1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <climits>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 using namespace PatternMatch;
85 
86 #define DEBUG_TYPE "simplifycfg"
87 
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt<unsigned> PHINodeFoldingThreshold(
93     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
94     cl::desc(
95         "Control the amount of phi node folding to perform (default = 2)"));
96 
97 static cl::opt<bool> DupRet(
98     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
99     cl::desc("Duplicate return instructions into unconditional branches"));
100 
101 static cl::opt<bool>
102     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
103                cl::desc("Sink common instructions down to the end block"));
104 
105 static cl::opt<bool> HoistCondStores(
106     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores if an unconditional store precedes"));
108 
109 static cl::opt<bool> MergeCondStores(
110     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
111     cl::desc("Hoist conditional stores even if an unconditional store does not "
112              "precede - hoist multiple conditional stores into a single "
113              "predicated store"));
114 
115 static cl::opt<bool> MergeCondStoresAggressively(
116     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
117     cl::desc("When merging conditional stores, do so even if the resultant "
118              "basic blocks are unlikely to be if-converted as a result"));
119 
120 static cl::opt<bool> SpeculateOneExpensiveInst(
121     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
122     cl::desc("Allow exactly one expensive instruction to be speculatively "
123              "executed"));
124 
125 static cl::opt<unsigned> MaxSpeculationDepth(
126     "max-speculation-depth", cl::Hidden, cl::init(10),
127     cl::desc("Limit maximum recursion depth when calculating costs of "
128              "speculatively executed instructions"));
129 
130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
131 STATISTIC(NumLinearMaps,
132           "Number of switch instructions turned into linear mapping");
133 STATISTIC(NumLookupTables,
134           "Number of switch instructions turned into lookup tables");
135 STATISTIC(
136     NumLookupTablesHoles,
137     "Number of switch instructions turned into lookup tables (holes checked)");
138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
139 STATISTIC(NumSinkCommons,
140           "Number of common instructions sunk down to the end block");
141 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
142 
143 namespace {
144 
145 // The first field contains the value that the switch produces when a certain
146 // case group is selected, and the second field is a vector containing the
147 // cases composing the case group.
148 using SwitchCaseResultVectorTy =
149     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
150 
151 // The first field contains the phi node that generates a result of the switch
152 // and the second field contains the value generated for a certain case in the
153 // switch for that PHI.
154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
155 
156 /// ValueEqualityComparisonCase - Represents a case of a switch.
157 struct ValueEqualityComparisonCase {
158   ConstantInt *Value;
159   BasicBlock *Dest;
160 
161   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
162       : Value(Value), Dest(Dest) {}
163 
164   bool operator<(ValueEqualityComparisonCase RHS) const {
165     // Comparing pointers is ok as we only rely on the order for uniquing.
166     return Value < RHS.Value;
167   }
168 
169   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
170 };
171 
172 class SimplifyCFGOpt {
173   const TargetTransformInfo &TTI;
174   const DataLayout &DL;
175   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
176   const SimplifyCFGOptions &Options;
177 
178   Value *isValueEqualityComparison(TerminatorInst *TI);
179   BasicBlock *GetValueEqualityComparisonCases(
180       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
181   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
182                                                      BasicBlock *Pred,
183                                                      IRBuilder<> &Builder);
184   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
185                                            IRBuilder<> &Builder);
186 
187   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
188   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
189   bool SimplifySingleResume(ResumeInst *RI);
190   bool SimplifyCommonResume(ResumeInst *RI);
191   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
192   bool SimplifyUnreachable(UnreachableInst *UI);
193   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
194   bool SimplifyIndirectBr(IndirectBrInst *IBI);
195   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
196   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 
198 public:
199   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
200                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
201                  const SimplifyCFGOptions &Opts)
202       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
203 
204   bool run(BasicBlock *BB);
205 };
206 
207 } // end anonymous namespace
208 
209 /// Return true if it is safe to merge these two
210 /// terminator instructions together.
211 static bool
212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
213                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
214   if (SI1 == SI2)
215     return false; // Can't merge with self!
216 
217   // It is not safe to merge these two switch instructions if they have a common
218   // successor, and if that successor has a PHI node, and if *that* PHI node has
219   // conflicting incoming values from the two switch blocks.
220   BasicBlock *SI1BB = SI1->getParent();
221   BasicBlock *SI2BB = SI2->getParent();
222 
223   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
224   bool Fail = false;
225   for (BasicBlock *Succ : successors(SI2BB))
226     if (SI1Succs.count(Succ))
227       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
228         PHINode *PN = cast<PHINode>(BBI);
229         if (PN->getIncomingValueForBlock(SI1BB) !=
230             PN->getIncomingValueForBlock(SI2BB)) {
231           if (FailBlocks)
232             FailBlocks->insert(Succ);
233           Fail = true;
234         }
235       }
236 
237   return !Fail;
238 }
239 
240 /// Return true if it is safe and profitable to merge these two terminator
241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
242 /// store all PHI nodes in common successors.
243 static bool
244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
245                                 Instruction *Cond,
246                                 SmallVectorImpl<PHINode *> &PhiNodes) {
247   if (SI1 == SI2)
248     return false; // Can't merge with self!
249   assert(SI1->isUnconditional() && SI2->isConditional());
250 
251   // We fold the unconditional branch if we can easily update all PHI nodes in
252   // common successors:
253   // 1> We have a constant incoming value for the conditional branch;
254   // 2> We have "Cond" as the incoming value for the unconditional branch;
255   // 3> SI2->getCondition() and Cond have same operands.
256   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
257   if (!Ci2)
258     return false;
259   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
260         Cond->getOperand(1) == Ci2->getOperand(1)) &&
261       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
262         Cond->getOperand(1) == Ci2->getOperand(0)))
263     return false;
264 
265   BasicBlock *SI1BB = SI1->getParent();
266   BasicBlock *SI2BB = SI2->getParent();
267   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
268   for (BasicBlock *Succ : successors(SI2BB))
269     if (SI1Succs.count(Succ))
270       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
271         PHINode *PN = cast<PHINode>(BBI);
272         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
273             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
274           return false;
275         PhiNodes.push_back(PN);
276       }
277   return true;
278 }
279 
280 /// Update PHI nodes in Succ to indicate that there will now be entries in it
281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
282 /// will be the same as those coming in from ExistPred, an existing predecessor
283 /// of Succ.
284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
285                                   BasicBlock *ExistPred) {
286   for (PHINode &PN : Succ->phis())
287     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
288 }
289 
290 /// Compute an abstract "cost" of speculating the given instruction,
291 /// which is assumed to be safe to speculate. TCC_Free means cheap,
292 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
293 /// expensive.
294 static unsigned ComputeSpeculationCost(const User *I,
295                                        const TargetTransformInfo &TTI) {
296   assert(isSafeToSpeculativelyExecute(I) &&
297          "Instruction is not safe to speculatively execute!");
298   return TTI.getUserCost(I);
299 }
300 
301 /// If we have a merge point of an "if condition" as accepted above,
302 /// return true if the specified value dominates the block.  We
303 /// don't handle the true generality of domination here, just a special case
304 /// which works well enough for us.
305 ///
306 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
307 /// see if V (which must be an instruction) and its recursive operands
308 /// that do not dominate BB have a combined cost lower than CostRemaining and
309 /// are non-trapping.  If both are true, the instruction is inserted into the
310 /// set and true is returned.
311 ///
312 /// The cost for most non-trapping instructions is defined as 1 except for
313 /// Select whose cost is 2.
314 ///
315 /// After this function returns, CostRemaining is decreased by the cost of
316 /// V plus its non-dominating operands.  If that cost is greater than
317 /// CostRemaining, false is returned and CostRemaining is undefined.
318 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
319                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
320                                 unsigned &CostRemaining,
321                                 const TargetTransformInfo &TTI,
322                                 unsigned Depth = 0) {
323   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
324   // so limit the recursion depth.
325   // TODO: While this recursion limit does prevent pathological behavior, it
326   // would be better to track visited instructions to avoid cycles.
327   if (Depth == MaxSpeculationDepth)
328     return false;
329 
330   Instruction *I = dyn_cast<Instruction>(V);
331   if (!I) {
332     // Non-instructions all dominate instructions, but not all constantexprs
333     // can be executed unconditionally.
334     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
335       if (C->canTrap())
336         return false;
337     return true;
338   }
339   BasicBlock *PBB = I->getParent();
340 
341   // We don't want to allow weird loops that might have the "if condition" in
342   // the bottom of this block.
343   if (PBB == BB)
344     return false;
345 
346   // If this instruction is defined in a block that contains an unconditional
347   // branch to BB, then it must be in the 'conditional' part of the "if
348   // statement".  If not, it definitely dominates the region.
349   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
350   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
351     return true;
352 
353   // If we aren't allowing aggressive promotion anymore, then don't consider
354   // instructions in the 'if region'.
355   if (!AggressiveInsts)
356     return false;
357 
358   // If we have seen this instruction before, don't count it again.
359   if (AggressiveInsts->count(I))
360     return true;
361 
362   // Okay, it looks like the instruction IS in the "condition".  Check to
363   // see if it's a cheap instruction to unconditionally compute, and if it
364   // only uses stuff defined outside of the condition.  If so, hoist it out.
365   if (!isSafeToSpeculativelyExecute(I))
366     return false;
367 
368   unsigned Cost = ComputeSpeculationCost(I, TTI);
369 
370   // Allow exactly one instruction to be speculated regardless of its cost
371   // (as long as it is safe to do so).
372   // This is intended to flatten the CFG even if the instruction is a division
373   // or other expensive operation. The speculation of an expensive instruction
374   // is expected to be undone in CodeGenPrepare if the speculation has not
375   // enabled further IR optimizations.
376   if (Cost > CostRemaining &&
377       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
378     return false;
379 
380   // Avoid unsigned wrap.
381   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
382 
383   // Okay, we can only really hoist these out if their operands do
384   // not take us over the cost threshold.
385   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
386     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
387                              Depth + 1))
388       return false;
389   // Okay, it's safe to do this!  Remember this instruction.
390   AggressiveInsts->insert(I);
391   return true;
392 }
393 
394 /// Extract ConstantInt from value, looking through IntToPtr
395 /// and PointerNullValue. Return NULL if value is not a constant int.
396 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
397   // Normal constant int.
398   ConstantInt *CI = dyn_cast<ConstantInt>(V);
399   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
400     return CI;
401 
402   // This is some kind of pointer constant. Turn it into a pointer-sized
403   // ConstantInt if possible.
404   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
405 
406   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
407   if (isa<ConstantPointerNull>(V))
408     return ConstantInt::get(PtrTy, 0);
409 
410   // IntToPtr const int.
411   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
412     if (CE->getOpcode() == Instruction::IntToPtr)
413       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
414         // The constant is very likely to have the right type already.
415         if (CI->getType() == PtrTy)
416           return CI;
417         else
418           return cast<ConstantInt>(
419               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
420       }
421   return nullptr;
422 }
423 
424 namespace {
425 
426 /// Given a chain of or (||) or and (&&) comparison of a value against a
427 /// constant, this will try to recover the information required for a switch
428 /// structure.
429 /// It will depth-first traverse the chain of comparison, seeking for patterns
430 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
431 /// representing the different cases for the switch.
432 /// Note that if the chain is composed of '||' it will build the set of elements
433 /// that matches the comparisons (i.e. any of this value validate the chain)
434 /// while for a chain of '&&' it will build the set elements that make the test
435 /// fail.
436 struct ConstantComparesGatherer {
437   const DataLayout &DL;
438 
439   /// Value found for the switch comparison
440   Value *CompValue = nullptr;
441 
442   /// Extra clause to be checked before the switch
443   Value *Extra = nullptr;
444 
445   /// Set of integers to match in switch
446   SmallVector<ConstantInt *, 8> Vals;
447 
448   /// Number of comparisons matched in the and/or chain
449   unsigned UsedICmps = 0;
450 
451   /// Construct and compute the result for the comparison instruction Cond
452   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
453     gather(Cond);
454   }
455 
456   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
457   ConstantComparesGatherer &
458   operator=(const ConstantComparesGatherer &) = delete;
459 
460 private:
461   /// Try to set the current value used for the comparison, it succeeds only if
462   /// it wasn't set before or if the new value is the same as the old one
463   bool setValueOnce(Value *NewVal) {
464     if (CompValue && CompValue != NewVal)
465       return false;
466     CompValue = NewVal;
467     return (CompValue != nullptr);
468   }
469 
470   /// Try to match Instruction "I" as a comparison against a constant and
471   /// populates the array Vals with the set of values that match (or do not
472   /// match depending on isEQ).
473   /// Return false on failure. On success, the Value the comparison matched
474   /// against is placed in CompValue.
475   /// If CompValue is already set, the function is expected to fail if a match
476   /// is found but the value compared to is different.
477   bool matchInstruction(Instruction *I, bool isEQ) {
478     // If this is an icmp against a constant, handle this as one of the cases.
479     ICmpInst *ICI;
480     ConstantInt *C;
481     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
482           (C = GetConstantInt(I->getOperand(1), DL)))) {
483       return false;
484     }
485 
486     Value *RHSVal;
487     const APInt *RHSC;
488 
489     // Pattern match a special case
490     // (x & ~2^z) == y --> x == y || x == y|2^z
491     // This undoes a transformation done by instcombine to fuse 2 compares.
492     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
493       // It's a little bit hard to see why the following transformations are
494       // correct. Here is a CVC3 program to verify them for 64-bit values:
495 
496       /*
497          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
498          x    : BITVECTOR(64);
499          y    : BITVECTOR(64);
500          z    : BITVECTOR(64);
501          mask : BITVECTOR(64) = BVSHL(ONE, z);
502          QUERY( (y & ~mask = y) =>
503                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
504          );
505          QUERY( (y |  mask = y) =>
506                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
507          );
508       */
509 
510       // Please note that each pattern must be a dual implication (<--> or
511       // iff). One directional implication can create spurious matches. If the
512       // implication is only one-way, an unsatisfiable condition on the left
513       // side can imply a satisfiable condition on the right side. Dual
514       // implication ensures that satisfiable conditions are transformed to
515       // other satisfiable conditions and unsatisfiable conditions are
516       // transformed to other unsatisfiable conditions.
517 
518       // Here is a concrete example of a unsatisfiable condition on the left
519       // implying a satisfiable condition on the right:
520       //
521       // mask = (1 << z)
522       // (x & ~mask) == y  --> (x == y || x == (y | mask))
523       //
524       // Substituting y = 3, z = 0 yields:
525       // (x & -2) == 3 --> (x == 3 || x == 2)
526 
527       // Pattern match a special case:
528       /*
529         QUERY( (y & ~mask = y) =>
530                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
531         );
532       */
533       if (match(ICI->getOperand(0),
534                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
535         APInt Mask = ~*RHSC;
536         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
537           // If we already have a value for the switch, it has to match!
538           if (!setValueOnce(RHSVal))
539             return false;
540 
541           Vals.push_back(C);
542           Vals.push_back(
543               ConstantInt::get(C->getContext(),
544                                C->getValue() | Mask));
545           UsedICmps++;
546           return true;
547         }
548       }
549 
550       // Pattern match a special case:
551       /*
552         QUERY( (y |  mask = y) =>
553                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
554         );
555       */
556       if (match(ICI->getOperand(0),
557                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
558         APInt Mask = *RHSC;
559         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
560           // If we already have a value for the switch, it has to match!
561           if (!setValueOnce(RHSVal))
562             return false;
563 
564           Vals.push_back(C);
565           Vals.push_back(ConstantInt::get(C->getContext(),
566                                           C->getValue() & ~Mask));
567           UsedICmps++;
568           return true;
569         }
570       }
571 
572       // If we already have a value for the switch, it has to match!
573       if (!setValueOnce(ICI->getOperand(0)))
574         return false;
575 
576       UsedICmps++;
577       Vals.push_back(C);
578       return ICI->getOperand(0);
579     }
580 
581     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
582     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
583         ICI->getPredicate(), C->getValue());
584 
585     // Shift the range if the compare is fed by an add. This is the range
586     // compare idiom as emitted by instcombine.
587     Value *CandidateVal = I->getOperand(0);
588     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
589       Span = Span.subtract(*RHSC);
590       CandidateVal = RHSVal;
591     }
592 
593     // If this is an and/!= check, then we are looking to build the set of
594     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
595     // x != 0 && x != 1.
596     if (!isEQ)
597       Span = Span.inverse();
598 
599     // If there are a ton of values, we don't want to make a ginormous switch.
600     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
601       return false;
602     }
603 
604     // If we already have a value for the switch, it has to match!
605     if (!setValueOnce(CandidateVal))
606       return false;
607 
608     // Add all values from the range to the set
609     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
610       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
611 
612     UsedICmps++;
613     return true;
614   }
615 
616   /// Given a potentially 'or'd or 'and'd together collection of icmp
617   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
618   /// the value being compared, and stick the list constants into the Vals
619   /// vector.
620   /// One "Extra" case is allowed to differ from the other.
621   void gather(Value *V) {
622     Instruction *I = dyn_cast<Instruction>(V);
623     bool isEQ = (I->getOpcode() == Instruction::Or);
624 
625     // Keep a stack (SmallVector for efficiency) for depth-first traversal
626     SmallVector<Value *, 8> DFT;
627     SmallPtrSet<Value *, 8> Visited;
628 
629     // Initialize
630     Visited.insert(V);
631     DFT.push_back(V);
632 
633     while (!DFT.empty()) {
634       V = DFT.pop_back_val();
635 
636       if (Instruction *I = dyn_cast<Instruction>(V)) {
637         // If it is a || (or && depending on isEQ), process the operands.
638         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
639           if (Visited.insert(I->getOperand(1)).second)
640             DFT.push_back(I->getOperand(1));
641           if (Visited.insert(I->getOperand(0)).second)
642             DFT.push_back(I->getOperand(0));
643           continue;
644         }
645 
646         // Try to match the current instruction
647         if (matchInstruction(I, isEQ))
648           // Match succeed, continue the loop
649           continue;
650       }
651 
652       // One element of the sequence of || (or &&) could not be match as a
653       // comparison against the same value as the others.
654       // We allow only one "Extra" case to be checked before the switch
655       if (!Extra) {
656         Extra = V;
657         continue;
658       }
659       // Failed to parse a proper sequence, abort now
660       CompValue = nullptr;
661       break;
662     }
663   }
664 };
665 
666 } // end anonymous namespace
667 
668 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
669   Instruction *Cond = nullptr;
670   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
671     Cond = dyn_cast<Instruction>(SI->getCondition());
672   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
673     if (BI->isConditional())
674       Cond = dyn_cast<Instruction>(BI->getCondition());
675   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
676     Cond = dyn_cast<Instruction>(IBI->getAddress());
677   }
678 
679   TI->eraseFromParent();
680   if (Cond)
681     RecursivelyDeleteTriviallyDeadInstructions(Cond);
682 }
683 
684 /// Return true if the specified terminator checks
685 /// to see if a value is equal to constant integer value.
686 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
687   Value *CV = nullptr;
688   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
689     // Do not permit merging of large switch instructions into their
690     // predecessors unless there is only one predecessor.
691     if (SI->getNumSuccessors() * pred_size(SI->getParent()) <= 128)
692       CV = SI->getCondition();
693   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
694     if (BI->isConditional() && BI->getCondition()->hasOneUse())
695       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
696         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
697           CV = ICI->getOperand(0);
698       }
699 
700   // Unwrap any lossless ptrtoint cast.
701   if (CV) {
702     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
703       Value *Ptr = PTII->getPointerOperand();
704       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
705         CV = Ptr;
706     }
707   }
708   return CV;
709 }
710 
711 /// Given a value comparison instruction,
712 /// decode all of the 'cases' that it represents and return the 'default' block.
713 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
714     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
715   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
716     Cases.reserve(SI->getNumCases());
717     for (auto Case : SI->cases())
718       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
719                                                   Case.getCaseSuccessor()));
720     return SI->getDefaultDest();
721   }
722 
723   BranchInst *BI = cast<BranchInst>(TI);
724   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
725   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
726   Cases.push_back(ValueEqualityComparisonCase(
727       GetConstantInt(ICI->getOperand(1), DL), Succ));
728   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
729 }
730 
731 /// Given a vector of bb/value pairs, remove any entries
732 /// in the list that match the specified block.
733 static void
734 EliminateBlockCases(BasicBlock *BB,
735                     std::vector<ValueEqualityComparisonCase> &Cases) {
736   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
737 }
738 
739 /// Return true if there are any keys in C1 that exist in C2 as well.
740 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
741                           std::vector<ValueEqualityComparisonCase> &C2) {
742   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
743 
744   // Make V1 be smaller than V2.
745   if (V1->size() > V2->size())
746     std::swap(V1, V2);
747 
748   if (V1->empty())
749     return false;
750   if (V1->size() == 1) {
751     // Just scan V2.
752     ConstantInt *TheVal = (*V1)[0].Value;
753     for (unsigned i = 0, e = V2->size(); i != e; ++i)
754       if (TheVal == (*V2)[i].Value)
755         return true;
756   }
757 
758   // Otherwise, just sort both lists and compare element by element.
759   array_pod_sort(V1->begin(), V1->end());
760   array_pod_sort(V2->begin(), V2->end());
761   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
762   while (i1 != e1 && i2 != e2) {
763     if ((*V1)[i1].Value == (*V2)[i2].Value)
764       return true;
765     if ((*V1)[i1].Value < (*V2)[i2].Value)
766       ++i1;
767     else
768       ++i2;
769   }
770   return false;
771 }
772 
773 // Set branch weights on SwitchInst. This sets the metadata if there is at
774 // least one non-zero weight.
775 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
776   // Check that there is at least one non-zero weight. Otherwise, pass
777   // nullptr to setMetadata which will erase the existing metadata.
778   MDNode *N = nullptr;
779   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
780     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
781   SI->setMetadata(LLVMContext::MD_prof, N);
782 }
783 
784 // Similar to the above, but for branch and select instructions that take
785 // exactly 2 weights.
786 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
787                              uint32_t FalseWeight) {
788   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
789   // Check that there is at least one non-zero weight. Otherwise, pass
790   // nullptr to setMetadata which will erase the existing metadata.
791   MDNode *N = nullptr;
792   if (TrueWeight || FalseWeight)
793     N = MDBuilder(I->getParent()->getContext())
794             .createBranchWeights(TrueWeight, FalseWeight);
795   I->setMetadata(LLVMContext::MD_prof, N);
796 }
797 
798 /// If TI is known to be a terminator instruction and its block is known to
799 /// only have a single predecessor block, check to see if that predecessor is
800 /// also a value comparison with the same value, and if that comparison
801 /// determines the outcome of this comparison. If so, simplify TI. This does a
802 /// very limited form of jump threading.
803 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
804     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
805   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
806   if (!PredVal)
807     return false; // Not a value comparison in predecessor.
808 
809   Value *ThisVal = isValueEqualityComparison(TI);
810   assert(ThisVal && "This isn't a value comparison!!");
811   if (ThisVal != PredVal)
812     return false; // Different predicates.
813 
814   // TODO: Preserve branch weight metadata, similarly to how
815   // FoldValueComparisonIntoPredecessors preserves it.
816 
817   // Find out information about when control will move from Pred to TI's block.
818   std::vector<ValueEqualityComparisonCase> PredCases;
819   BasicBlock *PredDef =
820       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
821   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
822 
823   // Find information about how control leaves this block.
824   std::vector<ValueEqualityComparisonCase> ThisCases;
825   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
826   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
827 
828   // If TI's block is the default block from Pred's comparison, potentially
829   // simplify TI based on this knowledge.
830   if (PredDef == TI->getParent()) {
831     // If we are here, we know that the value is none of those cases listed in
832     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
833     // can simplify TI.
834     if (!ValuesOverlap(PredCases, ThisCases))
835       return false;
836 
837     if (isa<BranchInst>(TI)) {
838       // Okay, one of the successors of this condbr is dead.  Convert it to a
839       // uncond br.
840       assert(ThisCases.size() == 1 && "Branch can only have one case!");
841       // Insert the new branch.
842       Instruction *NI = Builder.CreateBr(ThisDef);
843       (void)NI;
844 
845       // Remove PHI node entries for the dead edge.
846       ThisCases[0].Dest->removePredecessor(TI->getParent());
847 
848       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
849                         << "Through successor TI: " << *TI << "Leaving: " << *NI
850                         << "\n");
851 
852       EraseTerminatorInstAndDCECond(TI);
853       return true;
854     }
855 
856     SwitchInst *SI = cast<SwitchInst>(TI);
857     // Okay, TI has cases that are statically dead, prune them away.
