1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include <algorithm> 47 #include <map> 48 #include <set> 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 #define DEBUG_TYPE "simplifycfg" 53 54 static cl::opt<unsigned> 55 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 56 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 57 58 static cl::opt<bool> 59 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 60 cl::desc("Duplicate return instructions into unconditional branches")); 61 62 static cl::opt<bool> 63 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 64 cl::desc("Sink common instructions down to the end block")); 65 66 static cl::opt<bool> HoistCondStores( 67 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 68 cl::desc("Hoist conditional stores if an unconditional store precedes")); 69 70 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 71 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 72 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 73 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 74 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 75 76 namespace { 77 /// ValueEqualityComparisonCase - Represents a case of a switch. 78 struct ValueEqualityComparisonCase { 79 ConstantInt *Value; 80 BasicBlock *Dest; 81 82 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 83 : Value(Value), Dest(Dest) {} 84 85 bool operator<(ValueEqualityComparisonCase RHS) const { 86 // Comparing pointers is ok as we only rely on the order for uniquing. 87 return Value < RHS.Value; 88 } 89 90 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 91 }; 92 93 class SimplifyCFGOpt { 94 const TargetTransformInfo &TTI; 95 const DataLayout *const DL; 96 Value *isValueEqualityComparison(TerminatorInst *TI); 97 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 98 std::vector<ValueEqualityComparisonCase> &Cases); 99 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 100 BasicBlock *Pred, 101 IRBuilder<> &Builder); 102 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 103 IRBuilder<> &Builder); 104 105 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 106 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 107 bool SimplifyUnreachable(UnreachableInst *UI); 108 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 109 bool SimplifyIndirectBr(IndirectBrInst *IBI); 110 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 111 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 112 113 public: 114 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *DL) 115 : TTI(TTI), DL(DL) {} 116 bool run(BasicBlock *BB); 117 }; 118 } 119 120 /// SafeToMergeTerminators - Return true if it is safe to merge these two 121 /// terminator instructions together. 122 /// 123 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 124 if (SI1 == SI2) return false; // Can't merge with self! 125 126 // It is not safe to merge these two switch instructions if they have a common 127 // successor, and if that successor has a PHI node, and if *that* PHI node has 128 // conflicting incoming values from the two switch blocks. 129 BasicBlock *SI1BB = SI1->getParent(); 130 BasicBlock *SI2BB = SI2->getParent(); 131 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 132 133 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 134 if (SI1Succs.count(*I)) 135 for (BasicBlock::iterator BBI = (*I)->begin(); 136 isa<PHINode>(BBI); ++BBI) { 137 PHINode *PN = cast<PHINode>(BBI); 138 if (PN->getIncomingValueForBlock(SI1BB) != 139 PN->getIncomingValueForBlock(SI2BB)) 140 return false; 141 } 142 143 return true; 144 } 145 146 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 147 /// to merge these two terminator instructions together, where SI1 is an 148 /// unconditional branch. PhiNodes will store all PHI nodes in common 149 /// successors. 150 /// 151 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 152 BranchInst *SI2, 153 Instruction *Cond, 154 SmallVectorImpl<PHINode*> &PhiNodes) { 155 if (SI1 == SI2) return false; // Can't merge with self! 156 assert(SI1->isUnconditional() && SI2->isConditional()); 157 158 // We fold the unconditional branch if we can easily update all PHI nodes in 159 // common successors: 160 // 1> We have a constant incoming value for the conditional branch; 161 // 2> We have "Cond" as the incoming value for the unconditional branch; 162 // 3> SI2->getCondition() and Cond have same operands. 163 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 164 if (!Ci2) return false; 165 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 166 Cond->getOperand(1) == Ci2->getOperand(1)) && 167 !(Cond->getOperand(0) == Ci2->getOperand(1) && 168 Cond->getOperand(1) == Ci2->getOperand(0))) 169 return false; 170 171 BasicBlock *SI1BB = SI1->getParent(); 172 BasicBlock *SI2BB = SI2->getParent(); 173 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 174 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 175 if (SI1Succs.count(*I)) 176 for (BasicBlock::iterator BBI = (*I)->begin(); 177 isa<PHINode>(BBI); ++BBI) { 178 PHINode *PN = cast<PHINode>(BBI); 179 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 180 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 181 return false; 182 PhiNodes.push_back(PN); 183 } 184 return true; 185 } 186 187 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 188 /// now be entries in it from the 'NewPred' block. The values that will be 189 /// flowing into the PHI nodes will be the same as those coming in from 190 /// ExistPred, an existing predecessor of Succ. 191 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 192 BasicBlock *ExistPred) { 193 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 194 195 PHINode *PN; 196 for (BasicBlock::iterator I = Succ->begin(); 197 (PN = dyn_cast<PHINode>(I)); ++I) 198 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 199 } 200 201 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 202 /// given instruction, which is assumed to be safe to speculate. 1 means 203 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 204 static unsigned ComputeSpeculationCost(const User *I) { 205 assert(isSafeToSpeculativelyExecute(I) && 206 "Instruction is not safe to speculatively execute!"); 207 switch (Operator::getOpcode(I)) { 208 default: 209 // In doubt, be conservative. 210 return UINT_MAX; 211 case Instruction::GetElementPtr: 212 // GEPs are cheap if all indices are constant. 213 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 214 return UINT_MAX; 215 return 1; 216 case Instruction::ExtractValue: 217 case Instruction::Load: 218 case Instruction::Add: 219 case Instruction::Sub: 220 case Instruction::And: 221 case Instruction::Or: 222 case Instruction::Xor: 223 case Instruction::Shl: 224 case Instruction::LShr: 225 case Instruction::AShr: 226 case Instruction::ICmp: 227 case Instruction::Trunc: 228 case Instruction::ZExt: 229 case Instruction::SExt: 230 case Instruction::BitCast: 231 case Instruction::ExtractElement: 232 case Instruction::InsertElement: 233 return 1; // These are all cheap. 234 235 case Instruction::Call: 236 case Instruction::Select: 237 return 2; 238 } 239 } 240 241 /// DominatesMergePoint - If we have a merge point of an "if condition" as 242 /// accepted above, return true if the specified value dominates the block. We 243 /// don't handle the true generality of domination here, just a special case 244 /// which works well enough for us. 245 /// 246 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 247 /// see if V (which must be an instruction) and its recursive operands 248 /// that do not dominate BB have a combined cost lower than CostRemaining and 249 /// are non-trapping. If both are true, the instruction is inserted into the 250 /// set and true is returned. 251 /// 252 /// The cost for most non-trapping instructions is defined as 1 except for 253 /// Select whose cost is 2. 254 /// 255 /// After this function returns, CostRemaining is decreased by the cost of 256 /// V plus its non-dominating operands. If that cost is greater than 257 /// CostRemaining, false is returned and CostRemaining is undefined. 258 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 259 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 260 unsigned &CostRemaining) { 261 Instruction *I = dyn_cast<Instruction>(V); 262 if (!I) { 263 // Non-instructions all dominate instructions, but not all constantexprs 264 // can be executed unconditionally. 265 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 266 if (C->canTrap()) 267 return false; 268 return true; 269 } 270 BasicBlock *PBB = I->getParent(); 271 272 // We don't want to allow weird loops that might have the "if condition" in 273 // the bottom of this block. 274 if (PBB == BB) return false; 275 276 // If this instruction is defined in a block that contains an unconditional 277 // branch to BB, then it must be in the 'conditional' part of the "if 278 // statement". If not, it definitely dominates the region. 279 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 280 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 281 return true; 282 283 // If we aren't allowing aggressive promotion anymore, then don't consider 284 // instructions in the 'if region'. 285 if (!AggressiveInsts) return false; 286 287 // If we have seen this instruction before, don't count it again. 288 if (AggressiveInsts->count(I)) return true; 289 290 // Okay, it looks like the instruction IS in the "condition". Check to 291 // see if it's a cheap instruction to unconditionally compute, and if it 292 // only uses stuff defined outside of the condition. If so, hoist it out. 293 if (!isSafeToSpeculativelyExecute(I)) 294 return false; 295 296 unsigned Cost = ComputeSpeculationCost(I); 297 298 if (Cost > CostRemaining) 299 return false; 300 301 CostRemaining -= Cost; 302 303 // Okay, we can only really hoist these out if their operands do 304 // not take us over the cost threshold. 305 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 306 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 307 return false; 308 // Okay, it's safe to do this! Remember this instruction. 309 AggressiveInsts->insert(I); 310 return true; 311 } 312 313 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 314 /// and PointerNullValue. Return NULL if value is not a constant int. 315 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) { 316 // Normal constant int. 317 ConstantInt *CI = dyn_cast<ConstantInt>(V); 318 if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy()) 319 return CI; 320 321 // This is some kind of pointer constant. Turn it into a pointer-sized 322 // ConstantInt if possible. 323 IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType())); 324 325 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 326 if (isa<ConstantPointerNull>(V)) 327 return ConstantInt::get(PtrTy, 0); 328 329 // IntToPtr const int. 330 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 331 if (CE->getOpcode() == Instruction::IntToPtr) 332 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 333 // The constant is very likely to have the right type already. 334 if (CI->getType() == PtrTy) 335 return CI; 336 else 337 return cast<ConstantInt> 338 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 339 } 340 return nullptr; 341 } 342 343 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 344 /// collection of icmp eq/ne instructions that compare a value against a 345 /// constant, return the value being compared, and stick the constant into the 346 /// Values vector. 347 static Value * 348 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 349 const DataLayout *DL, bool isEQ, unsigned &UsedICmps) { 350 Instruction *I = dyn_cast<Instruction>(V); 351 if (!I) return nullptr; 352 353 // If this is an icmp against a constant, handle this as one of the cases. 354 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 355 if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) { 356 Value *RHSVal; 357 ConstantInt *RHSC; 358 359 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 360 // (x & ~2^x) == y --> x == y || x == y|2^x 361 // This undoes a transformation done by instcombine to fuse 2 compares. 362 if (match(ICI->getOperand(0), 363 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 364 APInt Not = ~RHSC->getValue(); 365 if (Not.isPowerOf2()) { 366 Vals.push_back(C); 367 Vals.push_back( 368 ConstantInt::get(C->getContext(), C->getValue() | Not)); 369 UsedICmps++; 370 return RHSVal; 371 } 372 } 373 374 UsedICmps++; 375 Vals.push_back(C); 376 return I->getOperand(0); 377 } 378 379 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 380 // the set. 381 ConstantRange Span = 382 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 383 384 // Shift the range if the compare is fed by an add. This is the range 385 // compare idiom as emitted by instcombine. 386 bool hasAdd = 387 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC))); 388 if (hasAdd) 389 Span = Span.subtract(RHSC->getValue()); 390 391 // If this is an and/!