1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/MemorySSA.h" 31 #include "llvm/Analysis/MemorySSAUpdater.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/NoFolder.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/PatternMatch.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <climits> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <set> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 using namespace PatternMatch; 86 87 #define DEBUG_TYPE "simplifycfg" 88 89 // Chosen as 2 so as to be cheap, but still to have enough power to fold 90 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 91 // To catch this, we need to fold a compare and a select, hence '2' being the 92 // minimum reasonable default. 93 static cl::opt<unsigned> PHINodeFoldingThreshold( 94 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 95 cl::desc( 96 "Control the amount of phi node folding to perform (default = 2)")); 97 98 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 99 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 100 cl::desc("Control the maximal total instruction cost that we are willing " 101 "to speculatively execute to fold a 2-entry PHI node into a " 102 "select (default = 4)")); 103 104 static cl::opt<bool> DupRet( 105 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 106 cl::desc("Duplicate return instructions into unconditional branches")); 107 108 static cl::opt<bool> 109 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 110 cl::desc("Hoist common instructions up to the parent block")); 111 112 static cl::opt<bool> 113 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 114 cl::desc("Sink common instructions down to the end block")); 115 116 static cl::opt<bool> HoistCondStores( 117 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 118 cl::desc("Hoist conditional stores if an unconditional store precedes")); 119 120 static cl::opt<bool> MergeCondStores( 121 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 122 cl::desc("Hoist conditional stores even if an unconditional store does not " 123 "precede - hoist multiple conditional stores into a single " 124 "predicated store")); 125 126 static cl::opt<bool> MergeCondStoresAggressively( 127 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 128 cl::desc("When merging conditional stores, do so even if the resultant " 129 "basic blocks are unlikely to be if-converted as a result")); 130 131 static cl::opt<bool> SpeculateOneExpensiveInst( 132 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 133 cl::desc("Allow exactly one expensive instruction to be speculatively " 134 "executed")); 135 136 static cl::opt<unsigned> MaxSpeculationDepth( 137 "max-speculation-depth", cl::Hidden, cl::init(10), 138 cl::desc("Limit maximum recursion depth when calculating costs of " 139 "speculatively executed instructions")); 140 141 static cl::opt<int> 142 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 143 cl::desc("Max size of a block which is still considered " 144 "small enough to thread through")); 145 146 // Two is chosen to allow one negation and a logical combine. 147 static cl::opt<unsigned> 148 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 149 cl::init(2), 150 cl::desc("Maximum cost of combining conditions when " 151 "folding branches")); 152 153 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 154 STATISTIC(NumLinearMaps, 155 "Number of switch instructions turned into linear mapping"); 156 STATISTIC(NumLookupTables, 157 "Number of switch instructions turned into lookup tables"); 158 STATISTIC( 159 NumLookupTablesHoles, 160 "Number of switch instructions turned into lookup tables (holes checked)"); 161 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 162 STATISTIC(NumFoldBranchToCommonDest, 163 "Number of branches folded into predecessor basic block"); 164 STATISTIC( 165 NumHoistCommonCode, 166 "Number of common instruction 'blocks' hoisted up to the begin block"); 167 STATISTIC(NumHoistCommonInstrs, 168 "Number of common instructions hoisted up to the begin block"); 169 STATISTIC(NumSinkCommonCode, 170 "Number of common instruction 'blocks' sunk down to the end block"); 171 STATISTIC(NumSinkCommonInstrs, 172 "Number of common instructions sunk down to the end block"); 173 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 174 STATISTIC(NumInvokes, 175 "Number of invokes with empty resume blocks simplified into calls"); 176 177 namespace { 178 179 // The first field contains the value that the switch produces when a certain 180 // case group is selected, and the second field is a vector containing the 181 // cases composing the case group. 182 using SwitchCaseResultVectorTy = 183 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 184 185 // The first field contains the phi node that generates a result of the switch 186 // and the second field contains the value generated for a certain case in the 187 // switch for that PHI. 188 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 189 190 /// ValueEqualityComparisonCase - Represents a case of a switch. 191 struct ValueEqualityComparisonCase { 192 ConstantInt *Value; 193 BasicBlock *Dest; 194 195 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 196 : Value(Value), Dest(Dest) {} 197 198 bool operator<(ValueEqualityComparisonCase RHS) const { 199 // Comparing pointers is ok as we only rely on the order for uniquing. 200 return Value < RHS.Value; 201 } 202 203 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 204 }; 205 206 class SimplifyCFGOpt { 207 const TargetTransformInfo &TTI; 208 const DataLayout &DL; 209 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 210 const SimplifyCFGOptions &Options; 211 bool Resimplify; 212 213 Value *isValueEqualityComparison(Instruction *TI); 214 BasicBlock *GetValueEqualityComparisonCases( 215 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 216 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 217 BasicBlock *Pred, 218 IRBuilder<> &Builder); 219 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 220 IRBuilder<> &Builder); 221 222 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 223 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 224 bool simplifySingleResume(ResumeInst *RI); 225 bool simplifyCommonResume(ResumeInst *RI); 226 bool simplifyCleanupReturn(CleanupReturnInst *RI); 227 bool simplifyUnreachable(UnreachableInst *UI); 228 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 229 bool simplifyIndirectBr(IndirectBrInst *IBI); 230 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 231 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 232 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 233 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 234 235 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 236 IRBuilder<> &Builder); 237 238 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 239 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 240 const TargetTransformInfo &TTI); 241 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 242 BasicBlock *TrueBB, BasicBlock *FalseBB, 243 uint32_t TrueWeight, uint32_t FalseWeight); 244 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 245 const DataLayout &DL); 246 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 247 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 248 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 249 250 public: 251 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 252 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 253 const SimplifyCFGOptions &Opts) 254 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 255 256 bool run(BasicBlock *BB); 257 bool simplifyOnce(BasicBlock *BB); 258 259 // Helper to set Resimplify and return change indication. 260 bool requestResimplify() { 261 Resimplify = true; 262 return true; 263 } 264 }; 265 266 } // end anonymous namespace 267 268 /// Return true if it is safe to merge these two 269 /// terminator instructions together. 270 static bool 271 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 272 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 273 if (SI1 == SI2) 274 return false; // Can't merge with self! 275 276 // It is not safe to merge these two switch instructions if they have a common 277 // successor, and if that successor has a PHI node, and if *that* PHI node has 278 // conflicting incoming values from the two switch blocks. 279 BasicBlock *SI1BB = SI1->getParent(); 280 BasicBlock *SI2BB = SI2->getParent(); 281 282 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 283 bool Fail = false; 284 for (BasicBlock *Succ : successors(SI2BB)) 285 if (SI1Succs.count(Succ)) 286 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 287 PHINode *PN = cast<PHINode>(BBI); 288 if (PN->getIncomingValueForBlock(SI1BB) != 289 PN->getIncomingValueForBlock(SI2BB)) { 290 if (FailBlocks) 291 FailBlocks->insert(Succ); 292 Fail = true; 293 } 294 } 295 296 return !Fail; 297 } 298 299 /// Return true if it is safe and profitable to merge these two terminator 300 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 301 /// store all PHI nodes in common successors. 302 static bool 303 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 304 Instruction *Cond, 305 SmallVectorImpl<PHINode *> &PhiNodes) { 306 if (SI1 == SI2) 307 return false; // Can't merge with self! 308 assert(SI1->isUnconditional() && SI2->isConditional()); 309 310 // We fold the unconditional branch if we can easily update all PHI nodes in 311 // common successors: 312 // 1> We have a constant incoming value for the conditional branch; 313 // 2> We have "Cond" as the incoming value for the unconditional branch; 314 // 3> SI2->getCondition() and Cond have same operands. 315 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 316 if (!Ci2) 317 return false; 318 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 319 Cond->getOperand(1) == Ci2->getOperand(1)) && 320 !(Cond->getOperand(0) == Ci2->getOperand(1) && 321 Cond->getOperand(1) == Ci2->getOperand(0))) 322 return false; 323 324 BasicBlock *SI1BB = SI1->getParent(); 325 BasicBlock *SI2BB = SI2->getParent(); 326 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 327 for (BasicBlock *Succ : successors(SI2BB)) 328 if (SI1Succs.count(Succ)) 329 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 330 PHINode *PN = cast<PHINode>(BBI); 331 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 332 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 333 return false; 334 PhiNodes.push_back(PN); 335 } 336 return true; 337 } 338 339 /// Update PHI nodes in Succ to indicate that there will now be entries in it 340 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 341 /// will be the same as those coming in from ExistPred, an existing predecessor 342 /// of Succ. 343 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 344 BasicBlock *ExistPred, 345 MemorySSAUpdater *MSSAU = nullptr) { 346 for (PHINode &PN : Succ->phis()) 347 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 348 if (MSSAU) 349 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 350 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 351 } 352 353 /// Compute an abstract "cost" of speculating the given instruction, 354 /// which is assumed to be safe to speculate. TCC_Free means cheap, 355 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 356 /// expensive. 357 static unsigned ComputeSpeculationCost(const User *I, 358 const TargetTransformInfo &TTI) { 359 assert(isSafeToSpeculativelyExecute(I) && 360 "Instruction is not safe to speculatively execute!"); 361 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 362 } 363 364 /// If we have a merge point of an "if condition" as accepted above, 365 /// return true if the specified value dominates the block. We 366 /// don't handle the true generality of domination here, just a special case 367 /// which works well enough for us. 368 /// 369 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 370 /// see if V (which must be an instruction) and its recursive operands 371 /// that do not dominate BB have a combined cost lower than CostRemaining and 372 /// are non-trapping. If both are true, the instruction is inserted into the 373 /// set and true is returned. 374 /// 375 /// The cost for most non-trapping instructions is defined as 1 except for 376 /// Select whose cost is 2. 377 /// 378 /// After this function returns, CostRemaining is decreased by the cost of 379 /// V plus its non-dominating operands. If that cost is greater than 380 /// CostRemaining, false is returned and CostRemaining is undefined. 381 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 382 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 383 int &BudgetRemaining, 384 const TargetTransformInfo &TTI, 385 unsigned Depth = 0) { 386 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 387 // so limit the recursion depth. 388 // TODO: While this recursion limit does prevent pathological behavior, it 389 // would be better to track visited instructions to avoid cycles. 390 if (Depth == MaxSpeculationDepth) 391 return false; 392 393 Instruction *I = dyn_cast<Instruction>(V); 394 if (!I) { 395 // Non-instructions all dominate instructions, but not all constantexprs 396 // can be executed unconditionally. 397 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 398 if (C->canTrap()) 399 return false; 400 return true; 401 } 402 BasicBlock *PBB = I->getParent(); 403 404 // We don't want to allow weird loops that might have the "if condition" in 405 // the bottom of this block. 406 if (PBB == BB) 407 return false; 408 409 // If this instruction is defined in a block that contains an unconditional 410 // branch to BB, then it must be in the 'conditional' part of the "if 411 // statement". If not, it definitely dominates the region. 412 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 413 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 414 return true; 415 416 // If we have seen this instruction before, don't count it again. 417 if (AggressiveInsts.count(I)) 418 return true; 419 420 // Okay, it looks like the instruction IS in the "condition". Check to 421 // see if it's a cheap instruction to unconditionally compute, and if it 422 // only uses stuff defined outside of the condition. If so, hoist it out. 423 if (!isSafeToSpeculativelyExecute(I)) 424 return false; 425 426 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 427 428 // Allow exactly one instruction to be speculated regardless of its cost 429 // (as long as it is safe to do so). 430 // This is intended to flatten the CFG even if the instruction is a division 431 // or other expensive operation. The speculation of an expensive instruction 432 // is expected to be undone in CodeGenPrepare if the speculation has not 433 // enabled further IR optimizations. 434 if (BudgetRemaining < 0 && 435 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 436 return false; 437 438 // Okay, we can only really hoist these out if their operands do 439 // not take us over the cost threshold. 440 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 441 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 442 Depth + 1)) 443 return false; 444 // Okay, it's safe to do this! Remember this instruction. 445 AggressiveInsts.insert(I); 446 return true; 447 } 448 449 /// Extract ConstantInt from value, looking through IntToPtr 450 /// and PointerNullValue. Return NULL if value is not a constant int. 451 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 452 // Normal constant int. 453 ConstantInt *CI = dyn_cast<ConstantInt>(V); 454 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 455 return CI; 456 457 // This is some kind of pointer constant. Turn it into a pointer-sized 458 // ConstantInt if possible. 459 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 460 461 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 462 if (isa<ConstantPointerNull>(V)) 463 return ConstantInt::get(PtrTy, 0); 464 465 // IntToPtr const int. 466 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 467 if (CE->getOpcode() == Instruction::IntToPtr) 468 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 469 // The constant is very likely to have the right type already. 470 if (CI->getType() == PtrTy) 471 return CI; 472 else 473 return cast<ConstantInt>( 474 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 475 } 476 return nullptr; 477 } 478 479 namespace { 480 481 /// Given a chain of or (||) or and (&&) comparison of a value against a 482 /// constant, this will try to recover the information required for a switch 483 /// structure. 484 /// It will depth-first traverse the chain of comparison, seeking for patterns 485 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 486 /// representing the different cases for the switch. 487 /// Note that if the chain is composed of '||' it will build the set of elements 488 /// that matches the comparisons (i.e. any of this value validate the chain) 489 /// while for a chain of '&&' it will build the set elements that make the test 490 /// fail. 491 struct ConstantComparesGatherer { 492 const DataLayout &DL; 493 494 /// Value found for the switch comparison 495 Value *CompValue = nullptr; 496 497 /// Extra clause to be checked before the switch 498 Value *Extra = nullptr; 499 500 /// Set of integers to match in switch 501 SmallVector<ConstantInt *, 8> Vals; 502 503 /// Number of comparisons matched in the and/or chain 504 unsigned UsedICmps = 0; 505 506 /// Construct and compute the result for the comparison instruction Cond 507 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 508 gather(Cond); 509 } 510 511 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 512 ConstantComparesGatherer & 513 operator=(const ConstantComparesGatherer &) = delete; 514 515 private: 516 /// Try to set the current value used for the comparison, it succeeds only if 517 /// it wasn't set before or if the new value is the same as the old one 518 bool setValueOnce(Value *NewVal) { 519 if (CompValue && CompValue != NewVal) 520 return false; 521 CompValue = NewVal; 522 return (CompValue != nullptr); 523 } 524 525 /// Try to match Instruction "I" as a comparison against a constant and 526 /// populates the array Vals with the set of values that match (or do not 527 /// match depending on isEQ). 528 /// Return false on failure. On success, the Value the comparison matched 529 /// against is placed in CompValue. 530 /// If CompValue is already set, the function is expected to fail if a match 531 /// is found but the value compared to is different. 532 bool matchInstruction(Instruction *I, bool isEQ) { 533 // If this is an icmp against a constant, handle this as one of the cases. 534 ICmpInst *ICI; 535 ConstantInt *C; 536 if (!((ICI = dyn_cast<ICmpInst>(I)) && 537 (C = GetConstantInt(I->getOperand(1), DL)))) { 538 return false; 539 } 540 541 Value *RHSVal; 542 const APInt *RHSC; 543 544 // Pattern match a special case 545 // (x & ~2^z) == y --> x == y || x == y|2^z 546 // This undoes a transformation done by instcombine to fuse 2 compares. 547 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 548 // It's a little bit hard to see why the following transformations are 549 // correct. Here is a CVC3 program to verify them for 64-bit values: 550 551 /* 552 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 553 x : BITVECTOR(64); 554 y : BITVECTOR(64); 555 z : BITVECTOR(64); 556 mask : BITVECTOR(64) = BVSHL(ONE, z); 557 QUERY( (y & ~mask = y) => 558 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 559 ); 560 QUERY( (y | mask = y) => 561 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 562 ); 563 */ 564 565 // Please note that each pattern must be a dual implication (<--> or 566 // iff). One directional implication can create spurious matches. If the 567 // implication is only one-way, an unsatisfiable condition on the left 568 // side can imply a satisfiable condition on the right side. Dual 569 // implication ensures that satisfiable conditions are transformed to 570 // other satisfiable conditions and unsatisfiable conditions are 571 // transformed to other unsatisfiable conditions. 572 573 // Here is a concrete example of a unsatisfiable condition on the left 574 // implying a satisfiable condition on the right: 575 // 576 // mask = (1 << z) 577 // (x & ~mask) == y --> (x == y || x == (y | mask)) 578 // 579 // Substituting y = 3, z = 0 yields: 580 // (x & -2) == 3 --> (x == 3 || x == 2) 581 582 // Pattern match a special case: 583 /* 584 QUERY( (y & ~mask = y) => 585 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 586 ); 587 */ 588 if (match(ICI->getOperand(0), 589 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 590 APInt Mask = ~*RHSC; 591 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 592 // If we already have a value for the switch, it has to match! 593 if (!setValueOnce(RHSVal)) 594 return false; 595 596 Vals.push_back(C); 597 Vals.push_back( 598 ConstantInt::get(C->getContext(), 599 C->getValue() | Mask)); 600 UsedICmps++; 601 return true; 602 } 603 } 604 605 // Pattern match a special case: 606 /* 607 QUERY( (y | mask = y) => 608 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 609 ); 610 */ 611 if (match(ICI->getOperand(0), 612 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 613 APInt Mask = *RHSC; 614 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 615 // If we already have a value for the switch, it has to match! 616 if (!setValueOnce(RHSVal)) 617 return false; 618 619 Vals.push_back(C); 620 Vals.push_back(ConstantInt::get(C->getContext(), 621 C->getValue() & ~Mask)); 622 UsedICmps++; 623 return true; 624 } 625 } 626 627 // If we already have a value for the switch, it has to match! 628 if (!setValueOnce(ICI->getOperand(0))) 629 return false; 630 631 UsedICmps++; 632 Vals.push_back(C); 633 return ICI->getOperand(0); 634 } 635 636 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 637 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 638 ICI->getPredicate(), C->getValue()); 639 640 // Shift the range if the compare is fed by an add. This is the range 641 // compare idiom as emitted by instcombine. 642 Value *CandidateVal = I->getOperand(0); 643 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 644 Span = Span.subtract(*RHSC); 645 CandidateVal = RHSVal; 646 } 647 648 // If this is an and/!= check, then we are looking to build the set of 649 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 650 // x != 0 && x != 1. 651 if (!isEQ) 652 Span = Span.inverse(); 653 654 // If there are a ton of values, we don't want to make a ginormous switch. 655 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 656 return false; 657 } 658 659 // If we already have a value for the switch, it has to match! 660 if (!setValueOnce(CandidateVal)) 661 return false; 662 663 // Add all values from the range to the set 664 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 665 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 666 667 UsedICmps++; 668 return true; 669 } 670 671 /// Given a potentially 'or'd or 'and'd together collection of icmp 672 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 673 /// the value being compared, and stick the list constants into the Vals 674 /// vector. 675 /// One "Extra" case is allowed to differ from the other. 676 void gather(Value *V) { 677 bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or); 678 679 // Keep a stack (SmallVector for efficiency) for depth-first traversal 680 SmallVector<Value *, 8> DFT; 681 SmallPtrSet<Value *, 8> Visited; 682 683 // Initialize 684 Visited.insert(V); 685 DFT.push_back(V); 686 687 while (!DFT.empty()) { 688 V = DFT.pop_back_val(); 689 690 if (Instruction *I = dyn_cast<Instruction>(V)) { 691 // If it is a || (or && depending on isEQ), process the operands. 692 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 693 if (Visited.insert(I->getOperand(1)).second) 694 DFT.push_back(I->getOperand(1)); 695 if (Visited.insert(I->getOperand(0)).second) 696 DFT.push_back(I->getOperand(0)); 697 continue; 698 } 699 700 // Try to match the current instruction 701 if (matchInstruction(I, isEQ)) 702 // Match succeed, continue the loop 703 continue; 704 } 705 706 // One element of the sequence of || (or &&) could not be match as a 707 // comparison against the same value as the others. 708 // We allow only one "Extra" case to be checked before the switch 709 if (!Extra) { 710 Extra = V; 711 continue; 712 } 713 // Failed to parse a proper sequence, abort now 714 CompValue = nullptr; 715 break; 716 } 717 } 718 }; 719 720 } // end anonymous namespace 721 722 static void EraseTerminatorAndDCECond(Instruction *TI, 723 MemorySSAUpdater *MSSAU = nullptr) { 724 Instruction *Cond = nullptr; 725 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 726 Cond = dyn_cast<Instruction>(SI->getCondition()); 727 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 728 if (BI->isConditional()) 729 Cond = dyn_cast<Instruction>(BI->getCondition()); 730 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 731 Cond = dyn_cast<Instruction>(IBI->getAddress()); 732 } 733 734 TI->eraseFromParent(); 735 if (Cond) 736 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 737 } 738 739 /// Return true if the specified terminator checks 740 /// to see if a value is equal to constant integer value. 741 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 742 Value *CV = nullptr; 743 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 744 // Do not permit merging of large switch instructions into their 745 // predecessors unless there is only one predecessor. 746 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 747 CV = SI->getCondition(); 748 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 749 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 750 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 751 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 752 CV = ICI->getOperand(0); 753 } 754 755 // Unwrap any lossless ptrtoint cast. 756 if (CV) { 757 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 758 Value *Ptr = PTII->getPointerOperand(); 759 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 760 CV = Ptr; 761 } 762 } 763 return CV; 764 } 765 766 /// Given a value comparison instruction, 767 /// decode all of the 'cases' that it represents and return the 'default' block. 768 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 769 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 770 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 771 Cases.reserve(SI->getNumCases()); 772 for (auto Case : SI->cases()) 773 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 774 Case.getCaseSuccessor())); 775 return SI->getDefaultDest(); 776 } 777 778 BranchInst *BI = cast<BranchInst>(TI); 779 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 780 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 781 Cases.push_back(ValueEqualityComparisonCase( 782 GetConstantInt(ICI->getOperand(1), DL), Succ)); 783 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 784 } 785 786 /// Given a vector of bb/value pairs, remove any entries 787 /// in the list that match the specified block. 788 static void 789 EliminateBlockCases(BasicBlock *BB, 790 std::vector<ValueEqualityComparisonCase> &Cases) { 791 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 792 } 793 794 /// Return true if there are any keys in C1 that exist in C2 as well. 795 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 796 std::vector<ValueEqualityComparisonCase> &C2) { 797 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 798 799 // Make V1 be smaller than V2. 800 if (V1->size() > V2->size()) 801 std::swap(V1, V2); 802 803 if (V1->empty()) 804 return false; 805 if (V1->size() == 1) { 806 // Just scan V2. 807 ConstantInt *TheVal = (*V1)[0].Value; 808 for (unsigned i = 0, e = V2->size(); i != e; ++i) 809 if (TheVal == (*V2)[i].Value) 810 return true; 811 } 812 813 // Otherwise, just sort both lists and compare element by element. 814 array_pod_sort(V1->begin(), V1->end()); 815 array_pod_sort(V2->begin(), V2->end()); 816 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 817 while (i1 != e1 && i2 != e2) { 818 if ((*V1)[i1].Value == (*V2)[i2].Value) 819 return true; 820 if ((*V1)[i1].Value < (*V2)[i2].Value) 821 ++i1; 822 else 823 ++i2; 824 } 825 return false; 826 } 827 828 // Set branch weights on SwitchInst. This sets the metadata if there is at 829 // least one non-zero weight. 830 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 831 // Check that there is at least one non-zero weight. Otherwise, pass 832 // nullptr to setMetadata which will erase the existing metadata. 833 MDNode *N = nullptr; 834 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 835 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 836 SI->setMetadata(LLVMContext::MD_prof, N); 837 } 838 839 // Similar to the above, but for branch and select instructions that take 840 // exactly 2 weights. 841 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 842 uint32_t FalseWeight) { 843 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 844 // Check that there is at least one non-zero weight. Otherwise, pass 845 // nullptr to setMetadata which will erase the existing metadata. 846 MDNode *N = nullptr; 847 if (TrueWeight || FalseWeight) 848 N = MDBuilder(I->getParent()->getContext()) 849 .createBranchWeights(TrueWeight, FalseWeight); 850 I->setMetadata(LLVMContext::MD_prof, N); 851 } 852 853 /// If TI is known to be a terminator instruction and its block is known to 854 /// only have a single predecessor block, check to see if that predecessor is 855 /// also a value comparison with the same value, and if that comparison 856 /// determines the outcome of this comparison. If so, simplify TI. This does a 857 /// very limited form of jump threading. 