303 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5304 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5305 bool TableHasHoles = (NumResults < TableSize); 5306 5307 // If the table has holes, we need a constant result for the default case 5308 // or a bitmask that fits in a register. 5309 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5310 bool HasDefaultResults = 5311 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5312 DefaultResultsList, DL, TTI); 5313 5314 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5315 if (NeedMask) { 5316 // As an extra penalty for the validity test we require more cases. 5317 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5318 return false; 5319 if (!DL.fitsInLegalInteger(TableSize)) 5320 return false; 5321 } 5322 5323 for (const auto &I : DefaultResultsList) { 5324 PHINode *PHI = I.first; 5325 Constant *Result = I.second; 5326 DefaultResults[PHI] = Result; 5327 } 5328 5329 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5330 return false; 5331 5332 // Create the BB that does the lookups. 5333 Module &Mod = *CommonDest->getParent()->getParent(); 5334 BasicBlock *LookupBB = BasicBlock::Create( 5335 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5336 5337 // Compute the table index value. 5338 Builder.SetInsertPoint(SI); 5339 Value *TableIndex; 5340 if (MinCaseVal->isNullValue()) 5341 TableIndex = SI->getCondition(); 5342 else 5343 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5344 "switch.tableidx"); 5345 5346 // Compute the maximum table size representable by the integer type we are 5347 // switching upon. 5348 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5349 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5350 assert(MaxTableSize >= TableSize && 5351 "It is impossible for a switch to have more entries than the max " 5352 "representable value of its input integer type's size."); 5353 5354 // If the default destination is unreachable, or if the lookup table covers 5355 // all values of the conditional variable, branch directly to the lookup table 5356 // BB. Otherwise, check that the condition is within the case range. 5357 const bool DefaultIsReachable = 5358 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5359 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5360 BranchInst *RangeCheckBranch = nullptr; 5361 5362 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5363 Builder.CreateBr(LookupBB); 5364 // Note: We call removeProdecessor later since we need to be able to get the 5365 // PHI value for the default case in case we're using a bit mask. 5366 } else { 5367 Value *Cmp = Builder.CreateICmpULT( 5368 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5369 RangeCheckBranch = 5370 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5371 } 5372 5373 // Populate the BB that does the lookups. 5374 Builder.SetInsertPoint(LookupBB); 5375 5376 if (NeedMask) { 5377 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5378 // re-purposed to do the hole check, and we create a new LookupBB. 5379 BasicBlock *MaskBB = LookupBB; 5380 MaskBB->setName("switch.hole_check"); 5381 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5382 CommonDest->getParent(), CommonDest); 5383 5384 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5385 // unnecessary illegal types. 5386 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5387 APInt MaskInt(TableSizePowOf2, 0); 5388 APInt One(TableSizePowOf2, 1); 5389 // Build bitmask; fill in a 1 bit for every case. 5390 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5391 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5392 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5393 .getLimitedValue(); 5394 MaskInt |= One << Idx; 5395 } 5396 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5397 5398 // Get the TableIndex'th bit of the bitmask. 5399 // If this bit is 0 (meaning hole) jump to the default destination, 5400 // else continue with table lookup. 5401 IntegerType *MapTy = TableMask->getType(); 5402 Value *MaskIndex = 5403 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5404 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5405 Value *LoBit = Builder.CreateTrunc( 5406 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5407 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5408 5409 Builder.SetInsertPoint(LookupBB); 5410 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5411 } 5412 5413 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5414 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5415 // do not delete PHINodes here. 5416 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5417 /*DontDeleteUselessPHIs=*/true); 5418 } 5419 5420 bool ReturnedEarly = false; 5421 for (PHINode *PHI : PHIs) { 5422 const ResultListTy &ResultList = ResultLists[PHI]; 5423 5424 // If using a bitmask, use any value to fill the lookup table holes. 