= check then we want to optimize "x ugt 2" into 392 // x != 0 && x != 1. 393 if (!isEQ) 394 Span = Span.inverse(); 395 396 // If there are a ton of values, we don't want to make a ginormous switch. 397 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 398 return nullptr; 399 400 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 401 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 402 UsedICmps++; 403 return hasAdd ? RHSVal : I->getOperand(0); 404 } 405 return nullptr; 406 } 407 408 // Otherwise, we can only handle an | or &, depending on isEQ. 409 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 410 return nullptr; 411 412 unsigned NumValsBeforeLHS = Vals.size(); 413 unsigned UsedICmpsBeforeLHS = UsedICmps; 414 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL, 415 isEQ, UsedICmps)) { 416 unsigned NumVals = Vals.size(); 417 unsigned UsedICmpsBeforeRHS = UsedICmps; 418 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 419 isEQ, UsedICmps)) { 420 if (LHS == RHS) 421 return LHS; 422 Vals.resize(NumVals); 423 UsedICmps = UsedICmpsBeforeRHS; 424 } 425 426 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 427 // set it and return success. 428 if (Extra == nullptr || Extra == I->getOperand(1)) { 429 Extra = I->getOperand(1); 430 return LHS; 431 } 432 433 Vals.resize(NumValsBeforeLHS); 434 UsedICmps = UsedICmpsBeforeLHS; 435 return nullptr; 436 } 437 438 // If the LHS can't be folded in, but Extra is available and RHS can, try to 439 // use LHS as Extra. 440 if (Extra == nullptr || Extra == I->getOperand(0)) { 441 Value *OldExtra = Extra; 442 Extra = I->getOperand(0); 443 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 444 isEQ, UsedICmps)) 445 return RHS; 446 assert(Vals.size() == NumValsBeforeLHS); 447 Extra = OldExtra; 448 } 449 450 return nullptr; 451 } 452 453 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 454 Instruction *Cond = nullptr; 455 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 456 Cond = dyn_cast<Instruction>(SI->getCondition()); 457 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 458 if (BI->isConditional()) 459 Cond = dyn_cast<Instruction>(BI->getCondition()); 460 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 461 Cond = dyn_cast<Instruction>(IBI->getAddress()); 462 } 463 464 TI->eraseFromParent(); 465 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 466 } 467 468 /// isValueEqualityComparison - Return true if the specified terminator checks 469 /// to see if a value is equal to constant integer value. 470 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 471 Value *CV = nullptr; 472 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 473 // Do not permit merging of large switch instructions into their 474 // predecessors unless there is only one predecessor. 475 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 476 pred_end(SI->getParent())) <= 128) 477 CV = SI->getCondition(); 478 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 479 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 480 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 481 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 482 CV = ICI->getOperand(0); 483 484 // Unwrap any lossless ptrtoint cast. 485 if (DL && CV) { 486 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 487 Value *Ptr = PTII->getPointerOperand(); 488 if (PTII->getType() == DL->getIntPtrType(Ptr->getType())) 489 CV = Ptr; 490 } 491 } 492 return CV; 493 } 494 495 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 496 /// decode all of the 'cases' that it represents and return the 'default' block. 497 BasicBlock *SimplifyCFGOpt:: 498 GetValueEqualityComparisonCases(TerminatorInst *TI, 499 std::vector<ValueEqualityComparisonCase> 500 &Cases) { 501 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 502 Cases.reserve(SI->getNumCases()); 503 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 504 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 505 i.getCaseSuccessor())); 506 return SI->getDefaultDest(); 507 } 508 509 BranchInst *BI = cast<BranchInst>(TI); 510 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 511 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 512 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 513 DL), 514 Succ)); 515 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 516 } 517 518 519 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 520 /// in the list that match the specified block. 521 static void EliminateBlockCases(BasicBlock *BB, 522 std::vector<ValueEqualityComparisonCase> &Cases) { 523 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 524 } 525 526 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 527 /// well. 528 static bool 529 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 530 std::vector<ValueEqualityComparisonCase > &C2) { 531 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 532 533 // Make V1 be smaller than V2. 534 if (V1->size() > V2->size()) 535 std::swap(V1, V2); 536 537 if (V1->size() == 0) return false; 538 if (V1->size() == 1) { 539 // Just scan V2. 540 ConstantInt *TheVal = (*V1)[0].Value; 541 for (unsigned i = 0, e = V2->size(); i != e; ++i) 542 if (TheVal == (*V2)[i].Value) 543 return true; 544 } 545 546 // Otherwise, just sort both lists and compare element by element. 547 array_pod_sort(V1->begin(), V1->end()); 548 array_pod_sort(V2->begin(), V2->end()); 549 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 550 while (i1 != e1 && i2 != e2) { 551 if ((*V1)[i1].Value == (*V2)[i2].Value) 552 return true; 553 if ((*V1)[i1].Value < (*V2)[i2].Value) 554 ++i1; 555 else 556 ++i2; 557 } 558 return false; 559 } 560 561 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 562 /// terminator instruction and its block is known to only have a single 563 /// predecessor block, check to see if that predecessor is also a value 564 /// comparison with the same value, and if that comparison determines the 565 /// outcome of this comparison. If so, simplify TI. This does a very limited 566 /// form of jump threading. 567 bool SimplifyCFGOpt:: 568 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 569 BasicBlock *Pred, 570 IRBuilder<> &Builder) { 571 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 572 if (!PredVal) return false; // Not a value comparison in predecessor. 573 574 Value *ThisVal = isValueEqualityComparison(TI); 575 assert(ThisVal && "This isn't a value comparison!!"); 576 if (ThisVal != PredVal) return false; // Different predicates. 577 578 // TODO: Preserve branch weight metadata, similarly to how 579 // FoldValueComparisonIntoPredecessors preserves it. 580 581 // Find out information about when control will move from Pred to TI's block. 582 std::vector<ValueEqualityComparisonCase> PredCases; 583 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 584 PredCases); 585 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 586 587 // Find information about how control leaves this block. 588 std::vector<ValueEqualityComparisonCase> ThisCases; 589 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 590 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 591 592 // If TI's block is the default block from Pred's comparison, potentially 593 // simplify TI based on this knowledge. 594 if (PredDef == TI->getParent()) { 595 // If we are here, we know that the value is none of those cases listed in 596 // PredCases. If there are any cases in ThisCases that are in PredCases, we 597 // can simplify TI. 598 if (!ValuesOverlap(PredCases, ThisCases)) 599 return false; 600 601 if (isa<BranchInst>(TI)) { 602 // Okay, one of the successors of this condbr is dead. Convert it to a 603 // uncond br. 604 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 605 // Insert the new branch. 606 Instruction *NI = Builder.CreateBr(ThisDef); 607 (void) NI; 608 609 // Remove PHI node entries for the dead edge. 610 ThisCases[0].Dest->removePredecessor(TI->getParent()); 611 612 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 613 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 614 615 EraseTerminatorInstAndDCECond(TI); 616 return true; 617 } 618 619 SwitchInst *SI = cast<SwitchInst>(TI); 620 // Okay, TI has cases that are statically dead, prune them away. 621 SmallPtrSet<Constant*, 16> DeadCases; 622 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 623 DeadCases.insert(PredCases[i].Value); 624 625 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 626 << "Through successor TI: " << *TI); 627 628 // Collect branch weights into a vector. 629 SmallVector<uint32_t, 8> Weights; 630 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 631 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 632 if (HasWeight) 633 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 634 ++MD_i) { 635 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 636 assert(CI); 637 Weights.push_back(CI->getValue().getZExtValue()); 638 } 639 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 640 --i; 641 if (DeadCases.count(i.getCaseValue())) { 642 if (HasWeight) { 643 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 644 Weights.pop_back(); 645 } 646 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 647 SI->removeCase(i); 648 } 649 } 650 if (HasWeight && Weights.size() >= 2) 651 SI->setMetadata(LLVMContext::MD_prof, 652 MDBuilder(SI->getParent()->getContext()). 653 createBranchWeights(Weights)); 654 655 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 656 return true; 657 } 658 659 // Otherwise, TI's block must correspond to some matched value. Find out 660 // which value (or set of values) this is. 661 ConstantInt *TIV = nullptr; 662 BasicBlock *TIBB = TI->getParent(); 663 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 664 if (PredCases[i].Dest == TIBB) { 665 if (TIV) 666 return false; // Cannot handle multiple values coming to this block. 667 TIV = PredCases[i].Value; 668 } 669 assert(TIV && "No edge from pred to succ?"); 670 671 // Okay, we found the one constant that our value can be if we get into TI's 672 // BB. Find out which successor will unconditionally be branched to. 673 BasicBlock *TheRealDest = nullptr; 674 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 675 if (ThisCases[i].Value == TIV) { 676 TheRealDest = ThisCases[i].Dest; 677 break; 678 } 679 680 // If not handled by any explicit cases, it is handled by the default case. 681 if (!TheRealDest) TheRealDest = ThisDef; 682 683 // Remove PHI node entries for dead edges. 684 BasicBlock *CheckEdge = TheRealDest; 685 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 686 if (*SI != CheckEdge) 687 (*SI)->removePredecessor(TIBB); 688 else 689 CheckEdge = nullptr; 690 691 // Insert the new branch. 692 Instruction *NI = Builder.CreateBr(TheRealDest); 693 (void) NI; 694 695 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 696 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 697 698 EraseTerminatorInstAndDCECond(TI); 699 return true; 700 } 701 702 namespace { 703 /// ConstantIntOrdering - This class implements a stable ordering of constant 704 /// integers that does not depend on their address. This is important for 705 /// applications that sort ConstantInt's to ensure uniqueness. 706 struct ConstantIntOrdering { 707 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 708 return LHS->getValue().ult(RHS->getValue()); 709 } 710 }; 711 } 712 713 static int ConstantIntSortPredicate(ConstantInt *const *P1, 714 ConstantInt *const *P2) { 715 const ConstantInt *LHS = *P1; 716 const ConstantInt *RHS = *P2; 717 if (LHS->getValue().ult(RHS->getValue())) 718 return 1; 719 if (LHS->getValue() == RHS->getValue()) 720 return 0; 721 return -1; 722 } 723 724 static inline bool HasBranchWeights(const Instruction* I) { 725 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 726 if (ProfMD && ProfMD->getOperand(0)) 727 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 728 return MDS->getString().equals("branch_weights"); 729 730 return false; 731 } 732 733 /// Get Weights of a given TerminatorInst, the default weight is at the front 734 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 735 /// metadata. 736 static void GetBranchWeights(TerminatorInst *TI, 737 SmallVectorImpl<uint64_t> &Weights) { 738 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 739 assert(MD); 740 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 741 ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i)); 742 Weights.push_back(CI->getValue().getZExtValue()); 743 } 744 745 // If TI is a conditional eq, the default case is the false case, 746 // and the corresponding branch-weight data is at index 2. We swap the 747 // default weight to be the first entry. 