1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfo.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/NoFolder.h" 53 #include "llvm/IR/Operator.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/DebugInfo.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/ValueMapper.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <climits> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <map> 76 #include <set> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 using namespace PatternMatch; 82 83 #define DEBUG_TYPE "simplifycfg" 84 85 // Chosen as 2 so as to be cheap, but still to have enough power to fold 86 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 87 // To catch this, we need to fold a compare and a select, hence '2' being the 88 // minimum reasonable default. 89 static cl::opt<unsigned> PHINodeFoldingThreshold( 90 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 91 cl::desc( 92 "Control the amount of phi node folding to perform (default = 2)")); 93 94 static cl::opt<bool> DupRet( 95 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 96 cl::desc("Duplicate return instructions into unconditional branches")); 97 98 static cl::opt<bool> 99 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 100 cl::desc("Sink common instructions down to the end block")); 101 102 static cl::opt<bool> HoistCondStores( 103 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 104 cl::desc("Hoist conditional stores if an unconditional store precedes")); 105 106 static cl::opt<bool> MergeCondStores( 107 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 108 cl::desc("Hoist conditional stores even if an unconditional store does not " 109 "precede - hoist multiple conditional stores into a single " 110 "predicated store")); 111 112 static cl::opt<bool> MergeCondStoresAggressively( 113 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 114 cl::desc("When merging conditional stores, do so even if the resultant " 115 "basic blocks are unlikely to be if-converted as a result")); 116 117 static cl::opt<bool> SpeculateOneExpensiveInst( 118 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 119 cl::desc("Allow exactly one expensive instruction to be speculatively " 120 "executed")); 121 122 static cl::opt<unsigned> MaxSpeculationDepth( 123 "max-speculation-depth", cl::Hidden, cl::init(10), 124 cl::desc("Limit maximum recursion depth when calculating costs of " 125 "speculatively executed instructions")); 126 127 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 128 STATISTIC(NumLinearMaps, 129 "Number of switch instructions turned into linear mapping"); 130 STATISTIC(NumLookupTables, 131 "Number of switch instructions turned into lookup tables"); 132 STATISTIC( 133 NumLookupTablesHoles, 134 "Number of switch instructions turned into lookup tables (holes checked)"); 135 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 136 STATISTIC(NumSinkCommons, 137 "Number of common instructions sunk down to the end block"); 138 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 139 140 namespace { 141 142 // The first field contains the value that the switch produces when a certain 143 // case group is selected, and the second field is a vector containing the 144 // cases composing the case group. 145 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 146 SwitchCaseResultVectorTy; 147 // The first field contains the phi node that generates a result of the switch 148 // and the second field contains the value generated for a certain case in the 149 // switch for that PHI. 150 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 151 152 /// ValueEqualityComparisonCase - Represents a case of a switch. 153 struct ValueEqualityComparisonCase { 154 ConstantInt *Value; 155 BasicBlock *Dest; 156 157 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 158 : Value(Value), Dest(Dest) {} 159 160 bool operator<(ValueEqualityComparisonCase RHS) const { 161 // Comparing pointers is ok as we only rely on the order for uniquing. 162 return Value < RHS.Value; 163 } 164 165 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 166 }; 167 168 class SimplifyCFGOpt { 169 const TargetTransformInfo &TTI; 170 const DataLayout &DL; 171 unsigned BonusInstThreshold; 172 AssumptionCache *AC; 173 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 174 // See comments in SimplifyCFGOpt::SimplifySwitch. 175 bool LateSimplifyCFG; 176 Value *isValueEqualityComparison(TerminatorInst *TI); 177 BasicBlock *GetValueEqualityComparisonCases( 178 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 179 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 180 BasicBlock *Pred, 181 IRBuilder<> &Builder); 182 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 183 IRBuilder<> &Builder); 184 185 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 186 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 187 bool SimplifySingleResume(ResumeInst *RI); 188 bool SimplifyCommonResume(ResumeInst *RI); 189 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 190 bool SimplifyUnreachable(UnreachableInst *UI); 191 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 192 bool SimplifyIndirectBr(IndirectBrInst *IBI); 193 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 194 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 195 196 public: 197 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 198 unsigned BonusInstThreshold, AssumptionCache *AC, 199 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 200 bool LateSimplifyCFG) 201 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 202 LoopHeaders(LoopHeaders), LateSimplifyCFG(LateSimplifyCFG) {} 203 204 bool run(BasicBlock *BB); 205 }; 206 207 } // end anonymous namespace 208 209 /// Return true if it is safe to merge these two 210 /// terminator instructions together. 211 static bool 212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 213 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 214 if (SI1 == SI2) 215 return false; // Can't merge with self! 216 217 // It is not safe to merge these two switch instructions if they have a common 218 // successor, and if that successor has a PHI node, and if *that* PHI node has 219 // conflicting incoming values from the two switch blocks. 220 BasicBlock *SI1BB = SI1->getParent(); 221 BasicBlock *SI2BB = SI2->getParent(); 222 223 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 224 bool Fail = false; 225 for (BasicBlock *Succ : successors(SI2BB)) 226 if (SI1Succs.count(Succ)) 227 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 228 PHINode *PN = cast<PHINode>(BBI); 229 if (PN->getIncomingValueForBlock(SI1BB) != 230 PN->getIncomingValueForBlock(SI2BB)) { 231 if (FailBlocks) 232 FailBlocks->insert(Succ); 233 Fail = true; 234 } 235 } 236 237 return !Fail; 238 } 239 240 /// Return true if it is safe and profitable to merge these two terminator 241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 242 /// store all PHI nodes in common successors. 243 static bool 244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 245 Instruction *Cond, 246 SmallVectorImpl<PHINode *> &PhiNodes) { 247 if (SI1 == SI2) 248 return false; // Can't merge with self! 249 assert(SI1->isUnconditional() && SI2->isConditional()); 250 251 // We fold the unconditional branch if we can easily update all PHI nodes in 252 // common successors: 253 // 1> We have a constant incoming value for the conditional branch; 254 // 2> We have "Cond" as the incoming value for the unconditional branch; 255 // 3> SI2->getCondition() and Cond have same operands. 256 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 257 if (!Ci2) 258 return false; 259 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 260 Cond->getOperand(1) == Ci2->getOperand(1)) && 261 !(Cond->getOperand(0) == Ci2->getOperand(1) && 262 Cond->getOperand(1) == Ci2->getOperand(0))) 263 return false; 264 265 BasicBlock *SI1BB = SI1->getParent(); 266 BasicBlock *SI2BB = SI2->getParent(); 267 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 268 for (BasicBlock *Succ : successors(SI2BB)) 269 if (SI1Succs.count(Succ)) 270 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 271 PHINode *PN = cast<PHINode>(BBI); 272 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 273 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 274 return false; 275 PhiNodes.push_back(PN); 276 } 277 return true; 278 } 279 280 /// Update PHI nodes in Succ to indicate that there will now be entries in it 281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 282 /// will be the same as those coming in from ExistPred, an existing predecessor 283 /// of Succ. 284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 285 BasicBlock *ExistPred) { 286 if (!isa<PHINode>(Succ->begin())) 287 return; // Quick exit if nothing to do 288 289 PHINode *PN; 290 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 291 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 292 } 293 294 /// Compute an abstract "cost" of speculating the given instruction, 295 /// which is assumed to be safe to speculate. TCC_Free means cheap, 296 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 297 /// expensive. 298 static unsigned ComputeSpeculationCost(const User *I, 299 const TargetTransformInfo &TTI) { 300 assert(isSafeToSpeculativelyExecute(I) && 301 "Instruction is not safe to speculatively execute!"); 302 return TTI.getUserCost(I); 303 } 304 305 /// If we have a merge point of an "if condition" as accepted above, 306 /// return true if the specified value dominates the block. We 307 /// don't handle the true generality of domination here, just a special case 308 /// which works well enough for us. 309 /// 310 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 311 /// see if V (which must be an instruction) and its recursive operands 312 /// that do not dominate BB have a combined cost lower than CostRemaining and 313 /// are non-trapping. If both are true, the instruction is inserted into the 314 /// set and true is returned. 315 /// 316 /// The cost for most non-trapping instructions is defined as 1 except for 317 /// Select whose cost is 2. 318 /// 319 /// After this function returns, CostRemaining is decreased by the cost of 320 /// V plus its non-dominating operands. If that cost is greater than 321 /// CostRemaining, false is returned and CostRemaining is undefined. 322 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 323 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 324 unsigned &CostRemaining, 325 const TargetTransformInfo &TTI, 326 unsigned Depth = 0) { 327 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 328 // so limit the recursion depth. 329 // TODO: While this recursion limit does prevent pathological behavior, it 330 // would be better to track visited instructions to avoid cycles. 331 if (Depth == MaxSpeculationDepth) 332 return false; 333 334 Instruction *I = dyn_cast<Instruction>(V); 335 if (!I) { 336 // Non-instructions all dominate instructions, but not all constantexprs 337 // can be executed unconditionally. 338 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 339 if (C->canTrap()) 340 return false; 341 return true; 342 } 343 BasicBlock *PBB = I->getParent(); 344 345 // We don't want to allow weird loops that might have the "if condition" in 346 // the bottom of this block. 347 if (PBB == BB) 348 return false; 349 350 // If this instruction is defined in a block that contains an unconditional 351 // branch to BB, then it must be in the 'conditional' part of the "if 352 // statement". If not, it definitely dominates the region. 353 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 354 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 355 return true; 356 357 // If we aren't allowing aggressive promotion anymore, then don't consider 358 // instructions in the 'if region'. 359 if (!AggressiveInsts) 360 return false; 361 362 // If we have seen this instruction before, don't count it again. 363 if (AggressiveInsts->count(I)) 364 return true; 365 366 // Okay, it looks like the instruction IS in the "condition". Check to 367 // see if it's a cheap instruction to unconditionally compute, and if it 368 // only uses stuff defined outside of the condition. If so, hoist it out. 369 if (!isSafeToSpeculativelyExecute(I)) 370 return false; 371 372 unsigned Cost = ComputeSpeculationCost(I, TTI); 373 374 // Allow exactly one instruction to be speculated regardless of its cost 375 // (as long as it is safe to do so). 376 // This is intended to flatten the CFG even if the instruction is a division 377 // or other expensive operation. The speculation of an expensive instruction 378 // is expected to be undone in CodeGenPrepare if the speculation has not 379 // enabled further IR optimizations. 380 if (Cost > CostRemaining && 381 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 382 return false; 383 384 // Avoid unsigned wrap. 385 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 386 387 // Okay, we can only really hoist these out if their operands do 388 // not take us over the cost threshold. 389 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 390 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 391 Depth + 1)) 392 return false; 393 // Okay, it's safe to do this! Remember this instruction. 394 AggressiveInsts->insert(I); 395 return true; 396 } 397 398 /// Extract ConstantInt from value, looking through IntToPtr 399 /// and PointerNullValue. Return NULL if value is not a constant int. 400 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 401 // Normal constant int. 402 ConstantInt *CI = dyn_cast<ConstantInt>(V); 403 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 404 return CI; 405 406 // This is some kind of pointer constant. Turn it into a pointer-sized 407 // ConstantInt if possible. 408 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 409 410 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 411 if (isa<ConstantPointerNull>(V)) 412 return ConstantInt::get(PtrTy, 0); 413 414 // IntToPtr const int. 415 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 416 if (CE->getOpcode() == Instruction::IntToPtr) 417 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 418 // The constant is very likely to have the right type already. 419 if (CI->getType() == PtrTy) 420 return CI; 421 else 422 return cast<ConstantInt>( 423 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 424 } 425 return nullptr; 426 } 427 428 namespace { 429 430 /// Given a chain of or (||) or and (&&) comparison of a value against a 431 /// constant, this will try to recover the information required for a switch 432 /// structure. 433 /// It will depth-first traverse the chain of comparison, seeking for patterns 434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 435 /// representing the different cases for the switch. 436 /// Note that if the chain is composed of '||' it will build the set of elements 437 /// that matches the comparisons (i.e. any of this value validate the chain) 438 /// while for a chain of '&&' it will build the set elements that make the test 439 /// fail. 440 struct ConstantComparesGatherer { 441 const DataLayout &DL; 442 Value *CompValue; /// Value found for the switch comparison 443 Value *Extra; /// Extra clause to be checked before the switch 444 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 445 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 446 447 /// Construct and compute the result for the comparison instruction Cond 448 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 449 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 450 gather(Cond); 451 } 452 453 /// Prevent copy 454 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 455 ConstantComparesGatherer & 456 operator=(const ConstantComparesGatherer &) = delete; 457 458 private: 459 /// Try to set the current value used for the comparison, it succeeds only if 460 /// it wasn't set before or if the new value is the same as the old one 461 bool setValueOnce(Value *NewVal) { 462 if (CompValue && CompValue != NewVal) 463 return false; 464 CompValue = NewVal; 465 return (CompValue != nullptr); 466 } 467 468 /// Try to match Instruction "I" as a comparison against a constant and 469 /// populates the array Vals with the set of values that match (or do not 470 /// match depending on isEQ). 471 /// Return false on failure. On success, the Value the comparison matched 472 /// against is placed in CompValue. 473 /// If CompValue is already set, the function is expected to fail if a match 474 /// is found but the value compared to is different. 475 bool matchInstruction(Instruction *I, bool isEQ) { 476 // If this is an icmp against a constant, handle this as one of the cases. 477 ICmpInst *ICI; 478 ConstantInt *C; 479 if (!((ICI = dyn_cast<ICmpInst>(I)) && 480 (C = GetConstantInt(I->getOperand(1), DL)))) { 481 return false; 482 } 483 484 Value *RHSVal; 485 const APInt *RHSC; 486 487 // Pattern match a special case 488 // (x & ~2^z) == y --> x == y || x == y|2^z 489 // This undoes a transformation done by instcombine to fuse 2 compares. 490 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 491 492 // It's a little bit hard to see why the following transformations are 493 // correct. Here is a CVC3 program to verify them for 64-bit values: 494 495 /* 496 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 497 x : BITVECTOR(64); 498 y : BITVECTOR(64); 499 z : BITVECTOR(64); 500 mask : BITVECTOR(64) = BVSHL(ONE, z); 501 QUERY( (y & ~mask = y) => 502 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 503 ); 504 QUERY( (y | mask = y) => 505 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 506 ); 507 */ 508 509 // Please note that each pattern must be a dual implication (<--> or 510 // iff). One directional implication can create spurious matches. If the 511 // implication is only one-way, an unsatisfiable condition on the left 512 // side can imply a satisfiable condition on the right side. Dual 513 // implication ensures that satisfiable conditions are transformed to 514 // other satisfiable conditions and unsatisfiable conditions are 515 // transformed to other unsatisfiable conditions. 516 517 // Here is a concrete example of a unsatisfiable condition on the left 518 // implying a satisfiable condition on the right: 519 // 520 // mask = (1 << z) 521 // (x & ~mask) == y --> (x == y || x == (y | mask)) 522 // 523 // Substituting y = 3, z = 0 yields: 524 // (x & -2) == 3 --> (x == 3 || x == 2) 525 526 // Pattern match a special case: 527 /* 528 QUERY( (y & ~mask = y) => 529 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 530 ); 531 */ 532 if (match(ICI->getOperand(0), 533 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 534 APInt Mask = ~*RHSC; 535 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 536 // If we already have a value for the switch, it has to match! 537 if (!setValueOnce(RHSVal)) 538 return false; 539 540 Vals.push_back(C); 541 Vals.push_back( 542 ConstantInt::get(C->getContext(), 543 C->getValue() | Mask)); 544 UsedICmps++; 545 return true; 546 } 547 } 548 549 // Pattern match a special case: 550 /* 551 QUERY( (y | mask = y) => 552 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 553 ); 554 */ 555 if (match(ICI->getOperand(0), 556 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 557 APInt Mask = *RHSC; 558 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 559 // If we already have a value for the switch, it has to match! 560 if (!setValueOnce(RHSVal)) 561 return false; 562 563 Vals.push_back(C); 564 Vals.push_back(ConstantInt::get(C->getContext(), 565 C->getValue() & ~Mask)); 566 UsedICmps++; 567 return true; 568 } 569 } 570 571 // If we already have a value for the switch, it has to match! 572 if (!setValueOnce(ICI->getOperand(0))) 573 return false; 574 575 UsedICmps++; 576 Vals.push_back(C); 577 return ICI->getOperand(0); 578 } 579 580 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 581 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 582 ICI->getPredicate(), C->getValue()); 583 584 // Shift the range if the compare is fed by an add. This is the range 585 // compare idiom as emitted by instcombine. 586 Value *CandidateVal = I->getOperand(0); 587 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 588 Span = Span.subtract(*RHSC); 589 CandidateVal = RHSVal; 590 } 591 592 // If this is an and/!= check, then we are looking to build the set of 593 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 594 // x != 0 && x != 1. 595 if (!isEQ) 596 Span = Span.inverse(); 597 598 // If there are a ton of values, we don't want to make a ginormous switch. 599 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 600 return false; 601 } 602 603 // If we already have a value for the switch, it has to match! 604 if (!setValueOnce(CandidateVal)) 605 return false; 606 607 // Add all values from the range to the set 608 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 609 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 610 611 UsedICmps++; 612 return true; 613 } 614 615 /// Given a potentially 'or'd or 'and'd together collection of icmp 616 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 617 /// the value being compared, and stick the list constants into the Vals 618 /// vector. 619 /// One "Extra" case is allowed to differ from the other. 620 void gather(Value *V) { 621 Instruction *I = dyn_cast<Instruction>(V); 622 bool isEQ = (I->getOpcode() == Instruction::Or); 623 624 // Keep a stack (SmallVector for efficiency) for depth-first traversal 625 SmallVector<Value *, 8> DFT; 626 SmallPtrSet<Value *, 8> Visited; 627 628 // Initialize 629 Visited.insert(V); 630 DFT.push_back(V); 631 632 while (!DFT.empty()) { 633 V = DFT.pop_back_val(); 634 635 if (Instruction *I = dyn_cast<Instruction>(V)) { 636 // If it is a || (or && depending on isEQ), process the operands. 637 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 638 if (Visited.insert(I->getOperand(1)).second) 639 DFT.push_back(I->getOperand(1)); 640 if (Visited.insert(I->getOperand(0)).second) 641 DFT.push_back(I->getOperand(0)); 642 continue; 643 } 644 645 // Try to match the current instruction 646 if (matchInstruction(I, isEQ)) 647 // Match succeed, continue the loop 648 continue; 649 } 650 651 // One element of the sequence of || (or &&) could not be match as a 652 // comparison against the same value as the others. 653 // We allow only one "Extra" case to be checked before the switch 654 if (!Extra) { 655 Extra = V; 656 continue; 657 } 658 // Failed to parse a proper sequence, abort now 659 CompValue = nullptr; 660 break; 661 } 662 } 663 }; 664 665 } // end anonymous namespace 666 667 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 668 Instruction *Cond = nullptr; 669 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 670 Cond = dyn_cast<Instruction>(SI->getCondition()); 671 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 672 if (BI->isConditional()) 673 Cond = dyn_cast<Instruction>(BI->getCondition()); 674 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 675 Cond = dyn_cast<Instruction>(IBI->getAddress()); 676 } 677 678 TI->eraseFromParent(); 679 if (Cond) 680 RecursivelyDeleteTriviallyDeadInstructions(Cond); 681 } 682 683 /// Return true if the specified terminator checks 684 /// to see if a value is equal to constant integer value. 685 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 686 Value *CV = nullptr; 687 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 688 // Do not permit merging of large switch instructions into their 689 // predecessors unless there is only one predecessor. 690 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 691 pred_end(SI->getParent())) <= 692 128) 693 CV = SI->getCondition(); 694 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 695 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 696 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 697 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 698 CV = ICI->getOperand(0); 699 } 700 701 // Unwrap any lossless ptrtoint cast. 702 if (CV) { 703 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 704 Value *Ptr = PTII->getPointerOperand(); 705 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 706 CV = Ptr; 707 } 708 } 709 return CV; 710 } 711 712 /// Given a value comparison instruction, 713 /// decode all of the 'cases' that it represents and return the 'default' block. 714 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 715 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 716 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 717 Cases.reserve(SI->getNumCases()); 718 for (auto Case : SI->cases()) 719 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 720 Case.getCaseSuccessor())); 721 return SI->getDefaultDest(); 722 } 723 724 BranchInst *BI = cast<BranchInst>(TI); 725 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 726 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 727 Cases.push_back(ValueEqualityComparisonCase( 728 GetConstantInt(ICI->getOperand(1), DL), Succ)); 729 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 730 } 731 732 /// Given a vector of bb/value pairs, remove any entries 733 /// in the list that match the specified block. 734 static void 735 EliminateBlockCases(BasicBlock *BB, 736 std::vector<ValueEqualityComparisonCase> &Cases) { 737 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 738 } 739 740 /// Return true if there are any keys in C1 that exist in C2 as well. 741 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 742 std::vector<ValueEqualityComparisonCase> &C2) { 743 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 744 745 // Make V1 be smaller than V2. 746 if (V1->size() > V2->size()) 747 std::swap(V1, V2); 748 749 if (V1->empty()) 750 return false; 751 if (V1->size() == 1) { 752 // Just scan V2. 753 ConstantInt *TheVal = (*V1)[0].Value; 754 for (unsigned i = 0, e = V2->size(); i != e; ++i) 755 if (TheVal == (*V2)[i].Value) 756 return true; 757 } 758 759 // Otherwise, just sort both lists and compare element by element. 760 array_pod_sort(V1->begin(), V1->end()); 761 array_pod_sort(V2->begin(), V2->end()); 762 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 763 while (i1 != e1 && i2 != e2) { 764 if ((*V1)[i1].Value == (*V2)[i2].Value) 765 return true; 766 if ((*V1)[i1].Value < (*V2)[i2].Value) 767 ++i1; 768 else 769 ++i2; 770 } 771 return false; 772 } 773 774 /// If TI is known to be a terminator instruction and its block is known to 775 /// only have a single predecessor block, check to see if that predecessor is 776 /// also a value comparison with the same value, and if that comparison 777 /// determines the outcome of this comparison. If so, simplify TI. This does a 778 /// very limited form of jump threading. 779 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 780 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 781 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 782 if (!PredVal) 783 return false; // Not a value comparison in predecessor. 784 785 Value *ThisVal = isValueEqualityComparison(TI); 786 assert(ThisVal && "This isn't a value comparison!!"); 787 if (ThisVal != PredVal) 788 return false; // Different predicates. 789 790 // TODO: Preserve branch weight metadata, similarly to how 791 // FoldValueComparisonIntoPredecessors preserves it. 792 793 // Find out information about when control will move from Pred to TI's block. 794 std::vector<ValueEqualityComparisonCase> PredCases; 795 BasicBlock *PredDef = 796 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 797 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 798 799 // Find information about how control leaves this block. 800 std::vector<ValueEqualityComparisonCase> ThisCases; 801 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 802 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 803 804 // If TI's block is the default block from Pred's comparison, potentially 805 // simplify TI based on this knowledge. 