1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/Support/CFG.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/ConstantRange.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/NoFolder.h" 43 #include "llvm/Support/PatternMatch.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include <algorithm> 47 #include <map> 48 #include <set> 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 static cl::opt<unsigned> 53 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 54 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 55 56 static cl::opt<bool> 57 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 58 cl::desc("Duplicate return instructions into unconditional branches")); 59 60 static cl::opt<bool> 61 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 62 cl::desc("Sink common instructions down to the end block")); 63 64 static cl::opt<bool> 65 HoistCondStores("simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 66 cl::desc("Hoist conditional stores if an unconditional store preceeds")); 67 68 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 69 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 70 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 71 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 72 73 namespace { 74 /// ValueEqualityComparisonCase - Represents a case of a switch. 75 struct ValueEqualityComparisonCase { 76 ConstantInt *Value; 77 BasicBlock *Dest; 78 79 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 80 : Value(Value), Dest(Dest) {} 81 82 bool operator<(ValueEqualityComparisonCase RHS) const { 83 // Comparing pointers is ok as we only rely on the order for uniquing. 84 return Value < RHS.Value; 85 } 86 87 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 88 }; 89 90 class SimplifyCFGOpt { 91 const TargetTransformInfo &TTI; 92 const DataLayout *const TD; 93 Value *isValueEqualityComparison(TerminatorInst *TI); 94 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 95 std::vector<ValueEqualityComparisonCase> &Cases); 96 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 97 BasicBlock *Pred, 98 IRBuilder<> &Builder); 99 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 100 IRBuilder<> &Builder); 101 102 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 103 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 104 bool SimplifyUnreachable(UnreachableInst *UI); 105 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 106 bool SimplifyIndirectBr(IndirectBrInst *IBI); 107 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 108 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 109 110 public: 111 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD) 112 : TTI(TTI), TD(TD) {} 113 bool run(BasicBlock *BB); 114 }; 115 } 116 117 /// SafeToMergeTerminators - Return true if it is safe to merge these two 118 /// terminator instructions together. 119 /// 120 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 121 if (SI1 == SI2) return false; // Can't merge with self! 122 123 // It is not safe to merge these two switch instructions if they have a common 124 // successor, and if that successor has a PHI node, and if *that* PHI node has 125 // conflicting incoming values from the two switch blocks. 126 BasicBlock *SI1BB = SI1->getParent(); 127 BasicBlock *SI2BB = SI2->getParent(); 128 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 129 130 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 131 if (SI1Succs.count(*I)) 132 for (BasicBlock::iterator BBI = (*I)->begin(); 133 isa<PHINode>(BBI); ++BBI) { 134 PHINode *PN = cast<PHINode>(BBI); 135 if (PN->getIncomingValueForBlock(SI1BB) != 136 PN->getIncomingValueForBlock(SI2BB)) 137 return false; 138 } 139 140 return true; 141 } 142 143 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 144 /// to merge these two terminator instructions together, where SI1 is an 145 /// unconditional branch. PhiNodes will store all PHI nodes in common 146 /// successors. 147 /// 148 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 149 BranchInst *SI2, 150 Instruction *Cond, 151 SmallVectorImpl<PHINode*> &PhiNodes) { 152 if (SI1 == SI2) return false; // Can't merge with self! 153 assert(SI1->isUnconditional() && SI2->isConditional()); 154 155 // We fold the unconditional branch if we can easily update all PHI nodes in 156 // common successors: 157 // 1> We have a constant incoming value for the conditional branch; 158 // 2> We have "Cond" as the incoming value for the unconditional branch; 159 // 3> SI2->getCondition() and Cond have same operands. 160 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 161 if (!Ci2) return false; 162 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 163 Cond->getOperand(1) == Ci2->getOperand(1)) && 164 !(Cond->getOperand(0) == Ci2->getOperand(1) && 165 Cond->getOperand(1) == Ci2->getOperand(0))) 166 return false; 167 168 BasicBlock *SI1BB = SI1->getParent(); 169 BasicBlock *SI2BB = SI2->getParent(); 170 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 171 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 172 if (SI1Succs.count(*I)) 173 for (BasicBlock::iterator BBI = (*I)->begin(); 174 isa<PHINode>(BBI); ++BBI) { 175 PHINode *PN = cast<PHINode>(BBI); 176 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 177 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 178 return false; 179 PhiNodes.push_back(PN); 180 } 181 return true; 182 } 183 184 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 185 /// now be entries in it from the 'NewPred' block. The values that will be 186 /// flowing into the PHI nodes will be the same as those coming in from 187 /// ExistPred, an existing predecessor of Succ. 188 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 189 BasicBlock *ExistPred) { 190 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 191 192 PHINode *PN; 193 for (BasicBlock::iterator I = Succ->begin(); 194 (PN = dyn_cast<PHINode>(I)); ++I) 195 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 196 } 197 198 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 199 /// given instruction, which is assumed to be safe to speculate. 1 means 200 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 201 static unsigned ComputeSpeculationCost(const User *I) { 202 assert(isSafeToSpeculativelyExecute(I) && 203 "Instruction is not safe to speculatively execute!"); 204 switch (Operator::getOpcode(I)) { 205 default: 206 // In doubt, be conservative. 207 return UINT_MAX; 208 case Instruction::GetElementPtr: 209 // GEPs are cheap if all indices are constant. 210 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 211 return UINT_MAX; 212 return 1; 213 case Instruction::Load: 214 case Instruction::Add: 215 case Instruction::Sub: 216 case Instruction::And: 217 case Instruction::Or: 218 case Instruction::Xor: 219 case Instruction::Shl: 220 case Instruction::LShr: 221 case Instruction::AShr: 222 case Instruction::ICmp: 223 case Instruction::Trunc: 224 case Instruction::ZExt: 225 case Instruction::SExt: 226 return 1; // These are all cheap. 227 228 case Instruction::Call: 229 case Instruction::Select: 230 return 2; 231 } 232 } 233 234 /// DominatesMergePoint - If we have a merge point of an "if condition" as 235 /// accepted above, return true if the specified value dominates the block. We 236 /// don't handle the true generality of domination here, just a special case 237 /// which works well enough for us. 238 /// 239 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 240 /// see if V (which must be an instruction) and its recursive operands 241 /// that do not dominate BB have a combined cost lower than CostRemaining and 242 /// are non-trapping. If both are true, the instruction is inserted into the 243 /// set and true is returned. 244 /// 245 /// The cost for most non-trapping instructions is defined as 1 except for 246 /// Select whose cost is 2. 247 /// 248 /// After this function returns, CostRemaining is decreased by the cost of 249 /// V plus its non-dominating operands. If that cost is greater than 250 /// CostRemaining, false is returned and CostRemaining is undefined. 251 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 252 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 253 unsigned &CostRemaining) { 254 Instruction *I = dyn_cast<Instruction>(V); 255 if (!I) { 256 // Non-instructions all dominate instructions, but not all constantexprs 257 // can be executed unconditionally. 258 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 259 if (C->canTrap()) 260 return false; 261 return true; 262 } 263 BasicBlock *PBB = I->getParent(); 264 265 // We don't want to allow weird loops that might have the "if condition" in 266 // the bottom of this block. 267 if (PBB == BB) return false; 268 269 // If this instruction is defined in a block that contains an unconditional 270 // branch to BB, then it must be in the 'conditional' part of the "if 271 // statement". If not, it definitely dominates the region. 272 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 273 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 274 return true; 275 276 // If we aren't allowing aggressive promotion anymore, then don't consider 277 // instructions in the 'if region'. 278 if (AggressiveInsts == 0) return false; 279 280 // If we have seen this instruction before, don't count it again. 281 if (AggressiveInsts->count(I)) return true; 282 283 // Okay, it looks like the instruction IS in the "condition". Check to 284 // see if it's a cheap instruction to unconditionally compute, and if it 285 // only uses stuff defined outside of the condition. If so, hoist it out. 286 if (!isSafeToSpeculativelyExecute(I)) 287 return false; 288 289 unsigned Cost = ComputeSpeculationCost(I); 290 291 if (Cost > CostRemaining) 292 return false; 293 294 CostRemaining -= Cost; 295 296 // Okay, we can only really hoist these out if their operands do 297 // not take us over the cost threshold. 298 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 299 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 300 return false; 301 // Okay, it's safe to do this! Remember this instruction. 302 AggressiveInsts->insert(I); 303 return true; 304 } 305 306 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 307 /// and PointerNullValue. Return NULL if value is not a constant int. 308 static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) { 309 // Normal constant int. 310 ConstantInt *CI = dyn_cast<ConstantInt>(V); 311 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 312 return CI; 313 314 // This is some kind of pointer constant. Turn it into a pointer-sized 315 // ConstantInt if possible. 316 IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType())); 317 318 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 319 if (isa<ConstantPointerNull>(V)) 320 return ConstantInt::get(PtrTy, 0); 321 322 // IntToPtr const int. 323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 324 if (CE->getOpcode() == Instruction::IntToPtr) 325 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 326 // The constant is very likely to have the right type already. 327 if (CI->getType() == PtrTy) 328 return CI; 329 else 330 return cast<ConstantInt> 331 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 332 } 333 return 0; 334 } 335 336 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 337 /// collection of icmp eq/ne instructions that compare a value against a 338 /// constant, return the value being compared, and stick the constant into the 339 /// Values vector. 340 static Value * 341 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 342 const DataLayout *TD, bool isEQ, unsigned &UsedICmps) { 343 Instruction *I = dyn_cast<Instruction>(V); 344 if (I == 0) return 0; 345 346 // If this is an icmp against a constant, handle this as one of the cases. 347 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 348 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 349 Value *RHSVal; 350 ConstantInt *RHSC; 351 352 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 353 // (x & ~2^x) == y --> x == y || x == y|2^x 354 // This undoes a transformation done by instcombine to fuse 2 compares. 355 if (match(ICI->getOperand(0), 356 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 357 APInt Not = ~RHSC->getValue(); 358 if (Not.isPowerOf2()) { 359 Vals.push_back(C); 360 Vals.push_back( 361 ConstantInt::get(C->getContext(), C->getValue() | Not)); 362 UsedICmps++; 363 return RHSVal; 364 } 365 } 366 367 UsedICmps++; 368 Vals.push_back(C); 369 return I->getOperand(0); 370 } 371 372 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 373 // the set. 374 ConstantRange Span = 375 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 376 377 // Shift the range if the compare is fed by an add. This is the range 378 // compare idiom as emitted by instcombine. 379 bool hasAdd = 380 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC))); 381 if (hasAdd) 382 Span = Span.subtract(RHSC->getValue()); 383 384 // If this is an and/!= check then we want to optimize "x ugt 2" into 385 // x != 0 && x != 1. 386 if (!isEQ) 387 Span = Span.inverse(); 388 389 // If there are a ton of values, we don't want to make a ginormous switch. 390 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 391 return 0; 392 393 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 394 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 395 UsedICmps++; 396 return hasAdd ? RHSVal : I->getOperand(0); 397 } 398 return 0; 399 } 400 401 // Otherwise, we can only handle an | or &, depending on isEQ. 402 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 403 return 0; 404 405 unsigned NumValsBeforeLHS = Vals.size(); 406 unsigned UsedICmpsBeforeLHS = UsedICmps; 407 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 408 isEQ, UsedICmps)) { 409 unsigned NumVals = Vals.size(); 410 unsigned UsedICmpsBeforeRHS = UsedICmps; 411 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 412 isEQ, UsedICmps)) { 413 if (LHS == RHS) 414 return LHS; 415 Vals.resize(NumVals); 416 UsedICmps = UsedICmpsBeforeRHS; 417 } 418 419 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 420 // set it and return success. 421 if (Extra == 0 || Extra == I->getOperand(1)) { 422 Extra = I->getOperand(1); 423 return LHS; 424 } 425 426 Vals.resize(NumValsBeforeLHS); 427 UsedICmps = UsedICmpsBeforeLHS; 428 return 0; 429 } 430 431 // If the LHS can't be folded in, but Extra is available and RHS can, try to 432 // use LHS as Extra. 433 if (Extra == 0 || Extra == I->getOperand(0)) { 434 Value *OldExtra = Extra; 435 Extra = I->getOperand(0); 436 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 437 isEQ, UsedICmps)) 438 return RHS; 439 assert(Vals.size() == NumValsBeforeLHS); 440 Extra = OldExtra; 441 } 442 443 return 0; 444 } 445 446 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 447 Instruction *Cond = 0; 448 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 449 Cond = dyn_cast<Instruction>(SI->getCondition()); 450 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 451 if (BI->isConditional()) 452 Cond = dyn_cast<Instruction>(BI->getCondition()); 453 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 454 Cond = dyn_cast<Instruction>(IBI->getAddress()); 455 } 456 457 TI->eraseFromParent(); 458 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 459 } 460 461 /// isValueEqualityComparison - Return true if the specified terminator checks 462 /// to see if a value is equal to constant integer value. 463 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 464 Value *CV = 0; 465 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 466 // Do not permit merging of large switch instructions into their 467 // predecessors unless there is only one predecessor. 468 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 469 pred_end(SI->getParent())) <= 128) 470 CV = SI->getCondition(); 471 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 472 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 473 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 474 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), TD)) 475 CV = ICI->getOperand(0); 476 477 // Unwrap any lossless ptrtoint cast. 478 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) 479 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) 480 CV = PTII->getOperand(0); 481 return CV; 482 } 483 484 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 485 /// decode all of the 'cases' that it represents and return the 'default' block. 486 BasicBlock *SimplifyCFGOpt:: 487 GetValueEqualityComparisonCases(TerminatorInst *TI, 488 std::vector<ValueEqualityComparisonCase> 489 &Cases) { 490 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 491 Cases.reserve(SI->getNumCases()); 492 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 493 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 494 i.getCaseSuccessor())); 495 return SI->getDefaultDest(); 496 } 497 498 BranchInst *BI = cast<BranchInst>(TI); 499 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 500 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 501 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 502 TD), 503 Succ)); 504 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 505 } 506 507 508 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 509 /// in the list that match the specified block. 510 static void EliminateBlockCases(BasicBlock *BB, 511 std::vector<ValueEqualityComparisonCase> &Cases) { 512 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 513 } 514 515 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 516 /// well. 517 static bool 518 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 519 std::vector<ValueEqualityComparisonCase > &C2) { 520 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 521 522 // Make V1 be smaller than V2. 523 if (V1->size() > V2->size()) 524 std::swap(V1, V2); 525 526 if (V1->size() == 0) return false; 527 if (V1->size() == 1) { 528 // Just scan V2. 529 ConstantInt *TheVal = (*V1)[0].Value; 530 for (unsigned i = 0, e = V2->size(); i != e; ++i) 531 if (TheVal == (*V2)[i].Value) 532 return true; 533 } 534 535 // Otherwise, just sort both lists and compare element by element. 536 array_pod_sort(V1->begin(), V1->end()); 537 array_pod_sort(V2->begin(), V2->end()); 538 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 539 while (i1 != e1 && i2 != e2) { 540 if ((*V1)[i1].Value == (*V2)[i2].Value) 541 return true; 542 if ((*V1)[i1].Value < (*V2)[i2].Value) 543 ++i1; 544 else 545 ++i2; 546 } 547 return false; 548 } 549 550 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 551 /// terminator instruction and its block is known to only have a single 552 /// predecessor block, check to see if that predecessor is also a value 553 /// comparison with the same value, and if that comparison determines the 554 /// outcome of this comparison. If so, simplify TI. This does a very limited 555 /// form of jump threading. 556 bool SimplifyCFGOpt:: 557 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 558 BasicBlock *Pred, 559 IRBuilder<> &Builder) { 560 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 561 if (!PredVal) return false; // Not a value comparison in predecessor. 