1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/CallSite.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/NoFolder.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/PatternMatch.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<bool> DupRet( 98 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 99 cl::desc("Duplicate return instructions into unconditional branches")); 100 101 static cl::opt<bool> 102 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 103 cl::desc("Sink common instructions down to the end block")); 104 105 static cl::opt<bool> HoistCondStores( 106 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores if an unconditional store precedes")); 108 109 static cl::opt<bool> MergeCondStores( 110 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 111 cl::desc("Hoist conditional stores even if an unconditional store does not " 112 "precede - hoist multiple conditional stores into a single " 113 "predicated store")); 114 115 static cl::opt<bool> MergeCondStoresAggressively( 116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 117 cl::desc("When merging conditional stores, do so even if the resultant " 118 "basic blocks are unlikely to be if-converted as a result")); 119 120 static cl::opt<bool> SpeculateOneExpensiveInst( 121 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 122 cl::desc("Allow exactly one expensive instruction to be speculatively " 123 "executed")); 124 125 static cl::opt<unsigned> MaxSpeculationDepth( 126 "max-speculation-depth", cl::Hidden, cl::init(10), 127 cl::desc("Limit maximum recursion depth when calculating costs of " 128 "speculatively executed instructions")); 129 130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 131 STATISTIC(NumLinearMaps, 132 "Number of switch instructions turned into linear mapping"); 133 STATISTIC(NumLookupTables, 134 "Number of switch instructions turned into lookup tables"); 135 STATISTIC( 136 NumLookupTablesHoles, 137 "Number of switch instructions turned into lookup tables (holes checked)"); 138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 139 STATISTIC(NumSinkCommons, 140 "Number of common instructions sunk down to the end block"); 141 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 142 143 namespace { 144 145 // The first field contains the value that the switch produces when a certain 146 // case group is selected, and the second field is a vector containing the 147 // cases composing the case group. 148 using SwitchCaseResultVectorTy = 149 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 150 151 // The first field contains the phi node that generates a result of the switch 152 // and the second field contains the value generated for a certain case in the 153 // switch for that PHI. 154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 155 156 /// ValueEqualityComparisonCase - Represents a case of a switch. 157 struct ValueEqualityComparisonCase { 158 ConstantInt *Value; 159 BasicBlock *Dest; 160 161 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 162 : Value(Value), Dest(Dest) {} 163 164 bool operator<(ValueEqualityComparisonCase RHS) const { 165 // Comparing pointers is ok as we only rely on the order for uniquing. 166 return Value < RHS.Value; 167 } 168 169 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 170 }; 171 172 class SimplifyCFGOpt { 173 const TargetTransformInfo &TTI; 174 const DataLayout &DL; 175 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 176 const SimplifyCFGOptions &Options; 177 178 Value *isValueEqualityComparison(TerminatorInst *TI); 179 BasicBlock *GetValueEqualityComparisonCases( 180 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 181 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 182 BasicBlock *Pred, 183 IRBuilder<> &Builder); 184 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 185 IRBuilder<> &Builder); 186 187 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 188 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 189 bool SimplifySingleResume(ResumeInst *RI); 190 bool SimplifyCommonResume(ResumeInst *RI); 191 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 192 bool SimplifyUnreachable(UnreachableInst *UI); 193 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 194 bool SimplifyIndirectBr(IndirectBrInst *IBI); 195 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 198 public: 199 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 200 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 201 const SimplifyCFGOptions &Opts) 202 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 203 204 bool run(BasicBlock *BB); 205 }; 206 207 } // end anonymous namespace 208 209 /// Return true if it is safe to merge these two 210 /// terminator instructions together. 211 static bool 212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 213 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 214 if (SI1 == SI2) 215 return false; // Can't merge with self! 216 217 // It is not safe to merge these two switch instructions if they have a common 218 // successor, and if that successor has a PHI node, and if *that* PHI node has 219 // conflicting incoming values from the two switch blocks. 220 BasicBlock *SI1BB = SI1->getParent(); 221 BasicBlock *SI2BB = SI2->getParent(); 222 223 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 224 bool Fail = false; 225 for (BasicBlock *Succ : successors(SI2BB)) 226 if (SI1Succs.count(Succ)) 227 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 228 PHINode *PN = cast<PHINode>(BBI); 229 if (PN->getIncomingValueForBlock(SI1BB) != 230 PN->getIncomingValueForBlock(SI2BB)) { 231 if (FailBlocks) 232 FailBlocks->insert(Succ); 233 Fail = true; 234 } 235 } 236 237 return !Fail; 238 } 239 240 /// Return true if it is safe and profitable to merge these two terminator 241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 242 /// store all PHI nodes in common successors. 243 static bool 244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 245 Instruction *Cond, 246 SmallVectorImpl<PHINode *> &PhiNodes) { 247 if (SI1 == SI2) 248 return false; // Can't merge with self! 249 assert(SI1->isUnconditional() && SI2->isConditional()); 250 251 // We fold the unconditional branch if we can easily update all PHI nodes in 252 // common successors: 253 // 1> We have a constant incoming value for the conditional branch; 254 // 2> We have "Cond" as the incoming value for the unconditional branch; 255 // 3> SI2->getCondition() and Cond have same operands. 256 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 257 if (!Ci2) 258 return false; 259 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 260 Cond->getOperand(1) == Ci2->getOperand(1)) && 261 !(Cond->getOperand(0) == Ci2->getOperand(1) && 262 Cond->getOperand(1) == Ci2->getOperand(0))) 263 return false; 264 265 BasicBlock *SI1BB = SI1->getParent(); 266 BasicBlock *SI2BB = SI2->getParent(); 267 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 268 for (BasicBlock *Succ : successors(SI2BB)) 269 if (SI1Succs.count(Succ)) 270 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 271 PHINode *PN = cast<PHINode>(BBI); 272 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 273 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 274 return false; 275 PhiNodes.push_back(PN); 276 } 277 return true; 278 } 279 280 /// Update PHI nodes in Succ to indicate that there will now be entries in it 281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 282 /// will be the same as those coming in from ExistPred, an existing predecessor 283 /// of Succ. 284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 285 BasicBlock *ExistPred) { 286 for (PHINode &PN : Succ->phis()) 287 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 288 } 289 290 /// Compute an abstract "cost" of speculating the given instruction, 291 /// which is assumed to be safe to speculate. TCC_Free means cheap, 292 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 293 /// expensive. 294 static unsigned ComputeSpeculationCost(const User *I, 295 const TargetTransformInfo &TTI) { 296 assert(isSafeToSpeculativelyExecute(I) && 297 "Instruction is not safe to speculatively execute!"); 298 return TTI.getUserCost(I); 299 } 300 301 /// If we have a merge point of an "if condition" as accepted above, 302 /// return true if the specified value dominates the block. We 303 /// don't handle the true generality of domination here, just a special case 304 /// which works well enough for us. 305 /// 306 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 307 /// see if V (which must be an instruction) and its recursive operands 308 /// that do not dominate BB have a combined cost lower than CostRemaining and 309 /// are non-trapping. If both are true, the instruction is inserted into the 310 /// set and true is returned. 311 /// 312 /// The cost for most non-trapping instructions is defined as 1 except for 313 /// Select whose cost is 2. 314 /// 315 /// After this function returns, CostRemaining is decreased by the cost of 316 /// V plus its non-dominating operands. If that cost is greater than 317 /// CostRemaining, false is returned and CostRemaining is undefined. 318 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 319 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 320 unsigned &CostRemaining, 321 const TargetTransformInfo &TTI, 322 unsigned Depth = 0) { 323 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 324 // so limit the recursion depth. 325 // TODO: While this recursion limit does prevent pathological behavior, it 326 // would be better to track visited instructions to avoid cycles. 327 if (Depth == MaxSpeculationDepth) 328 return false; 329 330 Instruction *I = dyn_cast<Instruction>(V); 331 if (!I) { 332 // Non-instructions all dominate instructions, but not all constantexprs 333 // can be executed unconditionally. 334 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 335 if (C->canTrap()) 336 return false; 337 return true; 338 } 339 BasicBlock *PBB = I->getParent(); 340 341 // We don't want to allow weird loops that might have the "if condition" in 342 // the bottom of this block. 343 if (PBB == BB) 344 return false; 345 346 // If this instruction is defined in a block that contains an unconditional 347 // branch to BB, then it must be in the 'conditional' part of the "if 348 // statement". If not, it definitely dominates the region. 349 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 350 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 351 return true; 352 353 // If we aren't allowing aggressive promotion anymore, then don't consider 354 // instructions in the 'if region'. 355 if (!AggressiveInsts) 356 return false; 357 358 // If we have seen this instruction before, don't count it again. 359 if (AggressiveInsts->count(I)) 360 return true; 361 362 // Okay, it looks like the instruction IS in the "condition". Check to 363 // see if it's a cheap instruction to unconditionally compute, and if it 364 // only uses stuff defined outside of the condition. If so, hoist it out. 365 if (!isSafeToSpeculativelyExecute(I)) 366 return false; 367 368 unsigned Cost = ComputeSpeculationCost(I, TTI); 369 370 // Allow exactly one instruction to be speculated regardless of its cost 371 // (as long as it is safe to do so). 372 // This is intended to flatten the CFG even if the instruction is a division 373 // or other expensive operation. The speculation of an expensive instruction 374 // is expected to be undone in CodeGenPrepare if the speculation has not 375 // enabled further IR optimizations. 376 if (Cost > CostRemaining && 377 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 378 return false; 379 380 // Avoid unsigned wrap. 381 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 382 383 // Okay, we can only really hoist these out if their operands do 384 // not take us over the cost threshold. 385 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 386 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 387 Depth + 1)) 388 return false; 389 // Okay, it's safe to do this! Remember this instruction. 390 AggressiveInsts->insert(I); 391 return true; 392 } 393 394 /// Extract ConstantInt from value, looking through IntToPtr 395 /// and PointerNullValue. Return NULL if value is not a constant int. 396 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 397 // Normal constant int. 398 ConstantInt *CI = dyn_cast<ConstantInt>(V); 399 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 400 return CI; 401 402 // This is some kind of pointer constant. Turn it into a pointer-sized 403 // ConstantInt if possible. 404 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 405 406 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 407 if (isa<ConstantPointerNull>(V)) 408 return ConstantInt::get(PtrTy, 0); 409 410 // IntToPtr const int. 411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 412 if (CE->getOpcode() == Instruction::IntToPtr) 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 414 // The constant is very likely to have the right type already. 415 if (CI->getType() == PtrTy) 416 return CI; 417 else 418 return cast<ConstantInt>( 419 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 420 } 421 return nullptr; 422 } 423 424 namespace { 425 426 /// Given a chain of or (||) or and (&&) comparison of a value against a 427 /// constant, this will try to recover the information required for a switch 428 /// structure. 429 /// It will depth-first traverse the chain of comparison, seeking for patterns 430 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 431 /// representing the different cases for the switch. 432 /// Note that if the chain is composed of '||' it will build the set of elements 433 /// that matches the comparisons (i.e. any of this value validate the chain) 434 /// while for a chain of '&&' it will build the set elements that make the test 435 /// fail. 436 struct ConstantComparesGatherer { 437 const DataLayout &DL; 438 439 /// Value found for the switch comparison 440 Value *CompValue = nullptr; 441 442 /// Extra clause to be checked before the switch 443 Value *Extra = nullptr; 444 445 /// Set of integers to match in switch 446 SmallVector<ConstantInt *, 8> Vals; 447 448 /// Number of comparisons matched in the and/or chain 449 unsigned UsedICmps = 0; 450 451 /// Construct and compute the result for the comparison instruction Cond 452 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 453 gather(Cond); 454 } 455 456 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 457 ConstantComparesGatherer & 458 operator=(const ConstantComparesGatherer &) = delete; 459 460 private: 461 /// Try to set the current value used for the comparison, it succeeds only if 462 /// it wasn't set before or if the new value is the same as the old one 463 bool setValueOnce(Value *NewVal) { 464 if (CompValue && CompValue != NewVal) 465 return false; 466 CompValue = NewVal; 467 return (CompValue != nullptr); 468 } 469 470 /// Try to match Instruction "I" as a comparison against a constant and 471 /// populates the array Vals with the set of values that match (or do not 472 /// match depending on isEQ). 473 /// Return false on failure. On success, the Value the comparison matched 474 /// against is placed in CompValue. 475 /// If CompValue is already set, the function is expected to fail if a match 476 /// is found but the value compared to is different. 477 bool matchInstruction(Instruction *I, bool isEQ) { 478 // If this is an icmp against a constant, handle this as one of the cases. 479 ICmpInst *ICI; 480 ConstantInt *C; 481 if (!((ICI = dyn_cast<ICmpInst>(I)) && 482 (C = GetConstantInt(I->getOperand(1), DL)))) { 483 return false; 484 } 485 486 Value *RHSVal; 487 const APInt *RHSC; 488 489 // Pattern match a special case 490 // (x & ~2^z) == y --> x == y || x == y|2^z 491 // This undoes a transformation done by instcombine to fuse 2 compares. 492 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 493 // It's a little bit hard to see why the following transformations are 494 // correct. Here is a CVC3 program to verify them for 64-bit values: 495 496 /* 497 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 498 x : BITVECTOR(64); 499 y : BITVECTOR(64); 500 z : BITVECTOR(64); 501 mask : BITVECTOR(64) = BVSHL(ONE, z); 502 QUERY( (y & ~mask = y) => 503 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 504 ); 505 QUERY( (y | mask = y) => 506 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 507 ); 508 */ 509 510 // Please note that each pattern must be a dual implication (<--> or 511 // iff). One directional implication can create spurious matches. If the 512 // implication is only one-way, an unsatisfiable condition on the left 513 // side can imply a satisfiable condition on the right side. Dual 514 // implication ensures that satisfiable conditions are transformed to 515 // other satisfiable conditions and unsatisfiable conditions are 516 // transformed to other unsatisfiable conditions. 517 518 // Here is a concrete example of a unsatisfiable condition on the left 519 // implying a satisfiable condition on the right: 520 // 521 // mask = (1 << z) 522 // (x & ~mask) == y --> (x == y || x == (y | mask)) 523 // 524 // Substituting y = 3, z = 0 yields: 525 // (x & -2) == 3 --> (x == 3 || x == 2) 526 527 // Pattern match a special case: 528 /* 529 QUERY( (y & ~mask = y) => 530 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 531 ); 532 */ 533 if (match(ICI->getOperand(0), 534 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 535 APInt Mask = ~*RHSC; 536 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 537 // If we already have a value for the switch, it has to match! 538 if (!setValueOnce(RHSVal)) 539 return false; 540 541 Vals.push_back(C); 542 Vals.push_back( 543 ConstantInt::get(C->getContext(), 544 C->getValue() | Mask)); 545 UsedICmps++; 546 return true; 547 } 548 } 549 550 // Pattern match a special case: 551 /* 552 QUERY( (y | mask = y) => 553 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 554 ); 555 */ 556 if (match(ICI->getOperand(0), 557 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 558 APInt Mask = *RHSC; 559 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 560 // If we already have a value for the switch, it has to match! 561 if (!setValueOnce(RHSVal)) 562 return false; 563 564 Vals.push_back(C); 565 Vals.push_back(ConstantInt::get(C->getContext(), 566 C->getValue() & ~Mask)); 567 UsedICmps++; 568 return true; 569 } 570 } 571 572 // If we already have a value for the switch, it has to match! 573 if (!setValueOnce(ICI->getOperand(0))) 574 return false; 575 576 UsedICmps++; 577 Vals.push_back(C); 578 return ICI->getOperand(0); 579 } 580 581 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 582 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 583 ICI->getPredicate(), C->getValue()); 584 585 // Shift the range if the compare is fed by an add. This is the range 586 // compare idiom as emitted by instcombine. 587 Value *CandidateVal = I->getOperand(0); 588 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 589 Span = Span.subtract(*RHSC); 590 CandidateVal = RHSVal; 591 } 592 593 // If this is an and/!= check, then we are looking to build the set of 594 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 595 // x != 0 && x != 1. 596 if (!isEQ) 597 Span = Span.inverse(); 598 599 // If there are a ton of values, we don't want to make a ginormous switch. 600 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 601 return false; 602 } 603 604 // If we already have a value for the switch, it has to match! 605 if (!setValueOnce(CandidateVal)) 606 return false; 607 608 // Add all values from the range to the set 609 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 610 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 611 612 UsedICmps++; 613 return true; 614 } 615 616 /// Given a potentially 'or'd or 'and'd together collection of icmp 617 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 618 /// the value being compared, and stick the list constants into the Vals 619 /// vector. 620 /// One "Extra" case is allowed to differ from the other. 621 void gather(Value *V) { 622 Instruction *I = dyn_cast<Instruction>(V); 623 bool isEQ = (I->getOpcode() == Instruction::Or); 624 625 // Keep a stack (SmallVector for efficiency) for depth-first traversal 626 SmallVector<Value *, 8> DFT; 627 SmallPtrSet<Value *, 8> Visited; 628 629 // Initialize 630 Visited.insert(V); 631 DFT.push_back(V); 632 633 while (!DFT.empty()) { 634 V = DFT.pop_back_val(); 635 636 if (Instruction *I = dyn_cast<Instruction>(V)) { 637 // If it is a || (or && depending on isEQ), process the operands. 638 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 639 if (Visited.insert(I->getOperand(1)).second) 640 DFT.push_back(I->getOperand(1)); 641 if (Visited.insert(I->getOperand(0)).second) 642 DFT.push_back(I->getOperand(0)); 643 continue; 644 } 645 646 // Try to match the current instruction 647 if (matchInstruction(I, isEQ)) 648 // Match succeed, continue the loop 649 continue; 650 } 651 652 // One element of the sequence of || (or &&) could not be match as a 653 // comparison against the same value as the others. 654 // We allow only one "Extra" case to be checked before the switch 655 if (!Extra) { 656 Extra = V; 657 continue; 658 } 659 // Failed to parse a proper sequence, abort now 660 CompValue = nullptr; 661 break; 662 } 663 } 664 }; 665 666 } // end anonymous namespace 667 668 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 669 Instruction *Cond = nullptr; 670 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 671 Cond = dyn_cast<Instruction>(SI->getCondition()); 672 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 673 if (BI->isConditional()) 674 Cond = dyn_cast<Instruction>(BI->getCondition()); 675 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 676 Cond = dyn_cast<Instruction>(IBI->getAddress()); 677 } 678 679 TI->eraseFromParent(); 680 if (Cond) 681 RecursivelyDeleteTriviallyDeadInstructions(Cond); 682 } 683 684 /// Return true if the specified terminator checks 685 /// to see if a value is equal to constant integer value. 686 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 687 Value *CV = nullptr; 688 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 689 // Do not permit merging of large switch instructions into their 690 // predecessors unless there is only one predecessor. 691 if (SI->getNumSuccessors() * pred_size(SI->getParent()) <= 128) 692 CV = SI->getCondition(); 693 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 694 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 695 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 696 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 697 CV = ICI->getOperand(0); 698 } 699 700 // Unwrap any lossless ptrtoint cast. 701 if (CV) { 702 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 703 Value *Ptr = PTII->getPointerOperand(); 704 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 705 CV = Ptr; 706 } 707 } 708 return CV; 709 } 710 711 /// Given a value comparison instruction, 712 /// decode all of the 'cases' that it represents and return the 'default' block. 713 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 714 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 715 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 716 Cases.reserve(SI->getNumCases()); 717 for (auto Case : SI->cases()) 718 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 719 Case.getCaseSuccessor())); 720 return SI->getDefaultDest(); 721 } 722 723 BranchInst *BI = cast<BranchInst>(TI); 724 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 725 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 726 Cases.push_back(ValueEqualityComparisonCase( 727 GetConstantInt(ICI->getOperand(1), DL), Succ)); 728 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 729 } 730 731 /// Given a vector of bb/value pairs, remove any entries 732 /// in the list that match the specified block. 733 static void 734 EliminateBlockCases(BasicBlock *BB, 735 std::vector<ValueEqualityComparisonCase> &Cases) { 736 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 737 } 738 739 /// Return true if there are any keys in C1 that exist in C2 as well. 740 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 741 std::vector<ValueEqualityComparisonCase> &C2) { 742 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 743 744 // Make V1 be smaller than V2. 745 if (V1->size() > V2->size()) 746 std::swap(V1, V2); 747 748 if (V1->empty()) 749 return false; 750 if (V1->size() == 1) { 751 // Just scan V2. 752 ConstantInt *TheVal = (*V1)[0].Value; 753 for (unsigned i = 0, e = V2->size(); i != e; ++i) 754 if (TheVal == (*V2)[i].Value) 755 return true; 756 } 757 758 // Otherwise, just sort both lists and compare element by element. 759 array_pod_sort(V1->begin(), V1->end()); 760 array_pod_sort(V2->begin(), V2->end()); 761 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 762 while (i1 != e1 && i2 != e2) { 763 if ((*V1)[i1].Value == (*V2)[i2].Value) 764 return true; 765 if ((*V1)[i1].Value < (*V2)[i2].Value) 766 ++i1; 767 else 768 ++i2; 769 } 770 return false; 771 } 772 773 // Set branch weights on SwitchInst. This sets the metadata if there is at 774 // least one non-zero weight. 775 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 776 // Check that there is at least one non-zero weight. Otherwise, pass 777 // nullptr to setMetadata which will erase the existing metadata. 778 MDNode *N = nullptr; 779 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 780 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 781 SI->setMetadata(LLVMContext::MD_prof, N); 782 } 783 784 // Similar to the above, but for branch and select instructions that take 785 // exactly 2 weights. 786 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 787 uint32_t FalseWeight) { 788 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 789 // Check that there is at least one non-zero weight. Otherwise, pass 790 // nullptr to setMetadata which will erase the existing metadata. 791 MDNode *N = nullptr; 792 if (TrueWeight || FalseWeight) 793 N = MDBuilder(I->getParent()->getContext()) 794 .createBranchWeights(TrueWeight, FalseWeight); 795 I->setMetadata(LLVMContext::MD_prof, N); 796 } 797 798 /// If TI is known to be a terminator instruction and its block is known to 799 /// only have a single predecessor block, check to see if that predecessor is 800 /// also a value comparison with the same value, and if that comparison 801 /// determines the outcome of this comparison. If so, simplify TI. This does a 802 /// very limited form of jump threading. 803 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 804 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 805 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 806 if (!PredVal) 807 return false; // Not a value comparison in predecessor. 808 809 Value *ThisVal = isValueEqualityComparison(TI); 810 assert(ThisVal && "This isn't a value comparison!!"); 811 if (ThisVal != PredVal) 812 return false; // Different predicates. 813 814 // TODO: Preserve branch weight metadata, similarly to how 815 // FoldValueComparisonIntoPredecessors preserves it. 816 817 // Find out information about when control will move from Pred to TI's block. 818 std::vector<ValueEqualityComparisonCase> PredCases; 819 BasicBlock *PredDef = 820 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 821 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 822 823 // Find information about how control leaves this block. 824 std::vector<ValueEqualityComparisonCase> ThisCases; 825 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 826 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 827 828 // If TI's block is the default block from Pred's comparison, potentially 829 // simplify TI based on this knowledge. 830 if (PredDef == TI->getParent()) { 831 // If we are here, we know that the value is none of those cases listed in 832 // PredCases. If there are any cases in ThisCases that are in PredCases, we 833 // can simplify TI. 834 if (!ValuesOverlap(PredCases, ThisCases)) 835 return false; 836 837 if (isa<BranchInst>(TI)) { 838 // Okay, one of the successors of this condbr is dead. Convert it to a 839 // uncond br. 840 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 841 // Insert the new branch. 