5425 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5426 StringRef FuncName = Fn->getName(); 5427 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5428 FuncName); 5429 5430 Value *Result = Table.BuildLookup(TableIndex, Builder); 5431 5432 // If the result is used to return immediately from the function, we want to 5433 // do that right here. 5434 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5435 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5436 Builder.CreateRet(Result); 5437 ReturnedEarly = true; 5438 break; 5439 } 5440 5441 // Do a small peephole optimization: re-use the switch table compare if 5442 // possible. 5443 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5444 BasicBlock *PhiBlock = PHI->getParent(); 5445 // Search for compare instructions which use the phi. 5446 for (auto *User : PHI->users()) { 5447 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5448 } 5449 } 5450 5451 PHI->addIncoming(Result, LookupBB); 5452 } 5453 5454 if (!ReturnedEarly) 5455 Builder.CreateBr(CommonDest); 5456 5457 // Remove the switch. 5458 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5459 BasicBlock *Succ = SI->getSuccessor(i); 5460 5461 if (Succ == SI->getDefaultDest()) 5462 continue; 5463 Succ->removePredecessor(SI->getParent()); 5464 } 5465 SI->eraseFromParent(); 5466 5467 ++NumLookupTables; 5468 if (NeedMask) 5469 ++NumLookupTablesHoles; 5470 return true; 5471 } 5472 5473 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5474 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5475 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5476 uint64_t Range = Diff + 1; 5477 uint64_t NumCases = Values.size(); 5478 // 40% is the default density for building a jump table in optsize/minsize mode. 5479 uint64_t MinDensity = 40; 5480 5481 return NumCases * 100 >= Range * MinDensity; 5482 } 5483 5484 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5485 /// of cases. 5486 /// 5487 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5488 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5489 /// 5490 /// This converts a sparse switch into a dense switch which allows better 5491 /// lowering and could also allow transforming into a lookup table. 5492 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5493 const DataLayout &DL, 5494 const TargetTransformInfo &TTI) { 5495 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5496 if (CondTy->getIntegerBitWidth() > 64 || 5497 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5498 return false; 5499 // Only bother with this optimization if there are more than 3 switch cases; 5500 // SDAG will only bother creating jump tables for 4 or more cases. 5501 if (SI->getNumCases() < 4) 5502 return false; 5503 5504 // This transform is agnostic to the signedness of the input or case values. We 5505 // can treat the case values as signed or unsigned. We can optimize more common 5506 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5507 // as signed. 5508 SmallVector<int64_t,4> Values; 5509 for (auto &C : SI->cases()) 5510 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5511 llvm::sort(Values.begin(), Values.end()); 5512 5513 // If the switch is already dense, there's nothing useful to do here. 5514 if (isSwitchDense(Values)) 5515 return false; 5516 5517 // First, transform the values such that they start at zero and ascend. 5518 int64_t Base = Values[0]; 5519 for (auto &V : Values) 5520 V -= (uint64_t)(Base); 5521 5522 // Now we have signed numbers that have been shifted so that, given enough 5523 // precision, there are no negative values. Since the rest of the transform 5524 // is bitwise only, we switch now to an unsigned representation. 5525 uint64_t GCD = 0; 5526 for (auto &V : Values) 5527 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5528 5529 // This transform can be done speculatively because it is so cheap - it results 5530 // in a single rotate operation being inserted. This can only happen if the 5531 // factor extracted is a power of 2. 5532 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5533 // inverse of GCD and then perform this transform. 5534 // FIXME: It's possible that optimizing a switch on powers of two might also 5535 // be beneficial - flag values are often powers of two and we could use a CLZ 5536 // as the key function. 5537 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5538 // No common divisor found or too expensive to compute key function. 5539 return false; 5540 5541 unsigned Shift = Log2_64(GCD); 5542 for (auto &V : Values) 5543 V = (int64_t)((uint64_t)V >> Shift); 5544 5545 if (!isSwitchDense(Values)) 5546 // Transform didn't create a dense switch. 