562 563 Value *ThisVal = isValueEqualityComparison(TI); 564 assert(ThisVal && "This isn't a value comparison!!"); 565 if (ThisVal != PredVal) return false; // Different predicates. 566 567 // TODO: Preserve branch weight metadata, similarly to how 568 // FoldValueComparisonIntoPredecessors preserves it. 569 570 // Find out information about when control will move from Pred to TI's block. 571 std::vector<ValueEqualityComparisonCase> PredCases; 572 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 573 PredCases); 574 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 575 576 // Find information about how control leaves this block. 577 std::vector<ValueEqualityComparisonCase> ThisCases; 578 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 579 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 580 581 // If TI's block is the default block from Pred's comparison, potentially 582 // simplify TI based on this knowledge. 583 if (PredDef == TI->getParent()) { 584 // If we are here, we know that the value is none of those cases listed in 585 // PredCases. If there are any cases in ThisCases that are in PredCases, we 586 // can simplify TI. 587 if (!ValuesOverlap(PredCases, ThisCases)) 588 return false; 589 590 if (isa<BranchInst>(TI)) { 591 // Okay, one of the successors of this condbr is dead. Convert it to a 592 // uncond br. 593 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 594 // Insert the new branch. 595 Instruction *NI = Builder.CreateBr(ThisDef); 596 (void) NI; 597 598 // Remove PHI node entries for the dead edge. 599 ThisCases[0].Dest->removePredecessor(TI->getParent()); 600 601 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 602 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 603 604 EraseTerminatorInstAndDCECond(TI); 605 return true; 606 } 607 608 SwitchInst *SI = cast<SwitchInst>(TI); 609 // Okay, TI has cases that are statically dead, prune them away. 610 SmallPtrSet<Constant*, 16> DeadCases; 611 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 612 DeadCases.insert(PredCases[i].Value); 613 614 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 615 << "Through successor TI: " << *TI); 616 617 // Collect branch weights into a vector. 618 SmallVector<uint32_t, 8> Weights; 619 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 620 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 621 if (HasWeight) 622 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 623 ++MD_i) { 624 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 625 assert(CI); 626 Weights.push_back(CI->getValue().getZExtValue()); 627 } 628 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 629 --i; 630 if (DeadCases.count(i.getCaseValue())) { 631 if (HasWeight) { 632 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 633 Weights.pop_back(); 634 } 635 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 636 SI->removeCase(i); 637 } 638 } 639 if (HasWeight && Weights.size() >= 2) 640 SI->setMetadata(LLVMContext::MD_prof, 641 MDBuilder(SI->getParent()->getContext()). 642 createBranchWeights(Weights)); 643 644 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 645 return true; 646 } 647 648 // Otherwise, TI's block must correspond to some matched value. Find out 649 // which value (or set of values) this is. 650 ConstantInt *TIV = 0; 651 BasicBlock *TIBB = TI->getParent(); 652 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 653 if (PredCases[i].Dest == TIBB) { 654 if (TIV != 0) 655 return false; // Cannot handle multiple values coming to this block. 656 TIV = PredCases[i].Value; 657 } 658 assert(TIV && "No edge from pred to succ?"); 659 660 // Okay, we found the one constant that our value can be if we get into TI's 661 // BB. Find out which successor will unconditionally be branched to. 662 BasicBlock *TheRealDest = 0; 663 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 664 if (ThisCases[i].Value == TIV) { 665 TheRealDest = ThisCases[i].Dest; 666 break; 667 } 668 669 // If not handled by any explicit cases, it is handled by the default case. 670 if (TheRealDest == 0) TheRealDest = ThisDef; 671 672 // Remove PHI node entries for dead edges. 673 BasicBlock *CheckEdge = TheRealDest; 674 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 675 if (*SI != CheckEdge) 676 (*SI)->removePredecessor(TIBB); 677 else 678 CheckEdge = 0; 679 680 // Insert the new branch. 681 Instruction *NI = Builder.CreateBr(TheRealDest); 682 (void) NI; 683 684 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 685 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 686 687 EraseTerminatorInstAndDCECond(TI); 688 return true; 689 } 690 691 namespace { 692 /// ConstantIntOrdering - This class implements a stable ordering of constant 693 /// integers that does not depend on their address. This is important for 694 /// applications that sort ConstantInt's to ensure uniqueness. 695 struct ConstantIntOrdering { 696 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 697 return LHS->getValue().ult(RHS->getValue()); 698 } 699 }; 700 } 701 702 static int ConstantIntSortPredicate(ConstantInt *const *P1, 703 ConstantInt *const *P2) { 704 const ConstantInt *LHS = *P1; 705 const ConstantInt *RHS = *P2; 706 if (LHS->getValue().ult(RHS->getValue())) 707 return 1; 708 if (LHS->getValue() == RHS->getValue()) 709 return 0; 710 return -1; 711 } 712 713 static inline bool HasBranchWeights(const Instruction* I) { 714 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 715 if (ProfMD && ProfMD->getOperand(0)) 716 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 717 return MDS->getString().equals("branch_weights"); 718 719 return false; 720 } 721 722 /// Get Weights of a given TerminatorInst, the default weight is at the front 723 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 724 /// metadata. 725 static void GetBranchWeights(TerminatorInst *TI, 726 SmallVectorImpl<uint64_t> &Weights) { 727 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 728 assert(MD); 729 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 730 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i)); 731 assert(CI); 732 Weights.push_back(CI->getValue().getZExtValue()); 733 } 734 735 // If TI is a conditional eq, the default case is the false case, 736 // and the corresponding branch-weight data is at index 2. We swap the 737 // default weight to be the first entry. 738 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 739 assert(Weights.size() == 2); 740 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 741 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 742 std::swap(Weights.front(), Weights.back()); 743 } 744 } 745 746 /// Sees if any of the weights are too big for a uint32_t, and halves all the 747 /// weights if any are. 748 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 749 bool Halve = false; 750 for (unsigned i = 0; i < Weights.size(); ++i) 751 if (Weights[i] > UINT_MAX) { 752 Halve = true; 753 break; 754 } 755 756 if (! Halve) 757 return; 758 759 for (unsigned i = 0; i < Weights.size(); ++i) 760 Weights[i] /= 2; 761 } 762 763 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 764 /// equality comparison instruction (either a switch or a branch on "X == c"). 765 /// See if any of the predecessors of the terminator block are value comparisons 766 /// on the same value. If so, and if safe to do so, fold them together. 767 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 768 IRBuilder<> &Builder) { 769 BasicBlock *BB = TI->getParent(); 770 Value *CV = isValueEqualityComparison(TI); // CondVal 771 assert(CV && "Not a comparison?"); 772 bool Changed = false; 773 774 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 775 while (!Preds.empty()) { 776 BasicBlock *Pred = Preds.pop_back_val(); 777 778 // See if the predecessor is a comparison with the same value. 779 TerminatorInst *PTI = Pred->getTerminator(); 780 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 781 782 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 783 // Figure out which 'cases' to copy from SI to PSI. 784 std::vector<ValueEqualityComparisonCase> BBCases; 785 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 786 787 std::vector<ValueEqualityComparisonCase> PredCases; 788 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 789 790 // Based on whether the default edge from PTI goes to BB or not, fill in 791 // PredCases and PredDefault with the new switch cases we would like to 792 // build. 793 SmallVector<BasicBlock*, 8> NewSuccessors; 794 795 // Update the branch weight metadata along the way 796 SmallVector<uint64_t, 8> Weights; 797 bool PredHasWeights = HasBranchWeights(PTI); 798 bool SuccHasWeights = HasBranchWeights(TI); 799 800 if (PredHasWeights) { 801 GetBranchWeights(PTI, Weights); 802 // branch-weight metadata is inconsistent here. 803 if (Weights.size() != 1 + PredCases.size()) 804 PredHasWeights = SuccHasWeights = false; 805 } else if (SuccHasWeights) 806 // If there are no predecessor weights but there are successor weights, 807 // populate Weights with 1, which will later be scaled to the sum of 808 // successor's weights 809 Weights.assign(1 + PredCases.size(), 1); 810 811 SmallVector<uint64_t, 8> SuccWeights; 812 if (SuccHasWeights) { 813 GetBranchWeights(TI, SuccWeights); 814 // branch-weight metadata is inconsistent here. 815 if (SuccWeights.size() != 1 + BBCases.size()) 816 PredHasWeights = SuccHasWeights = false; 817 } else if (PredHasWeights) 818 SuccWeights.assign(1 + BBCases.size(), 1); 819 820 if (PredDefault == BB) { 821 // If this is the default destination from PTI, only the edges in TI 822 // that don't occur in PTI, or that branch to BB will be activated. 823 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 824 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 825 if (PredCases[i].Dest != BB) 826 PTIHandled.insert(PredCases[i].Value); 827 else { 828 // The default destination is BB, we don't need explicit targets. 829 std::swap(PredCases[i], PredCases.back()); 830 831 if (PredHasWeights || SuccHasWeights) { 832 // Increase weight for the default case. 833 Weights[0] += Weights[i+1]; 834 std::swap(Weights[i+1], Weights.back()); 835 Weights.pop_back(); 836 } 837 838 PredCases.pop_back(); 839 --i; --e; 840 } 841 842 // Reconstruct the new switch statement we will be building. 843 if (PredDefault != BBDefault) { 844 PredDefault->removePredecessor(Pred); 845 PredDefault = BBDefault; 846 NewSuccessors.push_back(BBDefault); 847 } 848 849 unsigned CasesFromPred = Weights.size(); 850 uint64_t ValidTotalSuccWeight = 0; 851 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 852 if (!PTIHandled.count(BBCases[i].Value) && 853 BBCases[i].Dest != BBDefault) { 854 PredCases.push_back(BBCases[i]); 855 NewSuccessors.push_back(BBCases[i].Dest); 856 if (SuccHasWeights || PredHasWeights) { 857 // The default weight is at index 0, so weight for the ith case 858 // should be at index i+1. Scale the cases from successor by 859 // PredDefaultWeight (Weights[0]). 860 Weights.push_back(Weights[0] * SuccWeights[i+1]); 861 ValidTotalSuccWeight += SuccWeights[i+1]; 862 } 863 } 864 865 if (SuccHasWeights || PredHasWeights) { 866 ValidTotalSuccWeight += SuccWeights[0]; 867 // Scale the cases from predecessor by ValidTotalSuccWeight. 868 for (unsigned i = 1; i < CasesFromPred; ++i) 869 Weights[i] *= ValidTotalSuccWeight; 870 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 871 Weights[0] *= SuccWeights[0]; 872 } 873 } else { 874 // If this is not the default destination from PSI, only the edges 875 // in SI that occur in PSI with a destination of BB will be 876 // activated. 877 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 878 std::map<ConstantInt*, uint64_t> WeightsForHandled; 879 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 880 if (PredCases[i].Dest == BB) { 881 PTIHandled.insert(PredCases[i].Value); 882 883 if (PredHasWeights || SuccHasWeights) { 884 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 885 std::swap(Weights[i+1], Weights.back()); 886 Weights.pop_back(); 887 } 888 889 std::swap(PredCases[i], PredCases.back()); 890 PredCases.pop_back(); 891 --i; --e; 892 } 893 894 // Okay, now we know which constants were sent to BB from the 895 // predecessor. Figure out where they will all go now. 896 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 897 if (PTIHandled.count(BBCases[i].Value)) { 898 // If this is one we are capable of getting... 899 if (PredHasWeights || SuccHasWeights) 900 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 901 PredCases.push_back(BBCases[i]); 902 NewSuccessors.push_back(BBCases[i].Dest); 903 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 904 } 905 906 // If there are any constants vectored to BB that TI doesn't handle, 907 // they must go to the default destination of TI. 908 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 909 PTIHandled.begin(), 910 E = PTIHandled.end(); I != E; ++I) { 911 if (PredHasWeights || SuccHasWeights) 912 Weights.push_back(WeightsForHandled[*I]); 913 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 914 NewSuccessors.push_back(BBDefault); 915 } 916 } 917 918 // Okay, at this point, we know which new successor Pred will get. Make 919 // sure we update the number of entries in the PHI nodes for these 920 // successors. 921 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 922 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 923 924 Builder.SetInsertPoint(PTI); 925 // Convert pointer to int before we switch. 926 if (CV->getType()->isPointerTy()) { 927 assert(TD && "Cannot switch on pointer without DataLayout"); 928 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()), 929 "magicptr"); 930 } 931 932 // Now that the successors are updated, create the new Switch instruction. 933 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 934 PredCases.size()); 935 NewSI->setDebugLoc(PTI->getDebugLoc()); 936 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 937 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 938 939 if (PredHasWeights || SuccHasWeights) { 940 // Halve the weights if any of them cannot fit in an uint32_t 941 FitWeights(Weights); 942 943 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 944 945 NewSI->setMetadata(LLVMContext::MD_prof, 946 MDBuilder(BB->getContext()). 947 createBranchWeights(MDWeights)); 948 } 949 950 EraseTerminatorInstAndDCECond(PTI); 951 952 // Okay, last check. If BB is still a successor of PSI, then we must 953 // have an infinite loop case. If so, add an infinitely looping block 954 // to handle the case to preserve the behavior of the code. 955 BasicBlock *InfLoopBlock = 0; 956 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 957 if (NewSI->getSuccessor(i) == BB) { 958 if (InfLoopBlock == 0) { 959 // Insert it at the end of the function, because it's either code, 960 // or it won't matter if it's hot. :) 961 InfLoopBlock = BasicBlock::Create(BB->getContext(), 962 "infloop", BB->getParent()); 963 BranchInst::Create(InfLoopBlock, InfLoopBlock); 964 } 965 NewSI->setSuccessor(i, InfLoopBlock); 966 } 967 968 Changed = true; 969 } 970 } 971 return Changed; 972 } 973 974 // isSafeToHoistInvoke - If we would need to insert a select that uses the 975 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 976 // would need to do this), we can't hoist the invoke, as there is nowhere 977 // to put the select in this case. 978 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 979 Instruction *I1, Instruction *I2) { 980 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 981 PHINode *PN; 982 for (BasicBlock::iterator BBI = SI->begin(); 983 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 984 Value *BB1V = PN->getIncomingValueForBlock(BB1); 985 Value *BB2V = PN->getIncomingValueForBlock(BB2); 986 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 987 return false; 988 } 989 } 990 } 991 return true; 992 } 993 994 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 995 /// BB2, hoist any common code in the two blocks up into the branch block. The 996 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 997 static bool HoistThenElseCodeToIf(BranchInst *BI) { 998 // This does very trivial matching, with limited scanning, to find identical 999 // instructions in the two blocks. In particular, we don't want to get into 1000 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1001 // such, we currently just scan for obviously identical instructions in an 1002 // identical order. 1003 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1004 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1005 1006 BasicBlock::iterator BB1_Itr = BB1->begin(); 1007 BasicBlock::iterator BB2_Itr = BB2->begin(); 1008 1009 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1010 // Skip debug info if it is not identical. 1011 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1012 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1013 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1014 while (isa<DbgInfoIntrinsic>(I1)) 1015 I1 = BB1_Itr++; 1016 while (isa<DbgInfoIntrinsic>(I2)) 1017 I2 = BB2_Itr++; 1018 } 1019 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1020 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1021 return false; 1022 1023 BasicBlock *BIParent = BI->getParent(); 1024 1025 bool Changed = false; 1026 do { 1027 // If we are hoisting the terminator instruction, don't move one (making a 1028 // broken BB), instead clone it, and remove BI. 1029 if (isa<TerminatorInst>(I1)) 1030 goto HoistTerminator; 1031 1032 // For a normal instruction, we just move one to right before the branch, 1033 // then replace all uses of the other with the first. Finally, we remove 1034 // the now redundant second instruction. 1035 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1036 if (!I2->use_empty()) 1037 I2->replaceAllUsesWith(I1); 1038 I1->intersectOptionalDataWith(I2); 1039 I2->eraseFromParent(); 1040 Changed = true; 1041 1042 I1 = BB1_Itr++; 1043 I2 = BB2_Itr++; 1044 // Skip debug info if it is not identical. 1045 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1046 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1047 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1048 while (isa<DbgInfoIntrinsic>(I1)) 1049 I1 = BB1_Itr++; 1050 while (isa<DbgInfoIntrinsic>(I2)) 1051 I2 = BB2_Itr++; 1052 } 1053 } while (I1->isIdenticalToWhenDefined(I2)); 1054 1055 return true; 1056 1057 HoistTerminator: 1058 // It may not be possible to hoist an invoke. 1059 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1060 return Changed; 1061 1062 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1063 PHINode *PN; 1064 for (BasicBlock::iterator BBI = SI->begin(); 1065 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1066 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1067 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1068 if (BB1V == BB2V) 1069 continue; 1070 1071 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1072 return Changed; 1073 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1074 return Changed; 1075 } 1076 } 1077 1078 // Okay, it is safe to hoist the terminator. 