1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/PseudoProbe.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/SSAUpdater.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
97     cl::init(false),
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool> DupRet(
117     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
118     cl::desc("Duplicate return instructions into unconditional branches"));
119 
120 static cl::opt<bool>
121     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
122                 cl::desc("Hoist common instructions up to the parent block"));
123 
124 static cl::opt<bool>
125     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
126                cl::desc("Sink common instructions down to the end block"));
127 
128 static cl::opt<bool> HoistCondStores(
129     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
130     cl::desc("Hoist conditional stores if an unconditional store precedes"));
131 
132 static cl::opt<bool> MergeCondStores(
133     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
134     cl::desc("Hoist conditional stores even if an unconditional store does not "
135              "precede - hoist multiple conditional stores into a single "
136              "predicated store"));
137 
138 static cl::opt<bool> MergeCondStoresAggressively(
139     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
140     cl::desc("When merging conditional stores, do so even if the resultant "
141              "basic blocks are unlikely to be if-converted as a result"));
142 
143 static cl::opt<bool> SpeculateOneExpensiveInst(
144     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
145     cl::desc("Allow exactly one expensive instruction to be speculatively "
146              "executed"));
147 
148 static cl::opt<unsigned> MaxSpeculationDepth(
149     "max-speculation-depth", cl::Hidden, cl::init(10),
150     cl::desc("Limit maximum recursion depth when calculating costs of "
151              "speculatively executed instructions"));
152 
153 static cl::opt<int>
154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
155                   cl::desc("Max size of a block which is still considered "
156                            "small enough to thread through"));
157 
158 // Two is chosen to allow one negation and a logical combine.
159 static cl::opt<unsigned>
160     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
161                         cl::init(2),
162                         cl::desc("Maximum cost of combining conditions when "
163                                  "folding branches"));
164 
165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
166 STATISTIC(NumLinearMaps,
167           "Number of switch instructions turned into linear mapping");
168 STATISTIC(NumLookupTables,
169           "Number of switch instructions turned into lookup tables");
170 STATISTIC(
171     NumLookupTablesHoles,
172     "Number of switch instructions turned into lookup tables (holes checked)");
173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
174 STATISTIC(NumFoldValueComparisonIntoPredecessors,
175           "Number of value comparisons folded into predecessor basic blocks");
176 STATISTIC(NumFoldBranchToCommonDest,
177           "Number of branches folded into predecessor basic block");
178 STATISTIC(
179     NumHoistCommonCode,
180     "Number of common instruction 'blocks' hoisted up to the begin block");
181 STATISTIC(NumHoistCommonInstrs,
182           "Number of common instructions hoisted up to the begin block");
183 STATISTIC(NumSinkCommonCode,
184           "Number of common instruction 'blocks' sunk down to the end block");
185 STATISTIC(NumSinkCommonInstrs,
186           "Number of common instructions sunk down to the end block");
187 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
188 STATISTIC(NumInvokes,
189           "Number of invokes with empty resume blocks simplified into calls");
190 
191 namespace {
192 
193 // The first field contains the value that the switch produces when a certain
194 // case group is selected, and the second field is a vector containing the
195 // cases composing the case group.
196 using SwitchCaseResultVectorTy =
197     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
198 
199 // The first field contains the phi node that generates a result of the switch
200 // and the second field contains the value generated for a certain case in the
201 // switch for that PHI.
202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
203 
204 /// ValueEqualityComparisonCase - Represents a case of a switch.
205 struct ValueEqualityComparisonCase {
206   ConstantInt *Value;
207   BasicBlock *Dest;
208 
209   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
210       : Value(Value), Dest(Dest) {}
211 
212   bool operator<(ValueEqualityComparisonCase RHS) const {
213     // Comparing pointers is ok as we only rely on the order for uniquing.
214     return Value < RHS.Value;
215   }
216 
217   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
218 };
219 
220 class SimplifyCFGOpt {
221   const TargetTransformInfo &TTI;
222   DomTreeUpdater *DTU;
223   const DataLayout &DL;
224   ArrayRef<WeakVH> LoopHeaders;
225   const SimplifyCFGOptions &Options;
226   bool Resimplify;
227 
228   Value *isValueEqualityComparison(Instruction *TI);
229   BasicBlock *GetValueEqualityComparisonCases(
230       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
231   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
232                                                      BasicBlock *Pred,
233                                                      IRBuilder<> &Builder);
234   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
235                                                     Instruction *PTI,
236                                                     IRBuilder<> &Builder);
237   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
238                                            IRBuilder<> &Builder);
239 
240   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
241   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
242   bool simplifySingleResume(ResumeInst *RI);
243   bool simplifyCommonResume(ResumeInst *RI);
244   bool simplifyCleanupReturn(CleanupReturnInst *RI);
245   bool simplifyUnreachable(UnreachableInst *UI);
246   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
247   bool simplifyIndirectBr(IndirectBrInst *IBI);
248   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
249   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
250   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
251   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
252 
253   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
254                                              IRBuilder<> &Builder);
255 
256   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
257                              bool EqTermsOnly);
258   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
259                               const TargetTransformInfo &TTI);
260   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
261                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
262                                   uint32_t TrueWeight, uint32_t FalseWeight);
263   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
264                                  const DataLayout &DL);
265   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
266   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
267   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
268 
269 public:
270   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
271                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
272                  const SimplifyCFGOptions &Opts)
273       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
274     assert((!DTU || !DTU->hasPostDomTree()) &&
275            "SimplifyCFG is not yet capable of maintaining validity of a "
276            "PostDomTree, so don't ask for it.");
277   }
278 
279   bool simplifyOnce(BasicBlock *BB);
280   bool simplifyOnceImpl(BasicBlock *BB);
281   bool run(BasicBlock *BB);
282 
283   // Helper to set Resimplify and return change indication.
284   bool requestResimplify() {
285     Resimplify = true;
286     return true;
287   }
288 };
289 
290 } // end anonymous namespace
291 
292 /// Return true if it is safe to merge these two
293 /// terminator instructions together.
294 static bool
295 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
296                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
297   if (SI1 == SI2)
298     return false; // Can't merge with self!
299 
300   // It is not safe to merge these two switch instructions if they have a common
301   // successor, and if that successor has a PHI node, and if *that* PHI node has
302   // conflicting incoming values from the two switch blocks.
303   BasicBlock *SI1BB = SI1->getParent();
304   BasicBlock *SI2BB = SI2->getParent();
305 
306   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
307   bool Fail = false;
308   for (BasicBlock *Succ : successors(SI2BB))
309     if (SI1Succs.count(Succ))
310       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
311         PHINode *PN = cast<PHINode>(BBI);
312         if (PN->getIncomingValueForBlock(SI1BB) !=
313             PN->getIncomingValueForBlock(SI2BB)) {
314           if (FailBlocks)
315             FailBlocks->insert(Succ);
316           Fail = true;
317         }
318       }
319 
320   return !Fail;
321 }
322 
323 /// Update PHI nodes in Succ to indicate that there will now be entries in it
324 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
325 /// will be the same as those coming in from ExistPred, an existing predecessor
326 /// of Succ.
327 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
328                                   BasicBlock *ExistPred,
329                                   MemorySSAUpdater *MSSAU = nullptr) {
330   for (PHINode &PN : Succ->phis())
331     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
332   if (MSSAU)
333     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
334       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
335 }
336 
337 /// Compute an abstract "cost" of speculating the given instruction,
338 /// which is assumed to be safe to speculate. TCC_Free means cheap,
339 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
340 /// expensive.
341 static InstructionCost computeSpeculationCost(const User *I,
342                                               const TargetTransformInfo &TTI) {
343   assert(isSafeToSpeculativelyExecute(I) &&
344          "Instruction is not safe to speculatively execute!");
345   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
346 }
347 
348 /// If we have a merge point of an "if condition" as accepted above,
349 /// return true if the specified value dominates the block.  We
350 /// don't handle the true generality of domination here, just a special case
351 /// which works well enough for us.
352 ///
353 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
354 /// see if V (which must be an instruction) and its recursive operands
355 /// that do not dominate BB have a combined cost lower than Budget and
356 /// are non-trapping.  If both are true, the instruction is inserted into the
357 /// set and true is returned.
358 ///
359 /// The cost for most non-trapping instructions is defined as 1 except for
360 /// Select whose cost is 2.
361 ///
362 /// After this function returns, Cost is increased by the cost of
363 /// V plus its non-dominating operands.  If that cost is greater than
364 /// Budget, false is returned and Cost is undefined.
365 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
366                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
367                                 InstructionCost &Cost,
368                                 InstructionCost Budget,
369                                 const TargetTransformInfo &TTI,
370                                 unsigned Depth = 0) {
371   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
372   // so limit the recursion depth.
373   // TODO: While this recursion limit does prevent pathological behavior, it
374   // would be better to track visited instructions to avoid cycles.
375   if (Depth == MaxSpeculationDepth)
376     return false;
377 
378   Instruction *I = dyn_cast<Instruction>(V);
379   if (!I) {
380     // Non-instructions all dominate instructions, but not all constantexprs
381     // can be executed unconditionally.
382     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
383       if (C->canTrap())
384         return false;
385     return true;
386   }
387   BasicBlock *PBB = I->getParent();
388 
389   // We don't want to allow weird loops that might have the "if condition" in
390   // the bottom of this block.
391   if (PBB == BB)
392     return false;
393 
394   // If this instruction is defined in a block that contains an unconditional
395   // branch to BB, then it must be in the 'conditional' part of the "if
396   // statement".  If not, it definitely dominates the region.
397   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
398   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
399     return true;
400 
401   // If we have seen this instruction before, don't count it again.
402   if (AggressiveInsts.count(I))
403     return true;
404 
405   // Okay, it looks like the instruction IS in the "condition".  Check to
406   // see if it's a cheap instruction to unconditionally compute, and if it
407   // only uses stuff defined outside of the condition.  If so, hoist it out.
408   if (!isSafeToSpeculativelyExecute(I))
409     return false;
410 
411   Cost += computeSpeculationCost(I, TTI);
412 
413   // Allow exactly one instruction to be speculated regardless of its cost
414   // (as long as it is safe to do so).
415   // This is intended to flatten the CFG even if the instruction is a division
416   // or other expensive operation. The speculation of an expensive instruction
417   // is expected to be undone in CodeGenPrepare if the speculation has not
418   // enabled further IR optimizations.
419   if (Cost > Budget &&
420       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
421        !Cost.isValid()))
422     return false;
423 
424   // Okay, we can only really hoist these out if their operands do
425   // not take us over the cost threshold.
426   for (Use &Op : I->operands())
427     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
428                              Depth + 1))
429       return false;
430   // Okay, it's safe to do this!  Remember this instruction.
431   AggressiveInsts.insert(I);
432   return true;
433 }
434 
435 /// Extract ConstantInt from value, looking through IntToPtr
436 /// and PointerNullValue. Return NULL if value is not a constant int.
437 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
438   // Normal constant int.
439   ConstantInt *CI = dyn_cast<ConstantInt>(V);
440   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
441     return CI;
442 
443   // This is some kind of pointer constant. Turn it into a pointer-sized
444   // ConstantInt if possible.
445   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
446 
447   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
448   if (isa<ConstantPointerNull>(V))
449     return ConstantInt::get(PtrTy, 0);
450 
451   // IntToPtr const int.
452   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
453     if (CE->getOpcode() == Instruction::IntToPtr)
454       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
455         // The constant is very likely to have the right type already.
456         if (CI->getType() == PtrTy)
457           return CI;
458         else
459           return cast<ConstantInt>(
460               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
461       }
462   return nullptr;
463 }
464 
465 namespace {
466 
467 /// Given a chain of or (||) or and (&&) comparison of a value against a
468 /// constant, this will try to recover the information required for a switch
469 /// structure.
470 /// It will depth-first traverse the chain of comparison, seeking for patterns
471 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
472 /// representing the different cases for the switch.
473 /// Note that if the chain is composed of '||' it will build the set of elements
474 /// that matches the comparisons (i.e. any of this value validate the chain)
475 /// while for a chain of '&&' it will build the set elements that make the test
476 /// fail.
477 struct ConstantComparesGatherer {
478   const DataLayout &DL;
479 
480   /// Value found for the switch comparison
481   Value *CompValue = nullptr;
482 
483   /// Extra clause to be checked before the switch
484   Value *Extra = nullptr;
485 
486   /// Set of integers to match in switch
487   SmallVector<ConstantInt *, 8> Vals;
488 
489   /// Number of comparisons matched in the and/or chain
490   unsigned UsedICmps = 0;
491 
492   /// Construct and compute the result for the comparison instruction Cond
493   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
494     gather(Cond);
495   }
496 
497   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
498   ConstantComparesGatherer &
499   operator=(const ConstantComparesGatherer &) = delete;
500 
501 private:
502   /// Try to set the current value used for the comparison, it succeeds only if
503   /// it wasn't set before or if the new value is the same as the old one
504   bool setValueOnce(Value *NewVal) {
505     if (CompValue && CompValue != NewVal)
506       return false;
507     CompValue = NewVal;
508     return (CompValue != nullptr);
509   }
510 
511   /// Try to match Instruction "I" as a comparison against a constant and
512   /// populates the array Vals with the set of values that match (or do not
513   /// match depending on isEQ).
514   /// Return false on failure. On success, the Value the comparison matched
515   /// against is placed in CompValue.
516   /// If CompValue is already set, the function is expected to fail if a match
517   /// is found but the value compared to is different.
518   bool matchInstruction(Instruction *I, bool isEQ) {
519     // If this is an icmp against a constant, handle this as one of the cases.
520     ICmpInst *ICI;
521     ConstantInt *C;
522     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
523           (C = GetConstantInt(I->getOperand(1), DL)))) {
524       return false;
525     }
526 
527     Value *RHSVal;
528     const APInt *RHSC;
529 
530     // Pattern match a special case
531     // (x & ~2^z) == y --> x == y || x == y|2^z
532     // This undoes a transformation done by instcombine to fuse 2 compares.
533     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
534       // It's a little bit hard to see why the following transformations are
535       // correct. Here is a CVC3 program to verify them for 64-bit values:
536 
537       /*
538          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
539          x    : BITVECTOR(64);
540          y    : BITVECTOR(64);
541          z    : BITVECTOR(64);
542          mask : BITVECTOR(64) = BVSHL(ONE, z);
543          QUERY( (y & ~mask = y) =>
544                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
545          );
546          QUERY( (y |  mask = y) =>
547                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
548          );
549       */
550 
551       // Please note that each pattern must be a dual implication (<--> or
552       // iff). One directional implication can create spurious matches. If the
553       // implication is only one-way, an unsatisfiable condition on the left
554       // side can imply a satisfiable condition on the right side. Dual
555       // implication ensures that satisfiable conditions are transformed to
556       // other satisfiable conditions and unsatisfiable conditions are
557       // transformed to other unsatisfiable conditions.
558 
559       // Here is a concrete example of a unsatisfiable condition on the left
560       // implying a satisfiable condition on the right:
561       //
562       // mask = (1 << z)
563       // (x & ~mask) == y  --> (x == y || x == (y | mask))
564       //
565       // Substituting y = 3, z = 0 yields:
566       // (x & -2) == 3 --> (x == 3 || x == 2)
567 
568       // Pattern match a special case:
569       /*
570         QUERY( (y & ~mask = y) =>
571                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
572         );
573       */
574       if (match(ICI->getOperand(0),
575                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
576         APInt Mask = ~*RHSC;
577         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
578           // If we already have a value for the switch, it has to match!
579           if (!setValueOnce(RHSVal))
580             return false;
581 
582           Vals.push_back(C);
583           Vals.push_back(
584               ConstantInt::get(C->getContext(),
585                                C->getValue() | Mask));
586           UsedICmps++;
587           return true;
588         }
589       }
590 
591       // Pattern match a special case:
592       /*
593         QUERY( (y |  mask = y) =>
594                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
595         );
596       */
597       if (match(ICI->getOperand(0),
598                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
599         APInt Mask = *RHSC;
600         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
601           // If we already have a value for the switch, it has to match!
602           if (!setValueOnce(RHSVal))
603             return false;
604 
605           Vals.push_back(C);
606           Vals.push_back(ConstantInt::get(C->getContext(),
607                                           C->getValue() & ~Mask));
608           UsedICmps++;
609           return true;
610         }
611       }
612 
613       // If we already have a value for the switch, it has to match!
614       if (!setValueOnce(ICI->getOperand(0)))
615         return false;
616 
617       UsedICmps++;
618       Vals.push_back(C);
619       return ICI->getOperand(0);
620     }
621 
622     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
623     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
624         ICI->getPredicate(), C->getValue());
625 
626     // Shift the range if the compare is fed by an add. This is the range
627     // compare idiom as emitted by instcombine.
628     Value *CandidateVal = I->getOperand(0);
629     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
630       Span = Span.subtract(*RHSC);
631       CandidateVal = RHSVal;
632     }
633 
634     // If this is an and/!= check, then we are looking to build the set of
635     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
636     // x != 0 && x != 1.
637     if (!isEQ)
638       Span = Span.inverse();
639 
640     // If there are a ton of values, we don't want to make a ginormous switch.
641     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
642       return false;
643     }
644 
645     // If we already have a value for the switch, it has to match!
646     if (!setValueOnce(CandidateVal))
647       return false;
648 
649     // Add all values from the range to the set
650     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
651       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
652 
653     UsedICmps++;
654     return true;
655   }
656 
657   /// Given a potentially 'or'd or 'and'd together collection of icmp
658   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
659   /// the value being compared, and stick the list constants into the Vals
660   /// vector.
661   /// One "Extra" case is allowed to differ from the other.
662   void gather(Value *V) {
663     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
664 
665     // Keep a stack (SmallVector for efficiency) for depth-first traversal
666     SmallVector<Value *, 8> DFT;
667     SmallPtrSet<Value *, 8> Visited;
668 
669     // Initialize
670     Visited.insert(V);
671     DFT.push_back(V);
672 
673     while (!DFT.empty()) {
674       V = DFT.pop_back_val();
675 
676       if (Instruction *I = dyn_cast<Instruction>(V)) {
677         // If it is a || (or && depending on isEQ), process the operands.
678         Value *Op0, *Op1;
679         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
680                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
681           if (Visited.insert(Op1).second)
682             DFT.push_back(Op1);
683           if (Visited.insert(Op0).second)
684             DFT.push_back(Op0);
685 
686           continue;
687         }
688 
689         // Try to match the current instruction
690         if (matchInstruction(I, isEQ))
691           // Match succeed, continue the loop
692           continue;
693       }
694 
695       // One element of the sequence of || (or &&) could not be match as a
696       // comparison against the same value as the others.
697       // We allow only one "Extra" case to be checked before the switch
698       if (!Extra) {
699         Extra = V;
700         continue;
701       }
702       // Failed to parse a proper sequence, abort now
703       CompValue = nullptr;
704       break;
705     }
706   }
707 };
708 
709 } // end anonymous namespace
710 
711 static void EraseTerminatorAndDCECond(Instruction *TI,
712                                       MemorySSAUpdater *MSSAU = nullptr) {
713   Instruction *Cond = nullptr;
714   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
715     Cond = dyn_cast<Instruction>(SI->getCondition());
716   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
717     if (BI->isConditional())
718       Cond = dyn_cast<Instruction>(BI->getCondition());
719   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
720     Cond = dyn_cast<Instruction>(IBI->getAddress());
721   }
722 
723   TI->eraseFromParent();
724   if (Cond)
725     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
726 }
727 
728 /// Return true if the specified terminator checks
729 /// to see if a value is equal to constant integer value.
730 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
731   Value *CV = nullptr;
732   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
733     // Do not permit merging of large switch instructions into their
734     // predecessors unless there is only one predecessor.
735     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
736       CV = SI->getCondition();
737   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
738     if (BI->isConditional() && BI->getCondition()->hasOneUse())
739       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
740         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
741           CV = ICI->getOperand(0);
742       }
743 
744   // Unwrap any lossless ptrtoint cast.
745   if (CV) {
746     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
747       Value *Ptr = PTII->getPointerOperand();
748       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
749         CV = Ptr;
750     }
751   }
752   return CV;
753 }
754 
755 /// Given a value comparison instruction,
756 /// decode all of the 'cases' that it represents and return the 'default' block.
757 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
758     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
759   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
760     Cases.reserve(SI->getNumCases());
761     for (auto Case : SI->cases())
762       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
763                                                   Case.getCaseSuccessor()));
764     return SI->getDefaultDest();
765   }
766 
767   BranchInst *BI = cast<BranchInst>(TI);
768   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
769   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
770   Cases.push_back(ValueEqualityComparisonCase(
771       GetConstantInt(ICI->getOperand(1), DL), Succ));
772   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
773 }
774 
775 /// Given a vector of bb/value pairs, remove any entries
776 /// in the list that match the specified block.
777 static void
778 EliminateBlockCases(BasicBlock *BB,
779                     std::vector<ValueEqualityComparisonCase> &Cases) {
780   llvm::erase_value(Cases, BB);
781 }
782 
783 /// Return true if there are any keys in C1 that exist in C2 as well.
784 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
785                           std::vector<ValueEqualityComparisonCase> &C2) {
786   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
787 
788   // Make V1 be smaller than V2.
789   if (V1->size() > V2->size())
790     std::swap(V1, V2);
791 
792   if (V1->empty())
793     return false;
794   if (V1->size() == 1) {
795     // Just scan V2.
796     ConstantInt *TheVal = (*V1)[0].Value;
797     for (unsigned i = 0, e = V2->size(); i != e; ++i)
798       if (TheVal == (*V2)[i].Value)
799         return true;
800   }
801 
802   // Otherwise, just sort both lists and compare element by element.
803   array_pod_sort(V1->begin(), V1->end());
804   array_pod_sort(V2->begin(), V2->end());
805   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
806   while (i1 != e1 && i2 != e2) {
807     if ((*V1)[i1].Value == (*V2)[i2].Value)
808       return true;
809     if ((*V1)[i1].Value < (*V2)[i2].Value)
810       ++i1;
811     else
812       ++i2;
813   }
814   return false;
815 }
816 
817 // Set branch weights on SwitchInst. This sets the metadata if there is at
818 // least one non-zero weight.
819 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
820   // Check that there is at least one non-zero weight. Otherwise, pass
821   // nullptr to setMetadata which will erase the existing metadata.
822   MDNode *N = nullptr;
823   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
824     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
825   SI->setMetadata(LLVMContext::MD_prof, N);
826 }
827 
828 // Similar to the above, but for branch and select instructions that take
829 // exactly 2 weights.
830 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
831                              uint32_t FalseWeight) {
832   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
833   // Check that there is at least one non-zero weight. Otherwise, pass
834   // nullptr to setMetadata which will erase the existing metadata.
835   MDNode *N = nullptr;
836   if (TrueWeight || FalseWeight)
837     N = MDBuilder(I->getParent()->getContext())
838             .createBranchWeights(TrueWeight, FalseWeight);
839   I->setMetadata(LLVMContext::MD_prof, N);
840 }
841 
842 /// If TI is known to be a terminator instruction and its block is known to
843 /// only have a single predecessor block, check to see if that predecessor is
844 /// also a value comparison with the same value, and if that comparison
845 /// determines the outcome of this comparison. If so, simplify TI. This does a
846 /// very limited form of jump threading.
847 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
848     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
849   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
850   if (!PredVal)
851     return false; // Not a value comparison in predecessor.
852 
853   Value *ThisVal = isValueEqualityComparison(TI);
854   assert(ThisVal && "This isn't a value comparison!!");
855   if (ThisVal != PredVal)
856     return false; // Different predicates.
857 
858   // TODO: Preserve branch weight metadata, similarly to how
859   // FoldValueComparisonIntoPredecessors preserves it.
860 
861   // Find out information about when control will move from Pred to TI's block.
862   std::vector<ValueEqualityComparisonCase> PredCases;
863   BasicBlock *PredDef =
864       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
865   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
866 
867   // Find information about how control leaves this block.
868   std::vector<ValueEqualityComparisonCase> ThisCases;
869   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
870   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
871 
872   // If TI's block is the default block from Pred's comparison, potentially
873   // simplify TI based on this knowledge.
874   if (PredDef == TI->getParent()) {
875     // If we are here, we know that the value is none of those cases listed in
876     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
877     // can simplify TI.
878     if (!ValuesOverlap(PredCases, ThisCases))
879       return false;
880 
881     if (isa<BranchInst>(TI)) {
882       // Okay, one of the successors of this condbr is dead.  Convert it to a
883       // uncond br.
884       assert(ThisCases.size() == 1 && "Branch can only have one case!");
885       // Insert the new branch.
886       Instruction *NI = Builder.CreateBr(ThisDef);
887       (void)NI;
888 
889       // Remove PHI node entries for the dead edge.
890       ThisCases[0].Dest->removePredecessor(PredDef);
891 
892       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
893                         << "Through successor TI: " << *TI << "Leaving: " << *NI
894                         << "\n");
895 
896       EraseTerminatorAndDCECond(TI);
897 
898       if (DTU)
899         DTU->applyUpdates(
900             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
901 
902       return true;
903     }
904 
905     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
906     // Okay, TI has cases that are statically dead, prune them away.
907     SmallPtrSet<Constant *, 16> DeadCases;
908     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
909       DeadCases.insert(PredCases[i].Value);
910 
911     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
912                       << "Through successor TI: " << *TI);
913 
914     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
915     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
916       --i;
917       auto *Successor = i->getCaseSuccessor();
918       if (DTU)
919         ++NumPerSuccessorCases[Successor];
920       if (DeadCases.count(i->getCaseValue())) {
921         Successor->removePredecessor(PredDef);
922         SI.removeCase(i);
923         if (DTU)
924           --NumPerSuccessorCases[Successor];
925       }
926     }
927 
928     if (DTU) {
929       std::vector<DominatorTree::UpdateType> Updates;
930       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
931         if (I.second == 0)
932           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
933       DTU->applyUpdates(Updates);
934     }
935 
936     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
937     return true;
938   }
939 
940   // Otherwise, TI's block must correspond to some matched value.  Find out
941   // which value (or set of values) this is.
942   ConstantInt *TIV = nullptr;
943   BasicBlock *TIBB = TI->getParent();
944   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
945     if (PredCases[i].Dest == TIBB) {
946       if (TIV)
947         return false; // Cannot handle multiple values coming to this block.
948       TIV = PredCases[i].Value;
949     }
950   assert(TIV && "No edge from pred to succ?");
951 
952   // Okay, we found the one constant that our value can be if we get into TI's
953   // BB.  Find out which successor will unconditionally be branched to.
