1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <climits>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 using namespace PatternMatch;
85 
86 #define DEBUG_TYPE "simplifycfg"
87 
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt<unsigned> PHINodeFoldingThreshold(
93     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
94     cl::desc(
95         "Control the amount of phi node folding to perform (default = 2)"));
96 
97 static cl::opt<bool> DupRet(
98     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
99     cl::desc("Duplicate return instructions into unconditional branches"));
100 
101 static cl::opt<bool>
102     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
103                cl::desc("Sink common instructions down to the end block"));
104 
105 static cl::opt<bool> HoistCondStores(
106     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores if an unconditional store precedes"));
108 
109 static cl::opt<bool> MergeCondStores(
110     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
111     cl::desc("Hoist conditional stores even if an unconditional store does not "
112              "precede - hoist multiple conditional stores into a single "
113              "predicated store"));
114 
115 static cl::opt<bool> MergeCondStoresAggressively(
116     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
117     cl::desc("When merging conditional stores, do so even if the resultant "
118              "basic blocks are unlikely to be if-converted as a result"));
119 
120 static cl::opt<bool> SpeculateOneExpensiveInst(
121     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
122     cl::desc("Allow exactly one expensive instruction to be speculatively "
123              "executed"));
124 
125 static cl::opt<unsigned> MaxSpeculationDepth(
126     "max-speculation-depth", cl::Hidden, cl::init(10),
127     cl::desc("Limit maximum recursion depth when calculating costs of "
128              "speculatively executed instructions"));
129 
130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
131 STATISTIC(NumLinearMaps,
132           "Number of switch instructions turned into linear mapping");
133 STATISTIC(NumLookupTables,
134           "Number of switch instructions turned into lookup tables");
135 STATISTIC(
136     NumLookupTablesHoles,
137     "Number of switch instructions turned into lookup tables (holes checked)");
138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
139 STATISTIC(NumSinkCommons,
140           "Number of common instructions sunk down to the end block");
141 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
142 
143 namespace {
144 
145 // The first field contains the value that the switch produces when a certain
146 // case group is selected, and the second field is a vector containing the
147 // cases composing the case group.
148 using SwitchCaseResultVectorTy =
149     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
150 
151 // The first field contains the phi node that generates a result of the switch
152 // and the second field contains the value generated for a certain case in the
153 // switch for that PHI.
154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
155 
156 /// ValueEqualityComparisonCase - Represents a case of a switch.
157 struct ValueEqualityComparisonCase {
158   ConstantInt *Value;
159   BasicBlock *Dest;
160 
161   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
162       : Value(Value), Dest(Dest) {}
163 
164   bool operator<(ValueEqualityComparisonCase RHS) const {
165     // Comparing pointers is ok as we only rely on the order for uniquing.
166     return Value < RHS.Value;
167   }
168 
169   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
170 };
171 
172 class SimplifyCFGOpt {
173   const TargetTransformInfo &TTI;
174   const DataLayout &DL;
175   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
176   const SimplifyCFGOptions &Options;
177 
178   Value *isValueEqualityComparison(TerminatorInst *TI);
179   BasicBlock *GetValueEqualityComparisonCases(
180       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
181   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
182                                                      BasicBlock *Pred,
183                                                      IRBuilder<> &Builder);
184   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
185                                            IRBuilder<> &Builder);
186 
187   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
188   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
189   bool SimplifySingleResume(ResumeInst *RI);
190   bool SimplifyCommonResume(ResumeInst *RI);
191   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
192   bool SimplifyUnreachable(UnreachableInst *UI);
193   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
194   bool SimplifyIndirectBr(IndirectBrInst *IBI);
195   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
196   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 
198 public:
199   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
200                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
201                  const SimplifyCFGOptions &Opts)
202       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
203 
204   bool run(BasicBlock *BB);
205 };
206 
207 } // end anonymous namespace
208 
209 /// Return true if it is safe to merge these two
210 /// terminator instructions together.
211 static bool
212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
213                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
214   if (SI1 == SI2)
215     return false; // Can't merge with self!
216 
217   // It is not safe to merge these two switch instructions if they have a common
218   // successor, and if that successor has a PHI node, and if *that* PHI node has
219   // conflicting incoming values from the two switch blocks.
220   BasicBlock *SI1BB = SI1->getParent();
221   BasicBlock *SI2BB = SI2->getParent();
222 
223   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
224   bool Fail = false;
225   for (BasicBlock *Succ : successors(SI2BB))
226     if (SI1Succs.count(Succ))
227       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
228         PHINode *PN = cast<PHINode>(BBI);
229         if (PN->getIncomingValueForBlock(SI1BB) !=
230             PN->getIncomingValueForBlock(SI2BB)) {
231           if (FailBlocks)
232             FailBlocks->insert(Succ);
233           Fail = true;
234         }
235       }
236 
237   return !Fail;
238 }
239 
240 /// Return true if it is safe and profitable to merge these two terminator
241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
242 /// store all PHI nodes in common successors.
243 static bool
244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
245                                 Instruction *Cond,
246                                 SmallVectorImpl<PHINode *> &PhiNodes) {
247   if (SI1 == SI2)
248     return false; // Can't merge with self!
249   assert(SI1->isUnconditional() && SI2->isConditional());
250 
251   // We fold the unconditional branch if we can easily update all PHI nodes in
252   // common successors:
253   // 1> We have a constant incoming value for the conditional branch;
254   // 2> We have "Cond" as the incoming value for the unconditional branch;
255   // 3> SI2->getCondition() and Cond have same operands.
256   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
257   if (!Ci2)
258     return false;
259   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
260         Cond->getOperand(1) == Ci2->getOperand(1)) &&
261       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
262         Cond->getOperand(1) == Ci2->getOperand(0)))
263     return false;
264 
265   BasicBlock *SI1BB = SI1->getParent();
266   BasicBlock *SI2BB = SI2->getParent();
267   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
268   for (BasicBlock *Succ : successors(SI2BB))
269     if (SI1Succs.count(Succ))
270       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
271         PHINode *PN = cast<PHINode>(BBI);
272         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
273             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
274           return false;
275         PhiNodes.push_back(PN);
276       }
277   return true;
278 }
279 
280 /// Update PHI nodes in Succ to indicate that there will now be entries in it
281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
282 /// will be the same as those coming in from ExistPred, an existing predecessor
283 /// of Succ.
284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
285                                   BasicBlock *ExistPred) {
286   for (PHINode &PN : Succ->phis())
287     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
288 }
289 
290 /// Compute an abstract "cost" of speculating the given instruction,
291 /// which is assumed to be safe to speculate. TCC_Free means cheap,
292 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
293 /// expensive.
294 static unsigned ComputeSpeculationCost(const User *I,
295                                        const TargetTransformInfo &TTI) {
296   assert(isSafeToSpeculativelyExecute(I) &&
297          "Instruction is not safe to speculatively execute!");
298   return TTI.getUserCost(I);
299 }
300 
301 /// If we have a merge point of an "if condition" as accepted above,
302 /// return true if the specified value dominates the block.  We
303 /// don't handle the true generality of domination here, just a special case
304 /// which works well enough for us.
305 ///
306 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
307 /// see if V (which must be an instruction) and its recursive operands
308 /// that do not dominate BB have a combined cost lower than CostRemaining and
309 /// are non-trapping.  If both are true, the instruction is inserted into the
310 /// set and true is returned.
311 ///
312 /// The cost for most non-trapping instructions is defined as 1 except for
313 /// Select whose cost is 2.
314 ///
315 /// After this function returns, CostRemaining is decreased by the cost of
316 /// V plus its non-dominating operands.  If that cost is greater than
317 /// CostRemaining, false is returned and CostRemaining is undefined.
318 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
319                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
320                                 unsigned &CostRemaining,
321                                 const TargetTransformInfo &TTI,
322                                 unsigned Depth = 0) {
323   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
324   // so limit the recursion depth.
325   // TODO: While this recursion limit does prevent pathological behavior, it
326   // would be better to track visited instructions to avoid cycles.
327   if (Depth == MaxSpeculationDepth)
328     return false;
329 
330   Instruction *I = dyn_cast<Instruction>(V);
331   if (!I) {
332     // Non-instructions all dominate instructions, but not all constantexprs
333     // can be executed unconditionally.
334     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
335       if (C->canTrap())
336         return false;
337     return true;
338   }
339   BasicBlock *PBB = I->getParent();
340 
341   // We don't want to allow weird loops that might have the "if condition" in
342   // the bottom of this block.
343   if (PBB == BB)
344     return false;
345 
346   // If this instruction is defined in a block that contains an unconditional
347   // branch to BB, then it must be in the 'conditional' part of the "if
348   // statement".  If not, it definitely dominates the region.
349   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
350   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
351     return true;
352 
353   // If we aren't allowing aggressive promotion anymore, then don't consider
354   // instructions in the 'if region'.
355   if (!AggressiveInsts)
356     return false;
357 
358   // If we have seen this instruction before, don't count it again.
359   if (AggressiveInsts->count(I))
360     return true;
361 
362   // Okay, it looks like the instruction IS in the "condition".  Check to
363   // see if it's a cheap instruction to unconditionally compute, and if it
364   // only uses stuff defined outside of the condition.  If so, hoist it out.
365   if (!isSafeToSpeculativelyExecute(I))
366     return false;
367 
368   unsigned Cost = ComputeSpeculationCost(I, TTI);
369 
370   // Allow exactly one instruction to be speculated regardless of its cost
371   // (as long as it is safe to do so).
372   // This is intended to flatten the CFG even if the instruction is a division
373   // or other expensive operation. The speculation of an expensive instruction
374   // is expected to be undone in CodeGenPrepare if the speculation has not
375   // enabled further IR optimizations.
376   if (Cost > CostRemaining &&
377       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
378     return false;
379 
380   // Avoid unsigned wrap.
381   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
382 
383   // Okay, we can only really hoist these out if their operands do
384   // not take us over the cost threshold.
385   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
386     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
387                              Depth + 1))
388       return false;
389   // Okay, it's safe to do this!  Remember this instruction.
390   AggressiveInsts->insert(I);
391   return true;
392 }
393 
394 /// Extract ConstantInt from value, looking through IntToPtr
395 /// and PointerNullValue. Return NULL if value is not a constant int.
396 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
397   // Normal constant int.
398   ConstantInt *CI = dyn_cast<ConstantInt>(V);
399   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
400     return CI;
401 
402   // This is some kind of pointer constant. Turn it into a pointer-sized
403   // ConstantInt if possible.
404   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
405 
406   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
407   if (isa<ConstantPointerNull>(V))
408     return ConstantInt::get(PtrTy, 0);
409 
410   // IntToPtr const int.
411   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
412     if (CE->getOpcode() == Instruction::IntToPtr)
413       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
414         // The constant is very likely to have the right type already.
415         if (CI->getType() == PtrTy)
416           return CI;
417         else
418           return cast<ConstantInt>(
419               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
420       }
421   return nullptr;
422 }
423 
424 namespace {
425 
426 /// Given a chain of or (||) or and (&&) comparison of a value against a
427 /// constant, this will try to recover the information required for a switch
428 /// structure.
429 /// It will depth-first traverse the chain of comparison, seeking for patterns
430 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
431 /// representing the different cases for the switch.
432 /// Note that if the chain is composed of '||' it will build the set of elements
433 /// that matches the comparisons (i.e. any of this value validate the chain)
434 /// while for a chain of '&&' it will build the set elements that make the test
435 /// fail.
436 struct ConstantComparesGatherer {
437   const DataLayout &DL;
438 
439   /// Value found for the switch comparison
440   Value *CompValue = nullptr;
441 
442   /// Extra clause to be checked before the switch
443   Value *Extra = nullptr;
444 
445   /// Set of integers to match in switch
446   SmallVector<ConstantInt *, 8> Vals;
447 
448   /// Number of comparisons matched in the and/or chain
449   unsigned UsedICmps = 0;
450 
451   /// Construct and compute the result for the comparison instruction Cond
452   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
453     gather(Cond);
454   }
455 
456   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
457   ConstantComparesGatherer &
458   operator=(const ConstantComparesGatherer &) = delete;
459 
460 private:
461   /// Try to set the current value used for the comparison, it succeeds only if
462   /// it wasn't set before or if the new value is the same as the old one
463   bool setValueOnce(Value *NewVal) {
464     if (CompValue && CompValue != NewVal)
465       return false;
466     CompValue = NewVal;
467     return (CompValue != nullptr);
468   }
469 
470   /// Try to match Instruction "I" as a comparison against a constant and
471   /// populates the array Vals with the set of values that match (or do not
472   /// match depending on isEQ).
473   /// Return false on failure. On success, the Value the comparison matched
474   /// against is placed in CompValue.
475   /// If CompValue is already set, the function is expected to fail if a match
476   /// is found but the value compared to is different.
477   bool matchInstruction(Instruction *I, bool isEQ) {
478     // If this is an icmp against a constant, handle this as one of the cases.
479     ICmpInst *ICI;
480     ConstantInt *C;
481     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
482           (C = GetConstantInt(I->getOperand(1), DL)))) {
483       return false;
484     }
485 
486     Value *RHSVal;
487     const APInt *RHSC;
488 
489     // Pattern match a special case
490     // (x & ~2^z) == y --> x == y || x == y|2^z
491     // This undoes a transformation done by instcombine to fuse 2 compares.
492     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
493       // It's a little bit hard to see why the following transformations are
494       // correct. Here is a CVC3 program to verify them for 64-bit values:
495 
496       /*
497          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
498          x    : BITVECTOR(64);
499          y    : BITVECTOR(64);
500          z    : BITVECTOR(64);
501          mask : BITVECTOR(64) = BVSHL(ONE, z);
502          QUERY( (y & ~mask = y) =>
503                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
504          );
505          QUERY( (y |  mask = y) =>
506                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
507          );
508       */
509 
510       // Please note that each pattern must be a dual implication (<--> or
511       // iff). One directional implication can create spurious matches. If the
512       // implication is only one-way, an unsatisfiable condition on the left
513       // side can imply a satisfiable condition on the right side. Dual
514       // implication ensures that satisfiable conditions are transformed to
515       // other satisfiable conditions and unsatisfiable conditions are
516       // transformed to other unsatisfiable conditions.
517 
518       // Here is a concrete example of a unsatisfiable condition on the left
519       // implying a satisfiable condition on the right:
520       //
521       // mask = (1 << z)
522       // (x & ~mask) == y  --> (x == y || x == (y | mask))
523       //
524       // Substituting y = 3, z = 0 yields:
525       // (x & -2) == 3 --> (x == 3 || x == 2)
526 
527       // Pattern match a special case:
528       /*
529         QUERY( (y & ~mask = y) =>
530                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
531         );
532       */
533       if (match(ICI->getOperand(0),
534                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
535         APInt Mask = ~*RHSC;
536         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
537           // If we already have a value for the switch, it has to match!
538           if (!setValueOnce(RHSVal))
539             return false;
540 
541           Vals.push_back(C);
542           Vals.push_back(
543               ConstantInt::get(C->getContext(),
544                                C->getValue() | Mask));
545           UsedICmps++;
546           return true;
547         }
548       }
549 
550       // Pattern match a special case:
551       /*
552         QUERY( (y |  mask = y) =>
553                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
554         );
555       */
556       if (match(ICI->getOperand(0),
557                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
558         APInt Mask = *RHSC;
559         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
560           // If we already have a value for the switch, it has to match!
561           if (!setValueOnce(RHSVal))
562             return false;
563 
564           Vals.push_back(C);
565           Vals.push_back(ConstantInt::get(C->getContext(),
566                                           C->getValue() & ~Mask));
567           UsedICmps++;
568           return true;
569         }
570       }
571 
572       // If we already have a value for the switch, it has to match!
573       if (!setValueOnce(ICI->getOperand(0)))
574         return false;
575 
576       UsedICmps++;
577       Vals.push_back(C);
578       return ICI->getOperand(0);
579     }
580 
581     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
582     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
583         ICI->getPredicate(), C->getValue());
584 
585     // Shift the range if the compare is fed by an add. This is the range
586     // compare idiom as emitted by instcombine.
587     Value *CandidateVal = I->getOperand(0);
588     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
589       Span = Span.subtract(*RHSC);
590       CandidateVal = RHSVal;
591     }
592 
593     // If this is an and/!= check, then we are looking to build the set of
594     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
595     // x != 0 && x != 1.
596     if (!isEQ)
597       Span = Span.inverse();
598 
599     // If there are a ton of values, we don't want to make a ginormous switch.
600     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
601       return false;
602     }
603 
604     // If we already have a value for the switch, it has to match!
605     if (!setValueOnce(CandidateVal))
606       return false;
607 
608     // Add all values from the range to the set
609     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
610       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
611 
612     UsedICmps++;
613     return true;
614   }
615 
616   /// Given a potentially 'or'd or 'and'd together collection of icmp
617   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
618   /// the value being compared, and stick the list constants into the Vals
619   /// vector.
620   /// One "Extra" case is allowed to differ from the other.
621   void gather(Value *V) {
622     Instruction *I = dyn_cast<Instruction>(V);
623     bool isEQ = (I->getOpcode() == Instruction::Or);
624 
625     // Keep a stack (SmallVector for efficiency) for depth-first traversal
626     SmallVector<Value *, 8> DFT;
627     SmallPtrSet<Value *, 8> Visited;
628 
629     // Initialize
630     Visited.insert(V);
631     DFT.push_back(V);
632 
633     while (!DFT.empty()) {
634       V = DFT.pop_back_val();
635 
636       if (Instruction *I = dyn_cast<Instruction>(V)) {
637         // If it is a || (or && depending on isEQ), process the operands.
638         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
639           if (Visited.insert(I->getOperand(1)).second)
640             DFT.push_back(I->getOperand(1));
641           if (Visited.insert(I->getOperand(0)).second)
642             DFT.push_back(I->getOperand(0));
643           continue;
644         }
645 
646         // Try to match the current instruction
647         if (matchInstruction(I, isEQ))
648           // Match succeed, continue the loop
649           continue;
650       }
651 
652       // One element of the sequence of || (or &&) could not be match as a
653       // comparison against the same value as the others.
654       // We allow only one "Extra" case to be checked before the switch
655       if (!Extra) {
656         Extra = V;
657         continue;
658       }
659       // Failed to parse a proper sequence, abort now
660       CompValue = nullptr;
661       break;
662     }
663   }
664 };
665 
666 } // end anonymous namespace
667 
668 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
669   Instruction *Cond = nullptr;
670   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
671     Cond = dyn_cast<Instruction>(SI->getCondition());
672   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
673     if (BI->isConditional())
674       Cond = dyn_cast<Instruction>(BI->getCondition());
675   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
676     Cond = dyn_cast<Instruction>(IBI->getAddress());
677   }
678 
679   TI->eraseFromParent();
680   if (Cond)
681     RecursivelyDeleteTriviallyDeadInstructions(Cond);
682 }
683 
684 /// Return true if the specified terminator checks
685 /// to see if a value is equal to constant integer value.
686 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
687   Value *CV = nullptr;
688   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
689     // Do not permit merging of large switch instructions into their
690     // predecessors unless there is only one predecessor.
691     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
692                                                pred_end(SI->getParent())) <=
693         128)
694       CV = SI->getCondition();
695   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
696     if (BI->isConditional() && BI->getCondition()->hasOneUse())
697       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
698         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
699           CV = ICI->getOperand(0);
700       }
701 
702   // Unwrap any lossless ptrtoint cast.
703   if (CV) {
704     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
705       Value *Ptr = PTII->getPointerOperand();
706       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
707         CV = Ptr;
708     }
709   }
710   return CV;
711 }
712 
713 /// Given a value comparison instruction,
714 /// decode all of the 'cases' that it represents and return the 'default' block.
715 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
716     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
717   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
718     Cases.reserve(SI->getNumCases());
719     for (auto Case : SI->cases())
720       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
721                                                   Case.getCaseSuccessor()));
722     return SI->getDefaultDest();
723   }
724 
725   BranchInst *BI = cast<BranchInst>(TI);
726   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
727   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
728   Cases.push_back(ValueEqualityComparisonCase(
729       GetConstantInt(ICI->getOperand(1), DL), Succ));
730   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
731 }
732 
733 /// Given a vector of bb/value pairs, remove any entries
734 /// in the list that match the specified block.
735 static void
736 EliminateBlockCases(BasicBlock *BB,
737                     std::vector<ValueEqualityComparisonCase> &Cases) {
738   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
739 }
740 
741 /// Return true if there are any keys in C1 that exist in C2 as well.
742 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
743                           std::vector<ValueEqualityComparisonCase> &C2) {
744   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
745 
746   // Make V1 be smaller than V2.
747   if (V1->size() > V2->size())
748     std::swap(V1, V2);
749 
750   if (V1->empty())
751     return false;
752   if (V1->size() == 1) {
753     // Just scan V2.
754     ConstantInt *TheVal = (*V1)[0].Value;
755     for (unsigned i = 0, e = V2->size(); i != e; ++i)
756       if (TheVal == (*V2)[i].Value)
757         return true;
758   }
759 
760   // Otherwise, just sort both lists and compare element by element.
761   array_pod_sort(V1->begin(), V1->end());
762   array_pod_sort(V2->begin(), V2->end());
763   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
764   while (i1 != e1 && i2 != e2) {
765     if ((*V1)[i1].Value == (*V2)[i2].Value)
766       return true;
767     if ((*V1)[i1].Value < (*V2)[i2].Value)
768       ++i1;
769     else
770       ++i2;
771   }
772   return false;
773 }
774 
775 // Set branch weights on SwitchInst. This sets the metadata if there is at
776 // least one non-zero weight.
777 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
778   // Check that there is at least one non-zero weight. Otherwise, pass
779   // nullptr to setMetadata which will erase the existing metadata.
780   MDNode *N = nullptr;
781   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
782     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
783   SI->setMetadata(LLVMContext::MD_prof, N);
784 }
785 
786 // Similar to the above, but for branch and select instructions that take
787 // exactly 2 weights.
788 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
789                              uint32_t FalseWeight) {
790   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
791   // Check that there is at least one non-zero weight. Otherwise, pass
792   // nullptr to setMetadata which will erase the existing metadata.
793   MDNode *N = nullptr;
794   if (TrueWeight || FalseWeight)
795     N = MDBuilder(I->getParent()->getContext())
796             .createBranchWeights(TrueWeight, FalseWeight);
797   I->setMetadata(LLVMContext::MD_prof, N);
798 }
799 
800 /// If TI is known to be a terminator instruction and its block is known to
801 /// only have a single predecessor block, check to see if that predecessor is
802 /// also a value comparison with the same value, and if that comparison
803 /// determines the outcome of this comparison. If so, simplify TI. This does a
804 /// very limited form of jump threading.
805 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
806     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
807   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
808   if (!PredVal)
809     return false; // Not a value comparison in predecessor.
810 
811   Value *ThisVal = isValueEqualityComparison(TI);
812   assert(ThisVal && "This isn't a value comparison!!");
813   if (ThisVal != PredVal)
814     return false; // Different predicates.
815 
816   // TODO: Preserve branch weight metadata, similarly to how
817   // FoldValueComparisonIntoPredecessors preserves it.
818 
819   // Find out information about when control will move from Pred to TI's block.
820   std::vector<ValueEqualityComparisonCase> PredCases;
821   BasicBlock *PredDef =
822       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
823   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
824 
825   // Find information about how control leaves this block.
826   std::vector<ValueEqualityComparisonCase> ThisCases;
827   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
828   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
829 
830   // If TI's block is the default block from Pred's comparison, potentially
831   // simplify TI based on this knowledge.
832   if (PredDef == TI->getParent()) {
833     // If we are here, we know that the value is none of those cases listed in
834     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
835     // can simplify TI.
836     if (!ValuesOverlap(PredCases, ThisCases))
837       return false;
838 
839     if (isa<BranchInst>(TI)) {
840       // Okay, one of the successors of this condbr is dead.  Convert it to a
841       // uncond br.
842       assert(ThisCases.size() == 1 && "Branch can only have one case!");
843       // Insert the new branch.
844       Instruction *NI = Builder.CreateBr(ThisDef);
845       (void)NI;
846 
847       // Remove PHI node entries for the dead edge.
848       ThisCases[0].Dest->removePredecessor(TI->getParent());
849 
850       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
851                    << "Through successor TI: " << *TI << "Leaving: " << *NI
852                    << "\n");
853 
854       EraseTerminatorInstAndDCECond(TI);
855       return true;
856     }
857 
858     SwitchInst *SI = cast<SwitchInst>(TI);
859     // Okay, TI has cases that are statically dead, prune them away.