858     SmallPtrSet<Constant *, 16> DeadCases;
859     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
860       DeadCases.insert(PredCases[i].Value);
861 
862     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
863                       << "Through successor TI: " << *TI);
864 
865     // Collect branch weights into a vector.
866     SmallVector<uint32_t, 8> Weights;
867     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
868     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
869     if (HasWeight)
870       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
871            ++MD_i) {
872         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
873         Weights.push_back(CI->getValue().getZExtValue());
874       }
875     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
876       --i;
877       if (DeadCases.count(i->getCaseValue())) {
878         if (HasWeight) {
879           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
880           Weights.pop_back();
881         }
882         i->getCaseSuccessor()->removePredecessor(TI->getParent());
883         SI->removeCase(i);
884       }
885     }
886     if (HasWeight && Weights.size() >= 2)
887       setBranchWeights(SI, Weights);
888 
889     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
890     return true;
891   }
892 
893   // Otherwise, TI's block must correspond to some matched value.  Find out
894   // which value (or set of values) this is.
895   ConstantInt *TIV = nullptr;
896   BasicBlock *TIBB = TI->getParent();
897   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
898     if (PredCases[i].Dest == TIBB) {
899       if (TIV)
900         return false; // Cannot handle multiple values coming to this block.
901       TIV = PredCases[i].Value;
902     }
903   assert(TIV && "No edge from pred to succ?");
904 
905   // Okay, we found the one constant that our value can be if we get into TI's
906   // BB.  Find out which successor will unconditionally be branched to.
907   BasicBlock *TheRealDest = nullptr;
908   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
909     if (ThisCases[i].Value == TIV) {
910       TheRealDest = ThisCases[i].Dest;
911       break;
912     }
913 
914   // If not handled by any explicit cases, it is handled by the default case.
915   if (!TheRealDest)
916     TheRealDest = ThisDef;
917 
918   // Remove PHI node entries for dead edges.
919   BasicBlock *CheckEdge = TheRealDest;
920   for (BasicBlock *Succ : successors(TIBB))
921     if (Succ != CheckEdge)
922       Succ->removePredecessor(TIBB);
923     else
924       CheckEdge = nullptr;
925 
926   // Insert the new branch.
927   Instruction *NI = Builder.CreateBr(TheRealDest);
928   (void)NI;
929 
930   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
931                     << "Through successor TI: " << *TI << "Leaving: " << *NI
932                     << "\n");
933 
934   EraseTerminatorInstAndDCECond(TI);
935   return true;
936 }
937 
938 namespace {
939 
940 /// This class implements a stable ordering of constant
941 /// integers that does not depend on their address.  This is important for
942 /// applications that sort ConstantInt's to ensure uniqueness.
943 struct ConstantIntOrdering {
944   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
945     return LHS->getValue().ult(RHS->getValue());
946   }
947 };
948 
949 } // end anonymous namespace
950 
951 static int ConstantIntSortPredicate(ConstantInt *const *P1,
952                                     ConstantInt *const *P2) {
953   const ConstantInt *LHS = *P1;
954   const ConstantInt *RHS = *P2;
955   if (LHS == RHS)
956     return 0;
957   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
958 }
959 
960 static inline bool HasBranchWeights(const Instruction *I) {
961   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
962   if (ProfMD && ProfMD->getOperand(0))
963     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
964       return MDS->getString().equals("branch_weights");
965 
966   return false;
967 }
968 
969 /// Get Weights of a given TerminatorInst, the default weight is at the front
970 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
971 /// metadata.
972 static void GetBranchWeights(TerminatorInst *TI,
973                              SmallVectorImpl<uint64_t> &Weights) {
974   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
975   assert(MD);
976   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
977     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
978     Weights.push_back(CI->getValue().getZExtValue());
979   }
980 
981   // If TI is a conditional eq, the default case is the false case,
982   // and the corresponding branch-weight data is at index 2. We swap the
983   // default weight to be the first entry.
984   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
985     assert(Weights.size() == 2);
986     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
987     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
988       std::swap(Weights.front(), Weights.back());
989   }
990 }
991 
992 /// Keep halving the weights until all can fit in uint32_t.
993 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
994   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
995   if (Max > UINT_MAX) {
996     unsigned Offset = 32 - countLeadingZeros(Max);
997     for (uint64_t &I : Weights)
998       I >>= Offset;
999   }
1000 }
1001 
1002 /// The specified terminator is a value equality comparison instruction
1003 /// (either a switch or a branch on "X == c").
1004 /// See if any of the predecessors of the terminator block are value comparisons
1005 /// on the same value.  If so, and if safe to do so, fold them together.
1006 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
1007                                                          IRBuilder<> &Builder) {
1008   BasicBlock *BB = TI->getParent();
1009   Value *CV = isValueEqualityComparison(TI); // CondVal
1010   assert(CV && "Not a comparison?");
1011   bool Changed = false;
1012 
1013   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1014   while (!Preds.empty()) {
1015     BasicBlock *Pred = Preds.pop_back_val();
1016 
1017     // See if the predecessor is a comparison with the same value.
1018     TerminatorInst *PTI = Pred->getTerminator();
1019     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1020 
1021     if (PCV == CV && TI != PTI) {
1022       SmallSetVector<BasicBlock*, 4> FailBlocks;
1023       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1024         for (auto *Succ : FailBlocks) {
1025           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1026             return false;
1027         }
1028       }
1029 
1030       // Figure out which 'cases' to copy from SI to PSI.
1031       std::vector<ValueEqualityComparisonCase> BBCases;
1032       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1033 
1034       std::vector<ValueEqualityComparisonCase> PredCases;
1035       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1036 
1037       // Based on whether the default edge from PTI goes to BB or not, fill in
1038       // PredCases and PredDefault with the new switch cases we would like to
1039       // build.
1040       SmallVector<BasicBlock *, 8> NewSuccessors;
1041 
1042       // Update the branch weight metadata along the way
1043       SmallVector<uint64_t, 8> Weights;
1044       bool PredHasWeights = HasBranchWeights(PTI);
1045       bool SuccHasWeights = HasBranchWeights(TI);
1046 
1047       if (PredHasWeights) {
1048         GetBranchWeights(PTI, Weights);
1049         // branch-weight metadata is inconsistent here.
1050         if (Weights.size() != 1 + PredCases.size())
1051           PredHasWeights = SuccHasWeights = false;
1052       } else if (SuccHasWeights)
1053         // If there are no predecessor weights but there are successor weights,
1054         // populate Weights with 1, which will later be scaled to the sum of
1055         // successor's weights
1056         Weights.assign(1 + PredCases.size(), 1);
1057 
1058       SmallVector<uint64_t, 8> SuccWeights;
1059       if (SuccHasWeights) {
1060         GetBranchWeights(TI, SuccWeights);
1061         // branch-weight metadata is inconsistent here.
1062         if (SuccWeights.size() != 1 + BBCases.size())
1063           PredHasWeights = SuccHasWeights = false;
1064       } else if (PredHasWeights)
1065         SuccWeights.assign(1 + BBCases.size(), 1);
1066 
1067       if (PredDefault == BB) {
1068         // If this is the default destination from PTI, only the edges in TI
1069         // that don't occur in PTI, or that branch to BB will be activated.
1070         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1071         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1072           if (PredCases[i].Dest != BB)
1073             PTIHandled.insert(PredCases[i].Value);
1074           else {
1075             // The default destination is BB, we don't need explicit targets.
1076             std::swap(PredCases[i], PredCases.back());
1077 
1078             if (PredHasWeights || SuccHasWeights) {
1079               // Increase weight for the default case.
1080               Weights[0] += Weights[i + 1];
1081               std::swap(Weights[i + 1], Weights.back());
1082               Weights.pop_back();
1083             }
1084 
1085             PredCases.pop_back();
1086             --i;
1087             --e;
1088           }
1089 
1090         // Reconstruct the new switch statement we will be building.
1091         if (PredDefault != BBDefault) {
1092           PredDefault->removePredecessor(Pred);
1093           PredDefault = BBDefault;
1094           NewSuccessors.push_back(BBDefault);
1095         }
1096 
1097         unsigned CasesFromPred = Weights.size();
1098         uint64_t ValidTotalSuccWeight = 0;
1099         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1100           if (!PTIHandled.count(BBCases[i].Value) &&
1101               BBCases[i].Dest != BBDefault) {
1102             PredCases.push_back(BBCases[i]);
1103             NewSuccessors.push_back(BBCases[i].Dest);
1104             if (SuccHasWeights || PredHasWeights) {
1105               // The default weight is at index 0, so weight for the ith case
1106               // should be at index i+1. Scale the cases from successor by
1107               // PredDefaultWeight (Weights[0]).
1108               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1109               ValidTotalSuccWeight += SuccWeights[i + 1];
1110             }
1111           }
1112 
1113         if (SuccHasWeights || PredHasWeights) {
1114           ValidTotalSuccWeight += SuccWeights[0];
1115           // Scale the cases from predecessor by ValidTotalSuccWeight.
1116           for (unsigned i = 1; i < CasesFromPred; ++i)
1117             Weights[i] *= ValidTotalSuccWeight;
1118           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1119           Weights[0] *= SuccWeights[0];
1120         }
1121       } else {
1122         // If this is not the default destination from PSI, only the edges
1123         // in SI that occur in PSI with a destination of BB will be
1124         // activated.
1125         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1126         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1127         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1128           if (PredCases[i].Dest == BB) {
1129             PTIHandled.insert(PredCases[i].Value);
1130 
1131             if (PredHasWeights || SuccHasWeights) {
1132               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1133               std::swap(Weights[i + 1], Weights.back());
1134               Weights.pop_back();
1135             }
1136 
1137             std::swap(PredCases[i], PredCases.back());
1138             PredCases.pop_back();
1139             --i;
1140             --e;
1141           }
1142 
1143         // Okay, now we know which constants were sent to BB from the
1144         // predecessor.  Figure out where they will all go now.
1145         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1146           if (PTIHandled.count(BBCases[i].Value)) {
1147             // If this is one we are capable of getting...
1148             if (PredHasWeights || SuccHasWeights)
1149               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1150             PredCases.push_back(BBCases[i]);
1151             NewSuccessors.push_back(BBCases[i].Dest);
1152             PTIHandled.erase(
1153                 BBCases[i].Value); // This constant is taken care of
1154           }
1155 
1156         // If there are any constants vectored to BB that TI doesn't handle,
1157         // they must go to the default destination of TI.
1158         for (ConstantInt *I : PTIHandled) {
1159           if (PredHasWeights || SuccHasWeights)
1160             Weights.push_back(WeightsForHandled[I]);
1161           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1162           NewSuccessors.push_back(BBDefault);
1163         }
1164       }
1165 
1166       // Okay, at this point, we know which new successor Pred will get.  Make
1167       // sure we update the number of entries in the PHI nodes for these
1168       // successors.
1169       for (BasicBlock *NewSuccessor : NewSuccessors)
1170         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1171 
1172       Builder.SetInsertPoint(PTI);
1173       // Convert pointer to int before we switch.
1174       if (CV->getType()->isPointerTy()) {
1175         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1176                                     "magicptr");
1177       }
1178 
1179       // Now that the successors are updated, create the new Switch instruction.
1180       SwitchInst *NewSI =
1181           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1182       NewSI->setDebugLoc(PTI->getDebugLoc());
1183       for (ValueEqualityComparisonCase &V : PredCases)
1184         NewSI->addCase(V.Value, V.Dest);
1185 
1186       if (PredHasWeights || SuccHasWeights) {
1187         // Halve the weights if any of them cannot fit in an uint32_t
1188         FitWeights(Weights);
1189 
1190         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1191 
1192         setBranchWeights(NewSI, MDWeights);
1193       }
1194 
1195       EraseTerminatorInstAndDCECond(PTI);
1196 
1197       // Okay, last check.  If BB is still a successor of PSI, then we must
1198       // have an infinite loop case.  If so, add an infinitely looping block
1199       // to handle the case to preserve the behavior of the code.
1200       BasicBlock *InfLoopBlock = nullptr;
1201       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1202         if (NewSI->getSuccessor(i) == BB) {
1203           if (!InfLoopBlock) {
1204             // Insert it at the end of the function, because it's either code,
1205             // or it won't matter if it's hot. :)
1206             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1207                                               BB->getParent());
1208             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1209           }
1210           NewSI->setSuccessor(i, InfLoopBlock);
1211         }
1212 
1213       Changed = true;
1214     }
1215   }
1216   return Changed;
1217 }
1218 
1219 // If we would need to insert a select that uses the value of this invoke
1220 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1221 // can't hoist the invoke, as there is nowhere to put the select in this case.
1222 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1223                                 Instruction *I1, Instruction *I2) {
1224   for (BasicBlock *Succ : successors(BB1)) {
1225     for (const PHINode &PN : Succ->phis()) {
1226       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1227       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1228       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1229         return false;
1230       }
1231     }
1232   }
1233   return true;
1234 }
1235 
1236 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1237 
1238 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1239 /// in the two blocks up into the branch block. The caller of this function
1240 /// guarantees that BI's block dominates BB1 and BB2.
1241 static bool HoistThenElseCodeToIf(BranchInst *BI,
1242                                   const TargetTransformInfo &TTI) {
1243   // This does very trivial matching, with limited scanning, to find identical
1244   // instructions in the two blocks.  In particular, we don't want to get into
1245   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1246   // such, we currently just scan for obviously identical instructions in an
1247   // identical order.
1248   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1249   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1250 
1251   BasicBlock::iterator BB1_Itr = BB1->begin();
1252   BasicBlock::iterator BB2_Itr = BB2->begin();
1253 
1254   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1255   // Skip debug info if it is not identical.
1256   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1257   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1258   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1259     while (isa<DbgInfoIntrinsic>(I1))
1260       I1 = &*BB1_Itr++;
1261     while (isa<DbgInfoIntrinsic>(I2))
1262       I2 = &*BB2_Itr++;
1263   }
1264   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1265       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1266     return false;
1267 
1268   BasicBlock *BIParent = BI->getParent();
1269 
1270   bool Changed = false;
1271   do {
1272     // If we are hoisting the terminator instruction, don't move one (making a
1273     // broken BB), instead clone it, and remove BI.
1274     if (isa<TerminatorInst>(I1))
1275       goto HoistTerminator;
1276 
1277     // If we're going to hoist a call, make sure that the two instructions we're
1278     // commoning/hoisting are both marked with musttail, or neither of them is
1279     // marked as such. Otherwise, we might end up in a situation where we hoist
1280     // from a block where the terminator is a `ret` to a block where the terminator
1281     // is a `br`, and `musttail` calls expect to be followed by a return.
1282     auto *C1 = dyn_cast<CallInst>(I1);
1283     auto *C2 = dyn_cast<CallInst>(I2);
1284     if (C1 && C2)
1285       if (C1->isMustTailCall() != C2->isMustTailCall())
1286         return Changed;
1287 
1288     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1289       return Changed;
1290 
1291     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1292       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1293       // The debug location is an integral part of a debug info intrinsic
1294       // and can't be separated from it or replaced.  Instead of attempting
1295       // to merge locations, simply hoist both copies of the intrinsic.
1296       BIParent->getInstList().splice(BI->getIterator(),
1297                                      BB1->getInstList(), I1);
1298       BIParent->getInstList().splice(BI->getIterator(),
1299                                      BB2->getInstList(), I2);
1300       Changed = true;
1301     } else {
1302       // For a normal instruction, we just move one to right before the branch,
1303       // then replace all uses of the other with the first.  Finally, we remove
1304       // the now redundant second instruction.
1305       BIParent->getInstList().splice(BI->getIterator(),
1306                                      BB1->getInstList(), I1);
1307       if (!I2->use_empty())
1308         I2->replaceAllUsesWith(I1);
1309       I1->andIRFlags(I2);
1310       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1311                              LLVMContext::MD_range,
1312                              LLVMContext::MD_fpmath,
1313                              LLVMContext::MD_invariant_load,
1314                              LLVMContext::MD_nonnull,
1315                              LLVMContext::MD_invariant_group,
1316                              LLVMContext::MD_align,
1317                              LLVMContext::MD_dereferenceable,
1318                              LLVMContext::MD_dereferenceable_or_null,
1319                              LLVMContext::MD_mem_parallel_loop_access};
1320       combineMetadata(I1, I2, KnownIDs);
1321 
1322       // I1 and I2 are being combined into a single instruction.  Its debug
1323       // location is the merged locations of the original instructions.
1324       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1325 
1326       I2->eraseFromParent();
1327       Changed = true;
1328     }
1329 
1330     I1 = &*BB1_Itr++;
1331     I2 = &*BB2_Itr++;
1332     // Skip debug info if it is not identical.
1333     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1334     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1335     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1336       while (isa<DbgInfoIntrinsic>(I1))
1337         I1 = &*BB1_Itr++;
1338       while (isa<DbgInfoIntrinsic>(I2))
1339         I2 = &*BB2_Itr++;
1340     }
1341   } while (I1->isIdenticalToWhenDefined(I2));
1342 
1343   return true;
1344 
1345 HoistTerminator:
1346   // It may not be possible to hoist an invoke.
1347   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1348     return Changed;
1349 
1350   for (BasicBlock *Succ : successors(BB1)) {
1351     for (PHINode &PN : Succ->phis()) {
1352       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1353       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1354       if (BB1V == BB2V)
1355         continue;
1356 
1357       // Check for passingValueIsAlwaysUndefined here because we would rather
1358       // eliminate undefined control flow then converting it to a select.
1359       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1360           passingValueIsAlwaysUndefined(BB2V, &PN))
1361         return Changed;
1362 
1363       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1364         return Changed;
1365       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1366         return Changed;
1367     }
1368   }
1369 
1370   // Okay, it is safe to hoist the terminator.
1371   Instruction *NT = I1->clone();
1372   BIParent->getInstList().insert(BI->getIterator(), NT);
1373   if (!NT->getType()->isVoidTy()) {
1374     I1->replaceAllUsesWith(NT);
1375     I2->replaceAllUsesWith(NT);
1376     NT->takeName(I1);
1377   }
1378 
1379   IRBuilder<NoFolder> Builder(NT);
1380   // Hoisting one of the terminators from our successor is a great thing.
1381   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1382   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1383   // nodes, so we insert select instruction to compute the final result.
1384   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1385   for (BasicBlock *Succ : successors(BB1)) {
1386     for (PHINode &PN : Succ->phis()) {
1387       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1388       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1389       if (BB1V == BB2V)
1390         continue;
1391 
1392       // These values do not agree.  Insert a select instruction before NT
1393       // that determines the right value.
1394       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1395       if (!SI)
1396         SI = cast<SelectInst>(
1397             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1398                                  BB1V->getName() + "." + BB2V->getName(), BI));
1399 
1400       // Make the PHI node use the select for all incoming values for BB1/BB2
1401       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1402         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1403           PN.setIncomingValue(i, SI);
1404     }
1405   }
1406 
1407   // Update any PHI nodes in our new successors.
1408   for (BasicBlock *Succ : successors(BB1))
1409     AddPredecessorToBlock(Succ, BIParent, BB1);
1410 
1411   EraseTerminatorInstAndDCECond(BI);
1412   return true;
1413 }
1414 
1415 // All instructions in Insts belong to different blocks that all unconditionally
1416 // branch to a common successor. Analyze each instruction and return true if it
1417 // would be possible to sink them into their successor, creating one common
1418 // instruction instead. For every value that would be required to be provided by
1419 // PHI node (because an operand varies in each input block), add to PHIOperands.
1420 static bool canSinkInstructions(
1421     ArrayRef<Instruction *> Insts,
1422     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1423   // Prune out obviously bad instructions to move. Any non-store instruction
1424   // must have exactly one use, and we check later that use is by a single,
1425   // common PHI instruction in the successor.
1426   for (auto *I : Insts) {
1427     // These instructions may change or break semantics if moved.
1428     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1429         I->getType()->isTokenTy())
1430       return false;
1431 
1432     // Conservatively return false if I is an inline-asm instruction. Sinking
1433     // and merging inline-asm instructions can potentially create arguments
1434     // that cannot satisfy the inline-asm constraints.
1435     if (const auto *C = dyn_cast<CallInst>(I))
1436       if (C->isInlineAsm())
1437         return false;
1438 
1439     // Everything must have only one use too, apart from stores which
1440     // have no uses.
1441     if (!isa<StoreInst>(I) && !I->hasOneUse())
1442       return false;
1443   }
1444 
1445   const Instruction *I0 = Insts.front();
1446   for (auto *I : Insts)
1447     if (!I->isSameOperationAs(I0))
1448       return false;
1449 
1450   // All instructions in Insts are known to be the same opcode. If they aren't
1451   // stores, check the only user of each is a PHI or in the same block as the
1452   // instruction, because if a user is in the same block as an instruction
1453   // we're contemplating sinking, it must already be determined to be sinkable.
1454   if (!isa<StoreInst>(I0)) {
1455     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1456     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1457     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1458           auto *U = cast<Instruction>(*I->user_begin());
1459           return (PNUse &&
1460                   PNUse->getParent() == Succ &&
1461                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1462                  U->getParent() == I->getParent();
1463         }))
1464       return false;
1465   }
1466 
1467   // Because SROA can't handle speculating stores of selects, try not
1468   // to sink loads or stores of allocas when we'd have to create a PHI for
1469   // the address operand. Also, because it is likely that loads or stores
1470   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1471   // This can cause code churn which can have unintended consequences down
1472   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1473   // FIXME: This is a workaround for a deficiency in SROA - see
1474   // https://llvm.org/bugs/show_bug.cgi?id=30188
1475   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1476         return isa<AllocaInst>(I->getOperand(1));
1477       }))
1478     return false;
1479   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1480         return isa<AllocaInst>(I->getOperand(0));
1481       }))
1482     return false;
1483 
1484   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1485     if (I0->getOperand(OI)->getType()->isTokenTy())
1486       // Don't touch any operand of token type.
1487       return false;
1488 
1489     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1490       assert(I->getNumOperands() == I0->getNumOperands());
1491       return I->getOperand(OI) == I0->getOperand(OI);
1492     };
1493     if (!all_of(Insts, SameAsI0)) {
1494       if (!canReplaceOperandWithVariable(I0, OI))
1495         // We can't create a PHI from this GEP.
1496         return false;
1497       // Don't create indirect calls! The called value is the final operand.
1498       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1499         // FIXME: if the call was *already* indirect, we should do this.
1500         return false;
1501       }
1502       for (auto *I : Insts)
1503         PHIOperands[I].push_back(I->getOperand(OI));
1504     }
1505   }
1506   return true;
1507 }
1508 
1509 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1510 // instruction of every block in Blocks to their common successor, commoning
1511 // into one instruction.
1512 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1513   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1514 
1515   // canSinkLastInstruction returning true guarantees that every block has at
1516   // least one non-terminator instruction.
1517   SmallVector<Instruction*,4> Insts;
1518   for (auto *BB : Blocks) {
1519     Instruction *I = BB->getTerminator();
1520     do {
1521       I = I->getPrevNode();
1522     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1523     if (!isa<DbgInfoIntrinsic>(I))
1524       Insts.push_back(I);
1525   }
1526 
1527   // The only checking we need to do now is that all users of all instructions
1528   // are the same PHI node. canSinkLastInstruction should have checked this but
1529   // it is slightly over-aggressive - it gets confused by commutative instructions
1530   // so double-check it here.
1531   Instruction *I0 = Insts.front();
1532   if (!isa<StoreInst>(I0)) {
1533     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1534     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1535           auto *U = cast<Instruction>(*I->user_begin());
1536           return U == PNUse;
1537         }))
1538       return false;
1539   }
1540 
1541   // We don't need to do any more checking here; canSinkLastInstruction should
1542   // have done it all for us.
1543   SmallVector<Value*, 4> NewOperands;
1544   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1545     // This check is different to that in canSinkLastInstruction. There, we
1546     // cared about the global view once simplifycfg (and instcombine) have
1547     // completed - it takes into account PHIs that become trivially
1548     // simplifiable.  However here we need a more local view; if an operand
1549     // differs we create a PHI and rely on instcombine to clean up the very
1550     // small mess we may make.
1551     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1552       return I->getOperand(O) != I0->getOperand(O);
1553     });
1554     if (!NeedPHI) {
1555       NewOperands.push_back(I0->getOperand(O));
1556       continue;
1557     }
1558 
1559     // Create a new PHI in the successor block and populate it.
