1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/PseudoProbe.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/SSAUpdater.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <set>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "simplifycfg"
95 
96 cl::opt<bool> llvm::RequireAndPreserveDomTree(
97     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
98     cl::init(false),
99     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
100              "into preserving DomTree,"));
101 
102 // Chosen as 2 so as to be cheap, but still to have enough power to fold
103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
104 // To catch this, we need to fold a compare and a select, hence '2' being the
105 // minimum reasonable default.
106 static cl::opt<unsigned> PHINodeFoldingThreshold(
107     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
108     cl::desc(
109         "Control the amount of phi node folding to perform (default = 2)"));
110 
111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
112     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
113     cl::desc("Control the maximal total instruction cost that we are willing "
114              "to speculatively execute to fold a 2-entry PHI node into a "
115              "select (default = 4)"));
116 
117 static cl::opt<bool>
118     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
119                 cl::desc("Hoist common instructions up to the parent block"));
120 
121 static cl::opt<bool>
122     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
123                cl::desc("Sink common instructions down to the end block"));
124 
125 static cl::opt<bool> HoistCondStores(
126     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
127     cl::desc("Hoist conditional stores if an unconditional store precedes"));
128 
129 static cl::opt<bool> MergeCondStores(
130     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
131     cl::desc("Hoist conditional stores even if an unconditional store does not "
132              "precede - hoist multiple conditional stores into a single "
133              "predicated store"));
134 
135 static cl::opt<bool> MergeCondStoresAggressively(
136     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
137     cl::desc("When merging conditional stores, do so even if the resultant "
138              "basic blocks are unlikely to be if-converted as a result"));
139 
140 static cl::opt<bool> SpeculateOneExpensiveInst(
141     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
142     cl::desc("Allow exactly one expensive instruction to be speculatively "
143              "executed"));
144 
145 static cl::opt<unsigned> MaxSpeculationDepth(
146     "max-speculation-depth", cl::Hidden, cl::init(10),
147     cl::desc("Limit maximum recursion depth when calculating costs of "
148              "speculatively executed instructions"));
149 
150 static cl::opt<int>
151     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
152                       cl::init(10),
153                       cl::desc("Max size of a block which is still considered "
154                                "small enough to thread through"));
155 
156 // Two is chosen to allow one negation and a logical combine.
157 static cl::opt<unsigned>
158     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
159                         cl::init(2),
160                         cl::desc("Maximum cost of combining conditions when "
161                                  "folding branches"));
162 
163 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
164     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
165     cl::init(2),
166     cl::desc("Multiplier to apply to threshold when determining whether or not "
167              "to fold branch to common destination when vector operations are "
168              "present"));
169 
170 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
171 STATISTIC(NumLinearMaps,
172           "Number of switch instructions turned into linear mapping");
173 STATISTIC(NumLookupTables,
174           "Number of switch instructions turned into lookup tables");
175 STATISTIC(
176     NumLookupTablesHoles,
177     "Number of switch instructions turned into lookup tables (holes checked)");
178 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
179 STATISTIC(NumFoldValueComparisonIntoPredecessors,
180           "Number of value comparisons folded into predecessor basic blocks");
181 STATISTIC(NumFoldBranchToCommonDest,
182           "Number of branches folded into predecessor basic block");
183 STATISTIC(
184     NumHoistCommonCode,
185     "Number of common instruction 'blocks' hoisted up to the begin block");
186 STATISTIC(NumHoistCommonInstrs,
187           "Number of common instructions hoisted up to the begin block");
188 STATISTIC(NumSinkCommonCode,
189           "Number of common instruction 'blocks' sunk down to the end block");
190 STATISTIC(NumSinkCommonInstrs,
191           "Number of common instructions sunk down to the end block");
192 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
193 STATISTIC(NumInvokes,
194           "Number of invokes with empty resume blocks simplified into calls");
195 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
196 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
197 
198 namespace {
199 
200 // The first field contains the value that the switch produces when a certain
201 // case group is selected, and the second field is a vector containing the
202 // cases composing the case group.
203 using SwitchCaseResultVectorTy =
204     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
205 
206 // The first field contains the phi node that generates a result of the switch
207 // and the second field contains the value generated for a certain case in the
208 // switch for that PHI.
209 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
210 
211 /// ValueEqualityComparisonCase - Represents a case of a switch.
212 struct ValueEqualityComparisonCase {
213   ConstantInt *Value;
214   BasicBlock *Dest;
215 
216   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
217       : Value(Value), Dest(Dest) {}
218 
219   bool operator<(ValueEqualityComparisonCase RHS) const {
220     // Comparing pointers is ok as we only rely on the order for uniquing.
221     return Value < RHS.Value;
222   }
223 
224   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
225 };
226 
227 class SimplifyCFGOpt {
228   const TargetTransformInfo &TTI;
229   DomTreeUpdater *DTU;
230   const DataLayout &DL;
231   ArrayRef<WeakVH> LoopHeaders;
232   const SimplifyCFGOptions &Options;
233   bool Resimplify;
234 
235   Value *isValueEqualityComparison(Instruction *TI);
236   BasicBlock *GetValueEqualityComparisonCases(
237       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
238   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
239                                                      BasicBlock *Pred,
240                                                      IRBuilder<> &Builder);
241   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
242                                                     Instruction *PTI,
243                                                     IRBuilder<> &Builder);
244   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
245                                            IRBuilder<> &Builder);
246 
247   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
248   bool simplifySingleResume(ResumeInst *RI);
249   bool simplifyCommonResume(ResumeInst *RI);
250   bool simplifyCleanupReturn(CleanupReturnInst *RI);
251   bool simplifyUnreachable(UnreachableInst *UI);
252   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
253   bool simplifyIndirectBr(IndirectBrInst *IBI);
254   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
255   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
256   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
257 
258   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
259                                              IRBuilder<> &Builder);
260 
261   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
262                              bool EqTermsOnly);
263   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
264                               const TargetTransformInfo &TTI);
265   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
266                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
267                                   uint32_t TrueWeight, uint32_t FalseWeight);
268   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
269                                  const DataLayout &DL);
270   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
271   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
272   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
273 
274 public:
275   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
276                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
277                  const SimplifyCFGOptions &Opts)
278       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
279     assert((!DTU || !DTU->hasPostDomTree()) &&
280            "SimplifyCFG is not yet capable of maintaining validity of a "
281            "PostDomTree, so don't ask for it.");
282   }
283 
284   bool simplifyOnce(BasicBlock *BB);
285   bool run(BasicBlock *BB);
286 
287   // Helper to set Resimplify and return change indication.
288   bool requestResimplify() {
289     Resimplify = true;
290     return true;
291   }
292 };
293 
294 } // end anonymous namespace
295 
296 /// Return true if all the PHI nodes in the basic block \p BB
297 /// receive compatible (identical) incoming values when coming from
298 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
299 ///
300 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
301 /// is provided, and *both* of the values are present in the set,
302 /// then they are considered equal.
303 static bool IncomingValuesAreCompatible(
304     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
305     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
306   assert(IncomingBlocks.size() == 2 &&
307          "Only for a pair of incoming blocks at the time!");
308 
309   // FIXME: it is okay if one of the incoming values is an `undef` value,
310   //        iff the other incoming value is guaranteed to be a non-poison value.
311   // FIXME: it is okay if one of the incoming values is a `poison` value.
312   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
313     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
314     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
315     if (IV0 == IV1)
316       return true;
317     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
318         EquivalenceSet->contains(IV1))
319       return true;
320     return false;
321   });
322 }
323 
324 /// Return true if it is safe to merge these two
325 /// terminator instructions together.
326 static bool
327 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
328                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
329   if (SI1 == SI2)
330     return false; // Can't merge with self!
331 
332   // It is not safe to merge these two switch instructions if they have a common
333   // successor, and if that successor has a PHI node, and if *that* PHI node has
334   // conflicting incoming values from the two switch blocks.
335   BasicBlock *SI1BB = SI1->getParent();
336   BasicBlock *SI2BB = SI2->getParent();
337 
338   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
339   bool Fail = false;
340   for (BasicBlock *Succ : successors(SI2BB)) {
341     if (!SI1Succs.count(Succ))
342       continue;
343     if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
344       continue;
345     Fail = true;
346     if (FailBlocks)
347       FailBlocks->insert(Succ);
348     else
349       break;
350   }
351 
352   return !Fail;
353 }
354 
355 /// Update PHI nodes in Succ to indicate that there will now be entries in it
356 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
357 /// will be the same as those coming in from ExistPred, an existing predecessor
358 /// of Succ.
359 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
360                                   BasicBlock *ExistPred,
361                                   MemorySSAUpdater *MSSAU = nullptr) {
362   for (PHINode &PN : Succ->phis())
363     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
364   if (MSSAU)
365     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
366       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
367 }
368 
369 /// Compute an abstract "cost" of speculating the given instruction,
370 /// which is assumed to be safe to speculate. TCC_Free means cheap,
371 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
372 /// expensive.
373 static InstructionCost computeSpeculationCost(const User *I,
374                                               const TargetTransformInfo &TTI) {
375   assert(isSafeToSpeculativelyExecute(I) &&
376          "Instruction is not safe to speculatively execute!");
377   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
378 }
379 
380 /// If we have a merge point of an "if condition" as accepted above,
381 /// return true if the specified value dominates the block.  We
382 /// don't handle the true generality of domination here, just a special case
383 /// which works well enough for us.
384 ///
385 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
386 /// see if V (which must be an instruction) and its recursive operands
387 /// that do not dominate BB have a combined cost lower than Budget and
388 /// are non-trapping.  If both are true, the instruction is inserted into the
389 /// set and true is returned.
390 ///
391 /// The cost for most non-trapping instructions is defined as 1 except for
392 /// Select whose cost is 2.
393 ///
394 /// After this function returns, Cost is increased by the cost of
395 /// V plus its non-dominating operands.  If that cost is greater than
396 /// Budget, false is returned and Cost is undefined.
397 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
398                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
399                                 InstructionCost &Cost,
400                                 InstructionCost Budget,
401                                 const TargetTransformInfo &TTI,
402                                 unsigned Depth = 0) {
403   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
404   // so limit the recursion depth.
405   // TODO: While this recursion limit does prevent pathological behavior, it
406   // would be better to track visited instructions to avoid cycles.
407   if (Depth == MaxSpeculationDepth)
408     return false;
409 
410   Instruction *I = dyn_cast<Instruction>(V);
411   if (!I) {
412     // Non-instructions all dominate instructions, but not all constantexprs
413     // can be executed unconditionally.
414     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
415       if (C->canTrap())
416         return false;
417     return true;
418   }
419   BasicBlock *PBB = I->getParent();
420 
421   // We don't want to allow weird loops that might have the "if condition" in
422   // the bottom of this block.
423   if (PBB == BB)
424     return false;
425 
426   // If this instruction is defined in a block that contains an unconditional
427   // branch to BB, then it must be in the 'conditional' part of the "if
428   // statement".  If not, it definitely dominates the region.
429   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
430   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
431     return true;
432 
433   // If we have seen this instruction before, don't count it again.
434   if (AggressiveInsts.count(I))
435     return true;
436 
437   // Okay, it looks like the instruction IS in the "condition".  Check to
438   // see if it's a cheap instruction to unconditionally compute, and if it
439   // only uses stuff defined outside of the condition.  If so, hoist it out.
440   if (!isSafeToSpeculativelyExecute(I))
441     return false;
442 
443   Cost += computeSpeculationCost(I, TTI);
444 
445   // Allow exactly one instruction to be speculated regardless of its cost
446   // (as long as it is safe to do so).
447   // This is intended to flatten the CFG even if the instruction is a division
448   // or other expensive operation. The speculation of an expensive instruction
449   // is expected to be undone in CodeGenPrepare if the speculation has not
450   // enabled further IR optimizations.
451   if (Cost > Budget &&
452       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
453        !Cost.isValid()))
454     return false;
455 
456   // Okay, we can only really hoist these out if their operands do
457   // not take us over the cost threshold.
458   for (Use &Op : I->operands())
459     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
460                              Depth + 1))
461       return false;
462   // Okay, it's safe to do this!  Remember this instruction.
463   AggressiveInsts.insert(I);
464   return true;
465 }
466 
467 /// Extract ConstantInt from value, looking through IntToPtr
468 /// and PointerNullValue. Return NULL if value is not a constant int.
469 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
470   // Normal constant int.
471   ConstantInt *CI = dyn_cast<ConstantInt>(V);
472   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
473     return CI;
474 
475   // This is some kind of pointer constant. Turn it into a pointer-sized
476   // ConstantInt if possible.
477   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
478 
479   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
480   if (isa<ConstantPointerNull>(V))
481     return ConstantInt::get(PtrTy, 0);
482 
483   // IntToPtr const int.
484   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
485     if (CE->getOpcode() == Instruction::IntToPtr)
486       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
487         // The constant is very likely to have the right type already.
488         if (CI->getType() == PtrTy)
489           return CI;
490         else
491           return cast<ConstantInt>(
492               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
493       }
494   return nullptr;
495 }
496 
497 namespace {
498 
499 /// Given a chain of or (||) or and (&&) comparison of a value against a
500 /// constant, this will try to recover the information required for a switch
501 /// structure.
502 /// It will depth-first traverse the chain of comparison, seeking for patterns
503 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
504 /// representing the different cases for the switch.
505 /// Note that if the chain is composed of '||' it will build the set of elements
506 /// that matches the comparisons (i.e. any of this value validate the chain)
507 /// while for a chain of '&&' it will build the set elements that make the test
508 /// fail.
509 struct ConstantComparesGatherer {
510   const DataLayout &DL;
511 
512   /// Value found for the switch comparison
513   Value *CompValue = nullptr;
514 
515   /// Extra clause to be checked before the switch
516   Value *Extra = nullptr;
517 
518   /// Set of integers to match in switch
519   SmallVector<ConstantInt *, 8> Vals;
520 
521   /// Number of comparisons matched in the and/or chain
522   unsigned UsedICmps = 0;
523 
524   /// Construct and compute the result for the comparison instruction Cond
525   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
526     gather(Cond);
527   }
528 
529   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
530   ConstantComparesGatherer &
531   operator=(const ConstantComparesGatherer &) = delete;
532 
533 private:
534   /// Try to set the current value used for the comparison, it succeeds only if
535   /// it wasn't set before or if the new value is the same as the old one
536   bool setValueOnce(Value *NewVal) {
537     if (CompValue && CompValue != NewVal)
538       return false;
539     CompValue = NewVal;
540     return (CompValue != nullptr);
541   }
542 
543   /// Try to match Instruction "I" as a comparison against a constant and
544   /// populates the array Vals with the set of values that match (or do not
545   /// match depending on isEQ).
546   /// Return false on failure. On success, the Value the comparison matched
547   /// against is placed in CompValue.
548   /// If CompValue is already set, the function is expected to fail if a match
549   /// is found but the value compared to is different.
550   bool matchInstruction(Instruction *I, bool isEQ) {
551     // If this is an icmp against a constant, handle this as one of the cases.
552     ICmpInst *ICI;
553     ConstantInt *C;
554     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
555           (C = GetConstantInt(I->getOperand(1), DL)))) {
556       return false;
557     }
558 
559     Value *RHSVal;
560     const APInt *RHSC;
561 
562     // Pattern match a special case
563     // (x & ~2^z) == y --> x == y || x == y|2^z
564     // This undoes a transformation done by instcombine to fuse 2 compares.
565     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
566       // It's a little bit hard to see why the following transformations are
567       // correct. Here is a CVC3 program to verify them for 64-bit values:
568 
569       /*
570          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
571          x    : BITVECTOR(64);
572          y    : BITVECTOR(64);
573          z    : BITVECTOR(64);
574          mask : BITVECTOR(64) = BVSHL(ONE, z);
575          QUERY( (y & ~mask = y) =>
576                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
577          );
578          QUERY( (y |  mask = y) =>
579                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
580          );
581       */
582 
583       // Please note that each pattern must be a dual implication (<--> or
584       // iff). One directional implication can create spurious matches. If the
585       // implication is only one-way, an unsatisfiable condition on the left
586       // side can imply a satisfiable condition on the right side. Dual
587       // implication ensures that satisfiable conditions are transformed to
588       // other satisfiable conditions and unsatisfiable conditions are
589       // transformed to other unsatisfiable conditions.
590 
591       // Here is a concrete example of a unsatisfiable condition on the left
592       // implying a satisfiable condition on the right:
593       //
594       // mask = (1 << z)
595       // (x & ~mask) == y  --> (x == y || x == (y | mask))
596       //
597       // Substituting y = 3, z = 0 yields:
598       // (x & -2) == 3 --> (x == 3 || x == 2)
599 
600       // Pattern match a special case:
601       /*
602         QUERY( (y & ~mask = y) =>
603                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
604         );
605       */
606       if (match(ICI->getOperand(0),
607                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
608         APInt Mask = ~*RHSC;
609         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
610           // If we already have a value for the switch, it has to match!
611           if (!setValueOnce(RHSVal))
612             return false;
613 
614           Vals.push_back(C);
615           Vals.push_back(
616               ConstantInt::get(C->getContext(),
617                                C->getValue() | Mask));
618           UsedICmps++;
619           return true;
620         }
621       }
622 
623       // Pattern match a special case:
624       /*
625         QUERY( (y |  mask = y) =>
626                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
627         );
628       */
629       if (match(ICI->getOperand(0),
630                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
631         APInt Mask = *RHSC;
632         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
633           // If we already have a value for the switch, it has to match!
634           if (!setValueOnce(RHSVal))
635             return false;
636 
637           Vals.push_back(C);
638           Vals.push_back(ConstantInt::get(C->getContext(),
639                                           C->getValue() & ~Mask));
640           UsedICmps++;
641           return true;
642         }
643       }
644 
645       // If we already have a value for the switch, it has to match!
646       if (!setValueOnce(ICI->getOperand(0)))
647         return false;
648 
649       UsedICmps++;
650       Vals.push_back(C);
651       return ICI->getOperand(0);
652     }
653 
654     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
655     ConstantRange Span =
656         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
657 
658     // Shift the range if the compare is fed by an add. This is the range
659     // compare idiom as emitted by instcombine.
660     Value *CandidateVal = I->getOperand(0);
661     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
662       Span = Span.subtract(*RHSC);
663       CandidateVal = RHSVal;
664     }
665 
666     // If this is an and/!= check, then we are looking to build the set of
667     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
668     // x != 0 && x != 1.
669     if (!isEQ)
670       Span = Span.inverse();
671 
672     // If there are a ton of values, we don't want to make a ginormous switch.
673     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
674       return false;
675     }
676 
677     // If we already have a value for the switch, it has to match!
678     if (!setValueOnce(CandidateVal))
679       return false;
680 
681     // Add all values from the range to the set
682     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
683       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
684 
685     UsedICmps++;
686     return true;
687   }
688 
689   /// Given a potentially 'or'd or 'and'd together collection of icmp
690   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
691   /// the value being compared, and stick the list constants into the Vals
692   /// vector.
693   /// One "Extra" case is allowed to differ from the other.
694   void gather(Value *V) {
695     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
696 
697     // Keep a stack (SmallVector for efficiency) for depth-first traversal
698     SmallVector<Value *, 8> DFT;
699     SmallPtrSet<Value *, 8> Visited;
700 
701     // Initialize
702     Visited.insert(V);
703     DFT.push_back(V);
704 
705     while (!DFT.empty()) {
706       V = DFT.pop_back_val();
707 
708       if (Instruction *I = dyn_cast<Instruction>(V)) {
709         // If it is a || (or && depending on isEQ), process the operands.
710         Value *Op0, *Op1;
711         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
712                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
713           if (Visited.insert(Op1).second)
714             DFT.push_back(Op1);
715           if (Visited.insert(Op0).second)
716             DFT.push_back(Op0);
717 
718           continue;
719         }
720 
721         // Try to match the current instruction
722         if (matchInstruction(I, isEQ))
723           // Match succeed, continue the loop
724           continue;
725       }
726 
727       // One element of the sequence of || (or &&) could not be match as a
728       // comparison against the same value as the others.
729       // We allow only one "Extra" case to be checked before the switch
730       if (!Extra) {
731         Extra = V;
732         continue;
733       }
734       // Failed to parse a proper sequence, abort now
735       CompValue = nullptr;
736       break;
737     }
738   }
739 };
740 
741 } // end anonymous namespace
742 
743 static void EraseTerminatorAndDCECond(Instruction *TI,
744                                       MemorySSAUpdater *MSSAU = nullptr) {
745   Instruction *Cond = nullptr;
746   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
747     Cond = dyn_cast<Instruction>(SI->getCondition());
748   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
749     if (BI->isConditional())
750       Cond = dyn_cast<Instruction>(BI->getCondition());
751   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
752     Cond = dyn_cast<Instruction>(IBI->getAddress());
753   }
754 
755   TI->eraseFromParent();
756   if (Cond)
757     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
758 }
759 
760 /// Return true if the specified terminator checks
761 /// to see if a value is equal to constant integer value.
762 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
763   Value *CV = nullptr;
764   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
765     // Do not permit merging of large switch instructions into their
766     // predecessors unless there is only one predecessor.
767     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
768       CV = SI->getCondition();
769   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
770     if (BI->isConditional() && BI->getCondition()->hasOneUse())
771       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
772         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
773           CV = ICI->getOperand(0);
774       }
775 
776   // Unwrap any lossless ptrtoint cast.
777   if (CV) {
778     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
779       Value *Ptr = PTII->getPointerOperand();
780       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
781         CV = Ptr;
782     }
783   }
784   return CV;
785 }
786 
787 /// Given a value comparison instruction,
788 /// decode all of the 'cases' that it represents and return the 'default' block.
789 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
790     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
791   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
792     Cases.reserve(SI->getNumCases());
793     for (auto Case : SI->cases())
794       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
795                                                   Case.getCaseSuccessor()));
796     return SI->getDefaultDest();
797   }
798 
799   BranchInst *BI = cast<BranchInst>(TI);
800   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
801   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
802   Cases.push_back(ValueEqualityComparisonCase(
803       GetConstantInt(ICI->getOperand(1), DL), Succ));
804   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
805 }
806 
807 /// Given a vector of bb/value pairs, remove any entries
808 /// in the list that match the specified block.
809 static void
810 EliminateBlockCases(BasicBlock *BB,
811                     std::vector<ValueEqualityComparisonCase> &Cases) {
812   llvm::erase_value(Cases, BB);
813 }
814 
815 /// Return true if there are any keys in C1 that exist in C2 as well.
816 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
817                           std::vector<ValueEqualityComparisonCase> &C2) {
818   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
819 
820   // Make V1 be smaller than V2.
821   if (V1->size() > V2->size())
822     std::swap(V1, V2);
823 
824   if (V1->empty())
825     return false;
826   if (V1->size() == 1) {
827     // Just scan V2.
828     ConstantInt *TheVal = (*V1)[0].Value;
829     for (unsigned i = 0, e = V2->size(); i != e; ++i)
830       if (TheVal == (*V2)[i].Value)
831         return true;
832   }
833 
834   // Otherwise, just sort both lists and compare element by element.
835   array_pod_sort(V1->begin(), V1->end());
836   array_pod_sort(V2->begin(), V2->end());
837   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
838   while (i1 != e1 && i2 != e2) {
839     if ((*V1)[i1].Value == (*V2)[i2].Value)
840       return true;
841     if ((*V1)[i1].Value < (*V2)[i2].Value)
842       ++i1;
843     else
844       ++i2;
845   }
846   return false;
847 }
848 
849 // Set branch weights on SwitchInst. This sets the metadata if there is at
850 // least one non-zero weight.
851 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
852   // Check that there is at least one non-zero weight. Otherwise, pass
853   // nullptr to setMetadata which will erase the existing metadata.
854   MDNode *N = nullptr;
855   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
856     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
857   SI->setMetadata(LLVMContext::MD_prof, N);
858 }
859 
860 // Similar to the above, but for branch and select instructions that take
861 // exactly 2 weights.
862 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
863                              uint32_t FalseWeight) {
864   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
865   // Check that there is at least one non-zero weight. Otherwise, pass
866   // nullptr to setMetadata which will erase the existing metadata.
867   MDNode *N = nullptr;
868   if (TrueWeight || FalseWeight)
869     N = MDBuilder(I->getParent()->getContext())
870             .createBranchWeights(TrueWeight, FalseWeight);
871   I->setMetadata(LLVMContext::MD_prof, N);
872 }
873 
874 /// If TI is known to be a terminator instruction and its block is known to
875 /// only have a single predecessor block, check to see if that predecessor is
876 /// also a value comparison with the same value, and if that comparison
877 /// determines the outcome of this comparison. If so, simplify TI. This does a
878 /// very limited form of jump threading.
879 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
880     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
881   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
882   if (!PredVal)
883     return false; // Not a value comparison in predecessor.
884 
885   Value *ThisVal = isValueEqualityComparison(TI);
886   assert(ThisVal && "This isn't a value comparison!!");
887   if (ThisVal != PredVal)
888     return false; // Different predicates.
889 
890   // TODO: Preserve branch weight metadata, similarly to how
891   // FoldValueComparisonIntoPredecessors preserves it.
892 
893   // Find out information about when control will move from Pred to TI's block.
894   std::vector<ValueEqualityComparisonCase> PredCases;
895   BasicBlock *PredDef =
896       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
897   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
898 
899   // Find information about how control leaves this block.
900   std::vector<ValueEqualityComparisonCase> ThisCases;
901   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
902   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
903 
904   // If TI's block is the default block from Pred's comparison, potentially
905   // simplify TI based on this knowledge.
906   if (PredDef == TI->getParent()) {
907     // If we are here, we know that the value is none of those cases listed in
908     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
909     // can simplify TI.
910     if (!ValuesOverlap(PredCases, ThisCases))
911       return false;
912 
913     if (isa<BranchInst>(TI)) {
914       // Okay, one of the successors of this condbr is dead.  Convert it to a
915       // uncond br.
916       assert(ThisCases.size() == 1 && "Branch can only have one case!");
917       // Insert the new branch.
918       Instruction *NI = Builder.CreateBr(ThisDef);
919       (void)NI;
920 
921       // Remove PHI node entries for the dead edge.
922       ThisCases[0].Dest->removePredecessor(PredDef);
923 
924       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
925                         << "Through successor TI: " << *TI << "Leaving: " << *NI
926                         << "\n");
927 
928       EraseTerminatorAndDCECond(TI);
929 
930       if (DTU)
931         DTU->applyUpdates(
932             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
933 
934       return true;
935     }
936 
937     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
938     // Okay, TI has cases that are statically dead, prune them away.
939     SmallPtrSet<Constant *, 16> DeadCases;
940     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
941       DeadCases.insert(PredCases[i].Value);
942 
943     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
944                       << "Through successor TI: " << *TI);
945 
946     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
947     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
948       --i;
949       auto *Successor = i->getCaseSuccessor();
950       if (DTU)
951         ++NumPerSuccessorCases[Successor];
952       if (DeadCases.count(i->getCaseValue())) {
953         Successor->removePredecessor(PredDef);
954         SI.removeCase(i);
955         if (DTU)
956           --NumPerSuccessorCases[Successor];
957       }
958     }
959 
960     if (DTU) {
961       std::vector<DominatorTree::UpdateType> Updates;
962       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
963         if (I.second == 0)
964           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
965       DTU->applyUpdates(Updates);
966     }
967 
968     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
969     return true;
970   }
971 
972   // Otherwise, TI's block must correspond to some matched value.  Find out
973   // which value (or set of values) this is.
974   ConstantInt *TIV = nullptr;
975   BasicBlock *TIBB = TI->getParent();
976   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
977     if (PredCases[i].Dest == TIBB) {
978       if (TIV)
979         return false; // Cannot handle multiple values coming to this block.
980       TIV = PredCases[i].Value;
981     }
982   assert(TIV && "No edge from pred to succ?");
983 
984   // Okay, we found the one constant that our value can be if we get into TI's
985   // BB.  Find out which successor will unconditionally be branched to.
986   BasicBlock *TheRealDest = nullptr;
987   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
988     if (ThisCases[i].Value == TIV) {
989       TheRealDest = ThisCases[i].Dest;
990       break;
991     }
992 
993   // If not handled by any explicit cases, it is handled by the default case.
994   if (!TheRealDest)
995     TheRealDest = ThisDef;
996 
997   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
998 
999   // Remove PHI node entries for dead edges.
1000   BasicBlock *CheckEdge = TheRealDest;
1001   for (BasicBlock *Succ : successors(TIBB))
1002     if (Succ != CheckEdge) {
1003       if (Succ != TheRealDest)
1004         RemovedSuccs.insert(Succ);
1005       Succ->removePredecessor(TIBB);
1006     } else
1007       CheckEdge = nullptr;
1008 
1009   // Insert the new branch.