842 Instruction *NI = Builder.CreateBr(ThisDef); 843 (void)NI; 844 845 // Remove PHI node entries for the dead edge. 846 ThisCases[0].Dest->removePredecessor(TI->getParent()); 847 848 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 849 << "Through successor TI: " << *TI << "Leaving: " << *NI 850 << "\n"); 851 852 EraseTerminatorInstAndDCECond(TI); 853 return true; 854 } 855 856 SwitchInst *SI = cast<SwitchInst>(TI); 857 // Okay, TI has cases that are statically dead, prune them away. 858 SmallPtrSet<Constant *, 16> DeadCases; 859 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 860 DeadCases.insert(PredCases[i].Value); 861 862 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 863 << "Through successor TI: " << *TI); 864 865 // Collect branch weights into a vector. 866 SmallVector<uint32_t, 8> Weights; 867 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 868 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 869 if (HasWeight) 870 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 871 ++MD_i) { 872 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 873 Weights.push_back(CI->getValue().getZExtValue()); 874 } 875 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 876 --i; 877 if (DeadCases.count(i->getCaseValue())) { 878 if (HasWeight) { 879 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 880 Weights.pop_back(); 881 } 882 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 883 SI->removeCase(i); 884 } 885 } 886 if (HasWeight && Weights.size() >= 2) 887 setBranchWeights(SI, Weights); 888 889 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 890 return true; 891 } 892 893 // Otherwise, TI's block must correspond to some matched value. Find out 894 // which value (or set of values) this is. 895 ConstantInt *TIV = nullptr; 896 BasicBlock *TIBB = TI->getParent(); 897 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 898 if (PredCases[i].Dest == TIBB) { 899 if (TIV) 900 return false; // Cannot handle multiple values coming to this block. 901 TIV = PredCases[i].Value; 902 } 903 assert(TIV && "No edge from pred to succ?"); 904 905 // Okay, we found the one constant that our value can be if we get into TI's 906 // BB. Find out which successor will unconditionally be branched to. 907 BasicBlock *TheRealDest = nullptr; 908 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 909 if (ThisCases[i].Value == TIV) { 910 TheRealDest = ThisCases[i].Dest; 911 break; 912 } 913 914 // If not handled by any explicit cases, it is handled by the default case. 915 if (!TheRealDest) 916 TheRealDest = ThisDef; 917 918 // Remove PHI node entries for dead edges. 919 BasicBlock *CheckEdge = TheRealDest; 920 for (BasicBlock *Succ : successors(TIBB)) 921 if (Succ != CheckEdge) 922 Succ->removePredecessor(TIBB); 923 else 924 CheckEdge = nullptr; 925 926 // Insert the new branch. 927 Instruction *NI = Builder.CreateBr(TheRealDest); 928 (void)NI; 929 930 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 931 << "Through successor TI: " << *TI << "Leaving: " << *NI 932 << "\n"); 933 934 EraseTerminatorInstAndDCECond(TI); 935 return true; 936 } 937 938 namespace { 939 940 /// This class implements a stable ordering of constant 941 /// integers that does not depend on their address. This is important for 942 /// applications that sort ConstantInt's to ensure uniqueness. 943 struct ConstantIntOrdering { 944 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 945 return LHS->getValue().ult(RHS->getValue()); 946 } 947 }; 948 949 } // end anonymous namespace 950 951 static int ConstantIntSortPredicate(ConstantInt *const *P1, 952 ConstantInt *const *P2) { 953 const ConstantInt *LHS = *P1; 954 const ConstantInt *RHS = *P2; 955 if (LHS == RHS) 956 return 0; 957 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 958 } 959 960 static inline bool HasBranchWeights(const Instruction *I) { 961 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 962 if (ProfMD && ProfMD->getOperand(0)) 963 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 964 return MDS->getString().equals("branch_weights"); 965 966 return false; 967 } 968 969 /// Get Weights of a given TerminatorInst, the default weight is at the front 970 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 971 /// metadata. 972 static void GetBranchWeights(TerminatorInst *TI, 973 SmallVectorImpl<uint64_t> &Weights) { 974 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 975 assert(MD); 976 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 977 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 978 Weights.push_back(CI->getValue().getZExtValue()); 979 } 980 981 // If TI is a conditional eq, the default case is the false case, 982 // and the corresponding branch-weight data is at index 2. We swap the 983 // default weight to be the first entry. 984 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 985 assert(Weights.size() == 2); 986 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 987 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 988 std::swap(Weights.front(), Weights.back()); 989 } 990 } 991 992 /// Keep halving the weights until all can fit in uint32_t. 993 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 994 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 995 if (Max > UINT_MAX) { 996 unsigned Offset = 32 - countLeadingZeros(Max); 997 for (uint64_t &I : Weights) 998 I >>= Offset; 999 } 1000 } 1001 1002 /// The specified terminator is a value equality comparison instruction 1003 /// (either a switch or a branch on "X == c"). 1004 /// See if any of the predecessors of the terminator block are value comparisons 1005 /// on the same value. If so, and if safe to do so, fold them together. 1006 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 1007 IRBuilder<> &Builder) { 1008 BasicBlock *BB = TI->getParent(); 1009 Value *CV = isValueEqualityComparison(TI); // CondVal 1010 assert(CV && "Not a comparison?"); 1011 bool Changed = false; 1012 1013 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1014 while (!Preds.empty()) { 1015 BasicBlock *Pred = Preds.pop_back_val(); 1016 1017 // See if the predecessor is a comparison with the same value. 1018 TerminatorInst *PTI = Pred->getTerminator(); 1019 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1020 1021 if (PCV == CV && TI != PTI) { 1022 SmallSetVector<BasicBlock*, 4> FailBlocks; 1023 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1024 for (auto *Succ : FailBlocks) { 1025 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1026 return false; 1027 } 1028 } 1029 1030 // Figure out which 'cases' to copy from SI to PSI. 1031 std::vector<ValueEqualityComparisonCase> BBCases; 1032 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1033 1034 std::vector<ValueEqualityComparisonCase> PredCases; 1035 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1036 1037 // Based on whether the default edge from PTI goes to BB or not, fill in 1038 // PredCases and PredDefault with the new switch cases we would like to 1039 // build. 1040 SmallVector<BasicBlock *, 8> NewSuccessors; 1041 1042 // Update the branch weight metadata along the way 1043 SmallVector<uint64_t, 8> Weights; 1044 bool PredHasWeights = HasBranchWeights(PTI); 1045 bool SuccHasWeights = HasBranchWeights(TI); 1046 1047 if (PredHasWeights) { 1048 GetBranchWeights(PTI, Weights); 1049 // branch-weight metadata is inconsistent here. 1050 if (Weights.size() != 1 + PredCases.size()) 1051 PredHasWeights = SuccHasWeights = false; 1052 } else if (SuccHasWeights) 1053 // If there are no predecessor weights but there are successor weights, 1054 // populate Weights with 1, which will later be scaled to the sum of 1055 // successor's weights 1056 Weights.assign(1 + PredCases.size(), 1); 1057 1058 SmallVector<uint64_t, 8> SuccWeights; 1059 if (SuccHasWeights) { 1060 GetBranchWeights(TI, SuccWeights); 1061 // branch-weight metadata is inconsistent here. 1062 if (SuccWeights.size() != 1 + BBCases.size()) 1063 PredHasWeights = SuccHasWeights = false; 1064 } else if (PredHasWeights) 1065 SuccWeights.assign(1 + BBCases.size(), 1); 1066 1067 if (PredDefault == BB) { 1068 // If this is the default destination from PTI, only the edges in TI 1069 // that don't occur in PTI, or that branch to BB will be activated. 1070 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1071 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1072 if (PredCases[i].Dest != BB) 1073 PTIHandled.insert(PredCases[i].Value); 1074 else { 1075 // The default destination is BB, we don't need explicit targets. 1076 std::swap(PredCases[i], PredCases.back()); 1077 1078 if (PredHasWeights || SuccHasWeights) { 1079 // Increase weight for the default case. 1080 Weights[0] += Weights[i + 1]; 1081 std::swap(Weights[i + 1], Weights.back()); 1082 Weights.pop_back(); 1083 } 1084 1085 PredCases.pop_back(); 1086 --i; 1087 --e; 1088 } 1089 1090 // Reconstruct the new switch statement we will be building. 1091 if (PredDefault != BBDefault) { 1092 PredDefault->removePredecessor(Pred); 1093 PredDefault = BBDefault; 1094 NewSuccessors.push_back(BBDefault); 1095 } 1096 1097 unsigned CasesFromPred = Weights.size(); 1098 uint64_t ValidTotalSuccWeight = 0; 1099 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1100 if (!PTIHandled.count(BBCases[i].Value) && 1101 BBCases[i].Dest != BBDefault) { 1102 PredCases.push_back(BBCases[i]); 1103 NewSuccessors.push_back(BBCases[i].Dest); 1104 if (SuccHasWeights || PredHasWeights) { 1105 // The default weight is at index 0, so weight for the ith case 1106 // should be at index i+1. Scale the cases from successor by 1107 // PredDefaultWeight (Weights[0]). 1108 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1109 ValidTotalSuccWeight += SuccWeights[i + 1]; 1110 } 1111 } 1112 1113 if (SuccHasWeights || PredHasWeights) { 1114 ValidTotalSuccWeight += SuccWeights[0]; 1115 // Scale the cases from predecessor by ValidTotalSuccWeight. 1116 for (unsigned i = 1; i < CasesFromPred; ++i) 1117 Weights[i] *= ValidTotalSuccWeight; 1118 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1119 Weights[0] *= SuccWeights[0]; 1120 } 1121 } else { 1122 // If this is not the default destination from PSI, only the edges 1123 // in SI that occur in PSI with a destination of BB will be 1124 // activated. 1125 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1126 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1127 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1128 if (PredCases[i].Dest == BB) { 1129 PTIHandled.insert(PredCases[i].Value); 1130 1131 if (PredHasWeights || SuccHasWeights) { 1132 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1133 std::swap(Weights[i + 1], Weights.back()); 1134 Weights.pop_back(); 1135 } 1136 1137 std::swap(PredCases[i], PredCases.back()); 1138 PredCases.pop_back(); 1139 --i; 1140 --e; 1141 } 1142 1143 // Okay, now we know which constants were sent to BB from the 1144 // predecessor. Figure out where they will all go now. 1145 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1146 if (PTIHandled.count(BBCases[i].Value)) { 1147 // If this is one we are capable of getting... 1148 if (PredHasWeights || SuccHasWeights) 1149 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1150 PredCases.push_back(BBCases[i]); 1151 NewSuccessors.push_back(BBCases[i].Dest); 1152 PTIHandled.erase( 1153 BBCases[i].Value); // This constant is taken care of 1154 } 1155 1156 // If there are any constants vectored to BB that TI doesn't handle, 1157 // they must go to the default destination of TI. 1158 for (ConstantInt *I : PTIHandled) { 1159 if (PredHasWeights || SuccHasWeights) 1160 Weights.push_back(WeightsForHandled[I]); 1161 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1162 NewSuccessors.push_back(BBDefault); 1163 } 1164 } 1165 1166 // Okay, at this point, we know which new successor Pred will get. Make 1167 // sure we update the number of entries in the PHI nodes for these 1168 // successors. 1169 for (BasicBlock *NewSuccessor : NewSuccessors) 1170 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1171 1172 Builder.SetInsertPoint(PTI); 1173 // Convert pointer to int before we switch. 1174 if (CV->getType()->isPointerTy()) { 1175 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1176 "magicptr"); 1177 } 1178 1179 // Now that the successors are updated, create the new Switch instruction. 1180 SwitchInst *NewSI = 1181 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1182 NewSI->setDebugLoc(PTI->getDebugLoc()); 1183 for (ValueEqualityComparisonCase &V : PredCases) 1184 NewSI->addCase(V.Value, V.Dest); 1185 1186 if (PredHasWeights || SuccHasWeights) { 1187 // Halve the weights if any of them cannot fit in an uint32_t 1188 FitWeights(Weights); 1189 1190 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1191 1192 setBranchWeights(NewSI, MDWeights); 1193 } 1194 1195 EraseTerminatorInstAndDCECond(PTI); 1196 1197 // Okay, last check. If BB is still a successor of PSI, then we must 1198 // have an infinite loop case. If so, add an infinitely looping block 1199 // to handle the case to preserve the behavior of the code. 1200 BasicBlock *InfLoopBlock = nullptr; 1201 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1202 if (NewSI->getSuccessor(i) == BB) { 1203 if (!InfLoopBlock) { 1204 // Insert it at the end of the function, because it's either code, 1205 // or it won't matter if it's hot. :) 1206 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1207 BB->getParent()); 1208 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1209 } 1210 NewSI->setSuccessor(i, InfLoopBlock); 1211 } 1212 1213 Changed = true; 1214 } 1215 } 1216 return Changed; 1217 } 1218 1219 // If we would need to insert a select that uses the value of this invoke 1220 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1221 // can't hoist the invoke, as there is nowhere to put the select in this case. 1222 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1223 Instruction *I1, Instruction *I2) { 1224 for (BasicBlock *Succ : successors(BB1)) { 1225 for (const PHINode &PN : Succ->phis()) { 1226 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1227 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1228 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1229 return false; 1230 } 1231 } 1232 } 1233 return true; 1234 } 1235 1236 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1237 1238 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1239 /// in the two blocks up into the branch block. The caller of this function 1240 /// guarantees that BI's block dominates BB1 and BB2. 1241 static bool HoistThenElseCodeToIf(BranchInst *BI, 1242 const TargetTransformInfo &TTI) { 1243 // This does very trivial matching, with limited scanning, to find identical 1244 // instructions in the two blocks. In particular, we don't want to get into 1245 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1246 // such, we currently just scan for obviously identical instructions in an 1247 // identical order. 1248 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1249 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1250 1251 BasicBlock::iterator BB1_Itr = BB1->begin(); 1252 BasicBlock::iterator BB2_Itr = BB2->begin(); 1253 1254 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1255 // Skip debug info if it is not identical. 1256 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1257 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1258 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1259 while (isa<DbgInfoIntrinsic>(I1)) 1260 I1 = &*BB1_Itr++; 1261 while (isa<DbgInfoIntrinsic>(I2)) 1262 I2 = &*BB2_Itr++; 1263 } 1264 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1265 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1266 return false; 1267 1268 BasicBlock *BIParent = BI->getParent(); 1269 1270 bool Changed = false; 1271 do { 1272 // If we are hoisting the terminator instruction, don't move one (making a 1273 // broken BB), instead clone it, and remove BI. 1274 if (isa<TerminatorInst>(I1)) 1275 goto HoistTerminator; 1276 1277 // If we're going to hoist a call, make sure that the two instructions we're 1278 // commoning/hoisting are both marked with musttail, or neither of them is 1279 // marked as such. Otherwise, we might end up in a situation where we hoist 1280 // from a block where the terminator is a `ret` to a block where the terminator 1281 // is a `br`, and `musttail` calls expect to be followed by a return. 1282 auto *C1 = dyn_cast<CallInst>(I1); 1283 auto *C2 = dyn_cast<CallInst>(I2); 1284 if (C1 && C2) 1285 if (C1->isMustTailCall() != C2->isMustTailCall()) 1286 return Changed; 1287 1288 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1289 return Changed; 1290 1291 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1292 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1293 // The debug location is an integral part of a debug info intrinsic 1294 // and can't be separated from it or replaced. Instead of attempting 1295 // to merge locations, simply hoist both copies of the intrinsic. 1296 BIParent->getInstList().splice(BI->getIterator(), 1297 BB1->getInstList(), I1); 1298 BIParent->getInstList().splice(BI->getIterator(), 1299 BB2->getInstList(), I2); 1300 Changed = true; 1301 } else { 1302 // For a normal instruction, we just move one to right before the branch, 1303 // then replace all uses of the other with the first. Finally, we remove 1304 // the now redundant second instruction. 1305 BIParent->getInstList().splice(BI->getIterator(), 1306 BB1->getInstList(), I1); 1307 if (!I2->use_empty()) 1308 I2->replaceAllUsesWith(I1); 1309 I1->andIRFlags(I2); 1310 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1311 LLVMContext::MD_range, 1312 LLVMContext::MD_fpmath, 1313 LLVMContext::MD_invariant_load, 1314 LLVMContext::MD_nonnull, 1315 LLVMContext::MD_invariant_group, 1316 LLVMContext::MD_align, 1317 LLVMContext::MD_dereferenceable, 1318 LLVMContext::MD_dereferenceable_or_null, 1319 LLVMContext::MD_mem_parallel_loop_access}; 1320 combineMetadata(I1, I2, KnownIDs); 1321 1322 // I1 and I2 are being combined into a single instruction. Its debug 1323 // location is the merged locations of the original instructions. 1324 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1325 1326 I2->eraseFromParent(); 1327 Changed = true; 1328 } 1329 1330 I1 = &*BB1_Itr++; 1331 I2 = &*BB2_Itr++; 1332 // Skip debug info if it is not identical. 1333 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1334 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1335 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1336 while (isa<DbgInfoIntrinsic>(I1)) 1337 I1 = &*BB1_Itr++; 1338 while (isa<DbgInfoIntrinsic>(I2)) 1339 I2 = &*BB2_Itr++; 1340 } 1341 } while (I1->isIdenticalToWhenDefined(I2)); 1342 1343 return true; 1344 1345 HoistTerminator: 1346 // It may not be possible to hoist an invoke. 1347 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1348 return Changed; 1349 1350 for (BasicBlock *Succ : successors(BB1)) { 1351 for (PHINode &PN : Succ->phis()) { 1352 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1353 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1354 if (BB1V == BB2V) 1355 continue; 1356 1357 // Check for passingValueIsAlwaysUndefined here because we would rather 1358 // eliminate undefined control flow then converting it to a select. 1359 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1360 passingValueIsAlwaysUndefined(BB2V, &PN)) 1361 return Changed; 1362 1363 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1364 return Changed; 1365 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1366 return Changed; 1367 } 1368 } 1369 1370 // Okay, it is safe to hoist the terminator. 1371 Instruction *NT = I1->clone(); 1372 BIParent->getInstList().insert(BI->getIterator(), NT); 1373 if (!NT->getType()->isVoidTy()) { 1374 I1->replaceAllUsesWith(NT); 1375 I2->replaceAllUsesWith(NT); 1376 NT->takeName(I1); 1377 } 1378 1379 IRBuilder<NoFolder> Builder(NT); 1380 // Hoisting one of the terminators from our successor is a great thing. 1381 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1382 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1383 // nodes, so we insert select instruction to compute the final result. 1384 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1385 for (BasicBlock *Succ : successors(BB1)) { 1386 for (PHINode &PN : Succ->phis()) { 1387 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1388 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1389 if (BB1V == BB2V) 1390 continue; 1391 1392 // These values do not agree. Insert a select instruction before NT 1393 // that determines the right value. 1394 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1395 if (!SI) 1396 SI = cast<SelectInst>( 1397 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1398 BB1V->getName() + "." + BB2V->getName(), BI)); 1399 1400 // Make the PHI node use the select for all incoming values for BB1/BB2 1401 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1402 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1403 PN.setIncomingValue(i, SI); 1404 } 1405 } 1406 1407 // Update any PHI nodes in our new successors. 1408 for (BasicBlock *Succ : successors(BB1)) 1409 AddPredecessorToBlock(Succ, BIParent, BB1); 1410 1411 EraseTerminatorInstAndDCECond(BI); 1412 return true; 1413 } 1414 1415 // All instructions in Insts belong to different blocks that all unconditionally 1416 // branch to a common successor. Analyze each instruction and return true if it 1417 // would be possible to sink them into their successor, creating one common 1418 // instruction instead. For every value that would be required to be provided by 1419 // PHI node (because an operand varies in each input block), add to PHIOperands. 1420 static bool canSinkInstructions( 1421 ArrayRef<Instruction *> Insts, 1422 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1423 // Prune out obviously bad instructions to move. Any non-store instruction 1424 // must have exactly one use, and we check later that use is by a single, 1425 // common PHI instruction in the successor. 1426 for (auto *I : Insts) { 1427 // These instructions may change or break semantics if moved. 1428 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1429 I->getType()->isTokenTy()) 1430 return false; 1431 1432 // Conservatively return false if I is an inline-asm instruction. Sinking 1433 // and merging inline-asm instructions can potentially create arguments 1434 // that cannot satisfy the inline-asm constraints. 1435 if (const auto *C = dyn_cast<CallInst>(I)) 1436 if (C->isInlineAsm()) 1437 return false; 1438 1439 // Everything must have only one use too, apart from stores which 1440 // have no uses. 1441 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1442 return false; 1443 } 1444 1445 const Instruction *I0 = Insts.front(); 1446 for (auto *I : Insts) 1447 if (!I->isSameOperationAs(I0)) 1448 return false; 1449 1450 // All instructions in Insts are known to be the same opcode. If they aren't 1451 // stores, check the only user of each is a PHI or in the same block as the 1452 // instruction, because if a user is in the same block as an instruction 1453 // we're contemplating sinking, it must already be determined to be sinkable. 1454 if (!isa<StoreInst>(I0)) { 1455 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1456 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1457 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1458 auto *U = cast<Instruction>(*I->user_begin()); 1459 return (PNUse && 1460 PNUse->getParent() == Succ && 1461 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1462 U->getParent() == I->getParent(); 1463 })) 1464 return false; 1465 } 1466 1467 // Because SROA can't handle speculating stores of selects, try not 1468 // to sink loads or stores of allocas when we'd have to create a PHI for 1469 // the address operand. Also, because it is likely that loads or stores 1470 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1471 // This can cause code churn which can have unintended consequences down 1472 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1473 // FIXME: This is a workaround for a deficiency in SROA - see 1474 // https://llvm.org/bugs/show_bug.cgi?id=30188 1475 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1476 return isa<AllocaInst>(I->getOperand(1)); 1477 })) 1478 return false; 1479 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1480 return isa<AllocaInst>(I->getOperand(0)); 1481 })) 1482 return false; 1483 1484 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1485 if (I0->getOperand(OI)->getType()->isTokenTy()) 1486 // Don't touch any operand of token type. 1487 return false; 1488 1489 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1490 assert(I->getNumOperands() == I0->getNumOperands()); 1491 return I->getOperand(OI) == I0->getOperand(OI); 1492 }; 1493 if (!all_of(Insts, SameAsI0)) { 1494 if (!canReplaceOperandWithVariable(I0, OI)) 1495 // We can't create a PHI from this GEP. 1496 return false; 1497 // Don't create indirect calls! The called value is the final operand. 1498 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1499 // FIXME: if the call was *already* indirect, we should do this. 1500 return false; 1501 } 1502 for (auto *I : Insts) 1503 PHIOperands[I].push_back(I->getOperand(OI)); 1504 } 1505 } 1506 return true; 1507 } 1508 1509 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1510 // instruction of every block in Blocks to their common successor, commoning 1511 // into one instruction. 1512 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1513 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1514 1515 // canSinkLastInstruction returning true guarantees that every block has at 1516 // least one non-terminator instruction. 1517 SmallVector<Instruction*,4> Insts; 1518 for (auto *BB : Blocks) { 1519 Instruction *I = BB->getTerminator(); 1520 do { 1521 I = I->getPrevNode(); 1522 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1523 if (!isa<DbgInfoIntrinsic>(I)) 1524 Insts.push_back(I); 1525 } 1526 1527 // The only checking we need to do now is that all users of all instructions 1528 // are the same PHI node. canSinkLastInstruction should have checked this but 1529 // it is slightly over-aggressive - it gets confused by commutative instructions 1530 // so double-check it here. 1531 Instruction *I0 = Insts.front(); 1532 if (!isa<StoreInst>(I0)) { 1533 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1534 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1535 auto *U = cast<Instruction>(*I->user_begin()); 1536 return U == PNUse; 1537 })) 1538 return false; 1539 } 1540 1541 // We don't need to do any more checking here; canSinkLastInstruction should 1542 // have done it all for us. 1543 SmallVector<Value*, 4> NewOperands; 1544 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1545 // This check is different to that in canSinkLastInstruction. There, we 1546 // cared about the global view once simplifycfg (and instcombine) have 1547 // completed - it takes into account PHIs that become trivially 1548 // simplifiable. However here we need a more local view; if an operand 1549 // differs we create a PHI and rely on instcombine to clean up the very 1550 // small mess we may make. 1551 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1552 return I->getOperand(O) != I0->getOperand(O); 1553 }); 1554 if (!NeedPHI) { 1555 NewOperands.push_back(I0->getOperand(O)); 1556 continue; 1557 } 1558 1559 // Create a new PHI in the successor block and populate it. 1560 auto *Op = I0->getOperand(O); 1561 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1562 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1563 Op->getName() + ".sink", &BBEnd->front()); 1564 for (auto *I : Insts) 1565 PN->addIncoming(I->getOperand(O), I->getParent()); 1566 NewOperands.push_back(PN); 1567 } 1568 1569 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1570 // and move it to the start of the successor block. 