954   BasicBlock *TheRealDest = nullptr;
955   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
956     if (ThisCases[i].Value == TIV) {
957       TheRealDest = ThisCases[i].Dest;
958       break;
959     }
960 
961   // If not handled by any explicit cases, it is handled by the default case.
962   if (!TheRealDest)
963     TheRealDest = ThisDef;
964 
965   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
966 
967   // Remove PHI node entries for dead edges.
968   BasicBlock *CheckEdge = TheRealDest;
969   for (BasicBlock *Succ : successors(TIBB))
970     if (Succ != CheckEdge) {
971       if (Succ != TheRealDest)
972         RemovedSuccs.insert(Succ);
973       Succ->removePredecessor(TIBB);
974     } else
975       CheckEdge = nullptr;
976 
977   // Insert the new branch.
978   Instruction *NI = Builder.CreateBr(TheRealDest);
979   (void)NI;
980 
981   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
982                     << "Through successor TI: " << *TI << "Leaving: " << *NI
983                     << "\n");
984 
985   EraseTerminatorAndDCECond(TI);
986   if (DTU) {
987     SmallVector<DominatorTree::UpdateType, 2> Updates;
988     Updates.reserve(RemovedSuccs.size());
989     for (auto *RemovedSucc : RemovedSuccs)
990       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
991     DTU->applyUpdates(Updates);
992   }
993   return true;
994 }
995 
996 namespace {
997 
998 /// This class implements a stable ordering of constant
999 /// integers that does not depend on their address.  This is important for
1000 /// applications that sort ConstantInt's to ensure uniqueness.
1001 struct ConstantIntOrdering {
1002   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1003     return LHS->getValue().ult(RHS->getValue());
1004   }
1005 };
1006 
1007 } // end anonymous namespace
1008 
1009 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1010                                     ConstantInt *const *P2) {
1011   const ConstantInt *LHS = *P1;
1012   const ConstantInt *RHS = *P2;
1013   if (LHS == RHS)
1014     return 0;
1015   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1016 }
1017 
1018 static inline bool HasBranchWeights(const Instruction *I) {
1019   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1020   if (ProfMD && ProfMD->getOperand(0))
1021     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1022       return MDS->getString().equals("branch_weights");
1023 
1024   return false;
1025 }
1026 
1027 /// Get Weights of a given terminator, the default weight is at the front
1028 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1029 /// metadata.
1030 static void GetBranchWeights(Instruction *TI,
1031                              SmallVectorImpl<uint64_t> &Weights) {
1032   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1033   assert(MD);
1034   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1035     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1036     Weights.push_back(CI->getValue().getZExtValue());
1037   }
1038 
1039   // If TI is a conditional eq, the default case is the false case,
1040   // and the corresponding branch-weight data is at index 2. We swap the
1041   // default weight to be the first entry.
1042   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1043     assert(Weights.size() == 2);
1044     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1045     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1046       std::swap(Weights.front(), Weights.back());
1047   }
1048 }
1049 
1050 /// Keep halving the weights until all can fit in uint32_t.
1051 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1052   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1053   if (Max > UINT_MAX) {
1054     unsigned Offset = 32 - countLeadingZeros(Max);
1055     for (uint64_t &I : Weights)
1056       I >>= Offset;
1057   }
1058 }
1059 
1060 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1061     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1062   Instruction *PTI = PredBlock->getTerminator();
1063 
1064   // If we have bonus instructions, clone them into the predecessor block.
1065   // Note that there may be multiple predecessor blocks, so we cannot move
1066   // bonus instructions to a predecessor block.
1067   for (Instruction &BonusInst : *BB) {
1068     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1069       continue;
1070 
1071     Instruction *NewBonusInst = BonusInst.clone();
1072 
1073     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1074       // Unless the instruction has the same !dbg location as the original
1075       // branch, drop it. When we fold the bonus instructions we want to make
1076       // sure we reset their debug locations in order to avoid stepping on
1077       // dead code caused by folding dead branches.
1078       NewBonusInst->setDebugLoc(DebugLoc());
1079     }
1080 
1081     RemapInstruction(NewBonusInst, VMap,
1082                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1083     VMap[&BonusInst] = NewBonusInst;
1084 
1085     // If we moved a load, we cannot any longer claim any knowledge about
1086     // its potential value. The previous information might have been valid
1087     // only given the branch precondition.
1088     // For an analogous reason, we must also drop all the metadata whose
1089     // semantics we don't understand. We *can* preserve !annotation, because
1090     // it is tied to the instruction itself, not the value or position.
1091     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1092 
1093     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1094     NewBonusInst->takeName(&BonusInst);
1095     BonusInst.setName(NewBonusInst->getName() + ".old");
1096 
1097     // Update (liveout) uses of bonus instructions,
1098     // now that the bonus instruction has been cloned into predecessor.
1099     SSAUpdater SSAUpdate;
1100     SSAUpdate.Initialize(BonusInst.getType(),
1101                          (NewBonusInst->getName() + ".merge").str());
1102     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1103     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1104     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1105       auto *UI = cast<Instruction>(U.getUser());
1106       if (UI->getParent() != PredBlock)
1107         SSAUpdate.RewriteUseAfterInsertions(U);
1108       else // Use is in the same block as, and comes before, NewBonusInst.
1109         SSAUpdate.RewriteUse(U);
1110     }
1111   }
1112 }
1113 
1114 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1115     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1116   BasicBlock *BB = TI->getParent();
1117   BasicBlock *Pred = PTI->getParent();
1118 
1119   SmallVector<DominatorTree::UpdateType, 32> Updates;
1120 
1121   // Figure out which 'cases' to copy from SI to PSI.
1122   std::vector<ValueEqualityComparisonCase> BBCases;
1123   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1124 
1125   std::vector<ValueEqualityComparisonCase> PredCases;
1126   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1127 
1128   // Based on whether the default edge from PTI goes to BB or not, fill in
1129   // PredCases and PredDefault with the new switch cases we would like to
1130   // build.
1131   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1132 
1133   // Update the branch weight metadata along the way
1134   SmallVector<uint64_t, 8> Weights;
1135   bool PredHasWeights = HasBranchWeights(PTI);
1136   bool SuccHasWeights = HasBranchWeights(TI);
1137 
1138   if (PredHasWeights) {
1139     GetBranchWeights(PTI, Weights);
1140     // branch-weight metadata is inconsistent here.
1141     if (Weights.size() != 1 + PredCases.size())
1142       PredHasWeights = SuccHasWeights = false;
1143   } else if (SuccHasWeights)
1144     // If there are no predecessor weights but there are successor weights,
1145     // populate Weights with 1, which will later be scaled to the sum of
1146     // successor's weights
1147     Weights.assign(1 + PredCases.size(), 1);
1148 
1149   SmallVector<uint64_t, 8> SuccWeights;
1150   if (SuccHasWeights) {
1151     GetBranchWeights(TI, SuccWeights);
1152     // branch-weight metadata is inconsistent here.
1153     if (SuccWeights.size() != 1 + BBCases.size())
1154       PredHasWeights = SuccHasWeights = false;
1155   } else if (PredHasWeights)
1156     SuccWeights.assign(1 + BBCases.size(), 1);
1157 
1158   if (PredDefault == BB) {
1159     // If this is the default destination from PTI, only the edges in TI
1160     // that don't occur in PTI, or that branch to BB will be activated.
1161     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1162     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1163       if (PredCases[i].Dest != BB)
1164         PTIHandled.insert(PredCases[i].Value);
1165       else {
1166         // The default destination is BB, we don't need explicit targets.
1167         std::swap(PredCases[i], PredCases.back());
1168 
1169         if (PredHasWeights || SuccHasWeights) {
1170           // Increase weight for the default case.
1171           Weights[0] += Weights[i + 1];
1172           std::swap(Weights[i + 1], Weights.back());
1173           Weights.pop_back();
1174         }
1175 
1176         PredCases.pop_back();
1177         --i;
1178         --e;
1179       }
1180 
1181     // Reconstruct the new switch statement we will be building.
1182     if (PredDefault != BBDefault) {
1183       PredDefault->removePredecessor(Pred);
1184       if (DTU && PredDefault != BB)
1185         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1186       PredDefault = BBDefault;
1187       ++NewSuccessors[BBDefault];
1188     }
1189 
1190     unsigned CasesFromPred = Weights.size();
1191     uint64_t ValidTotalSuccWeight = 0;
1192     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1193       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1194         PredCases.push_back(BBCases[i]);
1195         ++NewSuccessors[BBCases[i].Dest];
1196         if (SuccHasWeights || PredHasWeights) {
1197           // The default weight is at index 0, so weight for the ith case
1198           // should be at index i+1. Scale the cases from successor by
1199           // PredDefaultWeight (Weights[0]).
1200           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1201           ValidTotalSuccWeight += SuccWeights[i + 1];
1202         }
1203       }
1204 
1205     if (SuccHasWeights || PredHasWeights) {
1206       ValidTotalSuccWeight += SuccWeights[0];
1207       // Scale the cases from predecessor by ValidTotalSuccWeight.
1208       for (unsigned i = 1; i < CasesFromPred; ++i)
1209         Weights[i] *= ValidTotalSuccWeight;
1210       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1211       Weights[0] *= SuccWeights[0];
1212     }
1213   } else {
1214     // If this is not the default destination from PSI, only the edges
1215     // in SI that occur in PSI with a destination of BB will be
1216     // activated.
1217     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1218     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1219     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1220       if (PredCases[i].Dest == BB) {
1221         PTIHandled.insert(PredCases[i].Value);
1222 
1223         if (PredHasWeights || SuccHasWeights) {
1224           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1225           std::swap(Weights[i + 1], Weights.back());
1226           Weights.pop_back();
1227         }
1228 
1229         std::swap(PredCases[i], PredCases.back());
1230         PredCases.pop_back();
1231         --i;
1232         --e;
1233       }
1234 
1235     // Okay, now we know which constants were sent to BB from the
1236     // predecessor.  Figure out where they will all go now.
1237     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1238       if (PTIHandled.count(BBCases[i].Value)) {
1239         // If this is one we are capable of getting...
1240         if (PredHasWeights || SuccHasWeights)
1241           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1242         PredCases.push_back(BBCases[i]);
1243         ++NewSuccessors[BBCases[i].Dest];
1244         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1245       }
1246 
1247     // If there are any constants vectored to BB that TI doesn't handle,
1248     // they must go to the default destination of TI.
1249     for (ConstantInt *I : PTIHandled) {
1250       if (PredHasWeights || SuccHasWeights)
1251         Weights.push_back(WeightsForHandled[I]);
1252       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1253       ++NewSuccessors[BBDefault];
1254     }
1255   }
1256 
1257   // Okay, at this point, we know which new successor Pred will get.  Make
1258   // sure we update the number of entries in the PHI nodes for these
1259   // successors.
1260   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1261   if (DTU) {
1262     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1263     Updates.reserve(Updates.size() + NewSuccessors.size());
1264   }
1265   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1266        NewSuccessors) {
1267     for (auto I : seq(0, NewSuccessor.second)) {
1268       (void)I;
1269       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1270     }
1271     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1272       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1273   }
1274 
1275   Builder.SetInsertPoint(PTI);
1276   // Convert pointer to int before we switch.
1277   if (CV->getType()->isPointerTy()) {
1278     CV =
1279         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1280   }
1281 
1282   // Now that the successors are updated, create the new Switch instruction.
1283   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1284   NewSI->setDebugLoc(PTI->getDebugLoc());
1285   for (ValueEqualityComparisonCase &V : PredCases)
1286     NewSI->addCase(V.Value, V.Dest);
1287 
1288   if (PredHasWeights || SuccHasWeights) {
1289     // Halve the weights if any of them cannot fit in an uint32_t
1290     FitWeights(Weights);
1291 
1292     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1293 
1294     setBranchWeights(NewSI, MDWeights);
1295   }
1296 
1297   EraseTerminatorAndDCECond(PTI);
1298 
1299   // Okay, last check.  If BB is still a successor of PSI, then we must
1300   // have an infinite loop case.  If so, add an infinitely looping block
1301   // to handle the case to preserve the behavior of the code.
1302   BasicBlock *InfLoopBlock = nullptr;
1303   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1304     if (NewSI->getSuccessor(i) == BB) {
1305       if (!InfLoopBlock) {
1306         // Insert it at the end of the function, because it's either code,
1307         // or it won't matter if it's hot. :)
1308         InfLoopBlock =
1309             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1310         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1311         if (DTU)
1312           Updates.push_back(
1313               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1314       }
1315       NewSI->setSuccessor(i, InfLoopBlock);
1316     }
1317 
1318   if (DTU) {
1319     if (InfLoopBlock)
1320       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1321 
1322     Updates.push_back({DominatorTree::Delete, Pred, BB});
1323 
1324     DTU->applyUpdates(Updates);
1325   }
1326 
1327   ++NumFoldValueComparisonIntoPredecessors;
1328   return true;
1329 }
1330 
1331 /// The specified terminator is a value equality comparison instruction
1332 /// (either a switch or a branch on "X == c").
1333 /// See if any of the predecessors of the terminator block are value comparisons
1334 /// on the same value.  If so, and if safe to do so, fold them together.
1335 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1336                                                          IRBuilder<> &Builder) {
1337   BasicBlock *BB = TI->getParent();
1338   Value *CV = isValueEqualityComparison(TI); // CondVal
1339   assert(CV && "Not a comparison?");
1340 
1341   bool Changed = false;
1342 
1343   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1344   while (!Preds.empty()) {
1345     BasicBlock *Pred = Preds.pop_back_val();
1346     Instruction *PTI = Pred->getTerminator();
1347 
1348     // Don't try to fold into itself.
1349     if (Pred == BB)
1350       continue;
1351 
1352     // See if the predecessor is a comparison with the same value.
1353     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1354     if (PCV != CV)
1355       continue;
1356 
1357     SmallSetVector<BasicBlock *, 4> FailBlocks;
1358     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1359       for (auto *Succ : FailBlocks) {
1360         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1361           return false;
1362       }
1363     }
1364 
1365     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1366     Changed = true;
1367   }
1368   return Changed;
1369 }
1370 
1371 // If we would need to insert a select that uses the value of this invoke
1372 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1373 // can't hoist the invoke, as there is nowhere to put the select in this case.
1374 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1375                                 Instruction *I1, Instruction *I2) {
1376   for (BasicBlock *Succ : successors(BB1)) {
1377     for (const PHINode &PN : Succ->phis()) {
1378       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1379       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1380       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1381         return false;
1382       }
1383     }
1384   }
1385   return true;
1386 }
1387 
1388 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1389 
1390 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1391 /// in the two blocks up into the branch block. The caller of this function
1392 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1393 /// only perform hoisting in case both blocks only contain a terminator. In that
1394 /// case, only the original BI will be replaced and selects for PHIs are added.
1395 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1396                                            const TargetTransformInfo &TTI,
1397                                            bool EqTermsOnly) {
1398   // This does very trivial matching, with limited scanning, to find identical
1399   // instructions in the two blocks.  In particular, we don't want to get into
1400   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1401   // such, we currently just scan for obviously identical instructions in an
1402   // identical order.
1403   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1404   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1405 
1406   BasicBlock::iterator BB1_Itr = BB1->begin();
1407   BasicBlock::iterator BB2_Itr = BB2->begin();
1408 
1409   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1410   // Skip debug info if it is not identical.
1411   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1412   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1413   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1414     while (isa<DbgInfoIntrinsic>(I1))
1415       I1 = &*BB1_Itr++;
1416     while (isa<DbgInfoIntrinsic>(I2))
1417       I2 = &*BB2_Itr++;
1418   }
1419   // FIXME: Can we define a safety predicate for CallBr?
1420   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1421       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1422       isa<CallBrInst>(I1))
1423     return false;
1424 
1425   BasicBlock *BIParent = BI->getParent();
1426 
1427   bool Changed = false;
1428 
1429   auto _ = make_scope_exit([&]() {
1430     if (Changed)
1431       ++NumHoistCommonCode;
1432   });
1433 
1434   // Check if only hoisting terminators is allowed. This does not add new
1435   // instructions to the hoist location.
1436   if (EqTermsOnly) {
1437     if (!I1->isIdenticalToWhenDefined(I2))
1438       return false;
1439     if (!I1->isTerminator())
1440       return false;
1441     goto HoistTerminator;
1442   }
1443 
1444   do {
1445     // If we are hoisting the terminator instruction, don't move one (making a
1446     // broken BB), instead clone it, and remove BI.
1447     if (I1->isTerminator())
1448       goto HoistTerminator;
1449 
1450     // If we're going to hoist a call, make sure that the two instructions we're
1451     // commoning/hoisting are both marked with musttail, or neither of them is
1452     // marked as such. Otherwise, we might end up in a situation where we hoist
1453     // from a block where the terminator is a `ret` to a block where the terminator
1454     // is a `br`, and `musttail` calls expect to be followed by a return.
1455     auto *C1 = dyn_cast<CallInst>(I1);
1456     auto *C2 = dyn_cast<CallInst>(I2);
1457     if (C1 && C2)
1458       if (C1->isMustTailCall() != C2->isMustTailCall())
1459         return Changed;
1460 
1461     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1462       return Changed;
1463 
1464     // If any of the two call sites has nomerge attribute, stop hoisting.
1465     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1466       if (CB1->cannotMerge())
1467         return Changed;
1468     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1469       if (CB2->cannotMerge())
1470         return Changed;
1471 
1472     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1473       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1474       // The debug location is an integral part of a debug info intrinsic
1475       // and can't be separated from it or replaced.  Instead of attempting
1476       // to merge locations, simply hoist both copies of the intrinsic.
1477       BIParent->getInstList().splice(BI->getIterator(),
1478                                      BB1->getInstList(), I1);
1479       BIParent->getInstList().splice(BI->getIterator(),
1480                                      BB2->getInstList(), I2);
1481       Changed = true;
1482     } else {
1483       // For a normal instruction, we just move one to right before the branch,
1484       // then replace all uses of the other with the first.  Finally, we remove
1485       // the now redundant second instruction.
1486       BIParent->getInstList().splice(BI->getIterator(),
1487                                      BB1->getInstList(), I1);
1488       if (!I2->use_empty())
1489         I2->replaceAllUsesWith(I1);
1490       I1->andIRFlags(I2);
1491       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1492                              LLVMContext::MD_range,
1493                              LLVMContext::MD_fpmath,
1494                              LLVMContext::MD_invariant_load,
1495                              LLVMContext::MD_nonnull,
1496                              LLVMContext::MD_invariant_group,
1497                              LLVMContext::MD_align,
1498                              LLVMContext::MD_dereferenceable,
1499                              LLVMContext::MD_dereferenceable_or_null,
1500                              LLVMContext::MD_mem_parallel_loop_access,
1501                              LLVMContext::MD_access_group,
1502                              LLVMContext::MD_preserve_access_index};
1503       combineMetadata(I1, I2, KnownIDs, true);
1504 
1505       // I1 and I2 are being combined into a single instruction.  Its debug
1506       // location is the merged locations of the original instructions.
1507       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1508 
1509       I2->eraseFromParent();
1510       Changed = true;
1511     }
1512     ++NumHoistCommonInstrs;
1513 
1514     I1 = &*BB1_Itr++;
1515     I2 = &*BB2_Itr++;
1516     // Skip debug info if it is not identical.
1517     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1518     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1519     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1520       while (isa<DbgInfoIntrinsic>(I1))
1521         I1 = &*BB1_Itr++;
1522       while (isa<DbgInfoIntrinsic>(I2))
1523         I2 = &*BB2_Itr++;
1524     }
1525   } while (I1->isIdenticalToWhenDefined(I2));
1526 
1527   return true;
1528 
1529 HoistTerminator:
1530   // It may not be possible to hoist an invoke.
1531   // FIXME: Can we define a safety predicate for CallBr?
1532   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1533     return Changed;
1534 
1535   // TODO: callbr hoisting currently disabled pending further study.
1536   if (isa<CallBrInst>(I1))
1537     return Changed;
1538 
1539   for (BasicBlock *Succ : successors(BB1)) {
1540     for (PHINode &PN : Succ->phis()) {
1541       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1542       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1543       if (BB1V == BB2V)
1544         continue;
1545 
1546       // Check for passingValueIsAlwaysUndefined here because we would rather
1547       // eliminate undefined control flow then converting it to a select.
1548       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1549           passingValueIsAlwaysUndefined(BB2V, &PN))
1550         return Changed;
1551 
1552       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1553         return Changed;
1554       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1555         return Changed;
1556     }
1557   }
1558 
1559   // Okay, it is safe to hoist the terminator.
1560   Instruction *NT = I1->clone();
1561   BIParent->getInstList().insert(BI->getIterator(), NT);
1562   if (!NT->getType()->isVoidTy()) {
1563     I1->replaceAllUsesWith(NT);
1564     I2->replaceAllUsesWith(NT);
1565     NT->takeName(I1);
1566   }
1567   Changed = true;
1568   ++NumHoistCommonInstrs;
1569 
1570   // Ensure terminator gets a debug location, even an unknown one, in case
1571   // it involves inlinable calls.
1572   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1573 
1574   // PHIs created below will adopt NT's merged DebugLoc.
1575   IRBuilder<NoFolder> Builder(NT);
1576 
1577   // Hoisting one of the terminators from our successor is a great thing.
1578   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1579   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1580   // nodes, so we insert select instruction to compute the final result.
1581   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1582   for (BasicBlock *Succ : successors(BB1)) {
1583     for (PHINode &PN : Succ->phis()) {
1584       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1585       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1586       if (BB1V == BB2V)
1587         continue;
1588 
1589       // These values do not agree.  Insert a select instruction before NT
1590       // that determines the right value.
1591       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1592       if (!SI) {
1593         // Propagate fast-math-flags from phi node to its replacement select.
1594         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1595         if (isa<FPMathOperator>(PN))
1596           Builder.setFastMathFlags(PN.getFastMathFlags());
1597 
1598         SI = cast<SelectInst>(
1599             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1600                                  BB1V->getName() + "." + BB2V->getName(), BI));
1601       }
1602 
1603       // Make the PHI node use the select for all incoming values for BB1/BB2
1604       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1605         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1606           PN.setIncomingValue(i, SI);
1607     }
1608   }
1609 
1610   SmallVector<DominatorTree::UpdateType, 4> Updates;
1611 
1612   // Update any PHI nodes in our new successors.
1613   for (BasicBlock *Succ : successors(BB1)) {
1614     AddPredecessorToBlock(Succ, BIParent, BB1);
1615     if (DTU)
1616       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1617   }
1618 
1619   if (DTU)
1620     for (BasicBlock *Succ : successors(BI))
1621       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1622 
1623   EraseTerminatorAndDCECond(BI);
1624   if (DTU)
1625     DTU->applyUpdates(Updates);
1626   return Changed;
1627 }
1628 
1629 // Check lifetime markers.
1630 static bool isLifeTimeMarker(const Instruction *I) {
1631   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1632     switch (II->getIntrinsicID()) {
1633     default:
1634       break;
1635     case Intrinsic::lifetime_start:
1636     case Intrinsic::lifetime_end:
1637       return true;
1638     }
1639   }
1640   return false;
1641 }
1642 
1643 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1644 // into variables.
1645 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1646                                                 int OpIdx) {
1647   return !isa<IntrinsicInst>(I);
1648 }
1649 
1650 // All instructions in Insts belong to different blocks that all unconditionally
1651 // branch to a common successor. Analyze each instruction and return true if it
1652 // would be possible to sink them into their successor, creating one common
1653 // instruction instead. For every value that would be required to be provided by
1654 // PHI node (because an operand varies in each input block), add to PHIOperands.
1655 static bool canSinkInstructions(
1656     ArrayRef<Instruction *> Insts,
1657     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1658   // Prune out obviously bad instructions to move. Each instruction must have
1659   // exactly zero or one use, and we check later that use is by a single, common
1660   // PHI instruction in the successor.
1661   bool HasUse = !Insts.front()->user_empty();
1662   for (auto *I : Insts) {
1663     // These instructions may change or break semantics if moved.
1664     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1665         I->getType()->isTokenTy())
1666       return false;
1667 
1668     // Do not try to sink an instruction in an infinite loop - it can cause
1669     // this algorithm to infinite loop.
1670     if (I->getParent()->getSingleSuccessor() == I->getParent())
1671       return false;
1672 
1673     // Conservatively return false if I is an inline-asm instruction. Sinking
1674     // and merging inline-asm instructions can potentially create arguments
1675     // that cannot satisfy the inline-asm constraints.
1676     // If the instruction has nomerge attribute, return false.
1677     if (const auto *C = dyn_cast<CallBase>(I))
1678       if (C->isInlineAsm() || C->cannotMerge())
1679         return false;
1680 
1681     // Each instruction must have zero or one use.
1682     if (HasUse && !I->hasOneUse())
1683       return false;
1684     if (!HasUse && !I->user_empty())
1685       return false;
1686   }
1687 
1688   const Instruction *I0 = Insts.front();
1689   for (auto *I : Insts)
1690     if (!I->isSameOperationAs(I0))
1691       return false;
1692 
1693   // All instructions in Insts are known to be the same opcode. If they have a
1694   // use, check that the only user is a PHI or in the same block as the
1695   // instruction, because if a user is in the same block as an instruction we're
1696   // contemplating sinking, it must already be determined to be sinkable.
1697   if (HasUse) {
1698     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1699     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1700     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1701           auto *U = cast<Instruction>(*I->user_begin());
1702           return (PNUse &&
1703                   PNUse->getParent() == Succ &&
1704                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1705                  U->getParent() == I->getParent();
1706         }))
1707       return false;
1708   }
1709 
1710   // Because SROA can't handle speculating stores of selects, try not to sink
1711   // loads, stores or lifetime markers of allocas when we'd have to create a
1712   // PHI for the address operand. Also, because it is likely that loads or
1713   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1714   // them.
1715   // This can cause code churn which can have unintended consequences down
1716   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1717   // FIXME: This is a workaround for a deficiency in SROA - see
1718   // https://llvm.org/bugs/show_bug.cgi?id=30188
1719   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1720         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1721       }))
1722     return false;
1723   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1724         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1725       }))
1726     return false;
1727   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1728         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1729       }))
1730     return false;
1731 
1732   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1733     Value *Op = I0->getOperand(OI);
1734     if (Op->getType()->isTokenTy())
1735       // Don't touch any operand of token type.
1736       return false;
1737 
1738     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1739       assert(I->getNumOperands() == I0->getNumOperands());
1740       return I->getOperand(OI) == I0->getOperand(OI);
1741     };
1742     if (!all_of(Insts, SameAsI0)) {
1743       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1744           !canReplaceOperandWithVariable(I0, OI))
1745         // We can't create a PHI from this GEP.
