1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 155 cl::init(10), 156 cl::desc("Max size of a block which is still considered " 157 "small enough to thread through")); 158 159 // Two is chosen to allow one negation and a logical combine. 160 static cl::opt<unsigned> 161 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 162 cl::init(2), 163 cl::desc("Maximum cost of combining conditions when " 164 "folding branches")); 165 166 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 167 STATISTIC(NumLinearMaps, 168 "Number of switch instructions turned into linear mapping"); 169 STATISTIC(NumLookupTables, 170 "Number of switch instructions turned into lookup tables"); 171 STATISTIC( 172 NumLookupTablesHoles, 173 "Number of switch instructions turned into lookup tables (holes checked)"); 174 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 175 STATISTIC(NumFoldValueComparisonIntoPredecessors, 176 "Number of value comparisons folded into predecessor basic blocks"); 177 STATISTIC(NumFoldBranchToCommonDest, 178 "Number of branches folded into predecessor basic block"); 179 STATISTIC( 180 NumHoistCommonCode, 181 "Number of common instruction 'blocks' hoisted up to the begin block"); 182 STATISTIC(NumHoistCommonInstrs, 183 "Number of common instructions hoisted up to the begin block"); 184 STATISTIC(NumSinkCommonCode, 185 "Number of common instruction 'blocks' sunk down to the end block"); 186 STATISTIC(NumSinkCommonInstrs, 187 "Number of common instructions sunk down to the end block"); 188 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 189 STATISTIC(NumInvokes, 190 "Number of invokes with empty resume blocks simplified into calls"); 191 192 namespace { 193 194 // The first field contains the value that the switch produces when a certain 195 // case group is selected, and the second field is a vector containing the 196 // cases composing the case group. 197 using SwitchCaseResultVectorTy = 198 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 199 200 // The first field contains the phi node that generates a result of the switch 201 // and the second field contains the value generated for a certain case in the 202 // switch for that PHI. 203 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 204 205 /// ValueEqualityComparisonCase - Represents a case of a switch. 206 struct ValueEqualityComparisonCase { 207 ConstantInt *Value; 208 BasicBlock *Dest; 209 210 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 211 : Value(Value), Dest(Dest) {} 212 213 bool operator<(ValueEqualityComparisonCase RHS) const { 214 // Comparing pointers is ok as we only rely on the order for uniquing. 215 return Value < RHS.Value; 216 } 217 218 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 219 }; 220 221 class SimplifyCFGOpt { 222 const TargetTransformInfo &TTI; 223 DomTreeUpdater *DTU; 224 const DataLayout &DL; 225 ArrayRef<WeakVH> LoopHeaders; 226 const SimplifyCFGOptions &Options; 227 bool Resimplify; 228 229 Value *isValueEqualityComparison(Instruction *TI); 230 BasicBlock *GetValueEqualityComparisonCases( 231 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 232 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 233 BasicBlock *Pred, 234 IRBuilder<> &Builder); 235 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 236 Instruction *PTI, 237 IRBuilder<> &Builder); 238 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 239 IRBuilder<> &Builder); 240 241 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 242 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 243 bool simplifySingleResume(ResumeInst *RI); 244 bool simplifyCommonResume(ResumeInst *RI); 245 bool simplifyCleanupReturn(CleanupReturnInst *RI); 246 bool simplifyUnreachable(UnreachableInst *UI); 247 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 248 bool simplifyIndirectBr(IndirectBrInst *IBI); 249 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 250 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 252 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 253 254 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 255 IRBuilder<> &Builder); 256 257 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 258 bool EqTermsOnly); 259 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 260 const TargetTransformInfo &TTI); 261 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 262 BasicBlock *TrueBB, BasicBlock *FalseBB, 263 uint32_t TrueWeight, uint32_t FalseWeight); 264 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 265 const DataLayout &DL); 266 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 267 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 268 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 269 270 public: 271 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 272 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 273 const SimplifyCFGOptions &Opts) 274 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 275 assert((!DTU || !DTU->hasPostDomTree()) && 276 "SimplifyCFG is not yet capable of maintaining validity of a " 277 "PostDomTree, so don't ask for it."); 278 } 279 280 bool simplifyOnce(BasicBlock *BB); 281 bool simplifyOnceImpl(BasicBlock *BB); 282 bool run(BasicBlock *BB); 283 284 // Helper to set Resimplify and return change indication. 285 bool requestResimplify() { 286 Resimplify = true; 287 return true; 288 } 289 }; 290 291 } // end anonymous namespace 292 293 /// Return true if it is safe to merge these two 294 /// terminator instructions together. 295 static bool 296 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 297 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 298 if (SI1 == SI2) 299 return false; // Can't merge with self! 300 301 // It is not safe to merge these two switch instructions if they have a common 302 // successor, and if that successor has a PHI node, and if *that* PHI node has 303 // conflicting incoming values from the two switch blocks. 304 BasicBlock *SI1BB = SI1->getParent(); 305 BasicBlock *SI2BB = SI2->getParent(); 306 307 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 308 bool Fail = false; 309 for (BasicBlock *Succ : successors(SI2BB)) 310 if (SI1Succs.count(Succ)) 311 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 312 PHINode *PN = cast<PHINode>(BBI); 313 if (PN->getIncomingValueForBlock(SI1BB) != 314 PN->getIncomingValueForBlock(SI2BB)) { 315 if (FailBlocks) 316 FailBlocks->insert(Succ); 317 Fail = true; 318 } 319 } 320 321 return !Fail; 322 } 323 324 /// Update PHI nodes in Succ to indicate that there will now be entries in it 325 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 326 /// will be the same as those coming in from ExistPred, an existing predecessor 327 /// of Succ. 328 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 329 BasicBlock *ExistPred, 330 MemorySSAUpdater *MSSAU = nullptr) { 331 for (PHINode &PN : Succ->phis()) 332 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 333 if (MSSAU) 334 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 335 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 336 } 337 338 /// Compute an abstract "cost" of speculating the given instruction, 339 /// which is assumed to be safe to speculate. TCC_Free means cheap, 340 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 341 /// expensive. 342 static InstructionCost computeSpeculationCost(const User *I, 343 const TargetTransformInfo &TTI) { 344 assert(isSafeToSpeculativelyExecute(I) && 345 "Instruction is not safe to speculatively execute!"); 346 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 347 } 348 349 /// If we have a merge point of an "if condition" as accepted above, 350 /// return true if the specified value dominates the block. We 351 /// don't handle the true generality of domination here, just a special case 352 /// which works well enough for us. 353 /// 354 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 355 /// see if V (which must be an instruction) and its recursive operands 356 /// that do not dominate BB have a combined cost lower than Budget and 357 /// are non-trapping. If both are true, the instruction is inserted into the 358 /// set and true is returned. 359 /// 360 /// The cost for most non-trapping instructions is defined as 1 except for 361 /// Select whose cost is 2. 362 /// 363 /// After this function returns, Cost is increased by the cost of 364 /// V plus its non-dominating operands. If that cost is greater than 365 /// Budget, false is returned and Cost is undefined. 366 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 367 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 368 InstructionCost &Cost, 369 InstructionCost Budget, 370 const TargetTransformInfo &TTI, 371 unsigned Depth = 0) { 372 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 373 // so limit the recursion depth. 374 // TODO: While this recursion limit does prevent pathological behavior, it 375 // would be better to track visited instructions to avoid cycles. 376 if (Depth == MaxSpeculationDepth) 377 return false; 378 379 Instruction *I = dyn_cast<Instruction>(V); 380 if (!I) { 381 // Non-instructions all dominate instructions, but not all constantexprs 382 // can be executed unconditionally. 383 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 384 if (C->canTrap()) 385 return false; 386 return true; 387 } 388 BasicBlock *PBB = I->getParent(); 389 390 // We don't want to allow weird loops that might have the "if condition" in 391 // the bottom of this block. 392 if (PBB == BB) 393 return false; 394 395 // If this instruction is defined in a block that contains an unconditional 396 // branch to BB, then it must be in the 'conditional' part of the "if 397 // statement". If not, it definitely dominates the region. 398 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 399 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 400 return true; 401 402 // If we have seen this instruction before, don't count it again. 403 if (AggressiveInsts.count(I)) 404 return true; 405 406 // Okay, it looks like the instruction IS in the "condition". Check to 407 // see if it's a cheap instruction to unconditionally compute, and if it 408 // only uses stuff defined outside of the condition. If so, hoist it out. 409 if (!isSafeToSpeculativelyExecute(I)) 410 return false; 411 412 Cost += computeSpeculationCost(I, TTI); 413 414 // Allow exactly one instruction to be speculated regardless of its cost 415 // (as long as it is safe to do so). 416 // This is intended to flatten the CFG even if the instruction is a division 417 // or other expensive operation. The speculation of an expensive instruction 418 // is expected to be undone in CodeGenPrepare if the speculation has not 419 // enabled further IR optimizations. 420 if (Cost > Budget && 421 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 422 !Cost.isValid())) 423 return false; 424 425 // Okay, we can only really hoist these out if their operands do 426 // not take us over the cost threshold. 427 for (Use &Op : I->operands()) 428 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 429 Depth + 1)) 430 return false; 431 // Okay, it's safe to do this! Remember this instruction. 432 AggressiveInsts.insert(I); 433 return true; 434 } 435 436 /// Extract ConstantInt from value, looking through IntToPtr 437 /// and PointerNullValue. Return NULL if value is not a constant int. 438 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 439 // Normal constant int. 440 ConstantInt *CI = dyn_cast<ConstantInt>(V); 441 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 442 return CI; 443 444 // This is some kind of pointer constant. Turn it into a pointer-sized 445 // ConstantInt if possible. 446 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 447 448 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 449 if (isa<ConstantPointerNull>(V)) 450 return ConstantInt::get(PtrTy, 0); 451 452 // IntToPtr const int. 453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 454 if (CE->getOpcode() == Instruction::IntToPtr) 455 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 456 // The constant is very likely to have the right type already. 457 if (CI->getType() == PtrTy) 458 return CI; 459 else 460 return cast<ConstantInt>( 461 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 462 } 463 return nullptr; 464 } 465 466 namespace { 467 468 /// Given a chain of or (||) or and (&&) comparison of a value against a 469 /// constant, this will try to recover the information required for a switch 470 /// structure. 471 /// It will depth-first traverse the chain of comparison, seeking for patterns 472 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 473 /// representing the different cases for the switch. 474 /// Note that if the chain is composed of '||' it will build the set of elements 475 /// that matches the comparisons (i.e. any of this value validate the chain) 476 /// while for a chain of '&&' it will build the set elements that make the test 477 /// fail. 478 struct ConstantComparesGatherer { 479 const DataLayout &DL; 480 481 /// Value found for the switch comparison 482 Value *CompValue = nullptr; 483 484 /// Extra clause to be checked before the switch 485 Value *Extra = nullptr; 486 487 /// Set of integers to match in switch 488 SmallVector<ConstantInt *, 8> Vals; 489 490 /// Number of comparisons matched in the and/or chain 491 unsigned UsedICmps = 0; 492 493 /// Construct and compute the result for the comparison instruction Cond 494 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 495 gather(Cond); 496 } 497 498 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 499 ConstantComparesGatherer & 500 operator=(const ConstantComparesGatherer &) = delete; 501 502 private: 503 /// Try to set the current value used for the comparison, it succeeds only if 504 /// it wasn't set before or if the new value is the same as the old one 505 bool setValueOnce(Value *NewVal) { 506 if (CompValue && CompValue != NewVal) 507 return false; 508 CompValue = NewVal; 509 return (CompValue != nullptr); 510 } 511 512 /// Try to match Instruction "I" as a comparison against a constant and 513 /// populates the array Vals with the set of values that match (or do not 514 /// match depending on isEQ). 515 /// Return false on failure. On success, the Value the comparison matched 516 /// against is placed in CompValue. 517 /// If CompValue is already set, the function is expected to fail if a match 518 /// is found but the value compared to is different. 519 bool matchInstruction(Instruction *I, bool isEQ) { 520 // If this is an icmp against a constant, handle this as one of the cases. 521 ICmpInst *ICI; 522 ConstantInt *C; 523 if (!((ICI = dyn_cast<ICmpInst>(I)) && 524 (C = GetConstantInt(I->getOperand(1), DL)))) { 525 return false; 526 } 527 528 Value *RHSVal; 529 const APInt *RHSC; 530 531 // Pattern match a special case 532 // (x & ~2^z) == y --> x == y || x == y|2^z 533 // This undoes a transformation done by instcombine to fuse 2 compares. 534 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 535 // It's a little bit hard to see why the following transformations are 536 // correct. Here is a CVC3 program to verify them for 64-bit values: 537 538 /* 539 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 540 x : BITVECTOR(64); 541 y : BITVECTOR(64); 542 z : BITVECTOR(64); 543 mask : BITVECTOR(64) = BVSHL(ONE, z); 544 QUERY( (y & ~mask = y) => 545 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 546 ); 547 QUERY( (y | mask = y) => 548 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 549 ); 550 */ 551 552 // Please note that each pattern must be a dual implication (<--> or 553 // iff). One directional implication can create spurious matches. If the 554 // implication is only one-way, an unsatisfiable condition on the left 555 // side can imply a satisfiable condition on the right side. Dual 556 // implication ensures that satisfiable conditions are transformed to 557 // other satisfiable conditions and unsatisfiable conditions are 558 // transformed to other unsatisfiable conditions. 559 560 // Here is a concrete example of a unsatisfiable condition on the left 561 // implying a satisfiable condition on the right: 562 // 563 // mask = (1 << z) 564 // (x & ~mask) == y --> (x == y || x == (y | mask)) 565 // 566 // Substituting y = 3, z = 0 yields: 567 // (x & -2) == 3 --> (x == 3 || x == 2) 568 569 // Pattern match a special case: 570 /* 571 QUERY( (y & ~mask = y) => 572 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 573 ); 574 */ 575 if (match(ICI->getOperand(0), 576 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 577 APInt Mask = ~*RHSC; 578 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 579 // If we already have a value for the switch, it has to match! 580 if (!setValueOnce(RHSVal)) 581 return false; 582 583 Vals.push_back(C); 584 Vals.push_back( 585 ConstantInt::get(C->getContext(), 586 C->getValue() | Mask)); 587 UsedICmps++; 588 return true; 589 } 590 } 591 592 // Pattern match a special case: 593 /* 594 QUERY( (y | mask = y) => 595 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 596 ); 597 */ 598 if (match(ICI->getOperand(0), 599 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 600 APInt Mask = *RHSC; 601 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 602 // If we already have a value for the switch, it has to match! 603 if (!setValueOnce(RHSVal)) 604 return false; 605 606 Vals.push_back(C); 607 Vals.push_back(ConstantInt::get(C->getContext(), 608 C->getValue() & ~Mask)); 609 UsedICmps++; 610 return true; 611 } 612 } 613 614 // If we already have a value for the switch, it has to match! 615 if (!setValueOnce(ICI->getOperand(0))) 616 return false; 617 618 UsedICmps++; 619 Vals.push_back(C); 620 return ICI->getOperand(0); 621 } 622 623 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 624 ConstantRange Span = 625 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 626 627 // Shift the range if the compare is fed by an add. This is the range 628 // compare idiom as emitted by instcombine. 629 Value *CandidateVal = I->getOperand(0); 630 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 631 Span = Span.subtract(*RHSC); 632 CandidateVal = RHSVal; 633 } 634 635 // If this is an and/!= check, then we are looking to build the set of 636 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 637 // x != 0 && x != 1. 638 if (!isEQ) 639 Span = Span.inverse(); 640 641 // If there are a ton of values, we don't want to make a ginormous switch. 642 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 643 return false; 644 } 645 646 // If we already have a value for the switch, it has to match! 647 if (!setValueOnce(CandidateVal)) 648 return false; 649 650 // Add all values from the range to the set 651 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 652 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 653 654 UsedICmps++; 655 return true; 656 } 657 658 /// Given a potentially 'or'd or 'and'd together collection of icmp 659 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 660 /// the value being compared, and stick the list constants into the Vals 661 /// vector. 662 /// One "Extra" case is allowed to differ from the other. 663 void gather(Value *V) { 664 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 665 666 // Keep a stack (SmallVector for efficiency) for depth-first traversal 667 SmallVector<Value *, 8> DFT; 668 SmallPtrSet<Value *, 8> Visited; 669 670 // Initialize 671 Visited.insert(V); 672 DFT.push_back(V); 673 674 while (!DFT.empty()) { 675 V = DFT.pop_back_val(); 676 677 if (Instruction *I = dyn_cast<Instruction>(V)) { 678 // If it is a || (or && depending on isEQ), process the operands. 679 Value *Op0, *Op1; 680 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 681 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 682 if (Visited.insert(Op1).second) 683 DFT.push_back(Op1); 684 if (Visited.insert(Op0).second) 685 DFT.push_back(Op0); 686 687 continue; 688 } 689 690 // Try to match the current instruction 691 if (matchInstruction(I, isEQ)) 692 // Match succeed, continue the loop 693 continue; 694 } 695 696 // One element of the sequence of || (or &&) could not be match as a 697 // comparison against the same value as the others. 698 // We allow only one "Extra" case to be checked before the switch 699 if (!Extra) { 700 Extra = V; 701 continue; 702 } 703 // Failed to parse a proper sequence, abort now 704 CompValue = nullptr; 705 break; 706 } 707 } 708 }; 709 710 } // end anonymous namespace 711 712 static void EraseTerminatorAndDCECond(Instruction *TI, 713 MemorySSAUpdater *MSSAU = nullptr) { 714 Instruction *Cond = nullptr; 715 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 716 Cond = dyn_cast<Instruction>(SI->getCondition()); 717 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 718 if (BI->isConditional()) 719 Cond = dyn_cast<Instruction>(BI->getCondition()); 720 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 721 Cond = dyn_cast<Instruction>(IBI->getAddress()); 722 } 723 724 TI->eraseFromParent(); 725 if (Cond) 726 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 727 } 728 729 /// Return true if the specified terminator checks 730 /// to see if a value is equal to constant integer value. 731 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 732 Value *CV = nullptr; 733 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 734 // Do not permit merging of large switch instructions into their 735 // predecessors unless there is only one predecessor. 736 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 737 CV = SI->getCondition(); 738 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 739 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 740 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 741 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 742 CV = ICI->getOperand(0); 743 } 744 745 // Unwrap any lossless ptrtoint cast. 746 if (CV) { 747 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 748 Value *Ptr = PTII->getPointerOperand(); 749 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 750 CV = Ptr; 751 } 752 } 753 return CV; 754 } 755 756 /// Given a value comparison instruction, 757 /// decode all of the 'cases' that it represents and return the 'default' block. 758 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 759 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 760 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 761 Cases.reserve(SI->getNumCases()); 762 for (auto Case : SI->cases()) 763 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 764 Case.getCaseSuccessor())); 765 return SI->getDefaultDest(); 766 } 767 768 BranchInst *BI = cast<BranchInst>(TI); 769 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 770 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 771 Cases.push_back(ValueEqualityComparisonCase( 772 GetConstantInt(ICI->getOperand(1), DL), Succ)); 773 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 774 } 775 776 /// Given a vector of bb/value pairs, remove any entries 777 /// in the list that match the specified block. 778 static void 779 EliminateBlockCases(BasicBlock *BB, 780 std::vector<ValueEqualityComparisonCase> &Cases) { 781 llvm::erase_value(Cases, BB); 782 } 783 784 /// Return true if there are any keys in C1 that exist in C2 as well. 785 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 786 std::vector<ValueEqualityComparisonCase> &C2) { 787 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 788 789 // Make V1 be smaller than V2. 790 if (V1->size() > V2->size()) 791 std::swap(V1, V2); 792 793 if (V1->empty()) 794 return false; 795 if (V1->size() == 1) { 796 // Just scan V2. 797 ConstantInt *TheVal = (*V1)[0].Value; 798 for (unsigned i = 0, e = V2->size(); i != e; ++i) 799 if (TheVal == (*V2)[i].Value) 800 return true; 801 } 802 803 // Otherwise, just sort both lists and compare element by element. 804 array_pod_sort(V1->begin(), V1->end()); 805 array_pod_sort(V2->begin(), V2->end()); 806 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 807 while (i1 != e1 && i2 != e2) { 808 if ((*V1)[i1].Value == (*V2)[i2].Value) 809 return true; 810 if ((*V1)[i1].Value < (*V2)[i2].Value) 811 ++i1; 812 else 813 ++i2; 814 } 815 return false; 816 } 817 818 // Set branch weights on SwitchInst. This sets the metadata if there is at 819 // least one non-zero weight. 820 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 821 // Check that there is at least one non-zero weight. Otherwise, pass 822 // nullptr to setMetadata which will erase the existing metadata. 823 MDNode *N = nullptr; 824 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 825 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 826 SI->setMetadata(LLVMContext::MD_prof, N); 827 } 828 829 // Similar to the above, but for branch and select instructions that take 830 // exactly 2 weights. 831 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 832 uint32_t FalseWeight) { 833 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 834 // Check that there is at least one non-zero weight. Otherwise, pass 835 // nullptr to setMetadata which will erase the existing metadata. 836 MDNode *N = nullptr; 837 if (TrueWeight || FalseWeight) 838 N = MDBuilder(I->getParent()->getContext()) 839 .createBranchWeights(TrueWeight, FalseWeight); 840 I->setMetadata(LLVMContext::MD_prof, N); 841 } 842 843 /// If TI is known to be a terminator instruction and its block is known to 844 /// only have a single predecessor block, check to see if that predecessor is 845 /// also a value comparison with the same value, and if that comparison 846 /// determines the outcome of this comparison. If so, simplify TI. This does a 847 /// very limited form of jump threading. 848 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 849 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 850 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 851 if (!PredVal) 852 return false; // Not a value comparison in predecessor. 853 854 Value *ThisVal = isValueEqualityComparison(TI); 855 assert(ThisVal && "This isn't a value comparison!!"); 856 if (ThisVal != PredVal) 857 return false; // Different predicates. 858 859 // TODO: Preserve branch weight metadata, similarly to how 860 // FoldValueComparisonIntoPredecessors preserves it. 861 862 // Find out information about when control will move from Pred to TI's block. 863 std::vector<ValueEqualityComparisonCase> PredCases; 864 BasicBlock *PredDef = 865 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 866 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 867 868 // Find information about how control leaves this block. 869 std::vector<ValueEqualityComparisonCase> ThisCases; 870 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 871 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 872 873 // If TI's block is the default block from Pred's comparison, potentially 874 // simplify TI based on this knowledge. 875 if (PredDef == TI->getParent()) { 876 // If we are here, we know that the value is none of those cases listed in 877 // PredCases. If there are any cases in ThisCases that are in PredCases, we 878 // can simplify TI. 879 if (!ValuesOverlap(PredCases, ThisCases)) 880 return false; 881 882 if (isa<BranchInst>(TI)) { 883 // Okay, one of the successors of this condbr is dead. Convert it to a 884 // uncond br. 885 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 886 // Insert the new branch. 887 Instruction *NI = Builder.CreateBr(ThisDef); 888 (void)NI; 889 890 // Remove PHI node entries for the dead edge. 891 ThisCases[0].Dest->removePredecessor(PredDef); 892 893 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 894 << "Through successor TI: " << *TI << "Leaving: " << *NI 895 << "\n"); 896 897 EraseTerminatorAndDCECond(TI); 898 899 if (DTU) 900 DTU->applyUpdates( 901 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 902 903 return true; 904 } 905 906 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 907 // Okay, TI has cases that are statically dead, prune them away. 908 SmallPtrSet<Constant *, 16> DeadCases; 909 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 910 DeadCases.insert(PredCases[i].Value); 911 912 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 913 << "Through successor TI: " << *TI); 914 915 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 916 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 917 --i; 918 auto *Successor = i->getCaseSuccessor(); 919 if (DTU) 920 ++NumPerSuccessorCases[Successor]; 921 if (DeadCases.count(i->getCaseValue())) { 922 Successor->removePredecessor(PredDef); 923 SI.removeCase(i); 924 if (DTU) 925 --NumPerSuccessorCases[Successor]; 926 } 927 } 928 929 if (DTU) { 930 std::vector<DominatorTree::UpdateType> Updates; 931 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 932 if (I.second == 0) 933 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 934 DTU->applyUpdates(Updates); 935 } 936 937 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 938 return true; 939 } 940 941 // Otherwise, TI's block must correspond to some matched value. Find out 942 // which value (or set of values) this is. 943 ConstantInt *TIV = nullptr; 944 BasicBlock *TIBB = TI->getParent(); 945 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 946 if (PredCases[i].Dest == TIBB) { 947 if (TIV) 948 return false; // Cannot handle multiple values coming to this block. 949 TIV = PredCases[i].Value; 950 } 951 assert(TIV && "No edge from pred to succ?"); 952 953 // Okay, we found the one constant that our value can be if we get into TI's 954 // BB. Find out which successor will unconditionally be branched to. 955 BasicBlock *TheRealDest = nullptr; 956 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 957 if (ThisCases[i].Value == TIV) { 958 TheRealDest = ThisCases[i].Dest; 959 break; 960 } 961 962 // If not handled by any explicit cases, it is handled by the default case. 963 if (!TheRealDest) 964 TheRealDest = ThisDef; 965 966 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 967 968 // Remove PHI node entries for dead edges. 969 BasicBlock *CheckEdge = TheRealDest; 970 for (BasicBlock *Succ : successors(TIBB)) 971 if (Succ != CheckEdge) { 972 if (Succ != TheRealDest) 973 RemovedSuccs.insert(Succ); 974 Succ->removePredecessor(TIBB); 975 } else 976 CheckEdge = nullptr; 977 978 // Insert the new branch. 979 Instruction *NI = Builder.CreateBr(TheRealDest); 980 (void)NI; 981 982 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 983 << "Through successor TI: " << *TI << "Leaving: " << *NI 984 << "\n"); 985 986 EraseTerminatorAndDCECond(TI); 987 if (DTU) { 988 SmallVector<DominatorTree::UpdateType, 2> Updates; 989 Updates.reserve(RemovedSuccs.size()); 990 for (auto *RemovedSucc : RemovedSuccs) 991 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 992 DTU->applyUpdates(Updates); 993 } 994 return true; 995 } 996 997 namespace { 998 999 /// This class implements a stable ordering of constant 1000 /// integers that does not depend on their address. This is important for 1001 /// applications that sort ConstantInt's to ensure uniqueness. 