1571 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1572 I0->getOperandUse(O).set(NewOperands[O]); 1573 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1574 1575 // Update metadata and IR flags, and merge debug locations. 1576 for (auto *I : Insts) 1577 if (I != I0) { 1578 // The debug location for the "common" instruction is the merged locations 1579 // of all the commoned instructions. We start with the original location 1580 // of the "common" instruction and iteratively merge each location in the 1581 // loop below. 1582 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1583 // However, as N-way merge for CallInst is rare, so we use simplified API 1584 // instead of using complex API for N-way merge. 1585 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1586 combineMetadataForCSE(I0, I); 1587 I0->andIRFlags(I); 1588 } 1589 1590 if (!isa<StoreInst>(I0)) { 1591 // canSinkLastInstruction checked that all instructions were used by 1592 // one and only one PHI node. Find that now, RAUW it to our common 1593 // instruction and nuke it. 1594 assert(I0->hasOneUse()); 1595 auto *PN = cast<PHINode>(*I0->user_begin()); 1596 PN->replaceAllUsesWith(I0); 1597 PN->eraseFromParent(); 1598 } 1599 1600 // Finally nuke all instructions apart from the common instruction. 1601 for (auto *I : Insts) 1602 if (I != I0) 1603 I->eraseFromParent(); 1604 1605 return true; 1606 } 1607 1608 namespace { 1609 1610 // LockstepReverseIterator - Iterates through instructions 1611 // in a set of blocks in reverse order from the first non-terminator. 1612 // For example (assume all blocks have size n): 1613 // LockstepReverseIterator I([B1, B2, B3]); 1614 // *I-- = [B1[n], B2[n], B3[n]]; 1615 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1616 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1617 // ... 1618 class LockstepReverseIterator { 1619 ArrayRef<BasicBlock*> Blocks; 1620 SmallVector<Instruction*,4> Insts; 1621 bool Fail; 1622 1623 public: 1624 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1625 reset(); 1626 } 1627 1628 void reset() { 1629 Fail = false; 1630 Insts.clear(); 1631 for (auto *BB : Blocks) { 1632 Instruction *Inst = BB->getTerminator(); 1633 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1634 Inst = Inst->getPrevNode(); 1635 if (!Inst) { 1636 // Block wasn't big enough. 1637 Fail = true; 1638 return; 1639 } 1640 Insts.push_back(Inst); 1641 } 1642 } 1643 1644 bool isValid() const { 1645 return !Fail; 1646 } 1647 1648 void operator--() { 1649 if (Fail) 1650 return; 1651 for (auto *&Inst : Insts) { 1652 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1653 Inst = Inst->getPrevNode(); 1654 // Already at beginning of block. 1655 if (!Inst) { 1656 Fail = true; 1657 return; 1658 } 1659 } 1660 } 1661 1662 ArrayRef<Instruction*> operator * () const { 1663 return Insts; 1664 } 1665 }; 1666 1667 } // end anonymous namespace 1668 1669 /// Check whether BB's predecessors end with unconditional branches. If it is 1670 /// true, sink any common code from the predecessors to BB. 1671 /// We also allow one predecessor to end with conditional branch (but no more 1672 /// than one). 1673 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1674 // We support two situations: 1675 // (1) all incoming arcs are unconditional 1676 // (2) one incoming arc is conditional 1677 // 1678 // (2) is very common in switch defaults and 1679 // else-if patterns; 1680 // 1681 // if (a) f(1); 1682 // else if (b) f(2); 1683 // 1684 // produces: 1685 // 1686 // [if] 1687 // / \ 1688 // [f(1)] [if] 1689 // | | \ 1690 // | | | 1691 // | [f(2)]| 1692 // \ | / 1693 // [ end ] 1694 // 1695 // [end] has two unconditional predecessor arcs and one conditional. The 1696 // conditional refers to the implicit empty 'else' arc. This conditional 1697 // arc can also be caused by an empty default block in a switch. 1698 // 1699 // In this case, we attempt to sink code from all *unconditional* arcs. 1700 // If we can sink instructions from these arcs (determined during the scan 1701 // phase below) we insert a common successor for all unconditional arcs and 1702 // connect that to [end], to enable sinking: 1703 // 1704 // [if] 1705 // / \ 1706 // [x(1)] [if] 1707 // | | \ 1708 // | | \ 1709 // | [x(2)] | 1710 // \ / | 1711 // [sink.split] | 1712 // \ / 1713 // [ end ] 1714 // 1715 SmallVector<BasicBlock*,4> UnconditionalPreds; 1716 Instruction *Cond = nullptr; 1717 for (auto *B : predecessors(BB)) { 1718 auto *T = B->getTerminator(); 1719 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1720 UnconditionalPreds.push_back(B); 1721 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1722 Cond = T; 1723 else 1724 return false; 1725 } 1726 if (UnconditionalPreds.size() < 2) 1727 return false; 1728 1729 bool Changed = false; 1730 // We take a two-step approach to tail sinking. First we scan from the end of 1731 // each block upwards in lockstep. If the n'th instruction from the end of each 1732 // block can be sunk, those instructions are added to ValuesToSink and we 1733 // carry on. If we can sink an instruction but need to PHI-merge some operands 1734 // (because they're not identical in each instruction) we add these to 1735 // PHIOperands. 1736 unsigned ScanIdx = 0; 1737 SmallPtrSet<Value*,4> InstructionsToSink; 1738 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1739 LockstepReverseIterator LRI(UnconditionalPreds); 1740 while (LRI.isValid() && 1741 canSinkInstructions(*LRI, PHIOperands)) { 1742 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1743 << "\n"); 1744 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1745 ++ScanIdx; 1746 --LRI; 1747 } 1748 1749 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1750 unsigned NumPHIdValues = 0; 1751 for (auto *I : *LRI) 1752 for (auto *V : PHIOperands[I]) 1753 if (InstructionsToSink.count(V) == 0) 1754 ++NumPHIdValues; 1755 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1756 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1757 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1758 NumPHIInsts++; 1759 1760 return NumPHIInsts <= 1; 1761 }; 1762 1763 if (ScanIdx > 0 && Cond) { 1764 // Check if we would actually sink anything first! This mutates the CFG and 1765 // adds an extra block. The goal in doing this is to allow instructions that 1766 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1767 // (such as trunc, add) can be sunk and predicated already. So we check that 1768 // we're going to sink at least one non-speculatable instruction. 1769 LRI.reset(); 1770 unsigned Idx = 0; 1771 bool Profitable = false; 1772 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1773 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1774 Profitable = true; 1775 break; 1776 } 1777 --LRI; 1778 ++Idx; 1779 } 1780 if (!Profitable) 1781 return false; 1782 1783 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1784 // We have a conditional edge and we're going to sink some instructions. 1785 // Insert a new block postdominating all blocks we're going to sink from. 1786 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1787 // Edges couldn't be split. 1788 return false; 1789 Changed = true; 1790 } 1791 1792 // Now that we've analyzed all potential sinking candidates, perform the 1793 // actual sink. We iteratively sink the last non-terminator of the source 1794 // blocks into their common successor unless doing so would require too 1795 // many PHI instructions to be generated (currently only one PHI is allowed 1796 // per sunk instruction). 1797 // 1798 // We can use InstructionsToSink to discount values needing PHI-merging that will 1799 // actually be sunk in a later iteration. This allows us to be more 1800 // aggressive in what we sink. This does allow a false positive where we 1801 // sink presuming a later value will also be sunk, but stop half way through 1802 // and never actually sink it which means we produce more PHIs than intended. 1803 // This is unlikely in practice though. 1804 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1805 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1806 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1807 << "\n"); 1808 1809 // Because we've sunk every instruction in turn, the current instruction to 1810 // sink is always at index 0. 1811 LRI.reset(); 1812 if (!ProfitableToSinkInstruction(LRI)) { 1813 // Too many PHIs would be created. 1814 LLVM_DEBUG( 1815 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1816 break; 1817 } 1818 1819 if (!sinkLastInstruction(UnconditionalPreds)) 1820 return Changed; 1821 NumSinkCommons++; 1822 Changed = true; 1823 } 1824 return Changed; 1825 } 1826 1827 /// Determine if we can hoist sink a sole store instruction out of a 1828 /// conditional block. 1829 /// 1830 /// We are looking for code like the following: 1831 /// BrBB: 1832 /// store i32 %add, i32* %arrayidx2 1833 /// ... // No other stores or function calls (we could be calling a memory 1834 /// ... // function). 1835 /// %cmp = icmp ult %x, %y 1836 /// br i1 %cmp, label %EndBB, label %ThenBB 1837 /// ThenBB: 1838 /// store i32 %add5, i32* %arrayidx2 1839 /// br label EndBB 1840 /// EndBB: 1841 /// ... 1842 /// We are going to transform this into: 1843 /// BrBB: 1844 /// store i32 %add, i32* %arrayidx2 1845 /// ... // 1846 /// %cmp = icmp ult %x, %y 1847 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1848 /// store i32 %add.add5, i32* %arrayidx2 1849 /// ... 1850 /// 1851 /// \return The pointer to the value of the previous store if the store can be 1852 /// hoisted into the predecessor block. 0 otherwise. 1853 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1854 BasicBlock *StoreBB, BasicBlock *EndBB) { 1855 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1856 if (!StoreToHoist) 1857 return nullptr; 1858 1859 // Volatile or atomic. 1860 if (!StoreToHoist->isSimple()) 1861 return nullptr; 1862 1863 Value *StorePtr = StoreToHoist->getPointerOperand(); 1864 1865 // Look for a store to the same pointer in BrBB. 1866 unsigned MaxNumInstToLookAt = 9; 1867 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1868 if (!MaxNumInstToLookAt) 1869 break; 1870 --MaxNumInstToLookAt; 1871 1872 // Could be calling an instruction that affects memory like free(). 1873 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1874 return nullptr; 1875 1876 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1877 // Found the previous store make sure it stores to the same location. 1878 if (SI->getPointerOperand() == StorePtr) 1879 // Found the previous store, return its value operand. 1880 return SI->getValueOperand(); 1881 return nullptr; // Unknown store. 1882 } 1883 } 1884 1885 return nullptr; 1886 } 1887 1888 /// Speculate a conditional basic block flattening the CFG. 1889 /// 1890 /// Note that this is a very risky transform currently. Speculating 1891 /// instructions like this is most often not desirable. Instead, there is an MI 1892 /// pass which can do it with full awareness of the resource constraints. 1893 /// However, some cases are "obvious" and we should do directly. An example of 1894 /// this is speculating a single, reasonably cheap instruction. 1895 /// 1896 /// There is only one distinct advantage to flattening the CFG at the IR level: 1897 /// it makes very common but simplistic optimizations such as are common in 1898 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1899 /// modeling their effects with easier to reason about SSA value graphs. 1900 /// 1901 /// 1902 /// An illustration of this transform is turning this IR: 1903 /// \code 1904 /// BB: 1905 /// %cmp = icmp ult %x, %y 1906 /// br i1 %cmp, label %EndBB, label %ThenBB 1907 /// ThenBB: 1908 /// %sub = sub %x, %y 1909 /// br label BB2 1910 /// EndBB: 1911 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1912 /// ... 1913 /// \endcode 1914 /// 1915 /// Into this IR: 1916 /// \code 1917 /// BB: 1918 /// %cmp = icmp ult %x, %y 1919 /// %sub = sub %x, %y 1920 /// %cond = select i1 %cmp, 0, %sub 1921 /// ... 1922 /// \endcode 1923 /// 1924 /// \returns true if the conditional block is removed. 1925 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1926 const TargetTransformInfo &TTI) { 1927 // Be conservative for now. FP select instruction can often be expensive. 1928 Value *BrCond = BI->getCondition(); 1929 if (isa<FCmpInst>(BrCond)) 1930 return false; 1931 1932 BasicBlock *BB = BI->getParent(); 1933 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1934 1935 // If ThenBB is actually on the false edge of the conditional branch, remember 1936 // to swap the select operands later. 1937 bool Invert = false; 1938 if (ThenBB != BI->getSuccessor(0)) { 1939 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1940 Invert = true; 1941 } 1942 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1943 1944 // Keep a count of how many times instructions are used within CondBB when 1945 // they are candidates for sinking into CondBB. Specifically: 1946 // - They are defined in BB, and 1947 // - They have no side effects, and 1948 // - All of their uses are in CondBB. 1949 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1950 1951 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1952 1953 unsigned SpeculationCost = 0; 1954 Value *SpeculatedStoreValue = nullptr; 1955 StoreInst *SpeculatedStore = nullptr; 1956 for (BasicBlock::iterator BBI = ThenBB->begin(), 1957 BBE = std::prev(ThenBB->end()); 1958 BBI != BBE; ++BBI) { 1959 Instruction *I = &*BBI; 1960 // Skip debug info. 1961 if (isa<DbgInfoIntrinsic>(I)) { 1962 SpeculatedDbgIntrinsics.push_back(I); 1963 continue; 1964 } 1965 1966 // Only speculatively execute a single instruction (not counting the 1967 // terminator) for now. 1968 ++SpeculationCost; 1969 if (SpeculationCost > 1) 1970 return false; 1971 1972 // Don't hoist the instruction if it's unsafe or expensive. 1973 if (!isSafeToSpeculativelyExecute(I) && 1974 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1975 I, BB, ThenBB, EndBB)))) 1976 return false; 1977 if (!SpeculatedStoreValue && 1978 ComputeSpeculationCost(I, TTI) > 1979 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1980 return false; 1981 1982 // Store the store speculation candidate. 1983 if (SpeculatedStoreValue) 1984 SpeculatedStore = cast<StoreInst>(I); 1985 1986 // Do not hoist the instruction if any of its operands are defined but not 1987 // used in BB. The transformation will prevent the operand from 1988 // being sunk into the use block. 1989 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1990 Instruction *OpI = dyn_cast<Instruction>(*i); 1991 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1992 continue; // Not a candidate for sinking. 1993 1994 ++SinkCandidateUseCounts[OpI]; 1995 } 1996 } 1997 1998 // Consider any sink candidates which are only used in CondBB as costs for 1999 // speculation. Note, while we iterate over a DenseMap here, we are summing 2000 // and so iteration order isn't significant. 2001 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2002 I = SinkCandidateUseCounts.begin(), 2003 E = SinkCandidateUseCounts.end(); 2004 I != E; ++I) 2005 if (I->first->getNumUses() == I->second) { 2006 ++SpeculationCost; 2007 if (SpeculationCost > 1) 2008 return false; 2009 } 2010 2011 // Check that the PHI nodes can be converted to selects. 2012 bool HaveRewritablePHIs = false; 2013 for (PHINode &PN : EndBB->phis()) { 2014 Value *OrigV = PN.getIncomingValueForBlock(BB); 2015 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2016 2017 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2018 // Skip PHIs which are trivial. 2019 if (ThenV == OrigV) 2020 continue; 2021 2022 // Don't convert to selects if we could remove undefined behavior instead. 2023 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2024 passingValueIsAlwaysUndefined(ThenV, &PN)) 2025 return false; 2026 2027 HaveRewritablePHIs = true; 2028 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2029 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2030 if (!OrigCE && !ThenCE) 2031 continue; // Known safe and cheap. 2032 2033 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2034 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2035 return false; 2036 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2037 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2038 unsigned MaxCost = 2039 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2040 if (OrigCost + ThenCost > MaxCost) 2041 return false; 2042 2043 // Account for the cost of an unfolded ConstantExpr which could end up 2044 // getting expanded into Instructions. 2045 // FIXME: This doesn't account for how many operations are combined in the 2046 // constant expression. 2047 ++SpeculationCost; 2048 if (SpeculationCost > 1) 2049 return false; 2050 } 2051 2052 // If there are no PHIs to process, bail early. This helps ensure idempotence 2053 // as well. 2054 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2055 return false; 2056 2057 // If we get here, we can hoist the instruction and if-convert. 2058 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2059 2060 // Insert a select of the value of the speculated store. 2061 if (SpeculatedStoreValue) { 2062 IRBuilder<NoFolder> Builder(BI); 2063 Value *TrueV = SpeculatedStore->getValueOperand(); 2064 Value *FalseV = SpeculatedStoreValue; 2065 if (Invert) 2066 std::swap(TrueV, FalseV); 2067 Value *S = Builder.CreateSelect( 2068 BrCond, TrueV, FalseV, "spec.store.select", BI); 2069 SpeculatedStore->setOperand(0, S); 2070 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2071 SpeculatedStore->getDebugLoc()); 2072 } 2073 2074 // Metadata can be dependent on the condition we are hoisting above. 2075 // Conservatively strip all metadata on the instruction. 2076 for (auto &I : *ThenBB) 2077 I.dropUnknownNonDebugMetadata(); 2078 2079 // Hoist the instructions. 2080 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2081 ThenBB->begin(), std::prev(ThenBB->end())); 2082 2083 // Insert selects and rewrite the PHI operands. 2084 IRBuilder<NoFolder> Builder(BI); 2085 for (PHINode &PN : EndBB->phis()) { 2086 unsigned OrigI = PN.getBasicBlockIndex(BB); 2087 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2088 Value *OrigV = PN.getIncomingValue(OrigI); 2089 Value *ThenV = PN.getIncomingValue(ThenI); 2090 2091 // Skip PHIs which are trivial. 2092 if (OrigV == ThenV) 2093 continue; 2094 2095 // Create a select whose true value is the speculatively executed value and 2096 // false value is the preexisting value. Swap them if the branch 2097 // destinations were inverted. 2098 Value *TrueV = ThenV, *FalseV = OrigV; 2099 if (Invert) 2100 std::swap(TrueV, FalseV); 2101 Value *V = Builder.CreateSelect( 2102 BrCond, TrueV, FalseV, "spec.select", BI); 2103 PN.setIncomingValue(OrigI, V); 2104 PN.setIncomingValue(ThenI, V); 2105 } 2106 2107 // Remove speculated dbg intrinsics. 2108 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2109 // dbg value for the different flows and inserting it after the select. 2110 for (Instruction *I : SpeculatedDbgIntrinsics) 2111 I->eraseFromParent(); 2112 2113 ++NumSpeculations; 2114 return true; 2115 } 2116 2117 /// Return true if we can thread a branch across this block. 2118 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2119 unsigned Size = 0; 2120 2121 for (Instruction &I : BB->instructionsWithoutDebug()) { 2122 if (Size > 10) 2123 return false; // Don't clone large BB's. 2124 ++Size; 2125 2126 // We can only support instructions that do not define values that are 2127 // live outside of the current basic block. 2128 for (User *U : I.users()) { 2129 Instruction *UI = cast<Instruction>(U); 2130 if (UI->getParent() != BB || isa<PHINode>(UI)) 2131 return false; 2132 } 2133 2134 // Looks ok, continue checking. 2135 } 2136 2137 return true; 2138 } 2139 2140 /// If we have a conditional branch on a PHI node value that is defined in the 2141 /// same block as the branch and if any PHI entries are constants, thread edges 2142 /// corresponding to that entry to be branches to their ultimate destination. 2143 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2144 AssumptionCache *AC) { 2145 BasicBlock *BB = BI->getParent(); 2146 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2147 // NOTE: we currently cannot transform this case if the PHI node is used 2148 // outside of the block. 2149 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2150 return false; 2151 2152 // Degenerate case of a single entry PHI. 2153 if (PN->getNumIncomingValues() == 1) { 2154 FoldSingleEntryPHINodes(PN->getParent()); 2155 return true; 2156 } 2157 2158 // Now we know that this block has multiple preds and two succs. 2159 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2160 return false; 2161 2162 // Can't fold blocks that contain noduplicate or convergent calls. 2163 if (any_of(*BB, [](const Instruction &I) { 2164 const CallInst *CI = dyn_cast<CallInst>(&I); 2165 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2166 })) 2167 return false; 2168 2169 // Okay, this is a simple enough basic block. See if any phi values are 2170 // constants. 2171 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2172 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2173 if (!CB || !CB->getType()->isIntegerTy(1)) 2174 continue; 2175 2176 // Okay, we now know that all edges from PredBB should be revectored to 2177 // branch to RealDest. 2178 BasicBlock *PredBB = PN->getIncomingBlock(i); 2179 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2180 2181 if (RealDest == BB) 2182 continue; // Skip self loops. 2183 // Skip if the predecessor's terminator is an indirect branch. 2184 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2185 continue; 2186 2187 // The dest block might have PHI nodes, other predecessors and other 2188 // difficult cases. Instead of being smart about this, just insert a new 2189 // block that jumps to the destination block, effectively splitting 2190 // the edge we are about to create. 2191 BasicBlock *EdgeBB = 2192 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2193 RealDest->getParent(), RealDest); 2194 BranchInst::Create(RealDest, EdgeBB); 2195 2196 // Update PHI nodes. 2197 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2198 2199 // BB may have instructions that are being threaded over. Clone these 2200 // instructions into EdgeBB. We know that there will be no uses of the 2201 // cloned instructions outside of EdgeBB. 2202 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2203 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2204 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2205 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2206 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2207 continue; 2208 } 2209 // Clone the instruction. 2210 Instruction *N = BBI->clone(); 2211 if (BBI->hasName()) 2212 N->setName(BBI->getName() + ".c"); 2213 2214 // Update operands due to translation. 2215 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2216 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2217 if (PI != TranslateMap.end()) 2218 *i = PI->second; 2219 } 2220 2221 // Check for trivial simplification. 2222 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2223 if (!BBI->use_empty()) 2224 TranslateMap[&*BBI] = V; 2225 if (!N->mayHaveSideEffects()) { 2226 N->deleteValue(); // Instruction folded away, don't need actual inst 2227 N = nullptr; 2228 } 2229 } else { 2230 if (!BBI->use_empty()) 2231 TranslateMap[&*BBI] = N; 2232 } 2233 // Insert the new instruction into its new home. 2234 if (N) 2235 EdgeBB->getInstList().insert(InsertPt, N); 2236 2237 // Register the new instruction with the assumption cache if necessary. 2238 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2239 if (II->getIntrinsicID() == Intrinsic::assume) 2240 AC->registerAssumption(II); 2241 } 2242 2243 // Loop over all of the edges from PredBB to BB, changing them to branch 2244 // to EdgeBB instead. 2245 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2246 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2247 if (PredBBTI->getSuccessor(i) == BB) { 2248 BB->removePredecessor(PredBB); 2249 PredBBTI->setSuccessor(i, EdgeBB); 2250 } 2251 2252 // Recurse, simplifying any other constants. 2253 return FoldCondBranchOnPHI(BI, DL, AC) | true; 2254 } 2255 2256 return false; 2257 } 2258 2259 /// Given a BB that starts with the specified two-entry PHI node, 2260 /// see if we can eliminate it. 2261 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2262 const DataLayout &DL) { 2263 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2264 // statement", which has a very simple dominance structure. Basically, we 2265 // are trying to find the condition that is being branched on, which 2266 // subsequently causes this merge to happen. We really want control 2267 // dependence information for this check, but simplifycfg can't keep it up 2268 // to date, and this catches most of the cases we care about anyway. 2269 BasicBlock *BB = PN->getParent(); 2270 const Function *Fn = BB->getParent(); 2271 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2272 return false; 2273 2274 BasicBlock *IfTrue, *IfFalse; 2275 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2276 if (!IfCond || 2277 // Don't bother if the branch will be constant folded trivially. 2278 isa<ConstantInt>(IfCond)) 2279 return false; 2280 2281 // Okay, we found that we can merge this two-entry phi node into a select. 2282 // Doing so would require us to fold *all* two entry phi nodes in this block. 2283 // At some point this becomes non-profitable (particularly if the target 2284 // doesn't support cmov's). Only do this transformation if there are two or 2285 // fewer PHI nodes in this block. 2286 unsigned NumPhis = 0; 2287 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2288 if (NumPhis > 2) 2289 return false; 2290 2291 // Loop over the PHI's seeing if we can promote them all to select 2292 // instructions. While we are at it, keep track of the instructions 2293 // that need to be moved to the dominating block. 2294 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2295 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2296 MaxCostVal1 = PHINodeFoldingThreshold; 2297 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2298 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2299 2300 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2301 PHINode *PN = cast<PHINode>(II++); 2302 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2303 PN->replaceAllUsesWith(V); 2304 PN->eraseFromParent(); 2305 continue; 2306 } 2307 2308 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2309 MaxCostVal0, TTI) || 2310 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2311 MaxCostVal1, TTI)) 2312 return false; 2313 } 2314 2315 // If we folded the first phi, PN dangles at this point. Refresh it. If 2316 // we ran out of PHIs then we simplified them all. 2317 PN = dyn_cast<PHINode>(BB->begin()); 2318 if (!PN) 2319 return true; 2320 2321 // Don't fold i1 branches on PHIs which contain binary operators. These can 2322 // often be turned into switches and other things. 2323 if (PN->getType()->isIntegerTy(1) && 2324 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2325 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2326 isa<BinaryOperator>(IfCond))) 2327 return false; 2328 2329 // If all PHI nodes are promotable, check to make sure that all instructions 2330 // in the predecessor blocks can be promoted as well. If not, we won't be able 2331 // to get rid of the control flow, so it's not worth promoting to select 2332 // instructions. 2333 BasicBlock *DomBlock = nullptr; 2334 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2335 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2336 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2337 IfBlock1 = nullptr; 2338 } else { 2339 DomBlock = *pred_begin(IfBlock1); 2340 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2341 ++I) 2342 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2343 // This is not an aggressive instruction that we can promote. 