860     SmallPtrSet<Constant *, 16> DeadCases;
861     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
862       DeadCases.insert(PredCases[i].Value);
863 
864     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
865                  << "Through successor TI: " << *TI);
866 
867     // Collect branch weights into a vector.
868     SmallVector<uint32_t, 8> Weights;
869     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
870     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
871     if (HasWeight)
872       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
873            ++MD_i) {
874         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
875         Weights.push_back(CI->getValue().getZExtValue());
876       }
877     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
878       --i;
879       if (DeadCases.count(i->getCaseValue())) {
880         if (HasWeight) {
881           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
882           Weights.pop_back();
883         }
884         i->getCaseSuccessor()->removePredecessor(TI->getParent());
885         SI->removeCase(i);
886       }
887     }
888     if (HasWeight && Weights.size() >= 2)
889       setBranchWeights(SI, Weights);
890 
891     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
892     return true;
893   }
894 
895   // Otherwise, TI's block must correspond to some matched value.  Find out
896   // which value (or set of values) this is.
897   ConstantInt *TIV = nullptr;
898   BasicBlock *TIBB = TI->getParent();
899   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
900     if (PredCases[i].Dest == TIBB) {
901       if (TIV)
902         return false; // Cannot handle multiple values coming to this block.
903       TIV = PredCases[i].Value;
904     }
905   assert(TIV && "No edge from pred to succ?");
906 
907   // Okay, we found the one constant that our value can be if we get into TI's
908   // BB.  Find out which successor will unconditionally be branched to.
909   BasicBlock *TheRealDest = nullptr;
910   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
911     if (ThisCases[i].Value == TIV) {
912       TheRealDest = ThisCases[i].Dest;
913       break;
914     }
915 
916   // If not handled by any explicit cases, it is handled by the default case.
917   if (!TheRealDest)
918     TheRealDest = ThisDef;
919 
920   // Remove PHI node entries for dead edges.
921   BasicBlock *CheckEdge = TheRealDest;
922   for (BasicBlock *Succ : successors(TIBB))
923     if (Succ != CheckEdge)
924       Succ->removePredecessor(TIBB);
925     else
926       CheckEdge = nullptr;
927 
928   // Insert the new branch.
929   Instruction *NI = Builder.CreateBr(TheRealDest);
930   (void)NI;
931 
932   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
933                << "Through successor TI: " << *TI << "Leaving: " << *NI
934                << "\n");
935 
936   EraseTerminatorInstAndDCECond(TI);
937   return true;
938 }
939 
940 namespace {
941 
942 /// This class implements a stable ordering of constant
943 /// integers that does not depend on their address.  This is important for
944 /// applications that sort ConstantInt's to ensure uniqueness.
945 struct ConstantIntOrdering {
946   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
947     return LHS->getValue().ult(RHS->getValue());
948   }
949 };
950 
951 } // end anonymous namespace
952 
953 static int ConstantIntSortPredicate(ConstantInt *const *P1,
954                                     ConstantInt *const *P2) {
955   const ConstantInt *LHS = *P1;
956   const ConstantInt *RHS = *P2;
957   if (LHS == RHS)
958     return 0;
959   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
960 }
961 
962 static inline bool HasBranchWeights(const Instruction *I) {
963   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
964   if (ProfMD && ProfMD->getOperand(0))
965     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
966       return MDS->getString().equals("branch_weights");
967 
968   return false;
969 }
970 
971 /// Get Weights of a given TerminatorInst, the default weight is at the front
972 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
973 /// metadata.
974 static void GetBranchWeights(TerminatorInst *TI,
975                              SmallVectorImpl<uint64_t> &Weights) {
976   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
977   assert(MD);
978   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
979     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
980     Weights.push_back(CI->getValue().getZExtValue());
981   }
982 
983   // If TI is a conditional eq, the default case is the false case,
984   // and the corresponding branch-weight data is at index 2. We swap the
985   // default weight to be the first entry.
986   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
987     assert(Weights.size() == 2);
988     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
989     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
990       std::swap(Weights.front(), Weights.back());
991   }
992 }
993 
994 /// Keep halving the weights until all can fit in uint32_t.
995 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
996   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
997   if (Max > UINT_MAX) {
998     unsigned Offset = 32 - countLeadingZeros(Max);
999     for (uint64_t &I : Weights)
1000       I >>= Offset;
1001   }
1002 }
1003 
1004 /// The specified terminator is a value equality comparison instruction
1005 /// (either a switch or a branch on "X == c").
1006 /// See if any of the predecessors of the terminator block are value comparisons
1007 /// on the same value.  If so, and if safe to do so, fold them together.
1008 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
1009                                                          IRBuilder<> &Builder) {
1010   BasicBlock *BB = TI->getParent();
1011   Value *CV = isValueEqualityComparison(TI); // CondVal
1012   assert(CV && "Not a comparison?");
1013   bool Changed = false;
1014 
1015   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1016   while (!Preds.empty()) {
1017     BasicBlock *Pred = Preds.pop_back_val();
1018 
1019     // See if the predecessor is a comparison with the same value.
1020     TerminatorInst *PTI = Pred->getTerminator();
1021     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1022 
1023     if (PCV == CV && TI != PTI) {
1024       SmallSetVector<BasicBlock*, 4> FailBlocks;
1025       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1026         for (auto *Succ : FailBlocks) {
1027           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1028             return false;
1029         }
1030       }
1031 
1032       // Figure out which 'cases' to copy from SI to PSI.
1033       std::vector<ValueEqualityComparisonCase> BBCases;
1034       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1035 
1036       std::vector<ValueEqualityComparisonCase> PredCases;
1037       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1038 
1039       // Based on whether the default edge from PTI goes to BB or not, fill in
1040       // PredCases and PredDefault with the new switch cases we would like to
1041       // build.
1042       SmallVector<BasicBlock *, 8> NewSuccessors;
1043 
1044       // Update the branch weight metadata along the way
1045       SmallVector<uint64_t, 8> Weights;
1046       bool PredHasWeights = HasBranchWeights(PTI);
1047       bool SuccHasWeights = HasBranchWeights(TI);
1048 
1049       if (PredHasWeights) {
1050         GetBranchWeights(PTI, Weights);
1051         // branch-weight metadata is inconsistent here.
1052         if (Weights.size() != 1 + PredCases.size())
1053           PredHasWeights = SuccHasWeights = false;
1054       } else if (SuccHasWeights)
1055         // If there are no predecessor weights but there are successor weights,
1056         // populate Weights with 1, which will later be scaled to the sum of
1057         // successor's weights
1058         Weights.assign(1 + PredCases.size(), 1);
1059 
1060       SmallVector<uint64_t, 8> SuccWeights;
1061       if (SuccHasWeights) {
1062         GetBranchWeights(TI, SuccWeights);
1063         // branch-weight metadata is inconsistent here.
1064         if (SuccWeights.size() != 1 + BBCases.size())
1065           PredHasWeights = SuccHasWeights = false;
1066       } else if (PredHasWeights)
1067         SuccWeights.assign(1 + BBCases.size(), 1);
1068 
1069       if (PredDefault == BB) {
1070         // If this is the default destination from PTI, only the edges in TI
1071         // that don't occur in PTI, or that branch to BB will be activated.
1072         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1073         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1074           if (PredCases[i].Dest != BB)
1075             PTIHandled.insert(PredCases[i].Value);
1076           else {
1077             // The default destination is BB, we don't need explicit targets.
1078             std::swap(PredCases[i], PredCases.back());
1079 
1080             if (PredHasWeights || SuccHasWeights) {
1081               // Increase weight for the default case.
1082               Weights[0] += Weights[i + 1];
1083               std::swap(Weights[i + 1], Weights.back());
1084               Weights.pop_back();
1085             }
1086 
1087             PredCases.pop_back();
1088             --i;
1089             --e;
1090           }
1091 
1092         // Reconstruct the new switch statement we will be building.
1093         if (PredDefault != BBDefault) {
1094           PredDefault->removePredecessor(Pred);
1095           PredDefault = BBDefault;
1096           NewSuccessors.push_back(BBDefault);
1097         }
1098 
1099         unsigned CasesFromPred = Weights.size();
1100         uint64_t ValidTotalSuccWeight = 0;
1101         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1102           if (!PTIHandled.count(BBCases[i].Value) &&
1103               BBCases[i].Dest != BBDefault) {
1104             PredCases.push_back(BBCases[i]);
1105             NewSuccessors.push_back(BBCases[i].Dest);
1106             if (SuccHasWeights || PredHasWeights) {
1107               // The default weight is at index 0, so weight for the ith case
1108               // should be at index i+1. Scale the cases from successor by
1109               // PredDefaultWeight (Weights[0]).
1110               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1111               ValidTotalSuccWeight += SuccWeights[i + 1];
1112             }
1113           }
1114 
1115         if (SuccHasWeights || PredHasWeights) {
1116           ValidTotalSuccWeight += SuccWeights[0];
1117           // Scale the cases from predecessor by ValidTotalSuccWeight.
1118           for (unsigned i = 1; i < CasesFromPred; ++i)
1119             Weights[i] *= ValidTotalSuccWeight;
1120           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1121           Weights[0] *= SuccWeights[0];
1122         }
1123       } else {
1124         // If this is not the default destination from PSI, only the edges
1125         // in SI that occur in PSI with a destination of BB will be
1126         // activated.
1127         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1128         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1129         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1130           if (PredCases[i].Dest == BB) {
1131             PTIHandled.insert(PredCases[i].Value);
1132 
1133             if (PredHasWeights || SuccHasWeights) {
1134               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1135               std::swap(Weights[i + 1], Weights.back());
1136               Weights.pop_back();
1137             }
1138 
1139             std::swap(PredCases[i], PredCases.back());
1140             PredCases.pop_back();
1141             --i;
1142             --e;
1143           }
1144 
1145         // Okay, now we know which constants were sent to BB from the
1146         // predecessor.  Figure out where they will all go now.
1147         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1148           if (PTIHandled.count(BBCases[i].Value)) {
1149             // If this is one we are capable of getting...
1150             if (PredHasWeights || SuccHasWeights)
1151               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1152             PredCases.push_back(BBCases[i]);
1153             NewSuccessors.push_back(BBCases[i].Dest);
1154             PTIHandled.erase(
1155                 BBCases[i].Value); // This constant is taken care of
1156           }
1157 
1158         // If there are any constants vectored to BB that TI doesn't handle,
1159         // they must go to the default destination of TI.
1160         for (ConstantInt *I : PTIHandled) {
1161           if (PredHasWeights || SuccHasWeights)
1162             Weights.push_back(WeightsForHandled[I]);
1163           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1164           NewSuccessors.push_back(BBDefault);
1165         }
1166       }
1167 
1168       // Okay, at this point, we know which new successor Pred will get.  Make
1169       // sure we update the number of entries in the PHI nodes for these
1170       // successors.
1171       for (BasicBlock *NewSuccessor : NewSuccessors)
1172         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1173 
1174       Builder.SetInsertPoint(PTI);
1175       // Convert pointer to int before we switch.
1176       if (CV->getType()->isPointerTy()) {
1177         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1178                                     "magicptr");
1179       }
1180 
1181       // Now that the successors are updated, create the new Switch instruction.
1182       SwitchInst *NewSI =
1183           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1184       NewSI->setDebugLoc(PTI->getDebugLoc());
1185       for (ValueEqualityComparisonCase &V : PredCases)
1186         NewSI->addCase(V.Value, V.Dest);
1187 
1188       if (PredHasWeights || SuccHasWeights) {
1189         // Halve the weights if any of them cannot fit in an uint32_t
1190         FitWeights(Weights);
1191 
1192         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1193 
1194         setBranchWeights(NewSI, MDWeights);
1195       }
1196 
1197       EraseTerminatorInstAndDCECond(PTI);
1198 
1199       // Okay, last check.  If BB is still a successor of PSI, then we must
1200       // have an infinite loop case.  If so, add an infinitely looping block
1201       // to handle the case to preserve the behavior of the code.
1202       BasicBlock *InfLoopBlock = nullptr;
1203       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1204         if (NewSI->getSuccessor(i) == BB) {
1205           if (!InfLoopBlock) {
1206             // Insert it at the end of the function, because it's either code,
1207             // or it won't matter if it's hot. :)
1208             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1209                                               BB->getParent());
1210             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1211           }
1212           NewSI->setSuccessor(i, InfLoopBlock);
1213         }
1214 
1215       Changed = true;
1216     }
1217   }
1218   return Changed;
1219 }
1220 
1221 // If we would need to insert a select that uses the value of this invoke
1222 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1223 // can't hoist the invoke, as there is nowhere to put the select in this case.
1224 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1225                                 Instruction *I1, Instruction *I2) {
1226   for (BasicBlock *Succ : successors(BB1)) {
1227     for (const PHINode &PN : Succ->phis()) {
1228       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1229       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1230       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1231         return false;
1232       }
1233     }
1234   }
1235   return true;
1236 }
1237 
1238 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1239 
1240 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1241 /// in the two blocks up into the branch block. The caller of this function
1242 /// guarantees that BI's block dominates BB1 and BB2.
1243 static bool HoistThenElseCodeToIf(BranchInst *BI,
1244                                   const TargetTransformInfo &TTI) {
1245   // This does very trivial matching, with limited scanning, to find identical
1246   // instructions in the two blocks.  In particular, we don't want to get into
1247   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1248   // such, we currently just scan for obviously identical instructions in an
1249   // identical order.
1250   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1251   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1252 
1253   BasicBlock::iterator BB1_Itr = BB1->begin();
1254   BasicBlock::iterator BB2_Itr = BB2->begin();
1255 
1256   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1257   // Skip debug info if it is not identical.
1258   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1259   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1260   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1261     while (isa<DbgInfoIntrinsic>(I1))
1262       I1 = &*BB1_Itr++;
1263     while (isa<DbgInfoIntrinsic>(I2))
1264       I2 = &*BB2_Itr++;
1265   }
1266   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1267       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1268     return false;
1269 
1270   BasicBlock *BIParent = BI->getParent();
1271 
1272   bool Changed = false;
1273   do {
1274     // If we are hoisting the terminator instruction, don't move one (making a
1275     // broken BB), instead clone it, and remove BI.
1276     if (isa<TerminatorInst>(I1))
1277       goto HoistTerminator;
1278 
1279     // If we're going to hoist a call, make sure that the two instructions we're
1280     // commoning/hoisting are both marked with musttail, or neither of them is
1281     // marked as such. Otherwise, we might end up in a situation where we hoist
1282     // from a block where the terminator is a `ret` to a block where the terminator
1283     // is a `br`, and `musttail` calls expect to be followed by a return.
1284     auto *C1 = dyn_cast<CallInst>(I1);
1285     auto *C2 = dyn_cast<CallInst>(I2);
1286     if (C1 && C2)
1287       if (C1->isMustTailCall() != C2->isMustTailCall())
1288         return Changed;
1289 
1290     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1291       return Changed;
1292 
1293     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1294       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1295       // The debug location is an integral part of a debug info intrinsic
1296       // and can't be separated from it or replaced.  Instead of attempting
1297       // to merge locations, simply hoist both copies of the intrinsic.
1298       BIParent->getInstList().splice(BI->getIterator(),
1299                                      BB1->getInstList(), I1);
1300       BIParent->getInstList().splice(BI->getIterator(),
1301                                      BB2->getInstList(), I2);
1302       Changed = true;
1303     } else {
1304       // For a normal instruction, we just move one to right before the branch,
1305       // then replace all uses of the other with the first.  Finally, we remove
1306       // the now redundant second instruction.
1307       BIParent->getInstList().splice(BI->getIterator(),
1308                                      BB1->getInstList(), I1);
1309       if (!I2->use_empty())
1310         I2->replaceAllUsesWith(I1);
1311       I1->andIRFlags(I2);
1312       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1313                              LLVMContext::MD_range,
1314                              LLVMContext::MD_fpmath,
1315                              LLVMContext::MD_invariant_load,
1316                              LLVMContext::MD_nonnull,
1317                              LLVMContext::MD_invariant_group,
1318                              LLVMContext::MD_align,
1319                              LLVMContext::MD_dereferenceable,
1320                              LLVMContext::MD_dereferenceable_or_null,
1321                              LLVMContext::MD_mem_parallel_loop_access};
1322       combineMetadata(I1, I2, KnownIDs);
1323 
1324       // I1 and I2 are being combined into a single instruction.  Its debug
1325       // location is the merged locations of the original instructions.
1326       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1327 
1328       I2->eraseFromParent();
1329       Changed = true;
1330     }
1331 
1332     I1 = &*BB1_Itr++;
1333     I2 = &*BB2_Itr++;
1334     // Skip debug info if it is not identical.
1335     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1336     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1337     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1338       while (isa<DbgInfoIntrinsic>(I1))
1339         I1 = &*BB1_Itr++;
1340       while (isa<DbgInfoIntrinsic>(I2))
1341         I2 = &*BB2_Itr++;
1342     }
1343   } while (I1->isIdenticalToWhenDefined(I2));
1344 
1345   return true;
1346 
1347 HoistTerminator:
1348   // It may not be possible to hoist an invoke.
1349   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1350     return Changed;
1351 
1352   for (BasicBlock *Succ : successors(BB1)) {
1353     for (PHINode &PN : Succ->phis()) {
1354       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1355       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1356       if (BB1V == BB2V)
1357         continue;
1358 
1359       // Check for passingValueIsAlwaysUndefined here because we would rather
1360       // eliminate undefined control flow then converting it to a select.
1361       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1362           passingValueIsAlwaysUndefined(BB2V, &PN))
1363         return Changed;
1364 
1365       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1366         return Changed;
1367       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1368         return Changed;
1369     }
1370   }
1371 
1372   // Okay, it is safe to hoist the terminator.
1373   Instruction *NT = I1->clone();
1374   BIParent->getInstList().insert(BI->getIterator(), NT);
1375   if (!NT->getType()->isVoidTy()) {
1376     I1->replaceAllUsesWith(NT);
1377     I2->replaceAllUsesWith(NT);
1378     NT->takeName(I1);
1379   }
1380 
1381   IRBuilder<NoFolder> Builder(NT);
1382   // Hoisting one of the terminators from our successor is a great thing.
1383   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1384   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1385   // nodes, so we insert select instruction to compute the final result.
1386   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1387   for (BasicBlock *Succ : successors(BB1)) {
1388     for (PHINode &PN : Succ->phis()) {
1389       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1390       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1391       if (BB1V == BB2V)
1392         continue;
1393 
1394       // These values do not agree.  Insert a select instruction before NT
1395       // that determines the right value.
1396       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1397       if (!SI)
1398         SI = cast<SelectInst>(
1399             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1400                                  BB1V->getName() + "." + BB2V->getName(), BI));
1401 
1402       // Make the PHI node use the select for all incoming values for BB1/BB2
1403       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1404         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1405           PN.setIncomingValue(i, SI);
1406     }
1407   }
1408 
1409   // Update any PHI nodes in our new successors.
1410   for (BasicBlock *Succ : successors(BB1))
1411     AddPredecessorToBlock(Succ, BIParent, BB1);
1412 
1413   EraseTerminatorInstAndDCECond(BI);
1414   return true;
1415 }
1416 
1417 // All instructions in Insts belong to different blocks that all unconditionally
1418 // branch to a common successor. Analyze each instruction and return true if it
1419 // would be possible to sink them into their successor, creating one common
1420 // instruction instead. For every value that would be required to be provided by
1421 // PHI node (because an operand varies in each input block), add to PHIOperands.
1422 static bool canSinkInstructions(
1423     ArrayRef<Instruction *> Insts,
1424     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1425   // Prune out obviously bad instructions to move. Any non-store instruction
1426   // must have exactly one use, and we check later that use is by a single,
1427   // common PHI instruction in the successor.
1428   for (auto *I : Insts) {
1429     // These instructions may change or break semantics if moved.
1430     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1431         I->getType()->isTokenTy())
1432       return false;
1433 
1434     // Conservatively return false if I is an inline-asm instruction. Sinking
1435     // and merging inline-asm instructions can potentially create arguments
1436     // that cannot satisfy the inline-asm constraints.
1437     if (const auto *C = dyn_cast<CallInst>(I))
1438       if (C->isInlineAsm())
1439         return false;
1440 
1441     // Everything must have only one use too, apart from stores which
1442     // have no uses.
1443     if (!isa<StoreInst>(I) && !I->hasOneUse())
1444       return false;
1445   }
1446 
1447   const Instruction *I0 = Insts.front();
1448   for (auto *I : Insts)
1449     if (!I->isSameOperationAs(I0))
1450       return false;
1451 
1452   // All instructions in Insts are known to be the same opcode. If they aren't
1453   // stores, check the only user of each is a PHI or in the same block as the
1454   // instruction, because if a user is in the same block as an instruction
1455   // we're contemplating sinking, it must already be determined to be sinkable.
1456   if (!isa<StoreInst>(I0)) {
1457     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1458     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1459     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1460           auto *U = cast<Instruction>(*I->user_begin());
1461           return (PNUse &&
1462                   PNUse->getParent() == Succ &&
1463                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1464                  U->getParent() == I->getParent();
1465         }))
1466       return false;
1467   }
1468 
1469   // Because SROA can't handle speculating stores of selects, try not
1470   // to sink loads or stores of allocas when we'd have to create a PHI for
1471   // the address operand. Also, because it is likely that loads or stores
1472   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1473   // This can cause code churn which can have unintended consequences down
1474   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1475   // FIXME: This is a workaround for a deficiency in SROA - see
1476   // https://llvm.org/bugs/show_bug.cgi?id=30188
1477   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1478         return isa<AllocaInst>(I->getOperand(1));
1479       }))
1480     return false;
1481   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1482         return isa<AllocaInst>(I->getOperand(0));
1483       }))
1484     return false;
1485 
1486   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1487     if (I0->getOperand(OI)->getType()->isTokenTy())
1488       // Don't touch any operand of token type.
1489       return false;
1490 
1491     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1492       assert(I->getNumOperands() == I0->getNumOperands());
1493       return I->getOperand(OI) == I0->getOperand(OI);
1494     };
1495     if (!all_of(Insts, SameAsI0)) {
1496       if (!canReplaceOperandWithVariable(I0, OI))
1497         // We can't create a PHI from this GEP.
1498         return false;
1499       // Don't create indirect calls! The called value is the final operand.
1500       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1501         // FIXME: if the call was *already* indirect, we should do this.
1502         return false;
1503       }
1504       for (auto *I : Insts)
1505         PHIOperands[I].push_back(I->getOperand(OI));
1506     }
1507   }
1508   return true;
1509 }
1510 
1511 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1512 // instruction of every block in Blocks to their common successor, commoning
1513 // into one instruction.
1514 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1515   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1516 
1517   // canSinkLastInstruction returning true guarantees that every block has at
1518   // least one non-terminator instruction.
1519   SmallVector<Instruction*,4> Insts;
1520   for (auto *BB : Blocks) {
1521     Instruction *I = BB->getTerminator();
1522     do {
1523       I = I->getPrevNode();
1524     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1525     if (!isa<DbgInfoIntrinsic>(I))
1526       Insts.push_back(I);
1527   }
1528 
1529   // The only checking we need to do now is that all users of all instructions
1530   // are the same PHI node. canSinkLastInstruction should have checked this but
1531   // it is slightly over-aggressive - it gets confused by commutative instructions
1532   // so double-check it here.
1533   Instruction *I0 = Insts.front();
1534   if (!isa<StoreInst>(I0)) {
1535     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1536     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1537           auto *U = cast<Instruction>(*I->user_begin());
1538           return U == PNUse;
1539         }))
1540       return false;
1541   }
1542 
1543   // We don't need to do any more checking here; canSinkLastInstruction should
1544   // have done it all for us.
1545   SmallVector<Value*, 4> NewOperands;
1546   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1547     // This check is different to that in canSinkLastInstruction. There, we
1548     // cared about the global view once simplifycfg (and instcombine) have
1549     // completed - it takes into account PHIs that become trivially
1550     // simplifiable.  However here we need a more local view; if an operand
1551     // differs we create a PHI and rely on instcombine to clean up the very
1552     // small mess we may make.
1553     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1554       return I->getOperand(O) != I0->getOperand(O);
1555     });
1556     if (!NeedPHI) {
1557       NewOperands.push_back(I0->getOperand(O));
1558       continue;
1559     }
1560 
1561     // Create a new PHI in the successor block and populate it.