1746         return false;
1747       // Don't create indirect calls! The called value is the final operand.
1748       if (isa<CallBase>(I0) && OI == OE - 1) {
1749         // FIXME: if the call was *already* indirect, we should do this.
1750         return false;
1751       }
1752       for (auto *I : Insts)
1753         PHIOperands[I].push_back(I->getOperand(OI));
1754     }
1755   }
1756   return true;
1757 }
1758 
1759 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1760 // instruction of every block in Blocks to their common successor, commoning
1761 // into one instruction.
1762 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1763   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1764 
1765   // canSinkInstructions returning true guarantees that every block has at
1766   // least one non-terminator instruction.
1767   SmallVector<Instruction*,4> Insts;
1768   for (auto *BB : Blocks) {
1769     Instruction *I = BB->getTerminator();
1770     do {
1771       I = I->getPrevNode();
1772     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1773     if (!isa<DbgInfoIntrinsic>(I))
1774       Insts.push_back(I);
1775   }
1776 
1777   // The only checking we need to do now is that all users of all instructions
1778   // are the same PHI node. canSinkInstructions should have checked this but
1779   // it is slightly over-aggressive - it gets confused by commutative
1780   // instructions so double-check it here.
1781   Instruction *I0 = Insts.front();
1782   if (!I0->user_empty()) {
1783     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1784     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1785           auto *U = cast<Instruction>(*I->user_begin());
1786           return U == PNUse;
1787         }))
1788       return false;
1789   }
1790 
1791   // We don't need to do any more checking here; canSinkInstructions should
1792   // have done it all for us.
1793   SmallVector<Value*, 4> NewOperands;
1794   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1795     // This check is different to that in canSinkInstructions. There, we
1796     // cared about the global view once simplifycfg (and instcombine) have
1797     // completed - it takes into account PHIs that become trivially
1798     // simplifiable.  However here we need a more local view; if an operand
1799     // differs we create a PHI and rely on instcombine to clean up the very
1800     // small mess we may make.
1801     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1802       return I->getOperand(O) != I0->getOperand(O);
1803     });
1804     if (!NeedPHI) {
1805       NewOperands.push_back(I0->getOperand(O));
1806       continue;
1807     }
1808 
1809     // Create a new PHI in the successor block and populate it.
1810     auto *Op = I0->getOperand(O);
1811     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1812     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1813                                Op->getName() + ".sink", &BBEnd->front());
1814     for (auto *I : Insts)
1815       PN->addIncoming(I->getOperand(O), I->getParent());
1816     NewOperands.push_back(PN);
1817   }
1818 
1819   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1820   // and move it to the start of the successor block.
1821   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1822     I0->getOperandUse(O).set(NewOperands[O]);
1823   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1824 
1825   // Update metadata and IR flags, and merge debug locations.
1826   for (auto *I : Insts)
1827     if (I != I0) {
1828       // The debug location for the "common" instruction is the merged locations
1829       // of all the commoned instructions.  We start with the original location
1830       // of the "common" instruction and iteratively merge each location in the
1831       // loop below.
1832       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1833       // However, as N-way merge for CallInst is rare, so we use simplified API
1834       // instead of using complex API for N-way merge.
1835       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1836       combineMetadataForCSE(I0, I, true);
1837       I0->andIRFlags(I);
1838     }
1839 
1840   if (!I0->user_empty()) {
1841     // canSinkLastInstruction checked that all instructions were used by
1842     // one and only one PHI node. Find that now, RAUW it to our common
1843     // instruction and nuke it.
1844     auto *PN = cast<PHINode>(*I0->user_begin());
1845     PN->replaceAllUsesWith(I0);
1846     PN->eraseFromParent();
1847   }
1848 
1849   // Finally nuke all instructions apart from the common instruction.
1850   for (auto *I : Insts)
1851     if (I != I0)
1852       I->eraseFromParent();
1853 
1854   return true;
1855 }
1856 
1857 namespace {
1858 
1859   // LockstepReverseIterator - Iterates through instructions
1860   // in a set of blocks in reverse order from the first non-terminator.
1861   // For example (assume all blocks have size n):
1862   //   LockstepReverseIterator I([B1, B2, B3]);
1863   //   *I-- = [B1[n], B2[n], B3[n]];
1864   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1865   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1866   //   ...
1867   class LockstepReverseIterator {
1868     ArrayRef<BasicBlock*> Blocks;
1869     SmallVector<Instruction*,4> Insts;
1870     bool Fail;
1871 
1872   public:
1873     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1874       reset();
1875     }
1876 
1877     void reset() {
1878       Fail = false;
1879       Insts.clear();
1880       for (auto *BB : Blocks) {
1881         Instruction *Inst = BB->getTerminator();
1882         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1883           Inst = Inst->getPrevNode();
1884         if (!Inst) {
1885           // Block wasn't big enough.
1886           Fail = true;
1887           return;
1888         }
1889         Insts.push_back(Inst);
1890       }
1891     }
1892 
1893     bool isValid() const {
1894       return !Fail;
1895     }
1896 
1897     void operator--() {
1898       if (Fail)
1899         return;
1900       for (auto *&Inst : Insts) {
1901         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1902           Inst = Inst->getPrevNode();
1903         // Already at beginning of block.
1904         if (!Inst) {
1905           Fail = true;
1906           return;
1907         }
1908       }
1909     }
1910 
1911     ArrayRef<Instruction*> operator * () const {
1912       return Insts;
1913     }
1914   };
1915 
1916 } // end anonymous namespace
1917 
1918 /// Check whether BB's predecessors end with unconditional branches. If it is
1919 /// true, sink any common code from the predecessors to BB.
1920 /// We also allow one predecessor to end with conditional branch (but no more
1921 /// than one).
1922 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1923                                            DomTreeUpdater *DTU) {
1924   // We support two situations:
1925   //   (1) all incoming arcs are unconditional
1926   //   (2) one incoming arc is conditional
1927   //
1928   // (2) is very common in switch defaults and
1929   // else-if patterns;
1930   //
1931   //   if (a) f(1);
1932   //   else if (b) f(2);
1933   //
1934   // produces:
1935   //
1936   //       [if]
1937   //      /    \
1938   //    [f(1)] [if]
1939   //      |     | \
1940   //      |     |  |
1941   //      |  [f(2)]|
1942   //       \    | /
1943   //        [ end ]
1944   //
1945   // [end] has two unconditional predecessor arcs and one conditional. The
1946   // conditional refers to the implicit empty 'else' arc. This conditional
1947   // arc can also be caused by an empty default block in a switch.
1948   //
1949   // In this case, we attempt to sink code from all *unconditional* arcs.
1950   // If we can sink instructions from these arcs (determined during the scan
1951   // phase below) we insert a common successor for all unconditional arcs and
1952   // connect that to [end], to enable sinking:
1953   //
1954   //       [if]
1955   //      /    \
1956   //    [x(1)] [if]
1957   //      |     | \
1958   //      |     |  \
1959   //      |  [x(2)] |
1960   //       \   /    |
1961   //   [sink.split] |
1962   //         \     /
1963   //         [ end ]
1964   //
1965   SmallVector<BasicBlock*,4> UnconditionalPreds;
1966   Instruction *Cond = nullptr;
1967   for (auto *B : predecessors(BB)) {
1968     auto *T = B->getTerminator();
1969     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1970       UnconditionalPreds.push_back(B);
1971     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1972       Cond = T;
1973     else
1974       return false;
1975   }
1976   if (UnconditionalPreds.size() < 2)
1977     return false;
1978 
1979   // We take a two-step approach to tail sinking. First we scan from the end of
1980   // each block upwards in lockstep. If the n'th instruction from the end of each
1981   // block can be sunk, those instructions are added to ValuesToSink and we
1982   // carry on. If we can sink an instruction but need to PHI-merge some operands
1983   // (because they're not identical in each instruction) we add these to
1984   // PHIOperands.
1985   unsigned ScanIdx = 0;
1986   SmallPtrSet<Value*,4> InstructionsToSink;
1987   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1988   LockstepReverseIterator LRI(UnconditionalPreds);
1989   while (LRI.isValid() &&
1990          canSinkInstructions(*LRI, PHIOperands)) {
1991     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1992                       << "\n");
1993     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1994     ++ScanIdx;
1995     --LRI;
1996   }
1997 
1998   // If no instructions can be sunk, early-return.
1999   if (ScanIdx == 0)
2000     return false;
2001 
2002   bool Changed = false;
2003 
2004   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2005     unsigned NumPHIdValues = 0;
2006     for (auto *I : *LRI)
2007       for (auto *V : PHIOperands[I])
2008         if (InstructionsToSink.count(V) == 0)
2009           ++NumPHIdValues;
2010     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2011     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2012     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2013         NumPHIInsts++;
2014 
2015     return NumPHIInsts <= 1;
2016   };
2017 
2018   if (Cond) {
2019     // Check if we would actually sink anything first! This mutates the CFG and
2020     // adds an extra block. The goal in doing this is to allow instructions that
2021     // couldn't be sunk before to be sunk - obviously, speculatable instructions
2022     // (such as trunc, add) can be sunk and predicated already. So we check that
2023     // we're going to sink at least one non-speculatable instruction.
2024     LRI.reset();
2025     unsigned Idx = 0;
2026     bool Profitable = false;
2027     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
2028       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2029         Profitable = true;
2030         break;
2031       }
2032       --LRI;
2033       ++Idx;
2034     }
2035     if (!Profitable)
2036       return false;
2037 
2038     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2039     // We have a conditional edge and we're going to sink some instructions.
2040     // Insert a new block postdominating all blocks we're going to sink from.
2041     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2042       // Edges couldn't be split.
2043       return false;
2044     Changed = true;
2045   }
2046 
2047   // Now that we've analyzed all potential sinking candidates, perform the
2048   // actual sink. We iteratively sink the last non-terminator of the source
2049   // blocks into their common successor unless doing so would require too
2050   // many PHI instructions to be generated (currently only one PHI is allowed
2051   // per sunk instruction).
2052   //
2053   // We can use InstructionsToSink to discount values needing PHI-merging that will
2054   // actually be sunk in a later iteration. This allows us to be more
2055   // aggressive in what we sink. This does allow a false positive where we
2056   // sink presuming a later value will also be sunk, but stop half way through
2057   // and never actually sink it which means we produce more PHIs than intended.
2058   // This is unlikely in practice though.
2059   unsigned SinkIdx = 0;
2060   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2061     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2062                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2063                       << "\n");
2064 
2065     // Because we've sunk every instruction in turn, the current instruction to
2066     // sink is always at index 0.
2067     LRI.reset();
2068     if (!ProfitableToSinkInstruction(LRI)) {
2069       // Too many PHIs would be created.
2070       LLVM_DEBUG(
2071           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2072       break;
2073     }
2074 
2075     if (!sinkLastInstruction(UnconditionalPreds)) {
2076       LLVM_DEBUG(
2077           dbgs()
2078           << "SINK: stopping here, failed to actually sink instruction!\n");
2079       break;
2080     }
2081 
2082     NumSinkCommonInstrs++;
2083     Changed = true;
2084   }
2085   if (SinkIdx != 0)
2086     ++NumSinkCommonCode;
2087   return Changed;
2088 }
2089 
2090 /// Determine if we can hoist sink a sole store instruction out of a
2091 /// conditional block.
2092 ///
2093 /// We are looking for code like the following:
2094 ///   BrBB:
2095 ///     store i32 %add, i32* %arrayidx2
2096 ///     ... // No other stores or function calls (we could be calling a memory
2097 ///     ... // function).
2098 ///     %cmp = icmp ult %x, %y
2099 ///     br i1 %cmp, label %EndBB, label %ThenBB
2100 ///   ThenBB:
2101 ///     store i32 %add5, i32* %arrayidx2
2102 ///     br label EndBB
2103 ///   EndBB:
2104 ///     ...
2105 ///   We are going to transform this into:
2106 ///   BrBB:
2107 ///     store i32 %add, i32* %arrayidx2
2108 ///     ... //
2109 ///     %cmp = icmp ult %x, %y
2110 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2111 ///     store i32 %add.add5, i32* %arrayidx2
2112 ///     ...
2113 ///
2114 /// \return The pointer to the value of the previous store if the store can be
2115 ///         hoisted into the predecessor block. 0 otherwise.
2116 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2117                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2118   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2119   if (!StoreToHoist)
2120     return nullptr;
2121 
2122   // Volatile or atomic.
2123   if (!StoreToHoist->isSimple())
2124     return nullptr;
2125 
2126   Value *StorePtr = StoreToHoist->getPointerOperand();
2127 
2128   // Look for a store to the same pointer in BrBB.
2129   unsigned MaxNumInstToLookAt = 9;
2130   // Skip pseudo probe intrinsic calls which are not really killing any memory
2131   // accesses.
2132   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2133     if (!MaxNumInstToLookAt)
2134       break;
2135     --MaxNumInstToLookAt;
2136 
2137     // Could be calling an instruction that affects memory like free().
2138     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2139       return nullptr;
2140 
2141     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2142       // Found the previous store make sure it stores to the same location.
2143       if (SI->getPointerOperand() == StorePtr)
2144         // Found the previous store, return its value operand.
2145         return SI->getValueOperand();
2146       return nullptr; // Unknown store.
2147     }
2148   }
2149 
2150   return nullptr;
2151 }
2152 
2153 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2154 /// converted to selects.
2155 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2156                                            BasicBlock *EndBB,
2157                                            unsigned &SpeculatedInstructions,
2158                                            InstructionCost &Cost,
2159                                            const TargetTransformInfo &TTI) {
2160   TargetTransformInfo::TargetCostKind CostKind =
2161     BB->getParent()->hasMinSize()
2162     ? TargetTransformInfo::TCK_CodeSize
2163     : TargetTransformInfo::TCK_SizeAndLatency;
2164 
2165   bool HaveRewritablePHIs = false;
2166   for (PHINode &PN : EndBB->phis()) {
2167     Value *OrigV = PN.getIncomingValueForBlock(BB);
2168     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2169 
2170     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2171     // Skip PHIs which are trivial.
2172     if (ThenV == OrigV)
2173       continue;
2174 
2175     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2176                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2177 
2178     // Don't convert to selects if we could remove undefined behavior instead.
2179     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2180         passingValueIsAlwaysUndefined(ThenV, &PN))
2181       return false;
2182 
2183     HaveRewritablePHIs = true;
2184     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2185     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2186     if (!OrigCE && !ThenCE)
2187       continue; // Known safe and cheap.
2188 
2189     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2190         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2191       return false;
2192     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2193     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2194     InstructionCost MaxCost =
2195         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2196     if (OrigCost + ThenCost > MaxCost)
2197       return false;
2198 
2199     // Account for the cost of an unfolded ConstantExpr which could end up
2200     // getting expanded into Instructions.
2201     // FIXME: This doesn't account for how many operations are combined in the
2202     // constant expression.
2203     ++SpeculatedInstructions;
2204     if (SpeculatedInstructions > 1)
2205       return false;
2206   }
2207 
2208   return HaveRewritablePHIs;
2209 }
2210 
2211 /// Speculate a conditional basic block flattening the CFG.
2212 ///
2213 /// Note that this is a very risky transform currently. Speculating
2214 /// instructions like this is most often not desirable. Instead, there is an MI
2215 /// pass which can do it with full awareness of the resource constraints.
2216 /// However, some cases are "obvious" and we should do directly. An example of
2217 /// this is speculating a single, reasonably cheap instruction.
2218 ///
2219 /// There is only one distinct advantage to flattening the CFG at the IR level:
2220 /// it makes very common but simplistic optimizations such as are common in
2221 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2222 /// modeling their effects with easier to reason about SSA value graphs.
2223 ///
2224 ///
2225 /// An illustration of this transform is turning this IR:
2226 /// \code
2227 ///   BB:
2228 ///     %cmp = icmp ult %x, %y
2229 ///     br i1 %cmp, label %EndBB, label %ThenBB
2230 ///   ThenBB:
2231 ///     %sub = sub %x, %y
2232 ///     br label BB2
2233 ///   EndBB:
2234 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2235 ///     ...
2236 /// \endcode
2237 ///
2238 /// Into this IR:
2239 /// \code
2240 ///   BB:
2241 ///     %cmp = icmp ult %x, %y
2242 ///     %sub = sub %x, %y
2243 ///     %cond = select i1 %cmp, 0, %sub
2244 ///     ...
2245 /// \endcode
2246 ///
2247 /// \returns true if the conditional block is removed.
2248 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2249                                             const TargetTransformInfo &TTI) {
2250   // Be conservative for now. FP select instruction can often be expensive.
2251   Value *BrCond = BI->getCondition();
2252   if (isa<FCmpInst>(BrCond))
2253     return false;
2254 
2255   BasicBlock *BB = BI->getParent();
2256   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2257   InstructionCost Budget =
2258       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2259 
2260   // If ThenBB is actually on the false edge of the conditional branch, remember
2261   // to swap the select operands later.
2262   bool Invert = false;
2263   if (ThenBB != BI->getSuccessor(0)) {
2264     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2265     Invert = true;
2266   }
2267   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2268 
2269   // Keep a count of how many times instructions are used within ThenBB when
2270   // they are candidates for sinking into ThenBB. Specifically:
2271   // - They are defined in BB, and
2272   // - They have no side effects, and
2273   // - All of their uses are in ThenBB.
2274   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2275 
2276   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2277 
2278   unsigned SpeculatedInstructions = 0;
2279   Value *SpeculatedStoreValue = nullptr;
2280   StoreInst *SpeculatedStore = nullptr;
2281   for (BasicBlock::iterator BBI = ThenBB->begin(),
2282                             BBE = std::prev(ThenBB->end());
2283        BBI != BBE; ++BBI) {
2284     Instruction *I = &*BBI;
2285     // Skip debug info.
2286     if (isa<DbgInfoIntrinsic>(I)) {
2287       SpeculatedDbgIntrinsics.push_back(I);
2288       continue;
2289     }
2290 
2291     // Skip pseudo probes. The consequence is we lose track of the branch
2292     // probability for ThenBB, which is fine since the optimization here takes
2293     // place regardless of the branch probability.
2294     if (isa<PseudoProbeInst>(I)) {
2295       continue;
2296     }
2297 
2298     // Only speculatively execute a single instruction (not counting the
2299     // terminator) for now.
2300     ++SpeculatedInstructions;
2301     if (SpeculatedInstructions > 1)
2302       return false;
2303 
2304     // Don't hoist the instruction if it's unsafe or expensive.
2305     if (!isSafeToSpeculativelyExecute(I) &&
2306         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2307                                   I, BB, ThenBB, EndBB))))
2308       return false;
2309     if (!SpeculatedStoreValue &&
2310         computeSpeculationCost(I, TTI) >
2311             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2312       return false;
2313 
2314     // Store the store speculation candidate.
2315     if (SpeculatedStoreValue)
2316       SpeculatedStore = cast<StoreInst>(I);
2317 
2318     // Do not hoist the instruction if any of its operands are defined but not
2319     // used in BB. The transformation will prevent the operand from
2320     // being sunk into the use block.
2321     for (Use &Op : I->operands()) {
2322       Instruction *OpI = dyn_cast<Instruction>(Op);
2323       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2324         continue; // Not a candidate for sinking.
2325 
2326       ++SinkCandidateUseCounts[OpI];
2327     }
2328   }
2329 
2330   // Consider any sink candidates which are only used in ThenBB as costs for
2331   // speculation. Note, while we iterate over a DenseMap here, we are summing
2332   // and so iteration order isn't significant.
2333   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2334            I = SinkCandidateUseCounts.begin(),
2335            E = SinkCandidateUseCounts.end();
2336        I != E; ++I)
2337     if (I->first->hasNUses(I->second)) {
2338       ++SpeculatedInstructions;
2339       if (SpeculatedInstructions > 1)
2340         return false;
2341     }
2342 
2343   // Check that we can insert the selects and that it's not too expensive to do
2344   // so.
2345   bool Convert = SpeculatedStore != nullptr;
2346   InstructionCost Cost = 0;
2347   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2348                                             SpeculatedInstructions,
2349                                             Cost, TTI);
2350   if (!Convert || Cost > Budget)
2351     return false;
2352 
2353   // If we get here, we can hoist the instruction and if-convert.
2354   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2355 
2356   // Insert a select of the value of the speculated store.
2357   if (SpeculatedStoreValue) {
2358     IRBuilder<NoFolder> Builder(BI);
2359     Value *TrueV = SpeculatedStore->getValueOperand();
2360     Value *FalseV = SpeculatedStoreValue;
2361     if (Invert)
2362       std::swap(TrueV, FalseV);
2363     Value *S = Builder.CreateSelect(
2364         BrCond, TrueV, FalseV, "spec.store.select", BI);
2365     SpeculatedStore->setOperand(0, S);
2366     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2367                                          SpeculatedStore->getDebugLoc());
2368   }
2369 
2370   // Metadata can be dependent on the condition we are hoisting above.
2371   // Conservatively strip all metadata on the instruction. Drop the debug loc
2372   // to avoid making it appear as if the condition is a constant, which would
2373   // be misleading while debugging.
2374   for (auto &I : *ThenBB) {
2375     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2376       I.setDebugLoc(DebugLoc());
2377     I.dropUnknownNonDebugMetadata();
2378   }
2379 
2380   // A hoisted conditional probe should be treated as dangling so that it will
2381   // not be over-counted when the samples collected on the non-conditional path
2382   // are counted towards the conditional path. We leave it for the counts
2383   // inference algorithm to figure out a proper count for a danglng probe.
2384   moveAndDanglePseudoProbes(ThenBB, BI);
2385 
2386   // Hoist the instructions.
2387   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2388                            ThenBB->begin(), std::prev(ThenBB->end()));
2389 
2390   // Insert selects and rewrite the PHI operands.
2391   IRBuilder<NoFolder> Builder(BI);
2392   for (PHINode &PN : EndBB->phis()) {
2393     unsigned OrigI = PN.getBasicBlockIndex(BB);
2394     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2395     Value *OrigV = PN.getIncomingValue(OrigI);
2396     Value *ThenV = PN.getIncomingValue(ThenI);
2397 
2398     // Skip PHIs which are trivial.
2399     if (OrigV == ThenV)
2400       continue;
2401 
2402     // Create a select whose true value is the speculatively executed value and
2403     // false value is the pre-existing value. Swap them if the branch
2404     // destinations were inverted.
2405     Value *TrueV = ThenV, *FalseV = OrigV;
2406     if (Invert)
2407       std::swap(TrueV, FalseV);
2408     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2409     PN.setIncomingValue(OrigI, V);
2410     PN.setIncomingValue(ThenI, V);
2411   }
2412 
2413   // Remove speculated dbg intrinsics.
2414   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2415   // dbg value for the different flows and inserting it after the select.
2416   for (Instruction *I : SpeculatedDbgIntrinsics)
2417     I->eraseFromParent();
2418 
2419   ++NumSpeculations;
2420   return true;
2421 }
2422 
2423 /// Return true if we can thread a branch across this block.
2424 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2425   int Size = 0;
2426 
2427   for (Instruction &I : BB->instructionsWithoutDebug()) {
2428     if (Size > MaxSmallBlockSize)
2429       return false; // Don't clone large BB's.
2430 
2431     // Can't fold blocks that contain noduplicate or convergent calls.
2432     if (CallInst *CI = dyn_cast<CallInst>(&I))
2433       if (CI->cannotDuplicate() || CI->isConvergent())
2434         return false;
2435 
2436     // We will delete Phis while threading, so Phis should not be accounted in
2437     // block's size
2438     if (!isa<PHINode>(I))
2439       ++Size;
2440 
2441     // We can only support instructions that do not define values that are
2442     // live outside of the current basic block.
2443     for (User *U : I.users()) {
2444       Instruction *UI = cast<Instruction>(U);
2445       if (UI->getParent() != BB || isa<PHINode>(UI))
2446         return false;
2447     }
2448 
2449     // Looks ok, continue checking.
2450   }
2451 
2452   return true;
2453 }
2454 
2455 /// If we have a conditional branch on a PHI node value that is defined in the
2456 /// same block as the branch and if any PHI entries are constants, thread edges
2457 /// corresponding to that entry to be branches to their ultimate destination.
2458 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2459                                 const DataLayout &DL, AssumptionCache *AC) {
2460   BasicBlock *BB = BI->getParent();
2461   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2462   // NOTE: we currently cannot transform this case if the PHI node is used
2463   // outside of the block.
2464   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2465     return false;
2466 
2467   // Degenerate case of a single entry PHI.
2468   if (PN->getNumIncomingValues() == 1) {
2469     FoldSingleEntryPHINodes(PN->getParent());
2470     return true;
2471   }
2472 
2473   // Now we know that this block has multiple preds and two succs.
2474   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2475     return false;
2476 
2477   // Okay, this is a simple enough basic block.  See if any phi values are
2478   // constants.
2479   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2480     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2481     if (!CB || !CB->getType()->isIntegerTy(1))
2482       continue;
2483 
2484     // Okay, we now know that all edges from PredBB should be revectored to
2485     // branch to RealDest.
2486     BasicBlock *PredBB = PN->getIncomingBlock(i);
2487     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2488 
2489     if (RealDest == BB)
2490       continue; // Skip self loops.
2491     // Skip if the predecessor's terminator is an indirect branch.
2492     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2493       continue;
2494 
2495     SmallVector<DominatorTree::UpdateType, 3> Updates;
2496 
2497     // The dest block might have PHI nodes, other predecessors and other
2498     // difficult cases.  Instead of being smart about this, just insert a new
2499     // block that jumps to the destination block, effectively splitting
2500     // the edge we are about to create.
2501     BasicBlock *EdgeBB =
2502         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2503                            RealDest->getParent(), RealDest);
2504     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2505     if (DTU)
2506       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2507     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2508 
2509     // Update PHI nodes.
2510     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2511 
2512     // BB may have instructions that are being threaded over.  Clone these
2513     // instructions into EdgeBB.  We know that there will be no uses of the
2514     // cloned instructions outside of EdgeBB.
2515     BasicBlock::iterator InsertPt = EdgeBB->begin();
2516     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2517     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2518       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2519         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2520         continue;
2521       }
2522       // Clone the instruction.
2523       Instruction *N = BBI->clone();
2524       if (BBI->hasName())
2525         N->setName(BBI->getName() + ".c");
2526 
2527       // Update operands due to translation.
2528       for (Use &Op : N->operands()) {
2529         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2530         if (PI != TranslateMap.end())
2531           Op = PI->second;
2532       }
2533 
2534       // Check for trivial simplification.