748 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 749 assert(Weights.size() == 2); 750 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 751 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 752 std::swap(Weights.front(), Weights.back()); 753 } 754 } 755 756 /// Keep halving the weights until all can fit in uint32_t. 757 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 758 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 759 if (Max > UINT_MAX) { 760 unsigned Offset = 32 - countLeadingZeros(Max); 761 for (uint64_t &I : Weights) 762 I >>= Offset; 763 } 764 } 765 766 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 767 /// equality comparison instruction (either a switch or a branch on "X == c"). 768 /// See if any of the predecessors of the terminator block are value comparisons 769 /// on the same value. If so, and if safe to do so, fold them together. 770 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 771 IRBuilder<> &Builder) { 772 BasicBlock *BB = TI->getParent(); 773 Value *CV = isValueEqualityComparison(TI); // CondVal 774 assert(CV && "Not a comparison?"); 775 bool Changed = false; 776 777 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 778 while (!Preds.empty()) { 779 BasicBlock *Pred = Preds.pop_back_val(); 780 781 // See if the predecessor is a comparison with the same value. 782 TerminatorInst *PTI = Pred->getTerminator(); 783 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 784 785 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 786 // Figure out which 'cases' to copy from SI to PSI. 787 std::vector<ValueEqualityComparisonCase> BBCases; 788 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 789 790 std::vector<ValueEqualityComparisonCase> PredCases; 791 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 792 793 // Based on whether the default edge from PTI goes to BB or not, fill in 794 // PredCases and PredDefault with the new switch cases we would like to 795 // build. 796 SmallVector<BasicBlock*, 8> NewSuccessors; 797 798 // Update the branch weight metadata along the way 799 SmallVector<uint64_t, 8> Weights; 800 bool PredHasWeights = HasBranchWeights(PTI); 801 bool SuccHasWeights = HasBranchWeights(TI); 802 803 if (PredHasWeights) { 804 GetBranchWeights(PTI, Weights); 805 // branch-weight metadata is inconsistent here. 806 if (Weights.size() != 1 + PredCases.size()) 807 PredHasWeights = SuccHasWeights = false; 808 } else if (SuccHasWeights) 809 // If there are no predecessor weights but there are successor weights, 810 // populate Weights with 1, which will later be scaled to the sum of 811 // successor's weights 812 Weights.assign(1 + PredCases.size(), 1); 813 814 SmallVector<uint64_t, 8> SuccWeights; 815 if (SuccHasWeights) { 816 GetBranchWeights(TI, SuccWeights); 817 // branch-weight metadata is inconsistent here. 818 if (SuccWeights.size() != 1 + BBCases.size()) 819 PredHasWeights = SuccHasWeights = false; 820 } else if (PredHasWeights) 821 SuccWeights.assign(1 + BBCases.size(), 1); 822 823 if (PredDefault == BB) { 824 // If this is the default destination from PTI, only the edges in TI 825 // that don't occur in PTI, or that branch to BB will be activated. 826 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 827 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 828 if (PredCases[i].Dest != BB) 829 PTIHandled.insert(PredCases[i].Value); 830 else { 831 // The default destination is BB, we don't need explicit targets. 832 std::swap(PredCases[i], PredCases.back()); 833 834 if (PredHasWeights || SuccHasWeights) { 835 // Increase weight for the default case. 836 Weights[0] += Weights[i+1]; 837 std::swap(Weights[i+1], Weights.back()); 838 Weights.pop_back(); 839 } 840 841 PredCases.pop_back(); 842 --i; --e; 843 } 844 845 // Reconstruct the new switch statement we will be building. 846 if (PredDefault != BBDefault) { 847 PredDefault->removePredecessor(Pred); 848 PredDefault = BBDefault; 849 NewSuccessors.push_back(BBDefault); 850 } 851 852 unsigned CasesFromPred = Weights.size(); 853 uint64_t ValidTotalSuccWeight = 0; 854 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 855 if (!PTIHandled.count(BBCases[i].Value) && 856 BBCases[i].Dest != BBDefault) { 857 PredCases.push_back(BBCases[i]); 858 NewSuccessors.push_back(BBCases[i].Dest); 859 if (SuccHasWeights || PredHasWeights) { 860 // The default weight is at index 0, so weight for the ith case 861 // should be at index i+1. Scale the cases from successor by 862 // PredDefaultWeight (Weights[0]). 863 Weights.push_back(Weights[0] * SuccWeights[i+1]); 864 ValidTotalSuccWeight += SuccWeights[i+1]; 865 } 866 } 867 868 if (SuccHasWeights || PredHasWeights) { 869 ValidTotalSuccWeight += SuccWeights[0]; 870 // Scale the cases from predecessor by ValidTotalSuccWeight. 871 for (unsigned i = 1; i < CasesFromPred; ++i) 872 Weights[i] *= ValidTotalSuccWeight; 873 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 874 Weights[0] *= SuccWeights[0]; 875 } 876 } else { 877 // If this is not the default destination from PSI, only the edges 878 // in SI that occur in PSI with a destination of BB will be 879 // activated. 880 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 881 std::map<ConstantInt*, uint64_t> WeightsForHandled; 882 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 883 if (PredCases[i].Dest == BB) { 884 PTIHandled.insert(PredCases[i].Value); 885 886 if (PredHasWeights || SuccHasWeights) { 887 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 888 std::swap(Weights[i+1], Weights.back()); 889 Weights.pop_back(); 890 } 891 892 std::swap(PredCases[i], PredCases.back()); 893 PredCases.pop_back(); 894 --i; --e; 895 } 896 897 // Okay, now we know which constants were sent to BB from the 898 // predecessor. Figure out where they will all go now. 899 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 900 if (PTIHandled.count(BBCases[i].Value)) { 901 // If this is one we are capable of getting... 902 if (PredHasWeights || SuccHasWeights) 903 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 904 PredCases.push_back(BBCases[i]); 905 NewSuccessors.push_back(BBCases[i].Dest); 906 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 907 } 908 909 // If there are any constants vectored to BB that TI doesn't handle, 910 // they must go to the default destination of TI. 911 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 912 PTIHandled.begin(), 913 E = PTIHandled.end(); I != E; ++I) { 914 if (PredHasWeights || SuccHasWeights) 915 Weights.push_back(WeightsForHandled[*I]); 916 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 917 NewSuccessors.push_back(BBDefault); 918 } 919 } 920 921 // Okay, at this point, we know which new successor Pred will get. Make 922 // sure we update the number of entries in the PHI nodes for these 923 // successors. 924 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 925 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 926 927 Builder.SetInsertPoint(PTI); 928 // Convert pointer to int before we switch. 929 if (CV->getType()->isPointerTy()) { 930 assert(DL && "Cannot switch on pointer without DataLayout"); 931 CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()), 932 "magicptr"); 933 } 934 935 // Now that the successors are updated, create the new Switch instruction. 936 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 937 PredCases.size()); 938 NewSI->setDebugLoc(PTI->getDebugLoc()); 939 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 940 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 941 942 if (PredHasWeights || SuccHasWeights) { 943 // Halve the weights if any of them cannot fit in an uint32_t 944 FitWeights(Weights); 945 946 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 947 948 NewSI->setMetadata(LLVMContext::MD_prof, 949 MDBuilder(BB->getContext()). 950 createBranchWeights(MDWeights)); 951 } 952 953 EraseTerminatorInstAndDCECond(PTI); 954 955 // Okay, last check. If BB is still a successor of PSI, then we must 956 // have an infinite loop case. If so, add an infinitely looping block 957 // to handle the case to preserve the behavior of the code. 958 BasicBlock *InfLoopBlock = nullptr; 959 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 960 if (NewSI->getSuccessor(i) == BB) { 961 if (!InfLoopBlock) { 962 // Insert it at the end of the function, because it's either code, 963 // or it won't matter if it's hot. :) 964 InfLoopBlock = BasicBlock::Create(BB->getContext(), 965 "infloop", BB->getParent()); 966 BranchInst::Create(InfLoopBlock, InfLoopBlock); 967 } 968 NewSI->setSuccessor(i, InfLoopBlock); 969 } 970 971 Changed = true; 972 } 973 } 974 return Changed; 975 } 976 977 // isSafeToHoistInvoke - If we would need to insert a select that uses the 978 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 979 // would need to do this), we can't hoist the invoke, as there is nowhere 980 // to put the select in this case. 981 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 982 Instruction *I1, Instruction *I2) { 983 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 984 PHINode *PN; 985 for (BasicBlock::iterator BBI = SI->begin(); 986 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 987 Value *BB1V = PN->getIncomingValueForBlock(BB1); 988 Value *BB2V = PN->getIncomingValueForBlock(BB2); 989 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 990 return false; 991 } 992 } 993 } 994 return true; 995 } 996 997 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 998 /// BB2, hoist any common code in the two blocks up into the branch block. The 999 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1000 static bool HoistThenElseCodeToIf(BranchInst *BI) { 1001 // This does very trivial matching, with limited scanning, to find identical 1002 // instructions in the two blocks. In particular, we don't want to get into 1003 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1004 // such, we currently just scan for obviously identical instructions in an 1005 // identical order. 1006 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1007 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1008 1009 BasicBlock::iterator BB1_Itr = BB1->begin(); 1010 BasicBlock::iterator BB2_Itr = BB2->begin(); 1011 1012 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1013 // Skip debug info if it is not identical. 1014 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1015 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1016 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1017 while (isa<DbgInfoIntrinsic>(I1)) 1018 I1 = BB1_Itr++; 1019 while (isa<DbgInfoIntrinsic>(I2)) 1020 I2 = BB2_Itr++; 1021 } 1022 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1023 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1024 return false; 1025 1026 BasicBlock *BIParent = BI->getParent(); 1027 1028 bool Changed = false; 1029 do { 1030 // If we are hoisting the terminator instruction, don't move one (making a 1031 // broken BB), instead clone it, and remove BI. 1032 if (isa<TerminatorInst>(I1)) 1033 goto HoistTerminator; 1034 1035 // For a normal instruction, we just move one to right before the branch, 1036 // then replace all uses of the other with the first. Finally, we remove 1037 // the now redundant second instruction. 1038 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1039 if (!I2->use_empty()) 1040 I2->replaceAllUsesWith(I1); 1041 I1->intersectOptionalDataWith(I2); 1042 I2->eraseFromParent(); 1043 Changed = true; 1044 1045 I1 = BB1_Itr++; 1046 I2 = BB2_Itr++; 1047 // Skip debug info if it is not identical. 1048 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1049 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1050 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1051 while (isa<DbgInfoIntrinsic>(I1)) 1052 I1 = BB1_Itr++; 1053 while (isa<DbgInfoIntrinsic>(I2)) 1054 I2 = BB2_Itr++; 1055 } 1056 } while (I1->isIdenticalToWhenDefined(I2)); 1057 1058 return true; 1059 1060 HoistTerminator: 1061 // It may not be possible to hoist an invoke. 1062 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1063 return Changed; 1064 1065 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1066 PHINode *PN; 1067 for (BasicBlock::iterator BBI = SI->begin(); 1068 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1069 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1070 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1071 if (BB1V == BB2V) 1072 continue; 1073 1074 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1075 return Changed; 1076 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1077 return Changed; 1078 } 1079 } 1080 1081 // Okay, it is safe to hoist the terminator. 1082 Instruction *NT = I1->clone(); 1083 BIParent->getInstList().insert(BI, NT); 1084 if (!NT->getType()->isVoidTy()) { 1085 I1->replaceAllUsesWith(NT); 1086 I2->replaceAllUsesWith(NT); 1087 NT->takeName(I1); 1088 } 1089 1090 IRBuilder<true, NoFolder> Builder(NT); 1091 // Hoisting one of the terminators from our successor is a great thing. 1092 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1093 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1094 // nodes, so we insert select instruction to compute the final result. 