1562     auto *Op = I0->getOperand(O);
1563     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1564     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1565                                Op->getName() + ".sink", &BBEnd->front());
1566     for (auto *I : Insts)
1567       PN->addIncoming(I->getOperand(O), I->getParent());
1568     NewOperands.push_back(PN);
1569   }
1570 
1571   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1572   // and move it to the start of the successor block.
1573   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1574     I0->getOperandUse(O).set(NewOperands[O]);
1575   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1576 
1577   // Update metadata and IR flags, and merge debug locations.
1578   for (auto *I : Insts)
1579     if (I != I0) {
1580       // The debug location for the "common" instruction is the merged locations
1581       // of all the commoned instructions.  We start with the original location
1582       // of the "common" instruction and iteratively merge each location in the
1583       // loop below.
1584       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1585       // However, as N-way merge for CallInst is rare, so we use simplified API
1586       // instead of using complex API for N-way merge.
1587       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1588       combineMetadataForCSE(I0, I);
1589       I0->andIRFlags(I);
1590     }
1591 
1592   if (!isa<StoreInst>(I0)) {
1593     // canSinkLastInstruction checked that all instructions were used by
1594     // one and only one PHI node. Find that now, RAUW it to our common
1595     // instruction and nuke it.
1596     assert(I0->hasOneUse());
1597     auto *PN = cast<PHINode>(*I0->user_begin());
1598     PN->replaceAllUsesWith(I0);
1599     PN->eraseFromParent();
1600   }
1601 
1602   // Finally nuke all instructions apart from the common instruction.
1603   for (auto *I : Insts)
1604     if (I != I0)
1605       I->eraseFromParent();
1606 
1607   return true;
1608 }
1609 
1610 namespace {
1611 
1612   // LockstepReverseIterator - Iterates through instructions
1613   // in a set of blocks in reverse order from the first non-terminator.
1614   // For example (assume all blocks have size n):
1615   //   LockstepReverseIterator I([B1, B2, B3]);
1616   //   *I-- = [B1[n], B2[n], B3[n]];
1617   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1618   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1619   //   ...
1620   class LockstepReverseIterator {
1621     ArrayRef<BasicBlock*> Blocks;
1622     SmallVector<Instruction*,4> Insts;
1623     bool Fail;
1624 
1625   public:
1626     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1627       reset();
1628     }
1629 
1630     void reset() {
1631       Fail = false;
1632       Insts.clear();
1633       for (auto *BB : Blocks) {
1634         Instruction *Inst = BB->getTerminator();
1635         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1636           Inst = Inst->getPrevNode();
1637         if (!Inst) {
1638           // Block wasn't big enough.
1639           Fail = true;
1640           return;
1641         }
1642         Insts.push_back(Inst);
1643       }
1644     }
1645 
1646     bool isValid() const {
1647       return !Fail;
1648     }
1649 
1650     void operator--() {
1651       if (Fail)
1652         return;
1653       for (auto *&Inst : Insts) {
1654         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1655           Inst = Inst->getPrevNode();
1656         // Already at beginning of block.
1657         if (!Inst) {
1658           Fail = true;
1659           return;
1660         }
1661       }
1662     }
1663 
1664     ArrayRef<Instruction*> operator * () const {
1665       return Insts;
1666     }
1667   };
1668 
1669 } // end anonymous namespace
1670 
1671 /// Check whether BB's predecessors end with unconditional branches. If it is
1672 /// true, sink any common code from the predecessors to BB.
1673 /// We also allow one predecessor to end with conditional branch (but no more
1674 /// than one).
1675 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1676   // We support two situations:
1677   //   (1) all incoming arcs are unconditional
1678   //   (2) one incoming arc is conditional
1679   //
1680   // (2) is very common in switch defaults and
1681   // else-if patterns;
1682   //
1683   //   if (a) f(1);
1684   //   else if (b) f(2);
1685   //
1686   // produces:
1687   //
1688   //       [if]
1689   //      /    \
1690   //    [f(1)] [if]
1691   //      |     | \
1692   //      |     |  |
1693   //      |  [f(2)]|
1694   //       \    | /
1695   //        [ end ]
1696   //
1697   // [end] has two unconditional predecessor arcs and one conditional. The
1698   // conditional refers to the implicit empty 'else' arc. This conditional
1699   // arc can also be caused by an empty default block in a switch.
1700   //
1701   // In this case, we attempt to sink code from all *unconditional* arcs.
1702   // If we can sink instructions from these arcs (determined during the scan
1703   // phase below) we insert a common successor for all unconditional arcs and
1704   // connect that to [end], to enable sinking:
1705   //
1706   //       [if]
1707   //      /    \
1708   //    [x(1)] [if]
1709   //      |     | \
1710   //      |     |  \
1711   //      |  [x(2)] |
1712   //       \   /    |
1713   //   [sink.split] |
1714   //         \     /
1715   //         [ end ]
1716   //
1717   SmallVector<BasicBlock*,4> UnconditionalPreds;
1718   Instruction *Cond = nullptr;
1719   for (auto *B : predecessors(BB)) {
1720     auto *T = B->getTerminator();
1721     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1722       UnconditionalPreds.push_back(B);
1723     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1724       Cond = T;
1725     else
1726       return false;
1727   }
1728   if (UnconditionalPreds.size() < 2)
1729     return false;
1730 
1731   bool Changed = false;
1732   // We take a two-step approach to tail sinking. First we scan from the end of
1733   // each block upwards in lockstep. If the n'th instruction from the end of each
1734   // block can be sunk, those instructions are added to ValuesToSink and we
1735   // carry on. If we can sink an instruction but need to PHI-merge some operands
1736   // (because they're not identical in each instruction) we add these to
1737   // PHIOperands.
1738   unsigned ScanIdx = 0;
1739   SmallPtrSet<Value*,4> InstructionsToSink;
1740   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1741   LockstepReverseIterator LRI(UnconditionalPreds);
1742   while (LRI.isValid() &&
1743          canSinkInstructions(*LRI, PHIOperands)) {
1744     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1745     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1746     ++ScanIdx;
1747     --LRI;
1748   }
1749 
1750   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1751     unsigned NumPHIdValues = 0;
1752     for (auto *I : *LRI)
1753       for (auto *V : PHIOperands[I])
1754         if (InstructionsToSink.count(V) == 0)
1755           ++NumPHIdValues;
1756     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1757     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1758     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1759         NumPHIInsts++;
1760 
1761     return NumPHIInsts <= 1;
1762   };
1763 
1764   if (ScanIdx > 0 && Cond) {
1765     // Check if we would actually sink anything first! This mutates the CFG and
1766     // adds an extra block. The goal in doing this is to allow instructions that
1767     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1768     // (such as trunc, add) can be sunk and predicated already. So we check that
1769     // we're going to sink at least one non-speculatable instruction.
1770     LRI.reset();
1771     unsigned Idx = 0;
1772     bool Profitable = false;
1773     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1774       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1775         Profitable = true;
1776         break;
1777       }
1778       --LRI;
1779       ++Idx;
1780     }
1781     if (!Profitable)
1782       return false;
1783 
1784     DEBUG(dbgs() << "SINK: Splitting edge\n");
1785     // We have a conditional edge and we're going to sink some instructions.
1786     // Insert a new block postdominating all blocks we're going to sink from.
1787     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1788       // Edges couldn't be split.
1789       return false;
1790     Changed = true;
1791   }
1792 
1793   // Now that we've analyzed all potential sinking candidates, perform the
1794   // actual sink. We iteratively sink the last non-terminator of the source
1795   // blocks into their common successor unless doing so would require too
1796   // many PHI instructions to be generated (currently only one PHI is allowed
1797   // per sunk instruction).
1798   //
1799   // We can use InstructionsToSink to discount values needing PHI-merging that will
1800   // actually be sunk in a later iteration. This allows us to be more
1801   // aggressive in what we sink. This does allow a false positive where we
1802   // sink presuming a later value will also be sunk, but stop half way through
1803   // and never actually sink it which means we produce more PHIs than intended.
1804   // This is unlikely in practice though.
1805   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1806     DEBUG(dbgs() << "SINK: Sink: "
1807                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1808                  << "\n");
1809 
1810     // Because we've sunk every instruction in turn, the current instruction to
1811     // sink is always at index 0.
1812     LRI.reset();
1813     if (!ProfitableToSinkInstruction(LRI)) {
1814       // Too many PHIs would be created.
1815       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1816       break;
1817     }
1818 
1819     if (!sinkLastInstruction(UnconditionalPreds))
1820       return Changed;
1821     NumSinkCommons++;
1822     Changed = true;
1823   }
1824   return Changed;
1825 }
1826 
1827 /// Determine if we can hoist sink a sole store instruction out of a
1828 /// conditional block.
1829 ///
1830 /// We are looking for code like the following:
1831 ///   BrBB:
1832 ///     store i32 %add, i32* %arrayidx2
1833 ///     ... // No other stores or function calls (we could be calling a memory
1834 ///     ... // function).
1835 ///     %cmp = icmp ult %x, %y
1836 ///     br i1 %cmp, label %EndBB, label %ThenBB
1837 ///   ThenBB:
1838 ///     store i32 %add5, i32* %arrayidx2
1839 ///     br label EndBB
1840 ///   EndBB:
1841 ///     ...
1842 ///   We are going to transform this into:
1843 ///   BrBB:
1844 ///     store i32 %add, i32* %arrayidx2
1845 ///     ... //
1846 ///     %cmp = icmp ult %x, %y
1847 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1848 ///     store i32 %add.add5, i32* %arrayidx2
1849 ///     ...
1850 ///
1851 /// \return The pointer to the value of the previous store if the store can be
1852 ///         hoisted into the predecessor block. 0 otherwise.
1853 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1854                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1855   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1856   if (!StoreToHoist)
1857     return nullptr;
1858 
1859   // Volatile or atomic.
1860   if (!StoreToHoist->isSimple())
1861     return nullptr;
1862 
1863   Value *StorePtr = StoreToHoist->getPointerOperand();
1864 
1865   // Look for a store to the same pointer in BrBB.
1866   unsigned MaxNumInstToLookAt = 9;
1867   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1868     if (!MaxNumInstToLookAt)
1869       break;
1870     --MaxNumInstToLookAt;
1871 
1872     // Could be calling an instruction that affects memory like free().
1873     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1874       return nullptr;
1875 
1876     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1877       // Found the previous store make sure it stores to the same location.
1878       if (SI->getPointerOperand() == StorePtr)
1879         // Found the previous store, return its value operand.
1880         return SI->getValueOperand();
1881       return nullptr; // Unknown store.
1882     }
1883   }
1884 
1885   return nullptr;
1886 }
1887 
1888 /// Speculate a conditional basic block flattening the CFG.
1889 ///
1890 /// Note that this is a very risky transform currently. Speculating
1891 /// instructions like this is most often not desirable. Instead, there is an MI
1892 /// pass which can do it with full awareness of the resource constraints.
1893 /// However, some cases are "obvious" and we should do directly. An example of
1894 /// this is speculating a single, reasonably cheap instruction.
1895 ///
1896 /// There is only one distinct advantage to flattening the CFG at the IR level:
1897 /// it makes very common but simplistic optimizations such as are common in
1898 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1899 /// modeling their effects with easier to reason about SSA value graphs.
1900 ///
1901 ///
1902 /// An illustration of this transform is turning this IR:
1903 /// \code
1904 ///   BB:
1905 ///     %cmp = icmp ult %x, %y
1906 ///     br i1 %cmp, label %EndBB, label %ThenBB
1907 ///   ThenBB:
1908 ///     %sub = sub %x, %y
1909 ///     br label BB2
1910 ///   EndBB:
1911 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1912 ///     ...
1913 /// \endcode
1914 ///
1915 /// Into this IR:
1916 /// \code
1917 ///   BB:
1918 ///     %cmp = icmp ult %x, %y
1919 ///     %sub = sub %x, %y
1920 ///     %cond = select i1 %cmp, 0, %sub
1921 ///     ...
1922 /// \endcode
1923 ///
1924 /// \returns true if the conditional block is removed.
1925 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1926                                    const TargetTransformInfo &TTI) {
1927   // Be conservative for now. FP select instruction can often be expensive.
1928   Value *BrCond = BI->getCondition();
1929   if (isa<FCmpInst>(BrCond))
1930     return false;
1931 
1932   BasicBlock *BB = BI->getParent();
1933   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1934 
1935   // If ThenBB is actually on the false edge of the conditional branch, remember
1936   // to swap the select operands later.
1937   bool Invert = false;
1938   if (ThenBB != BI->getSuccessor(0)) {
1939     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1940     Invert = true;
1941   }
1942   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1943 
1944   // Keep a count of how many times instructions are used within CondBB when
1945   // they are candidates for sinking into CondBB. Specifically:
1946   // - They are defined in BB, and
1947   // - They have no side effects, and
1948   // - All of their uses are in CondBB.
1949   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1950 
1951   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1952 
1953   unsigned SpeculationCost = 0;
1954   Value *SpeculatedStoreValue = nullptr;
1955   StoreInst *SpeculatedStore = nullptr;
1956   for (BasicBlock::iterator BBI = ThenBB->begin(),
1957                             BBE = std::prev(ThenBB->end());
1958        BBI != BBE; ++BBI) {
1959     Instruction *I = &*BBI;
1960     // Skip debug info.
1961     if (isa<DbgInfoIntrinsic>(I)) {
1962       SpeculatedDbgIntrinsics.push_back(I);
1963       continue;
1964     }
1965 
1966     // Only speculatively execute a single instruction (not counting the
1967     // terminator) for now.
1968     ++SpeculationCost;
1969     if (SpeculationCost > 1)
1970       return false;
1971 
1972     // Don't hoist the instruction if it's unsafe or expensive.
1973     if (!isSafeToSpeculativelyExecute(I) &&
1974         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1975                                   I, BB, ThenBB, EndBB))))
1976       return false;
1977     if (!SpeculatedStoreValue &&
1978         ComputeSpeculationCost(I, TTI) >
1979             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1980       return false;
1981 
1982     // Store the store speculation candidate.
1983     if (SpeculatedStoreValue)
1984       SpeculatedStore = cast<StoreInst>(I);
1985 
1986     // Do not hoist the instruction if any of its operands are defined but not
1987     // used in BB. The transformation will prevent the operand from
1988     // being sunk into the use block.
1989     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1990       Instruction *OpI = dyn_cast<Instruction>(*i);
1991       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1992         continue; // Not a candidate for sinking.
1993 
1994       ++SinkCandidateUseCounts[OpI];
1995     }
1996   }
1997 
1998   // Consider any sink candidates which are only used in CondBB as costs for
1999   // speculation. Note, while we iterate over a DenseMap here, we are summing
2000   // and so iteration order isn't significant.
2001   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2002            I = SinkCandidateUseCounts.begin(),
2003            E = SinkCandidateUseCounts.end();
2004        I != E; ++I)
2005     if (I->first->getNumUses() == I->second) {
2006       ++SpeculationCost;
2007       if (SpeculationCost > 1)
2008         return false;
2009     }
2010 
2011   // Check that the PHI nodes can be converted to selects.
2012   bool HaveRewritablePHIs = false;
2013   for (PHINode &PN : EndBB->phis()) {
2014     Value *OrigV = PN.getIncomingValueForBlock(BB);
2015     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2016 
2017     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2018     // Skip PHIs which are trivial.
2019     if (ThenV == OrigV)
2020       continue;
2021 
2022     // Don't convert to selects if we could remove undefined behavior instead.
2023     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2024         passingValueIsAlwaysUndefined(ThenV, &PN))
2025       return false;
2026 
2027     HaveRewritablePHIs = true;
2028     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2029     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2030     if (!OrigCE && !ThenCE)
2031       continue; // Known safe and cheap.
2032 
2033     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2034         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2035       return false;
2036     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2037     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2038     unsigned MaxCost =
2039         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2040     if (OrigCost + ThenCost > MaxCost)
2041       return false;
2042 
2043     // Account for the cost of an unfolded ConstantExpr which could end up
2044     // getting expanded into Instructions.
2045     // FIXME: This doesn't account for how many operations are combined in the
2046     // constant expression.
2047     ++SpeculationCost;
2048     if (SpeculationCost > 1)
2049       return false;
2050   }
2051 
2052   // If there are no PHIs to process, bail early. This helps ensure idempotence
2053   // as well.
2054   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2055     return false;
2056 
2057   // If we get here, we can hoist the instruction and if-convert.
2058   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2059 
2060   // Insert a select of the value of the speculated store.
2061   if (SpeculatedStoreValue) {
2062     IRBuilder<NoFolder> Builder(BI);
2063     Value *TrueV = SpeculatedStore->getValueOperand();
2064     Value *FalseV = SpeculatedStoreValue;
2065     if (Invert)
2066       std::swap(TrueV, FalseV);
2067     Value *S = Builder.CreateSelect(
2068         BrCond, TrueV, FalseV, "spec.store.select", BI);
2069     SpeculatedStore->setOperand(0, S);
2070     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2071                                          SpeculatedStore->getDebugLoc());
2072   }
2073 
2074   // Metadata can be dependent on the condition we are hoisting above.
2075   // Conservatively strip all metadata on the instruction.
2076   for (auto &I : *ThenBB)
2077     I.dropUnknownNonDebugMetadata();
2078 
2079   // Hoist the instructions.
2080   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2081                            ThenBB->begin(), std::prev(ThenBB->end()));
2082 
2083   // Insert selects and rewrite the PHI operands.
2084   IRBuilder<NoFolder> Builder(BI);
2085   for (PHINode &PN : EndBB->phis()) {
2086     unsigned OrigI = PN.getBasicBlockIndex(BB);
2087     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2088     Value *OrigV = PN.getIncomingValue(OrigI);
2089     Value *ThenV = PN.getIncomingValue(ThenI);
2090 
2091     // Skip PHIs which are trivial.
2092     if (OrigV == ThenV)
2093       continue;
2094 
2095     // Create a select whose true value is the speculatively executed value and
2096     // false value is the preexisting value. Swap them if the branch
2097     // destinations were inverted.
2098     Value *TrueV = ThenV, *FalseV = OrigV;
2099     if (Invert)
2100       std::swap(TrueV, FalseV);
2101     Value *V = Builder.CreateSelect(
2102         BrCond, TrueV, FalseV, "spec.select", BI);
2103     PN.setIncomingValue(OrigI, V);
2104     PN.setIncomingValue(ThenI, V);
2105   }
2106 
2107   // Remove speculated dbg intrinsics.
2108   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2109   // dbg value for the different flows and inserting it after the select.
2110   for (Instruction *I : SpeculatedDbgIntrinsics)
2111     I->eraseFromParent();
2112 
2113   ++NumSpeculations;
2114   return true;
2115 }
2116 
2117 /// Return true if we can thread a branch across this block.
2118 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2119   unsigned Size = 0;
2120 
2121   for (Instruction &I : BB->instructionsWithoutDebug()) {
2122     if (Size > 10)
2123       return false; // Don't clone large BB's.
2124     ++Size;
2125 
2126     // We can only support instructions that do not define values that are
2127     // live outside of the current basic block.
2128     for (User *U : I.users()) {
2129       Instruction *UI = cast<Instruction>(U);
2130       if (UI->getParent() != BB || isa<PHINode>(UI))
2131         return false;
2132     }
2133 
2134     // Looks ok, continue checking.
2135   }
2136 
2137   return true;
2138 }
2139 
2140 /// If we have a conditional branch on a PHI node value that is defined in the
2141 /// same block as the branch and if any PHI entries are constants, thread edges
2142 /// corresponding to that entry to be branches to their ultimate destination.
2143 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2144                                 AssumptionCache *AC) {
2145   BasicBlock *BB = BI->getParent();
2146   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2147   // NOTE: we currently cannot transform this case if the PHI node is used
2148   // outside of the block.
2149   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2150     return false;
2151 
2152   // Degenerate case of a single entry PHI.
2153   if (PN->getNumIncomingValues() == 1) {
2154     FoldSingleEntryPHINodes(PN->getParent());
2155     return true;
2156   }
2157 
2158   // Now we know that this block has multiple preds and two succs.
2159   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2160     return false;
2161 
2162   // Can't fold blocks that contain noduplicate or convergent calls.
2163   if (any_of(*BB, [](const Instruction &I) {
2164         const CallInst *CI = dyn_cast<CallInst>(&I);
2165         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2166       }))
2167     return false;
2168 
2169   // Okay, this is a simple enough basic block.  See if any phi values are
2170   // constants.
2171   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2172     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2173     if (!CB || !CB->getType()->isIntegerTy(1))
2174       continue;
2175 
2176     // Okay, we now know that all edges from PredBB should be revectored to
2177     // branch to RealDest.
2178     BasicBlock *PredBB = PN->getIncomingBlock(i);
2179     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2180 
2181     if (RealDest == BB)
2182       continue; // Skip self loops.
2183     // Skip if the predecessor's terminator is an indirect branch.
2184     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2185       continue;
2186 
2187     // The dest block might have PHI nodes, other predecessors and other
2188     // difficult cases.  Instead of being smart about this, just insert a new
2189     // block that jumps to the destination block, effectively splitting
2190     // the edge we are about to create.
2191     BasicBlock *EdgeBB =
2192         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2193                            RealDest->getParent(), RealDest);
2194     BranchInst::Create(RealDest, EdgeBB);
2195 
2196     // Update PHI nodes.
2197     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2198 
2199     // BB may have instructions that are being threaded over.  Clone these
2200     // instructions into EdgeBB.  We know that there will be no uses of the
2201     // cloned instructions outside of EdgeBB.
2202     BasicBlock::iterator InsertPt = EdgeBB->begin();
2203     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2204     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2205       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2206         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2207         continue;
2208       }
2209       // Clone the instruction.
2210       Instruction *N = BBI->clone();
2211       if (BBI->hasName())
2212         N->setName(BBI->getName() + ".c");
2213 
2214       // Update operands due to translation.
2215       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2216         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2217         if (PI != TranslateMap.end())
2218           *i = PI->second;
2219       }
2220 
2221       // Check for trivial simplification.
2222       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2223         if (!BBI->use_empty())
2224           TranslateMap[&*BBI] = V;
2225         if (!N->mayHaveSideEffects()) {
2226           N->deleteValue(); // Instruction folded away, don't need actual inst
2227           N = nullptr;
2228         }
2229       } else {
2230         if (!BBI->use_empty())
2231           TranslateMap[&*BBI] = N;
2232       }
2233       // Insert the new instruction into its new home.
2234       if (N)
2235         EdgeBB->getInstList().insert(InsertPt, N);
2236 
2237       // Register the new instruction with the assumption cache if necessary.
2238       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2239         if (II->getIntrinsicID() == Intrinsic::assume)
2240           AC->registerAssumption(II);
2241     }
2242 
2243     // Loop over all of the edges from PredBB to BB, changing them to branch
2244     // to EdgeBB instead.
2245     TerminatorInst *PredBBTI = PredBB->getTerminator();
2246     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2247       if (PredBBTI->getSuccessor(i) == BB) {
2248         BB->removePredecessor(PredBB);
2249         PredBBTI->setSuccessor(i, EdgeBB);
2250       }
2251 
2252     // Recurse, simplifying any other constants.
2253     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2254   }
2255 
2256   return false;
2257 }
2258 
2259 /// Given a BB that starts with the specified two-entry PHI node,
2260 /// see if we can eliminate it.
2261 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2262                                 const DataLayout &DL) {
2263   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2264   // statement", which has a very simple dominance structure.  Basically, we
2265   // are trying to find the condition that is being branched on, which
2266   // subsequently causes this merge to happen.  We really want control
2267   // dependence information for this check, but simplifycfg can't keep it up
2268   // to date, and this catches most of the cases we care about anyway.
2269   BasicBlock *BB = PN->getParent();
2270   const Function *Fn = BB->getParent();
2271   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2272     return false;
2273 
2274   BasicBlock *IfTrue, *IfFalse;
2275   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2276   if (!IfCond ||
2277       // Don't bother if the branch will be constant folded trivially.
2278       isa<ConstantInt>(IfCond))
2279     return false;
2280 
2281   // Okay, we found that we can merge this two-entry phi node into a select.
2282   // Doing so would require us to fold *all* two entry phi nodes in this block.
2283   // At some point this becomes non-profitable (particularly if the target
2284   // doesn't support cmov's).  Only do this transformation if there are two or
2285   // fewer PHI nodes in this block.
2286   unsigned NumPhis = 0;
2287   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2288     if (NumPhis > 2)
2289       return false;
2290 
2291   // Loop over the PHI's seeing if we can promote them all to select
2292   // instructions.  While we are at it, keep track of the instructions
2293   // that need to be moved to the dominating block.