1002 struct ConstantIntOrdering { 1003 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1004 return LHS->getValue().ult(RHS->getValue()); 1005 } 1006 }; 1007 1008 } // end anonymous namespace 1009 1010 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1011 ConstantInt *const *P2) { 1012 const ConstantInt *LHS = *P1; 1013 const ConstantInt *RHS = *P2; 1014 if (LHS == RHS) 1015 return 0; 1016 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1017 } 1018 1019 static inline bool HasBranchWeights(const Instruction *I) { 1020 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1021 if (ProfMD && ProfMD->getOperand(0)) 1022 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1023 return MDS->getString().equals("branch_weights"); 1024 1025 return false; 1026 } 1027 1028 /// Get Weights of a given terminator, the default weight is at the front 1029 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1030 /// metadata. 1031 static void GetBranchWeights(Instruction *TI, 1032 SmallVectorImpl<uint64_t> &Weights) { 1033 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1034 assert(MD); 1035 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1036 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1037 Weights.push_back(CI->getValue().getZExtValue()); 1038 } 1039 1040 // If TI is a conditional eq, the default case is the false case, 1041 // and the corresponding branch-weight data is at index 2. We swap the 1042 // default weight to be the first entry. 1043 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1044 assert(Weights.size() == 2); 1045 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1046 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1047 std::swap(Weights.front(), Weights.back()); 1048 } 1049 } 1050 1051 /// Keep halving the weights until all can fit in uint32_t. 1052 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1053 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1054 if (Max > UINT_MAX) { 1055 unsigned Offset = 32 - countLeadingZeros(Max); 1056 for (uint64_t &I : Weights) 1057 I >>= Offset; 1058 } 1059 } 1060 1061 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1062 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1063 Instruction *PTI = PredBlock->getTerminator(); 1064 1065 // If we have bonus instructions, clone them into the predecessor block. 1066 // Note that there may be multiple predecessor blocks, so we cannot move 1067 // bonus instructions to a predecessor block. 1068 for (Instruction &BonusInst : *BB) { 1069 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1070 continue; 1071 1072 Instruction *NewBonusInst = BonusInst.clone(); 1073 1074 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1075 // Unless the instruction has the same !dbg location as the original 1076 // branch, drop it. When we fold the bonus instructions we want to make 1077 // sure we reset their debug locations in order to avoid stepping on 1078 // dead code caused by folding dead branches. 1079 NewBonusInst->setDebugLoc(DebugLoc()); 1080 } 1081 1082 RemapInstruction(NewBonusInst, VMap, 1083 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1084 VMap[&BonusInst] = NewBonusInst; 1085 1086 // If we moved a load, we cannot any longer claim any knowledge about 1087 // its potential value. The previous information might have been valid 1088 // only given the branch precondition. 1089 // For an analogous reason, we must also drop all the metadata whose 1090 // semantics we don't understand. We *can* preserve !annotation, because 1091 // it is tied to the instruction itself, not the value or position. 1092 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1093 1094 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1095 NewBonusInst->takeName(&BonusInst); 1096 BonusInst.setName(NewBonusInst->getName() + ".old"); 1097 1098 // Update (liveout) uses of bonus instructions, 1099 // now that the bonus instruction has been cloned into predecessor. 1100 SSAUpdater SSAUpdate; 1101 SSAUpdate.Initialize(BonusInst.getType(), 1102 (NewBonusInst->getName() + ".merge").str()); 1103 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1104 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1105 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1106 auto *UI = cast<Instruction>(U.getUser()); 1107 if (UI->getParent() != PredBlock) 1108 SSAUpdate.RewriteUseAfterInsertions(U); 1109 else // Use is in the same block as, and comes before, NewBonusInst. 1110 SSAUpdate.RewriteUse(U); 1111 } 1112 } 1113 } 1114 1115 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1116 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1117 BasicBlock *BB = TI->getParent(); 1118 BasicBlock *Pred = PTI->getParent(); 1119 1120 SmallVector<DominatorTree::UpdateType, 32> Updates; 1121 1122 // Figure out which 'cases' to copy from SI to PSI. 1123 std::vector<ValueEqualityComparisonCase> BBCases; 1124 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1125 1126 std::vector<ValueEqualityComparisonCase> PredCases; 1127 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1128 1129 // Based on whether the default edge from PTI goes to BB or not, fill in 1130 // PredCases and PredDefault with the new switch cases we would like to 1131 // build. 1132 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1133 1134 // Update the branch weight metadata along the way 1135 SmallVector<uint64_t, 8> Weights; 1136 bool PredHasWeights = HasBranchWeights(PTI); 1137 bool SuccHasWeights = HasBranchWeights(TI); 1138 1139 if (PredHasWeights) { 1140 GetBranchWeights(PTI, Weights); 1141 // branch-weight metadata is inconsistent here. 1142 if (Weights.size() != 1 + PredCases.size()) 1143 PredHasWeights = SuccHasWeights = false; 1144 } else if (SuccHasWeights) 1145 // If there are no predecessor weights but there are successor weights, 1146 // populate Weights with 1, which will later be scaled to the sum of 1147 // successor's weights 1148 Weights.assign(1 + PredCases.size(), 1); 1149 1150 SmallVector<uint64_t, 8> SuccWeights; 1151 if (SuccHasWeights) { 1152 GetBranchWeights(TI, SuccWeights); 1153 // branch-weight metadata is inconsistent here. 1154 if (SuccWeights.size() != 1 + BBCases.size()) 1155 PredHasWeights = SuccHasWeights = false; 1156 } else if (PredHasWeights) 1157 SuccWeights.assign(1 + BBCases.size(), 1); 1158 1159 if (PredDefault == BB) { 1160 // If this is the default destination from PTI, only the edges in TI 1161 // that don't occur in PTI, or that branch to BB will be activated. 1162 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1163 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1164 if (PredCases[i].Dest != BB) 1165 PTIHandled.insert(PredCases[i].Value); 1166 else { 1167 // The default destination is BB, we don't need explicit targets. 1168 std::swap(PredCases[i], PredCases.back()); 1169 1170 if (PredHasWeights || SuccHasWeights) { 1171 // Increase weight for the default case. 1172 Weights[0] += Weights[i + 1]; 1173 std::swap(Weights[i + 1], Weights.back()); 1174 Weights.pop_back(); 1175 } 1176 1177 PredCases.pop_back(); 1178 --i; 1179 --e; 1180 } 1181 1182 // Reconstruct the new switch statement we will be building. 1183 if (PredDefault != BBDefault) { 1184 PredDefault->removePredecessor(Pred); 1185 if (DTU && PredDefault != BB) 1186 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1187 PredDefault = BBDefault; 1188 ++NewSuccessors[BBDefault]; 1189 } 1190 1191 unsigned CasesFromPred = Weights.size(); 1192 uint64_t ValidTotalSuccWeight = 0; 1193 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1194 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1195 PredCases.push_back(BBCases[i]); 1196 ++NewSuccessors[BBCases[i].Dest]; 1197 if (SuccHasWeights || PredHasWeights) { 1198 // The default weight is at index 0, so weight for the ith case 1199 // should be at index i+1. Scale the cases from successor by 1200 // PredDefaultWeight (Weights[0]). 1201 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1202 ValidTotalSuccWeight += SuccWeights[i + 1]; 1203 } 1204 } 1205 1206 if (SuccHasWeights || PredHasWeights) { 1207 ValidTotalSuccWeight += SuccWeights[0]; 1208 // Scale the cases from predecessor by ValidTotalSuccWeight. 1209 for (unsigned i = 1; i < CasesFromPred; ++i) 1210 Weights[i] *= ValidTotalSuccWeight; 1211 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1212 Weights[0] *= SuccWeights[0]; 1213 } 1214 } else { 1215 // If this is not the default destination from PSI, only the edges 1216 // in SI that occur in PSI with a destination of BB will be 1217 // activated. 1218 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1219 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1220 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1221 if (PredCases[i].Dest == BB) { 1222 PTIHandled.insert(PredCases[i].Value); 1223 1224 if (PredHasWeights || SuccHasWeights) { 1225 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1226 std::swap(Weights[i + 1], Weights.back()); 1227 Weights.pop_back(); 1228 } 1229 1230 std::swap(PredCases[i], PredCases.back()); 1231 PredCases.pop_back(); 1232 --i; 1233 --e; 1234 } 1235 1236 // Okay, now we know which constants were sent to BB from the 1237 // predecessor. Figure out where they will all go now. 1238 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1239 if (PTIHandled.count(BBCases[i].Value)) { 1240 // If this is one we are capable of getting... 1241 if (PredHasWeights || SuccHasWeights) 1242 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1243 PredCases.push_back(BBCases[i]); 1244 ++NewSuccessors[BBCases[i].Dest]; 1245 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1246 } 1247 1248 // If there are any constants vectored to BB that TI doesn't handle, 1249 // they must go to the default destination of TI. 1250 for (ConstantInt *I : PTIHandled) { 1251 if (PredHasWeights || SuccHasWeights) 1252 Weights.push_back(WeightsForHandled[I]); 1253 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1254 ++NewSuccessors[BBDefault]; 1255 } 1256 } 1257 1258 // Okay, at this point, we know which new successor Pred will get. Make 1259 // sure we update the number of entries in the PHI nodes for these 1260 // successors. 1261 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1262 if (DTU) { 1263 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1264 Updates.reserve(Updates.size() + NewSuccessors.size()); 1265 } 1266 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1267 NewSuccessors) { 1268 for (auto I : seq(0, NewSuccessor.second)) { 1269 (void)I; 1270 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1271 } 1272 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1273 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1274 } 1275 1276 Builder.SetInsertPoint(PTI); 1277 // Convert pointer to int before we switch. 1278 if (CV->getType()->isPointerTy()) { 1279 CV = 1280 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1281 } 1282 1283 // Now that the successors are updated, create the new Switch instruction. 1284 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1285 NewSI->setDebugLoc(PTI->getDebugLoc()); 1286 for (ValueEqualityComparisonCase &V : PredCases) 1287 NewSI->addCase(V.Value, V.Dest); 1288 1289 if (PredHasWeights || SuccHasWeights) { 1290 // Halve the weights if any of them cannot fit in an uint32_t 1291 FitWeights(Weights); 1292 1293 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1294 1295 setBranchWeights(NewSI, MDWeights); 1296 } 1297 1298 EraseTerminatorAndDCECond(PTI); 1299 1300 // Okay, last check. If BB is still a successor of PSI, then we must 1301 // have an infinite loop case. If so, add an infinitely looping block 1302 // to handle the case to preserve the behavior of the code. 1303 BasicBlock *InfLoopBlock = nullptr; 1304 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1305 if (NewSI->getSuccessor(i) == BB) { 1306 if (!InfLoopBlock) { 1307 // Insert it at the end of the function, because it's either code, 1308 // or it won't matter if it's hot. :) 1309 InfLoopBlock = 1310 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1311 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1312 if (DTU) 1313 Updates.push_back( 1314 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1315 } 1316 NewSI->setSuccessor(i, InfLoopBlock); 1317 } 1318 1319 if (DTU) { 1320 if (InfLoopBlock) 1321 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1322 1323 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1324 1325 DTU->applyUpdates(Updates); 1326 } 1327 1328 ++NumFoldValueComparisonIntoPredecessors; 1329 return true; 1330 } 1331 1332 /// The specified terminator is a value equality comparison instruction 1333 /// (either a switch or a branch on "X == c"). 1334 /// See if any of the predecessors of the terminator block are value comparisons 1335 /// on the same value. If so, and if safe to do so, fold them together. 1336 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1337 IRBuilder<> &Builder) { 1338 BasicBlock *BB = TI->getParent(); 1339 Value *CV = isValueEqualityComparison(TI); // CondVal 1340 assert(CV && "Not a comparison?"); 1341 1342 bool Changed = false; 1343 1344 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1345 while (!Preds.empty()) { 1346 BasicBlock *Pred = Preds.pop_back_val(); 1347 Instruction *PTI = Pred->getTerminator(); 1348 1349 // Don't try to fold into itself. 1350 if (Pred == BB) 1351 continue; 1352 1353 // See if the predecessor is a comparison with the same value. 1354 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1355 if (PCV != CV) 1356 continue; 1357 1358 SmallSetVector<BasicBlock *, 4> FailBlocks; 1359 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1360 for (auto *Succ : FailBlocks) { 1361 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1362 return false; 1363 } 1364 } 1365 1366 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1367 Changed = true; 1368 } 1369 return Changed; 1370 } 1371 1372 // If we would need to insert a select that uses the value of this invoke 1373 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1374 // can't hoist the invoke, as there is nowhere to put the select in this case. 1375 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1376 Instruction *I1, Instruction *I2) { 1377 for (BasicBlock *Succ : successors(BB1)) { 1378 for (const PHINode &PN : Succ->phis()) { 1379 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1380 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1381 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1382 return false; 1383 } 1384 } 1385 } 1386 return true; 1387 } 1388 1389 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1390 1391 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1392 /// in the two blocks up into the branch block. The caller of this function 1393 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1394 /// only perform hoisting in case both blocks only contain a terminator. In that 1395 /// case, only the original BI will be replaced and selects for PHIs are added. 1396 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1397 const TargetTransformInfo &TTI, 1398 bool EqTermsOnly) { 1399 // This does very trivial matching, with limited scanning, to find identical 1400 // instructions in the two blocks. In particular, we don't want to get into 1401 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1402 // such, we currently just scan for obviously identical instructions in an 1403 // identical order. 1404 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1405 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1406 1407 // If either of the blocks has it's address taken, then we can't do this fold, 1408 // because the code we'd hoist would no longer run when we jump into the block 1409 // by it's address. 1410 if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) 1411 return false; 1412 1413 BasicBlock::iterator BB1_Itr = BB1->begin(); 1414 BasicBlock::iterator BB2_Itr = BB2->begin(); 1415 1416 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1417 // Skip debug info if it is not identical. 1418 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1419 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1420 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1421 while (isa<DbgInfoIntrinsic>(I1)) 1422 I1 = &*BB1_Itr++; 1423 while (isa<DbgInfoIntrinsic>(I2)) 1424 I2 = &*BB2_Itr++; 1425 } 1426 // FIXME: Can we define a safety predicate for CallBr? 1427 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1428 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1429 isa<CallBrInst>(I1)) 1430 return false; 1431 1432 BasicBlock *BIParent = BI->getParent(); 1433 1434 bool Changed = false; 1435 1436 auto _ = make_scope_exit([&]() { 1437 if (Changed) 1438 ++NumHoistCommonCode; 1439 }); 1440 1441 // Check if only hoisting terminators is allowed. This does not add new 1442 // instructions to the hoist location. 1443 if (EqTermsOnly) { 1444 // Skip any debug intrinsics, as they are free to hoist. 1445 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1446 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1447 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1448 return false; 1449 if (!I1NonDbg->isTerminator()) 1450 return false; 1451 // Now we know that we only need to hoist debug instrinsics and the 1452 // terminator. Let the loop below handle those 2 cases. 1453 } 1454 1455 do { 1456 // If we are hoisting the terminator instruction, don't move one (making a 1457 // broken BB), instead clone it, and remove BI. 1458 if (I1->isTerminator()) 1459 goto HoistTerminator; 1460 1461 // If we're going to hoist a call, make sure that the two instructions we're 1462 // commoning/hoisting are both marked with musttail, or neither of them is 1463 // marked as such. Otherwise, we might end up in a situation where we hoist 1464 // from a block where the terminator is a `ret` to a block where the terminator 1465 // is a `br`, and `musttail` calls expect to be followed by a return. 1466 auto *C1 = dyn_cast<CallInst>(I1); 1467 auto *C2 = dyn_cast<CallInst>(I2); 1468 if (C1 && C2) 1469 if (C1->isMustTailCall() != C2->isMustTailCall()) 1470 return Changed; 1471 1472 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1473 return Changed; 1474 1475 // If any of the two call sites has nomerge attribute, stop hoisting. 1476 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1477 if (CB1->cannotMerge()) 1478 return Changed; 1479 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1480 if (CB2->cannotMerge()) 1481 return Changed; 1482 1483 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1484 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1485 // The debug location is an integral part of a debug info intrinsic 1486 // and can't be separated from it or replaced. Instead of attempting 1487 // to merge locations, simply hoist both copies of the intrinsic. 1488 BIParent->getInstList().splice(BI->getIterator(), 1489 BB1->getInstList(), I1); 1490 BIParent->getInstList().splice(BI->getIterator(), 1491 BB2->getInstList(), I2); 1492 Changed = true; 1493 } else { 1494 // For a normal instruction, we just move one to right before the branch, 1495 // then replace all uses of the other with the first. Finally, we remove 1496 // the now redundant second instruction. 1497 BIParent->getInstList().splice(BI->getIterator(), 1498 BB1->getInstList(), I1); 1499 if (!I2->use_empty()) 1500 I2->replaceAllUsesWith(I1); 1501 I1->andIRFlags(I2); 1502 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1503 LLVMContext::MD_range, 1504 LLVMContext::MD_fpmath, 1505 LLVMContext::MD_invariant_load, 1506 LLVMContext::MD_nonnull, 1507 LLVMContext::MD_invariant_group, 1508 LLVMContext::MD_align, 1509 LLVMContext::MD_dereferenceable, 1510 LLVMContext::MD_dereferenceable_or_null, 1511 LLVMContext::MD_mem_parallel_loop_access, 1512 LLVMContext::MD_access_group, 1513 LLVMContext::MD_preserve_access_index}; 1514 combineMetadata(I1, I2, KnownIDs, true); 1515 1516 // I1 and I2 are being combined into a single instruction. Its debug 1517 // location is the merged locations of the original instructions. 1518 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1519 1520 I2->eraseFromParent(); 1521 Changed = true; 1522 } 1523 ++NumHoistCommonInstrs; 1524 1525 I1 = &*BB1_Itr++; 1526 I2 = &*BB2_Itr++; 1527 // Skip debug info if it is not identical. 1528 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1529 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1530 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1531 while (isa<DbgInfoIntrinsic>(I1)) 1532 I1 = &*BB1_Itr++; 1533 while (isa<DbgInfoIntrinsic>(I2)) 1534 I2 = &*BB2_Itr++; 1535 } 1536 } while (I1->isIdenticalToWhenDefined(I2)); 1537 1538 return true; 1539 1540 HoistTerminator: 1541 // It may not be possible to hoist an invoke. 1542 // FIXME: Can we define a safety predicate for CallBr? 1543 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1544 return Changed; 1545 1546 // TODO: callbr hoisting currently disabled pending further study. 1547 if (isa<CallBrInst>(I1)) 1548 return Changed; 1549 1550 for (BasicBlock *Succ : successors(BB1)) { 1551 for (PHINode &PN : Succ->phis()) { 1552 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1553 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1554 if (BB1V == BB2V) 1555 continue; 1556 1557 // Check for passingValueIsAlwaysUndefined here because we would rather 1558 // eliminate undefined control flow then converting it to a select. 1559 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1560 passingValueIsAlwaysUndefined(BB2V, &PN)) 1561 return Changed; 1562 1563 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1564 return Changed; 1565 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1566 return Changed; 1567 } 1568 } 1569 1570 // Okay, it is safe to hoist the terminator. 1571 Instruction *NT = I1->clone(); 1572 BIParent->getInstList().insert(BI->getIterator(), NT); 1573 if (!NT->getType()->isVoidTy()) { 1574 I1->replaceAllUsesWith(NT); 1575 I2->replaceAllUsesWith(NT); 1576 NT->takeName(I1); 1577 } 1578 Changed = true; 1579 ++NumHoistCommonInstrs; 1580 1581 // Ensure terminator gets a debug location, even an unknown one, in case 1582 // it involves inlinable calls. 1583 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1584 1585 // PHIs created below will adopt NT's merged DebugLoc. 1586 IRBuilder<NoFolder> Builder(NT); 1587 1588 // Hoisting one of the terminators from our successor is a great thing. 1589 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1590 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1591 // nodes, so we insert select instruction to compute the final result. 1592 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1593 for (BasicBlock *Succ : successors(BB1)) { 1594 for (PHINode &PN : Succ->phis()) { 1595 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1596 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1597 if (BB1V == BB2V) 1598 continue; 1599 1600 // These values do not agree. Insert a select instruction before NT 1601 // that determines the right value. 1602 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1603 if (!SI) { 1604 // Propagate fast-math-flags from phi node to its replacement select. 1605 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1606 if (isa<FPMathOperator>(PN)) 1607 Builder.setFastMathFlags(PN.getFastMathFlags()); 1608 1609 SI = cast<SelectInst>( 1610 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1611 BB1V->getName() + "." + BB2V->getName(), BI)); 1612 } 1613 1614 // Make the PHI node use the select for all incoming values for BB1/BB2 1615 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1616 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1617 PN.setIncomingValue(i, SI); 1618 } 1619 } 1620 1621 SmallVector<DominatorTree::UpdateType, 4> Updates; 1622 1623 // Update any PHI nodes in our new successors. 1624 for (BasicBlock *Succ : successors(BB1)) { 1625 AddPredecessorToBlock(Succ, BIParent, BB1); 1626 if (DTU) 1627 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1628 } 1629 1630 if (DTU) 1631 for (BasicBlock *Succ : successors(BI)) 1632 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1633 1634 EraseTerminatorAndDCECond(BI); 1635 if (DTU) 1636 DTU->applyUpdates(Updates); 1637 return Changed; 1638 } 1639 1640 // Check lifetime markers. 1641 static bool isLifeTimeMarker(const Instruction *I) { 1642 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1643 switch (II->getIntrinsicID()) { 1644 default: 1645 break; 1646 case Intrinsic::lifetime_start: 1647 case Intrinsic::lifetime_end: 1648 return true; 1649 } 1650 } 1651 return false; 1652 } 1653 1654 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1655 // into variables. 1656 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1657 int OpIdx) { 1658 return !isa<IntrinsicInst>(I); 1659 } 1660 1661 // All instructions in Insts belong to different blocks that all unconditionally 1662 // branch to a common successor. Analyze each instruction and return true if it 1663 // would be possible to sink them into their successor, creating one common 1664 // instruction instead. For every value that would be required to be provided by 1665 // PHI node (because an operand varies in each input block), add to PHIOperands. 1666 static bool canSinkInstructions( 1667 ArrayRef<Instruction *> Insts, 1668 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1669 // Prune out obviously bad instructions to move. Each instruction must have 1670 // exactly zero or one use, and we check later that use is by a single, common 1671 // PHI instruction in the successor. 1672 bool HasUse = !Insts.front()->user_empty(); 1673 for (auto *I : Insts) { 1674 // These instructions may change or break semantics if moved. 1675 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1676 I->getType()->isTokenTy()) 1677 return false; 1678 1679 // Do not try to sink an instruction in an infinite loop - it can cause 1680 // this algorithm to infinite loop. 1681 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1682 return false; 1683 1684 // Conservatively return false if I is an inline-asm instruction. Sinking 1685 // and merging inline-asm instructions can potentially create arguments 1686 // that cannot satisfy the inline-asm constraints. 1687 // If the instruction has nomerge attribute, return false. 1688 if (const auto *C = dyn_cast<CallBase>(I)) 1689 if (C->isInlineAsm() || C->cannotMerge()) 1690 return false; 1691 1692 // Each instruction must have zero or one use. 1693 if (HasUse && !I->hasOneUse()) 1694 return false; 1695 if (!HasUse && !I->user_empty()) 1696 return false; 1697 } 1698 1699 const Instruction *I0 = Insts.front(); 1700 for (auto *I : Insts) 1701 if (!I->isSameOperationAs(I0)) 1702 return false; 1703 1704 // All instructions in Insts are known to be the same opcode. If they have a 1705 // use, check that the only user is a PHI or in the same block as the 1706 // instruction, because if a user is in the same block as an instruction we're 1707 // contemplating sinking, it must already be determined to be sinkable. 1708 if (HasUse) { 1709 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1710 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1711 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1712 auto *U = cast<Instruction>(*I->user_begin()); 1713 return (PNUse && 1714 PNUse->getParent() == Succ && 1715 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1716 U->getParent() == I->getParent(); 1717 })) 1718 return false; 1719 } 1720 1721 // Because SROA can't handle speculating stores of selects, try not to sink 1722 // loads, stores or lifetime markers of allocas when we'd have to create a 1723 // PHI for the address operand. Also, because it is likely that loads or 1724 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1725 // them. 1726 // This can cause code churn which can have unintended consequences down 1727 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1728 // FIXME: This is a workaround for a deficiency in SROA - see 1729 // https://llvm.org/bugs/show_bug.cgi?id=30188 1730 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1731 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1732 })) 1733 return false; 1734 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1735 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1736 })) 1737 return false; 1738 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1739 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1740 })) 1741 return false; 1742 1743 // For calls to be sinkable, they must all be indirect, or have same callee. 1744 // I.e. if we have two direct calls to different callees, we don't want to 1745 // turn that into an indirect call. Likewise, if we have an indirect call, 1746 // and a direct call, we don't actually want to have a single indirect call. 1747 if (isa<CallBase>(I0)) { 1748 auto IsIndirectCall = [](const Instruction *I) { 1749 return cast<CallBase>(I)->isIndirectCall(); 1750 }; 1751 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1752 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1753 if (HaveIndirectCalls) { 1754 if (!AllCallsAreIndirect) 1755 return false; 1756 } else { 1757 // All callees must be identical. 1758 Value *Callee = nullptr; 1759 for (const Instruction *I : Insts) { 1760 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1761 if (!Callee) 1762 Callee = CurrCallee; 1763 else if (Callee != CurrCallee) 1764 return false; 1765 } 1766 } 1767 } 1768 1769 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1770 Value *Op = I0->getOperand(OI); 1771 if (Op->getType()->isTokenTy()) 1772 // Don't touch any operand of token type. 1773 return false; 1774 1775 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1776 assert(I->getNumOperands() == I0->getNumOperands()); 1777 return I->getOperand(OI) == I0->getOperand(OI); 1778 }; 1779 if (!all_of(Insts, SameAsI0)) { 1780 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1781 !canReplaceOperandWithVariable(I0, OI)) 1782 // We can't create a PHI from this GEP. 1783 return false; 1784 for (auto *I : Insts) 1785 PHIOperands[I].push_back(I->getOperand(OI)); 1786 } 1787 } 1788 return true; 1789 } 1790 1791 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1792 // instruction of every block in Blocks to their common successor, commoning 1793 // into one instruction. 1794 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1795 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1796 1797 // canSinkInstructions returning true guarantees that every block has at 1798 // least one non-terminator instruction. 