5547 return false; 5548 5549 // The obvious transform is to shift the switch condition right and emit a 5550 // check that the condition actually cleanly divided by GCD, i.e. 5551 // C & (1 << Shift - 1) == 0 5552 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5553 // 5554 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5555 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5556 // are nonzero then the switch condition will be very large and will hit the 5557 // default case. 5558 5559 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5560 Builder.SetInsertPoint(SI); 5561 auto *ShiftC = ConstantInt::get(Ty, Shift); 5562 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5563 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5564 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5565 auto *Rot = Builder.CreateOr(LShr, Shl); 5566 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5567 5568 for (auto Case : SI->cases()) { 5569 auto *Orig = Case.getCaseValue(); 5570 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5571 Case.setValue( 5572 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5573 } 5574 return true; 5575 } 5576 5577 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5578 BasicBlock *BB = SI->getParent(); 5579 5580 if (isValueEqualityComparison(SI)) { 5581 // If we only have one predecessor, and if it is a branch on this value, 5582 // see if that predecessor totally determines the outcome of this switch. 5583 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5584 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5585 return simplifyCFG(BB, TTI, Options) | true; 5586 5587 Value *Cond = SI->getCondition(); 5588 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5589 if (SimplifySwitchOnSelect(SI, Select)) 5590 return simplifyCFG(BB, TTI, Options) | true; 5591 5592 // If the block only contains the switch, see if we can fold the block 5593 // away into any preds. 5594 if (SI == &*BB->instructionsWithoutDebug().begin()) 5595 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5596 return simplifyCFG(BB, TTI, Options) | true; 5597 } 5598 5599 // Try to transform the switch into an icmp and a branch. 5600 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5601 return simplifyCFG(BB, TTI, Options) | true; 5602 5603 // Remove unreachable cases. 5604 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5605 return simplifyCFG(BB, TTI, Options) | true; 5606 5607 if (switchToSelect(SI, Builder, DL, TTI)) 5608 return simplifyCFG(BB, TTI, Options) | true; 5609 5610 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5611 return simplifyCFG(BB, TTI, Options) | true; 5612 5613 // The conversion from switch to lookup tables results in difficult-to-analyze 5614 // code and makes pruning branches much harder. This is a problem if the 5615 // switch expression itself can still be restricted as a result of inlining or 5616 // CVP. Therefore, only apply this transformation during late stages of the 5617 // optimisation pipeline. 5618 if (Options.ConvertSwitchToLookupTable && 5619 SwitchToLookupTable(SI, Builder, DL, TTI)) 5620 return simplifyCFG(BB, TTI, Options) | true; 5621 5622 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5623 return simplifyCFG(BB, TTI, Options) | true; 5624 5625 return false; 5626 } 5627 5628 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5629 BasicBlock *BB = IBI->getParent(); 5630 bool Changed = false; 5631 5632 // Eliminate redundant destinations. 5633 SmallPtrSet<Value *, 8> Succs; 5634 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5635 BasicBlock *Dest = IBI->getDestination(i); 5636 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5637 Dest->removePredecessor(BB); 5638 IBI->removeDestination(i); 5639 --i; 5640 --e; 5641 Changed = true; 5642 } 5643 } 5644 5645 if (IBI->getNumDestinations() == 0) { 5646 // If the indirectbr has no successors, change it to unreachable. 5647 new UnreachableInst(IBI->getContext(), IBI); 5648 EraseTerminatorInstAndDCECond(IBI); 5649 return true; 5650 } 5651 5652 if (IBI->getNumDestinations() == 1) { 5653 // If the indirectbr has one successor, change it to a direct branch. 5654 BranchInst::Create(IBI->getDestination(0), IBI); 5655 EraseTerminatorInstAndDCECond(IBI); 5656 return true; 5657 } 5658 5659 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5660 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5661 return simplifyCFG(BB, TTI, Options) | true; 5662 } 5663 return Changed; 5664 } 5665 5666 /// Given an block with only a single landing pad and a unconditional branch 5667 /// try to find another basic block which this one can be merged with. This 5668 /// handles cases where we have multiple invokes with unique landing pads, but 5669 /// a shared handler. 5670 /// 5671 /// We specifically choose to not worry about merging non-empty blocks 5672 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5673 /// practice, the optimizer produces empty landing pad blocks quite frequently 5674 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5675 /// sinking in this file) 5676 /// 5677 /// This is primarily a code size optimization. We need to avoid performing 5678 /// any transform which might inhibit optimization (such as our ability to 5679 /// specialize a particular handler via tail commoning). We do this by not 5680 /// merging any blocks which require us to introduce a phi. Since the same 5681 /// values are flowing through both blocks, we don't loose any ability to 5682 /// specialize. If anything, we make such specialization more likely. 