2344 // Because of this, we won't be able to get rid of the control flow, so 2345 // the xform is not worth it. 2346 return false; 2347 } 2348 } 2349 2350 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2351 IfBlock2 = nullptr; 2352 } else { 2353 DomBlock = *pred_begin(IfBlock2); 2354 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2355 ++I) 2356 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2357 // This is not an aggressive instruction that we can promote. 2358 // Because of this, we won't be able to get rid of the control flow, so 2359 // the xform is not worth it. 2360 return false; 2361 } 2362 } 2363 2364 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2365 << " T: " << IfTrue->getName() 2366 << " F: " << IfFalse->getName() << "\n"); 2367 2368 // If we can still promote the PHI nodes after this gauntlet of tests, 2369 // do all of the PHI's now. 2370 Instruction *InsertPt = DomBlock->getTerminator(); 2371 IRBuilder<NoFolder> Builder(InsertPt); 2372 2373 // Move all 'aggressive' instructions, which are defined in the 2374 // conditional parts of the if's up to the dominating block. 2375 if (IfBlock1) { 2376 for (auto &I : *IfBlock1) 2377 I.dropUnknownNonDebugMetadata(); 2378 DomBlock->getInstList().splice(InsertPt->getIterator(), 2379 IfBlock1->getInstList(), IfBlock1->begin(), 2380 IfBlock1->getTerminator()->getIterator()); 2381 } 2382 if (IfBlock2) { 2383 for (auto &I : *IfBlock2) 2384 I.dropUnknownNonDebugMetadata(); 2385 DomBlock->getInstList().splice(InsertPt->getIterator(), 2386 IfBlock2->getInstList(), IfBlock2->begin(), 2387 IfBlock2->getTerminator()->getIterator()); 2388 } 2389 2390 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2391 // Change the PHI node into a select instruction. 2392 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2393 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2394 2395 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2396 PN->replaceAllUsesWith(Sel); 2397 Sel->takeName(PN); 2398 PN->eraseFromParent(); 2399 } 2400 2401 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2402 // has been flattened. Change DomBlock to jump directly to our new block to 2403 // avoid other simplifycfg's kicking in on the diamond. 2404 TerminatorInst *OldTI = DomBlock->getTerminator(); 2405 Builder.SetInsertPoint(OldTI); 2406 Builder.CreateBr(BB); 2407 OldTI->eraseFromParent(); 2408 return true; 2409 } 2410 2411 /// If we found a conditional branch that goes to two returning blocks, 2412 /// try to merge them together into one return, 2413 /// introducing a select if the return values disagree. 2414 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2415 IRBuilder<> &Builder) { 2416 assert(BI->isConditional() && "Must be a conditional branch"); 2417 BasicBlock *TrueSucc = BI->getSuccessor(0); 2418 BasicBlock *FalseSucc = BI->getSuccessor(1); 2419 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2420 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2421 2422 // Check to ensure both blocks are empty (just a return) or optionally empty 2423 // with PHI nodes. If there are other instructions, merging would cause extra 2424 // computation on one path or the other. 2425 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2426 return false; 2427 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2428 return false; 2429 2430 Builder.SetInsertPoint(BI); 2431 // Okay, we found a branch that is going to two return nodes. If 2432 // there is no return value for this function, just change the 2433 // branch into a return. 2434 if (FalseRet->getNumOperands() == 0) { 2435 TrueSucc->removePredecessor(BI->getParent()); 2436 FalseSucc->removePredecessor(BI->getParent()); 2437 Builder.CreateRetVoid(); 2438 EraseTerminatorInstAndDCECond(BI); 2439 return true; 2440 } 2441 2442 // Otherwise, figure out what the true and false return values are 2443 // so we can insert a new select instruction. 2444 Value *TrueValue = TrueRet->getReturnValue(); 2445 Value *FalseValue = FalseRet->getReturnValue(); 2446 2447 // Unwrap any PHI nodes in the return blocks. 2448 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2449 if (TVPN->getParent() == TrueSucc) 2450 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2451 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2452 if (FVPN->getParent() == FalseSucc) 2453 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2454 2455 // In order for this transformation to be safe, we must be able to 2456 // unconditionally execute both operands to the return. This is 2457 // normally the case, but we could have a potentially-trapping 2458 // constant expression that prevents this transformation from being 2459 // safe. 2460 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2461 if (TCV->canTrap()) 2462 return false; 2463 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2464 if (FCV->canTrap()) 2465 return false; 2466 2467 // Okay, we collected all the mapped values and checked them for sanity, and 2468 // defined to really do this transformation. First, update the CFG. 2469 TrueSucc->removePredecessor(BI->getParent()); 2470 FalseSucc->removePredecessor(BI->getParent()); 2471 2472 // Insert select instructions where needed. 2473 Value *BrCond = BI->getCondition(); 2474 if (TrueValue) { 2475 // Insert a select if the results differ. 2476 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2477 } else if (isa<UndefValue>(TrueValue)) { 2478 TrueValue = FalseValue; 2479 } else { 2480 TrueValue = 2481 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2482 } 2483 } 2484 2485 Value *RI = 2486 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2487 2488 (void)RI; 2489 2490 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2491 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2492 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2493 2494 EraseTerminatorInstAndDCECond(BI); 2495 2496 return true; 2497 } 2498 2499 /// Return true if the given instruction is available 2500 /// in its predecessor block. If yes, the instruction will be removed. 2501 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2502 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2503 return false; 2504 for (Instruction &I : *PB) { 2505 Instruction *PBI = &I; 2506 // Check whether Inst and PBI generate the same value. 2507 if (Inst->isIdenticalTo(PBI)) { 2508 Inst->replaceAllUsesWith(PBI); 2509 Inst->eraseFromParent(); 2510 return true; 2511 } 2512 } 2513 return false; 2514 } 2515 2516 /// Return true if either PBI or BI has branch weight available, and store 2517 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2518 /// not have branch weight, use 1:1 as its weight. 2519 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2520 uint64_t &PredTrueWeight, 2521 uint64_t &PredFalseWeight, 2522 uint64_t &SuccTrueWeight, 2523 uint64_t &SuccFalseWeight) { 2524 bool PredHasWeights = 2525 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2526 bool SuccHasWeights = 2527 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2528 if (PredHasWeights || SuccHasWeights) { 2529 if (!PredHasWeights) 2530 PredTrueWeight = PredFalseWeight = 1; 2531 if (!SuccHasWeights) 2532 SuccTrueWeight = SuccFalseWeight = 1; 2533 return true; 2534 } else { 2535 return false; 2536 } 2537 } 2538 2539 /// If this basic block is simple enough, and if a predecessor branches to us 2540 /// and one of our successors, fold the block into the predecessor and use 2541 /// logical operations to pick the right destination. 2542 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2543 BasicBlock *BB = BI->getParent(); 2544 2545 Instruction *Cond = nullptr; 2546 if (BI->isConditional()) 2547 Cond = dyn_cast<Instruction>(BI->getCondition()); 2548 else { 2549 // For unconditional branch, check for a simple CFG pattern, where 2550 // BB has a single predecessor and BB's successor is also its predecessor's 2551 // successor. If such pattern exists, check for CSE between BB and its 2552 // predecessor. 2553 if (BasicBlock *PB = BB->getSinglePredecessor()) 2554 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2555 if (PBI->isConditional() && 2556 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2557 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2558 for (auto I = BB->instructionsWithoutDebug().begin(), 2559 E = BB->instructionsWithoutDebug().end(); 2560 I != E;) { 2561 Instruction *Curr = &*I++; 2562 if (isa<CmpInst>(Curr)) { 2563 Cond = Curr; 2564 break; 2565 } 2566 // Quit if we can't remove this instruction. 2567 if (!tryCSEWithPredecessor(Curr, PB)) 2568 return false; 2569 } 2570 } 2571 2572 if (!Cond) 2573 return false; 2574 } 2575 2576 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2577 Cond->getParent() != BB || !Cond->hasOneUse()) 2578 return false; 2579 2580 // Make sure the instruction after the condition is the cond branch. 2581 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2582 2583 // Ignore dbg intrinsics. 2584 while (isa<DbgInfoIntrinsic>(CondIt)) 2585 ++CondIt; 2586 2587 if (&*CondIt != BI) 2588 return false; 2589 2590 // Only allow this transformation if computing the condition doesn't involve 2591 // too many instructions and these involved instructions can be executed 2592 // unconditionally. We denote all involved instructions except the condition 2593 // as "bonus instructions", and only allow this transformation when the 2594 // number of the bonus instructions does not exceed a certain threshold. 2595 unsigned NumBonusInsts = 0; 2596 for (auto I = BB->begin(); Cond != &*I; ++I) { 2597 // Ignore dbg intrinsics. 2598 if (isa<DbgInfoIntrinsic>(I)) 2599 continue; 2600 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2601 return false; 2602 // I has only one use and can be executed unconditionally. 2603 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2604 if (User == nullptr || User->getParent() != BB) 2605 return false; 2606 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2607 // to use any other instruction, User must be an instruction between next(I) 2608 // and Cond. 2609 ++NumBonusInsts; 2610 // Early exits once we reach the limit. 2611 if (NumBonusInsts > BonusInstThreshold) 2612 return false; 2613 } 2614 2615 // Cond is known to be a compare or binary operator. Check to make sure that 2616 // neither operand is a potentially-trapping constant expression. 2617 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2618 if (CE->canTrap()) 2619 return false; 2620 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2621 if (CE->canTrap()) 2622 return false; 2623 2624 // Finally, don't infinitely unroll conditional loops. 2625 BasicBlock *TrueDest = BI->getSuccessor(0); 2626 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2627 if (TrueDest == BB || FalseDest == BB) 2628 return false; 2629 2630 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2631 BasicBlock *PredBlock = *PI; 2632 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2633 2634 // Check that we have two conditional branches. If there is a PHI node in 2635 // the common successor, verify that the same value flows in from both 2636 // blocks. 2637 SmallVector<PHINode *, 4> PHIs; 2638 if (!PBI || PBI->isUnconditional() || 2639 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2640 (!BI->isConditional() && 2641 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2642 continue; 2643 2644 // Determine if the two branches share a common destination. 2645 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2646 bool InvertPredCond = false; 2647 2648 if (BI->isConditional()) { 2649 if (PBI->getSuccessor(0) == TrueDest) { 2650 Opc = Instruction::Or; 2651 } else if (PBI->getSuccessor(1) == FalseDest) { 2652 Opc = Instruction::And; 2653 } else if (PBI->getSuccessor(0) == FalseDest) { 2654 Opc = Instruction::And; 2655 InvertPredCond = true; 2656 } else if (PBI->getSuccessor(1) == TrueDest) { 2657 Opc = Instruction::Or; 2658 InvertPredCond = true; 2659 } else { 2660 continue; 2661 } 2662 } else { 2663 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2664 continue; 2665 } 2666 2667 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2668 IRBuilder<> Builder(PBI); 2669 2670 // If we need to invert the condition in the pred block to match, do so now. 2671 if (InvertPredCond) { 2672 Value *NewCond = PBI->getCondition(); 2673 2674 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2675 CmpInst *CI = cast<CmpInst>(NewCond); 2676 CI->setPredicate(CI->getInversePredicate()); 2677 } else { 2678 NewCond = 2679 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2680 } 2681 2682 PBI->setCondition(NewCond); 2683 PBI->swapSuccessors(); 2684 } 2685 2686 // If we have bonus instructions, clone them into the predecessor block. 2687 // Note that there may be multiple predecessor blocks, so we cannot move 2688 // bonus instructions to a predecessor block. 2689 ValueToValueMapTy VMap; // maps original values to cloned values 2690 // We already make sure Cond is the last instruction before BI. Therefore, 2691 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2692 // instructions. 2693 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2694 if (isa<DbgInfoIntrinsic>(BonusInst)) 2695 continue; 2696 Instruction *NewBonusInst = BonusInst->clone(); 2697 RemapInstruction(NewBonusInst, VMap, 2698 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2699 VMap[&*BonusInst] = NewBonusInst; 2700 2701 // If we moved a load, we cannot any longer claim any knowledge about 2702 // its potential value. The previous information might have been valid 2703 // only given the branch precondition. 2704 // For an analogous reason, we must also drop all the metadata whose 2705 // semantics we don't understand. 2706 NewBonusInst->dropUnknownNonDebugMetadata(); 2707 2708 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2709 NewBonusInst->takeName(&*BonusInst); 2710 BonusInst->setName(BonusInst->getName() + ".old"); 2711 } 2712 2713 // Clone Cond into the predecessor basic block, and or/and the 2714 // two conditions together. 2715 Instruction *New = Cond->clone(); 2716 RemapInstruction(New, VMap, 2717 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2718 PredBlock->getInstList().insert(PBI->getIterator(), New); 2719 New->takeName(Cond); 2720 Cond->setName(New->getName() + ".old"); 2721 2722 if (BI->isConditional()) { 2723 Instruction *NewCond = cast<Instruction>( 2724 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2725 PBI->setCondition(NewCond); 2726 2727 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2728 bool HasWeights = 2729 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2730 SuccTrueWeight, SuccFalseWeight); 2731 SmallVector<uint64_t, 8> NewWeights; 2732 2733 if (PBI->getSuccessor(0) == BB) { 2734 if (HasWeights) { 2735 // PBI: br i1 %x, BB, FalseDest 2736 // BI: br i1 %y, TrueDest, FalseDest 2737 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2738 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2739 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2740 // TrueWeight for PBI * FalseWeight for BI. 2741 // We assume that total weights of a BranchInst can fit into 32 bits. 2742 // Therefore, we will not have overflow using 64-bit arithmetic. 2743 NewWeights.push_back(PredFalseWeight * 2744 (SuccFalseWeight + SuccTrueWeight) + 2745 PredTrueWeight * SuccFalseWeight); 2746 } 2747 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2748 PBI->setSuccessor(0, TrueDest); 2749 } 2750 if (PBI->getSuccessor(1) == BB) { 2751 if (HasWeights) { 2752 // PBI: br i1 %x, TrueDest, BB 2753 // BI: br i1 %y, TrueDest, FalseDest 2754 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2755 // FalseWeight for PBI * TrueWeight for BI. 2756 NewWeights.push_back(PredTrueWeight * 2757 (SuccFalseWeight + SuccTrueWeight) + 2758 PredFalseWeight * SuccTrueWeight); 2759 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2760 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2761 } 2762 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2763 PBI->setSuccessor(1, FalseDest); 2764 } 2765 if (NewWeights.size() == 2) { 2766 // Halve the weights if any of them cannot fit in an uint32_t 2767 FitWeights(NewWeights); 2768 2769 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2770 NewWeights.end()); 2771 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2772 } else 2773 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2774 } else { 2775 // Update PHI nodes in the common successors. 2776 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2777 ConstantInt *PBI_C = cast<ConstantInt>( 2778 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2779 assert(PBI_C->getType()->isIntegerTy(1)); 2780 Instruction *MergedCond = nullptr; 2781 if (PBI->getSuccessor(0) == TrueDest) { 2782 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2783 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2784 // is false: !PBI_Cond and BI_Value 2785 Instruction *NotCond = cast<Instruction>( 2786 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2787 MergedCond = cast<Instruction>( 2788 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2789 if (PBI_C->isOne()) 2790 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2791 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2792 } else { 2793 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2794 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2795 // is false: PBI_Cond and BI_Value 2796 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2797 Instruction::And, PBI->getCondition(), New, "and.cond")); 2798 if (PBI_C->isOne()) { 2799 Instruction *NotCond = cast<Instruction>( 2800 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2801 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2802 Instruction::Or, NotCond, MergedCond, "or.cond")); 2803 } 2804 } 2805 // Update PHI Node. 2806 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2807 MergedCond); 2808 } 2809 // Change PBI from Conditional to Unconditional. 2810 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2811 EraseTerminatorInstAndDCECond(PBI); 2812 PBI = New_PBI; 2813 } 2814 2815 // If BI was a loop latch, it may have had associated loop metadata. 2816 // We need to copy it to the new latch, that is, PBI. 2817 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2818 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2819 2820 // TODO: If BB is reachable from all paths through PredBlock, then we 2821 // could replace PBI's branch probabilities with BI's. 2822 2823 // Copy any debug value intrinsics into the end of PredBlock. 2824 for (Instruction &I : *BB) 2825 if (isa<DbgInfoIntrinsic>(I)) 2826 I.clone()->insertBefore(PBI); 2827 2828 return true; 2829 } 2830 return false; 2831 } 2832 2833 // If there is only one store in BB1 and BB2, return it, otherwise return 2834 // nullptr. 2835 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2836 StoreInst *S = nullptr; 2837 for (auto *BB : {BB1, BB2}) { 2838 if (!BB) 2839 continue; 2840 for (auto &I : *BB) 2841 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2842 if (S) 2843 // Multiple stores seen. 2844 return nullptr; 2845 else 2846 S = SI; 2847 } 2848 } 2849 return S; 2850 } 2851 2852 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2853 Value *AlternativeV = nullptr) { 2854 // PHI is going to be a PHI node that allows the value V that is defined in 2855 // BB to be referenced in BB's only successor. 2856 // 2857 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2858 // doesn't matter to us what the other operand is (it'll never get used). We 2859 // could just create a new PHI with an undef incoming value, but that could 2860 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2861 // other PHI. So here we directly look for some PHI in BB's successor with V 2862 // as an incoming operand. If we find one, we use it, else we create a new 2863 // one. 2864 // 2865 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2866 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2867 // where OtherBB is the single other predecessor of BB's only successor. 2868 PHINode *PHI = nullptr; 2869 BasicBlock *Succ = BB->getSingleSuccessor(); 2870 2871 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2872 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2873 PHI = cast<PHINode>(I); 2874 if (!AlternativeV) 2875 break; 2876 2877 assert(pred_size(Succ) == 2); 2878 auto PredI = pred_begin(Succ); 2879 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2880 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2881 break; 2882 PHI = nullptr; 2883 } 2884 if (PHI) 2885 return PHI; 2886 2887 // If V is not an instruction defined in BB, just return it. 2888 if (!AlternativeV && 2889 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2890 return V; 2891 2892 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2893 PHI->addIncoming(V, BB); 2894 for (BasicBlock *PredBB : predecessors(Succ)) 2895 if (PredBB != BB) 2896 PHI->addIncoming( 2897 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2898 return PHI; 2899 } 2900 2901 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2902 BasicBlock *QTB, BasicBlock *QFB, 2903 BasicBlock *PostBB, Value *Address, 2904 bool InvertPCond, bool InvertQCond, 2905 const DataLayout &DL) { 2906 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2907 return Operator::getOpcode(&I) == Instruction::BitCast && 2908 I.getType()->isPointerTy(); 2909 }; 2910 2911 // If we're not in aggressive mode, we only optimize if we have some 2912 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2913 auto IsWorthwhile = [&](BasicBlock *BB) { 2914 if (!BB) 2915 return true; 2916 // Heuristic: if the block can be if-converted/phi-folded and the 2917 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2918 // thread this store. 2919 unsigned N = 0; 2920 for (auto &I : BB->instructionsWithoutDebug()) { 2921 // Cheap instructions viable for folding. 2922 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2923 isa<StoreInst>(I)) 2924 ++N; 2925 // Free instructions. 2926 else if (isa<TerminatorInst>(I) || IsaBitcastOfPointerType(I)) 2927 continue; 2928 else 2929 return false; 2930 } 2931 // The store we want to merge is counted in N, so add 1 to make sure 2932 // we're counting the instructions that would be left. 2933 return N <= (PHINodeFoldingThreshold + 1); 2934 }; 2935 2936 if (!MergeCondStoresAggressively && 2937 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2938 !IsWorthwhile(QFB))) 2939 return false; 2940 2941 // For every pointer, there must be exactly two stores, one coming from 2942 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2943 // store (to any address) in PTB,PFB or QTB,QFB. 2944 // FIXME: We could relax this restriction with a bit more work and performance 2945 // testing. 2946 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2947 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2948 if (!PStore || !QStore) 2949 return false; 2950 2951 // Now check the stores are compatible. 2952 if (!QStore->isUnordered() || !PStore->isUnordered()) 2953 return false; 2954 2955 // Check that sinking the store won't cause program behavior changes. Sinking 2956 // the store out of the Q blocks won't change any behavior as we're sinking 2957 // from a block to its unconditional successor. But we're moving a store from 2958 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2959 // So we need to check that there are no aliasing loads or stores in 2960 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2961 // operations between PStore and the end of its parent block. 2962 // 2963 // The ideal way to do this is to query AliasAnalysis, but we don't 2964 // preserve AA currently so that is dangerous. Be super safe and just 2965 // check there are no other memory operations at all. 2966 for (auto &I : *QFB->getSinglePredecessor()) 2967 if (I.mayReadOrWriteMemory()) 2968 return false; 2969 for (auto &I : *QFB) 2970 if (&I != QStore && I.mayReadOrWriteMemory()) 2971 return false; 2972 if (QTB) 2973 for (auto &I : *QTB) 2974 if (&I != QStore && I.mayReadOrWriteMemory()) 2975 return false; 2976 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2977 I != E; ++I) 2978 if (&*I != PStore && I->mayReadOrWriteMemory()) 2979 return false; 2980 2981 // If PostBB has more than two predecessors, we need to split it so we can 2982 // sink the store. 2983 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2984 // We know that QFB's only successor is PostBB. And QFB has a single 2985 // predecessor. If QTB exists, then its only successor is also PostBB. 2986 // If QTB does not exist, then QFB's only predecessor has a conditional 2987 // branch to QFB and PostBB. 2988 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 2989 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 2990 "condstore.split"); 2991 if (!NewBB) 2992 return false; 2993 PostBB = NewBB; 2994 } 2995 2996 // OK, we're going to sink the stores to PostBB. The store has to be 2997 // conditional though, so first create the predicate. 2998 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2999 ->getCondition(); 3000 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3001 ->getCondition(); 3002 3003 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3004 PStore->getParent()); 3005 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3006 QStore->getParent(), PPHI); 3007 3008 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3009 3010 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3011 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3012 3013 if (InvertPCond) 3014 PPred = QB.CreateNot(PPred); 3015 if (InvertQCond) 3016 QPred = QB.CreateNot(QPred); 3017 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3018 3019 auto *T = 3020 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3021 QB.SetInsertPoint(T); 3022 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3023 AAMDNodes AAMD; 3024 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3025 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3026 SI->setAAMetadata(AAMD); 3027 unsigned PAlignment = PStore->getAlignment(); 3028 unsigned QAlignment = QStore->getAlignment(); 3029 unsigned TypeAlignment = 3030 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3031 unsigned MinAlignment; 3032 unsigned MaxAlignment; 3033 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3034 // Choose the minimum alignment. If we could prove both stores execute, we 3035 // could use biggest one. In this case, though, we only know that one of the 3036 // stores executes. And we don't know it's safe to take the alignment from a 3037 // store that doesn't execute. 3038 if (MinAlignment != 0) { 3039 // Choose the minimum of all non-zero alignments. 3040 SI->setAlignment(MinAlignment); 3041 } else if (MaxAlignment != 0) { 3042 // Choose the minimal alignment between the non-zero alignment and the ABI 3043 // default alignment for the type of the stored value. 3044 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3045 } else { 3046 // If both alignments are zero, use ABI default alignment for the type of 3047 // the stored value. 3048 SI->setAlignment(TypeAlignment); 3049 } 3050 3051 QStore->eraseFromParent(); 3052 PStore->eraseFromParent(); 3053 3054 return true; 3055 } 3056 3057 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3058 const DataLayout &DL) { 3059 // The intention here is to find diamonds or triangles (see below) where each 3060 // conditional block contains a store to the same address. Both of these 3061 // stores are conditional, so they can't be unconditionally sunk. But it may 3062 // be profitable to speculatively sink the stores into one merged store at the 3063 // end, and predicate the merged store on the union of the two conditions of 3064 // PBI and QBI. 3065 // 3066 // This can reduce the number of stores executed if both of the conditions are 3067 // true, and can allow the blocks to become small enough to be if-converted. 3068 // This optimization will also chain, so that ladders of test-and-set 3069 // sequences can be if-converted away. 3070 // 3071 // We only deal with simple diamonds or triangles: 3072 // 3073 // PBI or PBI or a combination of the two 3074 // / \ | \ 3075 // PTB PFB | PFB 3076 // \ / | / 3077 // QBI QBI 3078 // / \ | \ 3079 // QTB QFB | QFB 3080 // \ / | / 3081 // PostBB PostBB 3082 // 3083 // We model triangles as a type of diamond with a nullptr "true" block. 