1560     auto *Op = I0->getOperand(O);
1561     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1562     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1563                                Op->getName() + ".sink", &BBEnd->front());
1564     for (auto *I : Insts)
1565       PN->addIncoming(I->getOperand(O), I->getParent());
1566     NewOperands.push_back(PN);
1567   }
1568 
1569   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1570   // and move it to the start of the successor block.
1571   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1572     I0->getOperandUse(O).set(NewOperands[O]);
1573   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1574 
1575   // Update metadata and IR flags, and merge debug locations.
1576   for (auto *I : Insts)
1577     if (I != I0) {
1578       // The debug location for the "common" instruction is the merged locations
1579       // of all the commoned instructions.  We start with the original location
1580       // of the "common" instruction and iteratively merge each location in the
1581       // loop below.
1582       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1583       // However, as N-way merge for CallInst is rare, so we use simplified API
1584       // instead of using complex API for N-way merge.
1585       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1586       combineMetadataForCSE(I0, I);
1587       I0->andIRFlags(I);
1588     }
1589 
1590   if (!isa<StoreInst>(I0)) {
1591     // canSinkLastInstruction checked that all instructions were used by
1592     // one and only one PHI node. Find that now, RAUW it to our common
1593     // instruction and nuke it.
1594     assert(I0->hasOneUse());
1595     auto *PN = cast<PHINode>(*I0->user_begin());
1596     PN->replaceAllUsesWith(I0);
1597     PN->eraseFromParent();
1598   }
1599 
1600   // Finally nuke all instructions apart from the common instruction.
1601   for (auto *I : Insts)
1602     if (I != I0)
1603       I->eraseFromParent();
1604 
1605   return true;
1606 }
1607 
1608 namespace {
1609 
1610   // LockstepReverseIterator - Iterates through instructions
1611   // in a set of blocks in reverse order from the first non-terminator.
1612   // For example (assume all blocks have size n):
1613   //   LockstepReverseIterator I([B1, B2, B3]);
1614   //   *I-- = [B1[n], B2[n], B3[n]];
1615   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1616   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1617   //   ...
1618   class LockstepReverseIterator {
1619     ArrayRef<BasicBlock*> Blocks;
1620     SmallVector<Instruction*,4> Insts;
1621     bool Fail;
1622 
1623   public:
1624     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1625       reset();
1626     }
1627 
1628     void reset() {
1629       Fail = false;
1630       Insts.clear();
1631       for (auto *BB : Blocks) {
1632         Instruction *Inst = BB->getTerminator();
1633         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1634           Inst = Inst->getPrevNode();
1635         if (!Inst) {
1636           // Block wasn't big enough.
1637           Fail = true;
1638           return;
1639         }
1640         Insts.push_back(Inst);
1641       }
1642     }
1643 
1644     bool isValid() const {
1645       return !Fail;
1646     }
1647 
1648     void operator--() {
1649       if (Fail)
1650         return;
1651       for (auto *&Inst : Insts) {
1652         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1653           Inst = Inst->getPrevNode();
1654         // Already at beginning of block.
1655         if (!Inst) {
1656           Fail = true;
1657           return;
1658         }
1659       }
1660     }
1661 
1662     ArrayRef<Instruction*> operator * () const {
1663       return Insts;
1664     }
1665   };
1666 
1667 } // end anonymous namespace
1668 
1669 /// Check whether BB's predecessors end with unconditional branches. If it is
1670 /// true, sink any common code from the predecessors to BB.
1671 /// We also allow one predecessor to end with conditional branch (but no more
1672 /// than one).
1673 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1674   // We support two situations:
1675   //   (1) all incoming arcs are unconditional
1676   //   (2) one incoming arc is conditional
1677   //
1678   // (2) is very common in switch defaults and
1679   // else-if patterns;
1680   //
1681   //   if (a) f(1);
1682   //   else if (b) f(2);
1683   //
1684   // produces:
1685   //
1686   //       [if]
1687   //      /    \
1688   //    [f(1)] [if]
1689   //      |     | \
1690   //      |     |  |
1691   //      |  [f(2)]|
1692   //       \    | /
1693   //        [ end ]
1694   //
1695   // [end] has two unconditional predecessor arcs and one conditional. The
1696   // conditional refers to the implicit empty 'else' arc. This conditional
1697   // arc can also be caused by an empty default block in a switch.
1698   //
1699   // In this case, we attempt to sink code from all *unconditional* arcs.
1700   // If we can sink instructions from these arcs (determined during the scan
1701   // phase below) we insert a common successor for all unconditional arcs and
1702   // connect that to [end], to enable sinking:
1703   //
1704   //       [if]
1705   //      /    \
1706   //    [x(1)] [if]
1707   //      |     | \
1708   //      |     |  \
1709   //      |  [x(2)] |
1710   //       \   /    |
1711   //   [sink.split] |
1712   //         \     /
1713   //         [ end ]
1714   //
1715   SmallVector<BasicBlock*,4> UnconditionalPreds;
1716   Instruction *Cond = nullptr;
1717   for (auto *B : predecessors(BB)) {
1718     auto *T = B->getTerminator();
1719     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1720       UnconditionalPreds.push_back(B);
1721     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1722       Cond = T;
1723     else
1724       return false;
1725   }
1726   if (UnconditionalPreds.size() < 2)
1727     return false;
1728 
1729   bool Changed = false;
1730   // We take a two-step approach to tail sinking. First we scan from the end of
1731   // each block upwards in lockstep. If the n'th instruction from the end of each
1732   // block can be sunk, those instructions are added to ValuesToSink and we
1733   // carry on. If we can sink an instruction but need to PHI-merge some operands
1734   // (because they're not identical in each instruction) we add these to
1735   // PHIOperands.
1736   unsigned ScanIdx = 0;
1737   SmallPtrSet<Value*,4> InstructionsToSink;
1738   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1739   LockstepReverseIterator LRI(UnconditionalPreds);
1740   while (LRI.isValid() &&
1741          canSinkInstructions(*LRI, PHIOperands)) {
1742     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1743                       << "\n");
1744     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1745     ++ScanIdx;
1746     --LRI;
1747   }
1748 
1749   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1750     unsigned NumPHIdValues = 0;
1751     for (auto *I : *LRI)
1752       for (auto *V : PHIOperands[I])
1753         if (InstructionsToSink.count(V) == 0)
1754           ++NumPHIdValues;
1755     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1756     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1757     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1758         NumPHIInsts++;
1759 
1760     return NumPHIInsts <= 1;
1761   };
1762 
1763   if (ScanIdx > 0 && Cond) {
1764     // Check if we would actually sink anything first! This mutates the CFG and
1765     // adds an extra block. The goal in doing this is to allow instructions that
1766     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1767     // (such as trunc, add) can be sunk and predicated already. So we check that
1768     // we're going to sink at least one non-speculatable instruction.
1769     LRI.reset();
1770     unsigned Idx = 0;
1771     bool Profitable = false;
1772     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1773       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1774         Profitable = true;
1775         break;
1776       }
1777       --LRI;
1778       ++Idx;
1779     }
1780     if (!Profitable)
1781       return false;
1782 
1783     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1784     // We have a conditional edge and we're going to sink some instructions.
1785     // Insert a new block postdominating all blocks we're going to sink from.
1786     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1787       // Edges couldn't be split.
1788       return false;
1789     Changed = true;
1790   }
1791 
1792   // Now that we've analyzed all potential sinking candidates, perform the
1793   // actual sink. We iteratively sink the last non-terminator of the source
1794   // blocks into their common successor unless doing so would require too
1795   // many PHI instructions to be generated (currently only one PHI is allowed
1796   // per sunk instruction).
1797   //
1798   // We can use InstructionsToSink to discount values needing PHI-merging that will
1799   // actually be sunk in a later iteration. This allows us to be more
1800   // aggressive in what we sink. This does allow a false positive where we
1801   // sink presuming a later value will also be sunk, but stop half way through
1802   // and never actually sink it which means we produce more PHIs than intended.
1803   // This is unlikely in practice though.
1804   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1805     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1806                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1807                       << "\n");
1808 
1809     // Because we've sunk every instruction in turn, the current instruction to
1810     // sink is always at index 0.
1811     LRI.reset();
1812     if (!ProfitableToSinkInstruction(LRI)) {
1813       // Too many PHIs would be created.
1814       LLVM_DEBUG(
1815           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1816       break;
1817     }
1818 
1819     if (!sinkLastInstruction(UnconditionalPreds))
1820       return Changed;
1821     NumSinkCommons++;
1822     Changed = true;
1823   }
1824   return Changed;
1825 }
1826 
1827 /// Determine if we can hoist sink a sole store instruction out of a
1828 /// conditional block.
1829 ///
1830 /// We are looking for code like the following:
1831 ///   BrBB:
1832 ///     store i32 %add, i32* %arrayidx2
1833 ///     ... // No other stores or function calls (we could be calling a memory
1834 ///     ... // function).
1835 ///     %cmp = icmp ult %x, %y
1836 ///     br i1 %cmp, label %EndBB, label %ThenBB
1837 ///   ThenBB:
1838 ///     store i32 %add5, i32* %arrayidx2
1839 ///     br label EndBB
1840 ///   EndBB:
1841 ///     ...
1842 ///   We are going to transform this into:
1843 ///   BrBB:
1844 ///     store i32 %add, i32* %arrayidx2
1845 ///     ... //
1846 ///     %cmp = icmp ult %x, %y
1847 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1848 ///     store i32 %add.add5, i32* %arrayidx2
1849 ///     ...
1850 ///
1851 /// \return The pointer to the value of the previous store if the store can be
1852 ///         hoisted into the predecessor block. 0 otherwise.
1853 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1854                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1855   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1856   if (!StoreToHoist)
1857     return nullptr;
1858 
1859   // Volatile or atomic.
1860   if (!StoreToHoist->isSimple())
1861     return nullptr;
1862 
1863   Value *StorePtr = StoreToHoist->getPointerOperand();
1864 
1865   // Look for a store to the same pointer in BrBB.
1866   unsigned MaxNumInstToLookAt = 9;
1867   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1868     if (!MaxNumInstToLookAt)
1869       break;
1870     --MaxNumInstToLookAt;
1871 
1872     // Could be calling an instruction that affects memory like free().
1873     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1874       return nullptr;
1875 
1876     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1877       // Found the previous store make sure it stores to the same location.
1878       if (SI->getPointerOperand() == StorePtr)
1879         // Found the previous store, return its value operand.
1880         return SI->getValueOperand();
1881       return nullptr; // Unknown store.
1882     }
1883   }
1884 
1885   return nullptr;
1886 }
1887 
1888 /// Speculate a conditional basic block flattening the CFG.
1889 ///
1890 /// Note that this is a very risky transform currently. Speculating
1891 /// instructions like this is most often not desirable. Instead, there is an MI
1892 /// pass which can do it with full awareness of the resource constraints.
1893 /// However, some cases are "obvious" and we should do directly. An example of
1894 /// this is speculating a single, reasonably cheap instruction.
1895 ///
1896 /// There is only one distinct advantage to flattening the CFG at the IR level:
1897 /// it makes very common but simplistic optimizations such as are common in
1898 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1899 /// modeling their effects with easier to reason about SSA value graphs.
1900 ///
1901 ///
1902 /// An illustration of this transform is turning this IR:
1903 /// \code
1904 ///   BB:
1905 ///     %cmp = icmp ult %x, %y
1906 ///     br i1 %cmp, label %EndBB, label %ThenBB
1907 ///   ThenBB:
1908 ///     %sub = sub %x, %y
1909 ///     br label BB2
1910 ///   EndBB:
1911 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1912 ///     ...
1913 /// \endcode
1914 ///
1915 /// Into this IR:
1916 /// \code
1917 ///   BB:
1918 ///     %cmp = icmp ult %x, %y
1919 ///     %sub = sub %x, %y
1920 ///     %cond = select i1 %cmp, 0, %sub
1921 ///     ...
1922 /// \endcode
1923 ///
1924 /// \returns true if the conditional block is removed.
1925 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1926                                    const TargetTransformInfo &TTI) {
1927   // Be conservative for now. FP select instruction can often be expensive.
1928   Value *BrCond = BI->getCondition();
1929   if (isa<FCmpInst>(BrCond))
1930     return false;
1931 
1932   BasicBlock *BB = BI->getParent();
1933   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1934 
1935   // If ThenBB is actually on the false edge of the conditional branch, remember
1936   // to swap the select operands later.
1937   bool Invert = false;
1938   if (ThenBB != BI->getSuccessor(0)) {
1939     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1940     Invert = true;
1941   }
1942   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1943 
1944   // Keep a count of how many times instructions are used within CondBB when
1945   // they are candidates for sinking into CondBB. Specifically:
1946   // - They are defined in BB, and
1947   // - They have no side effects, and
1948   // - All of their uses are in CondBB.
1949   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1950 
1951   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1952 
1953   unsigned SpeculationCost = 0;
1954   Value *SpeculatedStoreValue = nullptr;
1955   StoreInst *SpeculatedStore = nullptr;
1956   for (BasicBlock::iterator BBI = ThenBB->begin(),
1957                             BBE = std::prev(ThenBB->end());
1958        BBI != BBE; ++BBI) {
1959     Instruction *I = &*BBI;
1960     // Skip debug info.
1961     if (isa<DbgInfoIntrinsic>(I)) {
1962       SpeculatedDbgIntrinsics.push_back(I);
1963       continue;
1964     }
1965 
1966     // Only speculatively execute a single instruction (not counting the
1967     // terminator) for now.
1968     ++SpeculationCost;
1969     if (SpeculationCost > 1)
1970       return false;
1971 
1972     // Don't hoist the instruction if it's unsafe or expensive.
1973     if (!isSafeToSpeculativelyExecute(I) &&
1974         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1975                                   I, BB, ThenBB, EndBB))))
1976       return false;
1977     if (!SpeculatedStoreValue &&
1978         ComputeSpeculationCost(I, TTI) >
1979             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1980       return false;
1981 
1982     // Store the store speculation candidate.
1983     if (SpeculatedStoreValue)
1984       SpeculatedStore = cast<StoreInst>(I);
1985 
1986     // Do not hoist the instruction if any of its operands are defined but not
1987     // used in BB. The transformation will prevent the operand from
1988     // being sunk into the use block.
1989     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1990       Instruction *OpI = dyn_cast<Instruction>(*i);
1991       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1992         continue; // Not a candidate for sinking.
1993 
1994       ++SinkCandidateUseCounts[OpI];
1995     }
1996   }
1997 
1998   // Consider any sink candidates which are only used in CondBB as costs for
1999   // speculation. Note, while we iterate over a DenseMap here, we are summing
2000   // and so iteration order isn't significant.
2001   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2002            I = SinkCandidateUseCounts.begin(),
2003            E = SinkCandidateUseCounts.end();
2004        I != E; ++I)
2005     if (I->first->getNumUses() == I->second) {
2006       ++SpeculationCost;
2007       if (SpeculationCost > 1)
2008         return false;
2009     }
2010 
2011   // Check that the PHI nodes can be converted to selects.
2012   bool HaveRewritablePHIs = false;
2013   for (PHINode &PN : EndBB->phis()) {
2014     Value *OrigV = PN.getIncomingValueForBlock(BB);
2015     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2016 
2017     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2018     // Skip PHIs which are trivial.
2019     if (ThenV == OrigV)
2020       continue;
2021 
2022     // Don't convert to selects if we could remove undefined behavior instead.
2023     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2024         passingValueIsAlwaysUndefined(ThenV, &PN))
2025       return false;
2026 
2027     HaveRewritablePHIs = true;
2028     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2029     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2030     if (!OrigCE && !ThenCE)
2031       continue; // Known safe and cheap.
2032 
2033     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2034         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2035       return false;
2036     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2037     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2038     unsigned MaxCost =
2039         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2040     if (OrigCost + ThenCost > MaxCost)
2041       return false;
2042 
2043     // Account for the cost of an unfolded ConstantExpr which could end up
2044     // getting expanded into Instructions.
2045     // FIXME: This doesn't account for how many operations are combined in the
2046     // constant expression.
2047     ++SpeculationCost;
2048     if (SpeculationCost > 1)
2049       return false;
2050   }
2051 
2052   // If there are no PHIs to process, bail early. This helps ensure idempotence
2053   // as well.
2054   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2055     return false;
2056 
2057   // If we get here, we can hoist the instruction and if-convert.
2058   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2059 
2060   // Insert a select of the value of the speculated store.
2061   if (SpeculatedStoreValue) {
2062     IRBuilder<NoFolder> Builder(BI);
2063     Value *TrueV = SpeculatedStore->getValueOperand();
2064     Value *FalseV = SpeculatedStoreValue;
2065     if (Invert)
2066       std::swap(TrueV, FalseV);
2067     Value *S = Builder.CreateSelect(
2068         BrCond, TrueV, FalseV, "spec.store.select", BI);
2069     SpeculatedStore->setOperand(0, S);
2070     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2071                                          SpeculatedStore->getDebugLoc());
2072   }
2073 
2074   // Metadata can be dependent on the condition we are hoisting above.
2075   // Conservatively strip all metadata on the instruction.
2076   for (auto &I : *ThenBB)
2077     I.dropUnknownNonDebugMetadata();
2078 
2079   // Hoist the instructions.
2080   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2081                            ThenBB->begin(), std::prev(ThenBB->end()));
2082 
2083   // Insert selects and rewrite the PHI operands.
2084   IRBuilder<NoFolder> Builder(BI);
2085   for (PHINode &PN : EndBB->phis()) {
2086     unsigned OrigI = PN.getBasicBlockIndex(BB);
2087     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2088     Value *OrigV = PN.getIncomingValue(OrigI);
2089     Value *ThenV = PN.getIncomingValue(ThenI);
2090 
2091     // Skip PHIs which are trivial.
2092     if (OrigV == ThenV)
2093       continue;
2094 
2095     // Create a select whose true value is the speculatively executed value and
2096     // false value is the preexisting value. Swap them if the branch
2097     // destinations were inverted.
2098     Value *TrueV = ThenV, *FalseV = OrigV;
2099     if (Invert)
2100       std::swap(TrueV, FalseV);
2101     Value *V = Builder.CreateSelect(
2102         BrCond, TrueV, FalseV, "spec.select", BI);
2103     PN.setIncomingValue(OrigI, V);
2104     PN.setIncomingValue(ThenI, V);
2105   }
2106 
2107   // Remove speculated dbg intrinsics.
2108   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2109   // dbg value for the different flows and inserting it after the select.
2110   for (Instruction *I : SpeculatedDbgIntrinsics)
2111     I->eraseFromParent();
2112 
2113   ++NumSpeculations;
2114   return true;
2115 }
2116 
2117 /// Return true if we can thread a branch across this block.
2118 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2119   unsigned Size = 0;
2120 
2121   for (Instruction &I : BB->instructionsWithoutDebug()) {
2122     if (Size > 10)
2123       return false; // Don't clone large BB's.
2124     ++Size;
2125 
2126     // We can only support instructions that do not define values that are
2127     // live outside of the current basic block.
2128     for (User *U : I.users()) {
2129       Instruction *UI = cast<Instruction>(U);
2130       if (UI->getParent() != BB || isa<PHINode>(UI))
2131         return false;
2132     }
2133 
2134     // Looks ok, continue checking.
2135   }
2136 
2137   return true;
2138 }
2139 
2140 /// If we have a conditional branch on a PHI node value that is defined in the
2141 /// same block as the branch and if any PHI entries are constants, thread edges
2142 /// corresponding to that entry to be branches to their ultimate destination.
2143 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2144                                 AssumptionCache *AC) {
2145   BasicBlock *BB = BI->getParent();
2146   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2147   // NOTE: we currently cannot transform this case if the PHI node is used
2148   // outside of the block.
2149   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2150     return false;
2151 
2152   // Degenerate case of a single entry PHI.
2153   if (PN->getNumIncomingValues() == 1) {
2154     FoldSingleEntryPHINodes(PN->getParent());
2155     return true;
2156   }
2157 
2158   // Now we know that this block has multiple preds and two succs.
2159   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2160     return false;
2161 
2162   // Can't fold blocks that contain noduplicate or convergent calls.
2163   if (any_of(*BB, [](const Instruction &I) {
2164         const CallInst *CI = dyn_cast<CallInst>(&I);
2165         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2166       }))
2167     return false;
2168 
2169   // Okay, this is a simple enough basic block.  See if any phi values are
2170   // constants.
2171   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2172     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2173     if (!CB || !CB->getType()->isIntegerTy(1))
2174       continue;
2175 
2176     // Okay, we now know that all edges from PredBB should be revectored to
2177     // branch to RealDest.
2178     BasicBlock *PredBB = PN->getIncomingBlock(i);
2179     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2180 
2181     if (RealDest == BB)
2182       continue; // Skip self loops.
2183     // Skip if the predecessor's terminator is an indirect branch.
2184     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2185       continue;
2186 
2187     // The dest block might have PHI nodes, other predecessors and other
2188     // difficult cases.  Instead of being smart about this, just insert a new
2189     // block that jumps to the destination block, effectively splitting
2190     // the edge we are about to create.
2191     BasicBlock *EdgeBB =
2192         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2193                            RealDest->getParent(), RealDest);
2194     BranchInst::Create(RealDest, EdgeBB);
2195 
2196     // Update PHI nodes.
2197     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2198 
2199     // BB may have instructions that are being threaded over.  Clone these
2200     // instructions into EdgeBB.  We know that there will be no uses of the
2201     // cloned instructions outside of EdgeBB.
2202     BasicBlock::iterator InsertPt = EdgeBB->begin();
2203     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2204     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2205       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2206         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2207         continue;
2208       }
2209       // Clone the instruction.
2210       Instruction *N = BBI->clone();
2211       if (BBI->hasName())
2212         N->setName(BBI->getName() + ".c");
2213 
2214       // Update operands due to translation.
2215       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2216         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2217         if (PI != TranslateMap.end())
2218           *i = PI->second;
2219       }
2220 
2221       // Check for trivial simplification.
2222       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2223         if (!BBI->use_empty())
2224           TranslateMap[&*BBI] = V;
2225         if (!N->mayHaveSideEffects()) {
2226           N->deleteValue(); // Instruction folded away, don't need actual inst
2227           N = nullptr;
2228         }
2229       } else {
2230         if (!BBI->use_empty())
2231           TranslateMap[&*BBI] = N;
2232       }
2233       // Insert the new instruction into its new home.
2234       if (N)
2235         EdgeBB->getInstList().insert(InsertPt, N);
2236 
2237       // Register the new instruction with the assumption cache if necessary.
2238       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2239         if (II->getIntrinsicID() == Intrinsic::assume)
2240           AC->registerAssumption(II);
2241     }
2242 
2243     // Loop over all of the edges from PredBB to BB, changing them to branch
2244     // to EdgeBB instead.
2245     TerminatorInst *PredBBTI = PredBB->getTerminator();
2246     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2247       if (PredBBTI->getSuccessor(i) == BB) {
2248         BB->removePredecessor(PredBB);
2249         PredBBTI->setSuccessor(i, EdgeBB);
2250       }
2251 
2252     // Recurse, simplifying any other constants.
2253     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2254   }
2255 
2256   return false;
2257 }
2258 
2259 /// Given a BB that starts with the specified two-entry PHI node,
2260 /// see if we can eliminate it.
2261 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2262                                 const DataLayout &DL) {
2263   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2264   // statement", which has a very simple dominance structure.  Basically, we
2265   // are trying to find the condition that is being branched on, which
2266   // subsequently causes this merge to happen.  We really want control
2267   // dependence information for this check, but simplifycfg can't keep it up
2268   // to date, and this catches most of the cases we care about anyway.
2269   BasicBlock *BB = PN->getParent();
2270   const Function *Fn = BB->getParent();
2271   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2272     return false;
2273 
2274   BasicBlock *IfTrue, *IfFalse;
2275   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2276   if (!IfCond ||
2277       // Don't bother if the branch will be constant folded trivially.
2278       isa<ConstantInt>(IfCond))
2279     return false;
2280 
2281   // Okay, we found that we can merge this two-entry phi node into a select.
2282   // Doing so would require us to fold *all* two entry phi nodes in this block.
2283   // At some point this becomes non-profitable (particularly if the target
2284   // doesn't support cmov's).  Only do this transformation if there are two or
2285   // fewer PHI nodes in this block.
2286   unsigned NumPhis = 0;
2287   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2288     if (NumPhis > 2)
2289       return false;
2290 
2291   // Loop over the PHI's seeing if we can promote them all to select
2292   // instructions.  While we are at it, keep track of the instructions
2293   // that need to be moved to the dominating block.