1010   Instruction *NI = Builder.CreateBr(TheRealDest);
1011   (void)NI;
1012 
1013   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1014                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1015                     << "\n");
1016 
1017   EraseTerminatorAndDCECond(TI);
1018   if (DTU) {
1019     SmallVector<DominatorTree::UpdateType, 2> Updates;
1020     Updates.reserve(RemovedSuccs.size());
1021     for (auto *RemovedSucc : RemovedSuccs)
1022       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1023     DTU->applyUpdates(Updates);
1024   }
1025   return true;
1026 }
1027 
1028 namespace {
1029 
1030 /// This class implements a stable ordering of constant
1031 /// integers that does not depend on their address.  This is important for
1032 /// applications that sort ConstantInt's to ensure uniqueness.
1033 struct ConstantIntOrdering {
1034   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1035     return LHS->getValue().ult(RHS->getValue());
1036   }
1037 };
1038 
1039 } // end anonymous namespace
1040 
1041 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1042                                     ConstantInt *const *P2) {
1043   const ConstantInt *LHS = *P1;
1044   const ConstantInt *RHS = *P2;
1045   if (LHS == RHS)
1046     return 0;
1047   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1048 }
1049 
1050 static inline bool HasBranchWeights(const Instruction *I) {
1051   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1052   if (ProfMD && ProfMD->getOperand(0))
1053     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1054       return MDS->getString().equals("branch_weights");
1055 
1056   return false;
1057 }
1058 
1059 /// Get Weights of a given terminator, the default weight is at the front
1060 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1061 /// metadata.
1062 static void GetBranchWeights(Instruction *TI,
1063                              SmallVectorImpl<uint64_t> &Weights) {
1064   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1065   assert(MD);
1066   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1067     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1068     Weights.push_back(CI->getValue().getZExtValue());
1069   }
1070 
1071   // If TI is a conditional eq, the default case is the false case,
1072   // and the corresponding branch-weight data is at index 2. We swap the
1073   // default weight to be the first entry.
1074   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1075     assert(Weights.size() == 2);
1076     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1077     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1078       std::swap(Weights.front(), Weights.back());
1079   }
1080 }
1081 
1082 /// Keep halving the weights until all can fit in uint32_t.
1083 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1084   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1085   if (Max > UINT_MAX) {
1086     unsigned Offset = 32 - countLeadingZeros(Max);
1087     for (uint64_t &I : Weights)
1088       I >>= Offset;
1089   }
1090 }
1091 
1092 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1093     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1094   Instruction *PTI = PredBlock->getTerminator();
1095 
1096   // If we have bonus instructions, clone them into the predecessor block.
1097   // Note that there may be multiple predecessor blocks, so we cannot move
1098   // bonus instructions to a predecessor block.
1099   for (Instruction &BonusInst : *BB) {
1100     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1101       continue;
1102 
1103     Instruction *NewBonusInst = BonusInst.clone();
1104 
1105     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1106       // Unless the instruction has the same !dbg location as the original
1107       // branch, drop it. When we fold the bonus instructions we want to make
1108       // sure we reset their debug locations in order to avoid stepping on
1109       // dead code caused by folding dead branches.
1110       NewBonusInst->setDebugLoc(DebugLoc());
1111     }
1112 
1113     RemapInstruction(NewBonusInst, VMap,
1114                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1115     VMap[&BonusInst] = NewBonusInst;
1116 
1117     // If we moved a load, we cannot any longer claim any knowledge about
1118     // its potential value. The previous information might have been valid
1119     // only given the branch precondition.
1120     // For an analogous reason, we must also drop all the metadata whose
1121     // semantics we don't understand. We *can* preserve !annotation, because
1122     // it is tied to the instruction itself, not the value or position.
1123     // Similarly strip attributes on call parameters that may cause UB in
1124     // location the call is moved to.
1125     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1126         LLVMContext::MD_annotation);
1127 
1128     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1129     NewBonusInst->takeName(&BonusInst);
1130     BonusInst.setName(NewBonusInst->getName() + ".old");
1131 
1132     // Update (liveout) uses of bonus instructions,
1133     // now that the bonus instruction has been cloned into predecessor.
1134     // Note that we expect to be in a block-closed SSA form for this to work!
1135     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1136       auto *UI = cast<Instruction>(U.getUser());
1137       auto *PN = dyn_cast<PHINode>(UI);
1138       if (!PN) {
1139         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1140                "If the user is not a PHI node, then it should be in the same "
1141                "block as, and come after, the original bonus instruction.");
1142         continue; // Keep using the original bonus instruction.
1143       }
1144       // Is this the block-closed SSA form PHI node?
1145       if (PN->getIncomingBlock(U) == BB)
1146         continue; // Great, keep using the original bonus instruction.
1147       // The only other alternative is an "use" when coming from
1148       // the predecessor block - here we should refer to the cloned bonus instr.
1149       assert(PN->getIncomingBlock(U) == PredBlock &&
1150              "Not in block-closed SSA form?");
1151       U.set(NewBonusInst);
1152     }
1153   }
1154 }
1155 
1156 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1157     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1158   BasicBlock *BB = TI->getParent();
1159   BasicBlock *Pred = PTI->getParent();
1160 
1161   SmallVector<DominatorTree::UpdateType, 32> Updates;
1162 
1163   // Figure out which 'cases' to copy from SI to PSI.
1164   std::vector<ValueEqualityComparisonCase> BBCases;
1165   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1166 
1167   std::vector<ValueEqualityComparisonCase> PredCases;
1168   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1169 
1170   // Based on whether the default edge from PTI goes to BB or not, fill in
1171   // PredCases and PredDefault with the new switch cases we would like to
1172   // build.
1173   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1174 
1175   // Update the branch weight metadata along the way
1176   SmallVector<uint64_t, 8> Weights;
1177   bool PredHasWeights = HasBranchWeights(PTI);
1178   bool SuccHasWeights = HasBranchWeights(TI);
1179 
1180   if (PredHasWeights) {
1181     GetBranchWeights(PTI, Weights);
1182     // branch-weight metadata is inconsistent here.
1183     if (Weights.size() != 1 + PredCases.size())
1184       PredHasWeights = SuccHasWeights = false;
1185   } else if (SuccHasWeights)
1186     // If there are no predecessor weights but there are successor weights,
1187     // populate Weights with 1, which will later be scaled to the sum of
1188     // successor's weights
1189     Weights.assign(1 + PredCases.size(), 1);
1190 
1191   SmallVector<uint64_t, 8> SuccWeights;
1192   if (SuccHasWeights) {
1193     GetBranchWeights(TI, SuccWeights);
1194     // branch-weight metadata is inconsistent here.
1195     if (SuccWeights.size() != 1 + BBCases.size())
1196       PredHasWeights = SuccHasWeights = false;
1197   } else if (PredHasWeights)
1198     SuccWeights.assign(1 + BBCases.size(), 1);
1199 
1200   if (PredDefault == BB) {
1201     // If this is the default destination from PTI, only the edges in TI
1202     // that don't occur in PTI, or that branch to BB will be activated.
1203     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1204     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1205       if (PredCases[i].Dest != BB)
1206         PTIHandled.insert(PredCases[i].Value);
1207       else {
1208         // The default destination is BB, we don't need explicit targets.
1209         std::swap(PredCases[i], PredCases.back());
1210 
1211         if (PredHasWeights || SuccHasWeights) {
1212           // Increase weight for the default case.
1213           Weights[0] += Weights[i + 1];
1214           std::swap(Weights[i + 1], Weights.back());
1215           Weights.pop_back();
1216         }
1217 
1218         PredCases.pop_back();
1219         --i;
1220         --e;
1221       }
1222 
1223     // Reconstruct the new switch statement we will be building.
1224     if (PredDefault != BBDefault) {
1225       PredDefault->removePredecessor(Pred);
1226       if (DTU && PredDefault != BB)
1227         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1228       PredDefault = BBDefault;
1229       ++NewSuccessors[BBDefault];
1230     }
1231 
1232     unsigned CasesFromPred = Weights.size();
1233     uint64_t ValidTotalSuccWeight = 0;
1234     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1235       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1236         PredCases.push_back(BBCases[i]);
1237         ++NewSuccessors[BBCases[i].Dest];
1238         if (SuccHasWeights || PredHasWeights) {
1239           // The default weight is at index 0, so weight for the ith case
1240           // should be at index i+1. Scale the cases from successor by
1241           // PredDefaultWeight (Weights[0]).
1242           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1243           ValidTotalSuccWeight += SuccWeights[i + 1];
1244         }
1245       }
1246 
1247     if (SuccHasWeights || PredHasWeights) {
1248       ValidTotalSuccWeight += SuccWeights[0];
1249       // Scale the cases from predecessor by ValidTotalSuccWeight.
1250       for (unsigned i = 1; i < CasesFromPred; ++i)
1251         Weights[i] *= ValidTotalSuccWeight;
1252       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1253       Weights[0] *= SuccWeights[0];
1254     }
1255   } else {
1256     // If this is not the default destination from PSI, only the edges
1257     // in SI that occur in PSI with a destination of BB will be
1258     // activated.
1259     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1260     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1261     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1262       if (PredCases[i].Dest == BB) {
1263         PTIHandled.insert(PredCases[i].Value);
1264 
1265         if (PredHasWeights || SuccHasWeights) {
1266           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1267           std::swap(Weights[i + 1], Weights.back());
1268           Weights.pop_back();
1269         }
1270 
1271         std::swap(PredCases[i], PredCases.back());
1272         PredCases.pop_back();
1273         --i;
1274         --e;
1275       }
1276 
1277     // Okay, now we know which constants were sent to BB from the
1278     // predecessor.  Figure out where they will all go now.
1279     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1280       if (PTIHandled.count(BBCases[i].Value)) {
1281         // If this is one we are capable of getting...
1282         if (PredHasWeights || SuccHasWeights)
1283           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1284         PredCases.push_back(BBCases[i]);
1285         ++NewSuccessors[BBCases[i].Dest];
1286         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1287       }
1288 
1289     // If there are any constants vectored to BB that TI doesn't handle,
1290     // they must go to the default destination of TI.
1291     for (ConstantInt *I : PTIHandled) {
1292       if (PredHasWeights || SuccHasWeights)
1293         Weights.push_back(WeightsForHandled[I]);
1294       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1295       ++NewSuccessors[BBDefault];
1296     }
1297   }
1298 
1299   // Okay, at this point, we know which new successor Pred will get.  Make
1300   // sure we update the number of entries in the PHI nodes for these
1301   // successors.
1302   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1303   if (DTU) {
1304     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1305     Updates.reserve(Updates.size() + NewSuccessors.size());
1306   }
1307   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1308        NewSuccessors) {
1309     for (auto I : seq(0, NewSuccessor.second)) {
1310       (void)I;
1311       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1312     }
1313     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1314       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1315   }
1316 
1317   Builder.SetInsertPoint(PTI);
1318   // Convert pointer to int before we switch.
1319   if (CV->getType()->isPointerTy()) {
1320     CV =
1321         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1322   }
1323 
1324   // Now that the successors are updated, create the new Switch instruction.
1325   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1326   NewSI->setDebugLoc(PTI->getDebugLoc());
1327   for (ValueEqualityComparisonCase &V : PredCases)
1328     NewSI->addCase(V.Value, V.Dest);
1329 
1330   if (PredHasWeights || SuccHasWeights) {
1331     // Halve the weights if any of them cannot fit in an uint32_t
1332     FitWeights(Weights);
1333 
1334     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1335 
1336     setBranchWeights(NewSI, MDWeights);
1337   }
1338 
1339   EraseTerminatorAndDCECond(PTI);
1340 
1341   // Okay, last check.  If BB is still a successor of PSI, then we must
1342   // have an infinite loop case.  If so, add an infinitely looping block
1343   // to handle the case to preserve the behavior of the code.
1344   BasicBlock *InfLoopBlock = nullptr;
1345   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1346     if (NewSI->getSuccessor(i) == BB) {
1347       if (!InfLoopBlock) {
1348         // Insert it at the end of the function, because it's either code,
1349         // or it won't matter if it's hot. :)
1350         InfLoopBlock =
1351             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1352         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1353         if (DTU)
1354           Updates.push_back(
1355               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1356       }
1357       NewSI->setSuccessor(i, InfLoopBlock);
1358     }
1359 
1360   if (DTU) {
1361     if (InfLoopBlock)
1362       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1363 
1364     Updates.push_back({DominatorTree::Delete, Pred, BB});
1365 
1366     DTU->applyUpdates(Updates);
1367   }
1368 
1369   ++NumFoldValueComparisonIntoPredecessors;
1370   return true;
1371 }
1372 
1373 /// The specified terminator is a value equality comparison instruction
1374 /// (either a switch or a branch on "X == c").
1375 /// See if any of the predecessors of the terminator block are value comparisons
1376 /// on the same value.  If so, and if safe to do so, fold them together.
1377 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1378                                                          IRBuilder<> &Builder) {
1379   BasicBlock *BB = TI->getParent();
1380   Value *CV = isValueEqualityComparison(TI); // CondVal
1381   assert(CV && "Not a comparison?");
1382 
1383   bool Changed = false;
1384 
1385   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1386   while (!Preds.empty()) {
1387     BasicBlock *Pred = Preds.pop_back_val();
1388     Instruction *PTI = Pred->getTerminator();
1389 
1390     // Don't try to fold into itself.
1391     if (Pred == BB)
1392       continue;
1393 
1394     // See if the predecessor is a comparison with the same value.
1395     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1396     if (PCV != CV)
1397       continue;
1398 
1399     SmallSetVector<BasicBlock *, 4> FailBlocks;
1400     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1401       for (auto *Succ : FailBlocks) {
1402         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1403           return false;
1404       }
1405     }
1406 
1407     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1408     Changed = true;
1409   }
1410   return Changed;
1411 }
1412 
1413 // If we would need to insert a select that uses the value of this invoke
1414 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1415 // can't hoist the invoke, as there is nowhere to put the select in this case.
1416 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1417                                 Instruction *I1, Instruction *I2) {
1418   for (BasicBlock *Succ : successors(BB1)) {
1419     for (const PHINode &PN : Succ->phis()) {
1420       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1421       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1422       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1423         return false;
1424       }
1425     }
1426   }
1427   return true;
1428 }
1429 
1430 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1431 
1432 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1433 /// in the two blocks up into the branch block. The caller of this function
1434 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1435 /// only perform hoisting in case both blocks only contain a terminator. In that
1436 /// case, only the original BI will be replaced and selects for PHIs are added.
1437 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1438                                            const TargetTransformInfo &TTI,
1439                                            bool EqTermsOnly) {
1440   // This does very trivial matching, with limited scanning, to find identical
1441   // instructions in the two blocks.  In particular, we don't want to get into
1442   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1443   // such, we currently just scan for obviously identical instructions in an
1444   // identical order.
1445   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1446   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1447 
1448   // If either of the blocks has it's address taken, then we can't do this fold,
1449   // because the code we'd hoist would no longer run when we jump into the block
1450   // by it's address.
1451   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1452     return false;
1453 
1454   BasicBlock::iterator BB1_Itr = BB1->begin();
1455   BasicBlock::iterator BB2_Itr = BB2->begin();
1456 
1457   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1458   // Skip debug info if it is not identical.
1459   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1460   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1461   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1462     while (isa<DbgInfoIntrinsic>(I1))
1463       I1 = &*BB1_Itr++;
1464     while (isa<DbgInfoIntrinsic>(I2))
1465       I2 = &*BB2_Itr++;
1466   }
1467   // FIXME: Can we define a safety predicate for CallBr?
1468   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1469       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1470       isa<CallBrInst>(I1))
1471     return false;
1472 
1473   BasicBlock *BIParent = BI->getParent();
1474 
1475   bool Changed = false;
1476 
1477   auto _ = make_scope_exit([&]() {
1478     if (Changed)
1479       ++NumHoistCommonCode;
1480   });
1481 
1482   // Check if only hoisting terminators is allowed. This does not add new
1483   // instructions to the hoist location.
1484   if (EqTermsOnly) {
1485     // Skip any debug intrinsics, as they are free to hoist.
1486     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1487     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1488     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1489       return false;
1490     if (!I1NonDbg->isTerminator())
1491       return false;
1492     // Now we know that we only need to hoist debug instrinsics and the
1493     // terminator. Let the loop below handle those 2 cases.
1494   }
1495 
1496   do {
1497     // If we are hoisting the terminator instruction, don't move one (making a
1498     // broken BB), instead clone it, and remove BI.
1499     if (I1->isTerminator())
1500       goto HoistTerminator;
1501 
1502     // If we're going to hoist a call, make sure that the two instructions we're
1503     // commoning/hoisting are both marked with musttail, or neither of them is
1504     // marked as such. Otherwise, we might end up in a situation where we hoist
1505     // from a block where the terminator is a `ret` to a block where the terminator
1506     // is a `br`, and `musttail` calls expect to be followed by a return.
1507     auto *C1 = dyn_cast<CallInst>(I1);
1508     auto *C2 = dyn_cast<CallInst>(I2);
1509     if (C1 && C2)
1510       if (C1->isMustTailCall() != C2->isMustTailCall())
1511         return Changed;
1512 
1513     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1514       return Changed;
1515 
1516     // If any of the two call sites has nomerge attribute, stop hoisting.
1517     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1518       if (CB1->cannotMerge())
1519         return Changed;
1520     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1521       if (CB2->cannotMerge())
1522         return Changed;
1523 
1524     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1525       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1526       // The debug location is an integral part of a debug info intrinsic
1527       // and can't be separated from it or replaced.  Instead of attempting
1528       // to merge locations, simply hoist both copies of the intrinsic.
1529       BIParent->getInstList().splice(BI->getIterator(),
1530                                      BB1->getInstList(), I1);
1531       BIParent->getInstList().splice(BI->getIterator(),
1532                                      BB2->getInstList(), I2);
1533       Changed = true;
1534     } else {
1535       // For a normal instruction, we just move one to right before the branch,
1536       // then replace all uses of the other with the first.  Finally, we remove
1537       // the now redundant second instruction.
1538       BIParent->getInstList().splice(BI->getIterator(),
1539                                      BB1->getInstList(), I1);
1540       if (!I2->use_empty())
1541         I2->replaceAllUsesWith(I1);
1542       I1->andIRFlags(I2);
1543       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1544                              LLVMContext::MD_range,
1545                              LLVMContext::MD_fpmath,
1546                              LLVMContext::MD_invariant_load,
1547                              LLVMContext::MD_nonnull,
1548                              LLVMContext::MD_invariant_group,
1549                              LLVMContext::MD_align,
1550                              LLVMContext::MD_dereferenceable,
1551                              LLVMContext::MD_dereferenceable_or_null,
1552                              LLVMContext::MD_mem_parallel_loop_access,
1553                              LLVMContext::MD_access_group,
1554                              LLVMContext::MD_preserve_access_index};
1555       combineMetadata(I1, I2, KnownIDs, true);
1556 
1557       // I1 and I2 are being combined into a single instruction.  Its debug
1558       // location is the merged locations of the original instructions.
1559       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1560 
1561       I2->eraseFromParent();
1562       Changed = true;
1563     }
1564     ++NumHoistCommonInstrs;
1565 
1566     I1 = &*BB1_Itr++;
1567     I2 = &*BB2_Itr++;
1568     // Skip debug info if it is not identical.
1569     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1570     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1571     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1572       while (isa<DbgInfoIntrinsic>(I1))
1573         I1 = &*BB1_Itr++;
1574       while (isa<DbgInfoIntrinsic>(I2))
1575         I2 = &*BB2_Itr++;
1576     }
1577   } while (I1->isIdenticalToWhenDefined(I2));
1578 
1579   return true;
1580 
1581 HoistTerminator:
1582   // It may not be possible to hoist an invoke.
1583   // FIXME: Can we define a safety predicate for CallBr?
1584   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1585     return Changed;
1586 
1587   // TODO: callbr hoisting currently disabled pending further study.
1588   if (isa<CallBrInst>(I1))
1589     return Changed;
1590 
1591   for (BasicBlock *Succ : successors(BB1)) {
1592     for (PHINode &PN : Succ->phis()) {
1593       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1594       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1595       if (BB1V == BB2V)
1596         continue;
1597 
1598       // Check for passingValueIsAlwaysUndefined here because we would rather
1599       // eliminate undefined control flow then converting it to a select.
1600       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1601           passingValueIsAlwaysUndefined(BB2V, &PN))
1602         return Changed;
1603 
1604       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1605         return Changed;
1606       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1607         return Changed;
1608     }
1609   }
1610 
1611   // Okay, it is safe to hoist the terminator.
1612   Instruction *NT = I1->clone();
1613   BIParent->getInstList().insert(BI->getIterator(), NT);
1614   if (!NT->getType()->isVoidTy()) {
1615     I1->replaceAllUsesWith(NT);
1616     I2->replaceAllUsesWith(NT);
1617     NT->takeName(I1);
1618   }
1619   Changed = true;
1620   ++NumHoistCommonInstrs;
1621 
1622   // Ensure terminator gets a debug location, even an unknown one, in case
1623   // it involves inlinable calls.
1624   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1625 
1626   // PHIs created below will adopt NT's merged DebugLoc.
1627   IRBuilder<NoFolder> Builder(NT);
1628 
1629   // Hoisting one of the terminators from our successor is a great thing.
1630   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1631   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1632   // nodes, so we insert select instruction to compute the final result.
1633   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1634   for (BasicBlock *Succ : successors(BB1)) {
1635     for (PHINode &PN : Succ->phis()) {
1636       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1637       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1638       if (BB1V == BB2V)
1639         continue;
1640 
1641       // These values do not agree.  Insert a select instruction before NT
1642       // that determines the right value.
1643       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1644       if (!SI) {
1645         // Propagate fast-math-flags from phi node to its replacement select.
1646         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1647         if (isa<FPMathOperator>(PN))
1648           Builder.setFastMathFlags(PN.getFastMathFlags());
1649 
1650         SI = cast<SelectInst>(
1651             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1652                                  BB1V->getName() + "." + BB2V->getName(), BI));
1653       }
1654 
1655       // Make the PHI node use the select for all incoming values for BB1/BB2
1656       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1657         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1658           PN.setIncomingValue(i, SI);
1659     }
1660   }
1661 
1662   SmallVector<DominatorTree::UpdateType, 4> Updates;
1663 
1664   // Update any PHI nodes in our new successors.
1665   for (BasicBlock *Succ : successors(BB1)) {
1666     AddPredecessorToBlock(Succ, BIParent, BB1);
1667     if (DTU)
1668       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1669   }
1670 
1671   if (DTU)
1672     for (BasicBlock *Succ : successors(BI))
1673       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1674 
1675   EraseTerminatorAndDCECond(BI);
1676   if (DTU)
1677     DTU->applyUpdates(Updates);
1678   return Changed;
1679 }
1680 
1681 // Check lifetime markers.
1682 static bool isLifeTimeMarker(const Instruction *I) {
1683   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1684     switch (II->getIntrinsicID()) {
1685     default:
1686       break;
1687     case Intrinsic::lifetime_start:
1688     case Intrinsic::lifetime_end:
1689       return true;
1690     }
1691   }
1692   return false;
1693 }
1694 
1695 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1696 // into variables.
1697 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1698                                                 int OpIdx) {
1699   return !isa<IntrinsicInst>(I);
1700 }
1701 
1702 // All instructions in Insts belong to different blocks that all unconditionally
1703 // branch to a common successor. Analyze each instruction and return true if it
1704 // would be possible to sink them into their successor, creating one common
1705 // instruction instead. For every value that would be required to be provided by
1706 // PHI node (because an operand varies in each input block), add to PHIOperands.
1707 static bool canSinkInstructions(
1708     ArrayRef<Instruction *> Insts,
1709     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1710   // Prune out obviously bad instructions to move. Each instruction must have
1711   // exactly zero or one use, and we check later that use is by a single, common
1712   // PHI instruction in the successor.
1713   bool HasUse = !Insts.front()->user_empty();
1714   for (auto *I : Insts) {
1715     // These instructions may change or break semantics if moved.
1716     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1717         I->getType()->isTokenTy())
1718       return false;
1719 
1720     // Do not try to sink an instruction in an infinite loop - it can cause
1721     // this algorithm to infinite loop.
1722     if (I->getParent()->getSingleSuccessor() == I->getParent())
1723       return false;
1724 
1725     // Conservatively return false if I is an inline-asm instruction. Sinking
1726     // and merging inline-asm instructions can potentially create arguments
1727     // that cannot satisfy the inline-asm constraints.
1728     // If the instruction has nomerge attribute, return false.
1729     if (const auto *C = dyn_cast<CallBase>(I))
1730       if (C->isInlineAsm() || C->cannotMerge())
1731         return false;
1732 
1733     // Each instruction must have zero or one use.
1734     if (HasUse && !I->hasOneUse())
1735       return false;
1736     if (!HasUse && !I->user_empty())
1737       return false;
1738   }
1739 
1740   const Instruction *I0 = Insts.front();
1741   for (auto *I : Insts)
1742     if (!I->isSameOperationAs(I0))
1743       return false;
1744 
1745   // All instructions in Insts are known to be the same opcode. If they have a
1746   // use, check that the only user is a PHI or in the same block as the
1747   // instruction, because if a user is in the same block as an instruction we're
1748   // contemplating sinking, it must already be determined to be sinkable.
1749   if (HasUse) {
1750     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1751     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1752     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1753           auto *U = cast<Instruction>(*I->user_begin());
1754           return (PNUse &&
1755                   PNUse->getParent() == Succ &&
1756                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1757                  U->getParent() == I->getParent();
1758         }))
1759       return false;
1760   }
1761 
1762   // Because SROA can't handle speculating stores of selects, try not to sink
1763   // loads, stores or lifetime markers of allocas when we'd have to create a
1764   // PHI for the address operand. Also, because it is likely that loads or
1765   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1766   // them.
1767   // This can cause code churn which can have unintended consequences down
1768   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1769   // FIXME: This is a workaround for a deficiency in SROA - see
1770   // https://llvm.org/bugs/show_bug.cgi?id=30188
1771   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1772         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1773       }))
1774     return false;
1775   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1776         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1777       }))
1778     return false;
1779   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1780         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1781       }))
1782     return false;
1783 
1784   // For calls to be sinkable, they must all be indirect, or have same callee.
1785   // I.e. if we have two direct calls to different callees, we don't want to
1786   // turn that into an indirect call. Likewise, if we have an indirect call,
1787   // and a direct call, we don't actually want to have a single indirect call.
1788   if (isa<CallBase>(I0)) {
1789     auto IsIndirectCall = [](const Instruction *I) {
1790       return cast<CallBase>(I)->isIndirectCall();
1791     };
1792     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1793     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1794     if (HaveIndirectCalls) {
1795       if (!AllCallsAreIndirect)
1796         return false;
1797     } else {
1798       // All callees must be identical.
1799       Value *Callee = nullptr;
1800       for (const Instruction *I : Insts) {
1801         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1802         if (!Callee)
1803           Callee = CurrCallee;
1804         else if (Callee != CurrCallee)
1805           return false;
1806       }
1807     }
1808   }
1809 
1810   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1811     Value *Op = I0->getOperand(OI);
1812     if (Op->getType()->isTokenTy())
1813       // Don't touch any operand of token type.
1814       return false;
1815 
1816     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1817       assert(I->getNumOperands() == I0->getNumOperands());
1818       return I->getOperand(OI) == I0->getOperand(OI);
1819     };
1820     if (!all_of(Insts, SameAsI0)) {
1821       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1822           !canReplaceOperandWithVariable(I0, OI))
1823         // We can't create a PHI from this GEP.
1824         return false;
1825       for (auto *I : Insts)
1826         PHIOperands[I].push_back(I->getOperand(OI));
1827     }
1828   }
1829   return true;
1830 }
1831 
1832 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1833 // instruction of every block in Blocks to their common successor, commoning
1834 // into one instruction.
1835 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1836   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1837 
1838   // canSinkInstructions returning true guarantees that every block has at
1839   // least one non-terminator instruction.
1840   SmallVector<Instruction*,4> Insts;
1841   for (auto *BB : Blocks) {
1842     Instruction *I = BB->getTerminator();
1843     do {
1844       I = I->getPrevNode();
1845     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1846     if (!isa<DbgInfoIntrinsic>(I))
1847       Insts.push_back(I);
1848   }
1849 
1850   // The only checking we need to do now is that all users of all instructions
1851   // are the same PHI node. canSinkInstructions should have checked this but
1852   // it is slightly over-aggressive - it gets confused by commutative
1853   // instructions so double-check it here.
