1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <climits>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 using namespace PatternMatch;
85 
86 #define DEBUG_TYPE "simplifycfg"
87 
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt<unsigned> PHINodeFoldingThreshold(
93     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
94     cl::desc(
95         "Control the amount of phi node folding to perform (default = 2)"));
96 
97 static cl::opt<bool> DupRet(
98     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
99     cl::desc("Duplicate return instructions into unconditional branches"));
100 
101 static cl::opt<bool>
102     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
103                cl::desc("Sink common instructions down to the end block"));
104 
105 static cl::opt<bool> HoistCondStores(
106     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores if an unconditional store precedes"));
108 
109 static cl::opt<bool> MergeCondStores(
110     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
111     cl::desc("Hoist conditional stores even if an unconditional store does not "
112              "precede - hoist multiple conditional stores into a single "
113              "predicated store"));
114 
115 static cl::opt<bool> MergeCondStoresAggressively(
116     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
117     cl::desc("When merging conditional stores, do so even if the resultant "
118              "basic blocks are unlikely to be if-converted as a result"));
119 
120 static cl::opt<bool> SpeculateOneExpensiveInst(
121     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
122     cl::desc("Allow exactly one expensive instruction to be speculatively "
123              "executed"));
124 
125 static cl::opt<unsigned> MaxSpeculationDepth(
126     "max-speculation-depth", cl::Hidden, cl::init(10),
127     cl::desc("Limit maximum recursion depth when calculating costs of "
128              "speculatively executed instructions"));
129 
130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
131 STATISTIC(NumLinearMaps,
132           "Number of switch instructions turned into linear mapping");
133 STATISTIC(NumLookupTables,
134           "Number of switch instructions turned into lookup tables");
135 STATISTIC(
136     NumLookupTablesHoles,
137     "Number of switch instructions turned into lookup tables (holes checked)");
138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
139 STATISTIC(NumSinkCommons,
140           "Number of common instructions sunk down to the end block");
141 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
142 
143 namespace {
144 
145 // The first field contains the value that the switch produces when a certain
146 // case group is selected, and the second field is a vector containing the
147 // cases composing the case group.
148 using SwitchCaseResultVectorTy =
149     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
150 
151 // The first field contains the phi node that generates a result of the switch
152 // and the second field contains the value generated for a certain case in the
153 // switch for that PHI.
154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
155 
156 /// ValueEqualityComparisonCase - Represents a case of a switch.
157 struct ValueEqualityComparisonCase {
158   ConstantInt *Value;
159   BasicBlock *Dest;
160 
161   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
162       : Value(Value), Dest(Dest) {}
163 
164   bool operator<(ValueEqualityComparisonCase RHS) const {
165     // Comparing pointers is ok as we only rely on the order for uniquing.
166     return Value < RHS.Value;
167   }
168 
169   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
170 };
171 
172 class SimplifyCFGOpt {
173   const TargetTransformInfo &TTI;
174   const DataLayout &DL;
175   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
176   const SimplifyCFGOptions &Options;
177 
178   Value *isValueEqualityComparison(TerminatorInst *TI);
179   BasicBlock *GetValueEqualityComparisonCases(
180       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
181   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
182                                                      BasicBlock *Pred,
183                                                      IRBuilder<> &Builder);
184   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
185                                            IRBuilder<> &Builder);
186 
187   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
188   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
189   bool SimplifySingleResume(ResumeInst *RI);
190   bool SimplifyCommonResume(ResumeInst *RI);
191   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
192   bool SimplifyUnreachable(UnreachableInst *UI);
193   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
194   bool SimplifyIndirectBr(IndirectBrInst *IBI);
195   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
196   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 
198 public:
199   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
200                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
201                  const SimplifyCFGOptions &Opts)
202       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
203 
204   bool run(BasicBlock *BB);
205 };
206 
207 } // end anonymous namespace
208 
209 /// Return true if it is safe to merge these two
210 /// terminator instructions together.
211 static bool
212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
213                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
214   if (SI1 == SI2)
215     return false; // Can't merge with self!
216 
217   // It is not safe to merge these two switch instructions if they have a common
218   // successor, and if that successor has a PHI node, and if *that* PHI node has
219   // conflicting incoming values from the two switch blocks.
220   BasicBlock *SI1BB = SI1->getParent();
221   BasicBlock *SI2BB = SI2->getParent();
222 
223   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
224   bool Fail = false;
225   for (BasicBlock *Succ : successors(SI2BB))
226     if (SI1Succs.count(Succ))
227       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
228         PHINode *PN = cast<PHINode>(BBI);
229         if (PN->getIncomingValueForBlock(SI1BB) !=
230             PN->getIncomingValueForBlock(SI2BB)) {
231           if (FailBlocks)
232             FailBlocks->insert(Succ);
233           Fail = true;
234         }
235       }
236 
237   return !Fail;
238 }
239 
240 /// Return true if it is safe and profitable to merge these two terminator
241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
242 /// store all PHI nodes in common successors.
243 static bool
244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
245                                 Instruction *Cond,
246                                 SmallVectorImpl<PHINode *> &PhiNodes) {
247   if (SI1 == SI2)
248     return false; // Can't merge with self!
249   assert(SI1->isUnconditional() && SI2->isConditional());
250 
251   // We fold the unconditional branch if we can easily update all PHI nodes in
252   // common successors:
253   // 1> We have a constant incoming value for the conditional branch;
254   // 2> We have "Cond" as the incoming value for the unconditional branch;
255   // 3> SI2->getCondition() and Cond have same operands.
256   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
257   if (!Ci2)
258     return false;
259   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
260         Cond->getOperand(1) == Ci2->getOperand(1)) &&
261       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
262         Cond->getOperand(1) == Ci2->getOperand(0)))
263     return false;
264 
265   BasicBlock *SI1BB = SI1->getParent();
266   BasicBlock *SI2BB = SI2->getParent();
267   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
268   for (BasicBlock *Succ : successors(SI2BB))
269     if (SI1Succs.count(Succ))
270       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
271         PHINode *PN = cast<PHINode>(BBI);
272         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
273             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
274           return false;
275         PhiNodes.push_back(PN);
276       }
277   return true;
278 }
279 
280 /// Update PHI nodes in Succ to indicate that there will now be entries in it
281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
282 /// will be the same as those coming in from ExistPred, an existing predecessor
283 /// of Succ.
284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
285                                   BasicBlock *ExistPred) {
286   for (PHINode &PN : Succ->phis())
287     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
288 }
289 
290 /// Compute an abstract "cost" of speculating the given instruction,
291 /// which is assumed to be safe to speculate. TCC_Free means cheap,
292 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
293 /// expensive.
294 static unsigned ComputeSpeculationCost(const User *I,
295                                        const TargetTransformInfo &TTI) {
296   assert(isSafeToSpeculativelyExecute(I) &&
297          "Instruction is not safe to speculatively execute!");
298   return TTI.getUserCost(I);
299 }
300 
301 /// If we have a merge point of an "if condition" as accepted above,
302 /// return true if the specified value dominates the block.  We
303 /// don't handle the true generality of domination here, just a special case
304 /// which works well enough for us.
305 ///
306 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
307 /// see if V (which must be an instruction) and its recursive operands
308 /// that do not dominate BB have a combined cost lower than CostRemaining and
309 /// are non-trapping.  If both are true, the instruction is inserted into the
310 /// set and true is returned.
311 ///
312 /// The cost for most non-trapping instructions is defined as 1 except for
313 /// Select whose cost is 2.
314 ///
315 /// After this function returns, CostRemaining is decreased by the cost of
316 /// V plus its non-dominating operands.  If that cost is greater than
317 /// CostRemaining, false is returned and CostRemaining is undefined.
318 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
319                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
320                                 unsigned &CostRemaining,
321                                 const TargetTransformInfo &TTI,
322                                 unsigned Depth = 0) {
323   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
324   // so limit the recursion depth.
325   // TODO: While this recursion limit does prevent pathological behavior, it
326   // would be better to track visited instructions to avoid cycles.
327   if (Depth == MaxSpeculationDepth)
328     return false;
329 
330   Instruction *I = dyn_cast<Instruction>(V);
331   if (!I) {
332     // Non-instructions all dominate instructions, but not all constantexprs
333     // can be executed unconditionally.
334     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
335       if (C->canTrap())
336         return false;
337     return true;
338   }
339   BasicBlock *PBB = I->getParent();
340 
341   // We don't want to allow weird loops that might have the "if condition" in
342   // the bottom of this block.
343   if (PBB == BB)
344     return false;
345 
346   // If this instruction is defined in a block that contains an unconditional
347   // branch to BB, then it must be in the 'conditional' part of the "if
348   // statement".  If not, it definitely dominates the region.
349   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
350   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
351     return true;
352 
353   // If we aren't allowing aggressive promotion anymore, then don't consider
354   // instructions in the 'if region'.
355   if (!AggressiveInsts)
356     return false;
357 
358   // If we have seen this instruction before, don't count it again.
359   if (AggressiveInsts->count(I))
360     return true;
361 
362   // Okay, it looks like the instruction IS in the "condition".  Check to
363   // see if it's a cheap instruction to unconditionally compute, and if it
364   // only uses stuff defined outside of the condition.  If so, hoist it out.
365   if (!isSafeToSpeculativelyExecute(I))
366     return false;
367 
368   unsigned Cost = ComputeSpeculationCost(I, TTI);
369 
370   // Allow exactly one instruction to be speculated regardless of its cost
371   // (as long as it is safe to do so).
372   // This is intended to flatten the CFG even if the instruction is a division
373   // or other expensive operation. The speculation of an expensive instruction
374   // is expected to be undone in CodeGenPrepare if the speculation has not
375   // enabled further IR optimizations.
376   if (Cost > CostRemaining &&
377       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
378     return false;
379 
380   // Avoid unsigned wrap.
381   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
382 
383   // Okay, we can only really hoist these out if their operands do
384   // not take us over the cost threshold.
385   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
386     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
387                              Depth + 1))
388       return false;
389   // Okay, it's safe to do this!  Remember this instruction.
390   AggressiveInsts->insert(I);
391   return true;
392 }
393 
394 /// Extract ConstantInt from value, looking through IntToPtr
395 /// and PointerNullValue. Return NULL if value is not a constant int.
396 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
397   // Normal constant int.
398   ConstantInt *CI = dyn_cast<ConstantInt>(V);
399   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
400     return CI;
401 
402   // This is some kind of pointer constant. Turn it into a pointer-sized
403   // ConstantInt if possible.
404   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
405 
406   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
407   if (isa<ConstantPointerNull>(V))
408     return ConstantInt::get(PtrTy, 0);
409 
410   // IntToPtr const int.
411   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
412     if (CE->getOpcode() == Instruction::IntToPtr)
413       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
414         // The constant is very likely to have the right type already.
415         if (CI->getType() == PtrTy)
416           return CI;
417         else
418           return cast<ConstantInt>(
419               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
420       }
421   return nullptr;
422 }
423 
424 namespace {
425 
426 /// Given a chain of or (||) or and (&&) comparison of a value against a
427 /// constant, this will try to recover the information required for a switch
428 /// structure.
429 /// It will depth-first traverse the chain of comparison, seeking for patterns
430 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
431 /// representing the different cases for the switch.
432 /// Note that if the chain is composed of '||' it will build the set of elements
433 /// that matches the comparisons (i.e. any of this value validate the chain)
434 /// while for a chain of '&&' it will build the set elements that make the test
435 /// fail.
436 struct ConstantComparesGatherer {
437   const DataLayout &DL;
438 
439   /// Value found for the switch comparison
440   Value *CompValue = nullptr;
441 
442   /// Extra clause to be checked before the switch
443   Value *Extra = nullptr;
444 
445   /// Set of integers to match in switch
446   SmallVector<ConstantInt *, 8> Vals;
447 
448   /// Number of comparisons matched in the and/or chain
449   unsigned UsedICmps = 0;
450 
451   /// Construct and compute the result for the comparison instruction Cond
452   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
453     gather(Cond);
454   }
455 
456   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
457   ConstantComparesGatherer &
458   operator=(const ConstantComparesGatherer &) = delete;
459 
460 private:
461   /// Try to set the current value used for the comparison, it succeeds only if
462   /// it wasn't set before or if the new value is the same as the old one
463   bool setValueOnce(Value *NewVal) {
464     if (CompValue && CompValue != NewVal)
465       return false;
466     CompValue = NewVal;
467     return (CompValue != nullptr);
468   }
469 
470   /// Try to match Instruction "I" as a comparison against a constant and
471   /// populates the array Vals with the set of values that match (or do not
472   /// match depending on isEQ).
473   /// Return false on failure. On success, the Value the comparison matched
474   /// against is placed in CompValue.
475   /// If CompValue is already set, the function is expected to fail if a match
476   /// is found but the value compared to is different.
477   bool matchInstruction(Instruction *I, bool isEQ) {
478     // If this is an icmp against a constant, handle this as one of the cases.
479     ICmpInst *ICI;
480     ConstantInt *C;
481     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
482           (C = GetConstantInt(I->getOperand(1), DL)))) {
483       return false;
484     }
485 
486     Value *RHSVal;
487     const APInt *RHSC;
488 
489     // Pattern match a special case
490     // (x & ~2^z) == y --> x == y || x == y|2^z
491     // This undoes a transformation done by instcombine to fuse 2 compares.
492     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
493       // It's a little bit hard to see why the following transformations are
494       // correct. Here is a CVC3 program to verify them for 64-bit values:
495 
496       /*
497          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
498          x    : BITVECTOR(64);
499          y    : BITVECTOR(64);
500          z    : BITVECTOR(64);
501          mask : BITVECTOR(64) = BVSHL(ONE, z);
502          QUERY( (y & ~mask = y) =>
503                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
504          );
505          QUERY( (y |  mask = y) =>
506                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
507          );
508       */
509 
510       // Please note that each pattern must be a dual implication (<--> or
511       // iff). One directional implication can create spurious matches. If the
512       // implication is only one-way, an unsatisfiable condition on the left
513       // side can imply a satisfiable condition on the right side. Dual
514       // implication ensures that satisfiable conditions are transformed to
515       // other satisfiable conditions and unsatisfiable conditions are
516       // transformed to other unsatisfiable conditions.
517 
518       // Here is a concrete example of a unsatisfiable condition on the left
519       // implying a satisfiable condition on the right:
520       //
521       // mask = (1 << z)
522       // (x & ~mask) == y  --> (x == y || x == (y | mask))
523       //
524       // Substituting y = 3, z = 0 yields:
525       // (x & -2) == 3 --> (x == 3 || x == 2)
526 
527       // Pattern match a special case:
528       /*
529         QUERY( (y & ~mask = y) =>
530                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
531         );
532       */
533       if (match(ICI->getOperand(0),
534                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
535         APInt Mask = ~*RHSC;
536         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
537           // If we already have a value for the switch, it has to match!
538           if (!setValueOnce(RHSVal))
539             return false;
540 
541           Vals.push_back(C);
542           Vals.push_back(
543               ConstantInt::get(C->getContext(),
544                                C->getValue() | Mask));
545           UsedICmps++;
546           return true;
547         }
548       }
549 
550       // Pattern match a special case:
551       /*
552         QUERY( (y |  mask = y) =>
553                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
554         );
555       */
556       if (match(ICI->getOperand(0),
557                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
558         APInt Mask = *RHSC;
559         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
560           // If we already have a value for the switch, it has to match!
561           if (!setValueOnce(RHSVal))
562             return false;
563 
564           Vals.push_back(C);
565           Vals.push_back(ConstantInt::get(C->getContext(),
566                                           C->getValue() & ~Mask));
567           UsedICmps++;
568           return true;
569         }
570       }
571 
572       // If we already have a value for the switch, it has to match!
573       if (!setValueOnce(ICI->getOperand(0)))
574         return false;
575 
576       UsedICmps++;
577       Vals.push_back(C);
578       return ICI->getOperand(0);
579     }
580 
581     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
582     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
583         ICI->getPredicate(), C->getValue());
584 
585     // Shift the range if the compare is fed by an add. This is the range
586     // compare idiom as emitted by instcombine.
587     Value *CandidateVal = I->getOperand(0);
588     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
589       Span = Span.subtract(*RHSC);
590       CandidateVal = RHSVal;
591     }
592 
593     // If this is an and/!= check, then we are looking to build the set of
594     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
595     // x != 0 && x != 1.
596     if (!isEQ)
597       Span = Span.inverse();
598 
599     // If there are a ton of values, we don't want to make a ginormous switch.
600     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
601       return false;
602     }
603 
604     // If we already have a value for the switch, it has to match!
605     if (!setValueOnce(CandidateVal))
606       return false;
607 
608     // Add all values from the range to the set
609     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
610       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
611 
612     UsedICmps++;
613     return true;
614   }
615 
616   /// Given a potentially 'or'd or 'and'd together collection of icmp
617   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
618   /// the value being compared, and stick the list constants into the Vals
619   /// vector.
620   /// One "Extra" case is allowed to differ from the other.
621   void gather(Value *V) {
622     Instruction *I = dyn_cast<Instruction>(V);
623     bool isEQ = (I->getOpcode() == Instruction::Or);
624 
625     // Keep a stack (SmallVector for efficiency) for depth-first traversal
626     SmallVector<Value *, 8> DFT;
627     SmallPtrSet<Value *, 8> Visited;
628 
629     // Initialize
630     Visited.insert(V);
631     DFT.push_back(V);
632 
633     while (!DFT.empty()) {
634       V = DFT.pop_back_val();
635 
636       if (Instruction *I = dyn_cast<Instruction>(V)) {
637         // If it is a || (or && depending on isEQ), process the operands.
638         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
639           if (Visited.insert(I->getOperand(1)).second)
640             DFT.push_back(I->getOperand(1));
641           if (Visited.insert(I->getOperand(0)).second)
642             DFT.push_back(I->getOperand(0));
643           continue;
644         }
645 
646         // Try to match the current instruction
647         if (matchInstruction(I, isEQ))
648           // Match succeed, continue the loop
649           continue;
650       }
651 
652       // One element of the sequence of || (or &&) could not be match as a
653       // comparison against the same value as the others.
654       // We allow only one "Extra" case to be checked before the switch
655       if (!Extra) {
656         Extra = V;
657         continue;
658       }
659       // Failed to parse a proper sequence, abort now
660       CompValue = nullptr;
661       break;
662     }
663   }
664 };
665 
666 } // end anonymous namespace
667 
668 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
669   Instruction *Cond = nullptr;
670   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
671     Cond = dyn_cast<Instruction>(SI->getCondition());
672   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
673     if (BI->isConditional())
674       Cond = dyn_cast<Instruction>(BI->getCondition());
675   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
676     Cond = dyn_cast<Instruction>(IBI->getAddress());
677   }
678 
679   TI->eraseFromParent();
680   if (Cond)
681     RecursivelyDeleteTriviallyDeadInstructions(Cond);
682 }
683 
684 /// Return true if the specified terminator checks
685 /// to see if a value is equal to constant integer value.
686 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
687   Value *CV = nullptr;
688   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
689     // Do not permit merging of large switch instructions into their
690     // predecessors unless there is only one predecessor.
691     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
692                                                pred_end(SI->getParent())) <=
693         128)
694       CV = SI->getCondition();
695   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
696     if (BI->isConditional() && BI->getCondition()->hasOneUse())
697       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
698         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
699           CV = ICI->getOperand(0);
700       }
701 
702   // Unwrap any lossless ptrtoint cast.
703   if (CV) {
704     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
705       Value *Ptr = PTII->getPointerOperand();
706       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
707         CV = Ptr;
708     }
709   }
710   return CV;
711 }
712 
713 /// Given a value comparison instruction,
714 /// decode all of the 'cases' that it represents and return the 'default' block.
715 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
716     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
717   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
718     Cases.reserve(SI->getNumCases());
719     for (auto Case : SI->cases())
720       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
721                                                   Case.getCaseSuccessor()));
722     return SI->getDefaultDest();
723   }
724 
725   BranchInst *BI = cast<BranchInst>(TI);
726   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
727   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
728   Cases.push_back(ValueEqualityComparisonCase(
729       GetConstantInt(ICI->getOperand(1), DL), Succ));
730   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
731 }
732 
733 /// Given a vector of bb/value pairs, remove any entries
734 /// in the list that match the specified block.
735 static void
736 EliminateBlockCases(BasicBlock *BB,
737                     std::vector<ValueEqualityComparisonCase> &Cases) {
738   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
739 }
740 
741 /// Return true if there are any keys in C1 that exist in C2 as well.
742 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
743                           std::vector<ValueEqualityComparisonCase> &C2) {
744   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
745 
746   // Make V1 be smaller than V2.
747   if (V1->size() > V2->size())
748     std::swap(V1, V2);
749 
750   if (V1->empty())
751     return false;
752   if (V1->size() == 1) {
753     // Just scan V2.
754     ConstantInt *TheVal = (*V1)[0].Value;
755     for (unsigned i = 0, e = V2->size(); i != e; ++i)
756       if (TheVal == (*V2)[i].Value)
757         return true;
758   }
759 
760   // Otherwise, just sort both lists and compare element by element.
761   array_pod_sort(V1->begin(), V1->end());
762   array_pod_sort(V2->begin(), V2->end());
763   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
764   while (i1 != e1 && i2 != e2) {
765     if ((*V1)[i1].Value == (*V2)[i2].Value)
766       return true;
767     if ((*V1)[i1].Value < (*V2)[i2].Value)
768       ++i1;
769     else
770       ++i2;
771   }
772   return false;
773 }
774 
775 // Set branch weights on SwitchInst. This sets the metadata if there is at
776 // least one non-zero weight.
777 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
778   // Check that there is at least one non-zero weight. Otherwise, pass
779   // nullptr to setMetadata which will erase the existing metadata.
780   MDNode *N = nullptr;
781   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
782     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
783   SI->setMetadata(LLVMContext::MD_prof, N);
784 }
785 
786 // Similar to the above, but for branch and select instructions that take
787 // exactly 2 weights.
788 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
789                              uint32_t FalseWeight) {
790   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
791   // Check that there is at least one non-zero weight. Otherwise, pass
792   // nullptr to setMetadata which will erase the existing metadata.
793   MDNode *N = nullptr;
794   if (TrueWeight || FalseWeight)
795     N = MDBuilder(I->getParent()->getContext())
796             .createBranchWeights(TrueWeight, FalseWeight);
797   I->setMetadata(LLVMContext::MD_prof, N);
798 }
799 
800 /// If TI is known to be a terminator instruction and its block is known to
801 /// only have a single predecessor block, check to see if that predecessor is
802 /// also a value comparison with the same value, and if that comparison
803 /// determines the outcome of this comparison. If so, simplify TI. This does a
804 /// very limited form of jump threading.
805 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
806     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
807   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
808   if (!PredVal)
809     return false; // Not a value comparison in predecessor.
810 
811   Value *ThisVal = isValueEqualityComparison(TI);
812   assert(ThisVal && "This isn't a value comparison!!");
813   if (ThisVal != PredVal)
814     return false; // Different predicates.
815 
816   // TODO: Preserve branch weight metadata, similarly to how
817   // FoldValueComparisonIntoPredecessors preserves it.
818 
819   // Find out information about when control will move from Pred to TI's block.
820   std::vector<ValueEqualityComparisonCase> PredCases;
821   BasicBlock *PredDef =
822       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
823   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
824 
825   // Find information about how control leaves this block.
826   std::vector<ValueEqualityComparisonCase> ThisCases;
827   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
828   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
829 
830   // If TI's block is the default block from Pred's comparison, potentially
831   // simplify TI based on this knowledge.
832   if (PredDef == TI->getParent()) {
833     // If we are here, we know that the value is none of those cases listed in
834     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
835     // can simplify TI.
836     if (!ValuesOverlap(PredCases, ThisCases))
837       return false;
838 
839     if (isa<BranchInst>(TI)) {
840       // Okay, one of the successors of this condbr is dead.  Convert it to a
841       // uncond br.
842       assert(ThisCases.size() == 1 && "Branch can only have one case!");
843       // Insert the new branch.
844       Instruction *NI = Builder.CreateBr(ThisDef);
845       (void)NI;
846 
847       // Remove PHI node entries for the dead edge.
848       ThisCases[0].Dest->removePredecessor(TI->getParent());
849 
850       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
851                    << "Through successor TI: " << *TI << "Leaving: " << *NI
852                    << "\n");
853 
854       EraseTerminatorInstAndDCECond(TI);
855       return true;
856     }
857 
858     SwitchInst *SI = cast<SwitchInst>(TI);
859     // Okay, TI has cases that are statically dead, prune them away.