858 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 859 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 860 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 861 if (!PredVal) 862 return false; // Not a value comparison in predecessor. 863 864 Value *ThisVal = isValueEqualityComparison(TI); 865 assert(ThisVal && "This isn't a value comparison!!"); 866 if (ThisVal != PredVal) 867 return false; // Different predicates. 868 869 // TODO: Preserve branch weight metadata, similarly to how 870 // FoldValueComparisonIntoPredecessors preserves it. 871 872 // Find out information about when control will move from Pred to TI's block. 873 std::vector<ValueEqualityComparisonCase> PredCases; 874 BasicBlock *PredDef = 875 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 876 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 877 878 // Find information about how control leaves this block. 879 std::vector<ValueEqualityComparisonCase> ThisCases; 880 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 881 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 882 883 // If TI's block is the default block from Pred's comparison, potentially 884 // simplify TI based on this knowledge. 885 if (PredDef == TI->getParent()) { 886 // If we are here, we know that the value is none of those cases listed in 887 // PredCases. If there are any cases in ThisCases that are in PredCases, we 888 // can simplify TI. 889 if (!ValuesOverlap(PredCases, ThisCases)) 890 return false; 891 892 if (isa<BranchInst>(TI)) { 893 // Okay, one of the successors of this condbr is dead. Convert it to a 894 // uncond br. 895 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 896 // Insert the new branch. 897 Instruction *NI = Builder.CreateBr(ThisDef); 898 (void)NI; 899 900 // Remove PHI node entries for the dead edge. 901 ThisCases[0].Dest->removePredecessor(TI->getParent()); 902 903 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 904 << "Through successor TI: " << *TI << "Leaving: " << *NI 905 << "\n"); 906 907 EraseTerminatorAndDCECond(TI); 908 return true; 909 } 910 911 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 912 // Okay, TI has cases that are statically dead, prune them away. 913 SmallPtrSet<Constant *, 16> DeadCases; 914 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 915 DeadCases.insert(PredCases[i].Value); 916 917 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 918 << "Through successor TI: " << *TI); 919 920 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 921 --i; 922 if (DeadCases.count(i->getCaseValue())) { 923 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 924 SI.removeCase(i); 925 } 926 } 927 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 928 return true; 929 } 930 931 // Otherwise, TI's block must correspond to some matched value. Find out 932 // which value (or set of values) this is. 933 ConstantInt *TIV = nullptr; 934 BasicBlock *TIBB = TI->getParent(); 935 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 936 if (PredCases[i].Dest == TIBB) { 937 if (TIV) 938 return false; // Cannot handle multiple values coming to this block. 939 TIV = PredCases[i].Value; 940 } 941 assert(TIV && "No edge from pred to succ?"); 942 943 // Okay, we found the one constant that our value can be if we get into TI's 944 // BB. Find out which successor will unconditionally be branched to. 945 BasicBlock *TheRealDest = nullptr; 946 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 947 if (ThisCases[i].Value == TIV) { 948 TheRealDest = ThisCases[i].Dest; 949 break; 950 } 951 952 // If not handled by any explicit cases, it is handled by the default case. 953 if (!TheRealDest) 954 TheRealDest = ThisDef; 955 956 // Remove PHI node entries for dead edges. 957 BasicBlock *CheckEdge = TheRealDest; 958 for (BasicBlock *Succ : successors(TIBB)) 959 if (Succ != CheckEdge) 960 Succ->removePredecessor(TIBB); 961 else 962 CheckEdge = nullptr; 963 964 // Insert the new branch. 965 Instruction *NI = Builder.CreateBr(TheRealDest); 966 (void)NI; 967 968 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 969 << "Through successor TI: " << *TI << "Leaving: " << *NI 970 << "\n"); 971 972 EraseTerminatorAndDCECond(TI); 973 return true; 974 } 975 976 namespace { 977 978 /// This class implements a stable ordering of constant 979 /// integers that does not depend on their address. This is important for 980 /// applications that sort ConstantInt's to ensure uniqueness. 981 struct ConstantIntOrdering { 982 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 983 return LHS->getValue().ult(RHS->getValue()); 984 } 985 }; 986 987 } // end anonymous namespace 988 989 static int ConstantIntSortPredicate(ConstantInt *const *P1, 990 ConstantInt *const *P2) { 991 const ConstantInt *LHS = *P1; 992 const ConstantInt *RHS = *P2; 993 if (LHS == RHS) 994 return 0; 995 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 996 } 997 998 static inline bool HasBranchWeights(const Instruction *I) { 999 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1000 if (ProfMD && ProfMD->getOperand(0)) 1001 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1002 return MDS->getString().equals("branch_weights"); 1003 1004 return false; 1005 } 1006 1007 /// Get Weights of a given terminator, the default weight is at the front 1008 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1009 /// metadata. 1010 static void GetBranchWeights(Instruction *TI, 1011 SmallVectorImpl<uint64_t> &Weights) { 1012 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1013 assert(MD); 1014 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1015 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1016 Weights.push_back(CI->getValue().getZExtValue()); 1017 } 1018 1019 // If TI is a conditional eq, the default case is the false case, 1020 // and the corresponding branch-weight data is at index 2. We swap the 1021 // default weight to be the first entry. 1022 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1023 assert(Weights.size() == 2); 1024 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1025 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1026 std::swap(Weights.front(), Weights.back()); 1027 } 1028 } 1029 1030 /// Keep halving the weights until all can fit in uint32_t. 1031 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1032 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1033 if (Max > UINT_MAX) { 1034 unsigned Offset = 32 - countLeadingZeros(Max); 1035 for (uint64_t &I : Weights) 1036 I >>= Offset; 1037 } 1038 } 1039 1040 /// The specified terminator is a value equality comparison instruction 1041 /// (either a switch or a branch on "X == c"). 1042 /// See if any of the predecessors of the terminator block are value comparisons 1043 /// on the same value. If so, and if safe to do so, fold them together. 1044 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1045 IRBuilder<> &Builder) { 1046 BasicBlock *BB = TI->getParent(); 1047 Value *CV = isValueEqualityComparison(TI); // CondVal 1048 assert(CV && "Not a comparison?"); 1049 bool Changed = false; 1050 1051 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1052 while (!Preds.empty()) { 1053 BasicBlock *Pred = Preds.pop_back_val(); 1054 1055 // See if the predecessor is a comparison with the same value. 1056 Instruction *PTI = Pred->getTerminator(); 1057 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1058 1059 if (PCV == CV && TI != PTI) { 1060 SmallSetVector<BasicBlock*, 4> FailBlocks; 1061 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1062 for (auto *Succ : FailBlocks) { 1063 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1064 return false; 1065 } 1066 } 1067 1068 // Figure out which 'cases' to copy from SI to PSI. 1069 std::vector<ValueEqualityComparisonCase> BBCases; 1070 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1071 1072 std::vector<ValueEqualityComparisonCase> PredCases; 1073 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1074 1075 // Based on whether the default edge from PTI goes to BB or not, fill in 1076 // PredCases and PredDefault with the new switch cases we would like to 1077 // build. 1078 SmallVector<BasicBlock *, 8> NewSuccessors; 1079 1080 // Update the branch weight metadata along the way 1081 SmallVector<uint64_t, 8> Weights; 1082 bool PredHasWeights = HasBranchWeights(PTI); 1083 bool SuccHasWeights = HasBranchWeights(TI); 1084 1085 if (PredHasWeights) { 1086 GetBranchWeights(PTI, Weights); 1087 // branch-weight metadata is inconsistent here. 1088 if (Weights.size() != 1 + PredCases.size()) 1089 PredHasWeights = SuccHasWeights = false; 1090 } else if (SuccHasWeights) 1091 // If there are no predecessor weights but there are successor weights, 1092 // populate Weights with 1, which will later be scaled to the sum of 1093 // successor's weights 1094 Weights.assign(1 + PredCases.size(), 1); 1095 1096 SmallVector<uint64_t, 8> SuccWeights; 1097 if (SuccHasWeights) { 1098 GetBranchWeights(TI, SuccWeights); 1099 // branch-weight metadata is inconsistent here. 1100 if (SuccWeights.size() != 1 + BBCases.size()) 1101 PredHasWeights = SuccHasWeights = false; 1102 } else if (PredHasWeights) 1103 SuccWeights.assign(1 + BBCases.size(), 1); 1104 1105 if (PredDefault == BB) { 1106 // If this is the default destination from PTI, only the edges in TI 1107 // that don't occur in PTI, or that branch to BB will be activated. 1108 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1109 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1110 if (PredCases[i].Dest != BB) 1111 PTIHandled.insert(PredCases[i].Value); 1112 else { 1113 // The default destination is BB, we don't need explicit targets. 1114 std::swap(PredCases[i], PredCases.back()); 1115 1116 if (PredHasWeights || SuccHasWeights) { 1117 // Increase weight for the default case. 1118 Weights[0] += Weights[i + 1]; 1119 std::swap(Weights[i + 1], Weights.back()); 1120 Weights.pop_back(); 1121 } 1122 1123 PredCases.pop_back(); 1124 --i; 1125 --e; 1126 } 1127 1128 // Reconstruct the new switch statement we will be building. 1129 if (PredDefault != BBDefault) { 1130 PredDefault->removePredecessor(Pred); 1131 PredDefault = BBDefault; 1132 NewSuccessors.push_back(BBDefault); 1133 } 1134 1135 unsigned CasesFromPred = Weights.size(); 1136 uint64_t ValidTotalSuccWeight = 0; 1137 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1138 if (!PTIHandled.count(BBCases[i].Value) && 1139 BBCases[i].Dest != BBDefault) { 1140 PredCases.push_back(BBCases[i]); 1141 NewSuccessors.push_back(BBCases[i].Dest); 1142 if (SuccHasWeights || PredHasWeights) { 1143 // The default weight is at index 0, so weight for the ith case 1144 // should be at index i+1. Scale the cases from successor by 1145 // PredDefaultWeight (Weights[0]). 1146 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1147 ValidTotalSuccWeight += SuccWeights[i + 1]; 1148 } 1149 } 1150 1151 if (SuccHasWeights || PredHasWeights) { 1152 ValidTotalSuccWeight += SuccWeights[0]; 1153 // Scale the cases from predecessor by ValidTotalSuccWeight. 1154 for (unsigned i = 1; i < CasesFromPred; ++i) 1155 Weights[i] *= ValidTotalSuccWeight; 1156 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1157 Weights[0] *= SuccWeights[0]; 1158 } 1159 } else { 1160 // If this is not the default destination from PSI, only the edges 1161 // in SI that occur in PSI with a destination of BB will be 1162 // activated. 1163 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1164 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1165 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1166 if (PredCases[i].Dest == BB) { 1167 PTIHandled.insert(PredCases[i].Value); 1168 1169 if (PredHasWeights || SuccHasWeights) { 1170 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1171 std::swap(Weights[i + 1], Weights.back()); 1172 Weights.pop_back(); 1173 } 1174 1175 std::swap(PredCases[i], PredCases.back()); 1176 PredCases.pop_back(); 1177 --i; 1178 --e; 1179 } 1180 1181 // Okay, now we know which constants were sent to BB from the 1182 // predecessor. Figure out where they will all go now. 1183 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1184 if (PTIHandled.count(BBCases[i].Value)) { 1185 // If this is one we are capable of getting... 1186 if (PredHasWeights || SuccHasWeights) 1187 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1188 PredCases.push_back(BBCases[i]); 1189 NewSuccessors.push_back(BBCases[i].Dest); 1190 PTIHandled.erase( 1191 BBCases[i].Value); // This constant is taken care of 1192 } 1193 1194 // If there are any constants vectored to BB that TI doesn't handle, 1195 // they must go to the default destination of TI. 1196 for (ConstantInt *I : PTIHandled) { 1197 if (PredHasWeights || SuccHasWeights) 1198 Weights.push_back(WeightsForHandled[I]); 1199 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1200 NewSuccessors.push_back(BBDefault); 1201 } 1202 } 1203 1204 // Okay, at this point, we know which new successor Pred will get. Make 1205 // sure we update the number of entries in the PHI nodes for these 1206 // successors. 1207 for (BasicBlock *NewSuccessor : NewSuccessors) 1208 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1209 1210 Builder.SetInsertPoint(PTI); 1211 // Convert pointer to int before we switch. 1212 if (CV->getType()->isPointerTy()) { 1213 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1214 "magicptr"); 1215 } 1216 1217 // Now that the successors are updated, create the new Switch instruction. 1218 SwitchInst *NewSI = 1219 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1220 NewSI->setDebugLoc(PTI->getDebugLoc()); 1221 for (ValueEqualityComparisonCase &V : PredCases) 1222 NewSI->addCase(V.Value, V.Dest); 1223 1224 if (PredHasWeights || SuccHasWeights) { 1225 // Halve the weights if any of them cannot fit in an uint32_t 1226 FitWeights(Weights); 1227 1228 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1229 1230 setBranchWeights(NewSI, MDWeights); 1231 } 1232 1233 EraseTerminatorAndDCECond(PTI); 1234 1235 // Okay, last check. If BB is still a successor of PSI, then we must 1236 // have an infinite loop case. If so, add an infinitely looping block 1237 // to handle the case to preserve the behavior of the code. 1238 BasicBlock *InfLoopBlock = nullptr; 1239 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1240 if (NewSI->getSuccessor(i) == BB) { 1241 if (!InfLoopBlock) { 1242 // Insert it at the end of the function, because it's either code, 1243 // or it won't matter if it's hot. :) 1244 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1245 BB->getParent()); 1246 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1247 } 1248 NewSI->setSuccessor(i, InfLoopBlock); 1249 } 1250 1251 Changed = true; 1252 } 1253 } 1254 return Changed; 1255 } 1256 1257 // If we would need to insert a select that uses the value of this invoke 1258 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1259 // can't hoist the invoke, as there is nowhere to put the select in this case. 1260 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1261 Instruction *I1, Instruction *I2) { 1262 for (BasicBlock *Succ : successors(BB1)) { 1263 for (const PHINode &PN : Succ->phis()) { 1264 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1265 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1266 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1267 return false; 1268 } 1269 } 1270 } 1271 return true; 1272 } 1273 1274 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1275 1276 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1277 /// in the two blocks up into the branch block. The caller of this function 1278 /// guarantees that BI's block dominates BB1 and BB2. 1279 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1280 const TargetTransformInfo &TTI) { 1281 // This does very trivial matching, with limited scanning, to find identical 1282 // instructions in the two blocks. In particular, we don't want to get into 1283 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1284 // such, we currently just scan for obviously identical instructions in an 1285 // identical order. 1286 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1287 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1288 1289 BasicBlock::iterator BB1_Itr = BB1->begin(); 1290 BasicBlock::iterator BB2_Itr = BB2->begin(); 1291 1292 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1293 // Skip debug info if it is not identical. 1294 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1295 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1296 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1297 while (isa<DbgInfoIntrinsic>(I1)) 1298 I1 = &*BB1_Itr++; 1299 while (isa<DbgInfoIntrinsic>(I2)) 1300 I2 = &*BB2_Itr++; 1301 } 1302 // FIXME: Can we define a safety predicate for CallBr? 1303 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1304 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1305 isa<CallBrInst>(I1)) 1306 return false; 1307 1308 BasicBlock *BIParent = BI->getParent(); 1309 1310 bool Changed = false; 1311 1312 auto _ = make_scope_exit([&]() { 1313 if (Changed) 1314 ++NumHoistCommonCode; 1315 }); 1316 1317 do { 1318 // If we are hoisting the terminator instruction, don't move one (making a 1319 // broken BB), instead clone it, and remove BI. 1320 if (I1->isTerminator()) 1321 goto HoistTerminator; 1322 1323 // If we're going to hoist a call, make sure that the two instructions we're 1324 // commoning/hoisting are both marked with musttail, or neither of them is 1325 // marked as such. Otherwise, we might end up in a situation where we hoist 1326 // from a block where the terminator is a `ret` to a block where the terminator 1327 // is a `br`, and `musttail` calls expect to be followed by a return. 1328 auto *C1 = dyn_cast<CallInst>(I1); 1329 auto *C2 = dyn_cast<CallInst>(I2); 1330 if (C1 && C2) 1331 if (C1->isMustTailCall() != C2->isMustTailCall()) 1332 return Changed; 1333 1334 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1335 return Changed; 1336 1337 // If any of the two call sites has nomerge attribute, stop hoisting. 1338 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1339 if (CB1->cannotMerge()) 1340 return Changed; 1341 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1342 if (CB2->cannotMerge()) 1343 return Changed; 1344 1345 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1346 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1347 // The debug location is an integral part of a debug info intrinsic 1348 // and can't be separated from it or replaced. Instead of attempting 1349 // to merge locations, simply hoist both copies of the intrinsic. 1350 BIParent->getInstList().splice(BI->getIterator(), 1351 BB1->getInstList(), I1); 1352 BIParent->getInstList().splice(BI->getIterator(), 1353 BB2->getInstList(), I2); 1354 Changed = true; 1355 } else { 1356 // For a normal instruction, we just move one to right before the branch, 1357 // then replace all uses of the other with the first. Finally, we remove 1358 // the now redundant second instruction. 1359 BIParent->getInstList().splice(BI->getIterator(), 1360 BB1->getInstList(), I1); 1361 if (!I2->use_empty()) 1362 I2->replaceAllUsesWith(I1); 1363 I1->andIRFlags(I2); 1364 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1365 LLVMContext::MD_range, 1366 LLVMContext::MD_fpmath, 1367 LLVMContext::MD_invariant_load, 1368 LLVMContext::MD_nonnull, 1369 LLVMContext::MD_invariant_group, 1370 LLVMContext::MD_align, 1371 LLVMContext::MD_dereferenceable, 1372 LLVMContext::MD_dereferenceable_or_null, 1373 LLVMContext::MD_mem_parallel_loop_access, 1374 LLVMContext::MD_access_group, 1375 LLVMContext::MD_preserve_access_index}; 1376 combineMetadata(I1, I2, KnownIDs, true); 1377 1378 // I1 and I2 are being combined into a single instruction. Its debug 1379 // location is the merged locations of the original instructions. 1380 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1381 1382 I2->eraseFromParent(); 1383 Changed = true; 1384 } 1385 ++NumHoistCommonInstrs; 1386 1387 I1 = &*BB1_Itr++; 1388 I2 = &*BB2_Itr++; 1389 // Skip debug info if it is not identical. 1390 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1391 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1392 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1393 while (isa<DbgInfoIntrinsic>(I1)) 1394 I1 = &*BB1_Itr++; 1395 while (isa<DbgInfoIntrinsic>(I2)) 1396 I2 = &*BB2_Itr++; 1397 } 1398 } while (I1->isIdenticalToWhenDefined(I2)); 1399 1400 return true; 1401 1402 HoistTerminator: 1403 // It may not be possible to hoist an invoke. 1404 // FIXME: Can we define a safety predicate for CallBr? 1405 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1406 return Changed; 1407 1408 // TODO: callbr hoisting currently disabled pending further study. 1409 if (isa<CallBrInst>(I1)) 1410 return Changed; 1411 1412 for (BasicBlock *Succ : successors(BB1)) { 1413 for (PHINode &PN : Succ->phis()) { 1414 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1415 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1416 if (BB1V == BB2V) 1417 continue; 1418 1419 // Check for passingValueIsAlwaysUndefined here because we would rather 1420 // eliminate undefined control flow then converting it to a select. 1421 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1422 passingValueIsAlwaysUndefined(BB2V, &PN)) 1423 return Changed; 1424 1425 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1426 return Changed; 1427 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1428 return Changed; 1429 } 1430 } 1431 1432 // Okay, it is safe to hoist the terminator. 1433 Instruction *NT = I1->clone(); 1434 BIParent->getInstList().insert(BI->getIterator(), NT); 1435 if (!NT->getType()->isVoidTy()) { 1436 I1->replaceAllUsesWith(NT); 1437 I2->replaceAllUsesWith(NT); 1438 NT->takeName(I1); 1439 } 1440 Changed = true; 1441 ++NumHoistCommonInstrs; 1442 1443 // Ensure terminator gets a debug location, even an unknown one, in case 1444 // it involves inlinable calls. 1445 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1446 1447 // PHIs created below will adopt NT's merged DebugLoc. 1448 IRBuilder<NoFolder> Builder(NT); 1449 1450 // Hoisting one of the terminators from our successor is a great thing. 1451 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1452 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1453 // nodes, so we insert select instruction to compute the final result. 1454 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1455 for (BasicBlock *Succ : successors(BB1)) { 1456 for (PHINode &PN : Succ->phis()) { 1457 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1458 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1459 if (BB1V == BB2V) 1460 continue; 1461 1462 // These values do not agree. Insert a select instruction before NT 1463 // that determines the right value. 1464 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1465 if (!SI) { 1466 // Propagate fast-math-flags from phi node to its replacement select. 1467 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1468 if (isa<FPMathOperator>(PN)) 1469 Builder.setFastMathFlags(PN.getFastMathFlags()); 1470 1471 SI = cast<SelectInst>( 1472 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1473 BB1V->getName() + "." + BB2V->getName(), BI)); 1474 } 1475 1476 // Make the PHI node use the select for all incoming values for BB1/BB2 1477 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1478 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1479 PN.setIncomingValue(i, SI); 1480 } 1481 } 1482 1483 // Update any PHI nodes in our new successors. 1484 for (BasicBlock *Succ : successors(BB1)) 1485 AddPredecessorToBlock(Succ, BIParent, BB1); 1486 1487 EraseTerminatorAndDCECond(BI); 1488 return Changed; 1489 } 1490 1491 // Check lifetime markers. 1492 static bool isLifeTimeMarker(const Instruction *I) { 1493 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1494 switch (II->getIntrinsicID()) { 1495 default: 1496 break; 1497 case Intrinsic::lifetime_start: 1498 case Intrinsic::lifetime_end: 1499 return true; 1500 } 1501 } 1502 return false; 1503 } 1504 1505 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1506 // into variables. 1507 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1508 int OpIdx) { 1509 return !isa<IntrinsicInst>(I); 1510 } 1511 1512 // All instructions in Insts belong to different blocks that all unconditionally 1513 // branch to a common successor. Analyze each instruction and return true if it 1514 // would be possible to sink them into their successor, creating one common 1515 // instruction instead. For every value that would be required to be provided by 1516 // PHI node (because an operand varies in each input block), add to PHIOperands. 1517 static bool canSinkInstructions( 1518 ArrayRef<Instruction *> Insts, 1519 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1520 // Prune out obviously bad instructions to move. Each instruction must have 1521 // exactly zero or one use, and we check later that use is by a single, common 1522 // PHI instruction in the successor. 1523 bool HasUse = !Insts.front()->user_empty(); 1524 for (auto *I : Insts) { 1525 // These instructions may change or break semantics if moved. 1526 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1527 I->getType()->isTokenTy()) 1528 return false; 1529 1530 // Conservatively return false if I is an inline-asm instruction. Sinking 1531 // and merging inline-asm instructions can potentially create arguments 1532 // that cannot satisfy the inline-asm constraints. 1533 // If the instruction has nomerge attribute, return false. 1534 if (const auto *C = dyn_cast<CallBase>(I)) 1535 if (C->isInlineAsm() || C->cannotMerge()) 1536 return false; 1537 1538 // Each instruction must have zero or one use. 1539 if (HasUse && !I->hasOneUse()) 1540 return false; 1541 if (!HasUse && !I->user_empty()) 1542 return false; 1543 } 1544 1545 const Instruction *I0 = Insts.front(); 1546 for (auto *I : Insts) 1547 if (!I->isSameOperationAs(I0)) 1548 return false; 1549 1550 // All instructions in Insts are known to be the same opcode. If they have a 1551 // use, check that the only user is a PHI or in the same block as the 1552 // instruction, because if a user is in the same block as an instruction we're 1553 // contemplating sinking, it must already be determined to be sinkable. 1554 if (HasUse) { 1555 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1556 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1557 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1558 auto *U = cast<Instruction>(*I->user_begin()); 1559 return (PNUse && 1560 PNUse->getParent() == Succ && 1561 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1562 U->getParent() == I->getParent(); 1563 })) 1564 return false; 1565 } 1566 1567 // Because SROA can't handle speculating stores of selects, try not to sink 1568 // loads, stores or lifetime markers of allocas when we'd have to create a 1569 // PHI for the address operand. Also, because it is likely that loads or 1570 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1571 // them. 1572 // This can cause code churn which can have unintended consequences down 1573 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1574 // FIXME: This is a workaround for a deficiency in SROA - see 1575 // https://llvm.org/bugs/show_bug.cgi?id=30188 1576 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1577 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1578 })) 1579 return false; 1580 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1581 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1582 })) 1583 return false; 1584 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1585 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1586 })) 1587 return false; 1588 1589 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1590 Value *Op = I0->getOperand(OI); 1591 if (Op->getType()->isTokenTy()) 1592 // Don't touch any operand of token type. 1593 return false; 1594 1595 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1596 assert(I->getNumOperands() == I0->getNumOperands()); 1597 return I->getOperand(OI) == I0->getOperand(OI); 1598 }; 1599 if (!all_of(Insts, SameAsI0)) { 1600 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1601 !canReplaceOperandWithVariable(I0, OI)) 1602 // We can't create a PHI from this GEP. 1603 return false; 1604 // Don't create indirect calls! The called value is the final operand. 1605 if (isa<CallBase>(I0) && OI == OE - 1) { 1606 // FIXME: if the call was *already* indirect, we should do this. 1607 return false; 1608 } 1609 for (auto *I : Insts) 1610 PHIOperands[I].push_back(I->getOperand(OI)); 1611 } 1612 } 1613 return true; 1614 } 1615 1616 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1617 // instruction of every block in Blocks to their common successor, commoning 1618 // into one instruction. 1619 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1620 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1621 1622 // canSinkLastInstruction returning true guarantees that every block has at 1623 // least one non-terminator instruction. 