1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/ValueHandle.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/KnownBits.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include "llvm/Transforms/Utils/SSAUpdater.h" 75 #include "llvm/Transforms/Utils/ValueMapper.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <set> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "simplifycfg" 92 93 cl::opt<bool> llvm::RequireAndPreserveDomTree( 94 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 95 cl::init(false), 96 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 97 "into preserving DomTree,")); 98 99 // Chosen as 2 so as to be cheap, but still to have enough power to fold 100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 101 // To catch this, we need to fold a compare and a select, hence '2' being the 102 // minimum reasonable default. 103 static cl::opt<unsigned> PHINodeFoldingThreshold( 104 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 105 cl::desc( 106 "Control the amount of phi node folding to perform (default = 2)")); 107 108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 109 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 110 cl::desc("Control the maximal total instruction cost that we are willing " 111 "to speculatively execute to fold a 2-entry PHI node into a " 112 "select (default = 4)")); 113 114 static cl::opt<bool> DupRet( 115 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 116 cl::desc("Duplicate return instructions into unconditional branches")); 117 118 static cl::opt<bool> 119 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 120 cl::desc("Hoist common instructions up to the parent block")); 121 122 static cl::opt<bool> 123 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 124 cl::desc("Sink common instructions down to the end block")); 125 126 static cl::opt<bool> HoistCondStores( 127 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 128 cl::desc("Hoist conditional stores if an unconditional store precedes")); 129 130 static cl::opt<bool> MergeCondStores( 131 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 132 cl::desc("Hoist conditional stores even if an unconditional store does not " 133 "precede - hoist multiple conditional stores into a single " 134 "predicated store")); 135 136 static cl::opt<bool> MergeCondStoresAggressively( 137 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 138 cl::desc("When merging conditional stores, do so even if the resultant " 139 "basic blocks are unlikely to be if-converted as a result")); 140 141 static cl::opt<bool> SpeculateOneExpensiveInst( 142 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 143 cl::desc("Allow exactly one expensive instruction to be speculatively " 144 "executed")); 145 146 static cl::opt<unsigned> MaxSpeculationDepth( 147 "max-speculation-depth", cl::Hidden, cl::init(10), 148 cl::desc("Limit maximum recursion depth when calculating costs of " 149 "speculatively executed instructions")); 150 151 static cl::opt<int> 152 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 153 cl::desc("Max size of a block which is still considered " 154 "small enough to thread through")); 155 156 // Two is chosen to allow one negation and a logical combine. 157 static cl::opt<unsigned> 158 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 159 cl::init(2), 160 cl::desc("Maximum cost of combining conditions when " 161 "folding branches")); 162 163 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 164 STATISTIC(NumLinearMaps, 165 "Number of switch instructions turned into linear mapping"); 166 STATISTIC(NumLookupTables, 167 "Number of switch instructions turned into lookup tables"); 168 STATISTIC( 169 NumLookupTablesHoles, 170 "Number of switch instructions turned into lookup tables (holes checked)"); 171 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 172 STATISTIC(NumFoldValueComparisonIntoPredecessors, 173 "Number of value comparisons folded into predecessor basic blocks"); 174 STATISTIC(NumFoldBranchToCommonDest, 175 "Number of branches folded into predecessor basic block"); 176 STATISTIC( 177 NumHoistCommonCode, 178 "Number of common instruction 'blocks' hoisted up to the begin block"); 179 STATISTIC(NumHoistCommonInstrs, 180 "Number of common instructions hoisted up to the begin block"); 181 STATISTIC(NumSinkCommonCode, 182 "Number of common instruction 'blocks' sunk down to the end block"); 183 STATISTIC(NumSinkCommonInstrs, 184 "Number of common instructions sunk down to the end block"); 185 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 186 STATISTIC(NumInvokes, 187 "Number of invokes with empty resume blocks simplified into calls"); 188 189 namespace { 190 191 // The first field contains the value that the switch produces when a certain 192 // case group is selected, and the second field is a vector containing the 193 // cases composing the case group. 194 using SwitchCaseResultVectorTy = 195 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 196 197 // The first field contains the phi node that generates a result of the switch 198 // and the second field contains the value generated for a certain case in the 199 // switch for that PHI. 200 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 201 202 /// ValueEqualityComparisonCase - Represents a case of a switch. 203 struct ValueEqualityComparisonCase { 204 ConstantInt *Value; 205 BasicBlock *Dest; 206 207 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 208 : Value(Value), Dest(Dest) {} 209 210 bool operator<(ValueEqualityComparisonCase RHS) const { 211 // Comparing pointers is ok as we only rely on the order for uniquing. 212 return Value < RHS.Value; 213 } 214 215 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 216 }; 217 218 class SimplifyCFGOpt { 219 const TargetTransformInfo &TTI; 220 DomTreeUpdater *DTU; 221 const DataLayout &DL; 222 ArrayRef<WeakVH> LoopHeaders; 223 const SimplifyCFGOptions &Options; 224 bool Resimplify; 225 226 Value *isValueEqualityComparison(Instruction *TI); 227 BasicBlock *GetValueEqualityComparisonCases( 228 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 229 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 230 BasicBlock *Pred, 231 IRBuilder<> &Builder); 232 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 233 Instruction *PTI, 234 IRBuilder<> &Builder); 235 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 236 IRBuilder<> &Builder); 237 238 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 239 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 240 bool simplifySingleResume(ResumeInst *RI); 241 bool simplifyCommonResume(ResumeInst *RI); 242 bool simplifyCleanupReturn(CleanupReturnInst *RI); 243 bool simplifyUnreachable(UnreachableInst *UI); 244 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 245 bool simplifyIndirectBr(IndirectBrInst *IBI); 246 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 247 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 248 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 249 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 250 251 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 252 IRBuilder<> &Builder); 253 254 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 255 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 256 const TargetTransformInfo &TTI); 257 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 258 BasicBlock *TrueBB, BasicBlock *FalseBB, 259 uint32_t TrueWeight, uint32_t FalseWeight); 260 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 261 const DataLayout &DL); 262 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 263 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 264 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 265 266 public: 267 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 268 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 269 const SimplifyCFGOptions &Opts) 270 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 271 assert((!DTU || !DTU->hasPostDomTree()) && 272 "SimplifyCFG is not yet capable of maintaining validity of a " 273 "PostDomTree, so don't ask for it."); 274 } 275 276 bool simplifyOnce(BasicBlock *BB); 277 bool simplifyOnceImpl(BasicBlock *BB); 278 bool run(BasicBlock *BB); 279 280 // Helper to set Resimplify and return change indication. 281 bool requestResimplify() { 282 Resimplify = true; 283 return true; 284 } 285 }; 286 287 } // end anonymous namespace 288 289 /// Return true if it is safe to merge these two 290 /// terminator instructions together. 291 static bool 292 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 293 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 294 if (SI1 == SI2) 295 return false; // Can't merge with self! 296 297 // It is not safe to merge these two switch instructions if they have a common 298 // successor, and if that successor has a PHI node, and if *that* PHI node has 299 // conflicting incoming values from the two switch blocks. 300 BasicBlock *SI1BB = SI1->getParent(); 301 BasicBlock *SI2BB = SI2->getParent(); 302 303 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 304 bool Fail = false; 305 for (BasicBlock *Succ : successors(SI2BB)) 306 if (SI1Succs.count(Succ)) 307 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 308 PHINode *PN = cast<PHINode>(BBI); 309 if (PN->getIncomingValueForBlock(SI1BB) != 310 PN->getIncomingValueForBlock(SI2BB)) { 311 if (FailBlocks) 312 FailBlocks->insert(Succ); 313 Fail = true; 314 } 315 } 316 317 return !Fail; 318 } 319 320 /// Update PHI nodes in Succ to indicate that there will now be entries in it 321 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 322 /// will be the same as those coming in from ExistPred, an existing predecessor 323 /// of Succ. 324 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 325 BasicBlock *ExistPred, 326 MemorySSAUpdater *MSSAU = nullptr) { 327 for (PHINode &PN : Succ->phis()) 328 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 329 if (MSSAU) 330 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 331 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 332 } 333 334 /// Compute an abstract "cost" of speculating the given instruction, 335 /// which is assumed to be safe to speculate. TCC_Free means cheap, 336 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 337 /// expensive. 338 static InstructionCost computeSpeculationCost(const User *I, 339 const TargetTransformInfo &TTI) { 340 assert(isSafeToSpeculativelyExecute(I) && 341 "Instruction is not safe to speculatively execute!"); 342 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 343 } 344 345 /// If we have a merge point of an "if condition" as accepted above, 346 /// return true if the specified value dominates the block. We 347 /// don't handle the true generality of domination here, just a special case 348 /// which works well enough for us. 349 /// 350 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 351 /// see if V (which must be an instruction) and its recursive operands 352 /// that do not dominate BB have a combined cost lower than Budget and 353 /// are non-trapping. If both are true, the instruction is inserted into the 354 /// set and true is returned. 355 /// 356 /// The cost for most non-trapping instructions is defined as 1 except for 357 /// Select whose cost is 2. 358 /// 359 /// After this function returns, Cost is increased by the cost of 360 /// V plus its non-dominating operands. If that cost is greater than 361 /// Budget, false is returned and Cost is undefined. 362 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 363 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 364 InstructionCost &Cost, 365 InstructionCost Budget, 366 const TargetTransformInfo &TTI, 367 unsigned Depth = 0) { 368 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 369 // so limit the recursion depth. 370 // TODO: While this recursion limit does prevent pathological behavior, it 371 // would be better to track visited instructions to avoid cycles. 372 if (Depth == MaxSpeculationDepth) 373 return false; 374 375 Instruction *I = dyn_cast<Instruction>(V); 376 if (!I) { 377 // Non-instructions all dominate instructions, but not all constantexprs 378 // can be executed unconditionally. 379 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 380 if (C->canTrap()) 381 return false; 382 return true; 383 } 384 BasicBlock *PBB = I->getParent(); 385 386 // We don't want to allow weird loops that might have the "if condition" in 387 // the bottom of this block. 388 if (PBB == BB) 389 return false; 390 391 // If this instruction is defined in a block that contains an unconditional 392 // branch to BB, then it must be in the 'conditional' part of the "if 393 // statement". If not, it definitely dominates the region. 394 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 395 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 396 return true; 397 398 // If we have seen this instruction before, don't count it again. 399 if (AggressiveInsts.count(I)) 400 return true; 401 402 // Okay, it looks like the instruction IS in the "condition". Check to 403 // see if it's a cheap instruction to unconditionally compute, and if it 404 // only uses stuff defined outside of the condition. If so, hoist it out. 405 if (!isSafeToSpeculativelyExecute(I)) 406 return false; 407 408 Cost += computeSpeculationCost(I, TTI); 409 410 // Allow exactly one instruction to be speculated regardless of its cost 411 // (as long as it is safe to do so). 412 // This is intended to flatten the CFG even if the instruction is a division 413 // or other expensive operation. The speculation of an expensive instruction 414 // is expected to be undone in CodeGenPrepare if the speculation has not 415 // enabled further IR optimizations. 416 if (Cost > Budget && 417 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 418 !Cost.isValid())) 419 return false; 420 421 // Okay, we can only really hoist these out if their operands do 422 // not take us over the cost threshold. 423 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 424 if (!dominatesMergePoint(*i, BB, AggressiveInsts, Cost, Budget, TTI, 425 Depth + 1)) 426 return false; 427 // Okay, it's safe to do this! Remember this instruction. 428 AggressiveInsts.insert(I); 429 return true; 430 } 431 432 /// Extract ConstantInt from value, looking through IntToPtr 433 /// and PointerNullValue. Return NULL if value is not a constant int. 434 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 435 // Normal constant int. 436 ConstantInt *CI = dyn_cast<ConstantInt>(V); 437 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 438 return CI; 439 440 // This is some kind of pointer constant. Turn it into a pointer-sized 441 // ConstantInt if possible. 442 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 443 444 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 445 if (isa<ConstantPointerNull>(V)) 446 return ConstantInt::get(PtrTy, 0); 447 448 // IntToPtr const int. 449 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 450 if (CE->getOpcode() == Instruction::IntToPtr) 451 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 452 // The constant is very likely to have the right type already. 453 if (CI->getType() == PtrTy) 454 return CI; 455 else 456 return cast<ConstantInt>( 457 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 458 } 459 return nullptr; 460 } 461 462 namespace { 463 464 /// Given a chain of or (||) or and (&&) comparison of a value against a 465 /// constant, this will try to recover the information required for a switch 466 /// structure. 467 /// It will depth-first traverse the chain of comparison, seeking for patterns 468 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 469 /// representing the different cases for the switch. 470 /// Note that if the chain is composed of '||' it will build the set of elements 471 /// that matches the comparisons (i.e. any of this value validate the chain) 472 /// while for a chain of '&&' it will build the set elements that make the test 473 /// fail. 474 struct ConstantComparesGatherer { 475 const DataLayout &DL; 476 477 /// Value found for the switch comparison 478 Value *CompValue = nullptr; 479 480 /// Extra clause to be checked before the switch 481 Value *Extra = nullptr; 482 483 /// Set of integers to match in switch 484 SmallVector<ConstantInt *, 8> Vals; 485 486 /// Number of comparisons matched in the and/or chain 487 unsigned UsedICmps = 0; 488 489 /// Construct and compute the result for the comparison instruction Cond 490 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 491 gather(Cond); 492 } 493 494 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 495 ConstantComparesGatherer & 496 operator=(const ConstantComparesGatherer &) = delete; 497 498 private: 499 /// Try to set the current value used for the comparison, it succeeds only if 500 /// it wasn't set before or if the new value is the same as the old one 501 bool setValueOnce(Value *NewVal) { 502 if (CompValue && CompValue != NewVal) 503 return false; 504 CompValue = NewVal; 505 return (CompValue != nullptr); 506 } 507 508 /// Try to match Instruction "I" as a comparison against a constant and 509 /// populates the array Vals with the set of values that match (or do not 510 /// match depending on isEQ). 511 /// Return false on failure. On success, the Value the comparison matched 512 /// against is placed in CompValue. 513 /// If CompValue is already set, the function is expected to fail if a match 514 /// is found but the value compared to is different. 515 bool matchInstruction(Instruction *I, bool isEQ) { 516 // If this is an icmp against a constant, handle this as one of the cases. 517 ICmpInst *ICI; 518 ConstantInt *C; 519 if (!((ICI = dyn_cast<ICmpInst>(I)) && 520 (C = GetConstantInt(I->getOperand(1), DL)))) { 521 return false; 522 } 523 524 Value *RHSVal; 525 const APInt *RHSC; 526 527 // Pattern match a special case 528 // (x & ~2^z) == y --> x == y || x == y|2^z 529 // This undoes a transformation done by instcombine to fuse 2 compares. 530 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 531 // It's a little bit hard to see why the following transformations are 532 // correct. Here is a CVC3 program to verify them for 64-bit values: 533 534 /* 535 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 536 x : BITVECTOR(64); 537 y : BITVECTOR(64); 538 z : BITVECTOR(64); 539 mask : BITVECTOR(64) = BVSHL(ONE, z); 540 QUERY( (y & ~mask = y) => 541 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 542 ); 543 QUERY( (y | mask = y) => 544 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 545 ); 546 */ 547 548 // Please note that each pattern must be a dual implication (<--> or 549 // iff). One directional implication can create spurious matches. If the 550 // implication is only one-way, an unsatisfiable condition on the left 551 // side can imply a satisfiable condition on the right side. Dual 552 // implication ensures that satisfiable conditions are transformed to 553 // other satisfiable conditions and unsatisfiable conditions are 554 // transformed to other unsatisfiable conditions. 555 556 // Here is a concrete example of a unsatisfiable condition on the left 557 // implying a satisfiable condition on the right: 558 // 559 // mask = (1 << z) 560 // (x & ~mask) == y --> (x == y || x == (y | mask)) 561 // 562 // Substituting y = 3, z = 0 yields: 563 // (x & -2) == 3 --> (x == 3 || x == 2) 564 565 // Pattern match a special case: 566 /* 567 QUERY( (y & ~mask = y) => 568 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 569 ); 570 */ 571 if (match(ICI->getOperand(0), 572 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 573 APInt Mask = ~*RHSC; 574 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 575 // If we already have a value for the switch, it has to match! 576 if (!setValueOnce(RHSVal)) 577 return false; 578 579 Vals.push_back(C); 580 Vals.push_back( 581 ConstantInt::get(C->getContext(), 582 C->getValue() | Mask)); 583 UsedICmps++; 584 return true; 585 } 586 } 587 588 // Pattern match a special case: 589 /* 590 QUERY( (y | mask = y) => 591 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 592 ); 593 */ 594 if (match(ICI->getOperand(0), 595 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 596 APInt Mask = *RHSC; 597 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 598 // If we already have a value for the switch, it has to match! 599 if (!setValueOnce(RHSVal)) 600 return false; 601 602 Vals.push_back(C); 603 Vals.push_back(ConstantInt::get(C->getContext(), 604 C->getValue() & ~Mask)); 605 UsedICmps++; 606 return true; 607 } 608 } 609 610 // If we already have a value for the switch, it has to match! 611 if (!setValueOnce(ICI->getOperand(0))) 612 return false; 613 614 UsedICmps++; 615 Vals.push_back(C); 616 return ICI->getOperand(0); 617 } 618 619 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 620 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 621 ICI->getPredicate(), C->getValue()); 622 623 // Shift the range if the compare is fed by an add. This is the range 624 // compare idiom as emitted by instcombine. 625 Value *CandidateVal = I->getOperand(0); 626 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 627 Span = Span.subtract(*RHSC); 628 CandidateVal = RHSVal; 629 } 630 631 // If this is an and/!= check, then we are looking to build the set of 632 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 633 // x != 0 && x != 1. 634 if (!isEQ) 635 Span = Span.inverse(); 636 637 // If there are a ton of values, we don't want to make a ginormous switch. 638 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 639 return false; 640 } 641 642 // If we already have a value for the switch, it has to match! 643 if (!setValueOnce(CandidateVal)) 644 return false; 645 646 // Add all values from the range to the set 647 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 648 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 649 650 UsedICmps++; 651 return true; 652 } 653 654 /// Given a potentially 'or'd or 'and'd together collection of icmp 655 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 656 /// the value being compared, and stick the list constants into the Vals 657 /// vector. 658 /// One "Extra" case is allowed to differ from the other. 659 void gather(Value *V) { 660 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 661 662 // Keep a stack (SmallVector for efficiency) for depth-first traversal 663 SmallVector<Value *, 8> DFT; 664 SmallPtrSet<Value *, 8> Visited; 665 666 // Initialize 667 Visited.insert(V); 668 DFT.push_back(V); 669 670 while (!DFT.empty()) { 671 V = DFT.pop_back_val(); 672 673 if (Instruction *I = dyn_cast<Instruction>(V)) { 674 // If it is a || (or && depending on isEQ), process the operands. 675 Value *Op0, *Op1; 676 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 677 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 678 if (Visited.insert(Op1).second) 679 DFT.push_back(Op1); 680 if (Visited.insert(Op0).second) 681 DFT.push_back(Op0); 682 683 continue; 684 } 685 686 // Try to match the current instruction 687 if (matchInstruction(I, isEQ)) 688 // Match succeed, continue the loop 689 continue; 690 } 691 692 // One element of the sequence of || (or &&) could not be match as a 693 // comparison against the same value as the others. 694 // We allow only one "Extra" case to be checked before the switch 695 if (!Extra) { 696 Extra = V; 697 continue; 698 } 699 // Failed to parse a proper sequence, abort now 700 CompValue = nullptr; 701 break; 702 } 703 } 704 }; 705 706 } // end anonymous namespace 707 708 static void EraseTerminatorAndDCECond(Instruction *TI, 709 MemorySSAUpdater *MSSAU = nullptr) { 710 Instruction *Cond = nullptr; 711 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 712 Cond = dyn_cast<Instruction>(SI->getCondition()); 713 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 714 if (BI->isConditional()) 715 Cond = dyn_cast<Instruction>(BI->getCondition()); 716 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 717 Cond = dyn_cast<Instruction>(IBI->getAddress()); 718 } 719 720 TI->eraseFromParent(); 721 if (Cond) 722 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 723 } 724 725 /// Return true if the specified terminator checks 726 /// to see if a value is equal to constant integer value. 727 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 728 Value *CV = nullptr; 729 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 730 // Do not permit merging of large switch instructions into their 731 // predecessors unless there is only one predecessor. 732 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 733 CV = SI->getCondition(); 734 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 735 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 736 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 737 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 738 CV = ICI->getOperand(0); 739 } 740 741 // Unwrap any lossless ptrtoint cast. 742 if (CV) { 743 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 744 Value *Ptr = PTII->getPointerOperand(); 745 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 746 CV = Ptr; 747 } 748 } 749 return CV; 750 } 751 752 /// Given a value comparison instruction, 753 /// decode all of the 'cases' that it represents and return the 'default' block. 754 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 755 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 756 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 757 Cases.reserve(SI->getNumCases()); 758 for (auto Case : SI->cases()) 759 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 760 Case.getCaseSuccessor())); 761 return SI->getDefaultDest(); 762 } 763 764 BranchInst *BI = cast<BranchInst>(TI); 765 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 766 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 767 Cases.push_back(ValueEqualityComparisonCase( 768 GetConstantInt(ICI->getOperand(1), DL), Succ)); 769 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 770 } 771 772 /// Given a vector of bb/value pairs, remove any entries 773 /// in the list that match the specified block. 774 static void 775 EliminateBlockCases(BasicBlock *BB, 776 std::vector<ValueEqualityComparisonCase> &Cases) { 777 llvm::erase_value(Cases, BB); 778 } 779 780 /// Return true if there are any keys in C1 that exist in C2 as well. 781 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 782 std::vector<ValueEqualityComparisonCase> &C2) { 783 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 784 785 // Make V1 be smaller than V2. 786 if (V1->size() > V2->size()) 787 std::swap(V1, V2); 788 789 if (V1->empty()) 790 return false; 791 if (V1->size() == 1) { 792 // Just scan V2. 793 ConstantInt *TheVal = (*V1)[0].Value; 794 for (unsigned i = 0, e = V2->size(); i != e; ++i) 795 if (TheVal == (*V2)[i].Value) 796 return true; 797 } 798 799 // Otherwise, just sort both lists and compare element by element. 800 array_pod_sort(V1->begin(), V1->end()); 801 array_pod_sort(V2->begin(), V2->end()); 802 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 803 while (i1 != e1 && i2 != e2) { 804 if ((*V1)[i1].Value == (*V2)[i2].Value) 805 return true; 806 if ((*V1)[i1].Value < (*V2)[i2].Value) 807 ++i1; 808 else 809 ++i2; 810 } 811 return false; 812 } 813 814 // Set branch weights on SwitchInst. This sets the metadata if there is at 815 // least one non-zero weight. 816 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 817 // Check that there is at least one non-zero weight. Otherwise, pass 818 // nullptr to setMetadata which will erase the existing metadata. 819 MDNode *N = nullptr; 820 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 821 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 822 SI->setMetadata(LLVMContext::MD_prof, N); 823 } 824 825 // Similar to the above, but for branch and select instructions that take 826 // exactly 2 weights. 827 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 828 uint32_t FalseWeight) { 829 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 830 // Check that there is at least one non-zero weight. Otherwise, pass 831 // nullptr to setMetadata which will erase the existing metadata. 832 MDNode *N = nullptr; 833 if (TrueWeight || FalseWeight) 834 N = MDBuilder(I->getParent()->getContext()) 835 .createBranchWeights(TrueWeight, FalseWeight); 836 I->setMetadata(LLVMContext::MD_prof, N); 837 } 838 839 /// If TI is known to be a terminator instruction and its block is known to 840 /// only have a single predecessor block, check to see if that predecessor is 841 /// also a value comparison with the same value, and if that comparison 842 /// determines the outcome of this comparison. If so, simplify TI. This does a 843 /// very limited form of jump threading. 844 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 845 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 846 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 847 if (!PredVal) 848 return false; // Not a value comparison in predecessor. 849 850 Value *ThisVal = isValueEqualityComparison(TI); 851 assert(ThisVal && "This isn't a value comparison!!"); 852 if (ThisVal != PredVal) 853 return false; // Different predicates. 854 855 // TODO: Preserve branch weight metadata, similarly to how 856 // FoldValueComparisonIntoPredecessors preserves it. 857 858 // Find out information about when control will move from Pred to TI's block. 859 std::vector<ValueEqualityComparisonCase> PredCases; 860 BasicBlock *PredDef = 861 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 862 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 863 864 // Find information about how control leaves this block. 865 std::vector<ValueEqualityComparisonCase> ThisCases; 866 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 867 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 868 869 // If TI's block is the default block from Pred's comparison, potentially 870 // simplify TI based on this knowledge. 871 if (PredDef == TI->getParent()) { 872 // If we are here, we know that the value is none of those cases listed in 873 // PredCases. If there are any cases in ThisCases that are in PredCases, we 874 // can simplify TI. 875 if (!ValuesOverlap(PredCases, ThisCases)) 876 return false; 877 878 if (isa<BranchInst>(TI)) { 879 // Okay, one of the successors of this condbr is dead. Convert it to a 880 // uncond br. 881 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 882 // Insert the new branch. 