3084 // Triangles are canonicalized so that the fallthrough edge is represented by 3085 // a true condition, as in the diagram above. 3086 BasicBlock *PTB = PBI->getSuccessor(0); 3087 BasicBlock *PFB = PBI->getSuccessor(1); 3088 BasicBlock *QTB = QBI->getSuccessor(0); 3089 BasicBlock *QFB = QBI->getSuccessor(1); 3090 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3091 3092 // Make sure we have a good guess for PostBB. If QTB's only successor is 3093 // QFB, then QFB is a better PostBB. 3094 if (QTB->getSingleSuccessor() == QFB) 3095 PostBB = QFB; 3096 3097 // If we couldn't find a good PostBB, stop. 3098 if (!PostBB) 3099 return false; 3100 3101 bool InvertPCond = false, InvertQCond = false; 3102 // Canonicalize fallthroughs to the true branches. 3103 if (PFB == QBI->getParent()) { 3104 std::swap(PFB, PTB); 3105 InvertPCond = true; 3106 } 3107 if (QFB == PostBB) { 3108 std::swap(QFB, QTB); 3109 InvertQCond = true; 3110 } 3111 3112 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3113 // and QFB may not. Model fallthroughs as a nullptr block. 3114 if (PTB == QBI->getParent()) 3115 PTB = nullptr; 3116 if (QTB == PostBB) 3117 QTB = nullptr; 3118 3119 // Legality bailouts. We must have at least the non-fallthrough blocks and 3120 // the post-dominating block, and the non-fallthroughs must only have one 3121 // predecessor. 3122 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3123 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3124 }; 3125 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3126 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3127 return false; 3128 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3129 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3130 return false; 3131 if (!QBI->getParent()->hasNUses(2)) 3132 return false; 3133 3134 // OK, this is a sequence of two diamonds or triangles. 3135 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3136 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3137 for (auto *BB : {PTB, PFB}) { 3138 if (!BB) 3139 continue; 3140 for (auto &I : *BB) 3141 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3142 PStoreAddresses.insert(SI->getPointerOperand()); 3143 } 3144 for (auto *BB : {QTB, QFB}) { 3145 if (!BB) 3146 continue; 3147 for (auto &I : *BB) 3148 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3149 QStoreAddresses.insert(SI->getPointerOperand()); 3150 } 3151 3152 set_intersect(PStoreAddresses, QStoreAddresses); 3153 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3154 // clear what it contains. 3155 auto &CommonAddresses = PStoreAddresses; 3156 3157 bool Changed = false; 3158 for (auto *Address : CommonAddresses) 3159 Changed |= mergeConditionalStoreToAddress( 3160 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3161 return Changed; 3162 } 3163 3164 /// If we have a conditional branch as a predecessor of another block, 3165 /// this function tries to simplify it. We know 3166 /// that PBI and BI are both conditional branches, and BI is in one of the 3167 /// successor blocks of PBI - PBI branches to BI. 3168 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3169 const DataLayout &DL) { 3170 assert(PBI->isConditional() && BI->isConditional()); 3171 BasicBlock *BB = BI->getParent(); 3172 3173 // If this block ends with a branch instruction, and if there is a 3174 // predecessor that ends on a branch of the same condition, make 3175 // this conditional branch redundant. 3176 if (PBI->getCondition() == BI->getCondition() && 3177 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3178 // Okay, the outcome of this conditional branch is statically 3179 // knowable. If this block had a single pred, handle specially. 3180 if (BB->getSinglePredecessor()) { 3181 // Turn this into a branch on constant. 3182 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3183 BI->setCondition( 3184 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3185 return true; // Nuke the branch on constant. 3186 } 3187 3188 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3189 // in the constant and simplify the block result. Subsequent passes of 3190 // simplifycfg will thread the block. 3191 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3192 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3193 PHINode *NewPN = PHINode::Create( 3194 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3195 BI->getCondition()->getName() + ".pr", &BB->front()); 3196 // Okay, we're going to insert the PHI node. Since PBI is not the only 3197 // predecessor, compute the PHI'd conditional value for all of the preds. 3198 // Any predecessor where the condition is not computable we keep symbolic. 3199 for (pred_iterator PI = PB; PI != PE; ++PI) { 3200 BasicBlock *P = *PI; 3201 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3202 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3203 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3204 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3205 NewPN->addIncoming( 3206 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3207 P); 3208 } else { 3209 NewPN->addIncoming(BI->getCondition(), P); 3210 } 3211 } 3212 3213 BI->setCondition(NewPN); 3214 return true; 3215 } 3216 } 3217 3218 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3219 if (CE->canTrap()) 3220 return false; 3221 3222 // If both branches are conditional and both contain stores to the same 3223 // address, remove the stores from the conditionals and create a conditional 3224 // merged store at the end. 3225 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3226 return true; 3227 3228 // If this is a conditional branch in an empty block, and if any 3229 // predecessors are a conditional branch to one of our destinations, 3230 // fold the conditions into logical ops and one cond br. 3231 3232 // Ignore dbg intrinsics. 3233 if (&*BB->instructionsWithoutDebug().begin() != BI) 3234 return false; 3235 3236 int PBIOp, BIOp; 3237 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3238 PBIOp = 0; 3239 BIOp = 0; 3240 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3241 PBIOp = 0; 3242 BIOp = 1; 3243 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3244 PBIOp = 1; 3245 BIOp = 0; 3246 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3247 PBIOp = 1; 3248 BIOp = 1; 3249 } else { 3250 return false; 3251 } 3252 3253 // Check to make sure that the other destination of this branch 3254 // isn't BB itself. If so, this is an infinite loop that will 3255 // keep getting unwound. 3256 if (PBI->getSuccessor(PBIOp) == BB) 3257 return false; 3258 3259 // Do not perform this transformation if it would require 3260 // insertion of a large number of select instructions. For targets 3261 // without predication/cmovs, this is a big pessimization. 3262 3263 // Also do not perform this transformation if any phi node in the common 3264 // destination block can trap when reached by BB or PBB (PR17073). In that 3265 // case, it would be unsafe to hoist the operation into a select instruction. 3266 3267 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3268 unsigned NumPhis = 0; 3269 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3270 ++II, ++NumPhis) { 3271 if (NumPhis > 2) // Disable this xform. 3272 return false; 3273 3274 PHINode *PN = cast<PHINode>(II); 3275 Value *BIV = PN->getIncomingValueForBlock(BB); 3276 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3277 if (CE->canTrap()) 3278 return false; 3279 3280 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3281 Value *PBIV = PN->getIncomingValue(PBBIdx); 3282 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3283 if (CE->canTrap()) 3284 return false; 3285 } 3286 3287 // Finally, if everything is ok, fold the branches to logical ops. 3288 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3289 3290 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3291 << "AND: " << *BI->getParent()); 3292 3293 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3294 // branch in it, where one edge (OtherDest) goes back to itself but the other 3295 // exits. We don't *know* that the program avoids the infinite loop 3296 // (even though that seems likely). If we do this xform naively, we'll end up 3297 // recursively unpeeling the loop. Since we know that (after the xform is 3298 // done) that the block *is* infinite if reached, we just make it an obviously 3299 // infinite loop with no cond branch. 3300 if (OtherDest == BB) { 3301 // Insert it at the end of the function, because it's either code, 3302 // or it won't matter if it's hot. :) 3303 BasicBlock *InfLoopBlock = 3304 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3305 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3306 OtherDest = InfLoopBlock; 3307 } 3308 3309 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3310 3311 // BI may have other predecessors. Because of this, we leave 3312 // it alone, but modify PBI. 3313 3314 // Make sure we get to CommonDest on True&True directions. 3315 Value *PBICond = PBI->getCondition(); 3316 IRBuilder<NoFolder> Builder(PBI); 3317 if (PBIOp) 3318 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3319 3320 Value *BICond = BI->getCondition(); 3321 if (BIOp) 3322 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3323 3324 // Merge the conditions. 3325 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3326 3327 // Modify PBI to branch on the new condition to the new dests. 3328 PBI->setCondition(Cond); 3329 PBI->setSuccessor(0, CommonDest); 3330 PBI->setSuccessor(1, OtherDest); 3331 3332 // Update branch weight for PBI. 3333 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3334 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3335 bool HasWeights = 3336 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3337 SuccTrueWeight, SuccFalseWeight); 3338 if (HasWeights) { 3339 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3340 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3341 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3342 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3343 // The weight to CommonDest should be PredCommon * SuccTotal + 3344 // PredOther * SuccCommon. 3345 // The weight to OtherDest should be PredOther * SuccOther. 3346 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3347 PredOther * SuccCommon, 3348 PredOther * SuccOther}; 3349 // Halve the weights if any of them cannot fit in an uint32_t 3350 FitWeights(NewWeights); 3351 3352 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3353 } 3354 3355 // OtherDest may have phi nodes. If so, add an entry from PBI's 3356 // block that are identical to the entries for BI's block. 3357 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3358 3359 // We know that the CommonDest already had an edge from PBI to 3360 // it. If it has PHIs though, the PHIs may have different 3361 // entries for BB and PBI's BB. If so, insert a select to make 3362 // them agree. 3363 for (PHINode &PN : CommonDest->phis()) { 3364 Value *BIV = PN.getIncomingValueForBlock(BB); 3365 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3366 Value *PBIV = PN.getIncomingValue(PBBIdx); 3367 if (BIV != PBIV) { 3368 // Insert a select in PBI to pick the right value. 3369 SelectInst *NV = cast<SelectInst>( 3370 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3371 PN.setIncomingValue(PBBIdx, NV); 3372 // Although the select has the same condition as PBI, the original branch 3373 // weights for PBI do not apply to the new select because the select's 3374 // 'logical' edges are incoming edges of the phi that is eliminated, not 3375 // the outgoing edges of PBI. 3376 if (HasWeights) { 3377 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3378 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3379 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3380 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3381 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3382 // The weight to PredOtherDest should be PredOther * SuccCommon. 3383 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3384 PredOther * SuccCommon}; 3385 3386 FitWeights(NewWeights); 3387 3388 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3389 } 3390 } 3391 } 3392 3393 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3394 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3395 3396 // This basic block is probably dead. We know it has at least 3397 // one fewer predecessor. 3398 return true; 3399 } 3400 3401 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3402 // true or to FalseBB if Cond is false. 3403 // Takes care of updating the successors and removing the old terminator. 3404 // Also makes sure not to introduce new successors by assuming that edges to 3405 // non-successor TrueBBs and FalseBBs aren't reachable. 3406 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3407 BasicBlock *TrueBB, BasicBlock *FalseBB, 3408 uint32_t TrueWeight, 3409 uint32_t FalseWeight) { 3410 // Remove any superfluous successor edges from the CFG. 3411 // First, figure out which successors to preserve. 3412 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3413 // successor. 3414 BasicBlock *KeepEdge1 = TrueBB; 3415 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3416 3417 // Then remove the rest. 3418 for (BasicBlock *Succ : OldTerm->successors()) { 3419 // Make sure only to keep exactly one copy of each edge. 3420 if (Succ == KeepEdge1) 3421 KeepEdge1 = nullptr; 3422 else if (Succ == KeepEdge2) 3423 KeepEdge2 = nullptr; 3424 else 3425 Succ->removePredecessor(OldTerm->getParent(), 3426 /*DontDeleteUselessPHIs=*/true); 3427 } 3428 3429 IRBuilder<> Builder(OldTerm); 3430 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3431 3432 // Insert an appropriate new terminator. 3433 if (!KeepEdge1 && !KeepEdge2) { 3434 if (TrueBB == FalseBB) 3435 // We were only looking for one successor, and it was present. 3436 // Create an unconditional branch to it. 3437 Builder.CreateBr(TrueBB); 3438 else { 3439 // We found both of the successors we were looking for. 3440 // Create a conditional branch sharing the condition of the select. 3441 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3442 if (TrueWeight != FalseWeight) 3443 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3444 } 3445 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3446 // Neither of the selected blocks were successors, so this 3447 // terminator must be unreachable. 3448 new UnreachableInst(OldTerm->getContext(), OldTerm); 3449 } else { 3450 // One of the selected values was a successor, but the other wasn't. 3451 // Insert an unconditional branch to the one that was found; 3452 // the edge to the one that wasn't must be unreachable. 3453 if (!KeepEdge1) 3454 // Only TrueBB was found. 3455 Builder.CreateBr(TrueBB); 3456 else 3457 // Only FalseBB was found. 3458 Builder.CreateBr(FalseBB); 3459 } 3460 3461 EraseTerminatorInstAndDCECond(OldTerm); 3462 return true; 3463 } 3464 3465 // Replaces 3466 // (switch (select cond, X, Y)) on constant X, Y 3467 // with a branch - conditional if X and Y lead to distinct BBs, 3468 // unconditional otherwise. 3469 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3470 // Check for constant integer values in the select. 3471 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3472 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3473 if (!TrueVal || !FalseVal) 3474 return false; 3475 3476 // Find the relevant condition and destinations. 3477 Value *Condition = Select->getCondition(); 3478 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3479 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3480 3481 // Get weight for TrueBB and FalseBB. 3482 uint32_t TrueWeight = 0, FalseWeight = 0; 3483 SmallVector<uint64_t, 8> Weights; 3484 bool HasWeights = HasBranchWeights(SI); 3485 if (HasWeights) { 3486 GetBranchWeights(SI, Weights); 3487 if (Weights.size() == 1 + SI->getNumCases()) { 3488 TrueWeight = 3489 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3490 FalseWeight = 3491 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3492 } 3493 } 3494 3495 // Perform the actual simplification. 3496 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3497 FalseWeight); 3498 } 3499 3500 // Replaces 3501 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3502 // blockaddress(@fn, BlockB))) 3503 // with 3504 // (br cond, BlockA, BlockB). 3505 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3506 // Check that both operands of the select are block addresses. 3507 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3508 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3509 if (!TBA || !FBA) 3510 return false; 3511 3512 // Extract the actual blocks. 3513 BasicBlock *TrueBB = TBA->getBasicBlock(); 3514 BasicBlock *FalseBB = FBA->getBasicBlock(); 3515 3516 // Perform the actual simplification. 3517 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3518 0); 3519 } 3520 3521 /// This is called when we find an icmp instruction 3522 /// (a seteq/setne with a constant) as the only instruction in a 3523 /// block that ends with an uncond branch. We are looking for a very specific 3524 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3525 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3526 /// default value goes to an uncond block with a seteq in it, we get something 3527 /// like: 3528 /// 3529 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3530 /// DEFAULT: 3531 /// %tmp = icmp eq i8 %A, 92 3532 /// br label %end 3533 /// end: 3534 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3535 /// 3536 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3537 /// the PHI, merging the third icmp into the switch. 3538 static bool tryToSimplifyUncondBranchWithICmpInIt( 3539 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3540 const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) { 3541 BasicBlock *BB = ICI->getParent(); 3542 3543 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3544 // complex. 3545 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3546 return false; 3547 3548 Value *V = ICI->getOperand(0); 3549 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3550 3551 // The pattern we're looking for is where our only predecessor is a switch on 3552 // 'V' and this block is the default case for the switch. In this case we can 3553 // fold the compared value into the switch to simplify things. 3554 BasicBlock *Pred = BB->getSinglePredecessor(); 3555 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3556 return false; 3557 3558 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3559 if (SI->getCondition() != V) 3560 return false; 3561 3562 // If BB is reachable on a non-default case, then we simply know the value of 3563 // V in this block. Substitute it and constant fold the icmp instruction 3564 // away. 3565 if (SI->getDefaultDest() != BB) { 3566 ConstantInt *VVal = SI->findCaseDest(BB); 3567 assert(VVal && "Should have a unique destination value"); 3568 ICI->setOperand(0, VVal); 3569 3570 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3571 ICI->replaceAllUsesWith(V); 3572 ICI->eraseFromParent(); 3573 } 3574 // BB is now empty, so it is likely to simplify away. 3575 return simplifyCFG(BB, TTI, Options) | true; 3576 } 3577 3578 // Ok, the block is reachable from the default dest. If the constant we're 3579 // comparing exists in one of the other edges, then we can constant fold ICI 3580 // and zap it. 3581 if (SI->findCaseValue(Cst) != SI->case_default()) { 3582 Value *V; 3583 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3584 V = ConstantInt::getFalse(BB->getContext()); 3585 else 3586 V = ConstantInt::getTrue(BB->getContext()); 3587 3588 ICI->replaceAllUsesWith(V); 3589 ICI->eraseFromParent(); 3590 // BB is now empty, so it is likely to simplify away. 3591 return simplifyCFG(BB, TTI, Options) | true; 3592 } 3593 3594 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3595 // the block. 3596 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3597 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3598 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3599 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3600 return false; 3601 3602 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3603 // true in the PHI. 3604 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3605 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3606 3607 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3608 std::swap(DefaultCst, NewCst); 3609 3610 // Replace ICI (which is used by the PHI for the default value) with true or 3611 // false depending on if it is EQ or NE. 3612 ICI->replaceAllUsesWith(DefaultCst); 3613 ICI->eraseFromParent(); 3614 3615 // Okay, the switch goes to this block on a default value. Add an edge from 3616 // the switch to the merge point on the compared value. 3617 BasicBlock *NewBB = 3618 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3619 SmallVector<uint64_t, 8> Weights; 3620 bool HasWeights = HasBranchWeights(SI); 3621 if (HasWeights) { 3622 GetBranchWeights(SI, Weights); 3623 if (Weights.size() == 1 + SI->getNumCases()) { 3624 // Split weight for default case to case for "Cst". 3625 Weights[0] = (Weights[0] + 1) >> 1; 3626 Weights.push_back(Weights[0]); 3627 3628 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3629 setBranchWeights(SI, MDWeights); 3630 } 3631 } 3632 SI->addCase(Cst, NewBB); 3633 3634 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3635 Builder.SetInsertPoint(NewBB); 3636 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3637 Builder.CreateBr(SuccBlock); 3638 PHIUse->addIncoming(NewCst, NewBB); 3639 return true; 3640 } 3641 3642 /// The specified branch is a conditional branch. 3643 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3644 /// fold it into a switch instruction if so. 3645 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3646 const DataLayout &DL) { 3647 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3648 if (!Cond) 3649 return false; 3650 3651 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3652 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3653 // 'setne's and'ed together, collect them. 3654 3655 // Try to gather values from a chain of and/or to be turned into a switch 3656 ConstantComparesGatherer ConstantCompare(Cond, DL); 3657 // Unpack the result 3658 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3659 Value *CompVal = ConstantCompare.CompValue; 3660 unsigned UsedICmps = ConstantCompare.UsedICmps; 3661 Value *ExtraCase = ConstantCompare.Extra; 3662 3663 // If we didn't have a multiply compared value, fail. 3664 if (!CompVal) 3665 return false; 3666 3667 // Avoid turning single icmps into a switch. 3668 if (UsedICmps <= 1) 3669 return false; 3670 3671 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3672 3673 // There might be duplicate constants in the list, which the switch 3674 // instruction can't handle, remove them now. 3675 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3676 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3677 3678 // If Extra was used, we require at least two switch values to do the 3679 // transformation. A switch with one value is just a conditional branch. 3680 if (ExtraCase && Values.size() < 2) 3681 return false; 3682 3683 // TODO: Preserve branch weight metadata, similarly to how 3684 // FoldValueComparisonIntoPredecessors preserves it. 3685 3686 // Figure out which block is which destination. 3687 BasicBlock *DefaultBB = BI->getSuccessor(1); 3688 BasicBlock *EdgeBB = BI->getSuccessor(0); 3689 if (!TrueWhenEqual) 3690 std::swap(DefaultBB, EdgeBB); 3691 3692 BasicBlock *BB = BI->getParent(); 3693 3694 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3695 << " cases into SWITCH. BB is:\n" 3696 << *BB); 3697 3698 // If there are any extra values that couldn't be folded into the switch 3699 // then we evaluate them with an explicit branch first. Split the block 3700 // right before the condbr to handle it. 3701 if (ExtraCase) { 3702 BasicBlock *NewBB = 3703 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3704 // Remove the uncond branch added to the old block. 3705 TerminatorInst *OldTI = BB->getTerminator(); 3706 Builder.SetInsertPoint(OldTI); 3707 3708 if (TrueWhenEqual) 3709 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3710 else 3711 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3712 3713 OldTI->eraseFromParent(); 3714 3715 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3716 // for the edge we just added. 3717 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3718 3719 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3720 << "\nEXTRABB = " << *BB); 3721 BB = NewBB; 3722 } 3723 3724 Builder.SetInsertPoint(BI); 3725 // Convert pointer to int before we switch. 3726 if (CompVal->getType()->isPointerTy()) { 3727 CompVal = Builder.CreatePtrToInt( 3728 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3729 } 3730 3731 // Create the new switch instruction now. 3732 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3733 3734 // Add all of the 'cases' to the switch instruction. 3735 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3736 New->addCase(Values[i], EdgeBB); 3737 3738 // We added edges from PI to the EdgeBB. As such, if there were any 3739 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3740 // the number of edges added. 3741 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3742 PHINode *PN = cast<PHINode>(BBI); 3743 Value *InVal = PN->getIncomingValueForBlock(BB); 3744 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3745 PN->addIncoming(InVal, BB); 3746 } 3747 3748 // Erase the old branch instruction. 3749 EraseTerminatorInstAndDCECond(BI); 3750 3751 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3752 return true; 3753 } 3754 3755 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3756 if (isa<PHINode>(RI->getValue())) 3757 return SimplifyCommonResume(RI); 3758 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3759 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3760 // The resume must unwind the exception that caused control to branch here. 3761 return SimplifySingleResume(RI); 3762 3763 return false; 3764 } 3765 3766 // Simplify resume that is shared by several landing pads (phi of landing pad). 3767 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3768 BasicBlock *BB = RI->getParent(); 3769 3770 // Check that there are no other instructions except for debug intrinsics 3771 // between the phi of landing pads (RI->getValue()) and resume instruction. 3772 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3773 E = RI->getIterator(); 3774 while (++I != E) 3775 if (!isa<DbgInfoIntrinsic>(I)) 3776 return false; 3777 3778 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3779 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3780 3781 // Check incoming blocks to see if any of them are trivial. 3782 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3783 Idx++) { 3784 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3785 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3786 3787 // If the block has other successors, we can not delete it because 3788 // it has other dependents. 3789 if (IncomingBB->getUniqueSuccessor() != BB) 3790 continue; 3791 3792 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3793 // Not the landing pad that caused the control to branch here. 3794 if (IncomingValue != LandingPad) 3795 continue; 3796 3797 bool isTrivial = true; 3798 3799 I = IncomingBB->getFirstNonPHI()->getIterator(); 3800 E = IncomingBB->getTerminator()->getIterator(); 3801 while (++I != E) 3802 if (!isa<DbgInfoIntrinsic>(I)) { 3803 isTrivial = false; 3804 break; 3805 } 3806 3807 if (isTrivial) 3808 TrivialUnwindBlocks.insert(IncomingBB); 3809 } 3810 3811 // If no trivial unwind blocks, don't do any simplifications. 3812 if (TrivialUnwindBlocks.empty()) 3813 return false; 3814 3815 // Turn all invokes that unwind here into calls. 