1079 Instruction *NT = I1->clone(); 1080 BIParent->getInstList().insert(BI, NT); 1081 if (!NT->getType()->isVoidTy()) { 1082 I1->replaceAllUsesWith(NT); 1083 I2->replaceAllUsesWith(NT); 1084 NT->takeName(I1); 1085 } 1086 1087 IRBuilder<true, NoFolder> Builder(NT); 1088 // Hoisting one of the terminators from our successor is a great thing. 1089 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1090 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1091 // nodes, so we insert select instruction to compute the final result. 1092 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1093 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1094 PHINode *PN; 1095 for (BasicBlock::iterator BBI = SI->begin(); 1096 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1097 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1098 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1099 if (BB1V == BB2V) continue; 1100 1101 // These values do not agree. Insert a select instruction before NT 1102 // that determines the right value. 1103 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1104 if (SI == 0) 1105 SI = cast<SelectInst> 1106 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1107 BB1V->getName()+"."+BB2V->getName())); 1108 1109 // Make the PHI node use the select for all incoming values for BB1/BB2 1110 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1111 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1112 PN->setIncomingValue(i, SI); 1113 } 1114 } 1115 1116 // Update any PHI nodes in our new successors. 1117 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1118 AddPredecessorToBlock(*SI, BIParent, BB1); 1119 1120 EraseTerminatorInstAndDCECond(BI); 1121 return true; 1122 } 1123 1124 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1125 /// check whether BBEnd has only two predecessors and the other predecessor 1126 /// ends with an unconditional branch. If it is true, sink any common code 1127 /// in the two predecessors to BBEnd. 1128 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1129 assert(BI1->isUnconditional()); 1130 BasicBlock *BB1 = BI1->getParent(); 1131 BasicBlock *BBEnd = BI1->getSuccessor(0); 1132 1133 // Check that BBEnd has two predecessors and the other predecessor ends with 1134 // an unconditional branch. 1135 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1136 BasicBlock *Pred0 = *PI++; 1137 if (PI == PE) // Only one predecessor. 1138 return false; 1139 BasicBlock *Pred1 = *PI++; 1140 if (PI != PE) // More than two predecessors. 1141 return false; 1142 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1143 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1144 if (!BI2 || !BI2->isUnconditional()) 1145 return false; 1146 1147 // Gather the PHI nodes in BBEnd. 1148 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1149 Instruction *FirstNonPhiInBBEnd = 0; 1150 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1151 I != E; ++I) { 1152 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1153 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1154 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1155 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1156 } else { 1157 FirstNonPhiInBBEnd = &*I; 1158 break; 1159 } 1160 } 1161 if (!FirstNonPhiInBBEnd) 1162 return false; 1163 1164 1165 // This does very trivial matching, with limited scanning, to find identical 1166 // instructions in the two blocks. We scan backward for obviously identical 1167 // instructions in an identical order. 1168 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1169 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1170 RE2 = BB2->getInstList().rend(); 1171 // Skip debug info. 1172 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1173 if (RI1 == RE1) 1174 return false; 1175 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1176 if (RI2 == RE2) 1177 return false; 1178 // Skip the unconditional branches. 1179 ++RI1; 1180 ++RI2; 1181 1182 bool Changed = false; 1183 while (RI1 != RE1 && RI2 != RE2) { 1184 // Skip debug info. 1185 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1186 if (RI1 == RE1) 1187 return Changed; 1188 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1189 if (RI2 == RE2) 1190 return Changed; 1191 1192 Instruction *I1 = &*RI1, *I2 = &*RI2; 1193 // I1 and I2 should have a single use in the same PHI node, and they 1194 // perform the same operation. 1195 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1196 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1197 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1198 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1199 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1200 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1201 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1202 !I1->hasOneUse() || !I2->hasOneUse() || 1203 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1204 MapValueFromBB1ToBB2[I1].first != I2) 1205 return Changed; 1206 1207 // Check whether we should swap the operands of ICmpInst. 1208 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1209 bool SwapOpnds = false; 1210 if (ICmp1 && ICmp2 && 1211 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1212 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1213 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1214 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1215 ICmp2->swapOperands(); 1216 SwapOpnds = true; 1217 } 1218 if (!I1->isSameOperationAs(I2)) { 1219 if (SwapOpnds) 1220 ICmp2->swapOperands(); 1221 return Changed; 1222 } 1223 1224 // The operands should be either the same or they need to be generated 1225 // with a PHI node after sinking. We only handle the case where there is 1226 // a single pair of different operands. 1227 Value *DifferentOp1 = 0, *DifferentOp2 = 0; 1228 unsigned Op1Idx = 0; 1229 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1230 if (I1->getOperand(I) == I2->getOperand(I)) 1231 continue; 1232 // Early exit if we have more-than one pair of different operands or 1233 // the different operand is already in MapValueFromBB1ToBB2. 1234 // Early exit if we need a PHI node to replace a constant. 1235 if (DifferentOp1 || 1236 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1237 MapValueFromBB1ToBB2.end() || 1238 isa<Constant>(I1->getOperand(I)) || 1239 isa<Constant>(I2->getOperand(I))) { 1240 // If we can't sink the instructions, undo the swapping. 1241 if (SwapOpnds) 1242 ICmp2->swapOperands(); 1243 return Changed; 1244 } 1245 DifferentOp1 = I1->getOperand(I); 1246 Op1Idx = I; 1247 DifferentOp2 = I2->getOperand(I); 1248 } 1249 1250 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1251 // remove (I1, I2) from MapValueFromBB1ToBB2. 1252 if (DifferentOp1) { 1253 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1254 DifferentOp1->getName() + ".sink", 1255 BBEnd->begin()); 1256 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1257 // I1 should use NewPN instead of DifferentOp1. 1258 I1->setOperand(Op1Idx, NewPN); 1259 NewPN->addIncoming(DifferentOp1, BB1); 1260 NewPN->addIncoming(DifferentOp2, BB2); 1261 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1262 } 1263 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1264 MapValueFromBB1ToBB2.erase(I1); 1265 1266 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1267 DEBUG(dbgs() << " " << *I2 << "\n";); 1268 // We need to update RE1 and RE2 if we are going to sink the first 1269 // instruction in the basic block down. 1270 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1271 // Sink the instruction. 1272 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1273 if (!OldPN->use_empty()) 1274 OldPN->replaceAllUsesWith(I1); 1275 OldPN->eraseFromParent(); 1276 1277 if (!I2->use_empty()) 1278 I2->replaceAllUsesWith(I1); 1279 I1->intersectOptionalDataWith(I2); 1280 I2->eraseFromParent(); 1281 1282 if (UpdateRE1) 1283 RE1 = BB1->getInstList().rend(); 1284 if (UpdateRE2) 1285 RE2 = BB2->getInstList().rend(); 1286 FirstNonPhiInBBEnd = I1; 1287 NumSinkCommons++; 1288 Changed = true; 1289 } 1290 return Changed; 1291 } 1292 1293 /// \brief Determine if we can hoist sink a sole store instruction out of a 1294 /// conditional block. 1295 /// 1296 /// We are looking for code like the following: 1297 /// BrBB: 1298 /// store i32 %add, i32* %arrayidx2 1299 /// ... // No other stores or function calls (we could be calling a memory 1300 /// ... // function). 1301 /// %cmp = icmp ult %x, %y 1302 /// br i1 %cmp, label %EndBB, label %ThenBB 1303 /// ThenBB: 1304 /// store i32 %add5, i32* %arrayidx2 1305 /// br label EndBB 1306 /// EndBB: 1307 /// ... 1308 /// We are going to transform this into: 1309 /// BrBB: 1310 /// store i32 %add, i32* %arrayidx2 1311 /// ... // 1312 /// %cmp = icmp ult %x, %y 1313 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1314 /// store i32 %add.add5, i32* %arrayidx2 1315 /// ... 1316 /// 1317 /// \return The pointer to the value of the previous store if the store can be 1318 /// hoisted into the predecessor block. 0 otherwise. 1319 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1320 BasicBlock *StoreBB, BasicBlock *EndBB) { 1321 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1322 if (!StoreToHoist) 1323 return 0; 1324 1325 // Volatile or atomic. 1326 if (!StoreToHoist->isSimple()) 1327 return 0; 1328 1329 Value *StorePtr = StoreToHoist->getPointerOperand(); 1330 1331 // Look for a store to the same pointer in BrBB. 1332 unsigned MaxNumInstToLookAt = 10; 1333 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1334 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1335 Instruction *CurI = &*RI; 1336 1337 // Could be calling an instruction that effects memory like free(). 1338 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1339 return 0; 1340 1341 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1342 // Found the previous store make sure it stores to the same location. 1343 if (SI && SI->getPointerOperand() == StorePtr) 1344 // Found the previous store, return its value operand. 1345 return SI->getValueOperand(); 1346 else if (SI) 1347 return 0; // Unknown store. 1348 } 1349 1350 return 0; 1351 } 1352 1353 /// \brief Speculate a conditional basic block flattening the CFG. 1354 /// 1355 /// Note that this is a very risky transform currently. Speculating 1356 /// instructions like this is most often not desirable. Instead, there is an MI 1357 /// pass which can do it with full awareness of the resource constraints. 1358 /// However, some cases are "obvious" and we should do directly. An example of 1359 /// this is speculating a single, reasonably cheap instruction. 1360 /// 1361 /// There is only one distinct advantage to flattening the CFG at the IR level: 1362 /// it makes very common but simplistic optimizations such as are common in 1363 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1364 /// modeling their effects with easier to reason about SSA value graphs. 1365 /// 1366 /// 1367 /// An illustration of this transform is turning this IR: 1368 /// \code 1369 /// BB: 1370 /// %cmp = icmp ult %x, %y 1371 /// br i1 %cmp, label %EndBB, label %ThenBB 1372 /// ThenBB: 1373 /// %sub = sub %x, %y 1374 /// br label BB2 1375 /// EndBB: 1376 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1377 /// ... 1378 /// \endcode 1379 /// 1380 /// Into this IR: 1381 /// \code 1382 /// BB: 1383 /// %cmp = icmp ult %x, %y 1384 /// %sub = sub %x, %y 1385 /// %cond = select i1 %cmp, 0, %sub 1386 /// ... 1387 /// \endcode 1388 /// 1389 /// \returns true if the conditional block is removed. 1390 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) { 1391 // Be conservative for now. FP select instruction can often be expensive. 1392 Value *BrCond = BI->getCondition(); 1393 if (isa<FCmpInst>(BrCond)) 1394 return false; 1395 1396 BasicBlock *BB = BI->getParent(); 1397 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1398 1399 // If ThenBB is actually on the false edge of the conditional branch, remember 1400 // to swap the select operands later. 1401 bool Invert = false; 1402 if (ThenBB != BI->getSuccessor(0)) { 1403 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1404 Invert = true; 1405 } 1406 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1407 1408 // Keep a count of how many times instructions are used within CondBB when 1409 // they are candidates for sinking into CondBB. Specifically: 1410 // - They are defined in BB, and 1411 // - They have no side effects, and 1412 // - All of their uses are in CondBB. 1413 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1414 1415 unsigned SpeculationCost = 0; 1416 Value *SpeculatedStoreValue = 0; 1417 StoreInst *SpeculatedStore = 0; 1418 for (BasicBlock::iterator BBI = ThenBB->begin(), 1419 BBE = llvm::prior(ThenBB->end()); 1420 BBI != BBE; ++BBI) { 1421 Instruction *I = BBI; 1422 // Skip debug info. 1423 if (isa<DbgInfoIntrinsic>(I)) 1424 continue; 1425 1426 // Only speculatively execution a single instruction (not counting the 1427 // terminator) for now. 1428 ++SpeculationCost; 1429 if (SpeculationCost > 1) 1430 return false; 1431 1432 // Don't hoist the instruction if it's unsafe or expensive. 1433 if (!isSafeToSpeculativelyExecute(I) && 1434 !(HoistCondStores && 1435 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1436 EndBB)))) 1437 return false; 1438 if (!SpeculatedStoreValue && 1439 ComputeSpeculationCost(I) > PHINodeFoldingThreshold) 1440 return false; 1441 1442 // Store the store speculation candidate. 1443 if (SpeculatedStoreValue) 1444 SpeculatedStore = cast<StoreInst>(I); 1445 1446 // Do not hoist the instruction if any of its operands are defined but not 1447 // used in BB. The transformation will prevent the operand from 1448 // being sunk into the use block. 1449 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1450 i != e; ++i) { 1451 Instruction *OpI = dyn_cast<Instruction>(*i); 1452 if (!OpI || OpI->getParent() != BB || 1453 OpI->mayHaveSideEffects()) 1454 continue; // Not a candidate for sinking. 1455 1456 ++SinkCandidateUseCounts[OpI]; 1457 } 1458 } 1459 1460 // Consider any sink candidates which are only used in CondBB as costs for 1461 // speculation. Note, while we iterate over a DenseMap here, we are summing 1462 // and so iteration order isn't significant. 1463 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1464 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1465 I != E; ++I) 1466 if (I->first->getNumUses() == I->second) { 1467 ++SpeculationCost; 1468 if (SpeculationCost > 1) 1469 return false; 1470 } 1471 1472 // Check that the PHI nodes can be converted to selects. 1473 bool HaveRewritablePHIs = false; 1474 for (BasicBlock::iterator I = EndBB->begin(); 1475 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1476 Value *OrigV = PN->getIncomingValueForBlock(BB); 1477 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1478 1479 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1480 // Skip PHIs which are trivial. 1481 if (ThenV == OrigV) 1482 continue; 1483 1484 HaveRewritablePHIs = true; 1485 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1486 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1487 if (!OrigCE && !ThenCE) 1488 continue; // Known safe and cheap. 1489 1490 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1491 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1492 return false; 1493 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0; 1494 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0; 1495 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1496 return false; 1497 1498 // Account for the cost of an unfolded ConstantExpr which could end up 1499 // getting expanded into Instructions. 1500 // FIXME: This doesn't account for how many operations are combined in the 1501 // constant expression. 1502 ++SpeculationCost; 1503 if (SpeculationCost > 1) 1504 return false; 1505 } 1506 1507 // If there are no PHIs to process, bail early. This helps ensure idempotence 1508 // as well. 1509 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1510 return false; 1511 1512 // If we get here, we can hoist the instruction and if-convert. 1513 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1514 1515 // Insert a select of the value of the speculated store. 1516 if (SpeculatedStoreValue) { 1517 IRBuilder<true, NoFolder> Builder(BI); 1518 Value *TrueV = SpeculatedStore->getValueOperand(); 1519 Value *FalseV = SpeculatedStoreValue; 1520 if (Invert) 1521 std::swap(TrueV, FalseV); 1522 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1523 "." + FalseV->getName()); 1524 SpeculatedStore->setOperand(0, S); 1525 } 1526 1527 // Hoist the instructions. 1528 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1529 llvm::prior(ThenBB->end())); 1530 1531 // Insert selects and rewrite the PHI operands. 1532 IRBuilder<true, NoFolder> Builder(BI); 1533 for (BasicBlock::iterator I = EndBB->begin(); 1534 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1535 unsigned OrigI = PN->getBasicBlockIndex(BB); 1536 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1537 Value *OrigV = PN->getIncomingValue(OrigI); 1538 Value *ThenV = PN->getIncomingValue(ThenI); 1539 1540 // Skip PHIs which are trivial. 1541 if (OrigV == ThenV) 1542 continue; 1543 1544 // Create a select whose true value is the speculatively executed value and 1545 // false value is the preexisting value. Swap them if the branch 1546 // destinations were inverted. 1547 Value *TrueV = ThenV, *FalseV = OrigV; 1548 if (Invert) 1549 std::swap(TrueV, FalseV); 1550 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1551 TrueV->getName() + "." + FalseV->getName()); 1552 PN->setIncomingValue(OrigI, V); 1553 PN->setIncomingValue(ThenI, V); 1554 } 1555 1556 ++NumSpeculations; 1557 return true; 1558 } 1559 1560 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1561 /// across this block. 1562 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1563 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1564 unsigned Size = 0; 1565 1566 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1567 if (isa<DbgInfoIntrinsic>(BBI)) 1568 continue; 1569 if (Size > 10) return false; // Don't clone large BB's. 1570 ++Size; 1571 1572 // We can only support instructions that do not define values that are 1573 // live outside of the current basic block. 1574 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1575 UI != E; ++UI) { 1576 Instruction *U = cast<Instruction>(*UI); 1577 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1578 } 1579 1580 // Looks ok, continue checking. 1581 } 1582 1583 return true; 1584 } 1585 1586 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1587 /// that is defined in the same block as the branch and if any PHI entries are 1588 /// constants, thread edges corresponding to that entry to be branches to their 1589 /// ultimate destination. 