1624 SmallVector<Instruction*,4> Insts; 1625 for (auto *BB : Blocks) { 1626 Instruction *I = BB->getTerminator(); 1627 do { 1628 I = I->getPrevNode(); 1629 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1630 if (!isa<DbgInfoIntrinsic>(I)) 1631 Insts.push_back(I); 1632 } 1633 1634 // The only checking we need to do now is that all users of all instructions 1635 // are the same PHI node. canSinkLastInstruction should have checked this but 1636 // it is slightly over-aggressive - it gets confused by commutative instructions 1637 // so double-check it here. 1638 Instruction *I0 = Insts.front(); 1639 if (!I0->user_empty()) { 1640 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1641 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1642 auto *U = cast<Instruction>(*I->user_begin()); 1643 return U == PNUse; 1644 })) 1645 return false; 1646 } 1647 1648 // We don't need to do any more checking here; canSinkLastInstruction should 1649 // have done it all for us. 1650 SmallVector<Value*, 4> NewOperands; 1651 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1652 // This check is different to that in canSinkLastInstruction. There, we 1653 // cared about the global view once simplifycfg (and instcombine) have 1654 // completed - it takes into account PHIs that become trivially 1655 // simplifiable. However here we need a more local view; if an operand 1656 // differs we create a PHI and rely on instcombine to clean up the very 1657 // small mess we may make. 1658 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1659 return I->getOperand(O) != I0->getOperand(O); 1660 }); 1661 if (!NeedPHI) { 1662 NewOperands.push_back(I0->getOperand(O)); 1663 continue; 1664 } 1665 1666 // Create a new PHI in the successor block and populate it. 1667 auto *Op = I0->getOperand(O); 1668 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1669 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1670 Op->getName() + ".sink", &BBEnd->front()); 1671 for (auto *I : Insts) 1672 PN->addIncoming(I->getOperand(O), I->getParent()); 1673 NewOperands.push_back(PN); 1674 } 1675 1676 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1677 // and move it to the start of the successor block. 1678 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1679 I0->getOperandUse(O).set(NewOperands[O]); 1680 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1681 1682 // Update metadata and IR flags, and merge debug locations. 1683 for (auto *I : Insts) 1684 if (I != I0) { 1685 // The debug location for the "common" instruction is the merged locations 1686 // of all the commoned instructions. We start with the original location 1687 // of the "common" instruction and iteratively merge each location in the 1688 // loop below. 1689 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1690 // However, as N-way merge for CallInst is rare, so we use simplified API 1691 // instead of using complex API for N-way merge. 1692 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1693 combineMetadataForCSE(I0, I, true); 1694 I0->andIRFlags(I); 1695 } 1696 1697 if (!I0->user_empty()) { 1698 // canSinkLastInstruction checked that all instructions were used by 1699 // one and only one PHI node. Find that now, RAUW it to our common 1700 // instruction and nuke it. 1701 auto *PN = cast<PHINode>(*I0->user_begin()); 1702 PN->replaceAllUsesWith(I0); 1703 PN->eraseFromParent(); 1704 } 1705 1706 // Finally nuke all instructions apart from the common instruction. 1707 for (auto *I : Insts) 1708 if (I != I0) 1709 I->eraseFromParent(); 1710 1711 return true; 1712 } 1713 1714 namespace { 1715 1716 // LockstepReverseIterator - Iterates through instructions 1717 // in a set of blocks in reverse order from the first non-terminator. 1718 // For example (assume all blocks have size n): 1719 // LockstepReverseIterator I([B1, B2, B3]); 1720 // *I-- = [B1[n], B2[n], B3[n]]; 1721 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1722 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1723 // ... 1724 class LockstepReverseIterator { 1725 ArrayRef<BasicBlock*> Blocks; 1726 SmallVector<Instruction*,4> Insts; 1727 bool Fail; 1728 1729 public: 1730 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1731 reset(); 1732 } 1733 1734 void reset() { 1735 Fail = false; 1736 Insts.clear(); 1737 for (auto *BB : Blocks) { 1738 Instruction *Inst = BB->getTerminator(); 1739 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1740 Inst = Inst->getPrevNode(); 1741 if (!Inst) { 1742 // Block wasn't big enough. 1743 Fail = true; 1744 return; 1745 } 1746 Insts.push_back(Inst); 1747 } 1748 } 1749 1750 bool isValid() const { 1751 return !Fail; 1752 } 1753 1754 void operator--() { 1755 if (Fail) 1756 return; 1757 for (auto *&Inst : Insts) { 1758 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1759 Inst = Inst->getPrevNode(); 1760 // Already at beginning of block. 1761 if (!Inst) { 1762 Fail = true; 1763 return; 1764 } 1765 } 1766 } 1767 1768 ArrayRef<Instruction*> operator * () const { 1769 return Insts; 1770 } 1771 }; 1772 1773 } // end anonymous namespace 1774 1775 /// Check whether BB's predecessors end with unconditional branches. If it is 1776 /// true, sink any common code from the predecessors to BB. 1777 /// We also allow one predecessor to end with conditional branch (but no more 1778 /// than one). 1779 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1780 // We support two situations: 1781 // (1) all incoming arcs are unconditional 1782 // (2) one incoming arc is conditional 1783 // 1784 // (2) is very common in switch defaults and 1785 // else-if patterns; 1786 // 1787 // if (a) f(1); 1788 // else if (b) f(2); 1789 // 1790 // produces: 1791 // 1792 // [if] 1793 // / \ 1794 // [f(1)] [if] 1795 // | | \ 1796 // | | | 1797 // | [f(2)]| 1798 // \ | / 1799 // [ end ] 1800 // 1801 // [end] has two unconditional predecessor arcs and one conditional. The 1802 // conditional refers to the implicit empty 'else' arc. This conditional 1803 // arc can also be caused by an empty default block in a switch. 1804 // 1805 // In this case, we attempt to sink code from all *unconditional* arcs. 1806 // If we can sink instructions from these arcs (determined during the scan 1807 // phase below) we insert a common successor for all unconditional arcs and 1808 // connect that to [end], to enable sinking: 1809 // 1810 // [if] 1811 // / \ 1812 // [x(1)] [if] 1813 // | | \ 1814 // | | \ 1815 // | [x(2)] | 1816 // \ / | 1817 // [sink.split] | 1818 // \ / 1819 // [ end ] 1820 // 1821 SmallVector<BasicBlock*,4> UnconditionalPreds; 1822 Instruction *Cond = nullptr; 1823 for (auto *B : predecessors(BB)) { 1824 auto *T = B->getTerminator(); 1825 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1826 UnconditionalPreds.push_back(B); 1827 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1828 Cond = T; 1829 else 1830 return false; 1831 } 1832 if (UnconditionalPreds.size() < 2) 1833 return false; 1834 1835 // We take a two-step approach to tail sinking. First we scan from the end of 1836 // each block upwards in lockstep. If the n'th instruction from the end of each 1837 // block can be sunk, those instructions are added to ValuesToSink and we 1838 // carry on. If we can sink an instruction but need to PHI-merge some operands 1839 // (because they're not identical in each instruction) we add these to 1840 // PHIOperands. 1841 unsigned ScanIdx = 0; 1842 SmallPtrSet<Value*,4> InstructionsToSink; 1843 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1844 LockstepReverseIterator LRI(UnconditionalPreds); 1845 while (LRI.isValid() && 1846 canSinkInstructions(*LRI, PHIOperands)) { 1847 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1848 << "\n"); 1849 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1850 ++ScanIdx; 1851 --LRI; 1852 } 1853 1854 // If no instructions can be sunk, early-return. 1855 if (ScanIdx == 0) 1856 return false; 1857 1858 bool Changed = false; 1859 1860 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1861 unsigned NumPHIdValues = 0; 1862 for (auto *I : *LRI) 1863 for (auto *V : PHIOperands[I]) 1864 if (InstructionsToSink.count(V) == 0) 1865 ++NumPHIdValues; 1866 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1867 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1868 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1869 NumPHIInsts++; 1870 1871 return NumPHIInsts <= 1; 1872 }; 1873 1874 if (Cond) { 1875 // Check if we would actually sink anything first! This mutates the CFG and 1876 // adds an extra block. The goal in doing this is to allow instructions that 1877 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1878 // (such as trunc, add) can be sunk and predicated already. So we check that 1879 // we're going to sink at least one non-speculatable instruction. 1880 LRI.reset(); 1881 unsigned Idx = 0; 1882 bool Profitable = false; 1883 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1884 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1885 Profitable = true; 1886 break; 1887 } 1888 --LRI; 1889 ++Idx; 1890 } 1891 if (!Profitable) 1892 return false; 1893 1894 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1895 // We have a conditional edge and we're going to sink some instructions. 1896 // Insert a new block postdominating all blocks we're going to sink from. 1897 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1898 // Edges couldn't be split. 1899 return false; 1900 Changed = true; 1901 } 1902 1903 // Now that we've analyzed all potential sinking candidates, perform the 1904 // actual sink. We iteratively sink the last non-terminator of the source 1905 // blocks into their common successor unless doing so would require too 1906 // many PHI instructions to be generated (currently only one PHI is allowed 1907 // per sunk instruction). 1908 // 1909 // We can use InstructionsToSink to discount values needing PHI-merging that will 1910 // actually be sunk in a later iteration. This allows us to be more 1911 // aggressive in what we sink. This does allow a false positive where we 1912 // sink presuming a later value will also be sunk, but stop half way through 1913 // and never actually sink it which means we produce more PHIs than intended. 1914 // This is unlikely in practice though. 1915 unsigned SinkIdx = 0; 1916 for (; SinkIdx != ScanIdx; ++SinkIdx) { 1917 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1918 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1919 << "\n"); 1920 1921 // Because we've sunk every instruction in turn, the current instruction to 1922 // sink is always at index 0. 1923 LRI.reset(); 1924 if (!ProfitableToSinkInstruction(LRI)) { 1925 // Too many PHIs would be created. 1926 LLVM_DEBUG( 1927 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1928 break; 1929 } 1930 1931 if (!sinkLastInstruction(UnconditionalPreds)) { 1932 LLVM_DEBUG( 1933 dbgs() 1934 << "SINK: stopping here, failed to actually sink instruction!\n"); 1935 break; 1936 } 1937 1938 NumSinkCommonInstrs++; 1939 Changed = true; 1940 } 1941 if (SinkIdx != 0) 1942 ++NumSinkCommonCode; 1943 return Changed; 1944 } 1945 1946 /// Determine if we can hoist sink a sole store instruction out of a 1947 /// conditional block. 1948 /// 1949 /// We are looking for code like the following: 1950 /// BrBB: 1951 /// store i32 %add, i32* %arrayidx2 1952 /// ... // No other stores or function calls (we could be calling a memory 1953 /// ... // function). 1954 /// %cmp = icmp ult %x, %y 1955 /// br i1 %cmp, label %EndBB, label %ThenBB 1956 /// ThenBB: 1957 /// store i32 %add5, i32* %arrayidx2 1958 /// br label EndBB 1959 /// EndBB: 1960 /// ... 1961 /// We are going to transform this into: 1962 /// BrBB: 1963 /// store i32 %add, i32* %arrayidx2 1964 /// ... // 1965 /// %cmp = icmp ult %x, %y 1966 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1967 /// store i32 %add.add5, i32* %arrayidx2 1968 /// ... 1969 /// 1970 /// \return The pointer to the value of the previous store if the store can be 1971 /// hoisted into the predecessor block. 0 otherwise. 1972 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1973 BasicBlock *StoreBB, BasicBlock *EndBB) { 1974 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1975 if (!StoreToHoist) 1976 return nullptr; 1977 1978 // Volatile or atomic. 1979 if (!StoreToHoist->isSimple()) 1980 return nullptr; 1981 1982 Value *StorePtr = StoreToHoist->getPointerOperand(); 1983 1984 // Look for a store to the same pointer in BrBB. 1985 unsigned MaxNumInstToLookAt = 9; 1986 // Skip pseudo probe intrinsic calls which are not really killing any memory 1987 // accesses. 1988 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 1989 if (!MaxNumInstToLookAt) 1990 break; 1991 --MaxNumInstToLookAt; 1992 1993 // Could be calling an instruction that affects memory like free(). 1994 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1995 return nullptr; 1996 1997 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1998 // Found the previous store make sure it stores to the same location. 1999 if (SI->getPointerOperand() == StorePtr) 2000 // Found the previous store, return its value operand. 2001 return SI->getValueOperand(); 2002 return nullptr; // Unknown store. 2003 } 2004 } 2005 2006 return nullptr; 2007 } 2008 2009 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2010 /// converted to selects. 2011 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2012 BasicBlock *EndBB, 2013 unsigned &SpeculatedInstructions, 2014 int &BudgetRemaining, 2015 const TargetTransformInfo &TTI) { 2016 TargetTransformInfo::TargetCostKind CostKind = 2017 BB->getParent()->hasMinSize() 2018 ? TargetTransformInfo::TCK_CodeSize 2019 : TargetTransformInfo::TCK_SizeAndLatency; 2020 2021 bool HaveRewritablePHIs = false; 2022 for (PHINode &PN : EndBB->phis()) { 2023 Value *OrigV = PN.getIncomingValueForBlock(BB); 2024 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2025 2026 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2027 // Skip PHIs which are trivial. 2028 if (ThenV == OrigV) 2029 continue; 2030 2031 BudgetRemaining -= 2032 TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2033 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2034 2035 // Don't convert to selects if we could remove undefined behavior instead. 2036 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2037 passingValueIsAlwaysUndefined(ThenV, &PN)) 2038 return false; 2039 2040 HaveRewritablePHIs = true; 2041 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2042 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2043 if (!OrigCE && !ThenCE) 2044 continue; // Known safe and cheap. 2045 2046 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2047 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2048 return false; 2049 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2050 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2051 unsigned MaxCost = 2052 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2053 if (OrigCost + ThenCost > MaxCost) 2054 return false; 2055 2056 // Account for the cost of an unfolded ConstantExpr which could end up 2057 // getting expanded into Instructions. 2058 // FIXME: This doesn't account for how many operations are combined in the 2059 // constant expression. 2060 ++SpeculatedInstructions; 2061 if (SpeculatedInstructions > 1) 2062 return false; 2063 } 2064 2065 return HaveRewritablePHIs; 2066 } 2067 2068 /// Speculate a conditional basic block flattening the CFG. 2069 /// 2070 /// Note that this is a very risky transform currently. Speculating 2071 /// instructions like this is most often not desirable. Instead, there is an MI 2072 /// pass which can do it with full awareness of the resource constraints. 2073 /// However, some cases are "obvious" and we should do directly. An example of 2074 /// this is speculating a single, reasonably cheap instruction. 2075 /// 2076 /// There is only one distinct advantage to flattening the CFG at the IR level: 2077 /// it makes very common but simplistic optimizations such as are common in 2078 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2079 /// modeling their effects with easier to reason about SSA value graphs. 2080 /// 2081 /// 2082 /// An illustration of this transform is turning this IR: 2083 /// \code 2084 /// BB: 2085 /// %cmp = icmp ult %x, %y 2086 /// br i1 %cmp, label %EndBB, label %ThenBB 2087 /// ThenBB: 2088 /// %sub = sub %x, %y 2089 /// br label BB2 2090 /// EndBB: 2091 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2092 /// ... 2093 /// \endcode 2094 /// 2095 /// Into this IR: 2096 /// \code 2097 /// BB: 2098 /// %cmp = icmp ult %x, %y 2099 /// %sub = sub %x, %y 2100 /// %cond = select i1 %cmp, 0, %sub 2101 /// ... 2102 /// \endcode 2103 /// 2104 /// \returns true if the conditional block is removed. 2105 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2106 const TargetTransformInfo &TTI) { 2107 // Be conservative for now. FP select instruction can often be expensive. 2108 Value *BrCond = BI->getCondition(); 2109 if (isa<FCmpInst>(BrCond)) 2110 return false; 2111 2112 BasicBlock *BB = BI->getParent(); 2113 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2114 int BudgetRemaining = 2115 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2116 2117 // If ThenBB is actually on the false edge of the conditional branch, remember 2118 // to swap the select operands later. 2119 bool Invert = false; 2120 if (ThenBB != BI->getSuccessor(0)) { 2121 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2122 Invert = true; 2123 } 2124 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2125 2126 // Keep a count of how many times instructions are used within ThenBB when 2127 // they are candidates for sinking into ThenBB. Specifically: 2128 // - They are defined in BB, and 2129 // - They have no side effects, and 2130 // - All of their uses are in ThenBB. 2131 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2132 2133 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2134 2135 unsigned SpeculatedInstructions = 0; 2136 Value *SpeculatedStoreValue = nullptr; 2137 StoreInst *SpeculatedStore = nullptr; 2138 for (BasicBlock::iterator BBI = ThenBB->begin(), 2139 BBE = std::prev(ThenBB->end()); 2140 BBI != BBE; ++BBI) { 2141 Instruction *I = &*BBI; 2142 // Skip debug info. 2143 if (isa<DbgInfoIntrinsic>(I)) { 2144 SpeculatedDbgIntrinsics.push_back(I); 2145 continue; 2146 } 2147 2148 // Skip pseudo probes. The consequence is we lose track of the branch 2149 // probability for ThenBB, which is fine since the optimization here takes 2150 // place regardless of the branch probability. 2151 if (isa<PseudoProbeInst>(I)) { 2152 SpeculatedDbgIntrinsics.push_back(I); 2153 continue; 2154 } 2155 2156 // Only speculatively execute a single instruction (not counting the 2157 // terminator) for now. 2158 ++SpeculatedInstructions; 2159 if (SpeculatedInstructions > 1) 2160 return false; 2161 2162 // Don't hoist the instruction if it's unsafe or expensive. 2163 if (!isSafeToSpeculativelyExecute(I) && 2164 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2165 I, BB, ThenBB, EndBB)))) 2166 return false; 2167 if (!SpeculatedStoreValue && 2168 ComputeSpeculationCost(I, TTI) > 2169 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2170 return false; 2171 2172 // Store the store speculation candidate. 2173 if (SpeculatedStoreValue) 2174 SpeculatedStore = cast<StoreInst>(I); 2175 2176 // Do not hoist the instruction if any of its operands are defined but not 2177 // used in BB. The transformation will prevent the operand from 2178 // being sunk into the use block. 2179 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2180 Instruction *OpI = dyn_cast<Instruction>(*i); 2181 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2182 continue; // Not a candidate for sinking. 2183 2184 ++SinkCandidateUseCounts[OpI]; 2185 } 2186 } 2187 2188 // Consider any sink candidates which are only used in ThenBB as costs for 2189 // speculation. Note, while we iterate over a DenseMap here, we are summing 2190 // and so iteration order isn't significant. 2191 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2192 I = SinkCandidateUseCounts.begin(), 2193 E = SinkCandidateUseCounts.end(); 2194 I != E; ++I) 2195 if (I->first->hasNUses(I->second)) { 2196 ++SpeculatedInstructions; 2197 if (SpeculatedInstructions > 1) 2198 return false; 2199 } 2200 2201 // Check that we can insert the selects and that it's not too expensive to do 2202 // so. 2203 bool Convert = SpeculatedStore != nullptr; 2204 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2205 SpeculatedInstructions, 2206 BudgetRemaining, TTI); 2207 if (!Convert || BudgetRemaining < 0) 2208 return false; 2209 2210 // If we get here, we can hoist the instruction and if-convert. 2211 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2212 2213 // Insert a select of the value of the speculated store. 2214 if (SpeculatedStoreValue) { 2215 IRBuilder<NoFolder> Builder(BI); 2216 Value *TrueV = SpeculatedStore->getValueOperand(); 2217 Value *FalseV = SpeculatedStoreValue; 2218 if (Invert) 2219 std::swap(TrueV, FalseV); 2220 Value *S = Builder.CreateSelect( 2221 BrCond, TrueV, FalseV, "spec.store.select", BI); 2222 SpeculatedStore->setOperand(0, S); 2223 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2224 SpeculatedStore->getDebugLoc()); 2225 } 2226 2227 // Metadata can be dependent on the condition we are hoisting above. 2228 // Conservatively strip all metadata on the instruction. Drop the debug loc 2229 // to avoid making it appear as if the condition is a constant, which would 2230 // be misleading while debugging. 2231 for (auto &I : *ThenBB) { 2232 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2233 I.setDebugLoc(DebugLoc()); 2234 I.dropUnknownNonDebugMetadata(); 2235 } 2236 2237 // Hoist the instructions. 2238 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2239 ThenBB->begin(), std::prev(ThenBB->end())); 2240 2241 // Insert selects and rewrite the PHI operands. 2242 IRBuilder<NoFolder> Builder(BI); 2243 for (PHINode &PN : EndBB->phis()) { 2244 unsigned OrigI = PN.getBasicBlockIndex(BB); 2245 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2246 Value *OrigV = PN.getIncomingValue(OrigI); 2247 Value *ThenV = PN.getIncomingValue(ThenI); 2248 2249 // Skip PHIs which are trivial. 2250 if (OrigV == ThenV) 2251 continue; 2252 2253 // Create a select whose true value is the speculatively executed value and 2254 // false value is the pre-existing value. Swap them if the branch 2255 // destinations were inverted. 2256 Value *TrueV = ThenV, *FalseV = OrigV; 2257 if (Invert) 2258 std::swap(TrueV, FalseV); 2259 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2260 PN.setIncomingValue(OrigI, V); 2261 PN.setIncomingValue(ThenI, V); 2262 } 2263 2264 // Remove speculated dbg intrinsics. 2265 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2266 // dbg value for the different flows and inserting it after the select. 2267 for (Instruction *I : SpeculatedDbgIntrinsics) 2268 I->eraseFromParent(); 2269 2270 ++NumSpeculations; 2271 return true; 2272 } 2273 2274 /// Return true if we can thread a branch across this block. 2275 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2276 int Size = 0; 2277 2278 for (Instruction &I : BB->instructionsWithoutDebug()) { 2279 if (Size > MaxSmallBlockSize) 2280 return false; // Don't clone large BB's. 2281 2282 // Can't fold blocks that contain noduplicate or convergent calls. 2283 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2284 if (CI->cannotDuplicate() || CI->isConvergent()) 2285 return false; 2286 2287 // We will delete Phis while threading, so Phis should not be accounted in 2288 // block's size 2289 if (!isa<PHINode>(I)) 2290 ++Size; 2291 2292 // We can only support instructions that do not define values that are 2293 // live outside of the current basic block. 2294 for (User *U : I.users()) { 2295 Instruction *UI = cast<Instruction>(U); 2296 if (UI->getParent() != BB || isa<PHINode>(UI)) 2297 return false; 2298 } 2299 2300 // Looks ok, continue checking. 2301 } 2302 2303 return true; 2304 } 2305 2306 /// If we have a conditional branch on a PHI node value that is defined in the 2307 /// same block as the branch and if any PHI entries are constants, thread edges 2308 /// corresponding to that entry to be branches to their ultimate destination. 2309 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2310 AssumptionCache *AC) { 2311 BasicBlock *BB = BI->getParent(); 2312 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2313 // NOTE: we currently cannot transform this case if the PHI node is used 2314 // outside of the block. 2315 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2316 return false; 2317 2318 // Degenerate case of a single entry PHI. 2319 if (PN->getNumIncomingValues() == 1) { 2320 FoldSingleEntryPHINodes(PN->getParent()); 2321 return true; 2322 } 2323 2324 // Now we know that this block has multiple preds and two succs. 2325 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2326 return false; 2327 2328 // Okay, this is a simple enough basic block. See if any phi values are 2329 // constants. 2330 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2331 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2332 if (!CB || !CB->getType()->isIntegerTy(1)) 2333 continue; 2334 2335 // Okay, we now know that all edges from PredBB should be revectored to 2336 // branch to RealDest. 2337 BasicBlock *PredBB = PN->getIncomingBlock(i); 2338 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2339 2340 if (RealDest == BB) 2341 continue; // Skip self loops. 2342 // Skip if the predecessor's terminator is an indirect branch. 2343 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2344 continue; 2345 2346 // The dest block might have PHI nodes, other predecessors and other 2347 // difficult cases. Instead of being smart about this, just insert a new 2348 // block that jumps to the destination block, effectively splitting 2349 // the edge we are about to create. 2350 BasicBlock *EdgeBB = 2351 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2352 RealDest->getParent(), RealDest); 2353 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2354 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2355 2356 // Update PHI nodes. 2357 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2358 2359 // BB may have instructions that are being threaded over. Clone these 2360 // instructions into EdgeBB. We know that there will be no uses of the 2361 // cloned instructions outside of EdgeBB. 2362 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2363 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2364 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2365 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2366 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2367 continue; 2368 } 2369 // Clone the instruction. 2370 Instruction *N = BBI->clone(); 2371 if (BBI->hasName()) 2372 N->setName(BBI->getName() + ".c"); 2373 2374 // Update operands due to translation. 2375 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2376 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2377 if (PI != TranslateMap.end()) 2378 *i = PI->second; 2379 } 2380 2381 // Check for trivial simplification. 2382 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2383 if (!BBI->use_empty()) 2384 TranslateMap[&*BBI] = V; 2385 if (!N->mayHaveSideEffects()) { 2386 N->deleteValue(); // Instruction folded away, don't need actual inst 2387 N = nullptr; 2388 } 2389 } else { 2390 if (!BBI->use_empty()) 2391 TranslateMap[&*BBI] = N; 2392 } 2393 if (N) { 2394 // Insert the new instruction into its new home. 2395 EdgeBB->getInstList().insert(InsertPt, N); 2396 2397 // Register the new instruction with the assumption cache if necessary. 2398 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2399 AC->registerAssumption(cast<IntrinsicInst>(N)); 2400 } 2401 } 2402 2403 // Loop over all of the edges from PredBB to BB, changing them to branch 2404 // to EdgeBB instead. 2405 Instruction *PredBBTI = PredBB->getTerminator(); 2406 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2407 if (PredBBTI->getSuccessor(i) == BB) { 2408 BB->removePredecessor(PredBB); 2409 PredBBTI->setSuccessor(i, EdgeBB); 2410 } 2411 2412 // Recurse, simplifying any other constants. 2413 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2414 } 2415 2416 return false; 2417 } 2418 2419 /// Given a BB that starts with the specified two-entry PHI node, 2420 /// see if we can eliminate it. 2421 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2422 const DataLayout &DL) { 2423 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2424 // statement", which has a very simple dominance structure. Basically, we 2425 // are trying to find the condition that is being branched on, which 2426 // subsequently causes this merge to happen. We really want control 2427 // dependence information for this check, but simplifycfg can't keep it up 2428 // to date, and this catches most of the cases we care about anyway. 2429 BasicBlock *BB = PN->getParent(); 2430 2431 BasicBlock *IfTrue, *IfFalse; 2432 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2433 if (!IfCond || 2434 // Don't bother if the branch will be constant folded trivially. 2435 isa<ConstantInt>(IfCond)) 2436 return false; 2437 2438 // Okay, we found that we can merge this two-entry phi node into a select. 2439 // Doing so would require us to fold *all* two entry phi nodes in this block. 2440 // At some point this becomes non-profitable (particularly if the target 2441 // doesn't support cmov's). Only do this transformation if there are two or 2442 // fewer PHI nodes in this block. 2443 unsigned NumPhis = 0; 2444 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2445 if (NumPhis > 2) 2446 return false; 2447 2448 // Loop over the PHI's seeing if we can promote them all to select 2449 // instructions. While we are at it, keep track of the instructions 2450 // that need to be moved to the dominating block. 