1799 SmallVector<Instruction*,4> Insts; 1800 for (auto *BB : Blocks) { 1801 Instruction *I = BB->getTerminator(); 1802 do { 1803 I = I->getPrevNode(); 1804 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1805 if (!isa<DbgInfoIntrinsic>(I)) 1806 Insts.push_back(I); 1807 } 1808 1809 // The only checking we need to do now is that all users of all instructions 1810 // are the same PHI node. canSinkInstructions should have checked this but 1811 // it is slightly over-aggressive - it gets confused by commutative 1812 // instructions so double-check it here. 1813 Instruction *I0 = Insts.front(); 1814 if (!I0->user_empty()) { 1815 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1816 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1817 auto *U = cast<Instruction>(*I->user_begin()); 1818 return U == PNUse; 1819 })) 1820 return false; 1821 } 1822 1823 // We don't need to do any more checking here; canSinkInstructions should 1824 // have done it all for us. 1825 SmallVector<Value*, 4> NewOperands; 1826 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1827 // This check is different to that in canSinkInstructions. There, we 1828 // cared about the global view once simplifycfg (and instcombine) have 1829 // completed - it takes into account PHIs that become trivially 1830 // simplifiable. However here we need a more local view; if an operand 1831 // differs we create a PHI and rely on instcombine to clean up the very 1832 // small mess we may make. 1833 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1834 return I->getOperand(O) != I0->getOperand(O); 1835 }); 1836 if (!NeedPHI) { 1837 NewOperands.push_back(I0->getOperand(O)); 1838 continue; 1839 } 1840 1841 // Create a new PHI in the successor block and populate it. 1842 auto *Op = I0->getOperand(O); 1843 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1844 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1845 Op->getName() + ".sink", &BBEnd->front()); 1846 for (auto *I : Insts) 1847 PN->addIncoming(I->getOperand(O), I->getParent()); 1848 NewOperands.push_back(PN); 1849 } 1850 1851 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1852 // and move it to the start of the successor block. 1853 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1854 I0->getOperandUse(O).set(NewOperands[O]); 1855 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1856 1857 // Update metadata and IR flags, and merge debug locations. 1858 for (auto *I : Insts) 1859 if (I != I0) { 1860 // The debug location for the "common" instruction is the merged locations 1861 // of all the commoned instructions. We start with the original location 1862 // of the "common" instruction and iteratively merge each location in the 1863 // loop below. 1864 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1865 // However, as N-way merge for CallInst is rare, so we use simplified API 1866 // instead of using complex API for N-way merge. 1867 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1868 combineMetadataForCSE(I0, I, true); 1869 I0->andIRFlags(I); 1870 } 1871 1872 if (!I0->user_empty()) { 1873 // canSinkLastInstruction checked that all instructions were used by 1874 // one and only one PHI node. Find that now, RAUW it to our common 1875 // instruction and nuke it. 1876 auto *PN = cast<PHINode>(*I0->user_begin()); 1877 PN->replaceAllUsesWith(I0); 1878 PN->eraseFromParent(); 1879 } 1880 1881 // Finally nuke all instructions apart from the common instruction. 1882 for (auto *I : Insts) 1883 if (I != I0) 1884 I->eraseFromParent(); 1885 1886 return true; 1887 } 1888 1889 namespace { 1890 1891 // LockstepReverseIterator - Iterates through instructions 1892 // in a set of blocks in reverse order from the first non-terminator. 1893 // For example (assume all blocks have size n): 1894 // LockstepReverseIterator I([B1, B2, B3]); 1895 // *I-- = [B1[n], B2[n], B3[n]]; 1896 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1897 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1898 // ... 1899 class LockstepReverseIterator { 1900 ArrayRef<BasicBlock*> Blocks; 1901 SmallVector<Instruction*,4> Insts; 1902 bool Fail; 1903 1904 public: 1905 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1906 reset(); 1907 } 1908 1909 void reset() { 1910 Fail = false; 1911 Insts.clear(); 1912 for (auto *BB : Blocks) { 1913 Instruction *Inst = BB->getTerminator(); 1914 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1915 Inst = Inst->getPrevNode(); 1916 if (!Inst) { 1917 // Block wasn't big enough. 1918 Fail = true; 1919 return; 1920 } 1921 Insts.push_back(Inst); 1922 } 1923 } 1924 1925 bool isValid() const { 1926 return !Fail; 1927 } 1928 1929 void operator--() { 1930 if (Fail) 1931 return; 1932 for (auto *&Inst : Insts) { 1933 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1934 Inst = Inst->getPrevNode(); 1935 // Already at beginning of block. 1936 if (!Inst) { 1937 Fail = true; 1938 return; 1939 } 1940 } 1941 } 1942 1943 void operator++() { 1944 if (Fail) 1945 return; 1946 for (auto *&Inst : Insts) { 1947 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1948 Inst = Inst->getNextNode(); 1949 // Already at end of block. 1950 if (!Inst) { 1951 Fail = true; 1952 return; 1953 } 1954 } 1955 } 1956 1957 ArrayRef<Instruction*> operator * () const { 1958 return Insts; 1959 } 1960 }; 1961 1962 } // end anonymous namespace 1963 1964 /// Check whether BB's predecessors end with unconditional branches. If it is 1965 /// true, sink any common code from the predecessors to BB. 1966 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1967 DomTreeUpdater *DTU) { 1968 // We support two situations: 1969 // (1) all incoming arcs are unconditional 1970 // (2) there are non-unconditional incoming arcs 1971 // 1972 // (2) is very common in switch defaults and 1973 // else-if patterns; 1974 // 1975 // if (a) f(1); 1976 // else if (b) f(2); 1977 // 1978 // produces: 1979 // 1980 // [if] 1981 // / \ 1982 // [f(1)] [if] 1983 // | | \ 1984 // | | | 1985 // | [f(2)]| 1986 // \ | / 1987 // [ end ] 1988 // 1989 // [end] has two unconditional predecessor arcs and one conditional. The 1990 // conditional refers to the implicit empty 'else' arc. This conditional 1991 // arc can also be caused by an empty default block in a switch. 1992 // 1993 // In this case, we attempt to sink code from all *unconditional* arcs. 1994 // If we can sink instructions from these arcs (determined during the scan 1995 // phase below) we insert a common successor for all unconditional arcs and 1996 // connect that to [end], to enable sinking: 1997 // 1998 // [if] 1999 // / \ 2000 // [x(1)] [if] 2001 // | | \ 2002 // | | \ 2003 // | [x(2)] | 2004 // \ / | 2005 // [sink.split] | 2006 // \ / 2007 // [ end ] 2008 // 2009 SmallVector<BasicBlock*,4> UnconditionalPreds; 2010 bool HaveNonUnconditionalPredecessors = false; 2011 for (auto *PredBB : predecessors(BB)) { 2012 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2013 if (PredBr && PredBr->isUnconditional()) 2014 UnconditionalPreds.push_back(PredBB); 2015 else 2016 HaveNonUnconditionalPredecessors = true; 2017 } 2018 if (UnconditionalPreds.size() < 2) 2019 return false; 2020 2021 // We take a two-step approach to tail sinking. First we scan from the end of 2022 // each block upwards in lockstep. If the n'th instruction from the end of each 2023 // block can be sunk, those instructions are added to ValuesToSink and we 2024 // carry on. If we can sink an instruction but need to PHI-merge some operands 2025 // (because they're not identical in each instruction) we add these to 2026 // PHIOperands. 2027 int ScanIdx = 0; 2028 SmallPtrSet<Value*,4> InstructionsToSink; 2029 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2030 LockstepReverseIterator LRI(UnconditionalPreds); 2031 while (LRI.isValid() && 2032 canSinkInstructions(*LRI, PHIOperands)) { 2033 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2034 << "\n"); 2035 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2036 ++ScanIdx; 2037 --LRI; 2038 } 2039 2040 // If no instructions can be sunk, early-return. 2041 if (ScanIdx == 0) 2042 return false; 2043 2044 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2045 // actually sink before encountering instruction that is unprofitable to sink? 2046 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2047 unsigned NumPHIdValues = 0; 2048 for (auto *I : *LRI) 2049 for (auto *V : PHIOperands[I]) { 2050 if (InstructionsToSink.count(V) == 0) 2051 ++NumPHIdValues; 2052 // FIXME: this check is overly optimistic. We may end up not sinking 2053 // said instruction, due to the very same profitability check. 2054 // See @creating_too_many_phis in sink-common-code.ll. 2055 } 2056 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2057 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2058 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2059 NumPHIInsts++; 2060 2061 return NumPHIInsts <= 1; 2062 }; 2063 2064 // We've determined that we are going to sink last ScanIdx instructions, 2065 // and recorded them in InstructionsToSink. Now, some instructions may be 2066 // unprofitable to sink. But that determination depends on the instructions 2067 // that we are going to sink. 2068 2069 // First, forward scan: find the first instruction unprofitable to sink, 2070 // recording all the ones that are profitable to sink. 2071 // FIXME: would it be better, after we detect that not all are profitable. 2072 // to either record the profitable ones, or erase the unprofitable ones? 2073 // Maybe we need to choose (at runtime) the one that will touch least instrs? 2074 LRI.reset(); 2075 int Idx = 0; 2076 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2077 while (Idx < ScanIdx) { 2078 if (!ProfitableToSinkInstruction(LRI)) { 2079 // Too many PHIs would be created. 2080 LLVM_DEBUG( 2081 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2082 break; 2083 } 2084 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2085 --LRI; 2086 ++Idx; 2087 } 2088 2089 // If no instructions can be sunk, early-return. 2090 if (Idx == 0) 2091 return false; 2092 2093 // Did we determine that (only) some instructions are unprofitable to sink? 2094 if (Idx < ScanIdx) { 2095 // Okay, some instructions are unprofitable. 2096 ScanIdx = Idx; 2097 InstructionsToSink = InstructionsProfitableToSink; 2098 2099 // But, that may make other instructions unprofitable, too. 2100 // So, do a backward scan, do any earlier instructions become unprofitable? 2101 assert(!ProfitableToSinkInstruction(LRI) && 2102 "We already know that the last instruction is unprofitable to sink"); 2103 ++LRI; 2104 --Idx; 2105 while (Idx >= 0) { 2106 // If we detect that an instruction becomes unprofitable to sink, 2107 // all earlier instructions won't be sunk either, 2108 // so preemptively keep InstructionsProfitableToSink in sync. 2109 // FIXME: is this the most performant approach? 2110 for (auto *I : *LRI) 2111 InstructionsProfitableToSink.erase(I); 2112 if (!ProfitableToSinkInstruction(LRI)) { 2113 // Everything starting with this instruction won't be sunk. 2114 ScanIdx = Idx; 2115 InstructionsToSink = InstructionsProfitableToSink; 2116 } 2117 ++LRI; 2118 --Idx; 2119 } 2120 } 2121 2122 // If no instructions can be sunk, early-return. 2123 if (ScanIdx == 0) 2124 return false; 2125 2126 bool Changed = false; 2127 2128 if (HaveNonUnconditionalPredecessors) { 2129 // It is always legal to sink common instructions from unconditional 2130 // predecessors. However, if not all predecessors are unconditional, 2131 // this transformation might be pessimizing. So as a rule of thumb, 2132 // don't do it unless we'd sink at least one non-speculatable instruction. 2133 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2134 LRI.reset(); 2135 int Idx = 0; 2136 bool Profitable = false; 2137 while (Idx < ScanIdx) { 2138 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2139 Profitable = true; 2140 break; 2141 } 2142 --LRI; 2143 ++Idx; 2144 } 2145 if (!Profitable) 2146 return false; 2147 2148 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2149 // We have a conditional edge and we're going to sink some instructions. 2150 // Insert a new block postdominating all blocks we're going to sink from. 2151 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2152 // Edges couldn't be split. 2153 return false; 2154 Changed = true; 2155 } 2156 2157 // Now that we've analyzed all potential sinking candidates, perform the 2158 // actual sink. We iteratively sink the last non-terminator of the source 2159 // blocks into their common successor unless doing so would require too 2160 // many PHI instructions to be generated (currently only one PHI is allowed 2161 // per sunk instruction). 2162 // 2163 // We can use InstructionsToSink to discount values needing PHI-merging that will 2164 // actually be sunk in a later iteration. This allows us to be more 2165 // aggressive in what we sink. This does allow a false positive where we 2166 // sink presuming a later value will also be sunk, but stop half way through 2167 // and never actually sink it which means we produce more PHIs than intended. 2168 // This is unlikely in practice though. 2169 int SinkIdx = 0; 2170 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2171 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2172 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2173 << "\n"); 2174 2175 // Because we've sunk every instruction in turn, the current instruction to 2176 // sink is always at index 0. 2177 LRI.reset(); 2178 2179 if (!sinkLastInstruction(UnconditionalPreds)) { 2180 LLVM_DEBUG( 2181 dbgs() 2182 << "SINK: stopping here, failed to actually sink instruction!\n"); 2183 break; 2184 } 2185 2186 NumSinkCommonInstrs++; 2187 Changed = true; 2188 } 2189 if (SinkIdx != 0) 2190 ++NumSinkCommonCode; 2191 return Changed; 2192 } 2193 2194 /// Determine if we can hoist sink a sole store instruction out of a 2195 /// conditional block. 2196 /// 2197 /// We are looking for code like the following: 2198 /// BrBB: 2199 /// store i32 %add, i32* %arrayidx2 2200 /// ... // No other stores or function calls (we could be calling a memory 2201 /// ... // function). 2202 /// %cmp = icmp ult %x, %y 2203 /// br i1 %cmp, label %EndBB, label %ThenBB 2204 /// ThenBB: 2205 /// store i32 %add5, i32* %arrayidx2 2206 /// br label EndBB 2207 /// EndBB: 2208 /// ... 2209 /// We are going to transform this into: 2210 /// BrBB: 2211 /// store i32 %add, i32* %arrayidx2 2212 /// ... // 2213 /// %cmp = icmp ult %x, %y 2214 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2215 /// store i32 %add.add5, i32* %arrayidx2 2216 /// ... 2217 /// 2218 /// \return The pointer to the value of the previous store if the store can be 2219 /// hoisted into the predecessor block. 0 otherwise. 2220 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2221 BasicBlock *StoreBB, BasicBlock *EndBB) { 2222 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2223 if (!StoreToHoist) 2224 return nullptr; 2225 2226 // Volatile or atomic. 2227 if (!StoreToHoist->isSimple()) 2228 return nullptr; 2229 2230 Value *StorePtr = StoreToHoist->getPointerOperand(); 2231 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2232 2233 // Look for a store to the same pointer in BrBB. 2234 unsigned MaxNumInstToLookAt = 9; 2235 // Skip pseudo probe intrinsic calls which are not really killing any memory 2236 // accesses. 2237 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2238 if (!MaxNumInstToLookAt) 2239 break; 2240 --MaxNumInstToLookAt; 2241 2242 // Could be calling an instruction that affects memory like free(). 2243 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2244 return nullptr; 2245 2246 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2247 // Found the previous store make sure it stores to the same location. 2248 if (SI->getPointerOperand() == StorePtr && 2249 SI->getValueOperand()->getType() == StoreTy) 2250 // Found the previous store, return its value operand. 2251 return SI->getValueOperand(); 2252 return nullptr; // Unknown store. 2253 } 2254 } 2255 2256 return nullptr; 2257 } 2258 2259 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2260 /// converted to selects. 2261 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2262 BasicBlock *EndBB, 2263 unsigned &SpeculatedInstructions, 2264 InstructionCost &Cost, 2265 const TargetTransformInfo &TTI) { 2266 TargetTransformInfo::TargetCostKind CostKind = 2267 BB->getParent()->hasMinSize() 2268 ? TargetTransformInfo::TCK_CodeSize 2269 : TargetTransformInfo::TCK_SizeAndLatency; 2270 2271 bool HaveRewritablePHIs = false; 2272 for (PHINode &PN : EndBB->phis()) { 2273 Value *OrigV = PN.getIncomingValueForBlock(BB); 2274 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2275 2276 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2277 // Skip PHIs which are trivial. 2278 if (ThenV == OrigV) 2279 continue; 2280 2281 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2282 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2283 2284 // Don't convert to selects if we could remove undefined behavior instead. 2285 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2286 passingValueIsAlwaysUndefined(ThenV, &PN)) 2287 return false; 2288 2289 HaveRewritablePHIs = true; 2290 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2291 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2292 if (!OrigCE && !ThenCE) 2293 continue; // Known safe and cheap. 2294 2295 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2296 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2297 return false; 2298 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2299 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2300 InstructionCost MaxCost = 2301 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2302 if (OrigCost + ThenCost > MaxCost) 2303 return false; 2304 2305 // Account for the cost of an unfolded ConstantExpr which could end up 2306 // getting expanded into Instructions. 2307 // FIXME: This doesn't account for how many operations are combined in the 2308 // constant expression. 2309 ++SpeculatedInstructions; 2310 if (SpeculatedInstructions > 1) 2311 return false; 2312 } 2313 2314 return HaveRewritablePHIs; 2315 } 2316 2317 /// Speculate a conditional basic block flattening the CFG. 2318 /// 2319 /// Note that this is a very risky transform currently. Speculating 2320 /// instructions like this is most often not desirable. Instead, there is an MI 2321 /// pass which can do it with full awareness of the resource constraints. 2322 /// However, some cases are "obvious" and we should do directly. An example of 2323 /// this is speculating a single, reasonably cheap instruction. 2324 /// 2325 /// There is only one distinct advantage to flattening the CFG at the IR level: 2326 /// it makes very common but simplistic optimizations such as are common in 2327 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2328 /// modeling their effects with easier to reason about SSA value graphs. 2329 /// 2330 /// 2331 /// An illustration of this transform is turning this IR: 2332 /// \code 2333 /// BB: 2334 /// %cmp = icmp ult %x, %y 2335 /// br i1 %cmp, label %EndBB, label %ThenBB 2336 /// ThenBB: 2337 /// %sub = sub %x, %y 2338 /// br label BB2 2339 /// EndBB: 2340 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2341 /// ... 2342 /// \endcode 2343 /// 2344 /// Into this IR: 2345 /// \code 2346 /// BB: 2347 /// %cmp = icmp ult %x, %y 2348 /// %sub = sub %x, %y 2349 /// %cond = select i1 %cmp, 0, %sub 2350 /// ... 2351 /// \endcode 2352 /// 2353 /// \returns true if the conditional block is removed. 2354 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2355 const TargetTransformInfo &TTI) { 2356 // Be conservative for now. FP select instruction can often be expensive. 2357 Value *BrCond = BI->getCondition(); 2358 if (isa<FCmpInst>(BrCond)) 2359 return false; 2360 2361 BasicBlock *BB = BI->getParent(); 2362 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2363 InstructionCost Budget = 2364 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2365 2366 // If ThenBB is actually on the false edge of the conditional branch, remember 2367 // to swap the select operands later. 2368 bool Invert = false; 2369 if (ThenBB != BI->getSuccessor(0)) { 2370 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2371 Invert = true; 2372 } 2373 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2374 2375 // Keep a count of how many times instructions are used within ThenBB when 2376 // they are candidates for sinking into ThenBB. Specifically: 2377 // - They are defined in BB, and 2378 // - They have no side effects, and 2379 // - All of their uses are in ThenBB. 2380 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2381 2382 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2383 2384 unsigned SpeculatedInstructions = 0; 2385 Value *SpeculatedStoreValue = nullptr; 2386 StoreInst *SpeculatedStore = nullptr; 2387 for (BasicBlock::iterator BBI = ThenBB->begin(), 2388 BBE = std::prev(ThenBB->end()); 2389 BBI != BBE; ++BBI) { 2390 Instruction *I = &*BBI; 2391 // Skip debug info. 2392 if (isa<DbgInfoIntrinsic>(I)) { 2393 SpeculatedDbgIntrinsics.push_back(I); 2394 continue; 2395 } 2396 2397 // Skip pseudo probes. The consequence is we lose track of the branch 2398 // probability for ThenBB, which is fine since the optimization here takes 2399 // place regardless of the branch probability. 2400 if (isa<PseudoProbeInst>(I)) { 2401 // The probe should be deleted so that it will not be over-counted when 2402 // the samples collected on the non-conditional path are counted towards 2403 // the conditional path. We leave it for the counts inference algorithm to 2404 // figure out a proper count for an unknown probe. 2405 SpeculatedDbgIntrinsics.push_back(I); 2406 continue; 2407 } 2408 2409 // Only speculatively execute a single instruction (not counting the 2410 // terminator) for now. 2411 ++SpeculatedInstructions; 2412 if (SpeculatedInstructions > 1) 2413 return false; 2414 2415 // Don't hoist the instruction if it's unsafe or expensive. 2416 if (!isSafeToSpeculativelyExecute(I) && 2417 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2418 I, BB, ThenBB, EndBB)))) 2419 return false; 2420 if (!SpeculatedStoreValue && 2421 computeSpeculationCost(I, TTI) > 2422 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2423 return false; 2424 2425 // Store the store speculation candidate. 2426 if (SpeculatedStoreValue) 2427 SpeculatedStore = cast<StoreInst>(I); 2428 2429 // Do not hoist the instruction if any of its operands are defined but not 2430 // used in BB. The transformation will prevent the operand from 2431 // being sunk into the use block. 2432 for (Use &Op : I->operands()) { 2433 Instruction *OpI = dyn_cast<Instruction>(Op); 2434 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2435 continue; // Not a candidate for sinking. 2436 2437 ++SinkCandidateUseCounts[OpI]; 2438 } 2439 } 2440 2441 // Consider any sink candidates which are only used in ThenBB as costs for 2442 // speculation. Note, while we iterate over a DenseMap here, we are summing 2443 // and so iteration order isn't significant. 2444 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2445 I = SinkCandidateUseCounts.begin(), 2446 E = SinkCandidateUseCounts.end(); 2447 I != E; ++I) 2448 if (I->first->hasNUses(I->second)) { 2449 ++SpeculatedInstructions; 2450 if (SpeculatedInstructions > 1) 2451 return false; 2452 } 2453 2454 // Check that we can insert the selects and that it's not too expensive to do 2455 // so. 2456 bool Convert = SpeculatedStore != nullptr; 2457 InstructionCost Cost = 0; 2458 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2459 SpeculatedInstructions, 2460 Cost, TTI); 2461 if (!Convert || Cost > Budget) 2462 return false; 2463 2464 // If we get here, we can hoist the instruction and if-convert. 2465 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2466 2467 // Insert a select of the value of the speculated store. 2468 if (SpeculatedStoreValue) { 2469 IRBuilder<NoFolder> Builder(BI); 2470 Value *TrueV = SpeculatedStore->getValueOperand(); 2471 Value *FalseV = SpeculatedStoreValue; 2472 if (Invert) 2473 std::swap(TrueV, FalseV); 2474 Value *S = Builder.CreateSelect( 2475 BrCond, TrueV, FalseV, "spec.store.select", BI); 2476 SpeculatedStore->setOperand(0, S); 2477 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2478 SpeculatedStore->getDebugLoc()); 2479 } 2480 2481 // Metadata can be dependent on the condition we are hoisting above. 2482 // Conservatively strip all metadata on the instruction. Drop the debug loc 2483 // to avoid making it appear as if the condition is a constant, which would 2484 // be misleading while debugging. 2485 for (auto &I : *ThenBB) { 2486 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2487 I.setDebugLoc(DebugLoc()); 2488 I.dropUnknownNonDebugMetadata(); 2489 } 2490 2491 // Hoist the instructions. 2492 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2493 ThenBB->begin(), std::prev(ThenBB->end())); 2494 2495 // Insert selects and rewrite the PHI operands. 2496 IRBuilder<NoFolder> Builder(BI); 2497 for (PHINode &PN : EndBB->phis()) { 2498 unsigned OrigI = PN.getBasicBlockIndex(BB); 2499 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2500 Value *OrigV = PN.getIncomingValue(OrigI); 2501 Value *ThenV = PN.getIncomingValue(ThenI); 2502 2503 // Skip PHIs which are trivial. 2504 if (OrigV == ThenV) 2505 continue; 2506 2507 // Create a select whose true value is the speculatively executed value and 2508 // false value is the pre-existing value. Swap them if the branch 2509 // destinations were inverted. 2510 Value *TrueV = ThenV, *FalseV = OrigV; 2511 if (Invert) 2512 std::swap(TrueV, FalseV); 2513 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2514 PN.setIncomingValue(OrigI, V); 2515 PN.setIncomingValue(ThenI, V); 2516 } 2517 2518 // Remove speculated dbg intrinsics. 2519 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2520 // dbg value for the different flows and inserting it after the select. 2521 for (Instruction *I : SpeculatedDbgIntrinsics) 2522 I->eraseFromParent(); 2523 2524 ++NumSpeculations; 2525 return true; 2526 } 2527 2528 /// Return true if we can thread a branch across this block. 2529 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2530 int Size = 0; 2531 2532 SmallPtrSet<const Value *, 32> EphValues; 2533 auto IsEphemeral = [&](const Value *V) { 2534 if (isa<AssumeInst>(V)) 2535 return true; 2536 return isSafeToSpeculativelyExecute(V) && 2537 all_of(V->users(), 2538 [&](const User *U) { return EphValues.count(U); }); 2539 }; 2540 2541 // Walk the loop in reverse so that we can identify ephemeral values properly 2542 // (values only feeding assumes). 2543 for (Instruction &I : reverse(BB->instructionsWithoutDebug())) { 2544 // Can't fold blocks that contain noduplicate or convergent calls. 2545 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2546 if (CI->cannotDuplicate() || CI->isConvergent()) 2547 return false; 2548 2549 // Ignore ephemeral values which are deleted during codegen. 2550 if (IsEphemeral(&I)) 2551 EphValues.insert(&I); 2552 // We will delete Phis while threading, so Phis should not be accounted in 2553 // block's size. 2554 else if (!isa<PHINode>(I)) { 2555 if (Size++ > MaxSmallBlockSize) 2556 return false; // Don't clone large BB's. 2557 } 2558 2559 // We can only support instructions that do not define values that are 2560 // live outside of the current basic block. 2561 for (User *U : I.users()) { 2562 Instruction *UI = cast<Instruction>(U); 2563 if (UI->getParent() != BB || isa<PHINode>(UI)) 2564 return false; 2565 } 2566 2567 // Looks ok, continue checking. 2568 } 2569 2570 return true; 2571 } 2572 2573 /// If we have a conditional branch on a PHI node value that is defined in the 2574 /// same block as the branch and if any PHI entries are constants, thread edges 2575 /// corresponding to that entry to be branches to their ultimate destination. 2576 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2577 const DataLayout &DL, AssumptionCache *AC) { 2578 BasicBlock *BB = BI->getParent(); 2579 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2580 // NOTE: we currently cannot transform this case if the PHI node is used 2581 // outside of the block. 2582 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2583 return false; 2584 2585 // Degenerate case of a single entry PHI. 2586 if (PN->getNumIncomingValues() == 1) { 2587 FoldSingleEntryPHINodes(PN->getParent()); 2588 return true; 2589 } 2590 2591 // Now we know that this block has multiple preds and two succs. 2592 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2593 return false; 2594 2595 // Okay, this is a simple enough basic block. See if any phi values are 2596 // constants. 2597 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2598 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2599 if (!CB || !CB->getType()->isIntegerTy(1)) 2600 continue; 2601 2602 // Okay, we now know that all edges from PredBB should be revectored to 2603 // branch to RealDest. 2604 BasicBlock *PredBB = PN->getIncomingBlock(i); 2605 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2606 2607 if (RealDest == BB) 2608 continue; // Skip self loops. 2609 // Skip if the predecessor's terminator is an indirect branch. 2610 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2611 continue; 2612 2613 SmallVector<DominatorTree::UpdateType, 3> Updates; 2614 2615 // The dest block might have PHI nodes, other predecessors and other 2616 // difficult cases. Instead of being smart about this, just insert a new 2617 // block that jumps to the destination block, effectively splitting 2618 // the edge we are about to create. 2619 BasicBlock *EdgeBB = 2620 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2621 RealDest->getParent(), RealDest); 2622 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2623 if (DTU) 2624 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2625 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2626 2627 // Update PHI nodes. 2628 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2629 2630 // BB may have instructions that are being threaded over. Clone these 2631 // instructions into EdgeBB. We know that there will be no uses of the 2632 // cloned instructions outside of EdgeBB. 2633 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2634 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2635 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2636 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2637 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2638 continue; 2639 } 2640 // Clone the instruction. 2641 Instruction *N = BBI->clone(); 2642 if (BBI->hasName()) 2643 N->setName(BBI->getName() + ".c"); 2644 2645 // Update operands due to translation. 2646 for (Use &Op : N->operands()) { 2647 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2648 if (PI != TranslateMap.end()) 2649 Op = PI->second; 2650 } 2651 2652 // Check for trivial simplification. 2653 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2654 if (!BBI->use_empty()) 2655 TranslateMap[&*BBI] = V; 2656 if (!N->mayHaveSideEffects()) { 2657 N->deleteValue(); // Instruction folded away, don't need actual inst 2658 N = nullptr; 2659 } 2660 } else { 2661 if (!BBI->use_empty()) 2662 TranslateMap[&*BBI] = N; 2663 } 2664 if (N) { 2665 // Insert the new instruction into its new home. 2666 EdgeBB->getInstList().insert(InsertPt, N); 2667 2668 // Register the new instruction with the assumption cache if necessary. 2669 if (auto *Assume = dyn_cast<AssumeInst>(N)) 2670 if (AC) 2671 AC->registerAssumption(Assume); 2672 } 2673 } 2674 2675 // Loop over all of the edges from PredBB to BB, changing them to branch 2676 // to EdgeBB instead. 