1590 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) { 1591 BasicBlock *BB = BI->getParent(); 1592 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1593 // NOTE: we currently cannot transform this case if the PHI node is used 1594 // outside of the block. 1595 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1596 return false; 1597 1598 // Degenerate case of a single entry PHI. 1599 if (PN->getNumIncomingValues() == 1) { 1600 FoldSingleEntryPHINodes(PN->getParent()); 1601 return true; 1602 } 1603 1604 // Now we know that this block has multiple preds and two succs. 1605 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1606 1607 // Okay, this is a simple enough basic block. See if any phi values are 1608 // constants. 1609 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1610 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1611 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1612 1613 // Okay, we now know that all edges from PredBB should be revectored to 1614 // branch to RealDest. 1615 BasicBlock *PredBB = PN->getIncomingBlock(i); 1616 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1617 1618 if (RealDest == BB) continue; // Skip self loops. 1619 // Skip if the predecessor's terminator is an indirect branch. 1620 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1621 1622 // The dest block might have PHI nodes, other predecessors and other 1623 // difficult cases. Instead of being smart about this, just insert a new 1624 // block that jumps to the destination block, effectively splitting 1625 // the edge we are about to create. 1626 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1627 RealDest->getName()+".critedge", 1628 RealDest->getParent(), RealDest); 1629 BranchInst::Create(RealDest, EdgeBB); 1630 1631 // Update PHI nodes. 1632 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1633 1634 // BB may have instructions that are being threaded over. Clone these 1635 // instructions into EdgeBB. We know that there will be no uses of the 1636 // cloned instructions outside of EdgeBB. 1637 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1638 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1639 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1640 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1641 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1642 continue; 1643 } 1644 // Clone the instruction. 1645 Instruction *N = BBI->clone(); 1646 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1647 1648 // Update operands due to translation. 1649 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1650 i != e; ++i) { 1651 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1652 if (PI != TranslateMap.end()) 1653 *i = PI->second; 1654 } 1655 1656 // Check for trivial simplification. 1657 if (Value *V = SimplifyInstruction(N, TD)) { 1658 TranslateMap[BBI] = V; 1659 delete N; // Instruction folded away, don't need actual inst 1660 } else { 1661 // Insert the new instruction into its new home. 1662 EdgeBB->getInstList().insert(InsertPt, N); 1663 if (!BBI->use_empty()) 1664 TranslateMap[BBI] = N; 1665 } 1666 } 1667 1668 // Loop over all of the edges from PredBB to BB, changing them to branch 1669 // to EdgeBB instead. 1670 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1671 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1672 if (PredBBTI->getSuccessor(i) == BB) { 1673 BB->removePredecessor(PredBB); 1674 PredBBTI->setSuccessor(i, EdgeBB); 1675 } 1676 1677 // Recurse, simplifying any other constants. 1678 return FoldCondBranchOnPHI(BI, TD) | true; 1679 } 1680 1681 return false; 1682 } 1683 1684 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1685 /// PHI node, see if we can eliminate it. 1686 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) { 1687 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1688 // statement", which has a very simple dominance structure. Basically, we 1689 // are trying to find the condition that is being branched on, which 1690 // subsequently causes this merge to happen. We really want control 1691 // dependence information for this check, but simplifycfg can't keep it up 1692 // to date, and this catches most of the cases we care about anyway. 1693 BasicBlock *BB = PN->getParent(); 1694 BasicBlock *IfTrue, *IfFalse; 1695 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1696 if (!IfCond || 1697 // Don't bother if the branch will be constant folded trivially. 1698 isa<ConstantInt>(IfCond)) 1699 return false; 1700 1701 // Okay, we found that we can merge this two-entry phi node into a select. 1702 // Doing so would require us to fold *all* two entry phi nodes in this block. 1703 // At some point this becomes non-profitable (particularly if the target 1704 // doesn't support cmov's). Only do this transformation if there are two or 1705 // fewer PHI nodes in this block. 1706 unsigned NumPhis = 0; 1707 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1708 if (NumPhis > 2) 1709 return false; 1710 1711 // Loop over the PHI's seeing if we can promote them all to select 1712 // instructions. While we are at it, keep track of the instructions 1713 // that need to be moved to the dominating block. 1714 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1715 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1716 MaxCostVal1 = PHINodeFoldingThreshold; 1717 1718 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1719 PHINode *PN = cast<PHINode>(II++); 1720 if (Value *V = SimplifyInstruction(PN, TD)) { 1721 PN->replaceAllUsesWith(V); 1722 PN->eraseFromParent(); 1723 continue; 1724 } 1725 1726 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1727 MaxCostVal0) || 1728 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1729 MaxCostVal1)) 1730 return false; 1731 } 1732 1733 // If we folded the first phi, PN dangles at this point. Refresh it. If 1734 // we ran out of PHIs then we simplified them all. 1735 PN = dyn_cast<PHINode>(BB->begin()); 1736 if (PN == 0) return true; 1737 1738 // Don't fold i1 branches on PHIs which contain binary operators. These can 1739 // often be turned into switches and other things. 1740 if (PN->getType()->isIntegerTy(1) && 1741 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1742 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1743 isa<BinaryOperator>(IfCond))) 1744 return false; 1745 1746 // If we all PHI nodes are promotable, check to make sure that all 1747 // instructions in the predecessor blocks can be promoted as well. If 1748 // not, we won't be able to get rid of the control flow, so it's not 1749 // worth promoting to select instructions. 1750 BasicBlock *DomBlock = 0; 1751 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1752 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1753 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1754 IfBlock1 = 0; 1755 } else { 1756 DomBlock = *pred_begin(IfBlock1); 1757 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1758 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1759 // This is not an aggressive instruction that we can promote. 1760 // Because of this, we won't be able to get rid of the control 1761 // flow, so the xform is not worth it. 1762 return false; 1763 } 1764 } 1765 1766 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1767 IfBlock2 = 0; 1768 } else { 1769 DomBlock = *pred_begin(IfBlock2); 1770 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1771 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1772 // This is not an aggressive instruction that we can promote. 1773 // Because of this, we won't be able to get rid of the control 1774 // flow, so the xform is not worth it. 1775 return false; 1776 } 1777 } 1778 1779 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1780 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1781 1782 // If we can still promote the PHI nodes after this gauntlet of tests, 1783 // do all of the PHI's now. 1784 Instruction *InsertPt = DomBlock->getTerminator(); 1785 IRBuilder<true, NoFolder> Builder(InsertPt); 1786 1787 // Move all 'aggressive' instructions, which are defined in the 1788 // conditional parts of the if's up to the dominating block. 1789 if (IfBlock1) 1790 DomBlock->getInstList().splice(InsertPt, 1791 IfBlock1->getInstList(), IfBlock1->begin(), 1792 IfBlock1->getTerminator()); 1793 if (IfBlock2) 1794 DomBlock->getInstList().splice(InsertPt, 1795 IfBlock2->getInstList(), IfBlock2->begin(), 1796 IfBlock2->getTerminator()); 1797 1798 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1799 // Change the PHI node into a select instruction. 1800 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1801 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1802 1803 SelectInst *NV = 1804 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1805 PN->replaceAllUsesWith(NV); 1806 NV->takeName(PN); 1807 PN->eraseFromParent(); 1808 } 1809 1810 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1811 // has been flattened. Change DomBlock to jump directly to our new block to 1812 // avoid other simplifycfg's kicking in on the diamond. 1813 TerminatorInst *OldTI = DomBlock->getTerminator(); 1814 Builder.SetInsertPoint(OldTI); 1815 Builder.CreateBr(BB); 1816 OldTI->eraseFromParent(); 1817 return true; 1818 } 1819 1820 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1821 /// to two returning blocks, try to merge them together into one return, 1822 /// introducing a select if the return values disagree. 1823 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1824 IRBuilder<> &Builder) { 1825 assert(BI->isConditional() && "Must be a conditional branch"); 1826 BasicBlock *TrueSucc = BI->getSuccessor(0); 1827 BasicBlock *FalseSucc = BI->getSuccessor(1); 1828 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1829 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1830 1831 // Check to ensure both blocks are empty (just a return) or optionally empty 1832 // with PHI nodes. If there are other instructions, merging would cause extra 1833 // computation on one path or the other. 1834 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1835 return false; 1836 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1837 return false; 1838 1839 Builder.SetInsertPoint(BI); 1840 // Okay, we found a branch that is going to two return nodes. If 1841 // there is no return value for this function, just change the 1842 // branch into a return. 1843 if (FalseRet->getNumOperands() == 0) { 1844 TrueSucc->removePredecessor(BI->getParent()); 1845 FalseSucc->removePredecessor(BI->getParent()); 1846 Builder.CreateRetVoid(); 1847 EraseTerminatorInstAndDCECond(BI); 1848 return true; 1849 } 1850 1851 // Otherwise, figure out what the true and false return values are 1852 // so we can insert a new select instruction. 1853 Value *TrueValue = TrueRet->getReturnValue(); 1854 Value *FalseValue = FalseRet->getReturnValue(); 1855 1856 // Unwrap any PHI nodes in the return blocks. 1857 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1858 if (TVPN->getParent() == TrueSucc) 1859 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1860 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1861 if (FVPN->getParent() == FalseSucc) 1862 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1863 1864 // In order for this transformation to be safe, we must be able to 1865 // unconditionally execute both operands to the return. This is 1866 // normally the case, but we could have a potentially-trapping 1867 // constant expression that prevents this transformation from being 1868 // safe. 1869 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1870 if (TCV->canTrap()) 1871 return false; 1872 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1873 if (FCV->canTrap()) 1874 return false; 1875 1876 // Okay, we collected all the mapped values and checked them for sanity, and 1877 // defined to really do this transformation. First, update the CFG. 1878 TrueSucc->removePredecessor(BI->getParent()); 1879 FalseSucc->removePredecessor(BI->getParent()); 1880 1881 // Insert select instructions where needed. 1882 Value *BrCond = BI->getCondition(); 1883 if (TrueValue) { 1884 // Insert a select if the results differ. 1885 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1886 } else if (isa<UndefValue>(TrueValue)) { 1887 TrueValue = FalseValue; 1888 } else { 1889 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1890 FalseValue, "retval"); 1891 } 1892 } 1893 1894 Value *RI = !TrueValue ? 1895 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1896 1897 (void) RI; 1898 1899 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1900 << "\n " << *BI << "NewRet = " << *RI 1901 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1902 1903 EraseTerminatorInstAndDCECond(BI); 1904 1905 return true; 1906 } 1907 1908 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1909 /// probabilities of the branch taking each edge. Fills in the two APInt 1910 /// parameters and return true, or returns false if no or invalid metadata was 1911 /// found. 1912 static bool ExtractBranchMetadata(BranchInst *BI, 1913 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1914 assert(BI->isConditional() && 1915 "Looking for probabilities on unconditional branch?"); 1916 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1917 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1918 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1919 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1920 if (!CITrue || !CIFalse) return false; 1921 ProbTrue = CITrue->getValue().getZExtValue(); 1922 ProbFalse = CIFalse->getValue().getZExtValue(); 1923 return true; 1924 } 1925 1926 /// checkCSEInPredecessor - Return true if the given instruction is available 1927 /// in its predecessor block. If yes, the instruction will be removed. 1928 /// 1929 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1930 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1931 return false; 1932 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1933 Instruction *PBI = &*I; 1934 // Check whether Inst and PBI generate the same value. 1935 if (Inst->isIdenticalTo(PBI)) { 1936 Inst->replaceAllUsesWith(PBI); 1937 Inst->eraseFromParent(); 1938 return true; 1939 } 1940 } 1941 return false; 1942 } 1943 1944 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1945 /// predecessor branches to us and one of our successors, fold the block into 1946 /// the predecessor and use logical operations to pick the right destination. 1947 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1948 BasicBlock *BB = BI->getParent(); 1949 1950 Instruction *Cond = 0; 1951 if (BI->isConditional()) 1952 Cond = dyn_cast<Instruction>(BI->getCondition()); 1953 else { 1954 // For unconditional branch, check for a simple CFG pattern, where 1955 // BB has a single predecessor and BB's successor is also its predecessor's 1956 // successor. If such pattern exisits, check for CSE between BB and its 1957 // predecessor. 1958 if (BasicBlock *PB = BB->getSinglePredecessor()) 1959 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 1960 if (PBI->isConditional() && 1961 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 1962 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 1963 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 1964 I != E; ) { 1965 Instruction *Curr = I++; 1966 if (isa<CmpInst>(Curr)) { 1967 Cond = Curr; 1968 break; 1969 } 1970 // Quit if we can't remove this instruction. 1971 if (!checkCSEInPredecessor(Curr, PB)) 1972 return false; 1973 } 1974 } 1975 1976 if (Cond == 0) 1977 return false; 1978 } 1979 1980 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1981 Cond->getParent() != BB || !Cond->hasOneUse()) 1982 return false; 1983 1984 // Only allow this if the condition is a simple instruction that can be 1985 // executed unconditionally. It must be in the same block as the branch, and 1986 // must be at the front of the block. 1987 BasicBlock::iterator FrontIt = BB->front(); 1988 1989 // Ignore dbg intrinsics. 1990 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1991 1992 // Allow a single instruction to be hoisted in addition to the compare 1993 // that feeds the branch. We later ensure that any values that _it_ uses 1994 // were also live in the predecessor, so that we don't unnecessarily create 1995 // register pressure or inhibit out-of-order execution. 1996 Instruction *BonusInst = 0; 1997 if (&*FrontIt != Cond && 1998 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 1999 isSafeToSpeculativelyExecute(FrontIt)) { 2000 BonusInst = &*FrontIt; 2001 ++FrontIt; 2002 2003 // Ignore dbg intrinsics. 2004 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2005 } 2006 2007 // Only a single bonus inst is allowed. 2008 if (&*FrontIt != Cond) 2009 return false; 2010 2011 // Make sure the instruction after the condition is the cond branch. 2012 BasicBlock::iterator CondIt = Cond; ++CondIt; 2013 2014 // Ingore dbg intrinsics. 2015 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2016 2017 if (&*CondIt != BI) 2018 return false; 2019 2020 // Cond is known to be a compare or binary operator. Check to make sure that 2021 // neither operand is a potentially-trapping constant expression. 2022 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2023 if (CE->canTrap()) 2024 return false; 2025 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2026 if (CE->canTrap()) 2027 return false; 2028 2029 // Finally, don't infinitely unroll conditional loops. 2030 BasicBlock *TrueDest = BI->getSuccessor(0); 2031 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0; 2032 if (TrueDest == BB || FalseDest == BB) 2033 return false; 2034 2035 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2036 BasicBlock *PredBlock = *PI; 2037 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2038 2039 // Check that we have two conditional branches. If there is a PHI node in 2040 // the common successor, verify that the same value flows in from both 2041 // blocks. 2042 SmallVector<PHINode*, 4> PHIs; 2043 if (PBI == 0 || PBI->isUnconditional() || 2044 (BI->isConditional() && 2045 !SafeToMergeTerminators(BI, PBI)) || 2046 (!BI->isConditional() && 2047 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2048 continue; 2049 2050 // Determine if the two branches share a common destination. 2051 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2052 bool InvertPredCond = false; 2053 2054 if (BI->isConditional()) { 2055 if (PBI->getSuccessor(0) == TrueDest) 2056 Opc = Instruction::Or; 2057 else if (PBI->getSuccessor(1) == FalseDest) 2058 Opc = Instruction::And; 2059 else if (PBI->getSuccessor(0) == FalseDest) 2060 Opc = Instruction::And, InvertPredCond = true; 2061 else if (PBI->getSuccessor(1) == TrueDest) 2062 Opc = Instruction::Or, InvertPredCond = true; 2063 else 2064 continue; 2065 } else { 2066 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2067 continue; 2068 } 2069 2070 // Ensure that any values used in the bonus instruction are also used 2071 // by the terminator of the predecessor. This means that those values 2072 // must already have been resolved, so we won't be inhibiting the 2073 // out-of-order core by speculating them earlier. 