860     SmallPtrSet<Constant *, 16> DeadCases;
861     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
862       DeadCases.insert(PredCases[i].Value);
863 
864     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
865                  << "Through successor TI: " << *TI);
866 
867     // Collect branch weights into a vector.
868     SmallVector<uint32_t, 8> Weights;
869     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
870     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
871     if (HasWeight)
872       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
873            ++MD_i) {
874         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
875         Weights.push_back(CI->getValue().getZExtValue());
876       }
877     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
878       --i;
879       if (DeadCases.count(i->getCaseValue())) {
880         if (HasWeight) {
881           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
882           Weights.pop_back();
883         }
884         i->getCaseSuccessor()->removePredecessor(TI->getParent());
885         SI->removeCase(i);
886       }
887     }
888     if (HasWeight && Weights.size() >= 2)
889       setBranchWeights(SI, Weights);
890 
891     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
892     return true;
893   }
894 
895   // Otherwise, TI's block must correspond to some matched value.  Find out
896   // which value (or set of values) this is.
897   ConstantInt *TIV = nullptr;
898   BasicBlock *TIBB = TI->getParent();
899   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
900     if (PredCases[i].Dest == TIBB) {
901       if (TIV)
902         return false; // Cannot handle multiple values coming to this block.
903       TIV = PredCases[i].Value;
904     }
905   assert(TIV && "No edge from pred to succ?");
906 
907   // Okay, we found the one constant that our value can be if we get into TI's
908   // BB.  Find out which successor will unconditionally be branched to.
909   BasicBlock *TheRealDest = nullptr;
910   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
911     if (ThisCases[i].Value == TIV) {
912       TheRealDest = ThisCases[i].Dest;
913       break;
914     }
915 
916   // If not handled by any explicit cases, it is handled by the default case.
917   if (!TheRealDest)
918     TheRealDest = ThisDef;
919 
920   // Remove PHI node entries for dead edges.
921   BasicBlock *CheckEdge = TheRealDest;
922   for (BasicBlock *Succ : successors(TIBB))
923     if (Succ != CheckEdge)
924       Succ->removePredecessor(TIBB);
925     else
926       CheckEdge = nullptr;
927 
928   // Insert the new branch.
929   Instruction *NI = Builder.CreateBr(TheRealDest);
930   (void)NI;
931 
932   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
933                << "Through successor TI: " << *TI << "Leaving: " << *NI
934                << "\n");
935 
936   EraseTerminatorInstAndDCECond(TI);
937   return true;
938 }
939 
940 namespace {
941 
942 /// This class implements a stable ordering of constant
943 /// integers that does not depend on their address.  This is important for
944 /// applications that sort ConstantInt's to ensure uniqueness.
945 struct ConstantIntOrdering {
946   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
947     return LHS->getValue().ult(RHS->getValue());
948   }
949 };
950 
951 } // end anonymous namespace
952 
953 static int ConstantIntSortPredicate(ConstantInt *const *P1,
954                                     ConstantInt *const *P2) {
955   const ConstantInt *LHS = *P1;
956   const ConstantInt *RHS = *P2;
957   if (LHS == RHS)
958     return 0;
959   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
960 }
961 
962 static inline bool HasBranchWeights(const Instruction *I) {
963   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
964   if (ProfMD && ProfMD->getOperand(0))
965     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
966       return MDS->getString().equals("branch_weights");
967 
968   return false;
969 }
970 
971 /// Get Weights of a given TerminatorInst, the default weight is at the front
972 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
973 /// metadata.
974 static void GetBranchWeights(TerminatorInst *TI,
975                              SmallVectorImpl<uint64_t> &Weights) {
976   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
977   assert(MD);
978   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
979     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
980     Weights.push_back(CI->getValue().getZExtValue());
981   }
982 
983   // If TI is a conditional eq, the default case is the false case,
984   // and the corresponding branch-weight data is at index 2. We swap the
985   // default weight to be the first entry.
986   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
987     assert(Weights.size() == 2);
988     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
989     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
990       std::swap(Weights.front(), Weights.back());
991   }
992 }
993 
994 /// Keep halving the weights until all can fit in uint32_t.
995 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
996   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
997   if (Max > UINT_MAX) {
998     unsigned Offset = 32 - countLeadingZeros(Max);
999     for (uint64_t &I : Weights)
1000       I >>= Offset;
1001   }
1002 }
1003 
1004 /// The specified terminator is a value equality comparison instruction
1005 /// (either a switch or a branch on "X == c").
1006 /// See if any of the predecessors of the terminator block are value comparisons
1007 /// on the same value.  If so, and if safe to do so, fold them together.
1008 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
1009                                                          IRBuilder<> &Builder) {
1010   BasicBlock *BB = TI->getParent();
1011   Value *CV = isValueEqualityComparison(TI); // CondVal
1012   assert(CV && "Not a comparison?");
1013   bool Changed = false;
1014 
1015   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1016   while (!Preds.empty()) {
1017     BasicBlock *Pred = Preds.pop_back_val();
1018 
1019     // See if the predecessor is a comparison with the same value.
1020     TerminatorInst *PTI = Pred->getTerminator();
1021     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1022 
1023     if (PCV == CV && TI != PTI) {
1024       SmallSetVector<BasicBlock*, 4> FailBlocks;
1025       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1026         for (auto *Succ : FailBlocks) {
1027           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1028             return false;
1029         }
1030       }
1031 
1032       // Figure out which 'cases' to copy from SI to PSI.
1033       std::vector<ValueEqualityComparisonCase> BBCases;
1034       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1035 
1036       std::vector<ValueEqualityComparisonCase> PredCases;
1037       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1038 
1039       // Based on whether the default edge from PTI goes to BB or not, fill in
1040       // PredCases and PredDefault with the new switch cases we would like to
1041       // build.
1042       SmallVector<BasicBlock *, 8> NewSuccessors;
1043 
1044       // Update the branch weight metadata along the way
1045       SmallVector<uint64_t, 8> Weights;
1046       bool PredHasWeights = HasBranchWeights(PTI);
1047       bool SuccHasWeights = HasBranchWeights(TI);
1048 
1049       if (PredHasWeights) {
1050         GetBranchWeights(PTI, Weights);
1051         // branch-weight metadata is inconsistent here.
1052         if (Weights.size() != 1 + PredCases.size())
1053           PredHasWeights = SuccHasWeights = false;
1054       } else if (SuccHasWeights)
1055         // If there are no predecessor weights but there are successor weights,
1056         // populate Weights with 1, which will later be scaled to the sum of
1057         // successor's weights
1058         Weights.assign(1 + PredCases.size(), 1);
1059 
1060       SmallVector<uint64_t, 8> SuccWeights;
1061       if (SuccHasWeights) {
1062         GetBranchWeights(TI, SuccWeights);
1063         // branch-weight metadata is inconsistent here.
1064         if (SuccWeights.size() != 1 + BBCases.size())
1065           PredHasWeights = SuccHasWeights = false;
1066       } else if (PredHasWeights)
1067         SuccWeights.assign(1 + BBCases.size(), 1);
1068 
1069       if (PredDefault == BB) {
1070         // If this is the default destination from PTI, only the edges in TI
1071         // that don't occur in PTI, or that branch to BB will be activated.
1072         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1073         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1074           if (PredCases[i].Dest != BB)
1075             PTIHandled.insert(PredCases[i].Value);
1076           else {
1077             // The default destination is BB, we don't need explicit targets.
1078             std::swap(PredCases[i], PredCases.back());
1079 
1080             if (PredHasWeights || SuccHasWeights) {
1081               // Increase weight for the default case.
1082               Weights[0] += Weights[i + 1];
1083               std::swap(Weights[i + 1], Weights.back());
1084               Weights.pop_back();
1085             }
1086 
1087             PredCases.pop_back();
1088             --i;
1089             --e;
1090           }
1091 
1092         // Reconstruct the new switch statement we will be building.
1093         if (PredDefault != BBDefault) {
1094           PredDefault->removePredecessor(Pred);
1095           PredDefault = BBDefault;
1096           NewSuccessors.push_back(BBDefault);
1097         }
1098 
1099         unsigned CasesFromPred = Weights.size();
1100         uint64_t ValidTotalSuccWeight = 0;
1101         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1102           if (!PTIHandled.count(BBCases[i].Value) &&
1103               BBCases[i].Dest != BBDefault) {
1104             PredCases.push_back(BBCases[i]);
1105             NewSuccessors.push_back(BBCases[i].Dest);
1106             if (SuccHasWeights || PredHasWeights) {
1107               // The default weight is at index 0, so weight for the ith case
1108               // should be at index i+1. Scale the cases from successor by
1109               // PredDefaultWeight (Weights[0]).
1110               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1111               ValidTotalSuccWeight += SuccWeights[i + 1];
1112             }
1113           }
1114 
1115         if (SuccHasWeights || PredHasWeights) {
1116           ValidTotalSuccWeight += SuccWeights[0];
1117           // Scale the cases from predecessor by ValidTotalSuccWeight.
1118           for (unsigned i = 1; i < CasesFromPred; ++i)
1119             Weights[i] *= ValidTotalSuccWeight;
1120           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1121           Weights[0] *= SuccWeights[0];
1122         }
1123       } else {
1124         // If this is not the default destination from PSI, only the edges
1125         // in SI that occur in PSI with a destination of BB will be
1126         // activated.
1127         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1128         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1129         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1130           if (PredCases[i].Dest == BB) {
1131             PTIHandled.insert(PredCases[i].Value);
1132 
1133             if (PredHasWeights || SuccHasWeights) {
1134               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1135               std::swap(Weights[i + 1], Weights.back());
1136               Weights.pop_back();
1137             }
1138 
1139             std::swap(PredCases[i], PredCases.back());
1140             PredCases.pop_back();
1141             --i;
1142             --e;
1143           }
1144 
1145         // Okay, now we know which constants were sent to BB from the
1146         // predecessor.  Figure out where they will all go now.
1147         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1148           if (PTIHandled.count(BBCases[i].Value)) {
1149             // If this is one we are capable of getting...
1150             if (PredHasWeights || SuccHasWeights)
1151               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1152             PredCases.push_back(BBCases[i]);
1153             NewSuccessors.push_back(BBCases[i].Dest);
1154             PTIHandled.erase(
1155                 BBCases[i].Value); // This constant is taken care of
1156           }
1157 
1158         // If there are any constants vectored to BB that TI doesn't handle,
1159         // they must go to the default destination of TI.
1160         for (ConstantInt *I : PTIHandled) {
1161           if (PredHasWeights || SuccHasWeights)
1162             Weights.push_back(WeightsForHandled[I]);
1163           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1164           NewSuccessors.push_back(BBDefault);
1165         }
1166       }
1167 
1168       // Okay, at this point, we know which new successor Pred will get.  Make
1169       // sure we update the number of entries in the PHI nodes for these
1170       // successors.
1171       for (BasicBlock *NewSuccessor : NewSuccessors)
1172         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1173 
1174       Builder.SetInsertPoint(PTI);
1175       // Convert pointer to int before we switch.
1176       if (CV->getType()->isPointerTy()) {
1177         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1178                                     "magicptr");
1179       }
1180 
1181       // Now that the successors are updated, create the new Switch instruction.
1182       SwitchInst *NewSI =
1183           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1184       NewSI->setDebugLoc(PTI->getDebugLoc());
1185       for (ValueEqualityComparisonCase &V : PredCases)
1186         NewSI->addCase(V.Value, V.Dest);
1187 
1188       if (PredHasWeights || SuccHasWeights) {
1189         // Halve the weights if any of them cannot fit in an uint32_t
1190         FitWeights(Weights);
1191 
1192         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1193 
1194         setBranchWeights(NewSI, MDWeights);
1195       }
1196 
1197       EraseTerminatorInstAndDCECond(PTI);
1198 
1199       // Okay, last check.  If BB is still a successor of PSI, then we must
1200       // have an infinite loop case.  If so, add an infinitely looping block
1201       // to handle the case to preserve the behavior of the code.
1202       BasicBlock *InfLoopBlock = nullptr;
1203       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1204         if (NewSI->getSuccessor(i) == BB) {
1205           if (!InfLoopBlock) {
1206             // Insert it at the end of the function, because it's either code,
1207             // or it won't matter if it's hot. :)
1208             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1209                                               BB->getParent());
1210             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1211           }
1212           NewSI->setSuccessor(i, InfLoopBlock);
1213         }
1214 
1215       Changed = true;
1216     }
1217   }
1218   return Changed;
1219 }
1220 
1221 // If we would need to insert a select that uses the value of this invoke
1222 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1223 // can't hoist the invoke, as there is nowhere to put the select in this case.
1224 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1225                                 Instruction *I1, Instruction *I2) {
1226   for (BasicBlock *Succ : successors(BB1)) {
1227     for (const PHINode &PN : Succ->phis()) {
1228       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1229       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1230       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1231         return false;
1232       }
1233     }
1234   }
1235   return true;
1236 }
1237 
1238 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1239 
1240 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1241 /// in the two blocks up into the branch block. The caller of this function
1242 /// guarantees that BI's block dominates BB1 and BB2.
1243 static bool HoistThenElseCodeToIf(BranchInst *BI,
1244                                   const TargetTransformInfo &TTI) {
1245   // This does very trivial matching, with limited scanning, to find identical
1246   // instructions in the two blocks.  In particular, we don't want to get into
1247   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1248   // such, we currently just scan for obviously identical instructions in an
1249   // identical order.
1250   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1251   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1252 
1253   BasicBlock::iterator BB1_Itr = BB1->begin();
1254   BasicBlock::iterator BB2_Itr = BB2->begin();
1255 
1256   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1257   // Skip debug info if it is not identical.
1258   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1259   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1260   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1261     while (isa<DbgInfoIntrinsic>(I1))
1262       I1 = &*BB1_Itr++;
1263     while (isa<DbgInfoIntrinsic>(I2))
1264       I2 = &*BB2_Itr++;
1265   }
1266   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1267       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1268     return false;
1269 
1270   BasicBlock *BIParent = BI->getParent();
1271 
1272   bool Changed = false;
1273   do {
1274     // If we are hoisting the terminator instruction, don't move one (making a
1275     // broken BB), instead clone it, and remove BI.
1276     if (isa<TerminatorInst>(I1))
1277       goto HoistTerminator;
1278 
1279     // If we're going to hoist a call, make sure that the two instructions we're
1280     // commoning/hoisting are both marked with musttail, or neither of them is
1281     // marked as such. Otherwise, we might end up in a situation where we hoist
1282     // from a block where the terminator is a `ret` to a block where the terminator
1283     // is a `br`, and `musttail` calls expect to be followed by a return.
1284     auto *C1 = dyn_cast<CallInst>(I1);
1285     auto *C2 = dyn_cast<CallInst>(I2);
1286     if (C1 && C2)
1287       if (C1->isMustTailCall() != C2->isMustTailCall())
1288         return Changed;
1289 
1290     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1291       return Changed;
1292 
1293     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1294       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1295       // The debug location is an integral part of a debug info intrinsic
1296       // and can't be separated from it or replaced.  Instead of attempting
1297       // to merge locations, simply hoist both copies of the intrinsic.
1298       BIParent->getInstList().splice(BI->getIterator(),
1299                                      BB1->getInstList(), I1);
1300       BIParent->getInstList().splice(BI->getIterator(),
1301                                      BB2->getInstList(), I2);
1302       Changed = true;
1303     } else {
1304       // For a normal instruction, we just move one to right before the branch,
1305       // then replace all uses of the other with the first.  Finally, we remove
1306       // the now redundant second instruction.
1307       BIParent->getInstList().splice(BI->getIterator(),
1308                                      BB1->getInstList(), I1);
1309       if (!I2->use_empty())
1310         I2->replaceAllUsesWith(I1);
1311       I1->andIRFlags(I2);
1312       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1313                              LLVMContext::MD_range,
1314                              LLVMContext::MD_fpmath,
1315                              LLVMContext::MD_invariant_load,
1316                              LLVMContext::MD_nonnull,
1317                              LLVMContext::MD_invariant_group,
1318                              LLVMContext::MD_align,
1319                              LLVMContext::MD_dereferenceable,
1320                              LLVMContext::MD_dereferenceable_or_null,
1321                              LLVMContext::MD_mem_parallel_loop_access};
1322       combineMetadata(I1, I2, KnownIDs);
1323 
1324       // I1 and I2 are being combined into a single instruction.  Its debug
1325       // location is the merged locations of the original instructions.
1326       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1327 
1328       I2->eraseFromParent();
1329       Changed = true;
1330     }
1331 
1332     I1 = &*BB1_Itr++;
1333     I2 = &*BB2_Itr++;
1334     // Skip debug info if it is not identical.
1335     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1336     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1337     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1338       while (isa<DbgInfoIntrinsic>(I1))
1339         I1 = &*BB1_Itr++;
1340       while (isa<DbgInfoIntrinsic>(I2))
1341         I2 = &*BB2_Itr++;
1342     }
1343   } while (I1->isIdenticalToWhenDefined(I2));
1344 
1345   return true;
1346 
1347 HoistTerminator:
1348   // It may not be possible to hoist an invoke.
1349   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1350     return Changed;
1351 
1352   for (BasicBlock *Succ : successors(BB1)) {
1353     for (PHINode &PN : Succ->phis()) {
1354       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1355       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1356       if (BB1V == BB2V)
1357         continue;
1358 
1359       // Check for passingValueIsAlwaysUndefined here because we would rather
1360       // eliminate undefined control flow then converting it to a select.
1361       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1362           passingValueIsAlwaysUndefined(BB2V, &PN))
1363         return Changed;
1364 
1365       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1366         return Changed;
1367       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1368         return Changed;
1369     }
1370   }
1371 
1372   // Okay, it is safe to hoist the terminator.
1373   Instruction *NT = I1->clone();
1374   BIParent->getInstList().insert(BI->getIterator(), NT);
1375   if (!NT->getType()->isVoidTy()) {
1376     I1->replaceAllUsesWith(NT);
1377     I2->replaceAllUsesWith(NT);
1378     NT->takeName(I1);
1379   }
1380 
1381   IRBuilder<NoFolder> Builder(NT);
1382   // Hoisting one of the terminators from our successor is a great thing.
1383   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1384   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1385   // nodes, so we insert select instruction to compute the final result.
1386   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1387   for (BasicBlock *Succ : successors(BB1)) {
1388     for (PHINode &PN : Succ->phis()) {
1389       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1390       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1391       if (BB1V == BB2V)
1392         continue;
1393 
1394       // These values do not agree.  Insert a select instruction before NT
1395       // that determines the right value.
1396       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1397       if (!SI)
1398         SI = cast<SelectInst>(
1399             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1400                                  BB1V->getName() + "." + BB2V->getName(), BI));
1401 
1402       // Make the PHI node use the select for all incoming values for BB1/BB2
1403       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1404         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1405           PN.setIncomingValue(i, SI);
1406     }
1407   }
1408 
1409   // Update any PHI nodes in our new successors.
1410   for (BasicBlock *Succ : successors(BB1))
1411     AddPredecessorToBlock(Succ, BIParent, BB1);
1412 
1413   EraseTerminatorInstAndDCECond(BI);
1414   return true;
1415 }
1416 
1417 // All instructions in Insts belong to different blocks that all unconditionally
1418 // branch to a common successor. Analyze each instruction and return true if it
1419 // would be possible to sink them into their successor, creating one common
1420 // instruction instead. For every value that would be required to be provided by
1421 // PHI node (because an operand varies in each input block), add to PHIOperands.
1422 static bool canSinkInstructions(
1423     ArrayRef<Instruction *> Insts,
1424     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1425   // Prune out obviously bad instructions to move. Any non-store instruction
1426   // must have exactly one use, and we check later that use is by a single,
1427   // common PHI instruction in the successor.
1428   for (auto *I : Insts) {
1429     // These instructions may change or break semantics if moved.
1430     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1431         I->getType()->isTokenTy())
1432       return false;
1433 
1434     // Conservatively return false if I is an inline-asm instruction. Sinking
1435     // and merging inline-asm instructions can potentially create arguments
1436     // that cannot satisfy the inline-asm constraints.
1437     if (const auto *C = dyn_cast<CallInst>(I))
1438       if (C->isInlineAsm())
1439         return false;
1440 
1441     // Everything must have only one use too, apart from stores which
1442     // have no uses.
1443     if (!isa<StoreInst>(I) && !I->hasOneUse())
1444       return false;
1445   }
1446 
1447   const Instruction *I0 = Insts.front();
1448   for (auto *I : Insts)
1449     if (!I->isSameOperationAs(I0))
1450       return false;
1451 
1452   // All instructions in Insts are known to be the same opcode. If they aren't
1453   // stores, check the only user of each is a PHI or in the same block as the
1454   // instruction, because if a user is in the same block as an instruction
1455   // we're contemplating sinking, it must already be determined to be sinkable.
1456   if (!isa<StoreInst>(I0)) {
1457     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1458     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1459     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1460           auto *U = cast<Instruction>(*I->user_begin());
1461           return (PNUse &&
1462                   PNUse->getParent() == Succ &&
1463                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1464                  U->getParent() == I->getParent();
1465         }))
1466       return false;
1467   }
1468 
1469   // Because SROA can't handle speculating stores of selects, try not
1470   // to sink loads or stores of allocas when we'd have to create a PHI for
1471   // the address operand. Also, because it is likely that loads or stores
1472   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1473   // This can cause code churn which can have unintended consequences down
1474   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1475   // FIXME: This is a workaround for a deficiency in SROA - see
1476   // https://llvm.org/bugs/show_bug.cgi?id=30188
1477   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1478         return isa<AllocaInst>(I->getOperand(1));
1479       }))
1480     return false;
1481   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1482         return isa<AllocaInst>(I->getOperand(0));
1483       }))
1484     return false;
1485 
1486   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1487     if (I0->getOperand(OI)->getType()->isTokenTy())
1488       // Don't touch any operand of token type.
1489       return false;
1490 
1491     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1492       assert(I->getNumOperands() == I0->getNumOperands());
1493       return I->getOperand(OI) == I0->getOperand(OI);
1494     };
1495     if (!all_of(Insts, SameAsI0)) {
1496       if (!canReplaceOperandWithVariable(I0, OI))
1497         // We can't create a PHI from this GEP.
1498         return false;
1499       // Don't create indirect calls! The called value is the final operand.
1500       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1501         // FIXME: if the call was *already* indirect, we should do this.
1502         return false;
1503       }
1504       for (auto *I : Insts)
1505         PHIOperands[I].push_back(I->getOperand(OI));
1506     }
1507   }
1508   return true;
1509 }
1510 
1511 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1512 // instruction of every block in Blocks to their common successor, commoning
1513 // into one instruction.
1514 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1515   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1516 
1517   // canSinkLastInstruction returning true guarantees that every block has at
1518   // least one non-terminator instruction.
1519   SmallVector<Instruction*,4> Insts;
1520   for (auto *BB : Blocks) {
1521     Instruction *I = BB->getTerminator();
1522     do {
1523       I = I->getPrevNode();
1524     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1525     if (!isa<DbgInfoIntrinsic>(I))
1526       Insts.push_back(I);
1527   }
1528 
1529   // The only checking we need to do now is that all users of all instructions
1530   // are the same PHI node. canSinkLastInstruction should have checked this but
1531   // it is slightly over-aggressive - it gets confused by commutative instructions
1532   // so double-check it here.
1533   Instruction *I0 = Insts.front();
1534   if (!isa<StoreInst>(I0)) {
1535     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1536     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1537           auto *U = cast<Instruction>(*I->user_begin());
1538           return U == PNUse;
1539         }))
1540       return false;
1541   }
1542 
1543   // We don't need to do any more checking here; canSinkLastInstruction should
1544   // have done it all for us.
1545   SmallVector<Value*, 4> NewOperands;
1546   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1547     // This check is different to that in canSinkLastInstruction. There, we
1548     // cared about the global view once simplifycfg (and instcombine) have
1549     // completed - it takes into account PHIs that become trivially
1550     // simplifiable.  However here we need a more local view; if an operand
1551     // differs we create a PHI and rely on instcombine to clean up the very
1552     // small mess we may make.
1553     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1554       return I->getOperand(O) != I0->getOperand(O);
1555     });
1556     if (!NeedPHI) {
1557       NewOperands.push_back(I0->getOperand(O));
1558       continue;
1559     }
1560 
1561     // Create a new PHI in the successor block and populate it.
1562     auto *Op = I0->getOperand(O);
1563     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1564     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1565                                Op->getName() + ".sink", &BBEnd->front());
1566     for (auto *I : Insts)
1567       PN->addIncoming(I->getOperand(O), I->getParent());
1568     NewOperands.push_back(PN);
1569   }
1570 
1571   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1572   // and move it to the start of the successor block.