1854   Instruction *I0 = Insts.front();
1855   if (!I0->user_empty()) {
1856     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1857     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1858           auto *U = cast<Instruction>(*I->user_begin());
1859           return U == PNUse;
1860         }))
1861       return false;
1862   }
1863 
1864   // We don't need to do any more checking here; canSinkInstructions should
1865   // have done it all for us.
1866   SmallVector<Value*, 4> NewOperands;
1867   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1868     // This check is different to that in canSinkInstructions. There, we
1869     // cared about the global view once simplifycfg (and instcombine) have
1870     // completed - it takes into account PHIs that become trivially
1871     // simplifiable.  However here we need a more local view; if an operand
1872     // differs we create a PHI and rely on instcombine to clean up the very
1873     // small mess we may make.
1874     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1875       return I->getOperand(O) != I0->getOperand(O);
1876     });
1877     if (!NeedPHI) {
1878       NewOperands.push_back(I0->getOperand(O));
1879       continue;
1880     }
1881 
1882     // Create a new PHI in the successor block and populate it.
1883     auto *Op = I0->getOperand(O);
1884     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1885     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1886                                Op->getName() + ".sink", &BBEnd->front());
1887     for (auto *I : Insts)
1888       PN->addIncoming(I->getOperand(O), I->getParent());
1889     NewOperands.push_back(PN);
1890   }
1891 
1892   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1893   // and move it to the start of the successor block.
1894   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1895     I0->getOperandUse(O).set(NewOperands[O]);
1896   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1897 
1898   // Update metadata and IR flags, and merge debug locations.
1899   for (auto *I : Insts)
1900     if (I != I0) {
1901       // The debug location for the "common" instruction is the merged locations
1902       // of all the commoned instructions.  We start with the original location
1903       // of the "common" instruction and iteratively merge each location in the
1904       // loop below.
1905       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1906       // However, as N-way merge for CallInst is rare, so we use simplified API
1907       // instead of using complex API for N-way merge.
1908       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1909       combineMetadataForCSE(I0, I, true);
1910       I0->andIRFlags(I);
1911     }
1912 
1913   if (!I0->user_empty()) {
1914     // canSinkLastInstruction checked that all instructions were used by
1915     // one and only one PHI node. Find that now, RAUW it to our common
1916     // instruction and nuke it.
1917     auto *PN = cast<PHINode>(*I0->user_begin());
1918     PN->replaceAllUsesWith(I0);
1919     PN->eraseFromParent();
1920   }
1921 
1922   // Finally nuke all instructions apart from the common instruction.
1923   for (auto *I : Insts)
1924     if (I != I0)
1925       I->eraseFromParent();
1926 
1927   return true;
1928 }
1929 
1930 namespace {
1931 
1932   // LockstepReverseIterator - Iterates through instructions
1933   // in a set of blocks in reverse order from the first non-terminator.
1934   // For example (assume all blocks have size n):
1935   //   LockstepReverseIterator I([B1, B2, B3]);
1936   //   *I-- = [B1[n], B2[n], B3[n]];
1937   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1938   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1939   //   ...
1940   class LockstepReverseIterator {
1941     ArrayRef<BasicBlock*> Blocks;
1942     SmallVector<Instruction*,4> Insts;
1943     bool Fail;
1944 
1945   public:
1946     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1947       reset();
1948     }
1949 
1950     void reset() {
1951       Fail = false;
1952       Insts.clear();
1953       for (auto *BB : Blocks) {
1954         Instruction *Inst = BB->getTerminator();
1955         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1956           Inst = Inst->getPrevNode();
1957         if (!Inst) {
1958           // Block wasn't big enough.
1959           Fail = true;
1960           return;
1961         }
1962         Insts.push_back(Inst);
1963       }
1964     }
1965 
1966     bool isValid() const {
1967       return !Fail;
1968     }
1969 
1970     void operator--() {
1971       if (Fail)
1972         return;
1973       for (auto *&Inst : Insts) {
1974         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1975           Inst = Inst->getPrevNode();
1976         // Already at beginning of block.
1977         if (!Inst) {
1978           Fail = true;
1979           return;
1980         }
1981       }
1982     }
1983 
1984     void operator++() {
1985       if (Fail)
1986         return;
1987       for (auto *&Inst : Insts) {
1988         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1989           Inst = Inst->getNextNode();
1990         // Already at end of block.
1991         if (!Inst) {
1992           Fail = true;
1993           return;
1994         }
1995       }
1996     }
1997 
1998     ArrayRef<Instruction*> operator * () const {
1999       return Insts;
2000     }
2001   };
2002 
2003 } // end anonymous namespace
2004 
2005 /// Check whether BB's predecessors end with unconditional branches. If it is
2006 /// true, sink any common code from the predecessors to BB.
2007 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2008                                            DomTreeUpdater *DTU) {
2009   // We support two situations:
2010   //   (1) all incoming arcs are unconditional
2011   //   (2) there are non-unconditional incoming arcs
2012   //
2013   // (2) is very common in switch defaults and
2014   // else-if patterns;
2015   //
2016   //   if (a) f(1);
2017   //   else if (b) f(2);
2018   //
2019   // produces:
2020   //
2021   //       [if]
2022   //      /    \
2023   //    [f(1)] [if]
2024   //      |     | \
2025   //      |     |  |
2026   //      |  [f(2)]|
2027   //       \    | /
2028   //        [ end ]
2029   //
2030   // [end] has two unconditional predecessor arcs and one conditional. The
2031   // conditional refers to the implicit empty 'else' arc. This conditional
2032   // arc can also be caused by an empty default block in a switch.
2033   //
2034   // In this case, we attempt to sink code from all *unconditional* arcs.
2035   // If we can sink instructions from these arcs (determined during the scan
2036   // phase below) we insert a common successor for all unconditional arcs and
2037   // connect that to [end], to enable sinking:
2038   //
2039   //       [if]
2040   //      /    \
2041   //    [x(1)] [if]
2042   //      |     | \
2043   //      |     |  \
2044   //      |  [x(2)] |
2045   //       \   /    |
2046   //   [sink.split] |
2047   //         \     /
2048   //         [ end ]
2049   //
2050   SmallVector<BasicBlock*,4> UnconditionalPreds;
2051   bool HaveNonUnconditionalPredecessors = false;
2052   for (auto *PredBB : predecessors(BB)) {
2053     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2054     if (PredBr && PredBr->isUnconditional())
2055       UnconditionalPreds.push_back(PredBB);
2056     else
2057       HaveNonUnconditionalPredecessors = true;
2058   }
2059   if (UnconditionalPreds.size() < 2)
2060     return false;
2061 
2062   // We take a two-step approach to tail sinking. First we scan from the end of
2063   // each block upwards in lockstep. If the n'th instruction from the end of each
2064   // block can be sunk, those instructions are added to ValuesToSink and we
2065   // carry on. If we can sink an instruction but need to PHI-merge some operands
2066   // (because they're not identical in each instruction) we add these to
2067   // PHIOperands.
2068   int ScanIdx = 0;
2069   SmallPtrSet<Value*,4> InstructionsToSink;
2070   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2071   LockstepReverseIterator LRI(UnconditionalPreds);
2072   while (LRI.isValid() &&
2073          canSinkInstructions(*LRI, PHIOperands)) {
2074     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2075                       << "\n");
2076     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2077     ++ScanIdx;
2078     --LRI;
2079   }
2080 
2081   // If no instructions can be sunk, early-return.
2082   if (ScanIdx == 0)
2083     return false;
2084 
2085   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2086 
2087   if (!followedByDeoptOrUnreachable) {
2088     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2089     // actually sink before encountering instruction that is unprofitable to
2090     // sink?
2091     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2092       unsigned NumPHIdValues = 0;
2093       for (auto *I : *LRI)
2094         for (auto *V : PHIOperands[I]) {
2095           if (!InstructionsToSink.contains(V))
2096             ++NumPHIdValues;
2097           // FIXME: this check is overly optimistic. We may end up not sinking
2098           // said instruction, due to the very same profitability check.
2099           // See @creating_too_many_phis in sink-common-code.ll.
2100         }
2101       LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2102       unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2103       if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2104         NumPHIInsts++;
2105 
2106       return NumPHIInsts <= 1;
2107     };
2108 
2109     // We've determined that we are going to sink last ScanIdx instructions,
2110     // and recorded them in InstructionsToSink. Now, some instructions may be
2111     // unprofitable to sink. But that determination depends on the instructions
2112     // that we are going to sink.
2113 
2114     // First, forward scan: find the first instruction unprofitable to sink,
2115     // recording all the ones that are profitable to sink.
2116     // FIXME: would it be better, after we detect that not all are profitable.
2117     // to either record the profitable ones, or erase the unprofitable ones?
2118     // Maybe we need to choose (at runtime) the one that will touch least
2119     // instrs?
2120     LRI.reset();
2121     int Idx = 0;
2122     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2123     while (Idx < ScanIdx) {
2124       if (!ProfitableToSinkInstruction(LRI)) {
2125         // Too many PHIs would be created.
2126         LLVM_DEBUG(
2127             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2128         break;
2129       }
2130       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2131       --LRI;
2132       ++Idx;
2133     }
2134 
2135     // If no instructions can be sunk, early-return.
2136     if (Idx == 0)
2137       return false;
2138 
2139     // Did we determine that (only) some instructions are unprofitable to sink?
2140     if (Idx < ScanIdx) {
2141       // Okay, some instructions are unprofitable.
2142       ScanIdx = Idx;
2143       InstructionsToSink = InstructionsProfitableToSink;
2144 
2145       // But, that may make other instructions unprofitable, too.
2146       // So, do a backward scan, do any earlier instructions become
2147       // unprofitable?
2148       assert(
2149           !ProfitableToSinkInstruction(LRI) &&
2150           "We already know that the last instruction is unprofitable to sink");
2151       ++LRI;
2152       --Idx;
2153       while (Idx >= 0) {
2154         // If we detect that an instruction becomes unprofitable to sink,
2155         // all earlier instructions won't be sunk either,
2156         // so preemptively keep InstructionsProfitableToSink in sync.
2157         // FIXME: is this the most performant approach?
2158         for (auto *I : *LRI)
2159           InstructionsProfitableToSink.erase(I);
2160         if (!ProfitableToSinkInstruction(LRI)) {
2161           // Everything starting with this instruction won't be sunk.
2162           ScanIdx = Idx;
2163           InstructionsToSink = InstructionsProfitableToSink;
2164         }
2165         ++LRI;
2166         --Idx;
2167       }
2168     }
2169 
2170     // If no instructions can be sunk, early-return.
2171     if (ScanIdx == 0)
2172       return false;
2173   }
2174 
2175   bool Changed = false;
2176 
2177   if (HaveNonUnconditionalPredecessors) {
2178     if (!followedByDeoptOrUnreachable) {
2179       // It is always legal to sink common instructions from unconditional
2180       // predecessors. However, if not all predecessors are unconditional,
2181       // this transformation might be pessimizing. So as a rule of thumb,
2182       // don't do it unless we'd sink at least one non-speculatable instruction.
2183       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2184       LRI.reset();
2185       int Idx = 0;
2186       bool Profitable = false;
2187       while (Idx < ScanIdx) {
2188         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2189           Profitable = true;
2190           break;
2191         }
2192         --LRI;
2193         ++Idx;
2194       }
2195       if (!Profitable)
2196         return false;
2197     }
2198 
2199     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2200     // We have a conditional edge and we're going to sink some instructions.
2201     // Insert a new block postdominating all blocks we're going to sink from.
2202     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2203       // Edges couldn't be split.
2204       return false;
2205     Changed = true;
2206   }
2207 
2208   // Now that we've analyzed all potential sinking candidates, perform the
2209   // actual sink. We iteratively sink the last non-terminator of the source
2210   // blocks into their common successor unless doing so would require too
2211   // many PHI instructions to be generated (currently only one PHI is allowed
2212   // per sunk instruction).
2213   //
2214   // We can use InstructionsToSink to discount values needing PHI-merging that will
2215   // actually be sunk in a later iteration. This allows us to be more
2216   // aggressive in what we sink. This does allow a false positive where we
2217   // sink presuming a later value will also be sunk, but stop half way through
2218   // and never actually sink it which means we produce more PHIs than intended.
2219   // This is unlikely in practice though.
2220   int SinkIdx = 0;
2221   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2222     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2223                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2224                       << "\n");
2225 
2226     // Because we've sunk every instruction in turn, the current instruction to
2227     // sink is always at index 0.
2228     LRI.reset();
2229 
2230     if (!sinkLastInstruction(UnconditionalPreds)) {
2231       LLVM_DEBUG(
2232           dbgs()
2233           << "SINK: stopping here, failed to actually sink instruction!\n");
2234       break;
2235     }
2236 
2237     NumSinkCommonInstrs++;
2238     Changed = true;
2239   }
2240   if (SinkIdx != 0)
2241     ++NumSinkCommonCode;
2242   return Changed;
2243 }
2244 
2245 namespace {
2246 
2247 struct CompatibleSets {
2248   using SetTy = SmallVector<InvokeInst *, 2>;
2249 
2250   SmallVector<SetTy, 1> Sets;
2251 
2252   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2253 
2254   SetTy &getCompatibleSet(InvokeInst *II);
2255 
2256   void insert(InvokeInst *II);
2257 };
2258 
2259 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2260   // Perform a linear scan over all the existing sets, see if the new `invoke`
2261   // is compatible with any particular set. Since we know that all the `invokes`
2262   // within a set are compatible, only check the first `invoke` in each set.
2263   // WARNING: at worst, this has quadratic complexity.
2264   for (CompatibleSets::SetTy &Set : Sets) {
2265     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2266       return Set;
2267   }
2268 
2269   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2270   return Sets.emplace_back();
2271 }
2272 
2273 void CompatibleSets::insert(InvokeInst *II) {
2274   getCompatibleSet(II).emplace_back(II);
2275 }
2276 
2277 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2278   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2279 
2280   // Can we theoretically merge these `invoke`s?
2281   auto IsIllegalToMerge = [](InvokeInst *II) {
2282     return II->cannotMerge() || II->isInlineAsm();
2283   };
2284   if (any_of(Invokes, IsIllegalToMerge))
2285     return false;
2286 
2287   // All callees must be identical.
2288   // FIXME: support indirect callees?
2289   Value *Callee = nullptr;
2290   for (InvokeInst *II : Invokes) {
2291     Value *CurrCallee = II->getCalledOperand();
2292     assert(CurrCallee && "There is always a called operand.");
2293     if (!Callee)
2294       Callee = CurrCallee;
2295     else if (Callee != CurrCallee)
2296       return false;
2297   }
2298 
2299   // Either both `invoke`s must not have a normal destination,
2300   // or     both `invoke`s must     have a normal destination,
2301   auto HasNormalDest = [](InvokeInst *II) {
2302     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2303   };
2304   if (any_of(Invokes, HasNormalDest)) {
2305     // Do not merge `invoke` that does not have a normal destination with one
2306     // that does have a normal destination, even though doing so would be legal.
2307     if (!all_of(Invokes, HasNormalDest))
2308       return false;
2309 
2310     // All normal destinations must be identical.
2311     BasicBlock *NormalBB = nullptr;
2312     for (InvokeInst *II : Invokes) {
2313       BasicBlock *CurrNormalBB = II->getNormalDest();
2314       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2315       if (!NormalBB)
2316         NormalBB = CurrNormalBB;
2317       else if (NormalBB != CurrNormalBB)
2318         return false;
2319     }
2320 
2321     // In the normal destination, the incoming values for these two `invoke`s
2322     // must be compatible.
2323     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2324     if (!IncomingValuesAreCompatible(
2325             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2326             &EquivalenceSet))
2327       return false;
2328   }
2329 
2330 #ifndef NDEBUG
2331   // All unwind destinations must be identical.
2332   // We know that because we have started from said unwind destination.
2333   BasicBlock *UnwindBB = nullptr;
2334   for (InvokeInst *II : Invokes) {
2335     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2336     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2337     if (!UnwindBB)
2338       UnwindBB = CurrUnwindBB;
2339     else
2340       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2341   }
2342 #endif
2343 
2344   // In the unwind destination, the incoming values for these two `invoke`s
2345   // must be compatible.
2346   if (!IncomingValuesAreCompatible(
2347           Invokes.front()->getUnwindDest(),
2348           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2349     return false;
2350 
2351   // Ignoring arguments, these `invoke`s must be identical,
2352   // including operand bundles.
2353   const InvokeInst *II0 = Invokes.front();
2354   for (auto *II : Invokes.drop_front())
2355     if (!II->isSameOperationAs(II0))
2356       return false;
2357 
2358   // Can we theoretically form the data operands for the merged `invoke`?
2359   auto IsIllegalToMergeArguments = [](auto Ops) {
2360     Type *Ty = std::get<0>(Ops)->getType();
2361     assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?");
2362     return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops);
2363   };
2364   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2365   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2366              IsIllegalToMergeArguments))
2367     return false;
2368 
2369   return true;
2370 }
2371 
2372 } // namespace
2373 
2374 // Merge all invokes in the provided set, all of which are compatible
2375 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2376 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2377                                        DomTreeUpdater *DTU) {
2378   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2379 
2380   SmallVector<DominatorTree::UpdateType, 8> Updates;
2381   if (DTU)
2382     Updates.reserve(2 + 3 * Invokes.size());
2383 
2384   bool HasNormalDest =
2385       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2386 
2387   // Clone one of the invokes into a new basic block.
2388   // Since they are all compatible, it doesn't matter which invoke is cloned.
2389   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2390     InvokeInst *II0 = Invokes.front();
2391     BasicBlock *II0BB = II0->getParent();
2392     BasicBlock *InsertBeforeBlock =
2393         II0->getParent()->getIterator()->getNextNode();
2394     Function *Func = II0BB->getParent();
2395     LLVMContext &Ctx = II0->getContext();
2396 
2397     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2398         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2399 
2400     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2401     // NOTE: all invokes have the same attributes, so no handling needed.
2402     MergedInvokeBB->getInstList().push_back(MergedInvoke);
2403 
2404     if (!HasNormalDest) {
2405       // This set does not have a normal destination,
2406       // so just form a new block with unreachable terminator.
2407       BasicBlock *MergedNormalDest = BasicBlock::Create(
2408           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2409       new UnreachableInst(Ctx, MergedNormalDest);
2410       MergedInvoke->setNormalDest(MergedNormalDest);
2411     }
2412 
2413     // The unwind destination, however, remainds identical for all invokes here.
2414 
2415     return MergedInvoke;
2416   }();
2417 
2418   if (DTU) {
2419     // Predecessor blocks that contained these invokes will now branch to
2420     // the new block that contains the merged invoke, ...
2421     for (InvokeInst *II : Invokes)
2422       Updates.push_back(
2423           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2424 
2425     // ... which has the new `unreachable` block as normal destination,
2426     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2427     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2428       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2429                          SuccBBOfMergedInvoke});
2430 
2431     // Since predecessor blocks now unconditionally branch to a new block,
2432     // they no longer branch to their original successors.
2433     for (InvokeInst *II : Invokes)
2434       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2435         Updates.push_back(
2436             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2437   }
2438 
2439   // Form the merged data operands for the merged invoke.
2440   for (Use &U : MergedInvoke->data_ops()) {
2441     Type *Ty = U->getType();
2442     if (Ty->isTokenTy())
2443       continue; // Keep this arg as-is, we've checked that all the invokes
2444                 // recieve the *same* token value.
2445 
2446     // Otherwise, simply form a PHI out of all the data ops under this index.
2447     PHINode *PN = PHINode::Create(Ty, /*NumReservedValues=*/Invokes.size(), "",
2448                                   MergedInvoke);
2449     for (InvokeInst *II : Invokes) {
2450       Use *IVU = II->data_operands_begin() + MergedInvoke->getDataOperandNo(&U);
2451       PN->addIncoming(IVU->get(), II->getParent());
2452     }
2453 
2454     U.set(PN);
2455   }
2456 
2457   // We've ensured that each PHI node has compatible (identical) incoming values
2458   // when coming from each of the `invoke`s in the current merge set,
2459   // so update the PHI nodes accordingly.
2460   for (BasicBlock *Succ : successors(MergedInvoke))
2461     AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2462                           /*ExistPred=*/Invokes.front()->getParent());
2463 
2464   // And finally, replace the original `invoke`s with an unconditional branch
2465   // to the block with the merged `invoke`. Also, give that merged `invoke`
2466   // the merged debugloc of all the original `invoke`s.
2467   const DILocation *MergedDebugLoc = nullptr;
2468   for (InvokeInst *II : Invokes) {
2469     // Compute the debug location common to all the original `invoke`s.
2470     if (!MergedDebugLoc)
2471       MergedDebugLoc = II->getDebugLoc();
2472     else
2473       MergedDebugLoc =
2474           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2475 
2476     // And replace the old `invoke` with an unconditionally branch
2477     // to the block with the merged `invoke`.
2478     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2479       OrigSuccBB->removePredecessor(II->getParent());
2480     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2481     II->replaceAllUsesWith(MergedInvoke);
2482     II->eraseFromParent();
2483     ++NumInvokesMerged;
2484   }
2485   MergedInvoke->setDebugLoc(MergedDebugLoc);
2486   ++NumInvokeSetsFormed;
2487 
2488   if (DTU)
2489     DTU->applyUpdates(Updates);
2490 }
2491 
2492 /// If this block is a `landingpad` exception handling block, categorize all
2493 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2494 /// being "mergeable" together, and then merge invokes in each set together.
2495 ///
2496 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2497 ///          [...]        [...]
2498 ///            |            |
2499 ///        [invoke0]    [invoke1]
2500 ///           / \          / \
2501 ///     [cont0] [landingpad] [cont1]
2502 /// to:
2503 ///      [...] [...]
2504 ///          \ /
2505 ///       [invoke]
2506 ///          / \
2507 ///     [cont] [landingpad]
2508 ///
2509 /// But of course we can only do that if the invokes share the `landingpad`,
2510 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2511 /// and the invoked functions are "compatible".
2512 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2513   bool Changed = false;
2514 
2515   // FIXME: generalize to all exception handling blocks?
2516   if (!BB->isLandingPad())
2517     return Changed;
2518 
2519   CompatibleSets Grouper;
2520 
2521   // Record all the predecessors of this `landingpad`. As per verifier,
2522   // the only allowed predecessor is the unwind edge of an `invoke`.
2523   // We want to group "compatible" `invokes` into the same set to be merged.
2524   for (BasicBlock *PredBB : predecessors(BB))
2525     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2526 
2527   // And now, merge `invoke`s that were grouped togeter.
2528   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2529     if (Invokes.size() < 2)
2530       continue;
2531     Changed = true;
2532     MergeCompatibleInvokesImpl(Invokes, DTU);
2533   }
2534 
2535   return Changed;
2536 }
2537 
2538 /// Determine if we can hoist sink a sole store instruction out of a
2539 /// conditional block.
2540 ///
2541 /// We are looking for code like the following:
2542 ///   BrBB:
2543 ///     store i32 %add, i32* %arrayidx2
2544 ///     ... // No other stores or function calls (we could be calling a memory
2545 ///     ... // function).
2546 ///     %cmp = icmp ult %x, %y
2547 ///     br i1 %cmp, label %EndBB, label %ThenBB
2548 ///   ThenBB:
2549 ///     store i32 %add5, i32* %arrayidx2
2550 ///     br label EndBB
2551 ///   EndBB:
2552 ///     ...
2553 ///   We are going to transform this into:
2554 ///   BrBB:
2555 ///     store i32 %add, i32* %arrayidx2
2556 ///     ... //
2557 ///     %cmp = icmp ult %x, %y
2558 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2559 ///     store i32 %add.add5, i32* %arrayidx2
2560 ///     ...
2561 ///
2562 /// \return The pointer to the value of the previous store if the store can be
2563 ///         hoisted into the predecessor block. 0 otherwise.
2564 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2565                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2566   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2567   if (!StoreToHoist)
2568     return nullptr;
2569 
2570   // Volatile or atomic.
2571   if (!StoreToHoist->isSimple())
2572     return nullptr;
2573 
2574   Value *StorePtr = StoreToHoist->getPointerOperand();
2575   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2576 
2577   // Look for a store to the same pointer in BrBB.
2578   unsigned MaxNumInstToLookAt = 9;
2579   // Skip pseudo probe intrinsic calls which are not really killing any memory
2580   // accesses.
2581   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2582     if (!MaxNumInstToLookAt)
2583       break;
2584     --MaxNumInstToLookAt;
2585 
2586     // Could be calling an instruction that affects memory like free().
2587     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2588       return nullptr;
2589 
2590     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2591       // Found the previous store to same location and type. Make sure it is
2592       // simple, to avoid introducing a spurious non-atomic write after an
2593       // atomic write.
2594       if (SI->getPointerOperand() == StorePtr &&
2595           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2596         // Found the previous store, return its value operand.
2597         return SI->getValueOperand();
2598       return nullptr; // Unknown store.
2599     }
2600 
2601     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2602       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2603           LI->isSimple()) {
2604         // Local objects (created by an `alloca` instruction) are always
2605         // writable, so once we are past a read from a location it is valid to
2606         // also write to that same location.
2607         // If the address of the local object never escapes the function, that
2608         // means it's never concurrently read or written, hence moving the store
2609         // from under the condition will not introduce a data race.
2610         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2611         if (AI && !PointerMayBeCaptured(AI, false, true))
2612           // Found a previous load, return it.
2613           return LI;
2614       }
2615       // The load didn't work out, but we may still find a store.
2616     }
2617   }
2618 
2619   return nullptr;
2620 }
2621 
2622 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2623 /// converted to selects.
2624 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2625                                            BasicBlock *EndBB,
2626                                            unsigned &SpeculatedInstructions,
2627                                            InstructionCost &Cost,
2628                                            const TargetTransformInfo &TTI) {
2629   TargetTransformInfo::TargetCostKind CostKind =
2630     BB->getParent()->hasMinSize()
2631     ? TargetTransformInfo::TCK_CodeSize
2632     : TargetTransformInfo::TCK_SizeAndLatency;
2633 
2634   bool HaveRewritablePHIs = false;
2635   for (PHINode &PN : EndBB->phis()) {
2636     Value *OrigV = PN.getIncomingValueForBlock(BB);
2637     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2638 
2639     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2640     // Skip PHIs which are trivial.
2641     if (ThenV == OrigV)
2642       continue;
2643 
2644     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2645                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2646 
2647     // Don't convert to selects if we could remove undefined behavior instead.
2648     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2649         passingValueIsAlwaysUndefined(ThenV, &PN))
2650       return false;
2651 
2652     HaveRewritablePHIs = true;
2653     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2654     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2655     if (!OrigCE && !ThenCE)
2656       continue; // Known safe and cheap.
2657 
2658     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2659         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2660       return false;
2661     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2662     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2663     InstructionCost MaxCost =
2664         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2665     if (OrigCost + ThenCost > MaxCost)
2666       return false;
2667 
2668     // Account for the cost of an unfolded ConstantExpr which could end up
2669     // getting expanded into Instructions.
2670     // FIXME: This doesn't account for how many operations are combined in the
2671     // constant expression.
2672     ++SpeculatedInstructions;
2673     if (SpeculatedInstructions > 1)
2674       return false;
2675   }
2676 
2677   return HaveRewritablePHIs;
2678 }
2679 
2680 /// Speculate a conditional basic block flattening the CFG.
2681 ///
2682 /// Note that this is a very risky transform currently. Speculating
2683 /// instructions like this is most often not desirable. Instead, there is an MI
2684 /// pass which can do it with full awareness of the resource constraints.
2685 /// However, some cases are "obvious" and we should do directly. An example of
2686 /// this is speculating a single, reasonably cheap instruction.
2687 ///
2688 /// There is only one distinct advantage to flattening the CFG at the IR level:
2689 /// it makes very common but simplistic optimizations such as are common in
2690 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2691 /// modeling their effects with easier to reason about SSA value graphs.
2692 ///
2693 ///
2694 /// An illustration of this transform is turning this IR:
2695 /// \code
2696 ///   BB:
2697 ///     %cmp = icmp ult %x, %y
2698 ///     br i1 %cmp, label %EndBB, label %ThenBB
2699 ///   ThenBB:
2700 ///     %sub = sub %x, %y
2701 ///     br label BB2
2702 ///   EndBB:
2703 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2704 ///     ...
2705 /// \endcode
2706 ///
2707 /// Into this IR:
2708 /// \code
2709 ///   BB:
2710 ///     %cmp = icmp ult %x, %y
2711 ///     %sub = sub %x, %y
2712 ///     %cond = select i1 %cmp, 0, %sub
2713 ///     ...