2677 Instruction *PredBBTI = PredBB->getTerminator(); 2678 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2679 if (PredBBTI->getSuccessor(i) == BB) { 2680 BB->removePredecessor(PredBB); 2681 PredBBTI->setSuccessor(i, EdgeBB); 2682 } 2683 2684 if (DTU) { 2685 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2686 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2687 2688 DTU->applyUpdates(Updates); 2689 } 2690 2691 // Recurse, simplifying any other constants. 2692 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2693 } 2694 2695 return false; 2696 } 2697 2698 /// Given a BB that starts with the specified two-entry PHI node, 2699 /// see if we can eliminate it. 2700 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2701 DomTreeUpdater *DTU, const DataLayout &DL) { 2702 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2703 // statement", which has a very simple dominance structure. Basically, we 2704 // are trying to find the condition that is being branched on, which 2705 // subsequently causes this merge to happen. We really want control 2706 // dependence information for this check, but simplifycfg can't keep it up 2707 // to date, and this catches most of the cases we care about anyway. 2708 BasicBlock *BB = PN->getParent(); 2709 2710 BasicBlock *IfTrue, *IfFalse; 2711 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2712 if (!IfCond || 2713 // Don't bother if the branch will be constant folded trivially. 2714 isa<ConstantInt>(IfCond)) 2715 return false; 2716 2717 // Don't try to fold an unreachable block. For example, the phi node itself 2718 // can't be the candidate if-condition for a select that we want to form. 2719 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 2720 if (IfCondPhiInst->getParent() == BB) 2721 return false; 2722 2723 // Okay, we found that we can merge this two-entry phi node into a select. 2724 // Doing so would require us to fold *all* two entry phi nodes in this block. 2725 // At some point this becomes non-profitable (particularly if the target 2726 // doesn't support cmov's). Only do this transformation if there are two or 2727 // fewer PHI nodes in this block. 2728 unsigned NumPhis = 0; 2729 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2730 if (NumPhis > 2) 2731 return false; 2732 2733 // Loop over the PHI's seeing if we can promote them all to select 2734 // instructions. While we are at it, keep track of the instructions 2735 // that need to be moved to the dominating block. 2736 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2737 InstructionCost Cost = 0; 2738 InstructionCost Budget = 2739 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2740 2741 bool Changed = false; 2742 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2743 PHINode *PN = cast<PHINode>(II++); 2744 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2745 PN->replaceAllUsesWith(V); 2746 PN->eraseFromParent(); 2747 Changed = true; 2748 continue; 2749 } 2750 2751 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2752 Cost, Budget, TTI) || 2753 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2754 Cost, Budget, TTI)) 2755 return Changed; 2756 } 2757 2758 // If we folded the first phi, PN dangles at this point. Refresh it. If 2759 // we ran out of PHIs then we simplified them all. 2760 PN = dyn_cast<PHINode>(BB->begin()); 2761 if (!PN) 2762 return true; 2763 2764 // Return true if at least one of these is a 'not', and another is either 2765 // a 'not' too, or a constant. 2766 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2767 if (!match(V0, m_Not(m_Value()))) 2768 std::swap(V0, V1); 2769 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2770 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2771 }; 2772 2773 // Don't fold i1 branches on PHIs which contain binary operators or 2774 // select form of or/ands, unless one of the incoming values is an 'not' and 2775 // another one is freely invertible. 2776 // These can often be turned into switches and other things. 2777 auto IsBinOpOrAnd = [](Value *V) { 2778 return match( 2779 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2780 }; 2781 if (PN->getType()->isIntegerTy(1) && 2782 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2783 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2784 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2785 PN->getIncomingValue(1))) 2786 return Changed; 2787 2788 // If all PHI nodes are promotable, check to make sure that all instructions 2789 // in the predecessor blocks can be promoted as well. If not, we won't be able 2790 // to get rid of the control flow, so it's not worth promoting to select 2791 // instructions. 2792 BasicBlock *DomBlock = nullptr; 2793 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2794 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2795 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2796 IfBlock1 = nullptr; 2797 } else { 2798 DomBlock = *pred_begin(IfBlock1); 2799 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2800 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2801 !isa<PseudoProbeInst>(I)) { 2802 // This is not an aggressive instruction that we can promote. 2803 // Because of this, we won't be able to get rid of the control flow, so 2804 // the xform is not worth it. 2805 return Changed; 2806 } 2807 } 2808 2809 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2810 IfBlock2 = nullptr; 2811 } else { 2812 DomBlock = *pred_begin(IfBlock2); 2813 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2814 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2815 !isa<PseudoProbeInst>(I)) { 2816 // This is not an aggressive instruction that we can promote. 2817 // Because of this, we won't be able to get rid of the control flow, so 2818 // the xform is not worth it. 2819 return Changed; 2820 } 2821 } 2822 assert(DomBlock && "Failed to find root DomBlock"); 2823 2824 // If either of the blocks has it's address taken, we can't do this fold. 2825 if ((IfBlock1 && IfBlock1->hasAddressTaken()) || 2826 (IfBlock2 && IfBlock2->hasAddressTaken())) 2827 return Changed; 2828 2829 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2830 << " T: " << IfTrue->getName() 2831 << " F: " << IfFalse->getName() << "\n"); 2832 2833 // If we can still promote the PHI nodes after this gauntlet of tests, 2834 // do all of the PHI's now. 2835 Instruction *InsertPt = DomBlock->getTerminator(); 2836 IRBuilder<NoFolder> Builder(InsertPt); 2837 2838 // Move all 'aggressive' instructions, which are defined in the 2839 // conditional parts of the if's up to the dominating block. 2840 if (IfBlock1) 2841 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2842 if (IfBlock2) 2843 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2844 2845 // Propagate fast-math-flags from phi nodes to replacement selects. 2846 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2847 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2848 if (isa<FPMathOperator>(PN)) 2849 Builder.setFastMathFlags(PN->getFastMathFlags()); 2850 2851 // Change the PHI node into a select instruction. 2852 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2853 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2854 2855 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2856 PN->replaceAllUsesWith(Sel); 2857 Sel->takeName(PN); 2858 PN->eraseFromParent(); 2859 } 2860 2861 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2862 // has been flattened. Change DomBlock to jump directly to our new block to 2863 // avoid other simplifycfg's kicking in on the diamond. 2864 Instruction *OldTI = DomBlock->getTerminator(); 2865 Builder.SetInsertPoint(OldTI); 2866 Builder.CreateBr(BB); 2867 2868 SmallVector<DominatorTree::UpdateType, 3> Updates; 2869 if (DTU) { 2870 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2871 for (auto *Successor : successors(DomBlock)) 2872 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2873 } 2874 2875 OldTI->eraseFromParent(); 2876 if (DTU) 2877 DTU->applyUpdates(Updates); 2878 2879 return true; 2880 } 2881 2882 /// If we found a conditional branch that goes to two returning blocks, 2883 /// try to merge them together into one return, 2884 /// introducing a select if the return values disagree. 2885 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2886 IRBuilder<> &Builder) { 2887 auto *BB = BI->getParent(); 2888 assert(BI->isConditional() && "Must be a conditional branch"); 2889 BasicBlock *TrueSucc = BI->getSuccessor(0); 2890 BasicBlock *FalseSucc = BI->getSuccessor(1); 2891 // NOTE: destinations may match, this could be degenerate uncond branch. 2892 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2893 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2894 2895 // Check to ensure both blocks are empty (just a return) or optionally empty 2896 // with PHI nodes. If there are other instructions, merging would cause extra 2897 // computation on one path or the other. 2898 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2899 return false; 2900 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2901 return false; 2902 2903 Builder.SetInsertPoint(BI); 2904 // Okay, we found a branch that is going to two return nodes. If 2905 // there is no return value for this function, just change the 2906 // branch into a return. 2907 if (FalseRet->getNumOperands() == 0) { 2908 TrueSucc->removePredecessor(BB); 2909 FalseSucc->removePredecessor(BB); 2910 Builder.CreateRetVoid(); 2911 EraseTerminatorAndDCECond(BI); 2912 if (DTU) { 2913 SmallVector<DominatorTree::UpdateType, 2> Updates; 2914 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2915 if (TrueSucc != FalseSucc) 2916 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2917 DTU->applyUpdates(Updates); 2918 } 2919 return true; 2920 } 2921 2922 // Otherwise, figure out what the true and false return values are 2923 // so we can insert a new select instruction. 2924 Value *TrueValue = TrueRet->getReturnValue(); 2925 Value *FalseValue = FalseRet->getReturnValue(); 2926 2927 // Unwrap any PHI nodes in the return blocks. 2928 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2929 if (TVPN->getParent() == TrueSucc) 2930 TrueValue = TVPN->getIncomingValueForBlock(BB); 2931 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2932 if (FVPN->getParent() == FalseSucc) 2933 FalseValue = FVPN->getIncomingValueForBlock(BB); 2934 2935 // In order for this transformation to be safe, we must be able to 2936 // unconditionally execute both operands to the return. This is 2937 // normally the case, but we could have a potentially-trapping 2938 // constant expression that prevents this transformation from being 2939 // safe. 2940 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2941 if (TCV->canTrap()) 2942 return false; 2943 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2944 if (FCV->canTrap()) 2945 return false; 2946 2947 // Okay, we collected all the mapped values and checked them for sanity, and 2948 // defined to really do this transformation. First, update the CFG. 2949 TrueSucc->removePredecessor(BB); 2950 FalseSucc->removePredecessor(BB); 2951 2952 // Insert select instructions where needed. 2953 Value *BrCond = BI->getCondition(); 2954 if (TrueValue) { 2955 // Insert a select if the results differ. 2956 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2957 } else if (isa<UndefValue>(TrueValue)) { 2958 TrueValue = FalseValue; 2959 } else { 2960 TrueValue = 2961 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2962 } 2963 } 2964 2965 Value *RI = 2966 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2967 2968 (void)RI; 2969 2970 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2971 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2972 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2973 2974 EraseTerminatorAndDCECond(BI); 2975 if (DTU) { 2976 SmallVector<DominatorTree::UpdateType, 2> Updates; 2977 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2978 if (TrueSucc != FalseSucc) 2979 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2980 DTU->applyUpdates(Updates); 2981 } 2982 2983 return true; 2984 } 2985 2986 static Value *createLogicalOp(IRBuilderBase &Builder, 2987 Instruction::BinaryOps Opc, Value *LHS, 2988 Value *RHS, const Twine &Name = "") { 2989 // Try to relax logical op to binary op. 2990 if (impliesPoison(RHS, LHS)) 2991 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 2992 if (Opc == Instruction::And) 2993 return Builder.CreateLogicalAnd(LHS, RHS, Name); 2994 if (Opc == Instruction::Or) 2995 return Builder.CreateLogicalOr(LHS, RHS, Name); 2996 llvm_unreachable("Invalid logical opcode"); 2997 } 2998 2999 /// Return true if either PBI or BI has branch weight available, and store 3000 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3001 /// not have branch weight, use 1:1 as its weight. 3002 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3003 uint64_t &PredTrueWeight, 3004 uint64_t &PredFalseWeight, 3005 uint64_t &SuccTrueWeight, 3006 uint64_t &SuccFalseWeight) { 3007 bool PredHasWeights = 3008 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 3009 bool SuccHasWeights = 3010 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 3011 if (PredHasWeights || SuccHasWeights) { 3012 if (!PredHasWeights) 3013 PredTrueWeight = PredFalseWeight = 1; 3014 if (!SuccHasWeights) 3015 SuccTrueWeight = SuccFalseWeight = 1; 3016 return true; 3017 } else { 3018 return false; 3019 } 3020 } 3021 3022 /// Determine if the two branches share a common destination and deduce a glue 3023 /// that joins the branches' conditions to arrive at the common destination if 3024 /// that would be profitable. 3025 static Optional<std::pair<Instruction::BinaryOps, bool>> 3026 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3027 const TargetTransformInfo *TTI) { 3028 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3029 "Both blocks must end with a conditional branches."); 3030 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3031 "PredBB must be a predecessor of BB."); 3032 3033 // We have the potential to fold the conditions together, but if the 3034 // predecessor branch is predictable, we may not want to merge them. 3035 uint64_t PTWeight, PFWeight; 3036 BranchProbability PBITrueProb, Likely; 3037 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 3038 (PTWeight + PFWeight) != 0) { 3039 PBITrueProb = 3040 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3041 Likely = TTI->getPredictableBranchThreshold(); 3042 } 3043 3044 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3045 // Speculate the 2nd condition unless the 1st is probably true. 3046 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3047 return {{Instruction::Or, false}}; 3048 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3049 // Speculate the 2nd condition unless the 1st is probably false. 3050 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3051 return {{Instruction::And, false}}; 3052 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3053 // Speculate the 2nd condition unless the 1st is probably true. 3054 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3055 return {{Instruction::And, true}}; 3056 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3057 // Speculate the 2nd condition unless the 1st is probably false. 3058 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3059 return {{Instruction::Or, true}}; 3060 } 3061 return None; 3062 } 3063 3064 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3065 DomTreeUpdater *DTU, 3066 MemorySSAUpdater *MSSAU, 3067 const TargetTransformInfo *TTI) { 3068 BasicBlock *BB = BI->getParent(); 3069 BasicBlock *PredBlock = PBI->getParent(); 3070 3071 // Determine if the two branches share a common destination. 3072 Instruction::BinaryOps Opc; 3073 bool InvertPredCond; 3074 std::tie(Opc, InvertPredCond) = 3075 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3076 3077 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3078 3079 IRBuilder<> Builder(PBI); 3080 // The builder is used to create instructions to eliminate the branch in BB. 3081 // If BB's terminator has !annotation metadata, add it to the new 3082 // instructions. 3083 Builder.CollectMetadataToCopy(BB->getTerminator(), 3084 {LLVMContext::MD_annotation}); 3085 3086 // If we need to invert the condition in the pred block to match, do so now. 3087 if (InvertPredCond) { 3088 Value *NewCond = PBI->getCondition(); 3089 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3090 CmpInst *CI = cast<CmpInst>(NewCond); 3091 CI->setPredicate(CI->getInversePredicate()); 3092 } else { 3093 NewCond = 3094 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3095 } 3096 3097 PBI->setCondition(NewCond); 3098 PBI->swapSuccessors(); 3099 } 3100 3101 BasicBlock *UniqueSucc = 3102 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3103 3104 // Before cloning instructions, notify the successor basic block that it 3105 // is about to have a new predecessor. This will update PHI nodes, 3106 // which will allow us to update live-out uses of bonus instructions. 3107 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3108 3109 // Try to update branch weights. 3110 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3111 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3112 SuccTrueWeight, SuccFalseWeight)) { 3113 SmallVector<uint64_t, 8> NewWeights; 3114 3115 if (PBI->getSuccessor(0) == BB) { 3116 // PBI: br i1 %x, BB, FalseDest 3117 // BI: br i1 %y, UniqueSucc, FalseDest 3118 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3119 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3120 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3121 // TrueWeight for PBI * FalseWeight for BI. 3122 // We assume that total weights of a BranchInst can fit into 32 bits. 3123 // Therefore, we will not have overflow using 64-bit arithmetic. 3124 NewWeights.push_back(PredFalseWeight * 3125 (SuccFalseWeight + SuccTrueWeight) + 3126 PredTrueWeight * SuccFalseWeight); 3127 } else { 3128 // PBI: br i1 %x, TrueDest, BB 3129 // BI: br i1 %y, TrueDest, UniqueSucc 3130 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3131 // FalseWeight for PBI * TrueWeight for BI. 3132 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3133 PredFalseWeight * SuccTrueWeight); 3134 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3135 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3136 } 3137 3138 // Halve the weights if any of them cannot fit in an uint32_t 3139 FitWeights(NewWeights); 3140 3141 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3142 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3143 3144 // TODO: If BB is reachable from all paths through PredBlock, then we 3145 // could replace PBI's branch probabilities with BI's. 3146 } else 3147 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3148 3149 // Now, update the CFG. 3150 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3151 3152 if (DTU) 3153 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3154 {DominatorTree::Delete, PredBlock, BB}}); 3155 3156 // If BI was a loop latch, it may have had associated loop metadata. 3157 // We need to copy it to the new latch, that is, PBI. 3158 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3159 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3160 3161 ValueToValueMapTy VMap; // maps original values to cloned values 3162 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3163 3164 // Now that the Cond was cloned into the predecessor basic block, 3165 // or/and the two conditions together. 3166 Value *BICond = VMap[BI->getCondition()]; 3167 PBI->setCondition( 3168 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3169 3170 // Copy any debug value intrinsics into the end of PredBlock. 3171 for (Instruction &I : *BB) { 3172 if (isa<DbgInfoIntrinsic>(I)) { 3173 Instruction *NewI = I.clone(); 3174 RemapInstruction(NewI, VMap, 3175 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3176 NewI->insertBefore(PBI); 3177 } 3178 } 3179 3180 ++NumFoldBranchToCommonDest; 3181 return true; 3182 } 3183 3184 /// If this basic block is simple enough, and if a predecessor branches to us 3185 /// and one of our successors, fold the block into the predecessor and use 3186 /// logical operations to pick the right destination. 3187 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3188 MemorySSAUpdater *MSSAU, 3189 const TargetTransformInfo *TTI, 3190 unsigned BonusInstThreshold) { 3191 // If this block ends with an unconditional branch, 3192 // let SpeculativelyExecuteBB() deal with it. 3193 if (!BI->isConditional()) 3194 return false; 3195 3196 BasicBlock *BB = BI->getParent(); 3197 TargetTransformInfo::TargetCostKind CostKind = 3198 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3199 : TargetTransformInfo::TCK_SizeAndLatency; 3200 3201 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3202 3203 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3204 Cond->getParent() != BB || !Cond->hasOneUse()) 3205 return false; 3206 3207 // Cond is known to be a compare or binary operator. Check to make sure that 3208 // neither operand is a potentially-trapping constant expression. 3209 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3210 if (CE->canTrap()) 3211 return false; 3212 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3213 if (CE->canTrap()) 3214 return false; 3215 3216 // Finally, don't infinitely unroll conditional loops. 3217 if (is_contained(successors(BB), BB)) 3218 return false; 3219 3220 // With which predecessors will we want to deal with? 3221 SmallVector<BasicBlock *, 8> Preds; 3222 for (BasicBlock *PredBlock : predecessors(BB)) { 3223 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3224 3225 // Check that we have two conditional branches. If there is a PHI node in 3226 // the common successor, verify that the same value flows in from both 3227 // blocks. 3228 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3229 continue; 3230 3231 // Determine if the two branches share a common destination. 3232 Instruction::BinaryOps Opc; 3233 bool InvertPredCond; 3234 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3235 std::tie(Opc, InvertPredCond) = *Recipe; 3236 else 3237 continue; 3238 3239 // Check the cost of inserting the necessary logic before performing the 3240 // transformation. 3241 if (TTI) { 3242 Type *Ty = BI->getCondition()->getType(); 3243 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3244 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3245 !isa<CmpInst>(PBI->getCondition()))) 3246 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3247 3248 if (Cost > BranchFoldThreshold) 3249 continue; 3250 } 3251 3252 // Ok, we do want to deal with this predecessor. Record it. 3253 Preds.emplace_back(PredBlock); 3254 } 3255 3256 // If there aren't any predecessors into which we can fold, 3257 // don't bother checking the cost. 3258 if (Preds.empty()) 3259 return false; 3260 3261 // Only allow this transformation if computing the condition doesn't involve 3262 // too many instructions and these involved instructions can be executed 3263 // unconditionally. We denote all involved instructions except the condition 3264 // as "bonus instructions", and only allow this transformation when the 3265 // number of the bonus instructions we'll need to create when cloning into 3266 // each predecessor does not exceed a certain threshold. 3267 unsigned NumBonusInsts = 0; 3268 const unsigned PredCount = Preds.size(); 3269 for (Instruction &I : *BB) { 3270 // Don't check the branch condition comparison itself. 3271 if (&I == Cond) 3272 continue; 3273 // Ignore dbg intrinsics, and the terminator. 3274 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3275 continue; 3276 // I must be safe to execute unconditionally. 3277 if (!isSafeToSpeculativelyExecute(&I)) 3278 return false; 3279 3280 // Account for the cost of duplicating this instruction into each 3281 // predecessor. 3282 NumBonusInsts += PredCount; 3283 // Early exits once we reach the limit. 3284 if (NumBonusInsts > BonusInstThreshold) 3285 return false; 3286 } 3287 3288 // Ok, we have the budget. Perform the transformation. 3289 for (BasicBlock *PredBlock : Preds) { 3290 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3291 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3292 } 3293 return false; 3294 } 3295 3296 // If there is only one store in BB1 and BB2, return it, otherwise return 3297 // nullptr. 3298 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3299 StoreInst *S = nullptr; 3300 for (auto *BB : {BB1, BB2}) { 3301 if (!BB) 3302 continue; 3303 for (auto &I : *BB) 3304 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3305 if (S) 3306 // Multiple stores seen. 3307 return nullptr; 3308 else 3309 S = SI; 3310 } 3311 } 3312 return S; 3313 } 3314 3315 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3316 Value *AlternativeV = nullptr) { 3317 // PHI is going to be a PHI node that allows the value V that is defined in 3318 // BB to be referenced in BB's only successor. 3319 // 3320 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3321 // doesn't matter to us what the other operand is (it'll never get used). We 3322 // could just create a new PHI with an undef incoming value, but that could 3323 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3324 // other PHI. So here we directly look for some PHI in BB's successor with V 3325 // as an incoming operand. If we find one, we use it, else we create a new 3326 // one. 3327 // 3328 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3329 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3330 // where OtherBB is the single other predecessor of BB's only successor. 3331 PHINode *PHI = nullptr; 3332 BasicBlock *Succ = BB->getSingleSuccessor(); 3333 3334 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3335 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3336 PHI = cast<PHINode>(I); 3337 if (!AlternativeV) 3338 break; 3339 3340 assert(Succ->hasNPredecessors(2)); 3341 auto PredI = pred_begin(Succ); 3342 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3343 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3344 break; 3345 PHI = nullptr; 3346 } 3347 if (PHI) 3348 return PHI; 3349 3350 // If V is not an instruction defined in BB, just return it. 3351 if (!AlternativeV && 3352 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3353 return V; 3354 3355 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3356 PHI->addIncoming(V, BB); 3357 for (BasicBlock *PredBB : predecessors(Succ)) 3358 if (PredBB != BB) 3359 PHI->addIncoming( 3360 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3361 return PHI; 3362 } 3363 3364 static bool mergeConditionalStoreToAddress( 3365 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3366 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3367 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3368 // For every pointer, there must be exactly two stores, one coming from 3369 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3370 // store (to any address) in PTB,PFB or QTB,QFB. 3371 // FIXME: We could relax this restriction with a bit more work and performance 3372 // testing. 3373 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3374 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3375 if (!PStore || !QStore) 3376 return false; 3377 3378 // Now check the stores are compatible. 3379 if (!QStore->isUnordered() || !PStore->isUnordered()) 3380 return false; 3381 3382 // Check that sinking the store won't cause program behavior changes. Sinking 3383 // the store out of the Q blocks won't change any behavior as we're sinking 3384 // from a block to its unconditional successor. But we're moving a store from 3385 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3386 // So we need to check that there are no aliasing loads or stores in 3387 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3388 // operations between PStore and the end of its parent block. 3389 // 3390 // The ideal way to do this is to query AliasAnalysis, but we don't 3391 // preserve AA currently so that is dangerous. Be super safe and just 3392 // check there are no other memory operations at all. 3393 for (auto &I : *QFB->getSinglePredecessor()) 3394 if (I.mayReadOrWriteMemory()) 3395 return false; 3396 for (auto &I : *QFB) 3397 if (&I != QStore && I.mayReadOrWriteMemory()) 3398 return false; 3399 if (QTB) 3400 for (auto &I : *QTB) 3401 if (&I != QStore && I.mayReadOrWriteMemory()) 3402 return false; 3403 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3404 I != E; ++I) 3405 if (&*I != PStore && I->mayReadOrWriteMemory()) 3406 return false; 3407 3408 // If we're not in aggressive mode, we only optimize if we have some 3409 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3410 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3411 if (!BB) 3412 return true; 3413 // Heuristic: if the block can be if-converted/phi-folded and the 3414 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3415 // thread this store. 3416 InstructionCost Cost = 0; 3417 InstructionCost Budget = 3418 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3419 for (auto &I : BB->instructionsWithoutDebug()) { 3420 // Consider terminator instruction to be free. 3421 if (I.isTerminator()) 3422 continue; 3423 // If this is one the stores that we want to speculate out of this BB, 3424 // then don't count it's cost, consider it to be free. 3425 if (auto *S = dyn_cast<StoreInst>(&I)) 3426 if (llvm::find(FreeStores, S)) 3427 continue; 3428 // Else, we have a white-list of instructions that we are ak speculating. 3429 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3430 return false; // Not in white-list - not worthwhile folding. 3431 // And finally, if this is a non-free instruction that we are okay 3432 // speculating, ensure that we consider the speculation budget. 3433 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3434 if (Cost > Budget) 3435 return false; // Eagerly refuse to fold as soon as we're out of budget. 3436 } 3437 assert(Cost <= Budget && 3438 "When we run out of budget we will eagerly return from within the " 3439 "per-instruction loop."); 3440 return true; 3441 }; 3442 3443 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3444 if (!MergeCondStoresAggressively && 3445 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3446 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3447 return false; 3448 3449 // If PostBB has more than two predecessors, we need to split it so we can 3450 // sink the store. 3451 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3452 // We know that QFB's only successor is PostBB. And QFB has a single 3453 // predecessor. If QTB exists, then its only successor is also PostBB. 3454 // If QTB does not exist, then QFB's only predecessor has a conditional 3455 // branch to QFB and PostBB. 3456 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3457 BasicBlock *NewBB = 3458 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3459 if (!NewBB) 3460 return false; 3461 PostBB = NewBB; 3462 } 3463 3464 // OK, we're going to sink the stores to PostBB. The store has to be 3465 // conditional though, so first create the predicate. 