2451 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2452 int BudgetRemaining = 2453 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2454 2455 bool Changed = false; 2456 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2457 PHINode *PN = cast<PHINode>(II++); 2458 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2459 PN->replaceAllUsesWith(V); 2460 PN->eraseFromParent(); 2461 Changed = true; 2462 continue; 2463 } 2464 2465 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2466 BudgetRemaining, TTI) || 2467 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2468 BudgetRemaining, TTI)) 2469 return Changed; 2470 } 2471 2472 // If we folded the first phi, PN dangles at this point. Refresh it. If 2473 // we ran out of PHIs then we simplified them all. 2474 PN = dyn_cast<PHINode>(BB->begin()); 2475 if (!PN) 2476 return true; 2477 2478 // Return true if at least one of these is a 'not', and another is either 2479 // a 'not' too, or a constant. 2480 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2481 if (!match(V0, m_Not(m_Value()))) 2482 std::swap(V0, V1); 2483 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2484 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2485 }; 2486 2487 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2488 // of the incoming values is an 'not' and another one is freely invertible. 2489 // These can often be turned into switches and other things. 2490 if (PN->getType()->isIntegerTy(1) && 2491 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2492 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2493 isa<BinaryOperator>(IfCond)) && 2494 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2495 PN->getIncomingValue(1))) 2496 return Changed; 2497 2498 // If all PHI nodes are promotable, check to make sure that all instructions 2499 // in the predecessor blocks can be promoted as well. If not, we won't be able 2500 // to get rid of the control flow, so it's not worth promoting to select 2501 // instructions. 2502 BasicBlock *DomBlock = nullptr; 2503 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2504 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2505 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2506 IfBlock1 = nullptr; 2507 } else { 2508 DomBlock = *pred_begin(IfBlock1); 2509 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2510 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2511 !isa<PseudoProbeInst>(I)) { 2512 // This is not an aggressive instruction that we can promote. 2513 // Because of this, we won't be able to get rid of the control flow, so 2514 // the xform is not worth it. 2515 return Changed; 2516 } 2517 } 2518 2519 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2520 IfBlock2 = nullptr; 2521 } else { 2522 DomBlock = *pred_begin(IfBlock2); 2523 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2524 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2525 !isa<PseudoProbeInst>(I)) { 2526 // This is not an aggressive instruction that we can promote. 2527 // Because of this, we won't be able to get rid of the control flow, so 2528 // the xform is not worth it. 2529 return Changed; 2530 } 2531 } 2532 assert(DomBlock && "Failed to find root DomBlock"); 2533 2534 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2535 << " T: " << IfTrue->getName() 2536 << " F: " << IfFalse->getName() << "\n"); 2537 2538 // If we can still promote the PHI nodes after this gauntlet of tests, 2539 // do all of the PHI's now. 2540 Instruction *InsertPt = DomBlock->getTerminator(); 2541 IRBuilder<NoFolder> Builder(InsertPt); 2542 2543 // Move all 'aggressive' instructions, which are defined in the 2544 // conditional parts of the if's up to the dominating block. 2545 if (IfBlock1) 2546 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2547 if (IfBlock2) 2548 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2549 2550 // Propagate fast-math-flags from phi nodes to replacement selects. 2551 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2552 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2553 if (isa<FPMathOperator>(PN)) 2554 Builder.setFastMathFlags(PN->getFastMathFlags()); 2555 2556 // Change the PHI node into a select instruction. 2557 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2558 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2559 2560 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2561 PN->replaceAllUsesWith(Sel); 2562 Sel->takeName(PN); 2563 PN->eraseFromParent(); 2564 } 2565 2566 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2567 // has been flattened. Change DomBlock to jump directly to our new block to 2568 // avoid other simplifycfg's kicking in on the diamond. 2569 Instruction *OldTI = DomBlock->getTerminator(); 2570 Builder.SetInsertPoint(OldTI); 2571 Builder.CreateBr(BB); 2572 OldTI->eraseFromParent(); 2573 return true; 2574 } 2575 2576 /// If we found a conditional branch that goes to two returning blocks, 2577 /// try to merge them together into one return, 2578 /// introducing a select if the return values disagree. 2579 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2580 IRBuilder<> &Builder) { 2581 assert(BI->isConditional() && "Must be a conditional branch"); 2582 BasicBlock *TrueSucc = BI->getSuccessor(0); 2583 BasicBlock *FalseSucc = BI->getSuccessor(1); 2584 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2585 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2586 2587 // Check to ensure both blocks are empty (just a return) or optionally empty 2588 // with PHI nodes. If there are other instructions, merging would cause extra 2589 // computation on one path or the other. 2590 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2591 return false; 2592 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2593 return false; 2594 2595 Builder.SetInsertPoint(BI); 2596 // Okay, we found a branch that is going to two return nodes. If 2597 // there is no return value for this function, just change the 2598 // branch into a return. 2599 if (FalseRet->getNumOperands() == 0) { 2600 TrueSucc->removePredecessor(BI->getParent()); 2601 FalseSucc->removePredecessor(BI->getParent()); 2602 Builder.CreateRetVoid(); 2603 EraseTerminatorAndDCECond(BI); 2604 return true; 2605 } 2606 2607 // Otherwise, figure out what the true and false return values are 2608 // so we can insert a new select instruction. 2609 Value *TrueValue = TrueRet->getReturnValue(); 2610 Value *FalseValue = FalseRet->getReturnValue(); 2611 2612 // Unwrap any PHI nodes in the return blocks. 2613 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2614 if (TVPN->getParent() == TrueSucc) 2615 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2616 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2617 if (FVPN->getParent() == FalseSucc) 2618 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2619 2620 // In order for this transformation to be safe, we must be able to 2621 // unconditionally execute both operands to the return. This is 2622 // normally the case, but we could have a potentially-trapping 2623 // constant expression that prevents this transformation from being 2624 // safe. 2625 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2626 if (TCV->canTrap()) 2627 return false; 2628 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2629 if (FCV->canTrap()) 2630 return false; 2631 2632 // Okay, we collected all the mapped values and checked them for sanity, and 2633 // defined to really do this transformation. First, update the CFG. 2634 TrueSucc->removePredecessor(BI->getParent()); 2635 FalseSucc->removePredecessor(BI->getParent()); 2636 2637 // Insert select instructions where needed. 2638 Value *BrCond = BI->getCondition(); 2639 if (TrueValue) { 2640 // Insert a select if the results differ. 2641 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2642 } else if (isa<UndefValue>(TrueValue)) { 2643 TrueValue = FalseValue; 2644 } else { 2645 TrueValue = 2646 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2647 } 2648 } 2649 2650 Value *RI = 2651 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2652 2653 (void)RI; 2654 2655 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2656 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2657 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2658 2659 EraseTerminatorAndDCECond(BI); 2660 2661 return true; 2662 } 2663 2664 /// Return true if the given instruction is available 2665 /// in its predecessor block. If yes, the instruction will be removed. 2666 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2667 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2668 return false; 2669 for (Instruction &I : *PB) { 2670 Instruction *PBI = &I; 2671 // Check whether Inst and PBI generate the same value. 2672 if (Inst->isIdenticalTo(PBI)) { 2673 Inst->replaceAllUsesWith(PBI); 2674 Inst->eraseFromParent(); 2675 return true; 2676 } 2677 } 2678 return false; 2679 } 2680 2681 /// Return true if either PBI or BI has branch weight available, and store 2682 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2683 /// not have branch weight, use 1:1 as its weight. 2684 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2685 uint64_t &PredTrueWeight, 2686 uint64_t &PredFalseWeight, 2687 uint64_t &SuccTrueWeight, 2688 uint64_t &SuccFalseWeight) { 2689 bool PredHasWeights = 2690 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2691 bool SuccHasWeights = 2692 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2693 if (PredHasWeights || SuccHasWeights) { 2694 if (!PredHasWeights) 2695 PredTrueWeight = PredFalseWeight = 1; 2696 if (!SuccHasWeights) 2697 SuccTrueWeight = SuccFalseWeight = 1; 2698 return true; 2699 } else { 2700 return false; 2701 } 2702 } 2703 2704 /// If this basic block is simple enough, and if a predecessor branches to us 2705 /// and one of our successors, fold the block into the predecessor and use 2706 /// logical operations to pick the right destination. 2707 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2708 const TargetTransformInfo *TTI, 2709 unsigned BonusInstThreshold) { 2710 BasicBlock *BB = BI->getParent(); 2711 2712 const unsigned PredCount = pred_size(BB); 2713 2714 bool Changed = false; 2715 2716 auto _ = make_scope_exit([&]() { 2717 if (Changed) 2718 ++NumFoldBranchToCommonDest; 2719 }); 2720 2721 TargetTransformInfo::TargetCostKind CostKind = 2722 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 2723 : TargetTransformInfo::TCK_SizeAndLatency; 2724 2725 Instruction *Cond = nullptr; 2726 if (BI->isConditional()) 2727 Cond = dyn_cast<Instruction>(BI->getCondition()); 2728 else { 2729 // For unconditional branch, check for a simple CFG pattern, where 2730 // BB has a single predecessor and BB's successor is also its predecessor's 2731 // successor. If such pattern exists, check for CSE between BB and its 2732 // predecessor. 2733 if (BasicBlock *PB = BB->getSinglePredecessor()) 2734 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2735 if (PBI->isConditional() && 2736 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2737 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2738 for (auto I = BB->instructionsWithoutDebug().begin(), 2739 E = BB->instructionsWithoutDebug().end(); 2740 I != E;) { 2741 Instruction *Curr = &*I++; 2742 if (isa<CmpInst>(Curr)) { 2743 Cond = Curr; 2744 break; 2745 } 2746 // Quit if we can't remove this instruction. 2747 if (!tryCSEWithPredecessor(Curr, PB)) 2748 return Changed; 2749 Changed = true; 2750 } 2751 } 2752 2753 if (!Cond) 2754 return Changed; 2755 } 2756 2757 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2758 Cond->getParent() != BB || !Cond->hasOneUse()) 2759 return Changed; 2760 2761 // Make sure the instruction after the condition is the cond branch. 2762 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2763 2764 // Ignore dbg intrinsics. 2765 while (isa<DbgInfoIntrinsic>(CondIt)) 2766 ++CondIt; 2767 2768 if (&*CondIt != BI) 2769 return Changed; 2770 2771 // Only allow this transformation if computing the condition doesn't involve 2772 // too many instructions and these involved instructions can be executed 2773 // unconditionally. We denote all involved instructions except the condition 2774 // as "bonus instructions", and only allow this transformation when the 2775 // number of the bonus instructions we'll need to create when cloning into 2776 // each predecessor does not exceed a certain threshold. 2777 unsigned NumBonusInsts = 0; 2778 for (auto I = BB->begin(); Cond != &*I; ++I) { 2779 // Ignore dbg intrinsics. 2780 if (isa<DbgInfoIntrinsic>(I)) 2781 continue; 2782 // I must be safe to execute unconditionally. 2783 if (!isSafeToSpeculativelyExecute(&*I)) 2784 return Changed; 2785 2786 // Account for the cost of duplicating this instruction into each 2787 // predecessor. 2788 NumBonusInsts += PredCount; 2789 // Early exits once we reach the limit. 2790 if (NumBonusInsts > BonusInstThreshold) 2791 return Changed; 2792 } 2793 2794 // Cond is known to be a compare or binary operator. Check to make sure that 2795 // neither operand is a potentially-trapping constant expression. 2796 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2797 if (CE->canTrap()) 2798 return Changed; 2799 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2800 if (CE->canTrap()) 2801 return Changed; 2802 2803 // Finally, don't infinitely unroll conditional loops. 2804 BasicBlock *TrueDest = BI->getSuccessor(0); 2805 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2806 if (TrueDest == BB || FalseDest == BB) 2807 return Changed; 2808 2809 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2810 BasicBlock *PredBlock = *PI; 2811 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2812 2813 // Check that we have two conditional branches. If there is a PHI node in 2814 // the common successor, verify that the same value flows in from both 2815 // blocks. 2816 SmallVector<PHINode *, 4> PHIs; 2817 if (!PBI || PBI->isUnconditional() || 2818 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2819 (!BI->isConditional() && 2820 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2821 continue; 2822 2823 // Determine if the two branches share a common destination. 2824 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2825 bool InvertPredCond = false; 2826 2827 if (BI->isConditional()) { 2828 if (PBI->getSuccessor(0) == TrueDest) { 2829 Opc = Instruction::Or; 2830 } else if (PBI->getSuccessor(1) == FalseDest) { 2831 Opc = Instruction::And; 2832 } else if (PBI->getSuccessor(0) == FalseDest) { 2833 Opc = Instruction::And; 2834 InvertPredCond = true; 2835 } else if (PBI->getSuccessor(1) == TrueDest) { 2836 Opc = Instruction::Or; 2837 InvertPredCond = true; 2838 } else { 2839 continue; 2840 } 2841 } else { 2842 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2843 continue; 2844 } 2845 2846 // Check the cost of inserting the necessary logic before performing the 2847 // transformation. 2848 if (TTI && Opc != Instruction::BinaryOpsEnd) { 2849 Type *Ty = BI->getCondition()->getType(); 2850 unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 2851 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 2852 !isa<CmpInst>(PBI->getCondition()))) 2853 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 2854 2855 if (Cost > BranchFoldThreshold) 2856 continue; 2857 } 2858 2859 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2860 Changed = true; 2861 2862 IRBuilder<> Builder(PBI); 2863 2864 // If we need to invert the condition in the pred block to match, do so now. 2865 if (InvertPredCond) { 2866 Value *NewCond = PBI->getCondition(); 2867 2868 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2869 CmpInst *CI = cast<CmpInst>(NewCond); 2870 CI->setPredicate(CI->getInversePredicate()); 2871 } else { 2872 NewCond = 2873 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2874 } 2875 2876 PBI->setCondition(NewCond); 2877 PBI->swapSuccessors(); 2878 } 2879 2880 // Before cloning instructions, notify the successor basic block that it 2881 // is about to have a new predecessor. This will update PHI nodes, 2882 // which will allow us to update live-out uses of bonus instructions. 2883 if (BI->isConditional()) 2884 AddPredecessorToBlock(PBI->getSuccessor(0) == BB ? TrueDest : FalseDest, 2885 PredBlock, BB, MSSAU); 2886 2887 // If we have bonus instructions, clone them into the predecessor block. 2888 // Note that there may be multiple predecessor blocks, so we cannot move 2889 // bonus instructions to a predecessor block. 2890 ValueToValueMapTy VMap; // maps original values to cloned values 2891 // We already make sure Cond is the last instruction before BI. Therefore, 2892 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2893 // instructions. 2894 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2895 if (isa<DbgInfoIntrinsic>(BonusInst)) 2896 continue; 2897 Instruction *NewBonusInst = BonusInst->clone(); 2898 2899 // When we fold the bonus instructions we want to make sure we 2900 // reset their debug locations in order to avoid stepping on dead 2901 // code caused by folding dead branches. 2902 NewBonusInst->setDebugLoc(DebugLoc()); 2903 2904 RemapInstruction(NewBonusInst, VMap, 2905 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2906 VMap[&*BonusInst] = NewBonusInst; 2907 2908 // If we moved a load, we cannot any longer claim any knowledge about 2909 // its potential value. The previous information might have been valid 2910 // only given the branch precondition. 2911 // For an analogous reason, we must also drop all the metadata whose 2912 // semantics we don't understand. 2913 NewBonusInst->dropUnknownNonDebugMetadata(); 2914 2915 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2916 NewBonusInst->takeName(&*BonusInst); 2917 BonusInst->setName(BonusInst->getName() + ".old"); 2918 BonusInst->replaceUsesWithIf(NewBonusInst, [BB](Use &U) { 2919 auto *User = cast<Instruction>(U.getUser()); 2920 // Ignore uses in the same block as the bonus instruction itself. 2921 if (User->getParent() == BB) 2922 return false; 2923 // We can safely update external non-PHI uses. 2924 if (!isa<PHINode>(User)) 2925 return true; 2926 // For PHI nodes, don't touch incoming values for same block 2927 // as the bonus instruction itself. 2928 return cast<PHINode>(User)->getIncomingBlock(U) != BB; 2929 }); 2930 } 2931 2932 // Clone Cond into the predecessor basic block, and or/and the 2933 // two conditions together. 2934 Instruction *CondInPred = Cond->clone(); 2935 2936 // Reset the condition debug location to avoid jumping on dead code 2937 // as the result of folding dead branches. 2938 CondInPred->setDebugLoc(DebugLoc()); 2939 2940 RemapInstruction(CondInPred, VMap, 2941 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2942 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2943 CondInPred->takeName(Cond); 2944 Cond->setName(CondInPred->getName() + ".old"); 2945 2946 if (BI->isConditional()) { 2947 Instruction *NewCond = cast<Instruction>( 2948 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2949 PBI->setCondition(NewCond); 2950 2951 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2952 bool HasWeights = 2953 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2954 SuccTrueWeight, SuccFalseWeight); 2955 SmallVector<uint64_t, 8> NewWeights; 2956 2957 if (PBI->getSuccessor(0) == BB) { 2958 if (HasWeights) { 2959 // PBI: br i1 %x, BB, FalseDest 2960 // BI: br i1 %y, TrueDest, FalseDest 2961 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2962 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2963 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2964 // TrueWeight for PBI * FalseWeight for BI. 2965 // We assume that total weights of a BranchInst can fit into 32 bits. 2966 // Therefore, we will not have overflow using 64-bit arithmetic. 2967 NewWeights.push_back(PredFalseWeight * 2968 (SuccFalseWeight + SuccTrueWeight) + 2969 PredTrueWeight * SuccFalseWeight); 2970 } 2971 PBI->setSuccessor(0, TrueDest); 2972 } 2973 if (PBI->getSuccessor(1) == BB) { 2974 if (HasWeights) { 2975 // PBI: br i1 %x, TrueDest, BB 2976 // BI: br i1 %y, TrueDest, FalseDest 2977 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2978 // FalseWeight for PBI * TrueWeight for BI. 2979 NewWeights.push_back(PredTrueWeight * 2980 (SuccFalseWeight + SuccTrueWeight) + 2981 PredFalseWeight * SuccTrueWeight); 2982 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2983 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2984 } 2985 PBI->setSuccessor(1, FalseDest); 2986 } 2987 if (NewWeights.size() == 2) { 2988 // Halve the weights if any of them cannot fit in an uint32_t 2989 FitWeights(NewWeights); 2990 2991 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2992 NewWeights.end()); 2993 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2994 } else 2995 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2996 } else { 2997 // Update PHI nodes in the common successors. 2998 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2999 ConstantInt *PBI_C = cast<ConstantInt>( 3000 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 3001 assert(PBI_C->getType()->isIntegerTy(1)); 3002 Instruction *MergedCond = nullptr; 3003 if (PBI->getSuccessor(0) == TrueDest) { 3004 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 3005 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 3006 // is false: !PBI_Cond and BI_Value 3007 Instruction *NotCond = cast<Instruction>( 3008 Builder.CreateNot(PBI->getCondition(), "not.cond")); 3009 MergedCond = cast<Instruction>( 3010 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 3011 "and.cond")); 3012 if (PBI_C->isOne()) 3013 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3014 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 3015 } else { 3016 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 3017 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 3018 // is false: PBI_Cond and BI_Value 3019 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3020 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 3021 if (PBI_C->isOne()) { 3022 Instruction *NotCond = cast<Instruction>( 3023 Builder.CreateNot(PBI->getCondition(), "not.cond")); 3024 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3025 Instruction::Or, NotCond, MergedCond, "or.cond")); 3026 } 3027 } 3028 // Update PHI Node. 3029 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 3030 } 3031 3032 // PBI is changed to branch to TrueDest below. Remove itself from 3033 // potential phis from all other successors. 3034 if (MSSAU) 3035 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 3036 3037 // Change PBI from Conditional to Unconditional. 3038 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 3039 EraseTerminatorAndDCECond(PBI, MSSAU); 3040 PBI = New_PBI; 3041 } 3042 3043 // If BI was a loop latch, it may have had associated loop metadata. 3044 // We need to copy it to the new latch, that is, PBI. 3045 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3046 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3047 3048 // TODO: If BB is reachable from all paths through PredBlock, then we 3049 // could replace PBI's branch probabilities with BI's. 3050 3051 // Copy any debug value intrinsics into the end of PredBlock. 3052 for (Instruction &I : *BB) { 3053 if (isa<DbgInfoIntrinsic>(I)) { 3054 Instruction *NewI = I.clone(); 3055 RemapInstruction(NewI, VMap, 3056 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3057 NewI->insertBefore(PBI); 3058 } 3059 } 3060 3061 return Changed; 3062 } 3063 return Changed; 3064 } 3065 3066 // If there is only one store in BB1 and BB2, return it, otherwise return 3067 // nullptr. 3068 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3069 StoreInst *S = nullptr; 3070 for (auto *BB : {BB1, BB2}) { 3071 if (!BB) 3072 continue; 3073 for (auto &I : *BB) 3074 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3075 if (S) 3076 // Multiple stores seen. 3077 return nullptr; 3078 else 3079 S = SI; 3080 } 3081 } 3082 return S; 3083 } 3084 3085 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3086 Value *AlternativeV = nullptr) { 3087 // PHI is going to be a PHI node that allows the value V that is defined in 3088 // BB to be referenced in BB's only successor. 3089 // 3090 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3091 // doesn't matter to us what the other operand is (it'll never get used). We 3092 // could just create a new PHI with an undef incoming value, but that could 3093 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3094 // other PHI. So here we directly look for some PHI in BB's successor with V 3095 // as an incoming operand. If we find one, we use it, else we create a new 3096 // one. 3097 // 3098 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3099 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3100 // where OtherBB is the single other predecessor of BB's only successor. 3101 PHINode *PHI = nullptr; 3102 BasicBlock *Succ = BB->getSingleSuccessor(); 3103 3104 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3105 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3106 PHI = cast<PHINode>(I); 3107 if (!AlternativeV) 3108 break; 3109 3110 assert(Succ->hasNPredecessors(2)); 3111 auto PredI = pred_begin(Succ); 3112 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3113 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3114 break; 3115 PHI = nullptr; 3116 } 3117 if (PHI) 3118 return PHI; 3119 3120 // If V is not an instruction defined in BB, just return it. 3121 if (!AlternativeV && 3122 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3123 return V; 3124 3125 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3126 PHI->addIncoming(V, BB); 3127 for (BasicBlock *PredBB : predecessors(Succ)) 3128 if (PredBB != BB) 3129 PHI->addIncoming( 3130 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3131 return PHI; 3132 } 3133 3134 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 3135 BasicBlock *QTB, BasicBlock *QFB, 3136 BasicBlock *PostBB, Value *Address, 3137 bool InvertPCond, bool InvertQCond, 3138 const DataLayout &DL, 3139 const TargetTransformInfo &TTI) { 3140 // For every pointer, there must be exactly two stores, one coming from 3141 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3142 // store (to any address) in PTB,PFB or QTB,QFB. 3143 // FIXME: We could relax this restriction with a bit more work and performance 3144 // testing. 3145 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3146 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3147 if (!PStore || !QStore) 3148 return false; 3149 3150 // Now check the stores are compatible. 3151 if (!QStore->isUnordered() || !PStore->isUnordered()) 3152 return false; 3153 3154 // Check that sinking the store won't cause program behavior changes. Sinking 3155 // the store out of the Q blocks won't change any behavior as we're sinking 3156 // from a block to its unconditional successor. But we're moving a store from 3157 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3158 // So we need to check that there are no aliasing loads or stores in 3159 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3160 // operations between PStore and the end of its parent block. 3161 // 3162 // The ideal way to do this is to query AliasAnalysis, but we don't 3163 // preserve AA currently so that is dangerous. Be super safe and just 3164 // check there are no other memory operations at all. 3165 for (auto &I : *QFB->getSinglePredecessor()) 3166 if (I.mayReadOrWriteMemory()) 3167 return false; 3168 for (auto &I : *QFB) 3169 if (&I != QStore && I.mayReadOrWriteMemory()) 3170 return false; 3171 if (QTB) 3172 for (auto &I : *QTB) 3173 if (&I != QStore && I.mayReadOrWriteMemory()) 3174 return false; 3175 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3176 I != E; ++I) 3177 if (&*I != PStore && I->mayReadOrWriteMemory()) 3178 return false; 3179 3180 // If we're not in aggressive mode, we only optimize if we have some 3181 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3182 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3183 if (!BB) 3184 return true; 3185 // Heuristic: if the block can be if-converted/phi-folded and the 3186 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3187 // thread this store. 3188 int BudgetRemaining = 3189 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3190 for (auto &I : BB->instructionsWithoutDebug()) { 3191 // Consider terminator instruction to be free. 3192 if (I.isTerminator()) 3193 continue; 3194 // If this is one the stores that we want to speculate out of this BB, 3195 // then don't count it's cost, consider it to be free. 3196 if (auto *S = dyn_cast<StoreInst>(&I)) 3197 if (llvm::find(FreeStores, S)) 3198 continue; 3199 // Else, we have a white-list of instructions that we are ak speculating. 3200 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3201 return false; // Not in white-list - not worthwhile folding. 3202 // And finally, if this is a non-free instruction that we are okay 3203 // speculating, ensure that we consider the speculation budget. 3204 BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3205 if (BudgetRemaining < 0) 3206 return false; // Eagerly refuse to fold as soon as we're out of budget. 