2294   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2295   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2296            MaxCostVal1 = PHINodeFoldingThreshold;
2297   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2298   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2299 
2300   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2301     PHINode *PN = cast<PHINode>(II++);
2302     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2303       PN->replaceAllUsesWith(V);
2304       PN->eraseFromParent();
2305       continue;
2306     }
2307 
2308     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2309                              MaxCostVal0, TTI) ||
2310         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2311                              MaxCostVal1, TTI))
2312       return false;
2313   }
2314 
2315   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2316   // we ran out of PHIs then we simplified them all.
2317   PN = dyn_cast<PHINode>(BB->begin());
2318   if (!PN)
2319     return true;
2320 
2321   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2322   // often be turned into switches and other things.
2323   if (PN->getType()->isIntegerTy(1) &&
2324       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2325        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2326        isa<BinaryOperator>(IfCond)))
2327     return false;
2328 
2329   // If all PHI nodes are promotable, check to make sure that all instructions
2330   // in the predecessor blocks can be promoted as well. If not, we won't be able
2331   // to get rid of the control flow, so it's not worth promoting to select
2332   // instructions.
2333   BasicBlock *DomBlock = nullptr;
2334   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2335   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2336   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2337     IfBlock1 = nullptr;
2338   } else {
2339     DomBlock = *pred_begin(IfBlock1);
2340     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2341          ++I)
2342       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2343         // This is not an aggressive instruction that we can promote.
2344         // Because of this, we won't be able to get rid of the control flow, so
2345         // the xform is not worth it.
2346         return false;
2347       }
2348   }
2349 
2350   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2351     IfBlock2 = nullptr;
2352   } else {
2353     DomBlock = *pred_begin(IfBlock2);
2354     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2355          ++I)
2356       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2357         // This is not an aggressive instruction that we can promote.
2358         // Because of this, we won't be able to get rid of the control flow, so
2359         // the xform is not worth it.
2360         return false;
2361       }
2362   }
2363 
2364   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2365                     << "  T: " << IfTrue->getName()
2366                     << "  F: " << IfFalse->getName() << "\n");
2367 
2368   // If we can still promote the PHI nodes after this gauntlet of tests,
2369   // do all of the PHI's now.
2370   Instruction *InsertPt = DomBlock->getTerminator();
2371   IRBuilder<NoFolder> Builder(InsertPt);
2372 
2373   // Move all 'aggressive' instructions, which are defined in the
2374   // conditional parts of the if's up to the dominating block.
2375   if (IfBlock1) {
2376     for (auto &I : *IfBlock1)
2377       I.dropUnknownNonDebugMetadata();
2378     DomBlock->getInstList().splice(InsertPt->getIterator(),
2379                                    IfBlock1->getInstList(), IfBlock1->begin(),
2380                                    IfBlock1->getTerminator()->getIterator());
2381   }
2382   if (IfBlock2) {
2383     for (auto &I : *IfBlock2)
2384       I.dropUnknownNonDebugMetadata();
2385     DomBlock->getInstList().splice(InsertPt->getIterator(),
2386                                    IfBlock2->getInstList(), IfBlock2->begin(),
2387                                    IfBlock2->getTerminator()->getIterator());
2388   }
2389 
2390   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2391     // Change the PHI node into a select instruction.
2392     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2393     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2394 
2395     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2396     PN->replaceAllUsesWith(Sel);
2397     Sel->takeName(PN);
2398     PN->eraseFromParent();
2399   }
2400 
2401   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2402   // has been flattened.  Change DomBlock to jump directly to our new block to
2403   // avoid other simplifycfg's kicking in on the diamond.
2404   TerminatorInst *OldTI = DomBlock->getTerminator();
2405   Builder.SetInsertPoint(OldTI);
2406   Builder.CreateBr(BB);
2407   OldTI->eraseFromParent();
2408   return true;
2409 }
2410 
2411 /// If we found a conditional branch that goes to two returning blocks,
2412 /// try to merge them together into one return,
2413 /// introducing a select if the return values disagree.
2414 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2415                                            IRBuilder<> &Builder) {
2416   assert(BI->isConditional() && "Must be a conditional branch");
2417   BasicBlock *TrueSucc = BI->getSuccessor(0);
2418   BasicBlock *FalseSucc = BI->getSuccessor(1);
2419   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2420   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2421 
2422   // Check to ensure both blocks are empty (just a return) or optionally empty
2423   // with PHI nodes.  If there are other instructions, merging would cause extra
2424   // computation on one path or the other.
2425   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2426     return false;
2427   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2428     return false;
2429 
2430   Builder.SetInsertPoint(BI);
2431   // Okay, we found a branch that is going to two return nodes.  If
2432   // there is no return value for this function, just change the
2433   // branch into a return.
2434   if (FalseRet->getNumOperands() == 0) {
2435     TrueSucc->removePredecessor(BI->getParent());
2436     FalseSucc->removePredecessor(BI->getParent());
2437     Builder.CreateRetVoid();
2438     EraseTerminatorInstAndDCECond(BI);
2439     return true;
2440   }
2441 
2442   // Otherwise, figure out what the true and false return values are
2443   // so we can insert a new select instruction.
2444   Value *TrueValue = TrueRet->getReturnValue();
2445   Value *FalseValue = FalseRet->getReturnValue();
2446 
2447   // Unwrap any PHI nodes in the return blocks.
2448   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2449     if (TVPN->getParent() == TrueSucc)
2450       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2451   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2452     if (FVPN->getParent() == FalseSucc)
2453       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2454 
2455   // In order for this transformation to be safe, we must be able to
2456   // unconditionally execute both operands to the return.  This is
2457   // normally the case, but we could have a potentially-trapping
2458   // constant expression that prevents this transformation from being
2459   // safe.
2460   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2461     if (TCV->canTrap())
2462       return false;
2463   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2464     if (FCV->canTrap())
2465       return false;
2466 
2467   // Okay, we collected all the mapped values and checked them for sanity, and
2468   // defined to really do this transformation.  First, update the CFG.
2469   TrueSucc->removePredecessor(BI->getParent());
2470   FalseSucc->removePredecessor(BI->getParent());
2471 
2472   // Insert select instructions where needed.
2473   Value *BrCond = BI->getCondition();
2474   if (TrueValue) {
2475     // Insert a select if the results differ.
2476     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2477     } else if (isa<UndefValue>(TrueValue)) {
2478       TrueValue = FalseValue;
2479     } else {
2480       TrueValue =
2481           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2482     }
2483   }
2484 
2485   Value *RI =
2486       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2487 
2488   (void)RI;
2489 
2490   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2491                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2492                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2493 
2494   EraseTerminatorInstAndDCECond(BI);
2495 
2496   return true;
2497 }
2498 
2499 /// Return true if the given instruction is available
2500 /// in its predecessor block. If yes, the instruction will be removed.
2501 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2502   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2503     return false;
2504   for (Instruction &I : *PB) {
2505     Instruction *PBI = &I;
2506     // Check whether Inst and PBI generate the same value.
2507     if (Inst->isIdenticalTo(PBI)) {
2508       Inst->replaceAllUsesWith(PBI);
2509       Inst->eraseFromParent();
2510       return true;
2511     }
2512   }
2513   return false;
2514 }
2515 
2516 /// Return true if either PBI or BI has branch weight available, and store
2517 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2518 /// not have branch weight, use 1:1 as its weight.
2519 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2520                                    uint64_t &PredTrueWeight,
2521                                    uint64_t &PredFalseWeight,
2522                                    uint64_t &SuccTrueWeight,
2523                                    uint64_t &SuccFalseWeight) {
2524   bool PredHasWeights =
2525       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2526   bool SuccHasWeights =
2527       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2528   if (PredHasWeights || SuccHasWeights) {
2529     if (!PredHasWeights)
2530       PredTrueWeight = PredFalseWeight = 1;
2531     if (!SuccHasWeights)
2532       SuccTrueWeight = SuccFalseWeight = 1;
2533     return true;
2534   } else {
2535     return false;
2536   }
2537 }
2538 
2539 /// If this basic block is simple enough, and if a predecessor branches to us
2540 /// and one of our successors, fold the block into the predecessor and use
2541 /// logical operations to pick the right destination.
2542 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2543   BasicBlock *BB = BI->getParent();
2544 
2545   Instruction *Cond = nullptr;
2546   if (BI->isConditional())
2547     Cond = dyn_cast<Instruction>(BI->getCondition());
2548   else {
2549     // For unconditional branch, check for a simple CFG pattern, where
2550     // BB has a single predecessor and BB's successor is also its predecessor's
2551     // successor. If such pattern exists, check for CSE between BB and its
2552     // predecessor.
2553     if (BasicBlock *PB = BB->getSinglePredecessor())
2554       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2555         if (PBI->isConditional() &&
2556             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2557              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2558           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2559             Instruction *Curr = &*I++;
2560             if (isa<CmpInst>(Curr)) {
2561               Cond = Curr;
2562               break;
2563             }
2564             // Quit if we can't remove this instruction.
2565             if (!checkCSEInPredecessor(Curr, PB))
2566               return false;
2567           }
2568         }
2569 
2570     if (!Cond)
2571       return false;
2572   }
2573 
2574   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2575       Cond->getParent() != BB || !Cond->hasOneUse())
2576     return false;
2577 
2578   // Make sure the instruction after the condition is the cond branch.
2579   BasicBlock::iterator CondIt = ++Cond->getIterator();
2580 
2581   // Ignore dbg intrinsics.
2582   while (isa<DbgInfoIntrinsic>(CondIt))
2583     ++CondIt;
2584 
2585   if (&*CondIt != BI)
2586     return false;
2587 
2588   // Only allow this transformation if computing the condition doesn't involve
2589   // too many instructions and these involved instructions can be executed
2590   // unconditionally. We denote all involved instructions except the condition
2591   // as "bonus instructions", and only allow this transformation when the
2592   // number of the bonus instructions does not exceed a certain threshold.
2593   unsigned NumBonusInsts = 0;
2594   for (auto I = BB->begin(); Cond != &*I; ++I) {
2595     // Ignore dbg intrinsics.
2596     if (isa<DbgInfoIntrinsic>(I))
2597       continue;
2598     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2599       return false;
2600     // I has only one use and can be executed unconditionally.
2601     Instruction *User = dyn_cast<Instruction>(I->user_back());
2602     if (User == nullptr || User->getParent() != BB)
2603       return false;
2604     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2605     // to use any other instruction, User must be an instruction between next(I)
2606     // and Cond.
2607     ++NumBonusInsts;
2608     // Early exits once we reach the limit.
2609     if (NumBonusInsts > BonusInstThreshold)
2610       return false;
2611   }
2612 
2613   // Cond is known to be a compare or binary operator.  Check to make sure that
2614   // neither operand is a potentially-trapping constant expression.
2615   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2616     if (CE->canTrap())
2617       return false;
2618   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2619     if (CE->canTrap())
2620       return false;
2621 
2622   // Finally, don't infinitely unroll conditional loops.
2623   BasicBlock *TrueDest = BI->getSuccessor(0);
2624   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2625   if (TrueDest == BB || FalseDest == BB)
2626     return false;
2627 
2628   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2629     BasicBlock *PredBlock = *PI;
2630     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2631 
2632     // Check that we have two conditional branches.  If there is a PHI node in
2633     // the common successor, verify that the same value flows in from both
2634     // blocks.
2635     SmallVector<PHINode *, 4> PHIs;
2636     if (!PBI || PBI->isUnconditional() ||
2637         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2638         (!BI->isConditional() &&
2639          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2640       continue;
2641 
2642     // Determine if the two branches share a common destination.
2643     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2644     bool InvertPredCond = false;
2645 
2646     if (BI->isConditional()) {
2647       if (PBI->getSuccessor(0) == TrueDest) {
2648         Opc = Instruction::Or;
2649       } else if (PBI->getSuccessor(1) == FalseDest) {
2650         Opc = Instruction::And;
2651       } else if (PBI->getSuccessor(0) == FalseDest) {
2652         Opc = Instruction::And;
2653         InvertPredCond = true;
2654       } else if (PBI->getSuccessor(1) == TrueDest) {
2655         Opc = Instruction::Or;
2656         InvertPredCond = true;
2657       } else {
2658         continue;
2659       }
2660     } else {
2661       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2662         continue;
2663     }
2664 
2665     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2666     IRBuilder<> Builder(PBI);
2667 
2668     // If we need to invert the condition in the pred block to match, do so now.
2669     if (InvertPredCond) {
2670       Value *NewCond = PBI->getCondition();
2671 
2672       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2673         CmpInst *CI = cast<CmpInst>(NewCond);
2674         CI->setPredicate(CI->getInversePredicate());
2675       } else {
2676         NewCond =
2677             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2678       }
2679 
2680       PBI->setCondition(NewCond);
2681       PBI->swapSuccessors();
2682     }
2683 
2684     // If we have bonus instructions, clone them into the predecessor block.
2685     // Note that there may be multiple predecessor blocks, so we cannot move
2686     // bonus instructions to a predecessor block.
2687     ValueToValueMapTy VMap; // maps original values to cloned values
2688     // We already make sure Cond is the last instruction before BI. Therefore,
2689     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2690     // instructions.
2691     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2692       if (isa<DbgInfoIntrinsic>(BonusInst))
2693         continue;
2694       Instruction *NewBonusInst = BonusInst->clone();
2695       RemapInstruction(NewBonusInst, VMap,
2696                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2697       VMap[&*BonusInst] = NewBonusInst;
2698 
2699       // If we moved a load, we cannot any longer claim any knowledge about
2700       // its potential value. The previous information might have been valid
2701       // only given the branch precondition.
2702       // For an analogous reason, we must also drop all the metadata whose
2703       // semantics we don't understand.
2704       NewBonusInst->dropUnknownNonDebugMetadata();
2705 
2706       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2707       NewBonusInst->takeName(&*BonusInst);
2708       BonusInst->setName(BonusInst->getName() + ".old");
2709     }
2710 
2711     // Clone Cond into the predecessor basic block, and or/and the
2712     // two conditions together.
2713     Instruction *New = Cond->clone();
2714     RemapInstruction(New, VMap,
2715                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2716     PredBlock->getInstList().insert(PBI->getIterator(), New);
2717     New->takeName(Cond);
2718     Cond->setName(New->getName() + ".old");
2719 
2720     if (BI->isConditional()) {
2721       Instruction *NewCond = cast<Instruction>(
2722           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2723       PBI->setCondition(NewCond);
2724 
2725       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2726       bool HasWeights =
2727           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2728                                  SuccTrueWeight, SuccFalseWeight);
2729       SmallVector<uint64_t, 8> NewWeights;
2730 
2731       if (PBI->getSuccessor(0) == BB) {
2732         if (HasWeights) {
2733           // PBI: br i1 %x, BB, FalseDest
2734           // BI:  br i1 %y, TrueDest, FalseDest
2735           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2736           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2737           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2738           //               TrueWeight for PBI * FalseWeight for BI.
2739           // We assume that total weights of a BranchInst can fit into 32 bits.
2740           // Therefore, we will not have overflow using 64-bit arithmetic.
2741           NewWeights.push_back(PredFalseWeight *
2742                                    (SuccFalseWeight + SuccTrueWeight) +
2743                                PredTrueWeight * SuccFalseWeight);
2744         }
2745         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2746         PBI->setSuccessor(0, TrueDest);
2747       }
2748       if (PBI->getSuccessor(1) == BB) {
2749         if (HasWeights) {
2750           // PBI: br i1 %x, TrueDest, BB
2751           // BI:  br i1 %y, TrueDest, FalseDest
2752           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2753           //              FalseWeight for PBI * TrueWeight for BI.
2754           NewWeights.push_back(PredTrueWeight *
2755                                    (SuccFalseWeight + SuccTrueWeight) +
2756                                PredFalseWeight * SuccTrueWeight);
2757           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2758           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2759         }
2760         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2761         PBI->setSuccessor(1, FalseDest);
2762       }
2763       if (NewWeights.size() == 2) {
2764         // Halve the weights if any of them cannot fit in an uint32_t
2765         FitWeights(NewWeights);
2766 
2767         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2768                                            NewWeights.end());
2769         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2770       } else
2771         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2772     } else {
2773       // Update PHI nodes in the common successors.
2774       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2775         ConstantInt *PBI_C = cast<ConstantInt>(
2776             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2777         assert(PBI_C->getType()->isIntegerTy(1));
2778         Instruction *MergedCond = nullptr;
2779         if (PBI->getSuccessor(0) == TrueDest) {
2780           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2781           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2782           //       is false: !PBI_Cond and BI_Value
2783           Instruction *NotCond = cast<Instruction>(
2784               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2785           MergedCond = cast<Instruction>(
2786               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2787           if (PBI_C->isOne())
2788             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2789                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2790         } else {
2791           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2792           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2793           //       is false: PBI_Cond and BI_Value
2794           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2795               Instruction::And, PBI->getCondition(), New, "and.cond"));
2796           if (PBI_C->isOne()) {
2797             Instruction *NotCond = cast<Instruction>(
2798                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2799             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2800                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2801           }
2802         }
2803         // Update PHI Node.
2804         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2805                                   MergedCond);
2806       }
2807       // Change PBI from Conditional to Unconditional.
2808       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2809       EraseTerminatorInstAndDCECond(PBI);
2810       PBI = New_PBI;
2811     }
2812 
2813     // If BI was a loop latch, it may have had associated loop metadata.
2814     // We need to copy it to the new latch, that is, PBI.
2815     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2816       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2817 
2818     // TODO: If BB is reachable from all paths through PredBlock, then we
2819     // could replace PBI's branch probabilities with BI's.
2820 
2821     // Copy any debug value intrinsics into the end of PredBlock.
2822     for (Instruction &I : *BB)
2823       if (isa<DbgInfoIntrinsic>(I))
2824         I.clone()->insertBefore(PBI);
2825 
2826     return true;
2827   }
2828   return false;
2829 }
2830 
2831 // If there is only one store in BB1 and BB2, return it, otherwise return
2832 // nullptr.
2833 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2834   StoreInst *S = nullptr;
2835   for (auto *BB : {BB1, BB2}) {
2836     if (!BB)
2837       continue;
2838     for (auto &I : *BB)
2839       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2840         if (S)
2841           // Multiple stores seen.
2842           return nullptr;
2843         else
2844           S = SI;
2845       }
2846   }
2847   return S;
2848 }
2849 
2850 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2851                                               Value *AlternativeV = nullptr) {
2852   // PHI is going to be a PHI node that allows the value V that is defined in
2853   // BB to be referenced in BB's only successor.
2854   //
2855   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2856   // doesn't matter to us what the other operand is (it'll never get used). We
2857   // could just create a new PHI with an undef incoming value, but that could
2858   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2859   // other PHI. So here we directly look for some PHI in BB's successor with V
2860   // as an incoming operand. If we find one, we use it, else we create a new
2861   // one.
2862   //
2863   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2864   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2865   // where OtherBB is the single other predecessor of BB's only successor.
2866   PHINode *PHI = nullptr;
2867   BasicBlock *Succ = BB->getSingleSuccessor();
2868 
2869   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2870     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2871       PHI = cast<PHINode>(I);
2872       if (!AlternativeV)
2873         break;
2874 
2875       assert(pred_size(Succ) == 2);
2876       auto PredI = pred_begin(Succ);
2877       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2878       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2879         break;
2880       PHI = nullptr;
2881     }
2882   if (PHI)
2883     return PHI;
2884 
2885   // If V is not an instruction defined in BB, just return it.
2886   if (!AlternativeV &&
2887       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2888     return V;
2889 
2890   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2891   PHI->addIncoming(V, BB);
2892   for (BasicBlock *PredBB : predecessors(Succ))
2893     if (PredBB != BB)
2894       PHI->addIncoming(
2895           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2896   return PHI;
2897 }
2898 
2899 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2900                                            BasicBlock *QTB, BasicBlock *QFB,
2901                                            BasicBlock *PostBB, Value *Address,
2902                                            bool InvertPCond, bool InvertQCond,
2903                                            const DataLayout &DL) {
2904   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2905     return Operator::getOpcode(&I) == Instruction::BitCast &&
2906            I.getType()->isPointerTy();
2907   };
2908 
2909   // If we're not in aggressive mode, we only optimize if we have some
2910   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2911   auto IsWorthwhile = [&](BasicBlock *BB) {
2912     if (!BB)
2913       return true;
2914     // Heuristic: if the block can be if-converted/phi-folded and the
2915     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2916     // thread this store.
2917     unsigned N = 0;
2918     for (auto &I : BB->instructionsWithoutDebug()) {
2919       // Cheap instructions viable for folding.
2920       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2921           isa<StoreInst>(I))
2922         ++N;
2923       // Free instructions.
2924       else if (isa<TerminatorInst>(I) || IsaBitcastOfPointerType(I))
2925         continue;
2926       else
2927         return false;
2928     }
2929     // The store we want to merge is counted in N, so add 1 to make sure
2930     // we're counting the instructions that would be left.
2931     return N <= (PHINodeFoldingThreshold + 1);
2932   };
2933 
2934   if (!MergeCondStoresAggressively &&
2935       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2936        !IsWorthwhile(QFB)))
2937     return false;
2938 
2939   // For every pointer, there must be exactly two stores, one coming from
2940   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2941   // store (to any address) in PTB,PFB or QTB,QFB.
2942   // FIXME: We could relax this restriction with a bit more work and performance
2943   // testing.
2944   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2945   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2946   if (!PStore || !QStore)
2947     return false;
2948 
2949   // Now check the stores are compatible.
2950   if (!QStore->isUnordered() || !PStore->isUnordered())
2951     return false;
2952 
2953   // Check that sinking the store won't cause program behavior changes. Sinking
2954   // the store out of the Q blocks won't change any behavior as we're sinking
2955   // from a block to its unconditional successor. But we're moving a store from
2956   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2957   // So we need to check that there are no aliasing loads or stores in
2958   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2959   // operations between PStore and the end of its parent block.
2960   //
2961   // The ideal way to do this is to query AliasAnalysis, but we don't
2962   // preserve AA currently so that is dangerous. Be super safe and just
2963   // check there are no other memory operations at all.
2964   for (auto &I : *QFB->getSinglePredecessor())
2965     if (I.mayReadOrWriteMemory())
2966       return false;
2967   for (auto &I : *QFB)
2968     if (&I != QStore && I.mayReadOrWriteMemory())
2969       return false;
2970   if (QTB)
2971     for (auto &I : *QTB)
2972       if (&I != QStore && I.mayReadOrWriteMemory())
2973         return false;
2974   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2975        I != E; ++I)
2976     if (&*I != PStore && I->mayReadOrWriteMemory())
2977       return false;
2978 
2979   // If PostBB has more than two predecessors, we need to split it so we can
2980   // sink the store.
2981   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
2982     // We know that QFB's only successor is PostBB. And QFB has a single
2983     // predecessor. If QTB exists, then its only successor is also PostBB.
2984     // If QTB does not exist, then QFB's only predecessor has a conditional
2985     // branch to QFB and PostBB.
2986     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
2987     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
2988                                                "condstore.split");
2989     if (!NewBB)
2990       return false;
2991     PostBB = NewBB;
2992   }
2993 
2994   // OK, we're going to sink the stores to PostBB. The store has to be
2995   // conditional though, so first create the predicate.
2996   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2997                      ->getCondition();
2998   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2999                      ->getCondition();
3000 
3001   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3002                                                 PStore->getParent());
3003   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3004                                                 QStore->getParent(), PPHI);
3005 
3006   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3007 
3008   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3009   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3010 
3011   if (InvertPCond)
3012     PPred = QB.CreateNot(PPred);
3013   if (InvertQCond)
3014     QPred = QB.CreateNot(QPred);
3015   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3016 
3017   auto *T =
3018       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3019   QB.SetInsertPoint(T);
3020   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3021   AAMDNodes AAMD;
3022   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3023   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3024   SI->setAAMetadata(AAMD);
3025   unsigned PAlignment = PStore->getAlignment();
3026   unsigned QAlignment = QStore->getAlignment();
3027   unsigned TypeAlignment =
3028       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3029   unsigned MinAlignment;
3030   unsigned MaxAlignment;
3031   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3032   // Choose the minimum alignment. If we could prove both stores execute, we
3033   // could use biggest one.  In this case, though, we only know that one of the
3034   // stores executes.  And we don't know it's safe to take the alignment from a
3035   // store that doesn't execute.
3036   if (MinAlignment != 0) {
3037     // Choose the minimum of all non-zero alignments.
3038     SI->setAlignment(MinAlignment);
3039   } else if (MaxAlignment != 0) {
3040     // Choose the minimal alignment between the non-zero alignment and the ABI
3041     // default alignment for the type of the stored value.