806 if (PredDef == TI->getParent()) { 807 // If we are here, we know that the value is none of those cases listed in 808 // PredCases. If there are any cases in ThisCases that are in PredCases, we 809 // can simplify TI. 810 if (!ValuesOverlap(PredCases, ThisCases)) 811 return false; 812 813 if (isa<BranchInst>(TI)) { 814 // Okay, one of the successors of this condbr is dead. Convert it to a 815 // uncond br. 816 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 817 // Insert the new branch. 818 Instruction *NI = Builder.CreateBr(ThisDef); 819 (void)NI; 820 821 // Remove PHI node entries for the dead edge. 822 ThisCases[0].Dest->removePredecessor(TI->getParent()); 823 824 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 825 << "Through successor TI: " << *TI << "Leaving: " << *NI 826 << "\n"); 827 828 EraseTerminatorInstAndDCECond(TI); 829 return true; 830 } 831 832 SwitchInst *SI = cast<SwitchInst>(TI); 833 // Okay, TI has cases that are statically dead, prune them away. 834 SmallPtrSet<Constant *, 16> DeadCases; 835 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 836 DeadCases.insert(PredCases[i].Value); 837 838 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 839 << "Through successor TI: " << *TI); 840 841 // Collect branch weights into a vector. 842 SmallVector<uint32_t, 8> Weights; 843 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 844 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 845 if (HasWeight) 846 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 847 ++MD_i) { 848 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 849 Weights.push_back(CI->getValue().getZExtValue()); 850 } 851 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 852 --i; 853 if (DeadCases.count(i->getCaseValue())) { 854 if (HasWeight) { 855 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 856 Weights.pop_back(); 857 } 858 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 859 SI->removeCase(i); 860 } 861 } 862 if (HasWeight && Weights.size() >= 2) 863 SI->setMetadata(LLVMContext::MD_prof, 864 MDBuilder(SI->getParent()->getContext()) 865 .createBranchWeights(Weights)); 866 867 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 868 return true; 869 } 870 871 // Otherwise, TI's block must correspond to some matched value. Find out 872 // which value (or set of values) this is. 873 ConstantInt *TIV = nullptr; 874 BasicBlock *TIBB = TI->getParent(); 875 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 876 if (PredCases[i].Dest == TIBB) { 877 if (TIV) 878 return false; // Cannot handle multiple values coming to this block. 879 TIV = PredCases[i].Value; 880 } 881 assert(TIV && "No edge from pred to succ?"); 882 883 // Okay, we found the one constant that our value can be if we get into TI's 884 // BB. Find out which successor will unconditionally be branched to. 885 BasicBlock *TheRealDest = nullptr; 886 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 887 if (ThisCases[i].Value == TIV) { 888 TheRealDest = ThisCases[i].Dest; 889 break; 890 } 891 892 // If not handled by any explicit cases, it is handled by the default case. 893 if (!TheRealDest) 894 TheRealDest = ThisDef; 895 896 // Remove PHI node entries for dead edges. 897 BasicBlock *CheckEdge = TheRealDest; 898 for (BasicBlock *Succ : successors(TIBB)) 899 if (Succ != CheckEdge) 900 Succ->removePredecessor(TIBB); 901 else 902 CheckEdge = nullptr; 903 904 // Insert the new branch. 905 Instruction *NI = Builder.CreateBr(TheRealDest); 906 (void)NI; 907 908 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 909 << "Through successor TI: " << *TI << "Leaving: " << *NI 910 << "\n"); 911 912 EraseTerminatorInstAndDCECond(TI); 913 return true; 914 } 915 916 namespace { 917 918 /// This class implements a stable ordering of constant 919 /// integers that does not depend on their address. This is important for 920 /// applications that sort ConstantInt's to ensure uniqueness. 921 struct ConstantIntOrdering { 922 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 923 return LHS->getValue().ult(RHS->getValue()); 924 } 925 }; 926 927 } // end anonymous namespace 928 929 static int ConstantIntSortPredicate(ConstantInt *const *P1, 930 ConstantInt *const *P2) { 931 const ConstantInt *LHS = *P1; 932 const ConstantInt *RHS = *P2; 933 if (LHS == RHS) 934 return 0; 935 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 936 } 937 938 static inline bool HasBranchWeights(const Instruction *I) { 939 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 940 if (ProfMD && ProfMD->getOperand(0)) 941 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 942 return MDS->getString().equals("branch_weights"); 943 944 return false; 945 } 946 947 /// Get Weights of a given TerminatorInst, the default weight is at the front 948 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 949 /// metadata. 950 static void GetBranchWeights(TerminatorInst *TI, 951 SmallVectorImpl<uint64_t> &Weights) { 952 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 953 assert(MD); 954 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 955 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 956 Weights.push_back(CI->getValue().getZExtValue()); 957 } 958 959 // If TI is a conditional eq, the default case is the false case, 960 // and the corresponding branch-weight data is at index 2. We swap the 961 // default weight to be the first entry. 962 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 963 assert(Weights.size() == 2); 964 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 965 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 966 std::swap(Weights.front(), Weights.back()); 967 } 968 } 969 970 /// Keep halving the weights until all can fit in uint32_t. 971 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 972 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 973 if (Max > UINT_MAX) { 974 unsigned Offset = 32 - countLeadingZeros(Max); 975 for (uint64_t &I : Weights) 976 I >>= Offset; 977 } 978 } 979 980 /// The specified terminator is a value equality comparison instruction 981 /// (either a switch or a branch on "X == c"). 982 /// See if any of the predecessors of the terminator block are value comparisons 983 /// on the same value. If so, and if safe to do so, fold them together. 984 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 985 IRBuilder<> &Builder) { 986 BasicBlock *BB = TI->getParent(); 987 Value *CV = isValueEqualityComparison(TI); // CondVal 988 assert(CV && "Not a comparison?"); 989 bool Changed = false; 990 991 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 992 while (!Preds.empty()) { 993 BasicBlock *Pred = Preds.pop_back_val(); 994 995 // See if the predecessor is a comparison with the same value. 996 TerminatorInst *PTI = Pred->getTerminator(); 997 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 998 999 if (PCV == CV && TI != PTI) { 1000 SmallSetVector<BasicBlock*, 4> FailBlocks; 1001 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1002 for (auto *Succ : FailBlocks) { 1003 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1004 return false; 1005 } 1006 } 1007 1008 // Figure out which 'cases' to copy from SI to PSI. 1009 std::vector<ValueEqualityComparisonCase> BBCases; 1010 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1011 1012 std::vector<ValueEqualityComparisonCase> PredCases; 1013 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1014 1015 // Based on whether the default edge from PTI goes to BB or not, fill in 1016 // PredCases and PredDefault with the new switch cases we would like to 1017 // build. 1018 SmallVector<BasicBlock *, 8> NewSuccessors; 1019 1020 // Update the branch weight metadata along the way 1021 SmallVector<uint64_t, 8> Weights; 1022 bool PredHasWeights = HasBranchWeights(PTI); 1023 bool SuccHasWeights = HasBranchWeights(TI); 1024 1025 if (PredHasWeights) { 1026 GetBranchWeights(PTI, Weights); 1027 // branch-weight metadata is inconsistent here. 1028 if (Weights.size() != 1 + PredCases.size()) 1029 PredHasWeights = SuccHasWeights = false; 1030 } else if (SuccHasWeights) 1031 // If there are no predecessor weights but there are successor weights, 1032 // populate Weights with 1, which will later be scaled to the sum of 1033 // successor's weights 1034 Weights.assign(1 + PredCases.size(), 1); 1035 1036 SmallVector<uint64_t, 8> SuccWeights; 1037 if (SuccHasWeights) { 1038 GetBranchWeights(TI, SuccWeights); 1039 // branch-weight metadata is inconsistent here. 1040 if (SuccWeights.size() != 1 + BBCases.size()) 1041 PredHasWeights = SuccHasWeights = false; 1042 } else if (PredHasWeights) 1043 SuccWeights.assign(1 + BBCases.size(), 1); 1044 1045 if (PredDefault == BB) { 1046 // If this is the default destination from PTI, only the edges in TI 1047 // that don't occur in PTI, or that branch to BB will be activated. 1048 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1049 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1050 if (PredCases[i].Dest != BB) 1051 PTIHandled.insert(PredCases[i].Value); 1052 else { 1053 // The default destination is BB, we don't need explicit targets. 1054 std::swap(PredCases[i], PredCases.back()); 1055 1056 if (PredHasWeights || SuccHasWeights) { 1057 // Increase weight for the default case. 1058 Weights[0] += Weights[i + 1]; 1059 std::swap(Weights[i + 1], Weights.back()); 1060 Weights.pop_back(); 1061 } 1062 1063 PredCases.pop_back(); 1064 --i; 1065 --e; 1066 } 1067 1068 // Reconstruct the new switch statement we will be building. 1069 if (PredDefault != BBDefault) { 1070 PredDefault->removePredecessor(Pred); 1071 PredDefault = BBDefault; 1072 NewSuccessors.push_back(BBDefault); 1073 } 1074 1075 unsigned CasesFromPred = Weights.size(); 1076 uint64_t ValidTotalSuccWeight = 0; 1077 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1078 if (!PTIHandled.count(BBCases[i].Value) && 1079 BBCases[i].Dest != BBDefault) { 1080 PredCases.push_back(BBCases[i]); 1081 NewSuccessors.push_back(BBCases[i].Dest); 1082 if (SuccHasWeights || PredHasWeights) { 1083 // The default weight is at index 0, so weight for the ith case 1084 // should be at index i+1. Scale the cases from successor by 1085 // PredDefaultWeight (Weights[0]). 1086 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1087 ValidTotalSuccWeight += SuccWeights[i + 1]; 1088 } 1089 } 1090 1091 if (SuccHasWeights || PredHasWeights) { 1092 ValidTotalSuccWeight += SuccWeights[0]; 1093 // Scale the cases from predecessor by ValidTotalSuccWeight. 1094 for (unsigned i = 1; i < CasesFromPred; ++i) 1095 Weights[i] *= ValidTotalSuccWeight; 1096 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1097 Weights[0] *= SuccWeights[0]; 1098 } 1099 } else { 1100 // If this is not the default destination from PSI, only the edges 1101 // in SI that occur in PSI with a destination of BB will be 1102 // activated. 1103 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1104 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1105 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1106 if (PredCases[i].Dest == BB) { 1107 PTIHandled.insert(PredCases[i].Value); 1108 1109 if (PredHasWeights || SuccHasWeights) { 1110 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1111 std::swap(Weights[i + 1], Weights.back()); 1112 Weights.pop_back(); 1113 } 1114 1115 std::swap(PredCases[i], PredCases.back()); 1116 PredCases.pop_back(); 1117 --i; 1118 --e; 1119 } 1120 1121 // Okay, now we know which constants were sent to BB from the 1122 // predecessor. Figure out where they will all go now. 1123 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1124 if (PTIHandled.count(BBCases[i].Value)) { 1125 // If this is one we are capable of getting... 1126 if (PredHasWeights || SuccHasWeights) 1127 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1128 PredCases.push_back(BBCases[i]); 1129 NewSuccessors.push_back(BBCases[i].Dest); 1130 PTIHandled.erase( 1131 BBCases[i].Value); // This constant is taken care of 1132 } 1133 1134 // If there are any constants vectored to BB that TI doesn't handle, 1135 // they must go to the default destination of TI. 1136 for (ConstantInt *I : PTIHandled) { 1137 if (PredHasWeights || SuccHasWeights) 1138 Weights.push_back(WeightsForHandled[I]); 1139 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1140 NewSuccessors.push_back(BBDefault); 1141 } 1142 } 1143 1144 // Okay, at this point, we know which new successor Pred will get. Make 1145 // sure we update the number of entries in the PHI nodes for these 1146 // successors. 1147 for (BasicBlock *NewSuccessor : NewSuccessors) 1148 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1149 1150 Builder.SetInsertPoint(PTI); 1151 // Convert pointer to int before we switch. 1152 if (CV->getType()->isPointerTy()) { 1153 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1154 "magicptr"); 1155 } 1156 1157 // Now that the successors are updated, create the new Switch instruction. 1158 SwitchInst *NewSI = 1159 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1160 NewSI->setDebugLoc(PTI->getDebugLoc()); 1161 for (ValueEqualityComparisonCase &V : PredCases) 1162 NewSI->addCase(V.Value, V.Dest); 1163 1164 if (PredHasWeights || SuccHasWeights) { 1165 // Halve the weights if any of them cannot fit in an uint32_t 1166 FitWeights(Weights); 1167 1168 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1169 1170 NewSI->setMetadata( 1171 LLVMContext::MD_prof, 1172 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1173 } 1174 1175 EraseTerminatorInstAndDCECond(PTI); 1176 1177 // Okay, last check. If BB is still a successor of PSI, then we must 1178 // have an infinite loop case. If so, add an infinitely looping block 1179 // to handle the case to preserve the behavior of the code. 1180 BasicBlock *InfLoopBlock = nullptr; 1181 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1182 if (NewSI->getSuccessor(i) == BB) { 1183 if (!InfLoopBlock) { 1184 // Insert it at the end of the function, because it's either code, 1185 // or it won't matter if it's hot. :) 1186 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1187 BB->getParent()); 1188 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1189 } 1190 NewSI->setSuccessor(i, InfLoopBlock); 1191 } 1192 1193 Changed = true; 1194 } 1195 } 1196 return Changed; 1197 } 1198 1199 // If we would need to insert a select that uses the value of this invoke 1200 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1201 // can't hoist the invoke, as there is nowhere to put the select in this case. 1202 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1203 Instruction *I1, Instruction *I2) { 1204 for (BasicBlock *Succ : successors(BB1)) { 1205 PHINode *PN; 1206 for (BasicBlock::iterator BBI = Succ->begin(); 1207 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1208 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1209 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1210 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1211 return false; 1212 } 1213 } 1214 } 1215 return true; 1216 } 1217 1218 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1219 1220 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1221 /// in the two blocks up into the branch block. The caller of this function 1222 /// guarantees that BI's block dominates BB1 and BB2. 1223 static bool HoistThenElseCodeToIf(BranchInst *BI, 1224 const TargetTransformInfo &TTI) { 1225 // This does very trivial matching, with limited scanning, to find identical 1226 // instructions in the two blocks. In particular, we don't want to get into 1227 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1228 // such, we currently just scan for obviously identical instructions in an 1229 // identical order. 1230 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1231 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1232 1233 BasicBlock::iterator BB1_Itr = BB1->begin(); 1234 BasicBlock::iterator BB2_Itr = BB2->begin(); 1235 1236 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1237 // Skip debug info if it is not identical. 1238 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1239 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1240 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1241 while (isa<DbgInfoIntrinsic>(I1)) 1242 I1 = &*BB1_Itr++; 1243 while (isa<DbgInfoIntrinsic>(I2)) 1244 I2 = &*BB2_Itr++; 1245 } 1246 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1247 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1248 return false; 1249 1250 BasicBlock *BIParent = BI->getParent(); 1251 1252 bool Changed = false; 1253 do { 1254 // If we are hoisting the terminator instruction, don't move one (making a 1255 // broken BB), instead clone it, and remove BI. 1256 if (isa<TerminatorInst>(I1)) 1257 goto HoistTerminator; 1258 1259 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1260 return Changed; 1261 1262 // For a normal instruction, we just move one to right before the branch, 1263 // then replace all uses of the other with the first. Finally, we remove 1264 // the now redundant second instruction. 1265 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1266 if (!I2->use_empty()) 1267 I2->replaceAllUsesWith(I1); 1268 I1->andIRFlags(I2); 1269 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1270 LLVMContext::MD_range, 1271 LLVMContext::MD_fpmath, 1272 LLVMContext::MD_invariant_load, 1273 LLVMContext::MD_nonnull, 1274 LLVMContext::MD_invariant_group, 1275 LLVMContext::MD_align, 1276 LLVMContext::MD_dereferenceable, 1277 LLVMContext::MD_dereferenceable_or_null, 1278 LLVMContext::MD_mem_parallel_loop_access}; 1279 combineMetadata(I1, I2, KnownIDs); 1280 1281 // I1 and I2 are being combined into a single instruction. Its debug 1282 // location is the merged locations of the original instructions. 1283 if (!isa<CallInst>(I1)) 1284 I1->setDebugLoc( 1285 DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc())); 1286 1287 I2->eraseFromParent(); 1288 Changed = true; 1289 1290 I1 = &*BB1_Itr++; 1291 I2 = &*BB2_Itr++; 1292 // Skip debug info if it is not identical. 1293 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1294 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1295 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1296 while (isa<DbgInfoIntrinsic>(I1)) 1297 I1 = &*BB1_Itr++; 1298 while (isa<DbgInfoIntrinsic>(I2)) 1299 I2 = &*BB2_Itr++; 1300 } 1301 } while (I1->isIdenticalToWhenDefined(I2)); 1302 1303 return true; 1304 1305 HoistTerminator: 1306 // It may not be possible to hoist an invoke. 1307 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1308 return Changed; 1309 1310 for (BasicBlock *Succ : successors(BB1)) { 1311 PHINode *PN; 1312 for (BasicBlock::iterator BBI = Succ->begin(); 1313 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1314 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1315 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1316 if (BB1V == BB2V) 1317 continue; 1318 1319 // Check for passingValueIsAlwaysUndefined here because we would rather 1320 // eliminate undefined control flow then converting it to a select. 1321 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1322 passingValueIsAlwaysUndefined(BB2V, PN)) 1323 return Changed; 1324 1325 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1326 return Changed; 1327 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1328 return Changed; 1329 } 1330 } 1331 1332 // Okay, it is safe to hoist the terminator. 1333 Instruction *NT = I1->clone(); 1334 BIParent->getInstList().insert(BI->getIterator(), NT); 1335 if (!NT->getType()->isVoidTy()) { 1336 I1->replaceAllUsesWith(NT); 1337 I2->replaceAllUsesWith(NT); 1338 NT->takeName(I1); 1339 } 1340 1341 IRBuilder<NoFolder> Builder(NT); 1342 // Hoisting one of the terminators from our successor is a great thing. 1343 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1344 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1345 // nodes, so we insert select instruction to compute the final result. 1346 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1347 for (BasicBlock *Succ : successors(BB1)) { 1348 PHINode *PN; 1349 for (BasicBlock::iterator BBI = Succ->begin(); 1350 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1351 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1352 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1353 if (BB1V == BB2V) 1354 continue; 1355 1356 // These values do not agree. Insert a select instruction before NT 1357 // that determines the right value. 1358 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1359 if (!SI) 1360 SI = cast<SelectInst>( 1361 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1362 BB1V->getName() + "." + BB2V->getName(), BI)); 1363 1364 // Make the PHI node use the select for all incoming values for BB1/BB2 1365 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1366 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1367 PN->setIncomingValue(i, SI); 1368 } 1369 } 1370 1371 // Update any PHI nodes in our new successors. 1372 for (BasicBlock *Succ : successors(BB1)) 1373 AddPredecessorToBlock(Succ, BIParent, BB1); 1374 1375 EraseTerminatorInstAndDCECond(BI); 1376 return true; 1377 } 1378 1379 // Is it legal to place a variable in operand \c OpIdx of \c I? 1380 // FIXME: This should be promoted to Instruction. 1381 static bool canReplaceOperandWithVariable(const Instruction *I, 1382 unsigned OpIdx) { 1383 // We can't have a PHI with a metadata type. 1384 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 1385 return false; 1386 1387 // Early exit. 1388 if (!isa<Constant>(I->getOperand(OpIdx))) 1389 return true; 1390 1391 switch (I->getOpcode()) { 1392 default: 1393 return true; 1394 case Instruction::Call: 1395 case Instruction::Invoke: 1396 // FIXME: many arithmetic intrinsics have no issue taking a 1397 // variable, however it's hard to distingish these from 1398 // specials such as @llvm.frameaddress that require a constant. 1399 if (isa<IntrinsicInst>(I)) 1400 return false; 1401 1402 // Constant bundle operands may need to retain their constant-ness for 1403 // correctness. 1404 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 1405 return false; 1406 1407 return true; 1408 1409 case Instruction::ShuffleVector: 1410 // Shufflevector masks are constant. 1411 return OpIdx != 2; 1412 case Instruction::ExtractValue: 1413 case Instruction::InsertValue: 1414 // All operands apart from the first are constant. 1415 return OpIdx == 0; 1416 case Instruction::Alloca: 1417 return false; 1418 case Instruction::GetElementPtr: 1419 if (OpIdx == 0) 1420 return true; 1421 gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1); 1422 return It.isSequential(); 1423 } 1424 } 1425 1426 // All instructions in Insts belong to different blocks that all unconditionally 1427 // branch to a common successor. Analyze each instruction and return true if it 1428 // would be possible to sink them into their successor, creating one common 1429 // instruction instead. For every value that would be required to be provided by 1430 // PHI node (because an operand varies in each input block), add to PHIOperands. 1431 static bool canSinkInstructions( 1432 ArrayRef<Instruction *> Insts, 1433 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1434 // Prune out obviously bad instructions to move. Any non-store instruction 1435 // must have exactly one use, and we check later that use is by a single, 1436 // common PHI instruction in the successor. 1437 for (auto *I : Insts) { 1438 // These instructions may change or break semantics if moved. 1439 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1440 I->getType()->isTokenTy()) 1441 return false; 1442 1443 // Conservatively return false if I is an inline-asm instruction. Sinking 1444 // and merging inline-asm instructions can potentially create arguments 1445 // that cannot satisfy the inline-asm constraints. 1446 if (const auto *C = dyn_cast<CallInst>(I)) 1447 if (C->isInlineAsm()) 1448 return false; 1449 1450 // Everything must have only one use too, apart from stores which 1451 // have no uses. 1452 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1453 return false; 1454 } 1455 1456 const Instruction *I0 = Insts.front(); 1457 for (auto *I : Insts) 1458 if (!I->isSameOperationAs(I0)) 1459 return false; 1460 1461 // All instructions in Insts are known to be the same opcode. If they aren't 1462 // stores, check the only user of each is a PHI or in the same block as the 1463 // instruction, because if a user is in the same block as an instruction 1464 // we're contemplating sinking, it must already be determined to be sinkable. 1465 if (!isa<StoreInst>(I0)) { 1466 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1467 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1468 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1469 auto *U = cast<Instruction>(*I->user_begin()); 1470 return (PNUse && 1471 PNUse->getParent() == Succ && 1472 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1473 U->getParent() == I->getParent(); 1474 })) 1475 return false; 1476 } 1477 1478 // Because SROA can't handle speculating stores of selects, try not 1479 // to sink loads or stores of allocas when we'd have to create a PHI for 1480 // the address operand. Also, because it is likely that loads or stores 1481 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1482 // This can cause code churn which can have unintended consequences down 1483 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1484 // FIXME: This is a workaround for a deficiency in SROA - see 1485 // https://llvm.org/bugs/show_bug.cgi?id=30188 1486 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1487 return isa<AllocaInst>(I->getOperand(1)); 1488 })) 1489 return false; 1490 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1491 return isa<AllocaInst>(I->getOperand(0)); 1492 })) 1493 return false; 1494 1495 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1496 if (I0->getOperand(OI)->getType()->isTokenTy()) 1497 // Don't touch any operand of token type. 1498 return false; 1499 1500 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1501 assert(I->getNumOperands() == I0->getNumOperands()); 1502 return I->getOperand(OI) == I0->getOperand(OI); 1503 }; 1504 if (!all_of(Insts, SameAsI0)) { 1505 if (!canReplaceOperandWithVariable(I0, OI)) 1506 // We can't create a PHI from this GEP. 1507 return false; 1508 // Don't create indirect calls! The called value is the final operand. 1509 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1510 // FIXME: if the call was *already* indirect, we should do this. 1511 return false; 1512 } 1513 for (auto *I : Insts) 1514 PHIOperands[I].push_back(I->getOperand(OI)); 1515 } 1516 } 1517 return true; 1518 } 1519 1520 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1521 // instruction of every block in Blocks to their common successor, commoning 1522 // into one instruction. 1523 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1524 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1525 1526 // canSinkLastInstruction returning true guarantees that every block has at 1527 // least one non-terminator instruction. 