3816 for (auto *TrivialBB : TrivialUnwindBlocks) { 3817 // Blocks that will be simplified should be removed from the phi node. 3818 // Note there could be multiple edges to the resume block, and we need 3819 // to remove them all. 3820 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3821 BB->removePredecessor(TrivialBB, true); 3822 3823 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3824 PI != PE;) { 3825 BasicBlock *Pred = *PI++; 3826 removeUnwindEdge(Pred); 3827 } 3828 3829 // In each SimplifyCFG run, only the current processed block can be erased. 3830 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3831 // of erasing TrivialBB, we only remove the branch to the common resume 3832 // block so that we can later erase the resume block since it has no 3833 // predecessors. 3834 TrivialBB->getTerminator()->eraseFromParent(); 3835 new UnreachableInst(RI->getContext(), TrivialBB); 3836 } 3837 3838 // Delete the resume block if all its predecessors have been removed. 3839 if (pred_empty(BB)) 3840 BB->eraseFromParent(); 3841 3842 return !TrivialUnwindBlocks.empty(); 3843 } 3844 3845 // Simplify resume that is only used by a single (non-phi) landing pad. 3846 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3847 BasicBlock *BB = RI->getParent(); 3848 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3849 assert(RI->getValue() == LPInst && 3850 "Resume must unwind the exception that caused control to here"); 3851 3852 // Check that there are no other instructions except for debug intrinsics. 3853 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3854 while (++I != E) 3855 if (!isa<DbgInfoIntrinsic>(I)) 3856 return false; 3857 3858 // Turn all invokes that unwind here into calls and delete the basic block. 3859 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3860 BasicBlock *Pred = *PI++; 3861 removeUnwindEdge(Pred); 3862 } 3863 3864 // The landingpad is now unreachable. Zap it. 3865 BB->eraseFromParent(); 3866 if (LoopHeaders) 3867 LoopHeaders->erase(BB); 3868 return true; 3869 } 3870 3871 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3872 // If this is a trivial cleanup pad that executes no instructions, it can be 3873 // eliminated. If the cleanup pad continues to the caller, any predecessor 3874 // that is an EH pad will be updated to continue to the caller and any 3875 // predecessor that terminates with an invoke instruction will have its invoke 3876 // instruction converted to a call instruction. If the cleanup pad being 3877 // simplified does not continue to the caller, each predecessor will be 3878 // updated to continue to the unwind destination of the cleanup pad being 3879 // simplified. 3880 BasicBlock *BB = RI->getParent(); 3881 CleanupPadInst *CPInst = RI->getCleanupPad(); 3882 if (CPInst->getParent() != BB) 3883 // This isn't an empty cleanup. 3884 return false; 3885 3886 // We cannot kill the pad if it has multiple uses. This typically arises 3887 // from unreachable basic blocks. 3888 if (!CPInst->hasOneUse()) 3889 return false; 3890 3891 // Check that there are no other instructions except for benign intrinsics. 3892 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3893 while (++I != E) { 3894 auto *II = dyn_cast<IntrinsicInst>(I); 3895 if (!II) 3896 return false; 3897 3898 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3899 switch (IntrinsicID) { 3900 case Intrinsic::dbg_declare: 3901 case Intrinsic::dbg_value: 3902 case Intrinsic::dbg_label: 3903 case Intrinsic::lifetime_end: 3904 break; 3905 default: 3906 return false; 3907 } 3908 } 3909 3910 // If the cleanup return we are simplifying unwinds to the caller, this will 3911 // set UnwindDest to nullptr. 3912 BasicBlock *UnwindDest = RI->getUnwindDest(); 3913 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3914 3915 // We're about to remove BB from the control flow. Before we do, sink any 3916 // PHINodes into the unwind destination. Doing this before changing the 3917 // control flow avoids some potentially slow checks, since we can currently 3918 // be certain that UnwindDest and BB have no common predecessors (since they 3919 // are both EH pads). 3920 if (UnwindDest) { 3921 // First, go through the PHI nodes in UnwindDest and update any nodes that 3922 // reference the block we are removing 3923 for (BasicBlock::iterator I = UnwindDest->begin(), 3924 IE = DestEHPad->getIterator(); 3925 I != IE; ++I) { 3926 PHINode *DestPN = cast<PHINode>(I); 3927 3928 int Idx = DestPN->getBasicBlockIndex(BB); 3929 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3930 assert(Idx != -1); 3931 // This PHI node has an incoming value that corresponds to a control 3932 // path through the cleanup pad we are removing. If the incoming 3933 // value is in the cleanup pad, it must be a PHINode (because we 3934 // verified above that the block is otherwise empty). Otherwise, the 3935 // value is either a constant or a value that dominates the cleanup 3936 // pad being removed. 3937 // 3938 // Because BB and UnwindDest are both EH pads, all of their 3939 // predecessors must unwind to these blocks, and since no instruction 3940 // can have multiple unwind destinations, there will be no overlap in 3941 // incoming blocks between SrcPN and DestPN. 3942 Value *SrcVal = DestPN->getIncomingValue(Idx); 3943 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3944 3945 // Remove the entry for the block we are deleting. 3946 DestPN->removeIncomingValue(Idx, false); 3947 3948 if (SrcPN && SrcPN->getParent() == BB) { 3949 // If the incoming value was a PHI node in the cleanup pad we are 3950 // removing, we need to merge that PHI node's incoming values into 3951 // DestPN. 3952 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3953 SrcIdx != SrcE; ++SrcIdx) { 3954 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3955 SrcPN->getIncomingBlock(SrcIdx)); 3956 } 3957 } else { 3958 // Otherwise, the incoming value came from above BB and 3959 // so we can just reuse it. We must associate all of BB's 3960 // predecessors with this value. 3961 for (auto *pred : predecessors(BB)) { 3962 DestPN->addIncoming(SrcVal, pred); 3963 } 3964 } 3965 } 3966 3967 // Sink any remaining PHI nodes directly into UnwindDest. 3968 Instruction *InsertPt = DestEHPad; 3969 for (BasicBlock::iterator I = BB->begin(), 3970 IE = BB->getFirstNonPHI()->getIterator(); 3971 I != IE;) { 3972 // The iterator must be incremented here because the instructions are 3973 // being moved to another block. 3974 PHINode *PN = cast<PHINode>(I++); 3975 if (PN->use_empty()) 3976 // If the PHI node has no uses, just leave it. It will be erased 3977 // when we erase BB below. 3978 continue; 3979 3980 // Otherwise, sink this PHI node into UnwindDest. 3981 // Any predecessors to UnwindDest which are not already represented 3982 // must be back edges which inherit the value from the path through 3983 // BB. In this case, the PHI value must reference itself. 3984 for (auto *pred : predecessors(UnwindDest)) 3985 if (pred != BB) 3986 PN->addIncoming(PN, pred); 3987 PN->moveBefore(InsertPt); 3988 } 3989 } 3990 3991 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3992 // The iterator must be updated here because we are removing this pred. 3993 BasicBlock *PredBB = *PI++; 3994 if (UnwindDest == nullptr) { 3995 removeUnwindEdge(PredBB); 3996 } else { 3997 TerminatorInst *TI = PredBB->getTerminator(); 3998 TI->replaceUsesOfWith(BB, UnwindDest); 3999 } 4000 } 4001 4002 // The cleanup pad is now unreachable. Zap it. 4003 BB->eraseFromParent(); 4004 return true; 4005 } 4006 4007 // Try to merge two cleanuppads together. 4008 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4009 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4010 // with. 4011 BasicBlock *UnwindDest = RI->getUnwindDest(); 4012 if (!UnwindDest) 4013 return false; 4014 4015 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4016 // be safe to merge without code duplication. 4017 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4018 return false; 4019 4020 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4021 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4022 if (!SuccessorCleanupPad) 4023 return false; 4024 4025 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4026 // Replace any uses of the successor cleanupad with the predecessor pad 4027 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4028 // funclet bundle operands. 4029 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4030 // Remove the old cleanuppad. 4031 SuccessorCleanupPad->eraseFromParent(); 4032 // Now, we simply replace the cleanupret with a branch to the unwind 4033 // destination. 4034 BranchInst::Create(UnwindDest, RI->getParent()); 4035 RI->eraseFromParent(); 4036 4037 return true; 4038 } 4039 4040 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4041 // It is possible to transiantly have an undef cleanuppad operand because we 4042 // have deleted some, but not all, dead blocks. 4043 // Eventually, this block will be deleted. 4044 if (isa<UndefValue>(RI->getOperand(0))) 4045 return false; 4046 4047 if (mergeCleanupPad(RI)) 4048 return true; 4049 4050 if (removeEmptyCleanup(RI)) 4051 return true; 4052 4053 return false; 4054 } 4055 4056 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4057 BasicBlock *BB = RI->getParent(); 4058 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4059 return false; 4060 4061 // Find predecessors that end with branches. 4062 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4063 SmallVector<BranchInst *, 8> CondBranchPreds; 4064 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4065 BasicBlock *P = *PI; 4066 TerminatorInst *PTI = P->getTerminator(); 4067 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4068 if (BI->isUnconditional()) 4069 UncondBranchPreds.push_back(P); 4070 else 4071 CondBranchPreds.push_back(BI); 4072 } 4073 } 4074 4075 // If we found some, do the transformation! 4076 if (!UncondBranchPreds.empty() && DupRet) { 4077 while (!UncondBranchPreds.empty()) { 4078 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4079 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4080 << "INTO UNCOND BRANCH PRED: " << *Pred); 4081 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4082 } 4083 4084 // If we eliminated all predecessors of the block, delete the block now. 4085 if (pred_empty(BB)) { 4086 // We know there are no successors, so just nuke the block. 4087 BB->eraseFromParent(); 4088 if (LoopHeaders) 4089 LoopHeaders->erase(BB); 4090 } 4091 4092 return true; 4093 } 4094 4095 // Check out all of the conditional branches going to this return 4096 // instruction. If any of them just select between returns, change the 4097 // branch itself into a select/return pair. 4098 while (!CondBranchPreds.empty()) { 4099 BranchInst *BI = CondBranchPreds.pop_back_val(); 4100 4101 // Check to see if the non-BB successor is also a return block. 4102 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4103 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4104 SimplifyCondBranchToTwoReturns(BI, Builder)) 4105 return true; 4106 } 4107 return false; 4108 } 4109 4110 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4111 BasicBlock *BB = UI->getParent(); 4112 4113 bool Changed = false; 4114 4115 // If there are any instructions immediately before the unreachable that can 4116 // be removed, do so. 4117 while (UI->getIterator() != BB->begin()) { 4118 BasicBlock::iterator BBI = UI->getIterator(); 4119 --BBI; 4120 // Do not delete instructions that can have side effects which might cause 4121 // the unreachable to not be reachable; specifically, calls and volatile 4122 // operations may have this effect. 4123 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4124 break; 4125 4126 if (BBI->mayHaveSideEffects()) { 4127 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4128 if (SI->isVolatile()) 4129 break; 4130 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4131 if (LI->isVolatile()) 4132 break; 4133 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4134 if (RMWI->isVolatile()) 4135 break; 4136 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4137 if (CXI->isVolatile()) 4138 break; 4139 } else if (isa<CatchPadInst>(BBI)) { 4140 // A catchpad may invoke exception object constructors and such, which 4141 // in some languages can be arbitrary code, so be conservative by 4142 // default. 4143 // For CoreCLR, it just involves a type test, so can be removed. 4144 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4145 EHPersonality::CoreCLR) 4146 break; 4147 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4148 !isa<LandingPadInst>(BBI)) { 4149 break; 4150 } 4151 // Note that deleting LandingPad's here is in fact okay, although it 4152 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4153 // all the predecessors of this block will be the unwind edges of Invokes, 4154 // and we can therefore guarantee this block will be erased. 4155 } 4156 4157 // Delete this instruction (any uses are guaranteed to be dead) 4158 if (!BBI->use_empty()) 4159 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4160 BBI->eraseFromParent(); 4161 Changed = true; 4162 } 4163 4164 // If the unreachable instruction is the first in the block, take a gander 4165 // at all of the predecessors of this instruction, and simplify them. 4166 if (&BB->front() != UI) 4167 return Changed; 4168 4169 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4170 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4171 TerminatorInst *TI = Preds[i]->getTerminator(); 4172 IRBuilder<> Builder(TI); 4173 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4174 if (BI->isUnconditional()) { 4175 if (BI->getSuccessor(0) == BB) { 4176 new UnreachableInst(TI->getContext(), TI); 4177 TI->eraseFromParent(); 4178 Changed = true; 4179 } 4180 } else { 4181 if (BI->getSuccessor(0) == BB) { 4182 Builder.CreateBr(BI->getSuccessor(1)); 4183 EraseTerminatorInstAndDCECond(BI); 4184 } else if (BI->getSuccessor(1) == BB) { 4185 Builder.CreateBr(BI->getSuccessor(0)); 4186 EraseTerminatorInstAndDCECond(BI); 4187 Changed = true; 4188 } 4189 } 4190 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4191 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4192 if (i->getCaseSuccessor() != BB) { 4193 ++i; 4194 continue; 4195 } 4196 BB->removePredecessor(SI->getParent()); 4197 i = SI->removeCase(i); 4198 e = SI->case_end(); 4199 Changed = true; 4200 } 4201 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4202 if (II->getUnwindDest() == BB) { 4203 removeUnwindEdge(TI->getParent()); 4204 Changed = true; 4205 } 4206 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4207 if (CSI->getUnwindDest() == BB) { 4208 removeUnwindEdge(TI->getParent()); 4209 Changed = true; 4210 continue; 4211 } 4212 4213 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4214 E = CSI->handler_end(); 4215 I != E; ++I) { 4216 if (*I == BB) { 4217 CSI->removeHandler(I); 4218 --I; 4219 --E; 4220 Changed = true; 4221 } 4222 } 4223 if (CSI->getNumHandlers() == 0) { 4224 BasicBlock *CatchSwitchBB = CSI->getParent(); 4225 if (CSI->hasUnwindDest()) { 4226 // Redirect preds to the unwind dest 4227 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4228 } else { 4229 // Rewrite all preds to unwind to caller (or from invoke to call). 4230 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4231 for (BasicBlock *EHPred : EHPreds) 4232 removeUnwindEdge(EHPred); 4233 } 4234 // The catchswitch is no longer reachable. 4235 new UnreachableInst(CSI->getContext(), CSI); 4236 CSI->eraseFromParent(); 4237 Changed = true; 4238 } 4239 } else if (isa<CleanupReturnInst>(TI)) { 4240 new UnreachableInst(TI->getContext(), TI); 4241 TI->eraseFromParent(); 4242 Changed = true; 4243 } 4244 } 4245 4246 // If this block is now dead, remove it. 4247 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4248 // We know there are no successors, so just nuke the block. 4249 BB->eraseFromParent(); 4250 if (LoopHeaders) 4251 LoopHeaders->erase(BB); 4252 return true; 4253 } 4254 4255 return Changed; 4256 } 4257 4258 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4259 assert(Cases.size() >= 1); 4260 4261 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4262 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4263 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4264 return false; 4265 } 4266 return true; 4267 } 4268 4269 /// Turn a switch with two reachable destinations into an integer range 4270 /// comparison and branch. 4271 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4272 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4273 4274 bool HasDefault = 4275 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4276 4277 // Partition the cases into two sets with different destinations. 4278 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4279 BasicBlock *DestB = nullptr; 4280 SmallVector<ConstantInt *, 16> CasesA; 4281 SmallVector<ConstantInt *, 16> CasesB; 4282 4283 for (auto Case : SI->cases()) { 4284 BasicBlock *Dest = Case.getCaseSuccessor(); 4285 if (!DestA) 4286 DestA = Dest; 4287 if (Dest == DestA) { 4288 CasesA.push_back(Case.getCaseValue()); 4289 continue; 4290 } 4291 if (!DestB) 4292 DestB = Dest; 4293 if (Dest == DestB) { 4294 CasesB.push_back(Case.getCaseValue()); 4295 continue; 4296 } 4297 return false; // More than two destinations. 4298 } 4299 4300 assert(DestA && DestB && 4301 "Single-destination switch should have been folded."); 4302 assert(DestA != DestB); 4303 assert(DestB != SI->getDefaultDest()); 4304 assert(!CasesB.empty() && "There must be non-default cases."); 4305 assert(!CasesA.empty() || HasDefault); 4306 4307 // Figure out if one of the sets of cases form a contiguous range. 4308 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4309 BasicBlock *ContiguousDest = nullptr; 4310 BasicBlock *OtherDest = nullptr; 4311 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4312 ContiguousCases = &CasesA; 4313 ContiguousDest = DestA; 4314 OtherDest = DestB; 4315 } else if (CasesAreContiguous(CasesB)) { 4316 ContiguousCases = &CasesB; 4317 ContiguousDest = DestB; 4318 OtherDest = DestA; 4319 } else 4320 return false; 4321 4322 // Start building the compare and branch. 4323 4324 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4325 Constant *NumCases = 4326 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4327 4328 Value *Sub = SI->getCondition(); 4329 if (!Offset->isNullValue()) 4330 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4331 4332 Value *Cmp; 4333 // If NumCases overflowed, then all possible values jump to the successor. 4334 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4335 Cmp = ConstantInt::getTrue(SI->getContext()); 4336 else 4337 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4338 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4339 4340 // Update weight for the newly-created conditional branch. 4341 if (HasBranchWeights(SI)) { 4342 SmallVector<uint64_t, 8> Weights; 4343 GetBranchWeights(SI, Weights); 4344 if (Weights.size() == 1 + SI->getNumCases()) { 4345 uint64_t TrueWeight = 0; 4346 uint64_t FalseWeight = 0; 4347 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4348 if (SI->getSuccessor(I) == ContiguousDest) 4349 TrueWeight += Weights[I]; 4350 else 4351 FalseWeight += Weights[I]; 4352 } 4353 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4354 TrueWeight /= 2; 4355 FalseWeight /= 2; 4356 } 4357 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4358 } 4359 } 4360 4361 // Prune obsolete incoming values off the successors' PHI nodes. 4362 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4363 unsigned PreviousEdges = ContiguousCases->size(); 4364 if (ContiguousDest == SI->getDefaultDest()) 4365 ++PreviousEdges; 4366 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4367 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4368 } 4369 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4370 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4371 if (OtherDest == SI->getDefaultDest()) 4372 ++PreviousEdges; 4373 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4374 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4375 } 4376 4377 // Drop the switch. 4378 SI->eraseFromParent(); 4379 4380 return true; 4381 } 4382 4383 /// Compute masked bits for the condition of a switch 4384 /// and use it to remove dead cases. 4385 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4386 const DataLayout &DL) { 4387 Value *Cond = SI->getCondition(); 4388 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4389 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4390 4391 // We can also eliminate cases by determining that their values are outside of 4392 // the limited range of the condition based on how many significant (non-sign) 4393 // bits are in the condition value. 4394 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4395 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4396 4397 // Gather dead cases. 4398 SmallVector<ConstantInt *, 8> DeadCases; 4399 for (auto &Case : SI->cases()) { 4400 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4401 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4402 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4403 DeadCases.push_back(Case.getCaseValue()); 4404 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4405 << " is dead.\n"); 4406 } 4407 } 4408 4409 // If we can prove that the cases must cover all possible values, the 4410 // default destination becomes dead and we can remove it. If we know some 4411 // of the bits in the value, we can use that to more precisely compute the 4412 // number of possible unique case values. 4413 bool HasDefault = 4414 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4415 const unsigned NumUnknownBits = 4416 Bits - (Known.Zero | Known.One).countPopulation(); 4417 assert(NumUnknownBits <= Bits); 4418 if (HasDefault && DeadCases.empty() && 4419 NumUnknownBits < 64 /* avoid overflow */ && 4420 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4421 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4422 BasicBlock *NewDefault = 4423 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4424 SI->setDefaultDest(&*NewDefault); 4425 SplitBlock(&*NewDefault, &NewDefault->front()); 4426 auto *OldTI = NewDefault->getTerminator(); 4427 new UnreachableInst(SI->getContext(), OldTI); 4428 EraseTerminatorInstAndDCECond(OldTI); 4429 return true; 4430 } 4431 4432 SmallVector<uint64_t, 8> Weights; 4433 bool HasWeight = HasBranchWeights(SI); 4434 if (HasWeight) { 4435 GetBranchWeights(SI, Weights); 4436 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4437 } 4438 4439 // Remove dead cases from the switch. 4440 for (ConstantInt *DeadCase : DeadCases) { 4441 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4442 assert(CaseI != SI->case_default() && 4443 "Case was not found. Probably mistake in DeadCases forming."); 4444 if (HasWeight) { 4445 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4446 Weights.pop_back(); 4447 } 4448 4449 // Prune unused values from PHI nodes. 4450 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4451 SI->removeCase(CaseI); 4452 } 4453 if (HasWeight && Weights.size() >= 2) { 4454 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4455 setBranchWeights(SI, MDWeights); 4456 } 4457 4458 return !DeadCases.empty(); 4459 } 4460 4461 /// If BB would be eligible for simplification by 4462 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4463 /// by an unconditional branch), look at the phi node for BB in the successor 4464 /// block and see if the incoming value is equal to CaseValue. If so, return 4465 /// the phi node, and set PhiIndex to BB's index in the phi node. 4466 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4467 BasicBlock *BB, int *PhiIndex) { 4468 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4469 return nullptr; // BB must be empty to be a candidate for simplification. 4470 if (!BB->getSinglePredecessor()) 4471 return nullptr; // BB must be dominated by the switch. 4472 4473 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4474 if (!Branch || !Branch->isUnconditional()) 4475 return nullptr; // Terminator must be unconditional branch. 4476 4477 BasicBlock *Succ = Branch->getSuccessor(0); 4478 4479 for (PHINode &PHI : Succ->phis()) { 4480 int Idx = PHI.getBasicBlockIndex(BB); 4481 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4482 4483 Value *InValue = PHI.getIncomingValue(Idx); 4484 if (InValue != CaseValue) 4485 continue; 4486 4487 *PhiIndex = Idx; 4488 return &PHI; 4489 } 4490 4491 return nullptr; 4492 } 4493 4494 /// Try to forward the condition of a switch instruction to a phi node 4495 /// dominated by the switch, if that would mean that some of the destination 4496 /// blocks of the switch can be folded away. Return true if a change is made. 4497 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4498 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4499 4500 ForwardingNodesMap ForwardingNodes; 4501 BasicBlock *SwitchBlock = SI->getParent(); 4502 bool Changed = false; 4503 for (auto &Case : SI->cases()) { 4504 ConstantInt *CaseValue = Case.getCaseValue(); 4505 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4506 4507 // Replace phi operands in successor blocks that are using the constant case 4508 // value rather than the switch condition variable: 4509 // switchbb: 4510 // switch i32 %x, label %default [ 4511 // i32 17, label %succ 4512 // ... 4513 // succ: 4514 // %r = phi i32 ... [ 17, %switchbb ] ... 4515 // --> 4516 // %r = phi i32 ... [ %x, %switchbb ] ... 4517 4518 for (PHINode &Phi : CaseDest->phis()) { 4519 // This only works if there is exactly 1 incoming edge from the switch to 4520 // a phi. If there is >1, that means multiple cases of the switch map to 1 4521 // value in the phi, and that phi value is not the switch condition. Thus, 4522 // this transform would not make sense (the phi would be invalid because 4523 // a phi can't have different incoming values from the same block). 4524 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4525 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4526 count(Phi.blocks(), SwitchBlock) == 1) { 4527 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4528 Changed = true; 4529 } 4530 } 4531 4532 // Collect phi nodes that are indirectly using this switch's case constants. 4533 int PhiIdx; 4534 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4535 ForwardingNodes[Phi].push_back(PhiIdx); 4536 } 4537 4538 for (auto &ForwardingNode : ForwardingNodes) { 4539 PHINode *Phi = ForwardingNode.first; 4540 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4541 if (Indexes.size() < 2) 4542 continue; 4543 4544 for (int Index : Indexes) 4545 Phi->setIncomingValue(Index, SI->getCondition()); 4546 Changed = true; 4547 } 4548 4549 return Changed; 4550 } 4551 4552 /// Return true if the backend will be able to handle 4553 /// initializing an array of constants like C. 4554 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4555 if (C->isThreadDependent()) 4556 return false; 4557 if (C->isDLLImportDependent()) 4558 return false; 4559 4560 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4561 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4562 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4563 return false; 4564 4565 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4566 if (!CE->isGEPWithNoNotionalOverIndexing()) 4567 return false; 4568 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4569 return false; 4570 } 4571 4572 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4573 return false; 4574 4575 return true; 4576 } 4577 4578 /// If V is a Constant, return it. Otherwise, try to look up 4579 /// its constant value in ConstantPool, returning 0 if it's not there. 4580 static Constant * 4581 LookupConstant(Value *V, 4582 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4583 if (Constant *C = dyn_cast<Constant>(V)) 4584 return C; 4585 return ConstantPool.lookup(V); 4586 } 4587 4588 /// Try to fold instruction I into a constant. This works for 4589 /// simple instructions such as binary operations where both operands are 4590 /// constant or can be replaced by constants from the ConstantPool. Returns the 4591 /// resulting constant on success, 0 otherwise. 