2074 if (BonusInst) { 2075 // Collect the values used by the bonus inst 2076 SmallPtrSet<Value*, 4> UsedValues; 2077 for (Instruction::op_iterator OI = BonusInst->op_begin(), 2078 OE = BonusInst->op_end(); OI != OE; ++OI) { 2079 Value *V = *OI; 2080 if (!isa<Constant>(V)) 2081 UsedValues.insert(V); 2082 } 2083 2084 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2085 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2086 2087 // Walk up to four levels back up the use-def chain of the predecessor's 2088 // terminator to see if all those values were used. The choice of four 2089 // levels is arbitrary, to provide a compile-time-cost bound. 2090 while (!Worklist.empty()) { 2091 std::pair<Value*, unsigned> Pair = Worklist.back(); 2092 Worklist.pop_back(); 2093 2094 if (Pair.second >= 4) continue; 2095 UsedValues.erase(Pair.first); 2096 if (UsedValues.empty()) break; 2097 2098 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2099 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2100 OI != OE; ++OI) 2101 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2102 } 2103 } 2104 2105 if (!UsedValues.empty()) return false; 2106 } 2107 2108 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2109 IRBuilder<> Builder(PBI); 2110 2111 // If we need to invert the condition in the pred block to match, do so now. 2112 if (InvertPredCond) { 2113 Value *NewCond = PBI->getCondition(); 2114 2115 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2116 CmpInst *CI = cast<CmpInst>(NewCond); 2117 CI->setPredicate(CI->getInversePredicate()); 2118 } else { 2119 NewCond = Builder.CreateNot(NewCond, 2120 PBI->getCondition()->getName()+".not"); 2121 } 2122 2123 PBI->setCondition(NewCond); 2124 PBI->swapSuccessors(); 2125 } 2126 2127 // If we have a bonus inst, clone it into the predecessor block. 2128 Instruction *NewBonus = 0; 2129 if (BonusInst) { 2130 NewBonus = BonusInst->clone(); 2131 PredBlock->getInstList().insert(PBI, NewBonus); 2132 NewBonus->takeName(BonusInst); 2133 BonusInst->setName(BonusInst->getName()+".old"); 2134 } 2135 2136 // Clone Cond into the predecessor basic block, and or/and the 2137 // two conditions together. 2138 Instruction *New = Cond->clone(); 2139 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2140 PredBlock->getInstList().insert(PBI, New); 2141 New->takeName(Cond); 2142 Cond->setName(New->getName()+".old"); 2143 2144 if (BI->isConditional()) { 2145 Instruction *NewCond = 2146 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2147 New, "or.cond")); 2148 PBI->setCondition(NewCond); 2149 2150 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2151 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2152 PredFalseWeight); 2153 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2154 SuccFalseWeight); 2155 SmallVector<uint64_t, 8> NewWeights; 2156 2157 if (PBI->getSuccessor(0) == BB) { 2158 if (PredHasWeights && SuccHasWeights) { 2159 // PBI: br i1 %x, BB, FalseDest 2160 // BI: br i1 %y, TrueDest, FalseDest 2161 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2162 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2163 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2164 // TrueWeight for PBI * FalseWeight for BI. 2165 // We assume that total weights of a BranchInst can fit into 32 bits. 2166 // Therefore, we will not have overflow using 64-bit arithmetic. 2167 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2168 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2169 } 2170 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2171 PBI->setSuccessor(0, TrueDest); 2172 } 2173 if (PBI->getSuccessor(1) == BB) { 2174 if (PredHasWeights && SuccHasWeights) { 2175 // PBI: br i1 %x, TrueDest, BB 2176 // BI: br i1 %y, TrueDest, FalseDest 2177 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2178 // FalseWeight for PBI * TrueWeight for BI. 2179 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2180 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2181 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2182 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2183 } 2184 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2185 PBI->setSuccessor(1, FalseDest); 2186 } 2187 if (NewWeights.size() == 2) { 2188 // Halve the weights if any of them cannot fit in an uint32_t 2189 FitWeights(NewWeights); 2190 2191 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2192 PBI->setMetadata(LLVMContext::MD_prof, 2193 MDBuilder(BI->getContext()). 2194 createBranchWeights(MDWeights)); 2195 } else 2196 PBI->setMetadata(LLVMContext::MD_prof, NULL); 2197 } else { 2198 // Update PHI nodes in the common successors. 2199 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2200 ConstantInt *PBI_C = cast<ConstantInt>( 2201 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2202 assert(PBI_C->getType()->isIntegerTy(1)); 2203 Instruction *MergedCond = 0; 2204 if (PBI->getSuccessor(0) == TrueDest) { 2205 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2206 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2207 // is false: !PBI_Cond and BI_Value 2208 Instruction *NotCond = 2209 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2210 "not.cond")); 2211 MergedCond = 2212 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2213 NotCond, New, 2214 "and.cond")); 2215 if (PBI_C->isOne()) 2216 MergedCond = 2217 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2218 PBI->getCondition(), MergedCond, 2219 "or.cond")); 2220 } else { 2221 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2222 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2223 // is false: PBI_Cond and BI_Value 2224 MergedCond = 2225 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2226 PBI->getCondition(), New, 2227 "and.cond")); 2228 if (PBI_C->isOne()) { 2229 Instruction *NotCond = 2230 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2231 "not.cond")); 2232 MergedCond = 2233 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2234 NotCond, MergedCond, 2235 "or.cond")); 2236 } 2237 } 2238 // Update PHI Node. 2239 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2240 MergedCond); 2241 } 2242 // Change PBI from Conditional to Unconditional. 2243 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2244 EraseTerminatorInstAndDCECond(PBI); 2245 PBI = New_PBI; 2246 } 2247 2248 // TODO: If BB is reachable from all paths through PredBlock, then we 2249 // could replace PBI's branch probabilities with BI's. 2250 2251 // Copy any debug value intrinsics into the end of PredBlock. 2252 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2253 if (isa<DbgInfoIntrinsic>(*I)) 2254 I->clone()->insertBefore(PBI); 2255 2256 return true; 2257 } 2258 return false; 2259 } 2260 2261 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2262 /// predecessor of another block, this function tries to simplify it. We know 2263 /// that PBI and BI are both conditional branches, and BI is in one of the 2264 /// successor blocks of PBI - PBI branches to BI. 2265 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2266 assert(PBI->isConditional() && BI->isConditional()); 2267 BasicBlock *BB = BI->getParent(); 2268 2269 // If this block ends with a branch instruction, and if there is a 2270 // predecessor that ends on a branch of the same condition, make 2271 // this conditional branch redundant. 2272 if (PBI->getCondition() == BI->getCondition() && 2273 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2274 // Okay, the outcome of this conditional branch is statically 2275 // knowable. If this block had a single pred, handle specially. 2276 if (BB->getSinglePredecessor()) { 2277 // Turn this into a branch on constant. 2278 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2279 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2280 CondIsTrue)); 2281 return true; // Nuke the branch on constant. 2282 } 2283 2284 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2285 // in the constant and simplify the block result. Subsequent passes of 2286 // simplifycfg will thread the block. 2287 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2288 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2289 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2290 std::distance(PB, PE), 2291 BI->getCondition()->getName() + ".pr", 2292 BB->begin()); 2293 // Okay, we're going to insert the PHI node. Since PBI is not the only 2294 // predecessor, compute the PHI'd conditional value for all of the preds. 2295 // Any predecessor where the condition is not computable we keep symbolic. 2296 for (pred_iterator PI = PB; PI != PE; ++PI) { 2297 BasicBlock *P = *PI; 2298 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2299 PBI != BI && PBI->isConditional() && 2300 PBI->getCondition() == BI->getCondition() && 2301 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2302 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2303 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2304 CondIsTrue), P); 2305 } else { 2306 NewPN->addIncoming(BI->getCondition(), P); 2307 } 2308 } 2309 2310 BI->setCondition(NewPN); 2311 return true; 2312 } 2313 } 2314 2315 // If this is a conditional branch in an empty block, and if any 2316 // predecessors is a conditional branch to one of our destinations, 2317 // fold the conditions into logical ops and one cond br. 2318 BasicBlock::iterator BBI = BB->begin(); 2319 // Ignore dbg intrinsics. 2320 while (isa<DbgInfoIntrinsic>(BBI)) 2321 ++BBI; 2322 if (&*BBI != BI) 2323 return false; 2324 2325 2326 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2327 if (CE->canTrap()) 2328 return false; 2329 2330 int PBIOp, BIOp; 2331 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2332 PBIOp = BIOp = 0; 2333 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2334 PBIOp = 0, BIOp = 1; 2335 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2336 PBIOp = 1, BIOp = 0; 2337 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2338 PBIOp = BIOp = 1; 2339 else 2340 return false; 2341 2342 // Check to make sure that the other destination of this branch 2343 // isn't BB itself. If so, this is an infinite loop that will 2344 // keep getting unwound. 2345 if (PBI->getSuccessor(PBIOp) == BB) 2346 return false; 2347 2348 // Do not perform this transformation if it would require 2349 // insertion of a large number of select instructions. For targets 2350 // without predication/cmovs, this is a big pessimization. 2351 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2352 2353 unsigned NumPhis = 0; 2354 for (BasicBlock::iterator II = CommonDest->begin(); 2355 isa<PHINode>(II); ++II, ++NumPhis) 2356 if (NumPhis > 2) // Disable this xform. 2357 return false; 2358 2359 // Finally, if everything is ok, fold the branches to logical ops. 2360 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2361 2362 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2363 << "AND: " << *BI->getParent()); 2364 2365 2366 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2367 // branch in it, where one edge (OtherDest) goes back to itself but the other 2368 // exits. We don't *know* that the program avoids the infinite loop 2369 // (even though that seems likely). If we do this xform naively, we'll end up 2370 // recursively unpeeling the loop. Since we know that (after the xform is 2371 // done) that the block *is* infinite if reached, we just make it an obviously 2372 // infinite loop with no cond branch. 2373 if (OtherDest == BB) { 2374 // Insert it at the end of the function, because it's either code, 2375 // or it won't matter if it's hot. :) 2376 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2377 "infloop", BB->getParent()); 2378 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2379 OtherDest = InfLoopBlock; 2380 } 2381 2382 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2383 2384 // BI may have other predecessors. Because of this, we leave 2385 // it alone, but modify PBI. 2386 2387 // Make sure we get to CommonDest on True&True directions. 2388 Value *PBICond = PBI->getCondition(); 2389 IRBuilder<true, NoFolder> Builder(PBI); 2390 if (PBIOp) 2391 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2392 2393 Value *BICond = BI->getCondition(); 2394 if (BIOp) 2395 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2396 2397 // Merge the conditions. 2398 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2399 2400 // Modify PBI to branch on the new condition to the new dests. 2401 PBI->setCondition(Cond); 2402 PBI->setSuccessor(0, CommonDest); 2403 PBI->setSuccessor(1, OtherDest); 2404 2405 // Update branch weight for PBI. 2406 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2407 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2408 PredFalseWeight); 2409 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2410 SuccFalseWeight); 2411 if (PredHasWeights && SuccHasWeights) { 2412 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2413 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2414 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2415 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2416 // The weight to CommonDest should be PredCommon * SuccTotal + 2417 // PredOther * SuccCommon. 2418 // The weight to OtherDest should be PredOther * SuccOther. 2419 SmallVector<uint64_t, 2> NewWeights; 2420 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2421 PredOther * SuccCommon); 2422 NewWeights.push_back(PredOther * SuccOther); 2423 // Halve the weights if any of them cannot fit in an uint32_t 2424 FitWeights(NewWeights); 2425 2426 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2427 PBI->setMetadata(LLVMContext::MD_prof, 2428 MDBuilder(BI->getContext()). 2429 createBranchWeights(MDWeights)); 2430 } 2431 2432 // OtherDest may have phi nodes. If so, add an entry from PBI's 2433 // block that are identical to the entries for BI's block. 2434 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2435 2436 // We know that the CommonDest already had an edge from PBI to 2437 // it. If it has PHIs though, the PHIs may have different 2438 // entries for BB and PBI's BB. If so, insert a select to make 2439 // them agree. 2440 PHINode *PN; 2441 for (BasicBlock::iterator II = CommonDest->begin(); 2442 (PN = dyn_cast<PHINode>(II)); ++II) { 2443 Value *BIV = PN->getIncomingValueForBlock(BB); 2444 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2445 Value *PBIV = PN->getIncomingValue(PBBIdx); 2446 if (BIV != PBIV) { 2447 // Insert a select in PBI to pick the right value. 2448 Value *NV = cast<SelectInst> 2449 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2450 PN->setIncomingValue(PBBIdx, NV); 2451 } 2452 } 2453 2454 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2455 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2456 2457 // This basic block is probably dead. We know it has at least 2458 // one fewer predecessor. 2459 return true; 2460 } 2461 2462 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2463 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2464 // Takes care of updating the successors and removing the old terminator. 2465 // Also makes sure not to introduce new successors by assuming that edges to 2466 // non-successor TrueBBs and FalseBBs aren't reachable. 2467 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2468 BasicBlock *TrueBB, BasicBlock *FalseBB, 2469 uint32_t TrueWeight, 2470 uint32_t FalseWeight){ 2471 // Remove any superfluous successor edges from the CFG. 2472 // First, figure out which successors to preserve. 2473 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2474 // successor. 2475 BasicBlock *KeepEdge1 = TrueBB; 2476 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 2477 2478 // Then remove the rest. 2479 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2480 BasicBlock *Succ = OldTerm->getSuccessor(I); 2481 // Make sure only to keep exactly one copy of each edge. 2482 if (Succ == KeepEdge1) 2483 KeepEdge1 = 0; 2484 else if (Succ == KeepEdge2) 2485 KeepEdge2 = 0; 2486 else 2487 Succ->removePredecessor(OldTerm->getParent()); 2488 } 2489 2490 IRBuilder<> Builder(OldTerm); 2491 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2492 2493 // Insert an appropriate new terminator. 2494 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 2495 if (TrueBB == FalseBB) 2496 // We were only looking for one successor, and it was present. 2497 // Create an unconditional branch to it. 2498 Builder.CreateBr(TrueBB); 2499 else { 2500 // We found both of the successors we were looking for. 2501 // Create a conditional branch sharing the condition of the select. 2502 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2503 if (TrueWeight != FalseWeight) 2504 NewBI->setMetadata(LLVMContext::MD_prof, 2505 MDBuilder(OldTerm->getContext()). 2506 createBranchWeights(TrueWeight, FalseWeight)); 2507 } 2508 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2509 // Neither of the selected blocks were successors, so this 2510 // terminator must be unreachable. 2511 new UnreachableInst(OldTerm->getContext(), OldTerm); 2512 } else { 2513 // One of the selected values was a successor, but the other wasn't. 2514 // Insert an unconditional branch to the one that was found; 2515 // the edge to the one that wasn't must be unreachable. 2516 if (KeepEdge1 == 0) 2517 // Only TrueBB was found. 2518 Builder.CreateBr(TrueBB); 2519 else 2520 // Only FalseBB was found. 2521 Builder.CreateBr(FalseBB); 2522 } 2523 2524 EraseTerminatorInstAndDCECond(OldTerm); 2525 return true; 2526 } 2527 2528 // SimplifySwitchOnSelect - Replaces 2529 // (switch (select cond, X, Y)) on constant X, Y 2530 // with a branch - conditional if X and Y lead to distinct BBs, 2531 // unconditional otherwise. 2532 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2533 // Check for constant integer values in the select. 2534 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2535 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2536 if (!TrueVal || !FalseVal) 2537 return false; 2538 2539 // Find the relevant condition and destinations. 2540 Value *Condition = Select->getCondition(); 2541 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2542 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2543 2544 // Get weight for TrueBB and FalseBB. 2545 uint32_t TrueWeight = 0, FalseWeight = 0; 2546 SmallVector<uint64_t, 8> Weights; 2547 bool HasWeights = HasBranchWeights(SI); 2548 if (HasWeights) { 2549 GetBranchWeights(SI, Weights); 2550 if (Weights.size() == 1 + SI->getNumCases()) { 2551 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2552 getSuccessorIndex()]; 2553 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2554 getSuccessorIndex()]; 2555 } 2556 } 2557 2558 // Perform the actual simplification. 2559 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2560 TrueWeight, FalseWeight); 2561 } 2562 2563 // SimplifyIndirectBrOnSelect - Replaces 2564 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2565 // blockaddress(@fn, BlockB))) 2566 // with 2567 // (br cond, BlockA, BlockB). 2568 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2569 // Check that both operands of the select are block addresses. 