3207 } 3208 assert(BudgetRemaining >= 0 && 3209 "When we run out of budget we will eagerly return from within the " 3210 "per-instruction loop."); 3211 return true; 3212 }; 3213 3214 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3215 if (!MergeCondStoresAggressively && 3216 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3217 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3218 return false; 3219 3220 // If PostBB has more than two predecessors, we need to split it so we can 3221 // sink the store. 3222 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3223 // We know that QFB's only successor is PostBB. And QFB has a single 3224 // predecessor. If QTB exists, then its only successor is also PostBB. 3225 // If QTB does not exist, then QFB's only predecessor has a conditional 3226 // branch to QFB and PostBB. 3227 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3228 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3229 "condstore.split"); 3230 if (!NewBB) 3231 return false; 3232 PostBB = NewBB; 3233 } 3234 3235 // OK, we're going to sink the stores to PostBB. The store has to be 3236 // conditional though, so first create the predicate. 3237 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3238 ->getCondition(); 3239 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3240 ->getCondition(); 3241 3242 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3243 PStore->getParent()); 3244 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3245 QStore->getParent(), PPHI); 3246 3247 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3248 3249 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3250 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3251 3252 if (InvertPCond) 3253 PPred = QB.CreateNot(PPred); 3254 if (InvertQCond) 3255 QPred = QB.CreateNot(QPred); 3256 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3257 3258 auto *T = 3259 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3260 QB.SetInsertPoint(T); 3261 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3262 AAMDNodes AAMD; 3263 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3264 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3265 SI->setAAMetadata(AAMD); 3266 // Choose the minimum alignment. If we could prove both stores execute, we 3267 // could use biggest one. In this case, though, we only know that one of the 3268 // stores executes. And we don't know it's safe to take the alignment from a 3269 // store that doesn't execute. 3270 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3271 3272 QStore->eraseFromParent(); 3273 PStore->eraseFromParent(); 3274 3275 return true; 3276 } 3277 3278 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3279 const DataLayout &DL, 3280 const TargetTransformInfo &TTI) { 3281 // The intention here is to find diamonds or triangles (see below) where each 3282 // conditional block contains a store to the same address. Both of these 3283 // stores are conditional, so they can't be unconditionally sunk. But it may 3284 // be profitable to speculatively sink the stores into one merged store at the 3285 // end, and predicate the merged store on the union of the two conditions of 3286 // PBI and QBI. 3287 // 3288 // This can reduce the number of stores executed if both of the conditions are 3289 // true, and can allow the blocks to become small enough to be if-converted. 3290 // This optimization will also chain, so that ladders of test-and-set 3291 // sequences can be if-converted away. 3292 // 3293 // We only deal with simple diamonds or triangles: 3294 // 3295 // PBI or PBI or a combination of the two 3296 // / \ | \ 3297 // PTB PFB | PFB 3298 // \ / | / 3299 // QBI QBI 3300 // / \ | \ 3301 // QTB QFB | QFB 3302 // \ / | / 3303 // PostBB PostBB 3304 // 3305 // We model triangles as a type of diamond with a nullptr "true" block. 3306 // Triangles are canonicalized so that the fallthrough edge is represented by 3307 // a true condition, as in the diagram above. 3308 BasicBlock *PTB = PBI->getSuccessor(0); 3309 BasicBlock *PFB = PBI->getSuccessor(1); 3310 BasicBlock *QTB = QBI->getSuccessor(0); 3311 BasicBlock *QFB = QBI->getSuccessor(1); 3312 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3313 3314 // Make sure we have a good guess for PostBB. If QTB's only successor is 3315 // QFB, then QFB is a better PostBB. 3316 if (QTB->getSingleSuccessor() == QFB) 3317 PostBB = QFB; 3318 3319 // If we couldn't find a good PostBB, stop. 3320 if (!PostBB) 3321 return false; 3322 3323 bool InvertPCond = false, InvertQCond = false; 3324 // Canonicalize fallthroughs to the true branches. 3325 if (PFB == QBI->getParent()) { 3326 std::swap(PFB, PTB); 3327 InvertPCond = true; 3328 } 3329 if (QFB == PostBB) { 3330 std::swap(QFB, QTB); 3331 InvertQCond = true; 3332 } 3333 3334 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3335 // and QFB may not. Model fallthroughs as a nullptr block. 3336 if (PTB == QBI->getParent()) 3337 PTB = nullptr; 3338 if (QTB == PostBB) 3339 QTB = nullptr; 3340 3341 // Legality bailouts. We must have at least the non-fallthrough blocks and 3342 // the post-dominating block, and the non-fallthroughs must only have one 3343 // predecessor. 3344 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3345 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3346 }; 3347 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3348 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3349 return false; 3350 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3351 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3352 return false; 3353 if (!QBI->getParent()->hasNUses(2)) 3354 return false; 3355 3356 // OK, this is a sequence of two diamonds or triangles. 3357 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3358 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3359 for (auto *BB : {PTB, PFB}) { 3360 if (!BB) 3361 continue; 3362 for (auto &I : *BB) 3363 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3364 PStoreAddresses.insert(SI->getPointerOperand()); 3365 } 3366 for (auto *BB : {QTB, QFB}) { 3367 if (!BB) 3368 continue; 3369 for (auto &I : *BB) 3370 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3371 QStoreAddresses.insert(SI->getPointerOperand()); 3372 } 3373 3374 set_intersect(PStoreAddresses, QStoreAddresses); 3375 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3376 // clear what it contains. 3377 auto &CommonAddresses = PStoreAddresses; 3378 3379 bool Changed = false; 3380 for (auto *Address : CommonAddresses) 3381 Changed |= mergeConditionalStoreToAddress( 3382 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI); 3383 return Changed; 3384 } 3385 3386 3387 /// If the previous block ended with a widenable branch, determine if reusing 3388 /// the target block is profitable and legal. This will have the effect of 3389 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3390 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 3391 // TODO: This can be generalized in two important ways: 3392 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3393 // values from the PBI edge. 3394 // 2) We can sink side effecting instructions into BI's fallthrough 3395 // successor provided they doesn't contribute to computation of 3396 // BI's condition. 3397 Value *CondWB, *WC; 3398 BasicBlock *IfTrueBB, *IfFalseBB; 3399 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3400 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3401 return false; 3402 if (!IfFalseBB->phis().empty()) 3403 return false; // TODO 3404 // Use lambda to lazily compute expensive condition after cheap ones. 3405 auto NoSideEffects = [](BasicBlock &BB) { 3406 return !llvm::any_of(BB, [](const Instruction &I) { 3407 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3408 }); 3409 }; 3410 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3411 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3412 NoSideEffects(*BI->getParent())) { 3413 BI->getSuccessor(1)->removePredecessor(BI->getParent()); 3414 BI->setSuccessor(1, IfFalseBB); 3415 return true; 3416 } 3417 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3418 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3419 NoSideEffects(*BI->getParent())) { 3420 BI->getSuccessor(0)->removePredecessor(BI->getParent()); 3421 BI->setSuccessor(0, IfFalseBB); 3422 return true; 3423 } 3424 return false; 3425 } 3426 3427 /// If we have a conditional branch as a predecessor of another block, 3428 /// this function tries to simplify it. We know 3429 /// that PBI and BI are both conditional branches, and BI is in one of the 3430 /// successor blocks of PBI - PBI branches to BI. 3431 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3432 const DataLayout &DL, 3433 const TargetTransformInfo &TTI) { 3434 assert(PBI->isConditional() && BI->isConditional()); 3435 BasicBlock *BB = BI->getParent(); 3436 3437 // If this block ends with a branch instruction, and if there is a 3438 // predecessor that ends on a branch of the same condition, make 3439 // this conditional branch redundant. 3440 if (PBI->getCondition() == BI->getCondition() && 3441 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3442 // Okay, the outcome of this conditional branch is statically 3443 // knowable. If this block had a single pred, handle specially. 3444 if (BB->getSinglePredecessor()) { 3445 // Turn this into a branch on constant. 3446 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3447 BI->setCondition( 3448 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3449 return true; // Nuke the branch on constant. 3450 } 3451 3452 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3453 // in the constant and simplify the block result. Subsequent passes of 3454 // simplifycfg will thread the block. 3455 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3456 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3457 PHINode *NewPN = PHINode::Create( 3458 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3459 BI->getCondition()->getName() + ".pr", &BB->front()); 3460 // Okay, we're going to insert the PHI node. Since PBI is not the only 3461 // predecessor, compute the PHI'd conditional value for all of the preds. 3462 // Any predecessor where the condition is not computable we keep symbolic. 3463 for (pred_iterator PI = PB; PI != PE; ++PI) { 3464 BasicBlock *P = *PI; 3465 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3466 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3467 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3468 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3469 NewPN->addIncoming( 3470 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3471 P); 3472 } else { 3473 NewPN->addIncoming(BI->getCondition(), P); 3474 } 3475 } 3476 3477 BI->setCondition(NewPN); 3478 return true; 3479 } 3480 } 3481 3482 // If the previous block ended with a widenable branch, determine if reusing 3483 // the target block is profitable and legal. This will have the effect of 3484 // "widening" PBI, but doesn't require us to reason about hosting safety. 3485 if (tryWidenCondBranchToCondBranch(PBI, BI)) 3486 return true; 3487 3488 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3489 if (CE->canTrap()) 3490 return false; 3491 3492 // If both branches are conditional and both contain stores to the same 3493 // address, remove the stores from the conditionals and create a conditional 3494 // merged store at the end. 3495 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI)) 3496 return true; 3497 3498 // If this is a conditional branch in an empty block, and if any 3499 // predecessors are a conditional branch to one of our destinations, 3500 // fold the conditions into logical ops and one cond br. 3501 3502 // Ignore dbg intrinsics. 3503 if (&*BB->instructionsWithoutDebug().begin() != BI) 3504 return false; 3505 3506 int PBIOp, BIOp; 3507 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3508 PBIOp = 0; 3509 BIOp = 0; 3510 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3511 PBIOp = 0; 3512 BIOp = 1; 3513 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3514 PBIOp = 1; 3515 BIOp = 0; 3516 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3517 PBIOp = 1; 3518 BIOp = 1; 3519 } else { 3520 return false; 3521 } 3522 3523 // Check to make sure that the other destination of this branch 3524 // isn't BB itself. If so, this is an infinite loop that will 3525 // keep getting unwound. 3526 if (PBI->getSuccessor(PBIOp) == BB) 3527 return false; 3528 3529 // Do not perform this transformation if it would require 3530 // insertion of a large number of select instructions. For targets 3531 // without predication/cmovs, this is a big pessimization. 3532 3533 // Also do not perform this transformation if any phi node in the common 3534 // destination block can trap when reached by BB or PBB (PR17073). In that 3535 // case, it would be unsafe to hoist the operation into a select instruction. 3536 3537 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3538 unsigned NumPhis = 0; 3539 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3540 ++II, ++NumPhis) { 3541 if (NumPhis > 2) // Disable this xform. 3542 return false; 3543 3544 PHINode *PN = cast<PHINode>(II); 3545 Value *BIV = PN->getIncomingValueForBlock(BB); 3546 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3547 if (CE->canTrap()) 3548 return false; 3549 3550 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3551 Value *PBIV = PN->getIncomingValue(PBBIdx); 3552 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3553 if (CE->canTrap()) 3554 return false; 3555 } 3556 3557 // Finally, if everything is ok, fold the branches to logical ops. 3558 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3559 3560 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3561 << "AND: " << *BI->getParent()); 3562 3563 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3564 // branch in it, where one edge (OtherDest) goes back to itself but the other 3565 // exits. We don't *know* that the program avoids the infinite loop 3566 // (even though that seems likely). If we do this xform naively, we'll end up 3567 // recursively unpeeling the loop. Since we know that (after the xform is 3568 // done) that the block *is* infinite if reached, we just make it an obviously 3569 // infinite loop with no cond branch. 3570 if (OtherDest == BB) { 3571 // Insert it at the end of the function, because it's either code, 3572 // or it won't matter if it's hot. :) 3573 BasicBlock *InfLoopBlock = 3574 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3575 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3576 OtherDest = InfLoopBlock; 3577 } 3578 3579 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3580 3581 // BI may have other predecessors. Because of this, we leave 3582 // it alone, but modify PBI. 3583 3584 // Make sure we get to CommonDest on True&True directions. 3585 Value *PBICond = PBI->getCondition(); 3586 IRBuilder<NoFolder> Builder(PBI); 3587 if (PBIOp) 3588 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3589 3590 Value *BICond = BI->getCondition(); 3591 if (BIOp) 3592 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3593 3594 // Merge the conditions. 3595 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3596 3597 // Modify PBI to branch on the new condition to the new dests. 3598 PBI->setCondition(Cond); 3599 PBI->setSuccessor(0, CommonDest); 3600 PBI->setSuccessor(1, OtherDest); 3601 3602 // Update branch weight for PBI. 3603 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3604 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3605 bool HasWeights = 3606 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3607 SuccTrueWeight, SuccFalseWeight); 3608 if (HasWeights) { 3609 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3610 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3611 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3612 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3613 // The weight to CommonDest should be PredCommon * SuccTotal + 3614 // PredOther * SuccCommon. 3615 // The weight to OtherDest should be PredOther * SuccOther. 3616 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3617 PredOther * SuccCommon, 3618 PredOther * SuccOther}; 3619 // Halve the weights if any of them cannot fit in an uint32_t 3620 FitWeights(NewWeights); 3621 3622 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3623 } 3624 3625 // OtherDest may have phi nodes. If so, add an entry from PBI's 3626 // block that are identical to the entries for BI's block. 3627 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3628 3629 // We know that the CommonDest already had an edge from PBI to 3630 // it. If it has PHIs though, the PHIs may have different 3631 // entries for BB and PBI's BB. If so, insert a select to make 3632 // them agree. 3633 for (PHINode &PN : CommonDest->phis()) { 3634 Value *BIV = PN.getIncomingValueForBlock(BB); 3635 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3636 Value *PBIV = PN.getIncomingValue(PBBIdx); 3637 if (BIV != PBIV) { 3638 // Insert a select in PBI to pick the right value. 3639 SelectInst *NV = cast<SelectInst>( 3640 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3641 PN.setIncomingValue(PBBIdx, NV); 3642 // Although the select has the same condition as PBI, the original branch 3643 // weights for PBI do not apply to the new select because the select's 3644 // 'logical' edges are incoming edges of the phi that is eliminated, not 3645 // the outgoing edges of PBI. 3646 if (HasWeights) { 3647 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3648 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3649 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3650 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3651 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3652 // The weight to PredOtherDest should be PredOther * SuccCommon. 3653 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3654 PredOther * SuccCommon}; 3655 3656 FitWeights(NewWeights); 3657 3658 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3659 } 3660 } 3661 } 3662 3663 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3664 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3665 3666 // This basic block is probably dead. We know it has at least 3667 // one fewer predecessor. 3668 return true; 3669 } 3670 3671 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3672 // true or to FalseBB if Cond is false. 3673 // Takes care of updating the successors and removing the old terminator. 3674 // Also makes sure not to introduce new successors by assuming that edges to 3675 // non-successor TrueBBs and FalseBBs aren't reachable. 3676 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3677 Value *Cond, BasicBlock *TrueBB, 3678 BasicBlock *FalseBB, 3679 uint32_t TrueWeight, 3680 uint32_t FalseWeight) { 3681 // Remove any superfluous successor edges from the CFG. 3682 // First, figure out which successors to preserve. 3683 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3684 // successor. 3685 BasicBlock *KeepEdge1 = TrueBB; 3686 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3687 3688 // Then remove the rest. 3689 for (BasicBlock *Succ : successors(OldTerm)) { 3690 // Make sure only to keep exactly one copy of each edge. 3691 if (Succ == KeepEdge1) 3692 KeepEdge1 = nullptr; 3693 else if (Succ == KeepEdge2) 3694 KeepEdge2 = nullptr; 3695 else 3696 Succ->removePredecessor(OldTerm->getParent(), 3697 /*KeepOneInputPHIs=*/true); 3698 } 3699 3700 IRBuilder<> Builder(OldTerm); 3701 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3702 3703 // Insert an appropriate new terminator. 3704 if (!KeepEdge1 && !KeepEdge2) { 3705 if (TrueBB == FalseBB) 3706 // We were only looking for one successor, and it was present. 3707 // Create an unconditional branch to it. 3708 Builder.CreateBr(TrueBB); 3709 else { 3710 // We found both of the successors we were looking for. 3711 // Create a conditional branch sharing the condition of the select. 3712 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3713 if (TrueWeight != FalseWeight) 3714 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3715 } 3716 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3717 // Neither of the selected blocks were successors, so this 3718 // terminator must be unreachable. 3719 new UnreachableInst(OldTerm->getContext(), OldTerm); 3720 } else { 3721 // One of the selected values was a successor, but the other wasn't. 3722 // Insert an unconditional branch to the one that was found; 3723 // the edge to the one that wasn't must be unreachable. 3724 if (!KeepEdge1) 3725 // Only TrueBB was found. 3726 Builder.CreateBr(TrueBB); 3727 else 3728 // Only FalseBB was found. 3729 Builder.CreateBr(FalseBB); 3730 } 3731 3732 EraseTerminatorAndDCECond(OldTerm); 3733 return true; 3734 } 3735 3736 // Replaces 3737 // (switch (select cond, X, Y)) on constant X, Y 3738 // with a branch - conditional if X and Y lead to distinct BBs, 3739 // unconditional otherwise. 3740 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3741 SelectInst *Select) { 3742 // Check for constant integer values in the select. 3743 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3744 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3745 if (!TrueVal || !FalseVal) 3746 return false; 3747 3748 // Find the relevant condition and destinations. 3749 Value *Condition = Select->getCondition(); 3750 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3751 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3752 3753 // Get weight for TrueBB and FalseBB. 3754 uint32_t TrueWeight = 0, FalseWeight = 0; 3755 SmallVector<uint64_t, 8> Weights; 3756 bool HasWeights = HasBranchWeights(SI); 3757 if (HasWeights) { 3758 GetBranchWeights(SI, Weights); 3759 if (Weights.size() == 1 + SI->getNumCases()) { 3760 TrueWeight = 3761 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3762 FalseWeight = 3763 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3764 } 3765 } 3766 3767 // Perform the actual simplification. 3768 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3769 FalseWeight); 3770 } 3771 3772 // Replaces 3773 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3774 // blockaddress(@fn, BlockB))) 3775 // with 3776 // (br cond, BlockA, BlockB). 3777 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3778 SelectInst *SI) { 3779 // Check that both operands of the select are block addresses. 3780 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3781 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3782 if (!TBA || !FBA) 3783 return false; 3784 3785 // Extract the actual blocks. 3786 BasicBlock *TrueBB = TBA->getBasicBlock(); 3787 BasicBlock *FalseBB = FBA->getBasicBlock(); 3788 3789 // Perform the actual simplification. 3790 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3791 0); 3792 } 3793 3794 /// This is called when we find an icmp instruction 3795 /// (a seteq/setne with a constant) as the only instruction in a 3796 /// block that ends with an uncond branch. We are looking for a very specific 3797 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3798 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3799 /// default value goes to an uncond block with a seteq in it, we get something 3800 /// like: 3801 /// 3802 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3803 /// DEFAULT: 3804 /// %tmp = icmp eq i8 %A, 92 3805 /// br label %end 3806 /// end: 3807 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3808 /// 3809 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3810 /// the PHI, merging the third icmp into the switch. 3811 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3812 ICmpInst *ICI, IRBuilder<> &Builder) { 3813 BasicBlock *BB = ICI->getParent(); 3814 3815 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3816 // complex. 3817 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3818 return false; 3819 3820 Value *V = ICI->getOperand(0); 3821 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3822 3823 // The pattern we're looking for is where our only predecessor is a switch on 3824 // 'V' and this block is the default case for the switch. In this case we can 3825 // fold the compared value into the switch to simplify things. 3826 BasicBlock *Pred = BB->getSinglePredecessor(); 3827 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3828 return false; 3829 3830 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3831 if (SI->getCondition() != V) 3832 return false; 3833 3834 // If BB is reachable on a non-default case, then we simply know the value of 3835 // V in this block. Substitute it and constant fold the icmp instruction 3836 // away. 3837 if (SI->getDefaultDest() != BB) { 3838 ConstantInt *VVal = SI->findCaseDest(BB); 3839 assert(VVal && "Should have a unique destination value"); 3840 ICI->setOperand(0, VVal); 3841 3842 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3843 ICI->replaceAllUsesWith(V); 3844 ICI->eraseFromParent(); 3845 } 3846 // BB is now empty, so it is likely to simplify away. 3847 return requestResimplify(); 3848 } 3849 3850 // Ok, the block is reachable from the default dest. If the constant we're 3851 // comparing exists in one of the other edges, then we can constant fold ICI 3852 // and zap it. 3853 if (SI->findCaseValue(Cst) != SI->case_default()) { 3854 Value *V; 3855 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3856 V = ConstantInt::getFalse(BB->getContext()); 3857 else 3858 V = ConstantInt::getTrue(BB->getContext()); 3859 3860 ICI->replaceAllUsesWith(V); 3861 ICI->eraseFromParent(); 3862 // BB is now empty, so it is likely to simplify away. 3863 return requestResimplify(); 3864 } 3865 3866 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3867 // the block. 3868 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3869 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3870 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3871 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3872 return false; 3873 3874 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3875 // true in the PHI. 3876 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3877 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3878 3879 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3880 std::swap(DefaultCst, NewCst); 3881 3882 // Replace ICI (which is used by the PHI for the default value) with true or 3883 // false depending on if it is EQ or NE. 3884 ICI->replaceAllUsesWith(DefaultCst); 3885 ICI->eraseFromParent(); 3886 3887 // Okay, the switch goes to this block on a default value. Add an edge from 3888 // the switch to the merge point on the compared value. 3889 BasicBlock *NewBB = 3890 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3891 { 3892 SwitchInstProfUpdateWrapper SIW(*SI); 3893 auto W0 = SIW.getSuccessorWeight(0); 3894 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3895 if (W0) { 3896 NewW = ((uint64_t(*W0) + 1) >> 1); 3897 SIW.setSuccessorWeight(0, *NewW); 3898 } 3899 SIW.addCase(Cst, NewBB, NewW); 3900 } 3901 3902 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3903 Builder.SetInsertPoint(NewBB); 3904 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3905 Builder.CreateBr(SuccBlock); 3906 PHIUse->addIncoming(NewCst, NewBB); 3907 return true; 3908 } 3909 3910 /// The specified branch is a conditional branch. 3911 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3912 /// fold it into a switch instruction if so. 3913 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3914 IRBuilder<> &Builder, 3915 const DataLayout &DL) { 3916 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3917 if (!Cond) 3918 return false; 3919 3920 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3921 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3922 // 'setne's and'ed together, collect them. 3923 3924 // Try to gather values from a chain of and/or to be turned into a switch 3925 ConstantComparesGatherer ConstantCompare(Cond, DL); 3926 // Unpack the result 3927 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3928 Value *CompVal = ConstantCompare.CompValue; 3929 unsigned UsedICmps = ConstantCompare.UsedICmps; 3930 Value *ExtraCase = ConstantCompare.Extra; 3931 3932 // If we didn't have a multiply compared value, fail. 3933 if (!CompVal) 3934 return false; 3935 3936 // Avoid turning single icmps into a switch. 3937 if (UsedICmps <= 1) 3938 return false; 3939 3940 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3941 3942 // There might be duplicate constants in the list, which the switch 3943 // instruction can't handle, remove them now. 3944 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3945 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3946 3947 // If Extra was used, we require at least two switch values to do the 3948 // transformation. A switch with one value is just a conditional branch. 3949 if (ExtraCase && Values.size() < 2) 3950 return false; 3951 3952 // TODO: Preserve branch weight metadata, similarly to how 3953 // FoldValueComparisonIntoPredecessors preserves it. 3954 3955 // Figure out which block is which destination. 3956 BasicBlock *DefaultBB = BI->getSuccessor(1); 3957 BasicBlock *EdgeBB = BI->getSuccessor(0); 3958 if (!TrueWhenEqual) 3959 std::swap(DefaultBB, EdgeBB); 3960 3961 BasicBlock *BB = BI->getParent(); 3962 3963 // MSAN does not like undefs as branch condition which can be introduced 3964 // with "explicit branch". 3965 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 3966 return false; 3967 3968 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3969 << " cases into SWITCH. BB is:\n" 3970 << *BB); 3971 3972 // If there are any extra values that couldn't be folded into the switch 3973 // then we evaluate them with an explicit branch first. Split the block 3974 // right before the condbr to handle it. 3975 if (ExtraCase) { 3976 BasicBlock *NewBB = 3977 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3978 // Remove the uncond branch added to the old block. 