1528 SmallVector<Instruction*,4> Insts; 1529 for (auto *BB : Blocks) { 1530 Instruction *I = BB->getTerminator(); 1531 do { 1532 I = I->getPrevNode(); 1533 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1534 if (!isa<DbgInfoIntrinsic>(I)) 1535 Insts.push_back(I); 1536 } 1537 1538 // The only checking we need to do now is that all users of all instructions 1539 // are the same PHI node. canSinkLastInstruction should have checked this but 1540 // it is slightly over-aggressive - it gets confused by commutative instructions 1541 // so double-check it here. 1542 Instruction *I0 = Insts.front(); 1543 if (!isa<StoreInst>(I0)) { 1544 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1545 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1546 auto *U = cast<Instruction>(*I->user_begin()); 1547 return U == PNUse; 1548 })) 1549 return false; 1550 } 1551 1552 // We don't need to do any more checking here; canSinkLastInstruction should 1553 // have done it all for us. 1554 SmallVector<Value*, 4> NewOperands; 1555 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1556 // This check is different to that in canSinkLastInstruction. There, we 1557 // cared about the global view once simplifycfg (and instcombine) have 1558 // completed - it takes into account PHIs that become trivially 1559 // simplifiable. However here we need a more local view; if an operand 1560 // differs we create a PHI and rely on instcombine to clean up the very 1561 // small mess we may make. 1562 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1563 return I->getOperand(O) != I0->getOperand(O); 1564 }); 1565 if (!NeedPHI) { 1566 NewOperands.push_back(I0->getOperand(O)); 1567 continue; 1568 } 1569 1570 // Create a new PHI in the successor block and populate it. 1571 auto *Op = I0->getOperand(O); 1572 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1573 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1574 Op->getName() + ".sink", &BBEnd->front()); 1575 for (auto *I : Insts) 1576 PN->addIncoming(I->getOperand(O), I->getParent()); 1577 NewOperands.push_back(PN); 1578 } 1579 1580 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1581 // and move it to the start of the successor block. 1582 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1583 I0->getOperandUse(O).set(NewOperands[O]); 1584 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1585 1586 // The debug location for the "common" instruction is the merged locations of 1587 // all the commoned instructions. We start with the original location of the 1588 // "common" instruction and iteratively merge each location in the loop below. 1589 const DILocation *Loc = I0->getDebugLoc(); 1590 1591 // Update metadata and IR flags, and merge debug locations. 1592 for (auto *I : Insts) 1593 if (I != I0) { 1594 Loc = DILocation::getMergedLocation(Loc, I->getDebugLoc()); 1595 combineMetadataForCSE(I0, I); 1596 I0->andIRFlags(I); 1597 } 1598 if (!isa<CallInst>(I0)) 1599 I0->setDebugLoc(Loc); 1600 1601 if (!isa<StoreInst>(I0)) { 1602 // canSinkLastInstruction checked that all instructions were used by 1603 // one and only one PHI node. Find that now, RAUW it to our common 1604 // instruction and nuke it. 1605 assert(I0->hasOneUse()); 1606 auto *PN = cast<PHINode>(*I0->user_begin()); 1607 PN->replaceAllUsesWith(I0); 1608 PN->eraseFromParent(); 1609 } 1610 1611 // Finally nuke all instructions apart from the common instruction. 1612 for (auto *I : Insts) 1613 if (I != I0) 1614 I->eraseFromParent(); 1615 1616 return true; 1617 } 1618 1619 namespace { 1620 1621 // LockstepReverseIterator - Iterates through instructions 1622 // in a set of blocks in reverse order from the first non-terminator. 1623 // For example (assume all blocks have size n): 1624 // LockstepReverseIterator I([B1, B2, B3]); 1625 // *I-- = [B1[n], B2[n], B3[n]]; 1626 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1627 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1628 // ... 1629 class LockstepReverseIterator { 1630 ArrayRef<BasicBlock*> Blocks; 1631 SmallVector<Instruction*,4> Insts; 1632 bool Fail; 1633 public: 1634 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : 1635 Blocks(Blocks) { 1636 reset(); 1637 } 1638 1639 void reset() { 1640 Fail = false; 1641 Insts.clear(); 1642 for (auto *BB : Blocks) { 1643 Instruction *Inst = BB->getTerminator(); 1644 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1645 Inst = Inst->getPrevNode(); 1646 if (!Inst) { 1647 // Block wasn't big enough. 1648 Fail = true; 1649 return; 1650 } 1651 Insts.push_back(Inst); 1652 } 1653 } 1654 1655 bool isValid() const { 1656 return !Fail; 1657 } 1658 1659 void operator -- () { 1660 if (Fail) 1661 return; 1662 for (auto *&Inst : Insts) { 1663 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1664 Inst = Inst->getPrevNode(); 1665 // Already at beginning of block. 1666 if (!Inst) { 1667 Fail = true; 1668 return; 1669 } 1670 } 1671 } 1672 1673 ArrayRef<Instruction*> operator * () const { 1674 return Insts; 1675 } 1676 }; 1677 1678 } // end anonymous namespace 1679 1680 /// Given an unconditional branch that goes to BBEnd, 1681 /// check whether BBEnd has only two predecessors and the other predecessor 1682 /// ends with an unconditional branch. If it is true, sink any common code 1683 /// in the two predecessors to BBEnd. 1684 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1685 assert(BI1->isUnconditional()); 1686 BasicBlock *BBEnd = BI1->getSuccessor(0); 1687 1688 // We support two situations: 1689 // (1) all incoming arcs are unconditional 1690 // (2) one incoming arc is conditional 1691 // 1692 // (2) is very common in switch defaults and 1693 // else-if patterns; 1694 // 1695 // if (a) f(1); 1696 // else if (b) f(2); 1697 // 1698 // produces: 1699 // 1700 // [if] 1701 // / \ 1702 // [f(1)] [if] 1703 // | | \ 1704 // | | | 1705 // | [f(2)]| 1706 // \ | / 1707 // [ end ] 1708 // 1709 // [end] has two unconditional predecessor arcs and one conditional. The 1710 // conditional refers to the implicit empty 'else' arc. This conditional 1711 // arc can also be caused by an empty default block in a switch. 1712 // 1713 // In this case, we attempt to sink code from all *unconditional* arcs. 1714 // If we can sink instructions from these arcs (determined during the scan 1715 // phase below) we insert a common successor for all unconditional arcs and 1716 // connect that to [end], to enable sinking: 1717 // 1718 // [if] 1719 // / \ 1720 // [x(1)] [if] 1721 // | | \ 1722 // | | \ 1723 // | [x(2)] | 1724 // \ / | 1725 // [sink.split] | 1726 // \ / 1727 // [ end ] 1728 // 1729 SmallVector<BasicBlock*,4> UnconditionalPreds; 1730 Instruction *Cond = nullptr; 1731 for (auto *B : predecessors(BBEnd)) { 1732 auto *T = B->getTerminator(); 1733 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1734 UnconditionalPreds.push_back(B); 1735 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1736 Cond = T; 1737 else 1738 return false; 1739 } 1740 if (UnconditionalPreds.size() < 2) 1741 return false; 1742 1743 bool Changed = false; 1744 // We take a two-step approach to tail sinking. First we scan from the end of 1745 // each block upwards in lockstep. If the n'th instruction from the end of each 1746 // block can be sunk, those instructions are added to ValuesToSink and we 1747 // carry on. If we can sink an instruction but need to PHI-merge some operands 1748 // (because they're not identical in each instruction) we add these to 1749 // PHIOperands. 1750 unsigned ScanIdx = 0; 1751 SmallPtrSet<Value*,4> InstructionsToSink; 1752 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1753 LockstepReverseIterator LRI(UnconditionalPreds); 1754 while (LRI.isValid() && 1755 canSinkInstructions(*LRI, PHIOperands)) { 1756 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1757 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1758 ++ScanIdx; 1759 --LRI; 1760 } 1761 1762 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1763 unsigned NumPHIdValues = 0; 1764 for (auto *I : *LRI) 1765 for (auto *V : PHIOperands[I]) 1766 if (InstructionsToSink.count(V) == 0) 1767 ++NumPHIdValues; 1768 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1769 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1770 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1771 NumPHIInsts++; 1772 1773 return NumPHIInsts <= 1; 1774 }; 1775 1776 if (ScanIdx > 0 && Cond) { 1777 // Check if we would actually sink anything first! This mutates the CFG and 1778 // adds an extra block. The goal in doing this is to allow instructions that 1779 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1780 // (such as trunc, add) can be sunk and predicated already. So we check that 1781 // we're going to sink at least one non-speculatable instruction. 1782 LRI.reset(); 1783 unsigned Idx = 0; 1784 bool Profitable = false; 1785 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1786 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1787 Profitable = true; 1788 break; 1789 } 1790 --LRI; 1791 ++Idx; 1792 } 1793 if (!Profitable) 1794 return false; 1795 1796 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1797 // We have a conditional edge and we're going to sink some instructions. 1798 // Insert a new block postdominating all blocks we're going to sink from. 1799 if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds, 1800 ".sink.split")) 1801 // Edges couldn't be split. 1802 return false; 1803 Changed = true; 1804 } 1805 1806 // Now that we've analyzed all potential sinking candidates, perform the 1807 // actual sink. We iteratively sink the last non-terminator of the source 1808 // blocks into their common successor unless doing so would require too 1809 // many PHI instructions to be generated (currently only one PHI is allowed 1810 // per sunk instruction). 1811 // 1812 // We can use InstructionsToSink to discount values needing PHI-merging that will 1813 // actually be sunk in a later iteration. This allows us to be more 1814 // aggressive in what we sink. This does allow a false positive where we 1815 // sink presuming a later value will also be sunk, but stop half way through 1816 // and never actually sink it which means we produce more PHIs than intended. 1817 // This is unlikely in practice though. 1818 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1819 DEBUG(dbgs() << "SINK: Sink: " 1820 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1821 << "\n"); 1822 1823 // Because we've sunk every instruction in turn, the current instruction to 1824 // sink is always at index 0. 1825 LRI.reset(); 1826 if (!ProfitableToSinkInstruction(LRI)) { 1827 // Too many PHIs would be created. 1828 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1829 break; 1830 } 1831 1832 if (!sinkLastInstruction(UnconditionalPreds)) 1833 return Changed; 1834 NumSinkCommons++; 1835 Changed = true; 1836 } 1837 return Changed; 1838 } 1839 1840 /// \brief Determine if we can hoist sink a sole store instruction out of a 1841 /// conditional block. 1842 /// 1843 /// We are looking for code like the following: 1844 /// BrBB: 1845 /// store i32 %add, i32* %arrayidx2 1846 /// ... // No other stores or function calls (we could be calling a memory 1847 /// ... // function). 1848 /// %cmp = icmp ult %x, %y 1849 /// br i1 %cmp, label %EndBB, label %ThenBB 1850 /// ThenBB: 1851 /// store i32 %add5, i32* %arrayidx2 1852 /// br label EndBB 1853 /// EndBB: 1854 /// ... 1855 /// We are going to transform this into: 1856 /// BrBB: 1857 /// store i32 %add, i32* %arrayidx2 1858 /// ... // 1859 /// %cmp = icmp ult %x, %y 1860 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1861 /// store i32 %add.add5, i32* %arrayidx2 1862 /// ... 1863 /// 1864 /// \return The pointer to the value of the previous store if the store can be 1865 /// hoisted into the predecessor block. 0 otherwise. 1866 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1867 BasicBlock *StoreBB, BasicBlock *EndBB) { 1868 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1869 if (!StoreToHoist) 1870 return nullptr; 1871 1872 // Volatile or atomic. 1873 if (!StoreToHoist->isSimple()) 1874 return nullptr; 1875 1876 Value *StorePtr = StoreToHoist->getPointerOperand(); 1877 1878 // Look for a store to the same pointer in BrBB. 1879 unsigned MaxNumInstToLookAt = 9; 1880 for (Instruction &CurI : reverse(*BrBB)) { 1881 if (!MaxNumInstToLookAt) 1882 break; 1883 // Skip debug info. 1884 if (isa<DbgInfoIntrinsic>(CurI)) 1885 continue; 1886 --MaxNumInstToLookAt; 1887 1888 // Could be calling an instruction that affects memory like free(). 1889 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1890 return nullptr; 1891 1892 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1893 // Found the previous store make sure it stores to the same location. 1894 if (SI->getPointerOperand() == StorePtr) 1895 // Found the previous store, return its value operand. 1896 return SI->getValueOperand(); 1897 return nullptr; // Unknown store. 1898 } 1899 } 1900 1901 return nullptr; 1902 } 1903 1904 /// \brief Speculate a conditional basic block flattening the CFG. 1905 /// 1906 /// Note that this is a very risky transform currently. Speculating 1907 /// instructions like this is most often not desirable. Instead, there is an MI 1908 /// pass which can do it with full awareness of the resource constraints. 1909 /// However, some cases are "obvious" and we should do directly. An example of 1910 /// this is speculating a single, reasonably cheap instruction. 1911 /// 1912 /// There is only one distinct advantage to flattening the CFG at the IR level: 1913 /// it makes very common but simplistic optimizations such as are common in 1914 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1915 /// modeling their effects with easier to reason about SSA value graphs. 1916 /// 1917 /// 1918 /// An illustration of this transform is turning this IR: 1919 /// \code 1920 /// BB: 1921 /// %cmp = icmp ult %x, %y 1922 /// br i1 %cmp, label %EndBB, label %ThenBB 1923 /// ThenBB: 1924 /// %sub = sub %x, %y 1925 /// br label BB2 1926 /// EndBB: 1927 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1928 /// ... 1929 /// \endcode 1930 /// 1931 /// Into this IR: 1932 /// \code 1933 /// BB: 1934 /// %cmp = icmp ult %x, %y 1935 /// %sub = sub %x, %y 1936 /// %cond = select i1 %cmp, 0, %sub 1937 /// ... 1938 /// \endcode 1939 /// 1940 /// \returns true if the conditional block is removed. 1941 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1942 const TargetTransformInfo &TTI) { 1943 // Be conservative for now. FP select instruction can often be expensive. 1944 Value *BrCond = BI->getCondition(); 1945 if (isa<FCmpInst>(BrCond)) 1946 return false; 1947 1948 BasicBlock *BB = BI->getParent(); 1949 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1950 1951 // If ThenBB is actually on the false edge of the conditional branch, remember 1952 // to swap the select operands later. 1953 bool Invert = false; 1954 if (ThenBB != BI->getSuccessor(0)) { 1955 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1956 Invert = true; 1957 } 1958 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1959 1960 // Keep a count of how many times instructions are used within CondBB when 1961 // they are candidates for sinking into CondBB. Specifically: 1962 // - They are defined in BB, and 1963 // - They have no side effects, and 1964 // - All of their uses are in CondBB. 1965 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1966 1967 unsigned SpeculationCost = 0; 1968 Value *SpeculatedStoreValue = nullptr; 1969 StoreInst *SpeculatedStore = nullptr; 1970 for (BasicBlock::iterator BBI = ThenBB->begin(), 1971 BBE = std::prev(ThenBB->end()); 1972 BBI != BBE; ++BBI) { 1973 Instruction *I = &*BBI; 1974 // Skip debug info. 1975 if (isa<DbgInfoIntrinsic>(I)) 1976 continue; 1977 1978 // Only speculatively execute a single instruction (not counting the 1979 // terminator) for now. 1980 ++SpeculationCost; 1981 if (SpeculationCost > 1) 1982 return false; 1983 1984 // Don't hoist the instruction if it's unsafe or expensive. 1985 if (!isSafeToSpeculativelyExecute(I) && 1986 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1987 I, BB, ThenBB, EndBB)))) 1988 return false; 1989 if (!SpeculatedStoreValue && 1990 ComputeSpeculationCost(I, TTI) > 1991 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1992 return false; 1993 1994 // Store the store speculation candidate. 1995 if (SpeculatedStoreValue) 1996 SpeculatedStore = cast<StoreInst>(I); 1997 1998 // Do not hoist the instruction if any of its operands are defined but not 1999 // used in BB. The transformation will prevent the operand from 2000 // being sunk into the use block. 2001 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2002 Instruction *OpI = dyn_cast<Instruction>(*i); 2003 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2004 continue; // Not a candidate for sinking. 2005 2006 ++SinkCandidateUseCounts[OpI]; 2007 } 2008 } 2009 2010 // Consider any sink candidates which are only used in CondBB as costs for 2011 // speculation. Note, while we iterate over a DenseMap here, we are summing 2012 // and so iteration order isn't significant. 2013 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2014 I = SinkCandidateUseCounts.begin(), 2015 E = SinkCandidateUseCounts.end(); 2016 I != E; ++I) 2017 if (I->first->getNumUses() == I->second) { 2018 ++SpeculationCost; 2019 if (SpeculationCost > 1) 2020 return false; 2021 } 2022 2023 // Check that the PHI nodes can be converted to selects. 2024 bool HaveRewritablePHIs = false; 2025 for (BasicBlock::iterator I = EndBB->begin(); 2026 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2027 Value *OrigV = PN->getIncomingValueForBlock(BB); 2028 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 2029 2030 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2031 // Skip PHIs which are trivial. 2032 if (ThenV == OrigV) 2033 continue; 2034 2035 // Don't convert to selects if we could remove undefined behavior instead. 2036 if (passingValueIsAlwaysUndefined(OrigV, PN) || 2037 passingValueIsAlwaysUndefined(ThenV, PN)) 2038 return false; 2039 2040 HaveRewritablePHIs = true; 2041 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2042 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2043 if (!OrigCE && !ThenCE) 2044 continue; // Known safe and cheap. 2045 2046 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2047 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2048 return false; 2049 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2050 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2051 unsigned MaxCost = 2052 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2053 if (OrigCost + ThenCost > MaxCost) 2054 return false; 2055 2056 // Account for the cost of an unfolded ConstantExpr which could end up 2057 // getting expanded into Instructions. 2058 // FIXME: This doesn't account for how many operations are combined in the 2059 // constant expression. 2060 ++SpeculationCost; 2061 if (SpeculationCost > 1) 2062 return false; 2063 } 2064 2065 // If there are no PHIs to process, bail early. This helps ensure idempotence 2066 // as well. 2067 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2068 return false; 2069 2070 // If we get here, we can hoist the instruction and if-convert. 2071 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2072 2073 // Insert a select of the value of the speculated store. 2074 if (SpeculatedStoreValue) { 2075 IRBuilder<NoFolder> Builder(BI); 2076 Value *TrueV = SpeculatedStore->getValueOperand(); 2077 Value *FalseV = SpeculatedStoreValue; 2078 if (Invert) 2079 std::swap(TrueV, FalseV); 2080 Value *S = Builder.CreateSelect( 2081 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2082 SpeculatedStore->setOperand(0, S); 2083 SpeculatedStore->setDebugLoc( 2084 DILocation::getMergedLocation( 2085 BI->getDebugLoc(), SpeculatedStore->getDebugLoc())); 2086 } 2087 2088 // Metadata can be dependent on the condition we are hoisting above. 2089 // Conservatively strip all metadata on the instruction. 2090 for (auto &I : *ThenBB) 2091 I.dropUnknownNonDebugMetadata(); 2092 2093 // Hoist the instructions. 2094 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2095 ThenBB->begin(), std::prev(ThenBB->end())); 2096 2097 // Insert selects and rewrite the PHI operands. 2098 IRBuilder<NoFolder> Builder(BI); 2099 for (BasicBlock::iterator I = EndBB->begin(); 2100 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2101 unsigned OrigI = PN->getBasicBlockIndex(BB); 2102 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 2103 Value *OrigV = PN->getIncomingValue(OrigI); 2104 Value *ThenV = PN->getIncomingValue(ThenI); 2105 2106 // Skip PHIs which are trivial. 2107 if (OrigV == ThenV) 2108 continue; 2109 2110 // Create a select whose true value is the speculatively executed value and 2111 // false value is the preexisting value. Swap them if the branch 2112 // destinations were inverted. 2113 Value *TrueV = ThenV, *FalseV = OrigV; 2114 if (Invert) 2115 std::swap(TrueV, FalseV); 2116 Value *V = Builder.CreateSelect( 2117 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2118 PN->setIncomingValue(OrigI, V); 2119 PN->setIncomingValue(ThenI, V); 2120 } 2121 2122 ++NumSpeculations; 2123 return true; 2124 } 2125 2126 /// Return true if we can thread a branch across this block. 2127 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2128 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2129 unsigned Size = 0; 2130 2131 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2132 if (isa<DbgInfoIntrinsic>(BBI)) 2133 continue; 2134 if (Size > 10) 2135 return false; // Don't clone large BB's. 2136 ++Size; 2137 2138 // We can only support instructions that do not define values that are 2139 // live outside of the current basic block. 2140 for (User *U : BBI->users()) { 2141 Instruction *UI = cast<Instruction>(U); 2142 if (UI->getParent() != BB || isa<PHINode>(UI)) 2143 return false; 2144 } 2145 2146 // Looks ok, continue checking. 2147 } 2148 2149 return true; 2150 } 2151 2152 /// If we have a conditional branch on a PHI node value that is defined in the 2153 /// same block as the branch and if any PHI entries are constants, thread edges 2154 /// corresponding to that entry to be branches to their ultimate destination. 2155 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2156 AssumptionCache *AC) { 2157 BasicBlock *BB = BI->getParent(); 2158 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2159 // NOTE: we currently cannot transform this case if the PHI node is used 2160 // outside of the block. 2161 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2162 return false; 2163 2164 // Degenerate case of a single entry PHI. 2165 if (PN->getNumIncomingValues() == 1) { 2166 FoldSingleEntryPHINodes(PN->getParent()); 2167 return true; 2168 } 2169 2170 // Now we know that this block has multiple preds and two succs. 2171 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2172 return false; 2173 2174 // Can't fold blocks that contain noduplicate or convergent calls. 2175 if (any_of(*BB, [](const Instruction &I) { 2176 const CallInst *CI = dyn_cast<CallInst>(&I); 2177 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2178 })) 2179 return false; 2180 2181 // Okay, this is a simple enough basic block. See if any phi values are 2182 // constants. 2183 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2184 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2185 if (!CB || !CB->getType()->isIntegerTy(1)) 2186 continue; 2187 2188 // Okay, we now know that all edges from PredBB should be revectored to 2189 // branch to RealDest. 2190 BasicBlock *PredBB = PN->getIncomingBlock(i); 2191 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2192 2193 if (RealDest == BB) 2194 continue; // Skip self loops. 2195 // Skip if the predecessor's terminator is an indirect branch. 2196 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2197 continue; 2198 2199 // The dest block might have PHI nodes, other predecessors and other 2200 // difficult cases. Instead of being smart about this, just insert a new 2201 // block that jumps to the destination block, effectively splitting 2202 // the edge we are about to create. 2203 BasicBlock *EdgeBB = 2204 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2205 RealDest->getParent(), RealDest); 2206 BranchInst::Create(RealDest, EdgeBB); 2207 2208 // Update PHI nodes. 2209 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2210 2211 // BB may have instructions that are being threaded over. Clone these 2212 // instructions into EdgeBB. We know that there will be no uses of the 2213 // cloned instructions outside of EdgeBB. 2214 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2215 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2216 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2217 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2218 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2219 continue; 2220 } 2221 // Clone the instruction. 2222 Instruction *N = BBI->clone(); 2223 if (BBI->hasName()) 2224 N->setName(BBI->getName() + ".c"); 2225 2226 // Update operands due to translation. 2227 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2228 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2229 if (PI != TranslateMap.end()) 2230 *i = PI->second; 2231 } 2232 2233 // Check for trivial simplification. 2234 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2235 if (!BBI->use_empty()) 2236 TranslateMap[&*BBI] = V; 2237 if (!N->mayHaveSideEffects()) { 2238 delete N; // Instruction folded away, don't need actual inst 2239 N = nullptr; 2240 } 2241 } else { 2242 if (!BBI->use_empty()) 2243 TranslateMap[&*BBI] = N; 2244 } 2245 // Insert the new instruction into its new home. 2246 if (N) 2247 EdgeBB->getInstList().insert(InsertPt, N); 2248 2249 // Register the new instruction with the assumption cache if necessary. 2250 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2251 if (II->getIntrinsicID() == Intrinsic::assume) 2252 AC->registerAssumption(II); 2253 } 2254 2255 // Loop over all of the edges from PredBB to BB, changing them to branch 2256 // to EdgeBB instead. 2257 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2258 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2259 if (PredBBTI->getSuccessor(i) == BB) { 2260 BB->removePredecessor(PredBB); 2261 PredBBTI->setSuccessor(i, EdgeBB); 2262 } 2263 2264 // Recurse, simplifying any other constants. 2265 return FoldCondBranchOnPHI(BI, DL, AC) | true; 2266 } 2267 2268 return false; 2269 } 2270 2271 /// Given a BB that starts with the specified two-entry PHI node, 2272 /// see if we can eliminate it. 2273 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2274 const DataLayout &DL) { 2275 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2276 // statement", which has a very simple dominance structure. Basically, we 2277 // are trying to find the condition that is being branched on, which 2278 // subsequently causes this merge to happen. We really want control 2279 // dependence information for this check, but simplifycfg can't keep it up 2280 // to date, and this catches most of the cases we care about anyway. 2281 BasicBlock *BB = PN->getParent(); 2282 BasicBlock *IfTrue, *IfFalse; 2283 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2284 if (!IfCond || 2285 // Don't bother if the branch will be constant folded trivially. 2286 isa<ConstantInt>(IfCond)) 2287 return false; 2288 2289 // Okay, we found that we can merge this two-entry phi node into a select. 2290 // Doing so would require us to fold *all* two entry phi nodes in this block. 2291 // At some point this becomes non-profitable (particularly if the target 2292 // doesn't support cmov's). Only do this transformation if there are two or 2293 // fewer PHI nodes in this block. 2294 unsigned NumPhis = 0; 2295 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2296 if (NumPhis > 2) 2297 return false; 2298 2299 // Loop over the PHI's seeing if we can promote them all to select 2300 // instructions. While we are at it, keep track of the instructions 2301 // that need to be moved to the dominating block. 2302 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2303 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2304 MaxCostVal1 = PHINodeFoldingThreshold; 2305 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2306 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2307 2308 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2309 PHINode *PN = cast<PHINode>(II++); 2310 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2311 PN->replaceAllUsesWith(V); 2312 PN->eraseFromParent(); 2313 continue; 2314 } 2315 2316 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2317 MaxCostVal0, TTI) || 2318 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2319 MaxCostVal1, TTI)) 2320 return false; 2321 } 2322 2323 // If we folded the first phi, PN dangles at this point. Refresh it. If 2324 // we ran out of PHIs then we simplified them all. 2325 PN = dyn_cast<PHINode>(BB->begin()); 2326 if (!PN) 2327 return true; 2328 2329 // Don't fold i1 branches on PHIs which contain binary operators. These can 2330 // often be turned into switches and other things. 