1573   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1574     I0->getOperandUse(O).set(NewOperands[O]);
1575   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1576 
1577   // Update metadata and IR flags, and merge debug locations.
1578   for (auto *I : Insts)
1579     if (I != I0) {
1580       // The debug location for the "common" instruction is the merged locations
1581       // of all the commoned instructions.  We start with the original location
1582       // of the "common" instruction and iteratively merge each location in the
1583       // loop below.
1584       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1585       // However, as N-way merge for CallInst is rare, so we use simplified API
1586       // instead of using complex API for N-way merge.
1587       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1588       combineMetadataForCSE(I0, I);
1589       I0->andIRFlags(I);
1590     }
1591 
1592   if (!isa<StoreInst>(I0)) {
1593     // canSinkLastInstruction checked that all instructions were used by
1594     // one and only one PHI node. Find that now, RAUW it to our common
1595     // instruction and nuke it.
1596     assert(I0->hasOneUse());
1597     auto *PN = cast<PHINode>(*I0->user_begin());
1598     PN->replaceAllUsesWith(I0);
1599     PN->eraseFromParent();
1600   }
1601 
1602   // Finally nuke all instructions apart from the common instruction.
1603   for (auto *I : Insts)
1604     if (I != I0)
1605       I->eraseFromParent();
1606 
1607   return true;
1608 }
1609 
1610 namespace {
1611 
1612   // LockstepReverseIterator - Iterates through instructions
1613   // in a set of blocks in reverse order from the first non-terminator.
1614   // For example (assume all blocks have size n):
1615   //   LockstepReverseIterator I([B1, B2, B3]);
1616   //   *I-- = [B1[n], B2[n], B3[n]];
1617   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1618   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1619   //   ...
1620   class LockstepReverseIterator {
1621     ArrayRef<BasicBlock*> Blocks;
1622     SmallVector<Instruction*,4> Insts;
1623     bool Fail;
1624 
1625   public:
1626     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1627       reset();
1628     }
1629 
1630     void reset() {
1631       Fail = false;
1632       Insts.clear();
1633       for (auto *BB : Blocks) {
1634         Instruction *Inst = BB->getTerminator();
1635         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1636           Inst = Inst->getPrevNode();
1637         if (!Inst) {
1638           // Block wasn't big enough.
1639           Fail = true;
1640           return;
1641         }
1642         Insts.push_back(Inst);
1643       }
1644     }
1645 
1646     bool isValid() const {
1647       return !Fail;
1648     }
1649 
1650     void operator--() {
1651       if (Fail)
1652         return;
1653       for (auto *&Inst : Insts) {
1654         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1655           Inst = Inst->getPrevNode();
1656         // Already at beginning of block.
1657         if (!Inst) {
1658           Fail = true;
1659           return;
1660         }
1661       }
1662     }
1663 
1664     ArrayRef<Instruction*> operator * () const {
1665       return Insts;
1666     }
1667   };
1668 
1669 } // end anonymous namespace
1670 
1671 /// Check whether BB's predecessors end with unconditional branches. If it is
1672 /// true, sink any common code from the predecessors to BB.
1673 /// We also allow one predecessor to end with conditional branch (but no more
1674 /// than one).
1675 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1676   // We support two situations:
1677   //   (1) all incoming arcs are unconditional
1678   //   (2) one incoming arc is conditional
1679   //
1680   // (2) is very common in switch defaults and
1681   // else-if patterns;
1682   //
1683   //   if (a) f(1);
1684   //   else if (b) f(2);
1685   //
1686   // produces:
1687   //
1688   //       [if]
1689   //      /    \
1690   //    [f(1)] [if]
1691   //      |     | \
1692   //      |     |  |
1693   //      |  [f(2)]|
1694   //       \    | /
1695   //        [ end ]
1696   //
1697   // [end] has two unconditional predecessor arcs and one conditional. The
1698   // conditional refers to the implicit empty 'else' arc. This conditional
1699   // arc can also be caused by an empty default block in a switch.
1700   //
1701   // In this case, we attempt to sink code from all *unconditional* arcs.
1702   // If we can sink instructions from these arcs (determined during the scan
1703   // phase below) we insert a common successor for all unconditional arcs and
1704   // connect that to [end], to enable sinking:
1705   //
1706   //       [if]
1707   //      /    \
1708   //    [x(1)] [if]
1709   //      |     | \
1710   //      |     |  \
1711   //      |  [x(2)] |
1712   //       \   /    |
1713   //   [sink.split] |
1714   //         \     /
1715   //         [ end ]
1716   //
1717   SmallVector<BasicBlock*,4> UnconditionalPreds;
1718   Instruction *Cond = nullptr;
1719   for (auto *B : predecessors(BB)) {
1720     auto *T = B->getTerminator();
1721     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1722       UnconditionalPreds.push_back(B);
1723     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1724       Cond = T;
1725     else
1726       return false;
1727   }
1728   if (UnconditionalPreds.size() < 2)
1729     return false;
1730 
1731   bool Changed = false;
1732   // We take a two-step approach to tail sinking. First we scan from the end of
1733   // each block upwards in lockstep. If the n'th instruction from the end of each
1734   // block can be sunk, those instructions are added to ValuesToSink and we
1735   // carry on. If we can sink an instruction but need to PHI-merge some operands
1736   // (because they're not identical in each instruction) we add these to
1737   // PHIOperands.
1738   unsigned ScanIdx = 0;
1739   SmallPtrSet<Value*,4> InstructionsToSink;
1740   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1741   LockstepReverseIterator LRI(UnconditionalPreds);
1742   while (LRI.isValid() &&
1743          canSinkInstructions(*LRI, PHIOperands)) {
1744     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1745     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1746     ++ScanIdx;
1747     --LRI;
1748   }
1749 
1750   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1751     unsigned NumPHIdValues = 0;
1752     for (auto *I : *LRI)
1753       for (auto *V : PHIOperands[I])
1754         if (InstructionsToSink.count(V) == 0)
1755           ++NumPHIdValues;
1756     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1757     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1758     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1759         NumPHIInsts++;
1760 
1761     return NumPHIInsts <= 1;
1762   };
1763 
1764   if (ScanIdx > 0 && Cond) {
1765     // Check if we would actually sink anything first! This mutates the CFG and
1766     // adds an extra block. The goal in doing this is to allow instructions that
1767     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1768     // (such as trunc, add) can be sunk and predicated already. So we check that
1769     // we're going to sink at least one non-speculatable instruction.
1770     LRI.reset();
1771     unsigned Idx = 0;
1772     bool Profitable = false;
1773     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1774       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1775         Profitable = true;
1776         break;
1777       }
1778       --LRI;
1779       ++Idx;
1780     }
1781     if (!Profitable)
1782       return false;
1783 
1784     DEBUG(dbgs() << "SINK: Splitting edge\n");
1785     // We have a conditional edge and we're going to sink some instructions.
1786     // Insert a new block postdominating all blocks we're going to sink from.
1787     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1788       // Edges couldn't be split.
1789       return false;
1790     Changed = true;
1791   }
1792 
1793   // Now that we've analyzed all potential sinking candidates, perform the
1794   // actual sink. We iteratively sink the last non-terminator of the source
1795   // blocks into their common successor unless doing so would require too
1796   // many PHI instructions to be generated (currently only one PHI is allowed
1797   // per sunk instruction).
1798   //
1799   // We can use InstructionsToSink to discount values needing PHI-merging that will
1800   // actually be sunk in a later iteration. This allows us to be more
1801   // aggressive in what we sink. This does allow a false positive where we
1802   // sink presuming a later value will also be sunk, but stop half way through
1803   // and never actually sink it which means we produce more PHIs than intended.
1804   // This is unlikely in practice though.
1805   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1806     DEBUG(dbgs() << "SINK: Sink: "
1807                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1808                  << "\n");
1809 
1810     // Because we've sunk every instruction in turn, the current instruction to
1811     // sink is always at index 0.
1812     LRI.reset();
1813     if (!ProfitableToSinkInstruction(LRI)) {
1814       // Too many PHIs would be created.
1815       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1816       break;
1817     }
1818 
1819     if (!sinkLastInstruction(UnconditionalPreds))
1820       return Changed;
1821     NumSinkCommons++;
1822     Changed = true;
1823   }
1824   return Changed;
1825 }
1826 
1827 /// \brief Determine if we can hoist sink a sole store instruction out of a
1828 /// conditional block.
1829 ///
1830 /// We are looking for code like the following:
1831 ///   BrBB:
1832 ///     store i32 %add, i32* %arrayidx2
1833 ///     ... // No other stores or function calls (we could be calling a memory
1834 ///     ... // function).
1835 ///     %cmp = icmp ult %x, %y
1836 ///     br i1 %cmp, label %EndBB, label %ThenBB
1837 ///   ThenBB:
1838 ///     store i32 %add5, i32* %arrayidx2
1839 ///     br label EndBB
1840 ///   EndBB:
1841 ///     ...
1842 ///   We are going to transform this into:
1843 ///   BrBB:
1844 ///     store i32 %add, i32* %arrayidx2
1845 ///     ... //
1846 ///     %cmp = icmp ult %x, %y
1847 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1848 ///     store i32 %add.add5, i32* %arrayidx2
1849 ///     ...
1850 ///
1851 /// \return The pointer to the value of the previous store if the store can be
1852 ///         hoisted into the predecessor block. 0 otherwise.
1853 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1854                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1855   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1856   if (!StoreToHoist)
1857     return nullptr;
1858 
1859   // Volatile or atomic.
1860   if (!StoreToHoist->isSimple())
1861     return nullptr;
1862 
1863   Value *StorePtr = StoreToHoist->getPointerOperand();
1864 
1865   // Look for a store to the same pointer in BrBB.
1866   unsigned MaxNumInstToLookAt = 9;
1867   for (Instruction &CurI : reverse(*BrBB)) {
1868     if (!MaxNumInstToLookAt)
1869       break;
1870     // Skip debug info.
1871     if (isa<DbgInfoIntrinsic>(CurI))
1872       continue;
1873     --MaxNumInstToLookAt;
1874 
1875     // Could be calling an instruction that affects memory like free().
1876     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1877       return nullptr;
1878 
1879     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1880       // Found the previous store make sure it stores to the same location.
1881       if (SI->getPointerOperand() == StorePtr)
1882         // Found the previous store, return its value operand.
1883         return SI->getValueOperand();
1884       return nullptr; // Unknown store.
1885     }
1886   }
1887 
1888   return nullptr;
1889 }
1890 
1891 /// \brief Speculate a conditional basic block flattening the CFG.
1892 ///
1893 /// Note that this is a very risky transform currently. Speculating
1894 /// instructions like this is most often not desirable. Instead, there is an MI
1895 /// pass which can do it with full awareness of the resource constraints.
1896 /// However, some cases are "obvious" and we should do directly. An example of
1897 /// this is speculating a single, reasonably cheap instruction.
1898 ///
1899 /// There is only one distinct advantage to flattening the CFG at the IR level:
1900 /// it makes very common but simplistic optimizations such as are common in
1901 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1902 /// modeling their effects with easier to reason about SSA value graphs.
1903 ///
1904 ///
1905 /// An illustration of this transform is turning this IR:
1906 /// \code
1907 ///   BB:
1908 ///     %cmp = icmp ult %x, %y
1909 ///     br i1 %cmp, label %EndBB, label %ThenBB
1910 ///   ThenBB:
1911 ///     %sub = sub %x, %y
1912 ///     br label BB2
1913 ///   EndBB:
1914 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1915 ///     ...
1916 /// \endcode
1917 ///
1918 /// Into this IR:
1919 /// \code
1920 ///   BB:
1921 ///     %cmp = icmp ult %x, %y
1922 ///     %sub = sub %x, %y
1923 ///     %cond = select i1 %cmp, 0, %sub
1924 ///     ...
1925 /// \endcode
1926 ///
1927 /// \returns true if the conditional block is removed.
1928 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1929                                    const TargetTransformInfo &TTI) {
1930   // Be conservative for now. FP select instruction can often be expensive.
1931   Value *BrCond = BI->getCondition();
1932   if (isa<FCmpInst>(BrCond))
1933     return false;
1934 
1935   BasicBlock *BB = BI->getParent();
1936   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1937 
1938   // If ThenBB is actually on the false edge of the conditional branch, remember
1939   // to swap the select operands later.
1940   bool Invert = false;
1941   if (ThenBB != BI->getSuccessor(0)) {
1942     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1943     Invert = true;
1944   }
1945   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1946 
1947   // Keep a count of how many times instructions are used within CondBB when
1948   // they are candidates for sinking into CondBB. Specifically:
1949   // - They are defined in BB, and
1950   // - They have no side effects, and
1951   // - All of their uses are in CondBB.
1952   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1953 
1954   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1955 
1956   unsigned SpeculationCost = 0;
1957   Value *SpeculatedStoreValue = nullptr;
1958   StoreInst *SpeculatedStore = nullptr;
1959   for (BasicBlock::iterator BBI = ThenBB->begin(),
1960                             BBE = std::prev(ThenBB->end());
1961        BBI != BBE; ++BBI) {
1962     Instruction *I = &*BBI;
1963     // Skip debug info.
1964     if (isa<DbgInfoIntrinsic>(I)) {
1965       SpeculatedDbgIntrinsics.push_back(I);
1966       continue;
1967     }
1968 
1969     // Only speculatively execute a single instruction (not counting the
1970     // terminator) for now.
1971     ++SpeculationCost;
1972     if (SpeculationCost > 1)
1973       return false;
1974 
1975     // Don't hoist the instruction if it's unsafe or expensive.
1976     if (!isSafeToSpeculativelyExecute(I) &&
1977         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1978                                   I, BB, ThenBB, EndBB))))
1979       return false;
1980     if (!SpeculatedStoreValue &&
1981         ComputeSpeculationCost(I, TTI) >
1982             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1983       return false;
1984 
1985     // Store the store speculation candidate.
1986     if (SpeculatedStoreValue)
1987       SpeculatedStore = cast<StoreInst>(I);
1988 
1989     // Do not hoist the instruction if any of its operands are defined but not
1990     // used in BB. The transformation will prevent the operand from
1991     // being sunk into the use block.
1992     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1993       Instruction *OpI = dyn_cast<Instruction>(*i);
1994       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1995         continue; // Not a candidate for sinking.
1996 
1997       ++SinkCandidateUseCounts[OpI];
1998     }
1999   }
2000 
2001   // Consider any sink candidates which are only used in CondBB as costs for
2002   // speculation. Note, while we iterate over a DenseMap here, we are summing
2003   // and so iteration order isn't significant.
2004   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2005            I = SinkCandidateUseCounts.begin(),
2006            E = SinkCandidateUseCounts.end();
2007        I != E; ++I)
2008     if (I->first->getNumUses() == I->second) {
2009       ++SpeculationCost;
2010       if (SpeculationCost > 1)
2011         return false;
2012     }
2013 
2014   // Check that the PHI nodes can be converted to selects.
2015   bool HaveRewritablePHIs = false;
2016   for (PHINode &PN : EndBB->phis()) {
2017     Value *OrigV = PN.getIncomingValueForBlock(BB);
2018     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2019 
2020     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2021     // Skip PHIs which are trivial.
2022     if (ThenV == OrigV)
2023       continue;
2024 
2025     // Don't convert to selects if we could remove undefined behavior instead.
2026     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2027         passingValueIsAlwaysUndefined(ThenV, &PN))
2028       return false;
2029 
2030     HaveRewritablePHIs = true;
2031     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2032     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2033     if (!OrigCE && !ThenCE)
2034       continue; // Known safe and cheap.
2035 
2036     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2037         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2038       return false;
2039     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2040     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2041     unsigned MaxCost =
2042         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2043     if (OrigCost + ThenCost > MaxCost)
2044       return false;
2045 
2046     // Account for the cost of an unfolded ConstantExpr which could end up
2047     // getting expanded into Instructions.
2048     // FIXME: This doesn't account for how many operations are combined in the
2049     // constant expression.
2050     ++SpeculationCost;
2051     if (SpeculationCost > 1)
2052       return false;
2053   }
2054 
2055   // If there are no PHIs to process, bail early. This helps ensure idempotence
2056   // as well.
2057   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2058     return false;
2059 
2060   // If we get here, we can hoist the instruction and if-convert.
2061   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2062 
2063   // Insert a select of the value of the speculated store.
2064   if (SpeculatedStoreValue) {
2065     IRBuilder<NoFolder> Builder(BI);
2066     Value *TrueV = SpeculatedStore->getValueOperand();
2067     Value *FalseV = SpeculatedStoreValue;
2068     if (Invert)
2069       std::swap(TrueV, FalseV);
2070     Value *S = Builder.CreateSelect(
2071         BrCond, TrueV, FalseV, "spec.store.select", BI);
2072     SpeculatedStore->setOperand(0, S);
2073     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2074                                          SpeculatedStore->getDebugLoc());
2075   }
2076 
2077   // Metadata can be dependent on the condition we are hoisting above.
2078   // Conservatively strip all metadata on the instruction.
2079   for (auto &I : *ThenBB)
2080     I.dropUnknownNonDebugMetadata();
2081 
2082   // Hoist the instructions.
2083   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2084                            ThenBB->begin(), std::prev(ThenBB->end()));
2085 
2086   // Insert selects and rewrite the PHI operands.
2087   IRBuilder<NoFolder> Builder(BI);
2088   for (PHINode &PN : EndBB->phis()) {
2089     unsigned OrigI = PN.getBasicBlockIndex(BB);
2090     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2091     Value *OrigV = PN.getIncomingValue(OrigI);
2092     Value *ThenV = PN.getIncomingValue(ThenI);
2093 
2094     // Skip PHIs which are trivial.
2095     if (OrigV == ThenV)
2096       continue;
2097 
2098     // Create a select whose true value is the speculatively executed value and
2099     // false value is the preexisting value. Swap them if the branch
2100     // destinations were inverted.
2101     Value *TrueV = ThenV, *FalseV = OrigV;
2102     if (Invert)
2103       std::swap(TrueV, FalseV);
2104     Value *V = Builder.CreateSelect(
2105         BrCond, TrueV, FalseV, "spec.select", BI);
2106     PN.setIncomingValue(OrigI, V);
2107     PN.setIncomingValue(ThenI, V);
2108   }
2109 
2110   // Remove speculated dbg intrinsics.
2111   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2112   // dbg value for the different flows and inserting it after the select.
2113   for (Instruction *I : SpeculatedDbgIntrinsics)
2114     I->eraseFromParent();
2115 
2116   ++NumSpeculations;
2117   return true;
2118 }
2119 
2120 /// Return true if we can thread a branch across this block.
2121 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2122   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2123   unsigned Size = 0;
2124 
2125   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2126     if (isa<DbgInfoIntrinsic>(BBI))
2127       continue;
2128     if (Size > 10)
2129       return false; // Don't clone large BB's.
2130     ++Size;
2131 
2132     // We can only support instructions that do not define values that are
2133     // live outside of the current basic block.
2134     for (User *U : BBI->users()) {
2135       Instruction *UI = cast<Instruction>(U);
2136       if (UI->getParent() != BB || isa<PHINode>(UI))
2137         return false;
2138     }
2139 
2140     // Looks ok, continue checking.
2141   }
2142 
2143   return true;
2144 }
2145 
2146 /// If we have a conditional branch on a PHI node value that is defined in the
2147 /// same block as the branch and if any PHI entries are constants, thread edges
2148 /// corresponding to that entry to be branches to their ultimate destination.
2149 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2150                                 AssumptionCache *AC) {
2151   BasicBlock *BB = BI->getParent();
2152   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2153   // NOTE: we currently cannot transform this case if the PHI node is used
2154   // outside of the block.
2155   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2156     return false;
2157 
2158   // Degenerate case of a single entry PHI.
2159   if (PN->getNumIncomingValues() == 1) {
2160     FoldSingleEntryPHINodes(PN->getParent());
2161     return true;
2162   }
2163 
2164   // Now we know that this block has multiple preds and two succs.
2165   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2166     return false;
2167 
2168   // Can't fold blocks that contain noduplicate or convergent calls.
2169   if (any_of(*BB, [](const Instruction &I) {
2170         const CallInst *CI = dyn_cast<CallInst>(&I);
2171         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2172       }))
2173     return false;
2174 
2175   // Okay, this is a simple enough basic block.  See if any phi values are
2176   // constants.
2177   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2178     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2179     if (!CB || !CB->getType()->isIntegerTy(1))
2180       continue;
2181 
2182     // Okay, we now know that all edges from PredBB should be revectored to
2183     // branch to RealDest.
2184     BasicBlock *PredBB = PN->getIncomingBlock(i);
2185     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2186 
2187     if (RealDest == BB)
2188       continue; // Skip self loops.
2189     // Skip if the predecessor's terminator is an indirect branch.
2190     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2191       continue;
2192 
2193     // The dest block might have PHI nodes, other predecessors and other
2194     // difficult cases.  Instead of being smart about this, just insert a new
2195     // block that jumps to the destination block, effectively splitting
2196     // the edge we are about to create.
2197     BasicBlock *EdgeBB =
2198         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2199                            RealDest->getParent(), RealDest);
2200     BranchInst::Create(RealDest, EdgeBB);
2201 
2202     // Update PHI nodes.
2203     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2204 
2205     // BB may have instructions that are being threaded over.  Clone these
2206     // instructions into EdgeBB.  We know that there will be no uses of the
2207     // cloned instructions outside of EdgeBB.
2208     BasicBlock::iterator InsertPt = EdgeBB->begin();
2209     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2210     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2211       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2212         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2213         continue;
2214       }
2215       // Clone the instruction.
2216       Instruction *N = BBI->clone();
2217       if (BBI->hasName())
2218         N->setName(BBI->getName() + ".c");
2219 
2220       // Update operands due to translation.
2221       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2222         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2223         if (PI != TranslateMap.end())
2224           *i = PI->second;
2225       }
2226 
2227       // Check for trivial simplification.
2228       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2229         if (!BBI->use_empty())
2230           TranslateMap[&*BBI] = V;
2231         if (!N->mayHaveSideEffects()) {
2232           N->deleteValue(); // Instruction folded away, don't need actual inst
2233           N = nullptr;
2234         }
2235       } else {
2236         if (!BBI->use_empty())
2237           TranslateMap[&*BBI] = N;
2238       }
2239       // Insert the new instruction into its new home.
2240       if (N)
2241         EdgeBB->getInstList().insert(InsertPt, N);
2242 
2243       // Register the new instruction with the assumption cache if necessary.
2244       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2245         if (II->getIntrinsicID() == Intrinsic::assume)
2246           AC->registerAssumption(II);
2247     }
2248 
2249     // Loop over all of the edges from PredBB to BB, changing them to branch
2250     // to EdgeBB instead.
2251     TerminatorInst *PredBBTI = PredBB->getTerminator();
2252     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2253       if (PredBBTI->getSuccessor(i) == BB) {
2254         BB->removePredecessor(PredBB);
2255         PredBBTI->setSuccessor(i, EdgeBB);
2256       }
2257 
2258     // Recurse, simplifying any other constants.
2259     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2260   }
2261 
2262   return false;
2263 }
2264 
2265 /// Given a BB that starts with the specified two-entry PHI node,
2266 /// see if we can eliminate it.
2267 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2268                                 const DataLayout &DL) {
2269   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2270   // statement", which has a very simple dominance structure.  Basically, we
2271   // are trying to find the condition that is being branched on, which
2272   // subsequently causes this merge to happen.  We really want control
2273   // dependence information for this check, but simplifycfg can't keep it up
2274   // to date, and this catches most of the cases we care about anyway.
2275   BasicBlock *BB = PN->getParent();
2276   BasicBlock *IfTrue, *IfFalse;
2277   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2278   if (!IfCond ||
2279       // Don't bother if the branch will be constant folded trivially.
2280       isa<ConstantInt>(IfCond))
2281     return false;
2282 
2283   // Okay, we found that we can merge this two-entry phi node into a select.
2284   // Doing so would require us to fold *all* two entry phi nodes in this block.
2285   // At some point this becomes non-profitable (particularly if the target
2286   // doesn't support cmov's).  Only do this transformation if there are two or
2287   // fewer PHI nodes in this block.
2288   unsigned NumPhis = 0;
2289   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2290     if (NumPhis > 2)
2291       return false;
2292 
2293   // Loop over the PHI's seeing if we can promote them all to select
2294   // instructions.  While we are at it, keep track of the instructions
2295   // that need to be moved to the dominating block.