5683 /// 5684 /// TODO - This transformation could remove entries from a phi in the target 5685 /// block when the inputs in the phi are the same for the two blocks being 5686 /// merged. In some cases, this could result in removal of the PHI entirely. 5687 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5688 BasicBlock *BB) { 5689 auto Succ = BB->getUniqueSuccessor(); 5690 assert(Succ); 5691 // If there's a phi in the successor block, we'd likely have to introduce 5692 // a phi into the merged landing pad block. 5693 if (isa<PHINode>(*Succ->begin())) 5694 return false; 5695 5696 for (BasicBlock *OtherPred : predecessors(Succ)) { 5697 if (BB == OtherPred) 5698 continue; 5699 BasicBlock::iterator I = OtherPred->begin(); 5700 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5701 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5702 continue; 5703 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5704 ; 5705 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5706 if (!BI2 || !BI2->isIdenticalTo(BI)) 5707 continue; 5708 5709 // We've found an identical block. Update our predecessors to take that 5710 // path instead and make ourselves dead. 5711 SmallSet<BasicBlock *, 16> Preds; 5712 Preds.insert(pred_begin(BB), pred_end(BB)); 5713 for (BasicBlock *Pred : Preds) { 5714 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5715 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5716 "unexpected successor"); 5717 II->setUnwindDest(OtherPred); 5718 } 5719 5720 // The debug info in OtherPred doesn't cover the merged control flow that 5721 // used to go through BB. We need to delete it or update it. 5722 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5723 Instruction &Inst = *I; 5724 I++; 5725 if (isa<DbgInfoIntrinsic>(Inst)) 5726 Inst.eraseFromParent(); 5727 } 5728 5729 SmallSet<BasicBlock *, 16> Succs; 5730 Succs.insert(succ_begin(BB), succ_end(BB)); 5731 for (BasicBlock *Succ : Succs) { 5732 Succ->removePredecessor(BB); 5733 } 5734 5735 IRBuilder<> Builder(BI); 5736 Builder.CreateUnreachable(); 5737 BI->eraseFromParent(); 5738 return true; 5739 } 5740 return false; 5741 } 5742 5743 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5744 IRBuilder<> &Builder) { 5745 BasicBlock *BB = BI->getParent(); 5746 BasicBlock *Succ = BI->getSuccessor(0); 5747 5748 // If the Terminator is the only non-phi instruction, simplify the block. 5749 // If LoopHeader is provided, check if the block or its successor is a loop 5750 // header. (This is for early invocations before loop simplify and 5751 // vectorization to keep canonical loop forms for nested loops. These blocks 5752 // can be eliminated when the pass is invoked later in the back-end.) 5753 // Note that if BB has only one predecessor then we do not introduce new 5754 // backedge, so we can eliminate BB. 5755 bool NeedCanonicalLoop = 5756 Options.NeedCanonicalLoop && 5757 (LoopHeaders && pred_size(BB) > 1 && 5758 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5759 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5760 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5761 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5762 return true; 5763 5764 // If the only instruction in the block is a seteq/setne comparison against a 5765 // constant, try to simplify the block. 5766 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5767 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5768 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5769 ; 5770 if (I->isTerminator() && 5771 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options)) 5772 return true; 5773 } 5774 5775 // See if we can merge an empty landing pad block with another which is 5776 // equivalent. 5777 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5778 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5779 ; 5780 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5781 return true; 5782 } 5783 5784 // If this basic block is ONLY a compare and a branch, and if a predecessor 5785 // branches to us and our successor, fold the comparison into the 5786 // predecessor and use logical operations to update the incoming value 5787 // for PHI nodes in common successor. 5788 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5789 return simplifyCFG(BB, TTI, Options) | true; 5790 return false; 5791 } 5792 5793 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5794 BasicBlock *PredPred = nullptr; 5795 for (auto *P : predecessors(BB)) { 5796 BasicBlock *PPred = P->getSinglePredecessor(); 5797 if (!PPred || (PredPred && PredPred != PPred)) 5798 return nullptr; 5799 PredPred = PPred; 5800 } 5801 return PredPred; 5802 } 5803 5804 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5805 BasicBlock *BB = BI->getParent(); 5806 const Function *Fn = BB->getParent(); 5807 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5808 return false; 5809 5810 // Conditional branch 5811 if (isValueEqualityComparison(BI)) { 5812 // If we only have one predecessor, and if it is a branch on this value, 5813 // see if that predecessor totally determines the outcome of this 5814 // switch. 