2331 if (PN->getType()->isIntegerTy(1) && 2332 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2333 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2334 isa<BinaryOperator>(IfCond))) 2335 return false; 2336 2337 // If all PHI nodes are promotable, check to make sure that all instructions 2338 // in the predecessor blocks can be promoted as well. If not, we won't be able 2339 // to get rid of the control flow, so it's not worth promoting to select 2340 // instructions. 2341 BasicBlock *DomBlock = nullptr; 2342 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2343 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2344 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2345 IfBlock1 = nullptr; 2346 } else { 2347 DomBlock = *pred_begin(IfBlock1); 2348 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2349 ++I) 2350 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2351 // This is not an aggressive instruction that we can promote. 2352 // Because of this, we won't be able to get rid of the control flow, so 2353 // the xform is not worth it. 2354 return false; 2355 } 2356 } 2357 2358 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2359 IfBlock2 = nullptr; 2360 } else { 2361 DomBlock = *pred_begin(IfBlock2); 2362 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2363 ++I) 2364 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2365 // This is not an aggressive instruction that we can promote. 2366 // Because of this, we won't be able to get rid of the control flow, so 2367 // the xform is not worth it. 2368 return false; 2369 } 2370 } 2371 2372 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2373 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2374 2375 // If we can still promote the PHI nodes after this gauntlet of tests, 2376 // do all of the PHI's now. 2377 Instruction *InsertPt = DomBlock->getTerminator(); 2378 IRBuilder<NoFolder> Builder(InsertPt); 2379 2380 // Move all 'aggressive' instructions, which are defined in the 2381 // conditional parts of the if's up to the dominating block. 2382 if (IfBlock1) { 2383 for (auto &I : *IfBlock1) 2384 I.dropUnknownNonDebugMetadata(); 2385 DomBlock->getInstList().splice(InsertPt->getIterator(), 2386 IfBlock1->getInstList(), IfBlock1->begin(), 2387 IfBlock1->getTerminator()->getIterator()); 2388 } 2389 if (IfBlock2) { 2390 for (auto &I : *IfBlock2) 2391 I.dropUnknownNonDebugMetadata(); 2392 DomBlock->getInstList().splice(InsertPt->getIterator(), 2393 IfBlock2->getInstList(), IfBlock2->begin(), 2394 IfBlock2->getTerminator()->getIterator()); 2395 } 2396 2397 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2398 // Change the PHI node into a select instruction. 2399 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2400 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2401 2402 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2403 PN->replaceAllUsesWith(Sel); 2404 Sel->takeName(PN); 2405 PN->eraseFromParent(); 2406 } 2407 2408 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2409 // has been flattened. Change DomBlock to jump directly to our new block to 2410 // avoid other simplifycfg's kicking in on the diamond. 2411 TerminatorInst *OldTI = DomBlock->getTerminator(); 2412 Builder.SetInsertPoint(OldTI); 2413 Builder.CreateBr(BB); 2414 OldTI->eraseFromParent(); 2415 return true; 2416 } 2417 2418 /// If we found a conditional branch that goes to two returning blocks, 2419 /// try to merge them together into one return, 2420 /// introducing a select if the return values disagree. 2421 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2422 IRBuilder<> &Builder) { 2423 assert(BI->isConditional() && "Must be a conditional branch"); 2424 BasicBlock *TrueSucc = BI->getSuccessor(0); 2425 BasicBlock *FalseSucc = BI->getSuccessor(1); 2426 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2427 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2428 2429 // Check to ensure both blocks are empty (just a return) or optionally empty 2430 // with PHI nodes. If there are other instructions, merging would cause extra 2431 // computation on one path or the other. 2432 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2433 return false; 2434 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2435 return false; 2436 2437 Builder.SetInsertPoint(BI); 2438 // Okay, we found a branch that is going to two return nodes. If 2439 // there is no return value for this function, just change the 2440 // branch into a return. 2441 if (FalseRet->getNumOperands() == 0) { 2442 TrueSucc->removePredecessor(BI->getParent()); 2443 FalseSucc->removePredecessor(BI->getParent()); 2444 Builder.CreateRetVoid(); 2445 EraseTerminatorInstAndDCECond(BI); 2446 return true; 2447 } 2448 2449 // Otherwise, figure out what the true and false return values are 2450 // so we can insert a new select instruction. 2451 Value *TrueValue = TrueRet->getReturnValue(); 2452 Value *FalseValue = FalseRet->getReturnValue(); 2453 2454 // Unwrap any PHI nodes in the return blocks. 2455 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2456 if (TVPN->getParent() == TrueSucc) 2457 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2458 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2459 if (FVPN->getParent() == FalseSucc) 2460 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2461 2462 // In order for this transformation to be safe, we must be able to 2463 // unconditionally execute both operands to the return. This is 2464 // normally the case, but we could have a potentially-trapping 2465 // constant expression that prevents this transformation from being 2466 // safe. 2467 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2468 if (TCV->canTrap()) 2469 return false; 2470 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2471 if (FCV->canTrap()) 2472 return false; 2473 2474 // Okay, we collected all the mapped values and checked them for sanity, and 2475 // defined to really do this transformation. First, update the CFG. 2476 TrueSucc->removePredecessor(BI->getParent()); 2477 FalseSucc->removePredecessor(BI->getParent()); 2478 2479 // Insert select instructions where needed. 2480 Value *BrCond = BI->getCondition(); 2481 if (TrueValue) { 2482 // Insert a select if the results differ. 2483 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2484 } else if (isa<UndefValue>(TrueValue)) { 2485 TrueValue = FalseValue; 2486 } else { 2487 TrueValue = 2488 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2489 } 2490 } 2491 2492 Value *RI = 2493 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2494 2495 (void)RI; 2496 2497 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2498 << "\n " << *BI << "NewRet = " << *RI 2499 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2500 2501 EraseTerminatorInstAndDCECond(BI); 2502 2503 return true; 2504 } 2505 2506 /// Return true if the given instruction is available 2507 /// in its predecessor block. If yes, the instruction will be removed. 2508 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2509 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2510 return false; 2511 for (Instruction &I : *PB) { 2512 Instruction *PBI = &I; 2513 // Check whether Inst and PBI generate the same value. 2514 if (Inst->isIdenticalTo(PBI)) { 2515 Inst->replaceAllUsesWith(PBI); 2516 Inst->eraseFromParent(); 2517 return true; 2518 } 2519 } 2520 return false; 2521 } 2522 2523 /// Return true if either PBI or BI has branch weight available, and store 2524 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2525 /// not have branch weight, use 1:1 as its weight. 2526 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2527 uint64_t &PredTrueWeight, 2528 uint64_t &PredFalseWeight, 2529 uint64_t &SuccTrueWeight, 2530 uint64_t &SuccFalseWeight) { 2531 bool PredHasWeights = 2532 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2533 bool SuccHasWeights = 2534 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2535 if (PredHasWeights || SuccHasWeights) { 2536 if (!PredHasWeights) 2537 PredTrueWeight = PredFalseWeight = 1; 2538 if (!SuccHasWeights) 2539 SuccTrueWeight = SuccFalseWeight = 1; 2540 return true; 2541 } else { 2542 return false; 2543 } 2544 } 2545 2546 /// If this basic block is simple enough, and if a predecessor branches to us 2547 /// and one of our successors, fold the block into the predecessor and use 2548 /// logical operations to pick the right destination. 2549 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2550 BasicBlock *BB = BI->getParent(); 2551 2552 Instruction *Cond = nullptr; 2553 if (BI->isConditional()) 2554 Cond = dyn_cast<Instruction>(BI->getCondition()); 2555 else { 2556 // For unconditional branch, check for a simple CFG pattern, where 2557 // BB has a single predecessor and BB's successor is also its predecessor's 2558 // successor. If such pattern exisits, check for CSE between BB and its 2559 // predecessor. 2560 if (BasicBlock *PB = BB->getSinglePredecessor()) 2561 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2562 if (PBI->isConditional() && 2563 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2564 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2565 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2566 Instruction *Curr = &*I++; 2567 if (isa<CmpInst>(Curr)) { 2568 Cond = Curr; 2569 break; 2570 } 2571 // Quit if we can't remove this instruction. 2572 if (!checkCSEInPredecessor(Curr, PB)) 2573 return false; 2574 } 2575 } 2576 2577 if (!Cond) 2578 return false; 2579 } 2580 2581 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2582 Cond->getParent() != BB || !Cond->hasOneUse()) 2583 return false; 2584 2585 // Make sure the instruction after the condition is the cond branch. 2586 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2587 2588 // Ignore dbg intrinsics. 2589 while (isa<DbgInfoIntrinsic>(CondIt)) 2590 ++CondIt; 2591 2592 if (&*CondIt != BI) 2593 return false; 2594 2595 // Only allow this transformation if computing the condition doesn't involve 2596 // too many instructions and these involved instructions can be executed 2597 // unconditionally. We denote all involved instructions except the condition 2598 // as "bonus instructions", and only allow this transformation when the 2599 // number of the bonus instructions does not exceed a certain threshold. 2600 unsigned NumBonusInsts = 0; 2601 for (auto I = BB->begin(); Cond != &*I; ++I) { 2602 // Ignore dbg intrinsics. 2603 if (isa<DbgInfoIntrinsic>(I)) 2604 continue; 2605 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2606 return false; 2607 // I has only one use and can be executed unconditionally. 2608 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2609 if (User == nullptr || User->getParent() != BB) 2610 return false; 2611 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2612 // to use any other instruction, User must be an instruction between next(I) 2613 // and Cond. 2614 ++NumBonusInsts; 2615 // Early exits once we reach the limit. 2616 if (NumBonusInsts > BonusInstThreshold) 2617 return false; 2618 } 2619 2620 // Cond is known to be a compare or binary operator. Check to make sure that 2621 // neither operand is a potentially-trapping constant expression. 2622 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2623 if (CE->canTrap()) 2624 return false; 2625 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2626 if (CE->canTrap()) 2627 return false; 2628 2629 // Finally, don't infinitely unroll conditional loops. 2630 BasicBlock *TrueDest = BI->getSuccessor(0); 2631 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2632 if (TrueDest == BB || FalseDest == BB) 2633 return false; 2634 2635 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2636 BasicBlock *PredBlock = *PI; 2637 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2638 2639 // Check that we have two conditional branches. If there is a PHI node in 2640 // the common successor, verify that the same value flows in from both 2641 // blocks. 2642 SmallVector<PHINode *, 4> PHIs; 2643 if (!PBI || PBI->isUnconditional() || 2644 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2645 (!BI->isConditional() && 2646 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2647 continue; 2648 2649 // Determine if the two branches share a common destination. 2650 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2651 bool InvertPredCond = false; 2652 2653 if (BI->isConditional()) { 2654 if (PBI->getSuccessor(0) == TrueDest) { 2655 Opc = Instruction::Or; 2656 } else if (PBI->getSuccessor(1) == FalseDest) { 2657 Opc = Instruction::And; 2658 } else if (PBI->getSuccessor(0) == FalseDest) { 2659 Opc = Instruction::And; 2660 InvertPredCond = true; 2661 } else if (PBI->getSuccessor(1) == TrueDest) { 2662 Opc = Instruction::Or; 2663 InvertPredCond = true; 2664 } else { 2665 continue; 2666 } 2667 } else { 2668 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2669 continue; 2670 } 2671 2672 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2673 IRBuilder<> Builder(PBI); 2674 2675 // If we need to invert the condition in the pred block to match, do so now. 2676 if (InvertPredCond) { 2677 Value *NewCond = PBI->getCondition(); 2678 2679 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2680 CmpInst *CI = cast<CmpInst>(NewCond); 2681 CI->setPredicate(CI->getInversePredicate()); 2682 } else { 2683 NewCond = 2684 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2685 } 2686 2687 PBI->setCondition(NewCond); 2688 PBI->swapSuccessors(); 2689 } 2690 2691 // If we have bonus instructions, clone them into the predecessor block. 2692 // Note that there may be multiple predecessor blocks, so we cannot move 2693 // bonus instructions to a predecessor block. 2694 ValueToValueMapTy VMap; // maps original values to cloned values 2695 // We already make sure Cond is the last instruction before BI. Therefore, 2696 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2697 // instructions. 2698 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2699 if (isa<DbgInfoIntrinsic>(BonusInst)) 2700 continue; 2701 Instruction *NewBonusInst = BonusInst->clone(); 2702 RemapInstruction(NewBonusInst, VMap, 2703 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2704 VMap[&*BonusInst] = NewBonusInst; 2705 2706 // If we moved a load, we cannot any longer claim any knowledge about 2707 // its potential value. The previous information might have been valid 2708 // only given the branch precondition. 2709 // For an analogous reason, we must also drop all the metadata whose 2710 // semantics we don't understand. 2711 NewBonusInst->dropUnknownNonDebugMetadata(); 2712 2713 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2714 NewBonusInst->takeName(&*BonusInst); 2715 BonusInst->setName(BonusInst->getName() + ".old"); 2716 } 2717 2718 // Clone Cond into the predecessor basic block, and or/and the 2719 // two conditions together. 2720 Instruction *New = Cond->clone(); 2721 RemapInstruction(New, VMap, 2722 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2723 PredBlock->getInstList().insert(PBI->getIterator(), New); 2724 New->takeName(Cond); 2725 Cond->setName(New->getName() + ".old"); 2726 2727 if (BI->isConditional()) { 2728 Instruction *NewCond = cast<Instruction>( 2729 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2730 PBI->setCondition(NewCond); 2731 2732 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2733 bool HasWeights = 2734 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2735 SuccTrueWeight, SuccFalseWeight); 2736 SmallVector<uint64_t, 8> NewWeights; 2737 2738 if (PBI->getSuccessor(0) == BB) { 2739 if (HasWeights) { 2740 // PBI: br i1 %x, BB, FalseDest 2741 // BI: br i1 %y, TrueDest, FalseDest 2742 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2743 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2744 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2745 // TrueWeight for PBI * FalseWeight for BI. 2746 // We assume that total weights of a BranchInst can fit into 32 bits. 2747 // Therefore, we will not have overflow using 64-bit arithmetic. 2748 NewWeights.push_back(PredFalseWeight * 2749 (SuccFalseWeight + SuccTrueWeight) + 2750 PredTrueWeight * SuccFalseWeight); 2751 } 2752 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2753 PBI->setSuccessor(0, TrueDest); 2754 } 2755 if (PBI->getSuccessor(1) == BB) { 2756 if (HasWeights) { 2757 // PBI: br i1 %x, TrueDest, BB 2758 // BI: br i1 %y, TrueDest, FalseDest 2759 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2760 // FalseWeight for PBI * TrueWeight for BI. 2761 NewWeights.push_back(PredTrueWeight * 2762 (SuccFalseWeight + SuccTrueWeight) + 2763 PredFalseWeight * SuccTrueWeight); 2764 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2765 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2766 } 2767 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2768 PBI->setSuccessor(1, FalseDest); 2769 } 2770 if (NewWeights.size() == 2) { 2771 // Halve the weights if any of them cannot fit in an uint32_t 2772 FitWeights(NewWeights); 2773 2774 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2775 NewWeights.end()); 2776 PBI->setMetadata( 2777 LLVMContext::MD_prof, 2778 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2779 } else 2780 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2781 } else { 2782 // Update PHI nodes in the common successors. 2783 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2784 ConstantInt *PBI_C = cast<ConstantInt>( 2785 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2786 assert(PBI_C->getType()->isIntegerTy(1)); 2787 Instruction *MergedCond = nullptr; 2788 if (PBI->getSuccessor(0) == TrueDest) { 2789 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2790 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2791 // is false: !PBI_Cond and BI_Value 2792 Instruction *NotCond = cast<Instruction>( 2793 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2794 MergedCond = cast<Instruction>( 2795 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2796 if (PBI_C->isOne()) 2797 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2798 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2799 } else { 2800 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2801 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2802 // is false: PBI_Cond and BI_Value 2803 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2804 Instruction::And, PBI->getCondition(), New, "and.cond")); 2805 if (PBI_C->isOne()) { 2806 Instruction *NotCond = cast<Instruction>( 2807 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2808 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2809 Instruction::Or, NotCond, MergedCond, "or.cond")); 2810 } 2811 } 2812 // Update PHI Node. 2813 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2814 MergedCond); 2815 } 2816 // Change PBI from Conditional to Unconditional. 2817 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2818 EraseTerminatorInstAndDCECond(PBI); 2819 PBI = New_PBI; 2820 } 2821 2822 // If BI was a loop latch, it may have had associated loop metadata. 2823 // We need to copy it to the new latch, that is, PBI. 2824 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2825 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2826 2827 // TODO: If BB is reachable from all paths through PredBlock, then we 2828 // could replace PBI's branch probabilities with BI's. 2829 2830 // Copy any debug value intrinsics into the end of PredBlock. 2831 for (Instruction &I : *BB) 2832 if (isa<DbgInfoIntrinsic>(I)) 2833 I.clone()->insertBefore(PBI); 2834 2835 return true; 2836 } 2837 return false; 2838 } 2839 2840 // If there is only one store in BB1 and BB2, return it, otherwise return 2841 // nullptr. 2842 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2843 StoreInst *S = nullptr; 2844 for (auto *BB : {BB1, BB2}) { 2845 if (!BB) 2846 continue; 2847 for (auto &I : *BB) 2848 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2849 if (S) 2850 // Multiple stores seen. 2851 return nullptr; 2852 else 2853 S = SI; 2854 } 2855 } 2856 return S; 2857 } 2858 2859 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2860 Value *AlternativeV = nullptr) { 2861 // PHI is going to be a PHI node that allows the value V that is defined in 2862 // BB to be referenced in BB's only successor. 2863 // 2864 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2865 // doesn't matter to us what the other operand is (it'll never get used). We 2866 // could just create a new PHI with an undef incoming value, but that could 2867 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2868 // other PHI. So here we directly look for some PHI in BB's successor with V 2869 // as an incoming operand. If we find one, we use it, else we create a new 2870 // one. 2871 // 2872 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2873 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2874 // where OtherBB is the single other predecessor of BB's only successor. 2875 PHINode *PHI = nullptr; 2876 BasicBlock *Succ = BB->getSingleSuccessor(); 2877 2878 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2879 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2880 PHI = cast<PHINode>(I); 2881 if (!AlternativeV) 2882 break; 2883 2884 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2885 auto PredI = pred_begin(Succ); 2886 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2887 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2888 break; 2889 PHI = nullptr; 2890 } 2891 if (PHI) 2892 return PHI; 2893 2894 // If V is not an instruction defined in BB, just return it. 2895 if (!AlternativeV && 2896 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2897 return V; 2898 2899 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2900 PHI->addIncoming(V, BB); 2901 for (BasicBlock *PredBB : predecessors(Succ)) 2902 if (PredBB != BB) 2903 PHI->addIncoming( 2904 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2905 return PHI; 2906 } 2907 2908 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2909 BasicBlock *QTB, BasicBlock *QFB, 2910 BasicBlock *PostBB, Value *Address, 2911 bool InvertPCond, bool InvertQCond) { 2912 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2913 return Operator::getOpcode(&I) == Instruction::BitCast && 2914 I.getType()->isPointerTy(); 2915 }; 2916 2917 // If we're not in aggressive mode, we only optimize if we have some 2918 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2919 auto IsWorthwhile = [&](BasicBlock *BB) { 2920 if (!BB) 2921 return true; 2922 // Heuristic: if the block can be if-converted/phi-folded and the 2923 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2924 // thread this store. 2925 unsigned N = 0; 2926 for (auto &I : *BB) { 2927 // Cheap instructions viable for folding. 2928 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2929 isa<StoreInst>(I)) 2930 ++N; 2931 // Free instructions. 2932 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2933 IsaBitcastOfPointerType(I)) 2934 continue; 2935 else 2936 return false; 2937 } 2938 return N <= PHINodeFoldingThreshold; 2939 }; 2940 2941 if (!MergeCondStoresAggressively && 2942 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2943 !IsWorthwhile(QFB))) 2944 return false; 2945 2946 // For every pointer, there must be exactly two stores, one coming from 2947 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2948 // store (to any address) in PTB,PFB or QTB,QFB. 2949 // FIXME: We could relax this restriction with a bit more work and performance 2950 // testing. 2951 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2952 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2953 if (!PStore || !QStore) 2954 return false; 2955 2956 // Now check the stores are compatible. 2957 if (!QStore->isUnordered() || !PStore->isUnordered()) 2958 return false; 2959 2960 // Check that sinking the store won't cause program behavior changes. Sinking 2961 // the store out of the Q blocks won't change any behavior as we're sinking 2962 // from a block to its unconditional successor. But we're moving a store from 2963 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2964 // So we need to check that there are no aliasing loads or stores in 2965 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2966 // operations between PStore and the end of its parent block. 2967 // 2968 // The ideal way to do this is to query AliasAnalysis, but we don't 2969 // preserve AA currently so that is dangerous. Be super safe and just 2970 // check there are no other memory operations at all. 2971 for (auto &I : *QFB->getSinglePredecessor()) 2972 if (I.mayReadOrWriteMemory()) 2973 return false; 2974 for (auto &I : *QFB) 2975 if (&I != QStore && I.mayReadOrWriteMemory()) 2976 return false; 2977 if (QTB) 2978 for (auto &I : *QTB) 2979 if (&I != QStore && I.mayReadOrWriteMemory()) 2980 return false; 2981 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2982 I != E; ++I) 2983 if (&*I != PStore && I->mayReadOrWriteMemory()) 2984 return false; 2985 2986 // OK, we're going to sink the stores to PostBB. The store has to be 2987 // conditional though, so first create the predicate. 2988 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2989 ->getCondition(); 2990 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2991 ->getCondition(); 2992 2993 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2994 PStore->getParent()); 2995 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2996 QStore->getParent(), PPHI); 2997 2998 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2999 3000 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3001 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3002 3003 if (InvertPCond) 3004 PPred = QB.CreateNot(PPred); 3005 if (InvertQCond) 3006 QPred = QB.CreateNot(QPred); 3007 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3008 3009 auto *T = 3010 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3011 QB.SetInsertPoint(T); 3012 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3013 AAMDNodes AAMD; 3014 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3015 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3016 SI->setAAMetadata(AAMD); 3017 3018 QStore->eraseFromParent(); 3019 PStore->eraseFromParent(); 3020 3021 return true; 3022 } 3023 3024 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 3025 // The intention here is to find diamonds or triangles (see below) where each 3026 // conditional block contains a store to the same address. Both of these 3027 // stores are conditional, so they can't be unconditionally sunk. But it may 3028 // be profitable to speculatively sink the stores into one merged store at the 3029 // end, and predicate the merged store on the union of the two conditions of 3030 // PBI and QBI. 3031 // 3032 // This can reduce the number of stores executed if both of the conditions are 3033 // true, and can allow the blocks to become small enough to be if-converted. 3034 // This optimization will also chain, so that ladders of test-and-set 3035 // sequences can be if-converted away. 3036 // 3037 // We only deal with simple diamonds or triangles: 3038 // 3039 // PBI or PBI or a combination of the two 3040 // / \ | \ 3041 // PTB PFB | PFB 3042 // \ / | / 3043 // QBI QBI 3044 // / \ | \ 3045 // QTB QFB | QFB 3046 // \ / | / 3047 // PostBB PostBB 3048 // 3049 // We model triangles as a type of diamond with a nullptr "true" block. 3050 // Triangles are canonicalized so that the fallthrough edge is represented by 3051 // a true condition, as in the diagram above. 3052 // 3053 BasicBlock *PTB = PBI->getSuccessor(0); 3054 BasicBlock *PFB = PBI->getSuccessor(1); 3055 BasicBlock *QTB = QBI->getSuccessor(0); 3056 BasicBlock *QFB = QBI->getSuccessor(1); 3057 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3058 3059 // Make sure we have a good guess for PostBB. If QTB's only successor is 3060 // QFB, then QFB is a better PostBB. 