1095 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1096 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1097 PHINode *PN; 1098 for (BasicBlock::iterator BBI = SI->begin(); 1099 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1100 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1101 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1102 if (BB1V == BB2V) continue; 1103 1104 // These values do not agree. Insert a select instruction before NT 1105 // that determines the right value. 1106 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1107 if (!SI) 1108 SI = cast<SelectInst> 1109 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1110 BB1V->getName()+"."+BB2V->getName())); 1111 1112 // Make the PHI node use the select for all incoming values for BB1/BB2 1113 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1114 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1115 PN->setIncomingValue(i, SI); 1116 } 1117 } 1118 1119 // Update any PHI nodes in our new successors. 1120 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1121 AddPredecessorToBlock(*SI, BIParent, BB1); 1122 1123 EraseTerminatorInstAndDCECond(BI); 1124 return true; 1125 } 1126 1127 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1128 /// check whether BBEnd has only two predecessors and the other predecessor 1129 /// ends with an unconditional branch. If it is true, sink any common code 1130 /// in the two predecessors to BBEnd. 1131 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1132 assert(BI1->isUnconditional()); 1133 BasicBlock *BB1 = BI1->getParent(); 1134 BasicBlock *BBEnd = BI1->getSuccessor(0); 1135 1136 // Check that BBEnd has two predecessors and the other predecessor ends with 1137 // an unconditional branch. 1138 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1139 BasicBlock *Pred0 = *PI++; 1140 if (PI == PE) // Only one predecessor. 1141 return false; 1142 BasicBlock *Pred1 = *PI++; 1143 if (PI != PE) // More than two predecessors. 1144 return false; 1145 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1146 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1147 if (!BI2 || !BI2->isUnconditional()) 1148 return false; 1149 1150 // Gather the PHI nodes in BBEnd. 1151 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1152 Instruction *FirstNonPhiInBBEnd = nullptr; 1153 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1154 I != E; ++I) { 1155 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1156 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1157 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1158 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1159 } else { 1160 FirstNonPhiInBBEnd = &*I; 1161 break; 1162 } 1163 } 1164 if (!FirstNonPhiInBBEnd) 1165 return false; 1166 1167 1168 // This does very trivial matching, with limited scanning, to find identical 1169 // instructions in the two blocks. We scan backward for obviously identical 1170 // instructions in an identical order. 1171 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1172 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1173 RE2 = BB2->getInstList().rend(); 1174 // Skip debug info. 1175 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1176 if (RI1 == RE1) 1177 return false; 1178 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1179 if (RI2 == RE2) 1180 return false; 1181 // Skip the unconditional branches. 1182 ++RI1; 1183 ++RI2; 1184 1185 bool Changed = false; 1186 while (RI1 != RE1 && RI2 != RE2) { 1187 // Skip debug info. 1188 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1189 if (RI1 == RE1) 1190 return Changed; 1191 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1192 if (RI2 == RE2) 1193 return Changed; 1194 1195 Instruction *I1 = &*RI1, *I2 = &*RI2; 1196 // I1 and I2 should have a single use in the same PHI node, and they 1197 // perform the same operation. 1198 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1199 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1200 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1201 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1202 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1203 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1204 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1205 !I1->hasOneUse() || !I2->hasOneUse() || 1206 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1207 MapValueFromBB1ToBB2[I1].first != I2) 1208 return Changed; 1209 1210 // Check whether we should swap the operands of ICmpInst. 1211 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1212 bool SwapOpnds = false; 1213 if (ICmp1 && ICmp2 && 1214 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1215 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1216 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1217 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1218 ICmp2->swapOperands(); 1219 SwapOpnds = true; 1220 } 1221 if (!I1->isSameOperationAs(I2)) { 1222 if (SwapOpnds) 1223 ICmp2->swapOperands(); 1224 return Changed; 1225 } 1226 1227 // The operands should be either the same or they need to be generated 1228 // with a PHI node after sinking. We only handle the case where there is 1229 // a single pair of different operands. 1230 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1231 unsigned Op1Idx = 0; 1232 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1233 if (I1->getOperand(I) == I2->getOperand(I)) 1234 continue; 1235 // Early exit if we have more-than one pair of different operands or 1236 // the different operand is already in MapValueFromBB1ToBB2. 1237 // Early exit if we need a PHI node to replace a constant. 1238 if (DifferentOp1 || 1239 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1240 MapValueFromBB1ToBB2.end() || 1241 isa<Constant>(I1->getOperand(I)) || 1242 isa<Constant>(I2->getOperand(I))) { 1243 // If we can't sink the instructions, undo the swapping. 1244 if (SwapOpnds) 1245 ICmp2->swapOperands(); 1246 return Changed; 1247 } 1248 DifferentOp1 = I1->getOperand(I); 1249 Op1Idx = I; 1250 DifferentOp2 = I2->getOperand(I); 1251 } 1252 1253 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1254 // remove (I1, I2) from MapValueFromBB1ToBB2. 1255 if (DifferentOp1) { 1256 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1257 DifferentOp1->getName() + ".sink", 1258 BBEnd->begin()); 1259 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1260 // I1 should use NewPN instead of DifferentOp1. 1261 I1->setOperand(Op1Idx, NewPN); 1262 NewPN->addIncoming(DifferentOp1, BB1); 1263 NewPN->addIncoming(DifferentOp2, BB2); 1264 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1265 } 1266 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1267 MapValueFromBB1ToBB2.erase(I1); 1268 1269 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1270 DEBUG(dbgs() << " " << *I2 << "\n";); 1271 // We need to update RE1 and RE2 if we are going to sink the first 1272 // instruction in the basic block down. 1273 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1274 // Sink the instruction. 1275 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1276 if (!OldPN->use_empty()) 1277 OldPN->replaceAllUsesWith(I1); 1278 OldPN->eraseFromParent(); 1279 1280 if (!I2->use_empty()) 1281 I2->replaceAllUsesWith(I1); 1282 I1->intersectOptionalDataWith(I2); 1283 I2->eraseFromParent(); 1284 1285 if (UpdateRE1) 1286 RE1 = BB1->getInstList().rend(); 1287 if (UpdateRE2) 1288 RE2 = BB2->getInstList().rend(); 1289 FirstNonPhiInBBEnd = I1; 1290 NumSinkCommons++; 1291 Changed = true; 1292 } 1293 return Changed; 1294 } 1295 1296 /// \brief Determine if we can hoist sink a sole store instruction out of a 1297 /// conditional block. 1298 /// 1299 /// We are looking for code like the following: 1300 /// BrBB: 1301 /// store i32 %add, i32* %arrayidx2 1302 /// ... // No other stores or function calls (we could be calling a memory 1303 /// ... // function). 1304 /// %cmp = icmp ult %x, %y 1305 /// br i1 %cmp, label %EndBB, label %ThenBB 1306 /// ThenBB: 1307 /// store i32 %add5, i32* %arrayidx2 1308 /// br label EndBB 1309 /// EndBB: 1310 /// ... 1311 /// We are going to transform this into: 1312 /// BrBB: 1313 /// store i32 %add, i32* %arrayidx2 1314 /// ... // 1315 /// %cmp = icmp ult %x, %y 1316 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1317 /// store i32 %add.add5, i32* %arrayidx2 1318 /// ... 1319 /// 1320 /// \return The pointer to the value of the previous store if the store can be 1321 /// hoisted into the predecessor block. 0 otherwise. 1322 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1323 BasicBlock *StoreBB, BasicBlock *EndBB) { 1324 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1325 if (!StoreToHoist) 1326 return nullptr; 1327 1328 // Volatile or atomic. 1329 if (!StoreToHoist->isSimple()) 1330 return nullptr; 1331 1332 Value *StorePtr = StoreToHoist->getPointerOperand(); 1333 1334 // Look for a store to the same pointer in BrBB. 1335 unsigned MaxNumInstToLookAt = 10; 1336 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1337 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1338 Instruction *CurI = &*RI; 1339 1340 // Could be calling an instruction that effects memory like free(). 1341 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1342 return nullptr; 1343 1344 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1345 // Found the previous store make sure it stores to the same location. 1346 if (SI && SI->getPointerOperand() == StorePtr) 1347 // Found the previous store, return its value operand. 1348 return SI->getValueOperand(); 1349 else if (SI) 1350 return nullptr; // Unknown store. 1351 } 1352 1353 return nullptr; 1354 } 1355 1356 /// \brief Speculate a conditional basic block flattening the CFG. 1357 /// 1358 /// Note that this is a very risky transform currently. Speculating 1359 /// instructions like this is most often not desirable. Instead, there is an MI 1360 /// pass which can do it with full awareness of the resource constraints. 1361 /// However, some cases are "obvious" and we should do directly. An example of 1362 /// this is speculating a single, reasonably cheap instruction. 1363 /// 1364 /// There is only one distinct advantage to flattening the CFG at the IR level: 1365 /// it makes very common but simplistic optimizations such as are common in 1366 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1367 /// modeling their effects with easier to reason about SSA value graphs. 1368 /// 1369 /// 1370 /// An illustration of this transform is turning this IR: 1371 /// \code 1372 /// BB: 1373 /// %cmp = icmp ult %x, %y 1374 /// br i1 %cmp, label %EndBB, label %ThenBB 1375 /// ThenBB: 1376 /// %sub = sub %x, %y 1377 /// br label BB2 1378 /// EndBB: 1379 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1380 /// ... 1381 /// \endcode 1382 /// 1383 /// Into this IR: 1384 /// \code 1385 /// BB: 1386 /// %cmp = icmp ult %x, %y 1387 /// %sub = sub %x, %y 1388 /// %cond = select i1 %cmp, 0, %sub 1389 /// ... 1390 /// \endcode 1391 /// 1392 /// \returns true if the conditional block is removed. 1393 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) { 1394 // Be conservative for now. FP select instruction can often be expensive. 1395 Value *BrCond = BI->getCondition(); 1396 if (isa<FCmpInst>(BrCond)) 1397 return false; 1398 1399 BasicBlock *BB = BI->getParent(); 1400 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1401 1402 // If ThenBB is actually on the false edge of the conditional branch, remember 1403 // to swap the select operands later. 1404 bool Invert = false; 1405 if (ThenBB != BI->getSuccessor(0)) { 1406 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1407 Invert = true; 1408 } 1409 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1410 1411 // Keep a count of how many times instructions are used within CondBB when 1412 // they are candidates for sinking into CondBB. Specifically: 1413 // - They are defined in BB, and 1414 // - They have no side effects, and 1415 // - All of their uses are in CondBB. 1416 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1417 1418 unsigned SpeculationCost = 0; 1419 Value *SpeculatedStoreValue = nullptr; 1420 StoreInst *SpeculatedStore = nullptr; 1421 for (BasicBlock::iterator BBI = ThenBB->begin(), 1422 BBE = std::prev(ThenBB->end()); 1423 BBI != BBE; ++BBI) { 1424 Instruction *I = BBI; 1425 // Skip debug info. 1426 if (isa<DbgInfoIntrinsic>(I)) 1427 continue; 1428 1429 // Only speculatively execution a single instruction (not counting the 1430 // terminator) for now. 1431 ++SpeculationCost; 1432 if (SpeculationCost > 1) 1433 return false; 1434 1435 // Don't hoist the instruction if it's unsafe or expensive. 1436 if (!isSafeToSpeculativelyExecute(I) && 1437 !