3979 Instruction *OldTI = BB->getTerminator(); 3980 Builder.SetInsertPoint(OldTI); 3981 3982 if (TrueWhenEqual) 3983 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3984 else 3985 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3986 3987 OldTI->eraseFromParent(); 3988 3989 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3990 // for the edge we just added. 3991 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3992 3993 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3994 << "\nEXTRABB = " << *BB); 3995 BB = NewBB; 3996 } 3997 3998 Builder.SetInsertPoint(BI); 3999 // Convert pointer to int before we switch. 4000 if (CompVal->getType()->isPointerTy()) { 4001 CompVal = Builder.CreatePtrToInt( 4002 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4003 } 4004 4005 // Create the new switch instruction now. 4006 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4007 4008 // Add all of the 'cases' to the switch instruction. 4009 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4010 New->addCase(Values[i], EdgeBB); 4011 4012 // We added edges from PI to the EdgeBB. As such, if there were any 4013 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4014 // the number of edges added. 4015 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4016 PHINode *PN = cast<PHINode>(BBI); 4017 Value *InVal = PN->getIncomingValueForBlock(BB); 4018 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4019 PN->addIncoming(InVal, BB); 4020 } 4021 4022 // Erase the old branch instruction. 4023 EraseTerminatorAndDCECond(BI); 4024 4025 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4026 return true; 4027 } 4028 4029 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4030 if (isa<PHINode>(RI->getValue())) 4031 return simplifyCommonResume(RI); 4032 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4033 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4034 // The resume must unwind the exception that caused control to branch here. 4035 return simplifySingleResume(RI); 4036 4037 return false; 4038 } 4039 4040 // Check if cleanup block is empty 4041 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4042 for (Instruction &I : R) { 4043 auto *II = dyn_cast<IntrinsicInst>(&I); 4044 if (!II) 4045 return false; 4046 4047 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4048 switch (IntrinsicID) { 4049 case Intrinsic::dbg_declare: 4050 case Intrinsic::dbg_value: 4051 case Intrinsic::dbg_label: 4052 case Intrinsic::lifetime_end: 4053 break; 4054 default: 4055 return false; 4056 } 4057 } 4058 return true; 4059 } 4060 4061 // Simplify resume that is shared by several landing pads (phi of landing pad). 4062 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4063 BasicBlock *BB = RI->getParent(); 4064 4065 // Check that there are no other instructions except for debug and lifetime 4066 // intrinsics between the phi's and resume instruction. 4067 if (!isCleanupBlockEmpty( 4068 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4069 return false; 4070 4071 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4072 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4073 4074 // Check incoming blocks to see if any of them are trivial. 4075 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4076 Idx++) { 4077 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4078 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4079 4080 // If the block has other successors, we can not delete it because 4081 // it has other dependents. 4082 if (IncomingBB->getUniqueSuccessor() != BB) 4083 continue; 4084 4085 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4086 // Not the landing pad that caused the control to branch here. 4087 if (IncomingValue != LandingPad) 4088 continue; 4089 4090 if (isCleanupBlockEmpty( 4091 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4092 TrivialUnwindBlocks.insert(IncomingBB); 4093 } 4094 4095 // If no trivial unwind blocks, don't do any simplifications. 4096 if (TrivialUnwindBlocks.empty()) 4097 return false; 4098 4099 // Turn all invokes that unwind here into calls. 4100 for (auto *TrivialBB : TrivialUnwindBlocks) { 4101 // Blocks that will be simplified should be removed from the phi node. 4102 // Note there could be multiple edges to the resume block, and we need 4103 // to remove them all. 4104 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4105 BB->removePredecessor(TrivialBB, true); 4106 4107 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 4108 PI != PE;) { 4109 BasicBlock *Pred = *PI++; 4110 removeUnwindEdge(Pred); 4111 ++NumInvokes; 4112 } 4113 4114 // In each SimplifyCFG run, only the current processed block can be erased. 4115 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4116 // of erasing TrivialBB, we only remove the branch to the common resume 4117 // block so that we can later erase the resume block since it has no 4118 // predecessors. 4119 TrivialBB->getTerminator()->eraseFromParent(); 4120 new UnreachableInst(RI->getContext(), TrivialBB); 4121 } 4122 4123 // Delete the resume block if all its predecessors have been removed. 4124 if (pred_empty(BB)) 4125 BB->eraseFromParent(); 4126 4127 return !TrivialUnwindBlocks.empty(); 4128 } 4129 4130 // Simplify resume that is only used by a single (non-phi) landing pad. 4131 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4132 BasicBlock *BB = RI->getParent(); 4133 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4134 assert(RI->getValue() == LPInst && 4135 "Resume must unwind the exception that caused control to here"); 4136 4137 // Check that there are no other instructions except for debug intrinsics. 4138 if (!isCleanupBlockEmpty( 4139 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4140 return false; 4141 4142 // Turn all invokes that unwind here into calls and delete the basic block. 4143 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4144 BasicBlock *Pred = *PI++; 4145 removeUnwindEdge(Pred); 4146 ++NumInvokes; 4147 } 4148 4149 // The landingpad is now unreachable. Zap it. 4150 if (LoopHeaders) 4151 LoopHeaders->erase(BB); 4152 BB->eraseFromParent(); 4153 return true; 4154 } 4155 4156 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 4157 // If this is a trivial cleanup pad that executes no instructions, it can be 4158 // eliminated. If the cleanup pad continues to the caller, any predecessor 4159 // that is an EH pad will be updated to continue to the caller and any 4160 // predecessor that terminates with an invoke instruction will have its invoke 4161 // instruction converted to a call instruction. If the cleanup pad being 4162 // simplified does not continue to the caller, each predecessor will be 4163 // updated to continue to the unwind destination of the cleanup pad being 4164 // simplified. 4165 BasicBlock *BB = RI->getParent(); 4166 CleanupPadInst *CPInst = RI->getCleanupPad(); 4167 if (CPInst->getParent() != BB) 4168 // This isn't an empty cleanup. 4169 return false; 4170 4171 // We cannot kill the pad if it has multiple uses. This typically arises 4172 // from unreachable basic blocks. 4173 if (!CPInst->hasOneUse()) 4174 return false; 4175 4176 // Check that there are no other instructions except for benign intrinsics. 4177 if (!isCleanupBlockEmpty( 4178 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4179 return false; 4180 4181 // If the cleanup return we are simplifying unwinds to the caller, this will 4182 // set UnwindDest to nullptr. 4183 BasicBlock *UnwindDest = RI->getUnwindDest(); 4184 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4185 4186 // We're about to remove BB from the control flow. Before we do, sink any 4187 // PHINodes into the unwind destination. Doing this before changing the 4188 // control flow avoids some potentially slow checks, since we can currently 4189 // be certain that UnwindDest and BB have no common predecessors (since they 4190 // are both EH pads). 4191 if (UnwindDest) { 4192 // First, go through the PHI nodes in UnwindDest and update any nodes that 4193 // reference the block we are removing 4194 for (BasicBlock::iterator I = UnwindDest->begin(), 4195 IE = DestEHPad->getIterator(); 4196 I != IE; ++I) { 4197 PHINode *DestPN = cast<PHINode>(I); 4198 4199 int Idx = DestPN->getBasicBlockIndex(BB); 4200 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4201 assert(Idx != -1); 4202 // This PHI node has an incoming value that corresponds to a control 4203 // path through the cleanup pad we are removing. If the incoming 4204 // value is in the cleanup pad, it must be a PHINode (because we 4205 // verified above that the block is otherwise empty). Otherwise, the 4206 // value is either a constant or a value that dominates the cleanup 4207 // pad being removed. 4208 // 4209 // Because BB and UnwindDest are both EH pads, all of their 4210 // predecessors must unwind to these blocks, and since no instruction 4211 // can have multiple unwind destinations, there will be no overlap in 4212 // incoming blocks between SrcPN and DestPN. 4213 Value *SrcVal = DestPN->getIncomingValue(Idx); 4214 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4215 4216 // Remove the entry for the block we are deleting. 4217 DestPN->removeIncomingValue(Idx, false); 4218 4219 if (SrcPN && SrcPN->getParent() == BB) { 4220 // If the incoming value was a PHI node in the cleanup pad we are 4221 // removing, we need to merge that PHI node's incoming values into 4222 // DestPN. 4223 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4224 SrcIdx != SrcE; ++SrcIdx) { 4225 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4226 SrcPN->getIncomingBlock(SrcIdx)); 4227 } 4228 } else { 4229 // Otherwise, the incoming value came from above BB and 4230 // so we can just reuse it. We must associate all of BB's 4231 // predecessors with this value. 4232 for (auto *pred : predecessors(BB)) { 4233 DestPN->addIncoming(SrcVal, pred); 4234 } 4235 } 4236 } 4237 4238 // Sink any remaining PHI nodes directly into UnwindDest. 4239 Instruction *InsertPt = DestEHPad; 4240 for (BasicBlock::iterator I = BB->begin(), 4241 IE = BB->getFirstNonPHI()->getIterator(); 4242 I != IE;) { 4243 // The iterator must be incremented here because the instructions are 4244 // being moved to another block. 4245 PHINode *PN = cast<PHINode>(I++); 4246 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4247 // If the PHI node has no uses or all of its uses are in this basic 4248 // block (meaning they are debug or lifetime intrinsics), just leave 4249 // it. It will be erased when we erase BB below. 4250 continue; 4251 4252 // Otherwise, sink this PHI node into UnwindDest. 4253 // Any predecessors to UnwindDest which are not already represented 4254 // must be back edges which inherit the value from the path through 4255 // BB. In this case, the PHI value must reference itself. 4256 for (auto *pred : predecessors(UnwindDest)) 4257 if (pred != BB) 4258 PN->addIncoming(PN, pred); 4259 PN->moveBefore(InsertPt); 4260 } 4261 } 4262 4263 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4264 // The iterator must be updated here because we are removing this pred. 4265 BasicBlock *PredBB = *PI++; 4266 if (UnwindDest == nullptr) { 4267 removeUnwindEdge(PredBB); 4268 ++NumInvokes; 4269 } else { 4270 Instruction *TI = PredBB->getTerminator(); 4271 TI->replaceUsesOfWith(BB, UnwindDest); 4272 } 4273 } 4274 4275 // The cleanup pad is now unreachable. Zap it. 4276 BB->eraseFromParent(); 4277 return true; 4278 } 4279 4280 // Try to merge two cleanuppads together. 4281 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4282 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4283 // with. 4284 BasicBlock *UnwindDest = RI->getUnwindDest(); 4285 if (!UnwindDest) 4286 return false; 4287 4288 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4289 // be safe to merge without code duplication. 4290 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4291 return false; 4292 4293 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4294 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4295 if (!SuccessorCleanupPad) 4296 return false; 4297 4298 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4299 // Replace any uses of the successor cleanupad with the predecessor pad 4300 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4301 // funclet bundle operands. 4302 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4303 // Remove the old cleanuppad. 4304 SuccessorCleanupPad->eraseFromParent(); 4305 // Now, we simply replace the cleanupret with a branch to the unwind 4306 // destination. 4307 BranchInst::Create(UnwindDest, RI->getParent()); 4308 RI->eraseFromParent(); 4309 4310 return true; 4311 } 4312 4313 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4314 // It is possible to transiantly have an undef cleanuppad operand because we 4315 // have deleted some, but not all, dead blocks. 4316 // Eventually, this block will be deleted. 4317 if (isa<UndefValue>(RI->getOperand(0))) 4318 return false; 4319 4320 if (mergeCleanupPad(RI)) 4321 return true; 4322 4323 if (removeEmptyCleanup(RI)) 4324 return true; 4325 4326 return false; 4327 } 4328 4329 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4330 BasicBlock *BB = RI->getParent(); 4331 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4332 return false; 4333 4334 // Find predecessors that end with branches. 4335 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4336 SmallVector<BranchInst *, 8> CondBranchPreds; 4337 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4338 BasicBlock *P = *PI; 4339 Instruction *PTI = P->getTerminator(); 4340 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4341 if (BI->isUnconditional()) 4342 UncondBranchPreds.push_back(P); 4343 else 4344 CondBranchPreds.push_back(BI); 4345 } 4346 } 4347 4348 // If we found some, do the transformation! 4349 if (!UncondBranchPreds.empty() && DupRet) { 4350 while (!UncondBranchPreds.empty()) { 4351 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4352 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4353 << "INTO UNCOND BRANCH PRED: " << *Pred); 4354 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4355 } 4356 4357 // If we eliminated all predecessors of the block, delete the block now. 4358 if (pred_empty(BB)) { 4359 // We know there are no successors, so just nuke the block. 4360 if (LoopHeaders) 4361 LoopHeaders->erase(BB); 4362 BB->eraseFromParent(); 4363 } 4364 4365 return true; 4366 } 4367 4368 // Check out all of the conditional branches going to this return 4369 // instruction. If any of them just select between returns, change the 4370 // branch itself into a select/return pair. 4371 while (!CondBranchPreds.empty()) { 4372 BranchInst *BI = CondBranchPreds.pop_back_val(); 4373 4374 // Check to see if the non-BB successor is also a return block. 4375 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4376 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4377 SimplifyCondBranchToTwoReturns(BI, Builder)) 4378 return true; 4379 } 4380 return false; 4381 } 4382 4383 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4384 BasicBlock *BB = UI->getParent(); 4385 4386 bool Changed = false; 4387 4388 // If there are any instructions immediately before the unreachable that can 4389 // be removed, do so. 4390 while (UI->getIterator() != BB->begin()) { 4391 BasicBlock::iterator BBI = UI->getIterator(); 4392 --BBI; 4393 // Do not delete instructions that can have side effects which might cause 4394 // the unreachable to not be reachable; specifically, calls and volatile 4395 // operations may have this effect. 4396 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4397 break; 4398 4399 if (BBI->mayHaveSideEffects()) { 4400 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4401 if (SI->isVolatile()) 4402 break; 4403 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4404 if (LI->isVolatile()) 4405 break; 4406 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4407 if (RMWI->isVolatile()) 4408 break; 4409 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4410 if (CXI->isVolatile()) 4411 break; 4412 } else if (isa<CatchPadInst>(BBI)) { 4413 // A catchpad may invoke exception object constructors and such, which 4414 // in some languages can be arbitrary code, so be conservative by 4415 // default. 4416 // For CoreCLR, it just involves a type test, so can be removed. 4417 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4418 EHPersonality::CoreCLR) 4419 break; 4420 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4421 !isa<LandingPadInst>(BBI)) { 4422 break; 4423 } 4424 // Note that deleting LandingPad's here is in fact okay, although it 4425 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4426 // all the predecessors of this block will be the unwind edges of Invokes, 4427 // and we can therefore guarantee this block will be erased. 4428 } 4429 4430 // Delete this instruction (any uses are guaranteed to be dead) 4431 if (!BBI->use_empty()) 4432 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4433 BBI->eraseFromParent(); 4434 Changed = true; 4435 } 4436 4437 // If the unreachable instruction is the first in the block, take a gander 4438 // at all of the predecessors of this instruction, and simplify them. 4439 if (&BB->front() != UI) 4440 return Changed; 4441 4442 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4443 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4444 Instruction *TI = Preds[i]->getTerminator(); 4445 IRBuilder<> Builder(TI); 4446 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4447 if (BI->isUnconditional()) { 4448 assert(BI->getSuccessor(0) == BB && "Incorrect CFG"); 4449 new UnreachableInst(TI->getContext(), TI); 4450 TI->eraseFromParent(); 4451 Changed = true; 4452 } else { 4453 Value* Cond = BI->getCondition(); 4454 if (BI->getSuccessor(0) == BB) { 4455 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4456 Builder.CreateBr(BI->getSuccessor(1)); 4457 } else { 4458 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4459 Builder.CreateAssumption(Cond); 4460 Builder.CreateBr(BI->getSuccessor(0)); 4461 } 4462 EraseTerminatorAndDCECond(BI); 4463 Changed = true; 4464 } 4465 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4466 SwitchInstProfUpdateWrapper SU(*SI); 4467 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4468 if (i->getCaseSuccessor() != BB) { 4469 ++i; 4470 continue; 4471 } 4472 BB->removePredecessor(SU->getParent()); 4473 i = SU.removeCase(i); 4474 e = SU->case_end(); 4475 Changed = true; 4476 } 4477 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4478 if (II->getUnwindDest() == BB) { 4479 removeUnwindEdge(TI->getParent()); 4480 Changed = true; 4481 } 4482 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4483 if (CSI->getUnwindDest() == BB) { 4484 removeUnwindEdge(TI->getParent()); 4485 Changed = true; 4486 continue; 4487 } 4488 4489 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4490 E = CSI->handler_end(); 4491 I != E; ++I) { 4492 if (*I == BB) { 4493 CSI->removeHandler(I); 4494 --I; 4495 --E; 4496 Changed = true; 4497 } 4498 } 4499 if (CSI->getNumHandlers() == 0) { 4500 BasicBlock *CatchSwitchBB = CSI->getParent(); 4501 if (CSI->hasUnwindDest()) { 4502 // Redirect preds to the unwind dest 4503 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4504 } else { 4505 // Rewrite all preds to unwind to caller (or from invoke to call). 4506 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4507 for (BasicBlock *EHPred : EHPreds) 4508 removeUnwindEdge(EHPred); 4509 } 4510 // The catchswitch is no longer reachable. 4511 new UnreachableInst(CSI->getContext(), CSI); 4512 CSI->eraseFromParent(); 4513 Changed = true; 4514 } 4515 } else if (isa<CleanupReturnInst>(TI)) { 4516 new UnreachableInst(TI->getContext(), TI); 4517 TI->eraseFromParent(); 4518 Changed = true; 4519 } 4520 } 4521 4522 // If this block is now dead, remove it. 4523 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4524 // We know there are no successors, so just nuke the block. 4525 if (LoopHeaders) 4526 LoopHeaders->erase(BB); 4527 BB->eraseFromParent(); 4528 return true; 4529 } 4530 4531 return Changed; 4532 } 4533 4534 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4535 assert(Cases.size() >= 1); 4536 4537 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4538 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4539 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4540 return false; 4541 } 4542 return true; 4543 } 4544 4545 static void createUnreachableSwitchDefault(SwitchInst *Switch) { 4546 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4547 BasicBlock *NewDefaultBlock = 4548 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), ""); 4549 Switch->setDefaultDest(&*NewDefaultBlock); 4550 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front()); 4551 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4552 new UnreachableInst(Switch->getContext(), NewTerminator); 4553 EraseTerminatorAndDCECond(NewTerminator); 4554 } 4555 4556 /// Turn a switch with two reachable destinations into an integer range 4557 /// comparison and branch. 4558 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4559 IRBuilder<> &Builder) { 4560 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4561 4562 bool HasDefault = 4563 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4564 4565 // Partition the cases into two sets with different destinations. 4566 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4567 BasicBlock *DestB = nullptr; 4568 SmallVector<ConstantInt *, 16> CasesA; 4569 SmallVector<ConstantInt *, 16> CasesB; 4570 4571 for (auto Case : SI->cases()) { 4572 BasicBlock *Dest = Case.getCaseSuccessor(); 4573 if (!DestA) 4574 DestA = Dest; 4575 if (Dest == DestA) { 4576 CasesA.push_back(Case.getCaseValue()); 4577 continue; 4578 } 4579 if (!DestB) 4580 DestB = Dest; 4581 if (Dest == DestB) { 4582 CasesB.push_back(Case.getCaseValue()); 4583 continue; 4584 } 4585 return false; // More than two destinations. 4586 } 4587 4588 assert(DestA && DestB && 4589 "Single-destination switch should have been folded."); 4590 assert(DestA != DestB); 4591 assert(DestB != SI->getDefaultDest()); 4592 assert(!CasesB.empty() && "There must be non-default cases."); 4593 assert(!CasesA.empty() || HasDefault); 4594 4595 // Figure out if one of the sets of cases form a contiguous range. 4596 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4597 BasicBlock *ContiguousDest = nullptr; 4598 BasicBlock *OtherDest = nullptr; 4599 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4600 ContiguousCases = &CasesA; 4601 ContiguousDest = DestA; 4602 OtherDest = DestB; 4603 } else if (CasesAreContiguous(CasesB)) { 4604 ContiguousCases = &CasesB; 4605 ContiguousDest = DestB; 4606 OtherDest = DestA; 4607 } else 4608 return false; 4609 4610 // Start building the compare and branch. 4611 4612 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4613 Constant *NumCases = 4614 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4615 4616 Value *Sub = SI->getCondition(); 4617 if (!Offset->isNullValue()) 4618 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4619 4620 Value *Cmp; 4621 // If NumCases overflowed, then all possible values jump to the successor. 4622 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4623 Cmp = ConstantInt::getTrue(SI->getContext()); 4624 else 4625 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4626 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4627 4628 // Update weight for the newly-created conditional branch. 4629 if (HasBranchWeights(SI)) { 4630 SmallVector<uint64_t, 8> Weights; 4631 GetBranchWeights(SI, Weights); 4632 if (Weights.size() == 1 + SI->getNumCases()) { 4633 uint64_t TrueWeight = 0; 4634 uint64_t FalseWeight = 0; 4635 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4636 if (SI->getSuccessor(I) == ContiguousDest) 4637 TrueWeight += Weights[I]; 4638 else 4639 FalseWeight += Weights[I]; 4640 } 4641 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4642 TrueWeight /= 2; 4643 FalseWeight /= 2; 4644 } 4645 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4646 } 4647 } 4648 4649 // Prune obsolete incoming values off the successors' PHI nodes. 4650 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4651 unsigned PreviousEdges = ContiguousCases->size(); 4652 if (ContiguousDest == SI->getDefaultDest()) 4653 ++PreviousEdges; 4654 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4655 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4656 } 4657 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4658 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4659 if (OtherDest == SI->getDefaultDest()) 4660 ++PreviousEdges; 4661 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4662 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4663 } 4664 4665 // Clean up the default block - it may have phis or other instructions before 4666 // the unreachable terminator. 4667 if (!HasDefault) 4668 createUnreachableSwitchDefault(SI); 4669 4670 // Drop the switch. 4671 SI->eraseFromParent(); 4672 4673 return true; 4674 } 4675 4676 /// Compute masked bits for the condition of a switch 4677 /// and use it to remove dead cases. 4678 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4679 const DataLayout &DL) { 4680 Value *Cond = SI->getCondition(); 4681 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4682 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4683 4684 // We can also eliminate cases by determining that their values are outside of 4685 // the limited range of the condition based on how many significant (non-sign) 4686 // bits are in the condition value. 4687 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4688 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4689 4690 // Gather dead cases. 4691 SmallVector<ConstantInt *, 8> DeadCases; 4692 for (auto &Case : SI->cases()) { 4693 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4694 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4695 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4696 DeadCases.push_back(Case.getCaseValue()); 4697 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4698 << " is dead.\n"); 4699 } 4700 } 4701 4702 // If we can prove that the cases must cover all possible values, the 4703 // default destination becomes dead and we can remove it. If we know some 4704 // of the bits in the value, we can use that to more precisely compute the 4705 // number of possible unique case values. 4706 bool HasDefault = 4707 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4708 const unsigned NumUnknownBits = 4709 Bits - (Known.Zero | Known.One).countPopulation(); 4710 assert(NumUnknownBits <= Bits); 4711 if (HasDefault && DeadCases.empty() && 4712 NumUnknownBits < 64 /* avoid overflow */ && 4713 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4714 createUnreachableSwitchDefault(SI); 4715 return true; 4716 } 4717 4718 if (DeadCases.empty()) 4719 return false; 4720 4721 SwitchInstProfUpdateWrapper SIW(*SI); 4722 for (ConstantInt *DeadCase : DeadCases) { 4723 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4724 assert(CaseI != SI->case_default() && 4725 "Case was not found. Probably mistake in DeadCases forming."); 4726 // Prune unused values from PHI nodes. 4727 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4728 SIW.removeCase(CaseI); 4729 } 4730 4731 return true; 4732 } 4733 4734 /// If BB would be eligible for simplification by 4735 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4736 /// by an unconditional branch), look at the phi node for BB in the successor 4737 /// block and see if the incoming value is equal to CaseValue. If so, return 4738 /// the phi node, and set PhiIndex to BB's index in the phi node. 4739 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4740 BasicBlock *BB, int *PhiIndex) { 4741 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4742 return nullptr; // BB must be empty to be a candidate for simplification. 4743 if (!BB->getSinglePredecessor()) 4744 return nullptr; // BB must be dominated by the switch. 4745 4746 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4747 if (!Branch || !Branch->isUnconditional()) 4748 return nullptr; // Terminator must be unconditional branch. 4749 4750 BasicBlock *Succ = Branch->getSuccessor(0); 4751 4752 for (PHINode &PHI : Succ->phis()) { 4753 int Idx = PHI.getBasicBlockIndex(BB); 4754 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4755 4756 Value *InValue = PHI.getIncomingValue(Idx); 4757 if (InValue != CaseValue) 4758 continue; 4759 4760 *PhiIndex = Idx; 4761 return &PHI; 4762 } 4763 4764 return nullptr; 4765 } 4766 4767 /// Try to forward the condition of a switch instruction to a phi node 4768 /// dominated by the switch, if that would mean that some of the destination 4769 /// blocks of the switch can be folded away. Return true if a change is made. 4770 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4771 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4772 4773 ForwardingNodesMap ForwardingNodes; 4774 BasicBlock *SwitchBlock = SI->getParent(); 4775 bool Changed = false; 4776 for (auto &Case : SI->cases()) { 4777 ConstantInt *CaseValue = Case.getCaseValue(); 4778 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4779 4780 // Replace phi operands in successor blocks that are using the constant case 4781 // value rather than the switch condition variable: 4782 // switchbb: 4783 // switch i32 %x, label %default [ 4784 // i32 17, label %succ 4785 // ... 