3061 if (QTB->getSingleSuccessor() == QFB) 3062 PostBB = QFB; 3063 3064 // If we couldn't find a good PostBB, stop. 3065 if (!PostBB) 3066 return false; 3067 3068 bool InvertPCond = false, InvertQCond = false; 3069 // Canonicalize fallthroughs to the true branches. 3070 if (PFB == QBI->getParent()) { 3071 std::swap(PFB, PTB); 3072 InvertPCond = true; 3073 } 3074 if (QFB == PostBB) { 3075 std::swap(QFB, QTB); 3076 InvertQCond = true; 3077 } 3078 3079 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3080 // and QFB may not. Model fallthroughs as a nullptr block. 3081 if (PTB == QBI->getParent()) 3082 PTB = nullptr; 3083 if (QTB == PostBB) 3084 QTB = nullptr; 3085 3086 // Legality bailouts. We must have at least the non-fallthrough blocks and 3087 // the post-dominating block, and the non-fallthroughs must only have one 3088 // predecessor. 3089 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3090 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3091 }; 3092 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3093 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3094 return false; 3095 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3096 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3097 return false; 3098 if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2)) 3099 return false; 3100 3101 // OK, this is a sequence of two diamonds or triangles. 3102 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3103 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3104 for (auto *BB : {PTB, PFB}) { 3105 if (!BB) 3106 continue; 3107 for (auto &I : *BB) 3108 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3109 PStoreAddresses.insert(SI->getPointerOperand()); 3110 } 3111 for (auto *BB : {QTB, QFB}) { 3112 if (!BB) 3113 continue; 3114 for (auto &I : *BB) 3115 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3116 QStoreAddresses.insert(SI->getPointerOperand()); 3117 } 3118 3119 set_intersect(PStoreAddresses, QStoreAddresses); 3120 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3121 // clear what it contains. 3122 auto &CommonAddresses = PStoreAddresses; 3123 3124 bool Changed = false; 3125 for (auto *Address : CommonAddresses) 3126 Changed |= mergeConditionalStoreToAddress( 3127 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 3128 return Changed; 3129 } 3130 3131 /// If we have a conditional branch as a predecessor of another block, 3132 /// this function tries to simplify it. We know 3133 /// that PBI and BI are both conditional branches, and BI is in one of the 3134 /// successor blocks of PBI - PBI branches to BI. 3135 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3136 const DataLayout &DL) { 3137 assert(PBI->isConditional() && BI->isConditional()); 3138 BasicBlock *BB = BI->getParent(); 3139 3140 // If this block ends with a branch instruction, and if there is a 3141 // predecessor that ends on a branch of the same condition, make 3142 // this conditional branch redundant. 3143 if (PBI->getCondition() == BI->getCondition() && 3144 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3145 // Okay, the outcome of this conditional branch is statically 3146 // knowable. If this block had a single pred, handle specially. 3147 if (BB->getSinglePredecessor()) { 3148 // Turn this into a branch on constant. 3149 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3150 BI->setCondition( 3151 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3152 return true; // Nuke the branch on constant. 3153 } 3154 3155 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3156 // in the constant and simplify the block result. Subsequent passes of 3157 // simplifycfg will thread the block. 3158 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3159 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3160 PHINode *NewPN = PHINode::Create( 3161 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3162 BI->getCondition()->getName() + ".pr", &BB->front()); 3163 // Okay, we're going to insert the PHI node. Since PBI is not the only 3164 // predecessor, compute the PHI'd conditional value for all of the preds. 3165 // Any predecessor where the condition is not computable we keep symbolic. 3166 for (pred_iterator PI = PB; PI != PE; ++PI) { 3167 BasicBlock *P = *PI; 3168 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3169 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3170 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3171 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3172 NewPN->addIncoming( 3173 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3174 P); 3175 } else { 3176 NewPN->addIncoming(BI->getCondition(), P); 3177 } 3178 } 3179 3180 BI->setCondition(NewPN); 3181 return true; 3182 } 3183 } 3184 3185 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3186 if (CE->canTrap()) 3187 return false; 3188 3189 // If both branches are conditional and both contain stores to the same 3190 // address, remove the stores from the conditionals and create a conditional 3191 // merged store at the end. 3192 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 3193 return true; 3194 3195 // If this is a conditional branch in an empty block, and if any 3196 // predecessors are a conditional branch to one of our destinations, 3197 // fold the conditions into logical ops and one cond br. 3198 BasicBlock::iterator BBI = BB->begin(); 3199 // Ignore dbg intrinsics. 3200 while (isa<DbgInfoIntrinsic>(BBI)) 3201 ++BBI; 3202 if (&*BBI != BI) 3203 return false; 3204 3205 int PBIOp, BIOp; 3206 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3207 PBIOp = 0; 3208 BIOp = 0; 3209 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3210 PBIOp = 0; 3211 BIOp = 1; 3212 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3213 PBIOp = 1; 3214 BIOp = 0; 3215 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3216 PBIOp = 1; 3217 BIOp = 1; 3218 } else { 3219 return false; 3220 } 3221 3222 // Check to make sure that the other destination of this branch 3223 // isn't BB itself. If so, this is an infinite loop that will 3224 // keep getting unwound. 3225 if (PBI->getSuccessor(PBIOp) == BB) 3226 return false; 3227 3228 // Do not perform this transformation if it would require 3229 // insertion of a large number of select instructions. For targets 3230 // without predication/cmovs, this is a big pessimization. 3231 3232 // Also do not perform this transformation if any phi node in the common 3233 // destination block can trap when reached by BB or PBB (PR17073). In that 3234 // case, it would be unsafe to hoist the operation into a select instruction. 3235 3236 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3237 unsigned NumPhis = 0; 3238 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3239 ++II, ++NumPhis) { 3240 if (NumPhis > 2) // Disable this xform. 3241 return false; 3242 3243 PHINode *PN = cast<PHINode>(II); 3244 Value *BIV = PN->getIncomingValueForBlock(BB); 3245 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3246 if (CE->canTrap()) 3247 return false; 3248 3249 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3250 Value *PBIV = PN->getIncomingValue(PBBIdx); 3251 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3252 if (CE->canTrap()) 3253 return false; 3254 } 3255 3256 // Finally, if everything is ok, fold the branches to logical ops. 3257 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3258 3259 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3260 << "AND: " << *BI->getParent()); 3261 3262 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3263 // branch in it, where one edge (OtherDest) goes back to itself but the other 3264 // exits. We don't *know* that the program avoids the infinite loop 3265 // (even though that seems likely). If we do this xform naively, we'll end up 3266 // recursively unpeeling the loop. Since we know that (after the xform is 3267 // done) that the block *is* infinite if reached, we just make it an obviously 3268 // infinite loop with no cond branch. 3269 if (OtherDest == BB) { 3270 // Insert it at the end of the function, because it's either code, 3271 // or it won't matter if it's hot. :) 3272 BasicBlock *InfLoopBlock = 3273 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3274 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3275 OtherDest = InfLoopBlock; 3276 } 3277 3278 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3279 3280 // BI may have other predecessors. Because of this, we leave 3281 // it alone, but modify PBI. 3282 3283 // Make sure we get to CommonDest on True&True directions. 3284 Value *PBICond = PBI->getCondition(); 3285 IRBuilder<NoFolder> Builder(PBI); 3286 if (PBIOp) 3287 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3288 3289 Value *BICond = BI->getCondition(); 3290 if (BIOp) 3291 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3292 3293 // Merge the conditions. 3294 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3295 3296 // Modify PBI to branch on the new condition to the new dests. 3297 PBI->setCondition(Cond); 3298 PBI->setSuccessor(0, CommonDest); 3299 PBI->setSuccessor(1, OtherDest); 3300 3301 // Update branch weight for PBI. 3302 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3303 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3304 bool HasWeights = 3305 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3306 SuccTrueWeight, SuccFalseWeight); 3307 if (HasWeights) { 3308 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3309 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3310 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3311 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3312 // The weight to CommonDest should be PredCommon * SuccTotal + 3313 // PredOther * SuccCommon. 3314 // The weight to OtherDest should be PredOther * SuccOther. 3315 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3316 PredOther * SuccCommon, 3317 PredOther * SuccOther}; 3318 // Halve the weights if any of them cannot fit in an uint32_t 3319 FitWeights(NewWeights); 3320 3321 PBI->setMetadata(LLVMContext::MD_prof, 3322 MDBuilder(BI->getContext()) 3323 .createBranchWeights(NewWeights[0], NewWeights[1])); 3324 } 3325 3326 // OtherDest may have phi nodes. If so, add an entry from PBI's 3327 // block that are identical to the entries for BI's block. 3328 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3329 3330 // We know that the CommonDest already had an edge from PBI to 3331 // it. If it has PHIs though, the PHIs may have different 3332 // entries for BB and PBI's BB. If so, insert a select to make 3333 // them agree. 3334 PHINode *PN; 3335 for (BasicBlock::iterator II = CommonDest->begin(); 3336 (PN = dyn_cast<PHINode>(II)); ++II) { 3337 Value *BIV = PN->getIncomingValueForBlock(BB); 3338 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3339 Value *PBIV = PN->getIncomingValue(PBBIdx); 3340 if (BIV != PBIV) { 3341 // Insert a select in PBI to pick the right value. 3342 SelectInst *NV = cast<SelectInst>( 3343 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3344 PN->setIncomingValue(PBBIdx, NV); 3345 // Although the select has the same condition as PBI, the original branch 3346 // weights for PBI do not apply to the new select because the select's 3347 // 'logical' edges are incoming edges of the phi that is eliminated, not 3348 // the outgoing edges of PBI. 3349 if (HasWeights) { 3350 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3351 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3352 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3353 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3354 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3355 // The weight to PredOtherDest should be PredOther * SuccCommon. 3356 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3357 PredOther * SuccCommon}; 3358 3359 FitWeights(NewWeights); 3360 3361 NV->setMetadata(LLVMContext::MD_prof, 3362 MDBuilder(BI->getContext()) 3363 .createBranchWeights(NewWeights[0], NewWeights[1])); 3364 } 3365 } 3366 } 3367 3368 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3369 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3370 3371 // This basic block is probably dead. We know it has at least 3372 // one fewer predecessor. 3373 return true; 3374 } 3375 3376 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3377 // true or to FalseBB if Cond is false. 3378 // Takes care of updating the successors and removing the old terminator. 3379 // Also makes sure not to introduce new successors by assuming that edges to 3380 // non-successor TrueBBs and FalseBBs aren't reachable. 3381 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3382 BasicBlock *TrueBB, BasicBlock *FalseBB, 3383 uint32_t TrueWeight, 3384 uint32_t FalseWeight) { 3385 // Remove any superfluous successor edges from the CFG. 3386 // First, figure out which successors to preserve. 3387 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3388 // successor. 3389 BasicBlock *KeepEdge1 = TrueBB; 3390 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3391 3392 // Then remove the rest. 3393 for (BasicBlock *Succ : OldTerm->successors()) { 3394 // Make sure only to keep exactly one copy of each edge. 3395 if (Succ == KeepEdge1) 3396 KeepEdge1 = nullptr; 3397 else if (Succ == KeepEdge2) 3398 KeepEdge2 = nullptr; 3399 else 3400 Succ->removePredecessor(OldTerm->getParent(), 3401 /*DontDeleteUselessPHIs=*/true); 3402 } 3403 3404 IRBuilder<> Builder(OldTerm); 3405 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3406 3407 // Insert an appropriate new terminator. 3408 if (!KeepEdge1 && !KeepEdge2) { 3409 if (TrueBB == FalseBB) 3410 // We were only looking for one successor, and it was present. 3411 // Create an unconditional branch to it. 3412 Builder.CreateBr(TrueBB); 3413 else { 3414 // We found both of the successors we were looking for. 3415 // Create a conditional branch sharing the condition of the select. 3416 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3417 if (TrueWeight != FalseWeight) 3418 NewBI->setMetadata(LLVMContext::MD_prof, 3419 MDBuilder(OldTerm->getContext()) 3420 .createBranchWeights(TrueWeight, FalseWeight)); 3421 } 3422 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3423 // Neither of the selected blocks were successors, so this 3424 // terminator must be unreachable. 3425 new UnreachableInst(OldTerm->getContext(), OldTerm); 3426 } else { 3427 // One of the selected values was a successor, but the other wasn't. 3428 // Insert an unconditional branch to the one that was found; 3429 // the edge to the one that wasn't must be unreachable. 3430 if (!KeepEdge1) 3431 // Only TrueBB was found. 3432 Builder.CreateBr(TrueBB); 3433 else 3434 // Only FalseBB was found. 3435 Builder.CreateBr(FalseBB); 3436 } 3437 3438 EraseTerminatorInstAndDCECond(OldTerm); 3439 return true; 3440 } 3441 3442 // Replaces 3443 // (switch (select cond, X, Y)) on constant X, Y 3444 // with a branch - conditional if X and Y lead to distinct BBs, 3445 // unconditional otherwise. 3446 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3447 // Check for constant integer values in the select. 3448 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3449 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3450 if (!TrueVal || !FalseVal) 3451 return false; 3452 3453 // Find the relevant condition and destinations. 3454 Value *Condition = Select->getCondition(); 3455 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3456 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3457 3458 // Get weight for TrueBB and FalseBB. 3459 uint32_t TrueWeight = 0, FalseWeight = 0; 3460 SmallVector<uint64_t, 8> Weights; 3461 bool HasWeights = HasBranchWeights(SI); 3462 if (HasWeights) { 3463 GetBranchWeights(SI, Weights); 3464 if (Weights.size() == 1 + SI->getNumCases()) { 3465 TrueWeight = 3466 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3467 FalseWeight = 3468 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3469 } 3470 } 3471 3472 // Perform the actual simplification. 3473 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3474 FalseWeight); 3475 } 3476 3477 // Replaces 3478 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3479 // blockaddress(@fn, BlockB))) 3480 // with 3481 // (br cond, BlockA, BlockB). 3482 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3483 // Check that both operands of the select are block addresses. 3484 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3485 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3486 if (!TBA || !FBA) 3487 return false; 3488 3489 // Extract the actual blocks. 3490 BasicBlock *TrueBB = TBA->getBasicBlock(); 3491 BasicBlock *FalseBB = FBA->getBasicBlock(); 3492 3493 // Perform the actual simplification. 3494 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3495 0); 3496 } 3497 3498 /// This is called when we find an icmp instruction 3499 /// (a seteq/setne with a constant) as the only instruction in a 3500 /// block that ends with an uncond branch. We are looking for a very specific 3501 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3502 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3503 /// default value goes to an uncond block with a seteq in it, we get something 3504 /// like: 3505 /// 3506 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3507 /// DEFAULT: 3508 /// %tmp = icmp eq i8 %A, 92 3509 /// br label %end 3510 /// end: 3511 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3512 /// 3513 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3514 /// the PHI, merging the third icmp into the switch. 3515 static bool TryToSimplifyUncondBranchWithICmpInIt( 3516 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3517 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3518 AssumptionCache *AC) { 3519 BasicBlock *BB = ICI->getParent(); 3520 3521 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3522 // complex. 3523 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3524 return false; 3525 3526 Value *V = ICI->getOperand(0); 3527 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3528 3529 // The pattern we're looking for is where our only predecessor is a switch on 3530 // 'V' and this block is the default case for the switch. In this case we can 3531 // fold the compared value into the switch to simplify things. 3532 BasicBlock *Pred = BB->getSinglePredecessor(); 3533 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3534 return false; 3535 3536 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3537 if (SI->getCondition() != V) 3538 return false; 3539 3540 // If BB is reachable on a non-default case, then we simply know the value of 3541 // V in this block. Substitute it and constant fold the icmp instruction 3542 // away. 3543 if (SI->getDefaultDest() != BB) { 3544 ConstantInt *VVal = SI->findCaseDest(BB); 3545 assert(VVal && "Should have a unique destination value"); 3546 ICI->setOperand(0, VVal); 3547 3548 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3549 ICI->replaceAllUsesWith(V); 3550 ICI->eraseFromParent(); 3551 } 3552 // BB is now empty, so it is likely to simplify away. 3553 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3554 } 3555 3556 // Ok, the block is reachable from the default dest. If the constant we're 3557 // comparing exists in one of the other edges, then we can constant fold ICI 3558 // and zap it. 3559 if (SI->findCaseValue(Cst) != SI->case_default()) { 3560 Value *V; 3561 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3562 V = ConstantInt::getFalse(BB->getContext()); 3563 else 3564 V = ConstantInt::getTrue(BB->getContext()); 3565 3566 ICI->replaceAllUsesWith(V); 3567 ICI->eraseFromParent(); 3568 // BB is now empty, so it is likely to simplify away. 3569 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3570 } 3571 3572 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3573 // the block. 3574 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3575 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3576 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3577 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3578 return false; 3579 3580 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3581 // true in the PHI. 3582 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3583 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3584 3585 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3586 std::swap(DefaultCst, NewCst); 3587 3588 // Replace ICI (which is used by the PHI for the default value) with true or 3589 // false depending on if it is EQ or NE. 3590 ICI->replaceAllUsesWith(DefaultCst); 3591 ICI->eraseFromParent(); 3592 3593 // Okay, the switch goes to this block on a default value. Add an edge from 3594 // the switch to the merge point on the compared value. 3595 BasicBlock *NewBB = 3596 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3597 SmallVector<uint64_t, 8> Weights; 3598 bool HasWeights = HasBranchWeights(SI); 3599 if (HasWeights) { 3600 GetBranchWeights(SI, Weights); 3601 if (Weights.size() == 1 + SI->getNumCases()) { 3602 // Split weight for default case to case for "Cst". 3603 Weights[0] = (Weights[0] + 1) >> 1; 3604 Weights.push_back(Weights[0]); 3605 3606 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3607 SI->setMetadata( 3608 LLVMContext::MD_prof, 3609 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3610 } 3611 } 3612 SI->addCase(Cst, NewBB); 3613 3614 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3615 Builder.SetInsertPoint(NewBB); 3616 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3617 Builder.CreateBr(SuccBlock); 3618 PHIUse->addIncoming(NewCst, NewBB); 3619 return true; 3620 } 3621 3622 /// The specified branch is a conditional branch. 3623 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3624 /// fold it into a switch instruction if so. 3625 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3626 const DataLayout &DL) { 3627 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3628 if (!Cond) 3629 return false; 3630 3631 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3632 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3633 // 'setne's and'ed together, collect them. 3634 3635 // Try to gather values from a chain of and/or to be turned into a switch 3636 ConstantComparesGatherer ConstantCompare(Cond, DL); 3637 // Unpack the result 3638 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3639 Value *CompVal = ConstantCompare.CompValue; 3640 unsigned UsedICmps = ConstantCompare.UsedICmps; 3641 Value *ExtraCase = ConstantCompare.Extra; 3642 3643 // If we didn't have a multiply compared value, fail. 3644 if (!CompVal) 3645 return false; 3646 3647 // Avoid turning single icmps into a switch. 3648 if (UsedICmps <= 1) 3649 return false; 3650 3651 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3652 3653 // There might be duplicate constants in the list, which the switch 3654 // instruction can't handle, remove them now. 3655 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3656 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3657 3658 // If Extra was used, we require at least two switch values to do the 3659 // transformation. A switch with one value is just a conditional branch. 3660 if (ExtraCase && Values.size() < 2) 3661 return false; 3662 3663 // TODO: Preserve branch weight metadata, similarly to how 3664 // FoldValueComparisonIntoPredecessors preserves it. 3665 3666 // Figure out which block is which destination. 3667 BasicBlock *DefaultBB = BI->getSuccessor(1); 3668 BasicBlock *EdgeBB = BI->getSuccessor(0); 3669 if (!TrueWhenEqual) 3670 std::swap(DefaultBB, EdgeBB); 3671 3672 BasicBlock *BB = BI->getParent(); 3673 3674 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3675 << " cases into SWITCH. BB is:\n" 3676 << *BB); 3677 3678 // If there are any extra values that couldn't be folded into the switch 3679 // then we evaluate them with an explicit branch first. Split the block 3680 // right before the condbr to handle it. 3681 if (ExtraCase) { 3682 BasicBlock *NewBB = 3683 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3684 // Remove the uncond branch added to the old block. 3685 TerminatorInst *OldTI = BB->getTerminator(); 3686 Builder.SetInsertPoint(OldTI); 3687 3688 if (TrueWhenEqual) 3689 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3690 else 3691 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3692 3693 OldTI->eraseFromParent(); 3694 3695 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3696 // for the edge we just added. 3697 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3698 3699 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3700 << "\nEXTRABB = " << *BB); 3701 BB = NewBB; 3702 } 3703 3704 Builder.SetInsertPoint(BI); 3705 // Convert pointer to int before we switch. 3706 if (CompVal->getType()->isPointerTy()) { 3707 CompVal = Builder.CreatePtrToInt( 3708 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3709 } 3710 3711 // Create the new switch instruction now. 3712 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3713 3714 // Add all of the 'cases' to the switch instruction. 3715 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3716 New->addCase(Values[i], EdgeBB); 3717 3718 // We added edges from PI to the EdgeBB. As such, if there were any 3719 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3720 // the number of edges added. 3721 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3722 PHINode *PN = cast<PHINode>(BBI); 3723 Value *InVal = PN->getIncomingValueForBlock(BB); 3724 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3725 PN->addIncoming(InVal, BB); 3726 } 3727 3728 // Erase the old branch instruction. 3729 EraseTerminatorInstAndDCECond(BI); 3730 3731 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3732 return true; 3733 } 3734 3735 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3736 if (isa<PHINode>(RI->getValue())) 3737 return SimplifyCommonResume(RI); 3738 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3739 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3740 // The resume must unwind the exception that caused control to branch here. 3741 return SimplifySingleResume(RI); 3742 3743 return false; 3744 } 3745 3746 // Simplify resume that is shared by several landing pads (phi of landing pad). 3747 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3748 BasicBlock *BB = RI->getParent(); 3749 3750 // Check that there are no other instructions except for debug intrinsics 3751 // between the phi of landing pads (RI->getValue()) and resume instruction. 3752 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3753 E = RI->getIterator(); 3754 while (++I != E) 3755 if (!isa<DbgInfoIntrinsic>(I)) 3756 return false; 3757 3758 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3759 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3760 3761 // Check incoming blocks to see if any of them are trivial. 3762 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3763 Idx++) { 3764 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3765 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3766 3767 // If the block has other successors, we can not delete it because 3768 // it has other dependents. 3769 if (IncomingBB->getUniqueSuccessor() != BB) 3770 continue; 3771 3772 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3773 // Not the landing pad that caused the control to branch here. 3774 if (IncomingValue != LandingPad) 3775 continue; 3776 3777 bool isTrivial = true; 3778 3779 I = IncomingBB->getFirstNonPHI()->getIterator(); 3780 E = IncomingBB->getTerminator()->getIterator(); 3781 while (++I != E) 3782 if (!isa<DbgInfoIntrinsic>(I)) { 3783 isTrivial = false; 3784 break; 3785 } 3786 3787 if (isTrivial) 3788 TrivialUnwindBlocks.insert(IncomingBB); 3789 } 3790 3791 // If no trivial unwind blocks, don't do any simplifications. 