2294   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2295   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2296            MaxCostVal1 = PHINodeFoldingThreshold;
2297   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2298   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2299 
2300   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2301     PHINode *PN = cast<PHINode>(II++);
2302     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2303       PN->replaceAllUsesWith(V);
2304       PN->eraseFromParent();
2305       continue;
2306     }
2307 
2308     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2309                              MaxCostVal0, TTI) ||
2310         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2311                              MaxCostVal1, TTI))
2312       return false;
2313   }
2314 
2315   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2316   // we ran out of PHIs then we simplified them all.
2317   PN = dyn_cast<PHINode>(BB->begin());
2318   if (!PN)
2319     return true;
2320 
2321   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2322   // often be turned into switches and other things.
2323   if (PN->getType()->isIntegerTy(1) &&
2324       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2325        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2326        isa<BinaryOperator>(IfCond)))
2327     return false;
2328 
2329   // If all PHI nodes are promotable, check to make sure that all instructions
2330   // in the predecessor blocks can be promoted as well. If not, we won't be able
2331   // to get rid of the control flow, so it's not worth promoting to select
2332   // instructions.
2333   BasicBlock *DomBlock = nullptr;
2334   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2335   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2336   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2337     IfBlock1 = nullptr;
2338   } else {
2339     DomBlock = *pred_begin(IfBlock1);
2340     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2341          ++I)
2342       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2343         // This is not an aggressive instruction that we can promote.
2344         // Because of this, we won't be able to get rid of the control flow, so
2345         // the xform is not worth it.
2346         return false;
2347       }
2348   }
2349 
2350   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2351     IfBlock2 = nullptr;
2352   } else {
2353     DomBlock = *pred_begin(IfBlock2);
2354     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2355          ++I)
2356       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2357         // This is not an aggressive instruction that we can promote.
2358         // Because of this, we won't be able to get rid of the control flow, so
2359         // the xform is not worth it.
2360         return false;
2361       }
2362   }
2363 
2364   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2365                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2366 
2367   // If we can still promote the PHI nodes after this gauntlet of tests,
2368   // do all of the PHI's now.
2369   Instruction *InsertPt = DomBlock->getTerminator();
2370   IRBuilder<NoFolder> Builder(InsertPt);
2371 
2372   // Move all 'aggressive' instructions, which are defined in the
2373   // conditional parts of the if's up to the dominating block.
2374   if (IfBlock1) {
2375     for (auto &I : *IfBlock1)
2376       I.dropUnknownNonDebugMetadata();
2377     DomBlock->getInstList().splice(InsertPt->getIterator(),
2378                                    IfBlock1->getInstList(), IfBlock1->begin(),
2379                                    IfBlock1->getTerminator()->getIterator());
2380   }
2381   if (IfBlock2) {
2382     for (auto &I : *IfBlock2)
2383       I.dropUnknownNonDebugMetadata();
2384     DomBlock->getInstList().splice(InsertPt->getIterator(),
2385                                    IfBlock2->getInstList(), IfBlock2->begin(),
2386                                    IfBlock2->getTerminator()->getIterator());
2387   }
2388 
2389   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2390     // Change the PHI node into a select instruction.
2391     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2392     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2393 
2394     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2395     PN->replaceAllUsesWith(Sel);
2396     Sel->takeName(PN);
2397     PN->eraseFromParent();
2398   }
2399 
2400   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2401   // has been flattened.  Change DomBlock to jump directly to our new block to
2402   // avoid other simplifycfg's kicking in on the diamond.
2403   TerminatorInst *OldTI = DomBlock->getTerminator();
2404   Builder.SetInsertPoint(OldTI);
2405   Builder.CreateBr(BB);
2406   OldTI->eraseFromParent();
2407   return true;
2408 }
2409 
2410 /// If we found a conditional branch that goes to two returning blocks,
2411 /// try to merge them together into one return,
2412 /// introducing a select if the return values disagree.
2413 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2414                                            IRBuilder<> &Builder) {
2415   assert(BI->isConditional() && "Must be a conditional branch");
2416   BasicBlock *TrueSucc = BI->getSuccessor(0);
2417   BasicBlock *FalseSucc = BI->getSuccessor(1);
2418   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2419   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2420 
2421   // Check to ensure both blocks are empty (just a return) or optionally empty
2422   // with PHI nodes.  If there are other instructions, merging would cause extra
2423   // computation on one path or the other.
2424   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2425     return false;
2426   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2427     return false;
2428 
2429   Builder.SetInsertPoint(BI);
2430   // Okay, we found a branch that is going to two return nodes.  If
2431   // there is no return value for this function, just change the
2432   // branch into a return.
2433   if (FalseRet->getNumOperands() == 0) {
2434     TrueSucc->removePredecessor(BI->getParent());
2435     FalseSucc->removePredecessor(BI->getParent());
2436     Builder.CreateRetVoid();
2437     EraseTerminatorInstAndDCECond(BI);
2438     return true;
2439   }
2440 
2441   // Otherwise, figure out what the true and false return values are
2442   // so we can insert a new select instruction.
2443   Value *TrueValue = TrueRet->getReturnValue();
2444   Value *FalseValue = FalseRet->getReturnValue();
2445 
2446   // Unwrap any PHI nodes in the return blocks.
2447   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2448     if (TVPN->getParent() == TrueSucc)
2449       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2450   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2451     if (FVPN->getParent() == FalseSucc)
2452       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2453 
2454   // In order for this transformation to be safe, we must be able to
2455   // unconditionally execute both operands to the return.  This is
2456   // normally the case, but we could have a potentially-trapping
2457   // constant expression that prevents this transformation from being
2458   // safe.
2459   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2460     if (TCV->canTrap())
2461       return false;
2462   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2463     if (FCV->canTrap())
2464       return false;
2465 
2466   // Okay, we collected all the mapped values and checked them for sanity, and
2467   // defined to really do this transformation.  First, update the CFG.
2468   TrueSucc->removePredecessor(BI->getParent());
2469   FalseSucc->removePredecessor(BI->getParent());
2470 
2471   // Insert select instructions where needed.
2472   Value *BrCond = BI->getCondition();
2473   if (TrueValue) {
2474     // Insert a select if the results differ.
2475     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2476     } else if (isa<UndefValue>(TrueValue)) {
2477       TrueValue = FalseValue;
2478     } else {
2479       TrueValue =
2480           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2481     }
2482   }
2483 
2484   Value *RI =
2485       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2486 
2487   (void)RI;
2488 
2489   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2490                << "\n  " << *BI << "NewRet = " << *RI
2491                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2492 
2493   EraseTerminatorInstAndDCECond(BI);
2494 
2495   return true;
2496 }
2497 
2498 /// Return true if the given instruction is available
2499 /// in its predecessor block. If yes, the instruction will be removed.
2500 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2501   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2502     return false;
2503   for (Instruction &I : *PB) {
2504     Instruction *PBI = &I;
2505     // Check whether Inst and PBI generate the same value.
2506     if (Inst->isIdenticalTo(PBI)) {
2507       Inst->replaceAllUsesWith(PBI);
2508       Inst->eraseFromParent();
2509       return true;
2510     }
2511   }
2512   return false;
2513 }
2514 
2515 /// Return true if either PBI or BI has branch weight available, and store
2516 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2517 /// not have branch weight, use 1:1 as its weight.
2518 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2519                                    uint64_t &PredTrueWeight,
2520                                    uint64_t &PredFalseWeight,
2521                                    uint64_t &SuccTrueWeight,
2522                                    uint64_t &SuccFalseWeight) {
2523   bool PredHasWeights =
2524       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2525   bool SuccHasWeights =
2526       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2527   if (PredHasWeights || SuccHasWeights) {
2528     if (!PredHasWeights)
2529       PredTrueWeight = PredFalseWeight = 1;
2530     if (!SuccHasWeights)
2531       SuccTrueWeight = SuccFalseWeight = 1;
2532     return true;
2533   } else {
2534     return false;
2535   }
2536 }
2537 
2538 /// If this basic block is simple enough, and if a predecessor branches to us
2539 /// and one of our successors, fold the block into the predecessor and use
2540 /// logical operations to pick the right destination.
2541 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2542   BasicBlock *BB = BI->getParent();
2543 
2544   Instruction *Cond = nullptr;
2545   if (BI->isConditional())
2546     Cond = dyn_cast<Instruction>(BI->getCondition());
2547   else {
2548     // For unconditional branch, check for a simple CFG pattern, where
2549     // BB has a single predecessor and BB's successor is also its predecessor's
2550     // successor. If such pattern exists, check for CSE between BB and its
2551     // predecessor.
2552     if (BasicBlock *PB = BB->getSinglePredecessor())
2553       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2554         if (PBI->isConditional() &&
2555             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2556              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2557           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2558             Instruction *Curr = &*I++;
2559             if (isa<CmpInst>(Curr)) {
2560               Cond = Curr;
2561               break;
2562             }
2563             // Quit if we can't remove this instruction.
2564             if (!checkCSEInPredecessor(Curr, PB))
2565               return false;
2566           }
2567         }
2568 
2569     if (!Cond)
2570       return false;
2571   }
2572 
2573   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2574       Cond->getParent() != BB || !Cond->hasOneUse())
2575     return false;
2576 
2577   // Make sure the instruction after the condition is the cond branch.
2578   BasicBlock::iterator CondIt = ++Cond->getIterator();
2579 
2580   // Ignore dbg intrinsics.
2581   while (isa<DbgInfoIntrinsic>(CondIt))
2582     ++CondIt;
2583 
2584   if (&*CondIt != BI)
2585     return false;
2586 
2587   // Only allow this transformation if computing the condition doesn't involve
2588   // too many instructions and these involved instructions can be executed
2589   // unconditionally. We denote all involved instructions except the condition
2590   // as "bonus instructions", and only allow this transformation when the
2591   // number of the bonus instructions does not exceed a certain threshold.
2592   unsigned NumBonusInsts = 0;
2593   for (auto I = BB->begin(); Cond != &*I; ++I) {
2594     // Ignore dbg intrinsics.
2595     if (isa<DbgInfoIntrinsic>(I))
2596       continue;
2597     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2598       return false;
2599     // I has only one use and can be executed unconditionally.
2600     Instruction *User = dyn_cast<Instruction>(I->user_back());
2601     if (User == nullptr || User->getParent() != BB)
2602       return false;
2603     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2604     // to use any other instruction, User must be an instruction between next(I)
2605     // and Cond.
2606     ++NumBonusInsts;
2607     // Early exits once we reach the limit.
2608     if (NumBonusInsts > BonusInstThreshold)
2609       return false;
2610   }
2611 
2612   // Cond is known to be a compare or binary operator.  Check to make sure that
2613   // neither operand is a potentially-trapping constant expression.
2614   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2615     if (CE->canTrap())
2616       return false;
2617   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2618     if (CE->canTrap())
2619       return false;
2620 
2621   // Finally, don't infinitely unroll conditional loops.
2622   BasicBlock *TrueDest = BI->getSuccessor(0);
2623   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2624   if (TrueDest == BB || FalseDest == BB)
2625     return false;
2626 
2627   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2628     BasicBlock *PredBlock = *PI;
2629     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2630 
2631     // Check that we have two conditional branches.  If there is a PHI node in
2632     // the common successor, verify that the same value flows in from both
2633     // blocks.
2634     SmallVector<PHINode *, 4> PHIs;
2635     if (!PBI || PBI->isUnconditional() ||
2636         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2637         (!BI->isConditional() &&
2638          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2639       continue;
2640 
2641     // Determine if the two branches share a common destination.
2642     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2643     bool InvertPredCond = false;
2644 
2645     if (BI->isConditional()) {
2646       if (PBI->getSuccessor(0) == TrueDest) {
2647         Opc = Instruction::Or;
2648       } else if (PBI->getSuccessor(1) == FalseDest) {
2649         Opc = Instruction::And;
2650       } else if (PBI->getSuccessor(0) == FalseDest) {
2651         Opc = Instruction::And;
2652         InvertPredCond = true;
2653       } else if (PBI->getSuccessor(1) == TrueDest) {
2654         Opc = Instruction::Or;
2655         InvertPredCond = true;
2656       } else {
2657         continue;
2658       }
2659     } else {
2660       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2661         continue;
2662     }
2663 
2664     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2665     IRBuilder<> Builder(PBI);
2666 
2667     // If we need to invert the condition in the pred block to match, do so now.
2668     if (InvertPredCond) {
2669       Value *NewCond = PBI->getCondition();
2670 
2671       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2672         CmpInst *CI = cast<CmpInst>(NewCond);
2673         CI->setPredicate(CI->getInversePredicate());
2674       } else {
2675         NewCond =
2676             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2677       }
2678 
2679       PBI->setCondition(NewCond);
2680       PBI->swapSuccessors();
2681     }
2682 
2683     // If we have bonus instructions, clone them into the predecessor block.
2684     // Note that there may be multiple predecessor blocks, so we cannot move
2685     // bonus instructions to a predecessor block.
2686     ValueToValueMapTy VMap; // maps original values to cloned values
2687     // We already make sure Cond is the last instruction before BI. Therefore,
2688     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2689     // instructions.
2690     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2691       if (isa<DbgInfoIntrinsic>(BonusInst))
2692         continue;
2693       Instruction *NewBonusInst = BonusInst->clone();
2694       RemapInstruction(NewBonusInst, VMap,
2695                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2696       VMap[&*BonusInst] = NewBonusInst;
2697 
2698       // If we moved a load, we cannot any longer claim any knowledge about
2699       // its potential value. The previous information might have been valid
2700       // only given the branch precondition.
2701       // For an analogous reason, we must also drop all the metadata whose
2702       // semantics we don't understand.
2703       NewBonusInst->dropUnknownNonDebugMetadata();
2704 
2705       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2706       NewBonusInst->takeName(&*BonusInst);
2707       BonusInst->setName(BonusInst->getName() + ".old");
2708     }
2709 
2710     // Clone Cond into the predecessor basic block, and or/and the
2711     // two conditions together.
2712     Instruction *New = Cond->clone();
2713     RemapInstruction(New, VMap,
2714                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2715     PredBlock->getInstList().insert(PBI->getIterator(), New);
2716     New->takeName(Cond);
2717     Cond->setName(New->getName() + ".old");
2718 
2719     if (BI->isConditional()) {
2720       Instruction *NewCond = cast<Instruction>(
2721           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2722       PBI->setCondition(NewCond);
2723 
2724       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2725       bool HasWeights =
2726           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2727                                  SuccTrueWeight, SuccFalseWeight);
2728       SmallVector<uint64_t, 8> NewWeights;
2729 
2730       if (PBI->getSuccessor(0) == BB) {
2731         if (HasWeights) {
2732           // PBI: br i1 %x, BB, FalseDest
2733           // BI:  br i1 %y, TrueDest, FalseDest
2734           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2735           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2736           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2737           //               TrueWeight for PBI * FalseWeight for BI.
2738           // We assume that total weights of a BranchInst can fit into 32 bits.
2739           // Therefore, we will not have overflow using 64-bit arithmetic.
2740           NewWeights.push_back(PredFalseWeight *
2741                                    (SuccFalseWeight + SuccTrueWeight) +
2742                                PredTrueWeight * SuccFalseWeight);
2743         }
2744         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2745         PBI->setSuccessor(0, TrueDest);
2746       }
2747       if (PBI->getSuccessor(1) == BB) {
2748         if (HasWeights) {
2749           // PBI: br i1 %x, TrueDest, BB
2750           // BI:  br i1 %y, TrueDest, FalseDest
2751           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2752           //              FalseWeight for PBI * TrueWeight for BI.
2753           NewWeights.push_back(PredTrueWeight *
2754                                    (SuccFalseWeight + SuccTrueWeight) +
2755                                PredFalseWeight * SuccTrueWeight);
2756           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2757           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2758         }
2759         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2760         PBI->setSuccessor(1, FalseDest);
2761       }
2762       if (NewWeights.size() == 2) {
2763         // Halve the weights if any of them cannot fit in an uint32_t
2764         FitWeights(NewWeights);
2765 
2766         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2767                                            NewWeights.end());
2768         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2769       } else
2770         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2771     } else {
2772       // Update PHI nodes in the common successors.
2773       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2774         ConstantInt *PBI_C = cast<ConstantInt>(
2775             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2776         assert(PBI_C->getType()->isIntegerTy(1));
2777         Instruction *MergedCond = nullptr;
2778         if (PBI->getSuccessor(0) == TrueDest) {
2779           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2780           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2781           //       is false: !PBI_Cond and BI_Value
2782           Instruction *NotCond = cast<Instruction>(
2783               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2784           MergedCond = cast<Instruction>(
2785               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2786           if (PBI_C->isOne())
2787             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2788                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2789         } else {
2790           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2791           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2792           //       is false: PBI_Cond and BI_Value
2793           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2794               Instruction::And, PBI->getCondition(), New, "and.cond"));
2795           if (PBI_C->isOne()) {
2796             Instruction *NotCond = cast<Instruction>(
2797                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2798             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2799                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2800           }
2801         }
2802         // Update PHI Node.
2803         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2804                                   MergedCond);
2805       }
2806       // Change PBI from Conditional to Unconditional.
2807       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2808       EraseTerminatorInstAndDCECond(PBI);
2809       PBI = New_PBI;
2810     }
2811 
2812     // If BI was a loop latch, it may have had associated loop metadata.
2813     // We need to copy it to the new latch, that is, PBI.
2814     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2815       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2816 
2817     // TODO: If BB is reachable from all paths through PredBlock, then we
2818     // could replace PBI's branch probabilities with BI's.
2819 
2820     // Copy any debug value intrinsics into the end of PredBlock.
2821     for (Instruction &I : *BB)
2822       if (isa<DbgInfoIntrinsic>(I))
2823         I.clone()->insertBefore(PBI);
2824 
2825     return true;
2826   }
2827   return false;
2828 }
2829 
2830 // If there is only one store in BB1 and BB2, return it, otherwise return
2831 // nullptr.
2832 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2833   StoreInst *S = nullptr;
2834   for (auto *BB : {BB1, BB2}) {
2835     if (!BB)
2836       continue;
2837     for (auto &I : *BB)
2838       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2839         if (S)
2840           // Multiple stores seen.
2841           return nullptr;
2842         else
2843           S = SI;
2844       }
2845   }
2846   return S;
2847 }
2848 
2849 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2850                                               Value *AlternativeV = nullptr) {
2851   // PHI is going to be a PHI node that allows the value V that is defined in
2852   // BB to be referenced in BB's only successor.
2853   //
2854   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2855   // doesn't matter to us what the other operand is (it'll never get used). We
2856   // could just create a new PHI with an undef incoming value, but that could
2857   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2858   // other PHI. So here we directly look for some PHI in BB's successor with V
2859   // as an incoming operand. If we find one, we use it, else we create a new
2860   // one.
2861   //
2862   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2863   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2864   // where OtherBB is the single other predecessor of BB's only successor.
2865   PHINode *PHI = nullptr;
2866   BasicBlock *Succ = BB->getSingleSuccessor();
2867 
2868   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2869     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2870       PHI = cast<PHINode>(I);
2871       if (!AlternativeV)
2872         break;
2873 
2874       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2875       auto PredI = pred_begin(Succ);
2876       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2877       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2878         break;
2879       PHI = nullptr;
2880     }
2881   if (PHI)
2882     return PHI;
2883 
2884   // If V is not an instruction defined in BB, just return it.
2885   if (!AlternativeV &&
2886       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2887     return V;
2888 
2889   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2890   PHI->addIncoming(V, BB);
2891   for (BasicBlock *PredBB : predecessors(Succ))
2892     if (PredBB != BB)
2893       PHI->addIncoming(
2894           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2895   return PHI;
2896 }
2897 
2898 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2899                                            BasicBlock *QTB, BasicBlock *QFB,
2900                                            BasicBlock *PostBB, Value *Address,
2901                                            bool InvertPCond, bool InvertQCond,
2902                                            const DataLayout &DL) {
2903   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2904     return Operator::getOpcode(&I) == Instruction::BitCast &&
2905            I.getType()->isPointerTy();
2906   };
2907 
2908   // If we're not in aggressive mode, we only optimize if we have some
2909   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2910   auto IsWorthwhile = [&](BasicBlock *BB) {
2911     if (!BB)
2912       return true;
2913     // Heuristic: if the block can be if-converted/phi-folded and the
2914     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2915     // thread this store.
2916     unsigned N = 0;
2917     for (auto &I : BB->instructionsWithoutDebug()) {
2918       // Cheap instructions viable for folding.
2919       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2920           isa<StoreInst>(I))
2921         ++N;
2922       // Free instructions.
2923       else if (isa<TerminatorInst>(I) || IsaBitcastOfPointerType(I))
2924         continue;
2925       else
2926         return false;
2927     }
2928     // The store we want to merge is counted in N, so add 1 to make sure
2929     // we're counting the instructions that would be left.
2930     return N <= (PHINodeFoldingThreshold + 1);
2931   };
2932 
2933   if (!MergeCondStoresAggressively &&
2934       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2935        !IsWorthwhile(QFB)))
2936     return false;
2937 
2938   // For every pointer, there must be exactly two stores, one coming from
2939   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2940   // store (to any address) in PTB,PFB or QTB,QFB.
2941   // FIXME: We could relax this restriction with a bit more work and performance
2942   // testing.
2943   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2944   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2945   if (!PStore || !QStore)
2946     return false;
2947 
2948   // Now check the stores are compatible.
2949   if (!QStore->isUnordered() || !PStore->isUnordered())
2950     return false;
2951 
2952   // Check that sinking the store won't cause program behavior changes. Sinking
2953   // the store out of the Q blocks won't change any behavior as we're sinking
2954   // from a block to its unconditional successor. But we're moving a store from
2955   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2956   // So we need to check that there are no aliasing loads or stores in
2957   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2958   // operations between PStore and the end of its parent block.
2959   //
2960   // The ideal way to do this is to query AliasAnalysis, but we don't
2961   // preserve AA currently so that is dangerous. Be super safe and just
2962   // check there are no other memory operations at all.
2963   for (auto &I : *QFB->getSinglePredecessor())
2964     if (I.mayReadOrWriteMemory())
2965       return false;
2966   for (auto &I : *QFB)
2967     if (&I != QStore && I.mayReadOrWriteMemory())
2968       return false;
2969   if (QTB)
2970     for (auto &I : *QTB)
2971       if (&I != QStore && I.mayReadOrWriteMemory())
2972         return false;
2973   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2974        I != E; ++I)
2975     if (&*I != PStore && I->mayReadOrWriteMemory())
2976       return false;
2977 
2978   // If PostBB has more than two predecessors, we need to split it so we can
2979   // sink the store.
2980   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
2981     // We know that QFB's only successor is PostBB. And QFB has a single
2982     // predecessor. If QTB exists, then its only successor is also PostBB.
2983     // If QTB does not exist, then QFB's only predecessor has a conditional
2984     // branch to QFB and PostBB.
2985     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
2986     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
2987                                                "condstore.split");
2988     if (!NewBB)
2989       return false;
2990     PostBB = NewBB;
2991   }
2992 
2993   // OK, we're going to sink the stores to PostBB. The store has to be
2994   // conditional though, so first create the predicate.
2995   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2996                      ->getCondition();
2997   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2998                      ->getCondition();
2999 
3000   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3001                                                 PStore->getParent());
3002   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3003                                                 QStore->getParent(), PPHI);
3004 
3005   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3006 
3007   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3008   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3009 
3010   if (InvertPCond)
3011     PPred = QB.CreateNot(PPred);
3012   if (InvertQCond)
3013     QPred = QB.CreateNot(QPred);
3014   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3015 
3016   auto *T =
3017       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3018   QB.SetInsertPoint(T);
3019   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3020   AAMDNodes AAMD;
3021   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3022   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3023   SI->setAAMetadata(AAMD);
3024   unsigned PAlignment = PStore->getAlignment();
3025   unsigned QAlignment = QStore->getAlignment();
3026   unsigned TypeAlignment =
3027       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3028   unsigned MinAlignment;
3029   unsigned MaxAlignment;
3030   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3031   // Choose the minimum alignment. If we could prove both stores execute, we
3032   // could use biggest one.  In this case, though, we only know that one of the
3033   // stores executes.  And we don't know it's safe to take the alignment from a
3034   // store that doesn't execute.
3035   if (MinAlignment != 0) {
3036     // Choose the minimum of all non-zero alignments.
3037     SI->setAlignment(MinAlignment);
3038   } else if (MaxAlignment != 0) {
3039     // Choose the minimal alignment between the non-zero alignment and the ABI
3040     // default alignment for the type of the stored value.
3041     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3042   } else {
3043     // If both alignments are zero, use ABI default alignment for the type of
3044     // the stored value.