(HoistCondStores && 1438 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1439 EndBB)))) 1440 return false; 1441 if (!SpeculatedStoreValue && 1442 ComputeSpeculationCost(I) > PHINodeFoldingThreshold) 1443 return false; 1444 1445 // Store the store speculation candidate. 1446 if (SpeculatedStoreValue) 1447 SpeculatedStore = cast<StoreInst>(I); 1448 1449 // Do not hoist the instruction if any of its operands are defined but not 1450 // used in BB. The transformation will prevent the operand from 1451 // being sunk into the use block. 1452 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1453 i != e; ++i) { 1454 Instruction *OpI = dyn_cast<Instruction>(*i); 1455 if (!OpI || OpI->getParent() != BB || 1456 OpI->mayHaveSideEffects()) 1457 continue; // Not a candidate for sinking. 1458 1459 ++SinkCandidateUseCounts[OpI]; 1460 } 1461 } 1462 1463 // Consider any sink candidates which are only used in CondBB as costs for 1464 // speculation. Note, while we iterate over a DenseMap here, we are summing 1465 // and so iteration order isn't significant. 1466 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1467 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1468 I != E; ++I) 1469 if (I->first->getNumUses() == I->second) { 1470 ++SpeculationCost; 1471 if (SpeculationCost > 1) 1472 return false; 1473 } 1474 1475 // Check that the PHI nodes can be converted to selects. 1476 bool HaveRewritablePHIs = false; 1477 for (BasicBlock::iterator I = EndBB->begin(); 1478 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1479 Value *OrigV = PN->getIncomingValueForBlock(BB); 1480 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1481 1482 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1483 // Skip PHIs which are trivial. 1484 if (ThenV == OrigV) 1485 continue; 1486 1487 HaveRewritablePHIs = true; 1488 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1489 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1490 if (!OrigCE && !ThenCE) 1491 continue; // Known safe and cheap. 1492 1493 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1494 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1495 return false; 1496 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0; 1497 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0; 1498 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1499 return false; 1500 1501 // Account for the cost of an unfolded ConstantExpr which could end up 1502 // getting expanded into Instructions. 1503 // FIXME: This doesn't account for how many operations are combined in the 1504 // constant expression. 1505 ++SpeculationCost; 1506 if (SpeculationCost > 1) 1507 return false; 1508 } 1509 1510 // If there are no PHIs to process, bail early. This helps ensure idempotence 1511 // as well. 1512 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1513 return false; 1514 1515 // If we get here, we can hoist the instruction and if-convert. 1516 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1517 1518 // Insert a select of the value of the speculated store. 1519 if (SpeculatedStoreValue) { 1520 IRBuilder<true, NoFolder> Builder(BI); 1521 Value *TrueV = SpeculatedStore->getValueOperand(); 1522 Value *FalseV = SpeculatedStoreValue; 1523 if (Invert) 1524 std::swap(TrueV, FalseV); 1525 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1526 "." + FalseV->getName()); 1527 SpeculatedStore->setOperand(0, S); 1528 } 1529 1530 // Hoist the instructions. 1531 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1532 std::prev(ThenBB->end())); 1533 1534 // Insert selects and rewrite the PHI operands. 1535 IRBuilder<true, NoFolder> Builder(BI); 1536 for (BasicBlock::iterator I = EndBB->begin(); 1537 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1538 unsigned OrigI = PN->getBasicBlockIndex(BB); 1539 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1540 Value *OrigV = PN->getIncomingValue(OrigI); 1541 Value *ThenV = PN->getIncomingValue(ThenI); 1542 1543 // Skip PHIs which are trivial. 1544 if (OrigV == ThenV) 1545 continue; 1546 1547 // Create a select whose true value is the speculatively executed value and 1548 // false value is the preexisting value. Swap them if the branch 1549 // destinations were inverted. 1550 Value *TrueV = ThenV, *FalseV = OrigV; 1551 if (Invert) 1552 std::swap(TrueV, FalseV); 1553 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1554 TrueV->getName() + "." + FalseV->getName()); 1555 PN->setIncomingValue(OrigI, V); 1556 PN->setIncomingValue(ThenI, V); 1557 } 1558 1559 ++NumSpeculations; 1560 return true; 1561 } 1562 1563 /// \returns True if this block contains a CallInst with the NoDuplicate 1564 /// attribute. 1565 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1566 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1567 const CallInst *CI = dyn_cast<CallInst>(I); 1568 if (!CI) 1569 continue; 1570 if (CI->cannotDuplicate()) 1571 return true; 1572 } 1573 return false; 1574 } 1575 1576 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1577 /// across this block. 1578 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1579 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1580 unsigned Size = 0; 1581 1582 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1583 if (isa<DbgInfoIntrinsic>(BBI)) 1584 continue; 1585 if (Size > 10) return false; // Don't clone large BB's. 1586 ++Size; 1587 1588 // We can only support instructions that do not define values that are 1589 // live outside of the current basic block. 1590 for (User *U : BBI->users()) { 1591 Instruction *UI = cast<Instruction>(U); 1592 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1593 } 1594 1595 // Looks ok, continue checking. 1596 } 1597 1598 return true; 1599 } 1600 1601 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1602 /// that is defined in the same block as the branch and if any PHI entries are 1603 /// constants, thread edges corresponding to that entry to be branches to their 1604 /// ultimate destination. 1605 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) { 1606 BasicBlock *BB = BI->getParent(); 1607 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1608 // NOTE: we currently cannot transform this case if the PHI node is used 1609 // outside of the block. 1610 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1611 return false; 1612 1613 // Degenerate case of a single entry PHI. 1614 if (PN->getNumIncomingValues() == 1) { 1615 FoldSingleEntryPHINodes(PN->getParent()); 1616 return true; 1617 } 1618 1619 // Now we know that this block has multiple preds and two succs. 1620 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1621 1622 if (HasNoDuplicateCall(BB)) return false; 1623 1624 // Okay, this is a simple enough basic block. See if any phi values are 1625 // constants. 1626 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1627 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1628 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1629 1630 // Okay, we now know that all edges from PredBB should be revectored to 1631 // branch to RealDest. 1632 BasicBlock *PredBB = PN->getIncomingBlock(i); 1633 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1634 1635 if (RealDest == BB) continue; // Skip self loops. 1636 // Skip if the predecessor's terminator is an indirect branch. 1637 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1638 1639 // The dest block might have PHI nodes, other predecessors and other 1640 // difficult cases. Instead of being smart about this, just insert a new 1641 // block that jumps to the destination block, effectively splitting 1642 // the edge we are about to create. 1643 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1644 RealDest->getName()+".critedge", 1645 RealDest->getParent(), RealDest); 1646 BranchInst::Create(RealDest, EdgeBB); 1647 1648 // Update PHI nodes. 1649 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1650 1651 // BB may have instructions that are being threaded over. Clone these 1652 // instructions into EdgeBB. We know that there will be no uses of the 1653 // cloned instructions outside of EdgeBB. 1654 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1655 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1656 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1657 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1658 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1659 continue; 1660 } 1661 // Clone the instruction. 1662 Instruction *N = BBI->clone(); 1663 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1664 1665 // Update operands due to translation. 1666 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1667 i != e; ++i) { 1668 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1669 if (PI != TranslateMap.end()) 1670 *i = PI->second; 1671 } 1672 1673 // Check for trivial simplification. 1674 if (Value *V = SimplifyInstruction(N, DL)) { 1675 TranslateMap[BBI] = V; 1676 delete N; // Instruction folded away, don't need actual inst 1677 } else { 1678 // Insert the new instruction into its new home. 1679 EdgeBB->getInstList().insert(InsertPt, N); 1680 if (!BBI->use_empty()) 1681 TranslateMap[BBI] = N; 1682 } 1683 } 1684 1685 // Loop over all of the edges from PredBB to BB, changing them to branch 1686 // to EdgeBB instead. 1687 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1688 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1689 if (PredBBTI->getSuccessor(i) == BB) { 1690 BB->removePredecessor(PredBB); 1691 PredBBTI->setSuccessor(i, EdgeBB); 1692 } 1693 1694 // Recurse, simplifying any other constants. 1695 return FoldCondBranchOnPHI(BI, DL) | true; 1696 } 1697 1698 return false; 1699 } 1700 1701 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1702 /// PHI node, see if we can eliminate it. 1703 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) { 1704 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1705 // statement", which has a very simple dominance structure. Basically, we 1706 // are trying to find the condition that is being branched on, which 1707 // subsequently causes this merge to happen. We really want control 1708 // dependence information for this check, but simplifycfg can't keep it up 1709 // to date, and this catches most of the cases we care about anyway. 1710 BasicBlock *BB = PN->getParent(); 1711 BasicBlock *IfTrue, *IfFalse; 1712 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1713 if (!IfCond || 1714 // Don't bother if the branch will be constant folded trivially. 1715 isa<ConstantInt>(IfCond)) 1716 return false; 1717 1718 // Okay, we found that we can merge this two-entry phi node into a select. 1719 // Doing so would require us to fold *all* two entry phi nodes in this block. 1720 // At some point this becomes non-profitable (particularly if the target 1721 // doesn't support cmov's). Only do this transformation if there are two or 1722 // fewer PHI nodes in this block. 1723 unsigned NumPhis = 0; 1724 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1725 if (NumPhis > 2) 1726 return false; 1727 1728 // Loop over the PHI's seeing if we can promote them all to select 1729 // instructions. While we are at it, keep track of the instructions 1730 // that need to be moved to the dominating block. 1731 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1732 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1733 MaxCostVal1 = PHINodeFoldingThreshold; 1734 1735 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1736 PHINode *PN = cast<PHINode>(II++); 1737 if (Value *V = SimplifyInstruction(PN, DL)) { 1738 PN->replaceAllUsesWith(V); 1739 PN->eraseFromParent(); 1740 continue; 1741 } 1742 1743 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1744 MaxCostVal0) || 1745 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1746 MaxCostVal1)) 1747 return false; 1748 } 1749 1750 // If we folded the first phi, PN dangles at this point. Refresh it. If 1751 // we ran out of PHIs then we simplified them all. 1752 PN = dyn_cast<PHINode>(BB->begin()); 1753 if (!PN) return true; 1754 1755 // Don't fold i1 branches on PHIs which contain binary operators. These can 1756 // often be turned into switches and other things. 1757 if (PN->getType()->isIntegerTy(1) && 1758 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1759 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1760 isa<BinaryOperator>(IfCond))) 1761 return false; 1762 1763 // If we all PHI nodes are promotable, check to make sure that all 1764 // instructions in the predecessor blocks can be promoted as well. If 1765 // not, we won't be able to get rid of the control flow, so it's not 1766 // worth promoting to select instructions. 1767 BasicBlock *DomBlock = nullptr; 1768 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1769 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1770 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1771 IfBlock1 = nullptr; 1772 } else { 1773 DomBlock = *pred_begin(IfBlock1); 1774 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1775 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1776 // This is not an aggressive instruction that we can promote. 