3042     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3043   } else {
3044     // If both alignments are zero, use ABI default alignment for the type of
3045     // the stored value.
3046     SI->setAlignment(TypeAlignment);
3047   }
3048 
3049   QStore->eraseFromParent();
3050   PStore->eraseFromParent();
3051 
3052   return true;
3053 }
3054 
3055 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3056                                    const DataLayout &DL) {
3057   // The intention here is to find diamonds or triangles (see below) where each
3058   // conditional block contains a store to the same address. Both of these
3059   // stores are conditional, so they can't be unconditionally sunk. But it may
3060   // be profitable to speculatively sink the stores into one merged store at the
3061   // end, and predicate the merged store on the union of the two conditions of
3062   // PBI and QBI.
3063   //
3064   // This can reduce the number of stores executed if both of the conditions are
3065   // true, and can allow the blocks to become small enough to be if-converted.
3066   // This optimization will also chain, so that ladders of test-and-set
3067   // sequences can be if-converted away.
3068   //
3069   // We only deal with simple diamonds or triangles:
3070   //
3071   //     PBI       or      PBI        or a combination of the two
3072   //    /   \               | \
3073   //   PTB  PFB             |  PFB
3074   //    \   /               | /
3075   //     QBI                QBI
3076   //    /  \                | \
3077   //   QTB  QFB             |  QFB
3078   //    \  /                | /
3079   //    PostBB            PostBB
3080   //
3081   // We model triangles as a type of diamond with a nullptr "true" block.
3082   // Triangles are canonicalized so that the fallthrough edge is represented by
3083   // a true condition, as in the diagram above.
3084   BasicBlock *PTB = PBI->getSuccessor(0);
3085   BasicBlock *PFB = PBI->getSuccessor(1);
3086   BasicBlock *QTB = QBI->getSuccessor(0);
3087   BasicBlock *QFB = QBI->getSuccessor(1);
3088   BasicBlock *PostBB = QFB->getSingleSuccessor();
3089 
3090   // Make sure we have a good guess for PostBB. If QTB's only successor is
3091   // QFB, then QFB is a better PostBB.
3092   if (QTB->getSingleSuccessor() == QFB)
3093     PostBB = QFB;
3094 
3095   // If we couldn't find a good PostBB, stop.
3096   if (!PostBB)
3097     return false;
3098 
3099   bool InvertPCond = false, InvertQCond = false;
3100   // Canonicalize fallthroughs to the true branches.
3101   if (PFB == QBI->getParent()) {
3102     std::swap(PFB, PTB);
3103     InvertPCond = true;
3104   }
3105   if (QFB == PostBB) {
3106     std::swap(QFB, QTB);
3107     InvertQCond = true;
3108   }
3109 
3110   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3111   // and QFB may not. Model fallthroughs as a nullptr block.
3112   if (PTB == QBI->getParent())
3113     PTB = nullptr;
3114   if (QTB == PostBB)
3115     QTB = nullptr;
3116 
3117   // Legality bailouts. We must have at least the non-fallthrough blocks and
3118   // the post-dominating block, and the non-fallthroughs must only have one
3119   // predecessor.
3120   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3121     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3122   };
3123   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3124       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3125     return false;
3126   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3127       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3128     return false;
3129   if (!QBI->getParent()->hasNUses(2))
3130     return false;
3131 
3132   // OK, this is a sequence of two diamonds or triangles.
3133   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3134   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3135   for (auto *BB : {PTB, PFB}) {
3136     if (!BB)
3137       continue;
3138     for (auto &I : *BB)
3139       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3140         PStoreAddresses.insert(SI->getPointerOperand());
3141   }
3142   for (auto *BB : {QTB, QFB}) {
3143     if (!BB)
3144       continue;
3145     for (auto &I : *BB)
3146       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3147         QStoreAddresses.insert(SI->getPointerOperand());
3148   }
3149 
3150   set_intersect(PStoreAddresses, QStoreAddresses);
3151   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3152   // clear what it contains.
3153   auto &CommonAddresses = PStoreAddresses;
3154 
3155   bool Changed = false;
3156   for (auto *Address : CommonAddresses)
3157     Changed |= mergeConditionalStoreToAddress(
3158         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3159   return Changed;
3160 }
3161 
3162 /// If we have a conditional branch as a predecessor of another block,
3163 /// this function tries to simplify it.  We know
3164 /// that PBI and BI are both conditional branches, and BI is in one of the
3165 /// successor blocks of PBI - PBI branches to BI.
3166 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3167                                            const DataLayout &DL) {
3168   assert(PBI->isConditional() && BI->isConditional());
3169   BasicBlock *BB = BI->getParent();
3170 
3171   // If this block ends with a branch instruction, and if there is a
3172   // predecessor that ends on a branch of the same condition, make
3173   // this conditional branch redundant.
3174   if (PBI->getCondition() == BI->getCondition() &&
3175       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3176     // Okay, the outcome of this conditional branch is statically
3177     // knowable.  If this block had a single pred, handle specially.
3178     if (BB->getSinglePredecessor()) {
3179       // Turn this into a branch on constant.
3180       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3181       BI->setCondition(
3182           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3183       return true; // Nuke the branch on constant.
3184     }
3185 
3186     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3187     // in the constant and simplify the block result.  Subsequent passes of
3188     // simplifycfg will thread the block.
3189     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3190       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3191       PHINode *NewPN = PHINode::Create(
3192           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3193           BI->getCondition()->getName() + ".pr", &BB->front());
3194       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3195       // predecessor, compute the PHI'd conditional value for all of the preds.
3196       // Any predecessor where the condition is not computable we keep symbolic.
3197       for (pred_iterator PI = PB; PI != PE; ++PI) {
3198         BasicBlock *P = *PI;
3199         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3200             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3201             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3202           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3203           NewPN->addIncoming(
3204               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3205               P);
3206         } else {
3207           NewPN->addIncoming(BI->getCondition(), P);
3208         }
3209       }
3210 
3211       BI->setCondition(NewPN);
3212       return true;
3213     }
3214   }
3215 
3216   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3217     if (CE->canTrap())
3218       return false;
3219 
3220   // If both branches are conditional and both contain stores to the same
3221   // address, remove the stores from the conditionals and create a conditional
3222   // merged store at the end.
3223   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3224     return true;
3225 
3226   // If this is a conditional branch in an empty block, and if any
3227   // predecessors are a conditional branch to one of our destinations,
3228   // fold the conditions into logical ops and one cond br.
3229 
3230   // Ignore dbg intrinsics.
3231   if (&*BB->instructionsWithoutDebug().begin() != BI)
3232     return false;
3233 
3234   int PBIOp, BIOp;
3235   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3236     PBIOp = 0;
3237     BIOp = 0;
3238   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3239     PBIOp = 0;
3240     BIOp = 1;
3241   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3242     PBIOp = 1;
3243     BIOp = 0;
3244   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3245     PBIOp = 1;
3246     BIOp = 1;
3247   } else {
3248     return false;
3249   }
3250 
3251   // Check to make sure that the other destination of this branch
3252   // isn't BB itself.  If so, this is an infinite loop that will
3253   // keep getting unwound.
3254   if (PBI->getSuccessor(PBIOp) == BB)
3255     return false;
3256 
3257   // Do not perform this transformation if it would require
3258   // insertion of a large number of select instructions. For targets
3259   // without predication/cmovs, this is a big pessimization.
3260 
3261   // Also do not perform this transformation if any phi node in the common
3262   // destination block can trap when reached by BB or PBB (PR17073). In that
3263   // case, it would be unsafe to hoist the operation into a select instruction.
3264 
3265   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3266   unsigned NumPhis = 0;
3267   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3268        ++II, ++NumPhis) {
3269     if (NumPhis > 2) // Disable this xform.
3270       return false;
3271 
3272     PHINode *PN = cast<PHINode>(II);
3273     Value *BIV = PN->getIncomingValueForBlock(BB);
3274     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3275       if (CE->canTrap())
3276         return false;
3277 
3278     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3279     Value *PBIV = PN->getIncomingValue(PBBIdx);
3280     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3281       if (CE->canTrap())
3282         return false;
3283   }
3284 
3285   // Finally, if everything is ok, fold the branches to logical ops.
3286   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3287 
3288   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3289                     << "AND: " << *BI->getParent());
3290 
3291   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3292   // branch in it, where one edge (OtherDest) goes back to itself but the other
3293   // exits.  We don't *know* that the program avoids the infinite loop
3294   // (even though that seems likely).  If we do this xform naively, we'll end up
3295   // recursively unpeeling the loop.  Since we know that (after the xform is
3296   // done) that the block *is* infinite if reached, we just make it an obviously
3297   // infinite loop with no cond branch.
3298   if (OtherDest == BB) {
3299     // Insert it at the end of the function, because it's either code,
3300     // or it won't matter if it's hot. :)
3301     BasicBlock *InfLoopBlock =
3302         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3303     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3304     OtherDest = InfLoopBlock;
3305   }
3306 
3307   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3308 
3309   // BI may have other predecessors.  Because of this, we leave
3310   // it alone, but modify PBI.
3311 
3312   // Make sure we get to CommonDest on True&True directions.
3313   Value *PBICond = PBI->getCondition();
3314   IRBuilder<NoFolder> Builder(PBI);
3315   if (PBIOp)
3316     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3317 
3318   Value *BICond = BI->getCondition();
3319   if (BIOp)
3320     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3321 
3322   // Merge the conditions.
3323   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3324 
3325   // Modify PBI to branch on the new condition to the new dests.
3326   PBI->setCondition(Cond);
3327   PBI->setSuccessor(0, CommonDest);
3328   PBI->setSuccessor(1, OtherDest);
3329 
3330   // Update branch weight for PBI.
3331   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3332   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3333   bool HasWeights =
3334       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3335                              SuccTrueWeight, SuccFalseWeight);
3336   if (HasWeights) {
3337     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3338     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3339     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3340     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3341     // The weight to CommonDest should be PredCommon * SuccTotal +
3342     //                                    PredOther * SuccCommon.
3343     // The weight to OtherDest should be PredOther * SuccOther.
3344     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3345                                   PredOther * SuccCommon,
3346                               PredOther * SuccOther};
3347     // Halve the weights if any of them cannot fit in an uint32_t
3348     FitWeights(NewWeights);
3349 
3350     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3351   }
3352 
3353   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3354   // block that are identical to the entries for BI's block.
3355   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3356 
3357   // We know that the CommonDest already had an edge from PBI to
3358   // it.  If it has PHIs though, the PHIs may have different
3359   // entries for BB and PBI's BB.  If so, insert a select to make
3360   // them agree.
3361   for (PHINode &PN : CommonDest->phis()) {
3362     Value *BIV = PN.getIncomingValueForBlock(BB);
3363     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3364     Value *PBIV = PN.getIncomingValue(PBBIdx);
3365     if (BIV != PBIV) {
3366       // Insert a select in PBI to pick the right value.
3367       SelectInst *NV = cast<SelectInst>(
3368           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3369       PN.setIncomingValue(PBBIdx, NV);
3370       // Although the select has the same condition as PBI, the original branch
3371       // weights for PBI do not apply to the new select because the select's
3372       // 'logical' edges are incoming edges of the phi that is eliminated, not
3373       // the outgoing edges of PBI.
3374       if (HasWeights) {
3375         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3376         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3377         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3378         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3379         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3380         // The weight to PredOtherDest should be PredOther * SuccCommon.
3381         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3382                                   PredOther * SuccCommon};
3383 
3384         FitWeights(NewWeights);
3385 
3386         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3387       }
3388     }
3389   }
3390 
3391   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3392   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3393 
3394   // This basic block is probably dead.  We know it has at least
3395   // one fewer predecessor.
3396   return true;
3397 }
3398 
3399 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3400 // true or to FalseBB if Cond is false.
3401 // Takes care of updating the successors and removing the old terminator.
3402 // Also makes sure not to introduce new successors by assuming that edges to
3403 // non-successor TrueBBs and FalseBBs aren't reachable.
3404 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3405                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3406                                        uint32_t TrueWeight,
3407                                        uint32_t FalseWeight) {
3408   // Remove any superfluous successor edges from the CFG.
3409   // First, figure out which successors to preserve.
3410   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3411   // successor.
3412   BasicBlock *KeepEdge1 = TrueBB;
3413   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3414 
3415   // Then remove the rest.
3416   for (BasicBlock *Succ : OldTerm->successors()) {
3417     // Make sure only to keep exactly one copy of each edge.
3418     if (Succ == KeepEdge1)
3419       KeepEdge1 = nullptr;
3420     else if (Succ == KeepEdge2)
3421       KeepEdge2 = nullptr;
3422     else
3423       Succ->removePredecessor(OldTerm->getParent(),
3424                               /*DontDeleteUselessPHIs=*/true);
3425   }
3426 
3427   IRBuilder<> Builder(OldTerm);
3428   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3429 
3430   // Insert an appropriate new terminator.
3431   if (!KeepEdge1 && !KeepEdge2) {
3432     if (TrueBB == FalseBB)
3433       // We were only looking for one successor, and it was present.
3434       // Create an unconditional branch to it.
3435       Builder.CreateBr(TrueBB);
3436     else {
3437       // We found both of the successors we were looking for.
3438       // Create a conditional branch sharing the condition of the select.
3439       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3440       if (TrueWeight != FalseWeight)
3441         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3442     }
3443   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3444     // Neither of the selected blocks were successors, so this
3445     // terminator must be unreachable.
3446     new UnreachableInst(OldTerm->getContext(), OldTerm);
3447   } else {
3448     // One of the selected values was a successor, but the other wasn't.
3449     // Insert an unconditional branch to the one that was found;
3450     // the edge to the one that wasn't must be unreachable.
3451     if (!KeepEdge1)
3452       // Only TrueBB was found.
3453       Builder.CreateBr(TrueBB);
3454     else
3455       // Only FalseBB was found.
3456       Builder.CreateBr(FalseBB);
3457   }
3458 
3459   EraseTerminatorInstAndDCECond(OldTerm);
3460   return true;
3461 }
3462 
3463 // Replaces
3464 //   (switch (select cond, X, Y)) on constant X, Y
3465 // with a branch - conditional if X and Y lead to distinct BBs,
3466 // unconditional otherwise.
3467 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3468   // Check for constant integer values in the select.
3469   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3470   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3471   if (!TrueVal || !FalseVal)
3472     return false;
3473 
3474   // Find the relevant condition and destinations.
3475   Value *Condition = Select->getCondition();
3476   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3477   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3478 
3479   // Get weight for TrueBB and FalseBB.
3480   uint32_t TrueWeight = 0, FalseWeight = 0;
3481   SmallVector<uint64_t, 8> Weights;
3482   bool HasWeights = HasBranchWeights(SI);
3483   if (HasWeights) {
3484     GetBranchWeights(SI, Weights);
3485     if (Weights.size() == 1 + SI->getNumCases()) {
3486       TrueWeight =
3487           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3488       FalseWeight =
3489           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3490     }
3491   }
3492 
3493   // Perform the actual simplification.
3494   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3495                                     FalseWeight);
3496 }
3497 
3498 // Replaces
3499 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3500 //                             blockaddress(@fn, BlockB)))
3501 // with
3502 //   (br cond, BlockA, BlockB).
3503 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3504   // Check that both operands of the select are block addresses.
3505   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3506   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3507   if (!TBA || !FBA)
3508     return false;
3509 
3510   // Extract the actual blocks.
3511   BasicBlock *TrueBB = TBA->getBasicBlock();
3512   BasicBlock *FalseBB = FBA->getBasicBlock();
3513 
3514   // Perform the actual simplification.
3515   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3516                                     0);
3517 }
3518 
3519 /// This is called when we find an icmp instruction
3520 /// (a seteq/setne with a constant) as the only instruction in a
3521 /// block that ends with an uncond branch.  We are looking for a very specific
3522 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3523 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3524 /// default value goes to an uncond block with a seteq in it, we get something
3525 /// like:
3526 ///
3527 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3528 /// DEFAULT:
3529 ///   %tmp = icmp eq i8 %A, 92
3530 ///   br label %end
3531 /// end:
3532 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3533 ///
3534 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3535 /// the PHI, merging the third icmp into the switch.
3536 static bool tryToSimplifyUncondBranchWithICmpInIt(
3537     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3538     const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) {
3539   BasicBlock *BB = ICI->getParent();
3540 
3541   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3542   // complex.
3543   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3544     return false;
3545 
3546   Value *V = ICI->getOperand(0);
3547   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3548 
3549   // The pattern we're looking for is where our only predecessor is a switch on
3550   // 'V' and this block is the default case for the switch.  In this case we can
3551   // fold the compared value into the switch to simplify things.
3552   BasicBlock *Pred = BB->getSinglePredecessor();
3553   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3554     return false;
3555 
3556   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3557   if (SI->getCondition() != V)
3558     return false;
3559 
3560   // If BB is reachable on a non-default case, then we simply know the value of
3561   // V in this block.  Substitute it and constant fold the icmp instruction
3562   // away.
3563   if (SI->getDefaultDest() != BB) {
3564     ConstantInt *VVal = SI->findCaseDest(BB);
3565     assert(VVal && "Should have a unique destination value");
3566     ICI->setOperand(0, VVal);
3567 
3568     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3569       ICI->replaceAllUsesWith(V);
3570       ICI->eraseFromParent();
3571     }
3572     // BB is now empty, so it is likely to simplify away.
3573     return simplifyCFG(BB, TTI, Options) | true;
3574   }
3575 
3576   // Ok, the block is reachable from the default dest.  If the constant we're
3577   // comparing exists in one of the other edges, then we can constant fold ICI
3578   // and zap it.
3579   if (SI->findCaseValue(Cst) != SI->case_default()) {
3580     Value *V;
3581     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3582       V = ConstantInt::getFalse(BB->getContext());
3583     else
3584       V = ConstantInt::getTrue(BB->getContext());
3585 
3586     ICI->replaceAllUsesWith(V);
3587     ICI->eraseFromParent();
3588     // BB is now empty, so it is likely to simplify away.
3589     return simplifyCFG(BB, TTI, Options) | true;
3590   }
3591 
3592   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3593   // the block.
3594   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3595   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3596   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3597       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3598     return false;
3599 
3600   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3601   // true in the PHI.
3602   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3603   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3604 
3605   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3606     std::swap(DefaultCst, NewCst);
3607 
3608   // Replace ICI (which is used by the PHI for the default value) with true or
3609   // false depending on if it is EQ or NE.
3610   ICI->replaceAllUsesWith(DefaultCst);
3611   ICI->eraseFromParent();
3612 
3613   // Okay, the switch goes to this block on a default value.  Add an edge from
3614   // the switch to the merge point on the compared value.
3615   BasicBlock *NewBB =
3616       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3617   SmallVector<uint64_t, 8> Weights;
3618   bool HasWeights = HasBranchWeights(SI);
3619   if (HasWeights) {
3620     GetBranchWeights(SI, Weights);
3621     if (Weights.size() == 1 + SI->getNumCases()) {
3622       // Split weight for default case to case for "Cst".
3623       Weights[0] = (Weights[0] + 1) >> 1;
3624       Weights.push_back(Weights[0]);
3625 
3626       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3627       setBranchWeights(SI, MDWeights);
3628     }
3629   }
3630   SI->addCase(Cst, NewBB);
3631 
3632   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3633   Builder.SetInsertPoint(NewBB);
3634   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3635   Builder.CreateBr(SuccBlock);
3636   PHIUse->addIncoming(NewCst, NewBB);
3637   return true;
3638 }
3639 
3640 /// The specified branch is a conditional branch.
3641 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3642 /// fold it into a switch instruction if so.
3643 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3644                                       const DataLayout &DL) {
3645   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3646   if (!Cond)
3647     return false;
3648 
3649   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3650   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3651   // 'setne's and'ed together, collect them.
3652 
3653   // Try to gather values from a chain of and/or to be turned into a switch
3654   ConstantComparesGatherer ConstantCompare(Cond, DL);
3655   // Unpack the result
3656   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3657   Value *CompVal = ConstantCompare.CompValue;
3658   unsigned UsedICmps = ConstantCompare.UsedICmps;
3659   Value *ExtraCase = ConstantCompare.Extra;
3660 
3661   // If we didn't have a multiply compared value, fail.
3662   if (!CompVal)
3663     return false;
3664 
3665   // Avoid turning single icmps into a switch.
3666   if (UsedICmps <= 1)
3667     return false;
3668 
3669   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3670 
3671   // There might be duplicate constants in the list, which the switch
3672   // instruction can't handle, remove them now.
3673   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3674   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3675 
3676   // If Extra was used, we require at least two switch values to do the
3677   // transformation.  A switch with one value is just a conditional branch.
3678   if (ExtraCase && Values.size() < 2)
3679     return false;
3680 
3681   // TODO: Preserve branch weight metadata, similarly to how
3682   // FoldValueComparisonIntoPredecessors preserves it.
3683 
3684   // Figure out which block is which destination.
3685   BasicBlock *DefaultBB = BI->getSuccessor(1);
3686   BasicBlock *EdgeBB = BI->getSuccessor(0);
3687   if (!TrueWhenEqual)
3688     std::swap(DefaultBB, EdgeBB);
3689 
3690   BasicBlock *BB = BI->getParent();
3691 
3692   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3693                     << " cases into SWITCH.  BB is:\n"
3694                     << *BB);
3695 
3696   // If there are any extra values that couldn't be folded into the switch
3697   // then we evaluate them with an explicit branch first.  Split the block
3698   // right before the condbr to handle it.
3699   if (ExtraCase) {
3700     BasicBlock *NewBB =
3701         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3702     // Remove the uncond branch added to the old block.
3703     TerminatorInst *OldTI = BB->getTerminator();
3704     Builder.SetInsertPoint(OldTI);
3705 
3706     if (TrueWhenEqual)
3707       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3708     else
3709       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3710 
3711     OldTI->eraseFromParent();
3712 
3713     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3714     // for the edge we just added.
3715     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3716 
3717     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3718                       << "\nEXTRABB = " << *BB);
3719     BB = NewBB;
3720   }
3721 
3722   Builder.SetInsertPoint(BI);
3723   // Convert pointer to int before we switch.
3724   if (CompVal->getType()->isPointerTy()) {
3725     CompVal = Builder.CreatePtrToInt(
3726         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3727   }
3728 
3729   // Create the new switch instruction now.
3730   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3731 
3732   // Add all of the 'cases' to the switch instruction.
3733   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3734     New->addCase(Values[i], EdgeBB);
3735 
3736   // We added edges from PI to the EdgeBB.  As such, if there were any
3737   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3738   // the number of edges added.
3739   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3740     PHINode *PN = cast<PHINode>(BBI);
3741     Value *InVal = PN->getIncomingValueForBlock(BB);
3742     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3743       PN->addIncoming(InVal, BB);
3744   }
3745 
3746   // Erase the old branch instruction.
3747   EraseTerminatorInstAndDCECond(BI);
3748 
3749   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3750   return true;
3751 }
3752 
3753 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3754   if (isa<PHINode>(RI->getValue()))
3755     return SimplifyCommonResume(RI);
3756   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3757            RI->getValue() == RI->getParent()->getFirstNonPHI())
3758     // The resume must unwind the exception that caused control to branch here.
3759     return SimplifySingleResume(RI);
3760 
3761   return false;
3762 }
3763 
3764 // Simplify resume that is shared by several landing pads (phi of landing pad).
3765 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3766   BasicBlock *BB = RI->getParent();
3767 
3768   // Check that there are no other instructions except for debug intrinsics
3769   // between the phi of landing pads (RI->getValue()) and resume instruction.
3770   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3771                        E = RI->getIterator();
3772   while (++I != E)
3773     if (!isa<DbgInfoIntrinsic>(I))
3774       return false;
3775 
3776   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3777   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3778 
3779   // Check incoming blocks to see if any of them are trivial.
3780   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3781        Idx++) {
3782     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3783     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3784 
3785     // If the block has other successors, we can not delete it because
3786     // it has other dependents.
3787     if (IncomingBB->getUniqueSuccessor() != BB)
3788       continue;
3789 
3790     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3791     // Not the landing pad that caused the control to branch here.
3792     if (IncomingValue != LandingPad)
3793       continue;
3794 
3795     bool isTrivial = true;
3796 
3797     I = IncomingBB->getFirstNonPHI()->getIterator();
3798     E = IncomingBB->getTerminator()->getIterator();
3799     while (++I != E)
3800       if (!isa<DbgInfoIntrinsic>(I)) {
3801         isTrivial = false;
3802         break;
3803       }
3804 
3805     if (isTrivial)
3806       TrivialUnwindBlocks.insert(IncomingBB);
3807   }
3808 
3809   // If no trivial unwind blocks, don't do any simplifications.