5815 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5816 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5817 return simplifyCFG(BB, TTI, Options) | true; 5818 5819 // This block must be empty, except for the setcond inst, if it exists. 5820 // Ignore dbg intrinsics. 5821 auto I = BB->instructionsWithoutDebug().begin(); 5822 if (&*I == BI) { 5823 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5824 return simplifyCFG(BB, TTI, Options) | true; 5825 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5826 ++I; 5827 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5828 return simplifyCFG(BB, TTI, Options) | true; 5829 } 5830 } 5831 5832 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5833 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5834 return true; 5835 5836 // If this basic block has a single dominating predecessor block and the 5837 // dominating block's condition implies BI's condition, we know the direction 5838 // of the BI branch. 5839 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5840 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5841 if (PBI && PBI->isConditional() && 5842 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 5843 assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB); 5844 bool CondIsTrue = PBI->getSuccessor(0) == BB; 5845 Optional<bool> Implication = isImpliedCondition( 5846 PBI->getCondition(), BI->getCondition(), DL, CondIsTrue); 5847 if (Implication) { 5848 // Turn this into a branch on constant. 5849 auto *OldCond = BI->getCondition(); 5850 ConstantInt *CI = *Implication 5851 ? ConstantInt::getTrue(BB->getContext()) 5852 : ConstantInt::getFalse(BB->getContext()); 5853 BI->setCondition(CI); 5854 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5855 return simplifyCFG(BB, TTI, Options) | true; 5856 } 5857 } 5858 } 5859 5860 // If this basic block is ONLY a compare and a branch, and if a predecessor 5861 // branches to us and one of our successors, fold the comparison into the 5862 // predecessor and use logical operations to pick the right destination. 5863 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5864 return simplifyCFG(BB, TTI, Options) | true; 5865 5866 // We have a conditional branch to two blocks that are only reachable 5867 // from BI. We know that the condbr dominates the two blocks, so see if 5868 // there is any identical code in the "then" and "else" blocks. If so, we 5869 // can hoist it up to the branching block. 5870 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5871 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5872 if (HoistThenElseCodeToIf(BI, TTI)) 5873 return simplifyCFG(BB, TTI, Options) | true; 5874 } else { 5875 // If Successor #1 has multiple preds, we may be able to conditionally 5876 // execute Successor #0 if it branches to Successor #1. 5877 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5878 if (Succ0TI->getNumSuccessors() == 1 && 5879 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5880 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5881 return simplifyCFG(BB, TTI, Options) | true; 5882 } 5883 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5884 // If Successor #0 has multiple preds, we may be able to conditionally 5885 // execute Successor #1 if it branches to Successor #0. 5886 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5887 if (Succ1TI->getNumSuccessors() == 1 && 5888 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5889 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5890 return simplifyCFG(BB, TTI, Options) | true; 5891 } 5892 5893 // If this is a branch on a phi node in the current block, thread control 5894 // through this block if any PHI node entries are constants. 5895 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5896 if (PN->getParent() == BI->getParent()) 5897 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5898 return simplifyCFG(BB, TTI, Options) | true; 5899 5900 // Scan predecessor blocks for conditional branches. 5901 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5902 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5903 if (PBI != BI && PBI->isConditional()) 5904 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5905 return simplifyCFG(BB, TTI, Options) | true; 5906 5907 // Look for diamond patterns. 5908 if (MergeCondStores) 5909 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5910 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5911 if (PBI != BI && PBI->isConditional()) 5912 if (mergeConditionalStores(PBI, BI, DL)) 5913 return simplifyCFG(BB, TTI, Options) | true; 5914 5915 return false; 5916 } 5917 5918 /// Check if passing a value to an instruction will cause undefined behavior. 