883 Instruction *NI = Builder.CreateBr(ThisDef); 884 (void)NI; 885 886 // Remove PHI node entries for the dead edge. 887 ThisCases[0].Dest->removePredecessor(PredDef); 888 889 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 890 << "Through successor TI: " << *TI << "Leaving: " << *NI 891 << "\n"); 892 893 EraseTerminatorAndDCECond(TI); 894 895 if (DTU) 896 DTU->applyUpdates( 897 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 898 899 return true; 900 } 901 902 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 903 // Okay, TI has cases that are statically dead, prune them away. 904 SmallPtrSet<Constant *, 16> DeadCases; 905 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 906 DeadCases.insert(PredCases[i].Value); 907 908 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 909 << "Through successor TI: " << *TI); 910 911 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 912 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 913 --i; 914 auto *Successor = i->getCaseSuccessor(); 915 ++NumPerSuccessorCases[Successor]; 916 if (DeadCases.count(i->getCaseValue())) { 917 Successor->removePredecessor(PredDef); 918 SI.removeCase(i); 919 --NumPerSuccessorCases[Successor]; 920 } 921 } 922 923 std::vector<DominatorTree::UpdateType> Updates; 924 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 925 if (I.second == 0) 926 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 927 if (DTU) 928 DTU->applyUpdates(Updates); 929 930 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 931 return true; 932 } 933 934 // Otherwise, TI's block must correspond to some matched value. Find out 935 // which value (or set of values) this is. 936 ConstantInt *TIV = nullptr; 937 BasicBlock *TIBB = TI->getParent(); 938 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 939 if (PredCases[i].Dest == TIBB) { 940 if (TIV) 941 return false; // Cannot handle multiple values coming to this block. 942 TIV = PredCases[i].Value; 943 } 944 assert(TIV && "No edge from pred to succ?"); 945 946 // Okay, we found the one constant that our value can be if we get into TI's 947 // BB. Find out which successor will unconditionally be branched to. 948 BasicBlock *TheRealDest = nullptr; 949 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 950 if (ThisCases[i].Value == TIV) { 951 TheRealDest = ThisCases[i].Dest; 952 break; 953 } 954 955 // If not handled by any explicit cases, it is handled by the default case. 956 if (!TheRealDest) 957 TheRealDest = ThisDef; 958 959 SmallSetVector<BasicBlock *, 2> RemovedSuccs; 960 961 // Remove PHI node entries for dead edges. 962 BasicBlock *CheckEdge = TheRealDest; 963 for (BasicBlock *Succ : successors(TIBB)) 964 if (Succ != CheckEdge) { 965 if (Succ != TheRealDest) 966 RemovedSuccs.insert(Succ); 967 Succ->removePredecessor(TIBB); 968 } else 969 CheckEdge = nullptr; 970 971 // Insert the new branch. 972 Instruction *NI = Builder.CreateBr(TheRealDest); 973 (void)NI; 974 975 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 976 << "Through successor TI: " << *TI << "Leaving: " << *NI 977 << "\n"); 978 979 EraseTerminatorAndDCECond(TI); 980 if (DTU) { 981 SmallVector<DominatorTree::UpdateType, 2> Updates; 982 Updates.reserve(RemovedSuccs.size()); 983 for (auto *RemovedSucc : RemovedSuccs) 984 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 985 DTU->applyUpdates(Updates); 986 } 987 return true; 988 } 989 990 namespace { 991 992 /// This class implements a stable ordering of constant 993 /// integers that does not depend on their address. This is important for 994 /// applications that sort ConstantInt's to ensure uniqueness. 995 struct ConstantIntOrdering { 996 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 997 return LHS->getValue().ult(RHS->getValue()); 998 } 999 }; 1000 1001 } // end anonymous namespace 1002 1003 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1004 ConstantInt *const *P2) { 1005 const ConstantInt *LHS = *P1; 1006 const ConstantInt *RHS = *P2; 1007 if (LHS == RHS) 1008 return 0; 1009 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1010 } 1011 1012 static inline bool HasBranchWeights(const Instruction *I) { 1013 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1014 if (ProfMD && ProfMD->getOperand(0)) 1015 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1016 return MDS->getString().equals("branch_weights"); 1017 1018 return false; 1019 } 1020 1021 /// Get Weights of a given terminator, the default weight is at the front 1022 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1023 /// metadata. 1024 static void GetBranchWeights(Instruction *TI, 1025 SmallVectorImpl<uint64_t> &Weights) { 1026 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1027 assert(MD); 1028 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1029 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1030 Weights.push_back(CI->getValue().getZExtValue()); 1031 } 1032 1033 // If TI is a conditional eq, the default case is the false case, 1034 // and the corresponding branch-weight data is at index 2. We swap the 1035 // default weight to be the first entry. 1036 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1037 assert(Weights.size() == 2); 1038 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1039 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1040 std::swap(Weights.front(), Weights.back()); 1041 } 1042 } 1043 1044 /// Keep halving the weights until all can fit in uint32_t. 1045 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1046 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1047 if (Max > UINT_MAX) { 1048 unsigned Offset = 32 - countLeadingZeros(Max); 1049 for (uint64_t &I : Weights) 1050 I >>= Offset; 1051 } 1052 } 1053 1054 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1055 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1056 Instruction *PTI = PredBlock->getTerminator(); 1057 1058 // If we have bonus instructions, clone them into the predecessor block. 1059 // Note that there may be multiple predecessor blocks, so we cannot move 1060 // bonus instructions to a predecessor block. 1061 for (Instruction &BonusInst : *BB) { 1062 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1063 continue; 1064 1065 Instruction *NewBonusInst = BonusInst.clone(); 1066 1067 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1068 // Unless the instruction has the same !dbg location as the original 1069 // branch, drop it. When we fold the bonus instructions we want to make 1070 // sure we reset their debug locations in order to avoid stepping on 1071 // dead code caused by folding dead branches. 1072 NewBonusInst->setDebugLoc(DebugLoc()); 1073 } 1074 1075 RemapInstruction(NewBonusInst, VMap, 1076 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1077 VMap[&BonusInst] = NewBonusInst; 1078 1079 // If we moved a load, we cannot any longer claim any knowledge about 1080 // its potential value. The previous information might have been valid 1081 // only given the branch precondition. 1082 // For an analogous reason, we must also drop all the metadata whose 1083 // semantics we don't understand. We *can* preserve !annotation, because 1084 // it is tied to the instruction itself, not the value or position. 1085 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1086 1087 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1088 NewBonusInst->takeName(&BonusInst); 1089 BonusInst.setName(NewBonusInst->getName() + ".old"); 1090 1091 // Update (liveout) uses of bonus instructions, 1092 // now that the bonus instruction has been cloned into predecessor. 1093 SSAUpdater SSAUpdate; 1094 SSAUpdate.Initialize(BonusInst.getType(), 1095 (NewBonusInst->getName() + ".merge").str()); 1096 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1097 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1098 for (Use &U : make_early_inc_range(BonusInst.uses())) 1099 SSAUpdate.RewriteUseAfterInsertions(U); 1100 } 1101 } 1102 1103 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1104 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1105 BasicBlock *BB = TI->getParent(); 1106 BasicBlock *Pred = PTI->getParent(); 1107 1108 std::vector<DominatorTree::UpdateType> Updates; 1109 1110 // Figure out which 'cases' to copy from SI to PSI. 1111 std::vector<ValueEqualityComparisonCase> BBCases; 1112 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1113 1114 std::vector<ValueEqualityComparisonCase> PredCases; 1115 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1116 1117 // Based on whether the default edge from PTI goes to BB or not, fill in 1118 // PredCases and PredDefault with the new switch cases we would like to 1119 // build. 1120 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1121 1122 // Update the branch weight metadata along the way 1123 SmallVector<uint64_t, 8> Weights; 1124 bool PredHasWeights = HasBranchWeights(PTI); 1125 bool SuccHasWeights = HasBranchWeights(TI); 1126 1127 if (PredHasWeights) { 1128 GetBranchWeights(PTI, Weights); 1129 // branch-weight metadata is inconsistent here. 1130 if (Weights.size() != 1 + PredCases.size()) 1131 PredHasWeights = SuccHasWeights = false; 1132 } else if (SuccHasWeights) 1133 // If there are no predecessor weights but there are successor weights, 1134 // populate Weights with 1, which will later be scaled to the sum of 1135 // successor's weights 1136 Weights.assign(1 + PredCases.size(), 1); 1137 1138 SmallVector<uint64_t, 8> SuccWeights; 1139 if (SuccHasWeights) { 1140 GetBranchWeights(TI, SuccWeights); 1141 // branch-weight metadata is inconsistent here. 1142 if (SuccWeights.size() != 1 + BBCases.size()) 1143 PredHasWeights = SuccHasWeights = false; 1144 } else if (PredHasWeights) 1145 SuccWeights.assign(1 + BBCases.size(), 1); 1146 1147 if (PredDefault == BB) { 1148 // If this is the default destination from PTI, only the edges in TI 1149 // that don't occur in PTI, or that branch to BB will be activated. 1150 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1151 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1152 if (PredCases[i].Dest != BB) 1153 PTIHandled.insert(PredCases[i].Value); 1154 else { 1155 // The default destination is BB, we don't need explicit targets. 1156 std::swap(PredCases[i], PredCases.back()); 1157 1158 if (PredHasWeights || SuccHasWeights) { 1159 // Increase weight for the default case. 1160 Weights[0] += Weights[i + 1]; 1161 std::swap(Weights[i + 1], Weights.back()); 1162 Weights.pop_back(); 1163 } 1164 1165 PredCases.pop_back(); 1166 --i; 1167 --e; 1168 } 1169 1170 // Reconstruct the new switch statement we will be building. 1171 if (PredDefault != BBDefault) { 1172 PredDefault->removePredecessor(Pred); 1173 if (PredDefault != BB) 1174 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1175 PredDefault = BBDefault; 1176 ++NewSuccessors[BBDefault]; 1177 } 1178 1179 unsigned CasesFromPred = Weights.size(); 1180 uint64_t ValidTotalSuccWeight = 0; 1181 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1182 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1183 PredCases.push_back(BBCases[i]); 1184 ++NewSuccessors[BBCases[i].Dest]; 1185 if (SuccHasWeights || PredHasWeights) { 1186 // The default weight is at index 0, so weight for the ith case 1187 // should be at index i+1. Scale the cases from successor by 1188 // PredDefaultWeight (Weights[0]). 1189 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1190 ValidTotalSuccWeight += SuccWeights[i + 1]; 1191 } 1192 } 1193 1194 if (SuccHasWeights || PredHasWeights) { 1195 ValidTotalSuccWeight += SuccWeights[0]; 1196 // Scale the cases from predecessor by ValidTotalSuccWeight. 1197 for (unsigned i = 1; i < CasesFromPred; ++i) 1198 Weights[i] *= ValidTotalSuccWeight; 1199 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1200 Weights[0] *= SuccWeights[0]; 1201 } 1202 } else { 1203 // If this is not the default destination from PSI, only the edges 1204 // in SI that occur in PSI with a destination of BB will be 1205 // activated. 1206 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1207 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1208 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1209 if (PredCases[i].Dest == BB) { 1210 PTIHandled.insert(PredCases[i].Value); 1211 1212 if (PredHasWeights || SuccHasWeights) { 1213 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1214 std::swap(Weights[i + 1], Weights.back()); 1215 Weights.pop_back(); 1216 } 1217 1218 std::swap(PredCases[i], PredCases.back()); 1219 PredCases.pop_back(); 1220 --i; 1221 --e; 1222 } 1223 1224 // Okay, now we know which constants were sent to BB from the 1225 // predecessor. Figure out where they will all go now. 1226 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1227 if (PTIHandled.count(BBCases[i].Value)) { 1228 // If this is one we are capable of getting... 1229 if (PredHasWeights || SuccHasWeights) 1230 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1231 PredCases.push_back(BBCases[i]); 1232 ++NewSuccessors[BBCases[i].Dest]; 1233 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1234 } 1235 1236 // If there are any constants vectored to BB that TI doesn't handle, 1237 // they must go to the default destination of TI. 1238 for (ConstantInt *I : PTIHandled) { 1239 if (PredHasWeights || SuccHasWeights) 1240 Weights.push_back(WeightsForHandled[I]); 1241 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1242 ++NewSuccessors[BBDefault]; 1243 } 1244 } 1245 1246 // Okay, at this point, we know which new successor Pred will get. Make 1247 // sure we update the number of entries in the PHI nodes for these 1248 // successors. 1249 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1250 NewSuccessors) { 1251 for (auto I : seq(0, NewSuccessor.second)) { 1252 (void)I; 1253 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1254 } 1255 if (!is_contained(successors(Pred), NewSuccessor.first)) 1256 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1257 } 1258 1259 Builder.SetInsertPoint(PTI); 1260 // Convert pointer to int before we switch. 1261 if (CV->getType()->isPointerTy()) { 1262 CV = 1263 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1264 } 1265 1266 // Now that the successors are updated, create the new Switch instruction. 1267 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1268 NewSI->setDebugLoc(PTI->getDebugLoc()); 1269 for (ValueEqualityComparisonCase &V : PredCases) 1270 NewSI->addCase(V.Value, V.Dest); 1271 1272 if (PredHasWeights || SuccHasWeights) { 1273 // Halve the weights if any of them cannot fit in an uint32_t 1274 FitWeights(Weights); 1275 1276 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1277 1278 setBranchWeights(NewSI, MDWeights); 1279 } 1280 1281 EraseTerminatorAndDCECond(PTI); 1282 1283 // Okay, last check. If BB is still a successor of PSI, then we must 1284 // have an infinite loop case. If so, add an infinitely looping block 1285 // to handle the case to preserve the behavior of the code. 1286 BasicBlock *InfLoopBlock = nullptr; 1287 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1288 if (NewSI->getSuccessor(i) == BB) { 1289 if (!InfLoopBlock) { 1290 // Insert it at the end of the function, because it's either code, 1291 // or it won't matter if it's hot. :) 1292 InfLoopBlock = 1293 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1294 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1295 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1296 } 1297 NewSI->setSuccessor(i, InfLoopBlock); 1298 } 1299 1300 if (InfLoopBlock) 1301 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1302 1303 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1304 1305 if (DTU) 1306 DTU->applyUpdates(Updates); 1307 1308 ++NumFoldValueComparisonIntoPredecessors; 1309 return true; 1310 } 1311 1312 /// The specified terminator is a value equality comparison instruction 1313 /// (either a switch or a branch on "X == c"). 1314 /// See if any of the predecessors of the terminator block are value comparisons 1315 /// on the same value. If so, and if safe to do so, fold them together. 1316 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1317 IRBuilder<> &Builder) { 1318 BasicBlock *BB = TI->getParent(); 1319 Value *CV = isValueEqualityComparison(TI); // CondVal 1320 assert(CV && "Not a comparison?"); 1321 1322 bool Changed = false; 1323 1324 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1325 while (!Preds.empty()) { 1326 BasicBlock *Pred = Preds.pop_back_val(); 1327 Instruction *PTI = Pred->getTerminator(); 1328 1329 // Don't try to fold into itself. 1330 if (Pred == BB) 1331 continue; 1332 1333 // See if the predecessor is a comparison with the same value. 1334 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1335 if (PCV != CV) 1336 continue; 1337 1338 SmallSetVector<BasicBlock *, 4> FailBlocks; 1339 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1340 for (auto *Succ : FailBlocks) { 1341 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1342 return false; 1343 } 1344 } 1345 1346 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1347 Changed = true; 1348 } 1349 return Changed; 1350 } 1351 1352 // If we would need to insert a select that uses the value of this invoke 1353 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1354 // can't hoist the invoke, as there is nowhere to put the select in this case. 1355 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1356 Instruction *I1, Instruction *I2) { 1357 for (BasicBlock *Succ : successors(BB1)) { 1358 for (const PHINode &PN : Succ->phis()) { 1359 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1360 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1361 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1362 return false; 1363 } 1364 } 1365 } 1366 return true; 1367 } 1368 1369 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1370 1371 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1372 /// in the two blocks up into the branch block. The caller of this function 1373 /// guarantees that BI's block dominates BB1 and BB2. 1374 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1375 const TargetTransformInfo &TTI) { 1376 // This does very trivial matching, with limited scanning, to find identical 1377 // instructions in the two blocks. In particular, we don't want to get into 1378 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1379 // such, we currently just scan for obviously identical instructions in an 1380 // identical order. 1381 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1382 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1383 1384 BasicBlock::iterator BB1_Itr = BB1->begin(); 1385 BasicBlock::iterator BB2_Itr = BB2->begin(); 1386 1387 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1388 // Skip debug info if it is not identical. 1389 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1390 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1391 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1392 while (isa<DbgInfoIntrinsic>(I1)) 1393 I1 = &*BB1_Itr++; 1394 while (isa<DbgInfoIntrinsic>(I2)) 1395 I2 = &*BB2_Itr++; 1396 } 1397 // FIXME: Can we define a safety predicate for CallBr? 1398 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1399 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1400 isa<CallBrInst>(I1)) 1401 return false; 1402 1403 BasicBlock *BIParent = BI->getParent(); 1404 1405 bool Changed = false; 1406 1407 auto _ = make_scope_exit([&]() { 1408 if (Changed) 1409 ++NumHoistCommonCode; 1410 }); 1411 1412 do { 1413 // If we are hoisting the terminator instruction, don't move one (making a 1414 // broken BB), instead clone it, and remove BI. 1415 if (I1->isTerminator()) 1416 goto HoistTerminator; 1417 1418 // If we're going to hoist a call, make sure that the two instructions we're 1419 // commoning/hoisting are both marked with musttail, or neither of them is 1420 // marked as such. Otherwise, we might end up in a situation where we hoist 1421 // from a block where the terminator is a `ret` to a block where the terminator 1422 // is a `br`, and `musttail` calls expect to be followed by a return. 1423 auto *C1 = dyn_cast<CallInst>(I1); 1424 auto *C2 = dyn_cast<CallInst>(I2); 1425 if (C1 && C2) 1426 if (C1->isMustTailCall() != C2->isMustTailCall()) 1427 return Changed; 1428 1429 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1430 return Changed; 1431 1432 // If any of the two call sites has nomerge attribute, stop hoisting. 1433 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1434 if (CB1->cannotMerge()) 1435 return Changed; 1436 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1437 if (CB2->cannotMerge()) 1438 return Changed; 1439 1440 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1441 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1442 // The debug location is an integral part of a debug info intrinsic 1443 // and can't be separated from it or replaced. Instead of attempting 1444 // to merge locations, simply hoist both copies of the intrinsic. 1445 BIParent->getInstList().splice(BI->getIterator(), 1446 BB1->getInstList(), I1); 1447 BIParent->getInstList().splice(BI->getIterator(), 1448 BB2->getInstList(), I2); 1449 Changed = true; 1450 } else { 1451 // For a normal instruction, we just move one to right before the branch, 1452 // then replace all uses of the other with the first. Finally, we remove 1453 // the now redundant second instruction. 1454 BIParent->getInstList().splice(BI->getIterator(), 1455 BB1->getInstList(), I1); 1456 if (!I2->use_empty()) 1457 I2->replaceAllUsesWith(I1); 1458 I1->andIRFlags(I2); 1459 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1460 LLVMContext::MD_range, 1461 LLVMContext::MD_fpmath, 1462 LLVMContext::MD_invariant_load, 1463 LLVMContext::MD_nonnull, 1464 LLVMContext::MD_invariant_group, 1465 LLVMContext::MD_align, 1466 LLVMContext::MD_dereferenceable, 1467 LLVMContext::MD_dereferenceable_or_null, 1468 LLVMContext::MD_mem_parallel_loop_access, 1469 LLVMContext::MD_access_group, 1470 LLVMContext::MD_preserve_access_index}; 1471 combineMetadata(I1, I2, KnownIDs, true); 1472 1473 // I1 and I2 are being combined into a single instruction. Its debug 1474 // location is the merged locations of the original instructions. 1475 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1476 1477 I2->eraseFromParent(); 1478 Changed = true; 1479 } 1480 ++NumHoistCommonInstrs; 1481 1482 I1 = &*BB1_Itr++; 1483 I2 = &*BB2_Itr++; 1484 // Skip debug info if it is not identical. 1485 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1486 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1487 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1488 while (isa<DbgInfoIntrinsic>(I1)) 1489 I1 = &*BB1_Itr++; 1490 while (isa<DbgInfoIntrinsic>(I2)) 1491 I2 = &*BB2_Itr++; 1492 } 1493 } while (I1->isIdenticalToWhenDefined(I2)); 1494 1495 return true; 1496 1497 HoistTerminator: 1498 // It may not be possible to hoist an invoke. 1499 // FIXME: Can we define a safety predicate for CallBr? 1500 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1501 return Changed; 1502 1503 // TODO: callbr hoisting currently disabled pending further study. 1504 if (isa<CallBrInst>(I1)) 1505 return Changed; 1506 1507 for (BasicBlock *Succ : successors(BB1)) { 1508 for (PHINode &PN : Succ->phis()) { 1509 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1510 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1511 if (BB1V == BB2V) 1512 continue; 1513 1514 // Check for passingValueIsAlwaysUndefined here because we would rather 1515 // eliminate undefined control flow then converting it to a select. 1516 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1517 passingValueIsAlwaysUndefined(BB2V, &PN)) 1518 return Changed; 1519 1520 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1521 return Changed; 1522 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1523 return Changed; 1524 } 1525 } 1526 1527 // Okay, it is safe to hoist the terminator. 1528 Instruction *NT = I1->clone(); 1529 BIParent->getInstList().insert(BI->getIterator(), NT); 1530 if (!NT->getType()->isVoidTy()) { 1531 I1->replaceAllUsesWith(NT); 1532 I2->replaceAllUsesWith(NT); 1533 NT->takeName(I1); 1534 } 1535 Changed = true; 1536 ++NumHoistCommonInstrs; 1537 1538 // Ensure terminator gets a debug location, even an unknown one, in case 1539 // it involves inlinable calls. 1540 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1541 1542 // PHIs created below will adopt NT's merged DebugLoc. 1543 IRBuilder<NoFolder> Builder(NT); 1544 1545 // Hoisting one of the terminators from our successor is a great thing. 1546 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1547 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1548 // nodes, so we insert select instruction to compute the final result. 1549 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1550 for (BasicBlock *Succ : successors(BB1)) { 1551 for (PHINode &PN : Succ->phis()) { 1552 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1553 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1554 if (BB1V == BB2V) 1555 continue; 1556 1557 // These values do not agree. Insert a select instruction before NT 1558 // that determines the right value. 1559 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1560 if (!SI) { 1561 // Propagate fast-math-flags from phi node to its replacement select. 1562 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1563 if (isa<FPMathOperator>(PN)) 1564 Builder.setFastMathFlags(PN.getFastMathFlags()); 1565 1566 SI = cast<SelectInst>( 1567 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1568 BB1V->getName() + "." + BB2V->getName(), BI)); 1569 } 1570 1571 // Make the PHI node use the select for all incoming values for BB1/BB2 1572 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1573 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1574 PN.setIncomingValue(i, SI); 1575 } 1576 } 1577 1578 SmallVector<DominatorTree::UpdateType, 4> Updates; 1579 1580 // Update any PHI nodes in our new successors. 1581 for (BasicBlock *Succ : successors(BB1)) { 1582 AddPredecessorToBlock(Succ, BIParent, BB1); 1583 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1584 } 1585 for (BasicBlock *Succ : successors(BI)) 1586 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1587 1588 EraseTerminatorAndDCECond(BI); 1589 if (DTU) 1590 DTU->applyUpdates(Updates); 1591 return Changed; 1592 } 1593 1594 // Check lifetime markers. 1595 static bool isLifeTimeMarker(const Instruction *I) { 1596 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1597 switch (II->getIntrinsicID()) { 1598 default: 1599 break; 1600 case Intrinsic::lifetime_start: 1601 case Intrinsic::lifetime_end: 1602 return true; 1603 } 1604 } 1605 return false; 1606 } 1607 1608 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1609 // into variables. 1610 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1611 int OpIdx) { 1612 return !isa<IntrinsicInst>(I); 1613 } 1614 1615 // All instructions in Insts belong to different blocks that all unconditionally 1616 // branch to a common successor. Analyze each instruction and return true if it 1617 // would be possible to sink them into their successor, creating one common 1618 // instruction instead. For every value that would be required to be provided by 1619 // PHI node (because an operand varies in each input block), add to PHIOperands. 1620 static bool canSinkInstructions( 1621 ArrayRef<Instruction *> Insts, 1622 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1623 // Prune out obviously bad instructions to move. Each instruction must have 1624 // exactly zero or one use, and we check later that use is by a single, common 1625 // PHI instruction in the successor. 1626 bool HasUse = !Insts.front()->user_empty(); 1627 for (auto *I : Insts) { 1628 // These instructions may change or break semantics if moved. 1629 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1630 I->getType()->isTokenTy()) 1631 return false; 1632 1633 // Conservatively return false if I is an inline-asm instruction. Sinking 1634 // and merging inline-asm instructions can potentially create arguments 1635 // that cannot satisfy the inline-asm constraints. 1636 // If the instruction has nomerge attribute, return false. 1637 if (const auto *C = dyn_cast<CallBase>(I)) 1638 if (C->isInlineAsm() || C->cannotMerge()) 1639 return false; 1640 1641 // Each instruction must have zero or one use. 1642 if (HasUse && !I->hasOneUse()) 1643 return false; 1644 if (!HasUse && !I->user_empty()) 1645 return false; 1646 } 1647 1648 const Instruction *I0 = Insts.front(); 1649 for (auto *I : Insts) 1650 if (!I->isSameOperationAs(I0)) 1651 return false; 1652 1653 // All instructions in Insts are known to be the same opcode. If they have a 1654 // use, check that the only user is a PHI or in the same block as the 1655 // instruction, because if a user is in the same block as an instruction we're 1656 // contemplating sinking, it must already be determined to be sinkable. 1657 if (HasUse) { 1658 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1659 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1660 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1661 auto *U = cast<Instruction>(*I->user_begin()); 1662 return (PNUse && 1663 PNUse->getParent() == Succ && 1664 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1665 U->getParent() == I->getParent(); 1666 })) 1667 return false; 1668 } 1669 1670 // Because SROA can't handle speculating stores of selects, try not to sink 1671 // loads, stores or lifetime markers of allocas when we'd have to create a 1672 // PHI for the address operand. Also, because it is likely that loads or 1673 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1674 // them. 1675 // This can cause code churn which can have unintended consequences down 1676 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1677 // FIXME: This is a workaround for a deficiency in SROA - see 1678 // https://llvm.org/bugs/show_bug.cgi?id=30188 1679 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1680 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1681 })) 1682 return false; 1683 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1684 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1685 })) 1686 return false; 1687 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1688 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1689 })) 1690 return false; 1691 1692 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1693 Value *Op = I0->getOperand(OI); 1694 if (Op->getType()->isTokenTy()) 1695 // Don't touch any operand of token type. 1696 return false; 1697 1698 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1699 assert(I->getNumOperands() == I0->getNumOperands()); 1700 return I->getOperand(OI) == I0->getOperand(OI); 1701 }; 1702 if (!all_of(Insts, SameAsI0)) { 1703 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1704 !canReplaceOperandWithVariable(I0, OI)) 1705 // We can't create a PHI from this GEP. 1706 return false; 1707 // Don't create indirect calls! The called value is the final operand. 