1777 // Because of this, we won't be able to get rid of the control 1778 // flow, so the xform is not worth it. 1779 return false; 1780 } 1781 } 1782 1783 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1784 IfBlock2 = nullptr; 1785 } else { 1786 DomBlock = *pred_begin(IfBlock2); 1787 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1788 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1789 // This is not an aggressive instruction that we can promote. 1790 // Because of this, we won't be able to get rid of the control 1791 // flow, so the xform is not worth it. 1792 return false; 1793 } 1794 } 1795 1796 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1797 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1798 1799 // If we can still promote the PHI nodes after this gauntlet of tests, 1800 // do all of the PHI's now. 1801 Instruction *InsertPt = DomBlock->getTerminator(); 1802 IRBuilder<true, NoFolder> Builder(InsertPt); 1803 1804 // Move all 'aggressive' instructions, which are defined in the 1805 // conditional parts of the if's up to the dominating block. 1806 if (IfBlock1) 1807 DomBlock->getInstList().splice(InsertPt, 1808 IfBlock1->getInstList(), IfBlock1->begin(), 1809 IfBlock1->getTerminator()); 1810 if (IfBlock2) 1811 DomBlock->getInstList().splice(InsertPt, 1812 IfBlock2->getInstList(), IfBlock2->begin(), 1813 IfBlock2->getTerminator()); 1814 1815 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1816 // Change the PHI node into a select instruction. 1817 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1818 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1819 1820 SelectInst *NV = 1821 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1822 PN->replaceAllUsesWith(NV); 1823 NV->takeName(PN); 1824 PN->eraseFromParent(); 1825 } 1826 1827 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1828 // has been flattened. Change DomBlock to jump directly to our new block to 1829 // avoid other simplifycfg's kicking in on the diamond. 1830 TerminatorInst *OldTI = DomBlock->getTerminator(); 1831 Builder.SetInsertPoint(OldTI); 1832 Builder.CreateBr(BB); 1833 OldTI->eraseFromParent(); 1834 return true; 1835 } 1836 1837 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1838 /// to two returning blocks, try to merge them together into one return, 1839 /// introducing a select if the return values disagree. 1840 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1841 IRBuilder<> &Builder) { 1842 assert(BI->isConditional() && "Must be a conditional branch"); 1843 BasicBlock *TrueSucc = BI->getSuccessor(0); 1844 BasicBlock *FalseSucc = BI->getSuccessor(1); 1845 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1846 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1847 1848 // Check to ensure both blocks are empty (just a return) or optionally empty 1849 // with PHI nodes. If there are other instructions, merging would cause extra 1850 // computation on one path or the other. 1851 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1852 return false; 1853 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1854 return false; 1855 1856 Builder.SetInsertPoint(BI); 1857 // Okay, we found a branch that is going to two return nodes. If 1858 // there is no return value for this function, just change the 1859 // branch into a return. 1860 if (FalseRet->getNumOperands() == 0) { 1861 TrueSucc->removePredecessor(BI->getParent()); 1862 FalseSucc->removePredecessor(BI->getParent()); 1863 Builder.CreateRetVoid(); 1864 EraseTerminatorInstAndDCECond(BI); 1865 return true; 1866 } 1867 1868 // Otherwise, figure out what the true and false return values are 1869 // so we can insert a new select instruction. 1870 Value *TrueValue = TrueRet->getReturnValue(); 1871 Value *FalseValue = FalseRet->getReturnValue(); 1872 1873 // Unwrap any PHI nodes in the return blocks. 1874 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1875 if (TVPN->getParent() == TrueSucc) 1876 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1877 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1878 if (FVPN->getParent() == FalseSucc) 1879 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1880 1881 // In order for this transformation to be safe, we must be able to 1882 // unconditionally execute both operands to the return. This is 1883 // normally the case, but we could have a potentially-trapping 1884 // constant expression that prevents this transformation from being 1885 // safe. 1886 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1887 if (TCV->canTrap()) 1888 return false; 1889 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1890 if (FCV->canTrap()) 1891 return false; 1892 1893 // Okay, we collected all the mapped values and checked them for sanity, and 1894 // defined to really do this transformation. First, update the CFG. 1895 TrueSucc->removePredecessor(BI->getParent()); 1896 FalseSucc->removePredecessor(BI->getParent()); 1897 1898 // Insert select instructions where needed. 1899 Value *BrCond = BI->getCondition(); 1900 if (TrueValue) { 1901 // Insert a select if the results differ. 1902 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1903 } else if (isa<UndefValue>(TrueValue)) { 1904 TrueValue = FalseValue; 1905 } else { 1906 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1907 FalseValue, "retval"); 1908 } 1909 } 1910 1911 Value *RI = !TrueValue ? 1912 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1913 1914 (void) RI; 1915 1916 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1917 << "\n " << *BI << "NewRet = " << *RI 1918 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1919 1920 EraseTerminatorInstAndDCECond(BI); 1921 1922 return true; 1923 } 1924 1925 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1926 /// probabilities of the branch taking each edge. Fills in the two APInt 1927 /// parameters and return true, or returns false if no or invalid metadata was 1928 /// found. 1929 static bool ExtractBranchMetadata(BranchInst *BI, 1930 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1931 assert(BI->isConditional() && 1932 "Looking for probabilities on unconditional branch?"); 1933 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1934 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1935 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1936 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1937 if (!CITrue || !CIFalse) return false; 1938 ProbTrue = CITrue->getValue().getZExtValue(); 1939 ProbFalse = CIFalse->getValue().getZExtValue(); 1940 return true; 1941 } 1942 1943 /// checkCSEInPredecessor - Return true if the given instruction is available 1944 /// in its predecessor block. If yes, the instruction will be removed. 1945 /// 1946 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1947 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1948 return false; 1949 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1950 Instruction *PBI = &*I; 1951 // Check whether Inst and PBI generate the same value. 1952 if (Inst->isIdenticalTo(PBI)) { 1953 Inst->replaceAllUsesWith(PBI); 1954 Inst->eraseFromParent(); 1955 return true; 1956 } 1957 } 1958 return false; 1959 } 1960 1961 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1962 /// predecessor branches to us and one of our successors, fold the block into 1963 /// the predecessor and use logical operations to pick the right destination. 1964 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1965 BasicBlock *BB = BI->getParent(); 1966 1967 Instruction *Cond = nullptr; 1968 if (BI->isConditional()) 1969 Cond = dyn_cast<Instruction>(BI->getCondition()); 1970 else { 1971 // For unconditional branch, check for a simple CFG pattern, where 1972 // BB has a single predecessor and BB's successor is also its predecessor's 1973 // successor. If such pattern exisits, check for CSE between BB and its 1974 // predecessor. 1975 if (BasicBlock *PB = BB->getSinglePredecessor()) 1976 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 1977 if (PBI->isConditional() && 1978 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 1979 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 1980 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 1981 I != E; ) { 1982 Instruction *Curr = I++; 1983 if (isa<CmpInst>(Curr)) { 1984 Cond = Curr; 1985 break; 1986 } 1987 // Quit if we can't remove this instruction. 1988 if (!checkCSEInPredecessor(Curr, PB)) 1989 return false; 1990 } 1991 } 1992 1993 if (!Cond) 1994 return false; 1995 } 1996 1997 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1998 Cond->getParent() != BB || !Cond->hasOneUse()) 1999 return false; 2000 2001 // Only allow this if the condition is a simple instruction that can be 2002 // executed unconditionally. It must be in the same block as the branch, and 2003 // must be at the front of the block. 2004 BasicBlock::iterator FrontIt = BB->front(); 2005 2006 // Ignore dbg intrinsics. 2007 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2008 2009 // Allow a single instruction to be hoisted in addition to the compare 2010 // that feeds the branch. We later ensure that any values that _it_ uses 2011 // were also live in the predecessor, so that we don't unnecessarily create 2012 // register pressure or inhibit out-of-order execution. 2013 Instruction *BonusInst = nullptr; 2014 if (&*FrontIt != Cond && 2015 FrontIt->hasOneUse() && FrontIt->user_back() == Cond && 2016 isSafeToSpeculativelyExecute(FrontIt)) { 2017 BonusInst = &*FrontIt; 2018 ++FrontIt; 2019 2020 // Ignore dbg intrinsics. 2021 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2022 } 2023 2024 // Only a single bonus inst is allowed. 2025 if (&*FrontIt != Cond) 2026 return false; 2027 2028 // Make sure the instruction after the condition is the cond branch. 2029 BasicBlock::iterator CondIt = Cond; ++CondIt; 2030 2031 // Ingore dbg intrinsics. 2032 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2033 2034 if (&*CondIt != BI) 2035 return false; 2036 2037 // Cond is known to be a compare or binary operator. Check to make sure that 2038 // neither operand is a potentially-trapping constant expression. 2039 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2040 if (CE->canTrap()) 2041 return false; 2042 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2043 if (CE->canTrap()) 2044 return false; 2045 2046 // Finally, don't infinitely unroll conditional loops. 2047 BasicBlock *TrueDest = BI->getSuccessor(0); 2048 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2049 if (TrueDest == BB || FalseDest == BB) 2050 return false; 2051 2052 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2053 BasicBlock *PredBlock = *PI; 2054 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2055 2056 // Check that we have two conditional branches. If there is a PHI node in 2057 // the common successor, verify that the same value flows in from both 2058 // blocks. 2059 SmallVector<PHINode*, 4> PHIs; 2060 if (!PBI || PBI->isUnconditional() || 2061 (BI->isConditional() && 2062 !SafeToMergeTerminators(BI, PBI)) || 2063 (!BI->isConditional() && 2064 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2065 continue; 2066 2067 // Determine if the two branches share a common destination. 2068 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2069 bool InvertPredCond = false; 2070 2071 if (BI->isConditional()) { 2072 if (PBI->getSuccessor(0) == TrueDest) 2073 Opc = Instruction::Or; 2074 else if (PBI->getSuccessor(1) == FalseDest) 2075 Opc = Instruction::And; 2076 else if (PBI->getSuccessor(0) == FalseDest) 2077 Opc = Instruction::And, InvertPredCond = true; 2078 else if (PBI->getSuccessor(1) == TrueDest) 2079 Opc = Instruction::Or, InvertPredCond = true; 2080 else 2081 continue; 2082 } else { 2083 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2084 continue; 2085 } 2086 2087 // Ensure that any values used in the bonus instruction are also used 2088 // by the terminator of the predecessor. This means that those values 2089 // must already have been resolved, so we won't be inhibiting the 2090 // out-of-order core by speculating them earlier. We also allow 2091 // instructions that are used by the terminator's condition because it 2092 // exposes more merging opportunities. 2093 bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() && 2094 BonusInst->user_back() == Cond); 2095 2096 if (BonusInst && !UsedByBranch) { 2097 // Collect the values used by the bonus inst 2098 SmallPtrSet<Value*, 4> UsedValues; 2099 for (Instruction::op_iterator OI = BonusInst->op_begin(), 2100 OE = BonusInst->op_end(); OI != OE; ++OI) { 2101 Value *V = *OI; 2102 if (!isa<Constant>(V) && !isa<Argument>(V)) 2103 UsedValues.insert(V); 2104 } 2105 2106 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2107 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2108 2109 // Walk up to four levels back up the use-def chain of the predecessor's 2110 // terminator to see if all those values were used. The choice of four 2111 // levels is arbitrary, to provide a compile-time-cost bound. 