2296   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2297   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2298            MaxCostVal1 = PHINodeFoldingThreshold;
2299   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2300   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2301 
2302   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2303     PHINode *PN = cast<PHINode>(II++);
2304     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2305       PN->replaceAllUsesWith(V);
2306       PN->eraseFromParent();
2307       continue;
2308     }
2309 
2310     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2311                              MaxCostVal0, TTI) ||
2312         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2313                              MaxCostVal1, TTI))
2314       return false;
2315   }
2316 
2317   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2318   // we ran out of PHIs then we simplified them all.
2319   PN = dyn_cast<PHINode>(BB->begin());
2320   if (!PN)
2321     return true;
2322 
2323   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2324   // often be turned into switches and other things.
2325   if (PN->getType()->isIntegerTy(1) &&
2326       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2327        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2328        isa<BinaryOperator>(IfCond)))
2329     return false;
2330 
2331   // If all PHI nodes are promotable, check to make sure that all instructions
2332   // in the predecessor blocks can be promoted as well. If not, we won't be able
2333   // to get rid of the control flow, so it's not worth promoting to select
2334   // instructions.
2335   BasicBlock *DomBlock = nullptr;
2336   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2337   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2338   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2339     IfBlock1 = nullptr;
2340   } else {
2341     DomBlock = *pred_begin(IfBlock1);
2342     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2343          ++I)
2344       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2345         // This is not an aggressive instruction that we can promote.
2346         // Because of this, we won't be able to get rid of the control flow, so
2347         // the xform is not worth it.
2348         return false;
2349       }
2350   }
2351 
2352   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2353     IfBlock2 = nullptr;
2354   } else {
2355     DomBlock = *pred_begin(IfBlock2);
2356     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2357          ++I)
2358       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2359         // This is not an aggressive instruction that we can promote.
2360         // Because of this, we won't be able to get rid of the control flow, so
2361         // the xform is not worth it.
2362         return false;
2363       }
2364   }
2365 
2366   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2367                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2368 
2369   // If we can still promote the PHI nodes after this gauntlet of tests,
2370   // do all of the PHI's now.
2371   Instruction *InsertPt = DomBlock->getTerminator();
2372   IRBuilder<NoFolder> Builder(InsertPt);
2373 
2374   // Move all 'aggressive' instructions, which are defined in the
2375   // conditional parts of the if's up to the dominating block.
2376   if (IfBlock1) {
2377     for (auto &I : *IfBlock1)
2378       I.dropUnknownNonDebugMetadata();
2379     DomBlock->getInstList().splice(InsertPt->getIterator(),
2380                                    IfBlock1->getInstList(), IfBlock1->begin(),
2381                                    IfBlock1->getTerminator()->getIterator());
2382   }
2383   if (IfBlock2) {
2384     for (auto &I : *IfBlock2)
2385       I.dropUnknownNonDebugMetadata();
2386     DomBlock->getInstList().splice(InsertPt->getIterator(),
2387                                    IfBlock2->getInstList(), IfBlock2->begin(),
2388                                    IfBlock2->getTerminator()->getIterator());
2389   }
2390 
2391   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2392     // Change the PHI node into a select instruction.
2393     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2394     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2395 
2396     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2397     PN->replaceAllUsesWith(Sel);
2398     Sel->takeName(PN);
2399     PN->eraseFromParent();
2400   }
2401 
2402   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2403   // has been flattened.  Change DomBlock to jump directly to our new block to
2404   // avoid other simplifycfg's kicking in on the diamond.
2405   TerminatorInst *OldTI = DomBlock->getTerminator();
2406   Builder.SetInsertPoint(OldTI);
2407   Builder.CreateBr(BB);
2408   OldTI->eraseFromParent();
2409   return true;
2410 }
2411 
2412 /// If we found a conditional branch that goes to two returning blocks,
2413 /// try to merge them together into one return,
2414 /// introducing a select if the return values disagree.
2415 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2416                                            IRBuilder<> &Builder) {
2417   assert(BI->isConditional() && "Must be a conditional branch");
2418   BasicBlock *TrueSucc = BI->getSuccessor(0);
2419   BasicBlock *FalseSucc = BI->getSuccessor(1);
2420   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2421   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2422 
2423   // Check to ensure both blocks are empty (just a return) or optionally empty
2424   // with PHI nodes.  If there are other instructions, merging would cause extra
2425   // computation on one path or the other.
2426   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2427     return false;
2428   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2429     return false;
2430 
2431   Builder.SetInsertPoint(BI);
2432   // Okay, we found a branch that is going to two return nodes.  If
2433   // there is no return value for this function, just change the
2434   // branch into a return.
2435   if (FalseRet->getNumOperands() == 0) {
2436     TrueSucc->removePredecessor(BI->getParent());
2437     FalseSucc->removePredecessor(BI->getParent());
2438     Builder.CreateRetVoid();
2439     EraseTerminatorInstAndDCECond(BI);
2440     return true;
2441   }
2442 
2443   // Otherwise, figure out what the true and false return values are
2444   // so we can insert a new select instruction.
2445   Value *TrueValue = TrueRet->getReturnValue();
2446   Value *FalseValue = FalseRet->getReturnValue();
2447 
2448   // Unwrap any PHI nodes in the return blocks.
2449   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2450     if (TVPN->getParent() == TrueSucc)
2451       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2452   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2453     if (FVPN->getParent() == FalseSucc)
2454       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2455 
2456   // In order for this transformation to be safe, we must be able to
2457   // unconditionally execute both operands to the return.  This is
2458   // normally the case, but we could have a potentially-trapping
2459   // constant expression that prevents this transformation from being
2460   // safe.
2461   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2462     if (TCV->canTrap())
2463       return false;
2464   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2465     if (FCV->canTrap())
2466       return false;
2467 
2468   // Okay, we collected all the mapped values and checked them for sanity, and
2469   // defined to really do this transformation.  First, update the CFG.
2470   TrueSucc->removePredecessor(BI->getParent());
2471   FalseSucc->removePredecessor(BI->getParent());
2472 
2473   // Insert select instructions where needed.
2474   Value *BrCond = BI->getCondition();
2475   if (TrueValue) {
2476     // Insert a select if the results differ.
2477     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2478     } else if (isa<UndefValue>(TrueValue)) {
2479       TrueValue = FalseValue;
2480     } else {
2481       TrueValue =
2482           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2483     }
2484   }
2485 
2486   Value *RI =
2487       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2488 
2489   (void)RI;
2490 
2491   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2492                << "\n  " << *BI << "NewRet = " << *RI
2493                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2494 
2495   EraseTerminatorInstAndDCECond(BI);
2496 
2497   return true;
2498 }
2499 
2500 /// Return true if the given instruction is available
2501 /// in its predecessor block. If yes, the instruction will be removed.
2502 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2503   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2504     return false;
2505   for (Instruction &I : *PB) {
2506     Instruction *PBI = &I;
2507     // Check whether Inst and PBI generate the same value.
2508     if (Inst->isIdenticalTo(PBI)) {
2509       Inst->replaceAllUsesWith(PBI);
2510       Inst->eraseFromParent();
2511       return true;
2512     }
2513   }
2514   return false;
2515 }
2516 
2517 /// Return true if either PBI or BI has branch weight available, and store
2518 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2519 /// not have branch weight, use 1:1 as its weight.
2520 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2521                                    uint64_t &PredTrueWeight,
2522                                    uint64_t &PredFalseWeight,
2523                                    uint64_t &SuccTrueWeight,
2524                                    uint64_t &SuccFalseWeight) {
2525   bool PredHasWeights =
2526       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2527   bool SuccHasWeights =
2528       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2529   if (PredHasWeights || SuccHasWeights) {
2530     if (!PredHasWeights)
2531       PredTrueWeight = PredFalseWeight = 1;
2532     if (!SuccHasWeights)
2533       SuccTrueWeight = SuccFalseWeight = 1;
2534     return true;
2535   } else {
2536     return false;
2537   }
2538 }
2539 
2540 /// If this basic block is simple enough, and if a predecessor branches to us
2541 /// and one of our successors, fold the block into the predecessor and use
2542 /// logical operations to pick the right destination.
2543 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2544   BasicBlock *BB = BI->getParent();
2545 
2546   Instruction *Cond = nullptr;
2547   if (BI->isConditional())
2548     Cond = dyn_cast<Instruction>(BI->getCondition());
2549   else {
2550     // For unconditional branch, check for a simple CFG pattern, where
2551     // BB has a single predecessor and BB's successor is also its predecessor's
2552     // successor. If such pattern exists, check for CSE between BB and its
2553     // predecessor.
2554     if (BasicBlock *PB = BB->getSinglePredecessor())
2555       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2556         if (PBI->isConditional() &&
2557             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2558              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2559           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2560             Instruction *Curr = &*I++;
2561             if (isa<CmpInst>(Curr)) {
2562               Cond = Curr;
2563               break;
2564             }
2565             // Quit if we can't remove this instruction.
2566             if (!checkCSEInPredecessor(Curr, PB))
2567               return false;
2568           }
2569         }
2570 
2571     if (!Cond)
2572       return false;
2573   }
2574 
2575   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2576       Cond->getParent() != BB || !Cond->hasOneUse())
2577     return false;
2578 
2579   // Make sure the instruction after the condition is the cond branch.
2580   BasicBlock::iterator CondIt = ++Cond->getIterator();
2581 
2582   // Ignore dbg intrinsics.
2583   while (isa<DbgInfoIntrinsic>(CondIt))
2584     ++CondIt;
2585 
2586   if (&*CondIt != BI)
2587     return false;
2588 
2589   // Only allow this transformation if computing the condition doesn't involve
2590   // too many instructions and these involved instructions can be executed
2591   // unconditionally. We denote all involved instructions except the condition
2592   // as "bonus instructions", and only allow this transformation when the
2593   // number of the bonus instructions does not exceed a certain threshold.
2594   unsigned NumBonusInsts = 0;
2595   for (auto I = BB->begin(); Cond != &*I; ++I) {
2596     // Ignore dbg intrinsics.
2597     if (isa<DbgInfoIntrinsic>(I))
2598       continue;
2599     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2600       return false;
2601     // I has only one use and can be executed unconditionally.
2602     Instruction *User = dyn_cast<Instruction>(I->user_back());
2603     if (User == nullptr || User->getParent() != BB)
2604       return false;
2605     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2606     // to use any other instruction, User must be an instruction between next(I)
2607     // and Cond.
2608     ++NumBonusInsts;
2609     // Early exits once we reach the limit.
2610     if (NumBonusInsts > BonusInstThreshold)
2611       return false;
2612   }
2613 
2614   // Cond is known to be a compare or binary operator.  Check to make sure that
2615   // neither operand is a potentially-trapping constant expression.
2616   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2617     if (CE->canTrap())
2618       return false;
2619   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2620     if (CE->canTrap())
2621       return false;
2622 
2623   // Finally, don't infinitely unroll conditional loops.
2624   BasicBlock *TrueDest = BI->getSuccessor(0);
2625   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2626   if (TrueDest == BB || FalseDest == BB)
2627     return false;
2628 
2629   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2630     BasicBlock *PredBlock = *PI;
2631     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2632 
2633     // Check that we have two conditional branches.  If there is a PHI node in
2634     // the common successor, verify that the same value flows in from both
2635     // blocks.
2636     SmallVector<PHINode *, 4> PHIs;
2637     if (!PBI || PBI->isUnconditional() ||
2638         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2639         (!BI->isConditional() &&
2640          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2641       continue;
2642 
2643     // Determine if the two branches share a common destination.
2644     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2645     bool InvertPredCond = false;
2646 
2647     if (BI->isConditional()) {
2648       if (PBI->getSuccessor(0) == TrueDest) {
2649         Opc = Instruction::Or;
2650       } else if (PBI->getSuccessor(1) == FalseDest) {
2651         Opc = Instruction::And;
2652       } else if (PBI->getSuccessor(0) == FalseDest) {
2653         Opc = Instruction::And;
2654         InvertPredCond = true;
2655       } else if (PBI->getSuccessor(1) == TrueDest) {
2656         Opc = Instruction::Or;
2657         InvertPredCond = true;
2658       } else {
2659         continue;
2660       }
2661     } else {
2662       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2663         continue;
2664     }
2665 
2666     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2667     IRBuilder<> Builder(PBI);
2668 
2669     // If we need to invert the condition in the pred block to match, do so now.
2670     if (InvertPredCond) {
2671       Value *NewCond = PBI->getCondition();
2672 
2673       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2674         CmpInst *CI = cast<CmpInst>(NewCond);
2675         CI->setPredicate(CI->getInversePredicate());
2676       } else {
2677         NewCond =
2678             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2679       }
2680 
2681       PBI->setCondition(NewCond);
2682       PBI->swapSuccessors();
2683     }
2684 
2685     // If we have bonus instructions, clone them into the predecessor block.
2686     // Note that there may be multiple predecessor blocks, so we cannot move
2687     // bonus instructions to a predecessor block.
2688     ValueToValueMapTy VMap; // maps original values to cloned values
2689     // We already make sure Cond is the last instruction before BI. Therefore,
2690     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2691     // instructions.
2692     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2693       if (isa<DbgInfoIntrinsic>(BonusInst))
2694         continue;
2695       Instruction *NewBonusInst = BonusInst->clone();
2696       RemapInstruction(NewBonusInst, VMap,
2697                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2698       VMap[&*BonusInst] = NewBonusInst;
2699 
2700       // If we moved a load, we cannot any longer claim any knowledge about
2701       // its potential value. The previous information might have been valid
2702       // only given the branch precondition.
2703       // For an analogous reason, we must also drop all the metadata whose
2704       // semantics we don't understand.
2705       NewBonusInst->dropUnknownNonDebugMetadata();
2706 
2707       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2708       NewBonusInst->takeName(&*BonusInst);
2709       BonusInst->setName(BonusInst->getName() + ".old");
2710     }
2711 
2712     // Clone Cond into the predecessor basic block, and or/and the
2713     // two conditions together.
2714     Instruction *New = Cond->clone();
2715     RemapInstruction(New, VMap,
2716                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2717     PredBlock->getInstList().insert(PBI->getIterator(), New);
2718     New->takeName(Cond);
2719     Cond->setName(New->getName() + ".old");
2720 
2721     if (BI->isConditional()) {
2722       Instruction *NewCond = cast<Instruction>(
2723           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2724       PBI->setCondition(NewCond);
2725 
2726       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2727       bool HasWeights =
2728           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2729                                  SuccTrueWeight, SuccFalseWeight);
2730       SmallVector<uint64_t, 8> NewWeights;
2731 
2732       if (PBI->getSuccessor(0) == BB) {
2733         if (HasWeights) {
2734           // PBI: br i1 %x, BB, FalseDest
2735           // BI:  br i1 %y, TrueDest, FalseDest
2736           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2737           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2738           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2739           //               TrueWeight for PBI * FalseWeight for BI.
2740           // We assume that total weights of a BranchInst can fit into 32 bits.
2741           // Therefore, we will not have overflow using 64-bit arithmetic.
2742           NewWeights.push_back(PredFalseWeight *
2743                                    (SuccFalseWeight + SuccTrueWeight) +
2744                                PredTrueWeight * SuccFalseWeight);
2745         }
2746         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2747         PBI->setSuccessor(0, TrueDest);
2748       }
2749       if (PBI->getSuccessor(1) == BB) {
2750         if (HasWeights) {
2751           // PBI: br i1 %x, TrueDest, BB
2752           // BI:  br i1 %y, TrueDest, FalseDest
2753           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2754           //              FalseWeight for PBI * TrueWeight for BI.
2755           NewWeights.push_back(PredTrueWeight *
2756                                    (SuccFalseWeight + SuccTrueWeight) +
2757                                PredFalseWeight * SuccTrueWeight);
2758           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2759           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2760         }
2761         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2762         PBI->setSuccessor(1, FalseDest);
2763       }
2764       if (NewWeights.size() == 2) {
2765         // Halve the weights if any of them cannot fit in an uint32_t
2766         FitWeights(NewWeights);
2767 
2768         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2769                                            NewWeights.end());
2770         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2771       } else
2772         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2773     } else {
2774       // Update PHI nodes in the common successors.
2775       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2776         ConstantInt *PBI_C = cast<ConstantInt>(
2777             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2778         assert(PBI_C->getType()->isIntegerTy(1));
2779         Instruction *MergedCond = nullptr;
2780         if (PBI->getSuccessor(0) == TrueDest) {
2781           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2782           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2783           //       is false: !PBI_Cond and BI_Value
2784           Instruction *NotCond = cast<Instruction>(
2785               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2786           MergedCond = cast<Instruction>(
2787               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2788           if (PBI_C->isOne())
2789             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2790                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2791         } else {
2792           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2793           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2794           //       is false: PBI_Cond and BI_Value
2795           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2796               Instruction::And, PBI->getCondition(), New, "and.cond"));
2797           if (PBI_C->isOne()) {
2798             Instruction *NotCond = cast<Instruction>(
2799                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2800             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2801                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2802           }
2803         }
2804         // Update PHI Node.
2805         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2806                                   MergedCond);
2807       }
2808       // Change PBI from Conditional to Unconditional.
2809       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2810       EraseTerminatorInstAndDCECond(PBI);
2811       PBI = New_PBI;
2812     }
2813 
2814     // If BI was a loop latch, it may have had associated loop metadata.
2815     // We need to copy it to the new latch, that is, PBI.
2816     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2817       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2818 
2819     // TODO: If BB is reachable from all paths through PredBlock, then we
2820     // could replace PBI's branch probabilities with BI's.
2821 
2822     // Copy any debug value intrinsics into the end of PredBlock.
2823     for (Instruction &I : *BB)
2824       if (isa<DbgInfoIntrinsic>(I))
2825         I.clone()->insertBefore(PBI);
2826 
2827     return true;
2828   }
2829   return false;
2830 }
2831 
2832 // If there is only one store in BB1 and BB2, return it, otherwise return
2833 // nullptr.
2834 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2835   StoreInst *S = nullptr;
2836   for (auto *BB : {BB1, BB2}) {
2837     if (!BB)
2838       continue;
2839     for (auto &I : *BB)
2840       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2841         if (S)
2842           // Multiple stores seen.
2843           return nullptr;
2844         else
2845           S = SI;
2846       }
2847   }
2848   return S;
2849 }
2850 
2851 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2852                                               Value *AlternativeV = nullptr) {
2853   // PHI is going to be a PHI node that allows the value V that is defined in
2854   // BB to be referenced in BB's only successor.
2855   //
2856   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2857   // doesn't matter to us what the other operand is (it'll never get used). We
2858   // could just create a new PHI with an undef incoming value, but that could
2859   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2860   // other PHI. So here we directly look for some PHI in BB's successor with V
2861   // as an incoming operand. If we find one, we use it, else we create a new
2862   // one.
2863   //
2864   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2865   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2866   // where OtherBB is the single other predecessor of BB's only successor.
2867   PHINode *PHI = nullptr;
2868   BasicBlock *Succ = BB->getSingleSuccessor();
2869 
2870   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2871     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2872       PHI = cast<PHINode>(I);
2873       if (!AlternativeV)
2874         break;
2875 
2876       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2877       auto PredI = pred_begin(Succ);
2878       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2879       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2880         break;
2881       PHI = nullptr;
2882     }
2883   if (PHI)
2884     return PHI;
2885 
2886   // If V is not an instruction defined in BB, just return it.
2887   if (!AlternativeV &&
2888       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2889     return V;
2890 
2891   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2892   PHI->addIncoming(V, BB);
2893   for (BasicBlock *PredBB : predecessors(Succ))
2894     if (PredBB != BB)
2895       PHI->addIncoming(
2896           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2897   return PHI;
2898 }
2899 
2900 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2901                                            BasicBlock *QTB, BasicBlock *QFB,
2902                                            BasicBlock *PostBB, Value *Address,
2903                                            bool InvertPCond, bool InvertQCond,
2904                                            const DataLayout &DL) {
2905   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2906     return Operator::getOpcode(&I) == Instruction::BitCast &&
2907            I.getType()->isPointerTy();
2908   };
2909 
2910   // If we're not in aggressive mode, we only optimize if we have some
2911   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2912   auto IsWorthwhile = [&](BasicBlock *BB) {
2913     if (!BB)
2914       return true;
2915     // Heuristic: if the block can be if-converted/phi-folded and the
2916     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2917     // thread this store.
2918     unsigned N = 0;
2919     for (auto &I : *BB) {
2920       // Cheap instructions viable for folding.
2921       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2922           isa<StoreInst>(I))
2923         ++N;
2924       // Free instructions.
2925       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2926                IsaBitcastOfPointerType(I))
2927         continue;
2928       else
2929         return false;
2930     }
2931     // The store we want to merge is counted in N, so add 1 to make sure
2932     // we're counting the instructions that would be left.
2933     return N <= (PHINodeFoldingThreshold + 1);
2934   };
2935 
2936   if (!MergeCondStoresAggressively &&
2937       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2938        !IsWorthwhile(QFB)))
2939     return false;
2940 
2941   // For every pointer, there must be exactly two stores, one coming from
2942   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2943   // store (to any address) in PTB,PFB or QTB,QFB.
2944   // FIXME: We could relax this restriction with a bit more work and performance
2945   // testing.
2946   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2947   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2948   if (!PStore || !QStore)
2949     return false;
2950 
2951   // Now check the stores are compatible.
2952   if (!QStore->isUnordered() || !PStore->isUnordered())
2953     return false;
2954 
2955   // Check that sinking the store won't cause program behavior changes. Sinking
2956   // the store out of the Q blocks won't change any behavior as we're sinking
2957   // from a block to its unconditional successor. But we're moving a store from
2958   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2959   // So we need to check that there are no aliasing loads or stores in
2960   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2961   // operations between PStore and the end of its parent block.
2962   //
2963   // The ideal way to do this is to query AliasAnalysis, but we don't
2964   // preserve AA currently so that is dangerous. Be super safe and just
2965   // check there are no other memory operations at all.
2966   for (auto &I : *QFB->getSinglePredecessor())
2967     if (I.mayReadOrWriteMemory())
2968       return false;
2969   for (auto &I : *QFB)
2970     if (&I != QStore && I.mayReadOrWriteMemory())
2971       return false;
2972   if (QTB)
2973     for (auto &I : *QTB)
2974       if (&I != QStore && I.mayReadOrWriteMemory())
2975         return false;
2976   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2977        I != E; ++I)
2978     if (&*I != PStore && I->mayReadOrWriteMemory())
2979       return false;
2980 
2981   // OK, we're going to sink the stores to PostBB. The store has to be
2982   // conditional though, so first create the predicate.
2983   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2984                      ->getCondition();
2985   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2986                      ->getCondition();
2987 
2988   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2989                                                 PStore->getParent());
2990   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2991                                                 QStore->getParent(), PPHI);
2992 
2993   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2994 
2995   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2996   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2997 
2998   if (InvertPCond)
2999     PPred = QB.CreateNot(PPred);
3000   if (InvertQCond)
3001     QPred = QB.CreateNot(QPred);
3002   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3003 
3004   auto *T =
3005       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3006   QB.SetInsertPoint(T);
3007   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3008   AAMDNodes AAMD;
3009   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3010   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3011   SI->setAAMetadata(AAMD);
3012   unsigned PAlignment = PStore->getAlignment();
3013   unsigned QAlignment = QStore->getAlignment();
3014   unsigned TypeAlignment =
3015       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3016   unsigned MinAlignment;
3017   unsigned MaxAlignment;
3018   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3019   // Choose the minimum alignment. If we could prove both stores execute, we
3020   // could use biggest one.  In this case, though, we only know that one of the
3021   // stores executes.  And we don't know it's safe to take the alignment from a
3022   // store that doesn't execute.
3023   if (MinAlignment != 0) {
3024     // Choose the minimum of all non-zero alignments.
3025     SI->setAlignment(MinAlignment);
3026   } else if (MaxAlignment != 0) {
3027     // Choose the minimal alignment between the non-zero alignment and the ABI
3028     // default alignment for the type of the stored value.
3029     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3030   } else {
3031     // If both alignments are zero, use ABI default alignment for the type of
3032     // the stored value.
3033     SI->setAlignment(TypeAlignment);
3034   }
3035 
3036   QStore->eraseFromParent();
3037   PStore->eraseFromParent();
3038 
3039   return true;
3040 }
3041 
3042 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3043                                    const DataLayout &DL) {
3044   // The intention here is to find diamonds or triangles (see below) where each
3045   // conditional block contains a store to the same address. Both of these
3046   // stores are conditional, so they can't be unconditionally sunk. But it may
3047   // be profitable to speculatively sink the stores into one merged store at the
3048   // end, and predicate the merged store on the union of the two conditions of
3049   // PBI and QBI.