1708 if (isa<CallBase>(I0) && OI == OE - 1) { 1709 // FIXME: if the call was *already* indirect, we should do this. 1710 return false; 1711 } 1712 for (auto *I : Insts) 1713 PHIOperands[I].push_back(I->getOperand(OI)); 1714 } 1715 } 1716 return true; 1717 } 1718 1719 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1720 // instruction of every block in Blocks to their common successor, commoning 1721 // into one instruction. 1722 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1723 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1724 1725 // canSinkLastInstruction returning true guarantees that every block has at 1726 // least one non-terminator instruction. 1727 SmallVector<Instruction*,4> Insts; 1728 for (auto *BB : Blocks) { 1729 Instruction *I = BB->getTerminator(); 1730 do { 1731 I = I->getPrevNode(); 1732 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1733 if (!isa<DbgInfoIntrinsic>(I)) 1734 Insts.push_back(I); 1735 } 1736 1737 // The only checking we need to do now is that all users of all instructions 1738 // are the same PHI node. canSinkLastInstruction should have checked this but 1739 // it is slightly over-aggressive - it gets confused by commutative instructions 1740 // so double-check it here. 1741 Instruction *I0 = Insts.front(); 1742 if (!I0->user_empty()) { 1743 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1744 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1745 auto *U = cast<Instruction>(*I->user_begin()); 1746 return U == PNUse; 1747 })) 1748 return false; 1749 } 1750 1751 // We don't need to do any more checking here; canSinkLastInstruction should 1752 // have done it all for us. 1753 SmallVector<Value*, 4> NewOperands; 1754 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1755 // This check is different to that in canSinkLastInstruction. There, we 1756 // cared about the global view once simplifycfg (and instcombine) have 1757 // completed - it takes into account PHIs that become trivially 1758 // simplifiable. However here we need a more local view; if an operand 1759 // differs we create a PHI and rely on instcombine to clean up the very 1760 // small mess we may make. 1761 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1762 return I->getOperand(O) != I0->getOperand(O); 1763 }); 1764 if (!NeedPHI) { 1765 NewOperands.push_back(I0->getOperand(O)); 1766 continue; 1767 } 1768 1769 // Create a new PHI in the successor block and populate it. 1770 auto *Op = I0->getOperand(O); 1771 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1772 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1773 Op->getName() + ".sink", &BBEnd->front()); 1774 for (auto *I : Insts) 1775 PN->addIncoming(I->getOperand(O), I->getParent()); 1776 NewOperands.push_back(PN); 1777 } 1778 1779 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1780 // and move it to the start of the successor block. 1781 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1782 I0->getOperandUse(O).set(NewOperands[O]); 1783 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1784 1785 // Update metadata and IR flags, and merge debug locations. 1786 for (auto *I : Insts) 1787 if (I != I0) { 1788 // The debug location for the "common" instruction is the merged locations 1789 // of all the commoned instructions. We start with the original location 1790 // of the "common" instruction and iteratively merge each location in the 1791 // loop below. 1792 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1793 // However, as N-way merge for CallInst is rare, so we use simplified API 1794 // instead of using complex API for N-way merge. 1795 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1796 combineMetadataForCSE(I0, I, true); 1797 I0->andIRFlags(I); 1798 } 1799 1800 if (!I0->user_empty()) { 1801 // canSinkLastInstruction checked that all instructions were used by 1802 // one and only one PHI node. Find that now, RAUW it to our common 1803 // instruction and nuke it. 1804 auto *PN = cast<PHINode>(*I0->user_begin()); 1805 PN->replaceAllUsesWith(I0); 1806 PN->eraseFromParent(); 1807 } 1808 1809 // Finally nuke all instructions apart from the common instruction. 1810 for (auto *I : Insts) 1811 if (I != I0) 1812 I->eraseFromParent(); 1813 1814 return true; 1815 } 1816 1817 namespace { 1818 1819 // LockstepReverseIterator - Iterates through instructions 1820 // in a set of blocks in reverse order from the first non-terminator. 1821 // For example (assume all blocks have size n): 1822 // LockstepReverseIterator I([B1, B2, B3]); 1823 // *I-- = [B1[n], B2[n], B3[n]]; 1824 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1825 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1826 // ... 1827 class LockstepReverseIterator { 1828 ArrayRef<BasicBlock*> Blocks; 1829 SmallVector<Instruction*,4> Insts; 1830 bool Fail; 1831 1832 public: 1833 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1834 reset(); 1835 } 1836 1837 void reset() { 1838 Fail = false; 1839 Insts.clear(); 1840 for (auto *BB : Blocks) { 1841 Instruction *Inst = BB->getTerminator(); 1842 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1843 Inst = Inst->getPrevNode(); 1844 if (!Inst) { 1845 // Block wasn't big enough. 1846 Fail = true; 1847 return; 1848 } 1849 Insts.push_back(Inst); 1850 } 1851 } 1852 1853 bool isValid() const { 1854 return !Fail; 1855 } 1856 1857 void operator--() { 1858 if (Fail) 1859 return; 1860 for (auto *&Inst : Insts) { 1861 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1862 Inst = Inst->getPrevNode(); 1863 // Already at beginning of block. 1864 if (!Inst) { 1865 Fail = true; 1866 return; 1867 } 1868 } 1869 } 1870 1871 ArrayRef<Instruction*> operator * () const { 1872 return Insts; 1873 } 1874 }; 1875 1876 } // end anonymous namespace 1877 1878 /// Check whether BB's predecessors end with unconditional branches. If it is 1879 /// true, sink any common code from the predecessors to BB. 1880 /// We also allow one predecessor to end with conditional branch (but no more 1881 /// than one). 1882 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1883 DomTreeUpdater *DTU) { 1884 // We support two situations: 1885 // (1) all incoming arcs are unconditional 1886 // (2) one incoming arc is conditional 1887 // 1888 // (2) is very common in switch defaults and 1889 // else-if patterns; 1890 // 1891 // if (a) f(1); 1892 // else if (b) f(2); 1893 // 1894 // produces: 1895 // 1896 // [if] 1897 // / \ 1898 // [f(1)] [if] 1899 // | | \ 1900 // | | | 1901 // | [f(2)]| 1902 // \ | / 1903 // [ end ] 1904 // 1905 // [end] has two unconditional predecessor arcs and one conditional. The 1906 // conditional refers to the implicit empty 'else' arc. This conditional 1907 // arc can also be caused by an empty default block in a switch. 1908 // 1909 // In this case, we attempt to sink code from all *unconditional* arcs. 1910 // If we can sink instructions from these arcs (determined during the scan 1911 // phase below) we insert a common successor for all unconditional arcs and 1912 // connect that to [end], to enable sinking: 1913 // 1914 // [if] 1915 // / \ 1916 // [x(1)] [if] 1917 // | | \ 1918 // | | \ 1919 // | [x(2)] | 1920 // \ / | 1921 // [sink.split] | 1922 // \ / 1923 // [ end ] 1924 // 1925 SmallVector<BasicBlock*,4> UnconditionalPreds; 1926 Instruction *Cond = nullptr; 1927 for (auto *B : predecessors(BB)) { 1928 auto *T = B->getTerminator(); 1929 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1930 UnconditionalPreds.push_back(B); 1931 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1932 Cond = T; 1933 else 1934 return false; 1935 } 1936 if (UnconditionalPreds.size() < 2) 1937 return false; 1938 1939 // We take a two-step approach to tail sinking. First we scan from the end of 1940 // each block upwards in lockstep. If the n'th instruction from the end of each 1941 // block can be sunk, those instructions are added to ValuesToSink and we 1942 // carry on. If we can sink an instruction but need to PHI-merge some operands 1943 // (because they're not identical in each instruction) we add these to 1944 // PHIOperands. 1945 unsigned ScanIdx = 0; 1946 SmallPtrSet<Value*,4> InstructionsToSink; 1947 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1948 LockstepReverseIterator LRI(UnconditionalPreds); 1949 while (LRI.isValid() && 1950 canSinkInstructions(*LRI, PHIOperands)) { 1951 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1952 << "\n"); 1953 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1954 ++ScanIdx; 1955 --LRI; 1956 } 1957 1958 // If no instructions can be sunk, early-return. 1959 if (ScanIdx == 0) 1960 return false; 1961 1962 bool Changed = false; 1963 1964 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1965 unsigned NumPHIdValues = 0; 1966 for (auto *I : *LRI) 1967 for (auto *V : PHIOperands[I]) 1968 if (InstructionsToSink.count(V) == 0) 1969 ++NumPHIdValues; 1970 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1971 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1972 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1973 NumPHIInsts++; 1974 1975 return NumPHIInsts <= 1; 1976 }; 1977 1978 if (Cond) { 1979 // Check if we would actually sink anything first! This mutates the CFG and 1980 // adds an extra block. The goal in doing this is to allow instructions that 1981 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1982 // (such as trunc, add) can be sunk and predicated already. So we check that 1983 // we're going to sink at least one non-speculatable instruction. 1984 LRI.reset(); 1985 unsigned Idx = 0; 1986 bool Profitable = false; 1987 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1988 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1989 Profitable = true; 1990 break; 1991 } 1992 --LRI; 1993 ++Idx; 1994 } 1995 if (!Profitable) 1996 return false; 1997 1998 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1999 // We have a conditional edge and we're going to sink some instructions. 2000 // Insert a new block postdominating all blocks we're going to sink from. 2001 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2002 // Edges couldn't be split. 2003 return false; 2004 Changed = true; 2005 } 2006 2007 // Now that we've analyzed all potential sinking candidates, perform the 2008 // actual sink. We iteratively sink the last non-terminator of the source 2009 // blocks into their common successor unless doing so would require too 2010 // many PHI instructions to be generated (currently only one PHI is allowed 2011 // per sunk instruction). 2012 // 2013 // We can use InstructionsToSink to discount values needing PHI-merging that will 2014 // actually be sunk in a later iteration. This allows us to be more 2015 // aggressive in what we sink. This does allow a false positive where we 2016 // sink presuming a later value will also be sunk, but stop half way through 2017 // and never actually sink it which means we produce more PHIs than intended. 2018 // This is unlikely in practice though. 2019 unsigned SinkIdx = 0; 2020 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2021 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2022 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2023 << "\n"); 2024 2025 // Because we've sunk every instruction in turn, the current instruction to 2026 // sink is always at index 0. 2027 LRI.reset(); 2028 if (!ProfitableToSinkInstruction(LRI)) { 2029 // Too many PHIs would be created. 2030 LLVM_DEBUG( 2031 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2032 break; 2033 } 2034 2035 if (!sinkLastInstruction(UnconditionalPreds)) { 2036 LLVM_DEBUG( 2037 dbgs() 2038 << "SINK: stopping here, failed to actually sink instruction!\n"); 2039 break; 2040 } 2041 2042 NumSinkCommonInstrs++; 2043 Changed = true; 2044 } 2045 if (SinkIdx != 0) 2046 ++NumSinkCommonCode; 2047 return Changed; 2048 } 2049 2050 /// Determine if we can hoist sink a sole store instruction out of a 2051 /// conditional block. 2052 /// 2053 /// We are looking for code like the following: 2054 /// BrBB: 2055 /// store i32 %add, i32* %arrayidx2 2056 /// ... // No other stores or function calls (we could be calling a memory 2057 /// ... // function). 2058 /// %cmp = icmp ult %x, %y 2059 /// br i1 %cmp, label %EndBB, label %ThenBB 2060 /// ThenBB: 2061 /// store i32 %add5, i32* %arrayidx2 2062 /// br label EndBB 2063 /// EndBB: 2064 /// ... 2065 /// We are going to transform this into: 2066 /// BrBB: 2067 /// store i32 %add, i32* %arrayidx2 2068 /// ... // 2069 /// %cmp = icmp ult %x, %y 2070 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2071 /// store i32 %add.add5, i32* %arrayidx2 2072 /// ... 2073 /// 2074 /// \return The pointer to the value of the previous store if the store can be 2075 /// hoisted into the predecessor block. 0 otherwise. 2076 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2077 BasicBlock *StoreBB, BasicBlock *EndBB) { 2078 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2079 if (!StoreToHoist) 2080 return nullptr; 2081 2082 // Volatile or atomic. 2083 if (!StoreToHoist->isSimple()) 2084 return nullptr; 2085 2086 Value *StorePtr = StoreToHoist->getPointerOperand(); 2087 2088 // Look for a store to the same pointer in BrBB. 2089 unsigned MaxNumInstToLookAt = 9; 2090 // Skip pseudo probe intrinsic calls which are not really killing any memory 2091 // accesses. 2092 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2093 if (!MaxNumInstToLookAt) 2094 break; 2095 --MaxNumInstToLookAt; 2096 2097 // Could be calling an instruction that affects memory like free(). 2098 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2099 return nullptr; 2100 2101 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2102 // Found the previous store make sure it stores to the same location. 2103 if (SI->getPointerOperand() == StorePtr) 2104 // Found the previous store, return its value operand. 2105 return SI->getValueOperand(); 2106 return nullptr; // Unknown store. 2107 } 2108 } 2109 2110 return nullptr; 2111 } 2112 2113 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2114 /// converted to selects. 2115 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2116 BasicBlock *EndBB, 2117 unsigned &SpeculatedInstructions, 2118 InstructionCost &Cost, 2119 const TargetTransformInfo &TTI) { 2120 TargetTransformInfo::TargetCostKind CostKind = 2121 BB->getParent()->hasMinSize() 2122 ? TargetTransformInfo::TCK_CodeSize 2123 : TargetTransformInfo::TCK_SizeAndLatency; 2124 2125 bool HaveRewritablePHIs = false; 2126 for (PHINode &PN : EndBB->phis()) { 2127 Value *OrigV = PN.getIncomingValueForBlock(BB); 2128 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2129 2130 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2131 // Skip PHIs which are trivial. 2132 if (ThenV == OrigV) 2133 continue; 2134 2135 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2136 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2137 2138 // Don't convert to selects if we could remove undefined behavior instead. 2139 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2140 passingValueIsAlwaysUndefined(ThenV, &PN)) 2141 return false; 2142 2143 HaveRewritablePHIs = true; 2144 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2145 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2146 if (!OrigCE && !ThenCE) 2147 continue; // Known safe and cheap. 2148 2149 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2150 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2151 return false; 2152 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2153 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2154 InstructionCost MaxCost = 2155 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2156 if (OrigCost + ThenCost > MaxCost) 2157 return false; 2158 2159 // Account for the cost of an unfolded ConstantExpr which could end up 2160 // getting expanded into Instructions. 2161 // FIXME: This doesn't account for how many operations are combined in the 2162 // constant expression. 2163 ++SpeculatedInstructions; 2164 if (SpeculatedInstructions > 1) 2165 return false; 2166 } 2167 2168 return HaveRewritablePHIs; 2169 } 2170 2171 /// Speculate a conditional basic block flattening the CFG. 2172 /// 2173 /// Note that this is a very risky transform currently. Speculating 2174 /// instructions like this is most often not desirable. Instead, there is an MI 2175 /// pass which can do it with full awareness of the resource constraints. 2176 /// However, some cases are "obvious" and we should do directly. An example of 2177 /// this is speculating a single, reasonably cheap instruction. 2178 /// 2179 /// There is only one distinct advantage to flattening the CFG at the IR level: 2180 /// it makes very common but simplistic optimizations such as are common in 2181 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2182 /// modeling their effects with easier to reason about SSA value graphs. 2183 /// 2184 /// 2185 /// An illustration of this transform is turning this IR: 2186 /// \code 2187 /// BB: 2188 /// %cmp = icmp ult %x, %y 2189 /// br i1 %cmp, label %EndBB, label %ThenBB 2190 /// ThenBB: 2191 /// %sub = sub %x, %y 2192 /// br label BB2 2193 /// EndBB: 2194 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2195 /// ... 2196 /// \endcode 2197 /// 2198 /// Into this IR: 2199 /// \code 2200 /// BB: 2201 /// %cmp = icmp ult %x, %y 2202 /// %sub = sub %x, %y 2203 /// %cond = select i1 %cmp, 0, %sub 2204 /// ... 2205 /// \endcode 2206 /// 2207 /// \returns true if the conditional block is removed. 2208 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2209 const TargetTransformInfo &TTI) { 2210 // Be conservative for now. FP select instruction can often be expensive. 2211 Value *BrCond = BI->getCondition(); 2212 if (isa<FCmpInst>(BrCond)) 2213 return false; 2214 2215 BasicBlock *BB = BI->getParent(); 2216 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2217 InstructionCost Budget = 2218 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2219 2220 // If ThenBB is actually on the false edge of the conditional branch, remember 2221 // to swap the select operands later. 2222 bool Invert = false; 2223 if (ThenBB != BI->getSuccessor(0)) { 2224 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2225 Invert = true; 2226 } 2227 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2228 2229 // Keep a count of how many times instructions are used within ThenBB when 2230 // they are candidates for sinking into ThenBB. Specifically: 2231 // - They are defined in BB, and 2232 // - They have no side effects, and 2233 // - All of their uses are in ThenBB. 2234 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2235 2236 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2237 2238 unsigned SpeculatedInstructions = 0; 2239 Value *SpeculatedStoreValue = nullptr; 2240 StoreInst *SpeculatedStore = nullptr; 2241 for (BasicBlock::iterator BBI = ThenBB->begin(), 2242 BBE = std::prev(ThenBB->end()); 2243 BBI != BBE; ++BBI) { 2244 Instruction *I = &*BBI; 2245 // Skip debug info. 2246 if (isa<DbgInfoIntrinsic>(I)) { 2247 SpeculatedDbgIntrinsics.push_back(I); 2248 continue; 2249 } 2250 2251 // Skip pseudo probes. The consequence is we lose track of the branch 2252 // probability for ThenBB, which is fine since the optimization here takes 2253 // place regardless of the branch probability. 2254 if (isa<PseudoProbeInst>(I)) { 2255 SpeculatedDbgIntrinsics.push_back(I); 2256 continue; 2257 } 2258 2259 // Only speculatively execute a single instruction (not counting the 2260 // terminator) for now. 2261 ++SpeculatedInstructions; 2262 if (SpeculatedInstructions > 1) 2263 return false; 2264 2265 // Don't hoist the instruction if it's unsafe or expensive. 2266 if (!isSafeToSpeculativelyExecute(I) && 2267 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2268 I, BB, ThenBB, EndBB)))) 2269 return false; 2270 if (!SpeculatedStoreValue && 2271 computeSpeculationCost(I, TTI) > 2272 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2273 return false; 2274 2275 // Store the store speculation candidate. 2276 if (SpeculatedStoreValue) 2277 SpeculatedStore = cast<StoreInst>(I); 2278 2279 // Do not hoist the instruction if any of its operands are defined but not 2280 // used in BB. The transformation will prevent the operand from 2281 // being sunk into the use block. 2282 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2283 Instruction *OpI = dyn_cast<Instruction>(*i); 2284 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2285 continue; // Not a candidate for sinking. 2286 2287 ++SinkCandidateUseCounts[OpI]; 2288 } 2289 } 2290 2291 // Consider any sink candidates which are only used in ThenBB as costs for 2292 // speculation. Note, while we iterate over a DenseMap here, we are summing 2293 // and so iteration order isn't significant. 2294 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2295 I = SinkCandidateUseCounts.begin(), 2296 E = SinkCandidateUseCounts.end(); 2297 I != E; ++I) 2298 if (I->first->hasNUses(I->second)) { 2299 ++SpeculatedInstructions; 2300 if (SpeculatedInstructions > 1) 2301 return false; 2302 } 2303 2304 // Check that we can insert the selects and that it's not too expensive to do 2305 // so. 2306 bool Convert = SpeculatedStore != nullptr; 2307 InstructionCost Cost = 0; 2308 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2309 SpeculatedInstructions, 2310 Cost, TTI); 2311 if (!Convert || Cost > Budget) 2312 return false; 2313 2314 // If we get here, we can hoist the instruction and if-convert. 2315 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2316 2317 // Insert a select of the value of the speculated store. 2318 if (SpeculatedStoreValue) { 2319 IRBuilder<NoFolder> Builder(BI); 2320 Value *TrueV = SpeculatedStore->getValueOperand(); 2321 Value *FalseV = SpeculatedStoreValue; 2322 if (Invert) 2323 std::swap(TrueV, FalseV); 2324 Value *S = Builder.CreateSelect( 2325 BrCond, TrueV, FalseV, "spec.store.select", BI); 2326 SpeculatedStore->setOperand(0, S); 2327 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2328 SpeculatedStore->getDebugLoc()); 2329 } 2330 2331 // Metadata can be dependent on the condition we are hoisting above. 2332 // Conservatively strip all metadata on the instruction. Drop the debug loc 2333 // to avoid making it appear as if the condition is a constant, which would 2334 // be misleading while debugging. 2335 for (auto &I : *ThenBB) { 2336 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2337 I.setDebugLoc(DebugLoc()); 2338 I.dropUnknownNonDebugMetadata(); 2339 } 2340 2341 // Hoist the instructions. 2342 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2343 ThenBB->begin(), std::prev(ThenBB->end())); 2344 2345 // Insert selects and rewrite the PHI operands. 2346 IRBuilder<NoFolder> Builder(BI); 2347 for (PHINode &PN : EndBB->phis()) { 2348 unsigned OrigI = PN.getBasicBlockIndex(BB); 2349 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2350 Value *OrigV = PN.getIncomingValue(OrigI); 2351 Value *ThenV = PN.getIncomingValue(ThenI); 2352 2353 // Skip PHIs which are trivial. 2354 if (OrigV == ThenV) 2355 continue; 2356 2357 // Create a select whose true value is the speculatively executed value and 2358 // false value is the pre-existing value. Swap them if the branch 2359 // destinations were inverted. 2360 Value *TrueV = ThenV, *FalseV = OrigV; 2361 if (Invert) 2362 std::swap(TrueV, FalseV); 2363 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2364 PN.setIncomingValue(OrigI, V); 2365 PN.setIncomingValue(ThenI, V); 2366 } 2367 2368 // Remove speculated dbg intrinsics. 2369 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2370 // dbg value for the different flows and inserting it after the select. 2371 for (Instruction *I : SpeculatedDbgIntrinsics) 2372 I->eraseFromParent(); 2373 2374 ++NumSpeculations; 2375 return true; 2376 } 2377 2378 /// Return true if we can thread a branch across this block. 2379 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2380 int Size = 0; 2381 2382 for (Instruction &I : BB->instructionsWithoutDebug()) { 2383 if (Size > MaxSmallBlockSize) 2384 return false; // Don't clone large BB's. 2385 2386 // Can't fold blocks that contain noduplicate or convergent calls. 2387 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2388 if (CI->cannotDuplicate() || CI->isConvergent()) 2389 return false; 2390 2391 // We will delete Phis while threading, so Phis should not be accounted in 2392 // block's size 2393 if (!isa<PHINode>(I)) 2394 ++Size; 2395 2396 // We can only support instructions that do not define values that are 2397 // live outside of the current basic block. 2398 for (User *U : I.users()) { 2399 Instruction *UI = cast<Instruction>(U); 2400 if (UI->getParent() != BB || isa<PHINode>(UI)) 2401 return false; 2402 } 2403 2404 // Looks ok, continue checking. 2405 } 2406 2407 return true; 2408 } 2409 2410 /// If we have a conditional branch on a PHI node value that is defined in the 2411 /// same block as the branch and if any PHI entries are constants, thread edges 2412 /// corresponding to that entry to be branches to their ultimate destination. 2413 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2414 const DataLayout &DL, AssumptionCache *AC) { 2415 BasicBlock *BB = BI->getParent(); 2416 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2417 // NOTE: we currently cannot transform this case if the PHI node is used 2418 // outside of the block. 2419 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2420 return false; 2421 2422 // Degenerate case of a single entry PHI. 2423 if (PN->getNumIncomingValues() == 1) { 2424 FoldSingleEntryPHINodes(PN->getParent()); 2425 return true; 2426 } 2427 2428 // Now we know that this block has multiple preds and two succs. 2429 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2430 return false; 2431 2432 // Okay, this is a simple enough basic block. See if any phi values are 2433 // constants. 2434 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2435 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2436 if (!CB || !CB->getType()->isIntegerTy(1)) 2437 continue; 2438 2439 // Okay, we now know that all edges from PredBB should be revectored to 2440 // branch to RealDest. 2441 BasicBlock *PredBB = PN->getIncomingBlock(i); 2442 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2443 2444 if (RealDest == BB) 2445 continue; // Skip self loops. 2446 // Skip if the predecessor's terminator is an indirect branch. 2447 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2448 continue; 2449 2450 SmallVector<DominatorTree::UpdateType, 3> Updates; 2451 2452 // The dest block might have PHI nodes, other predecessors and other 2453 // difficult cases. Instead of being smart about this, just insert a new 2454 // block that jumps to the destination block, effectively splitting 2455 // the edge we are about to create. 2456 BasicBlock *EdgeBB = 2457 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2458 RealDest->getParent(), RealDest); 2459 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2460 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2461 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2462 2463 // Update PHI nodes. 2464 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2465 2466 // BB may have instructions that are being threaded over. Clone these 2467 // instructions into EdgeBB. We know that there will be no uses of the 2468 // cloned instructions outside of EdgeBB. 2469 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2470 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2471 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2472 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2473 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2474 continue; 2475 } 2476 // Clone the instruction. 2477 Instruction *N = BBI->clone(); 2478 if (BBI->hasName()) 2479 N->setName(BBI->getName() + ".c"); 2480 2481 // Update operands due to translation. 2482 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2483 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2484 if (PI != TranslateMap.end()) 2485 *i = PI->second; 2486 } 2487 2488 // Check for trivial simplification. 2489 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2490 if (!BBI->use_empty()) 2491 TranslateMap[&*BBI] = V; 2492 if (!N->mayHaveSideEffects()) { 2493 N->deleteValue(); // Instruction folded away, don't need actual inst 2494 N = nullptr; 2495 } 2496 } else { 2497 if (!BBI->use_empty()) 2498 TranslateMap[&*BBI] = N; 2499 } 2500 if (N) { 2501 // Insert the new instruction into its new home. 2502 EdgeBB->getInstList().insert(InsertPt, N); 2503 2504 // Register the new instruction with the assumption cache if necessary. 2505 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2506 AC->registerAssumption(cast<IntrinsicInst>(N)); 2507 } 2508 } 2509 2510 // Loop over all of the edges from PredBB to BB, changing them to branch 2511 // to EdgeBB instead. 2512 Instruction *PredBBTI = PredBB->getTerminator(); 2513 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2514 if (PredBBTI->getSuccessor(i) == BB) { 2515 BB->removePredecessor(PredBB); 2516 PredBBTI->setSuccessor(i, EdgeBB); 2517 } 2518 2519 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2520 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2521 2522 if (DTU) 2523 DTU->applyUpdates(Updates); 2524 2525 // Recurse, simplifying any other constants. 2526 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2527 } 2528 2529 return false; 2530 } 2531 2532 /// Given a BB that starts with the specified two-entry PHI node, 2533 /// see if we can eliminate it. 2534 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2535 DomTreeUpdater *DTU, const DataLayout &DL) { 2536 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2537 // statement", which has a very simple dominance structure. Basically, we 2538 // are trying to find the condition that is being branched on, which 2539 // subsequently causes this merge to happen. We really want control 2540 // dependence information for this check, but simplifycfg can't keep it up 2541 // to date, and this catches most of the cases we care about anyway. 