3466 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3467 ->getCondition(); 3468 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3469 ->getCondition(); 3470 3471 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3472 PStore->getParent()); 3473 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3474 QStore->getParent(), PPHI); 3475 3476 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3477 3478 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3479 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3480 3481 if (InvertPCond) 3482 PPred = QB.CreateNot(PPred); 3483 if (InvertQCond) 3484 QPred = QB.CreateNot(QPred); 3485 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3486 3487 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3488 /*Unreachable=*/false, 3489 /*BranchWeights=*/nullptr, DTU); 3490 QB.SetInsertPoint(T); 3491 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3492 AAMDNodes AAMD; 3493 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3494 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3495 SI->setAAMetadata(AAMD); 3496 // Choose the minimum alignment. If we could prove both stores execute, we 3497 // could use biggest one. In this case, though, we only know that one of the 3498 // stores executes. And we don't know it's safe to take the alignment from a 3499 // store that doesn't execute. 3500 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3501 3502 QStore->eraseFromParent(); 3503 PStore->eraseFromParent(); 3504 3505 return true; 3506 } 3507 3508 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3509 DomTreeUpdater *DTU, const DataLayout &DL, 3510 const TargetTransformInfo &TTI) { 3511 // The intention here is to find diamonds or triangles (see below) where each 3512 // conditional block contains a store to the same address. Both of these 3513 // stores are conditional, so they can't be unconditionally sunk. But it may 3514 // be profitable to speculatively sink the stores into one merged store at the 3515 // end, and predicate the merged store on the union of the two conditions of 3516 // PBI and QBI. 3517 // 3518 // This can reduce the number of stores executed if both of the conditions are 3519 // true, and can allow the blocks to become small enough to be if-converted. 3520 // This optimization will also chain, so that ladders of test-and-set 3521 // sequences can be if-converted away. 3522 // 3523 // We only deal with simple diamonds or triangles: 3524 // 3525 // PBI or PBI or a combination of the two 3526 // / \ | \ 3527 // PTB PFB | PFB 3528 // \ / | / 3529 // QBI QBI 3530 // / \ | \ 3531 // QTB QFB | QFB 3532 // \ / | / 3533 // PostBB PostBB 3534 // 3535 // We model triangles as a type of diamond with a nullptr "true" block. 3536 // Triangles are canonicalized so that the fallthrough edge is represented by 3537 // a true condition, as in the diagram above. 3538 BasicBlock *PTB = PBI->getSuccessor(0); 3539 BasicBlock *PFB = PBI->getSuccessor(1); 3540 BasicBlock *QTB = QBI->getSuccessor(0); 3541 BasicBlock *QFB = QBI->getSuccessor(1); 3542 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3543 3544 // Make sure we have a good guess for PostBB. If QTB's only successor is 3545 // QFB, then QFB is a better PostBB. 3546 if (QTB->getSingleSuccessor() == QFB) 3547 PostBB = QFB; 3548 3549 // If we couldn't find a good PostBB, stop. 3550 if (!PostBB) 3551 return false; 3552 3553 bool InvertPCond = false, InvertQCond = false; 3554 // Canonicalize fallthroughs to the true branches. 3555 if (PFB == QBI->getParent()) { 3556 std::swap(PFB, PTB); 3557 InvertPCond = true; 3558 } 3559 if (QFB == PostBB) { 3560 std::swap(QFB, QTB); 3561 InvertQCond = true; 3562 } 3563 3564 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3565 // and QFB may not. Model fallthroughs as a nullptr block. 3566 if (PTB == QBI->getParent()) 3567 PTB = nullptr; 3568 if (QTB == PostBB) 3569 QTB = nullptr; 3570 3571 // Legality bailouts. We must have at least the non-fallthrough blocks and 3572 // the post-dominating block, and the non-fallthroughs must only have one 3573 // predecessor. 3574 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3575 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3576 }; 3577 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3578 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3579 return false; 3580 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3581 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3582 return false; 3583 if (!QBI->getParent()->hasNUses(2)) 3584 return false; 3585 3586 // OK, this is a sequence of two diamonds or triangles. 3587 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3588 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3589 for (auto *BB : {PTB, PFB}) { 3590 if (!BB) 3591 continue; 3592 for (auto &I : *BB) 3593 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3594 PStoreAddresses.insert(SI->getPointerOperand()); 3595 } 3596 for (auto *BB : {QTB, QFB}) { 3597 if (!BB) 3598 continue; 3599 for (auto &I : *BB) 3600 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3601 QStoreAddresses.insert(SI->getPointerOperand()); 3602 } 3603 3604 set_intersect(PStoreAddresses, QStoreAddresses); 3605 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3606 // clear what it contains. 3607 auto &CommonAddresses = PStoreAddresses; 3608 3609 bool Changed = false; 3610 for (auto *Address : CommonAddresses) 3611 Changed |= 3612 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3613 InvertPCond, InvertQCond, DTU, DL, TTI); 3614 return Changed; 3615 } 3616 3617 /// If the previous block ended with a widenable branch, determine if reusing 3618 /// the target block is profitable and legal. This will have the effect of 3619 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3620 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3621 DomTreeUpdater *DTU) { 3622 // TODO: This can be generalized in two important ways: 3623 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3624 // values from the PBI edge. 3625 // 2) We can sink side effecting instructions into BI's fallthrough 3626 // successor provided they doesn't contribute to computation of 3627 // BI's condition. 3628 Value *CondWB, *WC; 3629 BasicBlock *IfTrueBB, *IfFalseBB; 3630 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3631 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3632 return false; 3633 if (!IfFalseBB->phis().empty()) 3634 return false; // TODO 3635 // Use lambda to lazily compute expensive condition after cheap ones. 3636 auto NoSideEffects = [](BasicBlock &BB) { 3637 return !llvm::any_of(BB, [](const Instruction &I) { 3638 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3639 }); 3640 }; 3641 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3642 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3643 NoSideEffects(*BI->getParent())) { 3644 auto *OldSuccessor = BI->getSuccessor(1); 3645 OldSuccessor->removePredecessor(BI->getParent()); 3646 BI->setSuccessor(1, IfFalseBB); 3647 if (DTU) 3648 DTU->applyUpdates( 3649 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3650 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3651 return true; 3652 } 3653 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3654 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3655 NoSideEffects(*BI->getParent())) { 3656 auto *OldSuccessor = BI->getSuccessor(0); 3657 OldSuccessor->removePredecessor(BI->getParent()); 3658 BI->setSuccessor(0, IfFalseBB); 3659 if (DTU) 3660 DTU->applyUpdates( 3661 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3662 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3663 return true; 3664 } 3665 return false; 3666 } 3667 3668 /// If we have a conditional branch as a predecessor of another block, 3669 /// this function tries to simplify it. We know 3670 /// that PBI and BI are both conditional branches, and BI is in one of the 3671 /// successor blocks of PBI - PBI branches to BI. 3672 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3673 DomTreeUpdater *DTU, 3674 const DataLayout &DL, 3675 const TargetTransformInfo &TTI) { 3676 assert(PBI->isConditional() && BI->isConditional()); 3677 BasicBlock *BB = BI->getParent(); 3678 3679 // If this block ends with a branch instruction, and if there is a 3680 // predecessor that ends on a branch of the same condition, make 3681 // this conditional branch redundant. 3682 if (PBI->getCondition() == BI->getCondition() && 3683 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3684 // Okay, the outcome of this conditional branch is statically 3685 // knowable. If this block had a single pred, handle specially. 3686 if (BB->getSinglePredecessor()) { 3687 // Turn this into a branch on constant. 3688 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3689 BI->setCondition( 3690 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3691 return true; // Nuke the branch on constant. 3692 } 3693 3694 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3695 // in the constant and simplify the block result. Subsequent passes of 3696 // simplifycfg will thread the block. 3697 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3698 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3699 PHINode *NewPN = PHINode::Create( 3700 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3701 BI->getCondition()->getName() + ".pr", &BB->front()); 3702 // Okay, we're going to insert the PHI node. Since PBI is not the only 3703 // predecessor, compute the PHI'd conditional value for all of the preds. 3704 // Any predecessor where the condition is not computable we keep symbolic. 3705 for (pred_iterator PI = PB; PI != PE; ++PI) { 3706 BasicBlock *P = *PI; 3707 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3708 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3709 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3710 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3711 NewPN->addIncoming( 3712 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3713 P); 3714 } else { 3715 NewPN->addIncoming(BI->getCondition(), P); 3716 } 3717 } 3718 3719 BI->setCondition(NewPN); 3720 return true; 3721 } 3722 } 3723 3724 // If the previous block ended with a widenable branch, determine if reusing 3725 // the target block is profitable and legal. This will have the effect of 3726 // "widening" PBI, but doesn't require us to reason about hosting safety. 3727 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3728 return true; 3729 3730 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3731 if (CE->canTrap()) 3732 return false; 3733 3734 // If both branches are conditional and both contain stores to the same 3735 // address, remove the stores from the conditionals and create a conditional 3736 // merged store at the end. 3737 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3738 return true; 3739 3740 // If this is a conditional branch in an empty block, and if any 3741 // predecessors are a conditional branch to one of our destinations, 3742 // fold the conditions into logical ops and one cond br. 3743 3744 // Ignore dbg intrinsics. 3745 if (&*BB->instructionsWithoutDebug().begin() != BI) 3746 return false; 3747 3748 int PBIOp, BIOp; 3749 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3750 PBIOp = 0; 3751 BIOp = 0; 3752 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3753 PBIOp = 0; 3754 BIOp = 1; 3755 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3756 PBIOp = 1; 3757 BIOp = 0; 3758 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3759 PBIOp = 1; 3760 BIOp = 1; 3761 } else { 3762 return false; 3763 } 3764 3765 // Check to make sure that the other destination of this branch 3766 // isn't BB itself. If so, this is an infinite loop that will 3767 // keep getting unwound. 3768 if (PBI->getSuccessor(PBIOp) == BB) 3769 return false; 3770 3771 // Do not perform this transformation if it would require 3772 // insertion of a large number of select instructions. For targets 3773 // without predication/cmovs, this is a big pessimization. 3774 3775 // Also do not perform this transformation if any phi node in the common 3776 // destination block can trap when reached by BB or PBB (PR17073). In that 3777 // case, it would be unsafe to hoist the operation into a select instruction. 3778 3779 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3780 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3781 unsigned NumPhis = 0; 3782 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3783 ++II, ++NumPhis) { 3784 if (NumPhis > 2) // Disable this xform. 3785 return false; 3786 3787 PHINode *PN = cast<PHINode>(II); 3788 Value *BIV = PN->getIncomingValueForBlock(BB); 3789 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3790 if (CE->canTrap()) 3791 return false; 3792 3793 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3794 Value *PBIV = PN->getIncomingValue(PBBIdx); 3795 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3796 if (CE->canTrap()) 3797 return false; 3798 } 3799 3800 // Finally, if everything is ok, fold the branches to logical ops. 3801 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3802 3803 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3804 << "AND: " << *BI->getParent()); 3805 3806 SmallVector<DominatorTree::UpdateType, 5> Updates; 3807 3808 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3809 // branch in it, where one edge (OtherDest) goes back to itself but the other 3810 // exits. We don't *know* that the program avoids the infinite loop 3811 // (even though that seems likely). If we do this xform naively, we'll end up 3812 // recursively unpeeling the loop. Since we know that (after the xform is 3813 // done) that the block *is* infinite if reached, we just make it an obviously 3814 // infinite loop with no cond branch. 3815 if (OtherDest == BB) { 3816 // Insert it at the end of the function, because it's either code, 3817 // or it won't matter if it's hot. :) 3818 BasicBlock *InfLoopBlock = 3819 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3820 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3821 if (DTU) 3822 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3823 OtherDest = InfLoopBlock; 3824 } 3825 3826 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3827 3828 // BI may have other predecessors. Because of this, we leave 3829 // it alone, but modify PBI. 3830 3831 // Make sure we get to CommonDest on True&True directions. 3832 Value *PBICond = PBI->getCondition(); 3833 IRBuilder<NoFolder> Builder(PBI); 3834 if (PBIOp) 3835 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3836 3837 Value *BICond = BI->getCondition(); 3838 if (BIOp) 3839 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3840 3841 // Merge the conditions. 3842 Value *Cond = 3843 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 3844 3845 // Modify PBI to branch on the new condition to the new dests. 3846 PBI->setCondition(Cond); 3847 PBI->setSuccessor(0, CommonDest); 3848 PBI->setSuccessor(1, OtherDest); 3849 3850 if (DTU) { 3851 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3852 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3853 3854 DTU->applyUpdates(Updates); 3855 } 3856 3857 // Update branch weight for PBI. 3858 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3859 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3860 bool HasWeights = 3861 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3862 SuccTrueWeight, SuccFalseWeight); 3863 if (HasWeights) { 3864 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3865 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3866 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3867 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3868 // The weight to CommonDest should be PredCommon * SuccTotal + 3869 // PredOther * SuccCommon. 3870 // The weight to OtherDest should be PredOther * SuccOther. 3871 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3872 PredOther * SuccCommon, 3873 PredOther * SuccOther}; 3874 // Halve the weights if any of them cannot fit in an uint32_t 3875 FitWeights(NewWeights); 3876 3877 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3878 } 3879 3880 // OtherDest may have phi nodes. If so, add an entry from PBI's 3881 // block that are identical to the entries for BI's block. 3882 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3883 3884 // We know that the CommonDest already had an edge from PBI to 3885 // it. If it has PHIs though, the PHIs may have different 3886 // entries for BB and PBI's BB. If so, insert a select to make 3887 // them agree. 3888 for (PHINode &PN : CommonDest->phis()) { 3889 Value *BIV = PN.getIncomingValueForBlock(BB); 3890 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3891 Value *PBIV = PN.getIncomingValue(PBBIdx); 3892 if (BIV != PBIV) { 3893 // Insert a select in PBI to pick the right value. 3894 SelectInst *NV = cast<SelectInst>( 3895 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3896 PN.setIncomingValue(PBBIdx, NV); 3897 // Although the select has the same condition as PBI, the original branch 3898 // weights for PBI do not apply to the new select because the select's 3899 // 'logical' edges are incoming edges of the phi that is eliminated, not 3900 // the outgoing edges of PBI. 3901 if (HasWeights) { 3902 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3903 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3904 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3905 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3906 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3907 // The weight to PredOtherDest should be PredOther * SuccCommon. 3908 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3909 PredOther * SuccCommon}; 3910 3911 FitWeights(NewWeights); 3912 3913 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3914 } 3915 } 3916 } 3917 3918 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3919 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3920 3921 // This basic block is probably dead. We know it has at least 3922 // one fewer predecessor. 3923 return true; 3924 } 3925 3926 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3927 // true or to FalseBB if Cond is false. 3928 // Takes care of updating the successors and removing the old terminator. 3929 // Also makes sure not to introduce new successors by assuming that edges to 3930 // non-successor TrueBBs and FalseBBs aren't reachable. 3931 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3932 Value *Cond, BasicBlock *TrueBB, 3933 BasicBlock *FalseBB, 3934 uint32_t TrueWeight, 3935 uint32_t FalseWeight) { 3936 auto *BB = OldTerm->getParent(); 3937 // Remove any superfluous successor edges from the CFG. 3938 // First, figure out which successors to preserve. 3939 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3940 // successor. 3941 BasicBlock *KeepEdge1 = TrueBB; 3942 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3943 3944 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3945 3946 // Then remove the rest. 3947 for (BasicBlock *Succ : successors(OldTerm)) { 3948 // Make sure only to keep exactly one copy of each edge. 3949 if (Succ == KeepEdge1) 3950 KeepEdge1 = nullptr; 3951 else if (Succ == KeepEdge2) 3952 KeepEdge2 = nullptr; 3953 else { 3954 Succ->removePredecessor(BB, 3955 /*KeepOneInputPHIs=*/true); 3956 3957 if (Succ != TrueBB && Succ != FalseBB) 3958 RemovedSuccessors.insert(Succ); 3959 } 3960 } 3961 3962 IRBuilder<> Builder(OldTerm); 3963 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3964 3965 // Insert an appropriate new terminator. 3966 if (!KeepEdge1 && !KeepEdge2) { 3967 if (TrueBB == FalseBB) { 3968 // We were only looking for one successor, and it was present. 3969 // Create an unconditional branch to it. 3970 Builder.CreateBr(TrueBB); 3971 } else { 3972 // We found both of the successors we were looking for. 3973 // Create a conditional branch sharing the condition of the select. 3974 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3975 if (TrueWeight != FalseWeight) 3976 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3977 } 3978 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3979 // Neither of the selected blocks were successors, so this 3980 // terminator must be unreachable. 3981 new UnreachableInst(OldTerm->getContext(), OldTerm); 3982 } else { 3983 // One of the selected values was a successor, but the other wasn't. 3984 // Insert an unconditional branch to the one that was found; 3985 // the edge to the one that wasn't must be unreachable. 3986 if (!KeepEdge1) { 3987 // Only TrueBB was found. 3988 Builder.CreateBr(TrueBB); 3989 } else { 3990 // Only FalseBB was found. 3991 Builder.CreateBr(FalseBB); 3992 } 3993 } 3994 3995 EraseTerminatorAndDCECond(OldTerm); 3996 3997 if (DTU) { 3998 SmallVector<DominatorTree::UpdateType, 2> Updates; 3999 Updates.reserve(RemovedSuccessors.size()); 4000 for (auto *RemovedSuccessor : RemovedSuccessors) 4001 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4002 DTU->applyUpdates(Updates); 4003 } 4004 4005 return true; 4006 } 4007 4008 // Replaces 4009 // (switch (select cond, X, Y)) on constant X, Y 4010 // with a branch - conditional if X and Y lead to distinct BBs, 4011 // unconditional otherwise. 4012 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4013 SelectInst *Select) { 4014 // Check for constant integer values in the select. 4015 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4016 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4017 if (!TrueVal || !FalseVal) 4018 return false; 4019 4020 // Find the relevant condition and destinations. 4021 Value *Condition = Select->getCondition(); 4022 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4023 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4024 4025 // Get weight for TrueBB and FalseBB. 4026 uint32_t TrueWeight = 0, FalseWeight = 0; 4027 SmallVector<uint64_t, 8> Weights; 4028 bool HasWeights = HasBranchWeights(SI); 4029 if (HasWeights) { 4030 GetBranchWeights(SI, Weights); 4031 if (Weights.size() == 1 + SI->getNumCases()) { 4032 TrueWeight = 4033 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4034 FalseWeight = 4035 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4036 } 4037 } 4038 4039 // Perform the actual simplification. 4040 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4041 FalseWeight); 4042 } 4043 4044 // Replaces 4045 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4046 // blockaddress(@fn, BlockB))) 4047 // with 4048 // (br cond, BlockA, BlockB). 4049 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4050 SelectInst *SI) { 4051 // Check that both operands of the select are block addresses. 4052 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4053 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4054 if (!TBA || !FBA) 4055 return false; 4056 4057 // Extract the actual blocks. 4058 BasicBlock *TrueBB = TBA->getBasicBlock(); 4059 BasicBlock *FalseBB = FBA->getBasicBlock(); 4060 4061 // Perform the actual simplification. 4062 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4063 0); 4064 } 4065 4066 /// This is called when we find an icmp instruction 4067 /// (a seteq/setne with a constant) as the only instruction in a 4068 /// block that ends with an uncond branch. We are looking for a very specific 4069 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4070 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4071 /// default value goes to an uncond block with a seteq in it, we get something 4072 /// like: 4073 /// 4074 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4075 /// DEFAULT: 4076 /// %tmp = icmp eq i8 %A, 92 4077 /// br label %end 4078 /// end: 4079 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4080 /// 4081 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4082 /// the PHI, merging the third icmp into the switch. 4083 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4084 ICmpInst *ICI, IRBuilder<> &Builder) { 4085 BasicBlock *BB = ICI->getParent(); 4086 4087 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4088 // complex. 4089 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4090 return false; 4091 4092 Value *V = ICI->getOperand(0); 4093 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4094 4095 // The pattern we're looking for is where our only predecessor is a switch on 4096 // 'V' and this block is the default case for the switch. In this case we can 4097 // fold the compared value into the switch to simplify things. 4098 BasicBlock *Pred = BB->getSinglePredecessor(); 4099 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4100 return false; 4101 4102 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4103 if (SI->getCondition() != V) 4104 return false; 4105 4106 // If BB is reachable on a non-default case, then we simply know the value of 4107 // V in this block. Substitute it and constant fold the icmp instruction 4108 // away. 4109 if (SI->getDefaultDest() != BB) { 4110 ConstantInt *VVal = SI->findCaseDest(BB); 4111 assert(VVal && "Should have a unique destination value"); 4112 ICI->setOperand(0, VVal); 4113 4114 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4115 ICI->replaceAllUsesWith(V); 4116 ICI->eraseFromParent(); 4117 } 4118 // BB is now empty, so it is likely to simplify away. 4119 return requestResimplify(); 4120 } 4121 4122 // Ok, the block is reachable from the default dest. If the constant we're 4123 // comparing exists in one of the other edges, then we can constant fold ICI 4124 // and zap it. 4125 if (SI->findCaseValue(Cst) != SI->case_default()) { 4126 Value *V; 4127 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4128 V = ConstantInt::getFalse(BB->getContext()); 4129 else 4130 V = ConstantInt::getTrue(BB->getContext()); 4131 4132 ICI->replaceAllUsesWith(V); 4133 ICI->eraseFromParent(); 4134 // BB is now empty, so it is likely to simplify away. 4135 return requestResimplify(); 4136 } 4137 4138 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4139 // the block. 4140 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4141 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4142 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4143 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4144 return false; 4145 4146 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4147 // true in the PHI. 4148 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4149 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4150 4151 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4152 std::swap(DefaultCst, NewCst); 4153 4154 // Replace ICI (which is used by the PHI for the default value) with true or 4155 // false depending on if it is EQ or NE. 4156 ICI->replaceAllUsesWith(DefaultCst); 4157 ICI->eraseFromParent(); 4158 4159 SmallVector<DominatorTree::UpdateType, 2> Updates; 4160 4161 // Okay, the switch goes to this block on a default value. Add an edge from 4162 // the switch to the merge point on the compared value. 4163 BasicBlock *NewBB = 4164 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4165 { 4166 SwitchInstProfUpdateWrapper SIW(*SI); 4167 auto W0 = SIW.getSuccessorWeight(0); 4168 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4169 if (W0) { 4170 NewW = ((uint64_t(*W0) + 1) >> 1); 4171 SIW.setSuccessorWeight(0, *NewW); 4172 } 4173 SIW.addCase(Cst, NewBB, NewW); 4174 if (DTU) 4175 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4176 } 4177 4178 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4179 Builder.SetInsertPoint(NewBB); 4180 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4181 Builder.CreateBr(SuccBlock); 4182 PHIUse->addIncoming(NewCst, NewBB); 4183 if (DTU) { 4184 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4185 DTU->applyUpdates(Updates); 4186 } 4187 return true; 4188 } 4189 4190 /// The specified branch is a conditional branch. 4191 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4192 /// fold it into a switch instruction if so. 4193 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4194 IRBuilder<> &Builder, 4195 const DataLayout &DL) { 4196 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4197 if (!Cond) 4198 return false; 4199 4200 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4201 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4202 // 'setne's and'ed together, collect them. 4203 4204 // Try to gather values from a chain of and/or to be turned into a switch 4205 ConstantComparesGatherer ConstantCompare(Cond, DL); 4206 // Unpack the result 4207 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4208 Value *CompVal = ConstantCompare.CompValue; 4209 unsigned UsedICmps = ConstantCompare.UsedICmps; 4210 Value *ExtraCase = ConstantCompare.Extra; 4211 4212 // If we didn't have a multiply compared value, fail. 4213 if (!CompVal) 4214 return false; 4215 4216 // Avoid turning single icmps into a switch. 4217 if (UsedICmps <= 1) 4218 return false; 4219 4220 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4221 4222 // There might be duplicate constants in the list, which the switch 4223 // instruction can't handle, remove them now. 4224 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4225 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4226 4227 // If Extra was used, we require at least two switch values to do the 4228 // transformation. A switch with one value is just a conditional branch. 4229 if (ExtraCase && Values.size() < 2) 4230 return false; 4231 4232 // TODO: Preserve branch weight metadata, similarly to how 4233 // FoldValueComparisonIntoPredecessors preserves it. 4234 4235 // Figure out which block is which destination. 4236 BasicBlock *DefaultBB = BI->getSuccessor(1); 4237 BasicBlock *EdgeBB = BI->getSuccessor(0); 4238 if (!TrueWhenEqual) 4239 std::swap(DefaultBB, EdgeBB); 4240 4241 BasicBlock *BB = BI->getParent(); 4242 4243 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4244 << " cases into SWITCH. BB is:\n" 4245 << *BB); 4246 4247 SmallVector<DominatorTree::UpdateType, 2> Updates; 4248 4249 // If there are any extra values that couldn't be folded into the switch 4250 // then we evaluate them with an explicit branch first. Split the block 4251 // right before the condbr to handle it. 4252 if (ExtraCase) { 4253 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4254 /*MSSAU=*/nullptr, "switch.early.test"); 4255 4256 // Remove the uncond branch added to the old block. 4257 Instruction *OldTI = BB->getTerminator(); 4258 Builder.SetInsertPoint(OldTI); 4259 4260 // There can be an unintended UB if extra values are Poison. Before the 4261 // transformation, extra values may not be evaluated according to the 4262 // condition, and it will not raise UB. But after transformation, we are 4263 // evaluating extra values before checking the condition, and it will raise 4264 // UB. It can be solved by adding freeze instruction to extra values. 4265 AssumptionCache *AC = Options.AC; 4266 4267 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4268 ExtraCase = Builder.CreateFreeze(ExtraCase); 4269 4270 if (TrueWhenEqual) 4271 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4272 else 4273 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4274 4275 OldTI->eraseFromParent(); 4276 4277 if (DTU) 4278 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4279 4280 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4281 // for the edge we just added. 