2112 while (!Worklist.empty()) { 2113 std::pair<Value*, unsigned> Pair = Worklist.back(); 2114 Worklist.pop_back(); 2115 2116 if (Pair.second >= 4) continue; 2117 UsedValues.erase(Pair.first); 2118 if (UsedValues.empty()) break; 2119 2120 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2121 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2122 OI != OE; ++OI) 2123 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2124 } 2125 } 2126 2127 if (!UsedValues.empty()) return false; 2128 } 2129 2130 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2131 IRBuilder<> Builder(PBI); 2132 2133 // If we need to invert the condition in the pred block to match, do so now. 2134 if (InvertPredCond) { 2135 Value *NewCond = PBI->getCondition(); 2136 2137 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2138 CmpInst *CI = cast<CmpInst>(NewCond); 2139 CI->setPredicate(CI->getInversePredicate()); 2140 } else { 2141 NewCond = Builder.CreateNot(NewCond, 2142 PBI->getCondition()->getName()+".not"); 2143 } 2144 2145 PBI->setCondition(NewCond); 2146 PBI->swapSuccessors(); 2147 } 2148 2149 // If we have a bonus inst, clone it into the predecessor block. 2150 Instruction *NewBonus = nullptr; 2151 if (BonusInst) { 2152 NewBonus = BonusInst->clone(); 2153 2154 // If we moved a load, we cannot any longer claim any knowledge about 2155 // its potential value. The previous information might have been valid 2156 // only given the branch precondition. 2157 // For an analogous reason, we must also drop all the metadata whose 2158 // semantics we don't understand. 2159 NewBonus->dropUnknownMetadata(LLVMContext::MD_dbg); 2160 2161 PredBlock->getInstList().insert(PBI, NewBonus); 2162 NewBonus->takeName(BonusInst); 2163 BonusInst->setName(BonusInst->getName()+".old"); 2164 } 2165 2166 // Clone Cond into the predecessor basic block, and or/and the 2167 // two conditions together. 2168 Instruction *New = Cond->clone(); 2169 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2170 PredBlock->getInstList().insert(PBI, New); 2171 New->takeName(Cond); 2172 Cond->setName(New->getName()+".old"); 2173 2174 if (BI->isConditional()) { 2175 Instruction *NewCond = 2176 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2177 New, "or.cond")); 2178 PBI->setCondition(NewCond); 2179 2180 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2181 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2182 PredFalseWeight); 2183 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2184 SuccFalseWeight); 2185 SmallVector<uint64_t, 8> NewWeights; 2186 2187 if (PBI->getSuccessor(0) == BB) { 2188 if (PredHasWeights && SuccHasWeights) { 2189 // PBI: br i1 %x, BB, FalseDest 2190 // BI: br i1 %y, TrueDest, FalseDest 2191 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2192 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2193 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2194 // TrueWeight for PBI * FalseWeight for BI. 2195 // We assume that total weights of a BranchInst can fit into 32 bits. 2196 // Therefore, we will not have overflow using 64-bit arithmetic. 2197 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2198 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2199 } 2200 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2201 PBI->setSuccessor(0, TrueDest); 2202 } 2203 if (PBI->getSuccessor(1) == BB) { 2204 if (PredHasWeights && SuccHasWeights) { 2205 // PBI: br i1 %x, TrueDest, BB 2206 // BI: br i1 %y, TrueDest, FalseDest 2207 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2208 // FalseWeight for PBI * TrueWeight for BI. 2209 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2210 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2211 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2212 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2213 } 2214 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2215 PBI->setSuccessor(1, FalseDest); 2216 } 2217 if (NewWeights.size() == 2) { 2218 // Halve the weights if any of them cannot fit in an uint32_t 2219 FitWeights(NewWeights); 2220 2221 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2222 PBI->setMetadata(LLVMContext::MD_prof, 2223 MDBuilder(BI->getContext()). 2224 createBranchWeights(MDWeights)); 2225 } else 2226 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2227 } else { 2228 // Update PHI nodes in the common successors. 2229 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2230 ConstantInt *PBI_C = cast<ConstantInt>( 2231 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2232 assert(PBI_C->getType()->isIntegerTy(1)); 2233 Instruction *MergedCond = nullptr; 2234 if (PBI->getSuccessor(0) == TrueDest) { 2235 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2236 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2237 // is false: !PBI_Cond and BI_Value 2238 Instruction *NotCond = 2239 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2240 "not.cond")); 2241 MergedCond = 2242 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2243 NotCond, New, 2244 "and.cond")); 2245 if (PBI_C->isOne()) 2246 MergedCond = 2247 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2248 PBI->getCondition(), MergedCond, 2249 "or.cond")); 2250 } else { 2251 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2252 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2253 // is false: PBI_Cond and BI_Value 2254 MergedCond = 2255 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2256 PBI->getCondition(), New, 2257 "and.cond")); 2258 if (PBI_C->isOne()) { 2259 Instruction *NotCond = 2260 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2261 "not.cond")); 2262 MergedCond = 2263 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2264 NotCond, MergedCond, 2265 "or.cond")); 2266 } 2267 } 2268 // Update PHI Node. 2269 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2270 MergedCond); 2271 } 2272 // Change PBI from Conditional to Unconditional. 2273 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2274 EraseTerminatorInstAndDCECond(PBI); 2275 PBI = New_PBI; 2276 } 2277 2278 // TODO: If BB is reachable from all paths through PredBlock, then we 2279 // could replace PBI's branch probabilities with BI's. 2280 2281 // Copy any debug value intrinsics into the end of PredBlock. 2282 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2283 if (isa<DbgInfoIntrinsic>(*I)) 2284 I->clone()->insertBefore(PBI); 2285 2286 return true; 2287 } 2288 return false; 2289 } 2290 2291 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2292 /// predecessor of another block, this function tries to simplify it. We know 2293 /// that PBI and BI are both conditional branches, and BI is in one of the 2294 /// successor blocks of PBI - PBI branches to BI. 2295 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2296 assert(PBI->isConditional() && BI->isConditional()); 2297 BasicBlock *BB = BI->getParent(); 2298 2299 // If this block ends with a branch instruction, and if there is a 2300 // predecessor that ends on a branch of the same condition, make 2301 // this conditional branch redundant. 2302 if (PBI->getCondition() == BI->getCondition() && 2303 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2304 // Okay, the outcome of this conditional branch is statically 2305 // knowable. If this block had a single pred, handle specially. 2306 if (BB->getSinglePredecessor()) { 2307 // Turn this into a branch on constant. 2308 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2309 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2310 CondIsTrue)); 2311 return true; // Nuke the branch on constant. 2312 } 2313 2314 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2315 // in the constant and simplify the block result. Subsequent passes of 2316 // simplifycfg will thread the block. 2317 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2318 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2319 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2320 std::distance(PB, PE), 2321 BI->getCondition()->getName() + ".pr", 2322 BB->begin()); 2323 // Okay, we're going to insert the PHI node. Since PBI is not the only 2324 // predecessor, compute the PHI'd conditional value for all of the preds. 2325 // Any predecessor where the condition is not computable we keep symbolic. 2326 for (pred_iterator PI = PB; PI != PE; ++PI) { 2327 BasicBlock *P = *PI; 2328 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2329 PBI != BI && PBI->isConditional() && 2330 PBI->getCondition() == BI->getCondition() && 2331 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2332 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2333 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2334 CondIsTrue), P); 2335 } else { 2336 NewPN->addIncoming(BI->getCondition(), P); 2337 } 2338 } 2339 2340 BI->setCondition(NewPN); 2341 return true; 2342 } 2343 } 2344 2345 // If this is a conditional branch in an empty block, and if any 2346 // predecessors is a conditional branch to one of our destinations, 2347 // fold the conditions into logical ops and one cond br. 2348 BasicBlock::iterator BBI = BB->begin(); 2349 // Ignore dbg intrinsics. 2350 while (isa<DbgInfoIntrinsic>(BBI)) 2351 ++BBI; 2352 if (&*BBI != BI) 2353 return false; 2354 2355 2356 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2357 if (CE->canTrap()) 2358 return false; 2359 2360 int PBIOp, BIOp; 2361 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2362 PBIOp = BIOp = 0; 2363 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2364 PBIOp = 0, BIOp = 1; 2365 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2366 PBIOp = 1, BIOp = 0; 2367 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2368 PBIOp = BIOp = 1; 2369 else 2370 return false; 2371 2372 // Check to make sure that the other destination of this branch 2373 // isn't BB itself. If so, this is an infinite loop that will 2374 // keep getting unwound. 2375 if (PBI->getSuccessor(PBIOp) == BB) 2376 return false; 2377 2378 // Do not perform this transformation if it would require 2379 // insertion of a large number of select instructions. For targets 2380 // without predication/cmovs, this is a big pessimization. 2381 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2382 2383 unsigned NumPhis = 0; 2384 for (BasicBlock::iterator II = CommonDest->begin(); 2385 isa<PHINode>(II); ++II, ++NumPhis) 2386 if (NumPhis > 2) // Disable this xform. 2387 return false; 2388 2389 // Finally, if everything is ok, fold the branches to logical ops. 2390 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2391 2392 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2393 << "AND: " << *BI->getParent()); 2394 2395 2396 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2397 // branch in it, where one edge (OtherDest) goes back to itself but the other 2398 // exits. We don't *know* that the program avoids the infinite loop 2399 // (even though that seems likely). If we do this xform naively, we'll end up 2400 // recursively unpeeling the loop. Since we know that (after the xform is 2401 // done) that the block *is* infinite if reached, we just make it an obviously 2402 // infinite loop with no cond branch. 2403 if (OtherDest == BB) { 2404 // Insert it at the end of the function, because it's either code, 2405 // or it won't matter if it's hot. :) 2406 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2407 "infloop", BB->getParent()); 2408 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2409 OtherDest = InfLoopBlock; 2410 } 2411 2412 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2413 2414 // BI may have other predecessors. Because of this, we leave 2415 // it alone, but modify PBI. 2416 2417 // Make sure we get to CommonDest on True&True directions. 2418 Value *PBICond = PBI->getCondition(); 2419 IRBuilder<true, NoFolder> Builder(PBI); 2420 if (PBIOp) 2421 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2422 2423 Value *BICond = BI->getCondition(); 2424 if (BIOp) 2425 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2426 2427 // Merge the conditions. 2428 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2429 2430 // Modify PBI to branch on the new condition to the new dests. 2431 PBI->setCondition(Cond); 2432 PBI->setSuccessor(0, CommonDest); 2433 PBI->setSuccessor(1, OtherDest); 2434 2435 // Update branch weight for PBI. 2436 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2437 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2438 PredFalseWeight); 2439 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2440 SuccFalseWeight); 2441 if (PredHasWeights && SuccHasWeights) { 2442 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2443 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2444 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2445 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2446 // The weight to CommonDest should be PredCommon * SuccTotal + 2447 // PredOther * SuccCommon. 