4786 // succ: 4787 // %r = phi i32 ... [ 17, %switchbb ] ... 4788 // --> 4789 // %r = phi i32 ... [ %x, %switchbb ] ... 4790 4791 for (PHINode &Phi : CaseDest->phis()) { 4792 // This only works if there is exactly 1 incoming edge from the switch to 4793 // a phi. If there is >1, that means multiple cases of the switch map to 1 4794 // value in the phi, and that phi value is not the switch condition. Thus, 4795 // this transform would not make sense (the phi would be invalid because 4796 // a phi can't have different incoming values from the same block). 4797 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4798 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4799 count(Phi.blocks(), SwitchBlock) == 1) { 4800 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4801 Changed = true; 4802 } 4803 } 4804 4805 // Collect phi nodes that are indirectly using this switch's case constants. 4806 int PhiIdx; 4807 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4808 ForwardingNodes[Phi].push_back(PhiIdx); 4809 } 4810 4811 for (auto &ForwardingNode : ForwardingNodes) { 4812 PHINode *Phi = ForwardingNode.first; 4813 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4814 if (Indexes.size() < 2) 4815 continue; 4816 4817 for (int Index : Indexes) 4818 Phi->setIncomingValue(Index, SI->getCondition()); 4819 Changed = true; 4820 } 4821 4822 return Changed; 4823 } 4824 4825 /// Return true if the backend will be able to handle 4826 /// initializing an array of constants like C. 4827 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4828 if (C->isThreadDependent()) 4829 return false; 4830 if (C->isDLLImportDependent()) 4831 return false; 4832 4833 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4834 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4835 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4836 return false; 4837 4838 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4839 if (!CE->isGEPWithNoNotionalOverIndexing()) 4840 return false; 4841 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4842 return false; 4843 } 4844 4845 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4846 return false; 4847 4848 return true; 4849 } 4850 4851 /// If V is a Constant, return it. Otherwise, try to look up 4852 /// its constant value in ConstantPool, returning 0 if it's not there. 4853 static Constant * 4854 LookupConstant(Value *V, 4855 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4856 if (Constant *C = dyn_cast<Constant>(V)) 4857 return C; 4858 return ConstantPool.lookup(V); 4859 } 4860 4861 /// Try to fold instruction I into a constant. This works for 4862 /// simple instructions such as binary operations where both operands are 4863 /// constant or can be replaced by constants from the ConstantPool. Returns the 4864 /// resulting constant on success, 0 otherwise. 4865 static Constant * 4866 ConstantFold(Instruction *I, const DataLayout &DL, 4867 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4868 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4869 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4870 if (!A) 4871 return nullptr; 4872 if (A->isAllOnesValue()) 4873 return LookupConstant(Select->getTrueValue(), ConstantPool); 4874 if (A->isNullValue()) 4875 return LookupConstant(Select->getFalseValue(), ConstantPool); 4876 return nullptr; 4877 } 4878 4879 SmallVector<Constant *, 4> COps; 4880 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4881 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4882 COps.push_back(A); 4883 else 4884 return nullptr; 4885 } 4886 4887 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4888 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4889 COps[1], DL); 4890 } 4891 4892 return ConstantFoldInstOperands(I, COps, DL); 4893 } 4894 4895 /// Try to determine the resulting constant values in phi nodes 4896 /// at the common destination basic block, *CommonDest, for one of the case 4897 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4898 /// case), of a switch instruction SI. 4899 static bool 4900 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4901 BasicBlock **CommonDest, 4902 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4903 const DataLayout &DL, const TargetTransformInfo &TTI) { 4904 // The block from which we enter the common destination. 4905 BasicBlock *Pred = SI->getParent(); 4906 4907 // If CaseDest is empty except for some side-effect free instructions through 4908 // which we can constant-propagate the CaseVal, continue to its successor. 4909 SmallDenseMap<Value *, Constant *> ConstantPool; 4910 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4911 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4912 if (I.isTerminator()) { 4913 // If the terminator is a simple branch, continue to the next block. 4914 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4915 return false; 4916 Pred = CaseDest; 4917 CaseDest = I.getSuccessor(0); 4918 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4919 // Instruction is side-effect free and constant. 4920 4921 // If the instruction has uses outside this block or a phi node slot for 4922 // the block, it is not safe to bypass the instruction since it would then 4923 // no longer dominate all its uses. 4924 for (auto &Use : I.uses()) { 4925 User *User = Use.getUser(); 4926 if (Instruction *I = dyn_cast<Instruction>(User)) 4927 if (I->getParent() == CaseDest) 4928 continue; 4929 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4930 if (Phi->getIncomingBlock(Use) == CaseDest) 4931 continue; 4932 return false; 4933 } 4934 4935 ConstantPool.insert(std::make_pair(&I, C)); 4936 } else { 4937 break; 4938 } 4939 } 4940 4941 // If we did not have a CommonDest before, use the current one. 4942 if (!*CommonDest) 4943 *CommonDest = CaseDest; 4944 // If the destination isn't the common one, abort. 4945 if (CaseDest != *CommonDest) 4946 return false; 4947 4948 // Get the values for this case from phi nodes in the destination block. 4949 for (PHINode &PHI : (*CommonDest)->phis()) { 4950 int Idx = PHI.getBasicBlockIndex(Pred); 4951 if (Idx == -1) 4952 continue; 4953 4954 Constant *ConstVal = 4955 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4956 if (!ConstVal) 4957 return false; 4958 4959 // Be conservative about which kinds of constants we support. 4960 if (!ValidLookupTableConstant(ConstVal, TTI)) 4961 return false; 4962 4963 Res.push_back(std::make_pair(&PHI, ConstVal)); 4964 } 4965 4966 return Res.size() > 0; 4967 } 4968 4969 // Helper function used to add CaseVal to the list of cases that generate 4970 // Result. Returns the updated number of cases that generate this result. 4971 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4972 SwitchCaseResultVectorTy &UniqueResults, 4973 Constant *Result) { 4974 for (auto &I : UniqueResults) { 4975 if (I.first == Result) { 4976 I.second.push_back(CaseVal); 4977 return I.second.size(); 4978 } 4979 } 4980 UniqueResults.push_back( 4981 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4982 return 1; 4983 } 4984 4985 // Helper function that initializes a map containing 4986 // results for the PHI node of the common destination block for a switch 4987 // instruction. Returns false if multiple PHI nodes have been found or if 4988 // there is not a common destination block for the switch. 4989 static bool 4990 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4991 SwitchCaseResultVectorTy &UniqueResults, 4992 Constant *&DefaultResult, const DataLayout &DL, 4993 const TargetTransformInfo &TTI, 4994 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4995 for (auto &I : SI->cases()) { 4996 ConstantInt *CaseVal = I.getCaseValue(); 4997 4998 // Resulting value at phi nodes for this case value. 4999 SwitchCaseResultsTy Results; 5000 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5001 DL, TTI)) 5002 return false; 5003 5004 // Only one value per case is permitted. 5005 if (Results.size() > 1) 5006 return false; 5007 5008 // Add the case->result mapping to UniqueResults. 5009 const uintptr_t NumCasesForResult = 5010 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5011 5012 // Early out if there are too many cases for this result. 5013 if (NumCasesForResult > MaxCasesPerResult) 5014 return false; 5015 5016 // Early out if there are too many unique results. 5017 if (UniqueResults.size() > MaxUniqueResults) 5018 return false; 5019 5020 // Check the PHI consistency. 5021 if (!PHI) 5022 PHI = Results[0].first; 5023 else if (PHI != Results[0].first) 5024 return false; 5025 } 5026 // Find the default result value. 5027 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5028 BasicBlock *DefaultDest = SI->getDefaultDest(); 5029 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5030 DL, TTI); 5031 // If the default value is not found abort unless the default destination 5032 // is unreachable. 5033 DefaultResult = 5034 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5035 if ((!DefaultResult && 5036 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5037 return false; 5038 5039 return true; 5040 } 5041 5042 // Helper function that checks if it is possible to transform a switch with only 5043 // two cases (or two cases + default) that produces a result into a select. 5044 // Example: 5045 // switch (a) { 5046 // case 10: %0 = icmp eq i32 %a, 10 5047 // return 10; %1 = select i1 %0, i32 10, i32 4 5048 // case 20: ----> %2 = icmp eq i32 %a, 20 5049 // return 2; %3 = select i1 %2, i32 2, i32 %1 5050 // default: 5051 // return 4; 5052 // } 5053 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5054 Constant *DefaultResult, Value *Condition, 5055 IRBuilder<> &Builder) { 5056 assert(ResultVector.size() == 2 && 5057 "We should have exactly two unique results at this point"); 5058 // If we are selecting between only two cases transform into a simple 5059 // select or a two-way select if default is possible. 5060 if (ResultVector[0].second.size() == 1 && 5061 ResultVector[1].second.size() == 1) { 5062 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5063 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5064 5065 bool DefaultCanTrigger = DefaultResult; 5066 Value *SelectValue = ResultVector[1].first; 5067 if (DefaultCanTrigger) { 5068 Value *const ValueCompare = 5069 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5070 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5071 DefaultResult, "switch.select"); 5072 } 5073 Value *const ValueCompare = 5074 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5075 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5076 SelectValue, "switch.select"); 5077 } 5078 5079 return nullptr; 5080 } 5081 5082 // Helper function to cleanup a switch instruction that has been converted into 5083 // a select, fixing up PHI nodes and basic blocks. 5084 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5085 Value *SelectValue, 5086 IRBuilder<> &Builder) { 5087 BasicBlock *SelectBB = SI->getParent(); 5088 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5089 PHI->removeIncomingValue(SelectBB); 5090 PHI->addIncoming(SelectValue, SelectBB); 5091 5092 Builder.CreateBr(PHI->getParent()); 5093 5094 // Remove the switch. 5095 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5096 BasicBlock *Succ = SI->getSuccessor(i); 5097 5098 if (Succ == PHI->getParent()) 5099 continue; 5100 Succ->removePredecessor(SelectBB); 5101 } 5102 SI->eraseFromParent(); 5103 } 5104 5105 /// If the switch is only used to initialize one or more 5106 /// phi nodes in a common successor block with only two different 5107 /// constant values, replace the switch with select. 5108 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5109 const DataLayout &DL, 5110 const TargetTransformInfo &TTI) { 5111 Value *const Cond = SI->getCondition(); 5112 PHINode *PHI = nullptr; 5113 BasicBlock *CommonDest = nullptr; 5114 Constant *DefaultResult; 5115 SwitchCaseResultVectorTy UniqueResults; 5116 // Collect all the cases that will deliver the same value from the switch. 5117 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5118 DL, TTI, 2, 1)) 5119 return false; 5120 // Selects choose between maximum two values. 5121 if (UniqueResults.size() != 2) 5122 return false; 5123 assert(PHI != nullptr && "PHI for value select not found"); 5124 5125 Builder.SetInsertPoint(SI); 5126 Value *SelectValue = 5127 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5128 if (SelectValue) { 5129 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 5130 return true; 5131 } 5132 // The switch couldn't be converted into a select. 5133 return false; 5134 } 5135 5136 namespace { 5137 5138 /// This class represents a lookup table that can be used to replace a switch. 5139 class SwitchLookupTable { 5140 public: 5141 /// Create a lookup table to use as a switch replacement with the contents 5142 /// of Values, using DefaultValue to fill any holes in the table. 5143 SwitchLookupTable( 5144 Module &M, uint64_t TableSize, ConstantInt *Offset, 5145 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5146 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5147 5148 /// Build instructions with Builder to retrieve the value at 5149 /// the position given by Index in the lookup table. 5150 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5151 5152 /// Return true if a table with TableSize elements of 5153 /// type ElementType would fit in a target-legal register. 5154 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5155 Type *ElementType); 5156 5157 private: 5158 // Depending on the contents of the table, it can be represented in 5159 // different ways. 5160 enum { 5161 // For tables where each element contains the same value, we just have to 5162 // store that single value and return it for each lookup. 5163 SingleValueKind, 5164 5165 // For tables where there is a linear relationship between table index 5166 // and values. We calculate the result with a simple multiplication 5167 // and addition instead of a table lookup. 5168 LinearMapKind, 5169 5170 // For small tables with integer elements, we can pack them into a bitmap 5171 // that fits into a target-legal register. Values are retrieved by 5172 // shift and mask operations. 5173 BitMapKind, 5174 5175 // The table is stored as an array of values. Values are retrieved by load 5176 // instructions from the table. 5177 ArrayKind 5178 } Kind; 5179 5180 // For SingleValueKind, this is the single value. 5181 Constant *SingleValue = nullptr; 5182 5183 // For BitMapKind, this is the bitmap. 5184 ConstantInt *BitMap = nullptr; 5185 IntegerType *BitMapElementTy = nullptr; 5186 5187 // For LinearMapKind, these are the constants used to derive the value. 5188 ConstantInt *LinearOffset = nullptr; 5189 ConstantInt *LinearMultiplier = nullptr; 5190 5191 // For ArrayKind, this is the array. 5192 GlobalVariable *Array = nullptr; 5193 }; 5194 5195 } // end anonymous namespace 5196 5197 SwitchLookupTable::SwitchLookupTable( 5198 Module &M, uint64_t TableSize, ConstantInt *Offset, 5199 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5200 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5201 assert(Values.size() && "Can't build lookup table without values!"); 5202 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5203 5204 // If all values in the table are equal, this is that value. 5205 SingleValue = Values.begin()->second; 5206 5207 Type *ValueType = Values.begin()->second->getType(); 5208 5209 // Build up the table contents. 5210 SmallVector<Constant *, 64> TableContents(TableSize); 5211 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5212 ConstantInt *CaseVal = Values[I].first; 5213 Constant *CaseRes = Values[I].second; 5214 assert(CaseRes->getType() == ValueType); 5215 5216 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5217 TableContents[Idx] = CaseRes; 5218 5219 if (CaseRes != SingleValue) 5220 SingleValue = nullptr; 5221 } 5222 5223 // Fill in any holes in the table with the default result. 5224 if (Values.size() < TableSize) { 5225 assert(DefaultValue && 5226 "Need a default value to fill the lookup table holes."); 5227 assert(DefaultValue->getType() == ValueType); 5228 for (uint64_t I = 0; I < TableSize; ++I) { 5229 if (!TableContents[I]) 5230 TableContents[I] = DefaultValue; 5231 } 5232 5233 if (DefaultValue != SingleValue) 5234 SingleValue = nullptr; 5235 } 5236 5237 // If each element in the table contains the same value, we only need to store 5238 // that single value. 5239 if (SingleValue) { 5240 Kind = SingleValueKind; 5241 return; 5242 } 5243 5244 // Check if we can derive the value with a linear transformation from the 5245 // table index. 5246 if (isa<IntegerType>(ValueType)) { 5247 bool LinearMappingPossible = true; 5248 APInt PrevVal; 5249 APInt DistToPrev; 5250 assert(TableSize >= 2 && "Should be a SingleValue table."); 5251 // Check if there is the same distance between two consecutive values. 5252 for (uint64_t I = 0; I < TableSize; ++I) { 5253 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5254 if (!ConstVal) { 5255 // This is an undef. We could deal with it, but undefs in lookup tables 5256 // are very seldom. It's probably not worth the additional complexity. 5257 LinearMappingPossible = false; 5258 break; 5259 } 5260 const APInt &Val = ConstVal->getValue(); 5261 if (I != 0) { 5262 APInt Dist = Val - PrevVal; 5263 if (I == 1) { 5264 DistToPrev = Dist; 5265 } else if (Dist != DistToPrev) { 5266 LinearMappingPossible = false; 5267 break; 5268 } 5269 } 5270 PrevVal = Val; 5271 } 5272 if (LinearMappingPossible) { 5273 LinearOffset = cast<ConstantInt>(TableContents[0]); 5274 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5275 Kind = LinearMapKind; 5276 ++NumLinearMaps; 5277 return; 5278 } 5279 } 5280 5281 // If the type is integer and the table fits in a register, build a bitmap. 5282 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5283 IntegerType *IT = cast<IntegerType>(ValueType); 5284 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5285 for (uint64_t I = TableSize; I > 0; --I) { 5286 TableInt <<= IT->getBitWidth(); 5287 // Insert values into the bitmap. Undef values are set to zero. 5288 if (!isa<UndefValue>(TableContents[I - 1])) { 5289 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5290 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5291 } 5292 } 5293 BitMap = ConstantInt::get(M.getContext(), TableInt); 5294 BitMapElementTy = IT; 5295 Kind = BitMapKind; 5296 ++NumBitMaps; 5297 return; 5298 } 5299 5300 // Store the table in an array. 5301 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5302 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5303 5304 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5305 GlobalVariable::PrivateLinkage, Initializer, 5306 "switch.table." + FuncName); 5307 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5308 // Set the alignment to that of an array items. We will be only loading one 5309 // value out of it. 5310 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5311 Kind = ArrayKind; 5312 } 5313 5314 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5315 switch (Kind) { 5316 case SingleValueKind: 5317 return SingleValue; 5318 case LinearMapKind: { 5319 // Derive the result value from the input value. 5320 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5321 false, "switch.idx.cast"); 5322 if (!LinearMultiplier->isOne()) 5323 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5324 if (!LinearOffset->isZero()) 5325 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5326 return Result; 5327 } 5328 case BitMapKind: { 5329 // Type of the bitmap (e.g. i59). 5330 IntegerType *MapTy = BitMap->getType(); 5331 5332 // Cast Index to the same type as the bitmap. 5333 // Note: The Index is <= the number of elements in the table, so 5334 // truncating it to the width of the bitmask is safe. 5335 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5336 5337 // Multiply the shift amount by the element width. 5338 ShiftAmt = Builder.CreateMul( 5339 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5340 "switch.shiftamt"); 5341 5342 // Shift down. 5343 Value *DownShifted = 5344 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5345 // Mask off. 5346 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5347 } 5348 case ArrayKind: { 5349 // Make sure the table index will not overflow when treated as signed. 5350 IntegerType *IT = cast<IntegerType>(Index->getType()); 5351 uint64_t TableSize = 5352 Array->getInitializer()->getType()->getArrayNumElements(); 5353 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5354 Index = Builder.CreateZExt( 5355 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5356 "switch.tableidx.zext"); 5357 5358 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5359 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5360 GEPIndices, "switch.gep"); 5361 return Builder.CreateLoad( 5362 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5363 "switch.load"); 5364 } 5365 } 5366 llvm_unreachable("Unknown lookup table kind!"); 5367 } 5368 5369 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5370 uint64_t TableSize, 5371 Type *ElementType) { 5372 auto *IT = dyn_cast<IntegerType>(ElementType); 5373 if (!IT) 5374 return false; 5375 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5376 // are <= 15, we could try to narrow the type. 5377 5378 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5379 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5380 return false; 5381 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5382 } 5383 5384 /// Determine whether a lookup table should be built for this switch, based on 5385 /// the number of cases, size of the table, and the types of the results. 5386 static bool 5387 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5388 const TargetTransformInfo &TTI, const DataLayout &DL, 5389 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5390 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5391 return false; // TableSize overflowed, or mul below might overflow. 5392 5393 bool AllTablesFitInRegister = true; 5394 bool HasIllegalType = false; 5395 for (const auto &I : ResultTypes) { 5396 Type *Ty = I.second; 5397 5398 // Saturate this flag to true. 5399 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5400 5401 // Saturate this flag to false. 5402 AllTablesFitInRegister = 5403 AllTablesFitInRegister && 5404 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5405 5406 // If both flags saturate, we're done. NOTE: This *only* works with 5407 // saturating flags, and all flags have to saturate first due to the 5408 // non-deterministic behavior of iterating over a dense map. 5409 if (HasIllegalType && !AllTablesFitInRegister) 5410 break; 5411 } 5412 5413 // If each table would fit in a register, we should build it anyway. 5414 if (AllTablesFitInRegister) 5415 return true; 5416 5417 // Don't build a table that doesn't fit in-register if it has illegal types. 5418 if (HasIllegalType) 5419 return false; 5420 5421 // The table density should be at least 40%. This is the same criterion as for 5422 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5423 // FIXME: Find the best cut-off. 5424 return SI->getNumCases() * 10 >= TableSize * 4; 5425 } 5426 5427 /// Try to reuse the switch table index compare. Following pattern: 5428 /// \code 5429 /// if (idx < tablesize) 5430 /// r = table[idx]; // table does not contain default_value 5431 /// else 5432 /// r = default_value; 5433 /// if (r != default_value) 5434 /// ... 5435 /// \endcode 5436 /// Is optimized to: 5437 /// \code 5438 /// cond = idx < tablesize; 5439 /// if (cond) 5440 /// r = table[idx]; 5441 /// else 5442 /// r = default_value; 5443 /// if (cond) 5444 /// ... 5445 /// \endcode 5446 /// Jump threading will then eliminate the second if(cond). 5447 static void reuseTableCompare( 5448 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5449 Constant *DefaultValue, 5450 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5451 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5452 if (!CmpInst) 5453 return; 5454 5455 // We require that the compare is in the same block as the phi so that jump 5456 // threading can do its work afterwards. 5457 if (CmpInst->getParent() != PhiBlock) 5458 return; 5459 5460 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5461 if (!CmpOp1) 5462 return; 5463 5464 Value *RangeCmp = RangeCheckBranch->getCondition(); 5465 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5466 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5467 5468 // Check if the compare with the default value is constant true or false. 5469 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5470 DefaultValue, CmpOp1, true); 5471 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5472 return; 5473 5474 // Check if the compare with the case values is distinct from the default 5475 // compare result. 5476 for (auto ValuePair : Values) { 5477 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5478 ValuePair.second, CmpOp1, true); 5479 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5480 return; 5481 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5482 "Expect true or false as compare result."); 5483 } 5484 5485 // Check if the branch instruction dominates the phi node. It's a simple 5486 // dominance check, but sufficient for our needs. 5487 // Although this check is invariant in the calling loops, it's better to do it 5488 // at this late stage. Practically we do it at most once for a switch. 5489 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5490 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5491 BasicBlock *Pred = *PI; 5492 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5493 return; 5494 } 5495 5496 if (DefaultConst == FalseConst) { 5497 // The compare yields the same result. We can replace it. 5498 CmpInst->replaceAllUsesWith(RangeCmp); 5499 ++NumTableCmpReuses; 5500 } else { 5501 // The compare yields the same result, just inverted. We can replace it. 5502 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5503 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5504 RangeCheckBranch); 5505 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5506 ++NumTableCmpReuses; 5507 } 5508 } 5509 5510 /// If the switch is only used to initialize one or more phi nodes in a common 5511 /// successor block with different constant values, replace the switch with 5512 /// lookup tables. 5513 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5514 const DataLayout &DL, 5515 const TargetTransformInfo &TTI) { 5516 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5517 5518 Function *Fn = SI->getParent()->getParent(); 5519 // Only build lookup table when we have a target that supports it or the 5520 // attribute is not set. 5521 if (!TTI.shouldBuildLookupTables() || 5522 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5523 return false; 5524 5525 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5526 // split off a dense part and build a lookup table for that. 5527 5528 // FIXME: This creates arrays of GEPs to constant strings, which means each 5529 // GEP needs a runtime relocation in PIC code. We should just build one big 5530 // string and lookup indices into that. 5531 5532 // Ignore switches with less than three cases. Lookup tables will not make 5533 // them faster, so we don't analyze them. 5534 if (SI->getNumCases() < 3) 5535 return false; 5536 5537 // Figure out the corresponding result for each case value and phi node in the 5538 // common destination, as well as the min and max case values. 5539 assert(!SI->cases().empty()); 5540 SwitchInst::CaseIt CI = SI->case_begin(); 5541 ConstantInt *MinCaseVal = CI->getCaseValue(); 5542 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5543 5544 BasicBlock *CommonDest = nullptr; 5545 5546 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5547 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5548 5549 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5550 SmallDenseMap<PHINode *, Type *> ResultTypes; 5551 SmallVector<PHINode *, 4> PHIs; 5552 5553 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5554 ConstantInt *CaseVal = CI->getCaseValue(); 5555 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5556 MinCaseVal = CaseVal; 5557 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5558 MaxCaseVal = CaseVal; 5559 5560 // Resulting value at phi nodes for this case value. 5561 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5562 ResultsTy Results; 5563 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5564 Results, DL, TTI)) 5565 return false; 5566 5567 // Append the result from this case to the list for each phi. 5568 for (const auto &I : Results) { 5569 PHINode *PHI = I.first; 5570 Constant *Value = I.second; 5571 if (!ResultLists.count(PHI)) 5572 PHIs.push_back(PHI); 5573 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5574 } 5575 } 5576 5577 // Keep track of the result types. 5578 for (PHINode *PHI : PHIs) { 5579 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5580 } 5581 5582 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5583 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5584 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5585 bool TableHasHoles = (NumResults < TableSize); 5586 5587 // If the table has holes, we need a constant result for the default case 5588 // or a bitmask that fits in a register. 