4282 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4283 4284 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4285 << "\nEXTRABB = " << *BB); 4286 BB = NewBB; 4287 } 4288 4289 Builder.SetInsertPoint(BI); 4290 // Convert pointer to int before we switch. 4291 if (CompVal->getType()->isPointerTy()) { 4292 CompVal = Builder.CreatePtrToInt( 4293 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4294 } 4295 4296 // Create the new switch instruction now. 4297 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4298 4299 // Add all of the 'cases' to the switch instruction. 4300 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4301 New->addCase(Values[i], EdgeBB); 4302 4303 // We added edges from PI to the EdgeBB. As such, if there were any 4304 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4305 // the number of edges added. 4306 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4307 PHINode *PN = cast<PHINode>(BBI); 4308 Value *InVal = PN->getIncomingValueForBlock(BB); 4309 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4310 PN->addIncoming(InVal, BB); 4311 } 4312 4313 // Erase the old branch instruction. 4314 EraseTerminatorAndDCECond(BI); 4315 if (DTU) 4316 DTU->applyUpdates(Updates); 4317 4318 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4319 return true; 4320 } 4321 4322 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4323 if (isa<PHINode>(RI->getValue())) 4324 return simplifyCommonResume(RI); 4325 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4326 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4327 // The resume must unwind the exception that caused control to branch here. 4328 return simplifySingleResume(RI); 4329 4330 return false; 4331 } 4332 4333 // Check if cleanup block is empty 4334 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4335 for (Instruction &I : R) { 4336 auto *II = dyn_cast<IntrinsicInst>(&I); 4337 if (!II) 4338 return false; 4339 4340 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4341 switch (IntrinsicID) { 4342 case Intrinsic::dbg_declare: 4343 case Intrinsic::dbg_value: 4344 case Intrinsic::dbg_label: 4345 case Intrinsic::lifetime_end: 4346 break; 4347 default: 4348 return false; 4349 } 4350 } 4351 return true; 4352 } 4353 4354 // Simplify resume that is shared by several landing pads (phi of landing pad). 4355 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4356 BasicBlock *BB = RI->getParent(); 4357 4358 // Check that there are no other instructions except for debug and lifetime 4359 // intrinsics between the phi's and resume instruction. 4360 if (!isCleanupBlockEmpty( 4361 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4362 return false; 4363 4364 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4365 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4366 4367 // Check incoming blocks to see if any of them are trivial. 4368 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4369 Idx++) { 4370 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4371 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4372 4373 // If the block has other successors, we can not delete it because 4374 // it has other dependents. 4375 if (IncomingBB->getUniqueSuccessor() != BB) 4376 continue; 4377 4378 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4379 // Not the landing pad that caused the control to branch here. 4380 if (IncomingValue != LandingPad) 4381 continue; 4382 4383 if (isCleanupBlockEmpty( 4384 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4385 TrivialUnwindBlocks.insert(IncomingBB); 4386 } 4387 4388 // If no trivial unwind blocks, don't do any simplifications. 4389 if (TrivialUnwindBlocks.empty()) 4390 return false; 4391 4392 // Turn all invokes that unwind here into calls. 4393 for (auto *TrivialBB : TrivialUnwindBlocks) { 4394 // Blocks that will be simplified should be removed from the phi node. 4395 // Note there could be multiple edges to the resume block, and we need 4396 // to remove them all. 4397 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4398 BB->removePredecessor(TrivialBB, true); 4399 4400 for (BasicBlock *Pred : 4401 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4402 removeUnwindEdge(Pred, DTU); 4403 ++NumInvokes; 4404 } 4405 4406 // In each SimplifyCFG run, only the current processed block can be erased. 4407 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4408 // of erasing TrivialBB, we only remove the branch to the common resume 4409 // block so that we can later erase the resume block since it has no 4410 // predecessors. 4411 TrivialBB->getTerminator()->eraseFromParent(); 4412 new UnreachableInst(RI->getContext(), TrivialBB); 4413 if (DTU) 4414 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4415 } 4416 4417 // Delete the resume block if all its predecessors have been removed. 4418 if (pred_empty(BB)) 4419 DeleteDeadBlock(BB, DTU); 4420 4421 return !TrivialUnwindBlocks.empty(); 4422 } 4423 4424 // Simplify resume that is only used by a single (non-phi) landing pad. 4425 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4426 BasicBlock *BB = RI->getParent(); 4427 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4428 assert(RI->getValue() == LPInst && 4429 "Resume must unwind the exception that caused control to here"); 4430 4431 // Check that there are no other instructions except for debug intrinsics. 4432 if (!isCleanupBlockEmpty( 4433 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4434 return false; 4435 4436 // Turn all invokes that unwind here into calls and delete the basic block. 4437 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4438 removeUnwindEdge(Pred, DTU); 4439 ++NumInvokes; 4440 } 4441 4442 // The landingpad is now unreachable. Zap it. 4443 DeleteDeadBlock(BB, DTU); 4444 return true; 4445 } 4446 4447 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4448 // If this is a trivial cleanup pad that executes no instructions, it can be 4449 // eliminated. If the cleanup pad continues to the caller, any predecessor 4450 // that is an EH pad will be updated to continue to the caller and any 4451 // predecessor that terminates with an invoke instruction will have its invoke 4452 // instruction converted to a call instruction. If the cleanup pad being 4453 // simplified does not continue to the caller, each predecessor will be 4454 // updated to continue to the unwind destination of the cleanup pad being 4455 // simplified. 4456 BasicBlock *BB = RI->getParent(); 4457 CleanupPadInst *CPInst = RI->getCleanupPad(); 4458 if (CPInst->getParent() != BB) 4459 // This isn't an empty cleanup. 4460 return false; 4461 4462 // We cannot kill the pad if it has multiple uses. This typically arises 4463 // from unreachable basic blocks. 4464 if (!CPInst->hasOneUse()) 4465 return false; 4466 4467 // Check that there are no other instructions except for benign intrinsics. 4468 if (!isCleanupBlockEmpty( 4469 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4470 return false; 4471 4472 // If the cleanup return we are simplifying unwinds to the caller, this will 4473 // set UnwindDest to nullptr. 4474 BasicBlock *UnwindDest = RI->getUnwindDest(); 4475 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4476 4477 // We're about to remove BB from the control flow. Before we do, sink any 4478 // PHINodes into the unwind destination. Doing this before changing the 4479 // control flow avoids some potentially slow checks, since we can currently 4480 // be certain that UnwindDest and BB have no common predecessors (since they 4481 // are both EH pads). 4482 if (UnwindDest) { 4483 // First, go through the PHI nodes in UnwindDest and update any nodes that 4484 // reference the block we are removing 4485 for (PHINode &DestPN : UnwindDest->phis()) { 4486 int Idx = DestPN.getBasicBlockIndex(BB); 4487 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4488 assert(Idx != -1); 4489 // This PHI node has an incoming value that corresponds to a control 4490 // path through the cleanup pad we are removing. If the incoming 4491 // value is in the cleanup pad, it must be a PHINode (because we 4492 // verified above that the block is otherwise empty). Otherwise, the 4493 // value is either a constant or a value that dominates the cleanup 4494 // pad being removed. 4495 // 4496 // Because BB and UnwindDest are both EH pads, all of their 4497 // predecessors must unwind to these blocks, and since no instruction 4498 // can have multiple unwind destinations, there will be no overlap in 4499 // incoming blocks between SrcPN and DestPN. 4500 Value *SrcVal = DestPN.getIncomingValue(Idx); 4501 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4502 4503 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4504 for (auto *Pred : predecessors(BB)) { 4505 Value *Incoming = 4506 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4507 DestPN.addIncoming(Incoming, Pred); 4508 } 4509 } 4510 4511 // Sink any remaining PHI nodes directly into UnwindDest. 4512 Instruction *InsertPt = DestEHPad; 4513 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4514 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4515 // If the PHI node has no uses or all of its uses are in this basic 4516 // block (meaning they are debug or lifetime intrinsics), just leave 4517 // it. It will be erased when we erase BB below. 4518 continue; 4519 4520 // Otherwise, sink this PHI node into UnwindDest. 4521 // Any predecessors to UnwindDest which are not already represented 4522 // must be back edges which inherit the value from the path through 4523 // BB. In this case, the PHI value must reference itself. 4524 for (auto *pred : predecessors(UnwindDest)) 4525 if (pred != BB) 4526 PN.addIncoming(&PN, pred); 4527 PN.moveBefore(InsertPt); 4528 // Also, add a dummy incoming value for the original BB itself, 4529 // so that the PHI is well-formed until we drop said predecessor. 4530 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4531 } 4532 } 4533 4534 std::vector<DominatorTree::UpdateType> Updates; 4535 4536 // We use make_early_inc_range here because we will remove all predecessors. 4537 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4538 if (UnwindDest == nullptr) { 4539 if (DTU) { 4540 DTU->applyUpdates(Updates); 4541 Updates.clear(); 4542 } 4543 removeUnwindEdge(PredBB, DTU); 4544 ++NumInvokes; 4545 } else { 4546 BB->removePredecessor(PredBB); 4547 Instruction *TI = PredBB->getTerminator(); 4548 TI->replaceUsesOfWith(BB, UnwindDest); 4549 if (DTU) { 4550 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4551 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4552 } 4553 } 4554 } 4555 4556 if (DTU) 4557 DTU->applyUpdates(Updates); 4558 4559 DeleteDeadBlock(BB, DTU); 4560 4561 return true; 4562 } 4563 4564 // Try to merge two cleanuppads together. 4565 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4566 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4567 // with. 4568 BasicBlock *UnwindDest = RI->getUnwindDest(); 4569 if (!UnwindDest) 4570 return false; 4571 4572 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4573 // be safe to merge without code duplication. 4574 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4575 return false; 4576 4577 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4578 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4579 if (!SuccessorCleanupPad) 4580 return false; 4581 4582 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4583 // Replace any uses of the successor cleanupad with the predecessor pad 4584 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4585 // funclet bundle operands. 4586 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4587 // Remove the old cleanuppad. 4588 SuccessorCleanupPad->eraseFromParent(); 4589 // Now, we simply replace the cleanupret with a branch to the unwind 4590 // destination. 4591 BranchInst::Create(UnwindDest, RI->getParent()); 4592 RI->eraseFromParent(); 4593 4594 return true; 4595 } 4596 4597 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4598 // It is possible to transiantly have an undef cleanuppad operand because we 4599 // have deleted some, but not all, dead blocks. 4600 // Eventually, this block will be deleted. 4601 if (isa<UndefValue>(RI->getOperand(0))) 4602 return false; 4603 4604 if (mergeCleanupPad(RI)) 4605 return true; 4606 4607 if (removeEmptyCleanup(RI, DTU)) 4608 return true; 4609 4610 return false; 4611 } 4612 4613 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4614 BasicBlock *BB = RI->getParent(); 4615 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4616 return false; 4617 4618 // Find predecessors that end with branches. 4619 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4620 SmallVector<BranchInst *, 8> CondBranchPreds; 4621 for (BasicBlock *P : predecessors(BB)) { 4622 Instruction *PTI = P->getTerminator(); 4623 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4624 if (BI->isUnconditional()) 4625 UncondBranchPreds.push_back(P); 4626 else 4627 CondBranchPreds.push_back(BI); 4628 } 4629 } 4630 4631 // If we found some, do the transformation! 4632 if (!UncondBranchPreds.empty() && DupRet) { 4633 while (!UncondBranchPreds.empty()) { 4634 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4635 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4636 << "INTO UNCOND BRANCH PRED: " << *Pred); 4637 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4638 } 4639 4640 // If we eliminated all predecessors of the block, delete the block now. 4641 if (pred_empty(BB)) 4642 DeleteDeadBlock(BB, DTU); 4643 4644 return true; 4645 } 4646 4647 // Check out all of the conditional branches going to this return 4648 // instruction. If any of them just select between returns, change the 4649 // branch itself into a select/return pair. 4650 while (!CondBranchPreds.empty()) { 4651 BranchInst *BI = CondBranchPreds.pop_back_val(); 4652 4653 // Check to see if the non-BB successor is also a return block. 4654 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4655 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4656 SimplifyCondBranchToTwoReturns(BI, Builder)) 4657 return true; 4658 } 4659 return false; 4660 } 4661 4662 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 4663 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4664 BasicBlock *BB = UI->getParent(); 4665 4666 bool Changed = false; 4667 4668 // If there are any instructions immediately before the unreachable that can 4669 // be removed, do so. 4670 while (UI->getIterator() != BB->begin()) { 4671 BasicBlock::iterator BBI = UI->getIterator(); 4672 --BBI; 4673 4674 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 4675 break; // Can not drop any more instructions. We're done here. 4676 // Otherwise, this instruction can be freely erased, 4677 // even if it is not side-effect free. 4678 4679 // Temporarily disable removal of volatile stores preceding unreachable, 4680 // pending a potential LangRef change permitting volatile stores to trap. 4681 // TODO: Either remove this code, or properly integrate the check into 4682 // isGuaranteedToTransferExecutionToSuccessor(). 4683 if (auto *SI = dyn_cast<StoreInst>(&*BBI)) 4684 if (SI->isVolatile()) 4685 break; // Can not drop this instruction. We're done here. 4686 4687 // Note that deleting EH's here is in fact okay, although it involves a bit 4688 // of subtle reasoning. If this inst is an EH, all the predecessors of this 4689 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 4690 // and we can therefore guarantee this block will be erased. 4691 4692 // Delete this instruction (any uses are guaranteed to be dead) 4693 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 4694 BBI->eraseFromParent(); 4695 Changed = true; 4696 } 4697 4698 // If the unreachable instruction is the first in the block, take a gander 4699 // at all of the predecessors of this instruction, and simplify them. 4700 if (&BB->front() != UI) 4701 return Changed; 4702 4703 std::vector<DominatorTree::UpdateType> Updates; 4704 4705 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4706 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4707 auto *Predecessor = Preds[i]; 4708 Instruction *TI = Predecessor->getTerminator(); 4709 IRBuilder<> Builder(TI); 4710 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4711 // We could either have a proper unconditional branch, 4712 // or a degenerate conditional branch with matching destinations. 4713 if (all_of(BI->successors(), 4714 [BB](auto *Successor) { return Successor == BB; })) { 4715 new UnreachableInst(TI->getContext(), TI); 4716 TI->eraseFromParent(); 4717 Changed = true; 4718 } else { 4719 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4720 Value* Cond = BI->getCondition(); 4721 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4722 "The destinations are guaranteed to be different here."); 4723 if (BI->getSuccessor(0) == BB) { 4724 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4725 Builder.CreateBr(BI->getSuccessor(1)); 4726 } else { 4727 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4728 Builder.CreateAssumption(Cond); 4729 Builder.CreateBr(BI->getSuccessor(0)); 4730 } 4731 EraseTerminatorAndDCECond(BI); 4732 Changed = true; 4733 } 4734 if (DTU) 4735 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4736 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4737 SwitchInstProfUpdateWrapper SU(*SI); 4738 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4739 if (i->getCaseSuccessor() != BB) { 4740 ++i; 4741 continue; 4742 } 4743 BB->removePredecessor(SU->getParent()); 4744 i = SU.removeCase(i); 4745 e = SU->case_end(); 4746 Changed = true; 4747 } 4748 // Note that the default destination can't be removed! 4749 if (DTU && SI->getDefaultDest() != BB) 4750 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4751 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4752 if (II->getUnwindDest() == BB) { 4753 if (DTU) { 4754 DTU->applyUpdates(Updates); 4755 Updates.clear(); 4756 } 4757 removeUnwindEdge(TI->getParent(), DTU); 4758 Changed = true; 4759 } 4760 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4761 if (CSI->getUnwindDest() == BB) { 4762 if (DTU) { 4763 DTU->applyUpdates(Updates); 4764 Updates.clear(); 4765 } 4766 removeUnwindEdge(TI->getParent(), DTU); 4767 Changed = true; 4768 continue; 4769 } 4770 4771 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4772 E = CSI->handler_end(); 4773 I != E; ++I) { 4774 if (*I == BB) { 4775 CSI->removeHandler(I); 4776 --I; 4777 --E; 4778 Changed = true; 4779 } 4780 } 4781 if (DTU) 4782 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4783 if (CSI->getNumHandlers() == 0) { 4784 if (CSI->hasUnwindDest()) { 4785 // Redirect all predecessors of the block containing CatchSwitchInst 4786 // to instead branch to the CatchSwitchInst's unwind destination. 4787 if (DTU) { 4788 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4789 Updates.push_back({DominatorTree::Insert, 4790 PredecessorOfPredecessor, 4791 CSI->getUnwindDest()}); 4792 Updates.push_back({DominatorTree::Delete, 4793 PredecessorOfPredecessor, Predecessor}); 4794 } 4795 } 4796 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4797 } else { 4798 // Rewrite all preds to unwind to caller (or from invoke to call). 4799 if (DTU) { 4800 DTU->applyUpdates(Updates); 4801 Updates.clear(); 4802 } 4803 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4804 for (BasicBlock *EHPred : EHPreds) 4805 removeUnwindEdge(EHPred, DTU); 4806 } 4807 // The catchswitch is no longer reachable. 4808 new UnreachableInst(CSI->getContext(), CSI); 4809 CSI->eraseFromParent(); 4810 Changed = true; 4811 } 4812 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4813 (void)CRI; 4814 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4815 "Expected to always have an unwind to BB."); 4816 if (DTU) 4817 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4818 new UnreachableInst(TI->getContext(), TI); 4819 TI->eraseFromParent(); 4820 Changed = true; 4821 } 4822 } 4823 4824 if (DTU) 4825 DTU->applyUpdates(Updates); 4826 4827 // If this block is now dead, remove it. 4828 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4829 DeleteDeadBlock(BB, DTU); 4830 return true; 4831 } 4832 4833 return Changed; 4834 } 4835 4836 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4837 assert(Cases.size() >= 1); 4838 4839 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4840 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4841 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4842 return false; 4843 } 4844 return true; 4845 } 4846 4847 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4848 DomTreeUpdater *DTU) { 4849 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4850 auto *BB = Switch->getParent(); 4851 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4852 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4853 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4854 Switch->setDefaultDest(&*NewDefaultBlock); 4855 if (DTU) 4856 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4857 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4858 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4859 SmallVector<DominatorTree::UpdateType, 2> Updates; 4860 if (DTU) 4861 for (auto *Successor : successors(NewDefaultBlock)) 4862 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4863 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4864 new UnreachableInst(Switch->getContext(), NewTerminator); 4865 EraseTerminatorAndDCECond(NewTerminator); 4866 if (DTU) 4867 DTU->applyUpdates(Updates); 4868 } 4869 4870 /// Turn a switch with two reachable destinations into an integer range 4871 /// comparison and branch. 4872 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4873 IRBuilder<> &Builder) { 4874 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4875 4876 bool HasDefault = 4877 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4878 4879 auto *BB = SI->getParent(); 4880 4881 // Partition the cases into two sets with different destinations. 4882 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4883 BasicBlock *DestB = nullptr; 4884 SmallVector<ConstantInt *, 16> CasesA; 4885 SmallVector<ConstantInt *, 16> CasesB; 4886 4887 for (auto Case : SI->cases()) { 4888 BasicBlock *Dest = Case.getCaseSuccessor(); 4889 if (!DestA) 4890 DestA = Dest; 4891 if (Dest == DestA) { 4892 CasesA.push_back(Case.getCaseValue()); 4893 continue; 4894 } 4895 if (!DestB) 4896 DestB = Dest; 4897 if (Dest == DestB) { 4898 CasesB.push_back(Case.getCaseValue()); 4899 continue; 4900 } 4901 return false; // More than two destinations. 4902 } 4903 4904 assert(DestA && DestB && 4905 "Single-destination switch should have been folded."); 4906 assert(DestA != DestB); 4907 assert(DestB != SI->getDefaultDest()); 4908 assert(!CasesB.empty() && "There must be non-default cases."); 4909 assert(!CasesA.empty() || HasDefault); 4910 4911 // Figure out if one of the sets of cases form a contiguous range. 4912 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4913 BasicBlock *ContiguousDest = nullptr; 4914 BasicBlock *OtherDest = nullptr; 4915 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4916 ContiguousCases = &CasesA; 4917 ContiguousDest = DestA; 4918 OtherDest = DestB; 4919 } else if (CasesAreContiguous(CasesB)) { 4920 ContiguousCases = &CasesB; 4921 ContiguousDest = DestB; 4922 OtherDest = DestA; 4923 } else 4924 return false; 4925 4926 // Start building the compare and branch. 4927 4928 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4929 Constant *NumCases = 4930 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4931 4932 Value *Sub = SI->getCondition(); 4933 if (!Offset->isNullValue()) 4934 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4935 4936 Value *Cmp; 4937 // If NumCases overflowed, then all possible values jump to the successor. 4938 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4939 Cmp = ConstantInt::getTrue(SI->getContext()); 4940 else 4941 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4942 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4943 4944 // Update weight for the newly-created conditional branch. 4945 if (HasBranchWeights(SI)) { 4946 SmallVector<uint64_t, 8> Weights; 4947 GetBranchWeights(SI, Weights); 4948 if (Weights.size() == 1 + SI->getNumCases()) { 4949 uint64_t TrueWeight = 0; 4950 uint64_t FalseWeight = 0; 4951 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4952 if (SI->getSuccessor(I) == ContiguousDest) 4953 TrueWeight += Weights[I]; 4954 else 4955 FalseWeight += Weights[I]; 4956 } 4957 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4958 TrueWeight /= 2; 4959 FalseWeight /= 2; 4960 } 4961 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4962 } 4963 } 4964 4965 // Prune obsolete incoming values off the successors' PHI nodes. 4966 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4967 unsigned PreviousEdges = ContiguousCases->size(); 4968 if (ContiguousDest == SI->getDefaultDest()) 4969 ++PreviousEdges; 4970 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4971 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4972 } 4973 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4974 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4975 if (OtherDest == SI->getDefaultDest()) 4976 ++PreviousEdges; 4977 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4978 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4979 } 4980 4981 // Clean up the default block - it may have phis or other instructions before 4982 // the unreachable terminator. 4983 if (!HasDefault) 4984 createUnreachableSwitchDefault(SI, DTU); 4985 4986 auto *UnreachableDefault = SI->getDefaultDest(); 4987 4988 // Drop the switch. 4989 SI->eraseFromParent(); 4990 4991 if (!HasDefault && DTU) 4992 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4993 4994 return true; 4995 } 4996 4997 /// Compute masked bits for the condition of a switch 4998 /// and use it to remove dead cases. 4999 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5000 AssumptionCache *AC, 5001 const DataLayout &DL) { 5002 Value *Cond = SI->getCondition(); 5003 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 5004 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5005 5006 // We can also eliminate cases by determining that their values are outside of 5007 // the limited range of the condition based on how many significant (non-sign) 5008 // bits are in the condition value. 5009 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 5010 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 5011 5012 // Gather dead cases. 5013 SmallVector<ConstantInt *, 8> DeadCases; 5014 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5015 for (auto &Case : SI->cases()) { 5016 auto *Successor = Case.getCaseSuccessor(); 5017 if (DTU) 5018 ++NumPerSuccessorCases[Successor]; 5019 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5020 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5021 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5022 DeadCases.push_back(Case.getCaseValue()); 5023 if (DTU) 5024 --NumPerSuccessorCases[Successor]; 5025 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5026 << " is dead.\n"); 5027 } 5028 } 5029 5030 // If we can prove that the cases must cover all possible values, the 5031 // default destination becomes dead and we can remove it. If we know some 5032 // of the bits in the value, we can use that to more precisely compute the 5033 // number of possible unique case values. 5034 bool HasDefault = 5035 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5036 const unsigned NumUnknownBits = 5037 Bits - (Known.Zero | Known.One).countPopulation(); 5038 assert(NumUnknownBits <= Bits); 5039 if (HasDefault && DeadCases.empty() && 5040 NumUnknownBits < 64 /* avoid overflow */ && 5041 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5042 createUnreachableSwitchDefault(SI, DTU); 5043 return true; 5044 } 5045 5046 if (DeadCases.empty()) 5047 return false; 5048 5049 SwitchInstProfUpdateWrapper SIW(*SI); 5050 for (ConstantInt *DeadCase : DeadCases) { 5051 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5052 assert(CaseI != SI->case_default() && 5053 "Case was not found. Probably mistake in DeadCases forming."); 5054 // Prune unused values from PHI nodes. 5055 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5056 SIW.removeCase(CaseI); 5057 } 5058 5059 if (DTU) { 5060 std::vector<DominatorTree::UpdateType> Updates; 5061 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 5062 if (I.second == 0) 5063 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 5064 DTU->applyUpdates(Updates); 5065 } 5066 5067 return true; 5068 } 5069 5070 /// If BB would be eligible for simplification by 5071 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5072 /// by an unconditional branch), look at the phi node for BB in the successor 5073 /// block and see if the incoming value is equal to CaseValue. If so, return 5074 /// the phi node, and set PhiIndex to BB's index in the phi node. 5075 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5076 BasicBlock *BB, int *PhiIndex) { 5077 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5078 return nullptr; // BB must be empty to be a candidate for simplification. 5079 if (!BB->getSinglePredecessor()) 5080 return nullptr; // BB must be dominated by the switch. 5081 5082 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5083 if (!Branch || !Branch->isUnconditional()) 5084 return nullptr; // Terminator must be unconditional branch. 5085 5086 BasicBlock *Succ = Branch->getSuccessor(0); 5087 5088 for (PHINode &PHI : Succ->phis()) { 5089 int Idx = PHI.getBasicBlockIndex(BB); 5090 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5091 5092 Value *InValue = PHI.getIncomingValue(Idx); 5093 if (InValue != CaseValue) 5094 continue; 5095 5096 *PhiIndex = Idx; 5097 return &PHI; 5098 } 5099 5100 return nullptr; 5101 } 5102 5103 /// Try to forward the condition of a switch instruction to a phi node 5104 /// dominated by the switch, if that would mean that some of the destination 5105 /// blocks of the switch can be folded away. Return true if a change is made. 5106 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5107 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5108 5109 ForwardingNodesMap ForwardingNodes; 5110 BasicBlock *SwitchBlock = SI->getParent(); 5111 bool Changed = false; 5112 for (auto &Case : SI->cases()) { 5113 ConstantInt *CaseValue = Case.getCaseValue(); 5114 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5115 5116 // Replace phi operands in successor blocks that are using the constant case 5117 // value rather than the switch condition variable: 5118 // switchbb: 5119 // switch i32 %x, label %default [ 5120 // i32 17, label %succ 5121 // ... 5122 // succ: 5123 // %r = phi i32 ... [ 17, %switchbb ] ... 5124 // --> 5125 // %r = phi i32 ... [ %x, %switchbb ] ... 5126 5127 for (PHINode &Phi : CaseDest->phis()) { 5128 // This only works if there is exactly 1 incoming edge from the switch to 5129 // a phi. If there is >1, that means multiple cases of the switch map to 1 5130 // value in the phi, and that phi value is not the switch condition. Thus, 5131 // this transform would not make sense (the phi would be invalid because 5132 // a phi can't have different incoming values from the same block). 