2535       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2536         if (!BBI->use_empty())
2537           TranslateMap[&*BBI] = V;
2538         if (!N->mayHaveSideEffects()) {
2539           N->deleteValue(); // Instruction folded away, don't need actual inst
2540           N = nullptr;
2541         }
2542       } else {
2543         if (!BBI->use_empty())
2544           TranslateMap[&*BBI] = N;
2545       }
2546       if (N) {
2547         // Insert the new instruction into its new home.
2548         EdgeBB->getInstList().insert(InsertPt, N);
2549 
2550         // Register the new instruction with the assumption cache if necessary.
2551         if (auto *Assume = dyn_cast<AssumeInst>(N))
2552           if (AC)
2553             AC->registerAssumption(Assume);
2554       }
2555     }
2556 
2557     // Loop over all of the edges from PredBB to BB, changing them to branch
2558     // to EdgeBB instead.
2559     Instruction *PredBBTI = PredBB->getTerminator();
2560     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2561       if (PredBBTI->getSuccessor(i) == BB) {
2562         BB->removePredecessor(PredBB);
2563         PredBBTI->setSuccessor(i, EdgeBB);
2564       }
2565 
2566     if (DTU) {
2567       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2568       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2569 
2570       DTU->applyUpdates(Updates);
2571     }
2572 
2573     // Recurse, simplifying any other constants.
2574     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2575   }
2576 
2577   return false;
2578 }
2579 
2580 /// Given a BB that starts with the specified two-entry PHI node,
2581 /// see if we can eliminate it.
2582 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2583                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2584   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2585   // statement", which has a very simple dominance structure.  Basically, we
2586   // are trying to find the condition that is being branched on, which
2587   // subsequently causes this merge to happen.  We really want control
2588   // dependence information for this check, but simplifycfg can't keep it up
2589   // to date, and this catches most of the cases we care about anyway.
2590   BasicBlock *BB = PN->getParent();
2591 
2592   BasicBlock *IfTrue, *IfFalse;
2593   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2594   if (!IfCond ||
2595       // Don't bother if the branch will be constant folded trivially.
2596       isa<ConstantInt>(IfCond))
2597     return false;
2598 
2599   // Okay, we found that we can merge this two-entry phi node into a select.
2600   // Doing so would require us to fold *all* two entry phi nodes in this block.
2601   // At some point this becomes non-profitable (particularly if the target
2602   // doesn't support cmov's).  Only do this transformation if there are two or
2603   // fewer PHI nodes in this block.
2604   unsigned NumPhis = 0;
2605   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2606     if (NumPhis > 2)
2607       return false;
2608 
2609   // Loop over the PHI's seeing if we can promote them all to select
2610   // instructions.  While we are at it, keep track of the instructions
2611   // that need to be moved to the dominating block.
2612   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2613   InstructionCost Cost = 0;
2614   InstructionCost Budget =
2615       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2616 
2617   bool Changed = false;
2618   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2619     PHINode *PN = cast<PHINode>(II++);
2620     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2621       PN->replaceAllUsesWith(V);
2622       PN->eraseFromParent();
2623       Changed = true;
2624       continue;
2625     }
2626 
2627     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2628                              Cost, Budget, TTI) ||
2629         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2630                              Cost, Budget, TTI))
2631       return Changed;
2632   }
2633 
2634   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2635   // we ran out of PHIs then we simplified them all.
2636   PN = dyn_cast<PHINode>(BB->begin());
2637   if (!PN)
2638     return true;
2639 
2640   // Return true if at least one of these is a 'not', and another is either
2641   // a 'not' too, or a constant.
2642   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2643     if (!match(V0, m_Not(m_Value())))
2644       std::swap(V0, V1);
2645     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2646     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2647   };
2648 
2649   // Don't fold i1 branches on PHIs which contain binary operators or
2650   // select form of or/ands, unless one of the incoming values is an 'not' and
2651   // another one is freely invertible.
2652   // These can often be turned into switches and other things.
2653   auto IsBinOpOrAnd = [](Value *V) {
2654     return match(
2655         V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr())));
2656   };
2657   if (PN->getType()->isIntegerTy(1) &&
2658       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2659        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2660       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2661                                  PN->getIncomingValue(1)))
2662     return Changed;
2663 
2664   // If all PHI nodes are promotable, check to make sure that all instructions
2665   // in the predecessor blocks can be promoted as well. If not, we won't be able
2666   // to get rid of the control flow, so it's not worth promoting to select
2667   // instructions.
2668   BasicBlock *DomBlock = nullptr;
2669   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2670   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2671   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2672     IfBlock1 = nullptr;
2673   } else {
2674     DomBlock = *pred_begin(IfBlock1);
2675     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2676       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2677           !isa<PseudoProbeInst>(I)) {
2678         // This is not an aggressive instruction that we can promote.
2679         // Because of this, we won't be able to get rid of the control flow, so
2680         // the xform is not worth it.
2681         return Changed;
2682       }
2683   }
2684 
2685   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2686     IfBlock2 = nullptr;
2687   } else {
2688     DomBlock = *pred_begin(IfBlock2);
2689     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2690       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2691           !isa<PseudoProbeInst>(I)) {
2692         // This is not an aggressive instruction that we can promote.
2693         // Because of this, we won't be able to get rid of the control flow, so
2694         // the xform is not worth it.
2695         return Changed;
2696       }
2697   }
2698   assert(DomBlock && "Failed to find root DomBlock");
2699 
2700   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2701                     << "  T: " << IfTrue->getName()
2702                     << "  F: " << IfFalse->getName() << "\n");
2703 
2704   // If we can still promote the PHI nodes after this gauntlet of tests,
2705   // do all of the PHI's now.
2706   Instruction *InsertPt = DomBlock->getTerminator();
2707   IRBuilder<NoFolder> Builder(InsertPt);
2708 
2709   // Move all 'aggressive' instructions, which are defined in the
2710   // conditional parts of the if's up to the dominating block.
2711   if (IfBlock1)
2712     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2713   if (IfBlock2)
2714     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2715 
2716   // Propagate fast-math-flags from phi nodes to replacement selects.
2717   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2718   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2719     if (isa<FPMathOperator>(PN))
2720       Builder.setFastMathFlags(PN->getFastMathFlags());
2721 
2722     // Change the PHI node into a select instruction.
2723     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2724     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2725 
2726     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2727     PN->replaceAllUsesWith(Sel);
2728     Sel->takeName(PN);
2729     PN->eraseFromParent();
2730   }
2731 
2732   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2733   // has been flattened.  Change DomBlock to jump directly to our new block to
2734   // avoid other simplifycfg's kicking in on the diamond.
2735   Instruction *OldTI = DomBlock->getTerminator();
2736   Builder.SetInsertPoint(OldTI);
2737   Builder.CreateBr(BB);
2738 
2739   SmallVector<DominatorTree::UpdateType, 3> Updates;
2740   if (DTU) {
2741     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2742     for (auto *Successor : successors(DomBlock))
2743       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2744   }
2745 
2746   OldTI->eraseFromParent();
2747   if (DTU)
2748     DTU->applyUpdates(Updates);
2749 
2750   return true;
2751 }
2752 
2753 /// If we found a conditional branch that goes to two returning blocks,
2754 /// try to merge them together into one return,
2755 /// introducing a select if the return values disagree.
2756 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2757                                                     IRBuilder<> &Builder) {
2758   auto *BB = BI->getParent();
2759   assert(BI->isConditional() && "Must be a conditional branch");
2760   BasicBlock *TrueSucc = BI->getSuccessor(0);
2761   BasicBlock *FalseSucc = BI->getSuccessor(1);
2762   // NOTE: destinations may match, this could be degenerate uncond branch.
2763   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2764   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2765 
2766   // Check to ensure both blocks are empty (just a return) or optionally empty
2767   // with PHI nodes.  If there are other instructions, merging would cause extra
2768   // computation on one path or the other.
2769   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2770     return false;
2771   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2772     return false;
2773 
2774   Builder.SetInsertPoint(BI);
2775   // Okay, we found a branch that is going to two return nodes.  If
2776   // there is no return value for this function, just change the
2777   // branch into a return.
2778   if (FalseRet->getNumOperands() == 0) {
2779     TrueSucc->removePredecessor(BB);
2780     FalseSucc->removePredecessor(BB);
2781     Builder.CreateRetVoid();
2782     EraseTerminatorAndDCECond(BI);
2783     if (DTU) {
2784       SmallVector<DominatorTree::UpdateType, 2> Updates;
2785       Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2786       if (TrueSucc != FalseSucc)
2787         Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2788       DTU->applyUpdates(Updates);
2789     }
2790     return true;
2791   }
2792 
2793   // Otherwise, figure out what the true and false return values are
2794   // so we can insert a new select instruction.
2795   Value *TrueValue = TrueRet->getReturnValue();
2796   Value *FalseValue = FalseRet->getReturnValue();
2797 
2798   // Unwrap any PHI nodes in the return blocks.
2799   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2800     if (TVPN->getParent() == TrueSucc)
2801       TrueValue = TVPN->getIncomingValueForBlock(BB);
2802   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2803     if (FVPN->getParent() == FalseSucc)
2804       FalseValue = FVPN->getIncomingValueForBlock(BB);
2805 
2806   // In order for this transformation to be safe, we must be able to
2807   // unconditionally execute both operands to the return.  This is
2808   // normally the case, but we could have a potentially-trapping
2809   // constant expression that prevents this transformation from being
2810   // safe.
2811   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2812     if (TCV->canTrap())
2813       return false;
2814   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2815     if (FCV->canTrap())
2816       return false;
2817 
2818   // Okay, we collected all the mapped values and checked them for sanity, and
2819   // defined to really do this transformation.  First, update the CFG.
2820   TrueSucc->removePredecessor(BB);
2821   FalseSucc->removePredecessor(BB);
2822 
2823   // Insert select instructions where needed.
2824   Value *BrCond = BI->getCondition();
2825   if (TrueValue) {
2826     // Insert a select if the results differ.
2827     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2828     } else if (isa<UndefValue>(TrueValue)) {
2829       TrueValue = FalseValue;
2830     } else {
2831       TrueValue =
2832           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2833     }
2834   }
2835 
2836   Value *RI =
2837       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2838 
2839   (void)RI;
2840 
2841   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2842                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2843                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2844 
2845   EraseTerminatorAndDCECond(BI);
2846   if (DTU) {
2847     SmallVector<DominatorTree::UpdateType, 2> Updates;
2848     Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2849     if (TrueSucc != FalseSucc)
2850       Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2851     DTU->applyUpdates(Updates);
2852   }
2853 
2854   return true;
2855 }
2856 
2857 /// Return true if either PBI or BI has branch weight available, and store
2858 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2859 /// not have branch weight, use 1:1 as its weight.
2860 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2861                                    uint64_t &PredTrueWeight,
2862                                    uint64_t &PredFalseWeight,
2863                                    uint64_t &SuccTrueWeight,
2864                                    uint64_t &SuccFalseWeight) {
2865   bool PredHasWeights =
2866       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2867   bool SuccHasWeights =
2868       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2869   if (PredHasWeights || SuccHasWeights) {
2870     if (!PredHasWeights)
2871       PredTrueWeight = PredFalseWeight = 1;
2872     if (!SuccHasWeights)
2873       SuccTrueWeight = SuccFalseWeight = 1;
2874     return true;
2875   } else {
2876     return false;
2877   }
2878 }
2879 
2880 /// Determine if the two branches share a common destination and deduce a glue
2881 /// that joins the branches' conditions to arrive at the common destination if
2882 /// that would be profitable.
2883 static Optional<std::pair<Instruction::BinaryOps, bool>>
2884 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
2885                                           const TargetTransformInfo *TTI) {
2886   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2887          "Both blocks must end with a conditional branches.");
2888   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2889          "PredBB must be a predecessor of BB.");
2890 
2891   // We have the potential to fold the conditions together, but if the
2892   // predecessor branch is predictable, we may not want to merge them.
2893   uint64_t PTWeight, PFWeight;
2894   BranchProbability PBITrueProb, Likely;
2895   if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) &&
2896       (PTWeight + PFWeight) != 0) {
2897     PBITrueProb =
2898         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
2899     Likely = TTI->getPredictableBranchThreshold();
2900   }
2901 
2902   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2903     // Speculate the 2nd condition unless the 1st is probably true.
2904     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2905       return {{Instruction::Or, false}};
2906   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2907     // Speculate the 2nd condition unless the 1st is probably false.
2908     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
2909       return {{Instruction::And, false}};
2910   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2911     // Speculate the 2nd condition unless the 1st is probably true.
2912     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2913       return {{Instruction::And, true}};
2914   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2915     // Speculate the 2nd condition unless the 1st is probably false.
2916     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
2917       return {{Instruction::Or, true}};
2918   }
2919   return None;
2920 }
2921 
2922 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
2923                                              DomTreeUpdater *DTU,
2924                                              MemorySSAUpdater *MSSAU,
2925                                              const TargetTransformInfo *TTI) {
2926   BasicBlock *BB = BI->getParent();
2927   BasicBlock *PredBlock = PBI->getParent();
2928 
2929   // Determine if the two branches share a common destination.
2930   Instruction::BinaryOps Opc;
2931   bool InvertPredCond;
2932   std::tie(Opc, InvertPredCond) =
2933       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
2934 
2935   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2936 
2937   IRBuilder<> Builder(PBI);
2938   // The builder is used to create instructions to eliminate the branch in BB.
2939   // If BB's terminator has !annotation metadata, add it to the new
2940   // instructions.
2941   Builder.CollectMetadataToCopy(BB->getTerminator(),
2942                                 {LLVMContext::MD_annotation});
2943 
2944   // If we need to invert the condition in the pred block to match, do so now.
2945   if (InvertPredCond) {
2946     Value *NewCond = PBI->getCondition();
2947     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2948       CmpInst *CI = cast<CmpInst>(NewCond);
2949       CI->setPredicate(CI->getInversePredicate());
2950     } else {
2951       NewCond =
2952           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2953     }
2954 
2955     PBI->setCondition(NewCond);
2956     PBI->swapSuccessors();
2957   }
2958 
2959   BasicBlock *UniqueSucc =
2960       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
2961 
2962   // Before cloning instructions, notify the successor basic block that it
2963   // is about to have a new predecessor. This will update PHI nodes,
2964   // which will allow us to update live-out uses of bonus instructions.
2965   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2966 
2967   // Try to update branch weights.
2968   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2969   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2970                              SuccTrueWeight, SuccFalseWeight)) {
2971     SmallVector<uint64_t, 8> NewWeights;
2972 
2973     if (PBI->getSuccessor(0) == BB) {
2974       // PBI: br i1 %x, BB, FalseDest
2975       // BI:  br i1 %y, UniqueSucc, FalseDest
2976       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2977       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2978       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2979       //               TrueWeight for PBI * FalseWeight for BI.
2980       // We assume that total weights of a BranchInst can fit into 32 bits.
2981       // Therefore, we will not have overflow using 64-bit arithmetic.
2982       NewWeights.push_back(PredFalseWeight *
2983                                (SuccFalseWeight + SuccTrueWeight) +
2984                            PredTrueWeight * SuccFalseWeight);
2985     } else {
2986       // PBI: br i1 %x, TrueDest, BB
2987       // BI:  br i1 %y, TrueDest, UniqueSucc
2988       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2989       //              FalseWeight for PBI * TrueWeight for BI.
2990       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
2991                            PredFalseWeight * SuccTrueWeight);
2992       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2993       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2994     }
2995 
2996     // Halve the weights if any of them cannot fit in an uint32_t
2997     FitWeights(NewWeights);
2998 
2999     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3000     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3001 
3002     // TODO: If BB is reachable from all paths through PredBlock, then we
3003     // could replace PBI's branch probabilities with BI's.
3004   } else
3005     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3006 
3007   // Now, update the CFG.
3008   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3009 
3010   if (DTU)
3011     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3012                        {DominatorTree::Delete, PredBlock, BB}});
3013 
3014   // If BI was a loop latch, it may have had associated loop metadata.
3015   // We need to copy it to the new latch, that is, PBI.
3016   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3017     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3018 
3019   ValueToValueMapTy VMap; // maps original values to cloned values
3020   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3021 
3022   // Now that the Cond was cloned into the predecessor basic block,
3023   // or/and the two conditions together.
3024   Value *NewCond = nullptr;
3025   Value *BICond = VMap[BI->getCondition()];
3026 
3027   if (impliesPoison(BICond, PBI->getCondition()))
3028     NewCond = Builder.CreateBinOp(Opc, PBI->getCondition(), BICond, "or.cond");
3029   else
3030     NewCond =
3031         Opc == Instruction::And
3032             ? Builder.CreateLogicalAnd(PBI->getCondition(), BICond, "or.cond")
3033             : Builder.CreateLogicalOr(PBI->getCondition(), BICond, "or.cond");
3034   PBI->setCondition(NewCond);
3035 
3036   // Copy any debug value intrinsics into the end of PredBlock.
3037   for (Instruction &I : *BB) {
3038     if (isa<DbgInfoIntrinsic>(I)) {
3039       Instruction *NewI = I.clone();
3040       RemapInstruction(NewI, VMap,
3041                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3042       NewI->insertBefore(PBI);
3043     }
3044   }
3045 
3046   ++NumFoldBranchToCommonDest;
3047   return true;
3048 }
3049 
3050 /// If this basic block is simple enough, and if a predecessor branches to us
3051 /// and one of our successors, fold the block into the predecessor and use
3052 /// logical operations to pick the right destination.
3053 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3054                                   MemorySSAUpdater *MSSAU,
3055                                   const TargetTransformInfo *TTI,
3056                                   unsigned BonusInstThreshold) {
3057   // If this block ends with an unconditional branch,
3058   // let SpeculativelyExecuteBB() deal with it.
3059   if (!BI->isConditional())
3060     return false;
3061 
3062   BasicBlock *BB = BI->getParent();
3063 
3064   bool Changed = false;
3065 
3066   TargetTransformInfo::TargetCostKind CostKind =
3067     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3068                                   : TargetTransformInfo::TCK_SizeAndLatency;
3069 
3070   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3071 
3072   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3073       Cond->getParent() != BB || !Cond->hasOneUse())
3074     return Changed;
3075 
3076   // Cond is known to be a compare or binary operator.  Check to make sure that
3077   // neither operand is a potentially-trapping constant expression.
3078   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3079     if (CE->canTrap())
3080       return Changed;
3081   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3082     if (CE->canTrap())
3083       return Changed;
3084 
3085   // Finally, don't infinitely unroll conditional loops.
3086   if (is_contained(successors(BB), BB))
3087     return Changed;
3088 
3089   // With which predecessors will we want to deal with?
3090   SmallVector<BasicBlock *, 8> Preds;
3091   for (BasicBlock *PredBlock : predecessors(BB)) {
3092     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3093 
3094     // Check that we have two conditional branches.  If there is a PHI node in
3095     // the common successor, verify that the same value flows in from both
3096     // blocks.
3097     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3098       continue;
3099 
3100     // Determine if the two branches share a common destination.
3101     Instruction::BinaryOps Opc;
3102     bool InvertPredCond;
3103     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3104       std::tie(Opc, InvertPredCond) = *Recipe;
3105     else
3106       continue;
3107 
3108     // Check the cost of inserting the necessary logic before performing the
3109     // transformation.
3110     if (TTI) {
3111       Type *Ty = BI->getCondition()->getType();
3112       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3113       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3114           !isa<CmpInst>(PBI->getCondition())))
3115         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3116 
3117       if (Cost > BranchFoldThreshold)
3118         continue;
3119     }
3120 
3121     // Ok, we do want to deal with this predecessor. Record it.
3122     Preds.emplace_back(PredBlock);
3123   }
3124 
3125   // If there aren't any predecessors into which we can fold,
3126   // don't bother checking the cost.
3127   if (Preds.empty())
3128     return Changed;
3129 
3130   // Only allow this transformation if computing the condition doesn't involve
3131   // too many instructions and these involved instructions can be executed
3132   // unconditionally. We denote all involved instructions except the condition
3133   // as "bonus instructions", and only allow this transformation when the
3134   // number of the bonus instructions we'll need to create when cloning into
3135   // each predecessor does not exceed a certain threshold.
3136   unsigned NumBonusInsts = 0;
3137   const unsigned PredCount = Preds.size();
3138   for (Instruction &I : *BB) {
3139     // Don't check the branch condition comparison itself.
3140     if (&I == Cond)
3141       continue;
3142     // Ignore dbg intrinsics, and the terminator.
3143     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3144       continue;
3145     // I must be safe to execute unconditionally.
3146     if (!isSafeToSpeculativelyExecute(&I))
3147       return Changed;
3148 
3149     // Account for the cost of duplicating this instruction into each
3150     // predecessor.
3151     NumBonusInsts += PredCount;
3152     // Early exits once we reach the limit.
3153     if (NumBonusInsts > BonusInstThreshold)
3154       return Changed;
3155   }
3156 
3157   // Ok, we have the budget. Perform the transformation.
3158   for (BasicBlock *PredBlock : Preds) {
3159     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3160     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3161   }
3162   return Changed;
3163 }
3164 
3165 // If there is only one store in BB1 and BB2, return it, otherwise return
3166 // nullptr.
3167 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3168   StoreInst *S = nullptr;
3169   for (auto *BB : {BB1, BB2}) {
3170     if (!BB)
3171       continue;
3172     for (auto &I : *BB)
3173       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3174         if (S)
3175           // Multiple stores seen.
3176           return nullptr;
3177         else
3178           S = SI;
3179       }
3180   }
3181   return S;
3182 }
3183 
3184 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3185                                               Value *AlternativeV = nullptr) {
3186   // PHI is going to be a PHI node that allows the value V that is defined in
3187   // BB to be referenced in BB's only successor.
3188   //
3189   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3190   // doesn't matter to us what the other operand is (it'll never get used). We
3191   // could just create a new PHI with an undef incoming value, but that could
3192   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3193   // other PHI. So here we directly look for some PHI in BB's successor with V
3194   // as an incoming operand. If we find one, we use it, else we create a new
3195   // one.
3196   //
3197   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3198   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3199   // where OtherBB is the single other predecessor of BB's only successor.
3200   PHINode *PHI = nullptr;
3201   BasicBlock *Succ = BB->getSingleSuccessor();
3202 
3203   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3204     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3205       PHI = cast<PHINode>(I);
3206       if (!AlternativeV)
3207         break;
3208 
3209       assert(Succ->hasNPredecessors(2));
3210       auto PredI = pred_begin(Succ);
3211       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3212       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3213         break;
3214       PHI = nullptr;
3215     }
3216   if (PHI)
3217     return PHI;
3218 
3219   // If V is not an instruction defined in BB, just return it.
3220   if (!AlternativeV &&
3221       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3222     return V;
3223 
3224   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3225   PHI->addIncoming(V, BB);
3226   for (BasicBlock *PredBB : predecessors(Succ))
3227     if (PredBB != BB)
3228       PHI->addIncoming(
3229           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3230   return PHI;
3231 }
3232 
3233 static bool mergeConditionalStoreToAddress(
3234     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3235     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3236     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3237   // For every pointer, there must be exactly two stores, one coming from
3238   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3239   // store (to any address) in PTB,PFB or QTB,QFB.
3240   // FIXME: We could relax this restriction with a bit more work and performance
3241   // testing.
3242   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3243   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3244   if (!PStore || !QStore)
3245     return false;
3246 
3247   // Now check the stores are compatible.
3248   if (!QStore->isUnordered() || !PStore->isUnordered())
3249     return false;
3250 
3251   // Check that sinking the store won't cause program behavior changes. Sinking
3252   // the store out of the Q blocks won't change any behavior as we're sinking
3253   // from a block to its unconditional successor. But we're moving a store from
3254   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3255   // So we need to check that there are no aliasing loads or stores in
3256   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3257   // operations between PStore and the end of its parent block.
3258   //
3259   // The ideal way to do this is to query AliasAnalysis, but we don't
3260   // preserve AA currently so that is dangerous. Be super safe and just
3261   // check there are no other memory operations at all.
3262   for (auto &I : *QFB->getSinglePredecessor())
3263     if (I.mayReadOrWriteMemory())
3264       return false;
3265   for (auto &I : *QFB)
3266     if (&I != QStore && I.mayReadOrWriteMemory())
3267       return false;
3268   if (QTB)
3269     for (auto &I : *QTB)
3270       if (&I != QStore && I.mayReadOrWriteMemory())
3271         return false;
3272   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3273        I != E; ++I)
3274     if (&*I != PStore && I->mayReadOrWriteMemory())
3275       return false;
3276 
3277   // If we're not in aggressive mode, we only optimize if we have some
3278   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3279   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3280     if (!BB)
3281       return true;
3282     // Heuristic: if the block can be if-converted/phi-folded and the
3283     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3284     // thread this store.
3285     InstructionCost Cost = 0;
3286     InstructionCost Budget =
3287         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3288     for (auto &I : BB->instructionsWithoutDebug()) {
3289       // Consider terminator instruction to be free.
3290       if (I.isTerminator())
3291         continue;
3292       // If this is one the stores that we want to speculate out of this BB,
3293       // then don't count it's cost, consider it to be free.
3294       if (auto *S = dyn_cast<StoreInst>(&I))
3295         if (llvm::find(FreeStores, S))
3296           continue;
3297       // Else, we have a white-list of instructions that we are ak speculating.
3298       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3299         return false; // Not in white-list - not worthwhile folding.
3300       // And finally, if this is a non-free instruction that we are okay
3301       // speculating, ensure that we consider the speculation budget.
3302       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3303       if (Cost > Budget)
3304         return false; // Eagerly refuse to fold as soon as we're out of budget.
3305     }
3306     assert(Cost <= Budget &&
3307            "When we run out of budget we will eagerly return from within the "
3308            "per-instruction loop.");
3309     return true;
3310   };
3311 
3312   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3313   if (!MergeCondStoresAggressively &&
3314       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3315        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3316     return false;
3317 
3318   // If PostBB has more than two predecessors, we need to split it so we can
3319   // sink the store.
3320   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3321     // We know that QFB's only successor is PostBB. And QFB has a single
3322     // predecessor. If QTB exists, then its only successor is also PostBB.
3323     // If QTB does not exist, then QFB's only predecessor has a conditional
3324     // branch to QFB and PostBB.
3325     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3326     BasicBlock *NewBB =
3327         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3328     if (!NewBB)
3329       return false;
3330     PostBB = NewBB;
3331   }
3332 
3333   // OK, we're going to sink the stores to PostBB. The store has to be
3334   // conditional though, so first create the predicate.