3792 if (TrivialUnwindBlocks.empty()) 3793 return false; 3794 3795 // Turn all invokes that unwind here into calls. 3796 for (auto *TrivialBB : TrivialUnwindBlocks) { 3797 // Blocks that will be simplified should be removed from the phi node. 3798 // Note there could be multiple edges to the resume block, and we need 3799 // to remove them all. 3800 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3801 BB->removePredecessor(TrivialBB, true); 3802 3803 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3804 PI != PE;) { 3805 BasicBlock *Pred = *PI++; 3806 removeUnwindEdge(Pred); 3807 } 3808 3809 // In each SimplifyCFG run, only the current processed block can be erased. 3810 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3811 // of erasing TrivialBB, we only remove the branch to the common resume 3812 // block so that we can later erase the resume block since it has no 3813 // predecessors. 3814 TrivialBB->getTerminator()->eraseFromParent(); 3815 new UnreachableInst(RI->getContext(), TrivialBB); 3816 } 3817 3818 // Delete the resume block if all its predecessors have been removed. 3819 if (pred_empty(BB)) 3820 BB->eraseFromParent(); 3821 3822 return !TrivialUnwindBlocks.empty(); 3823 } 3824 3825 // Simplify resume that is only used by a single (non-phi) landing pad. 3826 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3827 BasicBlock *BB = RI->getParent(); 3828 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3829 assert(RI->getValue() == LPInst && 3830 "Resume must unwind the exception that caused control to here"); 3831 3832 // Check that there are no other instructions except for debug intrinsics. 3833 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3834 while (++I != E) 3835 if (!isa<DbgInfoIntrinsic>(I)) 3836 return false; 3837 3838 // Turn all invokes that unwind here into calls and delete the basic block. 3839 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3840 BasicBlock *Pred = *PI++; 3841 removeUnwindEdge(Pred); 3842 } 3843 3844 // The landingpad is now unreachable. Zap it. 3845 BB->eraseFromParent(); 3846 if (LoopHeaders) 3847 LoopHeaders->erase(BB); 3848 return true; 3849 } 3850 3851 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3852 // If this is a trivial cleanup pad that executes no instructions, it can be 3853 // eliminated. If the cleanup pad continues to the caller, any predecessor 3854 // that is an EH pad will be updated to continue to the caller and any 3855 // predecessor that terminates with an invoke instruction will have its invoke 3856 // instruction converted to a call instruction. If the cleanup pad being 3857 // simplified does not continue to the caller, each predecessor will be 3858 // updated to continue to the unwind destination of the cleanup pad being 3859 // simplified. 3860 BasicBlock *BB = RI->getParent(); 3861 CleanupPadInst *CPInst = RI->getCleanupPad(); 3862 if (CPInst->getParent() != BB) 3863 // This isn't an empty cleanup. 3864 return false; 3865 3866 // We cannot kill the pad if it has multiple uses. This typically arises 3867 // from unreachable basic blocks. 3868 if (!CPInst->hasOneUse()) 3869 return false; 3870 3871 // Check that there are no other instructions except for benign intrinsics. 3872 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3873 while (++I != E) { 3874 auto *II = dyn_cast<IntrinsicInst>(I); 3875 if (!II) 3876 return false; 3877 3878 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3879 switch (IntrinsicID) { 3880 case Intrinsic::dbg_declare: 3881 case Intrinsic::dbg_value: 3882 case Intrinsic::lifetime_end: 3883 break; 3884 default: 3885 return false; 3886 } 3887 } 3888 3889 // If the cleanup return we are simplifying unwinds to the caller, this will 3890 // set UnwindDest to nullptr. 3891 BasicBlock *UnwindDest = RI->getUnwindDest(); 3892 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3893 3894 // We're about to remove BB from the control flow. Before we do, sink any 3895 // PHINodes into the unwind destination. Doing this before changing the 3896 // control flow avoids some potentially slow checks, since we can currently 3897 // be certain that UnwindDest and BB have no common predecessors (since they 3898 // are both EH pads). 3899 if (UnwindDest) { 3900 // First, go through the PHI nodes in UnwindDest and update any nodes that 3901 // reference the block we are removing 3902 for (BasicBlock::iterator I = UnwindDest->begin(), 3903 IE = DestEHPad->getIterator(); 3904 I != IE; ++I) { 3905 PHINode *DestPN = cast<PHINode>(I); 3906 3907 int Idx = DestPN->getBasicBlockIndex(BB); 3908 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3909 assert(Idx != -1); 3910 // This PHI node has an incoming value that corresponds to a control 3911 // path through the cleanup pad we are removing. If the incoming 3912 // value is in the cleanup pad, it must be a PHINode (because we 3913 // verified above that the block is otherwise empty). Otherwise, the 3914 // value is either a constant or a value that dominates the cleanup 3915 // pad being removed. 3916 // 3917 // Because BB and UnwindDest are both EH pads, all of their 3918 // predecessors must unwind to these blocks, and since no instruction 3919 // can have multiple unwind destinations, there will be no overlap in 3920 // incoming blocks between SrcPN and DestPN. 3921 Value *SrcVal = DestPN->getIncomingValue(Idx); 3922 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3923 3924 // Remove the entry for the block we are deleting. 3925 DestPN->removeIncomingValue(Idx, false); 3926 3927 if (SrcPN && SrcPN->getParent() == BB) { 3928 // If the incoming value was a PHI node in the cleanup pad we are 3929 // removing, we need to merge that PHI node's incoming values into 3930 // DestPN. 3931 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3932 SrcIdx != SrcE; ++SrcIdx) { 3933 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3934 SrcPN->getIncomingBlock(SrcIdx)); 3935 } 3936 } else { 3937 // Otherwise, the incoming value came from above BB and 3938 // so we can just reuse it. We must associate all of BB's 3939 // predecessors with this value. 3940 for (auto *pred : predecessors(BB)) { 3941 DestPN->addIncoming(SrcVal, pred); 3942 } 3943 } 3944 } 3945 3946 // Sink any remaining PHI nodes directly into UnwindDest. 3947 Instruction *InsertPt = DestEHPad; 3948 for (BasicBlock::iterator I = BB->begin(), 3949 IE = BB->getFirstNonPHI()->getIterator(); 3950 I != IE;) { 3951 // The iterator must be incremented here because the instructions are 3952 // being moved to another block. 3953 PHINode *PN = cast<PHINode>(I++); 3954 if (PN->use_empty()) 3955 // If the PHI node has no uses, just leave it. It will be erased 3956 // when we erase BB below. 3957 continue; 3958 3959 // Otherwise, sink this PHI node into UnwindDest. 3960 // Any predecessors to UnwindDest which are not already represented 3961 // must be back edges which inherit the value from the path through 3962 // BB. In this case, the PHI value must reference itself. 3963 for (auto *pred : predecessors(UnwindDest)) 3964 if (pred != BB) 3965 PN->addIncoming(PN, pred); 3966 PN->moveBefore(InsertPt); 3967 } 3968 } 3969 3970 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3971 // The iterator must be updated here because we are removing this pred. 3972 BasicBlock *PredBB = *PI++; 3973 if (UnwindDest == nullptr) { 3974 removeUnwindEdge(PredBB); 3975 } else { 3976 TerminatorInst *TI = PredBB->getTerminator(); 3977 TI->replaceUsesOfWith(BB, UnwindDest); 3978 } 3979 } 3980 3981 // The cleanup pad is now unreachable. Zap it. 3982 BB->eraseFromParent(); 3983 return true; 3984 } 3985 3986 // Try to merge two cleanuppads together. 3987 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3988 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3989 // with. 3990 BasicBlock *UnwindDest = RI->getUnwindDest(); 3991 if (!UnwindDest) 3992 return false; 3993 3994 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3995 // be safe to merge without code duplication. 3996 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3997 return false; 3998 3999 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4000 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4001 if (!SuccessorCleanupPad) 4002 return false; 4003 4004 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4005 // Replace any uses of the successor cleanupad with the predecessor pad 4006 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4007 // funclet bundle operands. 4008 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4009 // Remove the old cleanuppad. 4010 SuccessorCleanupPad->eraseFromParent(); 4011 // Now, we simply replace the cleanupret with a branch to the unwind 4012 // destination. 4013 BranchInst::Create(UnwindDest, RI->getParent()); 4014 RI->eraseFromParent(); 4015 4016 return true; 4017 } 4018 4019 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4020 // It is possible to transiantly have an undef cleanuppad operand because we 4021 // have deleted some, but not all, dead blocks. 4022 // Eventually, this block will be deleted. 4023 if (isa<UndefValue>(RI->getOperand(0))) 4024 return false; 4025 4026 if (mergeCleanupPad(RI)) 4027 return true; 4028 4029 if (removeEmptyCleanup(RI)) 4030 return true; 4031 4032 return false; 4033 } 4034 4035 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4036 BasicBlock *BB = RI->getParent(); 4037 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4038 return false; 4039 4040 // Find predecessors that end with branches. 4041 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4042 SmallVector<BranchInst *, 8> CondBranchPreds; 4043 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4044 BasicBlock *P = *PI; 4045 TerminatorInst *PTI = P->getTerminator(); 4046 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4047 if (BI->isUnconditional()) 4048 UncondBranchPreds.push_back(P); 4049 else 4050 CondBranchPreds.push_back(BI); 4051 } 4052 } 4053 4054 // If we found some, do the transformation! 4055 if (!UncondBranchPreds.empty() && DupRet) { 4056 while (!UncondBranchPreds.empty()) { 4057 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4058 DEBUG(dbgs() << "FOLDING: " << *BB 4059 << "INTO UNCOND BRANCH PRED: " << *Pred); 4060 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4061 } 4062 4063 // If we eliminated all predecessors of the block, delete the block now. 4064 if (pred_empty(BB)) { 4065 // We know there are no successors, so just nuke the block. 4066 BB->eraseFromParent(); 4067 if (LoopHeaders) 4068 LoopHeaders->erase(BB); 4069 } 4070 4071 return true; 4072 } 4073 4074 // Check out all of the conditional branches going to this return 4075 // instruction. If any of them just select between returns, change the 4076 // branch itself into a select/return pair. 4077 while (!CondBranchPreds.empty()) { 4078 BranchInst *BI = CondBranchPreds.pop_back_val(); 4079 4080 // Check to see if the non-BB successor is also a return block. 4081 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4082 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4083 SimplifyCondBranchToTwoReturns(BI, Builder)) 4084 return true; 4085 } 4086 return false; 4087 } 4088 4089 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4090 BasicBlock *BB = UI->getParent(); 4091 4092 bool Changed = false; 4093 4094 // If there are any instructions immediately before the unreachable that can 4095 // be removed, do so. 4096 while (UI->getIterator() != BB->begin()) { 4097 BasicBlock::iterator BBI = UI->getIterator(); 4098 --BBI; 4099 // Do not delete instructions that can have side effects which might cause 4100 // the unreachable to not be reachable; specifically, calls and volatile 4101 // operations may have this effect. 4102 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4103 break; 4104 4105 if (BBI->mayHaveSideEffects()) { 4106 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4107 if (SI->isVolatile()) 4108 break; 4109 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4110 if (LI->isVolatile()) 4111 break; 4112 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4113 if (RMWI->isVolatile()) 4114 break; 4115 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4116 if (CXI->isVolatile()) 4117 break; 4118 } else if (isa<CatchPadInst>(BBI)) { 4119 // A catchpad may invoke exception object constructors and such, which 4120 // in some languages can be arbitrary code, so be conservative by 4121 // default. 4122 // For CoreCLR, it just involves a type test, so can be removed. 4123 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4124 EHPersonality::CoreCLR) 4125 break; 4126 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4127 !isa<LandingPadInst>(BBI)) { 4128 break; 4129 } 4130 // Note that deleting LandingPad's here is in fact okay, although it 4131 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4132 // all the predecessors of this block will be the unwind edges of Invokes, 4133 // and we can therefore guarantee this block will be erased. 4134 } 4135 4136 // Delete this instruction (any uses are guaranteed to be dead) 4137 if (!BBI->use_empty()) 4138 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4139 BBI->eraseFromParent(); 4140 Changed = true; 4141 } 4142 4143 // If the unreachable instruction is the first in the block, take a gander 4144 // at all of the predecessors of this instruction, and simplify them. 4145 if (&BB->front() != UI) 4146 return Changed; 4147 4148 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4149 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4150 TerminatorInst *TI = Preds[i]->getTerminator(); 4151 IRBuilder<> Builder(TI); 4152 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4153 if (BI->isUnconditional()) { 4154 if (BI->getSuccessor(0) == BB) { 4155 new UnreachableInst(TI->getContext(), TI); 4156 TI->eraseFromParent(); 4157 Changed = true; 4158 } 4159 } else { 4160 if (BI->getSuccessor(0) == BB) { 4161 Builder.CreateBr(BI->getSuccessor(1)); 4162 EraseTerminatorInstAndDCECond(BI); 4163 } else if (BI->getSuccessor(1) == BB) { 4164 Builder.CreateBr(BI->getSuccessor(0)); 4165 EraseTerminatorInstAndDCECond(BI); 4166 Changed = true; 4167 } 4168 } 4169 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4170 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4171 if (i->getCaseSuccessor() != BB) { 4172 ++i; 4173 continue; 4174 } 4175 BB->removePredecessor(SI->getParent()); 4176 i = SI->removeCase(i); 4177 e = SI->case_end(); 4178 Changed = true; 4179 } 4180 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4181 if (II->getUnwindDest() == BB) { 4182 removeUnwindEdge(TI->getParent()); 4183 Changed = true; 4184 } 4185 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4186 if (CSI->getUnwindDest() == BB) { 4187 removeUnwindEdge(TI->getParent()); 4188 Changed = true; 4189 continue; 4190 } 4191 4192 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4193 E = CSI->handler_end(); 4194 I != E; ++I) { 4195 if (*I == BB) { 4196 CSI->removeHandler(I); 4197 --I; 4198 --E; 4199 Changed = true; 4200 } 4201 } 4202 if (CSI->getNumHandlers() == 0) { 4203 BasicBlock *CatchSwitchBB = CSI->getParent(); 4204 if (CSI->hasUnwindDest()) { 4205 // Redirect preds to the unwind dest 4206 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4207 } else { 4208 // Rewrite all preds to unwind to caller (or from invoke to call). 4209 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4210 for (BasicBlock *EHPred : EHPreds) 4211 removeUnwindEdge(EHPred); 4212 } 4213 // The catchswitch is no longer reachable. 4214 new UnreachableInst(CSI->getContext(), CSI); 4215 CSI->eraseFromParent(); 4216 Changed = true; 4217 } 4218 } else if (isa<CleanupReturnInst>(TI)) { 4219 new UnreachableInst(TI->getContext(), TI); 4220 TI->eraseFromParent(); 4221 Changed = true; 4222 } 4223 } 4224 4225 // If this block is now dead, remove it. 4226 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4227 // We know there are no successors, so just nuke the block. 4228 BB->eraseFromParent(); 4229 if (LoopHeaders) 4230 LoopHeaders->erase(BB); 4231 return true; 4232 } 4233 4234 return Changed; 4235 } 4236 4237 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4238 assert(Cases.size() >= 1); 4239 4240 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4241 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4242 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4243 return false; 4244 } 4245 return true; 4246 } 4247 4248 /// Turn a switch with two reachable destinations into an integer range 4249 /// comparison and branch. 4250 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4251 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4252 4253 bool HasDefault = 4254 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4255 4256 // Partition the cases into two sets with different destinations. 4257 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4258 BasicBlock *DestB = nullptr; 4259 SmallVector<ConstantInt *, 16> CasesA; 4260 SmallVector<ConstantInt *, 16> CasesB; 4261 4262 for (auto Case : SI->cases()) { 4263 BasicBlock *Dest = Case.getCaseSuccessor(); 4264 if (!DestA) 4265 DestA = Dest; 4266 if (Dest == DestA) { 4267 CasesA.push_back(Case.getCaseValue()); 4268 continue; 4269 } 4270 if (!DestB) 4271 DestB = Dest; 4272 if (Dest == DestB) { 4273 CasesB.push_back(Case.getCaseValue()); 4274 continue; 4275 } 4276 return false; // More than two destinations. 4277 } 4278 4279 assert(DestA && DestB && 4280 "Single-destination switch should have been folded."); 4281 assert(DestA != DestB); 4282 assert(DestB != SI->getDefaultDest()); 4283 assert(!CasesB.empty() && "There must be non-default cases."); 4284 assert(!CasesA.empty() || HasDefault); 4285 4286 // Figure out if one of the sets of cases form a contiguous range. 4287 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4288 BasicBlock *ContiguousDest = nullptr; 4289 BasicBlock *OtherDest = nullptr; 4290 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4291 ContiguousCases = &CasesA; 4292 ContiguousDest = DestA; 4293 OtherDest = DestB; 4294 } else if (CasesAreContiguous(CasesB)) { 4295 ContiguousCases = &CasesB; 4296 ContiguousDest = DestB; 4297 OtherDest = DestA; 4298 } else 4299 return false; 4300 4301 // Start building the compare and branch. 4302 4303 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4304 Constant *NumCases = 4305 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4306 4307 Value *Sub = SI->getCondition(); 4308 if (!Offset->isNullValue()) 4309 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4310 4311 Value *Cmp; 4312 // If NumCases overflowed, then all possible values jump to the successor. 4313 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4314 Cmp = ConstantInt::getTrue(SI->getContext()); 4315 else 4316 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4317 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4318 4319 // Update weight for the newly-created conditional branch. 4320 if (HasBranchWeights(SI)) { 4321 SmallVector<uint64_t, 8> Weights; 4322 GetBranchWeights(SI, Weights); 4323 if (Weights.size() == 1 + SI->getNumCases()) { 4324 uint64_t TrueWeight = 0; 4325 uint64_t FalseWeight = 0; 4326 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4327 if (SI->getSuccessor(I) == ContiguousDest) 4328 TrueWeight += Weights[I]; 4329 else 4330 FalseWeight += Weights[I]; 4331 } 4332 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4333 TrueWeight /= 2; 4334 FalseWeight /= 2; 4335 } 4336 NewBI->setMetadata(LLVMContext::MD_prof, 4337 MDBuilder(SI->getContext()) 4338 .createBranchWeights((uint32_t)TrueWeight, 4339 (uint32_t)FalseWeight)); 4340 } 4341 } 4342 4343 // Prune obsolete incoming values off the successors' PHI nodes. 4344 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4345 unsigned PreviousEdges = ContiguousCases->size(); 4346 if (ContiguousDest == SI->getDefaultDest()) 4347 ++PreviousEdges; 4348 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4349 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4350 } 4351 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4352 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4353 if (OtherDest == SI->getDefaultDest()) 4354 ++PreviousEdges; 4355 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4356 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4357 } 4358 4359 // Drop the switch. 4360 SI->eraseFromParent(); 4361 4362 return true; 4363 } 4364 4365 /// Compute masked bits for the condition of a switch 4366 /// and use it to remove dead cases. 4367 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4368 const DataLayout &DL) { 4369 Value *Cond = SI->getCondition(); 4370 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4371 KnownBits Known(Bits); 4372 computeKnownBits(Cond, Known, DL, 0, AC, SI); 4373 4374 // We can also eliminate cases by determining that their values are outside of 4375 // the limited range of the condition based on how many significant (non-sign) 4376 // bits are in the condition value. 4377 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4378 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4379 4380 // Gather dead cases. 4381 SmallVector<ConstantInt *, 8> DeadCases; 4382 for (auto &Case : SI->cases()) { 4383 APInt CaseVal = Case.getCaseValue()->getValue(); 4384 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4385 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4386 DeadCases.push_back(Case.getCaseValue()); 4387 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4388 } 4389 } 4390 4391 // If we can prove that the cases must cover all possible values, the 4392 // default destination becomes dead and we can remove it. If we know some 4393 // of the bits in the value, we can use that to more precisely compute the 4394 // number of possible unique case values. 4395 bool HasDefault = 4396 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4397 const unsigned NumUnknownBits = 4398 Bits - (Known.Zero | Known.One).countPopulation(); 4399 assert(NumUnknownBits <= Bits); 4400 if (HasDefault && DeadCases.empty() && 4401 NumUnknownBits < 64 /* avoid overflow */ && 4402 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4403 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4404 BasicBlock *NewDefault = 4405 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4406 SI->setDefaultDest(&*NewDefault); 4407 SplitBlock(&*NewDefault, &NewDefault->front()); 4408 auto *OldTI = NewDefault->getTerminator(); 4409 new UnreachableInst(SI->getContext(), OldTI); 4410 EraseTerminatorInstAndDCECond(OldTI); 4411 return true; 4412 } 4413 4414 SmallVector<uint64_t, 8> Weights; 4415 bool HasWeight = HasBranchWeights(SI); 4416 if (HasWeight) { 4417 GetBranchWeights(SI, Weights); 4418 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4419 } 4420 4421 // Remove dead cases from the switch. 4422 for (ConstantInt *DeadCase : DeadCases) { 4423 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4424 assert(CaseI != SI->case_default() && 4425 "Case was not found. Probably mistake in DeadCases forming."); 4426 if (HasWeight) { 4427 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4428 Weights.pop_back(); 4429 } 4430 4431 // Prune unused values from PHI nodes. 4432 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4433 SI->removeCase(CaseI); 4434 } 4435 if (HasWeight && Weights.size() >= 2) { 4436 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4437 SI->setMetadata(LLVMContext::MD_prof, 4438 MDBuilder(SI->getParent()->getContext()) 4439 .createBranchWeights(MDWeights)); 4440 } 4441 4442 return !DeadCases.empty(); 4443 } 4444 4445 /// If BB would be eligible for simplification by 4446 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4447 /// by an unconditional branch), look at the phi node for BB in the successor 4448 /// block and see if the incoming value is equal to CaseValue. If so, return 4449 /// the phi node, and set PhiIndex to BB's index in the phi node. 4450 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4451 BasicBlock *BB, int *PhiIndex) { 4452 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4453 return nullptr; // BB must be empty to be a candidate for simplification. 4454 if (!BB->getSinglePredecessor()) 4455 return nullptr; // BB must be dominated by the switch. 4456 4457 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4458 if (!Branch || !Branch->isUnconditional()) 4459 return nullptr; // Terminator must be unconditional branch. 4460 4461 BasicBlock *Succ = Branch->getSuccessor(0); 4462 4463 BasicBlock::iterator I = Succ->begin(); 4464 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4465 int Idx = PHI->getBasicBlockIndex(BB); 4466 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4467 4468 Value *InValue = PHI->getIncomingValue(Idx); 4469 if (InValue != CaseValue) 4470 continue; 4471 4472 *PhiIndex = Idx; 4473 return PHI; 4474 } 4475 4476 return nullptr; 4477 } 4478 4479 /// Try to forward the condition of a switch instruction to a phi node 4480 /// dominated by the switch, if that would mean that some of the destination 4481 /// blocks of the switch can be folded away. 4482 /// Returns true if a change is made. 4483 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4484 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4485 ForwardingNodesMap ForwardingNodes; 4486 4487 for (auto Case : SI->cases()) { 4488 ConstantInt *CaseValue = Case.getCaseValue(); 4489 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4490 4491 int PhiIndex; 4492 PHINode *PHI = 4493 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4494 if (!PHI) 4495 continue; 4496 4497 ForwardingNodes[PHI].push_back(PhiIndex); 4498 } 4499 4500 bool Changed = false; 4501 4502 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4503 E = ForwardingNodes.end(); 4504 I != E; ++I) { 4505 PHINode *Phi = I->first; 4506 SmallVectorImpl<int> &Indexes = I->second; 4507 4508 if (Indexes.size() < 2) 4509 continue; 4510 4511 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4512 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4513 Changed = true; 4514 } 4515 4516 return Changed; 4517 } 4518 4519 /// Return true if the backend will be able to handle 4520 /// initializing an array of constants like C. 4521 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4522 if (C->isThreadDependent()) 4523 return false; 4524 if (C->isDLLImportDependent()) 4525 return false; 4526 4527 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4528 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4529 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4530 return false; 4531 4532 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4533 if (!CE->isGEPWithNoNotionalOverIndexing()) 4534 return false; 4535 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4536 return false; 4537 } 4538 4539 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4540 return false; 4541 4542 return true; 4543 } 4544 4545 /// If V is a Constant, return it. Otherwise, try to look up 4546 /// its constant value in ConstantPool, returning 0 if it's not there. 4547 static Constant * 4548 LookupConstant(Value *V, 4549 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4550 if (Constant *C = dyn_cast<Constant>(V)) 4551 return C; 4552 return ConstantPool.lookup(V); 4553 } 4554 4555 /// Try to fold instruction I into a constant. This works for 4556 /// simple instructions such as binary operations where both operands are 4557 /// constant or can be replaced by constants from the ConstantPool. Returns the 4558 /// resulting constant on success, 0 otherwise. 