2542 BasicBlock *BB = PN->getParent(); 2543 2544 BasicBlock *IfTrue, *IfFalse; 2545 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2546 if (!IfCond || 2547 // Don't bother if the branch will be constant folded trivially. 2548 isa<ConstantInt>(IfCond)) 2549 return false; 2550 2551 // Okay, we found that we can merge this two-entry phi node into a select. 2552 // Doing so would require us to fold *all* two entry phi nodes in this block. 2553 // At some point this becomes non-profitable (particularly if the target 2554 // doesn't support cmov's). Only do this transformation if there are two or 2555 // fewer PHI nodes in this block. 2556 unsigned NumPhis = 0; 2557 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2558 if (NumPhis > 2) 2559 return false; 2560 2561 // Loop over the PHI's seeing if we can promote them all to select 2562 // instructions. While we are at it, keep track of the instructions 2563 // that need to be moved to the dominating block. 2564 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2565 InstructionCost Cost = 0; 2566 InstructionCost Budget = 2567 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2568 2569 bool Changed = false; 2570 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2571 PHINode *PN = cast<PHINode>(II++); 2572 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2573 PN->replaceAllUsesWith(V); 2574 PN->eraseFromParent(); 2575 Changed = true; 2576 continue; 2577 } 2578 2579 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2580 Cost, Budget, TTI) || 2581 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2582 Cost, Budget, TTI)) 2583 return Changed; 2584 } 2585 2586 // If we folded the first phi, PN dangles at this point. Refresh it. If 2587 // we ran out of PHIs then we simplified them all. 2588 PN = dyn_cast<PHINode>(BB->begin()); 2589 if (!PN) 2590 return true; 2591 2592 // Return true if at least one of these is a 'not', and another is either 2593 // a 'not' too, or a constant. 2594 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2595 if (!match(V0, m_Not(m_Value()))) 2596 std::swap(V0, V1); 2597 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2598 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2599 }; 2600 2601 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2602 // of the incoming values is an 'not' and another one is freely invertible. 2603 // These can often be turned into switches and other things. 2604 if (PN->getType()->isIntegerTy(1) && 2605 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2606 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2607 isa<BinaryOperator>(IfCond)) && 2608 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2609 PN->getIncomingValue(1))) 2610 return Changed; 2611 2612 // If all PHI nodes are promotable, check to make sure that all instructions 2613 // in the predecessor blocks can be promoted as well. If not, we won't be able 2614 // to get rid of the control flow, so it's not worth promoting to select 2615 // instructions. 2616 BasicBlock *DomBlock = nullptr; 2617 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2618 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2619 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2620 IfBlock1 = nullptr; 2621 } else { 2622 DomBlock = *pred_begin(IfBlock1); 2623 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2624 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2625 !isa<PseudoProbeInst>(I)) { 2626 // This is not an aggressive instruction that we can promote. 2627 // Because of this, we won't be able to get rid of the control flow, so 2628 // the xform is not worth it. 2629 return Changed; 2630 } 2631 } 2632 2633 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2634 IfBlock2 = nullptr; 2635 } else { 2636 DomBlock = *pred_begin(IfBlock2); 2637 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2638 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2639 !isa<PseudoProbeInst>(I)) { 2640 // This is not an aggressive instruction that we can promote. 2641 // Because of this, we won't be able to get rid of the control flow, so 2642 // the xform is not worth it. 2643 return Changed; 2644 } 2645 } 2646 assert(DomBlock && "Failed to find root DomBlock"); 2647 2648 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2649 << " T: " << IfTrue->getName() 2650 << " F: " << IfFalse->getName() << "\n"); 2651 2652 // If we can still promote the PHI nodes after this gauntlet of tests, 2653 // do all of the PHI's now. 2654 Instruction *InsertPt = DomBlock->getTerminator(); 2655 IRBuilder<NoFolder> Builder(InsertPt); 2656 2657 // Move all 'aggressive' instructions, which are defined in the 2658 // conditional parts of the if's up to the dominating block. 2659 if (IfBlock1) 2660 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2661 if (IfBlock2) 2662 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2663 2664 // Propagate fast-math-flags from phi nodes to replacement selects. 2665 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2666 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2667 if (isa<FPMathOperator>(PN)) 2668 Builder.setFastMathFlags(PN->getFastMathFlags()); 2669 2670 // Change the PHI node into a select instruction. 2671 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2672 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2673 2674 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2675 PN->replaceAllUsesWith(Sel); 2676 Sel->takeName(PN); 2677 PN->eraseFromParent(); 2678 } 2679 2680 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2681 // has been flattened. Change DomBlock to jump directly to our new block to 2682 // avoid other simplifycfg's kicking in on the diamond. 2683 Instruction *OldTI = DomBlock->getTerminator(); 2684 Builder.SetInsertPoint(OldTI); 2685 Builder.CreateBr(BB); 2686 2687 SmallVector<DominatorTree::UpdateType, 3> Updates; 2688 if (DTU) { 2689 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2690 for (auto *Successor : successors(DomBlock)) 2691 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2692 } 2693 2694 OldTI->eraseFromParent(); 2695 if (DTU) 2696 DTU->applyUpdates(Updates); 2697 2698 return true; 2699 } 2700 2701 /// If we found a conditional branch that goes to two returning blocks, 2702 /// try to merge them together into one return, 2703 /// introducing a select if the return values disagree. 2704 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2705 IRBuilder<> &Builder) { 2706 auto *BB = BI->getParent(); 2707 assert(BI->isConditional() && "Must be a conditional branch"); 2708 BasicBlock *TrueSucc = BI->getSuccessor(0); 2709 BasicBlock *FalseSucc = BI->getSuccessor(1); 2710 // NOTE: destinations may match, this could be degenerate uncond branch. 2711 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2712 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2713 2714 // Check to ensure both blocks are empty (just a return) or optionally empty 2715 // with PHI nodes. If there are other instructions, merging would cause extra 2716 // computation on one path or the other. 2717 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2718 return false; 2719 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2720 return false; 2721 2722 Builder.SetInsertPoint(BI); 2723 // Okay, we found a branch that is going to two return nodes. If 2724 // there is no return value for this function, just change the 2725 // branch into a return. 2726 if (FalseRet->getNumOperands() == 0) { 2727 TrueSucc->removePredecessor(BB); 2728 FalseSucc->removePredecessor(BB); 2729 Builder.CreateRetVoid(); 2730 EraseTerminatorAndDCECond(BI); 2731 if (DTU) { 2732 SmallVector<DominatorTree::UpdateType, 2> Updates; 2733 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2734 if (TrueSucc != FalseSucc) 2735 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2736 DTU->applyUpdates(Updates); 2737 } 2738 return true; 2739 } 2740 2741 // Otherwise, figure out what the true and false return values are 2742 // so we can insert a new select instruction. 2743 Value *TrueValue = TrueRet->getReturnValue(); 2744 Value *FalseValue = FalseRet->getReturnValue(); 2745 2746 // Unwrap any PHI nodes in the return blocks. 2747 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2748 if (TVPN->getParent() == TrueSucc) 2749 TrueValue = TVPN->getIncomingValueForBlock(BB); 2750 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2751 if (FVPN->getParent() == FalseSucc) 2752 FalseValue = FVPN->getIncomingValueForBlock(BB); 2753 2754 // In order for this transformation to be safe, we must be able to 2755 // unconditionally execute both operands to the return. This is 2756 // normally the case, but we could have a potentially-trapping 2757 // constant expression that prevents this transformation from being 2758 // safe. 2759 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2760 if (TCV->canTrap()) 2761 return false; 2762 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2763 if (FCV->canTrap()) 2764 return false; 2765 2766 // Okay, we collected all the mapped values and checked them for sanity, and 2767 // defined to really do this transformation. First, update the CFG. 2768 TrueSucc->removePredecessor(BB); 2769 FalseSucc->removePredecessor(BB); 2770 2771 // Insert select instructions where needed. 2772 Value *BrCond = BI->getCondition(); 2773 if (TrueValue) { 2774 // Insert a select if the results differ. 2775 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2776 } else if (isa<UndefValue>(TrueValue)) { 2777 TrueValue = FalseValue; 2778 } else { 2779 TrueValue = 2780 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2781 } 2782 } 2783 2784 Value *RI = 2785 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2786 2787 (void)RI; 2788 2789 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2790 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2791 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2792 2793 EraseTerminatorAndDCECond(BI); 2794 if (DTU) { 2795 SmallVector<DominatorTree::UpdateType, 2> Updates; 2796 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2797 if (TrueSucc != FalseSucc) 2798 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2799 DTU->applyUpdates(Updates); 2800 } 2801 2802 return true; 2803 } 2804 2805 /// Return true if either PBI or BI has branch weight available, and store 2806 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2807 /// not have branch weight, use 1:1 as its weight. 2808 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2809 uint64_t &PredTrueWeight, 2810 uint64_t &PredFalseWeight, 2811 uint64_t &SuccTrueWeight, 2812 uint64_t &SuccFalseWeight) { 2813 bool PredHasWeights = 2814 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2815 bool SuccHasWeights = 2816 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2817 if (PredHasWeights || SuccHasWeights) { 2818 if (!PredHasWeights) 2819 PredTrueWeight = PredFalseWeight = 1; 2820 if (!SuccHasWeights) 2821 SuccTrueWeight = SuccFalseWeight = 1; 2822 return true; 2823 } else { 2824 return false; 2825 } 2826 } 2827 2828 // Determine if the two branches share a common destination, 2829 // and deduce a glue that we need to use to join branch's conditions 2830 // to arrive at the common destination. 2831 static Optional<std::pair<Instruction::BinaryOps, bool>> 2832 CheckIfCondBranchesShareCommonDestination(BranchInst *BI, BranchInst *PBI) { 2833 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2834 "Both blocks must end with a conditional branches."); 2835 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2836 "PredBB must be a predecessor of BB."); 2837 2838 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2839 return {{Instruction::Or, false}}; 2840 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2841 return {{Instruction::And, false}}; 2842 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2843 return {{Instruction::And, true}}; 2844 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2845 return {{Instruction::Or, true}}; 2846 return None; 2847 } 2848 2849 static bool PerformBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2850 DomTreeUpdater *DTU, 2851 MemorySSAUpdater *MSSAU) { 2852 BasicBlock *BB = BI->getParent(); 2853 BasicBlock *PredBlock = PBI->getParent(); 2854 2855 // Determine if the two branches share a common destination. 2856 Instruction::BinaryOps Opc; 2857 bool InvertPredCond; 2858 std::tie(Opc, InvertPredCond) = 2859 *CheckIfCondBranchesShareCommonDestination(BI, PBI); 2860 2861 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2862 2863 IRBuilder<> Builder(PBI); 2864 // The builder is used to create instructions to eliminate the branch in BB. 2865 // If BB's terminator has !annotation metadata, add it to the new 2866 // instructions. 2867 Builder.CollectMetadataToCopy(BB->getTerminator(), 2868 {LLVMContext::MD_annotation}); 2869 2870 // If we need to invert the condition in the pred block to match, do so now. 2871 if (InvertPredCond) { 2872 Value *NewCond = PBI->getCondition(); 2873 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2874 CmpInst *CI = cast<CmpInst>(NewCond); 2875 CI->setPredicate(CI->getInversePredicate()); 2876 } else { 2877 NewCond = 2878 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2879 } 2880 2881 PBI->setCondition(NewCond); 2882 PBI->swapSuccessors(); 2883 } 2884 2885 BasicBlock *UniqueSucc = 2886 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2887 2888 // Before cloning instructions, notify the successor basic block that it 2889 // is about to have a new predecessor. This will update PHI nodes, 2890 // which will allow us to update live-out uses of bonus instructions. 2891 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2892 2893 // Try to update branch weights. 2894 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2895 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2896 SuccTrueWeight, SuccFalseWeight)) { 2897 SmallVector<uint64_t, 8> NewWeights; 2898 2899 if (PBI->getSuccessor(0) == BB) { 2900 // PBI: br i1 %x, BB, FalseDest 2901 // BI: br i1 %y, UniqueSucc, FalseDest 2902 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2903 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2904 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2905 // TrueWeight for PBI * FalseWeight for BI. 2906 // We assume that total weights of a BranchInst can fit into 32 bits. 2907 // Therefore, we will not have overflow using 64-bit arithmetic. 2908 NewWeights.push_back(PredFalseWeight * 2909 (SuccFalseWeight + SuccTrueWeight) + 2910 PredTrueWeight * SuccFalseWeight); 2911 } else { 2912 // PBI: br i1 %x, TrueDest, BB 2913 // BI: br i1 %y, TrueDest, UniqueSucc 2914 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2915 // FalseWeight for PBI * TrueWeight for BI. 2916 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2917 PredFalseWeight * SuccTrueWeight); 2918 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2919 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2920 } 2921 2922 // Halve the weights if any of them cannot fit in an uint32_t 2923 FitWeights(NewWeights); 2924 2925 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 2926 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2927 2928 // TODO: If BB is reachable from all paths through PredBlock, then we 2929 // could replace PBI's branch probabilities with BI's. 2930 } else 2931 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2932 2933 // Now, update the CFG. 2934 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 2935 2936 if (DTU) 2937 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 2938 {DominatorTree::Delete, PredBlock, BB}}); 2939 2940 // If BI was a loop latch, it may have had associated loop metadata. 2941 // We need to copy it to the new latch, that is, PBI. 2942 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2943 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2944 2945 ValueToValueMapTy VMap; // maps original values to cloned values 2946 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 2947 2948 // Now that the Cond was cloned into the predecessor basic block, 2949 // or/and the two conditions together. 2950 Instruction *NewCond = cast<Instruction>(Builder.CreateBinOp( 2951 Opc, PBI->getCondition(), VMap[BI->getCondition()], "or.cond")); 2952 PBI->setCondition(NewCond); 2953 2954 // Copy any debug value intrinsics into the end of PredBlock. 2955 for (Instruction &I : *BB) { 2956 if (isa<DbgInfoIntrinsic>(I)) { 2957 Instruction *NewI = I.clone(); 2958 RemapInstruction(NewI, VMap, 2959 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2960 NewI->insertBefore(PBI); 2961 } 2962 } 2963 2964 ++NumFoldBranchToCommonDest; 2965 return true; 2966 } 2967 2968 /// If this basic block is simple enough, and if a predecessor branches to us 2969 /// and one of our successors, fold the block into the predecessor and use 2970 /// logical operations to pick the right destination. 2971 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 2972 MemorySSAUpdater *MSSAU, 2973 const TargetTransformInfo *TTI, 2974 unsigned BonusInstThreshold) { 2975 // If this block ends with an unconditional branch, 2976 // let SpeculativelyExecuteBB() deal with it. 2977 if (!BI->isConditional()) 2978 return false; 2979 2980 BasicBlock *BB = BI->getParent(); 2981 2982 const unsigned PredCount = pred_size(BB); 2983 2984 bool Changed = false; 2985 2986 TargetTransformInfo::TargetCostKind CostKind = 2987 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 2988 : TargetTransformInfo::TCK_SizeAndLatency; 2989 2990 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2991 2992 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2993 Cond->getParent() != BB || !Cond->hasOneUse()) 2994 return Changed; 2995 2996 // Only allow this transformation if computing the condition doesn't involve 2997 // too many instructions and these involved instructions can be executed 2998 // unconditionally. We denote all involved instructions except the condition 2999 // as "bonus instructions", and only allow this transformation when the 3000 // number of the bonus instructions we'll need to create when cloning into 3001 // each predecessor does not exceed a certain threshold. 3002 unsigned NumBonusInsts = 0; 3003 for (Instruction &I : *BB) { 3004 // Don't check the branch condition comparison itself. 3005 if (&I == Cond) 3006 continue; 3007 // Ignore dbg intrinsics, and the terminator. 3008 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3009 continue; 3010 // I must be safe to execute unconditionally. 3011 if (!isSafeToSpeculativelyExecute(&I)) 3012 return Changed; 3013 3014 // Account for the cost of duplicating this instruction into each 3015 // predecessor. 3016 NumBonusInsts += PredCount; 3017 // Early exits once we reach the limit. 3018 if (NumBonusInsts > BonusInstThreshold) 3019 return Changed; 3020 } 3021 3022 // Cond is known to be a compare or binary operator. Check to make sure that 3023 // neither operand is a potentially-trapping constant expression. 3024 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3025 if (CE->canTrap()) 3026 return Changed; 3027 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3028 if (CE->canTrap()) 3029 return Changed; 3030 3031 // Finally, don't infinitely unroll conditional loops. 3032 if (is_contained(successors(BB), BB)) 3033 return Changed; 3034 3035 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3036 BasicBlock *PredBlock = *PI; 3037 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3038 3039 // Check that we have two conditional branches. If there is a PHI node in 3040 // the common successor, verify that the same value flows in from both 3041 // blocks. 3042 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3043 continue; 3044 3045 // Determine if the two branches share a common destination. 3046 Instruction::BinaryOps Opc; 3047 bool InvertPredCond; 3048 if (auto Recepie = CheckIfCondBranchesShareCommonDestination(BI, PBI)) 3049 std::tie(Opc, InvertPredCond) = *Recepie; 3050 else 3051 continue; 3052 3053 // Check the cost of inserting the necessary logic before performing the 3054 // transformation. 3055 if (TTI) { 3056 Type *Ty = BI->getCondition()->getType(); 3057 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3058 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3059 !isa<CmpInst>(PBI->getCondition()))) 3060 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3061 3062 if (Cost > BranchFoldThreshold) 3063 continue; 3064 } 3065 3066 return PerformBranchToCommonDestFolding(BI, PBI, DTU, MSSAU); 3067 } 3068 return Changed; 3069 } 3070 3071 // If there is only one store in BB1 and BB2, return it, otherwise return 3072 // nullptr. 3073 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3074 StoreInst *S = nullptr; 3075 for (auto *BB : {BB1, BB2}) { 3076 if (!BB) 3077 continue; 3078 for (auto &I : *BB) 3079 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3080 if (S) 3081 // Multiple stores seen. 3082 return nullptr; 3083 else 3084 S = SI; 3085 } 3086 } 3087 return S; 3088 } 3089 3090 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3091 Value *AlternativeV = nullptr) { 3092 // PHI is going to be a PHI node that allows the value V that is defined in 3093 // BB to be referenced in BB's only successor. 3094 // 3095 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3096 // doesn't matter to us what the other operand is (it'll never get used). We 3097 // could just create a new PHI with an undef incoming value, but that could 3098 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3099 // other PHI. So here we directly look for some PHI in BB's successor with V 3100 // as an incoming operand. If we find one, we use it, else we create a new 3101 // one. 3102 // 3103 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3104 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3105 // where OtherBB is the single other predecessor of BB's only successor. 3106 PHINode *PHI = nullptr; 3107 BasicBlock *Succ = BB->getSingleSuccessor(); 3108 3109 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3110 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3111 PHI = cast<PHINode>(I); 3112 if (!AlternativeV) 3113 break; 3114 3115 assert(Succ->hasNPredecessors(2)); 3116 auto PredI = pred_begin(Succ); 3117 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3118 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3119 break; 3120 PHI = nullptr; 3121 } 3122 if (PHI) 3123 return PHI; 3124 3125 // If V is not an instruction defined in BB, just return it. 3126 if (!AlternativeV && 3127 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3128 return V; 3129 3130 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3131 PHI->addIncoming(V, BB); 3132 for (BasicBlock *PredBB : predecessors(Succ)) 3133 if (PredBB != BB) 3134 PHI->addIncoming( 3135 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3136 return PHI; 3137 } 3138 3139 static bool mergeConditionalStoreToAddress( 3140 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3141 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3142 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3143 // For every pointer, there must be exactly two stores, one coming from 3144 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3145 // store (to any address) in PTB,PFB or QTB,QFB. 3146 // FIXME: We could relax this restriction with a bit more work and performance 3147 // testing. 3148 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3149 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3150 if (!PStore || !QStore) 3151 return false; 3152 3153 // Now check the stores are compatible. 3154 if (!QStore->isUnordered() || !PStore->isUnordered()) 3155 return false; 3156 3157 // Check that sinking the store won't cause program behavior changes. Sinking 3158 // the store out of the Q blocks won't change any behavior as we're sinking 3159 // from a block to its unconditional successor. But we're moving a store from 3160 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3161 // So we need to check that there are no aliasing loads or stores in 3162 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3163 // operations between PStore and the end of its parent block. 3164 // 3165 // The ideal way to do this is to query AliasAnalysis, but we don't 3166 // preserve AA currently so that is dangerous. Be super safe and just 3167 // check there are no other memory operations at all. 3168 for (auto &I : *QFB->getSinglePredecessor()) 3169 if (I.mayReadOrWriteMemory()) 3170 return false; 3171 for (auto &I : *QFB) 3172 if (&I != QStore && I.mayReadOrWriteMemory()) 3173 return false; 3174 if (QTB) 3175 for (auto &I : *QTB) 3176 if (&I != QStore && I.mayReadOrWriteMemory()) 3177 return false; 3178 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3179 I != E; ++I) 3180 if (&*I != PStore && I->mayReadOrWriteMemory()) 3181 return false; 3182 3183 // If we're not in aggressive mode, we only optimize if we have some 3184 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3185 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3186 if (!BB) 3187 return true; 3188 // Heuristic: if the block can be if-converted/phi-folded and the 3189 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3190 // thread this store. 3191 InstructionCost Cost = 0; 3192 InstructionCost Budget = 3193 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3194 for (auto &I : BB->instructionsWithoutDebug()) { 3195 // Consider terminator instruction to be free. 3196 if (I.isTerminator()) 3197 continue; 3198 // If this is one the stores that we want to speculate out of this BB, 3199 // then don't count it's cost, consider it to be free. 3200 if (auto *S = dyn_cast<StoreInst>(&I)) 3201 if (llvm::find(FreeStores, S)) 3202 continue; 3203 // Else, we have a white-list of instructions that we are ak speculating. 3204 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3205 return false; // Not in white-list - not worthwhile folding. 3206 // And finally, if this is a non-free instruction that we are okay 3207 // speculating, ensure that we consider the speculation budget. 3208 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3209 if (Cost > Budget) 3210 return false; // Eagerly refuse to fold as soon as we're out of budget. 3211 } 3212 assert(Cost <= Budget && 3213 "When we run out of budget we will eagerly return from within the " 3214 "per-instruction loop."); 3215 return true; 3216 }; 3217 3218 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3219 if (!MergeCondStoresAggressively && 3220 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3221 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3222 return false; 3223 3224 // If PostBB has more than two predecessors, we need to split it so we can 3225 // sink the store. 3226 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3227 // We know that QFB's only successor is PostBB. And QFB has a single 3228 // predecessor. If QTB exists, then its only successor is also PostBB. 3229 // If QTB does not exist, then QFB's only predecessor has a conditional 3230 // branch to QFB and PostBB. 3231 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3232 BasicBlock *NewBB = 3233 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3234 if (!NewBB) 3235 return false; 3236 PostBB = NewBB; 3237 } 3238 3239 // OK, we're going to sink the stores to PostBB. The store has to be 3240 // conditional though, so first create the predicate. 3241 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3242 ->getCondition(); 3243 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3244 ->getCondition(); 3245 3246 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3247 PStore->getParent()); 3248 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3249 QStore->getParent(), PPHI); 3250 3251 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3252 3253 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3254 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3255 3256 if (InvertPCond) 3257 PPred = QB.CreateNot(PPred); 3258 if (InvertQCond) 3259 QPred = QB.CreateNot(QPred); 3260 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3261 3262 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3263 /*Unreachable=*/false, 3264 /*BranchWeights=*/nullptr, DTU); 3265 QB.SetInsertPoint(T); 3266 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3267 AAMDNodes AAMD; 3268 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3269 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3270 SI->setAAMetadata(AAMD); 3271 // Choose the minimum alignment. If we could prove both stores execute, we 3272 // could use biggest one. In this case, though, we only know that one of the 3273 // stores executes. And we don't know it's safe to take the alignment from a 3274 // store that doesn't execute. 3275 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3276 3277 QStore->eraseFromParent(); 3278 PStore->eraseFromParent(); 3279 3280 return true; 3281 } 3282 3283 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3284 DomTreeUpdater *DTU, const DataLayout &DL, 3285 const TargetTransformInfo &TTI) { 3286 // The intention here is to find diamonds or triangles (see below) where each 3287 // conditional block contains a store to the same address. Both of these 3288 // stores are conditional, so they can't be unconditionally sunk. But it may 3289 // be profitable to speculatively sink the stores into one merged store at the 3290 // end, and predicate the merged store on the union of the two conditions of 3291 // PBI and QBI. 3292 // 3293 // This can reduce the number of stores executed if both of the conditions are 3294 // true, and can allow the blocks to become small enough to be if-converted. 3295 // This optimization will also chain, so that ladders of test-and-set 3296 // sequences can be if-converted away. 3297 // 3298 // We only deal with simple diamonds or triangles: 3299 // 3300 // PBI or PBI or a combination of the two 3301 // / \ | \ 3302 // PTB PFB | PFB 3303 // \ / | / 3304 // QBI QBI 3305 // / \ | \ 3306 // QTB QFB | QFB 3307 // \ / | / 3308 // PostBB PostBB 3309 // 3310 // We model triangles as a type of diamond with a nullptr "true" block. 3311 // Triangles are canonicalized so that the fallthrough edge is represented by 3312 // a true condition, as in the diagram above. 3313 BasicBlock *PTB = PBI->getSuccessor(0); 3314 BasicBlock *PFB = PBI->getSuccessor(1); 3315 BasicBlock *QTB = QBI->getSuccessor(0); 3316 BasicBlock *QFB = QBI->getSuccessor(1); 3317 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3318 3319 // Make sure we have a good guess for PostBB. If QTB's only successor is 3320 // QFB, then QFB is a better PostBB. 