3335   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3336                      ->getCondition();
3337   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3338                      ->getCondition();
3339 
3340   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3341                                                 PStore->getParent());
3342   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3343                                                 QStore->getParent(), PPHI);
3344 
3345   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3346 
3347   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3348   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3349 
3350   if (InvertPCond)
3351     PPred = QB.CreateNot(PPred);
3352   if (InvertQCond)
3353     QPred = QB.CreateNot(QPred);
3354   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3355 
3356   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3357                                       /*Unreachable=*/false,
3358                                       /*BranchWeights=*/nullptr, DTU);
3359   QB.SetInsertPoint(T);
3360   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3361   AAMDNodes AAMD;
3362   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3363   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3364   SI->setAAMetadata(AAMD);
3365   // Choose the minimum alignment. If we could prove both stores execute, we
3366   // could use biggest one.  In this case, though, we only know that one of the
3367   // stores executes.  And we don't know it's safe to take the alignment from a
3368   // store that doesn't execute.
3369   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3370 
3371   QStore->eraseFromParent();
3372   PStore->eraseFromParent();
3373 
3374   return true;
3375 }
3376 
3377 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3378                                    DomTreeUpdater *DTU, const DataLayout &DL,
3379                                    const TargetTransformInfo &TTI) {
3380   // The intention here is to find diamonds or triangles (see below) where each
3381   // conditional block contains a store to the same address. Both of these
3382   // stores are conditional, so they can't be unconditionally sunk. But it may
3383   // be profitable to speculatively sink the stores into one merged store at the
3384   // end, and predicate the merged store on the union of the two conditions of
3385   // PBI and QBI.
3386   //
3387   // This can reduce the number of stores executed if both of the conditions are
3388   // true, and can allow the blocks to become small enough to be if-converted.
3389   // This optimization will also chain, so that ladders of test-and-set
3390   // sequences can be if-converted away.
3391   //
3392   // We only deal with simple diamonds or triangles:
3393   //
3394   //     PBI       or      PBI        or a combination of the two
3395   //    /   \               | \
3396   //   PTB  PFB             |  PFB
3397   //    \   /               | /
3398   //     QBI                QBI
3399   //    /  \                | \
3400   //   QTB  QFB             |  QFB
3401   //    \  /                | /
3402   //    PostBB            PostBB
3403   //
3404   // We model triangles as a type of diamond with a nullptr "true" block.
3405   // Triangles are canonicalized so that the fallthrough edge is represented by
3406   // a true condition, as in the diagram above.
3407   BasicBlock *PTB = PBI->getSuccessor(0);
3408   BasicBlock *PFB = PBI->getSuccessor(1);
3409   BasicBlock *QTB = QBI->getSuccessor(0);
3410   BasicBlock *QFB = QBI->getSuccessor(1);
3411   BasicBlock *PostBB = QFB->getSingleSuccessor();
3412 
3413   // Make sure we have a good guess for PostBB. If QTB's only successor is
3414   // QFB, then QFB is a better PostBB.
3415   if (QTB->getSingleSuccessor() == QFB)
3416     PostBB = QFB;
3417 
3418   // If we couldn't find a good PostBB, stop.
3419   if (!PostBB)
3420     return false;
3421 
3422   bool InvertPCond = false, InvertQCond = false;
3423   // Canonicalize fallthroughs to the true branches.
3424   if (PFB == QBI->getParent()) {
3425     std::swap(PFB, PTB);
3426     InvertPCond = true;
3427   }
3428   if (QFB == PostBB) {
3429     std::swap(QFB, QTB);
3430     InvertQCond = true;
3431   }
3432 
3433   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3434   // and QFB may not. Model fallthroughs as a nullptr block.
3435   if (PTB == QBI->getParent())
3436     PTB = nullptr;
3437   if (QTB == PostBB)
3438     QTB = nullptr;
3439 
3440   // Legality bailouts. We must have at least the non-fallthrough blocks and
3441   // the post-dominating block, and the non-fallthroughs must only have one
3442   // predecessor.
3443   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3444     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3445   };
3446   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3447       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3448     return false;
3449   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3450       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3451     return false;
3452   if (!QBI->getParent()->hasNUses(2))
3453     return false;
3454 
3455   // OK, this is a sequence of two diamonds or triangles.
3456   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3457   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3458   for (auto *BB : {PTB, PFB}) {
3459     if (!BB)
3460       continue;
3461     for (auto &I : *BB)
3462       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3463         PStoreAddresses.insert(SI->getPointerOperand());
3464   }
3465   for (auto *BB : {QTB, QFB}) {
3466     if (!BB)
3467       continue;
3468     for (auto &I : *BB)
3469       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3470         QStoreAddresses.insert(SI->getPointerOperand());
3471   }
3472 
3473   set_intersect(PStoreAddresses, QStoreAddresses);
3474   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3475   // clear what it contains.
3476   auto &CommonAddresses = PStoreAddresses;
3477 
3478   bool Changed = false;
3479   for (auto *Address : CommonAddresses)
3480     Changed |=
3481         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3482                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3483   return Changed;
3484 }
3485 
3486 /// If the previous block ended with a widenable branch, determine if reusing
3487 /// the target block is profitable and legal.  This will have the effect of
3488 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3489 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3490                                            DomTreeUpdater *DTU) {
3491   // TODO: This can be generalized in two important ways:
3492   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3493   //    values from the PBI edge.
3494   // 2) We can sink side effecting instructions into BI's fallthrough
3495   //    successor provided they doesn't contribute to computation of
3496   //    BI's condition.
3497   Value *CondWB, *WC;
3498   BasicBlock *IfTrueBB, *IfFalseBB;
3499   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3500       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3501     return false;
3502   if (!IfFalseBB->phis().empty())
3503     return false; // TODO
3504   // Use lambda to lazily compute expensive condition after cheap ones.
3505   auto NoSideEffects = [](BasicBlock &BB) {
3506     return !llvm::any_of(BB, [](const Instruction &I) {
3507         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3508       });
3509   };
3510   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3511       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3512       NoSideEffects(*BI->getParent())) {
3513     auto *OldSuccessor = BI->getSuccessor(1);
3514     OldSuccessor->removePredecessor(BI->getParent());
3515     BI->setSuccessor(1, IfFalseBB);
3516     if (DTU)
3517       DTU->applyUpdates(
3518           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3519            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3520     return true;
3521   }
3522   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3523       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3524       NoSideEffects(*BI->getParent())) {
3525     auto *OldSuccessor = BI->getSuccessor(0);
3526     OldSuccessor->removePredecessor(BI->getParent());
3527     BI->setSuccessor(0, IfFalseBB);
3528     if (DTU)
3529       DTU->applyUpdates(
3530           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3531            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3532     return true;
3533   }
3534   return false;
3535 }
3536 
3537 /// If we have a conditional branch as a predecessor of another block,
3538 /// this function tries to simplify it.  We know
3539 /// that PBI and BI are both conditional branches, and BI is in one of the
3540 /// successor blocks of PBI - PBI branches to BI.
3541 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3542                                            DomTreeUpdater *DTU,
3543                                            const DataLayout &DL,
3544                                            const TargetTransformInfo &TTI) {
3545   assert(PBI->isConditional() && BI->isConditional());
3546   BasicBlock *BB = BI->getParent();
3547 
3548   // If this block ends with a branch instruction, and if there is a
3549   // predecessor that ends on a branch of the same condition, make
3550   // this conditional branch redundant.
3551   if (PBI->getCondition() == BI->getCondition() &&
3552       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3553     // Okay, the outcome of this conditional branch is statically
3554     // knowable.  If this block had a single pred, handle specially.
3555     if (BB->getSinglePredecessor()) {
3556       // Turn this into a branch on constant.
3557       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3558       BI->setCondition(
3559           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3560       return true; // Nuke the branch on constant.
3561     }
3562 
3563     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3564     // in the constant and simplify the block result.  Subsequent passes of
3565     // simplifycfg will thread the block.
3566     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3567       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3568       PHINode *NewPN = PHINode::Create(
3569           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3570           BI->getCondition()->getName() + ".pr", &BB->front());
3571       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3572       // predecessor, compute the PHI'd conditional value for all of the preds.
3573       // Any predecessor where the condition is not computable we keep symbolic.
3574       for (pred_iterator PI = PB; PI != PE; ++PI) {
3575         BasicBlock *P = *PI;
3576         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3577             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3578             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3579           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3580           NewPN->addIncoming(
3581               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3582               P);
3583         } else {
3584           NewPN->addIncoming(BI->getCondition(), P);
3585         }
3586       }
3587 
3588       BI->setCondition(NewPN);
3589       return true;
3590     }
3591   }
3592 
3593   // If the previous block ended with a widenable branch, determine if reusing
3594   // the target block is profitable and legal.  This will have the effect of
3595   // "widening" PBI, but doesn't require us to reason about hosting safety.
3596   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3597     return true;
3598 
3599   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3600     if (CE->canTrap())
3601       return false;
3602 
3603   // If both branches are conditional and both contain stores to the same
3604   // address, remove the stores from the conditionals and create a conditional
3605   // merged store at the end.
3606   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3607     return true;
3608 
3609   // If this is a conditional branch in an empty block, and if any
3610   // predecessors are a conditional branch to one of our destinations,
3611   // fold the conditions into logical ops and one cond br.
3612 
3613   // Ignore dbg intrinsics.
3614   if (&*BB->instructionsWithoutDebug().begin() != BI)
3615     return false;
3616 
3617   int PBIOp, BIOp;
3618   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3619     PBIOp = 0;
3620     BIOp = 0;
3621   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3622     PBIOp = 0;
3623     BIOp = 1;
3624   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3625     PBIOp = 1;
3626     BIOp = 0;
3627   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3628     PBIOp = 1;
3629     BIOp = 1;
3630   } else {
3631     return false;
3632   }
3633 
3634   // Check to make sure that the other destination of this branch
3635   // isn't BB itself.  If so, this is an infinite loop that will
3636   // keep getting unwound.
3637   if (PBI->getSuccessor(PBIOp) == BB)
3638     return false;
3639 
3640   // Do not perform this transformation if it would require
3641   // insertion of a large number of select instructions. For targets
3642   // without predication/cmovs, this is a big pessimization.
3643 
3644   // Also do not perform this transformation if any phi node in the common
3645   // destination block can trap when reached by BB or PBB (PR17073). In that
3646   // case, it would be unsafe to hoist the operation into a select instruction.
3647 
3648   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3649   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3650   unsigned NumPhis = 0;
3651   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3652        ++II, ++NumPhis) {
3653     if (NumPhis > 2) // Disable this xform.
3654       return false;
3655 
3656     PHINode *PN = cast<PHINode>(II);
3657     Value *BIV = PN->getIncomingValueForBlock(BB);
3658     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3659       if (CE->canTrap())
3660         return false;
3661 
3662     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3663     Value *PBIV = PN->getIncomingValue(PBBIdx);
3664     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3665       if (CE->canTrap())
3666         return false;
3667   }
3668 
3669   // Finally, if everything is ok, fold the branches to logical ops.
3670   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3671 
3672   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3673                     << "AND: " << *BI->getParent());
3674 
3675   SmallVector<DominatorTree::UpdateType, 5> Updates;
3676 
3677   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3678   // branch in it, where one edge (OtherDest) goes back to itself but the other
3679   // exits.  We don't *know* that the program avoids the infinite loop
3680   // (even though that seems likely).  If we do this xform naively, we'll end up
3681   // recursively unpeeling the loop.  Since we know that (after the xform is
3682   // done) that the block *is* infinite if reached, we just make it an obviously
3683   // infinite loop with no cond branch.
3684   if (OtherDest == BB) {
3685     // Insert it at the end of the function, because it's either code,
3686     // or it won't matter if it's hot. :)
3687     BasicBlock *InfLoopBlock =
3688         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3689     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3690     if (DTU)
3691       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3692     OtherDest = InfLoopBlock;
3693   }
3694 
3695   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3696 
3697   // BI may have other predecessors.  Because of this, we leave
3698   // it alone, but modify PBI.
3699 
3700   // Make sure we get to CommonDest on True&True directions.
3701   Value *PBICond = PBI->getCondition();
3702   IRBuilder<NoFolder> Builder(PBI);
3703   if (PBIOp)
3704     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3705 
3706   Value *BICond = BI->getCondition();
3707   if (BIOp)
3708     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3709 
3710   // Merge the conditions.
3711   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3712 
3713   // Modify PBI to branch on the new condition to the new dests.
3714   PBI->setCondition(Cond);
3715   PBI->setSuccessor(0, CommonDest);
3716   PBI->setSuccessor(1, OtherDest);
3717 
3718   if (DTU) {
3719     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3720     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3721 
3722     DTU->applyUpdates(Updates);
3723   }
3724 
3725   // Update branch weight for PBI.
3726   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3727   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3728   bool HasWeights =
3729       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3730                              SuccTrueWeight, SuccFalseWeight);
3731   if (HasWeights) {
3732     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3733     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3734     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3735     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3736     // The weight to CommonDest should be PredCommon * SuccTotal +
3737     //                                    PredOther * SuccCommon.
3738     // The weight to OtherDest should be PredOther * SuccOther.
3739     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3740                                   PredOther * SuccCommon,
3741                               PredOther * SuccOther};
3742     // Halve the weights if any of them cannot fit in an uint32_t
3743     FitWeights(NewWeights);
3744 
3745     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3746   }
3747 
3748   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3749   // block that are identical to the entries for BI's block.
3750   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3751 
3752   // We know that the CommonDest already had an edge from PBI to
3753   // it.  If it has PHIs though, the PHIs may have different
3754   // entries for BB and PBI's BB.  If so, insert a select to make
3755   // them agree.
3756   for (PHINode &PN : CommonDest->phis()) {
3757     Value *BIV = PN.getIncomingValueForBlock(BB);
3758     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3759     Value *PBIV = PN.getIncomingValue(PBBIdx);
3760     if (BIV != PBIV) {
3761       // Insert a select in PBI to pick the right value.
3762       SelectInst *NV = cast<SelectInst>(
3763           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3764       PN.setIncomingValue(PBBIdx, NV);
3765       // Although the select has the same condition as PBI, the original branch
3766       // weights for PBI do not apply to the new select because the select's
3767       // 'logical' edges are incoming edges of the phi that is eliminated, not
3768       // the outgoing edges of PBI.
3769       if (HasWeights) {
3770         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3771         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3772         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3773         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3774         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3775         // The weight to PredOtherDest should be PredOther * SuccCommon.
3776         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3777                                   PredOther * SuccCommon};
3778 
3779         FitWeights(NewWeights);
3780 
3781         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3782       }
3783     }
3784   }
3785 
3786   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3787   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3788 
3789   // This basic block is probably dead.  We know it has at least
3790   // one fewer predecessor.
3791   return true;
3792 }
3793 
3794 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3795 // true or to FalseBB if Cond is false.
3796 // Takes care of updating the successors and removing the old terminator.
3797 // Also makes sure not to introduce new successors by assuming that edges to
3798 // non-successor TrueBBs and FalseBBs aren't reachable.
3799 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3800                                                 Value *Cond, BasicBlock *TrueBB,
3801                                                 BasicBlock *FalseBB,
3802                                                 uint32_t TrueWeight,
3803                                                 uint32_t FalseWeight) {
3804   auto *BB = OldTerm->getParent();
3805   // Remove any superfluous successor edges from the CFG.
3806   // First, figure out which successors to preserve.
3807   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3808   // successor.
3809   BasicBlock *KeepEdge1 = TrueBB;
3810   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3811 
3812   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3813 
3814   // Then remove the rest.
3815   for (BasicBlock *Succ : successors(OldTerm)) {
3816     // Make sure only to keep exactly one copy of each edge.
3817     if (Succ == KeepEdge1)
3818       KeepEdge1 = nullptr;
3819     else if (Succ == KeepEdge2)
3820       KeepEdge2 = nullptr;
3821     else {
3822       Succ->removePredecessor(BB,
3823                               /*KeepOneInputPHIs=*/true);
3824 
3825       if (Succ != TrueBB && Succ != FalseBB)
3826         RemovedSuccessors.insert(Succ);
3827     }
3828   }
3829 
3830   IRBuilder<> Builder(OldTerm);
3831   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3832 
3833   // Insert an appropriate new terminator.
3834   if (!KeepEdge1 && !KeepEdge2) {
3835     if (TrueBB == FalseBB) {
3836       // We were only looking for one successor, and it was present.
3837       // Create an unconditional branch to it.
3838       Builder.CreateBr(TrueBB);
3839     } else {
3840       // We found both of the successors we were looking for.
3841       // Create a conditional branch sharing the condition of the select.
3842       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3843       if (TrueWeight != FalseWeight)
3844         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3845     }
3846   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3847     // Neither of the selected blocks were successors, so this
3848     // terminator must be unreachable.
3849     new UnreachableInst(OldTerm->getContext(), OldTerm);
3850   } else {
3851     // One of the selected values was a successor, but the other wasn't.
3852     // Insert an unconditional branch to the one that was found;
3853     // the edge to the one that wasn't must be unreachable.
3854     if (!KeepEdge1) {
3855       // Only TrueBB was found.
3856       Builder.CreateBr(TrueBB);
3857     } else {
3858       // Only FalseBB was found.
3859       Builder.CreateBr(FalseBB);
3860     }
3861   }
3862 
3863   EraseTerminatorAndDCECond(OldTerm);
3864 
3865   if (DTU) {
3866     SmallVector<DominatorTree::UpdateType, 2> Updates;
3867     Updates.reserve(RemovedSuccessors.size());
3868     for (auto *RemovedSuccessor : RemovedSuccessors)
3869       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3870     DTU->applyUpdates(Updates);
3871   }
3872 
3873   return true;
3874 }
3875 
3876 // Replaces
3877 //   (switch (select cond, X, Y)) on constant X, Y
3878 // with a branch - conditional if X and Y lead to distinct BBs,
3879 // unconditional otherwise.
3880 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3881                                             SelectInst *Select) {
3882   // Check for constant integer values in the select.
3883   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3884   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3885   if (!TrueVal || !FalseVal)
3886     return false;
3887 
3888   // Find the relevant condition and destinations.
3889   Value *Condition = Select->getCondition();
3890   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3891   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3892 
3893   // Get weight for TrueBB and FalseBB.
3894   uint32_t TrueWeight = 0, FalseWeight = 0;
3895   SmallVector<uint64_t, 8> Weights;
3896   bool HasWeights = HasBranchWeights(SI);
3897   if (HasWeights) {
3898     GetBranchWeights(SI, Weights);
3899     if (Weights.size() == 1 + SI->getNumCases()) {
3900       TrueWeight =
3901           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3902       FalseWeight =
3903           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3904     }
3905   }
3906 
3907   // Perform the actual simplification.
3908   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3909                                     FalseWeight);
3910 }
3911 
3912 // Replaces
3913 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3914 //                             blockaddress(@fn, BlockB)))
3915 // with
3916 //   (br cond, BlockA, BlockB).
3917 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3918                                                 SelectInst *SI) {
3919   // Check that both operands of the select are block addresses.
3920   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3921   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3922   if (!TBA || !FBA)
3923     return false;
3924 
3925   // Extract the actual blocks.
3926   BasicBlock *TrueBB = TBA->getBasicBlock();
3927   BasicBlock *FalseBB = FBA->getBasicBlock();
3928 
3929   // Perform the actual simplification.
3930   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3931                                     0);
3932 }
3933 
3934 /// This is called when we find an icmp instruction
3935 /// (a seteq/setne with a constant) as the only instruction in a
3936 /// block that ends with an uncond branch.  We are looking for a very specific
3937 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3938 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3939 /// default value goes to an uncond block with a seteq in it, we get something
3940 /// like:
3941 ///
3942 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3943 /// DEFAULT:
3944 ///   %tmp = icmp eq i8 %A, 92
3945 ///   br label %end
3946 /// end:
3947 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3948 ///
3949 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3950 /// the PHI, merging the third icmp into the switch.
3951 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3952     ICmpInst *ICI, IRBuilder<> &Builder) {
3953   BasicBlock *BB = ICI->getParent();
3954 
3955   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3956   // complex.
3957   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3958     return false;
3959 
3960   Value *V = ICI->getOperand(0);
3961   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3962 
3963   // The pattern we're looking for is where our only predecessor is a switch on
3964   // 'V' and this block is the default case for the switch.  In this case we can
3965   // fold the compared value into the switch to simplify things.
3966   BasicBlock *Pred = BB->getSinglePredecessor();
3967   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3968     return false;
3969 
3970   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3971   if (SI->getCondition() != V)
3972     return false;
3973 
3974   // If BB is reachable on a non-default case, then we simply know the value of
3975   // V in this block.  Substitute it and constant fold the icmp instruction
3976   // away.
3977   if (SI->getDefaultDest() != BB) {
3978     ConstantInt *VVal = SI->findCaseDest(BB);
3979     assert(VVal && "Should have a unique destination value");
3980     ICI->setOperand(0, VVal);
3981 
3982     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3983       ICI->replaceAllUsesWith(V);
3984       ICI->eraseFromParent();
3985     }
3986     // BB is now empty, so it is likely to simplify away.
3987     return requestResimplify();
3988   }
3989 
3990   // Ok, the block is reachable from the default dest.  If the constant we're
3991   // comparing exists in one of the other edges, then we can constant fold ICI
3992   // and zap it.
3993   if (SI->findCaseValue(Cst) != SI->case_default()) {
3994     Value *V;
3995     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3996       V = ConstantInt::getFalse(BB->getContext());
3997     else
3998       V = ConstantInt::getTrue(BB->getContext());
3999 
4000     ICI->replaceAllUsesWith(V);
4001     ICI->eraseFromParent();
4002     // BB is now empty, so it is likely to simplify away.
4003     return requestResimplify();
4004   }
4005 
4006   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4007   // the block.
4008   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4009   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4010   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4011       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4012     return false;
4013 
4014   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4015   // true in the PHI.
4016   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4017   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4018 
4019   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4020     std::swap(DefaultCst, NewCst);
4021 
4022   // Replace ICI (which is used by the PHI for the default value) with true or
4023   // false depending on if it is EQ or NE.
4024   ICI->replaceAllUsesWith(DefaultCst);
4025   ICI->eraseFromParent();
4026 
4027   SmallVector<DominatorTree::UpdateType, 2> Updates;
4028 
4029   // Okay, the switch goes to this block on a default value.  Add an edge from
4030   // the switch to the merge point on the compared value.
4031   BasicBlock *NewBB =
4032       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4033   {
4034     SwitchInstProfUpdateWrapper SIW(*SI);
4035     auto W0 = SIW.getSuccessorWeight(0);
4036     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4037     if (W0) {
4038       NewW = ((uint64_t(*W0) + 1) >> 1);
4039       SIW.setSuccessorWeight(0, *NewW);
4040     }
4041     SIW.addCase(Cst, NewBB, NewW);
4042     if (DTU)
4043       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4044   }
4045 
4046   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4047   Builder.SetInsertPoint(NewBB);
4048   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4049   Builder.CreateBr(SuccBlock);
4050   PHIUse->addIncoming(NewCst, NewBB);
4051   if (DTU) {
4052     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4053     DTU->applyUpdates(Updates);
4054   }
4055   return true;
4056 }
4057 
4058 /// The specified branch is a conditional branch.
4059 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4060 /// fold it into a switch instruction if so.
4061 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4062                                                IRBuilder<> &Builder,
4063                                                const DataLayout &DL) {
4064   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4065   if (!Cond)
4066     return false;
4067 
4068   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4069   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4070   // 'setne's and'ed together, collect them.
4071 
4072   // Try to gather values from a chain of and/or to be turned into a switch
4073   ConstantComparesGatherer ConstantCompare(Cond, DL);
4074   // Unpack the result
4075   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4076   Value *CompVal = ConstantCompare.CompValue;
4077   unsigned UsedICmps = ConstantCompare.UsedICmps;
4078   Value *ExtraCase = ConstantCompare.Extra;
4079 
4080   // If we didn't have a multiply compared value, fail.
4081   if (!CompVal)
4082     return false;
4083 
4084   // Avoid turning single icmps into a switch.
4085   if (UsedICmps <= 1)
4086     return false;
4087 
4088   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4089 
4090   // There might be duplicate constants in the list, which the switch
4091   // instruction can't handle, remove them now.
4092   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4093   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4094 
4095   // If Extra was used, we require at least two switch values to do the
4096   // transformation.  A switch with one value is just a conditional branch.
4097   if (ExtraCase && Values.size() < 2)
4098     return false;
4099 
4100   // TODO: Preserve branch weight metadata, similarly to how
4101   // FoldValueComparisonIntoPredecessors preserves it.
4102 
4103   // Figure out which block is which destination.
4104   BasicBlock *DefaultBB = BI->getSuccessor(1);
4105   BasicBlock *EdgeBB = BI->getSuccessor(0);
4106   if (!TrueWhenEqual)
4107     std::swap(DefaultBB, EdgeBB);
4108 
4109   BasicBlock *BB = BI->getParent();
4110 
4111   // MSAN does not like undefs as branch condition which can be introduced
4112   // with "explicit branch".
4113   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4114     return false;
4115 
4116   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4117                     << " cases into SWITCH.  BB is:\n"
4118                     << *BB);
4119 
4120   SmallVector<DominatorTree::UpdateType, 2> Updates;
4121 
4122   // If there are any extra values that couldn't be folded into the switch
4123   // then we evaluate them with an explicit branch first. Split the block
4124   // right before the condbr to handle it.
4125   if (ExtraCase) {
4126     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4127                                    /*MSSAU=*/nullptr, "switch.early.test");
4128 
4129     // Remove the uncond branch added to the old block.
4130     Instruction *OldTI = BB->getTerminator();
4131     Builder.SetInsertPoint(OldTI);
4132 
4133     if (TrueWhenEqual)
4134       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4135     else
4136       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4137 
4138     OldTI->eraseFromParent();
4139 
4140     if (DTU)
4141       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4142 
4143     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4144     // for the edge we just added.
4145     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4146 
4147     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4148                       << "\nEXTRABB = " << *BB);
4149     BB = NewBB;
4150   }
4151 
4152   Builder.SetInsertPoint(BI);
4153   // Convert pointer to int before we switch.
4154   if (CompVal->getType()->isPointerTy()) {
4155     CompVal = Builder.CreatePtrToInt(
4156         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4157   }
4158 
4159   // Create the new switch instruction now.
4160   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4161 
4162   // Add all of the 'cases' to the switch instruction.
4163   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4164     New->addCase(Values[i], EdgeBB);
4165 
4166   // We added edges from PI to the EdgeBB.  As such, if there were any
4167   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4168   // the number of edges added.