2570 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2571 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2572 if (!TBA || !FBA) 2573 return false; 2574 2575 // Extract the actual blocks. 2576 BasicBlock *TrueBB = TBA->getBasicBlock(); 2577 BasicBlock *FalseBB = FBA->getBasicBlock(); 2578 2579 // Perform the actual simplification. 2580 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2581 0, 0); 2582 } 2583 2584 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2585 /// instruction (a seteq/setne with a constant) as the only instruction in a 2586 /// block that ends with an uncond branch. We are looking for a very specific 2587 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2588 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2589 /// default value goes to an uncond block with a seteq in it, we get something 2590 /// like: 2591 /// 2592 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2593 /// DEFAULT: 2594 /// %tmp = icmp eq i8 %A, 92 2595 /// br label %end 2596 /// end: 2597 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2598 /// 2599 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2600 /// the PHI, merging the third icmp into the switch. 2601 static bool TryToSimplifyUncondBranchWithICmpInIt( 2602 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2603 const DataLayout *TD) { 2604 BasicBlock *BB = ICI->getParent(); 2605 2606 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2607 // complex. 2608 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2609 2610 Value *V = ICI->getOperand(0); 2611 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2612 2613 // The pattern we're looking for is where our only predecessor is a switch on 2614 // 'V' and this block is the default case for the switch. In this case we can 2615 // fold the compared value into the switch to simplify things. 2616 BasicBlock *Pred = BB->getSinglePredecessor(); 2617 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 2618 2619 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2620 if (SI->getCondition() != V) 2621 return false; 2622 2623 // If BB is reachable on a non-default case, then we simply know the value of 2624 // V in this block. Substitute it and constant fold the icmp instruction 2625 // away. 2626 if (SI->getDefaultDest() != BB) { 2627 ConstantInt *VVal = SI->findCaseDest(BB); 2628 assert(VVal && "Should have a unique destination value"); 2629 ICI->setOperand(0, VVal); 2630 2631 if (Value *V = SimplifyInstruction(ICI, TD)) { 2632 ICI->replaceAllUsesWith(V); 2633 ICI->eraseFromParent(); 2634 } 2635 // BB is now empty, so it is likely to simplify away. 2636 return SimplifyCFG(BB, TTI, TD) | true; 2637 } 2638 2639 // Ok, the block is reachable from the default dest. If the constant we're 2640 // comparing exists in one of the other edges, then we can constant fold ICI 2641 // and zap it. 2642 if (SI->findCaseValue(Cst) != SI->case_default()) { 2643 Value *V; 2644 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2645 V = ConstantInt::getFalse(BB->getContext()); 2646 else 2647 V = ConstantInt::getTrue(BB->getContext()); 2648 2649 ICI->replaceAllUsesWith(V); 2650 ICI->eraseFromParent(); 2651 // BB is now empty, so it is likely to simplify away. 2652 return SimplifyCFG(BB, TTI, TD) | true; 2653 } 2654 2655 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2656 // the block. 2657 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2658 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 2659 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 2660 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2661 return false; 2662 2663 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2664 // true in the PHI. 2665 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2666 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2667 2668 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2669 std::swap(DefaultCst, NewCst); 2670 2671 // Replace ICI (which is used by the PHI for the default value) with true or 2672 // false depending on if it is EQ or NE. 2673 ICI->replaceAllUsesWith(DefaultCst); 2674 ICI->eraseFromParent(); 2675 2676 // Okay, the switch goes to this block on a default value. Add an edge from 2677 // the switch to the merge point on the compared value. 2678 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2679 BB->getParent(), BB); 2680 SmallVector<uint64_t, 8> Weights; 2681 bool HasWeights = HasBranchWeights(SI); 2682 if (HasWeights) { 2683 GetBranchWeights(SI, Weights); 2684 if (Weights.size() == 1 + SI->getNumCases()) { 2685 // Split weight for default case to case for "Cst". 2686 Weights[0] = (Weights[0]+1) >> 1; 2687 Weights.push_back(Weights[0]); 2688 2689 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2690 SI->setMetadata(LLVMContext::MD_prof, 2691 MDBuilder(SI->getContext()). 2692 createBranchWeights(MDWeights)); 2693 } 2694 } 2695 SI->addCase(Cst, NewBB); 2696 2697 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2698 Builder.SetInsertPoint(NewBB); 2699 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2700 Builder.CreateBr(SuccBlock); 2701 PHIUse->addIncoming(NewCst, NewBB); 2702 return true; 2703 } 2704 2705 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2706 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2707 /// fold it into a switch instruction if so. 2708 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD, 2709 IRBuilder<> &Builder) { 2710 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2711 if (Cond == 0) return false; 2712 2713 2714 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2715 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2716 // 'setne's and'ed together, collect them. 2717 Value *CompVal = 0; 2718 std::vector<ConstantInt*> Values; 2719 bool TrueWhenEqual = true; 2720 Value *ExtraCase = 0; 2721 unsigned UsedICmps = 0; 2722 2723 if (Cond->getOpcode() == Instruction::Or) { 2724 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2725 UsedICmps); 2726 } else if (Cond->getOpcode() == Instruction::And) { 2727 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2728 UsedICmps); 2729 TrueWhenEqual = false; 2730 } 2731 2732 // If we didn't have a multiply compared value, fail. 2733 if (CompVal == 0) return false; 2734 2735 // Avoid turning single icmps into a switch. 2736 if (UsedICmps <= 1) 2737 return false; 2738 2739 // There might be duplicate constants in the list, which the switch 2740 // instruction can't handle, remove them now. 2741 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2742 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2743 2744 // If Extra was used, we require at least two switch values to do the 2745 // transformation. A switch with one value is just an cond branch. 2746 if (ExtraCase && Values.size() < 2) return false; 2747 2748 // TODO: Preserve branch weight metadata, similarly to how 2749 // FoldValueComparisonIntoPredecessors preserves it. 2750 2751 // Figure out which block is which destination. 2752 BasicBlock *DefaultBB = BI->getSuccessor(1); 2753 BasicBlock *EdgeBB = BI->getSuccessor(0); 2754 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2755 2756 BasicBlock *BB = BI->getParent(); 2757 2758 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2759 << " cases into SWITCH. BB is:\n" << *BB); 2760 2761 // If there are any extra values that couldn't be folded into the switch 2762 // then we evaluate them with an explicit branch first. Split the block 2763 // right before the condbr to handle it. 2764 if (ExtraCase) { 2765 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2766 // Remove the uncond branch added to the old block. 2767 TerminatorInst *OldTI = BB->getTerminator(); 2768 Builder.SetInsertPoint(OldTI); 2769 2770 if (TrueWhenEqual) 2771 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2772 else 2773 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2774 2775 OldTI->eraseFromParent(); 2776 2777 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2778 // for the edge we just added. 2779 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2780 2781 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2782 << "\nEXTRABB = " << *BB); 2783 BB = NewBB; 2784 } 2785 2786 Builder.SetInsertPoint(BI); 2787 // Convert pointer to int before we switch. 2788 if (CompVal->getType()->isPointerTy()) { 2789 assert(TD && "Cannot switch on pointer without DataLayout"); 2790 CompVal = Builder.CreatePtrToInt(CompVal, 2791 TD->getIntPtrType(CompVal->getContext()), 2792 "magicptr"); 2793 } 2794 2795 // Create the new switch instruction now. 2796 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2797 2798 // Add all of the 'cases' to the switch instruction. 2799 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2800 New->addCase(Values[i], EdgeBB); 2801 2802 // We added edges from PI to the EdgeBB. As such, if there were any 2803 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2804 // the number of edges added. 2805 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2806 isa<PHINode>(BBI); ++BBI) { 2807 PHINode *PN = cast<PHINode>(BBI); 2808 Value *InVal = PN->getIncomingValueForBlock(BB); 2809 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2810 PN->addIncoming(InVal, BB); 2811 } 2812 2813 // Erase the old branch instruction. 2814 EraseTerminatorInstAndDCECond(BI); 2815 2816 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2817 return true; 2818 } 2819 2820 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2821 // If this is a trivial landing pad that just continues unwinding the caught 2822 // exception then zap the landing pad, turning its invokes into calls. 2823 BasicBlock *BB = RI->getParent(); 2824 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2825 if (RI->getValue() != LPInst) 2826 // Not a landing pad, or the resume is not unwinding the exception that 2827 // caused control to branch here. 2828 return false; 2829 2830 // Check that there are no other instructions except for debug intrinsics. 2831 BasicBlock::iterator I = LPInst, E = RI; 2832 while (++I != E) 2833 if (!isa<DbgInfoIntrinsic>(I)) 2834 return false; 2835 2836 // Turn all invokes that unwind here into calls and delete the basic block. 2837 bool InvokeRequiresTableEntry = false; 2838 bool Changed = false; 2839 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2840 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2841 2842 if (II->hasFnAttr(Attribute::UWTable)) { 2843 // Don't remove an `invoke' instruction if the ABI requires an entry into 2844 // the table. 2845 InvokeRequiresTableEntry = true; 2846 continue; 2847 } 2848 2849 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2850 2851 // Insert a call instruction before the invoke. 2852 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2853 Call->takeName(II); 2854 Call->setCallingConv(II->getCallingConv()); 2855 Call->setAttributes(II->getAttributes()); 2856 Call->setDebugLoc(II->getDebugLoc()); 2857 2858 // Anything that used the value produced by the invoke instruction now uses 2859 // the value produced by the call instruction. Note that we do this even 2860 // for void functions and calls with no uses so that the callgraph edge is 2861 // updated. 2862 II->replaceAllUsesWith(Call); 2863 BB->removePredecessor(II->getParent()); 2864 2865 // Insert a branch to the normal destination right before the invoke. 2866 BranchInst::Create(II->getNormalDest(), II); 2867 2868 // Finally, delete the invoke instruction! 2869 II->eraseFromParent(); 2870 Changed = true; 2871 } 2872 2873 if (!InvokeRequiresTableEntry) 2874 // The landingpad is now unreachable. Zap it. 2875 BB->eraseFromParent(); 2876 2877 return Changed; 2878 } 2879 2880 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2881 BasicBlock *BB = RI->getParent(); 2882 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2883 2884 // Find predecessors that end with branches. 2885 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2886 SmallVector<BranchInst*, 8> CondBranchPreds; 2887 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2888 BasicBlock *P = *PI; 2889 TerminatorInst *PTI = P->getTerminator(); 2890 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2891 if (BI->isUnconditional()) 2892 UncondBranchPreds.push_back(P); 2893 else 2894 CondBranchPreds.push_back(BI); 2895 } 2896 } 2897 2898 // If we found some, do the transformation! 2899 if (!UncondBranchPreds.empty() && DupRet) { 2900 while (!UncondBranchPreds.empty()) { 2901 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2902 DEBUG(dbgs() << "FOLDING: " << *BB 2903 << "INTO UNCOND BRANCH PRED: " << *Pred); 2904 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2905 } 2906 2907 // If we eliminated all predecessors of the block, delete the block now. 2908 if (pred_begin(BB) == pred_end(BB)) 2909 // We know there are no successors, so just nuke the block. 2910 BB->eraseFromParent(); 2911 2912 return true; 2913 } 2914 2915 // Check out all of the conditional branches going to this return 2916 // instruction. If any of them just select between returns, change the 2917 // branch itself into a select/return pair. 2918 while (!CondBranchPreds.empty()) { 2919 BranchInst *BI = CondBranchPreds.pop_back_val(); 2920 2921 // Check to see if the non-BB successor is also a return block. 2922 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2923 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2924 SimplifyCondBranchToTwoReturns(BI, Builder)) 2925 return true; 2926 } 2927 return false; 2928 } 2929 2930 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2931 BasicBlock *BB = UI->getParent(); 2932 2933 bool Changed = false; 2934 2935 // If there are any instructions immediately before the unreachable that can 2936 // be removed, do so. 2937 while (UI != BB->begin()) { 2938 BasicBlock::iterator BBI = UI; 2939 --BBI; 2940 // Do not delete instructions that can have side effects which might cause 2941 // the unreachable to not be reachable; specifically, calls and volatile 2942 // operations may have this effect. 2943 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2944 2945 if (BBI->mayHaveSideEffects()) { 2946 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2947 if (SI->isVolatile()) 2948 break; 2949 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2950 if (LI->isVolatile()) 2951 break; 2952 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2953 if (RMWI->isVolatile()) 2954 break; 2955 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2956 if (CXI->isVolatile()) 2957 break; 2958 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2959 !isa<LandingPadInst>(BBI)) { 2960 break; 2961 } 2962 // Note that deleting LandingPad's here is in fact okay, although it 2963 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2964 // all the predecessors of this block will be the unwind edges of Invokes, 2965 // and we can therefore guarantee this block will be erased. 2966 } 2967 2968 // Delete this instruction (any uses are guaranteed to be dead) 2969 if (!BBI->use_empty()) 2970 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2971 BBI->eraseFromParent(); 2972 Changed = true; 2973 } 2974 2975 // If the unreachable instruction is the first in the block, take a gander 2976 // at all of the predecessors of this instruction, and simplify them. 2977 if (&BB->front() != UI) return Changed; 2978 2979 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2980 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 2981 TerminatorInst *TI = Preds[i]->getTerminator(); 2982 IRBuilder<> Builder(TI); 2983 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2984 if (BI->isUnconditional()) { 2985 if (BI->getSuccessor(0) == BB) { 2986 new UnreachableInst(TI->getContext(), TI); 2987 TI->eraseFromParent(); 2988 Changed = true; 2989 } 2990 } else { 2991 if (BI->getSuccessor(0) == BB) { 2992 Builder.CreateBr(BI->getSuccessor(1)); 2993 EraseTerminatorInstAndDCECond(BI); 2994 } else if (BI->getSuccessor(1) == BB) { 2995 Builder.CreateBr(BI->getSuccessor(0)); 2996 EraseTerminatorInstAndDCECond(BI); 2997 Changed = true; 2998 } 2999 } 3000 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3001 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3002 i != e; ++i) 3003 if (i.getCaseSuccessor() == BB) { 3004 BB->removePredecessor(SI->getParent()); 3005 SI->removeCase(i); 3006 --i; --e; 3007 Changed = true; 3008 } 3009 // If the default value is unreachable, figure out the most popular 3010 // destination and make it the default. 3011 if (SI->getDefaultDest() == BB) { 3012 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 3013 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3014 i != e; ++i) { 3015 std::pair<unsigned, unsigned> &entry = 3016 Popularity[i.getCaseSuccessor()]; 3017 if (entry.first == 0) { 3018 entry.first = 1; 3019 entry.second = i.getCaseIndex(); 3020 } else { 3021 entry.first++; 3022 } 3023 } 3024 3025 // Find the most popular block. 3026 unsigned MaxPop = 0; 3027 unsigned MaxIndex = 0; 3028 BasicBlock *MaxBlock = 0; 3029 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 3030 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 3031 if (I->second.first > MaxPop || 3032 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 3033 MaxPop = I->second.first; 3034 MaxIndex = I->second.second; 3035 MaxBlock = I->first; 3036 } 3037 } 3038 if (MaxBlock) { 3039 // Make this the new default, allowing us to delete any explicit 3040 // edges to it. 3041 SI->setDefaultDest(MaxBlock); 3042 Changed = true; 3043 3044 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 3045 // it. 3046 if (isa<PHINode>(MaxBlock->begin())) 3047 for (unsigned i = 0; i != MaxPop-1; ++i) 3048 MaxBlock->removePredecessor(SI->getParent()); 3049 3050 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3051 i != e; ++i) 3052 if (i.getCaseSuccessor() == MaxBlock) { 3053 SI->removeCase(i); 3054 --i; --e; 3055 } 3056 } 3057 } 3058 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3059 if (II->getUnwindDest() == BB) { 3060 // Convert the invoke to a call instruction. This would be a good 3061 // place to note that the call does not throw though. 3062 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3063 II->removeFromParent(); // Take out of symbol table 3064 3065 // Insert the call now... 3066 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3067 Builder.SetInsertPoint(BI); 3068 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3069 Args, II->getName()); 3070 CI->setCallingConv(II->getCallingConv()); 3071 CI->setAttributes(II->getAttributes()); 3072 // If the invoke produced a value, the call does now instead. 3073 II->replaceAllUsesWith(CI); 3074 delete II; 3075 Changed = true; 3076 } 3077 } 3078 } 3079 3080 // If this block is now dead, remove it. 3081 if (pred_begin(BB) == pred_end(BB) && 3082 BB != &BB->getParent()->getEntryBlock()) { 3083 // We know there are no successors, so just nuke the block. 3084 BB->eraseFromParent(); 3085 return true; 3086 } 3087 3088 return Changed; 3089 } 3090 3091 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 3092 /// integer range comparison into a sub, an icmp and a branch. 