5133 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5134 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5135 count(Phi.blocks(), SwitchBlock) == 1) { 5136 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5137 Changed = true; 5138 } 5139 } 5140 5141 // Collect phi nodes that are indirectly using this switch's case constants. 5142 int PhiIdx; 5143 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5144 ForwardingNodes[Phi].push_back(PhiIdx); 5145 } 5146 5147 for (auto &ForwardingNode : ForwardingNodes) { 5148 PHINode *Phi = ForwardingNode.first; 5149 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5150 if (Indexes.size() < 2) 5151 continue; 5152 5153 for (int Index : Indexes) 5154 Phi->setIncomingValue(Index, SI->getCondition()); 5155 Changed = true; 5156 } 5157 5158 return Changed; 5159 } 5160 5161 /// Return true if the backend will be able to handle 5162 /// initializing an array of constants like C. 5163 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5164 if (C->isThreadDependent()) 5165 return false; 5166 if (C->isDLLImportDependent()) 5167 return false; 5168 5169 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5170 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5171 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5172 return false; 5173 5174 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5175 if (!CE->isGEPWithNoNotionalOverIndexing()) 5176 return false; 5177 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5178 return false; 5179 } 5180 5181 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5182 return false; 5183 5184 return true; 5185 } 5186 5187 /// If V is a Constant, return it. Otherwise, try to look up 5188 /// its constant value in ConstantPool, returning 0 if it's not there. 5189 static Constant * 5190 LookupConstant(Value *V, 5191 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5192 if (Constant *C = dyn_cast<Constant>(V)) 5193 return C; 5194 return ConstantPool.lookup(V); 5195 } 5196 5197 /// Try to fold instruction I into a constant. This works for 5198 /// simple instructions such as binary operations where both operands are 5199 /// constant or can be replaced by constants from the ConstantPool. Returns the 5200 /// resulting constant on success, 0 otherwise. 5201 static Constant * 5202 ConstantFold(Instruction *I, const DataLayout &DL, 5203 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5204 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5205 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5206 if (!A) 5207 return nullptr; 5208 if (A->isAllOnesValue()) 5209 return LookupConstant(Select->getTrueValue(), ConstantPool); 5210 if (A->isNullValue()) 5211 return LookupConstant(Select->getFalseValue(), ConstantPool); 5212 return nullptr; 5213 } 5214 5215 SmallVector<Constant *, 4> COps; 5216 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5217 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5218 COps.push_back(A); 5219 else 5220 return nullptr; 5221 } 5222 5223 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5224 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5225 COps[1], DL); 5226 } 5227 5228 return ConstantFoldInstOperands(I, COps, DL); 5229 } 5230 5231 /// Try to determine the resulting constant values in phi nodes 5232 /// at the common destination basic block, *CommonDest, for one of the case 5233 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5234 /// case), of a switch instruction SI. 5235 static bool 5236 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5237 BasicBlock **CommonDest, 5238 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5239 const DataLayout &DL, const TargetTransformInfo &TTI) { 5240 // The block from which we enter the common destination. 5241 BasicBlock *Pred = SI->getParent(); 5242 5243 // If CaseDest is empty except for some side-effect free instructions through 5244 // which we can constant-propagate the CaseVal, continue to its successor. 5245 SmallDenseMap<Value *, Constant *> ConstantPool; 5246 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5247 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5248 if (I.isTerminator()) { 5249 // If the terminator is a simple branch, continue to the next block. 5250 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5251 return false; 5252 Pred = CaseDest; 5253 CaseDest = I.getSuccessor(0); 5254 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5255 // Instruction is side-effect free and constant. 5256 5257 // If the instruction has uses outside this block or a phi node slot for 5258 // the block, it is not safe to bypass the instruction since it would then 5259 // no longer dominate all its uses. 5260 for (auto &Use : I.uses()) { 5261 User *User = Use.getUser(); 5262 if (Instruction *I = dyn_cast<Instruction>(User)) 5263 if (I->getParent() == CaseDest) 5264 continue; 5265 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5266 if (Phi->getIncomingBlock(Use) == CaseDest) 5267 continue; 5268 return false; 5269 } 5270 5271 ConstantPool.insert(std::make_pair(&I, C)); 5272 } else { 5273 break; 5274 } 5275 } 5276 5277 // If we did not have a CommonDest before, use the current one. 5278 if (!*CommonDest) 5279 *CommonDest = CaseDest; 5280 // If the destination isn't the common one, abort. 5281 if (CaseDest != *CommonDest) 5282 return false; 5283 5284 // Get the values for this case from phi nodes in the destination block. 5285 for (PHINode &PHI : (*CommonDest)->phis()) { 5286 int Idx = PHI.getBasicBlockIndex(Pred); 5287 if (Idx == -1) 5288 continue; 5289 5290 Constant *ConstVal = 5291 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5292 if (!ConstVal) 5293 return false; 5294 5295 // Be conservative about which kinds of constants we support. 5296 if (!ValidLookupTableConstant(ConstVal, TTI)) 5297 return false; 5298 5299 Res.push_back(std::make_pair(&PHI, ConstVal)); 5300 } 5301 5302 return Res.size() > 0; 5303 } 5304 5305 // Helper function used to add CaseVal to the list of cases that generate 5306 // Result. Returns the updated number of cases that generate this result. 5307 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5308 SwitchCaseResultVectorTy &UniqueResults, 5309 Constant *Result) { 5310 for (auto &I : UniqueResults) { 5311 if (I.first == Result) { 5312 I.second.push_back(CaseVal); 5313 return I.second.size(); 5314 } 5315 } 5316 UniqueResults.push_back( 5317 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5318 return 1; 5319 } 5320 5321 // Helper function that initializes a map containing 5322 // results for the PHI node of the common destination block for a switch 5323 // instruction. Returns false if multiple PHI nodes have been found or if 5324 // there is not a common destination block for the switch. 5325 static bool 5326 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5327 SwitchCaseResultVectorTy &UniqueResults, 5328 Constant *&DefaultResult, const DataLayout &DL, 5329 const TargetTransformInfo &TTI, 5330 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5331 for (auto &I : SI->cases()) { 5332 ConstantInt *CaseVal = I.getCaseValue(); 5333 5334 // Resulting value at phi nodes for this case value. 5335 SwitchCaseResultsTy Results; 5336 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5337 DL, TTI)) 5338 return false; 5339 5340 // Only one value per case is permitted. 5341 if (Results.size() > 1) 5342 return false; 5343 5344 // Add the case->result mapping to UniqueResults. 5345 const uintptr_t NumCasesForResult = 5346 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5347 5348 // Early out if there are too many cases for this result. 5349 if (NumCasesForResult > MaxCasesPerResult) 5350 return false; 5351 5352 // Early out if there are too many unique results. 5353 if (UniqueResults.size() > MaxUniqueResults) 5354 return false; 5355 5356 // Check the PHI consistency. 5357 if (!PHI) 5358 PHI = Results[0].first; 5359 else if (PHI != Results[0].first) 5360 return false; 5361 } 5362 // Find the default result value. 5363 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5364 BasicBlock *DefaultDest = SI->getDefaultDest(); 5365 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5366 DL, TTI); 5367 // If the default value is not found abort unless the default destination 5368 // is unreachable. 5369 DefaultResult = 5370 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5371 if ((!DefaultResult && 5372 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5373 return false; 5374 5375 return true; 5376 } 5377 5378 // Helper function that checks if it is possible to transform a switch with only 5379 // two cases (or two cases + default) that produces a result into a select. 5380 // Example: 5381 // switch (a) { 5382 // case 10: %0 = icmp eq i32 %a, 10 5383 // return 10; %1 = select i1 %0, i32 10, i32 4 5384 // case 20: ----> %2 = icmp eq i32 %a, 20 5385 // return 2; %3 = select i1 %2, i32 2, i32 %1 5386 // default: 5387 // return 4; 5388 // } 5389 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5390 Constant *DefaultResult, Value *Condition, 5391 IRBuilder<> &Builder) { 5392 // If we are selecting between only two cases transform into a simple 5393 // select or a two-way select if default is possible. 5394 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5395 ResultVector[1].second.size() == 1) { 5396 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5397 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5398 5399 bool DefaultCanTrigger = DefaultResult; 5400 Value *SelectValue = ResultVector[1].first; 5401 if (DefaultCanTrigger) { 5402 Value *const ValueCompare = 5403 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5404 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5405 DefaultResult, "switch.select"); 5406 } 5407 Value *const ValueCompare = 5408 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5409 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5410 SelectValue, "switch.select"); 5411 } 5412 5413 // Handle the degenerate case where two cases have the same value. 5414 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5415 DefaultResult) { 5416 Value *Cmp1 = Builder.CreateICmpEQ( 5417 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5418 Value *Cmp2 = Builder.CreateICmpEQ( 5419 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5420 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5421 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5422 } 5423 5424 return nullptr; 5425 } 5426 5427 // Helper function to cleanup a switch instruction that has been converted into 5428 // a select, fixing up PHI nodes and basic blocks. 5429 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5430 Value *SelectValue, 5431 IRBuilder<> &Builder, 5432 DomTreeUpdater *DTU) { 5433 std::vector<DominatorTree::UpdateType> Updates; 5434 5435 BasicBlock *SelectBB = SI->getParent(); 5436 BasicBlock *DestBB = PHI->getParent(); 5437 5438 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5439 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5440 Builder.CreateBr(DestBB); 5441 5442 // Remove the switch. 5443 5444 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5445 PHI->removeIncomingValue(SelectBB); 5446 PHI->addIncoming(SelectValue, SelectBB); 5447 5448 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5449 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5450 BasicBlock *Succ = SI->getSuccessor(i); 5451 5452 if (Succ == DestBB) 5453 continue; 5454 Succ->removePredecessor(SelectBB); 5455 if (DTU && RemovedSuccessors.insert(Succ).second) 5456 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5457 } 5458 SI->eraseFromParent(); 5459 if (DTU) 5460 DTU->applyUpdates(Updates); 5461 } 5462 5463 /// If the switch is only used to initialize one or more 5464 /// phi nodes in a common successor block with only two different 5465 /// constant values, replace the switch with select. 5466 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5467 DomTreeUpdater *DTU, const DataLayout &DL, 5468 const TargetTransformInfo &TTI) { 5469 Value *const Cond = SI->getCondition(); 5470 PHINode *PHI = nullptr; 5471 BasicBlock *CommonDest = nullptr; 5472 Constant *DefaultResult; 5473 SwitchCaseResultVectorTy UniqueResults; 5474 // Collect all the cases that will deliver the same value from the switch. 5475 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5476 DL, TTI, /*MaxUniqueResults*/2, 5477 /*MaxCasesPerResult*/2)) 5478 return false; 5479 assert(PHI != nullptr && "PHI for value select not found"); 5480 5481 Builder.SetInsertPoint(SI); 5482 Value *SelectValue = 5483 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5484 if (SelectValue) { 5485 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5486 return true; 5487 } 5488 // The switch couldn't be converted into a select. 5489 return false; 5490 } 5491 5492 namespace { 5493 5494 /// This class represents a lookup table that can be used to replace a switch. 5495 class SwitchLookupTable { 5496 public: 5497 /// Create a lookup table to use as a switch replacement with the contents 5498 /// of Values, using DefaultValue to fill any holes in the table. 5499 SwitchLookupTable( 5500 Module &M, uint64_t TableSize, ConstantInt *Offset, 5501 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5502 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5503 5504 /// Build instructions with Builder to retrieve the value at 5505 /// the position given by Index in the lookup table. 5506 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5507 5508 /// Return true if a table with TableSize elements of 5509 /// type ElementType would fit in a target-legal register. 5510 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5511 Type *ElementType); 5512 5513 private: 5514 // Depending on the contents of the table, it can be represented in 5515 // different ways. 5516 enum { 5517 // For tables where each element contains the same value, we just have to 5518 // store that single value and return it for each lookup. 5519 SingleValueKind, 5520 5521 // For tables where there is a linear relationship between table index 5522 // and values. We calculate the result with a simple multiplication 5523 // and addition instead of a table lookup. 5524 LinearMapKind, 5525 5526 // For small tables with integer elements, we can pack them into a bitmap 5527 // that fits into a target-legal register. Values are retrieved by 5528 // shift and mask operations. 5529 BitMapKind, 5530 5531 // The table is stored as an array of values. Values are retrieved by load 5532 // instructions from the table. 5533 ArrayKind 5534 } Kind; 5535 5536 // For SingleValueKind, this is the single value. 5537 Constant *SingleValue = nullptr; 5538 5539 // For BitMapKind, this is the bitmap. 5540 ConstantInt *BitMap = nullptr; 5541 IntegerType *BitMapElementTy = nullptr; 5542 5543 // For LinearMapKind, these are the constants used to derive the value. 5544 ConstantInt *LinearOffset = nullptr; 5545 ConstantInt *LinearMultiplier = nullptr; 5546 5547 // For ArrayKind, this is the array. 5548 GlobalVariable *Array = nullptr; 5549 }; 5550 5551 } // end anonymous namespace 5552 5553 SwitchLookupTable::SwitchLookupTable( 5554 Module &M, uint64_t TableSize, ConstantInt *Offset, 5555 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5556 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5557 assert(Values.size() && "Can't build lookup table without values!"); 5558 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5559 5560 // If all values in the table are equal, this is that value. 5561 SingleValue = Values.begin()->second; 5562 5563 Type *ValueType = Values.begin()->second->getType(); 5564 5565 // Build up the table contents. 5566 SmallVector<Constant *, 64> TableContents(TableSize); 5567 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5568 ConstantInt *CaseVal = Values[I].first; 5569 Constant *CaseRes = Values[I].second; 5570 assert(CaseRes->getType() == ValueType); 5571 5572 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5573 TableContents[Idx] = CaseRes; 5574 5575 if (CaseRes != SingleValue) 5576 SingleValue = nullptr; 5577 } 5578 5579 // Fill in any holes in the table with the default result. 5580 if (Values.size() < TableSize) { 5581 assert(DefaultValue && 5582 "Need a default value to fill the lookup table holes."); 5583 assert(DefaultValue->getType() == ValueType); 5584 for (uint64_t I = 0; I < TableSize; ++I) { 5585 if (!TableContents[I]) 5586 TableContents[I] = DefaultValue; 5587 } 5588 5589 if (DefaultValue != SingleValue) 5590 SingleValue = nullptr; 5591 } 5592 5593 // If each element in the table contains the same value, we only need to store 5594 // that single value. 5595 if (SingleValue) { 5596 Kind = SingleValueKind; 5597 return; 5598 } 5599 5600 // Check if we can derive the value with a linear transformation from the 5601 // table index. 5602 if (isa<IntegerType>(ValueType)) { 5603 bool LinearMappingPossible = true; 5604 APInt PrevVal; 5605 APInt DistToPrev; 5606 assert(TableSize >= 2 && "Should be a SingleValue table."); 5607 // Check if there is the same distance between two consecutive values. 5608 for (uint64_t I = 0; I < TableSize; ++I) { 5609 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5610 if (!ConstVal) { 5611 // This is an undef. We could deal with it, but undefs in lookup tables 5612 // are very seldom. It's probably not worth the additional complexity. 5613 LinearMappingPossible = false; 5614 break; 5615 } 5616 const APInt &Val = ConstVal->getValue(); 5617 if (I != 0) { 5618 APInt Dist = Val - PrevVal; 5619 if (I == 1) { 5620 DistToPrev = Dist; 5621 } else if (Dist != DistToPrev) { 5622 LinearMappingPossible = false; 5623 break; 5624 } 5625 } 5626 PrevVal = Val; 5627 } 5628 if (LinearMappingPossible) { 5629 LinearOffset = cast<ConstantInt>(TableContents[0]); 5630 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5631 Kind = LinearMapKind; 5632 ++NumLinearMaps; 5633 return; 5634 } 5635 } 5636 5637 // If the type is integer and the table fits in a register, build a bitmap. 5638 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5639 IntegerType *IT = cast<IntegerType>(ValueType); 5640 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5641 for (uint64_t I = TableSize; I > 0; --I) { 5642 TableInt <<= IT->getBitWidth(); 5643 // Insert values into the bitmap. Undef values are set to zero. 5644 if (!isa<UndefValue>(TableContents[I - 1])) { 5645 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5646 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5647 } 5648 } 5649 BitMap = ConstantInt::get(M.getContext(), TableInt); 5650 BitMapElementTy = IT; 5651 Kind = BitMapKind; 5652 ++NumBitMaps; 5653 return; 5654 } 5655 5656 // Store the table in an array. 5657 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5658 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5659 5660 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5661 GlobalVariable::PrivateLinkage, Initializer, 5662 "switch.table." + FuncName); 5663 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5664 // Set the alignment to that of an array items. We will be only loading one 5665 // value out of it. 5666 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5667 Kind = ArrayKind; 5668 } 5669 5670 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5671 switch (Kind) { 5672 case SingleValueKind: 5673 return SingleValue; 5674 case LinearMapKind: { 5675 // Derive the result value from the input value. 5676 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5677 false, "switch.idx.cast"); 5678 if (!LinearMultiplier->isOne()) 5679 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5680 if (!LinearOffset->isZero()) 5681 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5682 return Result; 5683 } 5684 case BitMapKind: { 5685 // Type of the bitmap (e.g. i59). 5686 IntegerType *MapTy = BitMap->getType(); 5687 5688 // Cast Index to the same type as the bitmap. 5689 // Note: The Index is <= the number of elements in the table, so 5690 // truncating it to the width of the bitmask is safe. 5691 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5692 5693 // Multiply the shift amount by the element width. 5694 ShiftAmt = Builder.CreateMul( 5695 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5696 "switch.shiftamt"); 5697 5698 // Shift down. 5699 Value *DownShifted = 5700 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5701 // Mask off. 5702 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5703 } 5704 case ArrayKind: { 5705 // Make sure the table index will not overflow when treated as signed. 5706 IntegerType *IT = cast<IntegerType>(Index->getType()); 5707 uint64_t TableSize = 5708 Array->getInitializer()->getType()->getArrayNumElements(); 5709 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5710 Index = Builder.CreateZExt( 5711 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5712 "switch.tableidx.zext"); 5713 5714 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5715 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5716 GEPIndices, "switch.gep"); 5717 return Builder.CreateLoad( 5718 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5719 "switch.load"); 5720 } 5721 } 5722 llvm_unreachable("Unknown lookup table kind!"); 5723 } 5724 5725 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5726 uint64_t TableSize, 5727 Type *ElementType) { 5728 auto *IT = dyn_cast<IntegerType>(ElementType); 5729 if (!IT) 5730 return false; 5731 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5732 // are <= 15, we could try to narrow the type. 5733 5734 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5735 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5736 return false; 5737 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5738 } 5739 5740 /// Determine whether a lookup table should be built for this switch, based on 5741 /// the number of cases, size of the table, and the types of the results. 5742 static bool 5743 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5744 const TargetTransformInfo &TTI, const DataLayout &DL, 5745 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5746 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5747 return false; // TableSize overflowed, or mul below might overflow. 5748 5749 bool AllTablesFitInRegister = true; 5750 bool HasIllegalType = false; 5751 for (const auto &I : ResultTypes) { 5752 Type *Ty = I.second; 5753 5754 // Saturate this flag to true. 5755 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5756 5757 // Saturate this flag to false. 5758 AllTablesFitInRegister = 5759 AllTablesFitInRegister && 5760 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5761 5762 // If both flags saturate, we're done. NOTE: This *only* works with 5763 // saturating flags, and all flags have to saturate first due to the 5764 // non-deterministic behavior of iterating over a dense map. 5765 if (HasIllegalType && !AllTablesFitInRegister) 5766 break; 5767 } 5768 5769 // If each table would fit in a register, we should build it anyway. 5770 if (AllTablesFitInRegister) 5771 return true; 5772 5773 // Don't build a table that doesn't fit in-register if it has illegal types. 5774 if (HasIllegalType) 5775 return false; 5776 5777 // The table density should be at least 40%. This is the same criterion as for 5778 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5779 // FIXME: Find the best cut-off. 5780 return SI->getNumCases() * 10 >= TableSize * 4; 5781 } 5782 5783 /// Try to reuse the switch table index compare. Following pattern: 5784 /// \code 5785 /// if (idx < tablesize) 5786 /// r = table[idx]; // table does not contain default_value 5787 /// else 5788 /// r = default_value; 5789 /// if (r != default_value) 5790 /// ... 5791 /// \endcode 5792 /// Is optimized to: 5793 /// \code 5794 /// cond = idx < tablesize; 5795 /// if (cond) 5796 /// r = table[idx]; 5797 /// else 5798 /// r = default_value; 5799 /// if (cond) 5800 /// ... 5801 /// \endcode 5802 /// Jump threading will then eliminate the second if(cond). 5803 static void reuseTableCompare( 5804 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5805 Constant *DefaultValue, 5806 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5807 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5808 if (!CmpInst) 5809 return; 5810 5811 // We require that the compare is in the same block as the phi so that jump 5812 // threading can do its work afterwards. 5813 if (CmpInst->getParent() != PhiBlock) 5814 return; 5815 5816 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5817 if (!CmpOp1) 5818 return; 5819 5820 Value *RangeCmp = RangeCheckBranch->getCondition(); 5821 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5822 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5823 5824 // Check if the compare with the default value is constant true or false. 5825 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5826 DefaultValue, CmpOp1, true); 5827 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5828 return; 5829 5830 // Check if the compare with the case values is distinct from the default 5831 // compare result. 5832 for (auto ValuePair : Values) { 5833 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5834 ValuePair.second, CmpOp1, true); 5835 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5836 return; 5837 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5838 "Expect true or false as compare result."); 5839 } 5840 5841 // Check if the branch instruction dominates the phi node. It's a simple 5842 // dominance check, but sufficient for our needs. 5843 // Although this check is invariant in the calling loops, it's better to do it 5844 // at this late stage. Practically we do it at most once for a switch. 5845 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5846 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5847 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5848 return; 5849 } 5850 5851 if (DefaultConst == FalseConst) { 5852 // The compare yields the same result. We can replace it. 5853 CmpInst->replaceAllUsesWith(RangeCmp); 5854 ++NumTableCmpReuses; 5855 } else { 5856 // The compare yields the same result, just inverted. We can replace it. 5857 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5858 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5859 RangeCheckBranch); 5860 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5861 ++NumTableCmpReuses; 5862 } 5863 } 5864 5865 /// If the switch is only used to initialize one or more phi nodes in a common 5866 /// successor block with different constant values, replace the switch with 5867 /// lookup tables. 5868 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5869 DomTreeUpdater *DTU, const DataLayout &DL, 5870 const TargetTransformInfo &TTI) { 5871 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5872 5873 BasicBlock *BB = SI->getParent(); 5874 Function *Fn = BB->getParent(); 5875 // Only build lookup table when we have a target that supports it or the 5876 // attribute is not set. 5877 if (!TTI.shouldBuildLookupTables() || 5878 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 5879 return false; 5880 5881 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5882 // split off a dense part and build a lookup table for that. 5883 5884 // FIXME: This creates arrays of GEPs to constant strings, which means each 5885 // GEP needs a runtime relocation in PIC code. We should just build one big 5886 // string and lookup indices into that. 5887 5888 // Ignore switches with less than three cases. Lookup tables will not make 5889 // them faster, so we don't analyze them. 5890 if (SI->getNumCases() < 3) 5891 return false; 5892 5893 // Figure out the corresponding result for each case value and phi node in the 5894 // common destination, as well as the min and max case values. 5895 assert(!SI->cases().empty()); 5896 SwitchInst::CaseIt CI = SI->case_begin(); 5897 ConstantInt *MinCaseVal = CI->getCaseValue(); 5898 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5899 5900 BasicBlock *CommonDest = nullptr; 5901 5902 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5903 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5904 5905 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5906 SmallDenseMap<PHINode *, Type *> ResultTypes; 5907 SmallVector<PHINode *, 4> PHIs; 5908 5909 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5910 ConstantInt *CaseVal = CI->getCaseValue(); 5911 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5912 MinCaseVal = CaseVal; 5913 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5914 MaxCaseVal = CaseVal; 5915 5916 // Resulting value at phi nodes for this case value. 5917 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5918 ResultsTy Results; 5919 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5920 Results, DL, TTI)) 5921 return false; 5922 5923 // Append the result from this case to the list for each phi. 5924 for (const auto &I : Results) { 5925 PHINode *PHI = I.first; 5926 Constant *Value = I.second; 5927 if (!ResultLists.count(PHI)) 5928 PHIs.push_back(PHI); 5929 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5930 } 5931 } 5932 5933 // Keep track of the result types. 5934 for (PHINode *PHI : PHIs) { 5935 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5936 } 5937 5938 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5939 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5940 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5941 bool TableHasHoles = (NumResults < TableSize); 5942 5943 // If the table has holes, we need a constant result for the default case 5944 // or a bitmask that fits in a register. 5945 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5946 bool HasDefaultResults = 5947 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5948 DefaultResultsList, DL, TTI); 5949 5950 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5951 if (NeedMask) { 5952 // As an extra penalty for the validity test we require more cases. 5953 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5954 return false; 5955 if (!DL.fitsInLegalInteger(TableSize)) 5956 return false; 5957 } 5958 5959 for (const auto &I : DefaultResultsList) { 5960 PHINode *PHI = I.first; 5961 Constant *Result = I.second; 5962 DefaultResults[PHI] = Result; 5963 } 5964 5965 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5966 return false; 5967 5968 std::vector<DominatorTree::UpdateType> Updates; 5969 5970 // Create the BB that does the lookups. 5971 Module &Mod = *CommonDest->getParent()->getParent(); 5972 BasicBlock *LookupBB = BasicBlock::Create( 5973 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5974 5975 // Compute the table index value. 5976 Builder.SetInsertPoint(SI); 5977 Value *TableIndex; 5978 if (MinCaseVal->isNullValue()) 5979 TableIndex = SI->getCondition(); 5980 else 5981 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5982 "switch.tableidx"); 5983 5984 // Compute the maximum table size representable by the integer type we are 5985 // switching upon. 5986 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5987 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5988 assert(MaxTableSize >= TableSize && 5989 "It is impossible for a switch to have more entries than the max " 5990 "representable value of its input integer type's size."); 5991 5992 // If the default destination is unreachable, or if the lookup table covers 5993 // all values of the conditional variable, branch directly to the lookup table 5994 // BB. Otherwise, check that the condition is within the case range. 