2714 /// \endcode
2715 ///
2716 /// \returns true if the conditional block is removed.
2717 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2718                                             const TargetTransformInfo &TTI) {
2719   // Be conservative for now. FP select instruction can often be expensive.
2720   Value *BrCond = BI->getCondition();
2721   if (isa<FCmpInst>(BrCond))
2722     return false;
2723 
2724   BasicBlock *BB = BI->getParent();
2725   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2726   InstructionCost Budget =
2727       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2728 
2729   // If ThenBB is actually on the false edge of the conditional branch, remember
2730   // to swap the select operands later.
2731   bool Invert = false;
2732   if (ThenBB != BI->getSuccessor(0)) {
2733     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2734     Invert = true;
2735   }
2736   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2737 
2738   // If the branch is non-unpredictable, and is predicted to *not* branch to
2739   // the `then` block, then avoid speculating it.
2740   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2741     uint64_t TWeight, FWeight;
2742     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2743       uint64_t EndWeight = Invert ? TWeight : FWeight;
2744       BranchProbability BIEndProb =
2745           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2746       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2747       if (BIEndProb >= Likely)
2748         return false;
2749     }
2750   }
2751 
2752   // Keep a count of how many times instructions are used within ThenBB when
2753   // they are candidates for sinking into ThenBB. Specifically:
2754   // - They are defined in BB, and
2755   // - They have no side effects, and
2756   // - All of their uses are in ThenBB.
2757   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2758 
2759   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2760 
2761   unsigned SpeculatedInstructions = 0;
2762   Value *SpeculatedStoreValue = nullptr;
2763   StoreInst *SpeculatedStore = nullptr;
2764   for (BasicBlock::iterator BBI = ThenBB->begin(),
2765                             BBE = std::prev(ThenBB->end());
2766        BBI != BBE; ++BBI) {
2767     Instruction *I = &*BBI;
2768     // Skip debug info.
2769     if (isa<DbgInfoIntrinsic>(I)) {
2770       SpeculatedDbgIntrinsics.push_back(I);
2771       continue;
2772     }
2773 
2774     // Skip pseudo probes. The consequence is we lose track of the branch
2775     // probability for ThenBB, which is fine since the optimization here takes
2776     // place regardless of the branch probability.
2777     if (isa<PseudoProbeInst>(I)) {
2778       // The probe should be deleted so that it will not be over-counted when
2779       // the samples collected on the non-conditional path are counted towards
2780       // the conditional path. We leave it for the counts inference algorithm to
2781       // figure out a proper count for an unknown probe.
2782       SpeculatedDbgIntrinsics.push_back(I);
2783       continue;
2784     }
2785 
2786     // Only speculatively execute a single instruction (not counting the
2787     // terminator) for now.
2788     ++SpeculatedInstructions;
2789     if (SpeculatedInstructions > 1)
2790       return false;
2791 
2792     // Don't hoist the instruction if it's unsafe or expensive.
2793     if (!isSafeToSpeculativelyExecute(I) &&
2794         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2795                                   I, BB, ThenBB, EndBB))))
2796       return false;
2797     if (!SpeculatedStoreValue &&
2798         computeSpeculationCost(I, TTI) >
2799             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2800       return false;
2801 
2802     // Store the store speculation candidate.
2803     if (SpeculatedStoreValue)
2804       SpeculatedStore = cast<StoreInst>(I);
2805 
2806     // Do not hoist the instruction if any of its operands are defined but not
2807     // used in BB. The transformation will prevent the operand from
2808     // being sunk into the use block.
2809     for (Use &Op : I->operands()) {
2810       Instruction *OpI = dyn_cast<Instruction>(Op);
2811       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2812         continue; // Not a candidate for sinking.
2813 
2814       ++SinkCandidateUseCounts[OpI];
2815     }
2816   }
2817 
2818   // Consider any sink candidates which are only used in ThenBB as costs for
2819   // speculation. Note, while we iterate over a DenseMap here, we are summing
2820   // and so iteration order isn't significant.
2821   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2822            I = SinkCandidateUseCounts.begin(),
2823            E = SinkCandidateUseCounts.end();
2824        I != E; ++I)
2825     if (I->first->hasNUses(I->second)) {
2826       ++SpeculatedInstructions;
2827       if (SpeculatedInstructions > 1)
2828         return false;
2829     }
2830 
2831   // Check that we can insert the selects and that it's not too expensive to do
2832   // so.
2833   bool Convert = SpeculatedStore != nullptr;
2834   InstructionCost Cost = 0;
2835   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2836                                             SpeculatedInstructions,
2837                                             Cost, TTI);
2838   if (!Convert || Cost > Budget)
2839     return false;
2840 
2841   // If we get here, we can hoist the instruction and if-convert.
2842   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2843 
2844   // Insert a select of the value of the speculated store.
2845   if (SpeculatedStoreValue) {
2846     IRBuilder<NoFolder> Builder(BI);
2847     Value *TrueV = SpeculatedStore->getValueOperand();
2848     Value *FalseV = SpeculatedStoreValue;
2849     if (Invert)
2850       std::swap(TrueV, FalseV);
2851     Value *S = Builder.CreateSelect(
2852         BrCond, TrueV, FalseV, "spec.store.select", BI);
2853     SpeculatedStore->setOperand(0, S);
2854     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2855                                          SpeculatedStore->getDebugLoc());
2856   }
2857 
2858   // Metadata can be dependent on the condition we are hoisting above.
2859   // Conservatively strip all metadata on the instruction. Drop the debug loc
2860   // to avoid making it appear as if the condition is a constant, which would
2861   // be misleading while debugging.
2862   // Similarly strip attributes that maybe dependent on condition we are
2863   // hoisting above.
2864   for (auto &I : *ThenBB) {
2865     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2866       I.setDebugLoc(DebugLoc());
2867     I.dropUndefImplyingAttrsAndUnknownMetadata();
2868   }
2869 
2870   // Hoist the instructions.
2871   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2872                            ThenBB->begin(), std::prev(ThenBB->end()));
2873 
2874   // Insert selects and rewrite the PHI operands.
2875   IRBuilder<NoFolder> Builder(BI);
2876   for (PHINode &PN : EndBB->phis()) {
2877     unsigned OrigI = PN.getBasicBlockIndex(BB);
2878     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2879     Value *OrigV = PN.getIncomingValue(OrigI);
2880     Value *ThenV = PN.getIncomingValue(ThenI);
2881 
2882     // Skip PHIs which are trivial.
2883     if (OrigV == ThenV)
2884       continue;
2885 
2886     // Create a select whose true value is the speculatively executed value and
2887     // false value is the pre-existing value. Swap them if the branch
2888     // destinations were inverted.
2889     Value *TrueV = ThenV, *FalseV = OrigV;
2890     if (Invert)
2891       std::swap(TrueV, FalseV);
2892     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2893     PN.setIncomingValue(OrigI, V);
2894     PN.setIncomingValue(ThenI, V);
2895   }
2896 
2897   // Remove speculated dbg intrinsics.
2898   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2899   // dbg value for the different flows and inserting it after the select.
2900   for (Instruction *I : SpeculatedDbgIntrinsics)
2901     I->eraseFromParent();
2902 
2903   ++NumSpeculations;
2904   return true;
2905 }
2906 
2907 /// Return true if we can thread a branch across this block.
2908 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2909   int Size = 0;
2910 
2911   SmallPtrSet<const Value *, 32> EphValues;
2912   auto IsEphemeral = [&](const Instruction *I) {
2913     if (isa<AssumeInst>(I))
2914       return true;
2915     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2916            all_of(I->users(),
2917                   [&](const User *U) { return EphValues.count(U); });
2918   };
2919 
2920   // Walk the loop in reverse so that we can identify ephemeral values properly
2921   // (values only feeding assumes).
2922   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
2923     // Can't fold blocks that contain noduplicate or convergent calls.
2924     if (CallInst *CI = dyn_cast<CallInst>(&I))
2925       if (CI->cannotDuplicate() || CI->isConvergent())
2926         return false;
2927 
2928     // Ignore ephemeral values which are deleted during codegen.
2929     if (IsEphemeral(&I))
2930       EphValues.insert(&I);
2931     // We will delete Phis while threading, so Phis should not be accounted in
2932     // block's size.
2933     else if (!isa<PHINode>(I)) {
2934       if (Size++ > MaxSmallBlockSize)
2935         return false; // Don't clone large BB's.
2936     }
2937 
2938     // We can only support instructions that do not define values that are
2939     // live outside of the current basic block.
2940     for (User *U : I.users()) {
2941       Instruction *UI = cast<Instruction>(U);
2942       if (UI->getParent() != BB || isa<PHINode>(UI))
2943         return false;
2944     }
2945 
2946     // Looks ok, continue checking.
2947   }
2948 
2949   return true;
2950 }
2951 
2952 /// If we have a conditional branch on a PHI node value that is defined in the
2953 /// same block as the branch and if any PHI entries are constants, thread edges
2954 /// corresponding to that entry to be branches to their ultimate destination.
2955 static Optional<bool> FoldCondBranchOnPHIImpl(BranchInst *BI,
2956                                               DomTreeUpdater *DTU,
2957                                               const DataLayout &DL,
2958                                               AssumptionCache *AC) {
2959   BasicBlock *BB = BI->getParent();
2960   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2961   // NOTE: we currently cannot transform this case if the PHI node is used
2962   // outside of the block.
2963   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2964     return false;
2965 
2966   // Degenerate case of a single entry PHI.
2967   if (PN->getNumIncomingValues() == 1) {
2968     FoldSingleEntryPHINodes(PN->getParent());
2969     return true;
2970   }
2971 
2972   // Now we know that this block has multiple preds and two succs.
2973   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2974     return false;
2975 
2976   // Okay, this is a simple enough basic block.  See if any phi values are
2977   // constants.
2978   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2979     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2980     if (!CB || !CB->getType()->isIntegerTy(1))
2981       continue;
2982 
2983     // Okay, we now know that all edges from PredBB should be revectored to
2984     // branch to RealDest.
2985     BasicBlock *PredBB = PN->getIncomingBlock(i);
2986     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2987 
2988     if (RealDest == BB)
2989       continue; // Skip self loops.
2990     // Skip if the predecessor's terminator is an indirect branch.
2991     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2992       continue;
2993 
2994     SmallVector<DominatorTree::UpdateType, 3> Updates;
2995 
2996     // The dest block might have PHI nodes, other predecessors and other
2997     // difficult cases.  Instead of being smart about this, just insert a new
2998     // block that jumps to the destination block, effectively splitting
2999     // the edge we are about to create.
3000     BasicBlock *EdgeBB =
3001         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
3002                            RealDest->getParent(), RealDest);
3003     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
3004     if (DTU)
3005       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3006     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
3007 
3008     // Update PHI nodes.
3009     AddPredecessorToBlock(RealDest, EdgeBB, BB);
3010 
3011     // BB may have instructions that are being threaded over.  Clone these
3012     // instructions into EdgeBB.  We know that there will be no uses of the
3013     // cloned instructions outside of EdgeBB.
3014     BasicBlock::iterator InsertPt = EdgeBB->begin();
3015     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3016     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3017       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3018         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
3019         continue;
3020       }
3021       // Clone the instruction.
3022       Instruction *N = BBI->clone();
3023       if (BBI->hasName())
3024         N->setName(BBI->getName() + ".c");
3025 
3026       // Update operands due to translation.
3027       for (Use &Op : N->operands()) {
3028         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3029         if (PI != TranslateMap.end())
3030           Op = PI->second;
3031       }
3032 
3033       // Check for trivial simplification.
3034       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3035         if (!BBI->use_empty())
3036           TranslateMap[&*BBI] = V;
3037         if (!N->mayHaveSideEffects()) {
3038           N->deleteValue(); // Instruction folded away, don't need actual inst
3039           N = nullptr;
3040         }
3041       } else {
3042         if (!BBI->use_empty())
3043           TranslateMap[&*BBI] = N;
3044       }
3045       if (N) {
3046         // Insert the new instruction into its new home.
3047         EdgeBB->getInstList().insert(InsertPt, N);
3048 
3049         // Register the new instruction with the assumption cache if necessary.
3050         if (auto *Assume = dyn_cast<AssumeInst>(N))
3051           if (AC)
3052             AC->registerAssumption(Assume);
3053       }
3054     }
3055 
3056     // Loop over all of the edges from PredBB to BB, changing them to branch
3057     // to EdgeBB instead.
3058     Instruction *PredBBTI = PredBB->getTerminator();
3059     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
3060       if (PredBBTI->getSuccessor(i) == BB) {
3061         BB->removePredecessor(PredBB);
3062         PredBBTI->setSuccessor(i, EdgeBB);
3063       }
3064 
3065     if (DTU) {
3066       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
3067       Updates.push_back({DominatorTree::Delete, PredBB, BB});
3068 
3069       DTU->applyUpdates(Updates);
3070     }
3071 
3072     // Signal repeat, simplifying any other constants.
3073     return None;
3074   }
3075 
3076   return false;
3077 }
3078 
3079 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
3080                                 const DataLayout &DL, AssumptionCache *AC) {
3081   Optional<bool> Result;
3082   bool EverChanged = false;
3083   do {
3084     // Note that None means "we changed things, but recurse further."
3085     Result = FoldCondBranchOnPHIImpl(BI, DTU, DL, AC);
3086     EverChanged |= Result == None || *Result;
3087   } while (Result == None);
3088   return EverChanged;
3089 }
3090 
3091 /// Given a BB that starts with the specified two-entry PHI node,
3092 /// see if we can eliminate it.
3093 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3094                                 DomTreeUpdater *DTU, const DataLayout &DL) {
3095   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3096   // statement", which has a very simple dominance structure.  Basically, we
3097   // are trying to find the condition that is being branched on, which
3098   // subsequently causes this merge to happen.  We really want control
3099   // dependence information for this check, but simplifycfg can't keep it up
3100   // to date, and this catches most of the cases we care about anyway.
3101   BasicBlock *BB = PN->getParent();
3102 
3103   BasicBlock *IfTrue, *IfFalse;
3104   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3105   if (!DomBI)
3106     return false;
3107   Value *IfCond = DomBI->getCondition();
3108   // Don't bother if the branch will be constant folded trivially.
3109   if (isa<ConstantInt>(IfCond))
3110     return false;
3111 
3112   BasicBlock *DomBlock = DomBI->getParent();
3113   SmallVector<BasicBlock *, 2> IfBlocks;
3114   llvm::copy_if(
3115       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3116         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3117       });
3118   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3119          "Will have either one or two blocks to speculate.");
3120 
3121   // If the branch is non-unpredictable, see if we either predictably jump to
3122   // the merge bb (if we have only a single 'then' block), or if we predictably
3123   // jump to one specific 'then' block (if we have two of them).
3124   // It isn't beneficial to speculatively execute the code
3125   // from the block that we know is predictably not entered.
3126   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3127     uint64_t TWeight, FWeight;
3128     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
3129         (TWeight + FWeight) != 0) {
3130       BranchProbability BITrueProb =
3131           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3132       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3133       BranchProbability BIFalseProb = BITrueProb.getCompl();
3134       if (IfBlocks.size() == 1) {
3135         BranchProbability BIBBProb =
3136             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3137         if (BIBBProb >= Likely)
3138           return false;
3139       } else {
3140         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3141           return false;
3142       }
3143     }
3144   }
3145 
3146   // Don't try to fold an unreachable block. For example, the phi node itself
3147   // can't be the candidate if-condition for a select that we want to form.
3148   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3149     if (IfCondPhiInst->getParent() == BB)
3150       return false;
3151 
3152   // Okay, we found that we can merge this two-entry phi node into a select.
3153   // Doing so would require us to fold *all* two entry phi nodes in this block.
3154   // At some point this becomes non-profitable (particularly if the target
3155   // doesn't support cmov's).  Only do this transformation if there are two or
3156   // fewer PHI nodes in this block.
3157   unsigned NumPhis = 0;
3158   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3159     if (NumPhis > 2)
3160       return false;
3161 
3162   // Loop over the PHI's seeing if we can promote them all to select
3163   // instructions.  While we are at it, keep track of the instructions
3164   // that need to be moved to the dominating block.
3165   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3166   InstructionCost Cost = 0;
3167   InstructionCost Budget =
3168       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3169 
3170   bool Changed = false;
3171   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3172     PHINode *PN = cast<PHINode>(II++);
3173     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
3174       PN->replaceAllUsesWith(V);
3175       PN->eraseFromParent();
3176       Changed = true;
3177       continue;
3178     }
3179 
3180     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3181                              Cost, Budget, TTI) ||
3182         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3183                              Cost, Budget, TTI))
3184       return Changed;
3185   }
3186 
3187   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3188   // we ran out of PHIs then we simplified them all.
3189   PN = dyn_cast<PHINode>(BB->begin());
3190   if (!PN)
3191     return true;
3192 
3193   // Return true if at least one of these is a 'not', and another is either
3194   // a 'not' too, or a constant.
3195   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3196     if (!match(V0, m_Not(m_Value())))
3197       std::swap(V0, V1);
3198     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3199     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3200   };
3201 
3202   // Don't fold i1 branches on PHIs which contain binary operators or
3203   // (possibly inverted) select form of or/ands,  unless one of
3204   // the incoming values is an 'not' and another one is freely invertible.
3205   // These can often be turned into switches and other things.
3206   auto IsBinOpOrAnd = [](Value *V) {
3207     return match(
3208         V, m_CombineOr(
3209                m_BinOp(),
3210                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3211                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3212   };
3213   if (PN->getType()->isIntegerTy(1) &&
3214       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3215        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3216       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3217                                  PN->getIncomingValue(1)))
3218     return Changed;
3219 
3220   // If all PHI nodes are promotable, check to make sure that all instructions
3221   // in the predecessor blocks can be promoted as well. If not, we won't be able
3222   // to get rid of the control flow, so it's not worth promoting to select
3223   // instructions.
3224   for (BasicBlock *IfBlock : IfBlocks)
3225     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3226       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3227         // This is not an aggressive instruction that we can promote.
3228         // Because of this, we won't be able to get rid of the control flow, so
3229         // the xform is not worth it.
3230         return Changed;
3231       }
3232 
3233   // If either of the blocks has it's address taken, we can't do this fold.
3234   if (any_of(IfBlocks,
3235              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3236     return Changed;
3237 
3238   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
3239                     << "  T: " << IfTrue->getName()
3240                     << "  F: " << IfFalse->getName() << "\n");
3241 
3242   // If we can still promote the PHI nodes after this gauntlet of tests,
3243   // do all of the PHI's now.
3244 
3245   // Move all 'aggressive' instructions, which are defined in the
3246   // conditional parts of the if's up to the dominating block.
3247   for (BasicBlock *IfBlock : IfBlocks)
3248       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3249 
3250   IRBuilder<NoFolder> Builder(DomBI);
3251   // Propagate fast-math-flags from phi nodes to replacement selects.
3252   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3253   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3254     if (isa<FPMathOperator>(PN))
3255       Builder.setFastMathFlags(PN->getFastMathFlags());
3256 
3257     // Change the PHI node into a select instruction.
3258     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3259     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3260 
3261     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3262     PN->replaceAllUsesWith(Sel);
3263     Sel->takeName(PN);
3264     PN->eraseFromParent();
3265   }
3266 
3267   // At this point, all IfBlocks are empty, so our if statement
3268   // has been flattened.  Change DomBlock to jump directly to our new block to
3269   // avoid other simplifycfg's kicking in on the diamond.
3270   Builder.CreateBr(BB);
3271 
3272   SmallVector<DominatorTree::UpdateType, 3> Updates;
3273   if (DTU) {
3274     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3275     for (auto *Successor : successors(DomBlock))
3276       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3277   }
3278 
3279   DomBI->eraseFromParent();
3280   if (DTU)
3281     DTU->applyUpdates(Updates);
3282 
3283   return true;
3284 }
3285 
3286 static Value *createLogicalOp(IRBuilderBase &Builder,
3287                               Instruction::BinaryOps Opc, Value *LHS,
3288                               Value *RHS, const Twine &Name = "") {
3289   // Try to relax logical op to binary op.
3290   if (impliesPoison(RHS, LHS))
3291     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3292   if (Opc == Instruction::And)
3293     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3294   if (Opc == Instruction::Or)
3295     return Builder.CreateLogicalOr(LHS, RHS, Name);
3296   llvm_unreachable("Invalid logical opcode");
3297 }
3298 
3299 /// Return true if either PBI or BI has branch weight available, and store
3300 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3301 /// not have branch weight, use 1:1 as its weight.
3302 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3303                                    uint64_t &PredTrueWeight,
3304                                    uint64_t &PredFalseWeight,
3305                                    uint64_t &SuccTrueWeight,
3306                                    uint64_t &SuccFalseWeight) {
3307   bool PredHasWeights =
3308       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
3309   bool SuccHasWeights =
3310       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
3311   if (PredHasWeights || SuccHasWeights) {
3312     if (!PredHasWeights)
3313       PredTrueWeight = PredFalseWeight = 1;
3314     if (!SuccHasWeights)
3315       SuccTrueWeight = SuccFalseWeight = 1;
3316     return true;
3317   } else {
3318     return false;
3319   }
3320 }
3321 
3322 /// Determine if the two branches share a common destination and deduce a glue
3323 /// that joins the branches' conditions to arrive at the common destination if
3324 /// that would be profitable.
3325 static Optional<std::pair<Instruction::BinaryOps, bool>>
3326 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3327                                           const TargetTransformInfo *TTI) {
3328   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3329          "Both blocks must end with a conditional branches.");
3330   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3331          "PredBB must be a predecessor of BB.");
3332 
3333   // We have the potential to fold the conditions together, but if the
3334   // predecessor branch is predictable, we may not want to merge them.
3335   uint64_t PTWeight, PFWeight;
3336   BranchProbability PBITrueProb, Likely;
3337   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3338       PBI->extractProfMetadata(PTWeight, PFWeight) &&
3339       (PTWeight + PFWeight) != 0) {
3340     PBITrueProb =
3341         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3342     Likely = TTI->getPredictableBranchThreshold();
3343   }
3344 
3345   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3346     // Speculate the 2nd condition unless the 1st is probably true.
3347     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3348       return {{Instruction::Or, false}};
3349   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3350     // Speculate the 2nd condition unless the 1st is probably false.
3351     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3352       return {{Instruction::And, false}};
3353   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3354     // Speculate the 2nd condition unless the 1st is probably true.
3355     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3356       return {{Instruction::And, true}};
3357   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3358     // Speculate the 2nd condition unless the 1st is probably false.
3359     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3360       return {{Instruction::Or, true}};
3361   }
3362   return None;
3363 }
3364 
3365 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3366                                              DomTreeUpdater *DTU,
3367                                              MemorySSAUpdater *MSSAU,
3368                                              const TargetTransformInfo *TTI) {
3369   BasicBlock *BB = BI->getParent();
3370   BasicBlock *PredBlock = PBI->getParent();
3371 
3372   // Determine if the two branches share a common destination.
3373   Instruction::BinaryOps Opc;
3374   bool InvertPredCond;
3375   std::tie(Opc, InvertPredCond) =
3376       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3377 
3378   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3379 
3380   IRBuilder<> Builder(PBI);
3381   // The builder is used to create instructions to eliminate the branch in BB.
3382   // If BB's terminator has !annotation metadata, add it to the new
3383   // instructions.
3384   Builder.CollectMetadataToCopy(BB->getTerminator(),
3385                                 {LLVMContext::MD_annotation});
3386 
3387   // If we need to invert the condition in the pred block to match, do so now.
3388   if (InvertPredCond) {
3389     Value *NewCond = PBI->getCondition();
3390     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3391       CmpInst *CI = cast<CmpInst>(NewCond);
3392       CI->setPredicate(CI->getInversePredicate());
3393     } else {
3394       NewCond =
3395           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3396     }
3397 
3398     PBI->setCondition(NewCond);
3399     PBI->swapSuccessors();
3400   }
3401 
3402   BasicBlock *UniqueSucc =
3403       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3404 
3405   // Before cloning instructions, notify the successor basic block that it
3406   // is about to have a new predecessor. This will update PHI nodes,
3407   // which will allow us to update live-out uses of bonus instructions.
3408   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3409 
3410   // Try to update branch weights.
3411   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3412   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3413                              SuccTrueWeight, SuccFalseWeight)) {
3414     SmallVector<uint64_t, 8> NewWeights;
3415 
3416     if (PBI->getSuccessor(0) == BB) {
3417       // PBI: br i1 %x, BB, FalseDest
3418       // BI:  br i1 %y, UniqueSucc, FalseDest
3419       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3420       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3421       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3422       //               TrueWeight for PBI * FalseWeight for BI.
3423       // We assume that total weights of a BranchInst can fit into 32 bits.
3424       // Therefore, we will not have overflow using 64-bit arithmetic.
3425       NewWeights.push_back(PredFalseWeight *
3426                                (SuccFalseWeight + SuccTrueWeight) +
3427                            PredTrueWeight * SuccFalseWeight);
3428     } else {
3429       // PBI: br i1 %x, TrueDest, BB
3430       // BI:  br i1 %y, TrueDest, UniqueSucc
3431       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3432       //              FalseWeight for PBI * TrueWeight for BI.
3433       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3434                            PredFalseWeight * SuccTrueWeight);
3435       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3436       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3437     }
3438 
3439     // Halve the weights if any of them cannot fit in an uint32_t
3440     FitWeights(NewWeights);
3441 
3442     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3443     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3444 
3445     // TODO: If BB is reachable from all paths through PredBlock, then we
3446     // could replace PBI's branch probabilities with BI's.
3447   } else
3448     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3449 
3450   // Now, update the CFG.
3451   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3452 
3453   if (DTU)
3454     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3455                        {DominatorTree::Delete, PredBlock, BB}});
3456 
3457   // If BI was a loop latch, it may have had associated loop metadata.
3458   // We need to copy it to the new latch, that is, PBI.
3459   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3460     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3461 
3462   ValueToValueMapTy VMap; // maps original values to cloned values
3463   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3464 
3465   // Now that the Cond was cloned into the predecessor basic block,
3466   // or/and the two conditions together.
3467   Value *BICond = VMap[BI->getCondition()];
3468   PBI->setCondition(
3469       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3470 
3471   // Copy any debug value intrinsics into the end of PredBlock.
3472   for (Instruction &I : *BB) {
3473     if (isa<DbgInfoIntrinsic>(I)) {
3474       Instruction *NewI = I.clone();
3475       RemapInstruction(NewI, VMap,
3476                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3477       NewI->insertBefore(PBI);
3478     }
3479   }
3480 
3481   ++NumFoldBranchToCommonDest;
3482   return true;
3483 }
3484 
3485 /// Return if an instruction's type or any of its operands' types are a vector
3486 /// type.
3487 static bool isVectorOp(Instruction &I) {
3488   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3489            return U->getType()->isVectorTy();
3490          });
3491 }
3492 
3493 /// If this basic block is simple enough, and if a predecessor branches to us
3494 /// and one of our successors, fold the block into the predecessor and use
3495 /// logical operations to pick the right destination.
3496 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3497                                   MemorySSAUpdater *MSSAU,
3498                                   const TargetTransformInfo *TTI,
3499                                   unsigned BonusInstThreshold) {
3500   // If this block ends with an unconditional branch,
3501   // let SpeculativelyExecuteBB() deal with it.
3502   if (!BI->isConditional())
3503     return false;
3504 
3505   BasicBlock *BB = BI->getParent();
3506   TargetTransformInfo::TargetCostKind CostKind =
3507     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3508                                   : TargetTransformInfo::TCK_SizeAndLatency;
3509 
3510   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3511 
3512   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3513       Cond->getParent() != BB || !Cond->hasOneUse())
3514     return false;
3515 
3516   // Cond is known to be a compare or binary operator.  Check to make sure that
3517   // neither operand is a potentially-trapping constant expression.
3518   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3519     if (CE->canTrap())
3520       return false;
3521   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3522     if (CE->canTrap())
3523       return false;
3524 
3525   // Finally, don't infinitely unroll conditional loops.
3526   if (is_contained(successors(BB), BB))
3527     return false;
3528 
3529   // With which predecessors will we want to deal with?
3530   SmallVector<BasicBlock *, 8> Preds;
3531   for (BasicBlock *PredBlock : predecessors(BB)) {
3532     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3533 
3534     // Check that we have two conditional branches.  If there is a PHI node in
3535     // the common successor, verify that the same value flows in from both
3536     // blocks.
3537     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3538       continue;
3539 
3540     // Determine if the two branches share a common destination.