3050   //
3051   // This can reduce the number of stores executed if both of the conditions are
3052   // true, and can allow the blocks to become small enough to be if-converted.
3053   // This optimization will also chain, so that ladders of test-and-set
3054   // sequences can be if-converted away.
3055   //
3056   // We only deal with simple diamonds or triangles:
3057   //
3058   //     PBI       or      PBI        or a combination of the two
3059   //    /   \               | \
3060   //   PTB  PFB             |  PFB
3061   //    \   /               | /
3062   //     QBI                QBI
3063   //    /  \                | \
3064   //   QTB  QFB             |  QFB
3065   //    \  /                | /
3066   //    PostBB            PostBB
3067   //
3068   // We model triangles as a type of diamond with a nullptr "true" block.
3069   // Triangles are canonicalized so that the fallthrough edge is represented by
3070   // a true condition, as in the diagram above.
3071   BasicBlock *PTB = PBI->getSuccessor(0);
3072   BasicBlock *PFB = PBI->getSuccessor(1);
3073   BasicBlock *QTB = QBI->getSuccessor(0);
3074   BasicBlock *QFB = QBI->getSuccessor(1);
3075   BasicBlock *PostBB = QFB->getSingleSuccessor();
3076 
3077   // Make sure we have a good guess for PostBB. If QTB's only successor is
3078   // QFB, then QFB is a better PostBB.
3079   if (QTB->getSingleSuccessor() == QFB)
3080     PostBB = QFB;
3081 
3082   // If we couldn't find a good PostBB, stop.
3083   if (!PostBB)
3084     return false;
3085 
3086   bool InvertPCond = false, InvertQCond = false;
3087   // Canonicalize fallthroughs to the true branches.
3088   if (PFB == QBI->getParent()) {
3089     std::swap(PFB, PTB);
3090     InvertPCond = true;
3091   }
3092   if (QFB == PostBB) {
3093     std::swap(QFB, QTB);
3094     InvertQCond = true;
3095   }
3096 
3097   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3098   // and QFB may not. Model fallthroughs as a nullptr block.
3099   if (PTB == QBI->getParent())
3100     PTB = nullptr;
3101   if (QTB == PostBB)
3102     QTB = nullptr;
3103 
3104   // Legality bailouts. We must have at least the non-fallthrough blocks and
3105   // the post-dominating block, and the non-fallthroughs must only have one
3106   // predecessor.
3107   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3108     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3109   };
3110   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3111       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3112     return false;
3113   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3114       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3115     return false;
3116   if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2))
3117     return false;
3118 
3119   // OK, this is a sequence of two diamonds or triangles.
3120   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3121   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3122   for (auto *BB : {PTB, PFB}) {
3123     if (!BB)
3124       continue;
3125     for (auto &I : *BB)
3126       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3127         PStoreAddresses.insert(SI->getPointerOperand());
3128   }
3129   for (auto *BB : {QTB, QFB}) {
3130     if (!BB)
3131       continue;
3132     for (auto &I : *BB)
3133       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3134         QStoreAddresses.insert(SI->getPointerOperand());
3135   }
3136 
3137   set_intersect(PStoreAddresses, QStoreAddresses);
3138   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3139   // clear what it contains.
3140   auto &CommonAddresses = PStoreAddresses;
3141 
3142   bool Changed = false;
3143   for (auto *Address : CommonAddresses)
3144     Changed |= mergeConditionalStoreToAddress(
3145         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3146   return Changed;
3147 }
3148 
3149 /// If we have a conditional branch as a predecessor of another block,
3150 /// this function tries to simplify it.  We know
3151 /// that PBI and BI are both conditional branches, and BI is in one of the
3152 /// successor blocks of PBI - PBI branches to BI.
3153 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3154                                            const DataLayout &DL) {
3155   assert(PBI->isConditional() && BI->isConditional());
3156   BasicBlock *BB = BI->getParent();
3157 
3158   // If this block ends with a branch instruction, and if there is a
3159   // predecessor that ends on a branch of the same condition, make
3160   // this conditional branch redundant.
3161   if (PBI->getCondition() == BI->getCondition() &&
3162       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3163     // Okay, the outcome of this conditional branch is statically
3164     // knowable.  If this block had a single pred, handle specially.
3165     if (BB->getSinglePredecessor()) {
3166       // Turn this into a branch on constant.
3167       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3168       BI->setCondition(
3169           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3170       return true; // Nuke the branch on constant.
3171     }
3172 
3173     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3174     // in the constant and simplify the block result.  Subsequent passes of
3175     // simplifycfg will thread the block.
3176     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3177       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3178       PHINode *NewPN = PHINode::Create(
3179           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3180           BI->getCondition()->getName() + ".pr", &BB->front());
3181       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3182       // predecessor, compute the PHI'd conditional value for all of the preds.
3183       // Any predecessor where the condition is not computable we keep symbolic.
3184       for (pred_iterator PI = PB; PI != PE; ++PI) {
3185         BasicBlock *P = *PI;
3186         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3187             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3188             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3189           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3190           NewPN->addIncoming(
3191               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3192               P);
3193         } else {
3194           NewPN->addIncoming(BI->getCondition(), P);
3195         }
3196       }
3197 
3198       BI->setCondition(NewPN);
3199       return true;
3200     }
3201   }
3202 
3203   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3204     if (CE->canTrap())
3205       return false;
3206 
3207   // If both branches are conditional and both contain stores to the same
3208   // address, remove the stores from the conditionals and create a conditional
3209   // merged store at the end.
3210   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3211     return true;
3212 
3213   // If this is a conditional branch in an empty block, and if any
3214   // predecessors are a conditional branch to one of our destinations,
3215   // fold the conditions into logical ops and one cond br.
3216   BasicBlock::iterator BBI = BB->begin();
3217   // Ignore dbg intrinsics.
3218   while (isa<DbgInfoIntrinsic>(BBI))
3219     ++BBI;
3220   if (&*BBI != BI)
3221     return false;
3222 
3223   int PBIOp, BIOp;
3224   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3225     PBIOp = 0;
3226     BIOp = 0;
3227   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3228     PBIOp = 0;
3229     BIOp = 1;
3230   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3231     PBIOp = 1;
3232     BIOp = 0;
3233   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3234     PBIOp = 1;
3235     BIOp = 1;
3236   } else {
3237     return false;
3238   }
3239 
3240   // Check to make sure that the other destination of this branch
3241   // isn't BB itself.  If so, this is an infinite loop that will
3242   // keep getting unwound.
3243   if (PBI->getSuccessor(PBIOp) == BB)
3244     return false;
3245 
3246   // Do not perform this transformation if it would require
3247   // insertion of a large number of select instructions. For targets
3248   // without predication/cmovs, this is a big pessimization.
3249 
3250   // Also do not perform this transformation if any phi node in the common
3251   // destination block can trap when reached by BB or PBB (PR17073). In that
3252   // case, it would be unsafe to hoist the operation into a select instruction.
3253 
3254   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3255   unsigned NumPhis = 0;
3256   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3257        ++II, ++NumPhis) {
3258     if (NumPhis > 2) // Disable this xform.
3259       return false;
3260 
3261     PHINode *PN = cast<PHINode>(II);
3262     Value *BIV = PN->getIncomingValueForBlock(BB);
3263     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3264       if (CE->canTrap())
3265         return false;
3266 
3267     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3268     Value *PBIV = PN->getIncomingValue(PBBIdx);
3269     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3270       if (CE->canTrap())
3271         return false;
3272   }
3273 
3274   // Finally, if everything is ok, fold the branches to logical ops.
3275   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3276 
3277   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3278                << "AND: " << *BI->getParent());
3279 
3280   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3281   // branch in it, where one edge (OtherDest) goes back to itself but the other
3282   // exits.  We don't *know* that the program avoids the infinite loop
3283   // (even though that seems likely).  If we do this xform naively, we'll end up
3284   // recursively unpeeling the loop.  Since we know that (after the xform is
3285   // done) that the block *is* infinite if reached, we just make it an obviously
3286   // infinite loop with no cond branch.
3287   if (OtherDest == BB) {
3288     // Insert it at the end of the function, because it's either code,
3289     // or it won't matter if it's hot. :)
3290     BasicBlock *InfLoopBlock =
3291         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3292     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3293     OtherDest = InfLoopBlock;
3294   }
3295 
3296   DEBUG(dbgs() << *PBI->getParent()->getParent());
3297 
3298   // BI may have other predecessors.  Because of this, we leave
3299   // it alone, but modify PBI.
3300 
3301   // Make sure we get to CommonDest on True&True directions.
3302   Value *PBICond = PBI->getCondition();
3303   IRBuilder<NoFolder> Builder(PBI);
3304   if (PBIOp)
3305     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3306 
3307   Value *BICond = BI->getCondition();
3308   if (BIOp)
3309     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3310 
3311   // Merge the conditions.
3312   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3313 
3314   // Modify PBI to branch on the new condition to the new dests.
3315   PBI->setCondition(Cond);
3316   PBI->setSuccessor(0, CommonDest);
3317   PBI->setSuccessor(1, OtherDest);
3318 
3319   // Update branch weight for PBI.
3320   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3321   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3322   bool HasWeights =
3323       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3324                              SuccTrueWeight, SuccFalseWeight);
3325   if (HasWeights) {
3326     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3327     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3328     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3329     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3330     // The weight to CommonDest should be PredCommon * SuccTotal +
3331     //                                    PredOther * SuccCommon.
3332     // The weight to OtherDest should be PredOther * SuccOther.
3333     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3334                                   PredOther * SuccCommon,
3335                               PredOther * SuccOther};
3336     // Halve the weights if any of them cannot fit in an uint32_t
3337     FitWeights(NewWeights);
3338 
3339     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3340   }
3341 
3342   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3343   // block that are identical to the entries for BI's block.
3344   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3345 
3346   // We know that the CommonDest already had an edge from PBI to
3347   // it.  If it has PHIs though, the PHIs may have different
3348   // entries for BB and PBI's BB.  If so, insert a select to make
3349   // them agree.
3350   for (PHINode &PN : CommonDest->phis()) {
3351     Value *BIV = PN.getIncomingValueForBlock(BB);
3352     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3353     Value *PBIV = PN.getIncomingValue(PBBIdx);
3354     if (BIV != PBIV) {
3355       // Insert a select in PBI to pick the right value.
3356       SelectInst *NV = cast<SelectInst>(
3357           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3358       PN.setIncomingValue(PBBIdx, NV);
3359       // Although the select has the same condition as PBI, the original branch
3360       // weights for PBI do not apply to the new select because the select's
3361       // 'logical' edges are incoming edges of the phi that is eliminated, not
3362       // the outgoing edges of PBI.
3363       if (HasWeights) {
3364         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3365         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3366         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3367         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3368         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3369         // The weight to PredOtherDest should be PredOther * SuccCommon.
3370         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3371                                   PredOther * SuccCommon};
3372 
3373         FitWeights(NewWeights);
3374 
3375         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3376       }
3377     }
3378   }
3379 
3380   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3381   DEBUG(dbgs() << *PBI->getParent()->getParent());
3382 
3383   // This basic block is probably dead.  We know it has at least
3384   // one fewer predecessor.
3385   return true;
3386 }
3387 
3388 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3389 // true or to FalseBB if Cond is false.
3390 // Takes care of updating the successors and removing the old terminator.
3391 // Also makes sure not to introduce new successors by assuming that edges to
3392 // non-successor TrueBBs and FalseBBs aren't reachable.
3393 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3394                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3395                                        uint32_t TrueWeight,
3396                                        uint32_t FalseWeight) {
3397   // Remove any superfluous successor edges from the CFG.
3398   // First, figure out which successors to preserve.
3399   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3400   // successor.
3401   BasicBlock *KeepEdge1 = TrueBB;
3402   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3403 
3404   // Then remove the rest.
3405   for (BasicBlock *Succ : OldTerm->successors()) {
3406     // Make sure only to keep exactly one copy of each edge.
3407     if (Succ == KeepEdge1)
3408       KeepEdge1 = nullptr;
3409     else if (Succ == KeepEdge2)
3410       KeepEdge2 = nullptr;
3411     else
3412       Succ->removePredecessor(OldTerm->getParent(),
3413                               /*DontDeleteUselessPHIs=*/true);
3414   }
3415 
3416   IRBuilder<> Builder(OldTerm);
3417   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3418 
3419   // Insert an appropriate new terminator.
3420   if (!KeepEdge1 && !KeepEdge2) {
3421     if (TrueBB == FalseBB)
3422       // We were only looking for one successor, and it was present.
3423       // Create an unconditional branch to it.
3424       Builder.CreateBr(TrueBB);
3425     else {
3426       // We found both of the successors we were looking for.
3427       // Create a conditional branch sharing the condition of the select.
3428       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3429       if (TrueWeight != FalseWeight)
3430         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3431     }
3432   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3433     // Neither of the selected blocks were successors, so this
3434     // terminator must be unreachable.
3435     new UnreachableInst(OldTerm->getContext(), OldTerm);
3436   } else {
3437     // One of the selected values was a successor, but the other wasn't.
3438     // Insert an unconditional branch to the one that was found;
3439     // the edge to the one that wasn't must be unreachable.
3440     if (!KeepEdge1)
3441       // Only TrueBB was found.
3442       Builder.CreateBr(TrueBB);
3443     else
3444       // Only FalseBB was found.
3445       Builder.CreateBr(FalseBB);
3446   }
3447 
3448   EraseTerminatorInstAndDCECond(OldTerm);
3449   return true;
3450 }
3451 
3452 // Replaces
3453 //   (switch (select cond, X, Y)) on constant X, Y
3454 // with a branch - conditional if X and Y lead to distinct BBs,
3455 // unconditional otherwise.
3456 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3457   // Check for constant integer values in the select.
3458   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3459   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3460   if (!TrueVal || !FalseVal)
3461     return false;
3462 
3463   // Find the relevant condition and destinations.
3464   Value *Condition = Select->getCondition();
3465   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3466   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3467 
3468   // Get weight for TrueBB and FalseBB.
3469   uint32_t TrueWeight = 0, FalseWeight = 0;
3470   SmallVector<uint64_t, 8> Weights;
3471   bool HasWeights = HasBranchWeights(SI);
3472   if (HasWeights) {
3473     GetBranchWeights(SI, Weights);
3474     if (Weights.size() == 1 + SI->getNumCases()) {
3475       TrueWeight =
3476           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3477       FalseWeight =
3478           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3479     }
3480   }
3481 
3482   // Perform the actual simplification.
3483   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3484                                     FalseWeight);
3485 }
3486 
3487 // Replaces
3488 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3489 //                             blockaddress(@fn, BlockB)))
3490 // with
3491 //   (br cond, BlockA, BlockB).
3492 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3493   // Check that both operands of the select are block addresses.
3494   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3495   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3496   if (!TBA || !FBA)
3497     return false;
3498 
3499   // Extract the actual blocks.
3500   BasicBlock *TrueBB = TBA->getBasicBlock();
3501   BasicBlock *FalseBB = FBA->getBasicBlock();
3502 
3503   // Perform the actual simplification.
3504   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3505                                     0);
3506 }
3507 
3508 /// This is called when we find an icmp instruction
3509 /// (a seteq/setne with a constant) as the only instruction in a
3510 /// block that ends with an uncond branch.  We are looking for a very specific
3511 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3512 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3513 /// default value goes to an uncond block with a seteq in it, we get something
3514 /// like:
3515 ///
3516 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3517 /// DEFAULT:
3518 ///   %tmp = icmp eq i8 %A, 92
3519 ///   br label %end
3520 /// end:
3521 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3522 ///
3523 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3524 /// the PHI, merging the third icmp into the switch.
3525 static bool tryToSimplifyUncondBranchWithICmpInIt(
3526     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3527     const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) {
3528   BasicBlock *BB = ICI->getParent();
3529 
3530   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3531   // complex.
3532   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3533     return false;
3534 
3535   Value *V = ICI->getOperand(0);
3536   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3537 
3538   // The pattern we're looking for is where our only predecessor is a switch on
3539   // 'V' and this block is the default case for the switch.  In this case we can
3540   // fold the compared value into the switch to simplify things.
3541   BasicBlock *Pred = BB->getSinglePredecessor();
3542   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3543     return false;
3544 
3545   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3546   if (SI->getCondition() != V)
3547     return false;
3548 
3549   // If BB is reachable on a non-default case, then we simply know the value of
3550   // V in this block.  Substitute it and constant fold the icmp instruction
3551   // away.
3552   if (SI->getDefaultDest() != BB) {
3553     ConstantInt *VVal = SI->findCaseDest(BB);
3554     assert(VVal && "Should have a unique destination value");
3555     ICI->setOperand(0, VVal);
3556 
3557     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3558       ICI->replaceAllUsesWith(V);
3559       ICI->eraseFromParent();
3560     }
3561     // BB is now empty, so it is likely to simplify away.
3562     return simplifyCFG(BB, TTI, Options) | true;
3563   }
3564 
3565   // Ok, the block is reachable from the default dest.  If the constant we're
3566   // comparing exists in one of the other edges, then we can constant fold ICI
3567   // and zap it.
3568   if (SI->findCaseValue(Cst) != SI->case_default()) {
3569     Value *V;
3570     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3571       V = ConstantInt::getFalse(BB->getContext());
3572     else
3573       V = ConstantInt::getTrue(BB->getContext());
3574 
3575     ICI->replaceAllUsesWith(V);
3576     ICI->eraseFromParent();
3577     // BB is now empty, so it is likely to simplify away.
3578     return simplifyCFG(BB, TTI, Options) | true;
3579   }
3580 
3581   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3582   // the block.
3583   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3584   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3585   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3586       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3587     return false;
3588 
3589   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3590   // true in the PHI.
3591   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3592   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3593 
3594   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3595     std::swap(DefaultCst, NewCst);
3596 
3597   // Replace ICI (which is used by the PHI for the default value) with true or
3598   // false depending on if it is EQ or NE.
3599   ICI->replaceAllUsesWith(DefaultCst);
3600   ICI->eraseFromParent();
3601 
3602   // Okay, the switch goes to this block on a default value.  Add an edge from
3603   // the switch to the merge point on the compared value.
3604   BasicBlock *NewBB =
3605       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3606   SmallVector<uint64_t, 8> Weights;
3607   bool HasWeights = HasBranchWeights(SI);
3608   if (HasWeights) {
3609     GetBranchWeights(SI, Weights);
3610     if (Weights.size() == 1 + SI->getNumCases()) {
3611       // Split weight for default case to case for "Cst".
3612       Weights[0] = (Weights[0] + 1) >> 1;
3613       Weights.push_back(Weights[0]);
3614 
3615       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3616       setBranchWeights(SI, MDWeights);
3617     }
3618   }
3619   SI->addCase(Cst, NewBB);
3620 
3621   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3622   Builder.SetInsertPoint(NewBB);
3623   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3624   Builder.CreateBr(SuccBlock);
3625   PHIUse->addIncoming(NewCst, NewBB);
3626   return true;
3627 }
3628 
3629 /// The specified branch is a conditional branch.
3630 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3631 /// fold it into a switch instruction if so.
3632 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3633                                       const DataLayout &DL) {
3634   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3635   if (!Cond)
3636     return false;
3637 
3638   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3639   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3640   // 'setne's and'ed together, collect them.
3641 
3642   // Try to gather values from a chain of and/or to be turned into a switch
3643   ConstantComparesGatherer ConstantCompare(Cond, DL);
3644   // Unpack the result
3645   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3646   Value *CompVal = ConstantCompare.CompValue;
3647   unsigned UsedICmps = ConstantCompare.UsedICmps;
3648   Value *ExtraCase = ConstantCompare.Extra;
3649 
3650   // If we didn't have a multiply compared value, fail.
3651   if (!CompVal)
3652     return false;
3653 
3654   // Avoid turning single icmps into a switch.
3655   if (UsedICmps <= 1)
3656     return false;
3657 
3658   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3659 
3660   // There might be duplicate constants in the list, which the switch
3661   // instruction can't handle, remove them now.
3662   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3663   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3664 
3665   // If Extra was used, we require at least two switch values to do the
3666   // transformation.  A switch with one value is just a conditional branch.
3667   if (ExtraCase && Values.size() < 2)
3668     return false;
3669 
3670   // TODO: Preserve branch weight metadata, similarly to how
3671   // FoldValueComparisonIntoPredecessors preserves it.
3672 
3673   // Figure out which block is which destination.
3674   BasicBlock *DefaultBB = BI->getSuccessor(1);
3675   BasicBlock *EdgeBB = BI->getSuccessor(0);
3676   if (!TrueWhenEqual)
3677     std::swap(DefaultBB, EdgeBB);
3678 
3679   BasicBlock *BB = BI->getParent();
3680 
3681   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3682                << " cases into SWITCH.  BB is:\n"
3683                << *BB);
3684 
3685   // If there are any extra values that couldn't be folded into the switch
3686   // then we evaluate them with an explicit branch first.  Split the block
3687   // right before the condbr to handle it.
3688   if (ExtraCase) {
3689     BasicBlock *NewBB =
3690         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3691     // Remove the uncond branch added to the old block.
3692     TerminatorInst *OldTI = BB->getTerminator();
3693     Builder.SetInsertPoint(OldTI);
3694 
3695     if (TrueWhenEqual)
3696       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3697     else
3698       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3699 
3700     OldTI->eraseFromParent();
3701 
3702     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3703     // for the edge we just added.
3704     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3705 
3706     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3707                  << "\nEXTRABB = " << *BB);
3708     BB = NewBB;
3709   }
3710 
3711   Builder.SetInsertPoint(BI);
3712   // Convert pointer to int before we switch.
3713   if (CompVal->getType()->isPointerTy()) {
3714     CompVal = Builder.CreatePtrToInt(
3715         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3716   }
3717 
3718   // Create the new switch instruction now.
3719   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3720 
3721   // Add all of the 'cases' to the switch instruction.
3722   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3723     New->addCase(Values[i], EdgeBB);
3724 
3725   // We added edges from PI to the EdgeBB.  As such, if there were any
3726   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3727   // the number of edges added.
3728   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3729     PHINode *PN = cast<PHINode>(BBI);
3730     Value *InVal = PN->getIncomingValueForBlock(BB);
3731     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3732       PN->addIncoming(InVal, BB);
3733   }
3734 
3735   // Erase the old branch instruction.
3736   EraseTerminatorInstAndDCECond(BI);
3737 
3738   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3739   return true;
3740 }
3741 
3742 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3743   if (isa<PHINode>(RI->getValue()))
3744     return SimplifyCommonResume(RI);
3745   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3746            RI->getValue() == RI->getParent()->getFirstNonPHI())
3747     // The resume must unwind the exception that caused control to branch here.
3748     return SimplifySingleResume(RI);
3749 
3750   return false;
3751 }
3752 
3753 // Simplify resume that is shared by several landing pads (phi of landing pad).
3754 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3755   BasicBlock *BB = RI->getParent();
3756 
3757   // Check that there are no other instructions except for debug intrinsics
3758   // between the phi of landing pads (RI->getValue()) and resume instruction.
3759   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3760                        E = RI->getIterator();
3761   while (++I != E)
3762     if (!isa<DbgInfoIntrinsic>(I))
3763       return false;
3764 
3765   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3766   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3767 
3768   // Check incoming blocks to see if any of them are trivial.
3769   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3770        Idx++) {
3771     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3772     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3773 
3774     // If the block has other successors, we can not delete it because
3775     // it has other dependents.
3776     if (IncomingBB->getUniqueSuccessor() != BB)
3777       continue;
3778 
3779     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3780     // Not the landing pad that caused the control to branch here.
3781     if (IncomingValue != LandingPad)
3782       continue;
3783 
3784     bool isTrivial = true;
3785 
3786     I = IncomingBB->getFirstNonPHI()->getIterator();
3787     E = IncomingBB->getTerminator()->getIterator();
3788     while (++I != E)
3789       if (!isa<DbgInfoIntrinsic>(I)) {
3790         isTrivial = false;
3791         break;
3792       }
3793 
3794     if (isTrivial)
3795       TrivialUnwindBlocks.insert(IncomingBB);
3796   }
3797 
3798   // If no trivial unwind blocks, don't do any simplifications.
3799   if (TrivialUnwindBlocks.empty())
3800     return false;
3801 
3802   // Turn all invokes that unwind here into calls.
3803   for (auto *TrivialBB : TrivialUnwindBlocks) {
3804     // Blocks that will be simplified should be removed from the phi node.