3093 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3094 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3095 3096 // Make sure all cases point to the same destination and gather the values. 3097 SmallVector<ConstantInt *, 16> Cases; 3098 SwitchInst::CaseIt I = SI->case_begin(); 3099 Cases.push_back(I.getCaseValue()); 3100 SwitchInst::CaseIt PrevI = I++; 3101 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3102 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3103 return false; 3104 Cases.push_back(I.getCaseValue()); 3105 } 3106 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3107 3108 // Sort the case values, then check if they form a range we can transform. 3109 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3110 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3111 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3112 return false; 3113 } 3114 3115 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3116 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3117 3118 Value *Sub = SI->getCondition(); 3119 if (!Offset->isNullValue()) 3120 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3121 Value *Cmp; 3122 // If NumCases overflowed, then all possible values jump to the successor. 3123 if (NumCases->isNullValue() && SI->getNumCases() != 0) 3124 Cmp = ConstantInt::getTrue(SI->getContext()); 3125 else 3126 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3127 BranchInst *NewBI = Builder.CreateCondBr( 3128 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3129 3130 // Update weight for the newly-created conditional branch. 3131 SmallVector<uint64_t, 8> Weights; 3132 bool HasWeights = HasBranchWeights(SI); 3133 if (HasWeights) { 3134 GetBranchWeights(SI, Weights); 3135 if (Weights.size() == 1 + SI->getNumCases()) { 3136 // Combine all weights for the cases to be the true weight of NewBI. 3137 // We assume that the sum of all weights for a Terminator can fit into 32 3138 // bits. 3139 uint32_t NewTrueWeight = 0; 3140 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3141 NewTrueWeight += (uint32_t)Weights[I]; 3142 NewBI->setMetadata(LLVMContext::MD_prof, 3143 MDBuilder(SI->getContext()). 3144 createBranchWeights(NewTrueWeight, 3145 (uint32_t)Weights[0])); 3146 } 3147 } 3148 3149 // Prune obsolete incoming values off the successor's PHI nodes. 3150 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3151 isa<PHINode>(BBI); ++BBI) { 3152 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3153 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3154 } 3155 SI->eraseFromParent(); 3156 3157 return true; 3158 } 3159 3160 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3161 /// and use it to remove dead cases. 3162 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3163 Value *Cond = SI->getCondition(); 3164 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3165 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3166 ComputeMaskedBits(Cond, KnownZero, KnownOne); 3167 3168 // Gather dead cases. 3169 SmallVector<ConstantInt*, 8> DeadCases; 3170 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3171 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3172 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3173 DeadCases.push_back(I.getCaseValue()); 3174 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3175 << I.getCaseValue() << "' is dead.\n"); 3176 } 3177 } 3178 3179 SmallVector<uint64_t, 8> Weights; 3180 bool HasWeight = HasBranchWeights(SI); 3181 if (HasWeight) { 3182 GetBranchWeights(SI, Weights); 3183 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3184 } 3185 3186 // Remove dead cases from the switch. 3187 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3188 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3189 assert(Case != SI->case_default() && 3190 "Case was not found. Probably mistake in DeadCases forming."); 3191 if (HasWeight) { 3192 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3193 Weights.pop_back(); 3194 } 3195 3196 // Prune unused values from PHI nodes. 3197 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3198 SI->removeCase(Case); 3199 } 3200 if (HasWeight) { 3201 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3202 SI->setMetadata(LLVMContext::MD_prof, 3203 MDBuilder(SI->getParent()->getContext()). 3204 createBranchWeights(MDWeights)); 3205 } 3206 3207 return !DeadCases.empty(); 3208 } 3209 3210 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3211 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3212 /// by an unconditional branch), look at the phi node for BB in the successor 3213 /// block and see if the incoming value is equal to CaseValue. If so, return 3214 /// the phi node, and set PhiIndex to BB's index in the phi node. 3215 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3216 BasicBlock *BB, 3217 int *PhiIndex) { 3218 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3219 return NULL; // BB must be empty to be a candidate for simplification. 3220 if (!BB->getSinglePredecessor()) 3221 return NULL; // BB must be dominated by the switch. 3222 3223 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3224 if (!Branch || !Branch->isUnconditional()) 3225 return NULL; // Terminator must be unconditional branch. 3226 3227 BasicBlock *Succ = Branch->getSuccessor(0); 3228 3229 BasicBlock::iterator I = Succ->begin(); 3230 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3231 int Idx = PHI->getBasicBlockIndex(BB); 3232 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3233 3234 Value *InValue = PHI->getIncomingValue(Idx); 3235 if (InValue != CaseValue) continue; 3236 3237 *PhiIndex = Idx; 3238 return PHI; 3239 } 3240 3241 return NULL; 3242 } 3243 3244 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3245 /// instruction to a phi node dominated by the switch, if that would mean that 3246 /// some of the destination blocks of the switch can be folded away. 3247 /// Returns true if a change is made. 3248 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3249 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3250 ForwardingNodesMap ForwardingNodes; 3251 3252 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3253 ConstantInt *CaseValue = I.getCaseValue(); 3254 BasicBlock *CaseDest = I.getCaseSuccessor(); 3255 3256 int PhiIndex; 3257 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3258 &PhiIndex); 3259 if (!PHI) continue; 3260 3261 ForwardingNodes[PHI].push_back(PhiIndex); 3262 } 3263 3264 bool Changed = false; 3265 3266 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3267 E = ForwardingNodes.end(); I != E; ++I) { 3268 PHINode *Phi = I->first; 3269 SmallVectorImpl<int> &Indexes = I->second; 3270 3271 if (Indexes.size() < 2) continue; 3272 3273 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3274 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3275 Changed = true; 3276 } 3277 3278 return Changed; 3279 } 3280 3281 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3282 /// initializing an array of constants like C. 3283 static bool ValidLookupTableConstant(Constant *C) { 3284 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3285 return CE->isGEPWithNoNotionalOverIndexing(); 3286 3287 return isa<ConstantFP>(C) || 3288 isa<ConstantInt>(C) || 3289 isa<ConstantPointerNull>(C) || 3290 isa<GlobalValue>(C) || 3291 isa<UndefValue>(C); 3292 } 3293 3294 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3295 /// its constant value in ConstantPool, returning 0 if it's not there. 3296 static Constant *LookupConstant(Value *V, 3297 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3298 if (Constant *C = dyn_cast<Constant>(V)) 3299 return C; 3300 return ConstantPool.lookup(V); 3301 } 3302 3303 /// ConstantFold - Try to fold instruction I into a constant. This works for 3304 /// simple instructions such as binary operations where both operands are 3305 /// constant or can be replaced by constants from the ConstantPool. Returns the 3306 /// resulting constant on success, 0 otherwise. 3307 static Constant *ConstantFold(Instruction *I, 3308 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3309 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3310 Constant *A = LookupConstant(BO->getOperand(0), ConstantPool); 3311 if (!A) 3312 return 0; 3313 Constant *B = LookupConstant(BO->getOperand(1), ConstantPool); 3314 if (!B) 3315 return 0; 3316 return ConstantExpr::get(BO->getOpcode(), A, B); 3317 } 3318 3319 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 3320 Constant *A = LookupConstant(I->getOperand(0), ConstantPool); 3321 if (!A) 3322 return 0; 3323 Constant *B = LookupConstant(I->getOperand(1), ConstantPool); 3324 if (!B) 3325 return 0; 3326 return ConstantExpr::getCompare(Cmp->getPredicate(), A, B); 3327 } 3328 3329 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3330 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3331 if (!A) 3332 return 0; 3333 if (A->isAllOnesValue()) 3334 return LookupConstant(Select->getTrueValue(), ConstantPool); 3335 if (A->isNullValue()) 3336 return LookupConstant(Select->getFalseValue(), ConstantPool); 3337 return 0; 3338 } 3339 3340 if (CastInst *Cast = dyn_cast<CastInst>(I)) { 3341 Constant *A = LookupConstant(I->getOperand(0), ConstantPool); 3342 if (!A) 3343 return 0; 3344 return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy()); 3345 } 3346 3347 return 0; 3348 } 3349 3350 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3351 /// at the common destination basic block, *CommonDest, for one of the case 3352 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3353 /// case), of a switch instruction SI. 3354 static bool 3355 GetCaseResults(SwitchInst *SI, 3356 ConstantInt *CaseVal, 3357 BasicBlock *CaseDest, 3358 BasicBlock **CommonDest, 3359 SmallVectorImpl<std::pair<PHINode*,Constant*> > &Res) { 3360 // The block from which we enter the common destination. 3361 BasicBlock *Pred = SI->getParent(); 3362 3363 // If CaseDest is empty except for some side-effect free instructions through 3364 // which we can constant-propagate the CaseVal, continue to its successor. 3365 SmallDenseMap<Value*, Constant*> ConstantPool; 3366 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3367 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3368 ++I) { 3369 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3370 // If the terminator is a simple branch, continue to the next block. 3371 if (T->getNumSuccessors() != 1) 3372 return false; 3373 Pred = CaseDest; 3374 CaseDest = T->getSuccessor(0); 3375 } else if (isa<DbgInfoIntrinsic>(I)) { 3376 // Skip debug intrinsic. 3377 continue; 3378 } else if (Constant *C = ConstantFold(I, ConstantPool)) { 3379 // Instruction is side-effect free and constant. 3380 ConstantPool.insert(std::make_pair(I, C)); 3381 } else { 3382 break; 3383 } 3384 } 3385 3386 // If we did not have a CommonDest before, use the current one. 3387 if (!*CommonDest) 3388 *CommonDest = CaseDest; 3389 // If the destination isn't the common one, abort. 3390 if (CaseDest != *CommonDest) 3391 return false; 3392 3393 // Get the values for this case from phi nodes in the destination block. 3394 BasicBlock::iterator I = (*CommonDest)->begin(); 3395 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3396 int Idx = PHI->getBasicBlockIndex(Pred); 3397 if (Idx == -1) 3398 continue; 3399 3400 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3401 ConstantPool); 3402 if (!ConstVal) 3403 return false; 3404 3405 // Note: If the constant comes from constant-propagating the case value 3406 // through the CaseDest basic block, it will be safe to remove the 3407 // instructions in that block. They cannot be used (except in the phi nodes 3408 // we visit) outside CaseDest, because that block does not dominate its 3409 // successor. If it did, we would not be in this phi node. 3410 3411 // Be conservative about which kinds of constants we support. 3412 if (!ValidLookupTableConstant(ConstVal)) 3413 return false; 3414 3415 Res.push_back(std::make_pair(PHI, ConstVal)); 3416 } 3417 3418 return true; 3419 } 3420 3421 namespace { 3422 /// SwitchLookupTable - This class represents a lookup table that can be used 3423 /// to replace a switch. 3424 class SwitchLookupTable { 3425 public: 3426 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3427 /// with the contents of Values, using DefaultValue to fill any holes in the 3428 /// table. 3429 SwitchLookupTable(Module &M, 3430 uint64_t TableSize, 3431 ConstantInt *Offset, 3432 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3433 Constant *DefaultValue, 3434 const DataLayout *TD); 3435 3436 /// BuildLookup - Build instructions with Builder to retrieve the value at 3437 /// the position given by Index in the lookup table. 3438 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3439 3440 /// WouldFitInRegister - Return true if a table with TableSize elements of 3441 /// type ElementType would fit in a target-legal register. 3442 static bool WouldFitInRegister(const DataLayout *TD, 3443 uint64_t TableSize, 3444 const Type *ElementType); 3445 3446 private: 3447 // Depending on the contents of the table, it can be represented in 3448 // different ways. 3449 enum { 3450 // For tables where each element contains the same value, we just have to 3451 // store that single value and return it for each lookup. 3452 SingleValueKind, 3453 3454 // For small tables with integer elements, we can pack them into a bitmap 3455 // that fits into a target-legal register. Values are retrieved by 3456 // shift and mask operations. 3457 BitMapKind, 3458 3459 // The table is stored as an array of values. Values are retrieved by load 3460 // instructions from the table. 3461 ArrayKind 3462 } Kind; 3463 3464 // For SingleValueKind, this is the single value. 3465 Constant *SingleValue; 3466 3467 // For BitMapKind, this is the bitmap. 3468 ConstantInt *BitMap; 3469 IntegerType *BitMapElementTy; 3470 3471 // For ArrayKind, this is the array. 3472 GlobalVariable *Array; 3473 }; 3474 } 3475 3476 SwitchLookupTable::SwitchLookupTable(Module &M, 3477 uint64_t TableSize, 3478 ConstantInt *Offset, 3479 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3480 Constant *DefaultValue, 3481 const DataLayout *TD) 3482 : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) { 3483 assert(Values.size() && "Can't build lookup table without values!"); 3484 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3485 3486 // If all values in the table are equal, this is that value. 3487 SingleValue = Values.begin()->second; 3488 3489 // Build up the table contents. 3490 SmallVector<Constant*, 64> TableContents(TableSize); 3491 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3492 ConstantInt *CaseVal = Values[I].first; 3493 Constant *CaseRes = Values[I].second; 3494 assert(CaseRes->getType() == DefaultValue->getType()); 3495 3496 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3497 .getLimitedValue(); 3498 TableContents[Idx] = CaseRes; 3499 3500 if (CaseRes != SingleValue) 3501 SingleValue = 0; 3502 } 3503 3504 // Fill in any holes in the table with the default result. 3505 if (Values.size() < TableSize) { 3506 for (uint64_t I = 0; I < TableSize; ++I) { 3507 if (!TableContents[I]) 3508 TableContents[I] = DefaultValue; 3509 } 3510 3511 if (DefaultValue != SingleValue) 3512 SingleValue = 0; 3513 } 3514 3515 // If each element in the table contains the same value, we only need to store 3516 // that single value. 3517 if (SingleValue) { 3518 Kind = SingleValueKind; 3519 return; 3520 } 3521 3522 // If the type is integer and the table fits in a register, build a bitmap. 3523 if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) { 3524 IntegerType *IT = cast<IntegerType>(DefaultValue->getType()); 3525 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3526 for (uint64_t I = TableSize; I > 0; --I) { 3527 TableInt <<= IT->getBitWidth(); 3528 // Insert values into the bitmap. Undef values are set to zero. 3529 if (!isa<UndefValue>(TableContents[I - 1])) { 3530 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3531 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3532 } 3533 } 3534 BitMap = ConstantInt::get(M.getContext(), TableInt); 3535 BitMapElementTy = IT; 3536 Kind = BitMapKind; 3537 ++NumBitMaps; 3538 return; 3539 } 3540 3541 // Store the table in an array. 3542 ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize); 3543 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3544 3545 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3546 GlobalVariable::PrivateLinkage, 3547 Initializer, 3548 "switch.table"); 3549 Array->setUnnamedAddr(true); 3550 Kind = ArrayKind; 3551 } 3552 3553 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3554 switch (Kind) { 3555 case SingleValueKind: 3556 return SingleValue; 3557 case BitMapKind: { 3558 // Type of the bitmap (e.g. i59). 3559 IntegerType *MapTy = BitMap->getType(); 3560 3561 // Cast Index to the same type as the bitmap. 3562 // Note: The Index is <= the number of elements in the table, so 3563 // truncating it to the width of the bitmask is safe. 3564 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3565 3566 // Multiply the shift amount by the element width. 3567 ShiftAmt = Builder.CreateMul(ShiftAmt, 3568 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3569 "switch.shiftamt"); 3570 3571 // Shift down. 3572 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3573 "switch.downshift"); 3574 // Mask off. 3575 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3576 "switch.masked"); 3577 } 3578 case ArrayKind: { 3579 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3580 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3581 "switch.gep"); 3582 return Builder.CreateLoad(GEP, "switch.load"); 3583 } 3584 } 3585 llvm_unreachable("Unknown lookup table kind!"); 3586 } 3587 3588 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD, 3589 uint64_t TableSize, 3590 const Type *ElementType) { 3591 if (!TD) 3592 return false; 3593 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3594 if (!IT) 3595 return false; 3596 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3597 // are <= 15, we could try to narrow the type. 3598 3599 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3600 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3601 return false; 3602 return TD->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3603 } 3604 3605 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3606 /// for this switch, based on the number of cases, size of the table and the 3607 /// types of the results. 3608 static bool ShouldBuildLookupTable(SwitchInst *SI, 3609 uint64_t TableSize, 3610 const TargetTransformInfo &TTI, 3611 const DataLayout *TD, 3612 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3613 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3614 return false; // TableSize overflowed, or mul below might overflow. 3615 3616 bool AllTablesFitInRegister = true; 3617 bool HasIllegalType = false; 3618 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3619 E = ResultTypes.end(); I != E; ++I) { 3620 Type *Ty = I->second; 3621 3622 // Saturate this flag to true. 3623 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3624 3625 // Saturate this flag to false. 