3045     SI->setAlignment(TypeAlignment);
3046   }
3047 
3048   QStore->eraseFromParent();
3049   PStore->eraseFromParent();
3050 
3051   return true;
3052 }
3053 
3054 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3055                                    const DataLayout &DL) {
3056   // The intention here is to find diamonds or triangles (see below) where each
3057   // conditional block contains a store to the same address. Both of these
3058   // stores are conditional, so they can't be unconditionally sunk. But it may
3059   // be profitable to speculatively sink the stores into one merged store at the
3060   // end, and predicate the merged store on the union of the two conditions of
3061   // PBI and QBI.
3062   //
3063   // This can reduce the number of stores executed if both of the conditions are
3064   // true, and can allow the blocks to become small enough to be if-converted.
3065   // This optimization will also chain, so that ladders of test-and-set
3066   // sequences can be if-converted away.
3067   //
3068   // We only deal with simple diamonds or triangles:
3069   //
3070   //     PBI       or      PBI        or a combination of the two
3071   //    /   \               | \
3072   //   PTB  PFB             |  PFB
3073   //    \   /               | /
3074   //     QBI                QBI
3075   //    /  \                | \
3076   //   QTB  QFB             |  QFB
3077   //    \  /                | /
3078   //    PostBB            PostBB
3079   //
3080   // We model triangles as a type of diamond with a nullptr "true" block.
3081   // Triangles are canonicalized so that the fallthrough edge is represented by
3082   // a true condition, as in the diagram above.
3083   BasicBlock *PTB = PBI->getSuccessor(0);
3084   BasicBlock *PFB = PBI->getSuccessor(1);
3085   BasicBlock *QTB = QBI->getSuccessor(0);
3086   BasicBlock *QFB = QBI->getSuccessor(1);
3087   BasicBlock *PostBB = QFB->getSingleSuccessor();
3088 
3089   // Make sure we have a good guess for PostBB. If QTB's only successor is
3090   // QFB, then QFB is a better PostBB.
3091   if (QTB->getSingleSuccessor() == QFB)
3092     PostBB = QFB;
3093 
3094   // If we couldn't find a good PostBB, stop.
3095   if (!PostBB)
3096     return false;
3097 
3098   bool InvertPCond = false, InvertQCond = false;
3099   // Canonicalize fallthroughs to the true branches.
3100   if (PFB == QBI->getParent()) {
3101     std::swap(PFB, PTB);
3102     InvertPCond = true;
3103   }
3104   if (QFB == PostBB) {
3105     std::swap(QFB, QTB);
3106     InvertQCond = true;
3107   }
3108 
3109   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3110   // and QFB may not. Model fallthroughs as a nullptr block.
3111   if (PTB == QBI->getParent())
3112     PTB = nullptr;
3113   if (QTB == PostBB)
3114     QTB = nullptr;
3115 
3116   // Legality bailouts. We must have at least the non-fallthrough blocks and
3117   // the post-dominating block, and the non-fallthroughs must only have one
3118   // predecessor.
3119   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3120     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3121   };
3122   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3123       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3124     return false;
3125   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3126       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3127     return false;
3128   if (!QBI->getParent()->hasNUses(2))
3129     return false;
3130 
3131   // OK, this is a sequence of two diamonds or triangles.
3132   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3133   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3134   for (auto *BB : {PTB, PFB}) {
3135     if (!BB)
3136       continue;
3137     for (auto &I : *BB)
3138       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3139         PStoreAddresses.insert(SI->getPointerOperand());
3140   }
3141   for (auto *BB : {QTB, QFB}) {
3142     if (!BB)
3143       continue;
3144     for (auto &I : *BB)
3145       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3146         QStoreAddresses.insert(SI->getPointerOperand());
3147   }
3148 
3149   set_intersect(PStoreAddresses, QStoreAddresses);
3150   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3151   // clear what it contains.
3152   auto &CommonAddresses = PStoreAddresses;
3153 
3154   bool Changed = false;
3155   for (auto *Address : CommonAddresses)
3156     Changed |= mergeConditionalStoreToAddress(
3157         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3158   return Changed;
3159 }
3160 
3161 /// If we have a conditional branch as a predecessor of another block,
3162 /// this function tries to simplify it.  We know
3163 /// that PBI and BI are both conditional branches, and BI is in one of the
3164 /// successor blocks of PBI - PBI branches to BI.
3165 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3166                                            const DataLayout &DL) {
3167   assert(PBI->isConditional() && BI->isConditional());
3168   BasicBlock *BB = BI->getParent();
3169 
3170   // If this block ends with a branch instruction, and if there is a
3171   // predecessor that ends on a branch of the same condition, make
3172   // this conditional branch redundant.
3173   if (PBI->getCondition() == BI->getCondition() &&
3174       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3175     // Okay, the outcome of this conditional branch is statically
3176     // knowable.  If this block had a single pred, handle specially.
3177     if (BB->getSinglePredecessor()) {
3178       // Turn this into a branch on constant.
3179       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3180       BI->setCondition(
3181           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3182       return true; // Nuke the branch on constant.
3183     }
3184 
3185     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3186     // in the constant and simplify the block result.  Subsequent passes of
3187     // simplifycfg will thread the block.
3188     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3189       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3190       PHINode *NewPN = PHINode::Create(
3191           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3192           BI->getCondition()->getName() + ".pr", &BB->front());
3193       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3194       // predecessor, compute the PHI'd conditional value for all of the preds.
3195       // Any predecessor where the condition is not computable we keep symbolic.
3196       for (pred_iterator PI = PB; PI != PE; ++PI) {
3197         BasicBlock *P = *PI;
3198         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3199             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3200             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3201           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3202           NewPN->addIncoming(
3203               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3204               P);
3205         } else {
3206           NewPN->addIncoming(BI->getCondition(), P);
3207         }
3208       }
3209 
3210       BI->setCondition(NewPN);
3211       return true;
3212     }
3213   }
3214 
3215   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3216     if (CE->canTrap())
3217       return false;
3218 
3219   // If both branches are conditional and both contain stores to the same
3220   // address, remove the stores from the conditionals and create a conditional
3221   // merged store at the end.
3222   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3223     return true;
3224 
3225   // If this is a conditional branch in an empty block, and if any
3226   // predecessors are a conditional branch to one of our destinations,
3227   // fold the conditions into logical ops and one cond br.
3228 
3229   // Ignore dbg intrinsics.
3230   if (&*BB->instructionsWithoutDebug().begin() != BI)
3231     return false;
3232 
3233   int PBIOp, BIOp;
3234   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3235     PBIOp = 0;
3236     BIOp = 0;
3237   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3238     PBIOp = 0;
3239     BIOp = 1;
3240   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3241     PBIOp = 1;
3242     BIOp = 0;
3243   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3244     PBIOp = 1;
3245     BIOp = 1;
3246   } else {
3247     return false;
3248   }
3249 
3250   // Check to make sure that the other destination of this branch
3251   // isn't BB itself.  If so, this is an infinite loop that will
3252   // keep getting unwound.
3253   if (PBI->getSuccessor(PBIOp) == BB)
3254     return false;
3255 
3256   // Do not perform this transformation if it would require
3257   // insertion of a large number of select instructions. For targets
3258   // without predication/cmovs, this is a big pessimization.
3259 
3260   // Also do not perform this transformation if any phi node in the common
3261   // destination block can trap when reached by BB or PBB (PR17073). In that
3262   // case, it would be unsafe to hoist the operation into a select instruction.
3263 
3264   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3265   unsigned NumPhis = 0;
3266   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3267        ++II, ++NumPhis) {
3268     if (NumPhis > 2) // Disable this xform.
3269       return false;
3270 
3271     PHINode *PN = cast<PHINode>(II);
3272     Value *BIV = PN->getIncomingValueForBlock(BB);
3273     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3274       if (CE->canTrap())
3275         return false;
3276 
3277     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3278     Value *PBIV = PN->getIncomingValue(PBBIdx);
3279     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3280       if (CE->canTrap())
3281         return false;
3282   }
3283 
3284   // Finally, if everything is ok, fold the branches to logical ops.
3285   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3286 
3287   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3288                << "AND: " << *BI->getParent());
3289 
3290   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3291   // branch in it, where one edge (OtherDest) goes back to itself but the other
3292   // exits.  We don't *know* that the program avoids the infinite loop
3293   // (even though that seems likely).  If we do this xform naively, we'll end up
3294   // recursively unpeeling the loop.  Since we know that (after the xform is
3295   // done) that the block *is* infinite if reached, we just make it an obviously
3296   // infinite loop with no cond branch.
3297   if (OtherDest == BB) {
3298     // Insert it at the end of the function, because it's either code,
3299     // or it won't matter if it's hot. :)
3300     BasicBlock *InfLoopBlock =
3301         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3302     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3303     OtherDest = InfLoopBlock;
3304   }
3305 
3306   DEBUG(dbgs() << *PBI->getParent()->getParent());
3307 
3308   // BI may have other predecessors.  Because of this, we leave
3309   // it alone, but modify PBI.
3310 
3311   // Make sure we get to CommonDest on True&True directions.
3312   Value *PBICond = PBI->getCondition();
3313   IRBuilder<NoFolder> Builder(PBI);
3314   if (PBIOp)
3315     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3316 
3317   Value *BICond = BI->getCondition();
3318   if (BIOp)
3319     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3320 
3321   // Merge the conditions.
3322   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3323 
3324   // Modify PBI to branch on the new condition to the new dests.
3325   PBI->setCondition(Cond);
3326   PBI->setSuccessor(0, CommonDest);
3327   PBI->setSuccessor(1, OtherDest);
3328 
3329   // Update branch weight for PBI.
3330   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3331   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3332   bool HasWeights =
3333       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3334                              SuccTrueWeight, SuccFalseWeight);
3335   if (HasWeights) {
3336     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3337     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3338     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3339     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3340     // The weight to CommonDest should be PredCommon * SuccTotal +
3341     //                                    PredOther * SuccCommon.
3342     // The weight to OtherDest should be PredOther * SuccOther.
3343     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3344                                   PredOther * SuccCommon,
3345                               PredOther * SuccOther};
3346     // Halve the weights if any of them cannot fit in an uint32_t
3347     FitWeights(NewWeights);
3348 
3349     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3350   }
3351 
3352   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3353   // block that are identical to the entries for BI's block.
3354   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3355 
3356   // We know that the CommonDest already had an edge from PBI to
3357   // it.  If it has PHIs though, the PHIs may have different
3358   // entries for BB and PBI's BB.  If so, insert a select to make
3359   // them agree.
3360   for (PHINode &PN : CommonDest->phis()) {
3361     Value *BIV = PN.getIncomingValueForBlock(BB);
3362     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3363     Value *PBIV = PN.getIncomingValue(PBBIdx);
3364     if (BIV != PBIV) {
3365       // Insert a select in PBI to pick the right value.
3366       SelectInst *NV = cast<SelectInst>(
3367           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3368       PN.setIncomingValue(PBBIdx, NV);
3369       // Although the select has the same condition as PBI, the original branch
3370       // weights for PBI do not apply to the new select because the select's
3371       // 'logical' edges are incoming edges of the phi that is eliminated, not
3372       // the outgoing edges of PBI.
3373       if (HasWeights) {
3374         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3375         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3376         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3377         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3378         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3379         // The weight to PredOtherDest should be PredOther * SuccCommon.
3380         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3381                                   PredOther * SuccCommon};
3382 
3383         FitWeights(NewWeights);
3384 
3385         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3386       }
3387     }
3388   }
3389 
3390   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3391   DEBUG(dbgs() << *PBI->getParent()->getParent());
3392 
3393   // This basic block is probably dead.  We know it has at least
3394   // one fewer predecessor.
3395   return true;
3396 }
3397 
3398 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3399 // true or to FalseBB if Cond is false.
3400 // Takes care of updating the successors and removing the old terminator.
3401 // Also makes sure not to introduce new successors by assuming that edges to
3402 // non-successor TrueBBs and FalseBBs aren't reachable.
3403 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3404                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3405                                        uint32_t TrueWeight,
3406                                        uint32_t FalseWeight) {
3407   // Remove any superfluous successor edges from the CFG.
3408   // First, figure out which successors to preserve.
3409   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3410   // successor.
3411   BasicBlock *KeepEdge1 = TrueBB;
3412   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3413 
3414   // Then remove the rest.
3415   for (BasicBlock *Succ : OldTerm->successors()) {
3416     // Make sure only to keep exactly one copy of each edge.
3417     if (Succ == KeepEdge1)
3418       KeepEdge1 = nullptr;
3419     else if (Succ == KeepEdge2)
3420       KeepEdge2 = nullptr;
3421     else
3422       Succ->removePredecessor(OldTerm->getParent(),
3423                               /*DontDeleteUselessPHIs=*/true);
3424   }
3425 
3426   IRBuilder<> Builder(OldTerm);
3427   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3428 
3429   // Insert an appropriate new terminator.
3430   if (!KeepEdge1 && !KeepEdge2) {
3431     if (TrueBB == FalseBB)
3432       // We were only looking for one successor, and it was present.
3433       // Create an unconditional branch to it.
3434       Builder.CreateBr(TrueBB);
3435     else {
3436       // We found both of the successors we were looking for.
3437       // Create a conditional branch sharing the condition of the select.
3438       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3439       if (TrueWeight != FalseWeight)
3440         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3441     }
3442   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3443     // Neither of the selected blocks were successors, so this
3444     // terminator must be unreachable.
3445     new UnreachableInst(OldTerm->getContext(), OldTerm);
3446   } else {
3447     // One of the selected values was a successor, but the other wasn't.
3448     // Insert an unconditional branch to the one that was found;
3449     // the edge to the one that wasn't must be unreachable.
3450     if (!KeepEdge1)
3451       // Only TrueBB was found.
3452       Builder.CreateBr(TrueBB);
3453     else
3454       // Only FalseBB was found.
3455       Builder.CreateBr(FalseBB);
3456   }
3457 
3458   EraseTerminatorInstAndDCECond(OldTerm);
3459   return true;
3460 }
3461 
3462 // Replaces
3463 //   (switch (select cond, X, Y)) on constant X, Y
3464 // with a branch - conditional if X and Y lead to distinct BBs,
3465 // unconditional otherwise.
3466 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3467   // Check for constant integer values in the select.
3468   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3469   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3470   if (!TrueVal || !FalseVal)
3471     return false;
3472 
3473   // Find the relevant condition and destinations.
3474   Value *Condition = Select->getCondition();
3475   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3476   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3477 
3478   // Get weight for TrueBB and FalseBB.
3479   uint32_t TrueWeight = 0, FalseWeight = 0;
3480   SmallVector<uint64_t, 8> Weights;
3481   bool HasWeights = HasBranchWeights(SI);
3482   if (HasWeights) {
3483     GetBranchWeights(SI, Weights);
3484     if (Weights.size() == 1 + SI->getNumCases()) {
3485       TrueWeight =
3486           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3487       FalseWeight =
3488           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3489     }
3490   }
3491 
3492   // Perform the actual simplification.
3493   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3494                                     FalseWeight);
3495 }
3496 
3497 // Replaces
3498 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3499 //                             blockaddress(@fn, BlockB)))
3500 // with
3501 //   (br cond, BlockA, BlockB).
3502 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3503   // Check that both operands of the select are block addresses.
3504   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3505   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3506   if (!TBA || !FBA)
3507     return false;
3508 
3509   // Extract the actual blocks.
3510   BasicBlock *TrueBB = TBA->getBasicBlock();
3511   BasicBlock *FalseBB = FBA->getBasicBlock();
3512 
3513   // Perform the actual simplification.
3514   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3515                                     0);
3516 }
3517 
3518 /// This is called when we find an icmp instruction
3519 /// (a seteq/setne with a constant) as the only instruction in a
3520 /// block that ends with an uncond branch.  We are looking for a very specific
3521 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3522 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3523 /// default value goes to an uncond block with a seteq in it, we get something
3524 /// like:
3525 ///
3526 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3527 /// DEFAULT:
3528 ///   %tmp = icmp eq i8 %A, 92
3529 ///   br label %end
3530 /// end:
3531 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3532 ///
3533 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3534 /// the PHI, merging the third icmp into the switch.
3535 static bool tryToSimplifyUncondBranchWithICmpInIt(
3536     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3537     const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) {
3538   BasicBlock *BB = ICI->getParent();
3539 
3540   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3541   // complex.
3542   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3543     return false;
3544 
3545   Value *V = ICI->getOperand(0);
3546   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3547 
3548   // The pattern we're looking for is where our only predecessor is a switch on
3549   // 'V' and this block is the default case for the switch.  In this case we can
3550   // fold the compared value into the switch to simplify things.
3551   BasicBlock *Pred = BB->getSinglePredecessor();
3552   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3553     return false;
3554 
3555   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3556   if (SI->getCondition() != V)
3557     return false;
3558 
3559   // If BB is reachable on a non-default case, then we simply know the value of
3560   // V in this block.  Substitute it and constant fold the icmp instruction
3561   // away.
3562   if (SI->getDefaultDest() != BB) {
3563     ConstantInt *VVal = SI->findCaseDest(BB);
3564     assert(VVal && "Should have a unique destination value");
3565     ICI->setOperand(0, VVal);
3566 
3567     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3568       ICI->replaceAllUsesWith(V);
3569       ICI->eraseFromParent();
3570     }
3571     // BB is now empty, so it is likely to simplify away.
3572     return simplifyCFG(BB, TTI, Options) | true;
3573   }
3574 
3575   // Ok, the block is reachable from the default dest.  If the constant we're
3576   // comparing exists in one of the other edges, then we can constant fold ICI
3577   // and zap it.
3578   if (SI->findCaseValue(Cst) != SI->case_default()) {
3579     Value *V;
3580     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3581       V = ConstantInt::getFalse(BB->getContext());
3582     else
3583       V = ConstantInt::getTrue(BB->getContext());
3584 
3585     ICI->replaceAllUsesWith(V);
3586     ICI->eraseFromParent();
3587     // BB is now empty, so it is likely to simplify away.
3588     return simplifyCFG(BB, TTI, Options) | true;
3589   }
3590 
3591   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3592   // the block.
3593   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3594   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3595   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3596       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3597     return false;
3598 
3599   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3600   // true in the PHI.
3601   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3602   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3603 
3604   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3605     std::swap(DefaultCst, NewCst);
3606 
3607   // Replace ICI (which is used by the PHI for the default value) with true or
3608   // false depending on if it is EQ or NE.
3609   ICI->replaceAllUsesWith(DefaultCst);
3610   ICI->eraseFromParent();
3611 
3612   // Okay, the switch goes to this block on a default value.  Add an edge from
3613   // the switch to the merge point on the compared value.
3614   BasicBlock *NewBB =
3615       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3616   SmallVector<uint64_t, 8> Weights;
3617   bool HasWeights = HasBranchWeights(SI);
3618   if (HasWeights) {
3619     GetBranchWeights(SI, Weights);
3620     if (Weights.size() == 1 + SI->getNumCases()) {
3621       // Split weight for default case to case for "Cst".
3622       Weights[0] = (Weights[0] + 1) >> 1;
3623       Weights.push_back(Weights[0]);
3624 
3625       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3626       setBranchWeights(SI, MDWeights);
3627     }
3628   }
3629   SI->addCase(Cst, NewBB);
3630 
3631   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3632   Builder.SetInsertPoint(NewBB);
3633   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3634   Builder.CreateBr(SuccBlock);
3635   PHIUse->addIncoming(NewCst, NewBB);
3636   return true;
3637 }
3638 
3639 /// The specified branch is a conditional branch.
3640 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3641 /// fold it into a switch instruction if so.
3642 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3643                                       const DataLayout &DL) {
3644   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3645   if (!Cond)
3646     return false;
3647 
3648   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3649   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3650   // 'setne's and'ed together, collect them.
3651 
3652   // Try to gather values from a chain of and/or to be turned into a switch
3653   ConstantComparesGatherer ConstantCompare(Cond, DL);
3654   // Unpack the result
3655   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3656   Value *CompVal = ConstantCompare.CompValue;
3657   unsigned UsedICmps = ConstantCompare.UsedICmps;
3658   Value *ExtraCase = ConstantCompare.Extra;
3659 
3660   // If we didn't have a multiply compared value, fail.
3661   if (!CompVal)
3662     return false;
3663 
3664   // Avoid turning single icmps into a switch.
3665   if (UsedICmps <= 1)
3666     return false;
3667 
3668   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3669 
3670   // There might be duplicate constants in the list, which the switch
3671   // instruction can't handle, remove them now.
3672   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3673   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3674 
3675   // If Extra was used, we require at least two switch values to do the
3676   // transformation.  A switch with one value is just a conditional branch.
3677   if (ExtraCase && Values.size() < 2)
3678     return false;
3679 
3680   // TODO: Preserve branch weight metadata, similarly to how
3681   // FoldValueComparisonIntoPredecessors preserves it.
3682 
3683   // Figure out which block is which destination.
3684   BasicBlock *DefaultBB = BI->getSuccessor(1);
3685   BasicBlock *EdgeBB = BI->getSuccessor(0);
3686   if (!TrueWhenEqual)
3687     std::swap(DefaultBB, EdgeBB);
3688 
3689   BasicBlock *BB = BI->getParent();
3690 
3691   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3692                << " cases into SWITCH.  BB is:\n"
3693                << *BB);
3694 
3695   // If there are any extra values that couldn't be folded into the switch
3696   // then we evaluate them with an explicit branch first.  Split the block
3697   // right before the condbr to handle it.
3698   if (ExtraCase) {
3699     BasicBlock *NewBB =
3700         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3701     // Remove the uncond branch added to the old block.
3702     TerminatorInst *OldTI = BB->getTerminator();
3703     Builder.SetInsertPoint(OldTI);
3704 
3705     if (TrueWhenEqual)
3706       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3707     else
3708       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3709 
3710     OldTI->eraseFromParent();
3711 
3712     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3713     // for the edge we just added.
3714     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3715 
3716     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3717                  << "\nEXTRABB = " << *BB);
3718     BB = NewBB;
3719   }
3720 
3721   Builder.SetInsertPoint(BI);
3722   // Convert pointer to int before we switch.
3723   if (CompVal->getType()->isPointerTy()) {
3724     CompVal = Builder.CreatePtrToInt(
3725         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3726   }
3727 
3728   // Create the new switch instruction now.
3729   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3730 
3731   // Add all of the 'cases' to the switch instruction.
3732   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3733     New->addCase(Values[i], EdgeBB);
3734 
3735   // We added edges from PI to the EdgeBB.  As such, if there were any
3736   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3737   // the number of edges added.
3738   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3739     PHINode *PN = cast<PHINode>(BBI);
3740     Value *InVal = PN->getIncomingValueForBlock(BB);
3741     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3742       PN->addIncoming(InVal, BB);
3743   }
3744 
3745   // Erase the old branch instruction.
3746   EraseTerminatorInstAndDCECond(BI);
3747 
3748   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3749   return true;
3750 }
3751 
3752 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3753   if (isa<PHINode>(RI->getValue()))
3754     return SimplifyCommonResume(RI);
3755   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3756            RI->getValue() == RI->getParent()->getFirstNonPHI())
3757     // The resume must unwind the exception that caused control to branch here.
3758     return SimplifySingleResume(RI);
3759 
3760   return false;
3761 }
3762 
3763 // Simplify resume that is shared by several landing pads (phi of landing pad).
3764 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3765   BasicBlock *BB = RI->getParent();
3766 
3767   // Check that there are no other instructions except for debug intrinsics
3768   // between the phi of landing pads (RI->getValue()) and resume instruction.
3769   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3770                        E = RI->getIterator();
3771   while (++I != E)
3772     if (!isa<DbgInfoIntrinsic>(I))
3773       return false;
3774 
3775   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3776   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3777 
3778   // Check incoming blocks to see if any of them are trivial.
3779   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3780        Idx++) {
3781     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3782     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3783 
3784     // If the block has other successors, we can not delete it because
3785     // it has other dependents.
3786     if (IncomingBB->getUniqueSuccessor() != BB)
3787       continue;
3788 
3789     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3790     // Not the landing pad that caused the control to branch here.
3791     if (IncomingValue != LandingPad)
3792       continue;
3793 
3794     bool isTrivial = true;
3795 
3796     I = IncomingBB->getFirstNonPHI()->getIterator();
3797     E = IncomingBB->getTerminator()->getIterator();
3798     while (++I != E)
3799       if (!isa<DbgInfoIntrinsic>(I)) {
3800         isTrivial = false;
3801         break;
3802       }
3803 
3804     if (isTrivial)
3805       TrivialUnwindBlocks.insert(IncomingBB);
3806   }
3807 
3808   // If no trivial unwind blocks, don't do any simplifications.