5995 const bool DefaultIsReachable = 5996 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5997 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5998 BranchInst *RangeCheckBranch = nullptr; 5999 6000 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6001 Builder.CreateBr(LookupBB); 6002 if (DTU) 6003 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6004 // Note: We call removeProdecessor later since we need to be able to get the 6005 // PHI value for the default case in case we're using a bit mask. 6006 } else { 6007 Value *Cmp = Builder.CreateICmpULT( 6008 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6009 RangeCheckBranch = 6010 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6011 if (DTU) 6012 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6013 } 6014 6015 // Populate the BB that does the lookups. 6016 Builder.SetInsertPoint(LookupBB); 6017 6018 if (NeedMask) { 6019 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6020 // re-purposed to do the hole check, and we create a new LookupBB. 6021 BasicBlock *MaskBB = LookupBB; 6022 MaskBB->setName("switch.hole_check"); 6023 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6024 CommonDest->getParent(), CommonDest); 6025 6026 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6027 // unnecessary illegal types. 6028 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6029 APInt MaskInt(TableSizePowOf2, 0); 6030 APInt One(TableSizePowOf2, 1); 6031 // Build bitmask; fill in a 1 bit for every case. 6032 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6033 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6034 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6035 .getLimitedValue(); 6036 MaskInt |= One << Idx; 6037 } 6038 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6039 6040 // Get the TableIndex'th bit of the bitmask. 6041 // If this bit is 0 (meaning hole) jump to the default destination, 6042 // else continue with table lookup. 6043 IntegerType *MapTy = TableMask->getType(); 6044 Value *MaskIndex = 6045 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6046 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6047 Value *LoBit = Builder.CreateTrunc( 6048 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6049 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6050 if (DTU) { 6051 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6052 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6053 } 6054 Builder.SetInsertPoint(LookupBB); 6055 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6056 } 6057 6058 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6059 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6060 // do not delete PHINodes here. 6061 SI->getDefaultDest()->removePredecessor(BB, 6062 /*KeepOneInputPHIs=*/true); 6063 if (DTU) 6064 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6065 } 6066 6067 bool ReturnedEarly = false; 6068 for (PHINode *PHI : PHIs) { 6069 const ResultListTy &ResultList = ResultLists[PHI]; 6070 6071 // If using a bitmask, use any value to fill the lookup table holes. 6072 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6073 StringRef FuncName = Fn->getName(); 6074 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6075 FuncName); 6076 6077 Value *Result = Table.BuildLookup(TableIndex, Builder); 6078 6079 // If the result is used to return immediately from the function, we want to 6080 // do that right here. 6081 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 6082 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 6083 Builder.CreateRet(Result); 6084 ReturnedEarly = true; 6085 break; 6086 } 6087 6088 // Do a small peephole optimization: re-use the switch table compare if 6089 // possible. 6090 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6091 BasicBlock *PhiBlock = PHI->getParent(); 6092 // Search for compare instructions which use the phi. 6093 for (auto *User : PHI->users()) { 6094 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6095 } 6096 } 6097 6098 PHI->addIncoming(Result, LookupBB); 6099 } 6100 6101 if (!ReturnedEarly) { 6102 Builder.CreateBr(CommonDest); 6103 if (DTU) 6104 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6105 } 6106 6107 // Remove the switch. 6108 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6109 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6110 BasicBlock *Succ = SI->getSuccessor(i); 6111 6112 if (Succ == SI->getDefaultDest()) 6113 continue; 6114 Succ->removePredecessor(BB); 6115 RemovedSuccessors.insert(Succ); 6116 } 6117 SI->eraseFromParent(); 6118 6119 if (DTU) { 6120 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6121 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6122 DTU->applyUpdates(Updates); 6123 } 6124 6125 ++NumLookupTables; 6126 if (NeedMask) 6127 ++NumLookupTablesHoles; 6128 return true; 6129 } 6130 6131 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6132 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6133 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6134 uint64_t Range = Diff + 1; 6135 uint64_t NumCases = Values.size(); 6136 // 40% is the default density for building a jump table in optsize/minsize mode. 6137 uint64_t MinDensity = 40; 6138 6139 return NumCases * 100 >= Range * MinDensity; 6140 } 6141 6142 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6143 /// of cases. 6144 /// 6145 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6146 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6147 /// 6148 /// This converts a sparse switch into a dense switch which allows better 6149 /// lowering and could also allow transforming into a lookup table. 6150 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6151 const DataLayout &DL, 6152 const TargetTransformInfo &TTI) { 6153 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6154 if (CondTy->getIntegerBitWidth() > 64 || 6155 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6156 return false; 6157 // Only bother with this optimization if there are more than 3 switch cases; 6158 // SDAG will only bother creating jump tables for 4 or more cases. 6159 if (SI->getNumCases() < 4) 6160 return false; 6161 6162 // This transform is agnostic to the signedness of the input or case values. We 6163 // can treat the case values as signed or unsigned. We can optimize more common 6164 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6165 // as signed. 6166 SmallVector<int64_t,4> Values; 6167 for (auto &C : SI->cases()) 6168 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6169 llvm::sort(Values); 6170 6171 // If the switch is already dense, there's nothing useful to do here. 6172 if (isSwitchDense(Values)) 6173 return false; 6174 6175 // First, transform the values such that they start at zero and ascend. 6176 int64_t Base = Values[0]; 6177 for (auto &V : Values) 6178 V -= (uint64_t)(Base); 6179 6180 // Now we have signed numbers that have been shifted so that, given enough 6181 // precision, there are no negative values. Since the rest of the transform 6182 // is bitwise only, we switch now to an unsigned representation. 6183 6184 // This transform can be done speculatively because it is so cheap - it 6185 // results in a single rotate operation being inserted. 6186 // FIXME: It's possible that optimizing a switch on powers of two might also 6187 // be beneficial - flag values are often powers of two and we could use a CLZ 6188 // as the key function. 6189 6190 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6191 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6192 // less than 64. 6193 unsigned Shift = 64; 6194 for (auto &V : Values) 6195 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6196 assert(Shift < 64); 6197 if (Shift > 0) 6198 for (auto &V : Values) 6199 V = (int64_t)((uint64_t)V >> Shift); 6200 6201 if (!isSwitchDense(Values)) 6202 // Transform didn't create a dense switch. 6203 return false; 6204 6205 // The obvious transform is to shift the switch condition right and emit a 6206 // check that the condition actually cleanly divided by GCD, i.e. 6207 // C & (1 << Shift - 1) == 0 6208 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6209 // 6210 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6211 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6212 // are nonzero then the switch condition will be very large and will hit the 6213 // default case. 6214 6215 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6216 Builder.SetInsertPoint(SI); 6217 auto *ShiftC = ConstantInt::get(Ty, Shift); 6218 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6219 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6220 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6221 auto *Rot = Builder.CreateOr(LShr, Shl); 6222 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6223 6224 for (auto Case : SI->cases()) { 6225 auto *Orig = Case.getCaseValue(); 6226 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6227 Case.setValue( 6228 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6229 } 6230 return true; 6231 } 6232 6233 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6234 BasicBlock *BB = SI->getParent(); 6235 6236 if (isValueEqualityComparison(SI)) { 6237 // If we only have one predecessor, and if it is a branch on this value, 6238 // see if that predecessor totally determines the outcome of this switch. 6239 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6240 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6241 return requestResimplify(); 6242 6243 Value *Cond = SI->getCondition(); 6244 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6245 if (SimplifySwitchOnSelect(SI, Select)) 6246 return requestResimplify(); 6247 6248 // If the block only contains the switch, see if we can fold the block 6249 // away into any preds. 6250 if (SI == &*BB->instructionsWithoutDebug().begin()) 6251 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6252 return requestResimplify(); 6253 } 6254 6255 // Try to transform the switch into an icmp and a branch. 6256 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6257 return requestResimplify(); 6258 6259 // Remove unreachable cases. 6260 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6261 return requestResimplify(); 6262 6263 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6264 return requestResimplify(); 6265 6266 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6267 return requestResimplify(); 6268 6269 // The conversion from switch to lookup tables results in difficult-to-analyze 6270 // code and makes pruning branches much harder. This is a problem if the 6271 // switch expression itself can still be restricted as a result of inlining or 6272 // CVP. Therefore, only apply this transformation during late stages of the 6273 // optimisation pipeline. 6274 if (Options.ConvertSwitchToLookupTable && 6275 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6276 return requestResimplify(); 6277 6278 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6279 return requestResimplify(); 6280 6281 return false; 6282 } 6283 6284 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6285 BasicBlock *BB = IBI->getParent(); 6286 bool Changed = false; 6287 6288 // Eliminate redundant destinations. 6289 SmallPtrSet<Value *, 8> Succs; 6290 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6291 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6292 BasicBlock *Dest = IBI->getDestination(i); 6293 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6294 if (!Dest->hasAddressTaken()) 6295 RemovedSuccs.insert(Dest); 6296 Dest->removePredecessor(BB); 6297 IBI->removeDestination(i); 6298 --i; 6299 --e; 6300 Changed = true; 6301 } 6302 } 6303 6304 if (DTU) { 6305 std::vector<DominatorTree::UpdateType> Updates; 6306 Updates.reserve(RemovedSuccs.size()); 6307 for (auto *RemovedSucc : RemovedSuccs) 6308 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6309 DTU->applyUpdates(Updates); 6310 } 6311 6312 if (IBI->getNumDestinations() == 0) { 6313 // If the indirectbr has no successors, change it to unreachable. 6314 new UnreachableInst(IBI->getContext(), IBI); 6315 EraseTerminatorAndDCECond(IBI); 6316 return true; 6317 } 6318 6319 if (IBI->getNumDestinations() == 1) { 6320 // If the indirectbr has one successor, change it to a direct branch. 6321 BranchInst::Create(IBI->getDestination(0), IBI); 6322 EraseTerminatorAndDCECond(IBI); 6323 return true; 6324 } 6325 6326 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6327 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6328 return requestResimplify(); 6329 } 6330 return Changed; 6331 } 6332 6333 /// Given an block with only a single landing pad and a unconditional branch 6334 /// try to find another basic block which this one can be merged with. This 6335 /// handles cases where we have multiple invokes with unique landing pads, but 6336 /// a shared handler. 6337 /// 6338 /// We specifically choose to not worry about merging non-empty blocks 6339 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6340 /// practice, the optimizer produces empty landing pad blocks quite frequently 6341 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6342 /// sinking in this file) 6343 /// 6344 /// This is primarily a code size optimization. We need to avoid performing 6345 /// any transform which might inhibit optimization (such as our ability to 6346 /// specialize a particular handler via tail commoning). We do this by not 6347 /// merging any blocks which require us to introduce a phi. Since the same 6348 /// values are flowing through both blocks, we don't lose any ability to 6349 /// specialize. If anything, we make such specialization more likely. 6350 /// 6351 /// TODO - This transformation could remove entries from a phi in the target 6352 /// block when the inputs in the phi are the same for the two blocks being 6353 /// merged. In some cases, this could result in removal of the PHI entirely. 6354 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6355 BasicBlock *BB, DomTreeUpdater *DTU) { 6356 auto Succ = BB->getUniqueSuccessor(); 6357 assert(Succ); 6358 // If there's a phi in the successor block, we'd likely have to introduce 6359 // a phi into the merged landing pad block. 6360 if (isa<PHINode>(*Succ->begin())) 6361 return false; 6362 6363 for (BasicBlock *OtherPred : predecessors(Succ)) { 6364 if (BB == OtherPred) 6365 continue; 6366 BasicBlock::iterator I = OtherPred->begin(); 6367 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6368 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6369 continue; 6370 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6371 ; 6372 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6373 if (!BI2 || !BI2->isIdenticalTo(BI)) 6374 continue; 6375 6376 std::vector<DominatorTree::UpdateType> Updates; 6377 6378 // We've found an identical block. Update our predecessors to take that 6379 // path instead and make ourselves dead. 6380 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6381 for (BasicBlock *Pred : Preds) { 6382 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6383 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6384 "unexpected successor"); 6385 II->setUnwindDest(OtherPred); 6386 if (DTU) { 6387 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6388 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6389 } 6390 } 6391 6392 // The debug info in OtherPred doesn't cover the merged control flow that 6393 // used to go through BB. We need to delete it or update it. 6394 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6395 Instruction &Inst = *I; 6396 I++; 6397 if (isa<DbgInfoIntrinsic>(Inst)) 6398 Inst.eraseFromParent(); 6399 } 6400 6401 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6402 for (BasicBlock *Succ : Succs) { 6403 Succ->removePredecessor(BB); 6404 if (DTU) 6405 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6406 } 6407 6408 IRBuilder<> Builder(BI); 6409 Builder.CreateUnreachable(); 6410 BI->eraseFromParent(); 6411 if (DTU) 6412 DTU->applyUpdates(Updates); 6413 return true; 6414 } 6415 return false; 6416 } 6417 6418 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6419 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6420 : simplifyCondBranch(Branch, Builder); 6421 } 6422 6423 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6424 IRBuilder<> &Builder) { 6425 BasicBlock *BB = BI->getParent(); 6426 BasicBlock *Succ = BI->getSuccessor(0); 6427 6428 // If the Terminator is the only non-phi instruction, simplify the block. 6429 // If LoopHeader is provided, check if the block or its successor is a loop 6430 // header. (This is for early invocations before loop simplify and 6431 // vectorization to keep canonical loop forms for nested loops. These blocks 6432 // can be eliminated when the pass is invoked later in the back-end.) 6433 // Note that if BB has only one predecessor then we do not introduce new 6434 // backedge, so we can eliminate BB. 6435 bool NeedCanonicalLoop = 6436 Options.NeedCanonicalLoop && 6437 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6438 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6439 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6440 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6441 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6442 return true; 6443 6444 // If the only instruction in the block is a seteq/setne comparison against a 6445 // constant, try to simplify the block. 6446 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6447 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6448 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6449 ; 6450 if (I->isTerminator() && 6451 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6452 return true; 6453 } 6454 6455 // See if we can merge an empty landing pad block with another which is 6456 // equivalent. 6457 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6458 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6459 ; 6460 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6461 return true; 6462 } 6463 6464 // If this basic block is ONLY a compare and a branch, and if a predecessor 6465 // branches to us and our successor, fold the comparison into the 6466 // predecessor and use logical operations to update the incoming value 6467 // for PHI nodes in common successor. 6468 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6469 Options.BonusInstThreshold)) 6470 return requestResimplify(); 6471 return false; 6472 } 6473 6474 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6475 BasicBlock *PredPred = nullptr; 6476 for (auto *P : predecessors(BB)) { 6477 BasicBlock *PPred = P->getSinglePredecessor(); 6478 if (!PPred || (PredPred && PredPred != PPred)) 6479 return nullptr; 6480 PredPred = PPred; 6481 } 6482 return PredPred; 6483 } 6484 6485 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6486 BasicBlock *BB = BI->getParent(); 6487 if (!Options.SimplifyCondBranch) 6488 return false; 6489 6490 // Conditional branch 6491 if (isValueEqualityComparison(BI)) { 6492 // If we only have one predecessor, and if it is a branch on this value, 6493 // see if that predecessor totally determines the outcome of this 6494 // switch. 6495 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6496 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6497 return requestResimplify(); 6498 6499 // This block must be empty, except for the setcond inst, if it exists. 6500 // Ignore dbg and pseudo intrinsics. 6501 auto I = BB->instructionsWithoutDebug(true).begin(); 6502 if (&*I == BI) { 6503 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6504 return requestResimplify(); 6505 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6506 ++I; 6507 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6508 return requestResimplify(); 6509 } 6510 } 6511 6512 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6513 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6514 return true; 6515 6516 // If this basic block has dominating predecessor blocks and the dominating 6517 // blocks' conditions imply BI's condition, we know the direction of BI. 6518 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6519 if (Imp) { 6520 // Turn this into a branch on constant. 6521 auto *OldCond = BI->getCondition(); 6522 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6523 : ConstantInt::getFalse(BB->getContext()); 6524 BI->setCondition(TorF); 6525 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6526 return requestResimplify(); 6527 } 6528 6529 // If this basic block is ONLY a compare and a branch, and if a predecessor 6530 // branches to us and one of our successors, fold the comparison into the 6531 // predecessor and use logical operations to pick the right destination. 6532 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6533 Options.BonusInstThreshold)) 6534 return requestResimplify(); 6535 6536 // We have a conditional branch to two blocks that are only reachable 6537 // from BI. We know that the condbr dominates the two blocks, so see if 6538 // there is any identical code in the "then" and "else" blocks. If so, we 6539 // can hoist it up to the branching block. 6540 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6541 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6542 if (HoistCommon && 6543 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6544 return requestResimplify(); 6545 } else { 6546 // If Successor #1 has multiple preds, we may be able to conditionally 6547 // execute Successor #0 if it branches to Successor #1. 6548 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6549 if (Succ0TI->getNumSuccessors() == 1 && 6550 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6551 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6552 return requestResimplify(); 6553 } 6554 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6555 // If Successor #0 has multiple preds, we may be able to conditionally 6556 // execute Successor #1 if it branches to Successor #0. 6557 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6558 if (Succ1TI->getNumSuccessors() == 1 && 6559 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6560 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6561 return requestResimplify(); 6562 } 6563 6564 // If this is a branch on a phi node in the current block, thread control 6565 // through this block if any PHI node entries are constants. 6566 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6567 if (PN->getParent() == BI->getParent()) 6568 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6569 return requestResimplify(); 6570 6571 // Scan predecessor blocks for conditional branches. 6572 for (BasicBlock *Pred : predecessors(BB)) 6573 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6574 if (PBI != BI && PBI->isConditional()) 6575 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6576 return requestResimplify(); 6577 6578 // Look for diamond patterns. 6579 if (MergeCondStores) 6580 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6581 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6582 if (PBI != BI && PBI->isConditional()) 6583 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6584 return requestResimplify(); 6585 6586 return false; 6587 } 6588 6589 /// Check if passing a value to an instruction will cause undefined behavior. 6590 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6591 Constant *C = dyn_cast<Constant>(V); 6592 if (!C) 6593 return false; 6594 6595 if (I->use_empty()) 6596 return false; 6597 6598 if (C->isNullValue() || isa<UndefValue>(C)) { 6599 // Only look at the first use, avoid hurting compile time with long uselists 6600 User *Use = *I->user_begin(); 6601 6602 // Now make sure that there are no instructions in between that can alter 6603 // control flow (eg. calls) 6604 for (BasicBlock::iterator 6605 i = ++BasicBlock::iterator(I), 6606 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6607 i != UI; ++i) { 6608 if (i == I->getParent()->end()) 6609 return false; 6610 if (!isGuaranteedToTransferExecutionToSuccessor(&*i)) 6611 return false; 6612 } 6613 6614 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6615 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6616 if (GEP->getPointerOperand() == I) { 6617 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6618 PtrValueMayBeModified = true; 6619 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6620 } 6621 6622 // Look through bitcasts. 6623 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6624 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6625 6626 // Load from null is undefined. 6627 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6628 if (!LI->isVolatile()) 6629 return !NullPointerIsDefined(LI->getFunction(), 6630 LI->getPointerAddressSpace()); 6631 6632 // Store to null is undefined. 6633 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6634 if (!SI->isVolatile()) 6635 return (!NullPointerIsDefined(SI->getFunction(), 6636 SI->getPointerAddressSpace())) && 6637 SI->getPointerOperand() == I; 6638 6639 if (auto *CB = dyn_cast<CallBase>(Use)) { 6640 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6641 return false; 6642 // A call to null is undefined. 6643 if (CB->getCalledOperand() == I) 6644 return true; 6645 6646 if (C->isNullValue()) { 6647 for (const llvm::Use &Arg : CB->args()) 6648 if (Arg == I) { 6649 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6650 if (CB->isPassingUndefUB(ArgIdx) && 6651 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6652 // Passing null to a nonnnull+noundef argument is undefined. 6653 return !PtrValueMayBeModified; 6654 } 6655 } 6656 } else if (isa<UndefValue>(C)) { 6657 // Passing undef to a noundef argument is undefined. 6658 for (const llvm::Use &Arg : CB->args()) 6659 if (Arg == I) { 6660 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6661 if (CB->isPassingUndefUB(ArgIdx)) { 6662 // Passing undef to a noundef argument is undefined. 6663 return true; 6664 } 6665 } 6666 } 6667 } 6668 } 6669 return false; 6670 } 6671 6672 /// If BB has an incoming value that will always trigger undefined behavior 6673 /// (eg. null pointer dereference), remove the branch leading here. 6674 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6675 DomTreeUpdater *DTU) { 6676 for (PHINode &PHI : BB->phis()) 6677 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6678 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6679 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6680 Instruction *T = Predecessor->getTerminator(); 6681 IRBuilder<> Builder(T); 6682 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6683 BB->removePredecessor(Predecessor); 6684 // Turn uncoditional branches into unreachables and remove the dead 6685 // destination from conditional branches. 6686 if (BI->isUnconditional()) 6687 Builder.CreateUnreachable(); 6688 else 6689 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6690 : BI->getSuccessor(0)); 6691 BI->eraseFromParent(); 6692 if (DTU) 6693 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6694 return true; 6695 } 6696 // TODO: SwitchInst. 6697 } 6698 6699 return false; 6700 } 6701 6702 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6703 bool Changed = false; 6704 6705 assert(BB && BB->getParent() && "Block not embedded in function!"); 6706 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6707 6708 // Remove basic blocks that have no predecessors (except the entry block)... 6709 // or that just have themself as a predecessor. These are unreachable. 6710 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6711 BB->getSinglePredecessor() == BB) { 6712 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6713 DeleteDeadBlock(BB, DTU); 6714 return true; 6715 } 6716 6717 // Check to see if we can constant propagate this terminator instruction 6718 // away... 6719 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6720 /*TLI=*/nullptr, DTU); 6721 6722 // Check for and eliminate duplicate PHI nodes in this block. 6723 Changed |= EliminateDuplicatePHINodes(BB); 6724 6725 // Check for and remove branches that will always cause undefined behavior. 6726 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6727 6728 // Merge basic blocks into their predecessor if there is only one distinct 6729 // pred, and if there is only one distinct successor of the predecessor, and 6730 // if there are no PHI nodes. 6731 if (MergeBlockIntoPredecessor(BB, DTU)) 6732 return true; 6733 6734 if (SinkCommon && Options.SinkCommonInsts) 6735 if (SinkCommonCodeFromPredecessors(BB, DTU)) { 6736 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 6737 // so we may now how duplicate PHI's. 6738 // Let's rerun EliminateDuplicatePHINodes() first, 6739 // before FoldTwoEntryPHINode() potentially converts them into select's, 6740 // after which we'd need a whole EarlyCSE pass run to cleanup them. 6741 return true; 6742 } 6743 6744 IRBuilder<> Builder(BB); 6745 6746 if (Options.FoldTwoEntryPHINode) { 6747 // If there is a trivial two-entry PHI node in this basic block, and we can 6748 // eliminate it, do so now. 6749 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6750 if (PN->getNumIncomingValues() == 2) 6751 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6752 } 6753 6754 Instruction *Terminator = BB->getTerminator(); 6755 Builder.SetInsertPoint(Terminator); 6756 switch (Terminator->getOpcode()) { 6757 case Instruction::Br: 6758 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6759 break; 6760 case Instruction::Ret: 6761 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6762 break; 6763 case Instruction::Resume: 6764 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6765 break; 6766 case Instruction::CleanupRet: 6767 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6768 break; 6769 case Instruction::Switch: 6770 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6771 break; 6772 case Instruction::Unreachable: 6773 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6774 break; 6775 case Instruction::IndirectBr: 6776 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6777 break; 6778 } 6779 6780 return Changed; 6781 } 6782 6783 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6784 bool Changed = simplifyOnceImpl(BB); 6785 6786 return Changed; 6787 } 6788 6789 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6790 bool Changed = false; 6791 6792 // Repeated simplify BB as long as resimplification is requested. 6793 do { 6794 Resimplify = false; 6795 6796 // Perform one round of simplifcation. Resimplify flag will be set if 6797 // another iteration is requested. 6798 Changed |= simplifyOnce(BB); 6799 } while (Resimplify); 6800 6801 return Changed; 6802 } 6803 6804 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6805 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6806 ArrayRef<WeakVH> LoopHeaders) { 6807 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6808 Options) 6809 .run(BB); 6810 } 6811