3810   if (TrivialUnwindBlocks.empty())
3811     return false;
3812 
3813   // Turn all invokes that unwind here into calls.
3814   for (auto *TrivialBB : TrivialUnwindBlocks) {
3815     // Blocks that will be simplified should be removed from the phi node.
3816     // Note there could be multiple edges to the resume block, and we need
3817     // to remove them all.
3818     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3819       BB->removePredecessor(TrivialBB, true);
3820 
3821     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3822          PI != PE;) {
3823       BasicBlock *Pred = *PI++;
3824       removeUnwindEdge(Pred);
3825     }
3826 
3827     // In each SimplifyCFG run, only the current processed block can be erased.
3828     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3829     // of erasing TrivialBB, we only remove the branch to the common resume
3830     // block so that we can later erase the resume block since it has no
3831     // predecessors.
3832     TrivialBB->getTerminator()->eraseFromParent();
3833     new UnreachableInst(RI->getContext(), TrivialBB);
3834   }
3835 
3836   // Delete the resume block if all its predecessors have been removed.
3837   if (pred_empty(BB))
3838     BB->eraseFromParent();
3839 
3840   return !TrivialUnwindBlocks.empty();
3841 }
3842 
3843 // Simplify resume that is only used by a single (non-phi) landing pad.
3844 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3845   BasicBlock *BB = RI->getParent();
3846   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3847   assert(RI->getValue() == LPInst &&
3848          "Resume must unwind the exception that caused control to here");
3849 
3850   // Check that there are no other instructions except for debug intrinsics.
3851   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3852   while (++I != E)
3853     if (!isa<DbgInfoIntrinsic>(I))
3854       return false;
3855 
3856   // Turn all invokes that unwind here into calls and delete the basic block.
3857   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3858     BasicBlock *Pred = *PI++;
3859     removeUnwindEdge(Pred);
3860   }
3861 
3862   // The landingpad is now unreachable.  Zap it.
3863   BB->eraseFromParent();
3864   if (LoopHeaders)
3865     LoopHeaders->erase(BB);
3866   return true;
3867 }
3868 
3869 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3870   // If this is a trivial cleanup pad that executes no instructions, it can be
3871   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3872   // that is an EH pad will be updated to continue to the caller and any
3873   // predecessor that terminates with an invoke instruction will have its invoke
3874   // instruction converted to a call instruction.  If the cleanup pad being
3875   // simplified does not continue to the caller, each predecessor will be
3876   // updated to continue to the unwind destination of the cleanup pad being
3877   // simplified.
3878   BasicBlock *BB = RI->getParent();
3879   CleanupPadInst *CPInst = RI->getCleanupPad();
3880   if (CPInst->getParent() != BB)
3881     // This isn't an empty cleanup.
3882     return false;
3883 
3884   // We cannot kill the pad if it has multiple uses.  This typically arises
3885   // from unreachable basic blocks.
3886   if (!CPInst->hasOneUse())
3887     return false;
3888 
3889   // Check that there are no other instructions except for benign intrinsics.
3890   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3891   while (++I != E) {
3892     auto *II = dyn_cast<IntrinsicInst>(I);
3893     if (!II)
3894       return false;
3895 
3896     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3897     switch (IntrinsicID) {
3898     case Intrinsic::dbg_declare:
3899     case Intrinsic::dbg_value:
3900     case Intrinsic::dbg_label:
3901     case Intrinsic::lifetime_end:
3902       break;
3903     default:
3904       return false;
3905     }
3906   }
3907 
3908   // If the cleanup return we are simplifying unwinds to the caller, this will
3909   // set UnwindDest to nullptr.
3910   BasicBlock *UnwindDest = RI->getUnwindDest();
3911   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3912 
3913   // We're about to remove BB from the control flow.  Before we do, sink any
3914   // PHINodes into the unwind destination.  Doing this before changing the
3915   // control flow avoids some potentially slow checks, since we can currently
3916   // be certain that UnwindDest and BB have no common predecessors (since they
3917   // are both EH pads).
3918   if (UnwindDest) {
3919     // First, go through the PHI nodes in UnwindDest and update any nodes that
3920     // reference the block we are removing
3921     for (BasicBlock::iterator I = UnwindDest->begin(),
3922                               IE = DestEHPad->getIterator();
3923          I != IE; ++I) {
3924       PHINode *DestPN = cast<PHINode>(I);
3925 
3926       int Idx = DestPN->getBasicBlockIndex(BB);
3927       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3928       assert(Idx != -1);
3929       // This PHI node has an incoming value that corresponds to a control
3930       // path through the cleanup pad we are removing.  If the incoming
3931       // value is in the cleanup pad, it must be a PHINode (because we
3932       // verified above that the block is otherwise empty).  Otherwise, the
3933       // value is either a constant or a value that dominates the cleanup
3934       // pad being removed.
3935       //
3936       // Because BB and UnwindDest are both EH pads, all of their
3937       // predecessors must unwind to these blocks, and since no instruction
3938       // can have multiple unwind destinations, there will be no overlap in
3939       // incoming blocks between SrcPN and DestPN.
3940       Value *SrcVal = DestPN->getIncomingValue(Idx);
3941       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3942 
3943       // Remove the entry for the block we are deleting.
3944       DestPN->removeIncomingValue(Idx, false);
3945 
3946       if (SrcPN && SrcPN->getParent() == BB) {
3947         // If the incoming value was a PHI node in the cleanup pad we are
3948         // removing, we need to merge that PHI node's incoming values into
3949         // DestPN.
3950         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3951              SrcIdx != SrcE; ++SrcIdx) {
3952           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3953                               SrcPN->getIncomingBlock(SrcIdx));
3954         }
3955       } else {
3956         // Otherwise, the incoming value came from above BB and
3957         // so we can just reuse it.  We must associate all of BB's
3958         // predecessors with this value.
3959         for (auto *pred : predecessors(BB)) {
3960           DestPN->addIncoming(SrcVal, pred);
3961         }
3962       }
3963     }
3964 
3965     // Sink any remaining PHI nodes directly into UnwindDest.
3966     Instruction *InsertPt = DestEHPad;
3967     for (BasicBlock::iterator I = BB->begin(),
3968                               IE = BB->getFirstNonPHI()->getIterator();
3969          I != IE;) {
3970       // The iterator must be incremented here because the instructions are
3971       // being moved to another block.
3972       PHINode *PN = cast<PHINode>(I++);
3973       if (PN->use_empty())
3974         // If the PHI node has no uses, just leave it.  It will be erased
3975         // when we erase BB below.
3976         continue;
3977 
3978       // Otherwise, sink this PHI node into UnwindDest.
3979       // Any predecessors to UnwindDest which are not already represented
3980       // must be back edges which inherit the value from the path through
3981       // BB.  In this case, the PHI value must reference itself.
3982       for (auto *pred : predecessors(UnwindDest))
3983         if (pred != BB)
3984           PN->addIncoming(PN, pred);
3985       PN->moveBefore(InsertPt);
3986     }
3987   }
3988 
3989   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3990     // The iterator must be updated here because we are removing this pred.
3991     BasicBlock *PredBB = *PI++;
3992     if (UnwindDest == nullptr) {
3993       removeUnwindEdge(PredBB);
3994     } else {
3995       TerminatorInst *TI = PredBB->getTerminator();
3996       TI->replaceUsesOfWith(BB, UnwindDest);
3997     }
3998   }
3999 
4000   // The cleanup pad is now unreachable.  Zap it.
4001   BB->eraseFromParent();
4002   return true;
4003 }
4004 
4005 // Try to merge two cleanuppads together.
4006 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4007   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4008   // with.
4009   BasicBlock *UnwindDest = RI->getUnwindDest();
4010   if (!UnwindDest)
4011     return false;
4012 
4013   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4014   // be safe to merge without code duplication.
4015   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4016     return false;
4017 
4018   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4019   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4020   if (!SuccessorCleanupPad)
4021     return false;
4022 
4023   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4024   // Replace any uses of the successor cleanupad with the predecessor pad
4025   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4026   // funclet bundle operands.
4027   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4028   // Remove the old cleanuppad.
4029   SuccessorCleanupPad->eraseFromParent();
4030   // Now, we simply replace the cleanupret with a branch to the unwind
4031   // destination.
4032   BranchInst::Create(UnwindDest, RI->getParent());
4033   RI->eraseFromParent();
4034 
4035   return true;
4036 }
4037 
4038 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4039   // It is possible to transiantly have an undef cleanuppad operand because we
4040   // have deleted some, but not all, dead blocks.
4041   // Eventually, this block will be deleted.
4042   if (isa<UndefValue>(RI->getOperand(0)))
4043     return false;
4044 
4045   if (mergeCleanupPad(RI))
4046     return true;
4047 
4048   if (removeEmptyCleanup(RI))
4049     return true;
4050 
4051   return false;
4052 }
4053 
4054 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4055   BasicBlock *BB = RI->getParent();
4056   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4057     return false;
4058 
4059   // Find predecessors that end with branches.
4060   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4061   SmallVector<BranchInst *, 8> CondBranchPreds;
4062   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4063     BasicBlock *P = *PI;
4064     TerminatorInst *PTI = P->getTerminator();
4065     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4066       if (BI->isUnconditional())
4067         UncondBranchPreds.push_back(P);
4068       else
4069         CondBranchPreds.push_back(BI);
4070     }
4071   }
4072 
4073   // If we found some, do the transformation!
4074   if (!UncondBranchPreds.empty() && DupRet) {
4075     while (!UncondBranchPreds.empty()) {
4076       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4077       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4078                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4079       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4080     }
4081 
4082     // If we eliminated all predecessors of the block, delete the block now.
4083     if (pred_empty(BB)) {
4084       // We know there are no successors, so just nuke the block.
4085       BB->eraseFromParent();
4086       if (LoopHeaders)
4087         LoopHeaders->erase(BB);
4088     }
4089 
4090     return true;
4091   }
4092 
4093   // Check out all of the conditional branches going to this return
4094   // instruction.  If any of them just select between returns, change the
4095   // branch itself into a select/return pair.
4096   while (!CondBranchPreds.empty()) {
4097     BranchInst *BI = CondBranchPreds.pop_back_val();
4098 
4099     // Check to see if the non-BB successor is also a return block.
4100     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4101         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4102         SimplifyCondBranchToTwoReturns(BI, Builder))
4103       return true;
4104   }
4105   return false;
4106 }
4107 
4108 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4109   BasicBlock *BB = UI->getParent();
4110 
4111   bool Changed = false;
4112 
4113   // If there are any instructions immediately before the unreachable that can
4114   // be removed, do so.
4115   while (UI->getIterator() != BB->begin()) {
4116     BasicBlock::iterator BBI = UI->getIterator();
4117     --BBI;
4118     // Do not delete instructions that can have side effects which might cause
4119     // the unreachable to not be reachable; specifically, calls and volatile
4120     // operations may have this effect.
4121     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4122       break;
4123 
4124     if (BBI->mayHaveSideEffects()) {
4125       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4126         if (SI->isVolatile())
4127           break;
4128       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4129         if (LI->isVolatile())
4130           break;
4131       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4132         if (RMWI->isVolatile())
4133           break;
4134       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4135         if (CXI->isVolatile())
4136           break;
4137       } else if (isa<CatchPadInst>(BBI)) {
4138         // A catchpad may invoke exception object constructors and such, which
4139         // in some languages can be arbitrary code, so be conservative by
4140         // default.
4141         // For CoreCLR, it just involves a type test, so can be removed.
4142         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4143             EHPersonality::CoreCLR)
4144           break;
4145       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4146                  !isa<LandingPadInst>(BBI)) {
4147         break;
4148       }
4149       // Note that deleting LandingPad's here is in fact okay, although it
4150       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4151       // all the predecessors of this block will be the unwind edges of Invokes,
4152       // and we can therefore guarantee this block will be erased.
4153     }
4154 
4155     // Delete this instruction (any uses are guaranteed to be dead)
4156     if (!BBI->use_empty())
4157       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4158     BBI->eraseFromParent();
4159     Changed = true;
4160   }
4161 
4162   // If the unreachable instruction is the first in the block, take a gander
4163   // at all of the predecessors of this instruction, and simplify them.
4164   if (&BB->front() != UI)
4165     return Changed;
4166 
4167   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4168   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4169     TerminatorInst *TI = Preds[i]->getTerminator();
4170     IRBuilder<> Builder(TI);
4171     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4172       if (BI->isUnconditional()) {
4173         if (BI->getSuccessor(0) == BB) {
4174           new UnreachableInst(TI->getContext(), TI);
4175           TI->eraseFromParent();
4176           Changed = true;
4177         }
4178       } else {
4179         if (BI->getSuccessor(0) == BB) {
4180           Builder.CreateBr(BI->getSuccessor(1));
4181           EraseTerminatorInstAndDCECond(BI);
4182         } else if (BI->getSuccessor(1) == BB) {
4183           Builder.CreateBr(BI->getSuccessor(0));
4184           EraseTerminatorInstAndDCECond(BI);
4185           Changed = true;
4186         }
4187       }
4188     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4189       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4190         if (i->getCaseSuccessor() != BB) {
4191           ++i;
4192           continue;
4193         }
4194         BB->removePredecessor(SI->getParent());
4195         i = SI->removeCase(i);
4196         e = SI->case_end();
4197         Changed = true;
4198       }
4199     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4200       if (II->getUnwindDest() == BB) {
4201         removeUnwindEdge(TI->getParent());
4202         Changed = true;
4203       }
4204     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4205       if (CSI->getUnwindDest() == BB) {
4206         removeUnwindEdge(TI->getParent());
4207         Changed = true;
4208         continue;
4209       }
4210 
4211       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4212                                              E = CSI->handler_end();
4213            I != E; ++I) {
4214         if (*I == BB) {
4215           CSI->removeHandler(I);
4216           --I;
4217           --E;
4218           Changed = true;
4219         }
4220       }
4221       if (CSI->getNumHandlers() == 0) {
4222         BasicBlock *CatchSwitchBB = CSI->getParent();
4223         if (CSI->hasUnwindDest()) {
4224           // Redirect preds to the unwind dest
4225           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4226         } else {
4227           // Rewrite all preds to unwind to caller (or from invoke to call).
4228           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4229           for (BasicBlock *EHPred : EHPreds)
4230             removeUnwindEdge(EHPred);
4231         }
4232         // The catchswitch is no longer reachable.
4233         new UnreachableInst(CSI->getContext(), CSI);
4234         CSI->eraseFromParent();
4235         Changed = true;
4236       }
4237     } else if (isa<CleanupReturnInst>(TI)) {
4238       new UnreachableInst(TI->getContext(), TI);
4239       TI->eraseFromParent();
4240       Changed = true;
4241     }
4242   }
4243 
4244   // If this block is now dead, remove it.
4245   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4246     // We know there are no successors, so just nuke the block.
4247     BB->eraseFromParent();
4248     if (LoopHeaders)
4249       LoopHeaders->erase(BB);
4250     return true;
4251   }
4252 
4253   return Changed;
4254 }
4255 
4256 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4257   assert(Cases.size() >= 1);
4258 
4259   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4260   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4261     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4262       return false;
4263   }
4264   return true;
4265 }
4266 
4267 /// Turn a switch with two reachable destinations into an integer range
4268 /// comparison and branch.
4269 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4270   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4271 
4272   bool HasDefault =
4273       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4274 
4275   // Partition the cases into two sets with different destinations.
4276   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4277   BasicBlock *DestB = nullptr;
4278   SmallVector<ConstantInt *, 16> CasesA;
4279   SmallVector<ConstantInt *, 16> CasesB;
4280 
4281   for (auto Case : SI->cases()) {
4282     BasicBlock *Dest = Case.getCaseSuccessor();
4283     if (!DestA)
4284       DestA = Dest;
4285     if (Dest == DestA) {
4286       CasesA.push_back(Case.getCaseValue());
4287       continue;
4288     }
4289     if (!DestB)
4290       DestB = Dest;
4291     if (Dest == DestB) {
4292       CasesB.push_back(Case.getCaseValue());
4293       continue;
4294     }
4295     return false; // More than two destinations.
4296   }
4297 
4298   assert(DestA && DestB &&
4299          "Single-destination switch should have been folded.");
4300   assert(DestA != DestB);
4301   assert(DestB != SI->getDefaultDest());
4302   assert(!CasesB.empty() && "There must be non-default cases.");
4303   assert(!CasesA.empty() || HasDefault);
4304 
4305   // Figure out if one of the sets of cases form a contiguous range.
4306   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4307   BasicBlock *ContiguousDest = nullptr;
4308   BasicBlock *OtherDest = nullptr;
4309   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4310     ContiguousCases = &CasesA;
4311     ContiguousDest = DestA;
4312     OtherDest = DestB;
4313   } else if (CasesAreContiguous(CasesB)) {
4314     ContiguousCases = &CasesB;
4315     ContiguousDest = DestB;
4316     OtherDest = DestA;
4317   } else
4318     return false;
4319 
4320   // Start building the compare and branch.
4321 
4322   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4323   Constant *NumCases =
4324       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4325 
4326   Value *Sub = SI->getCondition();
4327   if (!Offset->isNullValue())
4328     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4329 
4330   Value *Cmp;
4331   // If NumCases overflowed, then all possible values jump to the successor.
4332   if (NumCases->isNullValue() && !ContiguousCases->empty())
4333     Cmp = ConstantInt::getTrue(SI->getContext());
4334   else
4335     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4336   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4337 
4338   // Update weight for the newly-created conditional branch.
4339   if (HasBranchWeights(SI)) {
4340     SmallVector<uint64_t, 8> Weights;
4341     GetBranchWeights(SI, Weights);
4342     if (Weights.size() == 1 + SI->getNumCases()) {
4343       uint64_t TrueWeight = 0;
4344       uint64_t FalseWeight = 0;
4345       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4346         if (SI->getSuccessor(I) == ContiguousDest)
4347           TrueWeight += Weights[I];
4348         else
4349           FalseWeight += Weights[I];
4350       }
4351       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4352         TrueWeight /= 2;
4353         FalseWeight /= 2;
4354       }
4355       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4356     }
4357   }
4358 
4359   // Prune obsolete incoming values off the successors' PHI nodes.
4360   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4361     unsigned PreviousEdges = ContiguousCases->size();
4362     if (ContiguousDest == SI->getDefaultDest())
4363       ++PreviousEdges;
4364     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4365       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4366   }
4367   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4368     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4369     if (OtherDest == SI->getDefaultDest())
4370       ++PreviousEdges;
4371     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4372       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4373   }
4374 
4375   // Drop the switch.
4376   SI->eraseFromParent();
4377 
4378   return true;
4379 }
4380 
4381 /// Compute masked bits for the condition of a switch
4382 /// and use it to remove dead cases.
4383 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4384                                      const DataLayout &DL) {
4385   Value *Cond = SI->getCondition();
4386   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4387   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4388 
4389   // We can also eliminate cases by determining that their values are outside of
4390   // the limited range of the condition based on how many significant (non-sign)
4391   // bits are in the condition value.
4392   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4393   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4394 
4395   // Gather dead cases.
4396   SmallVector<ConstantInt *, 8> DeadCases;
4397   for (auto &Case : SI->cases()) {
4398     const APInt &CaseVal = Case.getCaseValue()->getValue();
4399     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4400         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4401       DeadCases.push_back(Case.getCaseValue());
4402       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4403                         << " is dead.\n");
4404     }
4405   }
4406 
4407   // If we can prove that the cases must cover all possible values, the
4408   // default destination becomes dead and we can remove it.  If we know some
4409   // of the bits in the value, we can use that to more precisely compute the
4410   // number of possible unique case values.
4411   bool HasDefault =
4412       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4413   const unsigned NumUnknownBits =
4414       Bits - (Known.Zero | Known.One).countPopulation();
4415   assert(NumUnknownBits <= Bits);
4416   if (HasDefault && DeadCases.empty() &&
4417       NumUnknownBits < 64 /* avoid overflow */ &&
4418       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4419     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4420     BasicBlock *NewDefault =
4421         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4422     SI->setDefaultDest(&*NewDefault);
4423     SplitBlock(&*NewDefault, &NewDefault->front());
4424     auto *OldTI = NewDefault->getTerminator();
4425     new UnreachableInst(SI->getContext(), OldTI);
4426     EraseTerminatorInstAndDCECond(OldTI);
4427     return true;
4428   }
4429 
4430   SmallVector<uint64_t, 8> Weights;
4431   bool HasWeight = HasBranchWeights(SI);
4432   if (HasWeight) {
4433     GetBranchWeights(SI, Weights);
4434     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4435   }
4436 
4437   // Remove dead cases from the switch.
4438   for (ConstantInt *DeadCase : DeadCases) {
4439     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4440     assert(CaseI != SI->case_default() &&
4441            "Case was not found. Probably mistake in DeadCases forming.");
4442     if (HasWeight) {
4443       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4444       Weights.pop_back();
4445     }
4446 
4447     // Prune unused values from PHI nodes.
4448     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4449     SI->removeCase(CaseI);
4450   }
4451   if (HasWeight && Weights.size() >= 2) {
4452     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4453     setBranchWeights(SI, MDWeights);
4454   }
4455 
4456   return !DeadCases.empty();
4457 }
4458 
4459 /// If BB would be eligible for simplification by
4460 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4461 /// by an unconditional branch), look at the phi node for BB in the successor
4462 /// block and see if the incoming value is equal to CaseValue. If so, return
4463 /// the phi node, and set PhiIndex to BB's index in the phi node.
4464 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4465                                               BasicBlock *BB, int *PhiIndex) {
4466   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4467     return nullptr; // BB must be empty to be a candidate for simplification.
4468   if (!BB->getSinglePredecessor())
4469     return nullptr; // BB must be dominated by the switch.
4470 
4471   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4472   if (!Branch || !Branch->isUnconditional())
4473     return nullptr; // Terminator must be unconditional branch.
4474 
4475   BasicBlock *Succ = Branch->getSuccessor(0);
4476 
4477   for (PHINode &PHI : Succ->phis()) {
4478     int Idx = PHI.getBasicBlockIndex(BB);
4479     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4480 
4481     Value *InValue = PHI.getIncomingValue(Idx);
4482     if (InValue != CaseValue)
4483       continue;
4484 
4485     *PhiIndex = Idx;
4486     return &PHI;
4487   }
4488 
4489   return nullptr;
4490 }
4491 
4492 /// Try to forward the condition of a switch instruction to a phi node
4493 /// dominated by the switch, if that would mean that some of the destination
4494 /// blocks of the switch can be folded away. Return true if a change is made.
4495 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4496   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4497 
4498   ForwardingNodesMap ForwardingNodes;
4499   BasicBlock *SwitchBlock = SI->getParent();
4500   bool Changed = false;
4501   for (auto &Case : SI->cases()) {
4502     ConstantInt *CaseValue = Case.getCaseValue();
4503     BasicBlock *CaseDest = Case.getCaseSuccessor();
4504 
4505     // Replace phi operands in successor blocks that are using the constant case
4506     // value rather than the switch condition variable:
4507     //   switchbb:
4508     //   switch i32 %x, label %default [
4509     //     i32 17, label %succ
4510     //   ...
4511     //   succ:
4512     //     %r = phi i32 ... [ 17, %switchbb ] ...
4513     // -->
4514     //     %r = phi i32 ... [ %x, %switchbb ] ...
4515 
4516     for (PHINode &Phi : CaseDest->phis()) {
4517       // This only works if there is exactly 1 incoming edge from the switch to
4518       // a phi. If there is >1, that means multiple cases of the switch map to 1
4519       // value in the phi, and that phi value is not the switch condition. Thus,
4520       // this transform would not make sense (the phi would be invalid because
4521       // a phi can't have different incoming values from the same block).
4522       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4523       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4524           count(Phi.blocks(), SwitchBlock) == 1) {
4525         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4526         Changed = true;
4527       }
4528     }
4529 
4530     // Collect phi nodes that are indirectly using this switch's case constants.
4531     int PhiIdx;
4532     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4533       ForwardingNodes[Phi].push_back(PhiIdx);
4534   }
4535 
4536   for (auto &ForwardingNode : ForwardingNodes) {
4537     PHINode *Phi = ForwardingNode.first;
4538     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4539     if (Indexes.size() < 2)
4540       continue;
4541 
4542     for (int Index : Indexes)
4543       Phi->setIncomingValue(Index, SI->getCondition());
4544     Changed = true;
4545   }
4546 
4547   return Changed;
4548 }
4549 
4550 /// Return true if the backend will be able to handle
4551 /// initializing an array of constants like C.