3809   if (TrivialUnwindBlocks.empty())
3810     return false;
3811 
3812   // Turn all invokes that unwind here into calls.
3813   for (auto *TrivialBB : TrivialUnwindBlocks) {
3814     // Blocks that will be simplified should be removed from the phi node.
3815     // Note there could be multiple edges to the resume block, and we need
3816     // to remove them all.
3817     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3818       BB->removePredecessor(TrivialBB, true);
3819 
3820     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3821          PI != PE;) {
3822       BasicBlock *Pred = *PI++;
3823       removeUnwindEdge(Pred);
3824     }
3825 
3826     // In each SimplifyCFG run, only the current processed block can be erased.
3827     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3828     // of erasing TrivialBB, we only remove the branch to the common resume
3829     // block so that we can later erase the resume block since it has no
3830     // predecessors.
3831     TrivialBB->getTerminator()->eraseFromParent();
3832     new UnreachableInst(RI->getContext(), TrivialBB);
3833   }
3834 
3835   // Delete the resume block if all its predecessors have been removed.
3836   if (pred_empty(BB))
3837     BB->eraseFromParent();
3838 
3839   return !TrivialUnwindBlocks.empty();
3840 }
3841 
3842 // Simplify resume that is only used by a single (non-phi) landing pad.
3843 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3844   BasicBlock *BB = RI->getParent();
3845   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3846   assert(RI->getValue() == LPInst &&
3847          "Resume must unwind the exception that caused control to here");
3848 
3849   // Check that there are no other instructions except for debug intrinsics.
3850   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3851   while (++I != E)
3852     if (!isa<DbgInfoIntrinsic>(I))
3853       return false;
3854 
3855   // Turn all invokes that unwind here into calls and delete the basic block.
3856   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3857     BasicBlock *Pred = *PI++;
3858     removeUnwindEdge(Pred);
3859   }
3860 
3861   // The landingpad is now unreachable.  Zap it.
3862   BB->eraseFromParent();
3863   if (LoopHeaders)
3864     LoopHeaders->erase(BB);
3865   return true;
3866 }
3867 
3868 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3869   // If this is a trivial cleanup pad that executes no instructions, it can be
3870   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3871   // that is an EH pad will be updated to continue to the caller and any
3872   // predecessor that terminates with an invoke instruction will have its invoke
3873   // instruction converted to a call instruction.  If the cleanup pad being
3874   // simplified does not continue to the caller, each predecessor will be
3875   // updated to continue to the unwind destination of the cleanup pad being
3876   // simplified.
3877   BasicBlock *BB = RI->getParent();
3878   CleanupPadInst *CPInst = RI->getCleanupPad();
3879   if (CPInst->getParent() != BB)
3880     // This isn't an empty cleanup.
3881     return false;
3882 
3883   // We cannot kill the pad if it has multiple uses.  This typically arises
3884   // from unreachable basic blocks.
3885   if (!CPInst->hasOneUse())
3886     return false;
3887 
3888   // Check that there are no other instructions except for benign intrinsics.
3889   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3890   while (++I != E) {
3891     auto *II = dyn_cast<IntrinsicInst>(I);
3892     if (!II)
3893       return false;
3894 
3895     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3896     switch (IntrinsicID) {
3897     case Intrinsic::dbg_declare:
3898     case Intrinsic::dbg_value:
3899     case Intrinsic::lifetime_end:
3900       break;
3901     default:
3902       return false;
3903     }
3904   }
3905 
3906   // If the cleanup return we are simplifying unwinds to the caller, this will
3907   // set UnwindDest to nullptr.
3908   BasicBlock *UnwindDest = RI->getUnwindDest();
3909   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3910 
3911   // We're about to remove BB from the control flow.  Before we do, sink any
3912   // PHINodes into the unwind destination.  Doing this before changing the
3913   // control flow avoids some potentially slow checks, since we can currently
3914   // be certain that UnwindDest and BB have no common predecessors (since they
3915   // are both EH pads).
3916   if (UnwindDest) {
3917     // First, go through the PHI nodes in UnwindDest and update any nodes that
3918     // reference the block we are removing
3919     for (BasicBlock::iterator I = UnwindDest->begin(),
3920                               IE = DestEHPad->getIterator();
3921          I != IE; ++I) {
3922       PHINode *DestPN = cast<PHINode>(I);
3923 
3924       int Idx = DestPN->getBasicBlockIndex(BB);
3925       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3926       assert(Idx != -1);
3927       // This PHI node has an incoming value that corresponds to a control
3928       // path through the cleanup pad we are removing.  If the incoming
3929       // value is in the cleanup pad, it must be a PHINode (because we
3930       // verified above that the block is otherwise empty).  Otherwise, the
3931       // value is either a constant or a value that dominates the cleanup
3932       // pad being removed.
3933       //
3934       // Because BB and UnwindDest are both EH pads, all of their
3935       // predecessors must unwind to these blocks, and since no instruction
3936       // can have multiple unwind destinations, there will be no overlap in
3937       // incoming blocks between SrcPN and DestPN.
3938       Value *SrcVal = DestPN->getIncomingValue(Idx);
3939       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3940 
3941       // Remove the entry for the block we are deleting.
3942       DestPN->removeIncomingValue(Idx, false);
3943 
3944       if (SrcPN && SrcPN->getParent() == BB) {
3945         // If the incoming value was a PHI node in the cleanup pad we are
3946         // removing, we need to merge that PHI node's incoming values into
3947         // DestPN.
3948         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3949              SrcIdx != SrcE; ++SrcIdx) {
3950           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3951                               SrcPN->getIncomingBlock(SrcIdx));
3952         }
3953       } else {
3954         // Otherwise, the incoming value came from above BB and
3955         // so we can just reuse it.  We must associate all of BB's
3956         // predecessors with this value.
3957         for (auto *pred : predecessors(BB)) {
3958           DestPN->addIncoming(SrcVal, pred);
3959         }
3960       }
3961     }
3962 
3963     // Sink any remaining PHI nodes directly into UnwindDest.
3964     Instruction *InsertPt = DestEHPad;
3965     for (BasicBlock::iterator I = BB->begin(),
3966                               IE = BB->getFirstNonPHI()->getIterator();
3967          I != IE;) {
3968       // The iterator must be incremented here because the instructions are
3969       // being moved to another block.
3970       PHINode *PN = cast<PHINode>(I++);
3971       if (PN->use_empty())
3972         // If the PHI node has no uses, just leave it.  It will be erased
3973         // when we erase BB below.
3974         continue;
3975 
3976       // Otherwise, sink this PHI node into UnwindDest.
3977       // Any predecessors to UnwindDest which are not already represented
3978       // must be back edges which inherit the value from the path through
3979       // BB.  In this case, the PHI value must reference itself.
3980       for (auto *pred : predecessors(UnwindDest))
3981         if (pred != BB)
3982           PN->addIncoming(PN, pred);
3983       PN->moveBefore(InsertPt);
3984     }
3985   }
3986 
3987   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3988     // The iterator must be updated here because we are removing this pred.
3989     BasicBlock *PredBB = *PI++;
3990     if (UnwindDest == nullptr) {
3991       removeUnwindEdge(PredBB);
3992     } else {
3993       TerminatorInst *TI = PredBB->getTerminator();
3994       TI->replaceUsesOfWith(BB, UnwindDest);
3995     }
3996   }
3997 
3998   // The cleanup pad is now unreachable.  Zap it.
3999   BB->eraseFromParent();
4000   return true;
4001 }
4002 
4003 // Try to merge two cleanuppads together.
4004 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4005   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4006   // with.
4007   BasicBlock *UnwindDest = RI->getUnwindDest();
4008   if (!UnwindDest)
4009     return false;
4010 
4011   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4012   // be safe to merge without code duplication.
4013   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4014     return false;
4015 
4016   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4017   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4018   if (!SuccessorCleanupPad)
4019     return false;
4020 
4021   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4022   // Replace any uses of the successor cleanupad with the predecessor pad
4023   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4024   // funclet bundle operands.
4025   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4026   // Remove the old cleanuppad.
4027   SuccessorCleanupPad->eraseFromParent();
4028   // Now, we simply replace the cleanupret with a branch to the unwind
4029   // destination.
4030   BranchInst::Create(UnwindDest, RI->getParent());
4031   RI->eraseFromParent();
4032 
4033   return true;
4034 }
4035 
4036 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4037   // It is possible to transiantly have an undef cleanuppad operand because we
4038   // have deleted some, but not all, dead blocks.
4039   // Eventually, this block will be deleted.
4040   if (isa<UndefValue>(RI->getOperand(0)))
4041     return false;
4042 
4043   if (mergeCleanupPad(RI))
4044     return true;
4045 
4046   if (removeEmptyCleanup(RI))
4047     return true;
4048 
4049   return false;
4050 }
4051 
4052 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4053   BasicBlock *BB = RI->getParent();
4054   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4055     return false;
4056 
4057   // Find predecessors that end with branches.
4058   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4059   SmallVector<BranchInst *, 8> CondBranchPreds;
4060   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4061     BasicBlock *P = *PI;
4062     TerminatorInst *PTI = P->getTerminator();
4063     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4064       if (BI->isUnconditional())
4065         UncondBranchPreds.push_back(P);
4066       else
4067         CondBranchPreds.push_back(BI);
4068     }
4069   }
4070 
4071   // If we found some, do the transformation!
4072   if (!UncondBranchPreds.empty() && DupRet) {
4073     while (!UncondBranchPreds.empty()) {
4074       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4075       DEBUG(dbgs() << "FOLDING: " << *BB
4076                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4077       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4078     }
4079 
4080     // If we eliminated all predecessors of the block, delete the block now.
4081     if (pred_empty(BB)) {
4082       // We know there are no successors, so just nuke the block.
4083       BB->eraseFromParent();
4084       if (LoopHeaders)
4085         LoopHeaders->erase(BB);
4086     }
4087 
4088     return true;
4089   }
4090 
4091   // Check out all of the conditional branches going to this return
4092   // instruction.  If any of them just select between returns, change the
4093   // branch itself into a select/return pair.
4094   while (!CondBranchPreds.empty()) {
4095     BranchInst *BI = CondBranchPreds.pop_back_val();
4096 
4097     // Check to see if the non-BB successor is also a return block.
4098     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4099         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4100         SimplifyCondBranchToTwoReturns(BI, Builder))
4101       return true;
4102   }
4103   return false;
4104 }
4105 
4106 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4107   BasicBlock *BB = UI->getParent();
4108 
4109   bool Changed = false;
4110 
4111   // If there are any instructions immediately before the unreachable that can
4112   // be removed, do so.
4113   while (UI->getIterator() != BB->begin()) {
4114     BasicBlock::iterator BBI = UI->getIterator();
4115     --BBI;
4116     // Do not delete instructions that can have side effects which might cause
4117     // the unreachable to not be reachable; specifically, calls and volatile
4118     // operations may have this effect.
4119     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4120       break;
4121 
4122     if (BBI->mayHaveSideEffects()) {
4123       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4124         if (SI->isVolatile())
4125           break;
4126       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4127         if (LI->isVolatile())
4128           break;
4129       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4130         if (RMWI->isVolatile())
4131           break;
4132       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4133         if (CXI->isVolatile())
4134           break;
4135       } else if (isa<CatchPadInst>(BBI)) {
4136         // A catchpad may invoke exception object constructors and such, which
4137         // in some languages can be arbitrary code, so be conservative by
4138         // default.
4139         // For CoreCLR, it just involves a type test, so can be removed.
4140         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4141             EHPersonality::CoreCLR)
4142           break;
4143       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4144                  !isa<LandingPadInst>(BBI)) {
4145         break;
4146       }
4147       // Note that deleting LandingPad's here is in fact okay, although it
4148       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4149       // all the predecessors of this block will be the unwind edges of Invokes,
4150       // and we can therefore guarantee this block will be erased.
4151     }
4152 
4153     // Delete this instruction (any uses are guaranteed to be dead)
4154     if (!BBI->use_empty())
4155       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4156     BBI->eraseFromParent();
4157     Changed = true;
4158   }
4159 
4160   // If the unreachable instruction is the first in the block, take a gander
4161   // at all of the predecessors of this instruction, and simplify them.
4162   if (&BB->front() != UI)
4163     return Changed;
4164 
4165   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4166   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4167     TerminatorInst *TI = Preds[i]->getTerminator();
4168     IRBuilder<> Builder(TI);
4169     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4170       if (BI->isUnconditional()) {
4171         if (BI->getSuccessor(0) == BB) {
4172           new UnreachableInst(TI->getContext(), TI);
4173           TI->eraseFromParent();
4174           Changed = true;
4175         }
4176       } else {
4177         if (BI->getSuccessor(0) == BB) {
4178           Builder.CreateBr(BI->getSuccessor(1));
4179           EraseTerminatorInstAndDCECond(BI);
4180         } else if (BI->getSuccessor(1) == BB) {
4181           Builder.CreateBr(BI->getSuccessor(0));
4182           EraseTerminatorInstAndDCECond(BI);
4183           Changed = true;
4184         }
4185       }
4186     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4187       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4188         if (i->getCaseSuccessor() != BB) {
4189           ++i;
4190           continue;
4191         }
4192         BB->removePredecessor(SI->getParent());
4193         i = SI->removeCase(i);
4194         e = SI->case_end();
4195         Changed = true;
4196       }
4197     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4198       if (II->getUnwindDest() == BB) {
4199         removeUnwindEdge(TI->getParent());
4200         Changed = true;
4201       }
4202     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4203       if (CSI->getUnwindDest() == BB) {
4204         removeUnwindEdge(TI->getParent());
4205         Changed = true;
4206         continue;
4207       }
4208 
4209       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4210                                              E = CSI->handler_end();
4211            I != E; ++I) {
4212         if (*I == BB) {
4213           CSI->removeHandler(I);
4214           --I;
4215           --E;
4216           Changed = true;
4217         }
4218       }
4219       if (CSI->getNumHandlers() == 0) {
4220         BasicBlock *CatchSwitchBB = CSI->getParent();
4221         if (CSI->hasUnwindDest()) {
4222           // Redirect preds to the unwind dest
4223           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4224         } else {
4225           // Rewrite all preds to unwind to caller (or from invoke to call).
4226           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4227           for (BasicBlock *EHPred : EHPreds)
4228             removeUnwindEdge(EHPred);
4229         }
4230         // The catchswitch is no longer reachable.
4231         new UnreachableInst(CSI->getContext(), CSI);
4232         CSI->eraseFromParent();
4233         Changed = true;
4234       }
4235     } else if (isa<CleanupReturnInst>(TI)) {
4236       new UnreachableInst(TI->getContext(), TI);
4237       TI->eraseFromParent();
4238       Changed = true;
4239     }
4240   }
4241 
4242   // If this block is now dead, remove it.
4243   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4244     // We know there are no successors, so just nuke the block.
4245     BB->eraseFromParent();
4246     if (LoopHeaders)
4247       LoopHeaders->erase(BB);
4248     return true;
4249   }
4250 
4251   return Changed;
4252 }
4253 
4254 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4255   assert(Cases.size() >= 1);
4256 
4257   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4258   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4259     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4260       return false;
4261   }
4262   return true;
4263 }
4264 
4265 /// Turn a switch with two reachable destinations into an integer range
4266 /// comparison and branch.
4267 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4268   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4269 
4270   bool HasDefault =
4271       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4272 
4273   // Partition the cases into two sets with different destinations.
4274   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4275   BasicBlock *DestB = nullptr;
4276   SmallVector<ConstantInt *, 16> CasesA;
4277   SmallVector<ConstantInt *, 16> CasesB;
4278 
4279   for (auto Case : SI->cases()) {
4280     BasicBlock *Dest = Case.getCaseSuccessor();
4281     if (!DestA)
4282       DestA = Dest;
4283     if (Dest == DestA) {
4284       CasesA.push_back(Case.getCaseValue());
4285       continue;
4286     }
4287     if (!DestB)
4288       DestB = Dest;
4289     if (Dest == DestB) {
4290       CasesB.push_back(Case.getCaseValue());
4291       continue;
4292     }
4293     return false; // More than two destinations.
4294   }
4295 
4296   assert(DestA && DestB &&
4297          "Single-destination switch should have been folded.");
4298   assert(DestA != DestB);
4299   assert(DestB != SI->getDefaultDest());
4300   assert(!CasesB.empty() && "There must be non-default cases.");
4301   assert(!CasesA.empty() || HasDefault);
4302 
4303   // Figure out if one of the sets of cases form a contiguous range.
4304   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4305   BasicBlock *ContiguousDest = nullptr;
4306   BasicBlock *OtherDest = nullptr;
4307   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4308     ContiguousCases = &CasesA;
4309     ContiguousDest = DestA;
4310     OtherDest = DestB;
4311   } else if (CasesAreContiguous(CasesB)) {
4312     ContiguousCases = &CasesB;
4313     ContiguousDest = DestB;
4314     OtherDest = DestA;
4315   } else
4316     return false;
4317 
4318   // Start building the compare and branch.
4319 
4320   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4321   Constant *NumCases =
4322       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4323 
4324   Value *Sub = SI->getCondition();
4325   if (!Offset->isNullValue())
4326     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4327 
4328   Value *Cmp;
4329   // If NumCases overflowed, then all possible values jump to the successor.
4330   if (NumCases->isNullValue() && !ContiguousCases->empty())
4331     Cmp = ConstantInt::getTrue(SI->getContext());
4332   else
4333     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4334   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4335 
4336   // Update weight for the newly-created conditional branch.
4337   if (HasBranchWeights(SI)) {
4338     SmallVector<uint64_t, 8> Weights;
4339     GetBranchWeights(SI, Weights);
4340     if (Weights.size() == 1 + SI->getNumCases()) {
4341       uint64_t TrueWeight = 0;
4342       uint64_t FalseWeight = 0;
4343       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4344         if (SI->getSuccessor(I) == ContiguousDest)
4345           TrueWeight += Weights[I];
4346         else
4347           FalseWeight += Weights[I];
4348       }
4349       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4350         TrueWeight /= 2;
4351         FalseWeight /= 2;
4352       }
4353       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4354     }
4355   }
4356 
4357   // Prune obsolete incoming values off the successors' PHI nodes.
4358   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4359     unsigned PreviousEdges = ContiguousCases->size();
4360     if (ContiguousDest == SI->getDefaultDest())
4361       ++PreviousEdges;
4362     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4363       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4364   }
4365   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4366     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4367     if (OtherDest == SI->getDefaultDest())
4368       ++PreviousEdges;
4369     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4370       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4371   }
4372 
4373   // Drop the switch.
4374   SI->eraseFromParent();
4375 
4376   return true;
4377 }
4378 
4379 /// Compute masked bits for the condition of a switch
4380 /// and use it to remove dead cases.
4381 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4382                                      const DataLayout &DL) {
4383   Value *Cond = SI->getCondition();
4384   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4385   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4386 
4387   // We can also eliminate cases by determining that their values are outside of
4388   // the limited range of the condition based on how many significant (non-sign)
4389   // bits are in the condition value.
4390   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4391   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4392 
4393   // Gather dead cases.
4394   SmallVector<ConstantInt *, 8> DeadCases;
4395   for (auto &Case : SI->cases()) {
4396     const APInt &CaseVal = Case.getCaseValue()->getValue();
4397     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4398         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4399       DeadCases.push_back(Case.getCaseValue());
4400       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4401     }
4402   }
4403 
4404   // If we can prove that the cases must cover all possible values, the
4405   // default destination becomes dead and we can remove it.  If we know some
4406   // of the bits in the value, we can use that to more precisely compute the
4407   // number of possible unique case values.
4408   bool HasDefault =
4409       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4410   const unsigned NumUnknownBits =
4411       Bits - (Known.Zero | Known.One).countPopulation();
4412   assert(NumUnknownBits <= Bits);
4413   if (HasDefault && DeadCases.empty() &&
4414       NumUnknownBits < 64 /* avoid overflow */ &&
4415       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4416     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4417     BasicBlock *NewDefault =
4418         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4419     SI->setDefaultDest(&*NewDefault);
4420     SplitBlock(&*NewDefault, &NewDefault->front());
4421     auto *OldTI = NewDefault->getTerminator();
4422     new UnreachableInst(SI->getContext(), OldTI);
4423     EraseTerminatorInstAndDCECond(OldTI);
4424     return true;
4425   }
4426 
4427   SmallVector<uint64_t, 8> Weights;
4428   bool HasWeight = HasBranchWeights(SI);
4429   if (HasWeight) {
4430     GetBranchWeights(SI, Weights);
4431     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4432   }
4433 
4434   // Remove dead cases from the switch.
4435   for (ConstantInt *DeadCase : DeadCases) {
4436     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4437     assert(CaseI != SI->case_default() &&
4438            "Case was not found. Probably mistake in DeadCases forming.");
4439     if (HasWeight) {
4440       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4441       Weights.pop_back();
4442     }
4443 
4444     // Prune unused values from PHI nodes.
4445     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4446     SI->removeCase(CaseI);
4447   }
4448   if (HasWeight && Weights.size() >= 2) {
4449     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4450     setBranchWeights(SI, MDWeights);
4451   }
4452 
4453   return !DeadCases.empty();
4454 }
4455 
4456 /// If BB would be eligible for simplification by
4457 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4458 /// by an unconditional branch), look at the phi node for BB in the successor
4459 /// block and see if the incoming value is equal to CaseValue. If so, return
4460 /// the phi node, and set PhiIndex to BB's index in the phi node.
4461 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4462                                               BasicBlock *BB, int *PhiIndex) {
4463   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4464     return nullptr; // BB must be empty to be a candidate for simplification.
4465   if (!BB->getSinglePredecessor())
4466     return nullptr; // BB must be dominated by the switch.
4467 
4468   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4469   if (!Branch || !Branch->isUnconditional())
4470     return nullptr; // Terminator must be unconditional branch.
4471 
4472   BasicBlock *Succ = Branch->getSuccessor(0);
4473 
4474   for (PHINode &PHI : Succ->phis()) {
4475     int Idx = PHI.getBasicBlockIndex(BB);
4476     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4477 
4478     Value *InValue = PHI.getIncomingValue(Idx);
4479     if (InValue != CaseValue)
4480       continue;
4481 
4482     *PhiIndex = Idx;
4483     return &PHI;
4484   }
4485 
4486   return nullptr;
4487 }
4488 
4489 /// Try to forward the condition of a switch instruction to a phi node
4490 /// dominated by the switch, if that would mean that some of the destination
4491 /// blocks of the switch can be folded away. Return true if a change is made.
4492 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4493   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4494 
4495   ForwardingNodesMap ForwardingNodes;
4496   BasicBlock *SwitchBlock = SI->getParent();
4497   bool Changed = false;
4498   for (auto &Case : SI->cases()) {
4499     ConstantInt *CaseValue = Case.getCaseValue();
4500     BasicBlock *CaseDest = Case.getCaseSuccessor();
4501 
4502     // Replace phi operands in successor blocks that are using the constant case
4503     // value rather than the switch condition variable:
4504     //   switchbb:
4505     //   switch i32 %x, label %default [
4506     //     i32 17, label %succ
4507     //   ...
4508     //   succ:
4509     //     %r = phi i32 ... [ 17, %switchbb ] ...
4510     // -->
4511     //     %r = phi i32 ... [ %x, %switchbb ] ...
4512 
4513     for (PHINode &Phi : CaseDest->phis()) {
4514       // This only works if there is exactly 1 incoming edge from the switch to
4515       // a phi. If there is >1, that means multiple cases of the switch map to 1
4516       // value in the phi, and that phi value is not the switch condition. Thus,
4517       // this transform would not make sense (the phi would be invalid because
4518       // a phi can't have different incoming values from the same block).
4519       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4520       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4521           count(Phi.blocks(), SwitchBlock) == 1) {
4522         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4523         Changed = true;
4524       }
4525     }
4526 
4527     // Collect phi nodes that are indirectly using this switch's case constants.
4528     int PhiIdx;
4529     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4530       ForwardingNodes[Phi].push_back(PhiIdx);
4531   }
4532 
4533   for (auto &ForwardingNode : ForwardingNodes) {
4534     PHINode *Phi = ForwardingNode.first;
4535     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4536     if (Indexes.size() < 2)
4537       continue;
4538 
4539     for (int Index : Indexes)
4540       Phi->setIncomingValue(Index, SI->getCondition());
4541     Changed = true;
4542   }
4543 
4544   return Changed;
4545 }
4546 
4547 /// Return true if the backend will be able to handle
4548 /// initializing an array of constants like C.