3321 if (QTB->getSingleSuccessor() == QFB) 3322 PostBB = QFB; 3323 3324 // If we couldn't find a good PostBB, stop. 3325 if (!PostBB) 3326 return false; 3327 3328 bool InvertPCond = false, InvertQCond = false; 3329 // Canonicalize fallthroughs to the true branches. 3330 if (PFB == QBI->getParent()) { 3331 std::swap(PFB, PTB); 3332 InvertPCond = true; 3333 } 3334 if (QFB == PostBB) { 3335 std::swap(QFB, QTB); 3336 InvertQCond = true; 3337 } 3338 3339 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3340 // and QFB may not. Model fallthroughs as a nullptr block. 3341 if (PTB == QBI->getParent()) 3342 PTB = nullptr; 3343 if (QTB == PostBB) 3344 QTB = nullptr; 3345 3346 // Legality bailouts. We must have at least the non-fallthrough blocks and 3347 // the post-dominating block, and the non-fallthroughs must only have one 3348 // predecessor. 3349 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3350 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3351 }; 3352 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3353 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3354 return false; 3355 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3356 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3357 return false; 3358 if (!QBI->getParent()->hasNUses(2)) 3359 return false; 3360 3361 // OK, this is a sequence of two diamonds or triangles. 3362 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3363 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3364 for (auto *BB : {PTB, PFB}) { 3365 if (!BB) 3366 continue; 3367 for (auto &I : *BB) 3368 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3369 PStoreAddresses.insert(SI->getPointerOperand()); 3370 } 3371 for (auto *BB : {QTB, QFB}) { 3372 if (!BB) 3373 continue; 3374 for (auto &I : *BB) 3375 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3376 QStoreAddresses.insert(SI->getPointerOperand()); 3377 } 3378 3379 set_intersect(PStoreAddresses, QStoreAddresses); 3380 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3381 // clear what it contains. 3382 auto &CommonAddresses = PStoreAddresses; 3383 3384 bool Changed = false; 3385 for (auto *Address : CommonAddresses) 3386 Changed |= 3387 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3388 InvertPCond, InvertQCond, DTU, DL, TTI); 3389 return Changed; 3390 } 3391 3392 /// If the previous block ended with a widenable branch, determine if reusing 3393 /// the target block is profitable and legal. This will have the effect of 3394 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3395 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3396 DomTreeUpdater *DTU) { 3397 // TODO: This can be generalized in two important ways: 3398 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3399 // values from the PBI edge. 3400 // 2) We can sink side effecting instructions into BI's fallthrough 3401 // successor provided they doesn't contribute to computation of 3402 // BI's condition. 3403 Value *CondWB, *WC; 3404 BasicBlock *IfTrueBB, *IfFalseBB; 3405 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3406 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3407 return false; 3408 if (!IfFalseBB->phis().empty()) 3409 return false; // TODO 3410 // Use lambda to lazily compute expensive condition after cheap ones. 3411 auto NoSideEffects = [](BasicBlock &BB) { 3412 return !llvm::any_of(BB, [](const Instruction &I) { 3413 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3414 }); 3415 }; 3416 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3417 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3418 NoSideEffects(*BI->getParent())) { 3419 auto *OldSuccessor = BI->getSuccessor(1); 3420 OldSuccessor->removePredecessor(BI->getParent()); 3421 BI->setSuccessor(1, IfFalseBB); 3422 if (DTU) 3423 DTU->applyUpdates( 3424 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3425 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3426 return true; 3427 } 3428 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3429 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3430 NoSideEffects(*BI->getParent())) { 3431 auto *OldSuccessor = BI->getSuccessor(0); 3432 OldSuccessor->removePredecessor(BI->getParent()); 3433 BI->setSuccessor(0, IfFalseBB); 3434 if (DTU) 3435 DTU->applyUpdates( 3436 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3437 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3438 return true; 3439 } 3440 return false; 3441 } 3442 3443 /// If we have a conditional branch as a predecessor of another block, 3444 /// this function tries to simplify it. We know 3445 /// that PBI and BI are both conditional branches, and BI is in one of the 3446 /// successor blocks of PBI - PBI branches to BI. 3447 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3448 DomTreeUpdater *DTU, 3449 const DataLayout &DL, 3450 const TargetTransformInfo &TTI) { 3451 assert(PBI->isConditional() && BI->isConditional()); 3452 BasicBlock *BB = BI->getParent(); 3453 3454 // If this block ends with a branch instruction, and if there is a 3455 // predecessor that ends on a branch of the same condition, make 3456 // this conditional branch redundant. 3457 if (PBI->getCondition() == BI->getCondition() && 3458 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3459 // Okay, the outcome of this conditional branch is statically 3460 // knowable. If this block had a single pred, handle specially. 3461 if (BB->getSinglePredecessor()) { 3462 // Turn this into a branch on constant. 3463 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3464 BI->setCondition( 3465 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3466 return true; // Nuke the branch on constant. 3467 } 3468 3469 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3470 // in the constant and simplify the block result. Subsequent passes of 3471 // simplifycfg will thread the block. 3472 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3473 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3474 PHINode *NewPN = PHINode::Create( 3475 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3476 BI->getCondition()->getName() + ".pr", &BB->front()); 3477 // Okay, we're going to insert the PHI node. Since PBI is not the only 3478 // predecessor, compute the PHI'd conditional value for all of the preds. 3479 // Any predecessor where the condition is not computable we keep symbolic. 3480 for (pred_iterator PI = PB; PI != PE; ++PI) { 3481 BasicBlock *P = *PI; 3482 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3483 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3484 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3485 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3486 NewPN->addIncoming( 3487 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3488 P); 3489 } else { 3490 NewPN->addIncoming(BI->getCondition(), P); 3491 } 3492 } 3493 3494 BI->setCondition(NewPN); 3495 return true; 3496 } 3497 } 3498 3499 // If the previous block ended with a widenable branch, determine if reusing 3500 // the target block is profitable and legal. This will have the effect of 3501 // "widening" PBI, but doesn't require us to reason about hosting safety. 3502 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3503 return true; 3504 3505 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3506 if (CE->canTrap()) 3507 return false; 3508 3509 // If both branches are conditional and both contain stores to the same 3510 // address, remove the stores from the conditionals and create a conditional 3511 // merged store at the end. 3512 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3513 return true; 3514 3515 // If this is a conditional branch in an empty block, and if any 3516 // predecessors are a conditional branch to one of our destinations, 3517 // fold the conditions into logical ops and one cond br. 3518 3519 // Ignore dbg intrinsics. 3520 if (&*BB->instructionsWithoutDebug().begin() != BI) 3521 return false; 3522 3523 int PBIOp, BIOp; 3524 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3525 PBIOp = 0; 3526 BIOp = 0; 3527 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3528 PBIOp = 0; 3529 BIOp = 1; 3530 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3531 PBIOp = 1; 3532 BIOp = 0; 3533 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3534 PBIOp = 1; 3535 BIOp = 1; 3536 } else { 3537 return false; 3538 } 3539 3540 // Check to make sure that the other destination of this branch 3541 // isn't BB itself. If so, this is an infinite loop that will 3542 // keep getting unwound. 3543 if (PBI->getSuccessor(PBIOp) == BB) 3544 return false; 3545 3546 // Do not perform this transformation if it would require 3547 // insertion of a large number of select instructions. For targets 3548 // without predication/cmovs, this is a big pessimization. 3549 3550 // Also do not perform this transformation if any phi node in the common 3551 // destination block can trap when reached by BB or PBB (PR17073). In that 3552 // case, it would be unsafe to hoist the operation into a select instruction. 3553 3554 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3555 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3556 unsigned NumPhis = 0; 3557 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3558 ++II, ++NumPhis) { 3559 if (NumPhis > 2) // Disable this xform. 3560 return false; 3561 3562 PHINode *PN = cast<PHINode>(II); 3563 Value *BIV = PN->getIncomingValueForBlock(BB); 3564 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3565 if (CE->canTrap()) 3566 return false; 3567 3568 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3569 Value *PBIV = PN->getIncomingValue(PBBIdx); 3570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3571 if (CE->canTrap()) 3572 return false; 3573 } 3574 3575 // Finally, if everything is ok, fold the branches to logical ops. 3576 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3577 3578 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3579 << "AND: " << *BI->getParent()); 3580 3581 SmallVector<DominatorTree::UpdateType, 5> Updates; 3582 3583 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3584 // branch in it, where one edge (OtherDest) goes back to itself but the other 3585 // exits. We don't *know* that the program avoids the infinite loop 3586 // (even though that seems likely). If we do this xform naively, we'll end up 3587 // recursively unpeeling the loop. Since we know that (after the xform is 3588 // done) that the block *is* infinite if reached, we just make it an obviously 3589 // infinite loop with no cond branch. 3590 if (OtherDest == BB) { 3591 // Insert it at the end of the function, because it's either code, 3592 // or it won't matter if it's hot. :) 3593 BasicBlock *InfLoopBlock = 3594 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3595 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3596 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3597 OtherDest = InfLoopBlock; 3598 } 3599 3600 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3601 3602 // BI may have other predecessors. Because of this, we leave 3603 // it alone, but modify PBI. 3604 3605 // Make sure we get to CommonDest on True&True directions. 3606 Value *PBICond = PBI->getCondition(); 3607 IRBuilder<NoFolder> Builder(PBI); 3608 if (PBIOp) 3609 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3610 3611 Value *BICond = BI->getCondition(); 3612 if (BIOp) 3613 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3614 3615 // Merge the conditions. 3616 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3617 3618 // Modify PBI to branch on the new condition to the new dests. 3619 PBI->setCondition(Cond); 3620 PBI->setSuccessor(0, CommonDest); 3621 PBI->setSuccessor(1, OtherDest); 3622 3623 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3624 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3625 3626 if (DTU) 3627 DTU->applyUpdates(Updates); 3628 3629 // Update branch weight for PBI. 3630 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3631 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3632 bool HasWeights = 3633 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3634 SuccTrueWeight, SuccFalseWeight); 3635 if (HasWeights) { 3636 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3637 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3638 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3639 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3640 // The weight to CommonDest should be PredCommon * SuccTotal + 3641 // PredOther * SuccCommon. 3642 // The weight to OtherDest should be PredOther * SuccOther. 3643 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3644 PredOther * SuccCommon, 3645 PredOther * SuccOther}; 3646 // Halve the weights if any of them cannot fit in an uint32_t 3647 FitWeights(NewWeights); 3648 3649 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3650 } 3651 3652 // OtherDest may have phi nodes. If so, add an entry from PBI's 3653 // block that are identical to the entries for BI's block. 3654 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3655 3656 // We know that the CommonDest already had an edge from PBI to 3657 // it. If it has PHIs though, the PHIs may have different 3658 // entries for BB and PBI's BB. If so, insert a select to make 3659 // them agree. 3660 for (PHINode &PN : CommonDest->phis()) { 3661 Value *BIV = PN.getIncomingValueForBlock(BB); 3662 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3663 Value *PBIV = PN.getIncomingValue(PBBIdx); 3664 if (BIV != PBIV) { 3665 // Insert a select in PBI to pick the right value. 3666 SelectInst *NV = cast<SelectInst>( 3667 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3668 PN.setIncomingValue(PBBIdx, NV); 3669 // Although the select has the same condition as PBI, the original branch 3670 // weights for PBI do not apply to the new select because the select's 3671 // 'logical' edges are incoming edges of the phi that is eliminated, not 3672 // the outgoing edges of PBI. 3673 if (HasWeights) { 3674 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3675 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3676 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3677 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3678 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3679 // The weight to PredOtherDest should be PredOther * SuccCommon. 3680 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3681 PredOther * SuccCommon}; 3682 3683 FitWeights(NewWeights); 3684 3685 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3686 } 3687 } 3688 } 3689 3690 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3691 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3692 3693 // This basic block is probably dead. We know it has at least 3694 // one fewer predecessor. 3695 return true; 3696 } 3697 3698 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3699 // true or to FalseBB if Cond is false. 3700 // Takes care of updating the successors and removing the old terminator. 3701 // Also makes sure not to introduce new successors by assuming that edges to 3702 // non-successor TrueBBs and FalseBBs aren't reachable. 3703 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3704 Value *Cond, BasicBlock *TrueBB, 3705 BasicBlock *FalseBB, 3706 uint32_t TrueWeight, 3707 uint32_t FalseWeight) { 3708 auto *BB = OldTerm->getParent(); 3709 // Remove any superfluous successor edges from the CFG. 3710 // First, figure out which successors to preserve. 3711 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3712 // successor. 3713 BasicBlock *KeepEdge1 = TrueBB; 3714 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3715 3716 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 3717 3718 // Then remove the rest. 3719 for (BasicBlock *Succ : successors(OldTerm)) { 3720 // Make sure only to keep exactly one copy of each edge. 3721 if (Succ == KeepEdge1) 3722 KeepEdge1 = nullptr; 3723 else if (Succ == KeepEdge2) 3724 KeepEdge2 = nullptr; 3725 else { 3726 Succ->removePredecessor(BB, 3727 /*KeepOneInputPHIs=*/true); 3728 3729 if (Succ != TrueBB && Succ != FalseBB) 3730 RemovedSuccessors.insert(Succ); 3731 } 3732 } 3733 3734 IRBuilder<> Builder(OldTerm); 3735 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3736 3737 // Insert an appropriate new terminator. 3738 if (!KeepEdge1 && !KeepEdge2) { 3739 if (TrueBB == FalseBB) { 3740 // We were only looking for one successor, and it was present. 3741 // Create an unconditional branch to it. 3742 Builder.CreateBr(TrueBB); 3743 } else { 3744 // We found both of the successors we were looking for. 3745 // Create a conditional branch sharing the condition of the select. 3746 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3747 if (TrueWeight != FalseWeight) 3748 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3749 } 3750 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3751 // Neither of the selected blocks were successors, so this 3752 // terminator must be unreachable. 3753 new UnreachableInst(OldTerm->getContext(), OldTerm); 3754 } else { 3755 // One of the selected values was a successor, but the other wasn't. 3756 // Insert an unconditional branch to the one that was found; 3757 // the edge to the one that wasn't must be unreachable. 3758 if (!KeepEdge1) { 3759 // Only TrueBB was found. 3760 Builder.CreateBr(TrueBB); 3761 } else { 3762 // Only FalseBB was found. 3763 Builder.CreateBr(FalseBB); 3764 } 3765 } 3766 3767 EraseTerminatorAndDCECond(OldTerm); 3768 3769 if (DTU) { 3770 SmallVector<DominatorTree::UpdateType, 2> Updates; 3771 Updates.reserve(RemovedSuccessors.size()); 3772 for (auto *RemovedSuccessor : RemovedSuccessors) 3773 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3774 DTU->applyUpdates(Updates); 3775 } 3776 3777 return true; 3778 } 3779 3780 // Replaces 3781 // (switch (select cond, X, Y)) on constant X, Y 3782 // with a branch - conditional if X and Y lead to distinct BBs, 3783 // unconditional otherwise. 3784 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3785 SelectInst *Select) { 3786 // Check for constant integer values in the select. 3787 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3788 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3789 if (!TrueVal || !FalseVal) 3790 return false; 3791 3792 // Find the relevant condition and destinations. 3793 Value *Condition = Select->getCondition(); 3794 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3795 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3796 3797 // Get weight for TrueBB and FalseBB. 3798 uint32_t TrueWeight = 0, FalseWeight = 0; 3799 SmallVector<uint64_t, 8> Weights; 3800 bool HasWeights = HasBranchWeights(SI); 3801 if (HasWeights) { 3802 GetBranchWeights(SI, Weights); 3803 if (Weights.size() == 1 + SI->getNumCases()) { 3804 TrueWeight = 3805 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3806 FalseWeight = 3807 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3808 } 3809 } 3810 3811 // Perform the actual simplification. 3812 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3813 FalseWeight); 3814 } 3815 3816 // Replaces 3817 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3818 // blockaddress(@fn, BlockB))) 3819 // with 3820 // (br cond, BlockA, BlockB). 3821 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3822 SelectInst *SI) { 3823 // Check that both operands of the select are block addresses. 3824 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3825 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3826 if (!TBA || !FBA) 3827 return false; 3828 3829 // Extract the actual blocks. 3830 BasicBlock *TrueBB = TBA->getBasicBlock(); 3831 BasicBlock *FalseBB = FBA->getBasicBlock(); 3832 3833 // Perform the actual simplification. 3834 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3835 0); 3836 } 3837 3838 /// This is called when we find an icmp instruction 3839 /// (a seteq/setne with a constant) as the only instruction in a 3840 /// block that ends with an uncond branch. We are looking for a very specific 3841 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3842 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3843 /// default value goes to an uncond block with a seteq in it, we get something 3844 /// like: 3845 /// 3846 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3847 /// DEFAULT: 3848 /// %tmp = icmp eq i8 %A, 92 3849 /// br label %end 3850 /// end: 3851 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3852 /// 3853 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3854 /// the PHI, merging the third icmp into the switch. 3855 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3856 ICmpInst *ICI, IRBuilder<> &Builder) { 3857 BasicBlock *BB = ICI->getParent(); 3858 3859 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3860 // complex. 3861 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3862 return false; 3863 3864 Value *V = ICI->getOperand(0); 3865 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3866 3867 // The pattern we're looking for is where our only predecessor is a switch on 3868 // 'V' and this block is the default case for the switch. In this case we can 3869 // fold the compared value into the switch to simplify things. 3870 BasicBlock *Pred = BB->getSinglePredecessor(); 3871 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3872 return false; 3873 3874 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3875 if (SI->getCondition() != V) 3876 return false; 3877 3878 // If BB is reachable on a non-default case, then we simply know the value of 3879 // V in this block. Substitute it and constant fold the icmp instruction 3880 // away. 3881 if (SI->getDefaultDest() != BB) { 3882 ConstantInt *VVal = SI->findCaseDest(BB); 3883 assert(VVal && "Should have a unique destination value"); 3884 ICI->setOperand(0, VVal); 3885 3886 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3887 ICI->replaceAllUsesWith(V); 3888 ICI->eraseFromParent(); 3889 } 3890 // BB is now empty, so it is likely to simplify away. 3891 return requestResimplify(); 3892 } 3893 3894 // Ok, the block is reachable from the default dest. If the constant we're 3895 // comparing exists in one of the other edges, then we can constant fold ICI 3896 // and zap it. 3897 if (SI->findCaseValue(Cst) != SI->case_default()) { 3898 Value *V; 3899 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3900 V = ConstantInt::getFalse(BB->getContext()); 3901 else 3902 V = ConstantInt::getTrue(BB->getContext()); 3903 3904 ICI->replaceAllUsesWith(V); 3905 ICI->eraseFromParent(); 3906 // BB is now empty, so it is likely to simplify away. 3907 return requestResimplify(); 3908 } 3909 3910 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3911 // the block. 3912 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3913 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3914 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3915 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3916 return false; 3917 3918 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3919 // true in the PHI. 3920 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3921 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3922 3923 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3924 std::swap(DefaultCst, NewCst); 3925 3926 // Replace ICI (which is used by the PHI for the default value) with true or 3927 // false depending on if it is EQ or NE. 3928 ICI->replaceAllUsesWith(DefaultCst); 3929 ICI->eraseFromParent(); 3930 3931 SmallVector<DominatorTree::UpdateType, 2> Updates; 3932 3933 // Okay, the switch goes to this block on a default value. Add an edge from 3934 // the switch to the merge point on the compared value. 3935 BasicBlock *NewBB = 3936 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3937 { 3938 SwitchInstProfUpdateWrapper SIW(*SI); 3939 auto W0 = SIW.getSuccessorWeight(0); 3940 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3941 if (W0) { 3942 NewW = ((uint64_t(*W0) + 1) >> 1); 3943 SIW.setSuccessorWeight(0, *NewW); 3944 } 3945 SIW.addCase(Cst, NewBB, NewW); 3946 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 3947 } 3948 3949 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3950 Builder.SetInsertPoint(NewBB); 3951 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3952 Builder.CreateBr(SuccBlock); 3953 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 3954 PHIUse->addIncoming(NewCst, NewBB); 3955 if (DTU) 3956 DTU->applyUpdates(Updates); 3957 return true; 3958 } 3959 3960 /// The specified branch is a conditional branch. 3961 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3962 /// fold it into a switch instruction if so. 3963 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3964 IRBuilder<> &Builder, 3965 const DataLayout &DL) { 3966 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3967 if (!Cond) 3968 return false; 3969 3970 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3971 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3972 // 'setne's and'ed together, collect them. 3973 3974 // Try to gather values from a chain of and/or to be turned into a switch 3975 ConstantComparesGatherer ConstantCompare(Cond, DL); 3976 // Unpack the result 3977 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3978 Value *CompVal = ConstantCompare.CompValue; 3979 unsigned UsedICmps = ConstantCompare.UsedICmps; 3980 Value *ExtraCase = ConstantCompare.Extra; 3981 3982 // If we didn't have a multiply compared value, fail. 3983 if (!CompVal) 3984 return false; 3985 3986 // Avoid turning single icmps into a switch. 3987 if (UsedICmps <= 1) 3988 return false; 3989 3990 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 3991 3992 // There might be duplicate constants in the list, which the switch 3993 // instruction can't handle, remove them now. 3994 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3995 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3996 3997 // If Extra was used, we require at least two switch values to do the 3998 // transformation. A switch with one value is just a conditional branch. 3999 if (ExtraCase && Values.size() < 2) 4000 return false; 4001 4002 // TODO: Preserve branch weight metadata, similarly to how 4003 // FoldValueComparisonIntoPredecessors preserves it. 4004 4005 // Figure out which block is which destination. 4006 BasicBlock *DefaultBB = BI->getSuccessor(1); 4007 BasicBlock *EdgeBB = BI->getSuccessor(0); 4008 if (!TrueWhenEqual) 4009 std::swap(DefaultBB, EdgeBB); 4010 4011 BasicBlock *BB = BI->getParent(); 4012 4013 // MSAN does not like undefs as branch condition which can be introduced 4014 // with "explicit branch". 4015 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4016 return false; 4017 4018 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4019 << " cases into SWITCH. BB is:\n" 4020 << *BB); 4021 4022 SmallVector<DominatorTree::UpdateType, 2> Updates; 4023 4024 // If there are any extra values that couldn't be folded into the switch 4025 // then we evaluate them with an explicit branch first. Split the block 4026 // right before the condbr to handle it. 4027 if (ExtraCase) { 4028 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4029 /*MSSAU=*/nullptr, "switch.early.test"); 4030 4031 // Remove the uncond branch added to the old block. 4032 Instruction *OldTI = BB->getTerminator(); 4033 Builder.SetInsertPoint(OldTI); 4034 4035 if (TrueWhenEqual) 4036 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4037 else 4038 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4039 4040 OldTI->eraseFromParent(); 4041 4042 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4043 4044 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4045 // for the edge we just added. 4046 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4047 4048 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4049 << "\nEXTRABB = " << *BB); 4050 BB = NewBB; 4051 } 4052 4053 Builder.SetInsertPoint(BI); 4054 // Convert pointer to int before we switch. 4055 if (CompVal->getType()->isPointerTy()) { 4056 CompVal = Builder.CreatePtrToInt( 4057 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4058 } 4059 4060 // Create the new switch instruction now. 4061 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4062 4063 // Add all of the 'cases' to the switch instruction. 4064 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4065 New->addCase(Values[i], EdgeBB); 4066 4067 // We added edges from PI to the EdgeBB. As such, if there were any 4068 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4069 // the number of edges added. 4070 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4071 PHINode *PN = cast<PHINode>(BBI); 4072 Value *InVal = PN->getIncomingValueForBlock(BB); 4073 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4074 PN->addIncoming(InVal, BB); 4075 } 4076 4077 // Erase the old branch instruction. 4078 EraseTerminatorAndDCECond(BI); 4079 if (DTU) 4080 DTU->applyUpdates(Updates); 4081 4082 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4083 return true; 4084 } 4085 4086 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4087 if (isa<PHINode>(RI->getValue())) 4088 return simplifyCommonResume(RI); 4089 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4090 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4091 // The resume must unwind the exception that caused control to branch here. 4092 return simplifySingleResume(RI); 4093 4094 return false; 4095 } 4096 4097 // Check if cleanup block is empty 4098 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4099 for (Instruction &I : R) { 4100 auto *II = dyn_cast<IntrinsicInst>(&I); 4101 if (!II) 4102 return false; 4103 4104 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4105 switch (IntrinsicID) { 4106 case Intrinsic::dbg_declare: 4107 case Intrinsic::dbg_value: 4108 case Intrinsic::dbg_label: 4109 case Intrinsic::lifetime_end: 4110 break; 4111 default: 4112 return false; 4113 } 4114 } 4115 return true; 4116 } 4117 4118 // Simplify resume that is shared by several landing pads (phi of landing pad). 4119 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4120 BasicBlock *BB = RI->getParent(); 4121 4122 // Check that there are no other instructions except for debug and lifetime 4123 // intrinsics between the phi's and resume instruction. 4124 if (!isCleanupBlockEmpty( 4125 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4126 return false; 4127 4128 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4129 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4130 4131 // Check incoming blocks to see if any of them are trivial. 