4552 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4553   if (C->isThreadDependent())
4554     return false;
4555   if (C->isDLLImportDependent())
4556     return false;
4557 
4558   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4559       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4560       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4561     return false;
4562 
4563   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4564     if (!CE->isGEPWithNoNotionalOverIndexing())
4565       return false;
4566     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4567       return false;
4568   }
4569 
4570   if (!TTI.shouldBuildLookupTablesForConstant(C))
4571     return false;
4572 
4573   return true;
4574 }
4575 
4576 /// If V is a Constant, return it. Otherwise, try to look up
4577 /// its constant value in ConstantPool, returning 0 if it's not there.
4578 static Constant *
4579 LookupConstant(Value *V,
4580                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4581   if (Constant *C = dyn_cast<Constant>(V))
4582     return C;
4583   return ConstantPool.lookup(V);
4584 }
4585 
4586 /// Try to fold instruction I into a constant. This works for
4587 /// simple instructions such as binary operations where both operands are
4588 /// constant or can be replaced by constants from the ConstantPool. Returns the
4589 /// resulting constant on success, 0 otherwise.
4590 static Constant *
4591 ConstantFold(Instruction *I, const DataLayout &DL,
4592              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4593   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4594     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4595     if (!A)
4596       return nullptr;
4597     if (A->isAllOnesValue())
4598       return LookupConstant(Select->getTrueValue(), ConstantPool);
4599     if (A->isNullValue())
4600       return LookupConstant(Select->getFalseValue(), ConstantPool);
4601     return nullptr;
4602   }
4603 
4604   SmallVector<Constant *, 4> COps;
4605   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4606     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4607       COps.push_back(A);
4608     else
4609       return nullptr;
4610   }
4611 
4612   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4613     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4614                                            COps[1], DL);
4615   }
4616 
4617   return ConstantFoldInstOperands(I, COps, DL);
4618 }
4619 
4620 /// Try to determine the resulting constant values in phi nodes
4621 /// at the common destination basic block, *CommonDest, for one of the case
4622 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4623 /// case), of a switch instruction SI.
4624 static bool
4625 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4626                BasicBlock **CommonDest,
4627                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4628                const DataLayout &DL, const TargetTransformInfo &TTI) {
4629   // The block from which we enter the common destination.
4630   BasicBlock *Pred = SI->getParent();
4631 
4632   // If CaseDest is empty except for some side-effect free instructions through
4633   // which we can constant-propagate the CaseVal, continue to its successor.
4634   SmallDenseMap<Value *, Constant *> ConstantPool;
4635   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4636   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4637     if (TerminatorInst *T = dyn_cast<TerminatorInst>(&I)) {
4638       // If the terminator is a simple branch, continue to the next block.
4639       if (T->getNumSuccessors() != 1 || T->isExceptional())
4640         return false;
4641       Pred = CaseDest;
4642       CaseDest = T->getSuccessor(0);
4643     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4644       // Instruction is side-effect free and constant.
4645 
4646       // If the instruction has uses outside this block or a phi node slot for
4647       // the block, it is not safe to bypass the instruction since it would then
4648       // no longer dominate all its uses.
4649       for (auto &Use : I.uses()) {
4650         User *User = Use.getUser();
4651         if (Instruction *I = dyn_cast<Instruction>(User))
4652           if (I->getParent() == CaseDest)
4653             continue;
4654         if (PHINode *Phi = dyn_cast<PHINode>(User))
4655           if (Phi->getIncomingBlock(Use) == CaseDest)
4656             continue;
4657         return false;
4658       }
4659 
4660       ConstantPool.insert(std::make_pair(&I, C));
4661     } else {
4662       break;
4663     }
4664   }
4665 
4666   // If we did not have a CommonDest before, use the current one.
4667   if (!*CommonDest)
4668     *CommonDest = CaseDest;
4669   // If the destination isn't the common one, abort.
4670   if (CaseDest != *CommonDest)
4671     return false;
4672 
4673   // Get the values for this case from phi nodes in the destination block.
4674   for (PHINode &PHI : (*CommonDest)->phis()) {
4675     int Idx = PHI.getBasicBlockIndex(Pred);
4676     if (Idx == -1)
4677       continue;
4678 
4679     Constant *ConstVal =
4680         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4681     if (!ConstVal)
4682       return false;
4683 
4684     // Be conservative about which kinds of constants we support.
4685     if (!ValidLookupTableConstant(ConstVal, TTI))
4686       return false;
4687 
4688     Res.push_back(std::make_pair(&PHI, ConstVal));
4689   }
4690 
4691   return Res.size() > 0;
4692 }
4693 
4694 // Helper function used to add CaseVal to the list of cases that generate
4695 // Result. Returns the updated number of cases that generate this result.
4696 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4697                                  SwitchCaseResultVectorTy &UniqueResults,
4698                                  Constant *Result) {
4699   for (auto &I : UniqueResults) {
4700     if (I.first == Result) {
4701       I.second.push_back(CaseVal);
4702       return I.second.size();
4703     }
4704   }
4705   UniqueResults.push_back(
4706       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4707   return 1;
4708 }
4709 
4710 // Helper function that initializes a map containing
4711 // results for the PHI node of the common destination block for a switch
4712 // instruction. Returns false if multiple PHI nodes have been found or if
4713 // there is not a common destination block for the switch.
4714 static bool
4715 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4716                       SwitchCaseResultVectorTy &UniqueResults,
4717                       Constant *&DefaultResult, const DataLayout &DL,
4718                       const TargetTransformInfo &TTI,
4719                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4720   for (auto &I : SI->cases()) {
4721     ConstantInt *CaseVal = I.getCaseValue();
4722 
4723     // Resulting value at phi nodes for this case value.
4724     SwitchCaseResultsTy Results;
4725     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4726                         DL, TTI))
4727       return false;
4728 
4729     // Only one value per case is permitted.
4730     if (Results.size() > 1)
4731       return false;
4732 
4733     // Add the case->result mapping to UniqueResults.
4734     const uintptr_t NumCasesForResult =
4735         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4736 
4737     // Early out if there are too many cases for this result.
4738     if (NumCasesForResult > MaxCasesPerResult)
4739       return false;
4740 
4741     // Early out if there are too many unique results.
4742     if (UniqueResults.size() > MaxUniqueResults)
4743       return false;
4744 
4745     // Check the PHI consistency.
4746     if (!PHI)
4747       PHI = Results[0].first;
4748     else if (PHI != Results[0].first)
4749       return false;
4750   }
4751   // Find the default result value.
4752   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4753   BasicBlock *DefaultDest = SI->getDefaultDest();
4754   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4755                  DL, TTI);
4756   // If the default value is not found abort unless the default destination
4757   // is unreachable.
4758   DefaultResult =
4759       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4760   if ((!DefaultResult &&
4761        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4762     return false;
4763 
4764   return true;
4765 }
4766 
4767 // Helper function that checks if it is possible to transform a switch with only
4768 // two cases (or two cases + default) that produces a result into a select.
4769 // Example:
4770 // switch (a) {
4771 //   case 10:                %0 = icmp eq i32 %a, 10
4772 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4773 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4774 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4775 //   default:
4776 //     return 4;
4777 // }
4778 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4779                                    Constant *DefaultResult, Value *Condition,
4780                                    IRBuilder<> &Builder) {
4781   assert(ResultVector.size() == 2 &&
4782          "We should have exactly two unique results at this point");
4783   // If we are selecting between only two cases transform into a simple
4784   // select or a two-way select if default is possible.
4785   if (ResultVector[0].second.size() == 1 &&
4786       ResultVector[1].second.size() == 1) {
4787     ConstantInt *const FirstCase = ResultVector[0].second[0];
4788     ConstantInt *const SecondCase = ResultVector[1].second[0];
4789 
4790     bool DefaultCanTrigger = DefaultResult;
4791     Value *SelectValue = ResultVector[1].first;
4792     if (DefaultCanTrigger) {
4793       Value *const ValueCompare =
4794           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4795       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4796                                          DefaultResult, "switch.select");
4797     }
4798     Value *const ValueCompare =
4799         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4800     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4801                                 SelectValue, "switch.select");
4802   }
4803 
4804   return nullptr;
4805 }
4806 
4807 // Helper function to cleanup a switch instruction that has been converted into
4808 // a select, fixing up PHI nodes and basic blocks.
4809 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4810                                               Value *SelectValue,
4811                                               IRBuilder<> &Builder) {
4812   BasicBlock *SelectBB = SI->getParent();
4813   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4814     PHI->removeIncomingValue(SelectBB);
4815   PHI->addIncoming(SelectValue, SelectBB);
4816 
4817   Builder.CreateBr(PHI->getParent());
4818 
4819   // Remove the switch.
4820   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4821     BasicBlock *Succ = SI->getSuccessor(i);
4822 
4823     if (Succ == PHI->getParent())
4824       continue;
4825     Succ->removePredecessor(SelectBB);
4826   }
4827   SI->eraseFromParent();
4828 }
4829 
4830 /// If the switch is only used to initialize one or more
4831 /// phi nodes in a common successor block with only two different
4832 /// constant values, replace the switch with select.
4833 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4834                            const DataLayout &DL,
4835                            const TargetTransformInfo &TTI) {
4836   Value *const Cond = SI->getCondition();
4837   PHINode *PHI = nullptr;
4838   BasicBlock *CommonDest = nullptr;
4839   Constant *DefaultResult;
4840   SwitchCaseResultVectorTy UniqueResults;
4841   // Collect all the cases that will deliver the same value from the switch.
4842   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4843                              DL, TTI, 2, 1))
4844     return false;
4845   // Selects choose between maximum two values.
4846   if (UniqueResults.size() != 2)
4847     return false;
4848   assert(PHI != nullptr && "PHI for value select not found");
4849 
4850   Builder.SetInsertPoint(SI);
4851   Value *SelectValue =
4852       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4853   if (SelectValue) {
4854     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4855     return true;
4856   }
4857   // The switch couldn't be converted into a select.
4858   return false;
4859 }
4860 
4861 namespace {
4862 
4863 /// This class represents a lookup table that can be used to replace a switch.
4864 class SwitchLookupTable {
4865 public:
4866   /// Create a lookup table to use as a switch replacement with the contents
4867   /// of Values, using DefaultValue to fill any holes in the table.
4868   SwitchLookupTable(
4869       Module &M, uint64_t TableSize, ConstantInt *Offset,
4870       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4871       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4872 
4873   /// Build instructions with Builder to retrieve the value at
4874   /// the position given by Index in the lookup table.
4875   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4876 
4877   /// Return true if a table with TableSize elements of
4878   /// type ElementType would fit in a target-legal register.
4879   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4880                                  Type *ElementType);
4881 
4882 private:
4883   // Depending on the contents of the table, it can be represented in
4884   // different ways.
4885   enum {
4886     // For tables where each element contains the same value, we just have to
4887     // store that single value and return it for each lookup.
4888     SingleValueKind,
4889 
4890     // For tables where there is a linear relationship between table index
4891     // and values. We calculate the result with a simple multiplication
4892     // and addition instead of a table lookup.
4893     LinearMapKind,
4894 
4895     // For small tables with integer elements, we can pack them into a bitmap
4896     // that fits into a target-legal register. Values are retrieved by
4897     // shift and mask operations.
4898     BitMapKind,
4899 
4900     // The table is stored as an array of values. Values are retrieved by load
4901     // instructions from the table.
4902     ArrayKind
4903   } Kind;
4904 
4905   // For SingleValueKind, this is the single value.
4906   Constant *SingleValue = nullptr;
4907 
4908   // For BitMapKind, this is the bitmap.
4909   ConstantInt *BitMap = nullptr;
4910   IntegerType *BitMapElementTy = nullptr;
4911 
4912   // For LinearMapKind, these are the constants used to derive the value.
4913   ConstantInt *LinearOffset = nullptr;
4914   ConstantInt *LinearMultiplier = nullptr;
4915 
4916   // For ArrayKind, this is the array.
4917   GlobalVariable *Array = nullptr;
4918 };
4919 
4920 } // end anonymous namespace
4921 
4922 SwitchLookupTable::SwitchLookupTable(
4923     Module &M, uint64_t TableSize, ConstantInt *Offset,
4924     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4925     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4926   assert(Values.size() && "Can't build lookup table without values!");
4927   assert(TableSize >= Values.size() && "Can't fit values in table!");
4928 
4929   // If all values in the table are equal, this is that value.
4930   SingleValue = Values.begin()->second;
4931 
4932   Type *ValueType = Values.begin()->second->getType();
4933 
4934   // Build up the table contents.
4935   SmallVector<Constant *, 64> TableContents(TableSize);
4936   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4937     ConstantInt *CaseVal = Values[I].first;
4938     Constant *CaseRes = Values[I].second;
4939     assert(CaseRes->getType() == ValueType);
4940 
4941     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4942     TableContents[Idx] = CaseRes;
4943 
4944     if (CaseRes != SingleValue)
4945       SingleValue = nullptr;
4946   }
4947 
4948   // Fill in any holes in the table with the default result.
4949   if (Values.size() < TableSize) {
4950     assert(DefaultValue &&
4951            "Need a default value to fill the lookup table holes.");
4952     assert(DefaultValue->getType() == ValueType);
4953     for (uint64_t I = 0; I < TableSize; ++I) {
4954       if (!TableContents[I])
4955         TableContents[I] = DefaultValue;
4956     }
4957 
4958     if (DefaultValue != SingleValue)
4959       SingleValue = nullptr;
4960   }
4961 
4962   // If each element in the table contains the same value, we only need to store
4963   // that single value.
4964   if (SingleValue) {
4965     Kind = SingleValueKind;
4966     return;
4967   }
4968 
4969   // Check if we can derive the value with a linear transformation from the
4970   // table index.
4971   if (isa<IntegerType>(ValueType)) {
4972     bool LinearMappingPossible = true;
4973     APInt PrevVal;
4974     APInt DistToPrev;
4975     assert(TableSize >= 2 && "Should be a SingleValue table.");
4976     // Check if there is the same distance between two consecutive values.
4977     for (uint64_t I = 0; I < TableSize; ++I) {
4978       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4979       if (!ConstVal) {
4980         // This is an undef. We could deal with it, but undefs in lookup tables
4981         // are very seldom. It's probably not worth the additional complexity.
4982         LinearMappingPossible = false;
4983         break;
4984       }
4985       const APInt &Val = ConstVal->getValue();
4986       if (I != 0) {
4987         APInt Dist = Val - PrevVal;
4988         if (I == 1) {
4989           DistToPrev = Dist;
4990         } else if (Dist != DistToPrev) {
4991           LinearMappingPossible = false;
4992           break;
4993         }
4994       }
4995       PrevVal = Val;
4996     }
4997     if (LinearMappingPossible) {
4998       LinearOffset = cast<ConstantInt>(TableContents[0]);
4999       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5000       Kind = LinearMapKind;
5001       ++NumLinearMaps;
5002       return;
5003     }
5004   }
5005 
5006   // If the type is integer and the table fits in a register, build a bitmap.
5007   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5008     IntegerType *IT = cast<IntegerType>(ValueType);
5009     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5010     for (uint64_t I = TableSize; I > 0; --I) {
5011       TableInt <<= IT->getBitWidth();
5012       // Insert values into the bitmap. Undef values are set to zero.
5013       if (!isa<UndefValue>(TableContents[I - 1])) {
5014         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5015         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5016       }
5017     }
5018     BitMap = ConstantInt::get(M.getContext(), TableInt);
5019     BitMapElementTy = IT;
5020     Kind = BitMapKind;
5021     ++NumBitMaps;
5022     return;
5023   }
5024 
5025   // Store the table in an array.
5026   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5027   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5028 
5029   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5030                              GlobalVariable::PrivateLinkage, Initializer,
5031                              "switch.table." + FuncName);
5032   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5033   Kind = ArrayKind;
5034 }
5035 
5036 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5037   switch (Kind) {
5038   case SingleValueKind:
5039     return SingleValue;
5040   case LinearMapKind: {
5041     // Derive the result value from the input value.
5042     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5043                                           false, "switch.idx.cast");
5044     if (!LinearMultiplier->isOne())
5045       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5046     if (!LinearOffset->isZero())
5047       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5048     return Result;
5049   }
5050   case BitMapKind: {
5051     // Type of the bitmap (e.g. i59).
5052     IntegerType *MapTy = BitMap->getType();
5053 
5054     // Cast Index to the same type as the bitmap.
5055     // Note: The Index is <= the number of elements in the table, so
5056     // truncating it to the width of the bitmask is safe.
5057     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5058 
5059     // Multiply the shift amount by the element width.
5060     ShiftAmt = Builder.CreateMul(
5061         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5062         "switch.shiftamt");
5063 
5064     // Shift down.
5065     Value *DownShifted =
5066         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5067     // Mask off.
5068     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5069   }
5070   case ArrayKind: {
5071     // Make sure the table index will not overflow when treated as signed.
5072     IntegerType *IT = cast<IntegerType>(Index->getType());
5073     uint64_t TableSize =
5074         Array->getInitializer()->getType()->getArrayNumElements();
5075     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5076       Index = Builder.CreateZExt(
5077           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5078           "switch.tableidx.zext");
5079 
5080     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5081     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5082                                            GEPIndices, "switch.gep");
5083     return Builder.CreateLoad(GEP, "switch.load");
5084   }
5085   }
5086   llvm_unreachable("Unknown lookup table kind!");
5087 }
5088 
5089 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5090                                            uint64_t TableSize,
5091                                            Type *ElementType) {
5092   auto *IT = dyn_cast<IntegerType>(ElementType);
5093   if (!IT)
5094     return false;
5095   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5096   // are <= 15, we could try to narrow the type.
5097 
5098   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5099   if (TableSize >= UINT_MAX / IT->getBitWidth())
5100     return false;
5101   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5102 }
5103 
5104 /// Determine whether a lookup table should be built for this switch, based on
5105 /// the number of cases, size of the table, and the types of the results.
5106 static bool
5107 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5108                        const TargetTransformInfo &TTI, const DataLayout &DL,
5109                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5110   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5111     return false; // TableSize overflowed, or mul below might overflow.
5112 
5113   bool AllTablesFitInRegister = true;
5114   bool HasIllegalType = false;
5115   for (const auto &I : ResultTypes) {
5116     Type *Ty = I.second;
5117 
5118     // Saturate this flag to true.
5119     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5120 
5121     // Saturate this flag to false.
5122     AllTablesFitInRegister =
5123         AllTablesFitInRegister &&
5124         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5125 
5126     // If both flags saturate, we're done. NOTE: This *only* works with
5127     // saturating flags, and all flags have to saturate first due to the
5128     // non-deterministic behavior of iterating over a dense map.
5129     if (HasIllegalType && !AllTablesFitInRegister)
5130       break;
5131   }
5132 
5133   // If each table would fit in a register, we should build it anyway.
5134   if (AllTablesFitInRegister)
5135     return true;
5136 
5137   // Don't build a table that doesn't fit in-register if it has illegal types.
5138   if (HasIllegalType)
5139     return false;
5140 
5141   // The table density should be at least 40%. This is the same criterion as for
5142   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5143   // FIXME: Find the best cut-off.
5144   return SI->getNumCases() * 10 >= TableSize * 4;
5145 }
5146 
5147 /// Try to reuse the switch table index compare. Following pattern:
5148 /// \code
5149 ///     if (idx < tablesize)
5150 ///        r = table[idx]; // table does not contain default_value
5151 ///     else
5152 ///        r = default_value;
5153 ///     if (r != default_value)
5154 ///        ...
5155 /// \endcode
5156 /// Is optimized to:
5157 /// \code
5158 ///     cond = idx < tablesize;
5159 ///     if (cond)
5160 ///        r = table[idx];
5161 ///     else
5162 ///        r = default_value;
5163 ///     if (cond)
5164 ///        ...
5165 /// \endcode
5166 /// Jump threading will then eliminate the second if(cond).
5167 static void reuseTableCompare(
5168     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5169     Constant *DefaultValue,
5170     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5171   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5172   if (!CmpInst)
5173     return;
5174 
5175   // We require that the compare is in the same block as the phi so that jump
5176   // threading can do its work afterwards.
5177   if (CmpInst->getParent() != PhiBlock)
5178     return;
5179 
5180   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5181   if (!CmpOp1)
5182     return;
5183 
5184   Value *RangeCmp = RangeCheckBranch->getCondition();
5185   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5186   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5187 
5188   // Check if the compare with the default value is constant true or false.
5189   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5190                                                  DefaultValue, CmpOp1, true);
5191   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5192     return;
5193 
5194   // Check if the compare with the case values is distinct from the default
5195   // compare result.
5196   for (auto ValuePair : Values) {
5197     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5198                                                 ValuePair.second, CmpOp1, true);
5199     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5200       return;
5201     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5202            "Expect true or false as compare result.");
5203   }
5204 
5205   // Check if the branch instruction dominates the phi node. It's a simple
5206   // dominance check, but sufficient for our needs.
5207   // Although this check is invariant in the calling loops, it's better to do it
5208   // at this late stage. Practically we do it at most once for a switch.
5209   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5210   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5211     BasicBlock *Pred = *PI;
5212     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5213       return;
5214   }
5215 
5216   if (DefaultConst == FalseConst) {
5217     // The compare yields the same result. We can replace it.
5218     CmpInst->replaceAllUsesWith(RangeCmp);
5219     ++NumTableCmpReuses;
5220   } else {
5221     // The compare yields the same result, just inverted. We can replace it.
5222     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5223         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5224         RangeCheckBranch);
5225     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5226     ++NumTableCmpReuses;
5227   }
5228 }
5229 
5230 /// If the switch is only used to initialize one or more phi nodes in a common
5231 /// successor block with different constant values, replace the switch with
5232 /// lookup tables.
5233 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5234                                 const DataLayout &DL,
5235                                 const TargetTransformInfo &TTI) {
5236   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5237 
5238   Function *Fn = SI->getParent()->getParent();
5239   // Only build lookup table when we have a target that supports it or the
5240   // attribute is not set.
5241   if (!TTI.shouldBuildLookupTables() ||
5242       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5243     return false;
5244 
5245   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5246   // split off a dense part and build a lookup table for that.
5247 
5248   // FIXME: This creates arrays of GEPs to constant strings, which means each
5249   // GEP needs a runtime relocation in PIC code. We should just build one big
5250   // string and lookup indices into that.
5251 
5252   // Ignore switches with less than three cases. Lookup tables will not make
5253   // them faster, so we don't analyze them.
5254   if (SI->getNumCases() < 3)
5255     return false;
5256 
5257   // Figure out the corresponding result for each case value and phi node in the
5258   // common destination, as well as the min and max case values.
5259   assert(SI->case_begin() != SI->case_end());
5260   SwitchInst::CaseIt CI = SI->case_begin();
5261   ConstantInt *MinCaseVal = CI->getCaseValue();
5262   ConstantInt *MaxCaseVal = CI->getCaseValue();
5263 
5264   BasicBlock *CommonDest = nullptr;
5265 
5266   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5267   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5268 
5269   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5270   SmallDenseMap<PHINode *, Type *> ResultTypes;
5271   SmallVector<PHINode *, 4> PHIs;
5272 
5273   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5274     ConstantInt *CaseVal = CI->getCaseValue();
5275     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5276       MinCaseVal = CaseVal;
5277     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5278       MaxCaseVal = CaseVal;
5279 
5280     // Resulting value at phi nodes for this case value.
5281     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5282     ResultsTy Results;
5283     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5284                         Results, DL, TTI))
5285       return false;
5286 
5287     // Append the result from this case to the list for each phi.
5288     for (const auto &I : Results) {
5289       PHINode *PHI = I.first;
5290       Constant *Value = I.second;
5291       if (!ResultLists.count(PHI))
5292         PHIs.push_back(PHI);
5293       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5294     }
5295   }
5296 
5297   // Keep track of the result types.
5298   for (PHINode *PHI : PHIs) {
5299     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5300   }
5301 
5302   uint64_t NumResults = ResultLists[PHIs[0]].size();
5303   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5304   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5305   bool TableHasHoles = (NumResults < TableSize);
5306 
5307   // If the table has holes, we need a constant result for the default case
5308   // or a bitmask that fits in a register.
5309   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5310   bool HasDefaultResults =
5311       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5312                      DefaultResultsList, DL, TTI);
5313 
5314   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5315   if (NeedMask) {
5316     // As an extra penalty for the validity test we require more cases.