4169   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4170     PHINode *PN = cast<PHINode>(BBI);
4171     Value *InVal = PN->getIncomingValueForBlock(BB);
4172     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4173       PN->addIncoming(InVal, BB);
4174   }
4175 
4176   // Erase the old branch instruction.
4177   EraseTerminatorAndDCECond(BI);
4178   if (DTU)
4179     DTU->applyUpdates(Updates);
4180 
4181   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4182   return true;
4183 }
4184 
4185 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4186   if (isa<PHINode>(RI->getValue()))
4187     return simplifyCommonResume(RI);
4188   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4189            RI->getValue() == RI->getParent()->getFirstNonPHI())
4190     // The resume must unwind the exception that caused control to branch here.
4191     return simplifySingleResume(RI);
4192 
4193   return false;
4194 }
4195 
4196 // Check if cleanup block is empty
4197 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4198   for (Instruction &I : R) {
4199     auto *II = dyn_cast<IntrinsicInst>(&I);
4200     if (!II)
4201       return false;
4202 
4203     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4204     switch (IntrinsicID) {
4205     case Intrinsic::dbg_declare:
4206     case Intrinsic::dbg_value:
4207     case Intrinsic::dbg_label:
4208     case Intrinsic::lifetime_end:
4209       break;
4210     default:
4211       return false;
4212     }
4213   }
4214   return true;
4215 }
4216 
4217 // Simplify resume that is shared by several landing pads (phi of landing pad).
4218 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4219   BasicBlock *BB = RI->getParent();
4220 
4221   // Check that there are no other instructions except for debug and lifetime
4222   // intrinsics between the phi's and resume instruction.
4223   if (!isCleanupBlockEmpty(
4224           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4225     return false;
4226 
4227   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4228   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4229 
4230   // Check incoming blocks to see if any of them are trivial.
4231   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4232        Idx++) {
4233     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4234     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4235 
4236     // If the block has other successors, we can not delete it because
4237     // it has other dependents.
4238     if (IncomingBB->getUniqueSuccessor() != BB)
4239       continue;
4240 
4241     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4242     // Not the landing pad that caused the control to branch here.
4243     if (IncomingValue != LandingPad)
4244       continue;
4245 
4246     if (isCleanupBlockEmpty(
4247             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4248       TrivialUnwindBlocks.insert(IncomingBB);
4249   }
4250 
4251   // If no trivial unwind blocks, don't do any simplifications.
4252   if (TrivialUnwindBlocks.empty())
4253     return false;
4254 
4255   // Turn all invokes that unwind here into calls.
4256   for (auto *TrivialBB : TrivialUnwindBlocks) {
4257     // Blocks that will be simplified should be removed from the phi node.
4258     // Note there could be multiple edges to the resume block, and we need
4259     // to remove them all.
4260     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4261       BB->removePredecessor(TrivialBB, true);
4262 
4263     for (BasicBlock *Pred :
4264          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4265       removeUnwindEdge(Pred, DTU);
4266       ++NumInvokes;
4267     }
4268 
4269     // In each SimplifyCFG run, only the current processed block can be erased.
4270     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4271     // of erasing TrivialBB, we only remove the branch to the common resume
4272     // block so that we can later erase the resume block since it has no
4273     // predecessors.
4274     TrivialBB->getTerminator()->eraseFromParent();
4275     new UnreachableInst(RI->getContext(), TrivialBB);
4276     if (DTU)
4277       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4278   }
4279 
4280   // Delete the resume block if all its predecessors have been removed.
4281   if (pred_empty(BB)) {
4282     if (DTU)
4283       DTU->deleteBB(BB);
4284     else
4285       BB->eraseFromParent();
4286   }
4287 
4288   return !TrivialUnwindBlocks.empty();
4289 }
4290 
4291 // Simplify resume that is only used by a single (non-phi) landing pad.
4292 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4293   BasicBlock *BB = RI->getParent();
4294   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4295   assert(RI->getValue() == LPInst &&
4296          "Resume must unwind the exception that caused control to here");
4297 
4298   // Check that there are no other instructions except for debug intrinsics.
4299   if (!isCleanupBlockEmpty(
4300           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4301     return false;
4302 
4303   // Turn all invokes that unwind here into calls and delete the basic block.
4304   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4305     removeUnwindEdge(Pred, DTU);
4306     ++NumInvokes;
4307   }
4308 
4309   // The landingpad is now unreachable.  Zap it.
4310   if (DTU)
4311     DTU->deleteBB(BB);
4312   else
4313     BB->eraseFromParent();
4314   return true;
4315 }
4316 
4317 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4318   // If this is a trivial cleanup pad that executes no instructions, it can be
4319   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4320   // that is an EH pad will be updated to continue to the caller and any
4321   // predecessor that terminates with an invoke instruction will have its invoke
4322   // instruction converted to a call instruction.  If the cleanup pad being
4323   // simplified does not continue to the caller, each predecessor will be
4324   // updated to continue to the unwind destination of the cleanup pad being
4325   // simplified.
4326   BasicBlock *BB = RI->getParent();
4327   CleanupPadInst *CPInst = RI->getCleanupPad();
4328   if (CPInst->getParent() != BB)
4329     // This isn't an empty cleanup.
4330     return false;
4331 
4332   // We cannot kill the pad if it has multiple uses.  This typically arises
4333   // from unreachable basic blocks.
4334   if (!CPInst->hasOneUse())
4335     return false;
4336 
4337   // Check that there are no other instructions except for benign intrinsics.
4338   if (!isCleanupBlockEmpty(
4339           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4340     return false;
4341 
4342   // If the cleanup return we are simplifying unwinds to the caller, this will
4343   // set UnwindDest to nullptr.
4344   BasicBlock *UnwindDest = RI->getUnwindDest();
4345   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4346 
4347   // We're about to remove BB from the control flow.  Before we do, sink any
4348   // PHINodes into the unwind destination.  Doing this before changing the
4349   // control flow avoids some potentially slow checks, since we can currently
4350   // be certain that UnwindDest and BB have no common predecessors (since they
4351   // are both EH pads).
4352   if (UnwindDest) {
4353     // First, go through the PHI nodes in UnwindDest and update any nodes that
4354     // reference the block we are removing
4355     for (BasicBlock::iterator I = UnwindDest->begin(),
4356                               IE = DestEHPad->getIterator();
4357          I != IE; ++I) {
4358       PHINode *DestPN = cast<PHINode>(I);
4359 
4360       int Idx = DestPN->getBasicBlockIndex(BB);
4361       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4362       assert(Idx != -1);
4363       // This PHI node has an incoming value that corresponds to a control
4364       // path through the cleanup pad we are removing.  If the incoming
4365       // value is in the cleanup pad, it must be a PHINode (because we
4366       // verified above that the block is otherwise empty).  Otherwise, the
4367       // value is either a constant or a value that dominates the cleanup
4368       // pad being removed.
4369       //
4370       // Because BB and UnwindDest are both EH pads, all of their
4371       // predecessors must unwind to these blocks, and since no instruction
4372       // can have multiple unwind destinations, there will be no overlap in
4373       // incoming blocks between SrcPN and DestPN.
4374       Value *SrcVal = DestPN->getIncomingValue(Idx);
4375       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4376 
4377       // Remove the entry for the block we are deleting.
4378       DestPN->removeIncomingValue(Idx, false);
4379 
4380       if (SrcPN && SrcPN->getParent() == BB) {
4381         // If the incoming value was a PHI node in the cleanup pad we are
4382         // removing, we need to merge that PHI node's incoming values into
4383         // DestPN.
4384         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4385              SrcIdx != SrcE; ++SrcIdx) {
4386           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4387                               SrcPN->getIncomingBlock(SrcIdx));
4388         }
4389       } else {
4390         // Otherwise, the incoming value came from above BB and
4391         // so we can just reuse it.  We must associate all of BB's
4392         // predecessors with this value.
4393         for (auto *pred : predecessors(BB)) {
4394           DestPN->addIncoming(SrcVal, pred);
4395         }
4396       }
4397     }
4398 
4399     // Sink any remaining PHI nodes directly into UnwindDest.
4400     Instruction *InsertPt = DestEHPad;
4401     for (BasicBlock::iterator I = BB->begin(),
4402                               IE = BB->getFirstNonPHI()->getIterator();
4403          I != IE;) {
4404       // The iterator must be incremented here because the instructions are
4405       // being moved to another block.
4406       PHINode *PN = cast<PHINode>(I++);
4407       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4408         // If the PHI node has no uses or all of its uses are in this basic
4409         // block (meaning they are debug or lifetime intrinsics), just leave
4410         // it.  It will be erased when we erase BB below.
4411         continue;
4412 
4413       // Otherwise, sink this PHI node into UnwindDest.
4414       // Any predecessors to UnwindDest which are not already represented
4415       // must be back edges which inherit the value from the path through
4416       // BB.  In this case, the PHI value must reference itself.
4417       for (auto *pred : predecessors(UnwindDest))
4418         if (pred != BB)
4419           PN->addIncoming(PN, pred);
4420       PN->moveBefore(InsertPt);
4421     }
4422   }
4423 
4424   std::vector<DominatorTree::UpdateType> Updates;
4425 
4426   // We use make_early_inc_range here because we may remove some predecessors.
4427   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4428     if (UnwindDest == nullptr) {
4429       if (DTU) {
4430         DTU->applyUpdates(Updates);
4431         Updates.clear();
4432       }
4433       removeUnwindEdge(PredBB, DTU);
4434       ++NumInvokes;
4435     } else {
4436       Instruction *TI = PredBB->getTerminator();
4437       TI->replaceUsesOfWith(BB, UnwindDest);
4438       if (DTU) {
4439         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4440         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4441       }
4442     }
4443   }
4444 
4445   if (DTU) {
4446     DTU->applyUpdates(Updates);
4447     DTU->deleteBB(BB);
4448   } else
4449     // The cleanup pad is now unreachable.  Zap it.
4450     BB->eraseFromParent();
4451 
4452   return true;
4453 }
4454 
4455 // Try to merge two cleanuppads together.
4456 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4457   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4458   // with.
4459   BasicBlock *UnwindDest = RI->getUnwindDest();
4460   if (!UnwindDest)
4461     return false;
4462 
4463   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4464   // be safe to merge without code duplication.
4465   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4466     return false;
4467 
4468   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4469   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4470   if (!SuccessorCleanupPad)
4471     return false;
4472 
4473   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4474   // Replace any uses of the successor cleanupad with the predecessor pad
4475   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4476   // funclet bundle operands.
4477   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4478   // Remove the old cleanuppad.
4479   SuccessorCleanupPad->eraseFromParent();
4480   // Now, we simply replace the cleanupret with a branch to the unwind
4481   // destination.
4482   BranchInst::Create(UnwindDest, RI->getParent());
4483   RI->eraseFromParent();
4484 
4485   return true;
4486 }
4487 
4488 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4489   // It is possible to transiantly have an undef cleanuppad operand because we
4490   // have deleted some, but not all, dead blocks.
4491   // Eventually, this block will be deleted.
4492   if (isa<UndefValue>(RI->getOperand(0)))
4493     return false;
4494 
4495   if (mergeCleanupPad(RI))
4496     return true;
4497 
4498   if (removeEmptyCleanup(RI, DTU))
4499     return true;
4500 
4501   return false;
4502 }
4503 
4504 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4505   BasicBlock *BB = RI->getParent();
4506   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4507     return false;
4508 
4509   // Find predecessors that end with branches.
4510   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4511   SmallVector<BranchInst *, 8> CondBranchPreds;
4512   for (BasicBlock *P : predecessors(BB)) {
4513     Instruction *PTI = P->getTerminator();
4514     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4515       if (BI->isUnconditional())
4516         UncondBranchPreds.push_back(P);
4517       else
4518         CondBranchPreds.push_back(BI);
4519     }
4520   }
4521 
4522   // If we found some, do the transformation!
4523   if (!UncondBranchPreds.empty() && DupRet) {
4524     while (!UncondBranchPreds.empty()) {
4525       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4526       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4527                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4528       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4529     }
4530 
4531     // If we eliminated all predecessors of the block, delete the block now.
4532     if (pred_empty(BB)) {
4533       // We know there are no successors, so just nuke the block.
4534       if (DTU)
4535         DTU->deleteBB(BB);
4536       else
4537         BB->eraseFromParent();
4538     }
4539 
4540     return true;
4541   }
4542 
4543   // Check out all of the conditional branches going to this return
4544   // instruction.  If any of them just select between returns, change the
4545   // branch itself into a select/return pair.
4546   while (!CondBranchPreds.empty()) {
4547     BranchInst *BI = CondBranchPreds.pop_back_val();
4548 
4549     // Check to see if the non-BB successor is also a return block.
4550     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4551         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4552         SimplifyCondBranchToTwoReturns(BI, Builder))
4553       return true;
4554   }
4555   return false;
4556 }
4557 
4558 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4559   BasicBlock *BB = UI->getParent();
4560 
4561   bool Changed = false;
4562 
4563   // If there are any instructions immediately before the unreachable that can
4564   // be removed, do so.
4565   while (UI->getIterator() != BB->begin()) {
4566     BasicBlock::iterator BBI = UI->getIterator();
4567     --BBI;
4568     // Do not delete instructions that can have side effects which might cause
4569     // the unreachable to not be reachable; specifically, calls and volatile
4570     // operations may have this effect.
4571     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4572       break;
4573 
4574     if (BBI->mayHaveSideEffects()) {
4575       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4576         if (SI->isVolatile())
4577           break;
4578       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4579         if (LI->isVolatile())
4580           break;
4581       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4582         if (RMWI->isVolatile())
4583           break;
4584       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4585         if (CXI->isVolatile())
4586           break;
4587       } else if (isa<CatchPadInst>(BBI)) {
4588         // A catchpad may invoke exception object constructors and such, which
4589         // in some languages can be arbitrary code, so be conservative by
4590         // default.
4591         // For CoreCLR, it just involves a type test, so can be removed.
4592         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4593             EHPersonality::CoreCLR)
4594           break;
4595       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4596                  !isa<LandingPadInst>(BBI)) {
4597         break;
4598       }
4599       // Note that deleting LandingPad's here is in fact okay, although it
4600       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4601       // all the predecessors of this block will be the unwind edges of Invokes,
4602       // and we can therefore guarantee this block will be erased.
4603     }
4604 
4605     // Delete this instruction (any uses are guaranteed to be dead)
4606     if (!BBI->use_empty())
4607       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4608     BBI->eraseFromParent();
4609     Changed = true;
4610   }
4611 
4612   // If the unreachable instruction is the first in the block, take a gander
4613   // at all of the predecessors of this instruction, and simplify them.
4614   if (&BB->front() != UI)
4615     return Changed;
4616 
4617   std::vector<DominatorTree::UpdateType> Updates;
4618 
4619   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4620   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4621     auto *Predecessor = Preds[i];
4622     Instruction *TI = Predecessor->getTerminator();
4623     IRBuilder<> Builder(TI);
4624     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4625       // We could either have a proper unconditional branch,
4626       // or a degenerate conditional branch with matching destinations.
4627       if (all_of(BI->successors(),
4628                  [BB](auto *Successor) { return Successor == BB; })) {
4629         new UnreachableInst(TI->getContext(), TI);
4630         TI->eraseFromParent();
4631         Changed = true;
4632       } else {
4633         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4634         Value* Cond = BI->getCondition();
4635         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4636                "The destinations are guaranteed to be different here.");
4637         if (BI->getSuccessor(0) == BB) {
4638           Builder.CreateAssumption(Builder.CreateNot(Cond));
4639           Builder.CreateBr(BI->getSuccessor(1));
4640         } else {
4641           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4642           Builder.CreateAssumption(Cond);
4643           Builder.CreateBr(BI->getSuccessor(0));
4644         }
4645         EraseTerminatorAndDCECond(BI);
4646         Changed = true;
4647       }
4648       if (DTU)
4649         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4650     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4651       SwitchInstProfUpdateWrapper SU(*SI);
4652       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4653         if (i->getCaseSuccessor() != BB) {
4654           ++i;
4655           continue;
4656         }
4657         BB->removePredecessor(SU->getParent());
4658         i = SU.removeCase(i);
4659         e = SU->case_end();
4660         Changed = true;
4661       }
4662       // Note that the default destination can't be removed!
4663       if (DTU && SI->getDefaultDest() != BB)
4664         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4665     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4666       if (II->getUnwindDest() == BB) {
4667         if (DTU) {
4668           DTU->applyUpdates(Updates);
4669           Updates.clear();
4670         }
4671         removeUnwindEdge(TI->getParent(), DTU);
4672         Changed = true;
4673       }
4674     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4675       if (CSI->getUnwindDest() == BB) {
4676         if (DTU) {
4677           DTU->applyUpdates(Updates);
4678           Updates.clear();
4679         }
4680         removeUnwindEdge(TI->getParent(), DTU);
4681         Changed = true;
4682         continue;
4683       }
4684 
4685       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4686                                              E = CSI->handler_end();
4687            I != E; ++I) {
4688         if (*I == BB) {
4689           CSI->removeHandler(I);
4690           --I;
4691           --E;
4692           Changed = true;
4693         }
4694       }
4695       if (DTU)
4696         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4697       if (CSI->getNumHandlers() == 0) {
4698         if (CSI->hasUnwindDest()) {
4699           // Redirect all predecessors of the block containing CatchSwitchInst
4700           // to instead branch to the CatchSwitchInst's unwind destination.
4701           if (DTU) {
4702             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4703               Updates.push_back({DominatorTree::Insert,
4704                                  PredecessorOfPredecessor,
4705                                  CSI->getUnwindDest()});
4706               Updates.push_back({DominatorTree::Delete,
4707                                  PredecessorOfPredecessor, Predecessor});
4708             }
4709           }
4710           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4711         } else {
4712           // Rewrite all preds to unwind to caller (or from invoke to call).
4713           if (DTU) {
4714             DTU->applyUpdates(Updates);
4715             Updates.clear();
4716           }
4717           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4718           for (BasicBlock *EHPred : EHPreds)
4719             removeUnwindEdge(EHPred, DTU);
4720         }
4721         // The catchswitch is no longer reachable.
4722         new UnreachableInst(CSI->getContext(), CSI);
4723         CSI->eraseFromParent();
4724         Changed = true;
4725       }
4726     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4727       (void)CRI;
4728       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4729              "Expected to always have an unwind to BB.");
4730       if (DTU)
4731         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4732       new UnreachableInst(TI->getContext(), TI);
4733       TI->eraseFromParent();
4734       Changed = true;
4735     }
4736   }
4737 
4738   if (DTU)
4739     DTU->applyUpdates(Updates);
4740 
4741   // If this block is now dead, remove it.
4742   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4743     // We know there are no successors, so just nuke the block.
4744     if (DTU)
4745       DTU->deleteBB(BB);
4746     else
4747       BB->eraseFromParent();
4748     return true;
4749   }
4750 
4751   return Changed;
4752 }
4753 
4754 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4755   assert(Cases.size() >= 1);
4756 
4757   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4758   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4759     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4760       return false;
4761   }
4762   return true;
4763 }
4764 
4765 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4766                                            DomTreeUpdater *DTU) {
4767   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4768   auto *BB = Switch->getParent();
4769   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4770       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4771   auto *OrigDefaultBlock = Switch->getDefaultDest();
4772   Switch->setDefaultDest(&*NewDefaultBlock);
4773   if (DTU)
4774     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4775                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4776   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4777   SmallVector<DominatorTree::UpdateType, 2> Updates;
4778   if (DTU)
4779     for (auto *Successor : successors(NewDefaultBlock))
4780       Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4781   auto *NewTerminator = NewDefaultBlock->getTerminator();
4782   new UnreachableInst(Switch->getContext(), NewTerminator);
4783   EraseTerminatorAndDCECond(NewTerminator);
4784   if (DTU)
4785     DTU->applyUpdates(Updates);
4786 }
4787 
4788 /// Turn a switch with two reachable destinations into an integer range
4789 /// comparison and branch.
4790 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4791                                              IRBuilder<> &Builder) {
4792   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4793 
4794   bool HasDefault =
4795       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4796 
4797   auto *BB = SI->getParent();
4798 
4799   // Partition the cases into two sets with different destinations.
4800   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4801   BasicBlock *DestB = nullptr;
4802   SmallVector<ConstantInt *, 16> CasesA;
4803   SmallVector<ConstantInt *, 16> CasesB;
4804 
4805   for (auto Case : SI->cases()) {
4806     BasicBlock *Dest = Case.getCaseSuccessor();
4807     if (!DestA)
4808       DestA = Dest;
4809     if (Dest == DestA) {
4810       CasesA.push_back(Case.getCaseValue());
4811       continue;
4812     }
4813     if (!DestB)
4814       DestB = Dest;
4815     if (Dest == DestB) {
4816       CasesB.push_back(Case.getCaseValue());
4817       continue;
4818     }
4819     return false; // More than two destinations.
4820   }
4821 
4822   assert(DestA && DestB &&
4823          "Single-destination switch should have been folded.");
4824   assert(DestA != DestB);
4825   assert(DestB != SI->getDefaultDest());
4826   assert(!CasesB.empty() && "There must be non-default cases.");
4827   assert(!CasesA.empty() || HasDefault);
4828 
4829   // Figure out if one of the sets of cases form a contiguous range.
4830   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4831   BasicBlock *ContiguousDest = nullptr;
4832   BasicBlock *OtherDest = nullptr;
4833   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4834     ContiguousCases = &CasesA;
4835     ContiguousDest = DestA;
4836     OtherDest = DestB;
4837   } else if (CasesAreContiguous(CasesB)) {
4838     ContiguousCases = &CasesB;
4839     ContiguousDest = DestB;
4840     OtherDest = DestA;
4841   } else
4842     return false;
4843 
4844   // Start building the compare and branch.
4845 
4846   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4847   Constant *NumCases =
4848       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4849 
4850   Value *Sub = SI->getCondition();
4851   if (!Offset->isNullValue())
4852     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4853 
4854   Value *Cmp;
4855   // If NumCases overflowed, then all possible values jump to the successor.
4856   if (NumCases->isNullValue() && !ContiguousCases->empty())
4857     Cmp = ConstantInt::getTrue(SI->getContext());
4858   else
4859     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4860   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4861 
4862   // Update weight for the newly-created conditional branch.
4863   if (HasBranchWeights(SI)) {
4864     SmallVector<uint64_t, 8> Weights;
4865     GetBranchWeights(SI, Weights);
4866     if (Weights.size() == 1 + SI->getNumCases()) {
4867       uint64_t TrueWeight = 0;
4868       uint64_t FalseWeight = 0;
4869       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4870         if (SI->getSuccessor(I) == ContiguousDest)
4871           TrueWeight += Weights[I];
4872         else
4873           FalseWeight += Weights[I];
4874       }
4875       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4876         TrueWeight /= 2;
4877         FalseWeight /= 2;
4878       }
4879       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4880     }
4881   }
4882 
4883   // Prune obsolete incoming values off the successors' PHI nodes.
4884   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4885     unsigned PreviousEdges = ContiguousCases->size();
4886     if (ContiguousDest == SI->getDefaultDest())
4887       ++PreviousEdges;
4888     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4889       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4890   }
4891   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4892     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4893     if (OtherDest == SI->getDefaultDest())
4894       ++PreviousEdges;
4895     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4896       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4897   }
4898 
4899   // Clean up the default block - it may have phis or other instructions before
4900   // the unreachable terminator.
4901   if (!HasDefault)
4902     createUnreachableSwitchDefault(SI, DTU);
4903 
4904   auto *UnreachableDefault = SI->getDefaultDest();
4905 
4906   // Drop the switch.
4907   SI->eraseFromParent();
4908 
4909   if (!HasDefault && DTU)
4910     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4911 
4912   return true;
4913 }
4914 
4915 /// Compute masked bits for the condition of a switch
4916 /// and use it to remove dead cases.
4917 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4918                                      AssumptionCache *AC,
4919                                      const DataLayout &DL) {
4920   Value *Cond = SI->getCondition();
4921   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4922   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4923 
4924   // We can also eliminate cases by determining that their values are outside of
4925   // the limited range of the condition based on how many significant (non-sign)
4926   // bits are in the condition value.
4927   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4928   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4929 
4930   // Gather dead cases.
4931   SmallVector<ConstantInt *, 8> DeadCases;
4932   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
4933   for (auto &Case : SI->cases()) {
4934     auto *Successor = Case.getCaseSuccessor();
4935     if (DTU)
4936       ++NumPerSuccessorCases[Successor];
4937     const APInt &CaseVal = Case.getCaseValue()->getValue();
4938     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4939         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4940       DeadCases.push_back(Case.getCaseValue());
4941       if (DTU)
4942         --NumPerSuccessorCases[Successor];
4943       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4944                         << " is dead.\n");
4945     }
4946   }
4947 
4948   // If we can prove that the cases must cover all possible values, the
4949   // default destination becomes dead and we can remove it.  If we know some
4950   // of the bits in the value, we can use that to more precisely compute the
4951   // number of possible unique case values.
4952   bool HasDefault =
4953       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4954   const unsigned NumUnknownBits =
4955       Bits - (Known.Zero | Known.One).countPopulation();
4956   assert(NumUnknownBits <= Bits);
4957   if (HasDefault && DeadCases.empty() &&
4958       NumUnknownBits < 64 /* avoid overflow */ &&
4959       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4960     createUnreachableSwitchDefault(SI, DTU);
4961     return true;
4962   }
4963 
4964   if (DeadCases.empty())
4965     return false;
4966 
4967   SwitchInstProfUpdateWrapper SIW(*SI);
4968   for (ConstantInt *DeadCase : DeadCases) {
4969     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4970     assert(CaseI != SI->case_default() &&
4971            "Case was not found. Probably mistake in DeadCases forming.");
4972     // Prune unused values from PHI nodes.
4973     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4974     SIW.removeCase(CaseI);
4975   }
4976 
4977   if (DTU) {
4978     std::vector<DominatorTree::UpdateType> Updates;
4979     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4980       if (I.second == 0)
4981         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
4982     DTU->applyUpdates(Updates);
4983   }
4984 
4985   return true;
4986 }
4987 
4988 /// If BB would be eligible for simplification by
4989 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4990 /// by an unconditional branch), look at the phi node for BB in the successor
4991 /// block and see if the incoming value is equal to CaseValue. If so, return
4992 /// the phi node, and set PhiIndex to BB's index in the phi node.
4993 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4994                                               BasicBlock *BB, int *PhiIndex) {
4995   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4996     return nullptr; // BB must be empty to be a candidate for simplification.
4997   if (!BB->getSinglePredecessor())
4998     return nullptr; // BB must be dominated by the switch.