4132 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4133 Idx++) { 4134 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4135 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4136 4137 // If the block has other successors, we can not delete it because 4138 // it has other dependents. 4139 if (IncomingBB->getUniqueSuccessor() != BB) 4140 continue; 4141 4142 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4143 // Not the landing pad that caused the control to branch here. 4144 if (IncomingValue != LandingPad) 4145 continue; 4146 4147 if (isCleanupBlockEmpty( 4148 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4149 TrivialUnwindBlocks.insert(IncomingBB); 4150 } 4151 4152 // If no trivial unwind blocks, don't do any simplifications. 4153 if (TrivialUnwindBlocks.empty()) 4154 return false; 4155 4156 // Turn all invokes that unwind here into calls. 4157 for (auto *TrivialBB : TrivialUnwindBlocks) { 4158 // Blocks that will be simplified should be removed from the phi node. 4159 // Note there could be multiple edges to the resume block, and we need 4160 // to remove them all. 4161 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4162 BB->removePredecessor(TrivialBB, true); 4163 4164 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 4165 PI != PE;) { 4166 BasicBlock *Pred = *PI++; 4167 removeUnwindEdge(Pred, DTU); 4168 ++NumInvokes; 4169 } 4170 4171 // In each SimplifyCFG run, only the current processed block can be erased. 4172 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4173 // of erasing TrivialBB, we only remove the branch to the common resume 4174 // block so that we can later erase the resume block since it has no 4175 // predecessors. 4176 TrivialBB->getTerminator()->eraseFromParent(); 4177 new UnreachableInst(RI->getContext(), TrivialBB); 4178 if (DTU) 4179 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4180 } 4181 4182 // Delete the resume block if all its predecessors have been removed. 4183 if (pred_empty(BB)) { 4184 if (DTU) 4185 DTU->deleteBB(BB); 4186 else 4187 BB->eraseFromParent(); 4188 } 4189 4190 return !TrivialUnwindBlocks.empty(); 4191 } 4192 4193 // Simplify resume that is only used by a single (non-phi) landing pad. 4194 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4195 BasicBlock *BB = RI->getParent(); 4196 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4197 assert(RI->getValue() == LPInst && 4198 "Resume must unwind the exception that caused control to here"); 4199 4200 // Check that there are no other instructions except for debug intrinsics. 4201 if (!isCleanupBlockEmpty( 4202 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4203 return false; 4204 4205 // Turn all invokes that unwind here into calls and delete the basic block. 4206 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4207 BasicBlock *Pred = *PI++; 4208 removeUnwindEdge(Pred, DTU); 4209 ++NumInvokes; 4210 } 4211 4212 // The landingpad is now unreachable. Zap it. 4213 if (DTU) 4214 DTU->deleteBB(BB); 4215 else 4216 BB->eraseFromParent(); 4217 return true; 4218 } 4219 4220 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4221 // If this is a trivial cleanup pad that executes no instructions, it can be 4222 // eliminated. If the cleanup pad continues to the caller, any predecessor 4223 // that is an EH pad will be updated to continue to the caller and any 4224 // predecessor that terminates with an invoke instruction will have its invoke 4225 // instruction converted to a call instruction. If the cleanup pad being 4226 // simplified does not continue to the caller, each predecessor will be 4227 // updated to continue to the unwind destination of the cleanup pad being 4228 // simplified. 4229 BasicBlock *BB = RI->getParent(); 4230 CleanupPadInst *CPInst = RI->getCleanupPad(); 4231 if (CPInst->getParent() != BB) 4232 // This isn't an empty cleanup. 4233 return false; 4234 4235 // We cannot kill the pad if it has multiple uses. This typically arises 4236 // from unreachable basic blocks. 4237 if (!CPInst->hasOneUse()) 4238 return false; 4239 4240 // Check that there are no other instructions except for benign intrinsics. 4241 if (!isCleanupBlockEmpty( 4242 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4243 return false; 4244 4245 // If the cleanup return we are simplifying unwinds to the caller, this will 4246 // set UnwindDest to nullptr. 4247 BasicBlock *UnwindDest = RI->getUnwindDest(); 4248 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4249 4250 // We're about to remove BB from the control flow. Before we do, sink any 4251 // PHINodes into the unwind destination. Doing this before changing the 4252 // control flow avoids some potentially slow checks, since we can currently 4253 // be certain that UnwindDest and BB have no common predecessors (since they 4254 // are both EH pads). 4255 if (UnwindDest) { 4256 // First, go through the PHI nodes in UnwindDest and update any nodes that 4257 // reference the block we are removing 4258 for (BasicBlock::iterator I = UnwindDest->begin(), 4259 IE = DestEHPad->getIterator(); 4260 I != IE; ++I) { 4261 PHINode *DestPN = cast<PHINode>(I); 4262 4263 int Idx = DestPN->getBasicBlockIndex(BB); 4264 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4265 assert(Idx != -1); 4266 // This PHI node has an incoming value that corresponds to a control 4267 // path through the cleanup pad we are removing. If the incoming 4268 // value is in the cleanup pad, it must be a PHINode (because we 4269 // verified above that the block is otherwise empty). Otherwise, the 4270 // value is either a constant or a value that dominates the cleanup 4271 // pad being removed. 4272 // 4273 // Because BB and UnwindDest are both EH pads, all of their 4274 // predecessors must unwind to these blocks, and since no instruction 4275 // can have multiple unwind destinations, there will be no overlap in 4276 // incoming blocks between SrcPN and DestPN. 4277 Value *SrcVal = DestPN->getIncomingValue(Idx); 4278 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4279 4280 // Remove the entry for the block we are deleting. 4281 DestPN->removeIncomingValue(Idx, false); 4282 4283 if (SrcPN && SrcPN->getParent() == BB) { 4284 // If the incoming value was a PHI node in the cleanup pad we are 4285 // removing, we need to merge that PHI node's incoming values into 4286 // DestPN. 4287 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4288 SrcIdx != SrcE; ++SrcIdx) { 4289 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4290 SrcPN->getIncomingBlock(SrcIdx)); 4291 } 4292 } else { 4293 // Otherwise, the incoming value came from above BB and 4294 // so we can just reuse it. We must associate all of BB's 4295 // predecessors with this value. 4296 for (auto *pred : predecessors(BB)) { 4297 DestPN->addIncoming(SrcVal, pred); 4298 } 4299 } 4300 } 4301 4302 // Sink any remaining PHI nodes directly into UnwindDest. 4303 Instruction *InsertPt = DestEHPad; 4304 for (BasicBlock::iterator I = BB->begin(), 4305 IE = BB->getFirstNonPHI()->getIterator(); 4306 I != IE;) { 4307 // The iterator must be incremented here because the instructions are 4308 // being moved to another block. 4309 PHINode *PN = cast<PHINode>(I++); 4310 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4311 // If the PHI node has no uses or all of its uses are in this basic 4312 // block (meaning they are debug or lifetime intrinsics), just leave 4313 // it. It will be erased when we erase BB below. 4314 continue; 4315 4316 // Otherwise, sink this PHI node into UnwindDest. 4317 // Any predecessors to UnwindDest which are not already represented 4318 // must be back edges which inherit the value from the path through 4319 // BB. In this case, the PHI value must reference itself. 4320 for (auto *pred : predecessors(UnwindDest)) 4321 if (pred != BB) 4322 PN->addIncoming(PN, pred); 4323 PN->moveBefore(InsertPt); 4324 } 4325 } 4326 4327 std::vector<DominatorTree::UpdateType> Updates; 4328 4329 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4330 // The iterator must be updated here because we are removing this pred. 4331 BasicBlock *PredBB = *PI++; 4332 if (UnwindDest == nullptr) { 4333 if (DTU) 4334 DTU->applyUpdates(Updates); 4335 Updates.clear(); 4336 removeUnwindEdge(PredBB, DTU); 4337 ++NumInvokes; 4338 } else { 4339 Instruction *TI = PredBB->getTerminator(); 4340 TI->replaceUsesOfWith(BB, UnwindDest); 4341 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4342 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4343 } 4344 } 4345 4346 if (DTU) { 4347 DTU->applyUpdates(Updates); 4348 DTU->deleteBB(BB); 4349 } else 4350 // The cleanup pad is now unreachable. Zap it. 4351 BB->eraseFromParent(); 4352 4353 return true; 4354 } 4355 4356 // Try to merge two cleanuppads together. 4357 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4358 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4359 // with. 4360 BasicBlock *UnwindDest = RI->getUnwindDest(); 4361 if (!UnwindDest) 4362 return false; 4363 4364 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4365 // be safe to merge without code duplication. 4366 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4367 return false; 4368 4369 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4370 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4371 if (!SuccessorCleanupPad) 4372 return false; 4373 4374 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4375 // Replace any uses of the successor cleanupad with the predecessor pad 4376 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4377 // funclet bundle operands. 4378 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4379 // Remove the old cleanuppad. 4380 SuccessorCleanupPad->eraseFromParent(); 4381 // Now, we simply replace the cleanupret with a branch to the unwind 4382 // destination. 4383 BranchInst::Create(UnwindDest, RI->getParent()); 4384 RI->eraseFromParent(); 4385 4386 return true; 4387 } 4388 4389 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4390 // It is possible to transiantly have an undef cleanuppad operand because we 4391 // have deleted some, but not all, dead blocks. 4392 // Eventually, this block will be deleted. 4393 if (isa<UndefValue>(RI->getOperand(0))) 4394 return false; 4395 4396 if (mergeCleanupPad(RI)) 4397 return true; 4398 4399 if (removeEmptyCleanup(RI, DTU)) 4400 return true; 4401 4402 return false; 4403 } 4404 4405 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4406 BasicBlock *BB = RI->getParent(); 4407 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4408 return false; 4409 4410 // Find predecessors that end with branches. 4411 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4412 SmallVector<BranchInst *, 8> CondBranchPreds; 4413 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4414 BasicBlock *P = *PI; 4415 Instruction *PTI = P->getTerminator(); 4416 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4417 if (BI->isUnconditional()) 4418 UncondBranchPreds.push_back(P); 4419 else 4420 CondBranchPreds.push_back(BI); 4421 } 4422 } 4423 4424 // If we found some, do the transformation! 4425 if (!UncondBranchPreds.empty() && DupRet) { 4426 while (!UncondBranchPreds.empty()) { 4427 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4428 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4429 << "INTO UNCOND BRANCH PRED: " << *Pred); 4430 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4431 } 4432 4433 // If we eliminated all predecessors of the block, delete the block now. 4434 if (pred_empty(BB)) { 4435 // We know there are no successors, so just nuke the block. 4436 if (DTU) 4437 DTU->deleteBB(BB); 4438 else 4439 BB->eraseFromParent(); 4440 } 4441 4442 return true; 4443 } 4444 4445 // Check out all of the conditional branches going to this return 4446 // instruction. If any of them just select between returns, change the 4447 // branch itself into a select/return pair. 4448 while (!CondBranchPreds.empty()) { 4449 BranchInst *BI = CondBranchPreds.pop_back_val(); 4450 4451 // Check to see if the non-BB successor is also a return block. 4452 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4453 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4454 SimplifyCondBranchToTwoReturns(BI, Builder)) 4455 return true; 4456 } 4457 return false; 4458 } 4459 4460 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4461 BasicBlock *BB = UI->getParent(); 4462 4463 bool Changed = false; 4464 4465 // If there are any instructions immediately before the unreachable that can 4466 // be removed, do so. 4467 while (UI->getIterator() != BB->begin()) { 4468 BasicBlock::iterator BBI = UI->getIterator(); 4469 --BBI; 4470 // Do not delete instructions that can have side effects which might cause 4471 // the unreachable to not be reachable; specifically, calls and volatile 4472 // operations may have this effect. 4473 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4474 break; 4475 4476 if (BBI->mayHaveSideEffects()) { 4477 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4478 if (SI->isVolatile()) 4479 break; 4480 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4481 if (LI->isVolatile()) 4482 break; 4483 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4484 if (RMWI->isVolatile()) 4485 break; 4486 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4487 if (CXI->isVolatile()) 4488 break; 4489 } else if (isa<CatchPadInst>(BBI)) { 4490 // A catchpad may invoke exception object constructors and such, which 4491 // in some languages can be arbitrary code, so be conservative by 4492 // default. 4493 // For CoreCLR, it just involves a type test, so can be removed. 4494 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4495 EHPersonality::CoreCLR) 4496 break; 4497 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4498 !isa<LandingPadInst>(BBI)) { 4499 break; 4500 } 4501 // Note that deleting LandingPad's here is in fact okay, although it 4502 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4503 // all the predecessors of this block will be the unwind edges of Invokes, 4504 // and we can therefore guarantee this block will be erased. 4505 } 4506 4507 // Delete this instruction (any uses are guaranteed to be dead) 4508 if (!BBI->use_empty()) 4509 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4510 BBI->eraseFromParent(); 4511 Changed = true; 4512 } 4513 4514 // If the unreachable instruction is the first in the block, take a gander 4515 // at all of the predecessors of this instruction, and simplify them. 4516 if (&BB->front() != UI) 4517 return Changed; 4518 4519 std::vector<DominatorTree::UpdateType> Updates; 4520 4521 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4522 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4523 auto *Predecessor = Preds[i]; 4524 Instruction *TI = Predecessor->getTerminator(); 4525 IRBuilder<> Builder(TI); 4526 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4527 // We could either have a proper unconditional branch, 4528 // or a degenerate conditional branch with matching destinations. 4529 if (all_of(BI->successors(), 4530 [BB](auto *Successor) { return Successor == BB; })) { 4531 new UnreachableInst(TI->getContext(), TI); 4532 TI->eraseFromParent(); 4533 Changed = true; 4534 } else { 4535 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4536 Value* Cond = BI->getCondition(); 4537 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4538 "The destinations are guaranteed to be different here."); 4539 if (BI->getSuccessor(0) == BB) { 4540 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4541 Builder.CreateBr(BI->getSuccessor(1)); 4542 } else { 4543 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4544 Builder.CreateAssumption(Cond); 4545 Builder.CreateBr(BI->getSuccessor(0)); 4546 } 4547 EraseTerminatorAndDCECond(BI); 4548 Changed = true; 4549 } 4550 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4551 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4552 SwitchInstProfUpdateWrapper SU(*SI); 4553 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4554 if (i->getCaseSuccessor() != BB) { 4555 ++i; 4556 continue; 4557 } 4558 BB->removePredecessor(SU->getParent()); 4559 i = SU.removeCase(i); 4560 e = SU->case_end(); 4561 Changed = true; 4562 } 4563 // Note that the default destination can't be removed! 4564 if (SI->getDefaultDest() != BB) 4565 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4566 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4567 if (II->getUnwindDest() == BB) { 4568 if (DTU) 4569 DTU->applyUpdates(Updates); 4570 Updates.clear(); 4571 removeUnwindEdge(TI->getParent(), DTU); 4572 Changed = true; 4573 } 4574 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4575 if (CSI->getUnwindDest() == BB) { 4576 if (DTU) 4577 DTU->applyUpdates(Updates); 4578 Updates.clear(); 4579 removeUnwindEdge(TI->getParent(), DTU); 4580 Changed = true; 4581 continue; 4582 } 4583 4584 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4585 E = CSI->handler_end(); 4586 I != E; ++I) { 4587 if (*I == BB) { 4588 CSI->removeHandler(I); 4589 --I; 4590 --E; 4591 Changed = true; 4592 } 4593 } 4594 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4595 if (CSI->getNumHandlers() == 0) { 4596 if (CSI->hasUnwindDest()) { 4597 // Redirect all predecessors of the block containing CatchSwitchInst 4598 // to instead branch to the CatchSwitchInst's unwind destination. 4599 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4600 Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor, 4601 CSI->getUnwindDest()}); 4602 Updates.push_back( 4603 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor}); 4604 } 4605 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4606 } else { 4607 // Rewrite all preds to unwind to caller (or from invoke to call). 4608 if (DTU) 4609 DTU->applyUpdates(Updates); 4610 Updates.clear(); 4611 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4612 for (BasicBlock *EHPred : EHPreds) 4613 removeUnwindEdge(EHPred, DTU); 4614 } 4615 // The catchswitch is no longer reachable. 4616 new UnreachableInst(CSI->getContext(), CSI); 4617 CSI->eraseFromParent(); 4618 Changed = true; 4619 } 4620 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4621 (void)CRI; 4622 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4623 "Expected to always have an unwind to BB."); 4624 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4625 new UnreachableInst(TI->getContext(), TI); 4626 TI->eraseFromParent(); 4627 Changed = true; 4628 } 4629 } 4630 4631 if (DTU) 4632 DTU->applyUpdates(Updates); 4633 4634 // If this block is now dead, remove it. 4635 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4636 // We know there are no successors, so just nuke the block. 4637 if (DTU) 4638 DTU->deleteBB(BB); 4639 else 4640 BB->eraseFromParent(); 4641 return true; 4642 } 4643 4644 return Changed; 4645 } 4646 4647 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4648 assert(Cases.size() >= 1); 4649 4650 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4651 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4652 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4653 return false; 4654 } 4655 return true; 4656 } 4657 4658 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4659 DomTreeUpdater *DTU) { 4660 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4661 auto *BB = Switch->getParent(); 4662 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4663 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4664 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4665 Switch->setDefaultDest(&*NewDefaultBlock); 4666 if (DTU) 4667 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4668 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4669 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4670 SmallVector<DominatorTree::UpdateType, 2> Updates; 4671 for (auto *Successor : successors(NewDefaultBlock)) 4672 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4673 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4674 new UnreachableInst(Switch->getContext(), NewTerminator); 4675 EraseTerminatorAndDCECond(NewTerminator); 4676 if (DTU) 4677 DTU->applyUpdates(Updates); 4678 } 4679 4680 /// Turn a switch with two reachable destinations into an integer range 4681 /// comparison and branch. 4682 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4683 IRBuilder<> &Builder) { 4684 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4685 4686 bool HasDefault = 4687 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4688 4689 auto *BB = SI->getParent(); 4690 4691 // Partition the cases into two sets with different destinations. 4692 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4693 BasicBlock *DestB = nullptr; 4694 SmallVector<ConstantInt *, 16> CasesA; 4695 SmallVector<ConstantInt *, 16> CasesB; 4696 4697 for (auto Case : SI->cases()) { 4698 BasicBlock *Dest = Case.getCaseSuccessor(); 4699 if (!DestA) 4700 DestA = Dest; 4701 if (Dest == DestA) { 4702 CasesA.push_back(Case.getCaseValue()); 4703 continue; 4704 } 4705 if (!DestB) 4706 DestB = Dest; 4707 if (Dest == DestB) { 4708 CasesB.push_back(Case.getCaseValue()); 4709 continue; 4710 } 4711 return false; // More than two destinations. 4712 } 4713 4714 assert(DestA && DestB && 4715 "Single-destination switch should have been folded."); 4716 assert(DestA != DestB); 4717 assert(DestB != SI->getDefaultDest()); 4718 assert(!CasesB.empty() && "There must be non-default cases."); 4719 assert(!CasesA.empty() || HasDefault); 4720 4721 // Figure out if one of the sets of cases form a contiguous range. 4722 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4723 BasicBlock *ContiguousDest = nullptr; 4724 BasicBlock *OtherDest = nullptr; 4725 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4726 ContiguousCases = &CasesA; 4727 ContiguousDest = DestA; 4728 OtherDest = DestB; 4729 } else if (CasesAreContiguous(CasesB)) { 4730 ContiguousCases = &CasesB; 4731 ContiguousDest = DestB; 4732 OtherDest = DestA; 4733 } else 4734 return false; 4735 4736 // Start building the compare and branch. 4737 4738 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4739 Constant *NumCases = 4740 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4741 4742 Value *Sub = SI->getCondition(); 4743 if (!Offset->isNullValue()) 4744 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4745 4746 Value *Cmp; 4747 // If NumCases overflowed, then all possible values jump to the successor. 4748 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4749 Cmp = ConstantInt::getTrue(SI->getContext()); 4750 else 4751 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4752 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4753 4754 // Update weight for the newly-created conditional branch. 4755 if (HasBranchWeights(SI)) { 4756 SmallVector<uint64_t, 8> Weights; 4757 GetBranchWeights(SI, Weights); 4758 if (Weights.size() == 1 + SI->getNumCases()) { 4759 uint64_t TrueWeight = 0; 4760 uint64_t FalseWeight = 0; 4761 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4762 if (SI->getSuccessor(I) == ContiguousDest) 4763 TrueWeight += Weights[I]; 4764 else 4765 FalseWeight += Weights[I]; 4766 } 4767 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4768 TrueWeight /= 2; 4769 FalseWeight /= 2; 4770 } 4771 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4772 } 4773 } 4774 4775 // Prune obsolete incoming values off the successors' PHI nodes. 4776 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4777 unsigned PreviousEdges = ContiguousCases->size(); 4778 if (ContiguousDest == SI->getDefaultDest()) 4779 ++PreviousEdges; 4780 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4781 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4782 } 4783 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4784 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4785 if (OtherDest == SI->getDefaultDest()) 4786 ++PreviousEdges; 4787 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4788 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4789 } 4790 4791 // Clean up the default block - it may have phis or other instructions before 4792 // the unreachable terminator. 4793 if (!HasDefault) 4794 createUnreachableSwitchDefault(SI, DTU); 4795 4796 auto *UnreachableDefault = SI->getDefaultDest(); 4797 4798 // Drop the switch. 4799 SI->eraseFromParent(); 4800 4801 if (!HasDefault && DTU) 4802 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4803 4804 return true; 4805 } 4806 4807 /// Compute masked bits for the condition of a switch 4808 /// and use it to remove dead cases. 4809 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4810 AssumptionCache *AC, 4811 const DataLayout &DL) { 4812 Value *Cond = SI->getCondition(); 4813 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4814 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4815 4816 // We can also eliminate cases by determining that their values are outside of 4817 // the limited range of the condition based on how many significant (non-sign) 4818 // bits are in the condition value. 4819 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4820 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4821 4822 // Gather dead cases. 4823 SmallVector<ConstantInt *, 8> DeadCases; 4824 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 4825 for (auto &Case : SI->cases()) { 4826 auto *Successor = Case.getCaseSuccessor(); 4827 ++NumPerSuccessorCases[Successor]; 4828 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4829 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4830 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4831 DeadCases.push_back(Case.getCaseValue()); 4832 --NumPerSuccessorCases[Successor]; 4833 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4834 << " is dead.\n"); 4835 } 4836 } 4837 4838 // If we can prove that the cases must cover all possible values, the 4839 // default destination becomes dead and we can remove it. If we know some 4840 // of the bits in the value, we can use that to more precisely compute the 4841 // number of possible unique case values. 4842 bool HasDefault = 4843 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4844 const unsigned NumUnknownBits = 4845 Bits - (Known.Zero | Known.One).countPopulation(); 4846 assert(NumUnknownBits <= Bits); 4847 if (HasDefault && DeadCases.empty() && 4848 NumUnknownBits < 64 /* avoid overflow */ && 4849 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4850 createUnreachableSwitchDefault(SI, DTU); 4851 return true; 4852 } 4853 4854 if (DeadCases.empty()) 4855 return false; 4856 4857 SwitchInstProfUpdateWrapper SIW(*SI); 4858 for (ConstantInt *DeadCase : DeadCases) { 4859 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4860 assert(CaseI != SI->case_default() && 4861 "Case was not found. Probably mistake in DeadCases forming."); 4862 // Prune unused values from PHI nodes. 4863 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4864 SIW.removeCase(CaseI); 4865 } 4866 4867 std::vector<DominatorTree::UpdateType> Updates; 4868 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4869 if (I.second == 0) 4870 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4871 if (DTU) 4872 DTU->applyUpdates(Updates); 4873 4874 return true; 4875 } 4876 4877 /// If BB would be eligible for simplification by 4878 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4879 /// by an unconditional branch), look at the phi node for BB in the successor 4880 /// block and see if the incoming value is equal to CaseValue. If so, return 4881 /// the phi node, and set PhiIndex to BB's index in the phi node. 4882 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4883 BasicBlock *BB, int *PhiIndex) { 4884 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4885 return nullptr; // BB must be empty to be a candidate for simplification. 4886 if (!BB->getSinglePredecessor()) 4887 return nullptr; // BB must be dominated by the switch. 4888 4889 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4890 if (!Branch || !Branch->isUnconditional()) 4891 return nullptr; // Terminator must be unconditional branch. 4892 4893 BasicBlock *Succ = Branch->getSuccessor(0); 4894 4895 for (PHINode &PHI : Succ->phis()) { 4896 int Idx = PHI.getBasicBlockIndex(BB); 4897 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4898 4899 Value *InValue = PHI.getIncomingValue(Idx); 4900 if (InValue != CaseValue) 4901 continue; 4902 4903 *PhiIndex = Idx; 4904 return &PHI; 4905 } 4906 4907 return nullptr; 4908 } 4909 4910 /// Try to forward the condition of a switch instruction to a phi node 4911 /// dominated by the switch, if that would mean that some of the destination 4912 /// blocks of the switch can be folded away. Return true if a change is made. 4913 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4914 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4915 4916 ForwardingNodesMap ForwardingNodes; 4917 BasicBlock *SwitchBlock = SI->getParent(); 4918 bool Changed = false; 4919 for (auto &Case : SI->cases()) { 4920 ConstantInt *CaseValue = Case.getCaseValue(); 4921 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4922 4923 // Replace phi operands in successor blocks that are using the constant case 4924 // value rather than the switch condition variable: 4925 // switchbb: 4926 // switch i32 %x, label %default [ 4927 // i32 17, label %succ 4928 // ... 4929 // succ: 4930 // %r = phi i32 ... [ 17, %switchbb ] ... 4931 // --> 4932 // %r = phi i32 ... [ %x, %switchbb ] ... 4933 4934 for (PHINode &Phi : CaseDest->phis()) { 4935 // This only works if there is exactly 1 incoming edge from the switch to 4936 // a phi. If there is >1, that means multiple cases of the switch map to 1 4937 // value in the phi, and that phi value is not the switch condition. Thus, 4938 // this transform would not make sense (the phi would be invalid because 4939 // a phi can't have different incoming values from the same block). 4940 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4941 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4942 count(Phi.blocks(), SwitchBlock) == 1) { 4943 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4944 Changed = true; 4945 } 4946 } 4947 4948 // Collect phi nodes that are indirectly using this switch's case constants. 