3805     // Note there could be multiple edges to the resume block, and we need
3806     // to remove them all.
3807     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3808       BB->removePredecessor(TrivialBB, true);
3809 
3810     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3811          PI != PE;) {
3812       BasicBlock *Pred = *PI++;
3813       removeUnwindEdge(Pred);
3814     }
3815 
3816     // In each SimplifyCFG run, only the current processed block can be erased.
3817     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3818     // of erasing TrivialBB, we only remove the branch to the common resume
3819     // block so that we can later erase the resume block since it has no
3820     // predecessors.
3821     TrivialBB->getTerminator()->eraseFromParent();
3822     new UnreachableInst(RI->getContext(), TrivialBB);
3823   }
3824 
3825   // Delete the resume block if all its predecessors have been removed.
3826   if (pred_empty(BB))
3827     BB->eraseFromParent();
3828 
3829   return !TrivialUnwindBlocks.empty();
3830 }
3831 
3832 // Simplify resume that is only used by a single (non-phi) landing pad.
3833 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3834   BasicBlock *BB = RI->getParent();
3835   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3836   assert(RI->getValue() == LPInst &&
3837          "Resume must unwind the exception that caused control to here");
3838 
3839   // Check that there are no other instructions except for debug intrinsics.
3840   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3841   while (++I != E)
3842     if (!isa<DbgInfoIntrinsic>(I))
3843       return false;
3844 
3845   // Turn all invokes that unwind here into calls and delete the basic block.
3846   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3847     BasicBlock *Pred = *PI++;
3848     removeUnwindEdge(Pred);
3849   }
3850 
3851   // The landingpad is now unreachable.  Zap it.
3852   BB->eraseFromParent();
3853   if (LoopHeaders)
3854     LoopHeaders->erase(BB);
3855   return true;
3856 }
3857 
3858 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3859   // If this is a trivial cleanup pad that executes no instructions, it can be
3860   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3861   // that is an EH pad will be updated to continue to the caller and any
3862   // predecessor that terminates with an invoke instruction will have its invoke
3863   // instruction converted to a call instruction.  If the cleanup pad being
3864   // simplified does not continue to the caller, each predecessor will be
3865   // updated to continue to the unwind destination of the cleanup pad being
3866   // simplified.
3867   BasicBlock *BB = RI->getParent();
3868   CleanupPadInst *CPInst = RI->getCleanupPad();
3869   if (CPInst->getParent() != BB)
3870     // This isn't an empty cleanup.
3871     return false;
3872 
3873   // We cannot kill the pad if it has multiple uses.  This typically arises
3874   // from unreachable basic blocks.
3875   if (!CPInst->hasOneUse())
3876     return false;
3877 
3878   // Check that there are no other instructions except for benign intrinsics.
3879   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3880   while (++I != E) {
3881     auto *II = dyn_cast<IntrinsicInst>(I);
3882     if (!II)
3883       return false;
3884 
3885     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3886     switch (IntrinsicID) {
3887     case Intrinsic::dbg_declare:
3888     case Intrinsic::dbg_value:
3889     case Intrinsic::lifetime_end:
3890       break;
3891     default:
3892       return false;
3893     }
3894   }
3895 
3896   // If the cleanup return we are simplifying unwinds to the caller, this will
3897   // set UnwindDest to nullptr.
3898   BasicBlock *UnwindDest = RI->getUnwindDest();
3899   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3900 
3901   // We're about to remove BB from the control flow.  Before we do, sink any
3902   // PHINodes into the unwind destination.  Doing this before changing the
3903   // control flow avoids some potentially slow checks, since we can currently
3904   // be certain that UnwindDest and BB have no common predecessors (since they
3905   // are both EH pads).
3906   if (UnwindDest) {
3907     // First, go through the PHI nodes in UnwindDest and update any nodes that
3908     // reference the block we are removing
3909     for (BasicBlock::iterator I = UnwindDest->begin(),
3910                               IE = DestEHPad->getIterator();
3911          I != IE; ++I) {
3912       PHINode *DestPN = cast<PHINode>(I);
3913 
3914       int Idx = DestPN->getBasicBlockIndex(BB);
3915       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3916       assert(Idx != -1);
3917       // This PHI node has an incoming value that corresponds to a control
3918       // path through the cleanup pad we are removing.  If the incoming
3919       // value is in the cleanup pad, it must be a PHINode (because we
3920       // verified above that the block is otherwise empty).  Otherwise, the
3921       // value is either a constant or a value that dominates the cleanup
3922       // pad being removed.
3923       //
3924       // Because BB and UnwindDest are both EH pads, all of their
3925       // predecessors must unwind to these blocks, and since no instruction
3926       // can have multiple unwind destinations, there will be no overlap in
3927       // incoming blocks between SrcPN and DestPN.
3928       Value *SrcVal = DestPN->getIncomingValue(Idx);
3929       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3930 
3931       // Remove the entry for the block we are deleting.
3932       DestPN->removeIncomingValue(Idx, false);
3933 
3934       if (SrcPN && SrcPN->getParent() == BB) {
3935         // If the incoming value was a PHI node in the cleanup pad we are
3936         // removing, we need to merge that PHI node's incoming values into
3937         // DestPN.
3938         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3939              SrcIdx != SrcE; ++SrcIdx) {
3940           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3941                               SrcPN->getIncomingBlock(SrcIdx));
3942         }
3943       } else {
3944         // Otherwise, the incoming value came from above BB and
3945         // so we can just reuse it.  We must associate all of BB's
3946         // predecessors with this value.
3947         for (auto *pred : predecessors(BB)) {
3948           DestPN->addIncoming(SrcVal, pred);
3949         }
3950       }
3951     }
3952 
3953     // Sink any remaining PHI nodes directly into UnwindDest.
3954     Instruction *InsertPt = DestEHPad;
3955     for (BasicBlock::iterator I = BB->begin(),
3956                               IE = BB->getFirstNonPHI()->getIterator();
3957          I != IE;) {
3958       // The iterator must be incremented here because the instructions are
3959       // being moved to another block.
3960       PHINode *PN = cast<PHINode>(I++);
3961       if (PN->use_empty())
3962         // If the PHI node has no uses, just leave it.  It will be erased
3963         // when we erase BB below.
3964         continue;
3965 
3966       // Otherwise, sink this PHI node into UnwindDest.
3967       // Any predecessors to UnwindDest which are not already represented
3968       // must be back edges which inherit the value from the path through
3969       // BB.  In this case, the PHI value must reference itself.
3970       for (auto *pred : predecessors(UnwindDest))
3971         if (pred != BB)
3972           PN->addIncoming(PN, pred);
3973       PN->moveBefore(InsertPt);
3974     }
3975   }
3976 
3977   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3978     // The iterator must be updated here because we are removing this pred.
3979     BasicBlock *PredBB = *PI++;
3980     if (UnwindDest == nullptr) {
3981       removeUnwindEdge(PredBB);
3982     } else {
3983       TerminatorInst *TI = PredBB->getTerminator();
3984       TI->replaceUsesOfWith(BB, UnwindDest);
3985     }
3986   }
3987 
3988   // The cleanup pad is now unreachable.  Zap it.
3989   BB->eraseFromParent();
3990   return true;
3991 }
3992 
3993 // Try to merge two cleanuppads together.
3994 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3995   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3996   // with.
3997   BasicBlock *UnwindDest = RI->getUnwindDest();
3998   if (!UnwindDest)
3999     return false;
4000 
4001   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4002   // be safe to merge without code duplication.
4003   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4004     return false;
4005 
4006   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4007   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4008   if (!SuccessorCleanupPad)
4009     return false;
4010 
4011   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4012   // Replace any uses of the successor cleanupad with the predecessor pad
4013   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4014   // funclet bundle operands.
4015   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4016   // Remove the old cleanuppad.
4017   SuccessorCleanupPad->eraseFromParent();
4018   // Now, we simply replace the cleanupret with a branch to the unwind
4019   // destination.
4020   BranchInst::Create(UnwindDest, RI->getParent());
4021   RI->eraseFromParent();
4022 
4023   return true;
4024 }
4025 
4026 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4027   // It is possible to transiantly have an undef cleanuppad operand because we
4028   // have deleted some, but not all, dead blocks.
4029   // Eventually, this block will be deleted.
4030   if (isa<UndefValue>(RI->getOperand(0)))
4031     return false;
4032 
4033   if (mergeCleanupPad(RI))
4034     return true;
4035 
4036   if (removeEmptyCleanup(RI))
4037     return true;
4038 
4039   return false;
4040 }
4041 
4042 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4043   BasicBlock *BB = RI->getParent();
4044   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4045     return false;
4046 
4047   // Find predecessors that end with branches.
4048   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4049   SmallVector<BranchInst *, 8> CondBranchPreds;
4050   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4051     BasicBlock *P = *PI;
4052     TerminatorInst *PTI = P->getTerminator();
4053     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4054       if (BI->isUnconditional())
4055         UncondBranchPreds.push_back(P);
4056       else
4057         CondBranchPreds.push_back(BI);
4058     }
4059   }
4060 
4061   // If we found some, do the transformation!
4062   if (!UncondBranchPreds.empty() && DupRet) {
4063     while (!UncondBranchPreds.empty()) {
4064       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4065       DEBUG(dbgs() << "FOLDING: " << *BB
4066                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4067       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4068     }
4069 
4070     // If we eliminated all predecessors of the block, delete the block now.
4071     if (pred_empty(BB)) {
4072       // We know there are no successors, so just nuke the block.
4073       BB->eraseFromParent();
4074       if (LoopHeaders)
4075         LoopHeaders->erase(BB);
4076     }
4077 
4078     return true;
4079   }
4080 
4081   // Check out all of the conditional branches going to this return
4082   // instruction.  If any of them just select between returns, change the
4083   // branch itself into a select/return pair.
4084   while (!CondBranchPreds.empty()) {
4085     BranchInst *BI = CondBranchPreds.pop_back_val();
4086 
4087     // Check to see if the non-BB successor is also a return block.
4088     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4089         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4090         SimplifyCondBranchToTwoReturns(BI, Builder))
4091       return true;
4092   }
4093   return false;
4094 }
4095 
4096 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4097   BasicBlock *BB = UI->getParent();
4098 
4099   bool Changed = false;
4100 
4101   // If there are any instructions immediately before the unreachable that can
4102   // be removed, do so.
4103   while (UI->getIterator() != BB->begin()) {
4104     BasicBlock::iterator BBI = UI->getIterator();
4105     --BBI;
4106     // Do not delete instructions that can have side effects which might cause
4107     // the unreachable to not be reachable; specifically, calls and volatile
4108     // operations may have this effect.
4109     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4110       break;
4111 
4112     if (BBI->mayHaveSideEffects()) {
4113       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4114         if (SI->isVolatile())
4115           break;
4116       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4117         if (LI->isVolatile())
4118           break;
4119       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4120         if (RMWI->isVolatile())
4121           break;
4122       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4123         if (CXI->isVolatile())
4124           break;
4125       } else if (isa<CatchPadInst>(BBI)) {
4126         // A catchpad may invoke exception object constructors and such, which
4127         // in some languages can be arbitrary code, so be conservative by
4128         // default.
4129         // For CoreCLR, it just involves a type test, so can be removed.
4130         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4131             EHPersonality::CoreCLR)
4132           break;
4133       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4134                  !isa<LandingPadInst>(BBI)) {
4135         break;
4136       }
4137       // Note that deleting LandingPad's here is in fact okay, although it
4138       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4139       // all the predecessors of this block will be the unwind edges of Invokes,
4140       // and we can therefore guarantee this block will be erased.
4141     }
4142 
4143     // Delete this instruction (any uses are guaranteed to be dead)
4144     if (!BBI->use_empty())
4145       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4146     BBI->eraseFromParent();
4147     Changed = true;
4148   }
4149 
4150   // If the unreachable instruction is the first in the block, take a gander
4151   // at all of the predecessors of this instruction, and simplify them.
4152   if (&BB->front() != UI)
4153     return Changed;
4154 
4155   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4156   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4157     TerminatorInst *TI = Preds[i]->getTerminator();
4158     IRBuilder<> Builder(TI);
4159     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4160       if (BI->isUnconditional()) {
4161         if (BI->getSuccessor(0) == BB) {
4162           new UnreachableInst(TI->getContext(), TI);
4163           TI->eraseFromParent();
4164           Changed = true;
4165         }
4166       } else {
4167         if (BI->getSuccessor(0) == BB) {
4168           Builder.CreateBr(BI->getSuccessor(1));
4169           EraseTerminatorInstAndDCECond(BI);
4170         } else if (BI->getSuccessor(1) == BB) {
4171           Builder.CreateBr(BI->getSuccessor(0));
4172           EraseTerminatorInstAndDCECond(BI);
4173           Changed = true;
4174         }
4175       }
4176     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4177       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4178         if (i->getCaseSuccessor() != BB) {
4179           ++i;
4180           continue;
4181         }
4182         BB->removePredecessor(SI->getParent());
4183         i = SI->removeCase(i);
4184         e = SI->case_end();
4185         Changed = true;
4186       }
4187     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4188       if (II->getUnwindDest() == BB) {
4189         removeUnwindEdge(TI->getParent());
4190         Changed = true;
4191       }
4192     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4193       if (CSI->getUnwindDest() == BB) {
4194         removeUnwindEdge(TI->getParent());
4195         Changed = true;
4196         continue;
4197       }
4198 
4199       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4200                                              E = CSI->handler_end();
4201            I != E; ++I) {
4202         if (*I == BB) {
4203           CSI->removeHandler(I);
4204           --I;
4205           --E;
4206           Changed = true;
4207         }
4208       }
4209       if (CSI->getNumHandlers() == 0) {
4210         BasicBlock *CatchSwitchBB = CSI->getParent();
4211         if (CSI->hasUnwindDest()) {
4212           // Redirect preds to the unwind dest
4213           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4214         } else {
4215           // Rewrite all preds to unwind to caller (or from invoke to call).
4216           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4217           for (BasicBlock *EHPred : EHPreds)
4218             removeUnwindEdge(EHPred);
4219         }
4220         // The catchswitch is no longer reachable.
4221         new UnreachableInst(CSI->getContext(), CSI);
4222         CSI->eraseFromParent();
4223         Changed = true;
4224       }
4225     } else if (isa<CleanupReturnInst>(TI)) {
4226       new UnreachableInst(TI->getContext(), TI);
4227       TI->eraseFromParent();
4228       Changed = true;
4229     }
4230   }
4231 
4232   // If this block is now dead, remove it.
4233   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4234     // We know there are no successors, so just nuke the block.
4235     BB->eraseFromParent();
4236     if (LoopHeaders)
4237       LoopHeaders->erase(BB);
4238     return true;
4239   }
4240 
4241   return Changed;
4242 }
4243 
4244 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4245   assert(Cases.size() >= 1);
4246 
4247   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4248   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4249     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4250       return false;
4251   }
4252   return true;
4253 }
4254 
4255 /// Turn a switch with two reachable destinations into an integer range
4256 /// comparison and branch.
4257 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4258   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4259 
4260   bool HasDefault =
4261       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4262 
4263   // Partition the cases into two sets with different destinations.
4264   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4265   BasicBlock *DestB = nullptr;
4266   SmallVector<ConstantInt *, 16> CasesA;
4267   SmallVector<ConstantInt *, 16> CasesB;
4268 
4269   for (auto Case : SI->cases()) {
4270     BasicBlock *Dest = Case.getCaseSuccessor();
4271     if (!DestA)
4272       DestA = Dest;
4273     if (Dest == DestA) {
4274       CasesA.push_back(Case.getCaseValue());
4275       continue;
4276     }
4277     if (!DestB)
4278       DestB = Dest;
4279     if (Dest == DestB) {
4280       CasesB.push_back(Case.getCaseValue());
4281       continue;
4282     }
4283     return false; // More than two destinations.
4284   }
4285 
4286   assert(DestA && DestB &&
4287          "Single-destination switch should have been folded.");
4288   assert(DestA != DestB);
4289   assert(DestB != SI->getDefaultDest());
4290   assert(!CasesB.empty() && "There must be non-default cases.");
4291   assert(!CasesA.empty() || HasDefault);
4292 
4293   // Figure out if one of the sets of cases form a contiguous range.
4294   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4295   BasicBlock *ContiguousDest = nullptr;
4296   BasicBlock *OtherDest = nullptr;
4297   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4298     ContiguousCases = &CasesA;
4299     ContiguousDest = DestA;
4300     OtherDest = DestB;
4301   } else if (CasesAreContiguous(CasesB)) {
4302     ContiguousCases = &CasesB;
4303     ContiguousDest = DestB;
4304     OtherDest = DestA;
4305   } else
4306     return false;
4307 
4308   // Start building the compare and branch.
4309 
4310   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4311   Constant *NumCases =
4312       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4313 
4314   Value *Sub = SI->getCondition();
4315   if (!Offset->isNullValue())
4316     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4317 
4318   Value *Cmp;
4319   // If NumCases overflowed, then all possible values jump to the successor.
4320   if (NumCases->isNullValue() && !ContiguousCases->empty())
4321     Cmp = ConstantInt::getTrue(SI->getContext());
4322   else
4323     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4324   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4325 
4326   // Update weight for the newly-created conditional branch.
4327   if (HasBranchWeights(SI)) {
4328     SmallVector<uint64_t, 8> Weights;
4329     GetBranchWeights(SI, Weights);
4330     if (Weights.size() == 1 + SI->getNumCases()) {
4331       uint64_t TrueWeight = 0;
4332       uint64_t FalseWeight = 0;
4333       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4334         if (SI->getSuccessor(I) == ContiguousDest)
4335           TrueWeight += Weights[I];
4336         else
4337           FalseWeight += Weights[I];
4338       }
4339       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4340         TrueWeight /= 2;
4341         FalseWeight /= 2;
4342       }
4343       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4344     }
4345   }
4346 
4347   // Prune obsolete incoming values off the successors' PHI nodes.
4348   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4349     unsigned PreviousEdges = ContiguousCases->size();
4350     if (ContiguousDest == SI->getDefaultDest())
4351       ++PreviousEdges;
4352     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4353       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4354   }
4355   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4356     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4357     if (OtherDest == SI->getDefaultDest())
4358       ++PreviousEdges;
4359     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4360       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4361   }
4362 
4363   // Drop the switch.
4364   SI->eraseFromParent();
4365 
4366   return true;
4367 }
4368 
4369 /// Compute masked bits for the condition of a switch
4370 /// and use it to remove dead cases.
4371 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4372                                      const DataLayout &DL) {
4373   Value *Cond = SI->getCondition();
4374   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4375   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4376 
4377   // We can also eliminate cases by determining that their values are outside of
4378   // the limited range of the condition based on how many significant (non-sign)
4379   // bits are in the condition value.
4380   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4381   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4382 
4383   // Gather dead cases.
4384   SmallVector<ConstantInt *, 8> DeadCases;
4385   for (auto &Case : SI->cases()) {
4386     const APInt &CaseVal = Case.getCaseValue()->getValue();
4387     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4388         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4389       DeadCases.push_back(Case.getCaseValue());
4390       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4391     }
4392   }
4393 
4394   // If we can prove that the cases must cover all possible values, the
4395   // default destination becomes dead and we can remove it.  If we know some
4396   // of the bits in the value, we can use that to more precisely compute the
4397   // number of possible unique case values.
4398   bool HasDefault =
4399       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4400   const unsigned NumUnknownBits =
4401       Bits - (Known.Zero | Known.One).countPopulation();
4402   assert(NumUnknownBits <= Bits);
4403   if (HasDefault && DeadCases.empty() &&
4404       NumUnknownBits < 64 /* avoid overflow */ &&
4405       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4406     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4407     BasicBlock *NewDefault =
4408         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4409     SI->setDefaultDest(&*NewDefault);
4410     SplitBlock(&*NewDefault, &NewDefault->front());
4411     auto *OldTI = NewDefault->getTerminator();
4412     new UnreachableInst(SI->getContext(), OldTI);
4413     EraseTerminatorInstAndDCECond(OldTI);
4414     return true;
4415   }
4416 
4417   SmallVector<uint64_t, 8> Weights;
4418   bool HasWeight = HasBranchWeights(SI);
4419   if (HasWeight) {
4420     GetBranchWeights(SI, Weights);
4421     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4422   }
4423 
4424   // Remove dead cases from the switch.
4425   for (ConstantInt *DeadCase : DeadCases) {
4426     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4427     assert(CaseI != SI->case_default() &&
4428            "Case was not found. Probably mistake in DeadCases forming.");
4429     if (HasWeight) {
4430       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4431       Weights.pop_back();
4432     }
4433 
4434     // Prune unused values from PHI nodes.
4435     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4436     SI->removeCase(CaseI);
4437   }
4438   if (HasWeight && Weights.size() >= 2) {
4439     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4440     setBranchWeights(SI, MDWeights);
4441   }
4442 
4443   return !DeadCases.empty();
4444 }
4445 
4446 /// If BB would be eligible for simplification by
4447 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4448 /// by an unconditional branch), look at the phi node for BB in the successor
4449 /// block and see if the incoming value is equal to CaseValue. If so, return
4450 /// the phi node, and set PhiIndex to BB's index in the phi node.
4451 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4452                                               BasicBlock *BB, int *PhiIndex) {
4453   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4454     return nullptr; // BB must be empty to be a candidate for simplification.
4455   if (!BB->getSinglePredecessor())
4456     return nullptr; // BB must be dominated by the switch.
4457 
4458   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4459   if (!Branch || !Branch->isUnconditional())
4460     return nullptr; // Terminator must be unconditional branch.
4461 
4462   BasicBlock *Succ = Branch->getSuccessor(0);
4463 
4464   for (PHINode &PHI : Succ->phis()) {
4465     int Idx = PHI.getBasicBlockIndex(BB);
4466     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4467 
4468     Value *InValue = PHI.getIncomingValue(Idx);
4469     if (InValue != CaseValue)
4470       continue;
4471 
4472     *PhiIndex = Idx;
4473     return &PHI;
4474   }
4475 
4476   return nullptr;
4477 }
4478 
4479 /// Try to forward the condition of a switch instruction to a phi node
4480 /// dominated by the switch, if that would mean that some of the destination
4481 /// blocks of the switch can be folded away. Return true if a change is made.
4482 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4483   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4484 
4485   ForwardingNodesMap ForwardingNodes;
4486   BasicBlock *SwitchBlock = SI->getParent();
4487   bool Changed = false;
4488   for (auto &Case : SI->cases()) {
4489     ConstantInt *CaseValue = Case.getCaseValue();
4490     BasicBlock *CaseDest = Case.getCaseSuccessor();
4491 
4492     // Replace phi operands in successor blocks that are using the constant case
4493     // value rather than the switch condition variable:
4494     //   switchbb:
4495     //   switch i32 %x, label %default [
4496     //     i32 17, label %succ
4497     //   ...
4498     //   succ:
4499     //     %r = phi i32 ... [ 17, %switchbb ] ...
4500     // -->
4501     //     %r = phi i32 ... [ %x, %switchbb ] ...
4502 
4503     for (PHINode &Phi : CaseDest->phis()) {
4504       // This only works if there is exactly 1 incoming edge from the switch to
4505       // a phi. If there is >1, that means multiple cases of the switch map to 1
4506       // value in the phi, and that phi value is not the switch condition. Thus,
4507       // this transform would not make sense (the phi would be invalid because
4508       // a phi can't have different incoming values from the same block).
4509       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4510       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4511           count(Phi.blocks(), SwitchBlock) == 1) {
4512         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4513         Changed = true;
4514       }
4515     }
4516 
4517     // Collect phi nodes that are indirectly using this switch's case constants.
4518     int PhiIdx;
4519     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4520       ForwardingNodes[Phi].push_back(PhiIdx);
4521   }
4522 
4523   for (auto &ForwardingNode : ForwardingNodes) {
4524     PHINode *Phi = ForwardingNode.first;
4525     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4526     if (Indexes.size() < 2)
4527       continue;
4528 
4529     for (int Index : Indexes)
4530       Phi->setIncomingValue(Index, SI->getCondition());
4531     Changed = true;
4532   }
4533 
4534   return Changed;
4535 }
4536 
4537 /// Return true if the backend will be able to handle
4538 /// initializing an array of constants like C.
4539 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4540   if (C->isThreadDependent())
4541     return false;
4542   if (C->isDLLImportDependent())
4543     return false;
4544 
4545   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4546       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4547       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4548     return false;
4549 
4550   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4551     if (!CE->isGEPWithNoNotionalOverIndexing())
4552       return false;
4553     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4554       return false;
4555   }
4556 
4557   if (!TTI.shouldBuildLookupTablesForConstant(C))
4558     return false;
4559 
4560   return true;
4561 }
4562 
4563 /// If V is a Constant, return it. Otherwise, try to look up
4564 /// its constant value in ConstantPool, returning 0 if it's not there.