4999 
5000   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5001   if (!Branch || !Branch->isUnconditional())
5002     return nullptr; // Terminator must be unconditional branch.
5003 
5004   BasicBlock *Succ = Branch->getSuccessor(0);
5005 
5006   for (PHINode &PHI : Succ->phis()) {
5007     int Idx = PHI.getBasicBlockIndex(BB);
5008     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5009 
5010     Value *InValue = PHI.getIncomingValue(Idx);
5011     if (InValue != CaseValue)
5012       continue;
5013 
5014     *PhiIndex = Idx;
5015     return &PHI;
5016   }
5017 
5018   return nullptr;
5019 }
5020 
5021 /// Try to forward the condition of a switch instruction to a phi node
5022 /// dominated by the switch, if that would mean that some of the destination
5023 /// blocks of the switch can be folded away. Return true if a change is made.
5024 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5025   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5026 
5027   ForwardingNodesMap ForwardingNodes;
5028   BasicBlock *SwitchBlock = SI->getParent();
5029   bool Changed = false;
5030   for (auto &Case : SI->cases()) {
5031     ConstantInt *CaseValue = Case.getCaseValue();
5032     BasicBlock *CaseDest = Case.getCaseSuccessor();
5033 
5034     // Replace phi operands in successor blocks that are using the constant case
5035     // value rather than the switch condition variable:
5036     //   switchbb:
5037     //   switch i32 %x, label %default [
5038     //     i32 17, label %succ
5039     //   ...
5040     //   succ:
5041     //     %r = phi i32 ... [ 17, %switchbb ] ...
5042     // -->
5043     //     %r = phi i32 ... [ %x, %switchbb ] ...
5044 
5045     for (PHINode &Phi : CaseDest->phis()) {
5046       // This only works if there is exactly 1 incoming edge from the switch to
5047       // a phi. If there is >1, that means multiple cases of the switch map to 1
5048       // value in the phi, and that phi value is not the switch condition. Thus,
5049       // this transform would not make sense (the phi would be invalid because
5050       // a phi can't have different incoming values from the same block).
5051       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5052       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5053           count(Phi.blocks(), SwitchBlock) == 1) {
5054         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5055         Changed = true;
5056       }
5057     }
5058 
5059     // Collect phi nodes that are indirectly using this switch's case constants.
5060     int PhiIdx;
5061     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5062       ForwardingNodes[Phi].push_back(PhiIdx);
5063   }
5064 
5065   for (auto &ForwardingNode : ForwardingNodes) {
5066     PHINode *Phi = ForwardingNode.first;
5067     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5068     if (Indexes.size() < 2)
5069       continue;
5070 
5071     for (int Index : Indexes)
5072       Phi->setIncomingValue(Index, SI->getCondition());
5073     Changed = true;
5074   }
5075 
5076   return Changed;
5077 }
5078 
5079 /// Return true if the backend will be able to handle
5080 /// initializing an array of constants like C.
5081 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5082   if (C->isThreadDependent())
5083     return false;
5084   if (C->isDLLImportDependent())
5085     return false;
5086 
5087   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5088       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5089       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5090     return false;
5091 
5092   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5093     if (!CE->isGEPWithNoNotionalOverIndexing())
5094       return false;
5095     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5096       return false;
5097   }
5098 
5099   if (!TTI.shouldBuildLookupTablesForConstant(C))
5100     return false;
5101 
5102   return true;
5103 }
5104 
5105 /// If V is a Constant, return it. Otherwise, try to look up
5106 /// its constant value in ConstantPool, returning 0 if it's not there.
5107 static Constant *
5108 LookupConstant(Value *V,
5109                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5110   if (Constant *C = dyn_cast<Constant>(V))
5111     return C;
5112   return ConstantPool.lookup(V);
5113 }
5114 
5115 /// Try to fold instruction I into a constant. This works for
5116 /// simple instructions such as binary operations where both operands are
5117 /// constant or can be replaced by constants from the ConstantPool. Returns the
5118 /// resulting constant on success, 0 otherwise.
5119 static Constant *
5120 ConstantFold(Instruction *I, const DataLayout &DL,
5121              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5122   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5123     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5124     if (!A)
5125       return nullptr;
5126     if (A->isAllOnesValue())
5127       return LookupConstant(Select->getTrueValue(), ConstantPool);
5128     if (A->isNullValue())
5129       return LookupConstant(Select->getFalseValue(), ConstantPool);
5130     return nullptr;
5131   }
5132 
5133   SmallVector<Constant *, 4> COps;
5134   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5135     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5136       COps.push_back(A);
5137     else
5138       return nullptr;
5139   }
5140 
5141   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5142     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5143                                            COps[1], DL);
5144   }
5145 
5146   return ConstantFoldInstOperands(I, COps, DL);
5147 }
5148 
5149 /// Try to determine the resulting constant values in phi nodes
5150 /// at the common destination basic block, *CommonDest, for one of the case
5151 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5152 /// case), of a switch instruction SI.
5153 static bool
5154 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5155                BasicBlock **CommonDest,
5156                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5157                const DataLayout &DL, const TargetTransformInfo &TTI) {
5158   // The block from which we enter the common destination.
5159   BasicBlock *Pred = SI->getParent();
5160 
5161   // If CaseDest is empty except for some side-effect free instructions through
5162   // which we can constant-propagate the CaseVal, continue to its successor.
5163   SmallDenseMap<Value *, Constant *> ConstantPool;
5164   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5165   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5166     if (I.isTerminator()) {
5167       // If the terminator is a simple branch, continue to the next block.
5168       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5169         return false;
5170       Pred = CaseDest;
5171       CaseDest = I.getSuccessor(0);
5172     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5173       // Instruction is side-effect free and constant.
5174 
5175       // If the instruction has uses outside this block or a phi node slot for
5176       // the block, it is not safe to bypass the instruction since it would then
5177       // no longer dominate all its uses.
5178       for (auto &Use : I.uses()) {
5179         User *User = Use.getUser();
5180         if (Instruction *I = dyn_cast<Instruction>(User))
5181           if (I->getParent() == CaseDest)
5182             continue;
5183         if (PHINode *Phi = dyn_cast<PHINode>(User))
5184           if (Phi->getIncomingBlock(Use) == CaseDest)
5185             continue;
5186         return false;
5187       }
5188 
5189       ConstantPool.insert(std::make_pair(&I, C));
5190     } else {
5191       break;
5192     }
5193   }
5194 
5195   // If we did not have a CommonDest before, use the current one.
5196   if (!*CommonDest)
5197     *CommonDest = CaseDest;
5198   // If the destination isn't the common one, abort.
5199   if (CaseDest != *CommonDest)
5200     return false;
5201 
5202   // Get the values for this case from phi nodes in the destination block.
5203   for (PHINode &PHI : (*CommonDest)->phis()) {
5204     int Idx = PHI.getBasicBlockIndex(Pred);
5205     if (Idx == -1)
5206       continue;
5207 
5208     Constant *ConstVal =
5209         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5210     if (!ConstVal)
5211       return false;
5212 
5213     // Be conservative about which kinds of constants we support.
5214     if (!ValidLookupTableConstant(ConstVal, TTI))
5215       return false;
5216 
5217     Res.push_back(std::make_pair(&PHI, ConstVal));
5218   }
5219 
5220   return Res.size() > 0;
5221 }
5222 
5223 // Helper function used to add CaseVal to the list of cases that generate
5224 // Result. Returns the updated number of cases that generate this result.
5225 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5226                                  SwitchCaseResultVectorTy &UniqueResults,
5227                                  Constant *Result) {
5228   for (auto &I : UniqueResults) {
5229     if (I.first == Result) {
5230       I.second.push_back(CaseVal);
5231       return I.second.size();
5232     }
5233   }
5234   UniqueResults.push_back(
5235       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5236   return 1;
5237 }
5238 
5239 // Helper function that initializes a map containing
5240 // results for the PHI node of the common destination block for a switch
5241 // instruction. Returns false if multiple PHI nodes have been found or if
5242 // there is not a common destination block for the switch.
5243 static bool
5244 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5245                       SwitchCaseResultVectorTy &UniqueResults,
5246                       Constant *&DefaultResult, const DataLayout &DL,
5247                       const TargetTransformInfo &TTI,
5248                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5249   for (auto &I : SI->cases()) {
5250     ConstantInt *CaseVal = I.getCaseValue();
5251 
5252     // Resulting value at phi nodes for this case value.
5253     SwitchCaseResultsTy Results;
5254     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5255                         DL, TTI))
5256       return false;
5257 
5258     // Only one value per case is permitted.
5259     if (Results.size() > 1)
5260       return false;
5261 
5262     // Add the case->result mapping to UniqueResults.
5263     const uintptr_t NumCasesForResult =
5264         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5265 
5266     // Early out if there are too many cases for this result.
5267     if (NumCasesForResult > MaxCasesPerResult)
5268       return false;
5269 
5270     // Early out if there are too many unique results.
5271     if (UniqueResults.size() > MaxUniqueResults)
5272       return false;
5273 
5274     // Check the PHI consistency.
5275     if (!PHI)
5276       PHI = Results[0].first;
5277     else if (PHI != Results[0].first)
5278       return false;
5279   }
5280   // Find the default result value.
5281   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5282   BasicBlock *DefaultDest = SI->getDefaultDest();
5283   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5284                  DL, TTI);
5285   // If the default value is not found abort unless the default destination
5286   // is unreachable.
5287   DefaultResult =
5288       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5289   if ((!DefaultResult &&
5290        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5291     return false;
5292 
5293   return true;
5294 }
5295 
5296 // Helper function that checks if it is possible to transform a switch with only
5297 // two cases (or two cases + default) that produces a result into a select.
5298 // Example:
5299 // switch (a) {
5300 //   case 10:                %0 = icmp eq i32 %a, 10
5301 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5302 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5303 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5304 //   default:
5305 //     return 4;
5306 // }
5307 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5308                                    Constant *DefaultResult, Value *Condition,
5309                                    IRBuilder<> &Builder) {
5310   // If we are selecting between only two cases transform into a simple
5311   // select or a two-way select if default is possible.
5312   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5313       ResultVector[1].second.size() == 1) {
5314     ConstantInt *const FirstCase = ResultVector[0].second[0];
5315     ConstantInt *const SecondCase = ResultVector[1].second[0];
5316 
5317     bool DefaultCanTrigger = DefaultResult;
5318     Value *SelectValue = ResultVector[1].first;
5319     if (DefaultCanTrigger) {
5320       Value *const ValueCompare =
5321           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5322       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5323                                          DefaultResult, "switch.select");
5324     }
5325     Value *const ValueCompare =
5326         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5327     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5328                                 SelectValue, "switch.select");
5329   }
5330 
5331   // Handle the degenerate case where two cases have the same value.
5332   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5333       DefaultResult) {
5334     Value *Cmp1 = Builder.CreateICmpEQ(
5335         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5336     Value *Cmp2 = Builder.CreateICmpEQ(
5337         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5338     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5339     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5340   }
5341 
5342   return nullptr;
5343 }
5344 
5345 // Helper function to cleanup a switch instruction that has been converted into
5346 // a select, fixing up PHI nodes and basic blocks.
5347 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5348                                               Value *SelectValue,
5349                                               IRBuilder<> &Builder,
5350                                               DomTreeUpdater *DTU) {
5351   std::vector<DominatorTree::UpdateType> Updates;
5352 
5353   BasicBlock *SelectBB = SI->getParent();
5354   BasicBlock *DestBB = PHI->getParent();
5355 
5356   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5357     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5358   Builder.CreateBr(DestBB);
5359 
5360   // Remove the switch.
5361 
5362   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5363     PHI->removeIncomingValue(SelectBB);
5364   PHI->addIncoming(SelectValue, SelectBB);
5365 
5366   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5367   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5368     BasicBlock *Succ = SI->getSuccessor(i);
5369 
5370     if (Succ == DestBB)
5371       continue;
5372     Succ->removePredecessor(SelectBB);
5373     if (DTU && RemovedSuccessors.insert(Succ).second)
5374       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5375   }
5376   SI->eraseFromParent();
5377   if (DTU)
5378     DTU->applyUpdates(Updates);
5379 }
5380 
5381 /// If the switch is only used to initialize one or more
5382 /// phi nodes in a common successor block with only two different
5383 /// constant values, replace the switch with select.
5384 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5385                            DomTreeUpdater *DTU, const DataLayout &DL,
5386                            const TargetTransformInfo &TTI) {
5387   Value *const Cond = SI->getCondition();
5388   PHINode *PHI = nullptr;
5389   BasicBlock *CommonDest = nullptr;
5390   Constant *DefaultResult;
5391   SwitchCaseResultVectorTy UniqueResults;
5392   // Collect all the cases that will deliver the same value from the switch.
5393   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5394                              DL, TTI, /*MaxUniqueResults*/2,
5395                              /*MaxCasesPerResult*/2))
5396     return false;
5397   assert(PHI != nullptr && "PHI for value select not found");
5398 
5399   Builder.SetInsertPoint(SI);
5400   Value *SelectValue =
5401       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5402   if (SelectValue) {
5403     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5404     return true;
5405   }
5406   // The switch couldn't be converted into a select.
5407   return false;
5408 }
5409 
5410 namespace {
5411 
5412 /// This class represents a lookup table that can be used to replace a switch.
5413 class SwitchLookupTable {
5414 public:
5415   /// Create a lookup table to use as a switch replacement with the contents
5416   /// of Values, using DefaultValue to fill any holes in the table.
5417   SwitchLookupTable(
5418       Module &M, uint64_t TableSize, ConstantInt *Offset,
5419       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5420       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5421 
5422   /// Build instructions with Builder to retrieve the value at
5423   /// the position given by Index in the lookup table.
5424   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5425 
5426   /// Return true if a table with TableSize elements of
5427   /// type ElementType would fit in a target-legal register.
5428   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5429                                  Type *ElementType);
5430 
5431 private:
5432   // Depending on the contents of the table, it can be represented in
5433   // different ways.
5434   enum {
5435     // For tables where each element contains the same value, we just have to
5436     // store that single value and return it for each lookup.
5437     SingleValueKind,
5438 
5439     // For tables where there is a linear relationship between table index
5440     // and values. We calculate the result with a simple multiplication
5441     // and addition instead of a table lookup.
5442     LinearMapKind,
5443 
5444     // For small tables with integer elements, we can pack them into a bitmap
5445     // that fits into a target-legal register. Values are retrieved by
5446     // shift and mask operations.
5447     BitMapKind,
5448 
5449     // The table is stored as an array of values. Values are retrieved by load
5450     // instructions from the table.
5451     ArrayKind
5452   } Kind;
5453 
5454   // For SingleValueKind, this is the single value.
5455   Constant *SingleValue = nullptr;
5456 
5457   // For BitMapKind, this is the bitmap.
5458   ConstantInt *BitMap = nullptr;
5459   IntegerType *BitMapElementTy = nullptr;
5460 
5461   // For LinearMapKind, these are the constants used to derive the value.
5462   ConstantInt *LinearOffset = nullptr;
5463   ConstantInt *LinearMultiplier = nullptr;
5464 
5465   // For ArrayKind, this is the array.
5466   GlobalVariable *Array = nullptr;
5467 };
5468 
5469 } // end anonymous namespace
5470 
5471 SwitchLookupTable::SwitchLookupTable(
5472     Module &M, uint64_t TableSize, ConstantInt *Offset,
5473     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5474     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5475   assert(Values.size() && "Can't build lookup table without values!");
5476   assert(TableSize >= Values.size() && "Can't fit values in table!");
5477 
5478   // If all values in the table are equal, this is that value.
5479   SingleValue = Values.begin()->second;
5480 
5481   Type *ValueType = Values.begin()->second->getType();
5482 
5483   // Build up the table contents.
5484   SmallVector<Constant *, 64> TableContents(TableSize);
5485   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5486     ConstantInt *CaseVal = Values[I].first;
5487     Constant *CaseRes = Values[I].second;
5488     assert(CaseRes->getType() == ValueType);
5489 
5490     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5491     TableContents[Idx] = CaseRes;
5492 
5493     if (CaseRes != SingleValue)
5494       SingleValue = nullptr;
5495   }
5496 
5497   // Fill in any holes in the table with the default result.
5498   if (Values.size() < TableSize) {
5499     assert(DefaultValue &&
5500            "Need a default value to fill the lookup table holes.");
5501     assert(DefaultValue->getType() == ValueType);
5502     for (uint64_t I = 0; I < TableSize; ++I) {
5503       if (!TableContents[I])
5504         TableContents[I] = DefaultValue;
5505     }
5506 
5507     if (DefaultValue != SingleValue)
5508       SingleValue = nullptr;
5509   }
5510 
5511   // If each element in the table contains the same value, we only need to store
5512   // that single value.
5513   if (SingleValue) {
5514     Kind = SingleValueKind;
5515     return;
5516   }
5517 
5518   // Check if we can derive the value with a linear transformation from the
5519   // table index.
5520   if (isa<IntegerType>(ValueType)) {
5521     bool LinearMappingPossible = true;
5522     APInt PrevVal;
5523     APInt DistToPrev;
5524     assert(TableSize >= 2 && "Should be a SingleValue table.");
5525     // Check if there is the same distance between two consecutive values.
5526     for (uint64_t I = 0; I < TableSize; ++I) {
5527       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5528       if (!ConstVal) {
5529         // This is an undef. We could deal with it, but undefs in lookup tables
5530         // are very seldom. It's probably not worth the additional complexity.
5531         LinearMappingPossible = false;
5532         break;
5533       }
5534       const APInt &Val = ConstVal->getValue();
5535       if (I != 0) {
5536         APInt Dist = Val - PrevVal;
5537         if (I == 1) {
5538           DistToPrev = Dist;
5539         } else if (Dist != DistToPrev) {
5540           LinearMappingPossible = false;
5541           break;
5542         }
5543       }
5544       PrevVal = Val;
5545     }
5546     if (LinearMappingPossible) {
5547       LinearOffset = cast<ConstantInt>(TableContents[0]);
5548       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5549       Kind = LinearMapKind;
5550       ++NumLinearMaps;
5551       return;
5552     }
5553   }
5554 
5555   // If the type is integer and the table fits in a register, build a bitmap.
5556   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5557     IntegerType *IT = cast<IntegerType>(ValueType);
5558     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5559     for (uint64_t I = TableSize; I > 0; --I) {
5560       TableInt <<= IT->getBitWidth();
5561       // Insert values into the bitmap. Undef values are set to zero.
5562       if (!isa<UndefValue>(TableContents[I - 1])) {
5563         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5564         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5565       }
5566     }
5567     BitMap = ConstantInt::get(M.getContext(), TableInt);
5568     BitMapElementTy = IT;
5569     Kind = BitMapKind;
5570     ++NumBitMaps;
5571     return;
5572   }
5573 
5574   // Store the table in an array.
5575   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5576   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5577 
5578   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5579                              GlobalVariable::PrivateLinkage, Initializer,
5580                              "switch.table." + FuncName);
5581   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5582   // Set the alignment to that of an array items. We will be only loading one
5583   // value out of it.
5584   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5585   Kind = ArrayKind;
5586 }
5587 
5588 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5589   switch (Kind) {
5590   case SingleValueKind:
5591     return SingleValue;
5592   case LinearMapKind: {
5593     // Derive the result value from the input value.
5594     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5595                                           false, "switch.idx.cast");
5596     if (!LinearMultiplier->isOne())
5597       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5598     if (!LinearOffset->isZero())
5599       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5600     return Result;
5601   }
5602   case BitMapKind: {
5603     // Type of the bitmap (e.g. i59).
5604     IntegerType *MapTy = BitMap->getType();
5605 
5606     // Cast Index to the same type as the bitmap.
5607     // Note: The Index is <= the number of elements in the table, so
5608     // truncating it to the width of the bitmask is safe.
5609     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5610 
5611     // Multiply the shift amount by the element width.
5612     ShiftAmt = Builder.CreateMul(
5613         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5614         "switch.shiftamt");
5615 
5616     // Shift down.
5617     Value *DownShifted =
5618         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5619     // Mask off.
5620     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5621   }
5622   case ArrayKind: {
5623     // Make sure the table index will not overflow when treated as signed.
5624     IntegerType *IT = cast<IntegerType>(Index->getType());
5625     uint64_t TableSize =
5626         Array->getInitializer()->getType()->getArrayNumElements();
5627     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5628       Index = Builder.CreateZExt(
5629           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5630           "switch.tableidx.zext");
5631 
5632     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5633     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5634                                            GEPIndices, "switch.gep");
5635     return Builder.CreateLoad(
5636         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5637         "switch.load");
5638   }
5639   }
5640   llvm_unreachable("Unknown lookup table kind!");
5641 }
5642 
5643 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5644                                            uint64_t TableSize,
5645                                            Type *ElementType) {
5646   auto *IT = dyn_cast<IntegerType>(ElementType);
5647   if (!IT)
5648     return false;
5649   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5650   // are <= 15, we could try to narrow the type.
5651 
5652   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5653   if (TableSize >= UINT_MAX / IT->getBitWidth())
5654     return false;
5655   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5656 }
5657 
5658 /// Determine whether a lookup table should be built for this switch, based on
5659 /// the number of cases, size of the table, and the types of the results.
5660 static bool
5661 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5662                        const TargetTransformInfo &TTI, const DataLayout &DL,
5663                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5664   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5665     return false; // TableSize overflowed, or mul below might overflow.
5666 
5667   bool AllTablesFitInRegister = true;
5668   bool HasIllegalType = false;
5669   for (const auto &I : ResultTypes) {
5670     Type *Ty = I.second;
5671 
5672     // Saturate this flag to true.
5673     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5674 
5675     // Saturate this flag to false.
5676     AllTablesFitInRegister =
5677         AllTablesFitInRegister &&
5678         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5679 
5680     // If both flags saturate, we're done. NOTE: This *only* works with
5681     // saturating flags, and all flags have to saturate first due to the
5682     // non-deterministic behavior of iterating over a dense map.
5683     if (HasIllegalType && !AllTablesFitInRegister)
5684       break;
5685   }
5686 
5687   // If each table would fit in a register, we should build it anyway.
5688   if (AllTablesFitInRegister)
5689     return true;
5690 
5691   // Don't build a table that doesn't fit in-register if it has illegal types.
5692   if (HasIllegalType)
5693     return false;
5694 
5695   // The table density should be at least 40%. This is the same criterion as for
5696   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5697   // FIXME: Find the best cut-off.
5698   return SI->getNumCases() * 10 >= TableSize * 4;
5699 }
5700 
5701 /// Try to reuse the switch table index compare. Following pattern:
5702 /// \code
5703 ///     if (idx < tablesize)
5704 ///        r = table[idx]; // table does not contain default_value
5705 ///     else
5706 ///        r = default_value;
5707 ///     if (r != default_value)
5708 ///        ...
5709 /// \endcode
5710 /// Is optimized to:
5711 /// \code
5712 ///     cond = idx < tablesize;
5713 ///     if (cond)
5714 ///        r = table[idx];
5715 ///     else
5716 ///        r = default_value;
5717 ///     if (cond)
5718 ///        ...
5719 /// \endcode
5720 /// Jump threading will then eliminate the second if(cond).
5721 static void reuseTableCompare(
5722     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5723     Constant *DefaultValue,
5724     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5725   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5726   if (!CmpInst)
5727     return;
5728 
5729   // We require that the compare is in the same block as the phi so that jump
5730   // threading can do its work afterwards.
5731   if (CmpInst->getParent() != PhiBlock)
5732     return;
5733 
5734   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5735   if (!CmpOp1)
5736     return;
5737 
5738   Value *RangeCmp = RangeCheckBranch->getCondition();
5739   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5740   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5741 
5742   // Check if the compare with the default value is constant true or false.
5743   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5744                                                  DefaultValue, CmpOp1, true);
5745   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5746     return;
5747 
5748   // Check if the compare with the case values is distinct from the default
5749   // compare result.
5750   for (auto ValuePair : Values) {
5751     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5752                                                 ValuePair.second, CmpOp1, true);
5753     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5754       return;
5755     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5756            "Expect true or false as compare result.");
5757   }
5758 
5759   // Check if the branch instruction dominates the phi node. It's a simple
5760   // dominance check, but sufficient for our needs.
5761   // Although this check is invariant in the calling loops, it's better to do it
5762   // at this late stage. Practically we do it at most once for a switch.
5763   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5764   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5765     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5766       return;
5767   }
5768 
5769   if (DefaultConst == FalseConst) {
5770     // The compare yields the same result. We can replace it.
5771     CmpInst->replaceAllUsesWith(RangeCmp);
5772     ++NumTableCmpReuses;
5773   } else {
5774     // The compare yields the same result, just inverted. We can replace it.
5775     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5776         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5777         RangeCheckBranch);
5778     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5779     ++NumTableCmpReuses;
5780   }
5781 }
5782 
5783 /// If the switch is only used to initialize one or more phi nodes in a common
5784 /// successor block with different constant values, replace the switch with
5785 /// lookup tables.
5786 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5787                                 DomTreeUpdater *DTU, const DataLayout &DL,
5788                                 const TargetTransformInfo &TTI) {
5789   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5790 
5791   BasicBlock *BB = SI->getParent();
5792   Function *Fn = BB->getParent();
5793   // Only build lookup table when we have a target that supports it or the
5794   // attribute is not set.
5795   if (!TTI.shouldBuildLookupTables() ||
5796       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5797     return false;
5798 
5799   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5800   // split off a dense part and build a lookup table for that.
5801 
5802   // FIXME: This creates arrays of GEPs to constant strings, which means each
5803   // GEP needs a runtime relocation in PIC code. We should just build one big
5804   // string and lookup indices into that.
5805 
5806   // Ignore switches with less than three cases. Lookup tables will not make
5807   // them faster, so we don't analyze them.
5808   if (SI->getNumCases() < 3)
5809     return false;
5810 
5811   // Figure out the corresponding result for each case value and phi node in the
5812   // common destination, as well as the min and max case values.
5813   assert(!SI->cases().empty());
5814   SwitchInst::CaseIt CI = SI->case_begin();
5815   ConstantInt *MinCaseVal = CI->getCaseValue();
5816   ConstantInt *MaxCaseVal = CI->getCaseValue();
5817 
5818   BasicBlock *CommonDest = nullptr;
5819 
5820   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5821   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5822 
5823   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5824   SmallDenseMap<PHINode *, Type *> ResultTypes;
5825   SmallVector<PHINode *, 4> PHIs;
5826 
5827   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5828     ConstantInt *CaseVal = CI->getCaseValue();
5829     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5830       MinCaseVal = CaseVal;
5831     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5832       MaxCaseVal = CaseVal;
5833 
5834     // Resulting value at phi nodes for this case value.