3541     Instruction::BinaryOps Opc;
3542     bool InvertPredCond;
3543     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3544       std::tie(Opc, InvertPredCond) = *Recipe;
3545     else
3546       continue;
3547 
3548     // Check the cost of inserting the necessary logic before performing the
3549     // transformation.
3550     if (TTI) {
3551       Type *Ty = BI->getCondition()->getType();
3552       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3553       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3554           !isa<CmpInst>(PBI->getCondition())))
3555         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3556 
3557       if (Cost > BranchFoldThreshold)
3558         continue;
3559     }
3560 
3561     // Ok, we do want to deal with this predecessor. Record it.
3562     Preds.emplace_back(PredBlock);
3563   }
3564 
3565   // If there aren't any predecessors into which we can fold,
3566   // don't bother checking the cost.
3567   if (Preds.empty())
3568     return false;
3569 
3570   // Only allow this transformation if computing the condition doesn't involve
3571   // too many instructions and these involved instructions can be executed
3572   // unconditionally. We denote all involved instructions except the condition
3573   // as "bonus instructions", and only allow this transformation when the
3574   // number of the bonus instructions we'll need to create when cloning into
3575   // each predecessor does not exceed a certain threshold.
3576   unsigned NumBonusInsts = 0;
3577   bool SawVectorOp = false;
3578   const unsigned PredCount = Preds.size();
3579   for (Instruction &I : *BB) {
3580     // Don't check the branch condition comparison itself.
3581     if (&I == Cond)
3582       continue;
3583     // Ignore dbg intrinsics, and the terminator.
3584     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3585       continue;
3586     // I must be safe to execute unconditionally.
3587     if (!isSafeToSpeculativelyExecute(&I))
3588       return false;
3589     SawVectorOp |= isVectorOp(I);
3590 
3591     // Account for the cost of duplicating this instruction into each
3592     // predecessor. Ignore free instructions.
3593     if (!TTI ||
3594         TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
3595       NumBonusInsts += PredCount;
3596 
3597       // Early exits once we reach the limit.
3598       if (NumBonusInsts >
3599           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3600         return false;
3601     }
3602 
3603     auto IsBCSSAUse = [BB, &I](Use &U) {
3604       auto *UI = cast<Instruction>(U.getUser());
3605       if (auto *PN = dyn_cast<PHINode>(UI))
3606         return PN->getIncomingBlock(U) == BB;
3607       return UI->getParent() == BB && I.comesBefore(UI);
3608     };
3609 
3610     // Does this instruction require rewriting of uses?
3611     if (!all_of(I.uses(), IsBCSSAUse))
3612       return false;
3613   }
3614   if (NumBonusInsts >
3615       BonusInstThreshold *
3616           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3617     return false;
3618 
3619   // Ok, we have the budget. Perform the transformation.
3620   for (BasicBlock *PredBlock : Preds) {
3621     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3622     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3623   }
3624   return false;
3625 }
3626 
3627 // If there is only one store in BB1 and BB2, return it, otherwise return
3628 // nullptr.
3629 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3630   StoreInst *S = nullptr;
3631   for (auto *BB : {BB1, BB2}) {
3632     if (!BB)
3633       continue;
3634     for (auto &I : *BB)
3635       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3636         if (S)
3637           // Multiple stores seen.
3638           return nullptr;
3639         else
3640           S = SI;
3641       }
3642   }
3643   return S;
3644 }
3645 
3646 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3647                                               Value *AlternativeV = nullptr) {
3648   // PHI is going to be a PHI node that allows the value V that is defined in
3649   // BB to be referenced in BB's only successor.
3650   //
3651   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3652   // doesn't matter to us what the other operand is (it'll never get used). We
3653   // could just create a new PHI with an undef incoming value, but that could
3654   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3655   // other PHI. So here we directly look for some PHI in BB's successor with V
3656   // as an incoming operand. If we find one, we use it, else we create a new
3657   // one.
3658   //
3659   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3660   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3661   // where OtherBB is the single other predecessor of BB's only successor.
3662   PHINode *PHI = nullptr;
3663   BasicBlock *Succ = BB->getSingleSuccessor();
3664 
3665   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3666     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3667       PHI = cast<PHINode>(I);
3668       if (!AlternativeV)
3669         break;
3670 
3671       assert(Succ->hasNPredecessors(2));
3672       auto PredI = pred_begin(Succ);
3673       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3674       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3675         break;
3676       PHI = nullptr;
3677     }
3678   if (PHI)
3679     return PHI;
3680 
3681   // If V is not an instruction defined in BB, just return it.
3682   if (!AlternativeV &&
3683       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3684     return V;
3685 
3686   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3687   PHI->addIncoming(V, BB);
3688   for (BasicBlock *PredBB : predecessors(Succ))
3689     if (PredBB != BB)
3690       PHI->addIncoming(
3691           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3692   return PHI;
3693 }
3694 
3695 static bool mergeConditionalStoreToAddress(
3696     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3697     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3698     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3699   // For every pointer, there must be exactly two stores, one coming from
3700   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3701   // store (to any address) in PTB,PFB or QTB,QFB.
3702   // FIXME: We could relax this restriction with a bit more work and performance
3703   // testing.
3704   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3705   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3706   if (!PStore || !QStore)
3707     return false;
3708 
3709   // Now check the stores are compatible.
3710   if (!QStore->isUnordered() || !PStore->isUnordered())
3711     return false;
3712 
3713   // Check that sinking the store won't cause program behavior changes. Sinking
3714   // the store out of the Q blocks won't change any behavior as we're sinking
3715   // from a block to its unconditional successor. But we're moving a store from
3716   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3717   // So we need to check that there are no aliasing loads or stores in
3718   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3719   // operations between PStore and the end of its parent block.
3720   //
3721   // The ideal way to do this is to query AliasAnalysis, but we don't
3722   // preserve AA currently so that is dangerous. Be super safe and just
3723   // check there are no other memory operations at all.
3724   for (auto &I : *QFB->getSinglePredecessor())
3725     if (I.mayReadOrWriteMemory())
3726       return false;
3727   for (auto &I : *QFB)
3728     if (&I != QStore && I.mayReadOrWriteMemory())
3729       return false;
3730   if (QTB)
3731     for (auto &I : *QTB)
3732       if (&I != QStore && I.mayReadOrWriteMemory())
3733         return false;
3734   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3735        I != E; ++I)
3736     if (&*I != PStore && I->mayReadOrWriteMemory())
3737       return false;
3738 
3739   // If we're not in aggressive mode, we only optimize if we have some
3740   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3741   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3742     if (!BB)
3743       return true;
3744     // Heuristic: if the block can be if-converted/phi-folded and the
3745     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3746     // thread this store.
3747     InstructionCost Cost = 0;
3748     InstructionCost Budget =
3749         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3750     for (auto &I : BB->instructionsWithoutDebug(false)) {
3751       // Consider terminator instruction to be free.
3752       if (I.isTerminator())
3753         continue;
3754       // If this is one the stores that we want to speculate out of this BB,
3755       // then don't count it's cost, consider it to be free.
3756       if (auto *S = dyn_cast<StoreInst>(&I))
3757         if (llvm::find(FreeStores, S))
3758           continue;
3759       // Else, we have a white-list of instructions that we are ak speculating.
3760       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3761         return false; // Not in white-list - not worthwhile folding.
3762       // And finally, if this is a non-free instruction that we are okay
3763       // speculating, ensure that we consider the speculation budget.
3764       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3765       if (Cost > Budget)
3766         return false; // Eagerly refuse to fold as soon as we're out of budget.
3767     }
3768     assert(Cost <= Budget &&
3769            "When we run out of budget we will eagerly return from within the "
3770            "per-instruction loop.");
3771     return true;
3772   };
3773 
3774   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3775   if (!MergeCondStoresAggressively &&
3776       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3777        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3778     return false;
3779 
3780   // If PostBB has more than two predecessors, we need to split it so we can
3781   // sink the store.
3782   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3783     // We know that QFB's only successor is PostBB. And QFB has a single
3784     // predecessor. If QTB exists, then its only successor is also PostBB.
3785     // If QTB does not exist, then QFB's only predecessor has a conditional
3786     // branch to QFB and PostBB.
3787     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3788     BasicBlock *NewBB =
3789         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3790     if (!NewBB)
3791       return false;
3792     PostBB = NewBB;
3793   }
3794 
3795   // OK, we're going to sink the stores to PostBB. The store has to be
3796   // conditional though, so first create the predicate.
3797   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3798                      ->getCondition();
3799   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3800                      ->getCondition();
3801 
3802   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3803                                                 PStore->getParent());
3804   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3805                                                 QStore->getParent(), PPHI);
3806 
3807   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3808 
3809   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3810   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3811 
3812   if (InvertPCond)
3813     PPred = QB.CreateNot(PPred);
3814   if (InvertQCond)
3815     QPred = QB.CreateNot(QPred);
3816   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3817 
3818   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3819                                       /*Unreachable=*/false,
3820                                       /*BranchWeights=*/nullptr, DTU);
3821   QB.SetInsertPoint(T);
3822   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3823   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
3824   // Choose the minimum alignment. If we could prove both stores execute, we
3825   // could use biggest one.  In this case, though, we only know that one of the
3826   // stores executes.  And we don't know it's safe to take the alignment from a
3827   // store that doesn't execute.
3828   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3829 
3830   QStore->eraseFromParent();
3831   PStore->eraseFromParent();
3832 
3833   return true;
3834 }
3835 
3836 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3837                                    DomTreeUpdater *DTU, const DataLayout &DL,
3838                                    const TargetTransformInfo &TTI) {
3839   // The intention here is to find diamonds or triangles (see below) where each
3840   // conditional block contains a store to the same address. Both of these
3841   // stores are conditional, so they can't be unconditionally sunk. But it may
3842   // be profitable to speculatively sink the stores into one merged store at the
3843   // end, and predicate the merged store on the union of the two conditions of
3844   // PBI and QBI.
3845   //
3846   // This can reduce the number of stores executed if both of the conditions are
3847   // true, and can allow the blocks to become small enough to be if-converted.
3848   // This optimization will also chain, so that ladders of test-and-set
3849   // sequences can be if-converted away.
3850   //
3851   // We only deal with simple diamonds or triangles:
3852   //
3853   //     PBI       or      PBI        or a combination of the two
3854   //    /   \               | \
3855   //   PTB  PFB             |  PFB
3856   //    \   /               | /
3857   //     QBI                QBI
3858   //    /  \                | \
3859   //   QTB  QFB             |  QFB
3860   //    \  /                | /
3861   //    PostBB            PostBB
3862   //
3863   // We model triangles as a type of diamond with a nullptr "true" block.
3864   // Triangles are canonicalized so that the fallthrough edge is represented by
3865   // a true condition, as in the diagram above.
3866   BasicBlock *PTB = PBI->getSuccessor(0);
3867   BasicBlock *PFB = PBI->getSuccessor(1);
3868   BasicBlock *QTB = QBI->getSuccessor(0);
3869   BasicBlock *QFB = QBI->getSuccessor(1);
3870   BasicBlock *PostBB = QFB->getSingleSuccessor();
3871 
3872   // Make sure we have a good guess for PostBB. If QTB's only successor is
3873   // QFB, then QFB is a better PostBB.
3874   if (QTB->getSingleSuccessor() == QFB)
3875     PostBB = QFB;
3876 
3877   // If we couldn't find a good PostBB, stop.
3878   if (!PostBB)
3879     return false;
3880 
3881   bool InvertPCond = false, InvertQCond = false;
3882   // Canonicalize fallthroughs to the true branches.
3883   if (PFB == QBI->getParent()) {
3884     std::swap(PFB, PTB);
3885     InvertPCond = true;
3886   }
3887   if (QFB == PostBB) {
3888     std::swap(QFB, QTB);
3889     InvertQCond = true;
3890   }
3891 
3892   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3893   // and QFB may not. Model fallthroughs as a nullptr block.
3894   if (PTB == QBI->getParent())
3895     PTB = nullptr;
3896   if (QTB == PostBB)
3897     QTB = nullptr;
3898 
3899   // Legality bailouts. We must have at least the non-fallthrough blocks and
3900   // the post-dominating block, and the non-fallthroughs must only have one
3901   // predecessor.
3902   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3903     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3904   };
3905   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3906       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3907     return false;
3908   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3909       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3910     return false;
3911   if (!QBI->getParent()->hasNUses(2))
3912     return false;
3913 
3914   // OK, this is a sequence of two diamonds or triangles.
3915   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3916   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3917   for (auto *BB : {PTB, PFB}) {
3918     if (!BB)
3919       continue;
3920     for (auto &I : *BB)
3921       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3922         PStoreAddresses.insert(SI->getPointerOperand());
3923   }
3924   for (auto *BB : {QTB, QFB}) {
3925     if (!BB)
3926       continue;
3927     for (auto &I : *BB)
3928       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3929         QStoreAddresses.insert(SI->getPointerOperand());
3930   }
3931 
3932   set_intersect(PStoreAddresses, QStoreAddresses);
3933   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3934   // clear what it contains.
3935   auto &CommonAddresses = PStoreAddresses;
3936 
3937   bool Changed = false;
3938   for (auto *Address : CommonAddresses)
3939     Changed |=
3940         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3941                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3942   return Changed;
3943 }
3944 
3945 /// If the previous block ended with a widenable branch, determine if reusing
3946 /// the target block is profitable and legal.  This will have the effect of
3947 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3948 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3949                                            DomTreeUpdater *DTU) {
3950   // TODO: This can be generalized in two important ways:
3951   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3952   //    values from the PBI edge.
3953   // 2) We can sink side effecting instructions into BI's fallthrough
3954   //    successor provided they doesn't contribute to computation of
3955   //    BI's condition.
3956   Value *CondWB, *WC;
3957   BasicBlock *IfTrueBB, *IfFalseBB;
3958   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3959       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3960     return false;
3961   if (!IfFalseBB->phis().empty())
3962     return false; // TODO
3963   // Use lambda to lazily compute expensive condition after cheap ones.
3964   auto NoSideEffects = [](BasicBlock &BB) {
3965     return llvm::none_of(BB, [](const Instruction &I) {
3966         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3967       });
3968   };
3969   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3970       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3971       NoSideEffects(*BI->getParent())) {
3972     auto *OldSuccessor = BI->getSuccessor(1);
3973     OldSuccessor->removePredecessor(BI->getParent());
3974     BI->setSuccessor(1, IfFalseBB);
3975     if (DTU)
3976       DTU->applyUpdates(
3977           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3978            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3979     return true;
3980   }
3981   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3982       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3983       NoSideEffects(*BI->getParent())) {
3984     auto *OldSuccessor = BI->getSuccessor(0);
3985     OldSuccessor->removePredecessor(BI->getParent());
3986     BI->setSuccessor(0, IfFalseBB);
3987     if (DTU)
3988       DTU->applyUpdates(
3989           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3990            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3991     return true;
3992   }
3993   return false;
3994 }
3995 
3996 /// If we have a conditional branch as a predecessor of another block,
3997 /// this function tries to simplify it.  We know
3998 /// that PBI and BI are both conditional branches, and BI is in one of the
3999 /// successor blocks of PBI - PBI branches to BI.
4000 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4001                                            DomTreeUpdater *DTU,
4002                                            const DataLayout &DL,
4003                                            const TargetTransformInfo &TTI) {
4004   assert(PBI->isConditional() && BI->isConditional());
4005   BasicBlock *BB = BI->getParent();
4006 
4007   // If this block ends with a branch instruction, and if there is a
4008   // predecessor that ends on a branch of the same condition, make
4009   // this conditional branch redundant.
4010   if (PBI->getCondition() == BI->getCondition() &&
4011       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4012     // Okay, the outcome of this conditional branch is statically
4013     // knowable.  If this block had a single pred, handle specially.
4014     if (BB->getSinglePredecessor()) {
4015       // Turn this into a branch on constant.
4016       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4017       BI->setCondition(
4018           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4019       return true; // Nuke the branch on constant.
4020     }
4021 
4022     // Otherwise, if there are multiple predecessors, insert a PHI that merges
4023     // in the constant and simplify the block result.  Subsequent passes of
4024     // simplifycfg will thread the block.
4025     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
4026       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
4027       PHINode *NewPN = PHINode::Create(
4028           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
4029           BI->getCondition()->getName() + ".pr", &BB->front());
4030       // Okay, we're going to insert the PHI node.  Since PBI is not the only
4031       // predecessor, compute the PHI'd conditional value for all of the preds.
4032       // Any predecessor where the condition is not computable we keep symbolic.
4033       for (pred_iterator PI = PB; PI != PE; ++PI) {
4034         BasicBlock *P = *PI;
4035         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
4036             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
4037             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4038           bool CondIsTrue = PBI->getSuccessor(0) == BB;
4039           NewPN->addIncoming(
4040               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
4041               P);
4042         } else {
4043           NewPN->addIncoming(BI->getCondition(), P);
4044         }
4045       }
4046 
4047       BI->setCondition(NewPN);
4048       return true;
4049     }
4050   }
4051 
4052   // If the previous block ended with a widenable branch, determine if reusing
4053   // the target block is profitable and legal.  This will have the effect of
4054   // "widening" PBI, but doesn't require us to reason about hosting safety.
4055   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4056     return true;
4057 
4058   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
4059     if (CE->canTrap())
4060       return false;
4061 
4062   // If both branches are conditional and both contain stores to the same
4063   // address, remove the stores from the conditionals and create a conditional
4064   // merged store at the end.
4065   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4066     return true;
4067 
4068   // If this is a conditional branch in an empty block, and if any
4069   // predecessors are a conditional branch to one of our destinations,
4070   // fold the conditions into logical ops and one cond br.
4071 
4072   // Ignore dbg intrinsics.
4073   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4074     return false;
4075 
4076   int PBIOp, BIOp;
4077   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4078     PBIOp = 0;
4079     BIOp = 0;
4080   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4081     PBIOp = 0;
4082     BIOp = 1;
4083   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4084     PBIOp = 1;
4085     BIOp = 0;
4086   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4087     PBIOp = 1;
4088     BIOp = 1;
4089   } else {
4090     return false;
4091   }
4092 
4093   // Check to make sure that the other destination of this branch
4094   // isn't BB itself.  If so, this is an infinite loop that will
4095   // keep getting unwound.
4096   if (PBI->getSuccessor(PBIOp) == BB)
4097     return false;
4098 
4099   // Do not perform this transformation if it would require
4100   // insertion of a large number of select instructions. For targets
4101   // without predication/cmovs, this is a big pessimization.
4102 
4103   // Also do not perform this transformation if any phi node in the common
4104   // destination block can trap when reached by BB or PBB (PR17073). In that
4105   // case, it would be unsafe to hoist the operation into a select instruction.
4106 
4107   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4108   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4109   unsigned NumPhis = 0;
4110   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4111        ++II, ++NumPhis) {
4112     if (NumPhis > 2) // Disable this xform.
4113       return false;
4114 
4115     PHINode *PN = cast<PHINode>(II);
4116     Value *BIV = PN->getIncomingValueForBlock(BB);
4117     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
4118       if (CE->canTrap())
4119         return false;
4120 
4121     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
4122     Value *PBIV = PN->getIncomingValue(PBBIdx);
4123     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
4124       if (CE->canTrap())
4125         return false;
4126   }
4127 
4128   // Finally, if everything is ok, fold the branches to logical ops.
4129   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4130 
4131   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4132                     << "AND: " << *BI->getParent());
4133 
4134   SmallVector<DominatorTree::UpdateType, 5> Updates;
4135 
4136   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4137   // branch in it, where one edge (OtherDest) goes back to itself but the other
4138   // exits.  We don't *know* that the program avoids the infinite loop
4139   // (even though that seems likely).  If we do this xform naively, we'll end up
4140   // recursively unpeeling the loop.  Since we know that (after the xform is
4141   // done) that the block *is* infinite if reached, we just make it an obviously
4142   // infinite loop with no cond branch.
4143   if (OtherDest == BB) {
4144     // Insert it at the end of the function, because it's either code,
4145     // or it won't matter if it's hot. :)
4146     BasicBlock *InfLoopBlock =
4147         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4148     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4149     if (DTU)
4150       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4151     OtherDest = InfLoopBlock;
4152   }
4153 
4154   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4155 
4156   // BI may have other predecessors.  Because of this, we leave
4157   // it alone, but modify PBI.
4158 
4159   // Make sure we get to CommonDest on True&True directions.
4160   Value *PBICond = PBI->getCondition();
4161   IRBuilder<NoFolder> Builder(PBI);
4162   if (PBIOp)
4163     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4164 
4165   Value *BICond = BI->getCondition();
4166   if (BIOp)
4167     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4168 
4169   // Merge the conditions.
4170   Value *Cond =
4171       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4172 
4173   // Modify PBI to branch on the new condition to the new dests.
4174   PBI->setCondition(Cond);
4175   PBI->setSuccessor(0, CommonDest);
4176   PBI->setSuccessor(1, OtherDest);
4177 
4178   if (DTU) {
4179     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4180     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4181 
4182     DTU->applyUpdates(Updates);
4183   }
4184 
4185   // Update branch weight for PBI.
4186   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4187   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4188   bool HasWeights =
4189       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4190                              SuccTrueWeight, SuccFalseWeight);
4191   if (HasWeights) {
4192     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4193     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4194     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4195     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4196     // The weight to CommonDest should be PredCommon * SuccTotal +
4197     //                                    PredOther * SuccCommon.
4198     // The weight to OtherDest should be PredOther * SuccOther.
4199     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4200                                   PredOther * SuccCommon,
4201                               PredOther * SuccOther};
4202     // Halve the weights if any of them cannot fit in an uint32_t
4203     FitWeights(NewWeights);
4204 
4205     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4206   }
4207 
4208   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4209   // block that are identical to the entries for BI's block.
4210   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4211 
4212   // We know that the CommonDest already had an edge from PBI to
4213   // it.  If it has PHIs though, the PHIs may have different
4214   // entries for BB and PBI's BB.  If so, insert a select to make
4215   // them agree.
4216   for (PHINode &PN : CommonDest->phis()) {
4217     Value *BIV = PN.getIncomingValueForBlock(BB);
4218     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4219     Value *PBIV = PN.getIncomingValue(PBBIdx);
4220     if (BIV != PBIV) {
4221       // Insert a select in PBI to pick the right value.
4222       SelectInst *NV = cast<SelectInst>(
4223           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4224       PN.setIncomingValue(PBBIdx, NV);
4225       // Although the select has the same condition as PBI, the original branch
4226       // weights for PBI do not apply to the new select because the select's
4227       // 'logical' edges are incoming edges of the phi that is eliminated, not
4228       // the outgoing edges of PBI.
4229       if (HasWeights) {
4230         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4231         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4232         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4233         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4234         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4235         // The weight to PredOtherDest should be PredOther * SuccCommon.
4236         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4237                                   PredOther * SuccCommon};
4238 
4239         FitWeights(NewWeights);
4240 
4241         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4242       }
4243     }
4244   }
4245 
4246   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4247   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4248 
4249   // This basic block is probably dead.  We know it has at least
4250   // one fewer predecessor.
4251   return true;
4252 }
4253 
4254 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4255 // true or to FalseBB if Cond is false.
4256 // Takes care of updating the successors and removing the old terminator.
4257 // Also makes sure not to introduce new successors by assuming that edges to
4258 // non-successor TrueBBs and FalseBBs aren't reachable.
4259 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4260                                                 Value *Cond, BasicBlock *TrueBB,
4261                                                 BasicBlock *FalseBB,
4262                                                 uint32_t TrueWeight,
4263                                                 uint32_t FalseWeight) {
4264   auto *BB = OldTerm->getParent();
4265   // Remove any superfluous successor edges from the CFG.
4266   // First, figure out which successors to preserve.
4267   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4268   // successor.
4269   BasicBlock *KeepEdge1 = TrueBB;
4270   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4271 
4272   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4273 
4274   // Then remove the rest.
4275   for (BasicBlock *Succ : successors(OldTerm)) {
4276     // Make sure only to keep exactly one copy of each edge.
4277     if (Succ == KeepEdge1)
4278       KeepEdge1 = nullptr;
4279     else if (Succ == KeepEdge2)
4280       KeepEdge2 = nullptr;
4281     else {
4282       Succ->removePredecessor(BB,
4283                               /*KeepOneInputPHIs=*/true);
4284 
4285       if (Succ != TrueBB && Succ != FalseBB)
4286         RemovedSuccessors.insert(Succ);
4287     }
4288   }
4289 
4290   IRBuilder<> Builder(OldTerm);
4291   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4292 
4293   // Insert an appropriate new terminator.
4294   if (!KeepEdge1 && !KeepEdge2) {
4295     if (TrueBB == FalseBB) {
4296       // We were only looking for one successor, and it was present.
4297       // Create an unconditional branch to it.
4298       Builder.CreateBr(TrueBB);
4299     } else {
4300       // We found both of the successors we were looking for.
4301       // Create a conditional branch sharing the condition of the select.
4302       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4303       if (TrueWeight != FalseWeight)
4304         setBranchWeights(NewBI, TrueWeight, FalseWeight);
4305     }
4306   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4307     // Neither of the selected blocks were successors, so this
4308     // terminator must be unreachable.
4309     new UnreachableInst(OldTerm->getContext(), OldTerm);
4310   } else {
4311     // One of the selected values was a successor, but the other wasn't.
4312     // Insert an unconditional branch to the one that was found;
4313     // the edge to the one that wasn't must be unreachable.
4314     if (!KeepEdge1) {
4315       // Only TrueBB was found.
4316       Builder.CreateBr(TrueBB);
4317     } else {
4318       // Only FalseBB was found.
4319       Builder.CreateBr(FalseBB);
4320     }
4321   }
4322 
4323   EraseTerminatorAndDCECond(OldTerm);
4324 
4325   if (DTU) {
4326     SmallVector<DominatorTree::UpdateType, 2> Updates;
4327     Updates.reserve(RemovedSuccessors.size());
4328     for (auto *RemovedSuccessor : RemovedSuccessors)
4329       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4330     DTU->applyUpdates(Updates);
4331   }
4332 
4333   return true;
4334 }
4335 
4336 // Replaces
4337 //   (switch (select cond, X, Y)) on constant X, Y
4338 // with a branch - conditional if X and Y lead to distinct BBs,
4339 // unconditional otherwise.
4340 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4341                                             SelectInst *Select) {
4342   // Check for constant integer values in the select.
4343   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4344   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4345   if (!TrueVal || !FalseVal)
4346     return false;
4347 
4348   // Find the relevant condition and destinations.
4349   Value *Condition = Select->getCondition();
4350   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4351   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4352 
4353   // Get weight for TrueBB and FalseBB.
4354   uint32_t TrueWeight = 0, FalseWeight = 0;
4355   SmallVector<uint64_t, 8> Weights;
4356   bool HasWeights = HasBranchWeights(SI);
4357   if (HasWeights) {
4358     GetBranchWeights(SI, Weights);
4359     if (Weights.size() == 1 + SI->getNumCases()) {
4360       TrueWeight =
4361           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4362       FalseWeight =
4363           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4364     }
4365   }
4366 
4367   // Perform the actual simplification.
4368   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4369                                     FalseWeight);
4370 }
4371 
4372 // Replaces
4373 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4374 //                             blockaddress(@fn, BlockB)))
4375 // with
4376 //   (br cond, BlockA, BlockB).
4377 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4378                                                 SelectInst *SI) {
4379   // Check that both operands of the select are block addresses.
4380   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4381   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4382   if (!TBA || !FBA)
4383     return false;
4384 
4385   // Extract the actual blocks.
4386   BasicBlock *TrueBB = TBA->getBasicBlock();
4387   BasicBlock *FalseBB = FBA->getBasicBlock();
4388 
4389   // Perform the actual simplification.
4390   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4391                                     0);
4392 }
4393 
4394 /// This is called when we find an icmp instruction
4395 /// (a seteq/setne with a constant) as the only instruction in a
4396 /// block that ends with an uncond branch.  We are looking for a very specific
4397 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4398 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4399 /// default value goes to an uncond block with a seteq in it, we get something
4400 /// like:
4401 ///
4402 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4403 /// DEFAULT:
4404 ///   %tmp = icmp eq i8 %A, 92
4405 ///   br label %end
4406 /// end:
4407 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4408 ///
4409 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4410 /// the PHI, merging the third icmp into the switch.
4411 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4412     ICmpInst *ICI, IRBuilder<> &Builder) {
4413   BasicBlock *BB = ICI->getParent();
4414 
4415   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4416   // complex.
4417   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4418     return false;
4419 
4420   Value *V = ICI->getOperand(0);
4421   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4422 
4423   // The pattern we're looking for is where our only predecessor is a switch on
4424   // 'V' and this block is the default case for the switch.  In this case we can
4425   // fold the compared value into the switch to simplify things.