4949 int PhiIdx; 4950 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4951 ForwardingNodes[Phi].push_back(PhiIdx); 4952 } 4953 4954 for (auto &ForwardingNode : ForwardingNodes) { 4955 PHINode *Phi = ForwardingNode.first; 4956 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4957 if (Indexes.size() < 2) 4958 continue; 4959 4960 for (int Index : Indexes) 4961 Phi->setIncomingValue(Index, SI->getCondition()); 4962 Changed = true; 4963 } 4964 4965 return Changed; 4966 } 4967 4968 /// Return true if the backend will be able to handle 4969 /// initializing an array of constants like C. 4970 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4971 if (C->isThreadDependent()) 4972 return false; 4973 if (C->isDLLImportDependent()) 4974 return false; 4975 4976 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4977 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4978 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4979 return false; 4980 4981 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4982 if (!CE->isGEPWithNoNotionalOverIndexing()) 4983 return false; 4984 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4985 return false; 4986 } 4987 4988 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4989 return false; 4990 4991 return true; 4992 } 4993 4994 /// If V is a Constant, return it. Otherwise, try to look up 4995 /// its constant value in ConstantPool, returning 0 if it's not there. 4996 static Constant * 4997 LookupConstant(Value *V, 4998 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4999 if (Constant *C = dyn_cast<Constant>(V)) 5000 return C; 5001 return ConstantPool.lookup(V); 5002 } 5003 5004 /// Try to fold instruction I into a constant. This works for 5005 /// simple instructions such as binary operations where both operands are 5006 /// constant or can be replaced by constants from the ConstantPool. Returns the 5007 /// resulting constant on success, 0 otherwise. 5008 static Constant * 5009 ConstantFold(Instruction *I, const DataLayout &DL, 5010 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5011 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5012 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5013 if (!A) 5014 return nullptr; 5015 if (A->isAllOnesValue()) 5016 return LookupConstant(Select->getTrueValue(), ConstantPool); 5017 if (A->isNullValue()) 5018 return LookupConstant(Select->getFalseValue(), ConstantPool); 5019 return nullptr; 5020 } 5021 5022 SmallVector<Constant *, 4> COps; 5023 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5024 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5025 COps.push_back(A); 5026 else 5027 return nullptr; 5028 } 5029 5030 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5031 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5032 COps[1], DL); 5033 } 5034 5035 return ConstantFoldInstOperands(I, COps, DL); 5036 } 5037 5038 /// Try to determine the resulting constant values in phi nodes 5039 /// at the common destination basic block, *CommonDest, for one of the case 5040 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5041 /// case), of a switch instruction SI. 5042 static bool 5043 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5044 BasicBlock **CommonDest, 5045 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5046 const DataLayout &DL, const TargetTransformInfo &TTI) { 5047 // The block from which we enter the common destination. 5048 BasicBlock *Pred = SI->getParent(); 5049 5050 // If CaseDest is empty except for some side-effect free instructions through 5051 // which we can constant-propagate the CaseVal, continue to its successor. 5052 SmallDenseMap<Value *, Constant *> ConstantPool; 5053 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5054 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5055 if (I.isTerminator()) { 5056 // If the terminator is a simple branch, continue to the next block. 5057 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5058 return false; 5059 Pred = CaseDest; 5060 CaseDest = I.getSuccessor(0); 5061 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5062 // Instruction is side-effect free and constant. 5063 5064 // If the instruction has uses outside this block or a phi node slot for 5065 // the block, it is not safe to bypass the instruction since it would then 5066 // no longer dominate all its uses. 5067 for (auto &Use : I.uses()) { 5068 User *User = Use.getUser(); 5069 if (Instruction *I = dyn_cast<Instruction>(User)) 5070 if (I->getParent() == CaseDest) 5071 continue; 5072 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5073 if (Phi->getIncomingBlock(Use) == CaseDest) 5074 continue; 5075 return false; 5076 } 5077 5078 ConstantPool.insert(std::make_pair(&I, C)); 5079 } else { 5080 break; 5081 } 5082 } 5083 5084 // If we did not have a CommonDest before, use the current one. 5085 if (!*CommonDest) 5086 *CommonDest = CaseDest; 5087 // If the destination isn't the common one, abort. 5088 if (CaseDest != *CommonDest) 5089 return false; 5090 5091 // Get the values for this case from phi nodes in the destination block. 5092 for (PHINode &PHI : (*CommonDest)->phis()) { 5093 int Idx = PHI.getBasicBlockIndex(Pred); 5094 if (Idx == -1) 5095 continue; 5096 5097 Constant *ConstVal = 5098 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5099 if (!ConstVal) 5100 return false; 5101 5102 // Be conservative about which kinds of constants we support. 5103 if (!ValidLookupTableConstant(ConstVal, TTI)) 5104 return false; 5105 5106 Res.push_back(std::make_pair(&PHI, ConstVal)); 5107 } 5108 5109 return Res.size() > 0; 5110 } 5111 5112 // Helper function used to add CaseVal to the list of cases that generate 5113 // Result. Returns the updated number of cases that generate this result. 5114 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5115 SwitchCaseResultVectorTy &UniqueResults, 5116 Constant *Result) { 5117 for (auto &I : UniqueResults) { 5118 if (I.first == Result) { 5119 I.second.push_back(CaseVal); 5120 return I.second.size(); 5121 } 5122 } 5123 UniqueResults.push_back( 5124 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5125 return 1; 5126 } 5127 5128 // Helper function that initializes a map containing 5129 // results for the PHI node of the common destination block for a switch 5130 // instruction. Returns false if multiple PHI nodes have been found or if 5131 // there is not a common destination block for the switch. 5132 static bool 5133 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5134 SwitchCaseResultVectorTy &UniqueResults, 5135 Constant *&DefaultResult, const DataLayout &DL, 5136 const TargetTransformInfo &TTI, 5137 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5138 for (auto &I : SI->cases()) { 5139 ConstantInt *CaseVal = I.getCaseValue(); 5140 5141 // Resulting value at phi nodes for this case value. 5142 SwitchCaseResultsTy Results; 5143 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5144 DL, TTI)) 5145 return false; 5146 5147 // Only one value per case is permitted. 5148 if (Results.size() > 1) 5149 return false; 5150 5151 // Add the case->result mapping to UniqueResults. 5152 const uintptr_t NumCasesForResult = 5153 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5154 5155 // Early out if there are too many cases for this result. 5156 if (NumCasesForResult > MaxCasesPerResult) 5157 return false; 5158 5159 // Early out if there are too many unique results. 5160 if (UniqueResults.size() > MaxUniqueResults) 5161 return false; 5162 5163 // Check the PHI consistency. 5164 if (!PHI) 5165 PHI = Results[0].first; 5166 else if (PHI != Results[0].first) 5167 return false; 5168 } 5169 // Find the default result value. 5170 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5171 BasicBlock *DefaultDest = SI->getDefaultDest(); 5172 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5173 DL, TTI); 5174 // If the default value is not found abort unless the default destination 5175 // is unreachable. 5176 DefaultResult = 5177 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5178 if ((!DefaultResult && 5179 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5180 return false; 5181 5182 return true; 5183 } 5184 5185 // Helper function that checks if it is possible to transform a switch with only 5186 // two cases (or two cases + default) that produces a result into a select. 5187 // Example: 5188 // switch (a) { 5189 // case 10: %0 = icmp eq i32 %a, 10 5190 // return 10; %1 = select i1 %0, i32 10, i32 4 5191 // case 20: ----> %2 = icmp eq i32 %a, 20 5192 // return 2; %3 = select i1 %2, i32 2, i32 %1 5193 // default: 5194 // return 4; 5195 // } 5196 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5197 Constant *DefaultResult, Value *Condition, 5198 IRBuilder<> &Builder) { 5199 assert(ResultVector.size() == 2 && 5200 "We should have exactly two unique results at this point"); 5201 // If we are selecting between only two cases transform into a simple 5202 // select or a two-way select if default is possible. 5203 if (ResultVector[0].second.size() == 1 && 5204 ResultVector[1].second.size() == 1) { 5205 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5206 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5207 5208 bool DefaultCanTrigger = DefaultResult; 5209 Value *SelectValue = ResultVector[1].first; 5210 if (DefaultCanTrigger) { 5211 Value *const ValueCompare = 5212 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5213 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5214 DefaultResult, "switch.select"); 5215 } 5216 Value *const ValueCompare = 5217 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5218 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5219 SelectValue, "switch.select"); 5220 } 5221 5222 return nullptr; 5223 } 5224 5225 // Helper function to cleanup a switch instruction that has been converted into 5226 // a select, fixing up PHI nodes and basic blocks. 5227 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5228 Value *SelectValue, 5229 IRBuilder<> &Builder, 5230 DomTreeUpdater *DTU) { 5231 std::vector<DominatorTree::UpdateType> Updates; 5232 5233 BasicBlock *SelectBB = SI->getParent(); 5234 BasicBlock *DestBB = PHI->getParent(); 5235 5236 if (!is_contained(predecessors(DestBB), SelectBB)) 5237 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5238 Builder.CreateBr(DestBB); 5239 5240 // Remove the switch. 5241 5242 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5243 PHI->removeIncomingValue(SelectBB); 5244 PHI->addIncoming(SelectValue, SelectBB); 5245 5246 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5247 BasicBlock *Succ = SI->getSuccessor(i); 5248 5249 if (Succ == DestBB) 5250 continue; 5251 Succ->removePredecessor(SelectBB); 5252 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5253 } 5254 SI->eraseFromParent(); 5255 if (DTU) 5256 DTU->applyUpdates(Updates); 5257 } 5258 5259 /// If the switch is only used to initialize one or more 5260 /// phi nodes in a common successor block with only two different 5261 /// constant values, replace the switch with select. 5262 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5263 DomTreeUpdater *DTU, const DataLayout &DL, 5264 const TargetTransformInfo &TTI) { 5265 Value *const Cond = SI->getCondition(); 5266 PHINode *PHI = nullptr; 5267 BasicBlock *CommonDest = nullptr; 5268 Constant *DefaultResult; 5269 SwitchCaseResultVectorTy UniqueResults; 5270 // Collect all the cases that will deliver the same value from the switch. 5271 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5272 DL, TTI, 2, 1)) 5273 return false; 5274 // Selects choose between maximum two values. 5275 if (UniqueResults.size() != 2) 5276 return false; 5277 assert(PHI != nullptr && "PHI for value select not found"); 5278 5279 Builder.SetInsertPoint(SI); 5280 Value *SelectValue = 5281 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5282 if (SelectValue) { 5283 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5284 return true; 5285 } 5286 // The switch couldn't be converted into a select. 5287 return false; 5288 } 5289 5290 namespace { 5291 5292 /// This class represents a lookup table that can be used to replace a switch. 5293 class SwitchLookupTable { 5294 public: 5295 /// Create a lookup table to use as a switch replacement with the contents 5296 /// of Values, using DefaultValue to fill any holes in the table. 5297 SwitchLookupTable( 5298 Module &M, uint64_t TableSize, ConstantInt *Offset, 5299 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5300 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5301 5302 /// Build instructions with Builder to retrieve the value at 5303 /// the position given by Index in the lookup table. 5304 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5305 5306 /// Return true if a table with TableSize elements of 5307 /// type ElementType would fit in a target-legal register. 5308 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5309 Type *ElementType); 5310 5311 private: 5312 // Depending on the contents of the table, it can be represented in 5313 // different ways. 5314 enum { 5315 // For tables where each element contains the same value, we just have to 5316 // store that single value and return it for each lookup. 5317 SingleValueKind, 5318 5319 // For tables where there is a linear relationship between table index 5320 // and values. We calculate the result with a simple multiplication 5321 // and addition instead of a table lookup. 5322 LinearMapKind, 5323 5324 // For small tables with integer elements, we can pack them into a bitmap 5325 // that fits into a target-legal register. Values are retrieved by 5326 // shift and mask operations. 5327 BitMapKind, 5328 5329 // The table is stored as an array of values. Values are retrieved by load 5330 // instructions from the table. 5331 ArrayKind 5332 } Kind; 5333 5334 // For SingleValueKind, this is the single value. 5335 Constant *SingleValue = nullptr; 5336 5337 // For BitMapKind, this is the bitmap. 5338 ConstantInt *BitMap = nullptr; 5339 IntegerType *BitMapElementTy = nullptr; 5340 5341 // For LinearMapKind, these are the constants used to derive the value. 5342 ConstantInt *LinearOffset = nullptr; 5343 ConstantInt *LinearMultiplier = nullptr; 5344 5345 // For ArrayKind, this is the array. 5346 GlobalVariable *Array = nullptr; 5347 }; 5348 5349 } // end anonymous namespace 5350 5351 SwitchLookupTable::SwitchLookupTable( 5352 Module &M, uint64_t TableSize, ConstantInt *Offset, 5353 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5354 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5355 assert(Values.size() && "Can't build lookup table without values!"); 5356 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5357 5358 // If all values in the table are equal, this is that value. 5359 SingleValue = Values.begin()->second; 5360 5361 Type *ValueType = Values.begin()->second->getType(); 5362 5363 // Build up the table contents. 5364 SmallVector<Constant *, 64> TableContents(TableSize); 5365 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5366 ConstantInt *CaseVal = Values[I].first; 5367 Constant *CaseRes = Values[I].second; 5368 assert(CaseRes->getType() == ValueType); 5369 5370 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5371 TableContents[Idx] = CaseRes; 5372 5373 if (CaseRes != SingleValue) 5374 SingleValue = nullptr; 5375 } 5376 5377 // Fill in any holes in the table with the default result. 5378 if (Values.size() < TableSize) { 5379 assert(DefaultValue && 5380 "Need a default value to fill the lookup table holes."); 5381 assert(DefaultValue->getType() == ValueType); 5382 for (uint64_t I = 0; I < TableSize; ++I) { 5383 if (!TableContents[I]) 5384 TableContents[I] = DefaultValue; 5385 } 5386 5387 if (DefaultValue != SingleValue) 5388 SingleValue = nullptr; 5389 } 5390 5391 // If each element in the table contains the same value, we only need to store 5392 // that single value. 5393 if (SingleValue) { 5394 Kind = SingleValueKind; 5395 return; 5396 } 5397 5398 // Check if we can derive the value with a linear transformation from the 5399 // table index. 5400 if (isa<IntegerType>(ValueType)) { 5401 bool LinearMappingPossible = true; 5402 APInt PrevVal; 5403 APInt DistToPrev; 5404 assert(TableSize >= 2 && "Should be a SingleValue table."); 5405 // Check if there is the same distance between two consecutive values. 5406 for (uint64_t I = 0; I < TableSize; ++I) { 5407 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5408 if (!ConstVal) { 5409 // This is an undef. We could deal with it, but undefs in lookup tables 5410 // are very seldom. It's probably not worth the additional complexity. 5411 LinearMappingPossible = false; 5412 break; 5413 } 5414 const APInt &Val = ConstVal->getValue(); 5415 if (I != 0) { 5416 APInt Dist = Val - PrevVal; 5417 if (I == 1) { 5418 DistToPrev = Dist; 5419 } else if (Dist != DistToPrev) { 5420 LinearMappingPossible = false; 5421 break; 5422 } 5423 } 5424 PrevVal = Val; 5425 } 5426 if (LinearMappingPossible) { 5427 LinearOffset = cast<ConstantInt>(TableContents[0]); 5428 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5429 Kind = LinearMapKind; 5430 ++NumLinearMaps; 5431 return; 5432 } 5433 } 5434 5435 // If the type is integer and the table fits in a register, build a bitmap. 5436 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5437 IntegerType *IT = cast<IntegerType>(ValueType); 5438 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5439 for (uint64_t I = TableSize; I > 0; --I) { 5440 TableInt <<= IT->getBitWidth(); 5441 // Insert values into the bitmap. Undef values are set to zero. 5442 if (!isa<UndefValue>(TableContents[I - 1])) { 5443 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5444 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5445 } 5446 } 5447 BitMap = ConstantInt::get(M.getContext(), TableInt); 5448 BitMapElementTy = IT; 5449 Kind = BitMapKind; 5450 ++NumBitMaps; 5451 return; 5452 } 5453 5454 // Store the table in an array. 5455 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5456 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5457 5458 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5459 GlobalVariable::PrivateLinkage, Initializer, 5460 "switch.table." + FuncName); 5461 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5462 // Set the alignment to that of an array items. We will be only loading one 5463 // value out of it. 5464 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5465 Kind = ArrayKind; 5466 } 5467 5468 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5469 switch (Kind) { 5470 case SingleValueKind: 5471 return SingleValue; 5472 case LinearMapKind: { 5473 // Derive the result value from the input value. 5474 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5475 false, "switch.idx.cast"); 5476 if (!LinearMultiplier->isOne()) 5477 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5478 if (!LinearOffset->isZero()) 5479 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5480 return Result; 5481 } 5482 case BitMapKind: { 5483 // Type of the bitmap (e.g. i59). 5484 IntegerType *MapTy = BitMap->getType(); 5485 5486 // Cast Index to the same type as the bitmap. 5487 // Note: The Index is <= the number of elements in the table, so 5488 // truncating it to the width of the bitmask is safe. 5489 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5490 5491 // Multiply the shift amount by the element width. 5492 ShiftAmt = Builder.CreateMul( 5493 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5494 "switch.shiftamt"); 5495 5496 // Shift down. 5497 Value *DownShifted = 5498 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5499 // Mask off. 5500 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5501 } 5502 case ArrayKind: { 5503 // Make sure the table index will not overflow when treated as signed. 5504 IntegerType *IT = cast<IntegerType>(Index->getType()); 5505 uint64_t TableSize = 5506 Array->getInitializer()->getType()->getArrayNumElements(); 5507 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5508 Index = Builder.CreateZExt( 5509 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5510 "switch.tableidx.zext"); 5511 5512 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5513 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5514 GEPIndices, "switch.gep"); 5515 return Builder.CreateLoad( 5516 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5517 "switch.load"); 5518 } 5519 } 5520 llvm_unreachable("Unknown lookup table kind!"); 5521 } 5522 5523 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5524 uint64_t TableSize, 5525 Type *ElementType) { 5526 auto *IT = dyn_cast<IntegerType>(ElementType); 5527 if (!IT) 5528 return false; 5529 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5530 // are <= 15, we could try to narrow the type. 5531 5532 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5533 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5534 return false; 5535 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5536 } 5537 5538 /// Determine whether a lookup table should be built for this switch, based on 5539 /// the number of cases, size of the table, and the types of the results. 5540 static bool 5541 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5542 const TargetTransformInfo &TTI, const DataLayout &DL, 5543 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5544 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5545 return false; // TableSize overflowed, or mul below might overflow. 5546 5547 bool AllTablesFitInRegister = true; 5548 bool HasIllegalType = false; 5549 for (const auto &I : ResultTypes) { 5550 Type *Ty = I.second; 5551 5552 // Saturate this flag to true. 5553 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5554 5555 // Saturate this flag to false. 5556 AllTablesFitInRegister = 5557 AllTablesFitInRegister && 5558 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5559 5560 // If both flags saturate, we're done. NOTE: This *only* works with 5561 // saturating flags, and all flags have to saturate first due to the 5562 // non-deterministic behavior of iterating over a dense map. 5563 if (HasIllegalType && !AllTablesFitInRegister) 5564 break; 5565 } 5566 5567 // If each table would fit in a register, we should build it anyway. 5568 if (AllTablesFitInRegister) 5569 return true; 5570 5571 // Don't build a table that doesn't fit in-register if it has illegal types. 5572 if (HasIllegalType) 5573 return false; 5574 5575 // The table density should be at least 40%. This is the same criterion as for 5576 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5577 // FIXME: Find the best cut-off. 5578 return SI->getNumCases() * 10 >= TableSize * 4; 5579 } 5580 5581 /// Try to reuse the switch table index compare. Following pattern: 5582 /// \code 5583 /// if (idx < tablesize) 5584 /// r = table[idx]; // table does not contain default_value 5585 /// else 5586 /// r = default_value; 5587 /// if (r != default_value) 5588 /// ... 5589 /// \endcode 5590 /// Is optimized to: 5591 /// \code 5592 /// cond = idx < tablesize; 5593 /// if (cond) 5594 /// r = table[idx]; 5595 /// else 5596 /// r = default_value; 5597 /// if (cond) 5598 /// ... 5599 /// \endcode 5600 /// Jump threading will then eliminate the second if(cond). 5601 static void reuseTableCompare( 5602 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5603 Constant *DefaultValue, 5604 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5605 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5606 if (!CmpInst) 5607 return; 5608 5609 // We require that the compare is in the same block as the phi so that jump 5610 // threading can do its work afterwards. 5611 if (CmpInst->getParent() != PhiBlock) 5612 return; 5613 5614 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5615 if (!CmpOp1) 5616 return; 5617 5618 Value *RangeCmp = RangeCheckBranch->getCondition(); 5619 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5620 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5621 5622 // Check if the compare with the default value is constant true or false. 5623 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5624 DefaultValue, CmpOp1, true); 5625 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5626 return; 5627 5628 // Check if the compare with the case values is distinct from the default 5629 // compare result. 5630 for (auto ValuePair : Values) { 5631 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5632 ValuePair.second, CmpOp1, true); 5633 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5634 return; 5635 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5636 "Expect true or false as compare result."); 5637 } 5638 5639 // Check if the branch instruction dominates the phi node. It's a simple 5640 // dominance check, but sufficient for our needs. 5641 // Although this check is invariant in the calling loops, it's better to do it 5642 // at this late stage. Practically we do it at most once for a switch. 5643 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5644 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5645 BasicBlock *Pred = *PI; 5646 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5647 return; 5648 } 5649 5650 if (DefaultConst == FalseConst) { 5651 // The compare yields the same result. We can replace it. 5652 CmpInst->replaceAllUsesWith(RangeCmp); 5653 ++NumTableCmpReuses; 5654 } else { 5655 // The compare yields the same result, just inverted. We can replace it. 5656 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5657 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5658 RangeCheckBranch); 5659 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5660 ++NumTableCmpReuses; 5661 } 5662 } 5663 5664 /// If the switch is only used to initialize one or more phi nodes in a common 5665 /// successor block with different constant values, replace the switch with 5666 /// lookup tables. 5667 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5668 DomTreeUpdater *DTU, const DataLayout &DL, 5669 const TargetTransformInfo &TTI) { 5670 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5671 5672 BasicBlock *BB = SI->getParent(); 5673 Function *Fn = BB->getParent(); 5674 // Only build lookup table when we have a target that supports it or the 5675 // attribute is not set. 5676 if (!TTI.shouldBuildLookupTables() || 5677 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5678 return false; 5679 5680 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5681 // split off a dense part and build a lookup table for that. 5682 5683 // FIXME: This creates arrays of GEPs to constant strings, which means each 5684 // GEP needs a runtime relocation in PIC code. We should just build one big 5685 // string and lookup indices into that. 5686 5687 // Ignore switches with less than three cases. Lookup tables will not make 5688 // them faster, so we don't analyze them. 5689 if (SI->getNumCases() < 3) 5690 return false; 5691 5692 // Figure out the corresponding result for each case value and phi node in the 5693 // common destination, as well as the min and max case values. 5694 assert(!SI->cases().empty()); 5695 SwitchInst::CaseIt CI = SI->case_begin(); 5696 ConstantInt *MinCaseVal = CI->getCaseValue(); 5697 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5698 5699 BasicBlock *CommonDest = nullptr; 5700 5701 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5702 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5703 5704 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5705 SmallDenseMap<PHINode *, Type *> ResultTypes; 5706 SmallVector<PHINode *, 4> PHIs; 5707 5708 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5709 ConstantInt *CaseVal = CI->getCaseValue(); 5710 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5711 MinCaseVal = CaseVal; 5712 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5713 MaxCaseVal = CaseVal; 5714 5715 // Resulting value at phi nodes for this case value. 5716 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5717 ResultsTy Results; 5718 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5719 Results, DL, TTI)) 5720 return false; 5721 5722 // Append the result from this case to the list for each phi. 5723 for (const auto &I : Results) { 5724 PHINode *PHI = I.first; 5725 Constant *Value = I.second; 5726 if (!ResultLists.count(PHI)) 5727 PHIs.push_back(PHI); 5728 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5729 } 5730 } 5731 5732 // Keep track of the result types. 5733 for (PHINode *PHI : PHIs) { 5734 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5735 } 5736 5737 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5738 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5739 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5740 bool TableHasHoles = (NumResults < TableSize); 5741 5742 // If the table has holes, we need a constant result for the default case 5743 // or a bitmask that fits in a register. 5744 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5745 bool HasDefaultResults = 5746 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5747 DefaultResultsList, DL, TTI); 5748 5749 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5750 if (NeedMask) { 5751 // As an extra penalty for the validity test we require more cases. 5752 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5753 return false; 5754 if (!DL.fitsInLegalInteger(TableSize)) 5755 return false; 5756 } 5757 5758 for (const auto &I : DefaultResultsList) { 5759 PHINode *PHI = I.first; 5760 Constant *Result = I.second; 5761 DefaultResults[PHI] = Result; 5762 } 5763 5764 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5765 return false; 5766 5767 std::vector<DominatorTree::UpdateType> Updates; 5768 5769 // Create the BB that does the lookups. 5770 Module &Mod = *CommonDest->getParent()->getParent(); 5771 BasicBlock *LookupBB = BasicBlock::Create( 5772 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5773 5774 // Compute the table index value. 5775 Builder.SetInsertPoint(SI); 5776 Value *TableIndex; 5777 if (MinCaseVal->isNullValue()) 5778 TableIndex = SI->getCondition(); 5779 else 5780 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5781 "switch.tableidx"); 5782 5783 // Compute the maximum table size representable by the integer type we are 5784 // switching upon. 5785 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5786 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5787 assert(MaxTableSize >= TableSize && 5788 "It is impossible for a switch to have more entries than the max " 5789 "representable value of its input integer type's size."); 5790 5791 // If the default destination is unreachable, or if the lookup table covers 5792 // all values of the conditional variable, branch directly to the lookup table 5793 // BB. Otherwise, check that the condition is within the case range. 