5317     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5318       return false;
5319     if (!DL.fitsInLegalInteger(TableSize))
5320       return false;
5321   }
5322 
5323   for (const auto &I : DefaultResultsList) {
5324     PHINode *PHI = I.first;
5325     Constant *Result = I.second;
5326     DefaultResults[PHI] = Result;
5327   }
5328 
5329   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5330     return false;
5331 
5332   // Create the BB that does the lookups.
5333   Module &Mod = *CommonDest->getParent()->getParent();
5334   BasicBlock *LookupBB = BasicBlock::Create(
5335       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5336 
5337   // Compute the table index value.
5338   Builder.SetInsertPoint(SI);
5339   Value *TableIndex;
5340   if (MinCaseVal->isNullValue())
5341     TableIndex = SI->getCondition();
5342   else
5343     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5344                                    "switch.tableidx");
5345 
5346   // Compute the maximum table size representable by the integer type we are
5347   // switching upon.
5348   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5349   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5350   assert(MaxTableSize >= TableSize &&
5351          "It is impossible for a switch to have more entries than the max "
5352          "representable value of its input integer type's size.");
5353 
5354   // If the default destination is unreachable, or if the lookup table covers
5355   // all values of the conditional variable, branch directly to the lookup table
5356   // BB. Otherwise, check that the condition is within the case range.
5357   const bool DefaultIsReachable =
5358       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5359   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5360   BranchInst *RangeCheckBranch = nullptr;
5361 
5362   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5363     Builder.CreateBr(LookupBB);
5364     // Note: We call removeProdecessor later since we need to be able to get the
5365     // PHI value for the default case in case we're using a bit mask.
5366   } else {
5367     Value *Cmp = Builder.CreateICmpULT(
5368         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5369     RangeCheckBranch =
5370         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5371   }
5372 
5373   // Populate the BB that does the lookups.
5374   Builder.SetInsertPoint(LookupBB);
5375 
5376   if (NeedMask) {
5377     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5378     // re-purposed to do the hole check, and we create a new LookupBB.
5379     BasicBlock *MaskBB = LookupBB;
5380     MaskBB->setName("switch.hole_check");
5381     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5382                                   CommonDest->getParent(), CommonDest);
5383 
5384     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5385     // unnecessary illegal types.
5386     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5387     APInt MaskInt(TableSizePowOf2, 0);
5388     APInt One(TableSizePowOf2, 1);
5389     // Build bitmask; fill in a 1 bit for every case.
5390     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5391     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5392       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5393                          .getLimitedValue();
5394       MaskInt |= One << Idx;
5395     }
5396     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5397 
5398     // Get the TableIndex'th bit of the bitmask.
5399     // If this bit is 0 (meaning hole) jump to the default destination,
5400     // else continue with table lookup.
5401     IntegerType *MapTy = TableMask->getType();
5402     Value *MaskIndex =
5403         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5404     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5405     Value *LoBit = Builder.CreateTrunc(
5406         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5407     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5408 
5409     Builder.SetInsertPoint(LookupBB);
5410     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5411   }
5412 
5413   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5414     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5415     // do not delete PHINodes here.
5416     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5417                                             /*DontDeleteUselessPHIs=*/true);
5418   }
5419 
5420   bool ReturnedEarly = false;
5421   for (PHINode *PHI : PHIs) {
5422     const ResultListTy &ResultList = ResultLists[PHI];
5423 
5424     // If using a bitmask, use any value to fill the lookup table holes.
5425     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5426     StringRef FuncName = Fn->getName();
5427     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5428                             FuncName);
5429 
5430     Value *Result = Table.BuildLookup(TableIndex, Builder);
5431 
5432     // If the result is used to return immediately from the function, we want to
5433     // do that right here.
5434     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5435         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5436       Builder.CreateRet(Result);
5437       ReturnedEarly = true;
5438       break;
5439     }
5440 
5441     // Do a small peephole optimization: re-use the switch table compare if
5442     // possible.
5443     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5444       BasicBlock *PhiBlock = PHI->getParent();
5445       // Search for compare instructions which use the phi.
5446       for (auto *User : PHI->users()) {
5447         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5448       }
5449     }
5450 
5451     PHI->addIncoming(Result, LookupBB);
5452   }
5453 
5454   if (!ReturnedEarly)
5455     Builder.CreateBr(CommonDest);
5456 
5457   // Remove the switch.
5458   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5459     BasicBlock *Succ = SI->getSuccessor(i);
5460 
5461     if (Succ == SI->getDefaultDest())
5462       continue;
5463     Succ->removePredecessor(SI->getParent());
5464   }
5465   SI->eraseFromParent();
5466 
5467   ++NumLookupTables;
5468   if (NeedMask)
5469     ++NumLookupTablesHoles;
5470   return true;
5471 }
5472 
5473 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5474   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5475   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5476   uint64_t Range = Diff + 1;
5477   uint64_t NumCases = Values.size();
5478   // 40% is the default density for building a jump table in optsize/minsize mode.
5479   uint64_t MinDensity = 40;
5480 
5481   return NumCases * 100 >= Range * MinDensity;
5482 }
5483 
5484 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5485 /// of cases.
5486 ///
5487 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5488 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5489 ///
5490 /// This converts a sparse switch into a dense switch which allows better
5491 /// lowering and could also allow transforming into a lookup table.
5492 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5493                               const DataLayout &DL,
5494                               const TargetTransformInfo &TTI) {
5495   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5496   if (CondTy->getIntegerBitWidth() > 64 ||
5497       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5498     return false;
5499   // Only bother with this optimization if there are more than 3 switch cases;
5500   // SDAG will only bother creating jump tables for 4 or more cases.
5501   if (SI->getNumCases() < 4)
5502     return false;
5503 
5504   // This transform is agnostic to the signedness of the input or case values. We
5505   // can treat the case values as signed or unsigned. We can optimize more common
5506   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5507   // as signed.
5508   SmallVector<int64_t,4> Values;
5509   for (auto &C : SI->cases())
5510     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5511   llvm::sort(Values.begin(), Values.end());
5512 
5513   // If the switch is already dense, there's nothing useful to do here.
5514   if (isSwitchDense(Values))
5515     return false;
5516 
5517   // First, transform the values such that they start at zero and ascend.
5518   int64_t Base = Values[0];
5519   for (auto &V : Values)
5520     V -= (uint64_t)(Base);
5521 
5522   // Now we have signed numbers that have been shifted so that, given enough
5523   // precision, there are no negative values. Since the rest of the transform
5524   // is bitwise only, we switch now to an unsigned representation.
5525   uint64_t GCD = 0;
5526   for (auto &V : Values)
5527     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5528 
5529   // This transform can be done speculatively because it is so cheap - it results
5530   // in a single rotate operation being inserted. This can only happen if the
5531   // factor extracted is a power of 2.
5532   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5533   // inverse of GCD and then perform this transform.
5534   // FIXME: It's possible that optimizing a switch on powers of two might also
5535   // be beneficial - flag values are often powers of two and we could use a CLZ
5536   // as the key function.
5537   if (GCD <= 1 || !isPowerOf2_64(GCD))
5538     // No common divisor found or too expensive to compute key function.
5539     return false;
5540 
5541   unsigned Shift = Log2_64(GCD);
5542   for (auto &V : Values)
5543     V = (int64_t)((uint64_t)V >> Shift);
5544 
5545   if (!isSwitchDense(Values))
5546     // Transform didn't create a dense switch.
5547     return false;
5548 
5549   // The obvious transform is to shift the switch condition right and emit a
5550   // check that the condition actually cleanly divided by GCD, i.e.
5551   //   C & (1 << Shift - 1) == 0
5552   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5553   //
5554   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5555   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5556   // are nonzero then the switch condition will be very large and will hit the
5557   // default case.
5558 
5559   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5560   Builder.SetInsertPoint(SI);
5561   auto *ShiftC = ConstantInt::get(Ty, Shift);
5562   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5563   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5564   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5565   auto *Rot = Builder.CreateOr(LShr, Shl);
5566   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5567 
5568   for (auto Case : SI->cases()) {
5569     auto *Orig = Case.getCaseValue();
5570     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5571     Case.setValue(
5572         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5573   }
5574   return true;
5575 }
5576 
5577 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5578   BasicBlock *BB = SI->getParent();
5579 
5580   if (isValueEqualityComparison(SI)) {
5581     // If we only have one predecessor, and if it is a branch on this value,
5582     // see if that predecessor totally determines the outcome of this switch.
5583     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5584       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5585         return simplifyCFG(BB, TTI, Options) | true;
5586 
5587     Value *Cond = SI->getCondition();
5588     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5589       if (SimplifySwitchOnSelect(SI, Select))
5590         return simplifyCFG(BB, TTI, Options) | true;
5591 
5592     // If the block only contains the switch, see if we can fold the block
5593     // away into any preds.
5594     if (SI == &*BB->instructionsWithoutDebug().begin())
5595       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5596         return simplifyCFG(BB, TTI, Options) | true;
5597   }
5598 
5599   // Try to transform the switch into an icmp and a branch.
5600   if (TurnSwitchRangeIntoICmp(SI, Builder))
5601     return simplifyCFG(BB, TTI, Options) | true;
5602 
5603   // Remove unreachable cases.
5604   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5605     return simplifyCFG(BB, TTI, Options) | true;
5606 
5607   if (switchToSelect(SI, Builder, DL, TTI))
5608     return simplifyCFG(BB, TTI, Options) | true;
5609 
5610   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5611     return simplifyCFG(BB, TTI, Options) | true;
5612 
5613   // The conversion from switch to lookup tables results in difficult-to-analyze
5614   // code and makes pruning branches much harder. This is a problem if the
5615   // switch expression itself can still be restricted as a result of inlining or
5616   // CVP. Therefore, only apply this transformation during late stages of the
5617   // optimisation pipeline.
5618   if (Options.ConvertSwitchToLookupTable &&
5619       SwitchToLookupTable(SI, Builder, DL, TTI))
5620     return simplifyCFG(BB, TTI, Options) | true;
5621 
5622   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5623     return simplifyCFG(BB, TTI, Options) | true;
5624 
5625   return false;
5626 }
5627 
5628 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5629   BasicBlock *BB = IBI->getParent();
5630   bool Changed = false;
5631 
5632   // Eliminate redundant destinations.
5633   SmallPtrSet<Value *, 8> Succs;
5634   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5635     BasicBlock *Dest = IBI->getDestination(i);
5636     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5637       Dest->removePredecessor(BB);
5638       IBI->removeDestination(i);
5639       --i;
5640       --e;
5641       Changed = true;
5642     }
5643   }
5644 
5645   if (IBI->getNumDestinations() == 0) {
5646     // If the indirectbr has no successors, change it to unreachable.
5647     new UnreachableInst(IBI->getContext(), IBI);
5648     EraseTerminatorInstAndDCECond(IBI);
5649     return true;
5650   }
5651 
5652   if (IBI->getNumDestinations() == 1) {
5653     // If the indirectbr has one successor, change it to a direct branch.
5654     BranchInst::Create(IBI->getDestination(0), IBI);
5655     EraseTerminatorInstAndDCECond(IBI);
5656     return true;
5657   }
5658 
5659   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5660     if (SimplifyIndirectBrOnSelect(IBI, SI))
5661       return simplifyCFG(BB, TTI, Options) | true;
5662   }
5663   return Changed;
5664 }
5665 
5666 /// Given an block with only a single landing pad and a unconditional branch
5667 /// try to find another basic block which this one can be merged with.  This
5668 /// handles cases where we have multiple invokes with unique landing pads, but
5669 /// a shared handler.
5670 ///
5671 /// We specifically choose to not worry about merging non-empty blocks
5672 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5673 /// practice, the optimizer produces empty landing pad blocks quite frequently
5674 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5675 /// sinking in this file)
5676 ///
5677 /// This is primarily a code size optimization.  We need to avoid performing
5678 /// any transform which might inhibit optimization (such as our ability to
5679 /// specialize a particular handler via tail commoning).  We do this by not
5680 /// merging any blocks which require us to introduce a phi.  Since the same
5681 /// values are flowing through both blocks, we don't loose any ability to
5682 /// specialize.  If anything, we make such specialization more likely.
5683 ///
5684 /// TODO - This transformation could remove entries from a phi in the target
5685 /// block when the inputs in the phi are the same for the two blocks being
5686 /// merged.  In some cases, this could result in removal of the PHI entirely.
5687 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5688                                  BasicBlock *BB) {
5689   auto Succ = BB->getUniqueSuccessor();
5690   assert(Succ);
5691   // If there's a phi in the successor block, we'd likely have to introduce
5692   // a phi into the merged landing pad block.
5693   if (isa<PHINode>(*Succ->begin()))
5694     return false;
5695 
5696   for (BasicBlock *OtherPred : predecessors(Succ)) {
5697     if (BB == OtherPred)
5698       continue;
5699     BasicBlock::iterator I = OtherPred->begin();
5700     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5701     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5702       continue;
5703     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5704       ;
5705     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5706     if (!BI2 || !BI2->isIdenticalTo(BI))
5707       continue;
5708 
5709     // We've found an identical block.  Update our predecessors to take that
5710     // path instead and make ourselves dead.
5711     SmallSet<BasicBlock *, 16> Preds;
5712     Preds.insert(pred_begin(BB), pred_end(BB));
5713     for (BasicBlock *Pred : Preds) {
5714       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5715       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5716              "unexpected successor");
5717       II->setUnwindDest(OtherPred);
5718     }
5719 
5720     // The debug info in OtherPred doesn't cover the merged control flow that
5721     // used to go through BB.  We need to delete it or update it.
5722     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5723       Instruction &Inst = *I;
5724       I++;
5725       if (isa<DbgInfoIntrinsic>(Inst))
5726         Inst.eraseFromParent();
5727     }
5728 
5729     SmallSet<BasicBlock *, 16> Succs;
5730     Succs.insert(succ_begin(BB), succ_end(BB));
5731     for (BasicBlock *Succ : Succs) {
5732       Succ->removePredecessor(BB);
5733     }
5734 
5735     IRBuilder<> Builder(BI);
5736     Builder.CreateUnreachable();
5737     BI->eraseFromParent();
5738     return true;
5739   }
5740   return false;
5741 }
5742 
5743 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5744                                           IRBuilder<> &Builder) {
5745   BasicBlock *BB = BI->getParent();
5746   BasicBlock *Succ = BI->getSuccessor(0);
5747 
5748   // If the Terminator is the only non-phi instruction, simplify the block.
5749   // If LoopHeader is provided, check if the block or its successor is a loop
5750   // header. (This is for early invocations before loop simplify and
5751   // vectorization to keep canonical loop forms for nested loops. These blocks
5752   // can be eliminated when the pass is invoked later in the back-end.)
5753   // Note that if BB has only one predecessor then we do not introduce new
5754   // backedge, so we can eliminate BB.
5755   bool NeedCanonicalLoop =
5756       Options.NeedCanonicalLoop &&
5757       (LoopHeaders && pred_size(BB) > 1 &&
5758        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5759   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5760   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5761       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5762     return true;
5763 
5764   // If the only instruction in the block is a seteq/setne comparison against a
5765   // constant, try to simplify the block.
5766   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5767     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5768       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5769         ;
5770       if (I->isTerminator() &&
5771           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options))
5772         return true;
5773     }
5774 
5775   // See if we can merge an empty landing pad block with another which is
5776   // equivalent.
5777   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5778     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5779       ;
5780     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5781       return true;
5782   }
5783 
5784   // If this basic block is ONLY a compare and a branch, and if a predecessor
5785   // branches to us and our successor, fold the comparison into the
5786   // predecessor and use logical operations to update the incoming value
5787   // for PHI nodes in common successor.
5788   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5789     return simplifyCFG(BB, TTI, Options) | true;
5790   return false;
5791 }
5792 
5793 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5794   BasicBlock *PredPred = nullptr;
5795   for (auto *P : predecessors(BB)) {
5796     BasicBlock *PPred = P->getSinglePredecessor();
5797     if (!PPred || (PredPred && PredPred != PPred))
5798       return nullptr;
5799     PredPred = PPred;
5800   }
5801   return PredPred;
5802 }
5803 
5804 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5805   BasicBlock *BB = BI->getParent();
5806   const Function *Fn = BB->getParent();
5807   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5808     return false;
5809 
5810   // Conditional branch
5811   if (isValueEqualityComparison(BI)) {
5812     // If we only have one predecessor, and if it is a branch on this value,
5813     // see if that predecessor totally determines the outcome of this
5814     // switch.
5815     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5816       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5817         return simplifyCFG(BB, TTI, Options) | true;
5818 
5819     // This block must be empty, except for the setcond inst, if it exists.
5820     // Ignore dbg intrinsics.
5821     auto I = BB->instructionsWithoutDebug().begin();
5822     if (&*I == BI) {
5823       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5824         return simplifyCFG(BB, TTI, Options) | true;
5825     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5826       ++I;
5827       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5828         return simplifyCFG(BB, TTI, Options) | true;
5829     }
5830   }
5831 
5832   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5833   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5834     return true;
5835 
5836   // If this basic block has a single dominating predecessor block and the
5837   // dominating block's condition implies BI's condition, we know the direction
5838   // of the BI branch.
5839   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5840     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5841     if (PBI && PBI->isConditional() &&
5842         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5843       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5844       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5845       Optional<bool> Implication = isImpliedCondition(
5846           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5847       if (Implication) {
5848         // Turn this into a branch on constant.
5849         auto *OldCond = BI->getCondition();
5850         ConstantInt *CI = *Implication
5851                               ? ConstantInt::getTrue(BB->getContext())
5852                               : ConstantInt::getFalse(BB->getContext());
5853         BI->setCondition(CI);
5854         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5855         return simplifyCFG(BB, TTI, Options) | true;
5856       }
5857     }
5858   }
5859 
5860   // If this basic block is ONLY a compare and a branch, and if a predecessor
5861   // branches to us and one of our successors, fold the comparison into the
5862   // predecessor and use logical operations to pick the right destination.
5863   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5864     return simplifyCFG(BB, TTI, Options) | true;
5865 
5866   // We have a conditional branch to two blocks that are only reachable
5867   // from BI.  We know that the condbr dominates the two blocks, so see if
5868   // there is any identical code in the "then" and "else" blocks.  If so, we
5869   // can hoist it up to the branching block.
5870   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5871     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5872       if (HoistThenElseCodeToIf(BI, TTI))
5873         return simplifyCFG(BB, TTI, Options) | true;
5874     } else {
5875       // If Successor #1 has multiple preds, we may be able to conditionally
5876       // execute Successor #0 if it branches to Successor #1.
5877       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5878       if (Succ0TI->getNumSuccessors() == 1 &&
5879           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5880         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5881           return simplifyCFG(BB, TTI, Options) | true;
5882     }
5883   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5884     // If Successor #0 has multiple preds, we may be able to conditionally
5885     // execute Successor #1 if it branches to Successor #0.
5886     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5887     if (Succ1TI->getNumSuccessors() == 1 &&
5888         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5889       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5890         return simplifyCFG(BB, TTI, Options) | true;
5891   }
5892 
5893   // If this is a branch on a phi node in the current block, thread control
5894   // through this block if any PHI node entries are constants.
5895   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5896     if (PN->getParent() == BI->getParent())
5897       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5898         return simplifyCFG(BB, TTI, Options) | true;
5899 
5900   // Scan predecessor blocks for conditional branches.
5901   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5902     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5903       if (PBI != BI && PBI->isConditional())
5904         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5905           return simplifyCFG(BB, TTI, Options) | true;
5906 
5907   // Look for diamond patterns.
5908   if (MergeCondStores)
5909     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5910       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5911         if (PBI != BI && PBI->isConditional())
5912           if (mergeConditionalStores(PBI, BI, DL))
5913             return simplifyCFG(BB, TTI, Options) | true;
5914 
5915   return false;
5916 }
5917 
5918 /// Check if passing a value to an instruction will cause undefined behavior.
5919 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5920   Constant *C = dyn_cast<Constant>(V);
5921   if (!C)
5922     return false;
5923 
5924   if (I->use_empty())
5925     return false;
5926 
5927   if (C->isNullValue() || isa<UndefValue>(C)) {
5928     // Only look at the first use, avoid hurting compile time with long uselists
5929     User *Use = *I->user_begin();
5930 
5931     // Now make sure that there are no instructions in between that can alter
5932     // control flow (eg. calls)
5933     for (BasicBlock::iterator
5934              i = ++BasicBlock::iterator(I),
5935              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5936          i != UI; ++i)
5937       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5938         return false;
5939 
5940     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5941     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5942       if (GEP->getPointerOperand() == I)
5943         return passingValueIsAlwaysUndefined(V, GEP);
5944 
5945     // Look through bitcasts.
5946     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5947       return passingValueIsAlwaysUndefined(V, BC);
5948 
5949     // Load from null is undefined.
5950     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5951       if (!LI->isVolatile())
5952         return LI->getPointerAddressSpace() == 0;
5953 
5954     // Store to null is undefined.
5955     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5956       if (!SI->isVolatile())
5957         return SI->getPointerAddressSpace() == 0 &&
5958                SI->getPointerOperand() == I;
5959 
5960     // A call to null is undefined.
5961     if (auto CS = CallSite(Use))
5962       return CS.getCalledValue() == I;
5963   }
5964   return false;
5965 }
5966 
5967 /// If BB has an incoming value that will always trigger undefined behavior
5968 /// (eg. null pointer dereference), remove the branch leading here.
5969 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5970   for (PHINode &PHI : BB->phis())
5971     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5972       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5973         TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator();
5974         IRBuilder<> Builder(T);
5975         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5976           BB->removePredecessor(PHI.getIncomingBlock(i));
5977           // Turn uncoditional branches into unreachables and remove the dead
5978           // destination from conditional branches.
5979           if (BI->isUnconditional())
5980             Builder.CreateUnreachable();
5981           else
5982             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5983                                                        : BI->getSuccessor(0));
5984           BI->eraseFromParent();
5985           return true;
5986         }
5987         // TODO: SwitchInst.
5988       }
5989 
5990   return false;
5991 }
5992 
5993 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5994   bool Changed = false;
5995 
5996   assert(BB && BB->getParent() && "Block not embedded in function!");
5997   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5998 
5999   // Remove basic blocks that have no predecessors (except the entry block)...
6000   // or that just have themself as a predecessor.  These are unreachable.
6001   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6002       BB->getSinglePredecessor() == BB) {
6003     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6004     DeleteDeadBlock(BB);
6005     return true;
6006   }
6007 
6008   // Check to see if we can constant propagate this terminator instruction
6009   // away...
6010   Changed |= ConstantFoldTerminator(BB, true);
6011 
6012   // Check for and eliminate duplicate PHI nodes in this block.
6013   Changed |= EliminateDuplicatePHINodes(BB);
6014 
6015   // Check for and remove branches that will always cause undefined behavior.
6016   Changed |= removeUndefIntroducingPredecessor(BB);
6017 
6018   // Merge basic blocks into their predecessor if there is only one distinct
6019   // pred, and if there is only one distinct successor of the predecessor, and
6020   // if there are no PHI nodes.
6021   if (MergeBlockIntoPredecessor(BB))
6022     return true;
6023 
6024   if (SinkCommon && Options.SinkCommonInsts)
6025     Changed |= SinkCommonCodeFromPredecessors(BB);
6026 
6027   IRBuilder<> Builder(BB);
6028 
6029   // If there is a trivial two-entry PHI node in this basic block, and we can
6030   // eliminate it, do so now.
6031   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6032     if (PN->getNumIncomingValues() == 2)
6033       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6034 
6035   Builder.SetInsertPoint(BB->getTerminator());
6036   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6037     if (BI->isUnconditional()) {
6038       if (SimplifyUncondBranch(BI, Builder))
6039         return true;
6040     } else {
6041       if (SimplifyCondBranch(BI, Builder))
6042         return true;
6043     }
6044   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6045     if (SimplifyReturn(RI, Builder))
6046       return true;
6047   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6048     if (SimplifyResume(RI, Builder))
6049       return true;
6050   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6051     if (SimplifyCleanupReturn(RI))
6052       return true;
6053   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6054     if (SimplifySwitch(SI, Builder))
6055       return true;
6056   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6057     if (SimplifyUnreachable(UI))
6058       return true;
6059   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6060     if (SimplifyIndirectBr(IBI))
6061       return true;
6062   }
6063 
6064   return Changed;
6065 }
6066 
6067 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6068                        const SimplifyCFGOptions &Options,
6069                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6070   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6071                         Options)
6072       .run(BB);
6073 }
6074