5835     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5836     ResultsTy Results;
5837     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5838                         Results, DL, TTI))
5839       return false;
5840 
5841     // Append the result from this case to the list for each phi.
5842     for (const auto &I : Results) {
5843       PHINode *PHI = I.first;
5844       Constant *Value = I.second;
5845       if (!ResultLists.count(PHI))
5846         PHIs.push_back(PHI);
5847       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5848     }
5849   }
5850 
5851   // Keep track of the result types.
5852   for (PHINode *PHI : PHIs) {
5853     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5854   }
5855 
5856   uint64_t NumResults = ResultLists[PHIs[0]].size();
5857   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5858   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5859   bool TableHasHoles = (NumResults < TableSize);
5860 
5861   // If the table has holes, we need a constant result for the default case
5862   // or a bitmask that fits in a register.
5863   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5864   bool HasDefaultResults =
5865       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5866                      DefaultResultsList, DL, TTI);
5867 
5868   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5869   if (NeedMask) {
5870     // As an extra penalty for the validity test we require more cases.
5871     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5872       return false;
5873     if (!DL.fitsInLegalInteger(TableSize))
5874       return false;
5875   }
5876 
5877   for (const auto &I : DefaultResultsList) {
5878     PHINode *PHI = I.first;
5879     Constant *Result = I.second;
5880     DefaultResults[PHI] = Result;
5881   }
5882 
5883   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5884     return false;
5885 
5886   std::vector<DominatorTree::UpdateType> Updates;
5887 
5888   // Create the BB that does the lookups.
5889   Module &Mod = *CommonDest->getParent()->getParent();
5890   BasicBlock *LookupBB = BasicBlock::Create(
5891       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5892 
5893   // Compute the table index value.
5894   Builder.SetInsertPoint(SI);
5895   Value *TableIndex;
5896   if (MinCaseVal->isNullValue())
5897     TableIndex = SI->getCondition();
5898   else
5899     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5900                                    "switch.tableidx");
5901 
5902   // Compute the maximum table size representable by the integer type we are
5903   // switching upon.
5904   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5905   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5906   assert(MaxTableSize >= TableSize &&
5907          "It is impossible for a switch to have more entries than the max "
5908          "representable value of its input integer type's size.");
5909 
5910   // If the default destination is unreachable, or if the lookup table covers
5911   // all values of the conditional variable, branch directly to the lookup table
5912   // BB. Otherwise, check that the condition is within the case range.
5913   const bool DefaultIsReachable =
5914       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5915   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5916   BranchInst *RangeCheckBranch = nullptr;
5917 
5918   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5919     Builder.CreateBr(LookupBB);
5920     if (DTU)
5921       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5922     // Note: We call removeProdecessor later since we need to be able to get the
5923     // PHI value for the default case in case we're using a bit mask.
5924   } else {
5925     Value *Cmp = Builder.CreateICmpULT(
5926         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5927     RangeCheckBranch =
5928         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5929     if (DTU)
5930       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5931   }
5932 
5933   // Populate the BB that does the lookups.
5934   Builder.SetInsertPoint(LookupBB);
5935 
5936   if (NeedMask) {
5937     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5938     // re-purposed to do the hole check, and we create a new LookupBB.
5939     BasicBlock *MaskBB = LookupBB;
5940     MaskBB->setName("switch.hole_check");
5941     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5942                                   CommonDest->getParent(), CommonDest);
5943 
5944     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5945     // unnecessary illegal types.
5946     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5947     APInt MaskInt(TableSizePowOf2, 0);
5948     APInt One(TableSizePowOf2, 1);
5949     // Build bitmask; fill in a 1 bit for every case.
5950     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5951     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5952       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5953                          .getLimitedValue();
5954       MaskInt |= One << Idx;
5955     }
5956     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5957 
5958     // Get the TableIndex'th bit of the bitmask.
5959     // If this bit is 0 (meaning hole) jump to the default destination,
5960     // else continue with table lookup.
5961     IntegerType *MapTy = TableMask->getType();
5962     Value *MaskIndex =
5963         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5964     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5965     Value *LoBit = Builder.CreateTrunc(
5966         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5967     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5968     if (DTU) {
5969       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5970       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5971     }
5972     Builder.SetInsertPoint(LookupBB);
5973     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
5974   }
5975 
5976   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5977     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5978     // do not delete PHINodes here.
5979     SI->getDefaultDest()->removePredecessor(BB,
5980                                             /*KeepOneInputPHIs=*/true);
5981     if (DTU)
5982       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
5983   }
5984 
5985   bool ReturnedEarly = false;
5986   for (PHINode *PHI : PHIs) {
5987     const ResultListTy &ResultList = ResultLists[PHI];
5988 
5989     // If using a bitmask, use any value to fill the lookup table holes.
5990     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5991     StringRef FuncName = Fn->getName();
5992     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5993                             FuncName);
5994 
5995     Value *Result = Table.BuildLookup(TableIndex, Builder);
5996 
5997     // If the result is used to return immediately from the function, we want to
5998     // do that right here.
5999     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
6000         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
6001       Builder.CreateRet(Result);
6002       ReturnedEarly = true;
6003       break;
6004     }
6005 
6006     // Do a small peephole optimization: re-use the switch table compare if
6007     // possible.
6008     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6009       BasicBlock *PhiBlock = PHI->getParent();
6010       // Search for compare instructions which use the phi.
6011       for (auto *User : PHI->users()) {
6012         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6013       }
6014     }
6015 
6016     PHI->addIncoming(Result, LookupBB);
6017   }
6018 
6019   if (!ReturnedEarly) {
6020     Builder.CreateBr(CommonDest);
6021     if (DTU)
6022       Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6023   }
6024 
6025   // Remove the switch.
6026   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6027   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6028     BasicBlock *Succ = SI->getSuccessor(i);
6029 
6030     if (Succ == SI->getDefaultDest())
6031       continue;
6032     Succ->removePredecessor(BB);
6033     RemovedSuccessors.insert(Succ);
6034   }
6035   SI->eraseFromParent();
6036 
6037   if (DTU) {
6038     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6039       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6040     DTU->applyUpdates(Updates);
6041   }
6042 
6043   ++NumLookupTables;
6044   if (NeedMask)
6045     ++NumLookupTablesHoles;
6046   return true;
6047 }
6048 
6049 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6050   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6051   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6052   uint64_t Range = Diff + 1;
6053   uint64_t NumCases = Values.size();
6054   // 40% is the default density for building a jump table in optsize/minsize mode.
6055   uint64_t MinDensity = 40;
6056 
6057   return NumCases * 100 >= Range * MinDensity;
6058 }
6059 
6060 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6061 /// of cases.
6062 ///
6063 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6064 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6065 ///
6066 /// This converts a sparse switch into a dense switch which allows better
6067 /// lowering and could also allow transforming into a lookup table.
6068 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6069                               const DataLayout &DL,
6070                               const TargetTransformInfo &TTI) {
6071   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6072   if (CondTy->getIntegerBitWidth() > 64 ||
6073       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6074     return false;
6075   // Only bother with this optimization if there are more than 3 switch cases;
6076   // SDAG will only bother creating jump tables for 4 or more cases.
6077   if (SI->getNumCases() < 4)
6078     return false;
6079 
6080   // This transform is agnostic to the signedness of the input or case values. We
6081   // can treat the case values as signed or unsigned. We can optimize more common
6082   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6083   // as signed.
6084   SmallVector<int64_t,4> Values;
6085   for (auto &C : SI->cases())
6086     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6087   llvm::sort(Values);
6088 
6089   // If the switch is already dense, there's nothing useful to do here.
6090   if (isSwitchDense(Values))
6091     return false;
6092 
6093   // First, transform the values such that they start at zero and ascend.
6094   int64_t Base = Values[0];
6095   for (auto &V : Values)
6096     V -= (uint64_t)(Base);
6097 
6098   // Now we have signed numbers that have been shifted so that, given enough
6099   // precision, there are no negative values. Since the rest of the transform
6100   // is bitwise only, we switch now to an unsigned representation.
6101 
6102   // This transform can be done speculatively because it is so cheap - it
6103   // results in a single rotate operation being inserted.
6104   // FIXME: It's possible that optimizing a switch on powers of two might also
6105   // be beneficial - flag values are often powers of two and we could use a CLZ
6106   // as the key function.
6107 
6108   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6109   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6110   // less than 64.
6111   unsigned Shift = 64;
6112   for (auto &V : Values)
6113     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6114   assert(Shift < 64);
6115   if (Shift > 0)
6116     for (auto &V : Values)
6117       V = (int64_t)((uint64_t)V >> Shift);
6118 
6119   if (!isSwitchDense(Values))
6120     // Transform didn't create a dense switch.
6121     return false;
6122 
6123   // The obvious transform is to shift the switch condition right and emit a
6124   // check that the condition actually cleanly divided by GCD, i.e.
6125   //   C & (1 << Shift - 1) == 0
6126   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6127   //
6128   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6129   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6130   // are nonzero then the switch condition will be very large and will hit the
6131   // default case.
6132 
6133   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6134   Builder.SetInsertPoint(SI);
6135   auto *ShiftC = ConstantInt::get(Ty, Shift);
6136   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6137   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6138   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6139   auto *Rot = Builder.CreateOr(LShr, Shl);
6140   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6141 
6142   for (auto Case : SI->cases()) {
6143     auto *Orig = Case.getCaseValue();
6144     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6145     Case.setValue(
6146         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6147   }
6148   return true;
6149 }
6150 
6151 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6152   BasicBlock *BB = SI->getParent();
6153 
6154   if (isValueEqualityComparison(SI)) {
6155     // If we only have one predecessor, and if it is a branch on this value,
6156     // see if that predecessor totally determines the outcome of this switch.
6157     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6158       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6159         return requestResimplify();
6160 
6161     Value *Cond = SI->getCondition();
6162     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6163       if (SimplifySwitchOnSelect(SI, Select))
6164         return requestResimplify();
6165 
6166     // If the block only contains the switch, see if we can fold the block
6167     // away into any preds.
6168     if (SI == &*BB->instructionsWithoutDebug().begin())
6169       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6170         return requestResimplify();
6171   }
6172 
6173   // Try to transform the switch into an icmp and a branch.
6174   if (TurnSwitchRangeIntoICmp(SI, Builder))
6175     return requestResimplify();
6176 
6177   // Remove unreachable cases.
6178   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6179     return requestResimplify();
6180 
6181   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6182     return requestResimplify();
6183 
6184   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6185     return requestResimplify();
6186 
6187   // The conversion from switch to lookup tables results in difficult-to-analyze
6188   // code and makes pruning branches much harder. This is a problem if the
6189   // switch expression itself can still be restricted as a result of inlining or
6190   // CVP. Therefore, only apply this transformation during late stages of the
6191   // optimisation pipeline.
6192   if (Options.ConvertSwitchToLookupTable &&
6193       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6194     return requestResimplify();
6195 
6196   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6197     return requestResimplify();
6198 
6199   return false;
6200 }
6201 
6202 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6203   BasicBlock *BB = IBI->getParent();
6204   bool Changed = false;
6205 
6206   // Eliminate redundant destinations.
6207   SmallPtrSet<Value *, 8> Succs;
6208   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6209   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6210     BasicBlock *Dest = IBI->getDestination(i);
6211     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6212       if (!Dest->hasAddressTaken())
6213         RemovedSuccs.insert(Dest);
6214       Dest->removePredecessor(BB);
6215       IBI->removeDestination(i);
6216       --i;
6217       --e;
6218       Changed = true;
6219     }
6220   }
6221 
6222   if (DTU) {
6223     std::vector<DominatorTree::UpdateType> Updates;
6224     Updates.reserve(RemovedSuccs.size());
6225     for (auto *RemovedSucc : RemovedSuccs)
6226       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6227     DTU->applyUpdates(Updates);
6228   }
6229 
6230   if (IBI->getNumDestinations() == 0) {
6231     // If the indirectbr has no successors, change it to unreachable.
6232     new UnreachableInst(IBI->getContext(), IBI);
6233     EraseTerminatorAndDCECond(IBI);
6234     return true;
6235   }
6236 
6237   if (IBI->getNumDestinations() == 1) {
6238     // If the indirectbr has one successor, change it to a direct branch.
6239     BranchInst::Create(IBI->getDestination(0), IBI);
6240     EraseTerminatorAndDCECond(IBI);
6241     return true;
6242   }
6243 
6244   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6245     if (SimplifyIndirectBrOnSelect(IBI, SI))
6246       return requestResimplify();
6247   }
6248   return Changed;
6249 }
6250 
6251 /// Given an block with only a single landing pad and a unconditional branch
6252 /// try to find another basic block which this one can be merged with.  This
6253 /// handles cases where we have multiple invokes with unique landing pads, but
6254 /// a shared handler.
6255 ///
6256 /// We specifically choose to not worry about merging non-empty blocks
6257 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6258 /// practice, the optimizer produces empty landing pad blocks quite frequently
6259 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6260 /// sinking in this file)
6261 ///
6262 /// This is primarily a code size optimization.  We need to avoid performing
6263 /// any transform which might inhibit optimization (such as our ability to
6264 /// specialize a particular handler via tail commoning).  We do this by not
6265 /// merging any blocks which require us to introduce a phi.  Since the same
6266 /// values are flowing through both blocks, we don't lose any ability to
6267 /// specialize.  If anything, we make such specialization more likely.
6268 ///
6269 /// TODO - This transformation could remove entries from a phi in the target
6270 /// block when the inputs in the phi are the same for the two blocks being
6271 /// merged.  In some cases, this could result in removal of the PHI entirely.
6272 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6273                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6274   auto Succ = BB->getUniqueSuccessor();
6275   assert(Succ);
6276   // If there's a phi in the successor block, we'd likely have to introduce
6277   // a phi into the merged landing pad block.
6278   if (isa<PHINode>(*Succ->begin()))
6279     return false;
6280 
6281   for (BasicBlock *OtherPred : predecessors(Succ)) {
6282     if (BB == OtherPred)
6283       continue;
6284     BasicBlock::iterator I = OtherPred->begin();
6285     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6286     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6287       continue;
6288     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6289       ;
6290     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6291     if (!BI2 || !BI2->isIdenticalTo(BI))
6292       continue;
6293 
6294     std::vector<DominatorTree::UpdateType> Updates;
6295 
6296     // We've found an identical block.  Update our predecessors to take that
6297     // path instead and make ourselves dead.
6298     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6299     for (BasicBlock *Pred : Preds) {
6300       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6301       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6302              "unexpected successor");
6303       II->setUnwindDest(OtherPred);
6304       if (DTU) {
6305         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6306         Updates.push_back({DominatorTree::Delete, Pred, BB});
6307       }
6308     }
6309 
6310     // The debug info in OtherPred doesn't cover the merged control flow that
6311     // used to go through BB.  We need to delete it or update it.
6312     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6313       Instruction &Inst = *I;
6314       I++;
6315       if (isa<DbgInfoIntrinsic>(Inst))
6316         Inst.eraseFromParent();
6317     }
6318 
6319     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6320     for (BasicBlock *Succ : Succs) {
6321       Succ->removePredecessor(BB);
6322       if (DTU)
6323         Updates.push_back({DominatorTree::Delete, BB, Succ});
6324     }
6325 
6326     IRBuilder<> Builder(BI);
6327     Builder.CreateUnreachable();
6328     BI->eraseFromParent();
6329     if (DTU)
6330       DTU->applyUpdates(Updates);
6331     return true;
6332   }
6333   return false;
6334 }
6335 
6336 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6337   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6338                                    : simplifyCondBranch(Branch, Builder);
6339 }
6340 
6341 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6342                                           IRBuilder<> &Builder) {
6343   BasicBlock *BB = BI->getParent();
6344   BasicBlock *Succ = BI->getSuccessor(0);
6345 
6346   // If the Terminator is the only non-phi instruction, simplify the block.
6347   // If LoopHeader is provided, check if the block or its successor is a loop
6348   // header. (This is for early invocations before loop simplify and
6349   // vectorization to keep canonical loop forms for nested loops. These blocks
6350   // can be eliminated when the pass is invoked later in the back-end.)
6351   // Note that if BB has only one predecessor then we do not introduce new
6352   // backedge, so we can eliminate BB.
6353   bool NeedCanonicalLoop =
6354       Options.NeedCanonicalLoop &&
6355       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6356        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6357   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6358   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6359       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6360     return true;
6361 
6362   // If the only instruction in the block is a seteq/setne comparison against a
6363   // constant, try to simplify the block.
6364   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6365     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6366       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6367         ;
6368       if (I->isTerminator() &&
6369           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6370         return true;
6371     }
6372 
6373   // See if we can merge an empty landing pad block with another which is
6374   // equivalent.
6375   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6376     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6377       ;
6378     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6379       return true;
6380   }
6381 
6382   // If this basic block is ONLY a compare and a branch, and if a predecessor
6383   // branches to us and our successor, fold the comparison into the
6384   // predecessor and use logical operations to update the incoming value
6385   // for PHI nodes in common successor.
6386   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6387                              Options.BonusInstThreshold))
6388     return requestResimplify();
6389   return false;
6390 }
6391 
6392 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6393   BasicBlock *PredPred = nullptr;
6394   for (auto *P : predecessors(BB)) {
6395     BasicBlock *PPred = P->getSinglePredecessor();
6396     if (!PPred || (PredPred && PredPred != PPred))
6397       return nullptr;
6398     PredPred = PPred;
6399   }
6400   return PredPred;
6401 }
6402 
6403 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6404   BasicBlock *BB = BI->getParent();
6405   if (!Options.SimplifyCondBranch)
6406     return false;
6407 
6408   // Conditional branch
6409   if (isValueEqualityComparison(BI)) {
6410     // If we only have one predecessor, and if it is a branch on this value,
6411     // see if that predecessor totally determines the outcome of this
6412     // switch.
6413     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6414       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6415         return requestResimplify();
6416 
6417     // This block must be empty, except for the setcond inst, if it exists.
6418     // Ignore dbg and pseudo intrinsics.
6419     auto I = BB->instructionsWithoutDebug(true).begin();
6420     if (&*I == BI) {
6421       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6422         return requestResimplify();
6423     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6424       ++I;
6425       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6426         return requestResimplify();
6427     }
6428   }
6429 
6430   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6431   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6432     return true;
6433 
6434   // If this basic block has dominating predecessor blocks and the dominating
6435   // blocks' conditions imply BI's condition, we know the direction of BI.
6436   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6437   if (Imp) {
6438     // Turn this into a branch on constant.
6439     auto *OldCond = BI->getCondition();
6440     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6441                              : ConstantInt::getFalse(BB->getContext());
6442     BI->setCondition(TorF);
6443     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6444     return requestResimplify();
6445   }
6446 
6447   // If this basic block is ONLY a compare and a branch, and if a predecessor
6448   // branches to us and one of our successors, fold the comparison into the
6449   // predecessor and use logical operations to pick the right destination.
6450   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6451                              Options.BonusInstThreshold))
6452     return requestResimplify();
6453 
6454   // We have a conditional branch to two blocks that are only reachable
6455   // from BI.  We know that the condbr dominates the two blocks, so see if
6456   // there is any identical code in the "then" and "else" blocks.  If so, we
6457   // can hoist it up to the branching block.
6458   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6459     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6460       if (HoistCommon &&
6461           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6462         return requestResimplify();
6463     } else {
6464       // If Successor #1 has multiple preds, we may be able to conditionally
6465       // execute Successor #0 if it branches to Successor #1.
6466       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6467       if (Succ0TI->getNumSuccessors() == 1 &&
6468           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6469         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6470           return requestResimplify();
6471     }
6472   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6473     // If Successor #0 has multiple preds, we may be able to conditionally
6474     // execute Successor #1 if it branches to Successor #0.
6475     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6476     if (Succ1TI->getNumSuccessors() == 1 &&
6477         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6478       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6479         return requestResimplify();
6480   }
6481 
6482   // If this is a branch on a phi node in the current block, thread control
6483   // through this block if any PHI node entries are constants.
6484   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6485     if (PN->getParent() == BI->getParent())
6486       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6487         return requestResimplify();
6488 
6489   // Scan predecessor blocks for conditional branches.
6490   for (BasicBlock *Pred : predecessors(BB))
6491     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6492       if (PBI != BI && PBI->isConditional())
6493         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6494           return requestResimplify();
6495 
6496   // Look for diamond patterns.
6497   if (MergeCondStores)
6498     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6499       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6500         if (PBI != BI && PBI->isConditional())
6501           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6502             return requestResimplify();
6503 
6504   return false;
6505 }
6506 
6507 /// Check if passing a value to an instruction will cause undefined behavior.
6508 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6509   Constant *C = dyn_cast<Constant>(V);
6510   if (!C)
6511     return false;
6512 
6513   if (I->use_empty())
6514     return false;
6515 
6516   if (C->isNullValue() || isa<UndefValue>(C)) {
6517     // Only look at the first use, avoid hurting compile time with long uselists
6518     User *Use = *I->user_begin();
6519 
6520     // Now make sure that there are no instructions in between that can alter
6521     // control flow (eg. calls)
6522     for (BasicBlock::iterator
6523              i = ++BasicBlock::iterator(I),
6524              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6525          i != UI; ++i)
6526       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6527         return false;
6528 
6529     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6530     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6531       if (GEP->getPointerOperand() == I) {
6532         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6533           PtrValueMayBeModified = true;
6534         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6535       }
6536 
6537     // Look through bitcasts.
6538     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6539       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6540 
6541     // Load from null is undefined.
6542     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6543       if (!LI->isVolatile())
6544         return !NullPointerIsDefined(LI->getFunction(),
6545                                      LI->getPointerAddressSpace());
6546 
6547     // Store to null is undefined.
6548     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6549       if (!SI->isVolatile())
6550         return (!NullPointerIsDefined(SI->getFunction(),
6551                                       SI->getPointerAddressSpace())) &&
6552                SI->getPointerOperand() == I;
6553 
6554     if (auto *CB = dyn_cast<CallBase>(Use)) {
6555       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6556         return false;
6557       // A call to null is undefined.
6558       if (CB->getCalledOperand() == I)
6559         return true;
6560 
6561       if (C->isNullValue()) {
6562         for (const llvm::Use &Arg : CB->args())
6563           if (Arg == I) {
6564             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6565             if (CB->isPassingUndefUB(ArgIdx) &&
6566                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6567               // Passing null to a nonnnull+noundef argument is undefined.
6568               return !PtrValueMayBeModified;
6569             }
6570           }
6571       } else if (isa<UndefValue>(C)) {
6572         // Passing undef to a noundef argument is undefined.
6573         for (const llvm::Use &Arg : CB->args())
6574           if (Arg == I) {
6575             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6576             if (CB->isPassingUndefUB(ArgIdx)) {
6577               // Passing undef to a noundef argument is undefined.
6578               return true;
6579             }
6580           }
6581       }
6582     }
6583   }
6584   return false;
6585 }
6586 
6587 /// If BB has an incoming value that will always trigger undefined behavior
6588 /// (eg. null pointer dereference), remove the branch leading here.
6589 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6590                                               DomTreeUpdater *DTU) {
6591   for (PHINode &PHI : BB->phis())
6592     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6593       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6594         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6595         Instruction *T = Predecessor->getTerminator();
6596         IRBuilder<> Builder(T);
6597         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6598           BB->removePredecessor(Predecessor);
6599           // Turn uncoditional branches into unreachables and remove the dead
6600           // destination from conditional branches.
6601           if (BI->isUnconditional())
6602             Builder.CreateUnreachable();
6603           else
6604             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6605                                                        : BI->getSuccessor(0));
6606           BI->eraseFromParent();
6607           if (DTU)
6608             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6609           return true;
6610         }
6611         // TODO: SwitchInst.
6612       }
6613 
6614   return false;
6615 }
6616 
6617 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6618   bool Changed = false;
6619 
6620   assert(BB && BB->getParent() && "Block not embedded in function!");
6621   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6622 
6623   // Remove basic blocks that have no predecessors (except the entry block)...
6624   // or that just have themself as a predecessor.  These are unreachable.
6625   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6626       BB->getSinglePredecessor() == BB) {
6627     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6628     DeleteDeadBlock(BB, DTU);
6629     return true;
6630   }
6631 
6632   // Check to see if we can constant propagate this terminator instruction
6633   // away...
6634   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6635                                     /*TLI=*/nullptr, DTU);
6636 
6637   // Check for and eliminate duplicate PHI nodes in this block.
6638   Changed |= EliminateDuplicatePHINodes(BB);
6639 
6640   // Check for and remove branches that will always cause undefined behavior.
6641   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6642 
6643   // Merge basic blocks into their predecessor if there is only one distinct
6644   // pred, and if there is only one distinct successor of the predecessor, and
6645   // if there are no PHI nodes.
6646   if (MergeBlockIntoPredecessor(BB, DTU))
6647     return true;
6648 
6649   if (SinkCommon && Options.SinkCommonInsts)
6650     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6651 
6652   IRBuilder<> Builder(BB);
6653 
6654   if (Options.FoldTwoEntryPHINode) {
6655     // If there is a trivial two-entry PHI node in this basic block, and we can
6656     // eliminate it, do so now.
6657     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6658       if (PN->getNumIncomingValues() == 2)
6659         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6660   }
6661 
6662   Instruction *Terminator = BB->getTerminator();
6663   Builder.SetInsertPoint(Terminator);
6664   switch (Terminator->getOpcode()) {
6665   case Instruction::Br:
6666     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6667     break;
6668   case Instruction::Ret:
6669     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6670     break;
6671   case Instruction::Resume:
6672     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6673     break;
6674   case Instruction::CleanupRet:
6675     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6676     break;
6677   case Instruction::Switch:
6678     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6679     break;
6680   case Instruction::Unreachable:
6681     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6682     break;
6683   case Instruction::IndirectBr:
6684     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6685     break;
6686   }
6687 
6688   return Changed;
6689 }
6690 
6691 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6692   bool Changed = simplifyOnceImpl(BB);
6693 
6694   return Changed;
6695 }
6696 
6697 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6698   bool Changed = false;
6699 
6700   // Repeated simplify BB as long as resimplification is requested.
6701   do {
6702     Resimplify = false;
6703 
6704     // Perform one round of simplifcation. Resimplify flag will be set if
6705     // another iteration is requested.
6706     Changed |= simplifyOnce(BB);
6707   } while (Resimplify);
6708 
6709   return Changed;
6710 }
6711 
6712 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6713                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6714                        ArrayRef<WeakVH> LoopHeaders) {
6715   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6716                         Options)
6717       .run(BB);
6718 }
6719