4549 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4550   if (C->isThreadDependent())
4551     return false;
4552   if (C->isDLLImportDependent())
4553     return false;
4554 
4555   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4556       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4557       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4558     return false;
4559 
4560   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4561     if (!CE->isGEPWithNoNotionalOverIndexing())
4562       return false;
4563     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4564       return false;
4565   }
4566 
4567   if (!TTI.shouldBuildLookupTablesForConstant(C))
4568     return false;
4569 
4570   return true;
4571 }
4572 
4573 /// If V is a Constant, return it. Otherwise, try to look up
4574 /// its constant value in ConstantPool, returning 0 if it's not there.
4575 static Constant *
4576 LookupConstant(Value *V,
4577                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4578   if (Constant *C = dyn_cast<Constant>(V))
4579     return C;
4580   return ConstantPool.lookup(V);
4581 }
4582 
4583 /// Try to fold instruction I into a constant. This works for
4584 /// simple instructions such as binary operations where both operands are
4585 /// constant or can be replaced by constants from the ConstantPool. Returns the
4586 /// resulting constant on success, 0 otherwise.
4587 static Constant *
4588 ConstantFold(Instruction *I, const DataLayout &DL,
4589              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4590   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4591     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4592     if (!A)
4593       return nullptr;
4594     if (A->isAllOnesValue())
4595       return LookupConstant(Select->getTrueValue(), ConstantPool);
4596     if (A->isNullValue())
4597       return LookupConstant(Select->getFalseValue(), ConstantPool);
4598     return nullptr;
4599   }
4600 
4601   SmallVector<Constant *, 4> COps;
4602   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4603     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4604       COps.push_back(A);
4605     else
4606       return nullptr;
4607   }
4608 
4609   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4610     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4611                                            COps[1], DL);
4612   }
4613 
4614   return ConstantFoldInstOperands(I, COps, DL);
4615 }
4616 
4617 /// Try to determine the resulting constant values in phi nodes
4618 /// at the common destination basic block, *CommonDest, for one of the case
4619 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4620 /// case), of a switch instruction SI.
4621 static bool
4622 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4623                BasicBlock **CommonDest,
4624                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4625                const DataLayout &DL, const TargetTransformInfo &TTI) {
4626   // The block from which we enter the common destination.
4627   BasicBlock *Pred = SI->getParent();
4628 
4629   // If CaseDest is empty except for some side-effect free instructions through
4630   // which we can constant-propagate the CaseVal, continue to its successor.
4631   SmallDenseMap<Value *, Constant *> ConstantPool;
4632   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4633   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4634     if (TerminatorInst *T = dyn_cast<TerminatorInst>(&I)) {
4635       // If the terminator is a simple branch, continue to the next block.
4636       if (T->getNumSuccessors() != 1 || T->isExceptional())
4637         return false;
4638       Pred = CaseDest;
4639       CaseDest = T->getSuccessor(0);
4640     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4641       // Instruction is side-effect free and constant.
4642 
4643       // If the instruction has uses outside this block or a phi node slot for
4644       // the block, it is not safe to bypass the instruction since it would then
4645       // no longer dominate all its uses.
4646       for (auto &Use : I.uses()) {
4647         User *User = Use.getUser();
4648         if (Instruction *I = dyn_cast<Instruction>(User))
4649           if (I->getParent() == CaseDest)
4650             continue;
4651         if (PHINode *Phi = dyn_cast<PHINode>(User))
4652           if (Phi->getIncomingBlock(Use) == CaseDest)
4653             continue;
4654         return false;
4655       }
4656 
4657       ConstantPool.insert(std::make_pair(&I, C));
4658     } else {
4659       break;
4660     }
4661   }
4662 
4663   // If we did not have a CommonDest before, use the current one.
4664   if (!*CommonDest)
4665     *CommonDest = CaseDest;
4666   // If the destination isn't the common one, abort.
4667   if (CaseDest != *CommonDest)
4668     return false;
4669 
4670   // Get the values for this case from phi nodes in the destination block.
4671   for (PHINode &PHI : (*CommonDest)->phis()) {
4672     int Idx = PHI.getBasicBlockIndex(Pred);
4673     if (Idx == -1)
4674       continue;
4675 
4676     Constant *ConstVal =
4677         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4678     if (!ConstVal)
4679       return false;
4680 
4681     // Be conservative about which kinds of constants we support.
4682     if (!ValidLookupTableConstant(ConstVal, TTI))
4683       return false;
4684 
4685     Res.push_back(std::make_pair(&PHI, ConstVal));
4686   }
4687 
4688   return Res.size() > 0;
4689 }
4690 
4691 // Helper function used to add CaseVal to the list of cases that generate
4692 // Result. Returns the updated number of cases that generate this result.
4693 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4694                                  SwitchCaseResultVectorTy &UniqueResults,
4695                                  Constant *Result) {
4696   for (auto &I : UniqueResults) {
4697     if (I.first == Result) {
4698       I.second.push_back(CaseVal);
4699       return I.second.size();
4700     }
4701   }
4702   UniqueResults.push_back(
4703       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4704   return 1;
4705 }
4706 
4707 // Helper function that initializes a map containing
4708 // results for the PHI node of the common destination block for a switch
4709 // instruction. Returns false if multiple PHI nodes have been found or if
4710 // there is not a common destination block for the switch.
4711 static bool
4712 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4713                       SwitchCaseResultVectorTy &UniqueResults,
4714                       Constant *&DefaultResult, const DataLayout &DL,
4715                       const TargetTransformInfo &TTI,
4716                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4717   for (auto &I : SI->cases()) {
4718     ConstantInt *CaseVal = I.getCaseValue();
4719 
4720     // Resulting value at phi nodes for this case value.
4721     SwitchCaseResultsTy Results;
4722     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4723                         DL, TTI))
4724       return false;
4725 
4726     // Only one value per case is permitted.
4727     if (Results.size() > 1)
4728       return false;
4729 
4730     // Add the case->result mapping to UniqueResults.
4731     const uintptr_t NumCasesForResult =
4732         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4733 
4734     // Early out if there are too many cases for this result.
4735     if (NumCasesForResult > MaxCasesPerResult)
4736       return false;
4737 
4738     // Early out if there are too many unique results.
4739     if (UniqueResults.size() > MaxUniqueResults)
4740       return false;
4741 
4742     // Check the PHI consistency.
4743     if (!PHI)
4744       PHI = Results[0].first;
4745     else if (PHI != Results[0].first)
4746       return false;
4747   }
4748   // Find the default result value.
4749   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4750   BasicBlock *DefaultDest = SI->getDefaultDest();
4751   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4752                  DL, TTI);
4753   // If the default value is not found abort unless the default destination
4754   // is unreachable.
4755   DefaultResult =
4756       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4757   if ((!DefaultResult &&
4758        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4759     return false;
4760 
4761   return true;
4762 }
4763 
4764 // Helper function that checks if it is possible to transform a switch with only
4765 // two cases (or two cases + default) that produces a result into a select.
4766 // Example:
4767 // switch (a) {
4768 //   case 10:                %0 = icmp eq i32 %a, 10
4769 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4770 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4771 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4772 //   default:
4773 //     return 4;
4774 // }
4775 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4776                                    Constant *DefaultResult, Value *Condition,
4777                                    IRBuilder<> &Builder) {
4778   assert(ResultVector.size() == 2 &&
4779          "We should have exactly two unique results at this point");
4780   // If we are selecting between only two cases transform into a simple
4781   // select or a two-way select if default is possible.
4782   if (ResultVector[0].second.size() == 1 &&
4783       ResultVector[1].second.size() == 1) {
4784     ConstantInt *const FirstCase = ResultVector[0].second[0];
4785     ConstantInt *const SecondCase = ResultVector[1].second[0];
4786 
4787     bool DefaultCanTrigger = DefaultResult;
4788     Value *SelectValue = ResultVector[1].first;
4789     if (DefaultCanTrigger) {
4790       Value *const ValueCompare =
4791           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4792       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4793                                          DefaultResult, "switch.select");
4794     }
4795     Value *const ValueCompare =
4796         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4797     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4798                                 SelectValue, "switch.select");
4799   }
4800 
4801   return nullptr;
4802 }
4803 
4804 // Helper function to cleanup a switch instruction that has been converted into
4805 // a select, fixing up PHI nodes and basic blocks.
4806 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4807                                               Value *SelectValue,
4808                                               IRBuilder<> &Builder) {
4809   BasicBlock *SelectBB = SI->getParent();
4810   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4811     PHI->removeIncomingValue(SelectBB);
4812   PHI->addIncoming(SelectValue, SelectBB);
4813 
4814   Builder.CreateBr(PHI->getParent());
4815 
4816   // Remove the switch.
4817   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4818     BasicBlock *Succ = SI->getSuccessor(i);
4819 
4820     if (Succ == PHI->getParent())
4821       continue;
4822     Succ->removePredecessor(SelectBB);
4823   }
4824   SI->eraseFromParent();
4825 }
4826 
4827 /// If the switch is only used to initialize one or more
4828 /// phi nodes in a common successor block with only two different
4829 /// constant values, replace the switch with select.
4830 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4831                            const DataLayout &DL,
4832                            const TargetTransformInfo &TTI) {
4833   Value *const Cond = SI->getCondition();
4834   PHINode *PHI = nullptr;
4835   BasicBlock *CommonDest = nullptr;
4836   Constant *DefaultResult;
4837   SwitchCaseResultVectorTy UniqueResults;
4838   // Collect all the cases that will deliver the same value from the switch.
4839   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4840                              DL, TTI, 2, 1))
4841     return false;
4842   // Selects choose between maximum two values.
4843   if (UniqueResults.size() != 2)
4844     return false;
4845   assert(PHI != nullptr && "PHI for value select not found");
4846 
4847   Builder.SetInsertPoint(SI);
4848   Value *SelectValue =
4849       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4850   if (SelectValue) {
4851     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4852     return true;
4853   }
4854   // The switch couldn't be converted into a select.
4855   return false;
4856 }
4857 
4858 namespace {
4859 
4860 /// This class represents a lookup table that can be used to replace a switch.
4861 class SwitchLookupTable {
4862 public:
4863   /// Create a lookup table to use as a switch replacement with the contents
4864   /// of Values, using DefaultValue to fill any holes in the table.
4865   SwitchLookupTable(
4866       Module &M, uint64_t TableSize, ConstantInt *Offset,
4867       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4868       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4869 
4870   /// Build instructions with Builder to retrieve the value at
4871   /// the position given by Index in the lookup table.
4872   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4873 
4874   /// Return true if a table with TableSize elements of
4875   /// type ElementType would fit in a target-legal register.
4876   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4877                                  Type *ElementType);
4878 
4879 private:
4880   // Depending on the contents of the table, it can be represented in
4881   // different ways.
4882   enum {
4883     // For tables where each element contains the same value, we just have to
4884     // store that single value and return it for each lookup.
4885     SingleValueKind,
4886 
4887     // For tables where there is a linear relationship between table index
4888     // and values. We calculate the result with a simple multiplication
4889     // and addition instead of a table lookup.
4890     LinearMapKind,
4891 
4892     // For small tables with integer elements, we can pack them into a bitmap
4893     // that fits into a target-legal register. Values are retrieved by
4894     // shift and mask operations.
4895     BitMapKind,
4896 
4897     // The table is stored as an array of values. Values are retrieved by load
4898     // instructions from the table.
4899     ArrayKind
4900   } Kind;
4901 
4902   // For SingleValueKind, this is the single value.
4903   Constant *SingleValue = nullptr;
4904 
4905   // For BitMapKind, this is the bitmap.
4906   ConstantInt *BitMap = nullptr;
4907   IntegerType *BitMapElementTy = nullptr;
4908 
4909   // For LinearMapKind, these are the constants used to derive the value.
4910   ConstantInt *LinearOffset = nullptr;
4911   ConstantInt *LinearMultiplier = nullptr;
4912 
4913   // For ArrayKind, this is the array.
4914   GlobalVariable *Array = nullptr;
4915 };
4916 
4917 } // end anonymous namespace
4918 
4919 SwitchLookupTable::SwitchLookupTable(
4920     Module &M, uint64_t TableSize, ConstantInt *Offset,
4921     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4922     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4923   assert(Values.size() && "Can't build lookup table without values!");
4924   assert(TableSize >= Values.size() && "Can't fit values in table!");
4925 
4926   // If all values in the table are equal, this is that value.
4927   SingleValue = Values.begin()->second;
4928 
4929   Type *ValueType = Values.begin()->second->getType();
4930 
4931   // Build up the table contents.
4932   SmallVector<Constant *, 64> TableContents(TableSize);
4933   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4934     ConstantInt *CaseVal = Values[I].first;
4935     Constant *CaseRes = Values[I].second;
4936     assert(CaseRes->getType() == ValueType);
4937 
4938     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4939     TableContents[Idx] = CaseRes;
4940 
4941     if (CaseRes != SingleValue)
4942       SingleValue = nullptr;
4943   }
4944 
4945   // Fill in any holes in the table with the default result.
4946   if (Values.size() < TableSize) {
4947     assert(DefaultValue &&
4948            "Need a default value to fill the lookup table holes.");
4949     assert(DefaultValue->getType() == ValueType);
4950     for (uint64_t I = 0; I < TableSize; ++I) {
4951       if (!TableContents[I])
4952         TableContents[I] = DefaultValue;
4953     }
4954 
4955     if (DefaultValue != SingleValue)
4956       SingleValue = nullptr;
4957   }
4958 
4959   // If each element in the table contains the same value, we only need to store
4960   // that single value.
4961   if (SingleValue) {
4962     Kind = SingleValueKind;
4963     return;
4964   }
4965 
4966   // Check if we can derive the value with a linear transformation from the
4967   // table index.
4968   if (isa<IntegerType>(ValueType)) {
4969     bool LinearMappingPossible = true;
4970     APInt PrevVal;
4971     APInt DistToPrev;
4972     assert(TableSize >= 2 && "Should be a SingleValue table.");
4973     // Check if there is the same distance between two consecutive values.
4974     for (uint64_t I = 0; I < TableSize; ++I) {
4975       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4976       if (!ConstVal) {
4977         // This is an undef. We could deal with it, but undefs in lookup tables
4978         // are very seldom. It's probably not worth the additional complexity.
4979         LinearMappingPossible = false;
4980         break;
4981       }
4982       const APInt &Val = ConstVal->getValue();
4983       if (I != 0) {
4984         APInt Dist = Val - PrevVal;
4985         if (I == 1) {
4986           DistToPrev = Dist;
4987         } else if (Dist != DistToPrev) {
4988           LinearMappingPossible = false;
4989           break;
4990         }
4991       }
4992       PrevVal = Val;
4993     }
4994     if (LinearMappingPossible) {
4995       LinearOffset = cast<ConstantInt>(TableContents[0]);
4996       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4997       Kind = LinearMapKind;
4998       ++NumLinearMaps;
4999       return;
5000     }
5001   }
5002 
5003   // If the type is integer and the table fits in a register, build a bitmap.
5004   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5005     IntegerType *IT = cast<IntegerType>(ValueType);
5006     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5007     for (uint64_t I = TableSize; I > 0; --I) {
5008       TableInt <<= IT->getBitWidth();
5009       // Insert values into the bitmap. Undef values are set to zero.
5010       if (!isa<UndefValue>(TableContents[I - 1])) {
5011         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5012         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5013       }
5014     }
5015     BitMap = ConstantInt::get(M.getContext(), TableInt);
5016     BitMapElementTy = IT;
5017     Kind = BitMapKind;
5018     ++NumBitMaps;
5019     return;
5020   }
5021 
5022   // Store the table in an array.
5023   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5024   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5025 
5026   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5027                              GlobalVariable::PrivateLinkage, Initializer,
5028                              "switch.table." + FuncName);
5029   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5030   Kind = ArrayKind;
5031 }
5032 
5033 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5034   switch (Kind) {
5035   case SingleValueKind:
5036     return SingleValue;
5037   case LinearMapKind: {
5038     // Derive the result value from the input value.
5039     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5040                                           false, "switch.idx.cast");
5041     if (!LinearMultiplier->isOne())
5042       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5043     if (!LinearOffset->isZero())
5044       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5045     return Result;
5046   }
5047   case BitMapKind: {
5048     // Type of the bitmap (e.g. i59).
5049     IntegerType *MapTy = BitMap->getType();
5050 
5051     // Cast Index to the same type as the bitmap.
5052     // Note: The Index is <= the number of elements in the table, so
5053     // truncating it to the width of the bitmask is safe.
5054     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5055 
5056     // Multiply the shift amount by the element width.
5057     ShiftAmt = Builder.CreateMul(
5058         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5059         "switch.shiftamt");
5060 
5061     // Shift down.
5062     Value *DownShifted =
5063         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5064     // Mask off.
5065     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5066   }
5067   case ArrayKind: {
5068     // Make sure the table index will not overflow when treated as signed.
5069     IntegerType *IT = cast<IntegerType>(Index->getType());
5070     uint64_t TableSize =
5071         Array->getInitializer()->getType()->getArrayNumElements();
5072     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5073       Index = Builder.CreateZExt(
5074           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5075           "switch.tableidx.zext");
5076 
5077     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5078     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5079                                            GEPIndices, "switch.gep");
5080     return Builder.CreateLoad(GEP, "switch.load");
5081   }
5082   }
5083   llvm_unreachable("Unknown lookup table kind!");
5084 }
5085 
5086 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5087                                            uint64_t TableSize,
5088                                            Type *ElementType) {
5089   auto *IT = dyn_cast<IntegerType>(ElementType);
5090   if (!IT)
5091     return false;
5092   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5093   // are <= 15, we could try to narrow the type.
5094 
5095   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5096   if (TableSize >= UINT_MAX / IT->getBitWidth())
5097     return false;
5098   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5099 }
5100 
5101 /// Determine whether a lookup table should be built for this switch, based on
5102 /// the number of cases, size of the table, and the types of the results.
5103 static bool
5104 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5105                        const TargetTransformInfo &TTI, const DataLayout &DL,
5106                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5107   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5108     return false; // TableSize overflowed, or mul below might overflow.
5109 
5110   bool AllTablesFitInRegister = true;
5111   bool HasIllegalType = false;
5112   for (const auto &I : ResultTypes) {
5113     Type *Ty = I.second;
5114 
5115     // Saturate this flag to true.
5116     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5117 
5118     // Saturate this flag to false.
5119     AllTablesFitInRegister =
5120         AllTablesFitInRegister &&
5121         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5122 
5123     // If both flags saturate, we're done. NOTE: This *only* works with
5124     // saturating flags, and all flags have to saturate first due to the
5125     // non-deterministic behavior of iterating over a dense map.
5126     if (HasIllegalType && !AllTablesFitInRegister)
5127       break;
5128   }
5129 
5130   // If each table would fit in a register, we should build it anyway.
5131   if (AllTablesFitInRegister)
5132     return true;
5133 
5134   // Don't build a table that doesn't fit in-register if it has illegal types.
5135   if (HasIllegalType)
5136     return false;
5137 
5138   // The table density should be at least 40%. This is the same criterion as for
5139   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5140   // FIXME: Find the best cut-off.
5141   return SI->getNumCases() * 10 >= TableSize * 4;
5142 }
5143 
5144 /// Try to reuse the switch table index compare. Following pattern:
5145 /// \code
5146 ///     if (idx < tablesize)
5147 ///        r = table[idx]; // table does not contain default_value
5148 ///     else
5149 ///        r = default_value;
5150 ///     if (r != default_value)
5151 ///        ...
5152 /// \endcode
5153 /// Is optimized to:
5154 /// \code
5155 ///     cond = idx < tablesize;
5156 ///     if (cond)
5157 ///        r = table[idx];
5158 ///     else
5159 ///        r = default_value;
5160 ///     if (cond)
5161 ///        ...
5162 /// \endcode
5163 /// Jump threading will then eliminate the second if(cond).
5164 static void reuseTableCompare(
5165     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5166     Constant *DefaultValue,
5167     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5168   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5169   if (!CmpInst)
5170     return;
5171 
5172   // We require that the compare is in the same block as the phi so that jump
5173   // threading can do its work afterwards.
5174   if (CmpInst->getParent() != PhiBlock)
5175     return;
5176 
5177   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5178   if (!CmpOp1)
5179     return;
5180 
5181   Value *RangeCmp = RangeCheckBranch->getCondition();
5182   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5183   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5184 
5185   // Check if the compare with the default value is constant true or false.
5186   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5187                                                  DefaultValue, CmpOp1, true);
5188   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5189     return;
5190 
5191   // Check if the compare with the case values is distinct from the default
5192   // compare result.
5193   for (auto ValuePair : Values) {
5194     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5195                                                 ValuePair.second, CmpOp1, true);
5196     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5197       return;
5198     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5199            "Expect true or false as compare result.");
5200   }
5201 
5202   // Check if the branch instruction dominates the phi node. It's a simple
5203   // dominance check, but sufficient for our needs.
5204   // Although this check is invariant in the calling loops, it's better to do it
5205   // at this late stage. Practically we do it at most once for a switch.
5206   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5207   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5208     BasicBlock *Pred = *PI;
5209     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5210       return;
5211   }
5212 
5213   if (DefaultConst == FalseConst) {
5214     // The compare yields the same result. We can replace it.
5215     CmpInst->replaceAllUsesWith(RangeCmp);
5216     ++NumTableCmpReuses;
5217   } else {
5218     // The compare yields the same result, just inverted. We can replace it.
5219     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5220         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5221         RangeCheckBranch);
5222     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5223     ++NumTableCmpReuses;
5224   }
5225 }
5226 
5227 /// If the switch is only used to initialize one or more phi nodes in a common
5228 /// successor block with different constant values, replace the switch with
5229 /// lookup tables.
5230 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5231                                 const DataLayout &DL,
5232                                 const TargetTransformInfo &TTI) {
5233   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5234 
5235   Function *Fn = SI->getParent()->getParent();
5236   // Only build lookup table when we have a target that supports it or the
5237   // attribute is not set.
5238   if (!TTI.shouldBuildLookupTables() ||
5239       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5240     return false;
5241 
5242   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5243   // split off a dense part and build a lookup table for that.
5244 
5245   // FIXME: This creates arrays of GEPs to constant strings, which means each
5246   // GEP needs a runtime relocation in PIC code. We should just build one big
5247   // string and lookup indices into that.
5248 
5249   // Ignore switches with less than three cases. Lookup tables will not make
5250   // them faster, so we don't analyze them.
5251   if (SI->getNumCases() < 3)
5252     return false;
5253 
5254   // Figure out the corresponding result for each case value and phi node in the
5255   // common destination, as well as the min and max case values.
5256   assert(SI->case_begin() != SI->case_end());
5257   SwitchInst::CaseIt CI = SI->case_begin();
5258   ConstantInt *MinCaseVal = CI->getCaseValue();
5259   ConstantInt *MaxCaseVal = CI->getCaseValue();
5260 
5261   BasicBlock *CommonDest = nullptr;
5262 
5263   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5264   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5265 
5266   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5267   SmallDenseMap<PHINode *, Type *> ResultTypes;
5268   SmallVector<PHINode *, 4> PHIs;
5269 
5270   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5271     ConstantInt *CaseVal = CI->getCaseValue();
5272     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5273       MinCaseVal = CaseVal;
5274     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5275       MaxCaseVal = CaseVal;
5276 
5277     // Resulting value at phi nodes for this case value.
5278     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5279     ResultsTy Results;
5280     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5281                         Results, DL, TTI))
5282       return false;
5283 
5284     // Append the result from this case to the list for each phi.
5285     for (const auto &I : Results) {
5286       PHINode *PHI = I.first;
5287       Constant *Value = I.second;
5288       if (!ResultLists.count(PHI))
5289         PHIs.push_back(PHI);
5290       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5291     }
5292   }
5293 
5294   // Keep track of the result types.
5295   for (PHINode *PHI : PHIs) {
5296     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5297   }
5298 
5299   uint64_t NumResults = ResultLists[PHIs[0]].size();
5300   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5301   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5302   bool TableHasHoles = (NumResults < TableSize);
5303 
5304   // If the table has holes, we need a constant result for the default case
5305   // or a bitmask that fits in a register.
5306   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5307   bool HasDefaultResults =
5308       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5309                      DefaultResultsList, DL, TTI);
5310 
5311   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5312   if (NeedMask) {
5313     // As an extra penalty for the validity test we require more cases.