4565 static Constant *
4566 LookupConstant(Value *V,
4567                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4568   if (Constant *C = dyn_cast<Constant>(V))
4569     return C;
4570   return ConstantPool.lookup(V);
4571 }
4572 
4573 /// Try to fold instruction I into a constant. This works for
4574 /// simple instructions such as binary operations where both operands are
4575 /// constant or can be replaced by constants from the ConstantPool. Returns the
4576 /// resulting constant on success, 0 otherwise.
4577 static Constant *
4578 ConstantFold(Instruction *I, const DataLayout &DL,
4579              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4580   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4581     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4582     if (!A)
4583       return nullptr;
4584     if (A->isAllOnesValue())
4585       return LookupConstant(Select->getTrueValue(), ConstantPool);
4586     if (A->isNullValue())
4587       return LookupConstant(Select->getFalseValue(), ConstantPool);
4588     return nullptr;
4589   }
4590 
4591   SmallVector<Constant *, 4> COps;
4592   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4593     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4594       COps.push_back(A);
4595     else
4596       return nullptr;
4597   }
4598 
4599   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4600     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4601                                            COps[1], DL);
4602   }
4603 
4604   return ConstantFoldInstOperands(I, COps, DL);
4605 }
4606 
4607 /// Try to determine the resulting constant values in phi nodes
4608 /// at the common destination basic block, *CommonDest, for one of the case
4609 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4610 /// case), of a switch instruction SI.
4611 static bool
4612 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4613                BasicBlock **CommonDest,
4614                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4615                const DataLayout &DL, const TargetTransformInfo &TTI) {
4616   // The block from which we enter the common destination.
4617   BasicBlock *Pred = SI->getParent();
4618 
4619   // If CaseDest is empty except for some side-effect free instructions through
4620   // which we can constant-propagate the CaseVal, continue to its successor.
4621   SmallDenseMap<Value *, Constant *> ConstantPool;
4622   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4623   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4624        ++I) {
4625     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4626       // If the terminator is a simple branch, continue to the next block.
4627       if (T->getNumSuccessors() != 1 || T->isExceptional())
4628         return false;
4629       Pred = CaseDest;
4630       CaseDest = T->getSuccessor(0);
4631     } else if (isa<DbgInfoIntrinsic>(I)) {
4632       // Skip debug intrinsic.
4633       continue;
4634     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4635       // Instruction is side-effect free and constant.
4636 
4637       // If the instruction has uses outside this block or a phi node slot for
4638       // the block, it is not safe to bypass the instruction since it would then
4639       // no longer dominate all its uses.
4640       for (auto &Use : I->uses()) {
4641         User *User = Use.getUser();
4642         if (Instruction *I = dyn_cast<Instruction>(User))
4643           if (I->getParent() == CaseDest)
4644             continue;
4645         if (PHINode *Phi = dyn_cast<PHINode>(User))
4646           if (Phi->getIncomingBlock(Use) == CaseDest)
4647             continue;
4648         return false;
4649       }
4650 
4651       ConstantPool.insert(std::make_pair(&*I, C));
4652     } else {
4653       break;
4654     }
4655   }
4656 
4657   // If we did not have a CommonDest before, use the current one.
4658   if (!*CommonDest)
4659     *CommonDest = CaseDest;
4660   // If the destination isn't the common one, abort.
4661   if (CaseDest != *CommonDest)
4662     return false;
4663 
4664   // Get the values for this case from phi nodes in the destination block.
4665   for (PHINode &PHI : (*CommonDest)->phis()) {
4666     int Idx = PHI.getBasicBlockIndex(Pred);
4667     if (Idx == -1)
4668       continue;
4669 
4670     Constant *ConstVal =
4671         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4672     if (!ConstVal)
4673       return false;
4674 
4675     // Be conservative about which kinds of constants we support.
4676     if (!ValidLookupTableConstant(ConstVal, TTI))
4677       return false;
4678 
4679     Res.push_back(std::make_pair(&PHI, ConstVal));
4680   }
4681 
4682   return Res.size() > 0;
4683 }
4684 
4685 // Helper function used to add CaseVal to the list of cases that generate
4686 // Result. Returns the updated number of cases that generate this result.
4687 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4688                                  SwitchCaseResultVectorTy &UniqueResults,
4689                                  Constant *Result) {
4690   for (auto &I : UniqueResults) {
4691     if (I.first == Result) {
4692       I.second.push_back(CaseVal);
4693       return I.second.size();
4694     }
4695   }
4696   UniqueResults.push_back(
4697       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4698   return 1;
4699 }
4700 
4701 // Helper function that initializes a map containing
4702 // results for the PHI node of the common destination block for a switch
4703 // instruction. Returns false if multiple PHI nodes have been found or if
4704 // there is not a common destination block for the switch.
4705 static bool
4706 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4707                       SwitchCaseResultVectorTy &UniqueResults,
4708                       Constant *&DefaultResult, const DataLayout &DL,
4709                       const TargetTransformInfo &TTI,
4710                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4711   for (auto &I : SI->cases()) {
4712     ConstantInt *CaseVal = I.getCaseValue();
4713 
4714     // Resulting value at phi nodes for this case value.
4715     SwitchCaseResultsTy Results;
4716     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4717                         DL, TTI))
4718       return false;
4719 
4720     // Only one value per case is permitted.
4721     if (Results.size() > 1)
4722       return false;
4723 
4724     // Add the case->result mapping to UniqueResults.
4725     const uintptr_t NumCasesForResult =
4726         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4727 
4728     // Early out if there are too many cases for this result.
4729     if (NumCasesForResult > MaxCasesPerResult)
4730       return false;
4731 
4732     // Early out if there are too many unique results.
4733     if (UniqueResults.size() > MaxUniqueResults)
4734       return false;
4735 
4736     // Check the PHI consistency.
4737     if (!PHI)
4738       PHI = Results[0].first;
4739     else if (PHI != Results[0].first)
4740       return false;
4741   }
4742   // Find the default result value.
4743   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4744   BasicBlock *DefaultDest = SI->getDefaultDest();
4745   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4746                  DL, TTI);
4747   // If the default value is not found abort unless the default destination
4748   // is unreachable.
4749   DefaultResult =
4750       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4751   if ((!DefaultResult &&
4752        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4753     return false;
4754 
4755   return true;
4756 }
4757 
4758 // Helper function that checks if it is possible to transform a switch with only
4759 // two cases (or two cases + default) that produces a result into a select.
4760 // Example:
4761 // switch (a) {
4762 //   case 10:                %0 = icmp eq i32 %a, 10
4763 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4764 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4765 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4766 //   default:
4767 //     return 4;
4768 // }
4769 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4770                                    Constant *DefaultResult, Value *Condition,
4771                                    IRBuilder<> &Builder) {
4772   assert(ResultVector.size() == 2 &&
4773          "We should have exactly two unique results at this point");
4774   // If we are selecting between only two cases transform into a simple
4775   // select or a two-way select if default is possible.
4776   if (ResultVector[0].second.size() == 1 &&
4777       ResultVector[1].second.size() == 1) {
4778     ConstantInt *const FirstCase = ResultVector[0].second[0];
4779     ConstantInt *const SecondCase = ResultVector[1].second[0];
4780 
4781     bool DefaultCanTrigger = DefaultResult;
4782     Value *SelectValue = ResultVector[1].first;
4783     if (DefaultCanTrigger) {
4784       Value *const ValueCompare =
4785           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4786       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4787                                          DefaultResult, "switch.select");
4788     }
4789     Value *const ValueCompare =
4790         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4791     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4792                                 SelectValue, "switch.select");
4793   }
4794 
4795   return nullptr;
4796 }
4797 
4798 // Helper function to cleanup a switch instruction that has been converted into
4799 // a select, fixing up PHI nodes and basic blocks.
4800 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4801                                               Value *SelectValue,
4802                                               IRBuilder<> &Builder) {
4803   BasicBlock *SelectBB = SI->getParent();
4804   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4805     PHI->removeIncomingValue(SelectBB);
4806   PHI->addIncoming(SelectValue, SelectBB);
4807 
4808   Builder.CreateBr(PHI->getParent());
4809 
4810   // Remove the switch.
4811   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4812     BasicBlock *Succ = SI->getSuccessor(i);
4813 
4814     if (Succ == PHI->getParent())
4815       continue;
4816     Succ->removePredecessor(SelectBB);
4817   }
4818   SI->eraseFromParent();
4819 }
4820 
4821 /// If the switch is only used to initialize one or more
4822 /// phi nodes in a common successor block with only two different
4823 /// constant values, replace the switch with select.
4824 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4825                            const DataLayout &DL,
4826                            const TargetTransformInfo &TTI) {
4827   Value *const Cond = SI->getCondition();
4828   PHINode *PHI = nullptr;
4829   BasicBlock *CommonDest = nullptr;
4830   Constant *DefaultResult;
4831   SwitchCaseResultVectorTy UniqueResults;
4832   // Collect all the cases that will deliver the same value from the switch.
4833   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4834                              DL, TTI, 2, 1))
4835     return false;
4836   // Selects choose between maximum two values.
4837   if (UniqueResults.size() != 2)
4838     return false;
4839   assert(PHI != nullptr && "PHI for value select not found");
4840 
4841   Builder.SetInsertPoint(SI);
4842   Value *SelectValue =
4843       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4844   if (SelectValue) {
4845     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4846     return true;
4847   }
4848   // The switch couldn't be converted into a select.
4849   return false;
4850 }
4851 
4852 namespace {
4853 
4854 /// This class represents a lookup table that can be used to replace a switch.
4855 class SwitchLookupTable {
4856 public:
4857   /// Create a lookup table to use as a switch replacement with the contents
4858   /// of Values, using DefaultValue to fill any holes in the table.
4859   SwitchLookupTable(
4860       Module &M, uint64_t TableSize, ConstantInt *Offset,
4861       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4862       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4863 
4864   /// Build instructions with Builder to retrieve the value at
4865   /// the position given by Index in the lookup table.
4866   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4867 
4868   /// Return true if a table with TableSize elements of
4869   /// type ElementType would fit in a target-legal register.
4870   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4871                                  Type *ElementType);
4872 
4873 private:
4874   // Depending on the contents of the table, it can be represented in
4875   // different ways.
4876   enum {
4877     // For tables where each element contains the same value, we just have to
4878     // store that single value and return it for each lookup.
4879     SingleValueKind,
4880 
4881     // For tables where there is a linear relationship between table index
4882     // and values. We calculate the result with a simple multiplication
4883     // and addition instead of a table lookup.
4884     LinearMapKind,
4885 
4886     // For small tables with integer elements, we can pack them into a bitmap
4887     // that fits into a target-legal register. Values are retrieved by
4888     // shift and mask operations.
4889     BitMapKind,
4890 
4891     // The table is stored as an array of values. Values are retrieved by load
4892     // instructions from the table.
4893     ArrayKind
4894   } Kind;
4895 
4896   // For SingleValueKind, this is the single value.
4897   Constant *SingleValue = nullptr;
4898 
4899   // For BitMapKind, this is the bitmap.
4900   ConstantInt *BitMap = nullptr;
4901   IntegerType *BitMapElementTy = nullptr;
4902 
4903   // For LinearMapKind, these are the constants used to derive the value.
4904   ConstantInt *LinearOffset = nullptr;
4905   ConstantInt *LinearMultiplier = nullptr;
4906 
4907   // For ArrayKind, this is the array.
4908   GlobalVariable *Array = nullptr;
4909 };
4910 
4911 } // end anonymous namespace
4912 
4913 SwitchLookupTable::SwitchLookupTable(
4914     Module &M, uint64_t TableSize, ConstantInt *Offset,
4915     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4916     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4917   assert(Values.size() && "Can't build lookup table without values!");
4918   assert(TableSize >= Values.size() && "Can't fit values in table!");
4919 
4920   // If all values in the table are equal, this is that value.
4921   SingleValue = Values.begin()->second;
4922 
4923   Type *ValueType = Values.begin()->second->getType();
4924 
4925   // Build up the table contents.
4926   SmallVector<Constant *, 64> TableContents(TableSize);
4927   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4928     ConstantInt *CaseVal = Values[I].first;
4929     Constant *CaseRes = Values[I].second;
4930     assert(CaseRes->getType() == ValueType);
4931 
4932     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4933     TableContents[Idx] = CaseRes;
4934 
4935     if (CaseRes != SingleValue)
4936       SingleValue = nullptr;
4937   }
4938 
4939   // Fill in any holes in the table with the default result.
4940   if (Values.size() < TableSize) {
4941     assert(DefaultValue &&
4942            "Need a default value to fill the lookup table holes.");
4943     assert(DefaultValue->getType() == ValueType);
4944     for (uint64_t I = 0; I < TableSize; ++I) {
4945       if (!TableContents[I])
4946         TableContents[I] = DefaultValue;
4947     }
4948 
4949     if (DefaultValue != SingleValue)
4950       SingleValue = nullptr;
4951   }
4952 
4953   // If each element in the table contains the same value, we only need to store
4954   // that single value.
4955   if (SingleValue) {
4956     Kind = SingleValueKind;
4957     return;
4958   }
4959 
4960   // Check if we can derive the value with a linear transformation from the
4961   // table index.
4962   if (isa<IntegerType>(ValueType)) {
4963     bool LinearMappingPossible = true;
4964     APInt PrevVal;
4965     APInt DistToPrev;
4966     assert(TableSize >= 2 && "Should be a SingleValue table.");
4967     // Check if there is the same distance between two consecutive values.
4968     for (uint64_t I = 0; I < TableSize; ++I) {
4969       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4970       if (!ConstVal) {
4971         // This is an undef. We could deal with it, but undefs in lookup tables
4972         // are very seldom. It's probably not worth the additional complexity.
4973         LinearMappingPossible = false;
4974         break;
4975       }
4976       const APInt &Val = ConstVal->getValue();
4977       if (I != 0) {
4978         APInt Dist = Val - PrevVal;
4979         if (I == 1) {
4980           DistToPrev = Dist;
4981         } else if (Dist != DistToPrev) {
4982           LinearMappingPossible = false;
4983           break;
4984         }
4985       }
4986       PrevVal = Val;
4987     }
4988     if (LinearMappingPossible) {
4989       LinearOffset = cast<ConstantInt>(TableContents[0]);
4990       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4991       Kind = LinearMapKind;
4992       ++NumLinearMaps;
4993       return;
4994     }
4995   }
4996 
4997   // If the type is integer and the table fits in a register, build a bitmap.
4998   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4999     IntegerType *IT = cast<IntegerType>(ValueType);
5000     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5001     for (uint64_t I = TableSize; I > 0; --I) {
5002       TableInt <<= IT->getBitWidth();
5003       // Insert values into the bitmap. Undef values are set to zero.
5004       if (!isa<UndefValue>(TableContents[I - 1])) {
5005         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5006         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5007       }
5008     }
5009     BitMap = ConstantInt::get(M.getContext(), TableInt);
5010     BitMapElementTy = IT;
5011     Kind = BitMapKind;
5012     ++NumBitMaps;
5013     return;
5014   }
5015 
5016   // Store the table in an array.
5017   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5018   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5019 
5020   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5021                              GlobalVariable::PrivateLinkage, Initializer,
5022                              "switch.table." + FuncName);
5023   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5024   Kind = ArrayKind;
5025 }
5026 
5027 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5028   switch (Kind) {
5029   case SingleValueKind:
5030     return SingleValue;
5031   case LinearMapKind: {
5032     // Derive the result value from the input value.
5033     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5034                                           false, "switch.idx.cast");
5035     if (!LinearMultiplier->isOne())
5036       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5037     if (!LinearOffset->isZero())
5038       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5039     return Result;
5040   }
5041   case BitMapKind: {
5042     // Type of the bitmap (e.g. i59).
5043     IntegerType *MapTy = BitMap->getType();
5044 
5045     // Cast Index to the same type as the bitmap.
5046     // Note: The Index is <= the number of elements in the table, so
5047     // truncating it to the width of the bitmask is safe.
5048     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5049 
5050     // Multiply the shift amount by the element width.
5051     ShiftAmt = Builder.CreateMul(
5052         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5053         "switch.shiftamt");
5054 
5055     // Shift down.
5056     Value *DownShifted =
5057         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5058     // Mask off.
5059     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5060   }
5061   case ArrayKind: {
5062     // Make sure the table index will not overflow when treated as signed.
5063     IntegerType *IT = cast<IntegerType>(Index->getType());
5064     uint64_t TableSize =
5065         Array->getInitializer()->getType()->getArrayNumElements();
5066     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5067       Index = Builder.CreateZExt(
5068           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5069           "switch.tableidx.zext");
5070 
5071     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5072     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5073                                            GEPIndices, "switch.gep");
5074     return Builder.CreateLoad(GEP, "switch.load");
5075   }
5076   }
5077   llvm_unreachable("Unknown lookup table kind!");
5078 }
5079 
5080 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5081                                            uint64_t TableSize,
5082                                            Type *ElementType) {
5083   auto *IT = dyn_cast<IntegerType>(ElementType);
5084   if (!IT)
5085     return false;
5086   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5087   // are <= 15, we could try to narrow the type.
5088 
5089   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5090   if (TableSize >= UINT_MAX / IT->getBitWidth())
5091     return false;
5092   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5093 }
5094 
5095 /// Determine whether a lookup table should be built for this switch, based on
5096 /// the number of cases, size of the table, and the types of the results.
5097 static bool
5098 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5099                        const TargetTransformInfo &TTI, const DataLayout &DL,
5100                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5101   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5102     return false; // TableSize overflowed, or mul below might overflow.
5103 
5104   bool AllTablesFitInRegister = true;
5105   bool HasIllegalType = false;
5106   for (const auto &I : ResultTypes) {
5107     Type *Ty = I.second;
5108 
5109     // Saturate this flag to true.
5110     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5111 
5112     // Saturate this flag to false.
5113     AllTablesFitInRegister =
5114         AllTablesFitInRegister &&
5115         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5116 
5117     // If both flags saturate, we're done. NOTE: This *only* works with
5118     // saturating flags, and all flags have to saturate first due to the
5119     // non-deterministic behavior of iterating over a dense map.
5120     if (HasIllegalType && !AllTablesFitInRegister)
5121       break;
5122   }
5123 
5124   // If each table would fit in a register, we should build it anyway.
5125   if (AllTablesFitInRegister)
5126     return true;
5127 
5128   // Don't build a table that doesn't fit in-register if it has illegal types.
5129   if (HasIllegalType)
5130     return false;
5131 
5132   // The table density should be at least 40%. This is the same criterion as for
5133   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5134   // FIXME: Find the best cut-off.
5135   return SI->getNumCases() * 10 >= TableSize * 4;
5136 }
5137 
5138 /// Try to reuse the switch table index compare. Following pattern:
5139 /// \code
5140 ///     if (idx < tablesize)
5141 ///        r = table[idx]; // table does not contain default_value
5142 ///     else
5143 ///        r = default_value;
5144 ///     if (r != default_value)
5145 ///        ...
5146 /// \endcode
5147 /// Is optimized to:
5148 /// \code
5149 ///     cond = idx < tablesize;
5150 ///     if (cond)
5151 ///        r = table[idx];
5152 ///     else
5153 ///        r = default_value;
5154 ///     if (cond)
5155 ///        ...
5156 /// \endcode
5157 /// Jump threading will then eliminate the second if(cond).
5158 static void reuseTableCompare(
5159     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5160     Constant *DefaultValue,
5161     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5162   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5163   if (!CmpInst)
5164     return;
5165 
5166   // We require that the compare is in the same block as the phi so that jump
5167   // threading can do its work afterwards.
5168   if (CmpInst->getParent() != PhiBlock)
5169     return;
5170 
5171   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5172   if (!CmpOp1)
5173     return;
5174 
5175   Value *RangeCmp = RangeCheckBranch->getCondition();
5176   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5177   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5178 
5179   // Check if the compare with the default value is constant true or false.
5180   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5181                                                  DefaultValue, CmpOp1, true);
5182   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5183     return;
5184 
5185   // Check if the compare with the case values is distinct from the default
5186   // compare result.
5187   for (auto ValuePair : Values) {
5188     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5189                                                 ValuePair.second, CmpOp1, true);
5190     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5191       return;
5192     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5193            "Expect true or false as compare result.");
5194   }
5195 
5196   // Check if the branch instruction dominates the phi node. It's a simple
5197   // dominance check, but sufficient for our needs.
5198   // Although this check is invariant in the calling loops, it's better to do it
5199   // at this late stage. Practically we do it at most once for a switch.
5200   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5201   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5202     BasicBlock *Pred = *PI;
5203     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5204       return;
5205   }
5206 
5207   if (DefaultConst == FalseConst) {
5208     // The compare yields the same result. We can replace it.
5209     CmpInst->replaceAllUsesWith(RangeCmp);
5210     ++NumTableCmpReuses;
5211   } else {
5212     // The compare yields the same result, just inverted. We can replace it.
5213     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5214         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5215         RangeCheckBranch);
5216     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5217     ++NumTableCmpReuses;
5218   }
5219 }
5220 
5221 /// If the switch is only used to initialize one or more phi nodes in a common
5222 /// successor block with different constant values, replace the switch with
5223 /// lookup tables.
5224 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5225                                 const DataLayout &DL,
5226                                 const TargetTransformInfo &TTI) {
5227   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5228 
5229   Function *Fn = SI->getParent()->getParent();
5230   // Only build lookup table when we have a target that supports it or the
5231   // attribute is not set.
5232   if (!TTI.shouldBuildLookupTables() ||
5233       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5234     return false;
5235 
5236   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5237   // split off a dense part and build a lookup table for that.
5238 
5239   // FIXME: This creates arrays of GEPs to constant strings, which means each
5240   // GEP needs a runtime relocation in PIC code. We should just build one big
5241   // string and lookup indices into that.
5242 
5243   // Ignore switches with less than three cases. Lookup tables will not make
5244   // them faster, so we don't analyze them.
5245   if (SI->getNumCases() < 3)
5246     return false;
5247 
5248   // Figure out the corresponding result for each case value and phi node in the
5249   // common destination, as well as the min and max case values.
5250   assert(SI->case_begin() != SI->case_end());
5251   SwitchInst::CaseIt CI = SI->case_begin();
5252   ConstantInt *MinCaseVal = CI->getCaseValue();
5253   ConstantInt *MaxCaseVal = CI->getCaseValue();
5254 
5255   BasicBlock *CommonDest = nullptr;
5256 
5257   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5258   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5259 
5260   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5261   SmallDenseMap<PHINode *, Type *> ResultTypes;
5262   SmallVector<PHINode *, 4> PHIs;
5263 
5264   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5265     ConstantInt *CaseVal = CI->getCaseValue();
5266     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5267       MinCaseVal = CaseVal;
5268     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5269       MaxCaseVal = CaseVal;
5270 
5271     // Resulting value at phi nodes for this case value.
5272     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5273     ResultsTy Results;
5274     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5275                         Results, DL, TTI))
5276       return false;
5277 
5278     // Append the result from this case to the list for each phi.
5279     for (const auto &I : Results) {
5280       PHINode *PHI = I.first;
5281       Constant *Value = I.second;
5282       if (!ResultLists.count(PHI))
5283         PHIs.push_back(PHI);
5284       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5285     }
5286   }
5287 
5288   // Keep track of the result types.
5289   for (PHINode *PHI : PHIs) {
5290     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5291   }
5292 
5293   uint64_t NumResults = ResultLists[PHIs[0]].size();
5294   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5295   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5296   bool TableHasHoles = (NumResults < TableSize);
5297 
5298   // If the table has holes, we need a constant result for the default case
5299   // or a bitmask that fits in a register.
5300   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5301   bool HasDefaultResults =
5302       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5303                      DefaultResultsList, DL, TTI);
5304 
5305   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5306   if (NeedMask) {
5307     // As an extra penalty for the validity test we require more cases.
5308     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5309       return false;
5310     if (!DL.fitsInLegalInteger(TableSize))
5311       return false;
5312   }
5313 
5314   for (const auto &I : DefaultResultsList) {
5315     PHINode *PHI = I.first;
5316     Constant *Result = I.second;
5317     DefaultResults[PHI] = Result;
5318   }
5319 
5320   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5321     return false;
5322 
5323   // Create the BB that does the lookups.