5919 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5920 Constant *C = dyn_cast<Constant>(V); 5921 if (!C) 5922 return false; 5923 5924 if (I->use_empty()) 5925 return false; 5926 5927 if (C->isNullValue() || isa<UndefValue>(C)) { 5928 // Only look at the first use, avoid hurting compile time with long uselists 5929 User *Use = *I->user_begin(); 5930 5931 // Now make sure that there are no instructions in between that can alter 5932 // control flow (eg. calls) 5933 for (BasicBlock::iterator 5934 i = ++BasicBlock::iterator(I), 5935 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5936 i != UI; ++i) 5937 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5938 return false; 5939 5940 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5941 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5942 if (GEP->getPointerOperand() == I) 5943 return passingValueIsAlwaysUndefined(V, GEP); 5944 5945 // Look through bitcasts. 5946 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5947 return passingValueIsAlwaysUndefined(V, BC); 5948 5949 // Load from null is undefined. 5950 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5951 if (!LI->isVolatile()) 5952 return LI->getPointerAddressSpace() == 0; 5953 5954 // Store to null is undefined. 5955 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5956 if (!SI->isVolatile()) 5957 return SI->getPointerAddressSpace() == 0 && 5958 SI->getPointerOperand() == I; 5959 5960 // A call to null is undefined. 5961 if (auto CS = CallSite(Use)) 5962 return CS.getCalledValue() == I; 5963 } 5964 return false; 5965 } 5966 5967 /// If BB has an incoming value that will always trigger undefined behavior 5968 /// (eg. null pointer dereference), remove the branch leading here. 5969 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5970 for (PHINode &PHI : BB->phis()) 5971 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5972 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5973 TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator(); 5974 IRBuilder<> Builder(T); 5975 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5976 BB->removePredecessor(PHI.getIncomingBlock(i)); 5977 // Turn uncoditional branches into unreachables and remove the dead 5978 // destination from conditional branches. 5979 if (BI->isUnconditional()) 5980 Builder.CreateUnreachable(); 5981 else 5982 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5983 : BI->getSuccessor(0)); 5984 BI->eraseFromParent(); 5985 return true; 5986 } 5987 // TODO: SwitchInst. 5988 } 5989 5990 return false; 5991 } 5992 5993 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5994 bool Changed = false; 5995 5996 assert(BB && BB->getParent() && "Block not embedded in function!"); 5997 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5998 5999 // Remove basic blocks that have no predecessors (except the entry block)... 6000 // or that just have themself as a predecessor. These are unreachable. 6001 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6002 BB->getSinglePredecessor() == BB) { 6003 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6004 DeleteDeadBlock(BB); 6005 return true; 6006 } 6007 6008 // Check to see if we can constant propagate this terminator instruction 6009 // away... 6010 Changed |= ConstantFoldTerminator(BB, true); 6011 6012 // Check for and eliminate duplicate PHI nodes in this block. 6013 Changed |= EliminateDuplicatePHINodes(BB); 6014 6015 // Check for and remove branches that will always cause undefined behavior. 6016 Changed |= removeUndefIntroducingPredecessor(BB); 6017 6018 // Merge basic blocks into their predecessor if there is only one distinct 6019 // pred, and if there is only one distinct successor of the predecessor, and 6020 // if there are no PHI nodes. 6021 if (MergeBlockIntoPredecessor(BB)) 6022 return true; 6023 6024 if (SinkCommon && Options.SinkCommonInsts) 6025 Changed |= SinkCommonCodeFromPredecessors(BB); 6026 6027 IRBuilder<> Builder(BB); 6028 6029 // If there is a trivial two-entry PHI node in this basic block, and we can 6030 // eliminate it, do so now. 6031 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6032 if (PN->getNumIncomingValues() == 2) 6033 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6034 6035 Builder.SetInsertPoint(BB->getTerminator()); 6036 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6037 if (BI->isUnconditional()) { 6038 if (SimplifyUncondBranch(BI, Builder)) 6039 return true; 6040 } else { 6041 if (SimplifyCondBranch(BI, Builder)) 6042 return true; 6043 } 6044 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6045 if (SimplifyReturn(RI, Builder)) 6046 return true; 6047 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6048 if (SimplifyResume(RI, Builder)) 6049 return true; 6050 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6051 if (SimplifyCleanupReturn(RI)) 6052 return true; 6053 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6054 if (SimplifySwitch(SI, Builder)) 6055 return true; 6056 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6057 if (SimplifyUnreachable(UI)) 6058 return true; 6059 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6060 if (SimplifyIndirectBr(IBI)) 6061 return true; 6062 } 6063 6064 return Changed; 6065 } 6066 6067 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6068 const SimplifyCFGOptions &Options, 6069 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6070 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6071 Options) 6072 .run(BB); 6073 } 6074