4559 static Constant * 4560 ConstantFold(Instruction *I, const DataLayout &DL, 4561 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4562 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4563 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4564 if (!A) 4565 return nullptr; 4566 if (A->isAllOnesValue()) 4567 return LookupConstant(Select->getTrueValue(), ConstantPool); 4568 if (A->isNullValue()) 4569 return LookupConstant(Select->getFalseValue(), ConstantPool); 4570 return nullptr; 4571 } 4572 4573 SmallVector<Constant *, 4> COps; 4574 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4575 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4576 COps.push_back(A); 4577 else 4578 return nullptr; 4579 } 4580 4581 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4582 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4583 COps[1], DL); 4584 } 4585 4586 return ConstantFoldInstOperands(I, COps, DL); 4587 } 4588 4589 /// Try to determine the resulting constant values in phi nodes 4590 /// at the common destination basic block, *CommonDest, for one of the case 4591 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4592 /// case), of a switch instruction SI. 4593 static bool 4594 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4595 BasicBlock **CommonDest, 4596 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4597 const DataLayout &DL, const TargetTransformInfo &TTI) { 4598 // The block from which we enter the common destination. 4599 BasicBlock *Pred = SI->getParent(); 4600 4601 // If CaseDest is empty except for some side-effect free instructions through 4602 // which we can constant-propagate the CaseVal, continue to its successor. 4603 SmallDenseMap<Value *, Constant *> ConstantPool; 4604 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4605 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4606 ++I) { 4607 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4608 // If the terminator is a simple branch, continue to the next block. 4609 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4610 return false; 4611 Pred = CaseDest; 4612 CaseDest = T->getSuccessor(0); 4613 } else if (isa<DbgInfoIntrinsic>(I)) { 4614 // Skip debug intrinsic. 4615 continue; 4616 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4617 // Instruction is side-effect free and constant. 4618 4619 // If the instruction has uses outside this block or a phi node slot for 4620 // the block, it is not safe to bypass the instruction since it would then 4621 // no longer dominate all its uses. 4622 for (auto &Use : I->uses()) { 4623 User *User = Use.getUser(); 4624 if (Instruction *I = dyn_cast<Instruction>(User)) 4625 if (I->getParent() == CaseDest) 4626 continue; 4627 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4628 if (Phi->getIncomingBlock(Use) == CaseDest) 4629 continue; 4630 return false; 4631 } 4632 4633 ConstantPool.insert(std::make_pair(&*I, C)); 4634 } else { 4635 break; 4636 } 4637 } 4638 4639 // If we did not have a CommonDest before, use the current one. 4640 if (!*CommonDest) 4641 *CommonDest = CaseDest; 4642 // If the destination isn't the common one, abort. 4643 if (CaseDest != *CommonDest) 4644 return false; 4645 4646 // Get the values for this case from phi nodes in the destination block. 4647 BasicBlock::iterator I = (*CommonDest)->begin(); 4648 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4649 int Idx = PHI->getBasicBlockIndex(Pred); 4650 if (Idx == -1) 4651 continue; 4652 4653 Constant *ConstVal = 4654 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4655 if (!ConstVal) 4656 return false; 4657 4658 // Be conservative about which kinds of constants we support. 4659 if (!ValidLookupTableConstant(ConstVal, TTI)) 4660 return false; 4661 4662 Res.push_back(std::make_pair(PHI, ConstVal)); 4663 } 4664 4665 return Res.size() > 0; 4666 } 4667 4668 // Helper function used to add CaseVal to the list of cases that generate 4669 // Result. 4670 static void MapCaseToResult(ConstantInt *CaseVal, 4671 SwitchCaseResultVectorTy &UniqueResults, 4672 Constant *Result) { 4673 for (auto &I : UniqueResults) { 4674 if (I.first == Result) { 4675 I.second.push_back(CaseVal); 4676 return; 4677 } 4678 } 4679 UniqueResults.push_back( 4680 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4681 } 4682 4683 // Helper function that initializes a map containing 4684 // results for the PHI node of the common destination block for a switch 4685 // instruction. Returns false if multiple PHI nodes have been found or if 4686 // there is not a common destination block for the switch. 4687 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4688 BasicBlock *&CommonDest, 4689 SwitchCaseResultVectorTy &UniqueResults, 4690 Constant *&DefaultResult, 4691 const DataLayout &DL, 4692 const TargetTransformInfo &TTI) { 4693 for (auto &I : SI->cases()) { 4694 ConstantInt *CaseVal = I.getCaseValue(); 4695 4696 // Resulting value at phi nodes for this case value. 4697 SwitchCaseResultsTy Results; 4698 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4699 DL, TTI)) 4700 return false; 4701 4702 // Only one value per case is permitted 4703 if (Results.size() > 1) 4704 return false; 4705 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4706 4707 // Check the PHI consistency. 4708 if (!PHI) 4709 PHI = Results[0].first; 4710 else if (PHI != Results[0].first) 4711 return false; 4712 } 4713 // Find the default result value. 4714 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4715 BasicBlock *DefaultDest = SI->getDefaultDest(); 4716 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4717 DL, TTI); 4718 // If the default value is not found abort unless the default destination 4719 // is unreachable. 4720 DefaultResult = 4721 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4722 if ((!DefaultResult && 4723 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4724 return false; 4725 4726 return true; 4727 } 4728 4729 // Helper function that checks if it is possible to transform a switch with only 4730 // two cases (or two cases + default) that produces a result into a select. 4731 // Example: 4732 // switch (a) { 4733 // case 10: %0 = icmp eq i32 %a, 10 4734 // return 10; %1 = select i1 %0, i32 10, i32 4 4735 // case 20: ----> %2 = icmp eq i32 %a, 20 4736 // return 2; %3 = select i1 %2, i32 2, i32 %1 4737 // default: 4738 // return 4; 4739 // } 4740 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4741 Constant *DefaultResult, Value *Condition, 4742 IRBuilder<> &Builder) { 4743 assert(ResultVector.size() == 2 && 4744 "We should have exactly two unique results at this point"); 4745 // If we are selecting between only two cases transform into a simple 4746 // select or a two-way select if default is possible. 4747 if (ResultVector[0].second.size() == 1 && 4748 ResultVector[1].second.size() == 1) { 4749 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4750 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4751 4752 bool DefaultCanTrigger = DefaultResult; 4753 Value *SelectValue = ResultVector[1].first; 4754 if (DefaultCanTrigger) { 4755 Value *const ValueCompare = 4756 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4757 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4758 DefaultResult, "switch.select"); 4759 } 4760 Value *const ValueCompare = 4761 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4762 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4763 SelectValue, "switch.select"); 4764 } 4765 4766 return nullptr; 4767 } 4768 4769 // Helper function to cleanup a switch instruction that has been converted into 4770 // a select, fixing up PHI nodes and basic blocks. 4771 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4772 Value *SelectValue, 4773 IRBuilder<> &Builder) { 4774 BasicBlock *SelectBB = SI->getParent(); 4775 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4776 PHI->removeIncomingValue(SelectBB); 4777 PHI->addIncoming(SelectValue, SelectBB); 4778 4779 Builder.CreateBr(PHI->getParent()); 4780 4781 // Remove the switch. 4782 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4783 BasicBlock *Succ = SI->getSuccessor(i); 4784 4785 if (Succ == PHI->getParent()) 4786 continue; 4787 Succ->removePredecessor(SelectBB); 4788 } 4789 SI->eraseFromParent(); 4790 } 4791 4792 /// If the switch is only used to initialize one or more 4793 /// phi nodes in a common successor block with only two different 4794 /// constant values, replace the switch with select. 4795 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4796 AssumptionCache *AC, const DataLayout &DL, 4797 const TargetTransformInfo &TTI) { 4798 Value *const Cond = SI->getCondition(); 4799 PHINode *PHI = nullptr; 4800 BasicBlock *CommonDest = nullptr; 4801 Constant *DefaultResult; 4802 SwitchCaseResultVectorTy UniqueResults; 4803 // Collect all the cases that will deliver the same value from the switch. 4804 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4805 DL, TTI)) 4806 return false; 4807 // Selects choose between maximum two values. 4808 if (UniqueResults.size() != 2) 4809 return false; 4810 assert(PHI != nullptr && "PHI for value select not found"); 4811 4812 Builder.SetInsertPoint(SI); 4813 Value *SelectValue = 4814 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4815 if (SelectValue) { 4816 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4817 return true; 4818 } 4819 // The switch couldn't be converted into a select. 4820 return false; 4821 } 4822 4823 namespace { 4824 4825 /// This class represents a lookup table that can be used to replace a switch. 4826 class SwitchLookupTable { 4827 public: 4828 /// Create a lookup table to use as a switch replacement with the contents 4829 /// of Values, using DefaultValue to fill any holes in the table. 4830 SwitchLookupTable( 4831 Module &M, uint64_t TableSize, ConstantInt *Offset, 4832 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4833 Constant *DefaultValue, const DataLayout &DL); 4834 4835 /// Build instructions with Builder to retrieve the value at 4836 /// the position given by Index in the lookup table. 4837 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4838 4839 /// Return true if a table with TableSize elements of 4840 /// type ElementType would fit in a target-legal register. 4841 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4842 Type *ElementType); 4843 4844 private: 4845 // Depending on the contents of the table, it can be represented in 4846 // different ways. 4847 enum { 4848 // For tables where each element contains the same value, we just have to 4849 // store that single value and return it for each lookup. 4850 SingleValueKind, 4851 4852 // For tables where there is a linear relationship between table index 4853 // and values. We calculate the result with a simple multiplication 4854 // and addition instead of a table lookup. 4855 LinearMapKind, 4856 4857 // For small tables with integer elements, we can pack them into a bitmap 4858 // that fits into a target-legal register. Values are retrieved by 4859 // shift and mask operations. 4860 BitMapKind, 4861 4862 // The table is stored as an array of values. Values are retrieved by load 4863 // instructions from the table. 4864 ArrayKind 4865 } Kind; 4866 4867 // For SingleValueKind, this is the single value. 4868 Constant *SingleValue; 4869 4870 // For BitMapKind, this is the bitmap. 4871 ConstantInt *BitMap; 4872 IntegerType *BitMapElementTy; 4873 4874 // For LinearMapKind, these are the constants used to derive the value. 4875 ConstantInt *LinearOffset; 4876 ConstantInt *LinearMultiplier; 4877 4878 // For ArrayKind, this is the array. 4879 GlobalVariable *Array; 4880 }; 4881 4882 } // end anonymous namespace 4883 4884 SwitchLookupTable::SwitchLookupTable( 4885 Module &M, uint64_t TableSize, ConstantInt *Offset, 4886 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4887 Constant *DefaultValue, const DataLayout &DL) 4888 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4889 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4890 assert(Values.size() && "Can't build lookup table without values!"); 4891 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4892 4893 // If all values in the table are equal, this is that value. 4894 SingleValue = Values.begin()->second; 4895 4896 Type *ValueType = Values.begin()->second->getType(); 4897 4898 // Build up the table contents. 4899 SmallVector<Constant *, 64> TableContents(TableSize); 4900 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4901 ConstantInt *CaseVal = Values[I].first; 4902 Constant *CaseRes = Values[I].second; 4903 assert(CaseRes->getType() == ValueType); 4904 4905 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4906 TableContents[Idx] = CaseRes; 4907 4908 if (CaseRes != SingleValue) 4909 SingleValue = nullptr; 4910 } 4911 4912 // Fill in any holes in the table with the default result. 4913 if (Values.size() < TableSize) { 4914 assert(DefaultValue && 4915 "Need a default value to fill the lookup table holes."); 4916 assert(DefaultValue->getType() == ValueType); 4917 for (uint64_t I = 0; I < TableSize; ++I) { 4918 if (!TableContents[I]) 4919 TableContents[I] = DefaultValue; 4920 } 4921 4922 if (DefaultValue != SingleValue) 4923 SingleValue = nullptr; 4924 } 4925 4926 // If each element in the table contains the same value, we only need to store 4927 // that single value. 4928 if (SingleValue) { 4929 Kind = SingleValueKind; 4930 return; 4931 } 4932 4933 // Check if we can derive the value with a linear transformation from the 4934 // table index. 4935 if (isa<IntegerType>(ValueType)) { 4936 bool LinearMappingPossible = true; 4937 APInt PrevVal; 4938 APInt DistToPrev; 4939 assert(TableSize >= 2 && "Should be a SingleValue table."); 4940 // Check if there is the same distance between two consecutive values. 4941 for (uint64_t I = 0; I < TableSize; ++I) { 4942 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4943 if (!ConstVal) { 4944 // This is an undef. We could deal with it, but undefs in lookup tables 4945 // are very seldom. It's probably not worth the additional complexity. 4946 LinearMappingPossible = false; 4947 break; 4948 } 4949 APInt Val = ConstVal->getValue(); 4950 if (I != 0) { 4951 APInt Dist = Val - PrevVal; 4952 if (I == 1) { 4953 DistToPrev = Dist; 4954 } else if (Dist != DistToPrev) { 4955 LinearMappingPossible = false; 4956 break; 4957 } 4958 } 4959 PrevVal = Val; 4960 } 4961 if (LinearMappingPossible) { 4962 LinearOffset = cast<ConstantInt>(TableContents[0]); 4963 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4964 Kind = LinearMapKind; 4965 ++NumLinearMaps; 4966 return; 4967 } 4968 } 4969 4970 // If the type is integer and the table fits in a register, build a bitmap. 4971 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4972 IntegerType *IT = cast<IntegerType>(ValueType); 4973 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4974 for (uint64_t I = TableSize; I > 0; --I) { 4975 TableInt <<= IT->getBitWidth(); 4976 // Insert values into the bitmap. Undef values are set to zero. 4977 if (!isa<UndefValue>(TableContents[I - 1])) { 4978 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4979 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4980 } 4981 } 4982 BitMap = ConstantInt::get(M.getContext(), TableInt); 4983 BitMapElementTy = IT; 4984 Kind = BitMapKind; 4985 ++NumBitMaps; 4986 return; 4987 } 4988 4989 // Store the table in an array. 4990 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4991 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4992 4993 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4994 GlobalVariable::PrivateLinkage, Initializer, 4995 "switch.table"); 4996 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4997 Kind = ArrayKind; 4998 } 4999 5000 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5001 switch (Kind) { 5002 case SingleValueKind: 5003 return SingleValue; 5004 case LinearMapKind: { 5005 // Derive the result value from the input value. 5006 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5007 false, "switch.idx.cast"); 5008 if (!LinearMultiplier->isOne()) 5009 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5010 if (!LinearOffset->isZero()) 5011 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5012 return Result; 5013 } 5014 case BitMapKind: { 5015 // Type of the bitmap (e.g. i59). 5016 IntegerType *MapTy = BitMap->getType(); 5017 5018 // Cast Index to the same type as the bitmap. 5019 // Note: The Index is <= the number of elements in the table, so 5020 // truncating it to the width of the bitmask is safe. 5021 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5022 5023 // Multiply the shift amount by the element width. 5024 ShiftAmt = Builder.CreateMul( 5025 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5026 "switch.shiftamt"); 5027 5028 // Shift down. 5029 Value *DownShifted = 5030 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5031 // Mask off. 5032 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5033 } 5034 case ArrayKind: { 5035 // Make sure the table index will not overflow when treated as signed. 5036 IntegerType *IT = cast<IntegerType>(Index->getType()); 5037 uint64_t TableSize = 5038 Array->getInitializer()->getType()->getArrayNumElements(); 5039 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5040 Index = Builder.CreateZExt( 5041 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5042 "switch.tableidx.zext"); 5043 5044 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5045 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5046 GEPIndices, "switch.gep"); 5047 return Builder.CreateLoad(GEP, "switch.load"); 5048 } 5049 } 5050 llvm_unreachable("Unknown lookup table kind!"); 5051 } 5052 5053 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5054 uint64_t TableSize, 5055 Type *ElementType) { 5056 auto *IT = dyn_cast<IntegerType>(ElementType); 5057 if (!IT) 5058 return false; 5059 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5060 // are <= 15, we could try to narrow the type. 5061 5062 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5063 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5064 return false; 5065 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5066 } 5067 5068 /// Determine whether a lookup table should be built for this switch, based on 5069 /// the number of cases, size of the table, and the types of the results. 5070 static bool 5071 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5072 const TargetTransformInfo &TTI, const DataLayout &DL, 5073 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5074 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5075 return false; // TableSize overflowed, or mul below might overflow. 5076 5077 bool AllTablesFitInRegister = true; 5078 bool HasIllegalType = false; 5079 for (const auto &I : ResultTypes) { 5080 Type *Ty = I.second; 5081 5082 // Saturate this flag to true. 5083 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5084 5085 // Saturate this flag to false. 5086 AllTablesFitInRegister = 5087 AllTablesFitInRegister && 5088 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5089 5090 // If both flags saturate, we're done. NOTE: This *only* works with 5091 // saturating flags, and all flags have to saturate first due to the 5092 // non-deterministic behavior of iterating over a dense map. 5093 if (HasIllegalType && !AllTablesFitInRegister) 5094 break; 5095 } 5096 5097 // If each table would fit in a register, we should build it anyway. 5098 if (AllTablesFitInRegister) 5099 return true; 5100 5101 // Don't build a table that doesn't fit in-register if it has illegal types. 5102 if (HasIllegalType) 5103 return false; 5104 5105 // The table density should be at least 40%. This is the same criterion as for 5106 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5107 // FIXME: Find the best cut-off. 5108 return SI->getNumCases() * 10 >= TableSize * 4; 5109 } 5110 5111 /// Try to reuse the switch table index compare. Following pattern: 5112 /// \code 5113 /// if (idx < tablesize) 5114 /// r = table[idx]; // table does not contain default_value 5115 /// else 5116 /// r = default_value; 5117 /// if (r != default_value) 5118 /// ... 5119 /// \endcode 5120 /// Is optimized to: 5121 /// \code 5122 /// cond = idx < tablesize; 5123 /// if (cond) 5124 /// r = table[idx]; 5125 /// else 5126 /// r = default_value; 5127 /// if (cond) 5128 /// ... 5129 /// \endcode 5130 /// Jump threading will then eliminate the second if(cond). 5131 static void reuseTableCompare( 5132 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5133 Constant *DefaultValue, 5134 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5135 5136 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5137 if (!CmpInst) 5138 return; 5139 5140 // We require that the compare is in the same block as the phi so that jump 5141 // threading can do its work afterwards. 5142 if (CmpInst->getParent() != PhiBlock) 5143 return; 5144 5145 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5146 if (!CmpOp1) 5147 return; 5148 5149 Value *RangeCmp = RangeCheckBranch->getCondition(); 5150 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5151 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5152 5153 // Check if the compare with the default value is constant true or false. 5154 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5155 DefaultValue, CmpOp1, true); 5156 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5157 return; 5158 5159 // Check if the compare with the case values is distinct from the default 5160 // compare result. 5161 for (auto ValuePair : Values) { 5162 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5163 ValuePair.second, CmpOp1, true); 5164 if (!CaseConst || CaseConst == DefaultConst) 5165 return; 5166 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5167 "Expect true or false as compare result."); 5168 } 5169 5170 // Check if the branch instruction dominates the phi node. It's a simple 5171 // dominance check, but sufficient for our needs. 5172 // Although this check is invariant in the calling loops, it's better to do it 5173 // at this late stage. Practically we do it at most once for a switch. 5174 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5175 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5176 BasicBlock *Pred = *PI; 5177 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5178 return; 5179 } 5180 5181 if (DefaultConst == FalseConst) { 5182 // The compare yields the same result. We can replace it. 5183 CmpInst->replaceAllUsesWith(RangeCmp); 5184 ++NumTableCmpReuses; 5185 } else { 5186 // The compare yields the same result, just inverted. We can replace it. 5187 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5188 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5189 RangeCheckBranch); 5190 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5191 ++NumTableCmpReuses; 5192 } 5193 } 5194 5195 /// If the switch is only used to initialize one or more phi nodes in a common 5196 /// successor block with different constant values, replace the switch with 5197 /// lookup tables. 5198 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5199 const DataLayout &DL, 5200 const TargetTransformInfo &TTI) { 5201 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5202 5203 // Only build lookup table when we have a target that supports it. 5204 if (!TTI.shouldBuildLookupTables()) 5205 return false; 5206 5207 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5208 // split off a dense part and build a lookup table for that. 5209 5210 // FIXME: This creates arrays of GEPs to constant strings, which means each 5211 // GEP needs a runtime relocation in PIC code. We should just build one big 5212 // string and lookup indices into that. 5213 5214 // Ignore switches with less than three cases. Lookup tables will not make 5215 // them 5216 // faster, so we don't analyze them. 5217 if (SI->getNumCases() < 3) 5218 return false; 5219 5220 // Figure out the corresponding result for each case value and phi node in the 5221 // common destination, as well as the min and max case values. 5222 assert(SI->case_begin() != SI->case_end()); 5223 SwitchInst::CaseIt CI = SI->case_begin(); 5224 ConstantInt *MinCaseVal = CI->getCaseValue(); 5225 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5226 5227 BasicBlock *CommonDest = nullptr; 5228 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 5229 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5230 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5231 SmallDenseMap<PHINode *, Type *> ResultTypes; 5232 SmallVector<PHINode *, 4> PHIs; 5233 5234 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5235 ConstantInt *CaseVal = CI->getCaseValue(); 5236 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5237 MinCaseVal = CaseVal; 5238 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5239 MaxCaseVal = CaseVal; 5240 5241 // Resulting value at phi nodes for this case value. 5242 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 5243 ResultsTy Results; 5244 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5245 Results, DL, TTI)) 5246 return false; 5247 5248 // Append the result from this case to the list for each phi. 5249 for (const auto &I : Results) { 5250 PHINode *PHI = I.first; 5251 Constant *Value = I.second; 5252 if (!ResultLists.count(PHI)) 5253 PHIs.push_back(PHI); 5254 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5255 } 5256 } 5257 5258 // Keep track of the result types. 5259 for (PHINode *PHI : PHIs) { 5260 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5261 } 5262 5263 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5264 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5265 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5266 bool TableHasHoles = (NumResults < TableSize); 5267 5268 // If the table has holes, we need a constant result for the default case 5269 // or a bitmask that fits in a register. 5270 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5271 bool HasDefaultResults = 5272 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5273 DefaultResultsList, DL, TTI); 5274 5275 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5276 if (NeedMask) { 5277 // As an extra penalty for the validity test we require more cases. 5278 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5279 return false; 5280 if (!DL.fitsInLegalInteger(TableSize)) 5281 return false; 5282 } 5283 5284 for (const auto &I : DefaultResultsList) { 5285 PHINode *PHI = I.first; 5286 Constant *Result = I.second; 5287 DefaultResults[PHI] = Result; 5288 } 5289 5290 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5291 return false; 5292 5293 // Create the BB that does the lookups. 5294 Module &Mod = *CommonDest->getParent()->getParent(); 5295 BasicBlock *LookupBB = BasicBlock::Create( 5296 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5297 5298 // Compute the table index value. 5299 Builder.SetInsertPoint(SI); 5300 Value *TableIndex = 5301 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 5302 5303 // Compute the maximum table size representable by the integer type we are 5304 // switching upon. 5305 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5306 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5307 assert(MaxTableSize >= TableSize && 5308 "It is impossible for a switch to have more entries than the max " 5309 "representable value of its input integer type's size."); 5310 5311 // If the default destination is unreachable, or if the lookup table covers 5312 // all values of the conditional variable, branch directly to the lookup table 5313 // BB. Otherwise, check that the condition is within the case range. 5314 const bool DefaultIsReachable = 5315 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5316 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5317 BranchInst *RangeCheckBranch = nullptr; 5318 5319 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5320 Builder.CreateBr(LookupBB); 5321 // Note: We call removeProdecessor later since we need to be able to get the 5322 // PHI value for the default case in case we're using a bit mask. 5323 } else { 5324 Value *Cmp = Builder.CreateICmpULT( 5325 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5326 RangeCheckBranch = 5327 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5328 } 5329 5330 // Populate the BB that does the lookups. 5331 Builder.SetInsertPoint(LookupBB); 5332 5333 if (NeedMask) { 5334 // Before doing the lookup we do the hole check. 