4426   BasicBlock *Pred = BB->getSinglePredecessor();
4427   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4428     return false;
4429 
4430   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4431   if (SI->getCondition() != V)
4432     return false;
4433 
4434   // If BB is reachable on a non-default case, then we simply know the value of
4435   // V in this block.  Substitute it and constant fold the icmp instruction
4436   // away.
4437   if (SI->getDefaultDest() != BB) {
4438     ConstantInt *VVal = SI->findCaseDest(BB);
4439     assert(VVal && "Should have a unique destination value");
4440     ICI->setOperand(0, VVal);
4441 
4442     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4443       ICI->replaceAllUsesWith(V);
4444       ICI->eraseFromParent();
4445     }
4446     // BB is now empty, so it is likely to simplify away.
4447     return requestResimplify();
4448   }
4449 
4450   // Ok, the block is reachable from the default dest.  If the constant we're
4451   // comparing exists in one of the other edges, then we can constant fold ICI
4452   // and zap it.
4453   if (SI->findCaseValue(Cst) != SI->case_default()) {
4454     Value *V;
4455     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4456       V = ConstantInt::getFalse(BB->getContext());
4457     else
4458       V = ConstantInt::getTrue(BB->getContext());
4459 
4460     ICI->replaceAllUsesWith(V);
4461     ICI->eraseFromParent();
4462     // BB is now empty, so it is likely to simplify away.
4463     return requestResimplify();
4464   }
4465 
4466   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4467   // the block.
4468   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4469   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4470   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4471       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4472     return false;
4473 
4474   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4475   // true in the PHI.
4476   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4477   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4478 
4479   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4480     std::swap(DefaultCst, NewCst);
4481 
4482   // Replace ICI (which is used by the PHI for the default value) with true or
4483   // false depending on if it is EQ or NE.
4484   ICI->replaceAllUsesWith(DefaultCst);
4485   ICI->eraseFromParent();
4486 
4487   SmallVector<DominatorTree::UpdateType, 2> Updates;
4488 
4489   // Okay, the switch goes to this block on a default value.  Add an edge from
4490   // the switch to the merge point on the compared value.
4491   BasicBlock *NewBB =
4492       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4493   {
4494     SwitchInstProfUpdateWrapper SIW(*SI);
4495     auto W0 = SIW.getSuccessorWeight(0);
4496     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4497     if (W0) {
4498       NewW = ((uint64_t(*W0) + 1) >> 1);
4499       SIW.setSuccessorWeight(0, *NewW);
4500     }
4501     SIW.addCase(Cst, NewBB, NewW);
4502     if (DTU)
4503       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4504   }
4505 
4506   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4507   Builder.SetInsertPoint(NewBB);
4508   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4509   Builder.CreateBr(SuccBlock);
4510   PHIUse->addIncoming(NewCst, NewBB);
4511   if (DTU) {
4512     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4513     DTU->applyUpdates(Updates);
4514   }
4515   return true;
4516 }
4517 
4518 /// The specified branch is a conditional branch.
4519 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4520 /// fold it into a switch instruction if so.
4521 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4522                                                IRBuilder<> &Builder,
4523                                                const DataLayout &DL) {
4524   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4525   if (!Cond)
4526     return false;
4527 
4528   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4529   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4530   // 'setne's and'ed together, collect them.
4531 
4532   // Try to gather values from a chain of and/or to be turned into a switch
4533   ConstantComparesGatherer ConstantCompare(Cond, DL);
4534   // Unpack the result
4535   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4536   Value *CompVal = ConstantCompare.CompValue;
4537   unsigned UsedICmps = ConstantCompare.UsedICmps;
4538   Value *ExtraCase = ConstantCompare.Extra;
4539 
4540   // If we didn't have a multiply compared value, fail.
4541   if (!CompVal)
4542     return false;
4543 
4544   // Avoid turning single icmps into a switch.
4545   if (UsedICmps <= 1)
4546     return false;
4547 
4548   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4549 
4550   // There might be duplicate constants in the list, which the switch
4551   // instruction can't handle, remove them now.
4552   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4553   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4554 
4555   // If Extra was used, we require at least two switch values to do the
4556   // transformation.  A switch with one value is just a conditional branch.
4557   if (ExtraCase && Values.size() < 2)
4558     return false;
4559 
4560   // TODO: Preserve branch weight metadata, similarly to how
4561   // FoldValueComparisonIntoPredecessors preserves it.
4562 
4563   // Figure out which block is which destination.
4564   BasicBlock *DefaultBB = BI->getSuccessor(1);
4565   BasicBlock *EdgeBB = BI->getSuccessor(0);
4566   if (!TrueWhenEqual)
4567     std::swap(DefaultBB, EdgeBB);
4568 
4569   BasicBlock *BB = BI->getParent();
4570 
4571   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4572                     << " cases into SWITCH.  BB is:\n"
4573                     << *BB);
4574 
4575   SmallVector<DominatorTree::UpdateType, 2> Updates;
4576 
4577   // If there are any extra values that couldn't be folded into the switch
4578   // then we evaluate them with an explicit branch first. Split the block
4579   // right before the condbr to handle it.
4580   if (ExtraCase) {
4581     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4582                                    /*MSSAU=*/nullptr, "switch.early.test");
4583 
4584     // Remove the uncond branch added to the old block.
4585     Instruction *OldTI = BB->getTerminator();
4586     Builder.SetInsertPoint(OldTI);
4587 
4588     // There can be an unintended UB if extra values are Poison. Before the
4589     // transformation, extra values may not be evaluated according to the
4590     // condition, and it will not raise UB. But after transformation, we are
4591     // evaluating extra values before checking the condition, and it will raise
4592     // UB. It can be solved by adding freeze instruction to extra values.
4593     AssumptionCache *AC = Options.AC;
4594 
4595     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4596       ExtraCase = Builder.CreateFreeze(ExtraCase);
4597 
4598     if (TrueWhenEqual)
4599       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4600     else
4601       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4602 
4603     OldTI->eraseFromParent();
4604 
4605     if (DTU)
4606       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4607 
4608     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4609     // for the edge we just added.
4610     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4611 
4612     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4613                       << "\nEXTRABB = " << *BB);
4614     BB = NewBB;
4615   }
4616 
4617   Builder.SetInsertPoint(BI);
4618   // Convert pointer to int before we switch.
4619   if (CompVal->getType()->isPointerTy()) {
4620     CompVal = Builder.CreatePtrToInt(
4621         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4622   }
4623 
4624   // Create the new switch instruction now.
4625   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4626 
4627   // Add all of the 'cases' to the switch instruction.
4628   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4629     New->addCase(Values[i], EdgeBB);
4630 
4631   // We added edges from PI to the EdgeBB.  As such, if there were any
4632   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4633   // the number of edges added.
4634   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4635     PHINode *PN = cast<PHINode>(BBI);
4636     Value *InVal = PN->getIncomingValueForBlock(BB);
4637     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4638       PN->addIncoming(InVal, BB);
4639   }
4640 
4641   // Erase the old branch instruction.
4642   EraseTerminatorAndDCECond(BI);
4643   if (DTU)
4644     DTU->applyUpdates(Updates);
4645 
4646   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4647   return true;
4648 }
4649 
4650 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4651   if (isa<PHINode>(RI->getValue()))
4652     return simplifyCommonResume(RI);
4653   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4654            RI->getValue() == RI->getParent()->getFirstNonPHI())
4655     // The resume must unwind the exception that caused control to branch here.
4656     return simplifySingleResume(RI);
4657 
4658   return false;
4659 }
4660 
4661 // Check if cleanup block is empty
4662 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4663   for (Instruction &I : R) {
4664     auto *II = dyn_cast<IntrinsicInst>(&I);
4665     if (!II)
4666       return false;
4667 
4668     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4669     switch (IntrinsicID) {
4670     case Intrinsic::dbg_declare:
4671     case Intrinsic::dbg_value:
4672     case Intrinsic::dbg_label:
4673     case Intrinsic::lifetime_end:
4674       break;
4675     default:
4676       return false;
4677     }
4678   }
4679   return true;
4680 }
4681 
4682 // Simplify resume that is shared by several landing pads (phi of landing pad).
4683 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4684   BasicBlock *BB = RI->getParent();
4685 
4686   // Check that there are no other instructions except for debug and lifetime
4687   // intrinsics between the phi's and resume instruction.
4688   if (!isCleanupBlockEmpty(
4689           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4690     return false;
4691 
4692   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4693   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4694 
4695   // Check incoming blocks to see if any of them are trivial.
4696   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4697        Idx++) {
4698     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4699     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4700 
4701     // If the block has other successors, we can not delete it because
4702     // it has other dependents.
4703     if (IncomingBB->getUniqueSuccessor() != BB)
4704       continue;
4705 
4706     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4707     // Not the landing pad that caused the control to branch here.
4708     if (IncomingValue != LandingPad)
4709       continue;
4710 
4711     if (isCleanupBlockEmpty(
4712             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4713       TrivialUnwindBlocks.insert(IncomingBB);
4714   }
4715 
4716   // If no trivial unwind blocks, don't do any simplifications.
4717   if (TrivialUnwindBlocks.empty())
4718     return false;
4719 
4720   // Turn all invokes that unwind here into calls.
4721   for (auto *TrivialBB : TrivialUnwindBlocks) {
4722     // Blocks that will be simplified should be removed from the phi node.
4723     // Note there could be multiple edges to the resume block, and we need
4724     // to remove them all.
4725     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4726       BB->removePredecessor(TrivialBB, true);
4727 
4728     for (BasicBlock *Pred :
4729          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4730       removeUnwindEdge(Pred, DTU);
4731       ++NumInvokes;
4732     }
4733 
4734     // In each SimplifyCFG run, only the current processed block can be erased.
4735     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4736     // of erasing TrivialBB, we only remove the branch to the common resume
4737     // block so that we can later erase the resume block since it has no
4738     // predecessors.
4739     TrivialBB->getTerminator()->eraseFromParent();
4740     new UnreachableInst(RI->getContext(), TrivialBB);
4741     if (DTU)
4742       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4743   }
4744 
4745   // Delete the resume block if all its predecessors have been removed.
4746   if (pred_empty(BB))
4747     DeleteDeadBlock(BB, DTU);
4748 
4749   return !TrivialUnwindBlocks.empty();
4750 }
4751 
4752 // Simplify resume that is only used by a single (non-phi) landing pad.
4753 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4754   BasicBlock *BB = RI->getParent();
4755   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4756   assert(RI->getValue() == LPInst &&
4757          "Resume must unwind the exception that caused control to here");
4758 
4759   // Check that there are no other instructions except for debug intrinsics.
4760   if (!isCleanupBlockEmpty(
4761           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4762     return false;
4763 
4764   // Turn all invokes that unwind here into calls and delete the basic block.
4765   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4766     removeUnwindEdge(Pred, DTU);
4767     ++NumInvokes;
4768   }
4769 
4770   // The landingpad is now unreachable.  Zap it.
4771   DeleteDeadBlock(BB, DTU);
4772   return true;
4773 }
4774 
4775 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4776   // If this is a trivial cleanup pad that executes no instructions, it can be
4777   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4778   // that is an EH pad will be updated to continue to the caller and any
4779   // predecessor that terminates with an invoke instruction will have its invoke
4780   // instruction converted to a call instruction.  If the cleanup pad being
4781   // simplified does not continue to the caller, each predecessor will be
4782   // updated to continue to the unwind destination of the cleanup pad being
4783   // simplified.
4784   BasicBlock *BB = RI->getParent();
4785   CleanupPadInst *CPInst = RI->getCleanupPad();
4786   if (CPInst->getParent() != BB)
4787     // This isn't an empty cleanup.
4788     return false;
4789 
4790   // We cannot kill the pad if it has multiple uses.  This typically arises
4791   // from unreachable basic blocks.
4792   if (!CPInst->hasOneUse())
4793     return false;
4794 
4795   // Check that there are no other instructions except for benign intrinsics.
4796   if (!isCleanupBlockEmpty(
4797           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4798     return false;
4799 
4800   // If the cleanup return we are simplifying unwinds to the caller, this will
4801   // set UnwindDest to nullptr.
4802   BasicBlock *UnwindDest = RI->getUnwindDest();
4803   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4804 
4805   // We're about to remove BB from the control flow.  Before we do, sink any
4806   // PHINodes into the unwind destination.  Doing this before changing the
4807   // control flow avoids some potentially slow checks, since we can currently
4808   // be certain that UnwindDest and BB have no common predecessors (since they
4809   // are both EH pads).
4810   if (UnwindDest) {
4811     // First, go through the PHI nodes in UnwindDest and update any nodes that
4812     // reference the block we are removing
4813     for (PHINode &DestPN : UnwindDest->phis()) {
4814       int Idx = DestPN.getBasicBlockIndex(BB);
4815       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4816       assert(Idx != -1);
4817       // This PHI node has an incoming value that corresponds to a control
4818       // path through the cleanup pad we are removing.  If the incoming
4819       // value is in the cleanup pad, it must be a PHINode (because we
4820       // verified above that the block is otherwise empty).  Otherwise, the
4821       // value is either a constant or a value that dominates the cleanup
4822       // pad being removed.
4823       //
4824       // Because BB and UnwindDest are both EH pads, all of their
4825       // predecessors must unwind to these blocks, and since no instruction
4826       // can have multiple unwind destinations, there will be no overlap in
4827       // incoming blocks between SrcPN and DestPN.
4828       Value *SrcVal = DestPN.getIncomingValue(Idx);
4829       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4830 
4831       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4832       for (auto *Pred : predecessors(BB)) {
4833         Value *Incoming =
4834             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4835         DestPN.addIncoming(Incoming, Pred);
4836       }
4837     }
4838 
4839     // Sink any remaining PHI nodes directly into UnwindDest.
4840     Instruction *InsertPt = DestEHPad;
4841     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4842       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4843         // If the PHI node has no uses or all of its uses are in this basic
4844         // block (meaning they are debug or lifetime intrinsics), just leave
4845         // it.  It will be erased when we erase BB below.
4846         continue;
4847 
4848       // Otherwise, sink this PHI node into UnwindDest.
4849       // Any predecessors to UnwindDest which are not already represented
4850       // must be back edges which inherit the value from the path through
4851       // BB.  In this case, the PHI value must reference itself.
4852       for (auto *pred : predecessors(UnwindDest))
4853         if (pred != BB)
4854           PN.addIncoming(&PN, pred);
4855       PN.moveBefore(InsertPt);
4856       // Also, add a dummy incoming value for the original BB itself,
4857       // so that the PHI is well-formed until we drop said predecessor.
4858       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4859     }
4860   }
4861 
4862   std::vector<DominatorTree::UpdateType> Updates;
4863 
4864   // We use make_early_inc_range here because we will remove all predecessors.
4865   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4866     if (UnwindDest == nullptr) {
4867       if (DTU) {
4868         DTU->applyUpdates(Updates);
4869         Updates.clear();
4870       }
4871       removeUnwindEdge(PredBB, DTU);
4872       ++NumInvokes;
4873     } else {
4874       BB->removePredecessor(PredBB);
4875       Instruction *TI = PredBB->getTerminator();
4876       TI->replaceUsesOfWith(BB, UnwindDest);
4877       if (DTU) {
4878         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4879         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4880       }
4881     }
4882   }
4883 
4884   if (DTU)
4885     DTU->applyUpdates(Updates);
4886 
4887   DeleteDeadBlock(BB, DTU);
4888 
4889   return true;
4890 }
4891 
4892 // Try to merge two cleanuppads together.
4893 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4894   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4895   // with.
4896   BasicBlock *UnwindDest = RI->getUnwindDest();
4897   if (!UnwindDest)
4898     return false;
4899 
4900   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4901   // be safe to merge without code duplication.
4902   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4903     return false;
4904 
4905   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4906   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4907   if (!SuccessorCleanupPad)
4908     return false;
4909 
4910   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4911   // Replace any uses of the successor cleanupad with the predecessor pad
4912   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4913   // funclet bundle operands.
4914   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4915   // Remove the old cleanuppad.
4916   SuccessorCleanupPad->eraseFromParent();
4917   // Now, we simply replace the cleanupret with a branch to the unwind
4918   // destination.
4919   BranchInst::Create(UnwindDest, RI->getParent());
4920   RI->eraseFromParent();
4921 
4922   return true;
4923 }
4924 
4925 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4926   // It is possible to transiantly have an undef cleanuppad operand because we
4927   // have deleted some, but not all, dead blocks.
4928   // Eventually, this block will be deleted.
4929   if (isa<UndefValue>(RI->getOperand(0)))
4930     return false;
4931 
4932   if (mergeCleanupPad(RI))
4933     return true;
4934 
4935   if (removeEmptyCleanup(RI, DTU))
4936     return true;
4937 
4938   return false;
4939 }
4940 
4941 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4942 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4943   BasicBlock *BB = UI->getParent();
4944 
4945   bool Changed = false;
4946 
4947   // If there are any instructions immediately before the unreachable that can
4948   // be removed, do so.
4949   while (UI->getIterator() != BB->begin()) {
4950     BasicBlock::iterator BBI = UI->getIterator();
4951     --BBI;
4952 
4953     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4954       break; // Can not drop any more instructions. We're done here.
4955     // Otherwise, this instruction can be freely erased,
4956     // even if it is not side-effect free.
4957 
4958     // Note that deleting EH's here is in fact okay, although it involves a bit
4959     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4960     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4961     // and we can therefore guarantee this block will be erased.
4962 
4963     // Delete this instruction (any uses are guaranteed to be dead)
4964     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4965     BBI->eraseFromParent();
4966     Changed = true;
4967   }
4968 
4969   // If the unreachable instruction is the first in the block, take a gander
4970   // at all of the predecessors of this instruction, and simplify them.
4971   if (&BB->front() != UI)
4972     return Changed;
4973 
4974   std::vector<DominatorTree::UpdateType> Updates;
4975 
4976   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4977   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4978     auto *Predecessor = Preds[i];
4979     Instruction *TI = Predecessor->getTerminator();
4980     IRBuilder<> Builder(TI);
4981     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4982       // We could either have a proper unconditional branch,
4983       // or a degenerate conditional branch with matching destinations.
4984       if (all_of(BI->successors(),
4985                  [BB](auto *Successor) { return Successor == BB; })) {
4986         new UnreachableInst(TI->getContext(), TI);
4987         TI->eraseFromParent();
4988         Changed = true;
4989       } else {
4990         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4991         Value* Cond = BI->getCondition();
4992         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4993                "The destinations are guaranteed to be different here.");
4994         if (BI->getSuccessor(0) == BB) {
4995           Builder.CreateAssumption(Builder.CreateNot(Cond));
4996           Builder.CreateBr(BI->getSuccessor(1));
4997         } else {
4998           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4999           Builder.CreateAssumption(Cond);
5000           Builder.CreateBr(BI->getSuccessor(0));
5001         }
5002         EraseTerminatorAndDCECond(BI);
5003         Changed = true;
5004       }
5005       if (DTU)
5006         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5007     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5008       SwitchInstProfUpdateWrapper SU(*SI);
5009       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5010         if (i->getCaseSuccessor() != BB) {
5011           ++i;
5012           continue;
5013         }
5014         BB->removePredecessor(SU->getParent());
5015         i = SU.removeCase(i);
5016         e = SU->case_end();
5017         Changed = true;
5018       }
5019       // Note that the default destination can't be removed!
5020       if (DTU && SI->getDefaultDest() != BB)
5021         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5022     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5023       if (II->getUnwindDest() == BB) {
5024         if (DTU) {
5025           DTU->applyUpdates(Updates);
5026           Updates.clear();
5027         }
5028         removeUnwindEdge(TI->getParent(), DTU);
5029         Changed = true;
5030       }
5031     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5032       if (CSI->getUnwindDest() == BB) {
5033         if (DTU) {
5034           DTU->applyUpdates(Updates);
5035           Updates.clear();
5036         }
5037         removeUnwindEdge(TI->getParent(), DTU);
5038         Changed = true;
5039         continue;
5040       }
5041 
5042       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5043                                              E = CSI->handler_end();
5044            I != E; ++I) {
5045         if (*I == BB) {
5046           CSI->removeHandler(I);
5047           --I;
5048           --E;
5049           Changed = true;
5050         }
5051       }
5052       if (DTU)
5053         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5054       if (CSI->getNumHandlers() == 0) {
5055         if (CSI->hasUnwindDest()) {
5056           // Redirect all predecessors of the block containing CatchSwitchInst
5057           // to instead branch to the CatchSwitchInst's unwind destination.
5058           if (DTU) {
5059             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5060               Updates.push_back({DominatorTree::Insert,
5061                                  PredecessorOfPredecessor,
5062                                  CSI->getUnwindDest()});
5063               Updates.push_back({DominatorTree::Delete,
5064                                  PredecessorOfPredecessor, Predecessor});
5065             }
5066           }
5067           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5068         } else {
5069           // Rewrite all preds to unwind to caller (or from invoke to call).
5070           if (DTU) {
5071             DTU->applyUpdates(Updates);
5072             Updates.clear();
5073           }
5074           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5075           for (BasicBlock *EHPred : EHPreds)
5076             removeUnwindEdge(EHPred, DTU);
5077         }
5078         // The catchswitch is no longer reachable.
5079         new UnreachableInst(CSI->getContext(), CSI);
5080         CSI->eraseFromParent();
5081         Changed = true;
5082       }
5083     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5084       (void)CRI;
5085       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5086              "Expected to always have an unwind to BB.");
5087       if (DTU)
5088         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5089       new UnreachableInst(TI->getContext(), TI);
5090       TI->eraseFromParent();
5091       Changed = true;
5092     }
5093   }
5094 
5095   if (DTU)
5096     DTU->applyUpdates(Updates);
5097 
5098   // If this block is now dead, remove it.
5099   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5100     DeleteDeadBlock(BB, DTU);
5101     return true;
5102   }
5103 
5104   return Changed;
5105 }
5106 
5107 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5108   assert(Cases.size() >= 1);
5109 
5110   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5111   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5112     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5113       return false;
5114   }
5115   return true;
5116 }
5117 
5118 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5119                                            DomTreeUpdater *DTU) {
5120   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5121   auto *BB = Switch->getParent();
5122   auto *OrigDefaultBlock = Switch->getDefaultDest();
5123   OrigDefaultBlock->removePredecessor(BB);
5124   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5125       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5126       OrigDefaultBlock);
5127   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5128   Switch->setDefaultDest(&*NewDefaultBlock);
5129   if (DTU) {
5130     SmallVector<DominatorTree::UpdateType, 2> Updates;
5131     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5132     if (!is_contained(successors(BB), OrigDefaultBlock))
5133       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5134     DTU->applyUpdates(Updates);
5135   }
5136 }
5137 
5138 /// Turn a switch with two reachable destinations into an integer range
5139 /// comparison and branch.
5140 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5141                                              IRBuilder<> &Builder) {
5142   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5143 
5144   bool HasDefault =
5145       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5146 
5147   auto *BB = SI->getParent();
5148 
5149   // Partition the cases into two sets with different destinations.
5150   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5151   BasicBlock *DestB = nullptr;
5152   SmallVector<ConstantInt *, 16> CasesA;
5153   SmallVector<ConstantInt *, 16> CasesB;
5154 
5155   for (auto Case : SI->cases()) {
5156     BasicBlock *Dest = Case.getCaseSuccessor();
5157     if (!DestA)
5158       DestA = Dest;
5159     if (Dest == DestA) {
5160       CasesA.push_back(Case.getCaseValue());
5161       continue;
5162     }
5163     if (!DestB)
5164       DestB = Dest;
5165     if (Dest == DestB) {
5166       CasesB.push_back(Case.getCaseValue());
5167       continue;
5168     }
5169     return false; // More than two destinations.
5170   }
5171 
5172   assert(DestA && DestB &&
5173          "Single-destination switch should have been folded.");
5174   assert(DestA != DestB);
5175   assert(DestB != SI->getDefaultDest());
5176   assert(!CasesB.empty() && "There must be non-default cases.");
5177   assert(!CasesA.empty() || HasDefault);
5178 
5179   // Figure out if one of the sets of cases form a contiguous range.
5180   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5181   BasicBlock *ContiguousDest = nullptr;
5182   BasicBlock *OtherDest = nullptr;
5183   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5184     ContiguousCases = &CasesA;
5185     ContiguousDest = DestA;
5186     OtherDest = DestB;
5187   } else if (CasesAreContiguous(CasesB)) {
5188     ContiguousCases = &CasesB;
5189     ContiguousDest = DestB;
5190     OtherDest = DestA;
5191   } else
5192     return false;
5193 
5194   // Start building the compare and branch.
5195 
5196   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5197   Constant *NumCases =
5198       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5199 
5200   Value *Sub = SI->getCondition();
5201   if (!Offset->isNullValue())
5202     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5203 
5204   Value *Cmp;
5205   // If NumCases overflowed, then all possible values jump to the successor.
5206   if (NumCases->isNullValue() && !ContiguousCases->empty())
5207     Cmp = ConstantInt::getTrue(SI->getContext());
5208   else
5209     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5210   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5211 
5212   // Update weight for the newly-created conditional branch.
5213   if (HasBranchWeights(SI)) {
5214     SmallVector<uint64_t, 8> Weights;
5215     GetBranchWeights(SI, Weights);
5216     if (Weights.size() == 1 + SI->getNumCases()) {
5217       uint64_t TrueWeight = 0;
5218       uint64_t FalseWeight = 0;
5219       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5220         if (SI->getSuccessor(I) == ContiguousDest)
5221           TrueWeight += Weights[I];
5222         else
5223           FalseWeight += Weights[I];
5224       }
5225       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5226         TrueWeight /= 2;
5227         FalseWeight /= 2;
5228       }
5229       setBranchWeights(NewBI, TrueWeight, FalseWeight);
5230     }
5231   }
5232 
5233   // Prune obsolete incoming values off the successors' PHI nodes.
5234   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5235     unsigned PreviousEdges = ContiguousCases->size();
5236     if (ContiguousDest == SI->getDefaultDest())
5237       ++PreviousEdges;
5238     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5239       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5240   }
5241   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5242     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5243     if (OtherDest == SI->getDefaultDest())
5244       ++PreviousEdges;
5245     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5246       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5247   }
5248 
5249   // Clean up the default block - it may have phis or other instructions before
5250   // the unreachable terminator.
5251   if (!HasDefault)
5252     createUnreachableSwitchDefault(SI, DTU);
5253 
5254   auto *UnreachableDefault = SI->getDefaultDest();
5255 
5256   // Drop the switch.
5257   SI->eraseFromParent();
5258 
5259   if (!HasDefault && DTU)
5260     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5261 
5262   return true;
5263 }
5264 
5265 /// Compute masked bits for the condition of a switch
5266 /// and use it to remove dead cases.
5267 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5268                                      AssumptionCache *AC,
5269                                      const DataLayout &DL) {
5270   Value *Cond = SI->getCondition();
5271   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5272 
5273   // We can also eliminate cases by determining that their values are outside of
5274   // the limited range of the condition based on how many significant (non-sign)
5275   // bits are in the condition value.
5276   unsigned MaxSignificantBitsInCond =
5277       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5278 
5279   // Gather dead cases.
5280   SmallVector<ConstantInt *, 8> DeadCases;
5281   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5282   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5283   for (auto &Case : SI->cases()) {
5284     auto *Successor = Case.getCaseSuccessor();
5285     if (DTU) {
5286       if (!NumPerSuccessorCases.count(Successor))
5287         UniqueSuccessors.push_back(Successor);
5288       ++NumPerSuccessorCases[Successor];
5289     }
5290     const APInt &CaseVal = Case.getCaseValue()->getValue();
5291     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5292         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5293       DeadCases.push_back(Case.getCaseValue());
5294       if (DTU)
5295         --NumPerSuccessorCases[Successor];
5296       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5297                         << " is dead.\n");
5298     }
5299   }
5300 
5301   // If we can prove that the cases must cover all possible values, the
5302   // default destination becomes dead and we can remove it.  If we know some
5303   // of the bits in the value, we can use that to more precisely compute the
5304   // number of possible unique case values.
5305   bool HasDefault =
5306       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5307   const unsigned NumUnknownBits =
5308       Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
5309   assert(NumUnknownBits <= Known.getBitWidth());
5310   if (HasDefault && DeadCases.empty() &&
5311       NumUnknownBits < 64 /* avoid overflow */ &&
5312       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5313     createUnreachableSwitchDefault(SI, DTU);
5314     return true;
5315   }
5316 
5317   if (DeadCases.empty())
5318     return false;
5319 
5320   SwitchInstProfUpdateWrapper SIW(*SI);
5321   for (ConstantInt *DeadCase : DeadCases) {
5322     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5323     assert(CaseI != SI->case_default() &&
5324            "Case was not found. Probably mistake in DeadCases forming.");
5325     // Prune unused values from PHI nodes.