4592 static Constant * 4593 ConstantFold(Instruction *I, const DataLayout &DL, 4594 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4595 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4596 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4597 if (!A) 4598 return nullptr; 4599 if (A->isAllOnesValue()) 4600 return LookupConstant(Select->getTrueValue(), ConstantPool); 4601 if (A->isNullValue()) 4602 return LookupConstant(Select->getFalseValue(), ConstantPool); 4603 return nullptr; 4604 } 4605 4606 SmallVector<Constant *, 4> COps; 4607 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4608 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4609 COps.push_back(A); 4610 else 4611 return nullptr; 4612 } 4613 4614 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4615 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4616 COps[1], DL); 4617 } 4618 4619 return ConstantFoldInstOperands(I, COps, DL); 4620 } 4621 4622 /// Try to determine the resulting constant values in phi nodes 4623 /// at the common destination basic block, *CommonDest, for one of the case 4624 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4625 /// case), of a switch instruction SI. 4626 static bool 4627 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4628 BasicBlock **CommonDest, 4629 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4630 const DataLayout &DL, const TargetTransformInfo &TTI) { 4631 // The block from which we enter the common destination. 4632 BasicBlock *Pred = SI->getParent(); 4633 4634 // If CaseDest is empty except for some side-effect free instructions through 4635 // which we can constant-propagate the CaseVal, continue to its successor. 4636 SmallDenseMap<Value *, Constant *> ConstantPool; 4637 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4638 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4639 if (TerminatorInst *T = dyn_cast<TerminatorInst>(&I)) { 4640 // If the terminator is a simple branch, continue to the next block. 4641 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4642 return false; 4643 Pred = CaseDest; 4644 CaseDest = T->getSuccessor(0); 4645 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4646 // Instruction is side-effect free and constant. 4647 4648 // If the instruction has uses outside this block or a phi node slot for 4649 // the block, it is not safe to bypass the instruction since it would then 4650 // no longer dominate all its uses. 4651 for (auto &Use : I.uses()) { 4652 User *User = Use.getUser(); 4653 if (Instruction *I = dyn_cast<Instruction>(User)) 4654 if (I->getParent() == CaseDest) 4655 continue; 4656 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4657 if (Phi->getIncomingBlock(Use) == CaseDest) 4658 continue; 4659 return false; 4660 } 4661 4662 ConstantPool.insert(std::make_pair(&I, C)); 4663 } else { 4664 break; 4665 } 4666 } 4667 4668 // If we did not have a CommonDest before, use the current one. 4669 if (!*CommonDest) 4670 *CommonDest = CaseDest; 4671 // If the destination isn't the common one, abort. 4672 if (CaseDest != *CommonDest) 4673 return false; 4674 4675 // Get the values for this case from phi nodes in the destination block. 4676 for (PHINode &PHI : (*CommonDest)->phis()) { 4677 int Idx = PHI.getBasicBlockIndex(Pred); 4678 if (Idx == -1) 4679 continue; 4680 4681 Constant *ConstVal = 4682 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4683 if (!ConstVal) 4684 return false; 4685 4686 // Be conservative about which kinds of constants we support. 4687 if (!ValidLookupTableConstant(ConstVal, TTI)) 4688 return false; 4689 4690 Res.push_back(std::make_pair(&PHI, ConstVal)); 4691 } 4692 4693 return Res.size() > 0; 4694 } 4695 4696 // Helper function used to add CaseVal to the list of cases that generate 4697 // Result. Returns the updated number of cases that generate this result. 4698 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4699 SwitchCaseResultVectorTy &UniqueResults, 4700 Constant *Result) { 4701 for (auto &I : UniqueResults) { 4702 if (I.first == Result) { 4703 I.second.push_back(CaseVal); 4704 return I.second.size(); 4705 } 4706 } 4707 UniqueResults.push_back( 4708 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4709 return 1; 4710 } 4711 4712 // Helper function that initializes a map containing 4713 // results for the PHI node of the common destination block for a switch 4714 // instruction. Returns false if multiple PHI nodes have been found or if 4715 // there is not a common destination block for the switch. 4716 static bool 4717 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4718 SwitchCaseResultVectorTy &UniqueResults, 4719 Constant *&DefaultResult, const DataLayout &DL, 4720 const TargetTransformInfo &TTI, 4721 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4722 for (auto &I : SI->cases()) { 4723 ConstantInt *CaseVal = I.getCaseValue(); 4724 4725 // Resulting value at phi nodes for this case value. 4726 SwitchCaseResultsTy Results; 4727 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4728 DL, TTI)) 4729 return false; 4730 4731 // Only one value per case is permitted. 4732 if (Results.size() > 1) 4733 return false; 4734 4735 // Add the case->result mapping to UniqueResults. 4736 const uintptr_t NumCasesForResult = 4737 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4738 4739 // Early out if there are too many cases for this result. 4740 if (NumCasesForResult > MaxCasesPerResult) 4741 return false; 4742 4743 // Early out if there are too many unique results. 4744 if (UniqueResults.size() > MaxUniqueResults) 4745 return false; 4746 4747 // Check the PHI consistency. 4748 if (!PHI) 4749 PHI = Results[0].first; 4750 else if (PHI != Results[0].first) 4751 return false; 4752 } 4753 // Find the default result value. 4754 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4755 BasicBlock *DefaultDest = SI->getDefaultDest(); 4756 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4757 DL, TTI); 4758 // If the default value is not found abort unless the default destination 4759 // is unreachable. 4760 DefaultResult = 4761 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4762 if ((!DefaultResult && 4763 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4764 return false; 4765 4766 return true; 4767 } 4768 4769 // Helper function that checks if it is possible to transform a switch with only 4770 // two cases (or two cases + default) that produces a result into a select. 4771 // Example: 4772 // switch (a) { 4773 // case 10: %0 = icmp eq i32 %a, 10 4774 // return 10; %1 = select i1 %0, i32 10, i32 4 4775 // case 20: ----> %2 = icmp eq i32 %a, 20 4776 // return 2; %3 = select i1 %2, i32 2, i32 %1 4777 // default: 4778 // return 4; 4779 // } 4780 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4781 Constant *DefaultResult, Value *Condition, 4782 IRBuilder<> &Builder) { 4783 assert(ResultVector.size() == 2 && 4784 "We should have exactly two unique results at this point"); 4785 // If we are selecting between only two cases transform into a simple 4786 // select or a two-way select if default is possible. 4787 if (ResultVector[0].second.size() == 1 && 4788 ResultVector[1].second.size() == 1) { 4789 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4790 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4791 4792 bool DefaultCanTrigger = DefaultResult; 4793 Value *SelectValue = ResultVector[1].first; 4794 if (DefaultCanTrigger) { 4795 Value *const ValueCompare = 4796 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4797 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4798 DefaultResult, "switch.select"); 4799 } 4800 Value *const ValueCompare = 4801 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4802 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4803 SelectValue, "switch.select"); 4804 } 4805 4806 return nullptr; 4807 } 4808 4809 // Helper function to cleanup a switch instruction that has been converted into 4810 // a select, fixing up PHI nodes and basic blocks. 4811 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4812 Value *SelectValue, 4813 IRBuilder<> &Builder) { 4814 BasicBlock *SelectBB = SI->getParent(); 4815 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4816 PHI->removeIncomingValue(SelectBB); 4817 PHI->addIncoming(SelectValue, SelectBB); 4818 4819 Builder.CreateBr(PHI->getParent()); 4820 4821 // Remove the switch. 4822 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4823 BasicBlock *Succ = SI->getSuccessor(i); 4824 4825 if (Succ == PHI->getParent()) 4826 continue; 4827 Succ->removePredecessor(SelectBB); 4828 } 4829 SI->eraseFromParent(); 4830 } 4831 4832 /// If the switch is only used to initialize one or more 4833 /// phi nodes in a common successor block with only two different 4834 /// constant values, replace the switch with select. 4835 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4836 const DataLayout &DL, 4837 const TargetTransformInfo &TTI) { 4838 Value *const Cond = SI->getCondition(); 4839 PHINode *PHI = nullptr; 4840 BasicBlock *CommonDest = nullptr; 4841 Constant *DefaultResult; 4842 SwitchCaseResultVectorTy UniqueResults; 4843 // Collect all the cases that will deliver the same value from the switch. 4844 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4845 DL, TTI, 2, 1)) 4846 return false; 4847 // Selects choose between maximum two values. 4848 if (UniqueResults.size() != 2) 4849 return false; 4850 assert(PHI != nullptr && "PHI for value select not found"); 4851 4852 Builder.SetInsertPoint(SI); 4853 Value *SelectValue = 4854 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4855 if (SelectValue) { 4856 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4857 return true; 4858 } 4859 // The switch couldn't be converted into a select. 4860 return false; 4861 } 4862 4863 namespace { 4864 4865 /// This class represents a lookup table that can be used to replace a switch. 4866 class SwitchLookupTable { 4867 public: 4868 /// Create a lookup table to use as a switch replacement with the contents 4869 /// of Values, using DefaultValue to fill any holes in the table. 4870 SwitchLookupTable( 4871 Module &M, uint64_t TableSize, ConstantInt *Offset, 4872 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4873 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4874 4875 /// Build instructions with Builder to retrieve the value at 4876 /// the position given by Index in the lookup table. 4877 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4878 4879 /// Return true if a table with TableSize elements of 4880 /// type ElementType would fit in a target-legal register. 4881 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4882 Type *ElementType); 4883 4884 private: 4885 // Depending on the contents of the table, it can be represented in 4886 // different ways. 4887 enum { 4888 // For tables where each element contains the same value, we just have to 4889 // store that single value and return it for each lookup. 4890 SingleValueKind, 4891 4892 // For tables where there is a linear relationship between table index 4893 // and values. We calculate the result with a simple multiplication 4894 // and addition instead of a table lookup. 4895 LinearMapKind, 4896 4897 // For small tables with integer elements, we can pack them into a bitmap 4898 // that fits into a target-legal register. Values are retrieved by 4899 // shift and mask operations. 4900 BitMapKind, 4901 4902 // The table is stored as an array of values. Values are retrieved by load 4903 // instructions from the table. 4904 ArrayKind 4905 } Kind; 4906 4907 // For SingleValueKind, this is the single value. 4908 Constant *SingleValue = nullptr; 4909 4910 // For BitMapKind, this is the bitmap. 4911 ConstantInt *BitMap = nullptr; 4912 IntegerType *BitMapElementTy = nullptr; 4913 4914 // For LinearMapKind, these are the constants used to derive the value. 4915 ConstantInt *LinearOffset = nullptr; 4916 ConstantInt *LinearMultiplier = nullptr; 4917 4918 // For ArrayKind, this is the array. 4919 GlobalVariable *Array = nullptr; 4920 }; 4921 4922 } // end anonymous namespace 4923 4924 SwitchLookupTable::SwitchLookupTable( 4925 Module &M, uint64_t TableSize, ConstantInt *Offset, 4926 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4927 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4928 assert(Values.size() && "Can't build lookup table without values!"); 4929 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4930 4931 // If all values in the table are equal, this is that value. 4932 SingleValue = Values.begin()->second; 4933 4934 Type *ValueType = Values.begin()->second->getType(); 4935 4936 // Build up the table contents. 4937 SmallVector<Constant *, 64> TableContents(TableSize); 4938 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4939 ConstantInt *CaseVal = Values[I].first; 4940 Constant *CaseRes = Values[I].second; 4941 assert(CaseRes->getType() == ValueType); 4942 4943 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4944 TableContents[Idx] = CaseRes; 4945 4946 if (CaseRes != SingleValue) 4947 SingleValue = nullptr; 4948 } 4949 4950 // Fill in any holes in the table with the default result. 4951 if (Values.size() < TableSize) { 4952 assert(DefaultValue && 4953 "Need a default value to fill the lookup table holes."); 4954 assert(DefaultValue->getType() == ValueType); 4955 for (uint64_t I = 0; I < TableSize; ++I) { 4956 if (!TableContents[I]) 4957 TableContents[I] = DefaultValue; 4958 } 4959 4960 if (DefaultValue != SingleValue) 4961 SingleValue = nullptr; 4962 } 4963 4964 // If each element in the table contains the same value, we only need to store 4965 // that single value. 4966 if (SingleValue) { 4967 Kind = SingleValueKind; 4968 return; 4969 } 4970 4971 // Check if we can derive the value with a linear transformation from the 4972 // table index. 4973 if (isa<IntegerType>(ValueType)) { 4974 bool LinearMappingPossible = true; 4975 APInt PrevVal; 4976 APInt DistToPrev; 4977 assert(TableSize >= 2 && "Should be a SingleValue table."); 4978 // Check if there is the same distance between two consecutive values. 4979 for (uint64_t I = 0; I < TableSize; ++I) { 4980 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4981 if (!ConstVal) { 4982 // This is an undef. We could deal with it, but undefs in lookup tables 4983 // are very seldom. It's probably not worth the additional complexity. 4984 LinearMappingPossible = false; 4985 break; 4986 } 4987 const APInt &Val = ConstVal->getValue(); 4988 if (I != 0) { 4989 APInt Dist = Val - PrevVal; 4990 if (I == 1) { 4991 DistToPrev = Dist; 4992 } else if (Dist != DistToPrev) { 4993 LinearMappingPossible = false; 4994 break; 4995 } 4996 } 4997 PrevVal = Val; 4998 } 4999 if (LinearMappingPossible) { 5000 LinearOffset = cast<ConstantInt>(TableContents[0]); 5001 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5002 Kind = LinearMapKind; 5003 ++NumLinearMaps; 5004 return; 5005 } 5006 } 5007 5008 // If the type is integer and the table fits in a register, build a bitmap. 5009 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5010 IntegerType *IT = cast<IntegerType>(ValueType); 5011 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5012 for (uint64_t I = TableSize; I > 0; --I) { 5013 TableInt <<= IT->getBitWidth(); 5014 // Insert values into the bitmap. Undef values are set to zero. 5015 if (!isa<UndefValue>(TableContents[I - 1])) { 5016 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5017 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5018 } 5019 } 5020 BitMap = ConstantInt::get(M.getContext(), TableInt); 5021 BitMapElementTy = IT; 5022 Kind = BitMapKind; 5023 ++NumBitMaps; 5024 return; 5025 } 5026 5027 // Store the table in an array. 5028 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5029 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5030 5031 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5032 GlobalVariable::PrivateLinkage, Initializer, 5033 "switch.table." + FuncName); 5034 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5035 Kind = ArrayKind; 5036 } 5037 5038 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5039 switch (Kind) { 5040 case SingleValueKind: 5041 return SingleValue; 5042 case LinearMapKind: { 5043 // Derive the result value from the input value. 5044 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5045 false, "switch.idx.cast"); 5046 if (!LinearMultiplier->isOne()) 5047 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5048 if (!LinearOffset->isZero()) 5049 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5050 return Result; 5051 } 5052 case BitMapKind: { 5053 // Type of the bitmap (e.g. i59). 5054 IntegerType *MapTy = BitMap->getType(); 5055 5056 // Cast Index to the same type as the bitmap. 5057 // Note: The Index is <= the number of elements in the table, so 5058 // truncating it to the width of the bitmask is safe. 5059 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5060 5061 // Multiply the shift amount by the element width. 5062 ShiftAmt = Builder.CreateMul( 5063 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5064 "switch.shiftamt"); 5065 5066 // Shift down. 5067 Value *DownShifted = 5068 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5069 // Mask off. 5070 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5071 } 5072 case ArrayKind: { 5073 // Make sure the table index will not overflow when treated as signed. 5074 IntegerType *IT = cast<IntegerType>(Index->getType()); 5075 uint64_t TableSize = 5076 Array->getInitializer()->getType()->getArrayNumElements(); 5077 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5078 Index = Builder.CreateZExt( 5079 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5080 "switch.tableidx.zext"); 5081 5082 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5083 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5084 GEPIndices, "switch.gep"); 5085 return Builder.CreateLoad(GEP, "switch.load"); 5086 } 5087 } 5088 llvm_unreachable("Unknown lookup table kind!"); 5089 } 5090 5091 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5092 uint64_t TableSize, 5093 Type *ElementType) { 5094 auto *IT = dyn_cast<IntegerType>(ElementType); 5095 if (!IT) 5096 return false; 5097 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5098 // are <= 15, we could try to narrow the type. 5099 5100 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5101 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5102 return false; 5103 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5104 } 5105 5106 /// Determine whether a lookup table should be built for this switch, based on 5107 /// the number of cases, size of the table, and the types of the results. 5108 static bool 5109 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5110 const TargetTransformInfo &TTI, const DataLayout &DL, 5111 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5112 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5113 return false; // TableSize overflowed, or mul below might overflow. 5114 5115 bool AllTablesFitInRegister = true; 5116 bool HasIllegalType = false; 5117 for (const auto &I : ResultTypes) { 5118 Type *Ty = I.second; 5119 5120 // Saturate this flag to true. 5121 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5122 5123 // Saturate this flag to false. 5124 AllTablesFitInRegister = 5125 AllTablesFitInRegister && 5126 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5127 5128 // If both flags saturate, we're done. NOTE: This *only* works with 5129 // saturating flags, and all flags have to saturate first due to the 5130 // non-deterministic behavior of iterating over a dense map. 5131 if (HasIllegalType && !AllTablesFitInRegister) 5132 break; 5133 } 5134 5135 // If each table would fit in a register, we should build it anyway. 5136 if (AllTablesFitInRegister) 5137 return true; 5138 5139 // Don't build a table that doesn't fit in-register if it has illegal types. 5140 if (HasIllegalType) 5141 return false; 5142 5143 // The table density should be at least 40%. This is the same criterion as for 5144 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5145 // FIXME: Find the best cut-off. 5146 return SI->getNumCases() * 10 >= TableSize * 4; 5147 } 5148 5149 /// Try to reuse the switch table index compare. Following pattern: 5150 /// \code 5151 /// if (idx < tablesize) 5152 /// r = table[idx]; // table does not contain default_value 5153 /// else 5154 /// r = default_value; 5155 /// if (r != default_value) 5156 /// ... 5157 /// \endcode 5158 /// Is optimized to: 5159 /// \code 5160 /// cond = idx < tablesize; 5161 /// if (cond) 5162 /// r = table[idx]; 5163 /// else 5164 /// r = default_value; 5165 /// if (cond) 5166 /// ... 5167 /// \endcode 5168 /// Jump threading will then eliminate the second if(cond). 5169 static void reuseTableCompare( 5170 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5171 Constant *DefaultValue, 5172 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5173 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5174 if (!CmpInst) 5175 return; 5176 5177 // We require that the compare is in the same block as the phi so that jump 5178 // threading can do its work afterwards. 5179 if (CmpInst->getParent() != PhiBlock) 5180 return; 5181 5182 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5183 if (!CmpOp1) 5184 return; 5185 5186 Value *RangeCmp = RangeCheckBranch->getCondition(); 5187 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5188 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5189 5190 // Check if the compare with the default value is constant true or false. 5191 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5192 DefaultValue, CmpOp1, true); 5193 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5194 return; 5195 5196 // Check if the compare with the case values is distinct from the default 5197 // compare result. 5198 for (auto ValuePair : Values) { 5199 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5200 ValuePair.second, CmpOp1, true); 5201 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5202 return; 5203 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5204 "Expect true or false as compare result."); 5205 } 5206 5207 // Check if the branch instruction dominates the phi node. It's a simple 5208 // dominance check, but sufficient for our needs. 5209 // Although this check is invariant in the calling loops, it's better to do it 5210 // at this late stage. Practically we do it at most once for a switch. 5211 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5212 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5213 BasicBlock *Pred = *PI; 5214 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5215 return; 5216 } 5217 5218 if (DefaultConst == FalseConst) { 5219 // The compare yields the same result. We can replace it. 5220 CmpInst->replaceAllUsesWith(RangeCmp); 5221 ++NumTableCmpReuses; 5222 } else { 5223 // The compare yields the same result, just inverted. We can replace it. 5224 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5225 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5226 RangeCheckBranch); 5227 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5228 ++NumTableCmpReuses; 5229 } 5230 } 5231 5232 /// If the switch is only used to initialize one or more phi nodes in a common 5233 /// successor block with different constant values, replace the switch with 5234 /// lookup tables. 5235 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5236 const DataLayout &DL, 5237 const TargetTransformInfo &TTI) { 5238 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5239 5240 Function *Fn = SI->getParent()->getParent(); 5241 // Only build lookup table when we have a target that supports it or the 5242 // attribute is not set. 5243 if (!TTI.shouldBuildLookupTables() || 5244 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5245 return false; 5246 5247 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5248 // split off a dense part and build a lookup table for that. 5249 5250 // FIXME: This creates arrays of GEPs to constant strings, which means each 5251 // GEP needs a runtime relocation in PIC code. We should just build one big 5252 // string and lookup indices into that. 5253 5254 // Ignore switches with less than three cases. Lookup tables will not make 5255 // them faster, so we don't analyze them. 5256 if (SI->getNumCases() < 3) 5257 return false; 5258 5259 // Figure out the corresponding result for each case value and phi node in the 5260 // common destination, as well as the min and max case values. 5261 assert(SI->case_begin() != SI->case_end()); 5262 SwitchInst::CaseIt CI = SI->case_begin(); 5263 ConstantInt *MinCaseVal = CI->getCaseValue(); 5264 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5265 5266 BasicBlock *CommonDest = nullptr; 5267 5268 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5269 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5270 5271 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5272 SmallDenseMap<PHINode *, Type *> ResultTypes; 5273 SmallVector<PHINode *, 4> PHIs; 5274 5275 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5276 ConstantInt *CaseVal = CI->getCaseValue(); 5277 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5278 MinCaseVal = CaseVal; 5279 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5280 MaxCaseVal = CaseVal; 5281 5282 // Resulting value at phi nodes for this case value. 5283 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5284 ResultsTy Results; 5285 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5286 Results, DL, TTI)) 5287 return false; 5288 5289 // Append the result from this case to the list for each phi. 5290 for (const auto &I : Results) { 5291 PHINode *PHI = I.first; 5292 Constant *Value = I.second; 5293 if (!ResultLists.count(PHI)) 5294 PHIs.push_back(PHI); 5295 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5296 } 5297 } 5298 5299 // Keep track of the result types. 5300 for (PHINode *PHI : PHIs) { 5301 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5302 } 5303 5304 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5305 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5306 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5307 bool TableHasHoles = (NumResults < TableSize); 5308 5309 // If the table has holes, we need a constant result for the default case 5310 // or a bitmask that fits in a register. 5311 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5312 bool HasDefaultResults = 5313 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5314 DefaultResultsList, DL, TTI); 5315 5316 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5317 if (NeedMask) { 5318 // As an extra penalty for the validity test we require more cases. 5319 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5320 return false; 5321 if (!DL.fitsInLegalInteger(TableSize)) 5322 return false; 5323 } 5324 5325 for (const auto &I : DefaultResultsList) { 5326 PHINode *PHI = I.first; 5327 Constant *Result = I.second; 5328 DefaultResults[PHI] = Result; 5329 } 5330 5331 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5332 return false; 5333 5334 // Create the BB that does the lookups. 5335 Module &Mod = *CommonDest->getParent()->getParent(); 5336 BasicBlock *LookupBB = BasicBlock::Create( 5337 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5338 5339 // Compute the table index value. 5340 Builder.SetInsertPoint(SI); 5341 Value *TableIndex; 5342 if (MinCaseVal->isNullValue()) 5343 TableIndex = SI->getCondition(); 5344 else 5345 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5346 "switch.tableidx"); 5347 5348 // Compute the maximum table size representable by the integer type we are 5349 // switching upon. 5350 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5351 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5352 assert(MaxTableSize >= TableSize && 5353 "It is impossible for a switch to have more entries than the max " 5354 "representable value of its input integer type's size."); 5355 5356 // If the default destination is unreachable, or if the lookup table covers 5357 // all values of the conditional variable, branch directly to the lookup table 5358 // BB. Otherwise, check that the condition is within the case range. 