5335 // The LookupBB is therefore re-purposed to do the hole check 5336 // and we create a new LookupBB. 5337 BasicBlock *MaskBB = LookupBB; 5338 MaskBB->setName("switch.hole_check"); 5339 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5340 CommonDest->getParent(), CommonDest); 5341 5342 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 5343 // unnecessary illegal types. 5344 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5345 APInt MaskInt(TableSizePowOf2, 0); 5346 APInt One(TableSizePowOf2, 1); 5347 // Build bitmask; fill in a 1 bit for every case. 5348 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5349 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5350 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5351 .getLimitedValue(); 5352 MaskInt |= One << Idx; 5353 } 5354 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5355 5356 // Get the TableIndex'th bit of the bitmask. 5357 // If this bit is 0 (meaning hole) jump to the default destination, 5358 // else continue with table lookup. 5359 IntegerType *MapTy = TableMask->getType(); 5360 Value *MaskIndex = 5361 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5362 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5363 Value *LoBit = Builder.CreateTrunc( 5364 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5365 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5366 5367 Builder.SetInsertPoint(LookupBB); 5368 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5369 } 5370 5371 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5372 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 5373 // do not delete PHINodes here. 5374 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5375 /*DontDeleteUselessPHIs=*/true); 5376 } 5377 5378 bool ReturnedEarly = false; 5379 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5380 PHINode *PHI = PHIs[I]; 5381 const ResultListTy &ResultList = ResultLists[PHI]; 5382 5383 // If using a bitmask, use any value to fill the lookup table holes. 5384 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5385 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 5386 5387 Value *Result = Table.BuildLookup(TableIndex, Builder); 5388 5389 // If the result is used to return immediately from the function, we want to 5390 // do that right here. 5391 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5392 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5393 Builder.CreateRet(Result); 5394 ReturnedEarly = true; 5395 break; 5396 } 5397 5398 // Do a small peephole optimization: re-use the switch table compare if 5399 // possible. 5400 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5401 BasicBlock *PhiBlock = PHI->getParent(); 5402 // Search for compare instructions which use the phi. 5403 for (auto *User : PHI->users()) { 5404 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5405 } 5406 } 5407 5408 PHI->addIncoming(Result, LookupBB); 5409 } 5410 5411 if (!ReturnedEarly) 5412 Builder.CreateBr(CommonDest); 5413 5414 // Remove the switch. 5415 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5416 BasicBlock *Succ = SI->getSuccessor(i); 5417 5418 if (Succ == SI->getDefaultDest()) 5419 continue; 5420 Succ->removePredecessor(SI->getParent()); 5421 } 5422 SI->eraseFromParent(); 5423 5424 ++NumLookupTables; 5425 if (NeedMask) 5426 ++NumLookupTablesHoles; 5427 return true; 5428 } 5429 5430 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5431 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5432 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5433 uint64_t Range = Diff + 1; 5434 uint64_t NumCases = Values.size(); 5435 // 40% is the default density for building a jump table in optsize/minsize mode. 5436 uint64_t MinDensity = 40; 5437 5438 return NumCases * 100 >= Range * MinDensity; 5439 } 5440 5441 // Try and transform a switch that has "holes" in it to a contiguous sequence 5442 // of cases. 5443 // 5444 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5445 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5446 // 5447 // This converts a sparse switch into a dense switch which allows better 5448 // lowering and could also allow transforming into a lookup table. 5449 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5450 const DataLayout &DL, 5451 const TargetTransformInfo &TTI) { 5452 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5453 if (CondTy->getIntegerBitWidth() > 64 || 5454 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5455 return false; 5456 // Only bother with this optimization if there are more than 3 switch cases; 5457 // SDAG will only bother creating jump tables for 4 or more cases. 5458 if (SI->getNumCases() < 4) 5459 return false; 5460 5461 // This transform is agnostic to the signedness of the input or case values. We 5462 // can treat the case values as signed or unsigned. We can optimize more common 5463 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5464 // as signed. 5465 SmallVector<int64_t,4> Values; 5466 for (auto &C : SI->cases()) 5467 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5468 std::sort(Values.begin(), Values.end()); 5469 5470 // If the switch is already dense, there's nothing useful to do here. 5471 if (isSwitchDense(Values)) 5472 return false; 5473 5474 // First, transform the values such that they start at zero and ascend. 5475 int64_t Base = Values[0]; 5476 for (auto &V : Values) 5477 V -= Base; 5478 5479 // Now we have signed numbers that have been shifted so that, given enough 5480 // precision, there are no negative values. Since the rest of the transform 5481 // is bitwise only, we switch now to an unsigned representation. 5482 uint64_t GCD = 0; 5483 for (auto &V : Values) 5484 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5485 5486 // This transform can be done speculatively because it is so cheap - it results 5487 // in a single rotate operation being inserted. This can only happen if the 5488 // factor extracted is a power of 2. 5489 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5490 // inverse of GCD and then perform this transform. 5491 // FIXME: It's possible that optimizing a switch on powers of two might also 5492 // be beneficial - flag values are often powers of two and we could use a CLZ 5493 // as the key function. 5494 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5495 // No common divisor found or too expensive to compute key function. 5496 return false; 5497 5498 unsigned Shift = Log2_64(GCD); 5499 for (auto &V : Values) 5500 V = (int64_t)((uint64_t)V >> Shift); 5501 5502 if (!isSwitchDense(Values)) 5503 // Transform didn't create a dense switch. 5504 return false; 5505 5506 // The obvious transform is to shift the switch condition right and emit a 5507 // check that the condition actually cleanly divided by GCD, i.e. 5508 // C & (1 << Shift - 1) == 0 5509 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5510 // 5511 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5512 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5513 // are nonzero then the switch condition will be very large and will hit the 5514 // default case. 5515 5516 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5517 Builder.SetInsertPoint(SI); 5518 auto *ShiftC = ConstantInt::get(Ty, Shift); 5519 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5520 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5521 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5522 auto *Rot = Builder.CreateOr(LShr, Shl); 5523 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5524 5525 for (auto Case : SI->cases()) { 5526 auto *Orig = Case.getCaseValue(); 5527 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5528 Case.setValue( 5529 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5530 } 5531 return true; 5532 } 5533 5534 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5535 BasicBlock *BB = SI->getParent(); 5536 5537 if (isValueEqualityComparison(SI)) { 5538 // If we only have one predecessor, and if it is a branch on this value, 5539 // see if that predecessor totally determines the outcome of this switch. 5540 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5541 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5542 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5543 5544 Value *Cond = SI->getCondition(); 5545 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5546 if (SimplifySwitchOnSelect(SI, Select)) 5547 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5548 5549 // If the block only contains the switch, see if we can fold the block 5550 // away into any preds. 5551 BasicBlock::iterator BBI = BB->begin(); 5552 // Ignore dbg intrinsics. 5553 while (isa<DbgInfoIntrinsic>(BBI)) 5554 ++BBI; 5555 if (SI == &*BBI) 5556 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5557 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5558 } 5559 5560 // Try to transform the switch into an icmp and a branch. 5561 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5562 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5563 5564 // Remove unreachable cases. 5565 if (EliminateDeadSwitchCases(SI, AC, DL)) 5566 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5567 5568 if (SwitchToSelect(SI, Builder, AC, DL, TTI)) 5569 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5570 5571 if (ForwardSwitchConditionToPHI(SI)) 5572 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5573 5574 // The conversion from switch to lookup tables results in difficult 5575 // to analyze code and makes pruning branches much harder. 5576 // This is a problem of the switch expression itself can still be 5577 // restricted as a result of inlining or CVP. There only apply this 5578 // transformation during late steps of the optimisation chain. 5579 if (LateSimplifyCFG && SwitchToLookupTable(SI, Builder, DL, TTI)) 5580 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5581 5582 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5583 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5584 5585 return false; 5586 } 5587 5588 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5589 BasicBlock *BB = IBI->getParent(); 5590 bool Changed = false; 5591 5592 // Eliminate redundant destinations. 5593 SmallPtrSet<Value *, 8> Succs; 5594 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5595 BasicBlock *Dest = IBI->getDestination(i); 5596 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5597 Dest->removePredecessor(BB); 5598 IBI->removeDestination(i); 5599 --i; 5600 --e; 5601 Changed = true; 5602 } 5603 } 5604 5605 if (IBI->getNumDestinations() == 0) { 5606 // If the indirectbr has no successors, change it to unreachable. 5607 new UnreachableInst(IBI->getContext(), IBI); 5608 EraseTerminatorInstAndDCECond(IBI); 5609 return true; 5610 } 5611 5612 if (IBI->getNumDestinations() == 1) { 5613 // If the indirectbr has one successor, change it to a direct branch. 5614 BranchInst::Create(IBI->getDestination(0), IBI); 5615 EraseTerminatorInstAndDCECond(IBI); 5616 return true; 5617 } 5618 5619 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5620 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5621 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5622 } 5623 return Changed; 5624 } 5625 5626 /// Given an block with only a single landing pad and a unconditional branch 5627 /// try to find another basic block which this one can be merged with. This 5628 /// handles cases where we have multiple invokes with unique landing pads, but 5629 /// a shared handler. 5630 /// 5631 /// We specifically choose to not worry about merging non-empty blocks 5632 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5633 /// practice, the optimizer produces empty landing pad blocks quite frequently 5634 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5635 /// sinking in this file) 5636 /// 5637 /// This is primarily a code size optimization. We need to avoid performing 5638 /// any transform which might inhibit optimization (such as our ability to 5639 /// specialize a particular handler via tail commoning). We do this by not 5640 /// merging any blocks which require us to introduce a phi. Since the same 5641 /// values are flowing through both blocks, we don't loose any ability to 5642 /// specialize. If anything, we make such specialization more likely. 5643 /// 5644 /// TODO - This transformation could remove entries from a phi in the target 5645 /// block when the inputs in the phi are the same for the two blocks being 5646 /// merged. In some cases, this could result in removal of the PHI entirely. 5647 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5648 BasicBlock *BB) { 5649 auto Succ = BB->getUniqueSuccessor(); 5650 assert(Succ); 5651 // If there's a phi in the successor block, we'd likely have to introduce 5652 // a phi into the merged landing pad block. 5653 if (isa<PHINode>(*Succ->begin())) 5654 return false; 5655 5656 for (BasicBlock *OtherPred : predecessors(Succ)) { 5657 if (BB == OtherPred) 5658 continue; 5659 BasicBlock::iterator I = OtherPred->begin(); 5660 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5661 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5662 continue; 5663 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5664 } 5665 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5666 if (!BI2 || !BI2->isIdenticalTo(BI)) 5667 continue; 5668 5669 // We've found an identical block. Update our predecessors to take that 5670 // path instead and make ourselves dead. 5671 SmallSet<BasicBlock *, 16> Preds; 5672 Preds.insert(pred_begin(BB), pred_end(BB)); 5673 for (BasicBlock *Pred : Preds) { 5674 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5675 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5676 "unexpected successor"); 5677 II->setUnwindDest(OtherPred); 5678 } 5679 5680 // The debug info in OtherPred doesn't cover the merged control flow that 5681 // used to go through BB. We need to delete it or update it. 5682 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5683 Instruction &Inst = *I; 5684 I++; 5685 if (isa<DbgInfoIntrinsic>(Inst)) 5686 Inst.eraseFromParent(); 5687 } 5688 5689 SmallSet<BasicBlock *, 16> Succs; 5690 Succs.insert(succ_begin(BB), succ_end(BB)); 5691 for (BasicBlock *Succ : Succs) { 5692 Succ->removePredecessor(BB); 5693 } 5694 5695 IRBuilder<> Builder(BI); 5696 Builder.CreateUnreachable(); 5697 BI->eraseFromParent(); 5698 return true; 5699 } 5700 return false; 5701 } 5702 5703 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5704 IRBuilder<> &Builder) { 5705 BasicBlock *BB = BI->getParent(); 5706 5707 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5708 return true; 5709 5710 // If the Terminator is the only non-phi instruction, simplify the block. 5711 // if LoopHeader is provided, check if the block is a loop header 5712 // (This is for early invocations before loop simplify and vectorization 5713 // to keep canonical loop forms for nested loops. 5714 // These blocks can be eliminated when the pass is invoked later 5715 // in the back-end.) 5716 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5717 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5718 (!LoopHeaders || !LoopHeaders->count(BB)) && 5719 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5720 return true; 5721 5722 // If the only instruction in the block is a seteq/setne comparison 5723 // against a constant, try to simplify the block. 5724 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5725 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5726 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5727 ; 5728 if (I->isTerminator() && 5729 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5730 BonusInstThreshold, AC)) 5731 return true; 5732 } 5733 5734 // See if we can merge an empty landing pad block with another which is 5735 // equivalent. 5736 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5737 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5738 } 5739 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5740 return true; 5741 } 5742 5743 // If this basic block is ONLY a compare and a branch, and if a predecessor 5744 // branches to us and our successor, fold the comparison into the 5745 // predecessor and use logical operations to update the incoming value 5746 // for PHI nodes in common successor. 5747 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5748 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5749 return false; 5750 } 5751 5752 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5753 BasicBlock *PredPred = nullptr; 5754 for (auto *P : predecessors(BB)) { 5755 BasicBlock *PPred = P->getSinglePredecessor(); 5756 if (!PPred || (PredPred && PredPred != PPred)) 5757 return nullptr; 5758 PredPred = PPred; 5759 } 5760 return PredPred; 5761 } 5762 5763 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5764 BasicBlock *BB = BI->getParent(); 5765 5766 // Conditional branch 5767 if (isValueEqualityComparison(BI)) { 5768 // If we only have one predecessor, and if it is a branch on this value, 5769 // see if that predecessor totally determines the outcome of this 5770 // switch. 5771 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5772 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5773 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5774 5775 // This block must be empty, except for the setcond inst, if it exists. 5776 // Ignore dbg intrinsics. 5777 BasicBlock::iterator I = BB->begin(); 5778 // Ignore dbg intrinsics. 5779 while (isa<DbgInfoIntrinsic>(I)) 5780 ++I; 5781 if (&*I == BI) { 5782 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5783 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5784 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5785 ++I; 5786 // Ignore dbg intrinsics. 5787 while (isa<DbgInfoIntrinsic>(I)) 5788 ++I; 5789 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5790 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5791 } 5792 } 5793 5794 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5795 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5796 return true; 5797 5798 // If this basic block has a single dominating predecessor block and the 5799 // dominating block's condition implies BI's condition, we know the direction 5800 // of the BI branch. 5801 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5802 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5803 if (PBI && PBI->isConditional() && 5804 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5805 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5806 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5807 Optional<bool> Implication = isImpliedCondition( 5808 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5809 if (Implication) { 5810 // Turn this into a branch on constant. 5811 auto *OldCond = BI->getCondition(); 5812 ConstantInt *CI = *Implication 5813 ? ConstantInt::getTrue(BB->getContext()) 5814 : ConstantInt::getFalse(BB->getContext()); 5815 BI->setCondition(CI); 5816 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5817 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5818 } 5819 } 5820 } 5821 5822 // If this basic block is ONLY a compare and a branch, and if a predecessor 5823 // branches to us and one of our successors, fold the comparison into the 5824 // predecessor and use logical operations to pick the right destination. 5825 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5826 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5827 5828 // We have a conditional branch to two blocks that are only reachable 5829 // from BI. We know that the condbr dominates the two blocks, so see if 5830 // there is any identical code in the "then" and "else" blocks. If so, we 5831 // can hoist it up to the branching block. 5832 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5833 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5834 if (HoistThenElseCodeToIf(BI, TTI)) 5835 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5836 } else { 5837 // If Successor #1 has multiple preds, we may be able to conditionally 5838 // execute Successor #0 if it branches to Successor #1. 5839 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5840 if (Succ0TI->getNumSuccessors() == 1 && 5841 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5842 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5843 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5844 } 5845 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5846 // If Successor #0 has multiple preds, we may be able to conditionally 5847 // execute Successor #1 if it branches to Successor #0. 5848 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5849 if (Succ1TI->getNumSuccessors() == 1 && 5850 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5851 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5852 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5853 } 5854 5855 // If this is a branch on a phi node in the current block, thread control 5856 // through this block if any PHI node entries are constants. 5857 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5858 if (PN->getParent() == BI->getParent()) 5859 if (FoldCondBranchOnPHI(BI, DL, AC)) 5860 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5861 5862 // Scan predecessor blocks for conditional branches. 5863 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5864 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5865 if (PBI != BI && PBI->isConditional()) 5866 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5867 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5868 5869 // Look for diamond patterns. 5870 if (MergeCondStores) 5871 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5872 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5873 if (PBI != BI && PBI->isConditional()) 5874 if (mergeConditionalStores(PBI, BI)) 5875 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5876 5877 return false; 5878 } 5879 5880 /// Check if passing a value to an instruction will cause undefined behavior. 5881 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5882 Constant *C = dyn_cast<Constant>(V); 5883 if (!C) 5884 return false; 5885 5886 if (I->use_empty()) 5887 return false; 5888 5889 if (C->isNullValue() || isa<UndefValue>(C)) { 5890 // Only look at the first use, avoid hurting compile time with long uselists 5891 User *Use = *I->user_begin(); 5892 5893 // Now make sure that there are no instructions in between that can alter 5894 // control flow (eg. calls) 5895 for (BasicBlock::iterator 5896 i = ++BasicBlock::iterator(I), 5897 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5898 i != UI; ++i) 5899 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5900 return false; 5901 5902 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5903 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5904 if (GEP->getPointerOperand() == I) 5905 return passingValueIsAlwaysUndefined(V, GEP); 5906 5907 // Look through bitcasts. 5908 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5909 return passingValueIsAlwaysUndefined(V, BC); 5910 5911 // Load from null is undefined. 5912 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5913 if (!LI->isVolatile()) 5914 return LI->getPointerAddressSpace() == 0; 5915 5916 // Store to null is undefined. 5917 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5918 if (!SI->isVolatile()) 5919 return SI->getPointerAddressSpace() == 0 && 5920 SI->getPointerOperand() == I; 5921 5922 // A call to null is undefined. 5923 if (auto CS = CallSite(Use)) 5924 return CS.getCalledValue() == I; 5925 } 5926 return false; 5927 } 5928 5929 /// If BB has an incoming value that will always trigger undefined behavior 5930 /// (eg. null pointer dereference), remove the branch leading here. 5931 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5932 for (BasicBlock::iterator i = BB->begin(); 5933 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5934 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5935 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5936 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5937 IRBuilder<> Builder(T); 5938 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5939 BB->removePredecessor(PHI->getIncomingBlock(i)); 5940 // Turn uncoditional branches into unreachables and remove the dead 5941 // destination from conditional branches. 5942 if (BI->isUnconditional()) 5943 Builder.CreateUnreachable(); 5944 else 5945 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5946 : BI->getSuccessor(0)); 5947 BI->eraseFromParent(); 5948 return true; 5949 } 5950 // TODO: SwitchInst. 5951 } 5952 5953 return false; 5954 } 5955 5956 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5957 bool Changed = false; 5958 5959 assert(BB && BB->getParent() && "Block not embedded in function!"); 5960 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5961 5962 // Remove basic blocks that have no predecessors (except the entry block)... 5963 // or that just have themself as a predecessor. These are unreachable. 5964 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5965 BB->getSinglePredecessor() == BB) { 5966 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5967 DeleteDeadBlock(BB); 5968 return true; 5969 } 5970 5971 // Check to see if we can constant propagate this terminator instruction 5972 // away... 5973 Changed |= ConstantFoldTerminator(BB, true); 5974 5975 // Check for and eliminate duplicate PHI nodes in this block. 5976 Changed |= EliminateDuplicatePHINodes(BB); 5977 5978 // Check for and remove branches that will always cause undefined behavior. 5979 Changed |= removeUndefIntroducingPredecessor(BB); 5980 5981 // Merge basic blocks into their predecessor if there is only one distinct 5982 // pred, and if there is only one distinct successor of the predecessor, and 5983 // if there are no PHI nodes. 5984 // 5985 if (MergeBlockIntoPredecessor(BB)) 5986 return true; 5987 5988 IRBuilder<> Builder(BB); 5989 5990 // If there is a trivial two-entry PHI node in this basic block, and we can 5991 // eliminate it, do so now. 5992 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5993 if (PN->getNumIncomingValues() == 2) 5994 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5995 5996 Builder.SetInsertPoint(BB->getTerminator()); 5997 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5998 if (BI->isUnconditional()) { 5999 if (SimplifyUncondBranch(BI, Builder)) 6000 return true; 6001 } else { 6002 if (SimplifyCondBranch(BI, Builder)) 6003 return true; 6004 } 6005 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6006 if (SimplifyReturn(RI, Builder)) 6007 return true; 6008 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6009 if (SimplifyResume(RI, Builder)) 6010 return true; 6011 } else if (CleanupReturnInst *RI = 6012 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6013 if (SimplifyCleanupReturn(RI)) 6014 return true; 6015 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6016 if (SimplifySwitch(SI, Builder)) 6017 return true; 6018 } else if (UnreachableInst *UI = 6019 dyn_cast<UnreachableInst>(BB->getTerminator())) { 6020 if (SimplifyUnreachable(UI)) 6021 return true; 6022 } else if (IndirectBrInst *IBI = 6023 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6024 if (SimplifyIndirectBr(IBI)) 6025 return true; 6026 } 6027 6028 return Changed; 6029 } 6030 6031 /// This function is used to do simplification of a CFG. 6032 /// For example, it adjusts branches to branches to eliminate the extra hop, 6033 /// eliminates unreachable basic blocks, and does other "peephole" optimization 6034 /// of the CFG. It returns true if a modification was made. 6035 /// 6036 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6037 unsigned BonusInstThreshold, AssumptionCache *AC, 6038 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 6039 bool LateSimplifyCFG) { 6040 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 6041 BonusInstThreshold, AC, LoopHeaders, LateSimplifyCFG) 6042 .run(BB); 6043 } 6044