5314     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5315       return false;
5316     if (!DL.fitsInLegalInteger(TableSize))
5317       return false;
5318   }
5319 
5320   for (const auto &I : DefaultResultsList) {
5321     PHINode *PHI = I.first;
5322     Constant *Result = I.second;
5323     DefaultResults[PHI] = Result;
5324   }
5325 
5326   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5327     return false;
5328 
5329   // Create the BB that does the lookups.
5330   Module &Mod = *CommonDest->getParent()->getParent();
5331   BasicBlock *LookupBB = BasicBlock::Create(
5332       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5333 
5334   // Compute the table index value.
5335   Builder.SetInsertPoint(SI);
5336   Value *TableIndex;
5337   if (MinCaseVal->isNullValue())
5338     TableIndex = SI->getCondition();
5339   else
5340     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5341                                    "switch.tableidx");
5342 
5343   // Compute the maximum table size representable by the integer type we are
5344   // switching upon.
5345   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5346   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5347   assert(MaxTableSize >= TableSize &&
5348          "It is impossible for a switch to have more entries than the max "
5349          "representable value of its input integer type's size.");
5350 
5351   // If the default destination is unreachable, or if the lookup table covers
5352   // all values of the conditional variable, branch directly to the lookup table
5353   // BB. Otherwise, check that the condition is within the case range.
5354   const bool DefaultIsReachable =
5355       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5356   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5357   BranchInst *RangeCheckBranch = nullptr;
5358 
5359   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5360     Builder.CreateBr(LookupBB);
5361     // Note: We call removeProdecessor later since we need to be able to get the
5362     // PHI value for the default case in case we're using a bit mask.
5363   } else {
5364     Value *Cmp = Builder.CreateICmpULT(
5365         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5366     RangeCheckBranch =
5367         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5368   }
5369 
5370   // Populate the BB that does the lookups.
5371   Builder.SetInsertPoint(LookupBB);
5372 
5373   if (NeedMask) {
5374     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5375     // re-purposed to do the hole check, and we create a new LookupBB.
5376     BasicBlock *MaskBB = LookupBB;
5377     MaskBB->setName("switch.hole_check");
5378     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5379                                   CommonDest->getParent(), CommonDest);
5380 
5381     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5382     // unnecessary illegal types.
5383     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5384     APInt MaskInt(TableSizePowOf2, 0);
5385     APInt One(TableSizePowOf2, 1);
5386     // Build bitmask; fill in a 1 bit for every case.
5387     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5388     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5389       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5390                          .getLimitedValue();
5391       MaskInt |= One << Idx;
5392     }
5393     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5394 
5395     // Get the TableIndex'th bit of the bitmask.
5396     // If this bit is 0 (meaning hole) jump to the default destination,
5397     // else continue with table lookup.
5398     IntegerType *MapTy = TableMask->getType();
5399     Value *MaskIndex =
5400         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5401     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5402     Value *LoBit = Builder.CreateTrunc(
5403         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5404     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5405 
5406     Builder.SetInsertPoint(LookupBB);
5407     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5408   }
5409 
5410   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5411     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5412     // do not delete PHINodes here.
5413     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5414                                             /*DontDeleteUselessPHIs=*/true);
5415   }
5416 
5417   bool ReturnedEarly = false;
5418   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5419     PHINode *PHI = PHIs[I];
5420     const ResultListTy &ResultList = ResultLists[PHI];
5421 
5422     // If using a bitmask, use any value to fill the lookup table holes.
5423     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5424     StringRef FuncName = Fn->getName();
5425     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5426                             FuncName);
5427 
5428     Value *Result = Table.BuildLookup(TableIndex, Builder);
5429 
5430     // If the result is used to return immediately from the function, we want to
5431     // do that right here.
5432     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5433         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5434       Builder.CreateRet(Result);
5435       ReturnedEarly = true;
5436       break;
5437     }
5438 
5439     // Do a small peephole optimization: re-use the switch table compare if
5440     // possible.
5441     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5442       BasicBlock *PhiBlock = PHI->getParent();
5443       // Search for compare instructions which use the phi.
5444       for (auto *User : PHI->users()) {
5445         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5446       }
5447     }
5448 
5449     PHI->addIncoming(Result, LookupBB);
5450   }
5451 
5452   if (!ReturnedEarly)
5453     Builder.CreateBr(CommonDest);
5454 
5455   // Remove the switch.
5456   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5457     BasicBlock *Succ = SI->getSuccessor(i);
5458 
5459     if (Succ == SI->getDefaultDest())
5460       continue;
5461     Succ->removePredecessor(SI->getParent());
5462   }
5463   SI->eraseFromParent();
5464 
5465   ++NumLookupTables;
5466   if (NeedMask)
5467     ++NumLookupTablesHoles;
5468   return true;
5469 }
5470 
5471 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5472   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5473   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5474   uint64_t Range = Diff + 1;
5475   uint64_t NumCases = Values.size();
5476   // 40% is the default density for building a jump table in optsize/minsize mode.
5477   uint64_t MinDensity = 40;
5478 
5479   return NumCases * 100 >= Range * MinDensity;
5480 }
5481 
5482 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5483 /// of cases.
5484 ///
5485 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5486 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5487 ///
5488 /// This converts a sparse switch into a dense switch which allows better
5489 /// lowering and could also allow transforming into a lookup table.
5490 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5491                               const DataLayout &DL,
5492                               const TargetTransformInfo &TTI) {
5493   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5494   if (CondTy->getIntegerBitWidth() > 64 ||
5495       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5496     return false;
5497   // Only bother with this optimization if there are more than 3 switch cases;
5498   // SDAG will only bother creating jump tables for 4 or more cases.
5499   if (SI->getNumCases() < 4)
5500     return false;
5501 
5502   // This transform is agnostic to the signedness of the input or case values. We
5503   // can treat the case values as signed or unsigned. We can optimize more common
5504   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5505   // as signed.
5506   SmallVector<int64_t,4> Values;
5507   for (auto &C : SI->cases())
5508     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5509   llvm::sort(Values.begin(), Values.end());
5510 
5511   // If the switch is already dense, there's nothing useful to do here.
5512   if (isSwitchDense(Values))
5513     return false;
5514 
5515   // First, transform the values such that they start at zero and ascend.
5516   int64_t Base = Values[0];
5517   for (auto &V : Values)
5518     V -= (uint64_t)(Base);
5519 
5520   // Now we have signed numbers that have been shifted so that, given enough
5521   // precision, there are no negative values. Since the rest of the transform
5522   // is bitwise only, we switch now to an unsigned representation.
5523   uint64_t GCD = 0;
5524   for (auto &V : Values)
5525     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5526 
5527   // This transform can be done speculatively because it is so cheap - it results
5528   // in a single rotate operation being inserted. This can only happen if the
5529   // factor extracted is a power of 2.
5530   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5531   // inverse of GCD and then perform this transform.
5532   // FIXME: It's possible that optimizing a switch on powers of two might also
5533   // be beneficial - flag values are often powers of two and we could use a CLZ
5534   // as the key function.
5535   if (GCD <= 1 || !isPowerOf2_64(GCD))
5536     // No common divisor found or too expensive to compute key function.
5537     return false;
5538 
5539   unsigned Shift = Log2_64(GCD);
5540   for (auto &V : Values)
5541     V = (int64_t)((uint64_t)V >> Shift);
5542 
5543   if (!isSwitchDense(Values))
5544     // Transform didn't create a dense switch.
5545     return false;
5546 
5547   // The obvious transform is to shift the switch condition right and emit a
5548   // check that the condition actually cleanly divided by GCD, i.e.
5549   //   C & (1 << Shift - 1) == 0
5550   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5551   //
5552   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5553   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5554   // are nonzero then the switch condition will be very large and will hit the
5555   // default case.
5556 
5557   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5558   Builder.SetInsertPoint(SI);
5559   auto *ShiftC = ConstantInt::get(Ty, Shift);
5560   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5561   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5562   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5563   auto *Rot = Builder.CreateOr(LShr, Shl);
5564   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5565 
5566   for (auto Case : SI->cases()) {
5567     auto *Orig = Case.getCaseValue();
5568     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5569     Case.setValue(
5570         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5571   }
5572   return true;
5573 }
5574 
5575 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5576   BasicBlock *BB = SI->getParent();
5577 
5578   if (isValueEqualityComparison(SI)) {
5579     // If we only have one predecessor, and if it is a branch on this value,
5580     // see if that predecessor totally determines the outcome of this switch.
5581     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5582       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5583         return simplifyCFG(BB, TTI, Options) | true;
5584 
5585     Value *Cond = SI->getCondition();
5586     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5587       if (SimplifySwitchOnSelect(SI, Select))
5588         return simplifyCFG(BB, TTI, Options) | true;
5589 
5590     // If the block only contains the switch, see if we can fold the block
5591     // away into any preds.
5592     if (SI == &*BB->instructionsWithoutDebug().begin())
5593       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5594         return simplifyCFG(BB, TTI, Options) | true;
5595   }
5596 
5597   // Try to transform the switch into an icmp and a branch.
5598   if (TurnSwitchRangeIntoICmp(SI, Builder))
5599     return simplifyCFG(BB, TTI, Options) | true;
5600 
5601   // Remove unreachable cases.
5602   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5603     return simplifyCFG(BB, TTI, Options) | true;
5604 
5605   if (switchToSelect(SI, Builder, DL, TTI))
5606     return simplifyCFG(BB, TTI, Options) | true;
5607 
5608   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5609     return simplifyCFG(BB, TTI, Options) | true;
5610 
5611   // The conversion from switch to lookup tables results in difficult-to-analyze
5612   // code and makes pruning branches much harder. This is a problem if the
5613   // switch expression itself can still be restricted as a result of inlining or
5614   // CVP. Therefore, only apply this transformation during late stages of the
5615   // optimisation pipeline.
5616   if (Options.ConvertSwitchToLookupTable &&
5617       SwitchToLookupTable(SI, Builder, DL, TTI))
5618     return simplifyCFG(BB, TTI, Options) | true;
5619 
5620   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5621     return simplifyCFG(BB, TTI, Options) | true;
5622 
5623   return false;
5624 }
5625 
5626 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5627   BasicBlock *BB = IBI->getParent();
5628   bool Changed = false;
5629 
5630   // Eliminate redundant destinations.
5631   SmallPtrSet<Value *, 8> Succs;
5632   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5633     BasicBlock *Dest = IBI->getDestination(i);
5634     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5635       Dest->removePredecessor(BB);
5636       IBI->removeDestination(i);
5637       --i;
5638       --e;
5639       Changed = true;
5640     }
5641   }
5642 
5643   if (IBI->getNumDestinations() == 0) {
5644     // If the indirectbr has no successors, change it to unreachable.
5645     new UnreachableInst(IBI->getContext(), IBI);
5646     EraseTerminatorInstAndDCECond(IBI);
5647     return true;
5648   }
5649 
5650   if (IBI->getNumDestinations() == 1) {
5651     // If the indirectbr has one successor, change it to a direct branch.
5652     BranchInst::Create(IBI->getDestination(0), IBI);
5653     EraseTerminatorInstAndDCECond(IBI);
5654     return true;
5655   }
5656 
5657   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5658     if (SimplifyIndirectBrOnSelect(IBI, SI))
5659       return simplifyCFG(BB, TTI, Options) | true;
5660   }
5661   return Changed;
5662 }
5663 
5664 /// Given an block with only a single landing pad and a unconditional branch
5665 /// try to find another basic block which this one can be merged with.  This
5666 /// handles cases where we have multiple invokes with unique landing pads, but
5667 /// a shared handler.
5668 ///
5669 /// We specifically choose to not worry about merging non-empty blocks
5670 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5671 /// practice, the optimizer produces empty landing pad blocks quite frequently
5672 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5673 /// sinking in this file)
5674 ///
5675 /// This is primarily a code size optimization.  We need to avoid performing
5676 /// any transform which might inhibit optimization (such as our ability to
5677 /// specialize a particular handler via tail commoning).  We do this by not
5678 /// merging any blocks which require us to introduce a phi.  Since the same
5679 /// values are flowing through both blocks, we don't loose any ability to
5680 /// specialize.  If anything, we make such specialization more likely.
5681 ///
5682 /// TODO - This transformation could remove entries from a phi in the target
5683 /// block when the inputs in the phi are the same for the two blocks being
5684 /// merged.  In some cases, this could result in removal of the PHI entirely.
5685 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5686                                  BasicBlock *BB) {
5687   auto Succ = BB->getUniqueSuccessor();
5688   assert(Succ);
5689   // If there's a phi in the successor block, we'd likely have to introduce
5690   // a phi into the merged landing pad block.
5691   if (isa<PHINode>(*Succ->begin()))
5692     return false;
5693 
5694   for (BasicBlock *OtherPred : predecessors(Succ)) {
5695     if (BB == OtherPred)
5696       continue;
5697     BasicBlock::iterator I = OtherPred->begin();
5698     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5699     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5700       continue;
5701     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5702       ;
5703     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5704     if (!BI2 || !BI2->isIdenticalTo(BI))
5705       continue;
5706 
5707     // We've found an identical block.  Update our predecessors to take that
5708     // path instead and make ourselves dead.
5709     SmallSet<BasicBlock *, 16> Preds;
5710     Preds.insert(pred_begin(BB), pred_end(BB));
5711     for (BasicBlock *Pred : Preds) {
5712       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5713       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5714              "unexpected successor");
5715       II->setUnwindDest(OtherPred);
5716     }
5717 
5718     // The debug info in OtherPred doesn't cover the merged control flow that
5719     // used to go through BB.  We need to delete it or update it.
5720     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5721       Instruction &Inst = *I;
5722       I++;
5723       if (isa<DbgInfoIntrinsic>(Inst))
5724         Inst.eraseFromParent();
5725     }
5726 
5727     SmallSet<BasicBlock *, 16> Succs;
5728     Succs.insert(succ_begin(BB), succ_end(BB));
5729     for (BasicBlock *Succ : Succs) {
5730       Succ->removePredecessor(BB);
5731     }
5732 
5733     IRBuilder<> Builder(BI);
5734     Builder.CreateUnreachable();
5735     BI->eraseFromParent();
5736     return true;
5737   }
5738   return false;
5739 }
5740 
5741 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5742                                           IRBuilder<> &Builder) {
5743   BasicBlock *BB = BI->getParent();
5744   BasicBlock *Succ = BI->getSuccessor(0);
5745 
5746   // If the Terminator is the only non-phi instruction, simplify the block.
5747   // If LoopHeader is provided, check if the block or its successor is a loop
5748   // header. (This is for early invocations before loop simplify and
5749   // vectorization to keep canonical loop forms for nested loops. These blocks
5750   // can be eliminated when the pass is invoked later in the back-end.)
5751   // Note that if BB has only one predecessor then we do not introduce new
5752   // backedge, so we can eliminate BB.
5753   bool NeedCanonicalLoop =
5754       Options.NeedCanonicalLoop &&
5755       (LoopHeaders && std::distance(pred_begin(BB), pred_end(BB)) > 1 &&
5756        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5757   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5758   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5759       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5760     return true;
5761 
5762   // If the only instruction in the block is a seteq/setne comparison against a
5763   // constant, try to simplify the block.
5764   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5765     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5766       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5767         ;
5768       if (I->isTerminator() &&
5769           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options))
5770         return true;
5771     }
5772 
5773   // See if we can merge an empty landing pad block with another which is
5774   // equivalent.
5775   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5776     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5777       ;
5778     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5779       return true;
5780   }
5781 
5782   // If this basic block is ONLY a compare and a branch, and if a predecessor
5783   // branches to us and our successor, fold the comparison into the
5784   // predecessor and use logical operations to update the incoming value
5785   // for PHI nodes in common successor.
5786   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5787     return simplifyCFG(BB, TTI, Options) | true;
5788   return false;
5789 }
5790 
5791 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5792   BasicBlock *PredPred = nullptr;
5793   for (auto *P : predecessors(BB)) {
5794     BasicBlock *PPred = P->getSinglePredecessor();
5795     if (!PPred || (PredPred && PredPred != PPred))
5796       return nullptr;
5797     PredPred = PPred;
5798   }
5799   return PredPred;
5800 }
5801 
5802 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5803   BasicBlock *BB = BI->getParent();
5804   const Function *Fn = BB->getParent();
5805   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5806     return false;
5807 
5808   // Conditional branch
5809   if (isValueEqualityComparison(BI)) {
5810     // If we only have one predecessor, and if it is a branch on this value,
5811     // see if that predecessor totally determines the outcome of this
5812     // switch.
5813     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5814       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5815         return simplifyCFG(BB, TTI, Options) | true;
5816 
5817     // This block must be empty, except for the setcond inst, if it exists.
5818     // Ignore dbg intrinsics.
5819     auto I = BB->instructionsWithoutDebug().begin();
5820     if (&*I == BI) {
5821       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5822         return simplifyCFG(BB, TTI, Options) | true;
5823     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5824       ++I;
5825       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5826         return simplifyCFG(BB, TTI, Options) | true;
5827     }
5828   }
5829 
5830   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5831   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5832     return true;
5833 
5834   // If this basic block has a single dominating predecessor block and the
5835   // dominating block's condition implies BI's condition, we know the direction
5836   // of the BI branch.
5837   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5838     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5839     if (PBI && PBI->isConditional() &&
5840         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5841       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5842       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5843       Optional<bool> Implication = isImpliedCondition(
5844           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5845       if (Implication) {
5846         // Turn this into a branch on constant.
5847         auto *OldCond = BI->getCondition();
5848         ConstantInt *CI = *Implication
5849                               ? ConstantInt::getTrue(BB->getContext())
5850                               : ConstantInt::getFalse(BB->getContext());
5851         BI->setCondition(CI);
5852         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5853         return simplifyCFG(BB, TTI, Options) | true;
5854       }
5855     }
5856   }
5857 
5858   // If this basic block is ONLY a compare and a branch, and if a predecessor
5859   // branches to us and one of our successors, fold the comparison into the
5860   // predecessor and use logical operations to pick the right destination.
5861   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5862     return simplifyCFG(BB, TTI, Options) | true;
5863 
5864   // We have a conditional branch to two blocks that are only reachable
5865   // from BI.  We know that the condbr dominates the two blocks, so see if
5866   // there is any identical code in the "then" and "else" blocks.  If so, we
5867   // can hoist it up to the branching block.
5868   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5869     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5870       if (HoistThenElseCodeToIf(BI, TTI))
5871         return simplifyCFG(BB, TTI, Options) | true;
5872     } else {
5873       // If Successor #1 has multiple preds, we may be able to conditionally
5874       // execute Successor #0 if it branches to Successor #1.
5875       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5876       if (Succ0TI->getNumSuccessors() == 1 &&
5877           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5878         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5879           return simplifyCFG(BB, TTI, Options) | true;
5880     }
5881   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5882     // If Successor #0 has multiple preds, we may be able to conditionally
5883     // execute Successor #1 if it branches to Successor #0.
5884     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5885     if (Succ1TI->getNumSuccessors() == 1 &&
5886         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5887       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5888         return simplifyCFG(BB, TTI, Options) | true;
5889   }
5890 
5891   // If this is a branch on a phi node in the current block, thread control
5892   // through this block if any PHI node entries are constants.
5893   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5894     if (PN->getParent() == BI->getParent())
5895       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5896         return simplifyCFG(BB, TTI, Options) | true;
5897 
5898   // Scan predecessor blocks for conditional branches.
5899   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5900     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5901       if (PBI != BI && PBI->isConditional())
5902         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5903           return simplifyCFG(BB, TTI, Options) | true;
5904 
5905   // Look for diamond patterns.
5906   if (MergeCondStores)
5907     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5908       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5909         if (PBI != BI && PBI->isConditional())
5910           if (mergeConditionalStores(PBI, BI, DL))
5911             return simplifyCFG(BB, TTI, Options) | true;
5912 
5913   return false;
5914 }
5915 
5916 /// Check if passing a value to an instruction will cause undefined behavior.
5917 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5918   Constant *C = dyn_cast<Constant>(V);
5919   if (!C)
5920     return false;
5921 
5922   if (I->use_empty())
5923     return false;
5924 
5925   if (C->isNullValue() || isa<UndefValue>(C)) {
5926     // Only look at the first use, avoid hurting compile time with long uselists
5927     User *Use = *I->user_begin();
5928 
5929     // Now make sure that there are no instructions in between that can alter
5930     // control flow (eg. calls)
5931     for (BasicBlock::iterator
5932              i = ++BasicBlock::iterator(I),
5933              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5934          i != UI; ++i)
5935       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5936         return false;
5937 
5938     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5939     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5940       if (GEP->getPointerOperand() == I)
5941         return passingValueIsAlwaysUndefined(V, GEP);
5942 
5943     // Look through bitcasts.
5944     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5945       return passingValueIsAlwaysUndefined(V, BC);
5946 
5947     // Load from null is undefined.
5948     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5949       if (!LI->isVolatile())
5950         return LI->getPointerAddressSpace() == 0;
5951 
5952     // Store to null is undefined.
5953     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5954       if (!SI->isVolatile())
5955         return SI->getPointerAddressSpace() == 0 &&
5956                SI->getPointerOperand() == I;
5957 
5958     // A call to null is undefined.
5959     if (auto CS = CallSite(Use))
5960       return CS.getCalledValue() == I;
5961   }
5962   return false;
5963 }
5964 
5965 /// If BB has an incoming value that will always trigger undefined behavior
5966 /// (eg. null pointer dereference), remove the branch leading here.
5967 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5968   for (PHINode &PHI : BB->phis())
5969     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5970       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5971         TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator();
5972         IRBuilder<> Builder(T);
5973         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5974           BB->removePredecessor(PHI.getIncomingBlock(i));
5975           // Turn uncoditional branches into unreachables and remove the dead
5976           // destination from conditional branches.
5977           if (BI->isUnconditional())
5978             Builder.CreateUnreachable();
5979           else
5980             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5981                                                        : BI->getSuccessor(0));
5982           BI->eraseFromParent();
5983           return true;
5984         }
5985         // TODO: SwitchInst.
5986       }
5987 
5988   return false;
5989 }
5990 
5991 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5992   bool Changed = false;
5993 
5994   assert(BB && BB->getParent() && "Block not embedded in function!");
5995   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5996 
5997   // Remove basic blocks that have no predecessors (except the entry block)...
5998   // or that just have themself as a predecessor.  These are unreachable.
5999   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6000       BB->getSinglePredecessor() == BB) {
6001     DEBUG(dbgs() << "Removing BB: \n" << *BB);
6002     DeleteDeadBlock(BB);
6003     return true;
6004   }
6005 
6006   // Check to see if we can constant propagate this terminator instruction
6007   // away...
6008   Changed |= ConstantFoldTerminator(BB, true);
6009 
6010   // Check for and eliminate duplicate PHI nodes in this block.
6011   Changed |= EliminateDuplicatePHINodes(BB);
6012 
6013   // Check for and remove branches that will always cause undefined behavior.
6014   Changed |= removeUndefIntroducingPredecessor(BB);
6015 
6016   // Merge basic blocks into their predecessor if there is only one distinct
6017   // pred, and if there is only one distinct successor of the predecessor, and
6018   // if there are no PHI nodes.
6019   if (MergeBlockIntoPredecessor(BB))
6020     return true;
6021 
6022   if (SinkCommon && Options.SinkCommonInsts)
6023     Changed |= SinkCommonCodeFromPredecessors(BB);
6024 
6025   IRBuilder<> Builder(BB);
6026 
6027   // If there is a trivial two-entry PHI node in this basic block, and we can
6028   // eliminate it, do so now.
6029   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6030     if (PN->getNumIncomingValues() == 2)
6031       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6032 
6033   Builder.SetInsertPoint(BB->getTerminator());
6034   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6035     if (BI->isUnconditional()) {
6036       if (SimplifyUncondBranch(BI, Builder))
6037         return true;
6038     } else {
6039       if (SimplifyCondBranch(BI, Builder))
6040         return true;
6041     }
6042   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6043     if (SimplifyReturn(RI, Builder))
6044       return true;
6045   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6046     if (SimplifyResume(RI, Builder))
6047       return true;
6048   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6049     if (SimplifyCleanupReturn(RI))
6050       return true;
6051   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6052     if (SimplifySwitch(SI, Builder))
6053       return true;
6054   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6055     if (SimplifyUnreachable(UI))
6056       return true;
6057   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6058     if (SimplifyIndirectBr(IBI))
6059       return true;
6060   }
6061 
6062   return Changed;
6063 }
6064 
6065 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6066                        const SimplifyCFGOptions &Options,
6067                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6068   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6069                         Options)
6070       .run(BB);
6071 }
6072