5326     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5327     SIW.removeCase(CaseI);
5328   }
5329 
5330   if (DTU) {
5331     std::vector<DominatorTree::UpdateType> Updates;
5332     for (auto *Successor : UniqueSuccessors)
5333       if (NumPerSuccessorCases[Successor] == 0)
5334         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5335     DTU->applyUpdates(Updates);
5336   }
5337 
5338   return true;
5339 }
5340 
5341 /// If BB would be eligible for simplification by
5342 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5343 /// by an unconditional branch), look at the phi node for BB in the successor
5344 /// block and see if the incoming value is equal to CaseValue. If so, return
5345 /// the phi node, and set PhiIndex to BB's index in the phi node.
5346 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5347                                               BasicBlock *BB, int *PhiIndex) {
5348   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5349     return nullptr; // BB must be empty to be a candidate for simplification.
5350   if (!BB->getSinglePredecessor())
5351     return nullptr; // BB must be dominated by the switch.
5352 
5353   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5354   if (!Branch || !Branch->isUnconditional())
5355     return nullptr; // Terminator must be unconditional branch.
5356 
5357   BasicBlock *Succ = Branch->getSuccessor(0);
5358 
5359   for (PHINode &PHI : Succ->phis()) {
5360     int Idx = PHI.getBasicBlockIndex(BB);
5361     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5362 
5363     Value *InValue = PHI.getIncomingValue(Idx);
5364     if (InValue != CaseValue)
5365       continue;
5366 
5367     *PhiIndex = Idx;
5368     return &PHI;
5369   }
5370 
5371   return nullptr;
5372 }
5373 
5374 /// Try to forward the condition of a switch instruction to a phi node
5375 /// dominated by the switch, if that would mean that some of the destination
5376 /// blocks of the switch can be folded away. Return true if a change is made.
5377 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5378   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5379 
5380   ForwardingNodesMap ForwardingNodes;
5381   BasicBlock *SwitchBlock = SI->getParent();
5382   bool Changed = false;
5383   for (auto &Case : SI->cases()) {
5384     ConstantInt *CaseValue = Case.getCaseValue();
5385     BasicBlock *CaseDest = Case.getCaseSuccessor();
5386 
5387     // Replace phi operands in successor blocks that are using the constant case
5388     // value rather than the switch condition variable:
5389     //   switchbb:
5390     //   switch i32 %x, label %default [
5391     //     i32 17, label %succ
5392     //   ...
5393     //   succ:
5394     //     %r = phi i32 ... [ 17, %switchbb ] ...
5395     // -->
5396     //     %r = phi i32 ... [ %x, %switchbb ] ...
5397 
5398     for (PHINode &Phi : CaseDest->phis()) {
5399       // This only works if there is exactly 1 incoming edge from the switch to
5400       // a phi. If there is >1, that means multiple cases of the switch map to 1
5401       // value in the phi, and that phi value is not the switch condition. Thus,
5402       // this transform would not make sense (the phi would be invalid because
5403       // a phi can't have different incoming values from the same block).
5404       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5405       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5406           count(Phi.blocks(), SwitchBlock) == 1) {
5407         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5408         Changed = true;
5409       }
5410     }
5411 
5412     // Collect phi nodes that are indirectly using this switch's case constants.
5413     int PhiIdx;
5414     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5415       ForwardingNodes[Phi].push_back(PhiIdx);
5416   }
5417 
5418   for (auto &ForwardingNode : ForwardingNodes) {
5419     PHINode *Phi = ForwardingNode.first;
5420     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5421     if (Indexes.size() < 2)
5422       continue;
5423 
5424     for (int Index : Indexes)
5425       Phi->setIncomingValue(Index, SI->getCondition());
5426     Changed = true;
5427   }
5428 
5429   return Changed;
5430 }
5431 
5432 /// Return true if the backend will be able to handle
5433 /// initializing an array of constants like C.
5434 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5435   if (C->isThreadDependent())
5436     return false;
5437   if (C->isDLLImportDependent())
5438     return false;
5439 
5440   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5441       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5442       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5443     return false;
5444 
5445   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5446     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5447     // materializing the array of constants.
5448     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5449     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5450       return false;
5451   }
5452 
5453   if (!TTI.shouldBuildLookupTablesForConstant(C))
5454     return false;
5455 
5456   return true;
5457 }
5458 
5459 /// If V is a Constant, return it. Otherwise, try to look up
5460 /// its constant value in ConstantPool, returning 0 if it's not there.
5461 static Constant *
5462 LookupConstant(Value *V,
5463                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5464   if (Constant *C = dyn_cast<Constant>(V))
5465     return C;
5466   return ConstantPool.lookup(V);
5467 }
5468 
5469 /// Try to fold instruction I into a constant. This works for
5470 /// simple instructions such as binary operations where both operands are
5471 /// constant or can be replaced by constants from the ConstantPool. Returns the
5472 /// resulting constant on success, 0 otherwise.
5473 static Constant *
5474 ConstantFold(Instruction *I, const DataLayout &DL,
5475              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5476   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5477     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5478     if (!A)
5479       return nullptr;
5480     if (A->isAllOnesValue())
5481       return LookupConstant(Select->getTrueValue(), ConstantPool);
5482     if (A->isNullValue())
5483       return LookupConstant(Select->getFalseValue(), ConstantPool);
5484     return nullptr;
5485   }
5486 
5487   SmallVector<Constant *, 4> COps;
5488   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5489     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5490       COps.push_back(A);
5491     else
5492       return nullptr;
5493   }
5494 
5495   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5496     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5497                                            COps[1], DL);
5498   }
5499 
5500   return ConstantFoldInstOperands(I, COps, DL);
5501 }
5502 
5503 /// Try to determine the resulting constant values in phi nodes
5504 /// at the common destination basic block, *CommonDest, for one of the case
5505 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5506 /// case), of a switch instruction SI.
5507 static bool
5508 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5509                BasicBlock **CommonDest,
5510                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5511                const DataLayout &DL, const TargetTransformInfo &TTI) {
5512   // The block from which we enter the common destination.
5513   BasicBlock *Pred = SI->getParent();
5514 
5515   // If CaseDest is empty except for some side-effect free instructions through
5516   // which we can constant-propagate the CaseVal, continue to its successor.
5517   SmallDenseMap<Value *, Constant *> ConstantPool;
5518   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5519   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5520     if (I.isTerminator()) {
5521       // If the terminator is a simple branch, continue to the next block.
5522       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5523         return false;
5524       Pred = CaseDest;
5525       CaseDest = I.getSuccessor(0);
5526     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5527       // Instruction is side-effect free and constant.
5528 
5529       // If the instruction has uses outside this block or a phi node slot for
5530       // the block, it is not safe to bypass the instruction since it would then
5531       // no longer dominate all its uses.
5532       for (auto &Use : I.uses()) {
5533         User *User = Use.getUser();
5534         if (Instruction *I = dyn_cast<Instruction>(User))
5535           if (I->getParent() == CaseDest)
5536             continue;
5537         if (PHINode *Phi = dyn_cast<PHINode>(User))
5538           if (Phi->getIncomingBlock(Use) == CaseDest)
5539             continue;
5540         return false;
5541       }
5542 
5543       ConstantPool.insert(std::make_pair(&I, C));
5544     } else {
5545       break;
5546     }
5547   }
5548 
5549   // If we did not have a CommonDest before, use the current one.
5550   if (!*CommonDest)
5551     *CommonDest = CaseDest;
5552   // If the destination isn't the common one, abort.
5553   if (CaseDest != *CommonDest)
5554     return false;
5555 
5556   // Get the values for this case from phi nodes in the destination block.
5557   for (PHINode &PHI : (*CommonDest)->phis()) {
5558     int Idx = PHI.getBasicBlockIndex(Pred);
5559     if (Idx == -1)
5560       continue;
5561 
5562     Constant *ConstVal =
5563         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5564     if (!ConstVal)
5565       return false;
5566 
5567     // Be conservative about which kinds of constants we support.
5568     if (!ValidLookupTableConstant(ConstVal, TTI))
5569       return false;
5570 
5571     Res.push_back(std::make_pair(&PHI, ConstVal));
5572   }
5573 
5574   return Res.size() > 0;
5575 }
5576 
5577 // Helper function used to add CaseVal to the list of cases that generate
5578 // Result. Returns the updated number of cases that generate this result.
5579 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5580                                  SwitchCaseResultVectorTy &UniqueResults,
5581                                  Constant *Result) {
5582   for (auto &I : UniqueResults) {
5583     if (I.first == Result) {
5584       I.second.push_back(CaseVal);
5585       return I.second.size();
5586     }
5587   }
5588   UniqueResults.push_back(
5589       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5590   return 1;
5591 }
5592 
5593 // Helper function that initializes a map containing
5594 // results for the PHI node of the common destination block for a switch
5595 // instruction. Returns false if multiple PHI nodes have been found or if
5596 // there is not a common destination block for the switch.
5597 static bool
5598 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5599                       SwitchCaseResultVectorTy &UniqueResults,
5600                       Constant *&DefaultResult, const DataLayout &DL,
5601                       const TargetTransformInfo &TTI,
5602                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5603   for (auto &I : SI->cases()) {
5604     ConstantInt *CaseVal = I.getCaseValue();
5605 
5606     // Resulting value at phi nodes for this case value.
5607     SwitchCaseResultsTy Results;
5608     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5609                         DL, TTI))
5610       return false;
5611 
5612     // Only one value per case is permitted.
5613     if (Results.size() > 1)
5614       return false;
5615 
5616     // Add the case->result mapping to UniqueResults.
5617     const uintptr_t NumCasesForResult =
5618         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5619 
5620     // Early out if there are too many cases for this result.
5621     if (NumCasesForResult > MaxCasesPerResult)
5622       return false;
5623 
5624     // Early out if there are too many unique results.
5625     if (UniqueResults.size() > MaxUniqueResults)
5626       return false;
5627 
5628     // Check the PHI consistency.
5629     if (!PHI)
5630       PHI = Results[0].first;
5631     else if (PHI != Results[0].first)
5632       return false;
5633   }
5634   // Find the default result value.
5635   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5636   BasicBlock *DefaultDest = SI->getDefaultDest();
5637   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5638                  DL, TTI);
5639   // If the default value is not found abort unless the default destination
5640   // is unreachable.
5641   DefaultResult =
5642       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5643   if ((!DefaultResult &&
5644        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5645     return false;
5646 
5647   return true;
5648 }
5649 
5650 // Helper function that checks if it is possible to transform a switch with only
5651 // two cases (or two cases + default) that produces a result into a select.
5652 // Example:
5653 // switch (a) {
5654 //   case 10:                %0 = icmp eq i32 %a, 10
5655 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5656 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5657 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5658 //   default:
5659 //     return 4;
5660 // }
5661 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5662                                    Constant *DefaultResult, Value *Condition,
5663                                    IRBuilder<> &Builder) {
5664   // If we are selecting between only two cases transform into a simple
5665   // select or a two-way select if default is possible.
5666   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5667       ResultVector[1].second.size() == 1) {
5668     ConstantInt *const FirstCase = ResultVector[0].second[0];
5669     ConstantInt *const SecondCase = ResultVector[1].second[0];
5670 
5671     bool DefaultCanTrigger = DefaultResult;
5672     Value *SelectValue = ResultVector[1].first;
5673     if (DefaultCanTrigger) {
5674       Value *const ValueCompare =
5675           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5676       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5677                                          DefaultResult, "switch.select");
5678     }
5679     Value *const ValueCompare =
5680         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5681     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5682                                 SelectValue, "switch.select");
5683   }
5684 
5685   // Handle the degenerate case where two cases have the same value.
5686   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5687       DefaultResult) {
5688     Value *Cmp1 = Builder.CreateICmpEQ(
5689         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5690     Value *Cmp2 = Builder.CreateICmpEQ(
5691         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5692     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5693     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5694   }
5695 
5696   return nullptr;
5697 }
5698 
5699 // Helper function to cleanup a switch instruction that has been converted into
5700 // a select, fixing up PHI nodes and basic blocks.
5701 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5702                                               Value *SelectValue,
5703                                               IRBuilder<> &Builder,
5704                                               DomTreeUpdater *DTU) {
5705   std::vector<DominatorTree::UpdateType> Updates;
5706 
5707   BasicBlock *SelectBB = SI->getParent();
5708   BasicBlock *DestBB = PHI->getParent();
5709 
5710   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5711     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5712   Builder.CreateBr(DestBB);
5713 
5714   // Remove the switch.
5715 
5716   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5717     PHI->removeIncomingValue(SelectBB);
5718   PHI->addIncoming(SelectValue, SelectBB);
5719 
5720   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5721   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5722     BasicBlock *Succ = SI->getSuccessor(i);
5723 
5724     if (Succ == DestBB)
5725       continue;
5726     Succ->removePredecessor(SelectBB);
5727     if (DTU && RemovedSuccessors.insert(Succ).second)
5728       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5729   }
5730   SI->eraseFromParent();
5731   if (DTU)
5732     DTU->applyUpdates(Updates);
5733 }
5734 
5735 /// If the switch is only used to initialize one or more
5736 /// phi nodes in a common successor block with only two different
5737 /// constant values, replace the switch with select.
5738 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5739                            DomTreeUpdater *DTU, const DataLayout &DL,
5740                            const TargetTransformInfo &TTI) {
5741   Value *const Cond = SI->getCondition();
5742   PHINode *PHI = nullptr;
5743   BasicBlock *CommonDest = nullptr;
5744   Constant *DefaultResult;
5745   SwitchCaseResultVectorTy UniqueResults;
5746   // Collect all the cases that will deliver the same value from the switch.
5747   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5748                              DL, TTI, /*MaxUniqueResults*/2,
5749                              /*MaxCasesPerResult*/2))
5750     return false;
5751   assert(PHI != nullptr && "PHI for value select not found");
5752 
5753   Builder.SetInsertPoint(SI);
5754   Value *SelectValue =
5755       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5756   if (SelectValue) {
5757     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5758     return true;
5759   }
5760   // The switch couldn't be converted into a select.
5761   return false;
5762 }
5763 
5764 namespace {
5765 
5766 /// This class represents a lookup table that can be used to replace a switch.
5767 class SwitchLookupTable {
5768 public:
5769   /// Create a lookup table to use as a switch replacement with the contents
5770   /// of Values, using DefaultValue to fill any holes in the table.
5771   SwitchLookupTable(
5772       Module &M, uint64_t TableSize, ConstantInt *Offset,
5773       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5774       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5775 
5776   /// Build instructions with Builder to retrieve the value at
5777   /// the position given by Index in the lookup table.
5778   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5779 
5780   /// Return true if a table with TableSize elements of
5781   /// type ElementType would fit in a target-legal register.
5782   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5783                                  Type *ElementType);
5784 
5785 private:
5786   // Depending on the contents of the table, it can be represented in
5787   // different ways.
5788   enum {
5789     // For tables where each element contains the same value, we just have to
5790     // store that single value and return it for each lookup.
5791     SingleValueKind,
5792 
5793     // For tables where there is a linear relationship between table index
5794     // and values. We calculate the result with a simple multiplication
5795     // and addition instead of a table lookup.
5796     LinearMapKind,
5797 
5798     // For small tables with integer elements, we can pack them into a bitmap
5799     // that fits into a target-legal register. Values are retrieved by
5800     // shift and mask operations.
5801     BitMapKind,
5802 
5803     // The table is stored as an array of values. Values are retrieved by load
5804     // instructions from the table.
5805     ArrayKind
5806   } Kind;
5807 
5808   // For SingleValueKind, this is the single value.
5809   Constant *SingleValue = nullptr;
5810 
5811   // For BitMapKind, this is the bitmap.
5812   ConstantInt *BitMap = nullptr;
5813   IntegerType *BitMapElementTy = nullptr;
5814 
5815   // For LinearMapKind, these are the constants used to derive the value.
5816   ConstantInt *LinearOffset = nullptr;
5817   ConstantInt *LinearMultiplier = nullptr;
5818 
5819   // For ArrayKind, this is the array.
5820   GlobalVariable *Array = nullptr;
5821 };
5822 
5823 } // end anonymous namespace
5824 
5825 SwitchLookupTable::SwitchLookupTable(
5826     Module &M, uint64_t TableSize, ConstantInt *Offset,
5827     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5828     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5829   assert(Values.size() && "Can't build lookup table without values!");
5830   assert(TableSize >= Values.size() && "Can't fit values in table!");
5831 
5832   // If all values in the table are equal, this is that value.
5833   SingleValue = Values.begin()->second;
5834 
5835   Type *ValueType = Values.begin()->second->getType();
5836 
5837   // Build up the table contents.
5838   SmallVector<Constant *, 64> TableContents(TableSize);
5839   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5840     ConstantInt *CaseVal = Values[I].first;
5841     Constant *CaseRes = Values[I].second;
5842     assert(CaseRes->getType() == ValueType);
5843 
5844     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5845     TableContents[Idx] = CaseRes;
5846 
5847     if (CaseRes != SingleValue)
5848       SingleValue = nullptr;
5849   }
5850 
5851   // Fill in any holes in the table with the default result.
5852   if (Values.size() < TableSize) {
5853     assert(DefaultValue &&
5854            "Need a default value to fill the lookup table holes.");
5855     assert(DefaultValue->getType() == ValueType);
5856     for (uint64_t I = 0; I < TableSize; ++I) {
5857       if (!TableContents[I])
5858         TableContents[I] = DefaultValue;
5859     }
5860 
5861     if (DefaultValue != SingleValue)
5862       SingleValue = nullptr;
5863   }
5864 
5865   // If each element in the table contains the same value, we only need to store
5866   // that single value.
5867   if (SingleValue) {
5868     Kind = SingleValueKind;
5869     return;
5870   }
5871 
5872   // Check if we can derive the value with a linear transformation from the
5873   // table index.
5874   if (isa<IntegerType>(ValueType)) {
5875     bool LinearMappingPossible = true;
5876     APInt PrevVal;
5877     APInt DistToPrev;
5878     assert(TableSize >= 2 && "Should be a SingleValue table.");
5879     // Check if there is the same distance between two consecutive values.
5880     for (uint64_t I = 0; I < TableSize; ++I) {
5881       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5882       if (!ConstVal) {
5883         // This is an undef. We could deal with it, but undefs in lookup tables
5884         // are very seldom. It's probably not worth the additional complexity.
5885         LinearMappingPossible = false;
5886         break;
5887       }
5888       const APInt &Val = ConstVal->getValue();
5889       if (I != 0) {
5890         APInt Dist = Val - PrevVal;
5891         if (I == 1) {
5892           DistToPrev = Dist;
5893         } else if (Dist != DistToPrev) {
5894           LinearMappingPossible = false;
5895           break;
5896         }
5897       }
5898       PrevVal = Val;
5899     }
5900     if (LinearMappingPossible) {
5901       LinearOffset = cast<ConstantInt>(TableContents[0]);
5902       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5903       Kind = LinearMapKind;
5904       ++NumLinearMaps;
5905       return;
5906     }
5907   }
5908 
5909   // If the type is integer and the table fits in a register, build a bitmap.
5910   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5911     IntegerType *IT = cast<IntegerType>(ValueType);
5912     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5913     for (uint64_t I = TableSize; I > 0; --I) {
5914       TableInt <<= IT->getBitWidth();
5915       // Insert values into the bitmap. Undef values are set to zero.
5916       if (!isa<UndefValue>(TableContents[I - 1])) {
5917         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5918         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5919       }
5920     }
5921     BitMap = ConstantInt::get(M.getContext(), TableInt);
5922     BitMapElementTy = IT;
5923     Kind = BitMapKind;
5924     ++NumBitMaps;
5925     return;
5926   }
5927 
5928   // Store the table in an array.
5929   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5930   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5931 
5932   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5933                              GlobalVariable::PrivateLinkage, Initializer,
5934                              "switch.table." + FuncName);
5935   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5936   // Set the alignment to that of an array items. We will be only loading one
5937   // value out of it.
5938   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5939   Kind = ArrayKind;
5940 }
5941 
5942 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5943   switch (Kind) {
5944   case SingleValueKind:
5945     return SingleValue;
5946   case LinearMapKind: {
5947     // Derive the result value from the input value.
5948     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5949                                           false, "switch.idx.cast");
5950     if (!LinearMultiplier->isOne())
5951       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5952     if (!LinearOffset->isZero())
5953       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5954     return Result;
5955   }
5956   case BitMapKind: {
5957     // Type of the bitmap (e.g. i59).
5958     IntegerType *MapTy = BitMap->getType();
5959 
5960     // Cast Index to the same type as the bitmap.
5961     // Note: The Index is <= the number of elements in the table, so
5962     // truncating it to the width of the bitmask is safe.
5963     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5964 
5965     // Multiply the shift amount by the element width.
5966     ShiftAmt = Builder.CreateMul(
5967         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5968         "switch.shiftamt");
5969 
5970     // Shift down.
5971     Value *DownShifted =
5972         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5973     // Mask off.
5974     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5975   }
5976   case ArrayKind: {
5977     // Make sure the table index will not overflow when treated as signed.
5978     IntegerType *IT = cast<IntegerType>(Index->getType());
5979     uint64_t TableSize =
5980         Array->getInitializer()->getType()->getArrayNumElements();
5981     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5982       Index = Builder.CreateZExt(
5983           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5984           "switch.tableidx.zext");
5985 
5986     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5987     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5988                                            GEPIndices, "switch.gep");
5989     return Builder.CreateLoad(
5990         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5991         "switch.load");
5992   }
5993   }
5994   llvm_unreachable("Unknown lookup table kind!");
5995 }
5996 
5997 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5998                                            uint64_t TableSize,
5999                                            Type *ElementType) {
6000   auto *IT = dyn_cast<IntegerType>(ElementType);
6001   if (!IT)
6002     return false;
6003   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6004   // are <= 15, we could try to narrow the type.
6005 
6006   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6007   if (TableSize >= UINT_MAX / IT->getBitWidth())
6008     return false;
6009   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6010 }
6011 
6012 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6013                                       const DataLayout &DL) {
6014   // Allow any legal type.
6015   if (TTI.isTypeLegal(Ty))
6016     return true;
6017 
6018   auto *IT = dyn_cast<IntegerType>(Ty);
6019   if (!IT)
6020     return false;
6021 
6022   // Also allow power of 2 integer types that have at least 8 bits and fit in
6023   // a register. These types are common in frontend languages and targets
6024   // usually support loads of these types.
6025   // TODO: We could relax this to any integer that fits in a register and rely
6026   // on ABI alignment and padding in the table to allow the load to be widened.
6027   // Or we could widen the constants and truncate the load.
6028   unsigned BitWidth = IT->getBitWidth();
6029   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6030          DL.fitsInLegalInteger(IT->getBitWidth());
6031 }
6032 
6033 /// Determine whether a lookup table should be built for this switch, based on
6034 /// the number of cases, size of the table, and the types of the results.
6035 // TODO: We could support larger than legal types by limiting based on the
6036 // number of loads required and/or table size. If the constants are small we
6037 // could use smaller table entries and extend after the load.
6038 static bool
6039 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6040                        const TargetTransformInfo &TTI, const DataLayout &DL,
6041                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6042   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
6043     return false; // TableSize overflowed, or mul below might overflow.
6044 
6045   bool AllTablesFitInRegister = true;
6046   bool HasIllegalType = false;
6047   for (const auto &I : ResultTypes) {
6048     Type *Ty = I.second;
6049 
6050     // Saturate this flag to true.
6051     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6052 
6053     // Saturate this flag to false.
6054     AllTablesFitInRegister =
6055         AllTablesFitInRegister &&
6056         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6057 
6058     // If both flags saturate, we're done. NOTE: This *only* works with
6059     // saturating flags, and all flags have to saturate first due to the
6060     // non-deterministic behavior of iterating over a dense map.
6061     if (HasIllegalType && !AllTablesFitInRegister)
6062       break;
6063   }
6064 
6065   // If each table would fit in a register, we should build it anyway.
6066   if (AllTablesFitInRegister)
6067     return true;
6068 
6069   // Don't build a table that doesn't fit in-register if it has illegal types.
6070   if (HasIllegalType)
6071     return false;
6072 
6073   // The table density should be at least 40%. This is the same criterion as for
6074   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
6075   // FIXME: Find the best cut-off.
6076   return SI->getNumCases() * 10 >= TableSize * 4;
6077 }
6078 
6079 /// Try to reuse the switch table index compare. Following pattern:
6080 /// \code
6081 ///     if (idx < tablesize)
6082 ///        r = table[idx]; // table does not contain default_value
6083 ///     else
6084 ///        r = default_value;
6085 ///     if (r != default_value)
6086 ///        ...
6087 /// \endcode
6088 /// Is optimized to:
6089 /// \code
6090 ///     cond = idx < tablesize;
6091 ///     if (cond)
6092 ///        r = table[idx];
6093 ///     else
6094 ///        r = default_value;
6095 ///     if (cond)
6096 ///        ...
6097 /// \endcode
6098 /// Jump threading will then eliminate the second if(cond).
6099 static void reuseTableCompare(
6100     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6101     Constant *DefaultValue,
6102     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6103   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6104   if (!CmpInst)
6105     return;
6106 
6107   // We require that the compare is in the same block as the phi so that jump
6108   // threading can do its work afterwards.
6109   if (CmpInst->getParent() != PhiBlock)
6110     return;
6111 
6112   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6113   if (!CmpOp1)
6114     return;
6115 
6116   Value *RangeCmp = RangeCheckBranch->getCondition();
6117   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6118   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6119 
6120   // Check if the compare with the default value is constant true or false.
6121   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6122                                                  DefaultValue, CmpOp1, true);
6123   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6124     return;
6125 
6126   // Check if the compare with the case values is distinct from the default
6127   // compare result.
6128   for (auto ValuePair : Values) {
6129     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6130                                                 ValuePair.second, CmpOp1, true);
6131     if (!CaseConst || CaseConst == DefaultConst ||
6132         (CaseConst != TrueConst && CaseConst != FalseConst))
6133       return;
6134   }
6135 
6136   // Check if the branch instruction dominates the phi node. It's a simple
6137   // dominance check, but sufficient for our needs.
6138   // Although this check is invariant in the calling loops, it's better to do it
6139   // at this late stage. Practically we do it at most once for a switch.
6140   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6141   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6142     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6143       return;
6144   }
6145 
6146   if (DefaultConst == FalseConst) {
6147     // The compare yields the same result. We can replace it.
6148     CmpInst->replaceAllUsesWith(RangeCmp);
6149     ++NumTableCmpReuses;
6150   } else {
6151     // The compare yields the same result, just inverted. We can replace it.
6152     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6153         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6154         RangeCheckBranch);
6155     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6156     ++NumTableCmpReuses;
6157   }
6158 }
6159 
6160 /// If the switch is only used to initialize one or more phi nodes in a common
6161 /// successor block with different constant values, replace the switch with
6162 /// lookup tables.
6163 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6164                                 DomTreeUpdater *DTU, const DataLayout &DL,
6165                                 const TargetTransformInfo &TTI) {
6166   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6167 
6168   BasicBlock *BB = SI->getParent();
6169   Function *Fn = BB->getParent();
6170   // Only build lookup table when we have a target that supports it or the
6171   // attribute is not set.
6172   if (!TTI.shouldBuildLookupTables() ||
6173       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6174     return false;
6175 
6176   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6177   // split off a dense part and build a lookup table for that.
6178 
6179   // FIXME: This creates arrays of GEPs to constant strings, which means each
6180   // GEP needs a runtime relocation in PIC code. We should just build one big
6181   // string and lookup indices into that.
6182 
6183   // Ignore switches with less than three cases. Lookup tables will not make
6184   // them faster, so we don't analyze them.
6185   if (SI->getNumCases() < 3)
6186     return false;
6187 
6188   // Figure out the corresponding result for each case value and phi node in the
6189   // common destination, as well as the min and max case values.
6190   assert(!SI->cases().empty());
6191   SwitchInst::CaseIt CI = SI->case_begin();
6192   ConstantInt *MinCaseVal = CI->getCaseValue();
6193   ConstantInt *MaxCaseVal = CI->getCaseValue();
6194 
6195   BasicBlock *CommonDest = nullptr;
6196 
6197   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6198   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6199 
6200   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6201   SmallDenseMap<PHINode *, Type *> ResultTypes;
6202   SmallVector<PHINode *, 4> PHIs;
6203 
6204   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6205     ConstantInt *CaseVal = CI->getCaseValue();
6206     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6207       MinCaseVal = CaseVal;
6208     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6209       MaxCaseVal = CaseVal;
6210 
6211     // Resulting value at phi nodes for this case value.