5794 const bool DefaultIsReachable = 5795 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5796 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5797 BranchInst *RangeCheckBranch = nullptr; 5798 5799 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5800 Builder.CreateBr(LookupBB); 5801 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5802 // Note: We call removeProdecessor later since we need to be able to get the 5803 // PHI value for the default case in case we're using a bit mask. 5804 } else { 5805 Value *Cmp = Builder.CreateICmpULT( 5806 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5807 RangeCheckBranch = 5808 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5809 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5810 } 5811 5812 // Populate the BB that does the lookups. 5813 Builder.SetInsertPoint(LookupBB); 5814 5815 if (NeedMask) { 5816 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5817 // re-purposed to do the hole check, and we create a new LookupBB. 5818 BasicBlock *MaskBB = LookupBB; 5819 MaskBB->setName("switch.hole_check"); 5820 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5821 CommonDest->getParent(), CommonDest); 5822 5823 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5824 // unnecessary illegal types. 5825 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5826 APInt MaskInt(TableSizePowOf2, 0); 5827 APInt One(TableSizePowOf2, 1); 5828 // Build bitmask; fill in a 1 bit for every case. 5829 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5830 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5831 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5832 .getLimitedValue(); 5833 MaskInt |= One << Idx; 5834 } 5835 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5836 5837 // Get the TableIndex'th bit of the bitmask. 5838 // If this bit is 0 (meaning hole) jump to the default destination, 5839 // else continue with table lookup. 5840 IntegerType *MapTy = TableMask->getType(); 5841 Value *MaskIndex = 5842 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5843 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5844 Value *LoBit = Builder.CreateTrunc( 5845 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5846 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5847 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5848 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5849 Builder.SetInsertPoint(LookupBB); 5850 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5851 } 5852 5853 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5854 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5855 // do not delete PHINodes here. 5856 SI->getDefaultDest()->removePredecessor(BB, 5857 /*KeepOneInputPHIs=*/true); 5858 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5859 } 5860 5861 bool ReturnedEarly = false; 5862 for (PHINode *PHI : PHIs) { 5863 const ResultListTy &ResultList = ResultLists[PHI]; 5864 5865 // If using a bitmask, use any value to fill the lookup table holes. 5866 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5867 StringRef FuncName = Fn->getName(); 5868 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5869 FuncName); 5870 5871 Value *Result = Table.BuildLookup(TableIndex, Builder); 5872 5873 // If the result is used to return immediately from the function, we want to 5874 // do that right here. 5875 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5876 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5877 Builder.CreateRet(Result); 5878 ReturnedEarly = true; 5879 break; 5880 } 5881 5882 // Do a small peephole optimization: re-use the switch table compare if 5883 // possible. 5884 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5885 BasicBlock *PhiBlock = PHI->getParent(); 5886 // Search for compare instructions which use the phi. 5887 for (auto *User : PHI->users()) { 5888 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5889 } 5890 } 5891 5892 PHI->addIncoming(Result, LookupBB); 5893 } 5894 5895 if (!ReturnedEarly) { 5896 Builder.CreateBr(CommonDest); 5897 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 5898 } 5899 5900 // Remove the switch. 5901 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 5902 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5903 BasicBlock *Succ = SI->getSuccessor(i); 5904 5905 if (Succ == SI->getDefaultDest()) 5906 continue; 5907 Succ->removePredecessor(BB); 5908 RemovedSuccessors.insert(Succ); 5909 } 5910 SI->eraseFromParent(); 5911 5912 if (DTU) { 5913 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 5914 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 5915 DTU->applyUpdates(Updates); 5916 } 5917 5918 ++NumLookupTables; 5919 if (NeedMask) 5920 ++NumLookupTablesHoles; 5921 return true; 5922 } 5923 5924 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5925 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5926 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5927 uint64_t Range = Diff + 1; 5928 uint64_t NumCases = Values.size(); 5929 // 40% is the default density for building a jump table in optsize/minsize mode. 5930 uint64_t MinDensity = 40; 5931 5932 return NumCases * 100 >= Range * MinDensity; 5933 } 5934 5935 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5936 /// of cases. 5937 /// 5938 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5939 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5940 /// 5941 /// This converts a sparse switch into a dense switch which allows better 5942 /// lowering and could also allow transforming into a lookup table. 5943 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5944 const DataLayout &DL, 5945 const TargetTransformInfo &TTI) { 5946 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5947 if (CondTy->getIntegerBitWidth() > 64 || 5948 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5949 return false; 5950 // Only bother with this optimization if there are more than 3 switch cases; 5951 // SDAG will only bother creating jump tables for 4 or more cases. 5952 if (SI->getNumCases() < 4) 5953 return false; 5954 5955 // This transform is agnostic to the signedness of the input or case values. We 5956 // can treat the case values as signed or unsigned. We can optimize more common 5957 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5958 // as signed. 5959 SmallVector<int64_t,4> Values; 5960 for (auto &C : SI->cases()) 5961 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5962 llvm::sort(Values); 5963 5964 // If the switch is already dense, there's nothing useful to do here. 5965 if (isSwitchDense(Values)) 5966 return false; 5967 5968 // First, transform the values such that they start at zero and ascend. 5969 int64_t Base = Values[0]; 5970 for (auto &V : Values) 5971 V -= (uint64_t)(Base); 5972 5973 // Now we have signed numbers that have been shifted so that, given enough 5974 // precision, there are no negative values. Since the rest of the transform 5975 // is bitwise only, we switch now to an unsigned representation. 5976 5977 // This transform can be done speculatively because it is so cheap - it 5978 // results in a single rotate operation being inserted. 5979 // FIXME: It's possible that optimizing a switch on powers of two might also 5980 // be beneficial - flag values are often powers of two and we could use a CLZ 5981 // as the key function. 5982 5983 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5984 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5985 // less than 64. 5986 unsigned Shift = 64; 5987 for (auto &V : Values) 5988 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5989 assert(Shift < 64); 5990 if (Shift > 0) 5991 for (auto &V : Values) 5992 V = (int64_t)((uint64_t)V >> Shift); 5993 5994 if (!isSwitchDense(Values)) 5995 // Transform didn't create a dense switch. 5996 return false; 5997 5998 // The obvious transform is to shift the switch condition right and emit a 5999 // check that the condition actually cleanly divided by GCD, i.e. 6000 // C & (1 << Shift - 1) == 0 6001 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6002 // 6003 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6004 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6005 // are nonzero then the switch condition will be very large and will hit the 6006 // default case. 6007 6008 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6009 Builder.SetInsertPoint(SI); 6010 auto *ShiftC = ConstantInt::get(Ty, Shift); 6011 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6012 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6013 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6014 auto *Rot = Builder.CreateOr(LShr, Shl); 6015 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6016 6017 for (auto Case : SI->cases()) { 6018 auto *Orig = Case.getCaseValue(); 6019 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6020 Case.setValue( 6021 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6022 } 6023 return true; 6024 } 6025 6026 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6027 BasicBlock *BB = SI->getParent(); 6028 6029 if (isValueEqualityComparison(SI)) { 6030 // If we only have one predecessor, and if it is a branch on this value, 6031 // see if that predecessor totally determines the outcome of this switch. 6032 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6033 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6034 return requestResimplify(); 6035 6036 Value *Cond = SI->getCondition(); 6037 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6038 if (SimplifySwitchOnSelect(SI, Select)) 6039 return requestResimplify(); 6040 6041 // If the block only contains the switch, see if we can fold the block 6042 // away into any preds. 6043 if (SI == &*BB->instructionsWithoutDebug().begin()) 6044 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6045 return requestResimplify(); 6046 } 6047 6048 // Try to transform the switch into an icmp and a branch. 6049 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6050 return requestResimplify(); 6051 6052 // Remove unreachable cases. 6053 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6054 return requestResimplify(); 6055 6056 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6057 return requestResimplify(); 6058 6059 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6060 return requestResimplify(); 6061 6062 // The conversion from switch to lookup tables results in difficult-to-analyze 6063 // code and makes pruning branches much harder. This is a problem if the 6064 // switch expression itself can still be restricted as a result of inlining or 6065 // CVP. Therefore, only apply this transformation during late stages of the 6066 // optimisation pipeline. 6067 if (Options.ConvertSwitchToLookupTable && 6068 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6069 return requestResimplify(); 6070 6071 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6072 return requestResimplify(); 6073 6074 return false; 6075 } 6076 6077 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6078 BasicBlock *BB = IBI->getParent(); 6079 bool Changed = false; 6080 6081 // Eliminate redundant destinations. 6082 SmallPtrSet<Value *, 8> Succs; 6083 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6084 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6085 BasicBlock *Dest = IBI->getDestination(i); 6086 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6087 if (!Dest->hasAddressTaken()) 6088 RemovedSuccs.insert(Dest); 6089 Dest->removePredecessor(BB); 6090 IBI->removeDestination(i); 6091 --i; 6092 --e; 6093 Changed = true; 6094 } 6095 } 6096 6097 if (DTU) { 6098 std::vector<DominatorTree::UpdateType> Updates; 6099 Updates.reserve(RemovedSuccs.size()); 6100 for (auto *RemovedSucc : RemovedSuccs) 6101 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6102 DTU->applyUpdates(Updates); 6103 } 6104 6105 if (IBI->getNumDestinations() == 0) { 6106 // If the indirectbr has no successors, change it to unreachable. 6107 new UnreachableInst(IBI->getContext(), IBI); 6108 EraseTerminatorAndDCECond(IBI); 6109 return true; 6110 } 6111 6112 if (IBI->getNumDestinations() == 1) { 6113 // If the indirectbr has one successor, change it to a direct branch. 6114 BranchInst::Create(IBI->getDestination(0), IBI); 6115 EraseTerminatorAndDCECond(IBI); 6116 return true; 6117 } 6118 6119 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6120 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6121 return requestResimplify(); 6122 } 6123 return Changed; 6124 } 6125 6126 /// Given an block with only a single landing pad and a unconditional branch 6127 /// try to find another basic block which this one can be merged with. This 6128 /// handles cases where we have multiple invokes with unique landing pads, but 6129 /// a shared handler. 6130 /// 6131 /// We specifically choose to not worry about merging non-empty blocks 6132 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6133 /// practice, the optimizer produces empty landing pad blocks quite frequently 6134 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6135 /// sinking in this file) 6136 /// 6137 /// This is primarily a code size optimization. We need to avoid performing 6138 /// any transform which might inhibit optimization (such as our ability to 6139 /// specialize a particular handler via tail commoning). We do this by not 6140 /// merging any blocks which require us to introduce a phi. Since the same 6141 /// values are flowing through both blocks, we don't lose any ability to 6142 /// specialize. If anything, we make such specialization more likely. 6143 /// 6144 /// TODO - This transformation could remove entries from a phi in the target 6145 /// block when the inputs in the phi are the same for the two blocks being 6146 /// merged. In some cases, this could result in removal of the PHI entirely. 6147 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6148 BasicBlock *BB, DomTreeUpdater *DTU) { 6149 auto Succ = BB->getUniqueSuccessor(); 6150 assert(Succ); 6151 // If there's a phi in the successor block, we'd likely have to introduce 6152 // a phi into the merged landing pad block. 6153 if (isa<PHINode>(*Succ->begin())) 6154 return false; 6155 6156 for (BasicBlock *OtherPred : predecessors(Succ)) { 6157 if (BB == OtherPred) 6158 continue; 6159 BasicBlock::iterator I = OtherPred->begin(); 6160 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6161 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6162 continue; 6163 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6164 ; 6165 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6166 if (!BI2 || !BI2->isIdenticalTo(BI)) 6167 continue; 6168 6169 std::vector<DominatorTree::UpdateType> Updates; 6170 6171 // We've found an identical block. Update our predecessors to take that 6172 // path instead and make ourselves dead. 6173 SmallPtrSet<BasicBlock *, 16> Preds; 6174 Preds.insert(pred_begin(BB), pred_end(BB)); 6175 for (BasicBlock *Pred : Preds) { 6176 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6177 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6178 "unexpected successor"); 6179 II->setUnwindDest(OtherPred); 6180 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6181 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6182 } 6183 6184 // The debug info in OtherPred doesn't cover the merged control flow that 6185 // used to go through BB. We need to delete it or update it. 6186 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6187 Instruction &Inst = *I; 6188 I++; 6189 if (isa<DbgInfoIntrinsic>(Inst)) 6190 Inst.eraseFromParent(); 6191 } 6192 6193 SmallPtrSet<BasicBlock *, 16> Succs; 6194 Succs.insert(succ_begin(BB), succ_end(BB)); 6195 for (BasicBlock *Succ : Succs) { 6196 Succ->removePredecessor(BB); 6197 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6198 } 6199 6200 IRBuilder<> Builder(BI); 6201 Builder.CreateUnreachable(); 6202 BI->eraseFromParent(); 6203 if (DTU) 6204 DTU->applyUpdates(Updates); 6205 return true; 6206 } 6207 return false; 6208 } 6209 6210 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6211 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6212 : simplifyCondBranch(Branch, Builder); 6213 } 6214 6215 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6216 IRBuilder<> &Builder) { 6217 BasicBlock *BB = BI->getParent(); 6218 BasicBlock *Succ = BI->getSuccessor(0); 6219 6220 // If the Terminator is the only non-phi instruction, simplify the block. 6221 // If LoopHeader is provided, check if the block or its successor is a loop 6222 // header. (This is for early invocations before loop simplify and 6223 // vectorization to keep canonical loop forms for nested loops. These blocks 6224 // can be eliminated when the pass is invoked later in the back-end.) 6225 // Note that if BB has only one predecessor then we do not introduce new 6226 // backedge, so we can eliminate BB. 6227 bool NeedCanonicalLoop = 6228 Options.NeedCanonicalLoop && 6229 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6230 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6231 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 6232 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6233 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6234 return true; 6235 6236 // If the only instruction in the block is a seteq/setne comparison against a 6237 // constant, try to simplify the block. 6238 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6239 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6240 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6241 ; 6242 if (I->isTerminator() && 6243 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6244 return true; 6245 } 6246 6247 // See if we can merge an empty landing pad block with another which is 6248 // equivalent. 6249 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6250 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6251 ; 6252 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6253 return true; 6254 } 6255 6256 // If this basic block is ONLY a compare and a branch, and if a predecessor 6257 // branches to us and our successor, fold the comparison into the 6258 // predecessor and use logical operations to update the incoming value 6259 // for PHI nodes in common successor. 6260 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6261 Options.BonusInstThreshold)) 6262 return requestResimplify(); 6263 return false; 6264 } 6265 6266 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6267 BasicBlock *PredPred = nullptr; 6268 for (auto *P : predecessors(BB)) { 6269 BasicBlock *PPred = P->getSinglePredecessor(); 6270 if (!PPred || (PredPred && PredPred != PPred)) 6271 return nullptr; 6272 PredPred = PPred; 6273 } 6274 return PredPred; 6275 } 6276 6277 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6278 BasicBlock *BB = BI->getParent(); 6279 if (!Options.SimplifyCondBranch) 6280 return false; 6281 6282 // Conditional branch 6283 if (isValueEqualityComparison(BI)) { 6284 // If we only have one predecessor, and if it is a branch on this value, 6285 // see if that predecessor totally determines the outcome of this 6286 // switch. 6287 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6288 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6289 return requestResimplify(); 6290 6291 // This block must be empty, except for the setcond inst, if it exists. 6292 // Ignore dbg intrinsics. 6293 auto I = BB->instructionsWithoutDebug().begin(); 6294 if (&*I == BI) { 6295 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6296 return requestResimplify(); 6297 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6298 ++I; 6299 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6300 return requestResimplify(); 6301 } 6302 } 6303 6304 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6305 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6306 return true; 6307 6308 // If this basic block has dominating predecessor blocks and the dominating 6309 // blocks' conditions imply BI's condition, we know the direction of BI. 6310 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6311 if (Imp) { 6312 // Turn this into a branch on constant. 6313 auto *OldCond = BI->getCondition(); 6314 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6315 : ConstantInt::getFalse(BB->getContext()); 6316 BI->setCondition(TorF); 6317 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6318 return requestResimplify(); 6319 } 6320 6321 // If this basic block is ONLY a compare and a branch, and if a predecessor 6322 // branches to us and one of our successors, fold the comparison into the 6323 // predecessor and use logical operations to pick the right destination. 6324 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6325 Options.BonusInstThreshold)) 6326 return requestResimplify(); 6327 6328 // We have a conditional branch to two blocks that are only reachable 6329 // from BI. We know that the condbr dominates the two blocks, so see if 6330 // there is any identical code in the "then" and "else" blocks. If so, we 6331 // can hoist it up to the branching block. 6332 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6333 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6334 if (HoistCommon && Options.HoistCommonInsts) 6335 if (HoistThenElseCodeToIf(BI, TTI)) 6336 return requestResimplify(); 6337 } else { 6338 // If Successor #1 has multiple preds, we may be able to conditionally 6339 // execute Successor #0 if it branches to Successor #1. 6340 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6341 if (Succ0TI->getNumSuccessors() == 1 && 6342 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6343 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6344 return requestResimplify(); 6345 } 6346 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6347 // If Successor #0 has multiple preds, we may be able to conditionally 6348 // execute Successor #1 if it branches to Successor #0. 6349 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6350 if (Succ1TI->getNumSuccessors() == 1 && 6351 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6352 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6353 return requestResimplify(); 6354 } 6355 6356 // If this is a branch on a phi node in the current block, thread control 6357 // through this block if any PHI node entries are constants. 6358 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6359 if (PN->getParent() == BI->getParent()) 6360 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6361 return requestResimplify(); 6362 6363 // Scan predecessor blocks for conditional branches. 6364 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6365 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6366 if (PBI != BI && PBI->isConditional()) 6367 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6368 return requestResimplify(); 6369 6370 // Look for diamond patterns. 6371 if (MergeCondStores) 6372 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6373 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6374 if (PBI != BI && PBI->isConditional()) 6375 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6376 return requestResimplify(); 6377 6378 return false; 6379 } 6380 6381 /// Check if passing a value to an instruction will cause undefined behavior. 6382 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6383 Constant *C = dyn_cast<Constant>(V); 6384 if (!C) 6385 return false; 6386 6387 if (I->use_empty()) 6388 return false; 6389 6390 if (C->isNullValue() || isa<UndefValue>(C)) { 6391 // Only look at the first use, avoid hurting compile time with long uselists 6392 User *Use = *I->user_begin(); 6393 6394 // Now make sure that there are no instructions in between that can alter 6395 // control flow (eg. calls) 6396 for (BasicBlock::iterator 6397 i = ++BasicBlock::iterator(I), 6398 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6399 i != UI; ++i) 6400 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6401 return false; 6402 6403 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6404 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6405 if (GEP->getPointerOperand() == I) { 6406 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6407 PtrValueMayBeModified = true; 6408 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6409 } 6410 6411 // Look through bitcasts. 6412 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6413 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6414 6415 // Load from null is undefined. 6416 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6417 if (!LI->isVolatile()) 6418 return !NullPointerIsDefined(LI->getFunction(), 6419 LI->getPointerAddressSpace()); 6420 6421 // Store to null is undefined. 6422 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6423 if (!SI->isVolatile()) 6424 return (!NullPointerIsDefined(SI->getFunction(), 6425 SI->getPointerAddressSpace())) && 6426 SI->getPointerOperand() == I; 6427 6428 if (auto *CB = dyn_cast<CallBase>(Use)) { 6429 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6430 return false; 6431 // A call to null is undefined. 6432 if (CB->getCalledOperand() == I) 6433 return true; 6434 6435 if (C->isNullValue()) { 6436 for (const llvm::Use &Arg : CB->args()) 6437 if (Arg == I) { 6438 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6439 if (CB->paramHasAttr(ArgIdx, Attribute::NonNull) && 6440 CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) { 6441 // Passing null to a nonnnull+noundef argument is undefined. 6442 return !PtrValueMayBeModified; 6443 } 6444 } 6445 } else if (isa<UndefValue>(C)) { 6446 // Passing undef to a noundef argument is undefined. 6447 for (const llvm::Use &Arg : CB->args()) 6448 if (Arg == I) { 6449 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6450 if (CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) { 6451 // Passing undef to a noundef argument is undefined. 6452 return true; 6453 } 6454 } 6455 } 6456 } 6457 } 6458 return false; 6459 } 6460 6461 /// If BB has an incoming value that will always trigger undefined behavior 6462 /// (eg. null pointer dereference), remove the branch leading here. 6463 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6464 DomTreeUpdater *DTU) { 6465 for (PHINode &PHI : BB->phis()) 6466 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6467 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6468 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6469 Instruction *T = Predecessor->getTerminator(); 6470 IRBuilder<> Builder(T); 6471 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6472 BB->removePredecessor(Predecessor); 6473 // Turn uncoditional branches into unreachables and remove the dead 6474 // destination from conditional branches. 6475 if (BI->isUnconditional()) 6476 Builder.CreateUnreachable(); 6477 else 6478 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6479 : BI->getSuccessor(0)); 6480 BI->eraseFromParent(); 6481 if (DTU) 6482 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6483 return true; 6484 } 6485 // TODO: SwitchInst. 6486 } 6487 6488 return false; 6489 } 6490 6491 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6492 bool Changed = false; 6493 6494 assert(BB && BB->getParent() && "Block not embedded in function!"); 6495 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6496 6497 // Remove basic blocks that have no predecessors (except the entry block)... 6498 // or that just have themself as a predecessor. These are unreachable. 6499 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6500 BB->getSinglePredecessor() == BB) { 6501 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6502 DeleteDeadBlock(BB, DTU); 6503 return true; 6504 } 6505 6506 // Check to see if we can constant propagate this terminator instruction 6507 // away... 6508 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6509 /*TLI=*/nullptr, DTU); 6510 6511 // Check for and eliminate duplicate PHI nodes in this block. 6512 Changed |= EliminateDuplicatePHINodes(BB); 6513 6514 // Check for and remove branches that will always cause undefined behavior. 6515 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6516 6517 // Merge basic blocks into their predecessor if there is only one distinct 6518 // pred, and if there is only one distinct successor of the predecessor, and 6519 // if there are no PHI nodes. 6520 if (MergeBlockIntoPredecessor(BB, DTU)) 6521 return true; 6522 6523 if (SinkCommon && Options.SinkCommonInsts) 6524 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6525 6526 IRBuilder<> Builder(BB); 6527 6528 if (Options.FoldTwoEntryPHINode) { 6529 // If there is a trivial two-entry PHI node in this basic block, and we can 6530 // eliminate it, do so now. 6531 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6532 if (PN->getNumIncomingValues() == 2) 6533 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6534 } 6535 6536 Instruction *Terminator = BB->getTerminator(); 6537 Builder.SetInsertPoint(Terminator); 6538 switch (Terminator->getOpcode()) { 6539 case Instruction::Br: 6540 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6541 break; 6542 case Instruction::Ret: 6543 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6544 break; 6545 case Instruction::Resume: 6546 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6547 break; 6548 case Instruction::CleanupRet: 6549 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6550 break; 6551 case Instruction::Switch: 6552 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6553 break; 6554 case Instruction::Unreachable: 6555 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6556 break; 6557 case Instruction::IndirectBr: 6558 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6559 break; 6560 } 6561 6562 return Changed; 6563 } 6564 6565 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6566 bool Changed = simplifyOnceImpl(BB); 6567 6568 return Changed; 6569 } 6570 6571 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6572 bool Changed = false; 6573 6574 // Repeated simplify BB as long as resimplification is requested. 6575 do { 6576 Resimplify = false; 6577 6578 // Perform one round of simplifcation. Resimplify flag will be set if 6579 // another iteration is requested. 6580 Changed |= simplifyOnce(BB); 6581 } while (Resimplify); 6582 6583 return Changed; 6584 } 6585 6586 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6587 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6588 ArrayRef<WeakVH> LoopHeaders) { 6589 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6590 Options) 6591 .run(BB); 6592 } 6593