5324   Module &Mod = *CommonDest->getParent()->getParent();
5325   BasicBlock *LookupBB = BasicBlock::Create(
5326       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5327 
5328   // Compute the table index value.
5329   Builder.SetInsertPoint(SI);
5330   Value *TableIndex;
5331   if (MinCaseVal->isNullValue())
5332     TableIndex = SI->getCondition();
5333   else
5334     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5335                                    "switch.tableidx");
5336 
5337   // Compute the maximum table size representable by the integer type we are
5338   // switching upon.
5339   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5340   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5341   assert(MaxTableSize >= TableSize &&
5342          "It is impossible for a switch to have more entries than the max "
5343          "representable value of its input integer type's size.");
5344 
5345   // If the default destination is unreachable, or if the lookup table covers
5346   // all values of the conditional variable, branch directly to the lookup table
5347   // BB. Otherwise, check that the condition is within the case range.
5348   const bool DefaultIsReachable =
5349       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5350   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5351   BranchInst *RangeCheckBranch = nullptr;
5352 
5353   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5354     Builder.CreateBr(LookupBB);
5355     // Note: We call removeProdecessor later since we need to be able to get the
5356     // PHI value for the default case in case we're using a bit mask.
5357   } else {
5358     Value *Cmp = Builder.CreateICmpULT(
5359         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5360     RangeCheckBranch =
5361         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5362   }
5363 
5364   // Populate the BB that does the lookups.
5365   Builder.SetInsertPoint(LookupBB);
5366 
5367   if (NeedMask) {
5368     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5369     // re-purposed to do the hole check, and we create a new LookupBB.
5370     BasicBlock *MaskBB = LookupBB;
5371     MaskBB->setName("switch.hole_check");
5372     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5373                                   CommonDest->getParent(), CommonDest);
5374 
5375     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5376     // unnecessary illegal types.
5377     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5378     APInt MaskInt(TableSizePowOf2, 0);
5379     APInt One(TableSizePowOf2, 1);
5380     // Build bitmask; fill in a 1 bit for every case.
5381     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5382     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5383       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5384                          .getLimitedValue();
5385       MaskInt |= One << Idx;
5386     }
5387     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5388 
5389     // Get the TableIndex'th bit of the bitmask.
5390     // If this bit is 0 (meaning hole) jump to the default destination,
5391     // else continue with table lookup.
5392     IntegerType *MapTy = TableMask->getType();
5393     Value *MaskIndex =
5394         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5395     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5396     Value *LoBit = Builder.CreateTrunc(
5397         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5398     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5399 
5400     Builder.SetInsertPoint(LookupBB);
5401     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5402   }
5403 
5404   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5405     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5406     // do not delete PHINodes here.
5407     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5408                                             /*DontDeleteUselessPHIs=*/true);
5409   }
5410 
5411   bool ReturnedEarly = false;
5412   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5413     PHINode *PHI = PHIs[I];
5414     const ResultListTy &ResultList = ResultLists[PHI];
5415 
5416     // If using a bitmask, use any value to fill the lookup table holes.
5417     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5418     StringRef FuncName = Fn->getName();
5419     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5420                             FuncName);
5421 
5422     Value *Result = Table.BuildLookup(TableIndex, Builder);
5423 
5424     // If the result is used to return immediately from the function, we want to
5425     // do that right here.
5426     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5427         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5428       Builder.CreateRet(Result);
5429       ReturnedEarly = true;
5430       break;
5431     }
5432 
5433     // Do a small peephole optimization: re-use the switch table compare if
5434     // possible.
5435     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5436       BasicBlock *PhiBlock = PHI->getParent();
5437       // Search for compare instructions which use the phi.
5438       for (auto *User : PHI->users()) {
5439         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5440       }
5441     }
5442 
5443     PHI->addIncoming(Result, LookupBB);
5444   }
5445 
5446   if (!ReturnedEarly)
5447     Builder.CreateBr(CommonDest);
5448 
5449   // Remove the switch.
5450   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5451     BasicBlock *Succ = SI->getSuccessor(i);
5452 
5453     if (Succ == SI->getDefaultDest())
5454       continue;
5455     Succ->removePredecessor(SI->getParent());
5456   }
5457   SI->eraseFromParent();
5458 
5459   ++NumLookupTables;
5460   if (NeedMask)
5461     ++NumLookupTablesHoles;
5462   return true;
5463 }
5464 
5465 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5466   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5467   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5468   uint64_t Range = Diff + 1;
5469   uint64_t NumCases = Values.size();
5470   // 40% is the default density for building a jump table in optsize/minsize mode.
5471   uint64_t MinDensity = 40;
5472 
5473   return NumCases * 100 >= Range * MinDensity;
5474 }
5475 
5476 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5477 /// of cases.
5478 ///
5479 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5480 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5481 ///
5482 /// This converts a sparse switch into a dense switch which allows better
5483 /// lowering and could also allow transforming into a lookup table.
5484 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5485                               const DataLayout &DL,
5486                               const TargetTransformInfo &TTI) {
5487   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5488   if (CondTy->getIntegerBitWidth() > 64 ||
5489       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5490     return false;
5491   // Only bother with this optimization if there are more than 3 switch cases;
5492   // SDAG will only bother creating jump tables for 4 or more cases.
5493   if (SI->getNumCases() < 4)
5494     return false;
5495 
5496   // This transform is agnostic to the signedness of the input or case values. We
5497   // can treat the case values as signed or unsigned. We can optimize more common
5498   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5499   // as signed.
5500   SmallVector<int64_t,4> Values;
5501   for (auto &C : SI->cases())
5502     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5503   std::sort(Values.begin(), Values.end());
5504 
5505   // If the switch is already dense, there's nothing useful to do here.
5506   if (isSwitchDense(Values))
5507     return false;
5508 
5509   // First, transform the values such that they start at zero and ascend.
5510   int64_t Base = Values[0];
5511   for (auto &V : Values)
5512     V -= (uint64_t)(Base);
5513 
5514   // Now we have signed numbers that have been shifted so that, given enough
5515   // precision, there are no negative values. Since the rest of the transform
5516   // is bitwise only, we switch now to an unsigned representation.
5517   uint64_t GCD = 0;
5518   for (auto &V : Values)
5519     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5520 
5521   // This transform can be done speculatively because it is so cheap - it results
5522   // in a single rotate operation being inserted. This can only happen if the
5523   // factor extracted is a power of 2.
5524   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5525   // inverse of GCD and then perform this transform.
5526   // FIXME: It's possible that optimizing a switch on powers of two might also
5527   // be beneficial - flag values are often powers of two and we could use a CLZ
5528   // as the key function.
5529   if (GCD <= 1 || !isPowerOf2_64(GCD))
5530     // No common divisor found or too expensive to compute key function.
5531     return false;
5532 
5533   unsigned Shift = Log2_64(GCD);
5534   for (auto &V : Values)
5535     V = (int64_t)((uint64_t)V >> Shift);
5536 
5537   if (!isSwitchDense(Values))
5538     // Transform didn't create a dense switch.
5539     return false;
5540 
5541   // The obvious transform is to shift the switch condition right and emit a
5542   // check that the condition actually cleanly divided by GCD, i.e.
5543   //   C & (1 << Shift - 1) == 0
5544   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5545   //
5546   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5547   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5548   // are nonzero then the switch condition will be very large and will hit the
5549   // default case.
5550 
5551   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5552   Builder.SetInsertPoint(SI);
5553   auto *ShiftC = ConstantInt::get(Ty, Shift);
5554   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5555   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5556   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5557   auto *Rot = Builder.CreateOr(LShr, Shl);
5558   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5559 
5560   for (auto Case : SI->cases()) {
5561     auto *Orig = Case.getCaseValue();
5562     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5563     Case.setValue(
5564         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5565   }
5566   return true;
5567 }
5568 
5569 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5570   BasicBlock *BB = SI->getParent();
5571 
5572   if (isValueEqualityComparison(SI)) {
5573     // If we only have one predecessor, and if it is a branch on this value,
5574     // see if that predecessor totally determines the outcome of this switch.
5575     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5576       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5577         return simplifyCFG(BB, TTI, Options) | true;
5578 
5579     Value *Cond = SI->getCondition();
5580     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5581       if (SimplifySwitchOnSelect(SI, Select))
5582         return simplifyCFG(BB, TTI, Options) | true;
5583 
5584     // If the block only contains the switch, see if we can fold the block
5585     // away into any preds.
5586     BasicBlock::iterator BBI = BB->begin();
5587     // Ignore dbg intrinsics.
5588     while (isa<DbgInfoIntrinsic>(BBI))
5589       ++BBI;
5590     if (SI == &*BBI)
5591       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5592         return simplifyCFG(BB, TTI, Options) | true;
5593   }
5594 
5595   // Try to transform the switch into an icmp and a branch.
5596   if (TurnSwitchRangeIntoICmp(SI, Builder))
5597     return simplifyCFG(BB, TTI, Options) | true;
5598 
5599   // Remove unreachable cases.
5600   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5601     return simplifyCFG(BB, TTI, Options) | true;
5602 
5603   if (switchToSelect(SI, Builder, DL, TTI))
5604     return simplifyCFG(BB, TTI, Options) | true;
5605 
5606   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5607     return simplifyCFG(BB, TTI, Options) | true;
5608 
5609   // The conversion from switch to lookup tables results in difficult-to-analyze
5610   // code and makes pruning branches much harder. This is a problem if the
5611   // switch expression itself can still be restricted as a result of inlining or
5612   // CVP. Therefore, only apply this transformation during late stages of the
5613   // optimisation pipeline.
5614   if (Options.ConvertSwitchToLookupTable &&
5615       SwitchToLookupTable(SI, Builder, DL, TTI))
5616     return simplifyCFG(BB, TTI, Options) | true;
5617 
5618   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5619     return simplifyCFG(BB, TTI, Options) | true;
5620 
5621   return false;
5622 }
5623 
5624 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5625   BasicBlock *BB = IBI->getParent();
5626   bool Changed = false;
5627 
5628   // Eliminate redundant destinations.
5629   SmallPtrSet<Value *, 8> Succs;
5630   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5631     BasicBlock *Dest = IBI->getDestination(i);
5632     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5633       Dest->removePredecessor(BB);
5634       IBI->removeDestination(i);
5635       --i;
5636       --e;
5637       Changed = true;
5638     }
5639   }
5640 
5641   if (IBI->getNumDestinations() == 0) {
5642     // If the indirectbr has no successors, change it to unreachable.
5643     new UnreachableInst(IBI->getContext(), IBI);
5644     EraseTerminatorInstAndDCECond(IBI);
5645     return true;
5646   }
5647 
5648   if (IBI->getNumDestinations() == 1) {
5649     // If the indirectbr has one successor, change it to a direct branch.
5650     BranchInst::Create(IBI->getDestination(0), IBI);
5651     EraseTerminatorInstAndDCECond(IBI);
5652     return true;
5653   }
5654 
5655   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5656     if (SimplifyIndirectBrOnSelect(IBI, SI))
5657       return simplifyCFG(BB, TTI, Options) | true;
5658   }
5659   return Changed;
5660 }
5661 
5662 /// Given an block with only a single landing pad and a unconditional branch
5663 /// try to find another basic block which this one can be merged with.  This
5664 /// handles cases where we have multiple invokes with unique landing pads, but
5665 /// a shared handler.
5666 ///
5667 /// We specifically choose to not worry about merging non-empty blocks
5668 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5669 /// practice, the optimizer produces empty landing pad blocks quite frequently
5670 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5671 /// sinking in this file)
5672 ///
5673 /// This is primarily a code size optimization.  We need to avoid performing
5674 /// any transform which might inhibit optimization (such as our ability to
5675 /// specialize a particular handler via tail commoning).  We do this by not
5676 /// merging any blocks which require us to introduce a phi.  Since the same
5677 /// values are flowing through both blocks, we don't loose any ability to
5678 /// specialize.  If anything, we make such specialization more likely.
5679 ///
5680 /// TODO - This transformation could remove entries from a phi in the target
5681 /// block when the inputs in the phi are the same for the two blocks being
5682 /// merged.  In some cases, this could result in removal of the PHI entirely.
5683 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5684                                  BasicBlock *BB) {
5685   auto Succ = BB->getUniqueSuccessor();
5686   assert(Succ);
5687   // If there's a phi in the successor block, we'd likely have to introduce
5688   // a phi into the merged landing pad block.
5689   if (isa<PHINode>(*Succ->begin()))
5690     return false;
5691 
5692   for (BasicBlock *OtherPred : predecessors(Succ)) {
5693     if (BB == OtherPred)
5694       continue;
5695     BasicBlock::iterator I = OtherPred->begin();
5696     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5697     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5698       continue;
5699     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5700       ;
5701     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5702     if (!BI2 || !BI2->isIdenticalTo(BI))
5703       continue;
5704 
5705     // We've found an identical block.  Update our predecessors to take that
5706     // path instead and make ourselves dead.
5707     SmallSet<BasicBlock *, 16> Preds;
5708     Preds.insert(pred_begin(BB), pred_end(BB));
5709     for (BasicBlock *Pred : Preds) {
5710       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5711       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5712              "unexpected successor");
5713       II->setUnwindDest(OtherPred);
5714     }
5715 
5716     // The debug info in OtherPred doesn't cover the merged control flow that
5717     // used to go through BB.  We need to delete it or update it.
5718     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5719       Instruction &Inst = *I;
5720       I++;
5721       if (isa<DbgInfoIntrinsic>(Inst))
5722         Inst.eraseFromParent();
5723     }
5724 
5725     SmallSet<BasicBlock *, 16> Succs;
5726     Succs.insert(succ_begin(BB), succ_end(BB));
5727     for (BasicBlock *Succ : Succs) {
5728       Succ->removePredecessor(BB);
5729     }
5730 
5731     IRBuilder<> Builder(BI);
5732     Builder.CreateUnreachable();
5733     BI->eraseFromParent();
5734     return true;
5735   }
5736   return false;
5737 }
5738 
5739 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5740                                           IRBuilder<> &Builder) {
5741   BasicBlock *BB = BI->getParent();
5742   BasicBlock *Succ = BI->getSuccessor(0);
5743 
5744   // If the Terminator is the only non-phi instruction, simplify the block.
5745   // If LoopHeader is provided, check if the block or its successor is a loop
5746   // header. (This is for early invocations before loop simplify and
5747   // vectorization to keep canonical loop forms for nested loops. These blocks
5748   // can be eliminated when the pass is invoked later in the back-end.)
5749   // Note that if BB has only one predecessor then we do not introduce new
5750   // backedge, so we can eliminate BB.
5751   bool NeedCanonicalLoop =
5752       Options.NeedCanonicalLoop &&
5753       (LoopHeaders && std::distance(pred_begin(BB), pred_end(BB)) > 1 &&
5754        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5755   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5756   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5757       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5758     return true;
5759 
5760   // If the only instruction in the block is a seteq/setne comparison against a
5761   // constant, try to simplify the block.
5762   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5763     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5764       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5765         ;
5766       if (I->isTerminator() &&
5767           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options))
5768         return true;
5769     }
5770 
5771   // See if we can merge an empty landing pad block with another which is
5772   // equivalent.
5773   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5774     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5775       ;
5776     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5777       return true;
5778   }
5779 
5780   // If this basic block is ONLY a compare and a branch, and if a predecessor
5781   // branches to us and our successor, fold the comparison into the
5782   // predecessor and use logical operations to update the incoming value
5783   // for PHI nodes in common successor.
5784   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5785     return simplifyCFG(BB, TTI, Options) | true;
5786   return false;
5787 }
5788 
5789 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5790   BasicBlock *PredPred = nullptr;
5791   for (auto *P : predecessors(BB)) {
5792     BasicBlock *PPred = P->getSinglePredecessor();
5793     if (!PPred || (PredPred && PredPred != PPred))
5794       return nullptr;
5795     PredPred = PPred;
5796   }
5797   return PredPred;
5798 }
5799 
5800 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5801   BasicBlock *BB = BI->getParent();
5802 
5803   // Conditional branch
5804   if (isValueEqualityComparison(BI)) {
5805     // If we only have one predecessor, and if it is a branch on this value,
5806     // see if that predecessor totally determines the outcome of this
5807     // switch.
5808     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5809       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5810         return simplifyCFG(BB, TTI, Options) | true;
5811 
5812     // This block must be empty, except for the setcond inst, if it exists.
5813     // Ignore dbg intrinsics.
5814     BasicBlock::iterator I = BB->begin();
5815     // Ignore dbg intrinsics.
5816     while (isa<DbgInfoIntrinsic>(I))
5817       ++I;
5818     if (&*I == BI) {
5819       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5820         return simplifyCFG(BB, TTI, Options) | true;
5821     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5822       ++I;
5823       // Ignore dbg intrinsics.
5824       while (isa<DbgInfoIntrinsic>(I))
5825         ++I;
5826       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5827         return simplifyCFG(BB, TTI, Options) | true;
5828     }
5829   }
5830 
5831   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5832   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5833     return true;
5834 
5835   // If this basic block has a single dominating predecessor block and the
5836   // dominating block's condition implies BI's condition, we know the direction
5837   // of the BI branch.
5838   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5839     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5840     if (PBI && PBI->isConditional() &&
5841         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5842       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5843       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5844       Optional<bool> Implication = isImpliedCondition(
5845           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5846       if (Implication) {
5847         // Turn this into a branch on constant.
5848         auto *OldCond = BI->getCondition();
5849         ConstantInt *CI = *Implication
5850                               ? ConstantInt::getTrue(BB->getContext())
5851                               : ConstantInt::getFalse(BB->getContext());
5852         BI->setCondition(CI);
5853         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5854         return simplifyCFG(BB, TTI, Options) | true;
5855       }
5856     }
5857   }
5858 
5859   // If this basic block is ONLY a compare and a branch, and if a predecessor
5860   // branches to us and one of our successors, fold the comparison into the
5861   // predecessor and use logical operations to pick the right destination.
5862   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5863     return simplifyCFG(BB, TTI, Options) | true;
5864 
5865   // We have a conditional branch to two blocks that are only reachable
5866   // from BI.  We know that the condbr dominates the two blocks, so see if
5867   // there is any identical code in the "then" and "else" blocks.  If so, we
5868   // can hoist it up to the branching block.
5869   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5870     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5871       if (HoistThenElseCodeToIf(BI, TTI))
5872         return simplifyCFG(BB, TTI, Options) | true;
5873     } else {
5874       // If Successor #1 has multiple preds, we may be able to conditionally
5875       // execute Successor #0 if it branches to Successor #1.
5876       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5877       if (Succ0TI->getNumSuccessors() == 1 &&
5878           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5879         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5880           return simplifyCFG(BB, TTI, Options) | true;
5881     }
5882   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5883     // If Successor #0 has multiple preds, we may be able to conditionally
5884     // execute Successor #1 if it branches to Successor #0.
5885     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5886     if (Succ1TI->getNumSuccessors() == 1 &&
5887         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5888       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5889         return simplifyCFG(BB, TTI, Options) | true;
5890   }
5891 
5892   // If this is a branch on a phi node in the current block, thread control
5893   // through this block if any PHI node entries are constants.
5894   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5895     if (PN->getParent() == BI->getParent())
5896       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5897         return simplifyCFG(BB, TTI, Options) | true;
5898 
5899   // Scan predecessor blocks for conditional branches.
5900   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5901     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5902       if (PBI != BI && PBI->isConditional())
5903         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5904           return simplifyCFG(BB, TTI, Options) | true;
5905 
5906   // Look for diamond patterns.
5907   if (MergeCondStores)
5908     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5909       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5910         if (PBI != BI && PBI->isConditional())
5911           if (mergeConditionalStores(PBI, BI, DL))
5912             return simplifyCFG(BB, TTI, Options) | true;
5913 
5914   return false;
5915 }
5916 
5917 /// Check if passing a value to an instruction will cause undefined behavior.
5918 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5919   Constant *C = dyn_cast<Constant>(V);
5920   if (!C)
5921     return false;
5922 
5923   if (I->use_empty())
5924     return false;
5925 
5926   if (C->isNullValue() || isa<UndefValue>(C)) {
5927     // Only look at the first use, avoid hurting compile time with long uselists
5928     User *Use = *I->user_begin();
5929 
5930     // Now make sure that there are no instructions in between that can alter
5931     // control flow (eg. calls)
5932     for (BasicBlock::iterator
5933              i = ++BasicBlock::iterator(I),
5934              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5935          i != UI; ++i)
5936       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5937         return false;
5938 
5939     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5940     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5941       if (GEP->getPointerOperand() == I)
5942         return passingValueIsAlwaysUndefined(V, GEP);
5943 
5944     // Look through bitcasts.
5945     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5946       return passingValueIsAlwaysUndefined(V, BC);
5947 
5948     // Load from null is undefined.
5949     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5950       if (!LI->isVolatile())
5951         return LI->getPointerAddressSpace() == 0;
5952 
5953     // Store to null is undefined.
5954     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5955       if (!SI->isVolatile())
5956         return SI->getPointerAddressSpace() == 0 &&
5957                SI->getPointerOperand() == I;
5958 
5959     // A call to null is undefined.
5960     if (auto CS = CallSite(Use))
5961       return CS.getCalledValue() == I;
5962   }
5963   return false;
5964 }
5965 
5966 /// If BB has an incoming value that will always trigger undefined behavior
5967 /// (eg. null pointer dereference), remove the branch leading here.
5968 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5969   for (PHINode &PHI : BB->phis())
5970     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5971       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5972         TerminatorInst *T = PHI.getIncomingBlock(i)->getTerminator();
5973         IRBuilder<> Builder(T);
5974         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5975           BB->removePredecessor(PHI.getIncomingBlock(i));
5976           // Turn uncoditional branches into unreachables and remove the dead
5977           // destination from conditional branches.
5978           if (BI->isUnconditional())
5979             Builder.CreateUnreachable();
5980           else
5981             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5982                                                        : BI->getSuccessor(0));
5983           BI->eraseFromParent();
5984           return true;
5985         }
5986         // TODO: SwitchInst.
5987       }
5988 
5989   return false;
5990 }
5991 
5992 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5993   bool Changed = false;
5994 
5995   assert(BB && BB->getParent() && "Block not embedded in function!");
5996   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5997 
5998   // Remove basic blocks that have no predecessors (except the entry block)...
5999   // or that just have themself as a predecessor.  These are unreachable.
6000   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6001       BB->getSinglePredecessor() == BB) {
6002     DEBUG(dbgs() << "Removing BB: \n" << *BB);
6003     DeleteDeadBlock(BB);
6004     return true;
6005   }
6006 
6007   // Check to see if we can constant propagate this terminator instruction
6008   // away...
6009   Changed |= ConstantFoldTerminator(BB, true);
6010 
6011   // Check for and eliminate duplicate PHI nodes in this block.
6012   Changed |= EliminateDuplicatePHINodes(BB);
6013 
6014   // Check for and remove branches that will always cause undefined behavior.
6015   Changed |= removeUndefIntroducingPredecessor(BB);
6016 
6017   // Merge basic blocks into their predecessor if there is only one distinct
6018   // pred, and if there is only one distinct successor of the predecessor, and
6019   // if there are no PHI nodes.
6020   if (MergeBlockIntoPredecessor(BB))
6021     return true;
6022 
6023   if (SinkCommon && Options.SinkCommonInsts)
6024     Changed |= SinkCommonCodeFromPredecessors(BB);
6025 
6026   IRBuilder<> Builder(BB);
6027 
6028   // If there is a trivial two-entry PHI node in this basic block, and we can
6029   // eliminate it, do so now.
6030   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6031     if (PN->getNumIncomingValues() == 2)
6032       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6033 
6034   Builder.SetInsertPoint(BB->getTerminator());
6035   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6036     if (BI->isUnconditional()) {
6037       if (SimplifyUncondBranch(BI, Builder))
6038         return true;
6039     } else {
6040       if (SimplifyCondBranch(BI, Builder))
6041         return true;
6042     }
6043   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6044     if (SimplifyReturn(RI, Builder))
6045       return true;
6046   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6047     if (SimplifyResume(RI, Builder))
6048       return true;
6049   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6050     if (SimplifyCleanupReturn(RI))
6051       return true;
6052   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6053     if (SimplifySwitch(SI, Builder))
6054       return true;
6055   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6056     if (SimplifyUnreachable(UI))
6057       return true;
6058   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6059     if (SimplifyIndirectBr(IBI))
6060       return true;
6061   }
6062 
6063   return Changed;
6064 }
6065 
6066 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6067                        const SimplifyCFGOptions &Options,
6068                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6069   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6070                         Options)
6071       .run(BB);
6072 }
6073