6212     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6213     ResultsTy Results;
6214     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6215                         Results, DL, TTI))
6216       return false;
6217 
6218     // Append the result from this case to the list for each phi.
6219     for (const auto &I : Results) {
6220       PHINode *PHI = I.first;
6221       Constant *Value = I.second;
6222       if (!ResultLists.count(PHI))
6223         PHIs.push_back(PHI);
6224       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6225     }
6226   }
6227 
6228   // Keep track of the result types.
6229   for (PHINode *PHI : PHIs) {
6230     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6231   }
6232 
6233   uint64_t NumResults = ResultLists[PHIs[0]].size();
6234   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
6235   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
6236   bool TableHasHoles = (NumResults < TableSize);
6237 
6238   // If the table has holes, we need a constant result for the default case
6239   // or a bitmask that fits in a register.
6240   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6241   bool HasDefaultResults =
6242       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6243                      DefaultResultsList, DL, TTI);
6244 
6245   bool NeedMask = (TableHasHoles && !HasDefaultResults);
6246   if (NeedMask) {
6247     // As an extra penalty for the validity test we require more cases.
6248     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6249       return false;
6250     if (!DL.fitsInLegalInteger(TableSize))
6251       return false;
6252   }
6253 
6254   for (const auto &I : DefaultResultsList) {
6255     PHINode *PHI = I.first;
6256     Constant *Result = I.second;
6257     DefaultResults[PHI] = Result;
6258   }
6259 
6260   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6261     return false;
6262 
6263   std::vector<DominatorTree::UpdateType> Updates;
6264 
6265   // Create the BB that does the lookups.
6266   Module &Mod = *CommonDest->getParent()->getParent();
6267   BasicBlock *LookupBB = BasicBlock::Create(
6268       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6269 
6270   // Compute the table index value.
6271   Builder.SetInsertPoint(SI);
6272   Value *TableIndex;
6273   if (MinCaseVal->isNullValue())
6274     TableIndex = SI->getCondition();
6275   else
6276     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
6277                                    "switch.tableidx");
6278 
6279   // Compute the maximum table size representable by the integer type we are
6280   // switching upon.
6281   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6282   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6283   assert(MaxTableSize >= TableSize &&
6284          "It is impossible for a switch to have more entries than the max "
6285          "representable value of its input integer type's size.");
6286 
6287   // If the default destination is unreachable, or if the lookup table covers
6288   // all values of the conditional variable, branch directly to the lookup table
6289   // BB. Otherwise, check that the condition is within the case range.
6290   const bool DefaultIsReachable =
6291       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6292   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6293   BranchInst *RangeCheckBranch = nullptr;
6294 
6295   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6296     Builder.CreateBr(LookupBB);
6297     if (DTU)
6298       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6299     // Note: We call removeProdecessor later since we need to be able to get the
6300     // PHI value for the default case in case we're using a bit mask.
6301   } else {
6302     Value *Cmp = Builder.CreateICmpULT(
6303         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6304     RangeCheckBranch =
6305         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6306     if (DTU)
6307       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6308   }
6309 
6310   // Populate the BB that does the lookups.
6311   Builder.SetInsertPoint(LookupBB);
6312 
6313   if (NeedMask) {
6314     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6315     // re-purposed to do the hole check, and we create a new LookupBB.
6316     BasicBlock *MaskBB = LookupBB;
6317     MaskBB->setName("switch.hole_check");
6318     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6319                                   CommonDest->getParent(), CommonDest);
6320 
6321     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6322     // unnecessary illegal types.
6323     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6324     APInt MaskInt(TableSizePowOf2, 0);
6325     APInt One(TableSizePowOf2, 1);
6326     // Build bitmask; fill in a 1 bit for every case.
6327     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6328     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6329       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
6330                          .getLimitedValue();
6331       MaskInt |= One << Idx;
6332     }
6333     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6334 
6335     // Get the TableIndex'th bit of the bitmask.
6336     // If this bit is 0 (meaning hole) jump to the default destination,
6337     // else continue with table lookup.
6338     IntegerType *MapTy = TableMask->getType();
6339     Value *MaskIndex =
6340         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6341     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6342     Value *LoBit = Builder.CreateTrunc(
6343         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6344     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6345     if (DTU) {
6346       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6347       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6348     }
6349     Builder.SetInsertPoint(LookupBB);
6350     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6351   }
6352 
6353   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6354     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6355     // do not delete PHINodes here.
6356     SI->getDefaultDest()->removePredecessor(BB,
6357                                             /*KeepOneInputPHIs=*/true);
6358     if (DTU)
6359       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6360   }
6361 
6362   for (PHINode *PHI : PHIs) {
6363     const ResultListTy &ResultList = ResultLists[PHI];
6364 
6365     // If using a bitmask, use any value to fill the lookup table holes.
6366     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6367     StringRef FuncName = Fn->getName();
6368     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6369                             FuncName);
6370 
6371     Value *Result = Table.BuildLookup(TableIndex, Builder);
6372 
6373     // Do a small peephole optimization: re-use the switch table compare if
6374     // possible.
6375     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6376       BasicBlock *PhiBlock = PHI->getParent();
6377       // Search for compare instructions which use the phi.
6378       for (auto *User : PHI->users()) {
6379         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6380       }
6381     }
6382 
6383     PHI->addIncoming(Result, LookupBB);
6384   }
6385 
6386   Builder.CreateBr(CommonDest);
6387   if (DTU)
6388     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6389 
6390   // Remove the switch.
6391   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6392   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6393     BasicBlock *Succ = SI->getSuccessor(i);
6394 
6395     if (Succ == SI->getDefaultDest())
6396       continue;
6397     Succ->removePredecessor(BB);
6398     if (DTU && RemovedSuccessors.insert(Succ).second)
6399       Updates.push_back({DominatorTree::Delete, BB, Succ});
6400   }
6401   SI->eraseFromParent();
6402 
6403   if (DTU)
6404     DTU->applyUpdates(Updates);
6405 
6406   ++NumLookupTables;
6407   if (NeedMask)
6408     ++NumLookupTablesHoles;
6409   return true;
6410 }
6411 
6412 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6413   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6414   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6415   uint64_t Range = Diff + 1;
6416   uint64_t NumCases = Values.size();
6417   // 40% is the default density for building a jump table in optsize/minsize mode.
6418   uint64_t MinDensity = 40;
6419 
6420   return NumCases * 100 >= Range * MinDensity;
6421 }
6422 
6423 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6424 /// of cases.
6425 ///
6426 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6427 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6428 ///
6429 /// This converts a sparse switch into a dense switch which allows better
6430 /// lowering and could also allow transforming into a lookup table.
6431 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6432                               const DataLayout &DL,
6433                               const TargetTransformInfo &TTI) {
6434   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6435   if (CondTy->getIntegerBitWidth() > 64 ||
6436       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6437     return false;
6438   // Only bother with this optimization if there are more than 3 switch cases;
6439   // SDAG will only bother creating jump tables for 4 or more cases.
6440   if (SI->getNumCases() < 4)
6441     return false;
6442 
6443   // This transform is agnostic to the signedness of the input or case values. We
6444   // can treat the case values as signed or unsigned. We can optimize more common
6445   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6446   // as signed.
6447   SmallVector<int64_t,4> Values;
6448   for (auto &C : SI->cases())
6449     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6450   llvm::sort(Values);
6451 
6452   // If the switch is already dense, there's nothing useful to do here.
6453   if (isSwitchDense(Values))
6454     return false;
6455 
6456   // First, transform the values such that they start at zero and ascend.
6457   int64_t Base = Values[0];
6458   for (auto &V : Values)
6459     V -= (uint64_t)(Base);
6460 
6461   // Now we have signed numbers that have been shifted so that, given enough
6462   // precision, there are no negative values. Since the rest of the transform
6463   // is bitwise only, we switch now to an unsigned representation.
6464 
6465   // This transform can be done speculatively because it is so cheap - it
6466   // results in a single rotate operation being inserted.
6467   // FIXME: It's possible that optimizing a switch on powers of two might also
6468   // be beneficial - flag values are often powers of two and we could use a CLZ
6469   // as the key function.
6470 
6471   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6472   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6473   // less than 64.
6474   unsigned Shift = 64;
6475   for (auto &V : Values)
6476     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6477   assert(Shift < 64);
6478   if (Shift > 0)
6479     for (auto &V : Values)
6480       V = (int64_t)((uint64_t)V >> Shift);
6481 
6482   if (!isSwitchDense(Values))
6483     // Transform didn't create a dense switch.
6484     return false;
6485 
6486   // The obvious transform is to shift the switch condition right and emit a
6487   // check that the condition actually cleanly divided by GCD, i.e.
6488   //   C & (1 << Shift - 1) == 0
6489   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6490   //
6491   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6492   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6493   // are nonzero then the switch condition will be very large and will hit the
6494   // default case.
6495 
6496   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6497   Builder.SetInsertPoint(SI);
6498   auto *ShiftC = ConstantInt::get(Ty, Shift);
6499   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6500   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6501   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6502   auto *Rot = Builder.CreateOr(LShr, Shl);
6503   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6504 
6505   for (auto Case : SI->cases()) {
6506     auto *Orig = Case.getCaseValue();
6507     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6508     Case.setValue(
6509         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6510   }
6511   return true;
6512 }
6513 
6514 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6515   BasicBlock *BB = SI->getParent();
6516 
6517   if (isValueEqualityComparison(SI)) {
6518     // If we only have one predecessor, and if it is a branch on this value,
6519     // see if that predecessor totally determines the outcome of this switch.
6520     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6521       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6522         return requestResimplify();
6523 
6524     Value *Cond = SI->getCondition();
6525     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6526       if (SimplifySwitchOnSelect(SI, Select))
6527         return requestResimplify();
6528 
6529     // If the block only contains the switch, see if we can fold the block
6530     // away into any preds.
6531     if (SI == &*BB->instructionsWithoutDebug(false).begin())
6532       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6533         return requestResimplify();
6534   }
6535 
6536   // Try to transform the switch into an icmp and a branch.
6537   if (TurnSwitchRangeIntoICmp(SI, Builder))
6538     return requestResimplify();
6539 
6540   // Remove unreachable cases.
6541   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6542     return requestResimplify();
6543 
6544   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6545     return requestResimplify();
6546 
6547   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6548     return requestResimplify();
6549 
6550   // The conversion from switch to lookup tables results in difficult-to-analyze
6551   // code and makes pruning branches much harder. This is a problem if the
6552   // switch expression itself can still be restricted as a result of inlining or
6553   // CVP. Therefore, only apply this transformation during late stages of the
6554   // optimisation pipeline.
6555   if (Options.ConvertSwitchToLookupTable &&
6556       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6557     return requestResimplify();
6558 
6559   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6560     return requestResimplify();
6561 
6562   return false;
6563 }
6564 
6565 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6566   BasicBlock *BB = IBI->getParent();
6567   bool Changed = false;
6568 
6569   // Eliminate redundant destinations.
6570   SmallPtrSet<Value *, 8> Succs;
6571   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6572   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6573     BasicBlock *Dest = IBI->getDestination(i);
6574     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6575       if (!Dest->hasAddressTaken())
6576         RemovedSuccs.insert(Dest);
6577       Dest->removePredecessor(BB);
6578       IBI->removeDestination(i);
6579       --i;
6580       --e;
6581       Changed = true;
6582     }
6583   }
6584 
6585   if (DTU) {
6586     std::vector<DominatorTree::UpdateType> Updates;
6587     Updates.reserve(RemovedSuccs.size());
6588     for (auto *RemovedSucc : RemovedSuccs)
6589       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6590     DTU->applyUpdates(Updates);
6591   }
6592 
6593   if (IBI->getNumDestinations() == 0) {
6594     // If the indirectbr has no successors, change it to unreachable.
6595     new UnreachableInst(IBI->getContext(), IBI);
6596     EraseTerminatorAndDCECond(IBI);
6597     return true;
6598   }
6599 
6600   if (IBI->getNumDestinations() == 1) {
6601     // If the indirectbr has one successor, change it to a direct branch.
6602     BranchInst::Create(IBI->getDestination(0), IBI);
6603     EraseTerminatorAndDCECond(IBI);
6604     return true;
6605   }
6606 
6607   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6608     if (SimplifyIndirectBrOnSelect(IBI, SI))
6609       return requestResimplify();
6610   }
6611   return Changed;
6612 }
6613 
6614 /// Given an block with only a single landing pad and a unconditional branch
6615 /// try to find another basic block which this one can be merged with.  This
6616 /// handles cases where we have multiple invokes with unique landing pads, but
6617 /// a shared handler.
6618 ///
6619 /// We specifically choose to not worry about merging non-empty blocks
6620 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6621 /// practice, the optimizer produces empty landing pad blocks quite frequently
6622 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6623 /// sinking in this file)
6624 ///
6625 /// This is primarily a code size optimization.  We need to avoid performing
6626 /// any transform which might inhibit optimization (such as our ability to
6627 /// specialize a particular handler via tail commoning).  We do this by not
6628 /// merging any blocks which require us to introduce a phi.  Since the same
6629 /// values are flowing through both blocks, we don't lose any ability to
6630 /// specialize.  If anything, we make such specialization more likely.
6631 ///
6632 /// TODO - This transformation could remove entries from a phi in the target
6633 /// block when the inputs in the phi are the same for the two blocks being
6634 /// merged.  In some cases, this could result in removal of the PHI entirely.
6635 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6636                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6637   auto Succ = BB->getUniqueSuccessor();
6638   assert(Succ);
6639   // If there's a phi in the successor block, we'd likely have to introduce
6640   // a phi into the merged landing pad block.
6641   if (isa<PHINode>(*Succ->begin()))
6642     return false;
6643 
6644   for (BasicBlock *OtherPred : predecessors(Succ)) {
6645     if (BB == OtherPred)
6646       continue;
6647     BasicBlock::iterator I = OtherPred->begin();
6648     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6649     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6650       continue;
6651     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6652       ;
6653     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6654     if (!BI2 || !BI2->isIdenticalTo(BI))
6655       continue;
6656 
6657     std::vector<DominatorTree::UpdateType> Updates;
6658 
6659     // We've found an identical block.  Update our predecessors to take that
6660     // path instead and make ourselves dead.
6661     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
6662     for (BasicBlock *Pred : UniquePreds) {
6663       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6664       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6665              "unexpected successor");
6666       II->setUnwindDest(OtherPred);
6667       if (DTU) {
6668         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6669         Updates.push_back({DominatorTree::Delete, Pred, BB});
6670       }
6671     }
6672 
6673     // The debug info in OtherPred doesn't cover the merged control flow that
6674     // used to go through BB.  We need to delete it or update it.
6675     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6676       if (isa<DbgInfoIntrinsic>(Inst))
6677         Inst.eraseFromParent();
6678 
6679     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
6680     for (BasicBlock *Succ : UniqueSuccs) {
6681       Succ->removePredecessor(BB);
6682       if (DTU)
6683         Updates.push_back({DominatorTree::Delete, BB, Succ});
6684     }
6685 
6686     IRBuilder<> Builder(BI);
6687     Builder.CreateUnreachable();
6688     BI->eraseFromParent();
6689     if (DTU)
6690       DTU->applyUpdates(Updates);
6691     return true;
6692   }
6693   return false;
6694 }
6695 
6696 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6697   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6698                                    : simplifyCondBranch(Branch, Builder);
6699 }
6700 
6701 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6702                                           IRBuilder<> &Builder) {
6703   BasicBlock *BB = BI->getParent();
6704   BasicBlock *Succ = BI->getSuccessor(0);
6705 
6706   // If the Terminator is the only non-phi instruction, simplify the block.
6707   // If LoopHeader is provided, check if the block or its successor is a loop
6708   // header. (This is for early invocations before loop simplify and
6709   // vectorization to keep canonical loop forms for nested loops. These blocks
6710   // can be eliminated when the pass is invoked later in the back-end.)
6711   // Note that if BB has only one predecessor then we do not introduce new
6712   // backedge, so we can eliminate BB.
6713   bool NeedCanonicalLoop =
6714       Options.NeedCanonicalLoop &&
6715       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6716        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6717   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6718   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6719       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6720     return true;
6721 
6722   // If the only instruction in the block is a seteq/setne comparison against a
6723   // constant, try to simplify the block.
6724   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6725     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6726       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6727         ;
6728       if (I->isTerminator() &&
6729           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6730         return true;
6731     }
6732 
6733   // See if we can merge an empty landing pad block with another which is
6734   // equivalent.
6735   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6736     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6737       ;
6738     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6739       return true;
6740   }
6741 
6742   // If this basic block is ONLY a compare and a branch, and if a predecessor
6743   // branches to us and our successor, fold the comparison into the
6744   // predecessor and use logical operations to update the incoming value
6745   // for PHI nodes in common successor.
6746   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6747                              Options.BonusInstThreshold))
6748     return requestResimplify();
6749   return false;
6750 }
6751 
6752 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6753   BasicBlock *PredPred = nullptr;
6754   for (auto *P : predecessors(BB)) {
6755     BasicBlock *PPred = P->getSinglePredecessor();
6756     if (!PPred || (PredPred && PredPred != PPred))
6757       return nullptr;
6758     PredPred = PPred;
6759   }
6760   return PredPred;
6761 }
6762 
6763 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6764   assert(
6765       !isa<ConstantInt>(BI->getCondition()) &&
6766       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6767       "Tautological conditional branch should have been eliminated already.");
6768 
6769   BasicBlock *BB = BI->getParent();
6770   if (!Options.SimplifyCondBranch)
6771     return false;
6772 
6773   // Conditional branch
6774   if (isValueEqualityComparison(BI)) {
6775     // If we only have one predecessor, and if it is a branch on this value,
6776     // see if that predecessor totally determines the outcome of this
6777     // switch.
6778     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6779       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6780         return requestResimplify();
6781 
6782     // This block must be empty, except for the setcond inst, if it exists.
6783     // Ignore dbg and pseudo intrinsics.
6784     auto I = BB->instructionsWithoutDebug(true).begin();
6785     if (&*I == BI) {
6786       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6787         return requestResimplify();
6788     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6789       ++I;
6790       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6791         return requestResimplify();
6792     }
6793   }
6794 
6795   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6796   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6797     return true;
6798 
6799   // If this basic block has dominating predecessor blocks and the dominating
6800   // blocks' conditions imply BI's condition, we know the direction of BI.
6801   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6802   if (Imp) {
6803     // Turn this into a branch on constant.
6804     auto *OldCond = BI->getCondition();
6805     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6806                              : ConstantInt::getFalse(BB->getContext());
6807     BI->setCondition(TorF);
6808     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6809     return requestResimplify();
6810   }
6811 
6812   // If this basic block is ONLY a compare and a branch, and if a predecessor
6813   // branches to us and one of our successors, fold the comparison into the
6814   // predecessor and use logical operations to pick the right destination.
6815   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6816                              Options.BonusInstThreshold))
6817     return requestResimplify();
6818 
6819   // We have a conditional branch to two blocks that are only reachable
6820   // from BI.  We know that the condbr dominates the two blocks, so see if
6821   // there is any identical code in the "then" and "else" blocks.  If so, we
6822   // can hoist it up to the branching block.
6823   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6824     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6825       if (HoistCommon &&
6826           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6827         return requestResimplify();
6828     } else {
6829       // If Successor #1 has multiple preds, we may be able to conditionally
6830       // execute Successor #0 if it branches to Successor #1.
6831       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6832       if (Succ0TI->getNumSuccessors() == 1 &&
6833           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6834         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6835           return requestResimplify();
6836     }
6837   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6838     // If Successor #0 has multiple preds, we may be able to conditionally
6839     // execute Successor #1 if it branches to Successor #0.
6840     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6841     if (Succ1TI->getNumSuccessors() == 1 &&
6842         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6843       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6844         return requestResimplify();
6845   }
6846 
6847   // If this is a branch on a phi node in the current block, thread control
6848   // through this block if any PHI node entries are constants.
6849   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6850     if (PN->getParent() == BI->getParent())
6851       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6852         return requestResimplify();
6853 
6854   // Scan predecessor blocks for conditional branches.
6855   for (BasicBlock *Pred : predecessors(BB))
6856     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6857       if (PBI != BI && PBI->isConditional())
6858         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6859           return requestResimplify();
6860 
6861   // Look for diamond patterns.
6862   if (MergeCondStores)
6863     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6864       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6865         if (PBI != BI && PBI->isConditional())
6866           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6867             return requestResimplify();
6868 
6869   return false;
6870 }
6871 
6872 /// Check if passing a value to an instruction will cause undefined behavior.
6873 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6874   Constant *C = dyn_cast<Constant>(V);
6875   if (!C)
6876     return false;
6877 
6878   if (I->use_empty())
6879     return false;
6880 
6881   if (C->isNullValue() || isa<UndefValue>(C)) {
6882     // Only look at the first use, avoid hurting compile time with long uselists
6883     auto *Use = cast<Instruction>(*I->user_begin());
6884     // Bail out if Use is not in the same BB as I or Use == I or Use comes
6885     // before I in the block. The latter two can be the case if Use is a PHI
6886     // node.
6887     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
6888       return false;
6889 
6890     // Now make sure that there are no instructions in between that can alter
6891     // control flow (eg. calls)
6892     auto InstrRange =
6893         make_range(std::next(I->getIterator()), Use->getIterator());
6894     if (any_of(InstrRange, [](Instruction &I) {
6895           return !isGuaranteedToTransferExecutionToSuccessor(&I);
6896         }))
6897       return false;
6898 
6899     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6900     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6901       if (GEP->getPointerOperand() == I) {
6902         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6903           PtrValueMayBeModified = true;
6904         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6905       }
6906 
6907     // Look through bitcasts.
6908     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6909       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6910 
6911     // Load from null is undefined.
6912     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6913       if (!LI->isVolatile())
6914         return !NullPointerIsDefined(LI->getFunction(),
6915                                      LI->getPointerAddressSpace());
6916 
6917     // Store to null is undefined.
6918     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6919       if (!SI->isVolatile())
6920         return (!NullPointerIsDefined(SI->getFunction(),
6921                                       SI->getPointerAddressSpace())) &&
6922                SI->getPointerOperand() == I;
6923 
6924     if (auto *CB = dyn_cast<CallBase>(Use)) {
6925       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6926         return false;
6927       // A call to null is undefined.
6928       if (CB->getCalledOperand() == I)
6929         return true;
6930 
6931       if (C->isNullValue()) {
6932         for (const llvm::Use &Arg : CB->args())
6933           if (Arg == I) {
6934             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6935             if (CB->isPassingUndefUB(ArgIdx) &&
6936                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6937               // Passing null to a nonnnull+noundef argument is undefined.
6938               return !PtrValueMayBeModified;
6939             }
6940           }
6941       } else if (isa<UndefValue>(C)) {
6942         // Passing undef to a noundef argument is undefined.
6943         for (const llvm::Use &Arg : CB->args())
6944           if (Arg == I) {
6945             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6946             if (CB->isPassingUndefUB(ArgIdx)) {
6947               // Passing undef to a noundef argument is undefined.
6948               return true;
6949             }
6950           }
6951       }
6952     }
6953   }
6954   return false;
6955 }
6956 
6957 /// If BB has an incoming value that will always trigger undefined behavior
6958 /// (eg. null pointer dereference), remove the branch leading here.
6959 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6960                                               DomTreeUpdater *DTU) {
6961   for (PHINode &PHI : BB->phis())
6962     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6963       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6964         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6965         Instruction *T = Predecessor->getTerminator();
6966         IRBuilder<> Builder(T);
6967         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6968           BB->removePredecessor(Predecessor);
6969           // Turn uncoditional branches into unreachables and remove the dead
6970           // destination from conditional branches.
6971           if (BI->isUnconditional())
6972             Builder.CreateUnreachable();
6973           else {
6974             // Preserve guarding condition in assume, because it might not be
6975             // inferrable from any dominating condition.
6976             Value *Cond = BI->getCondition();
6977             if (BI->getSuccessor(0) == BB)
6978               Builder.CreateAssumption(Builder.CreateNot(Cond));
6979             else
6980               Builder.CreateAssumption(Cond);
6981             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6982                                                        : BI->getSuccessor(0));
6983           }
6984           BI->eraseFromParent();
6985           if (DTU)
6986             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6987           return true;
6988         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
6989           // Redirect all branches leading to UB into
6990           // a newly created unreachable block.
6991           BasicBlock *Unreachable = BasicBlock::Create(
6992               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
6993           Builder.SetInsertPoint(Unreachable);
6994           // The new block contains only one instruction: Unreachable
6995           Builder.CreateUnreachable();
6996           for (auto &Case : SI->cases())
6997             if (Case.getCaseSuccessor() == BB) {
6998               BB->removePredecessor(Predecessor);
6999               Case.setSuccessor(Unreachable);
7000             }
7001           if (SI->getDefaultDest() == BB) {
7002             BB->removePredecessor(Predecessor);
7003             SI->setDefaultDest(Unreachable);
7004           }
7005 
7006           if (DTU)
7007             DTU->applyUpdates(
7008                 { { DominatorTree::Insert, Predecessor, Unreachable },
7009                   { DominatorTree::Delete, Predecessor, BB } });
7010           return true;
7011         }
7012       }
7013 
7014   return false;
7015 }
7016 
7017 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7018   bool Changed = false;
7019 
7020   assert(BB && BB->getParent() && "Block not embedded in function!");
7021   assert(BB->getTerminator() && "Degenerate basic block encountered!");
7022 
7023   // Remove basic blocks that have no predecessors (except the entry block)...
7024   // or that just have themself as a predecessor.  These are unreachable.
7025   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7026       BB->getSinglePredecessor() == BB) {
7027     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7028     DeleteDeadBlock(BB, DTU);
7029     return true;
7030   }
7031 
7032   // Check to see if we can constant propagate this terminator instruction
7033   // away...
7034   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7035                                     /*TLI=*/nullptr, DTU);
7036 
7037   // Check for and eliminate duplicate PHI nodes in this block.
7038   Changed |= EliminateDuplicatePHINodes(BB);
7039 
7040   // Check for and remove branches that will always cause undefined behavior.
7041   if (removeUndefIntroducingPredecessor(BB, DTU))
7042     return requestResimplify();
7043 
7044   // Merge basic blocks into their predecessor if there is only one distinct
7045   // pred, and if there is only one distinct successor of the predecessor, and
7046   // if there are no PHI nodes.
7047   if (MergeBlockIntoPredecessor(BB, DTU))
7048     return true;
7049 
7050   if (SinkCommon && Options.SinkCommonInsts)
7051     if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7052         MergeCompatibleInvokes(BB, DTU)) {
7053       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7054       // so we may now how duplicate PHI's.
7055       // Let's rerun EliminateDuplicatePHINodes() first,
7056       // before FoldTwoEntryPHINode() potentially converts them into select's,
7057       // after which we'd need a whole EarlyCSE pass run to cleanup them.
7058       return true;
7059     }
7060 
7061   IRBuilder<> Builder(BB);
7062 
7063   if (Options.FoldTwoEntryPHINode) {
7064     // If there is a trivial two-entry PHI node in this basic block, and we can
7065     // eliminate it, do so now.
7066     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7067       if (PN->getNumIncomingValues() == 2)
7068         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7069           return true;
7070   }
7071 
7072   Instruction *Terminator = BB->getTerminator();
7073   Builder.SetInsertPoint(Terminator);
7074   switch (Terminator->getOpcode()) {
7075   case Instruction::Br:
7076     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7077     break;
7078   case Instruction::Resume:
7079     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7080     break;
7081   case Instruction::CleanupRet:
7082     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7083     break;
7084   case Instruction::Switch:
7085     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7086     break;
7087   case Instruction::Unreachable:
7088     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7089     break;
7090   case Instruction::IndirectBr:
7091     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7092     break;
7093   }
7094 
7095   return Changed;
7096 }
7097 
7098 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7099   bool Changed = false;
7100 
7101   // Repeated simplify BB as long as resimplification is requested.
7102   do {
7103     Resimplify = false;
7104 
7105     // Perform one round of simplifcation. Resimplify flag will be set if
7106     // another iteration is requested.
7107     Changed |= simplifyOnce(BB);
7108   } while (Resimplify);
7109 
7110   return Changed;
7111 }
7112 
7113 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7114                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7115                        ArrayRef<WeakVH> LoopHeaders) {
7116   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7117                         Options)
7118       .run(BB);
7119 }
7120