3626 AllTablesFitInRegister = AllTablesFitInRegister && 3627 SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty); 3628 3629 // If both flags saturate, we're done. NOTE: This *only* works with 3630 // saturating flags, and all flags have to saturate first due to the 3631 // non-deterministic behavior of iterating over a dense map. 3632 if (HasIllegalType && !AllTablesFitInRegister) 3633 break; 3634 } 3635 3636 // If each table would fit in a register, we should build it anyway. 3637 if (AllTablesFitInRegister) 3638 return true; 3639 3640 // Don't build a table that doesn't fit in-register if it has illegal types. 3641 if (HasIllegalType) 3642 return false; 3643 3644 // The table density should be at least 40%. This is the same criterion as for 3645 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3646 // FIXME: Find the best cut-off. 3647 return SI->getNumCases() * 10 >= TableSize * 4; 3648 } 3649 3650 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3651 /// phi nodes in a common successor block with different constant values, 3652 /// replace the switch with lookup tables. 3653 static bool SwitchToLookupTable(SwitchInst *SI, 3654 IRBuilder<> &Builder, 3655 const TargetTransformInfo &TTI, 3656 const DataLayout* TD) { 3657 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3658 3659 // Only build lookup table when we have a target that supports it. 3660 if (!TTI.shouldBuildLookupTables()) 3661 return false; 3662 3663 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3664 // split off a dense part and build a lookup table for that. 3665 3666 // FIXME: This creates arrays of GEPs to constant strings, which means each 3667 // GEP needs a runtime relocation in PIC code. We should just build one big 3668 // string and lookup indices into that. 3669 3670 // Ignore the switch if the number of cases is too small. 3671 // This is similar to the check when building jump tables in 3672 // SelectionDAGBuilder::handleJTSwitchCase. 3673 // FIXME: Determine the best cut-off. 3674 if (SI->getNumCases() < 4) 3675 return false; 3676 3677 // Figure out the corresponding result for each case value and phi node in the 3678 // common destination, as well as the the min and max case values. 3679 assert(SI->case_begin() != SI->case_end()); 3680 SwitchInst::CaseIt CI = SI->case_begin(); 3681 ConstantInt *MinCaseVal = CI.getCaseValue(); 3682 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3683 3684 BasicBlock *CommonDest = 0; 3685 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3686 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3687 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3688 SmallDenseMap<PHINode*, Type*> ResultTypes; 3689 SmallVector<PHINode*, 4> PHIs; 3690 3691 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3692 ConstantInt *CaseVal = CI.getCaseValue(); 3693 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3694 MinCaseVal = CaseVal; 3695 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3696 MaxCaseVal = CaseVal; 3697 3698 // Resulting value at phi nodes for this case value. 3699 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3700 ResultsTy Results; 3701 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 3702 Results)) 3703 return false; 3704 3705 // Append the result from this case to the list for each phi. 3706 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3707 if (!ResultLists.count(I->first)) 3708 PHIs.push_back(I->first); 3709 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3710 } 3711 } 3712 3713 // Get the resulting values for the default case. 3714 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3715 if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest, 3716 DefaultResultsList)) 3717 return false; 3718 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3719 PHINode *PHI = DefaultResultsList[I].first; 3720 Constant *Result = DefaultResultsList[I].second; 3721 DefaultResults[PHI] = Result; 3722 ResultTypes[PHI] = Result->getType(); 3723 } 3724 3725 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3726 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3727 if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes)) 3728 return false; 3729 3730 // Create the BB that does the lookups. 3731 Module &Mod = *CommonDest->getParent()->getParent(); 3732 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3733 "switch.lookup", 3734 CommonDest->getParent(), 3735 CommonDest); 3736 3737 // Check whether the condition value is within the case range, and branch to 3738 // the new BB. 3739 Builder.SetInsertPoint(SI); 3740 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3741 "switch.tableidx"); 3742 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3743 MinCaseVal->getType(), TableSize)); 3744 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3745 3746 // Populate the BB that does the lookups. 3747 Builder.SetInsertPoint(LookupBB); 3748 bool ReturnedEarly = false; 3749 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3750 PHINode *PHI = PHIs[I]; 3751 3752 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3753 DefaultResults[PHI], TD); 3754 3755 Value *Result = Table.BuildLookup(TableIndex, Builder); 3756 3757 // If the result is used to return immediately from the function, we want to 3758 // do that right here. 3759 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) && 3760 *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) { 3761 Builder.CreateRet(Result); 3762 ReturnedEarly = true; 3763 break; 3764 } 3765 3766 PHI->addIncoming(Result, LookupBB); 3767 } 3768 3769 if (!ReturnedEarly) 3770 Builder.CreateBr(CommonDest); 3771 3772 // Remove the switch. 3773 for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) { 3774 BasicBlock *Succ = SI->getSuccessor(i); 3775 if (Succ == SI->getDefaultDest()) continue; 3776 Succ->removePredecessor(SI->getParent()); 3777 } 3778 SI->eraseFromParent(); 3779 3780 ++NumLookupTables; 3781 return true; 3782 } 3783 3784 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3785 BasicBlock *BB = SI->getParent(); 3786 3787 if (isValueEqualityComparison(SI)) { 3788 // If we only have one predecessor, and if it is a branch on this value, 3789 // see if that predecessor totally determines the outcome of this switch. 3790 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3791 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3792 return SimplifyCFG(BB, TTI, TD) | true; 3793 3794 Value *Cond = SI->getCondition(); 3795 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3796 if (SimplifySwitchOnSelect(SI, Select)) 3797 return SimplifyCFG(BB, TTI, TD) | true; 3798 3799 // If the block only contains the switch, see if we can fold the block 3800 // away into any preds. 3801 BasicBlock::iterator BBI = BB->begin(); 3802 // Ignore dbg intrinsics. 3803 while (isa<DbgInfoIntrinsic>(BBI)) 3804 ++BBI; 3805 if (SI == &*BBI) 3806 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3807 return SimplifyCFG(BB, TTI, TD) | true; 3808 } 3809 3810 // Try to transform the switch into an icmp and a branch. 3811 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3812 return SimplifyCFG(BB, TTI, TD) | true; 3813 3814 // Remove unreachable cases. 3815 if (EliminateDeadSwitchCases(SI)) 3816 return SimplifyCFG(BB, TTI, TD) | true; 3817 3818 if (ForwardSwitchConditionToPHI(SI)) 3819 return SimplifyCFG(BB, TTI, TD) | true; 3820 3821 if (SwitchToLookupTable(SI, Builder, TTI, TD)) 3822 return SimplifyCFG(BB, TTI, TD) | true; 3823 3824 return false; 3825 } 3826 3827 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3828 BasicBlock *BB = IBI->getParent(); 3829 bool Changed = false; 3830 3831 // Eliminate redundant destinations. 3832 SmallPtrSet<Value *, 8> Succs; 3833 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3834 BasicBlock *Dest = IBI->getDestination(i); 3835 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3836 Dest->removePredecessor(BB); 3837 IBI->removeDestination(i); 3838 --i; --e; 3839 Changed = true; 3840 } 3841 } 3842 3843 if (IBI->getNumDestinations() == 0) { 3844 // If the indirectbr has no successors, change it to unreachable. 3845 new UnreachableInst(IBI->getContext(), IBI); 3846 EraseTerminatorInstAndDCECond(IBI); 3847 return true; 3848 } 3849 3850 if (IBI->getNumDestinations() == 1) { 3851 // If the indirectbr has one successor, change it to a direct branch. 3852 BranchInst::Create(IBI->getDestination(0), IBI); 3853 EraseTerminatorInstAndDCECond(IBI); 3854 return true; 3855 } 3856 3857 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3858 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3859 return SimplifyCFG(BB, TTI, TD) | true; 3860 } 3861 return Changed; 3862 } 3863 3864 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3865 BasicBlock *BB = BI->getParent(); 3866 3867 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3868 return true; 3869 3870 // If the Terminator is the only non-phi instruction, simplify the block. 3871 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3872 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3873 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3874 return true; 3875 3876 // If the only instruction in the block is a seteq/setne comparison 3877 // against a constant, try to simplify the block. 3878 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3879 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3880 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3881 ; 3882 if (I->isTerminator() && 3883 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD)) 3884 return true; 3885 } 3886 3887 // If this basic block is ONLY a compare and a branch, and if a predecessor 3888 // branches to us and our successor, fold the comparison into the 3889 // predecessor and use logical operations to update the incoming value 3890 // for PHI nodes in common successor. 3891 if (FoldBranchToCommonDest(BI)) 3892 return SimplifyCFG(BB, TTI, TD) | true; 3893 return false; 3894 } 3895 3896 3897 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 3898 BasicBlock *BB = BI->getParent(); 3899 3900 // Conditional branch 3901 if (isValueEqualityComparison(BI)) { 3902 // If we only have one predecessor, and if it is a branch on this value, 3903 // see if that predecessor totally determines the outcome of this 3904 // switch. 3905 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3906 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 3907 return SimplifyCFG(BB, TTI, TD) | true; 3908 3909 // This block must be empty, except for the setcond inst, if it exists. 3910 // Ignore dbg intrinsics. 3911 BasicBlock::iterator I = BB->begin(); 3912 // Ignore dbg intrinsics. 3913 while (isa<DbgInfoIntrinsic>(I)) 3914 ++I; 3915 if (&*I == BI) { 3916 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 3917 return SimplifyCFG(BB, TTI, TD) | true; 3918 } else if (&*I == cast<Instruction>(BI->getCondition())){ 3919 ++I; 3920 // Ignore dbg intrinsics. 3921 while (isa<DbgInfoIntrinsic>(I)) 3922 ++I; 3923 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 3924 return SimplifyCFG(BB, TTI, TD) | true; 3925 } 3926 } 3927 3928 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 3929 if (SimplifyBranchOnICmpChain(BI, TD, Builder)) 3930 return true; 3931 3932 // If this basic block is ONLY a compare and a branch, and if a predecessor 3933 // branches to us and one of our successors, fold the comparison into the 3934 // predecessor and use logical operations to pick the right destination. 3935 if (FoldBranchToCommonDest(BI)) 3936 return SimplifyCFG(BB, TTI, TD) | true; 3937 3938 // We have a conditional branch to two blocks that are only reachable 3939 // from BI. We know that the condbr dominates the two blocks, so see if 3940 // there is any identical code in the "then" and "else" blocks. If so, we 3941 // can hoist it up to the branching block. 3942 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 3943 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 3944 if (HoistThenElseCodeToIf(BI)) 3945 return SimplifyCFG(BB, TTI, TD) | true; 3946 } else { 3947 // If Successor #1 has multiple preds, we may be able to conditionally 3948 // execute Successor #0 if it branches to successor #1. 3949 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 3950 if (Succ0TI->getNumSuccessors() == 1 && 3951 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 3952 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 3953 return SimplifyCFG(BB, TTI, TD) | true; 3954 } 3955 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 3956 // If Successor #0 has multiple preds, we may be able to conditionally 3957 // execute Successor #1 if it branches to successor #0. 3958 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 3959 if (Succ1TI->getNumSuccessors() == 1 && 3960 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 3961 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 3962 return SimplifyCFG(BB, TTI, TD) | true; 3963 } 3964 3965 // If this is a branch on a phi node in the current block, thread control 3966 // through this block if any PHI node entries are constants. 3967 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 3968 if (PN->getParent() == BI->getParent()) 3969 if (FoldCondBranchOnPHI(BI, TD)) 3970 return SimplifyCFG(BB, TTI, TD) | true; 3971 3972 // Scan predecessor blocks for conditional branches. 3973 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 3974 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 3975 if (PBI != BI && PBI->isConditional()) 3976 if (SimplifyCondBranchToCondBranch(PBI, BI)) 3977 return SimplifyCFG(BB, TTI, TD) | true; 3978 3979 return false; 3980 } 3981 3982 /// Check if passing a value to an instruction will cause undefined behavior. 3983 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 3984 Constant *C = dyn_cast<Constant>(V); 3985 if (!C) 3986 return false; 3987 3988 if (I->use_empty()) 3989 return false; 3990 3991 if (C->isNullValue()) { 3992 // Only look at the first use, avoid hurting compile time with long uselists 3993 User *Use = *I->use_begin(); 3994 3995 // Now make sure that there are no instructions in between that can alter 3996 // control flow (eg. calls) 3997 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 3998 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 3999 return false; 4000 4001 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4002 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4003 if (GEP->getPointerOperand() == I) 4004 return passingValueIsAlwaysUndefined(V, GEP); 4005 4006 // Look through bitcasts. 4007 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4008 return passingValueIsAlwaysUndefined(V, BC); 4009 4010 // Load from null is undefined. 4011 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4012 if (!LI->isVolatile()) 4013 return LI->getPointerAddressSpace() == 0; 4014 4015 // Store to null is undefined. 4016 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4017 if (!SI->isVolatile()) 4018 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4019 } 4020 return false; 4021 } 4022 4023 /// If BB has an incoming value that will always trigger undefined behavior 4024 /// (eg. null pointer dereference), remove the branch leading here. 4025 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4026 for (BasicBlock::iterator i = BB->begin(); 4027 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4028 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4029 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4030 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4031 IRBuilder<> Builder(T); 4032 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4033 BB->removePredecessor(PHI->getIncomingBlock(i)); 4034 // Turn uncoditional branches into unreachables and remove the dead 4035 // destination from conditional branches. 4036 if (BI->isUnconditional()) 4037 Builder.CreateUnreachable(); 4038 else 4039 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4040 BI->getSuccessor(0)); 4041 BI->eraseFromParent(); 4042 return true; 4043 } 4044 // TODO: SwitchInst. 4045 } 4046 4047 return false; 4048 } 4049 4050 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4051 bool Changed = false; 4052 4053 assert(BB && BB->getParent() && "Block not embedded in function!"); 4054 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4055 4056 // Remove basic blocks that have no predecessors (except the entry block)... 4057 // or that just have themself as a predecessor. These are unreachable. 4058 if ((pred_begin(BB) == pred_end(BB) && 4059 BB != &BB->getParent()->getEntryBlock()) || 4060 BB->getSinglePredecessor() == BB) { 4061 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4062 DeleteDeadBlock(BB); 4063 return true; 4064 } 4065 4066 // Check to see if we can constant propagate this terminator instruction 4067 // away... 4068 Changed |= ConstantFoldTerminator(BB, true); 4069 4070 // Check for and eliminate duplicate PHI nodes in this block. 4071 Changed |= EliminateDuplicatePHINodes(BB); 4072 4073 // Check for and remove branches that will always cause undefined behavior. 4074 Changed |= removeUndefIntroducingPredecessor(BB); 4075 4076 // Merge basic blocks into their predecessor if there is only one distinct 4077 // pred, and if there is only one distinct successor of the predecessor, and 4078 // if there are no PHI nodes. 4079 // 4080 if (MergeBlockIntoPredecessor(BB)) 4081 return true; 4082 4083 IRBuilder<> Builder(BB); 4084 4085 // If there is a trivial two-entry PHI node in this basic block, and we can 4086 // eliminate it, do so now. 4087 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4088 if (PN->getNumIncomingValues() == 2) 4089 Changed |= FoldTwoEntryPHINode(PN, TD); 4090 4091 Builder.SetInsertPoint(BB->getTerminator()); 4092 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4093 if (BI->isUnconditional()) { 4094 if (SimplifyUncondBranch(BI, Builder)) return true; 4095 } else { 4096 if (SimplifyCondBranch(BI, Builder)) return true; 4097 } 4098 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4099 if (SimplifyReturn(RI, Builder)) return true; 4100 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4101 if (SimplifyResume(RI, Builder)) return true; 4102 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4103 if (SimplifySwitch(SI, Builder)) return true; 4104 } else if (UnreachableInst *UI = 4105 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4106 if (SimplifyUnreachable(UI)) return true; 4107 } else if (IndirectBrInst *IBI = 4108 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4109 if (SimplifyIndirectBr(IBI)) return true; 4110 } 4111 4112 return Changed; 4113 } 4114 4115 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4116 /// example, it adjusts branches to branches to eliminate the extra hop, it 4117 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4118 /// of the CFG. It returns true if a modification was made. 4119 /// 4120 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4121 const DataLayout *TD) { 4122 return SimplifyCFGOpt(TTI, TD).run(BB); 4123 } 4124