5359 const bool DefaultIsReachable = 5360 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5361 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5362 BranchInst *RangeCheckBranch = nullptr; 5363 5364 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5365 Builder.CreateBr(LookupBB); 5366 // Note: We call removeProdecessor later since we need to be able to get the 5367 // PHI value for the default case in case we're using a bit mask. 5368 } else { 5369 Value *Cmp = Builder.CreateICmpULT( 5370 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5371 RangeCheckBranch = 5372 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5373 } 5374 5375 // Populate the BB that does the lookups. 5376 Builder.SetInsertPoint(LookupBB); 5377 5378 if (NeedMask) { 5379 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5380 // re-purposed to do the hole check, and we create a new LookupBB. 5381 BasicBlock *MaskBB = LookupBB; 5382 MaskBB->setName("switch.hole_check"); 5383 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5384 CommonDest->getParent(), CommonDest); 5385 5386 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5387 // unnecessary illegal types. 5388 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5389 APInt MaskInt(TableSizePowOf2, 0); 5390 APInt One(TableSizePowOf2, 1); 5391 // Build bitmask; fill in a 1 bit for every case. 5392 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5393 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5394 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5395 .getLimitedValue(); 5396 MaskInt |= One << Idx; 5397 } 5398 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5399 5400 // Get the TableIndex'th bit of the bitmask. 5401 // If this bit is 0 (meaning hole) jump to the default destination, 5402 // else continue with table lookup. 5403 IntegerType *MapTy = TableMask->getType(); 5404 Value *MaskIndex = 5405 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5406 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5407 Value *LoBit = Builder.CreateTrunc( 5408 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5409 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5410 5411 Builder.SetInsertPoint(LookupBB); 5412 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5413 } 5414 5415 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5416 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5417 // do not delete PHINodes here. 5418 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5419 /*DontDeleteUselessPHIs=*/true); 5420 } 5421 5422 bool ReturnedEarly = false; 5423 for (PHINode *PHI : PHIs) { 5424 const ResultListTy &ResultList = ResultLists[PHI]; 5425 5426 // If using a bitmask, use any value to fill the lookup table holes. 5427 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5428 StringRef FuncName = Fn->getName(); 5429 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5430 FuncName); 5431 5432 Value *Result = Table.BuildLookup(TableIndex, Builder); 5433 5434 // If the result is used to return immediately from the function, we want to 5435 // do that right here. 5436 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5437 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5438 Builder.CreateRet(Result); 5439 ReturnedEarly = true; 5440 break; 5441 } 5442 5443 // Do a small peephole optimization: re-use the switch table compare if 5444 // possible. 5445 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5446 BasicBlock *PhiBlock = PHI->getParent(); 5447 // Search for compare instructions which use the phi. 5448 for (auto *User : PHI->users()) { 5449 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5450 } 5451 } 5452 5453 PHI->addIncoming(Result, LookupBB); 5454 } 5455 5456 if (!ReturnedEarly) 5457 Builder.CreateBr(CommonDest); 5458 5459 // Remove the switch. 5460 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5461 BasicBlock *Succ = SI->getSuccessor(i); 5462 5463 if (Succ == SI->getDefaultDest()) 5464 continue; 5465 Succ->removePredecessor(SI->getParent()); 5466 } 5467 SI->eraseFromParent(); 5468 5469 ++NumLookupTables; 5470 if (NeedMask) 5471 ++NumLookupTablesHoles; 5472 return true; 5473 } 5474 5475 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5476 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5477 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5478 uint64_t Range = Diff + 1; 5479 uint64_t NumCases = Values.size(); 5480 // 40% is the default density for building a jump table in optsize/minsize mode. 5481 uint64_t MinDensity = 40; 5482 5483 return NumCases * 100 >= Range * MinDensity; 5484 } 5485 5486 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5487 /// of cases. 5488 /// 5489 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5490 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5491 /// 5492 /// This converts a sparse switch into a dense switch which allows better 5493 /// lowering and could also allow transforming into a lookup table. 5494 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5495 const DataLayout &DL, 5496 const TargetTransformInfo &TTI) { 5497 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5498 if (CondTy->getIntegerBitWidth() > 64 || 5499 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5500 return false; 5501 // Only bother with this optimization if there are more than 3 switch cases; 5502 // SDAG will only bother creating jump tables for 4 or more cases. 5503 if (SI->getNumCases() < 4) 5504 return false; 5505 5506 // This transform is agnostic to the signedness of the input or case values. We 5507 // can treat the case values as signed or unsigned. We can optimize more common 5508 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5509 // as signed. 5510 SmallVector<int64_t,4> Values; 5511 for (auto &C : SI->cases()) 5512 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5513 llvm::sort(Values.begin(), Values.end()); 5514 5515 // If the switch is already dense, there's nothing useful to do here. 5516 if (isSwitchDense(Values)) 5517 return false; 5518 5519 // First, transform the values such that they start at zero and ascend. 5520 int64_t Base = Values[0]; 5521 for (auto &V : Values) 5522 V -= (uint64_t)(Base); 5523 5524 // Now we have signed numbers that have been shifted so that, given enough 5525 // precision, there are no negative values. Since the rest of the transform 5526 // is bitwise only, we switch now to an unsigned representation. 5527 uint64_t GCD = 0; 5528 for (auto &V : Values) 5529 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5530 5531 // This transform can be done speculatively because it is so cheap - it results 5532 // in a single rotate operation being inserted. This can only happen if the 5533 // factor extracted is a power of 2. 5534 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5535 // inverse of GCD and then perform this transform. 5536 // FIXME: It's possible that optimizing a switch on powers of two might also 5537 // be beneficial - flag values are often powers of two and we could use a CLZ 5538 // as the key function. 5539 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5540 // No common divisor found or too expensive to compute key function. 5541 return false; 5542 5543 unsigned Shift = Log2_64(GCD); 5544 for (auto &V : Values) 5545 V = (int64_t)((uint64_t)V >> Shift); 5546 5547 if (!isSwitchDense(Values)) 5548 // Transform didn't create a dense switch. 5549 return false; 5550 5551 // The obvious transform is to shift the switch condition right and emit a 5552 // check that the condition actually cleanly divided by GCD, i.e. 5553 // C & (1 << Shift - 1) == 0 5554 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5555 // 5556 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5557 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5558 // are nonzero then the switch condition will be very large and will hit the 5559 // default case. 5560 5561 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5562 Builder.SetInsertPoint(SI); 5563 auto *ShiftC = ConstantInt::get(Ty, Shift); 5564 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5565 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5566 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5567 auto *Rot = Builder.CreateOr(LShr, Shl); 5568 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5569 5570 for (auto Case : SI->cases()) { 5571 auto *Orig = Case.getCaseValue(); 5572 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5573 Case.setValue( 5574 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5575 } 5576 return true; 5577 } 5578 5579 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5580 BasicBlock *BB = SI->getParent(); 5581 5582 if (isValueEqualityComparison(SI)) { 5583 // If we only have one predecessor, and if it is a branch on this value, 5584 // see if that predecessor totally determines the outcome of this switch. 5585 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5586 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5587 return simplifyCFG(BB, TTI, Options) | true; 5588 5589 Value *Cond = SI->getCondition(); 5590 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5591 if (SimplifySwitchOnSelect(SI, Select)) 5592 return simplifyCFG(BB, TTI, Options) | true; 5593 5594 // If the block only contains the switch, see if we can fold the block 5595 // away into any preds. 5596 if (SI == &*BB->instructionsWithoutDebug().begin()) 5597 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5598 return simplifyCFG(BB, TTI, Options) | true; 5599 } 5600 5601 // Try to transform the switch into an icmp and a branch. 5602 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5603 return simplifyCFG(BB, TTI, Options) | true; 5604 5605 // Remove unreachable cases. 5606 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5607 return simplifyCFG(BB, TTI, Options) | true; 5608 5609 if (switchToSelect(SI, Builder, DL, TTI)) 5610 return simplifyCFG(BB, TTI, Options) | true; 5611 5612 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5613 return simplifyCFG(BB, TTI, Options) | true; 5614 5615 // The conversion from switch to lookup tables results in difficult-to-analyze 5616 // code and makes pruning branches much harder. This is a problem if the 5617 // switch expression itself can still be restricted as a result of inlining or 5618 // CVP. Therefore, only apply this transformation during late stages of the 5619 // optimisation pipeline. 5620 if (Options.ConvertSwitchToLookupTable && 5621 SwitchToLookupTable(SI, Builder, DL, TTI)) 5622 return simplifyCFG(BB, TTI, Options) | true; 5623 5624 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5625 return simplifyCFG(BB, TTI, Options) | true; 5626 5627 return false; 5628 } 5629 5630 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5631 BasicBlock *BB = IBI->getParent(); 5632 bool Changed = false; 5633 5634 // Eliminate redundant destinations. 5635 SmallPtrSet<Value *, 8> Succs; 5636 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5637 BasicBlock *Dest = IBI->getDestination(i); 5638 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5639 Dest->removePredecessor(BB); 5640 IBI->removeDestination(i); 5641 --i; 5642 --e; 5643 Changed = true; 5644 } 5645 } 5646 5647 if (IBI->getNumDestinations() == 0) { 5648 // If the indirectbr has no successors, change it to unreachable. 5649 new UnreachableInst(IBI->getContext(), IBI); 5650 EraseTerminatorInstAndDCECond(IBI); 5651 return true; 5652 } 5653 5654 if (IBI->getNumDestinations() == 1) { 5655 // If the indirectbr has one successor, change it to a direct branch. 5656 BranchInst::Create(IBI->getDestination(0), IBI); 5657 EraseTerminatorInstAndDCECond(IBI); 5658 return true; 5659 } 5660 5661 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5662 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5663 return simplifyCFG(BB, TTI, Options) | true; 5664 } 5665 return Changed; 5666 } 5667 5668 /// Given an block with only a single landing pad and a unconditional branch 5669 /// try to find another basic block which this one can be merged with. This 5670 /// handles cases where we have multiple invokes with unique landing pads, but 5671 /// a shared handler. 5672 /// 5673 /// We specifically choose to not worry about merging non-empty blocks 5674 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5675 /// practice, the optimizer produces empty landing pad blocks quite frequently 5676 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5677 /// sinking in this file) 5678 /// 5679 /// This is primarily a code size optimization. We need to avoid performing 5680 /// any transform which might inhibit optimization (such as our ability to 5681 /// specialize a particular handler via tail commoning). We do this by not 5682 /// merging any blocks which require us to introduce a phi. Since the same 5683 /// values are flowing through both blocks, we don't loose any ability to 5684 /// specialize. If anything, we make such specialization more likely. 5685 /// 5686 /// TODO - This transformation could remove entries from a phi in the target 5687 /// block when the inputs in the phi are the same for the two blocks being 5688 /// merged. In some cases, this could result in removal of the PHI entirely. 5689 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5690 BasicBlock *BB) { 5691 auto Succ = BB->getUniqueSuccessor(); 5692 assert(Succ); 5693 // If there's a phi in the successor block, we'd likely have to introduce 5694 // a phi into the merged landing pad block. 5695 if (isa<PHINode>(*Succ->begin())) 5696 return false; 5697 5698 for (BasicBlock *OtherPred : predecessors(Succ)) { 5699 if (BB == OtherPred) 5700 continue; 5701 BasicBlock::iterator I = OtherPred->begin(); 5702 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5703 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5704 continue; 5705 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5706 ; 5707 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5708 if (!BI2 || !BI2->isIdenticalTo(BI)) 5709 continue; 5710 5711 // We've found an identical block. Update our predecessors to take that 5712 // path instead and make ourselves dead. 5713 SmallSet<BasicBlock *, 16> Preds; 5714 Preds.insert(pred_begin(BB), pred_end(BB)); 5715 for (BasicBlock *Pred : Preds) { 5716 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5717 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5718 "unexpected successor"); 5719 II->setUnwindDest(OtherPred); 5720 } 5721 5722 // The debug info in OtherPred doesn't cover the merged control flow that 5723 // used to go through BB. We need to delete it or update it. 5724 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5725 Instruction &Inst = *I; 5726 I++; 5727 if (isa<DbgInfoIntrinsic>(Inst)) 5728 Inst.eraseFromParent(); 5729 } 5730 5731 SmallSet<BasicBlock *, 16> Succs; 5732 Succs.insert(succ_begin(BB), succ_end(BB)); 5733 for (BasicBlock *Succ : Succs) { 5734 Succ->removePredecessor(BB); 5735 } 5736 5737 IRBuilder<> Builder(BI); 5738 Builder.CreateUnreachable(); 5739 BI->eraseFromParent(); 5740 return true; 5741 } 5742 return false; 5743 } 5744 5745 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5746 IRBuilder<> &Builder) { 5747 BasicBlock *BB = BI->getParent(); 5748 BasicBlock *Succ = BI->getSuccessor(0); 5749 5750 // If the Terminator is the only non-phi instruction, simplify the block. 5751 // If LoopHeader is provided, check if the block or its successor is a loop 5752 // header. (This is for early invocations before loop simplify and 5753 // vectorization to keep canonical loop forms for nested loops. These blocks 5754 // can be eliminated when the pass is invoked later in the back-end.) 5755 // Note that if BB has only one predecessor then we do not introduce new 5756 // backedge, so we can eliminate BB. 5757 bool NeedCanonicalLoop = 5758 Options.NeedCanonicalLoop && 5759 (LoopHeaders && pred_size(BB) > 1 && 5760 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5761 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5762 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5763 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5764 return true; 5765 5766 // If the only instruction in the block is a seteq/setne comparison against a 5767 // constant, try to simplify the block. 5768 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5769 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5770 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5771 ; 5772 if (I->isTerminator() && 5773 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options)) 5774 return true; 5775 } 5776 5777 // See if we can merge an empty landing pad block with another which is 5778 // equivalent. 5779 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5780 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5781 ; 5782 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5783 return true; 5784 } 5785 5786 // If this basic block is ONLY a compare and a branch, and if a predecessor 5787 // branches to us and our successor, fold the comparison into the 5788 // predecessor and use logical operations to update the incoming value 5789 // for PHI nodes in common successor. 5790 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5791 return simplifyCFG(BB, TTI, Options) | true; 5792 return false; 5793 } 5794 5795 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5796 BasicBlock *PredPred = nullptr; 5797 for (auto *P : predecessors(BB)) { 5798 BasicBlock *PPred = P->getSinglePredecessor(); 5799 if (!PPred || (PredPred && PredPred != PPred)) 5800 return nullptr; 5801 PredPred = PPred; 5802 } 5803 return PredPred; 5804 } 5805 5806 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5807 BasicBlock *BB = BI->getParent(); 5808 const Function *Fn = BB->getParent(); 5809 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5810 return false; 5811 5812 // Conditional branch 5813 if (isValueEqualityComparison(BI)) { 5814 // If we only have one predecessor, and if it is a branch on this value, 5815 // see if that predecessor totally determines the outcome of this 5816 // switch. 5817 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5818 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5819 return simplifyCFG(BB, TTI, Options) | true; 5820 5821 // This block must be empty, except for the setcond inst, if it exists. 5822 // Ignore dbg intrinsics. 5823 auto I = BB->instructionsWithoutDebug().begin(); 5824 if (&*I == BI) { 5825 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5826 return simplifyCFG(BB, TTI, Options) | true; 5827 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5828 ++I; 5829 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5830 return simplifyCFG(BB, TTI, Options) | true; 5831 } 5832 } 5833 5834 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5835 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5836 return true; 5837 5838 // If this basic block has a single dominating predecessor block and the 5839 // dominating block's condition implies BI's condition, we know the direction 5840 // of the BI branch. 5841 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5842 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5843 if (PBI && PBI->isConditional() && 5844 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 5845 assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB); 5846 bool CondIsTrue = PBI->getSuccessor(0) == BB; 5847 Optional<bool> Implication = isImpliedCondition( 5848 PBI->getCondition(), BI->getCondition(), DL, CondIsTrue); 5849 if (Implication) { 5850 // Turn this into a branch on constant. 5851 auto *OldCond = BI->getCondition(); 5852 ConstantInt *CI = *Implication 5853 ? ConstantInt::getTrue(BB->getContext()) 5854 : ConstantInt::getFalse(BB->getContext()); 5855 BI->setCondition(CI); 5856 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5857 return simplifyCFG(BB, TTI, Options) | true; 5858 } 5859 } 5860 } 5861 5862 // If this basic block is ONLY a compare and a branch, and if a predecessor 5863 // branches to us and one of our successors, fold the comparison into the 5864 // predecessor and use logical operations to pick the right destination. 5865 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5866 return simplifyCFG(BB, TTI, Options) | true; 5867 5868 // We have a conditional branch to two blocks that are only reachable 5869 // from BI. We know that the condbr dominates the two blocks, so see if 5870 // there is any identical code in the "then" and "else" blocks. If so, we 5871 // can hoist it up to the branching block. 5872 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5873 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5874 if (HoistThenElseCodeToIf(BI, TTI)) 5875 return simplifyCFG(BB, TTI, Options) | true; 5876 } else { 5877 // If Successor #1 has multiple preds, we may be able to conditionally 5878 // execute Successor #0 if it branches to Successor #1. 5879 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5880 if (Succ0TI->getNumSuccessors() == 1 && 5881 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5882 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5883 return simplifyCFG(BB, TTI, Options) | true; 5884 } 5885 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5886 // If Successor #0 has multiple preds, we may be able to conditionally 5887 // execute Successor #1 if it branches to Successor #0. 5888 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5889 if (Succ1TI->getNumSuccessors() == 1 && 5890 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5891 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5892 return simplifyCFG(BB, TTI, Options) | true; 5893 } 5894 5895 // If this is a branch on a phi node in the current block, thread control 5896 // through this block if any PHI node entries are constants. 5897 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5898 if (PN->getParent() == BI->getParent()) 5899 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5900 return simplifyCFG(BB, TTI, Options) | true; 5901 5902 // Scan predecessor blocks for conditional branches. 5903 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5904 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5905 if (PBI != BI && PBI->isConditional()) 5906 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5907 return simplifyCFG(BB, TTI, Options) | true; 5908 5909 // Look for diamond patterns. 5910 if (MergeCondStores) 5911 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5912 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5913 if (PBI != BI && PBI->isConditional()) 5914 if (mergeConditionalStores(PBI, BI, DL)) 5915 return simplifyCFG(BB, TTI, Options) | true; 5916 5917 return false; 5918 } 5919 5920 /// Check if passing a value to an instruction will cause undefined behavior. 5921 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5922 Constant *C = dyn_cast<Constant>(V); 5923 if (!C) 5924 return false; 5925 5926 if (I->use_empty()) 5927 return false; 5928 5929 if (C->isNullValue() || isa<UndefValue>(C)) { 5930 // Only look at the first use, avoid hurting compile time with long uselists 5931 User *Use = *I->user_begin(); 5932 5933 // Now make sure that there are no instructions in between that can alter 5934 // control flow (eg. calls) 5935 for (BasicBlock::iterator 5936 i = ++BasicBlock::iterator(I), 5937 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5938 i != UI; ++i) 5939 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5940 return false; 5941 5942 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5943 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5944 if (GEP->getPointerOperand() == I) 5945 return passingValueIsAlwaysUndefined(V, GEP); 5946 5947 // Look through bitcasts. 5948 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5949 return passingValueIsAlwaysUndefined(V, BC); 5950 5951 // Load from null is undefined. 5952 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5953 if (!LI->isVolatile()) 5954 return LI->getPointerAddressSpace() == 0; 5955 5956 // Store to null is undefined. 5957 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5958 if (!SI->isVolatile()) 5959 return SI->getPointerAddressSpace() == 0 && 5960 SI->getPointerOperand() == I; 5961 5962 // A call to null is undefined. 5963 if (auto CS = CallSite(Use)) 5964 return CS.getCalledValue() == I; 5965 } 5966 return false; 5967 } 5968 5969 /// If BB has an incoming value that will always trigger undefined behavior 5970 /// (eg. null pointer dereference), remove the branch leading here. 5971 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5972 for (PHINode &PHI : BB->phis()) 5973 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5974 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5975 TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator(); 5976 IRBuilder<> Builder(T); 5977 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5978 BB->removePredecessor(PHI.getIncomingBlock(i)); 5979 // Turn uncoditional branches into unreachables and remove the dead 5980 // destination from conditional branches. 5981 if (BI->isUnconditional()) 5982 Builder.CreateUnreachable(); 5983 else 5984 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5985 : BI->getSuccessor(0)); 5986 BI->eraseFromParent(); 5987 return true; 5988 } 5989 // TODO: SwitchInst. 5990 } 5991 5992 return false; 5993 } 5994 5995 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5996 bool Changed = false; 5997 5998 assert(BB && BB->getParent() && "Block not embedded in function!"); 5999 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6000 6001 // Remove basic blocks that have no predecessors (except the entry block)... 6002 // or that just have themself as a predecessor. These are unreachable. 6003 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6004 BB->getSinglePredecessor() == BB) { 6005 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6006 DeleteDeadBlock(BB); 6007 return true; 6008 } 6009 6010 // Check to see if we can constant propagate this terminator instruction 6011 // away... 6012 Changed |= ConstantFoldTerminator(BB, true); 6013 6014 // Check for and eliminate duplicate PHI nodes in this block. 6015 Changed |= EliminateDuplicatePHINodes(BB); 6016 6017 // Check for and remove branches that will always cause undefined behavior. 6018 Changed |= removeUndefIntroducingPredecessor(BB); 6019 6020 // Merge basic blocks into their predecessor if there is only one distinct 6021 // pred, and if there is only one distinct successor of the predecessor, and 6022 // if there are no PHI nodes. 6023 if (MergeBlockIntoPredecessor(BB)) 6024 return true; 6025 6026 if (SinkCommon && Options.SinkCommonInsts) 6027 Changed |= SinkCommonCodeFromPredecessors(BB); 6028 6029 IRBuilder<> Builder(BB); 6030 6031 // If there is a trivial two-entry PHI node in this basic block, and we can 6032 // eliminate it, do so now. 6033 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6034 if (PN->getNumIncomingValues() == 2) 6035 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6036 6037 Builder.SetInsertPoint(BB->getTerminator()); 6038 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6039 if (BI->isUnconditional()) { 6040 if (SimplifyUncondBranch(BI, Builder)) 6041 return true; 6042 } else { 6043 if (SimplifyCondBranch(BI, Builder)) 6044 return true; 6045 } 6046 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6047 if (SimplifyReturn(RI, Builder)) 6048 return true; 6049 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6050 if (SimplifyResume(RI, Builder)) 6051 return true; 6052 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6053 if (SimplifyCleanupReturn(RI)) 6054 return true; 6055 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6056 if (SimplifySwitch(SI, Builder)) 6057 return true; 6058 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6059 if (SimplifyUnreachable(UI)) 6060 return true; 6061 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6062 if (SimplifyIndirectBr(IBI)) 6063 return true; 6064 } 6065 6066 return Changed; 6067 } 6068 6069 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6070 const SimplifyCFGOptions &Options, 6071 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6072 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6073 Options) 6074 .run(BB); 6075 } 6076