5589 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5590 bool HasDefaultResults = 5591 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5592 DefaultResultsList, DL, TTI); 5593 5594 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5595 if (NeedMask) { 5596 // As an extra penalty for the validity test we require more cases. 5597 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5598 return false; 5599 if (!DL.fitsInLegalInteger(TableSize)) 5600 return false; 5601 } 5602 5603 for (const auto &I : DefaultResultsList) { 5604 PHINode *PHI = I.first; 5605 Constant *Result = I.second; 5606 DefaultResults[PHI] = Result; 5607 } 5608 5609 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5610 return false; 5611 5612 // Create the BB that does the lookups. 5613 Module &Mod = *CommonDest->getParent()->getParent(); 5614 BasicBlock *LookupBB = BasicBlock::Create( 5615 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5616 5617 // Compute the table index value. 5618 Builder.SetInsertPoint(SI); 5619 Value *TableIndex; 5620 if (MinCaseVal->isNullValue()) 5621 TableIndex = SI->getCondition(); 5622 else 5623 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5624 "switch.tableidx"); 5625 5626 // Compute the maximum table size representable by the integer type we are 5627 // switching upon. 5628 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5629 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5630 assert(MaxTableSize >= TableSize && 5631 "It is impossible for a switch to have more entries than the max " 5632 "representable value of its input integer type's size."); 5633 5634 // If the default destination is unreachable, or if the lookup table covers 5635 // all values of the conditional variable, branch directly to the lookup table 5636 // BB. Otherwise, check that the condition is within the case range. 5637 const bool DefaultIsReachable = 5638 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5639 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5640 BranchInst *RangeCheckBranch = nullptr; 5641 5642 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5643 Builder.CreateBr(LookupBB); 5644 // Note: We call removeProdecessor later since we need to be able to get the 5645 // PHI value for the default case in case we're using a bit mask. 5646 } else { 5647 Value *Cmp = Builder.CreateICmpULT( 5648 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5649 RangeCheckBranch = 5650 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5651 } 5652 5653 // Populate the BB that does the lookups. 5654 Builder.SetInsertPoint(LookupBB); 5655 5656 if (NeedMask) { 5657 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5658 // re-purposed to do the hole check, and we create a new LookupBB. 5659 BasicBlock *MaskBB = LookupBB; 5660 MaskBB->setName("switch.hole_check"); 5661 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5662 CommonDest->getParent(), CommonDest); 5663 5664 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5665 // unnecessary illegal types. 5666 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5667 APInt MaskInt(TableSizePowOf2, 0); 5668 APInt One(TableSizePowOf2, 1); 5669 // Build bitmask; fill in a 1 bit for every case. 5670 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5671 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5672 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5673 .getLimitedValue(); 5674 MaskInt |= One << Idx; 5675 } 5676 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5677 5678 // Get the TableIndex'th bit of the bitmask. 5679 // If this bit is 0 (meaning hole) jump to the default destination, 5680 // else continue with table lookup. 5681 IntegerType *MapTy = TableMask->getType(); 5682 Value *MaskIndex = 5683 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5684 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5685 Value *LoBit = Builder.CreateTrunc( 5686 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5687 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5688 5689 Builder.SetInsertPoint(LookupBB); 5690 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5691 } 5692 5693 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5694 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5695 // do not delete PHINodes here. 5696 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5697 /*KeepOneInputPHIs=*/true); 5698 } 5699 5700 bool ReturnedEarly = false; 5701 for (PHINode *PHI : PHIs) { 5702 const ResultListTy &ResultList = ResultLists[PHI]; 5703 5704 // If using a bitmask, use any value to fill the lookup table holes. 5705 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5706 StringRef FuncName = Fn->getName(); 5707 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5708 FuncName); 5709 5710 Value *Result = Table.BuildLookup(TableIndex, Builder); 5711 5712 // If the result is used to return immediately from the function, we want to 5713 // do that right here. 5714 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5715 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5716 Builder.CreateRet(Result); 5717 ReturnedEarly = true; 5718 break; 5719 } 5720 5721 // Do a small peephole optimization: re-use the switch table compare if 5722 // possible. 5723 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5724 BasicBlock *PhiBlock = PHI->getParent(); 5725 // Search for compare instructions which use the phi. 5726 for (auto *User : PHI->users()) { 5727 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5728 } 5729 } 5730 5731 PHI->addIncoming(Result, LookupBB); 5732 } 5733 5734 if (!ReturnedEarly) 5735 Builder.CreateBr(CommonDest); 5736 5737 // Remove the switch. 5738 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5739 BasicBlock *Succ = SI->getSuccessor(i); 5740 5741 if (Succ == SI->getDefaultDest()) 5742 continue; 5743 Succ->removePredecessor(SI->getParent()); 5744 } 5745 SI->eraseFromParent(); 5746 5747 ++NumLookupTables; 5748 if (NeedMask) 5749 ++NumLookupTablesHoles; 5750 return true; 5751 } 5752 5753 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5754 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5755 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5756 uint64_t Range = Diff + 1; 5757 uint64_t NumCases = Values.size(); 5758 // 40% is the default density for building a jump table in optsize/minsize mode. 5759 uint64_t MinDensity = 40; 5760 5761 return NumCases * 100 >= Range * MinDensity; 5762 } 5763 5764 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5765 /// of cases. 5766 /// 5767 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5768 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5769 /// 5770 /// This converts a sparse switch into a dense switch which allows better 5771 /// lowering and could also allow transforming into a lookup table. 5772 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5773 const DataLayout &DL, 5774 const TargetTransformInfo &TTI) { 5775 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5776 if (CondTy->getIntegerBitWidth() > 64 || 5777 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5778 return false; 5779 // Only bother with this optimization if there are more than 3 switch cases; 5780 // SDAG will only bother creating jump tables for 4 or more cases. 5781 if (SI->getNumCases() < 4) 5782 return false; 5783 5784 // This transform is agnostic to the signedness of the input or case values. We 5785 // can treat the case values as signed or unsigned. We can optimize more common 5786 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5787 // as signed. 5788 SmallVector<int64_t,4> Values; 5789 for (auto &C : SI->cases()) 5790 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5791 llvm::sort(Values); 5792 5793 // If the switch is already dense, there's nothing useful to do here. 5794 if (isSwitchDense(Values)) 5795 return false; 5796 5797 // First, transform the values such that they start at zero and ascend. 5798 int64_t Base = Values[0]; 5799 for (auto &V : Values) 5800 V -= (uint64_t)(Base); 5801 5802 // Now we have signed numbers that have been shifted so that, given enough 5803 // precision, there are no negative values. Since the rest of the transform 5804 // is bitwise only, we switch now to an unsigned representation. 5805 5806 // This transform can be done speculatively because it is so cheap - it 5807 // results in a single rotate operation being inserted. 5808 // FIXME: It's possible that optimizing a switch on powers of two might also 5809 // be beneficial - flag values are often powers of two and we could use a CLZ 5810 // as the key function. 5811 5812 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5813 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5814 // less than 64. 5815 unsigned Shift = 64; 5816 for (auto &V : Values) 5817 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5818 assert(Shift < 64); 5819 if (Shift > 0) 5820 for (auto &V : Values) 5821 V = (int64_t)((uint64_t)V >> Shift); 5822 5823 if (!isSwitchDense(Values)) 5824 // Transform didn't create a dense switch. 5825 return false; 5826 5827 // The obvious transform is to shift the switch condition right and emit a 5828 // check that the condition actually cleanly divided by GCD, i.e. 5829 // C & (1 << Shift - 1) == 0 5830 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5831 // 5832 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5833 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5834 // are nonzero then the switch condition will be very large and will hit the 5835 // default case. 5836 5837 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5838 Builder.SetInsertPoint(SI); 5839 auto *ShiftC = ConstantInt::get(Ty, Shift); 5840 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5841 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5842 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5843 auto *Rot = Builder.CreateOr(LShr, Shl); 5844 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5845 5846 for (auto Case : SI->cases()) { 5847 auto *Orig = Case.getCaseValue(); 5848 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5849 Case.setValue( 5850 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5851 } 5852 return true; 5853 } 5854 5855 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5856 BasicBlock *BB = SI->getParent(); 5857 5858 if (isValueEqualityComparison(SI)) { 5859 // If we only have one predecessor, and if it is a branch on this value, 5860 // see if that predecessor totally determines the outcome of this switch. 5861 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5862 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5863 return requestResimplify(); 5864 5865 Value *Cond = SI->getCondition(); 5866 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5867 if (SimplifySwitchOnSelect(SI, Select)) 5868 return requestResimplify(); 5869 5870 // If the block only contains the switch, see if we can fold the block 5871 // away into any preds. 5872 if (SI == &*BB->instructionsWithoutDebug().begin()) 5873 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5874 return requestResimplify(); 5875 } 5876 5877 // Try to transform the switch into an icmp and a branch. 5878 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5879 return requestResimplify(); 5880 5881 // Remove unreachable cases. 5882 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5883 return requestResimplify(); 5884 5885 if (switchToSelect(SI, Builder, DL, TTI)) 5886 return requestResimplify(); 5887 5888 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5889 return requestResimplify(); 5890 5891 // The conversion from switch to lookup tables results in difficult-to-analyze 5892 // code and makes pruning branches much harder. This is a problem if the 5893 // switch expression itself can still be restricted as a result of inlining or 5894 // CVP. Therefore, only apply this transformation during late stages of the 5895 // optimisation pipeline. 5896 if (Options.ConvertSwitchToLookupTable && 5897 SwitchToLookupTable(SI, Builder, DL, TTI)) 5898 return requestResimplify(); 5899 5900 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5901 return requestResimplify(); 5902 5903 return false; 5904 } 5905 5906 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 5907 BasicBlock *BB = IBI->getParent(); 5908 bool Changed = false; 5909 5910 // Eliminate redundant destinations. 5911 SmallPtrSet<Value *, 8> Succs; 5912 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5913 BasicBlock *Dest = IBI->getDestination(i); 5914 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5915 Dest->removePredecessor(BB); 5916 IBI->removeDestination(i); 5917 --i; 5918 --e; 5919 Changed = true; 5920 } 5921 } 5922 5923 if (IBI->getNumDestinations() == 0) { 5924 // If the indirectbr has no successors, change it to unreachable. 5925 new UnreachableInst(IBI->getContext(), IBI); 5926 EraseTerminatorAndDCECond(IBI); 5927 return true; 5928 } 5929 5930 if (IBI->getNumDestinations() == 1) { 5931 // If the indirectbr has one successor, change it to a direct branch. 5932 BranchInst::Create(IBI->getDestination(0), IBI); 5933 EraseTerminatorAndDCECond(IBI); 5934 return true; 5935 } 5936 5937 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5938 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5939 return requestResimplify(); 5940 } 5941 return Changed; 5942 } 5943 5944 /// Given an block with only a single landing pad and a unconditional branch 5945 /// try to find another basic block which this one can be merged with. This 5946 /// handles cases where we have multiple invokes with unique landing pads, but 5947 /// a shared handler. 5948 /// 5949 /// We specifically choose to not worry about merging non-empty blocks 5950 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5951 /// practice, the optimizer produces empty landing pad blocks quite frequently 5952 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5953 /// sinking in this file) 5954 /// 5955 /// This is primarily a code size optimization. We need to avoid performing 5956 /// any transform which might inhibit optimization (such as our ability to 5957 /// specialize a particular handler via tail commoning). We do this by not 5958 /// merging any blocks which require us to introduce a phi. Since the same 5959 /// values are flowing through both blocks, we don't lose any ability to 5960 /// specialize. If anything, we make such specialization more likely. 5961 /// 5962 /// TODO - This transformation could remove entries from a phi in the target 5963 /// block when the inputs in the phi are the same for the two blocks being 5964 /// merged. In some cases, this could result in removal of the PHI entirely. 5965 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5966 BasicBlock *BB) { 5967 auto Succ = BB->getUniqueSuccessor(); 5968 assert(Succ); 5969 // If there's a phi in the successor block, we'd likely have to introduce 5970 // a phi into the merged landing pad block. 5971 if (isa<PHINode>(*Succ->begin())) 5972 return false; 5973 5974 for (BasicBlock *OtherPred : predecessors(Succ)) { 5975 if (BB == OtherPred) 5976 continue; 5977 BasicBlock::iterator I = OtherPred->begin(); 5978 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5979 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5980 continue; 5981 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5982 ; 5983 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5984 if (!BI2 || !BI2->isIdenticalTo(BI)) 5985 continue; 5986 5987 // We've found an identical block. Update our predecessors to take that 5988 // path instead and make ourselves dead. 5989 SmallPtrSet<BasicBlock *, 16> Preds; 5990 Preds.insert(pred_begin(BB), pred_end(BB)); 5991 for (BasicBlock *Pred : Preds) { 5992 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5993 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5994 "unexpected successor"); 5995 II->setUnwindDest(OtherPred); 5996 } 5997 5998 // The debug info in OtherPred doesn't cover the merged control flow that 5999 // used to go through BB. We need to delete it or update it. 6000 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6001 Instruction &Inst = *I; 6002 I++; 6003 if (isa<DbgInfoIntrinsic>(Inst)) 6004 Inst.eraseFromParent(); 6005 } 6006 6007 SmallPtrSet<BasicBlock *, 16> Succs; 6008 Succs.insert(succ_begin(BB), succ_end(BB)); 6009 for (BasicBlock *Succ : Succs) { 6010 Succ->removePredecessor(BB); 6011 } 6012 6013 IRBuilder<> Builder(BI); 6014 Builder.CreateUnreachable(); 6015 BI->eraseFromParent(); 6016 return true; 6017 } 6018 return false; 6019 } 6020 6021 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6022 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6023 : simplifyCondBranch(Branch, Builder); 6024 } 6025 6026 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6027 IRBuilder<> &Builder) { 6028 BasicBlock *BB = BI->getParent(); 6029 BasicBlock *Succ = BI->getSuccessor(0); 6030 6031 // If the Terminator is the only non-phi instruction, simplify the block. 6032 // If LoopHeader is provided, check if the block or its successor is a loop 6033 // header. (This is for early invocations before loop simplify and 6034 // vectorization to keep canonical loop forms for nested loops. These blocks 6035 // can be eliminated when the pass is invoked later in the back-end.) 6036 // Note that if BB has only one predecessor then we do not introduce new 6037 // backedge, so we can eliminate BB. 6038 bool NeedCanonicalLoop = 6039 Options.NeedCanonicalLoop && 6040 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 6041 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 6042 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 6043 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6044 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 6045 return true; 6046 6047 // If the only instruction in the block is a seteq/setne comparison against a 6048 // constant, try to simplify the block. 6049 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6050 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6051 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6052 ; 6053 if (I->isTerminator() && 6054 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6055 return true; 6056 } 6057 6058 // See if we can merge an empty landing pad block with another which is 6059 // equivalent. 6060 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6061 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6062 ; 6063 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 6064 return true; 6065 } 6066 6067 // If this basic block is ONLY a compare and a branch, and if a predecessor 6068 // branches to us and our successor, fold the comparison into the 6069 // predecessor and use logical operations to update the incoming value 6070 // for PHI nodes in common successor. 6071 if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold)) 6072 return requestResimplify(); 6073 return false; 6074 } 6075 6076 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6077 BasicBlock *PredPred = nullptr; 6078 for (auto *P : predecessors(BB)) { 6079 BasicBlock *PPred = P->getSinglePredecessor(); 6080 if (!PPred || (PredPred && PredPred != PPred)) 6081 return nullptr; 6082 PredPred = PPred; 6083 } 6084 return PredPred; 6085 } 6086 6087 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6088 BasicBlock *BB = BI->getParent(); 6089 if (!Options.SimplifyCondBranch) 6090 return false; 6091 6092 // Conditional branch 6093 if (isValueEqualityComparison(BI)) { 6094 // If we only have one predecessor, and if it is a branch on this value, 6095 // see if that predecessor totally determines the outcome of this 6096 // switch. 6097 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6098 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6099 return requestResimplify(); 6100 6101 // This block must be empty, except for the setcond inst, if it exists. 6102 // Ignore dbg intrinsics. 6103 auto I = BB->instructionsWithoutDebug().begin(); 6104 if (&*I == BI) { 6105 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6106 return requestResimplify(); 6107 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6108 ++I; 6109 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6110 return requestResimplify(); 6111 } 6112 } 6113 6114 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6115 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6116 return true; 6117 6118 // If this basic block has dominating predecessor blocks and the dominating 6119 // blocks' conditions imply BI's condition, we know the direction of BI. 6120 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6121 if (Imp) { 6122 // Turn this into a branch on constant. 6123 auto *OldCond = BI->getCondition(); 6124 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6125 : ConstantInt::getFalse(BB->getContext()); 6126 BI->setCondition(TorF); 6127 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6128 return requestResimplify(); 6129 } 6130 6131 // If this basic block is ONLY a compare and a branch, and if a predecessor 6132 // branches to us and one of our successors, fold the comparison into the 6133 // predecessor and use logical operations to pick the right destination. 6134 if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold)) 6135 return requestResimplify(); 6136 6137 // We have a conditional branch to two blocks that are only reachable 6138 // from BI. We know that the condbr dominates the two blocks, so see if 6139 // there is any identical code in the "then" and "else" blocks. If so, we 6140 // can hoist it up to the branching block. 6141 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6142 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6143 if (HoistCommon && Options.HoistCommonInsts) 6144 if (HoistThenElseCodeToIf(BI, TTI)) 6145 return requestResimplify(); 6146 } else { 6147 // If Successor #1 has multiple preds, we may be able to conditionally 6148 // execute Successor #0 if it branches to Successor #1. 6149 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6150 if (Succ0TI->getNumSuccessors() == 1 && 6151 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6152 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6153 return requestResimplify(); 6154 } 6155 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6156 // If Successor #0 has multiple preds, we may be able to conditionally 6157 // execute Successor #1 if it branches to Successor #0. 6158 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6159 if (Succ1TI->getNumSuccessors() == 1 && 6160 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6161 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6162 return requestResimplify(); 6163 } 6164 6165 // If this is a branch on a phi node in the current block, thread control 6166 // through this block if any PHI node entries are constants. 6167 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6168 if (PN->getParent() == BI->getParent()) 6169 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 6170 return requestResimplify(); 6171 6172 // Scan predecessor blocks for conditional branches. 6173 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6174 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6175 if (PBI != BI && PBI->isConditional()) 6176 if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI)) 6177 return requestResimplify(); 6178 6179 // Look for diamond patterns. 6180 if (MergeCondStores) 6181 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6182 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6183 if (PBI != BI && PBI->isConditional()) 6184 if (mergeConditionalStores(PBI, BI, DL, TTI)) 6185 return requestResimplify(); 6186 6187 return false; 6188 } 6189 6190 /// Check if passing a value to an instruction will cause undefined behavior. 6191 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 6192 Constant *C = dyn_cast<Constant>(V); 6193 if (!C) 6194 return false; 6195 6196 if (I->use_empty()) 6197 return false; 6198 6199 if (C->isNullValue() || isa<UndefValue>(C)) { 6200 // Only look at the first use, avoid hurting compile time with long uselists 6201 User *Use = *I->user_begin(); 6202 6203 // Now make sure that there are no instructions in between that can alter 6204 // control flow (eg. calls) 6205 for (BasicBlock::iterator 6206 i = ++BasicBlock::iterator(I), 6207 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6208 i != UI; ++i) 6209 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6210 return false; 6211 6212 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6213 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6214 if (GEP->getPointerOperand() == I) 6215 return passingValueIsAlwaysUndefined(V, GEP); 6216 6217 // Look through bitcasts. 6218 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6219 return passingValueIsAlwaysUndefined(V, BC); 6220 6221 // Load from null is undefined. 6222 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6223 if (!LI->isVolatile()) 6224 return !NullPointerIsDefined(LI->getFunction(), 6225 LI->getPointerAddressSpace()); 6226 6227 // Store to null is undefined. 6228 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6229 if (!SI->isVolatile()) 6230 return (!NullPointerIsDefined(SI->getFunction(), 6231 SI->getPointerAddressSpace())) && 6232 SI->getPointerOperand() == I; 6233 6234 // A call to null is undefined. 6235 if (auto *CB = dyn_cast<CallBase>(Use)) 6236 return !NullPointerIsDefined(CB->getFunction()) && 6237 CB->getCalledOperand() == I; 6238 } 6239 return false; 6240 } 6241 6242 /// If BB has an incoming value that will always trigger undefined behavior 6243 /// (eg. null pointer dereference), remove the branch leading here. 6244 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 6245 for (PHINode &PHI : BB->phis()) 6246 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6247 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6248 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6249 IRBuilder<> Builder(T); 6250 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6251 BB->removePredecessor(PHI.getIncomingBlock(i)); 6252 // Turn uncoditional branches into unreachables and remove the dead 6253 // destination from conditional branches. 6254 if (BI->isUnconditional()) 6255 Builder.CreateUnreachable(); 6256 else 6257 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6258 : BI->getSuccessor(0)); 6259 BI->eraseFromParent(); 6260 return true; 6261 } 6262 // TODO: SwitchInst. 6263 } 6264 6265 return false; 6266 } 6267 6268 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6269 bool Changed = false; 6270 6271 assert(BB && BB->getParent() && "Block not embedded in function!"); 6272 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6273 6274 // Remove basic blocks that have no predecessors (except the entry block)... 6275 // or that just have themself as a predecessor. These are unreachable. 6276 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6277 BB->getSinglePredecessor() == BB) { 6278 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6279 DeleteDeadBlock(BB); 6280 return true; 6281 } 6282 6283 // Check to see if we can constant propagate this terminator instruction 6284 // away... 6285 Changed |= ConstantFoldTerminator(BB, true); 6286 6287 // Check for and eliminate duplicate PHI nodes in this block. 6288 Changed |= EliminateDuplicatePHINodes(BB); 6289 6290 // Check for and remove branches that will always cause undefined behavior. 6291 Changed |= removeUndefIntroducingPredecessor(BB); 6292 6293 // Merge basic blocks into their predecessor if there is only one distinct 6294 // pred, and if there is only one distinct successor of the predecessor, and 6295 // if there are no PHI nodes. 6296 if (MergeBlockIntoPredecessor(BB)) 6297 return true; 6298 6299 if (SinkCommon && Options.SinkCommonInsts) 6300 Changed |= SinkCommonCodeFromPredecessors(BB); 6301 6302 IRBuilder<> Builder(BB); 6303 6304 if (Options.FoldTwoEntryPHINode) { 6305 // If there is a trivial two-entry PHI node in this basic block, and we can 6306 // eliminate it, do so now. 6307 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6308 if (PN->getNumIncomingValues() == 2) 6309 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6310 } 6311 6312 Instruction *Terminator = BB->getTerminator(); 6313 Builder.SetInsertPoint(Terminator); 6314 switch (Terminator->getOpcode()) { 6315 case Instruction::Br: 6316 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6317 break; 6318 case Instruction::Ret: 6319 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6320 break; 6321 case Instruction::Resume: 6322 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6323 break; 6324 case Instruction::CleanupRet: 6325 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6326 break; 6327 case Instruction::Switch: 6328 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6329 break; 6330 case Instruction::Unreachable: 6331 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6332 break; 6333 case Instruction::IndirectBr: 6334 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6335 break; 6336 } 6337 6338 return Changed; 6339 } 6340 6341 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6342 bool Changed = false; 6343 6344 // Repeated simplify BB as long as resimplification is requested. 6345 do { 6346 Resimplify = false; 6347 6348 // Perform one round of simplifcation. Resimplify flag will be set if 6349 // another iteration is requested. 6350 Changed |= simplifyOnce(BB); 6351 } while (Resimplify); 6352 6353 return Changed; 6354 } 6355 6356 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6357 const SimplifyCFGOptions &Options, 6358 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6359 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6360 Options) 6361 .run(BB); 6362 } 6363