2448 // The weight to OtherDest should be PredOther * SuccOther. 2449 SmallVector<uint64_t, 2> NewWeights; 2450 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2451 PredOther * SuccCommon); 2452 NewWeights.push_back(PredOther * SuccOther); 2453 // Halve the weights if any of them cannot fit in an uint32_t 2454 FitWeights(NewWeights); 2455 2456 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2457 PBI->setMetadata(LLVMContext::MD_prof, 2458 MDBuilder(BI->getContext()). 2459 createBranchWeights(MDWeights)); 2460 } 2461 2462 // OtherDest may have phi nodes. If so, add an entry from PBI's 2463 // block that are identical to the entries for BI's block. 2464 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2465 2466 // We know that the CommonDest already had an edge from PBI to 2467 // it. If it has PHIs though, the PHIs may have different 2468 // entries for BB and PBI's BB. If so, insert a select to make 2469 // them agree. 2470 PHINode *PN; 2471 for (BasicBlock::iterator II = CommonDest->begin(); 2472 (PN = dyn_cast<PHINode>(II)); ++II) { 2473 Value *BIV = PN->getIncomingValueForBlock(BB); 2474 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2475 Value *PBIV = PN->getIncomingValue(PBBIdx); 2476 if (BIV != PBIV) { 2477 // Insert a select in PBI to pick the right value. 2478 Value *NV = cast<SelectInst> 2479 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2480 PN->setIncomingValue(PBBIdx, NV); 2481 } 2482 } 2483 2484 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2485 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2486 2487 // This basic block is probably dead. We know it has at least 2488 // one fewer predecessor. 2489 return true; 2490 } 2491 2492 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2493 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2494 // Takes care of updating the successors and removing the old terminator. 2495 // Also makes sure not to introduce new successors by assuming that edges to 2496 // non-successor TrueBBs and FalseBBs aren't reachable. 2497 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2498 BasicBlock *TrueBB, BasicBlock *FalseBB, 2499 uint32_t TrueWeight, 2500 uint32_t FalseWeight){ 2501 // Remove any superfluous successor edges from the CFG. 2502 // First, figure out which successors to preserve. 2503 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2504 // successor. 2505 BasicBlock *KeepEdge1 = TrueBB; 2506 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2507 2508 // Then remove the rest. 2509 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2510 BasicBlock *Succ = OldTerm->getSuccessor(I); 2511 // Make sure only to keep exactly one copy of each edge. 2512 if (Succ == KeepEdge1) 2513 KeepEdge1 = nullptr; 2514 else if (Succ == KeepEdge2) 2515 KeepEdge2 = nullptr; 2516 else 2517 Succ->removePredecessor(OldTerm->getParent()); 2518 } 2519 2520 IRBuilder<> Builder(OldTerm); 2521 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2522 2523 // Insert an appropriate new terminator. 2524 if (!KeepEdge1 && !KeepEdge2) { 2525 if (TrueBB == FalseBB) 2526 // We were only looking for one successor, and it was present. 2527 // Create an unconditional branch to it. 2528 Builder.CreateBr(TrueBB); 2529 else { 2530 // We found both of the successors we were looking for. 2531 // Create a conditional branch sharing the condition of the select. 2532 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2533 if (TrueWeight != FalseWeight) 2534 NewBI->setMetadata(LLVMContext::MD_prof, 2535 MDBuilder(OldTerm->getContext()). 2536 createBranchWeights(TrueWeight, FalseWeight)); 2537 } 2538 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2539 // Neither of the selected blocks were successors, so this 2540 // terminator must be unreachable. 2541 new UnreachableInst(OldTerm->getContext(), OldTerm); 2542 } else { 2543 // One of the selected values was a successor, but the other wasn't. 2544 // Insert an unconditional branch to the one that was found; 2545 // the edge to the one that wasn't must be unreachable. 2546 if (!KeepEdge1) 2547 // Only TrueBB was found. 2548 Builder.CreateBr(TrueBB); 2549 else 2550 // Only FalseBB was found. 2551 Builder.CreateBr(FalseBB); 2552 } 2553 2554 EraseTerminatorInstAndDCECond(OldTerm); 2555 return true; 2556 } 2557 2558 // SimplifySwitchOnSelect - Replaces 2559 // (switch (select cond, X, Y)) on constant X, Y 2560 // with a branch - conditional if X and Y lead to distinct BBs, 2561 // unconditional otherwise. 2562 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2563 // Check for constant integer values in the select. 2564 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2565 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2566 if (!TrueVal || !FalseVal) 2567 return false; 2568 2569 // Find the relevant condition and destinations. 2570 Value *Condition = Select->getCondition(); 2571 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2572 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2573 2574 // Get weight for TrueBB and FalseBB. 2575 uint32_t TrueWeight = 0, FalseWeight = 0; 2576 SmallVector<uint64_t, 8> Weights; 2577 bool HasWeights = HasBranchWeights(SI); 2578 if (HasWeights) { 2579 GetBranchWeights(SI, Weights); 2580 if (Weights.size() == 1 + SI->getNumCases()) { 2581 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2582 getSuccessorIndex()]; 2583 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2584 getSuccessorIndex()]; 2585 } 2586 } 2587 2588 // Perform the actual simplification. 2589 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2590 TrueWeight, FalseWeight); 2591 } 2592 2593 // SimplifyIndirectBrOnSelect - Replaces 2594 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2595 // blockaddress(@fn, BlockB))) 2596 // with 2597 // (br cond, BlockA, BlockB). 2598 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2599 // Check that both operands of the select are block addresses. 2600 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2601 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2602 if (!TBA || !FBA) 2603 return false; 2604 2605 // Extract the actual blocks. 2606 BasicBlock *TrueBB = TBA->getBasicBlock(); 2607 BasicBlock *FalseBB = FBA->getBasicBlock(); 2608 2609 // Perform the actual simplification. 2610 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2611 0, 0); 2612 } 2613 2614 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2615 /// instruction (a seteq/setne with a constant) as the only instruction in a 2616 /// block that ends with an uncond branch. We are looking for a very specific 2617 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2618 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2619 /// default value goes to an uncond block with a seteq in it, we get something 2620 /// like: 2621 /// 2622 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2623 /// DEFAULT: 2624 /// %tmp = icmp eq i8 %A, 92 2625 /// br label %end 2626 /// end: 2627 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2628 /// 2629 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2630 /// the PHI, merging the third icmp into the switch. 2631 static bool TryToSimplifyUncondBranchWithICmpInIt( 2632 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2633 const DataLayout *DL) { 2634 BasicBlock *BB = ICI->getParent(); 2635 2636 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2637 // complex. 2638 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2639 2640 Value *V = ICI->getOperand(0); 2641 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2642 2643 // The pattern we're looking for is where our only predecessor is a switch on 2644 // 'V' and this block is the default case for the switch. In this case we can 2645 // fold the compared value into the switch to simplify things. 2646 BasicBlock *Pred = BB->getSinglePredecessor(); 2647 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 2648 2649 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2650 if (SI->getCondition() != V) 2651 return false; 2652 2653 // If BB is reachable on a non-default case, then we simply know the value of 2654 // V in this block. Substitute it and constant fold the icmp instruction 2655 // away. 2656 if (SI->getDefaultDest() != BB) { 2657 ConstantInt *VVal = SI->findCaseDest(BB); 2658 assert(VVal && "Should have a unique destination value"); 2659 ICI->setOperand(0, VVal); 2660 2661 if (Value *V = SimplifyInstruction(ICI, DL)) { 2662 ICI->replaceAllUsesWith(V); 2663 ICI->eraseFromParent(); 2664 } 2665 // BB is now empty, so it is likely to simplify away. 2666 return SimplifyCFG(BB, TTI, DL) | true; 2667 } 2668 2669 // Ok, the block is reachable from the default dest. If the constant we're 2670 // comparing exists in one of the other edges, then we can constant fold ICI 2671 // and zap it. 2672 if (SI->findCaseValue(Cst) != SI->case_default()) { 2673 Value *V; 2674 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2675 V = ConstantInt::getFalse(BB->getContext()); 2676 else 2677 V = ConstantInt::getTrue(BB->getContext()); 2678 2679 ICI->replaceAllUsesWith(V); 2680 ICI->eraseFromParent(); 2681 // BB is now empty, so it is likely to simplify away. 2682 return SimplifyCFG(BB, TTI, DL) | true; 2683 } 2684 2685 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2686 // the block. 2687 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2688 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 2689 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 2690 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2691 return false; 2692 2693 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2694 // true in the PHI. 2695 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2696 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2697 2698 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2699 std::swap(DefaultCst, NewCst); 2700 2701 // Replace ICI (which is used by the PHI for the default value) with true or 2702 // false depending on if it is EQ or NE. 2703 ICI->replaceAllUsesWith(DefaultCst); 2704 ICI->eraseFromParent(); 2705 2706 // Okay, the switch goes to this block on a default value. Add an edge from 2707 // the switch to the merge point on the compared value. 2708 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2709 BB->getParent(), BB); 2710 SmallVector<uint64_t, 8> Weights; 2711 bool HasWeights = HasBranchWeights(SI); 2712 if (HasWeights) { 2713 GetBranchWeights(SI, Weights); 2714 if (Weights.size() == 1 + SI->getNumCases()) { 2715 // Split weight for default case to case for "Cst". 2716 Weights[0] = (Weights[0]+1) >> 1; 2717 Weights.push_back(Weights[0]); 2718 2719 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2720 SI->setMetadata(LLVMContext::MD_prof, 2721 MDBuilder(SI->getContext()). 2722 createBranchWeights(MDWeights)); 2723 } 2724 } 2725 SI->addCase(Cst, NewBB); 2726 2727 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2728 Builder.SetInsertPoint(NewBB); 2729 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2730 Builder.CreateBr(SuccBlock); 2731 PHIUse->addIncoming(NewCst, NewBB); 2732 return true; 2733 } 2734 2735 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2736 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2737 /// fold it into a switch instruction if so. 2738 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL, 2739 IRBuilder<> &Builder) { 2740 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2741 if (!Cond) return false; 2742 2743 2744 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2745 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2746 // 'setne's and'ed together, collect them. 2747 Value *CompVal = nullptr; 2748 std::vector<ConstantInt*> Values; 2749 bool TrueWhenEqual = true; 2750 Value *ExtraCase = nullptr; 2751 unsigned UsedICmps = 0; 2752 2753 if (Cond->getOpcode() == Instruction::Or) { 2754 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true, 2755 UsedICmps); 2756 } else if (Cond->getOpcode() == Instruction::And) { 2757 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false, 2758 UsedICmps); 2759 TrueWhenEqual = false; 2760 } 2761 2762 // If we didn't have a multiply compared value, fail. 2763 if (!CompVal) return false; 2764 2765 // Avoid turning single icmps into a switch. 2766 if (UsedICmps <= 1) 2767 return false; 2768 2769 // There might be duplicate constants in the list, which the switch 2770 // instruction can't handle, remove them now. 2771 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2772 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2773 2774 // If Extra was used, we require at least two switch values to do the 2775 // transformation. A switch with one value is just an cond branch. 2776 if (ExtraCase && Values.size() < 2) return false; 2777 2778 // TODO: Preserve branch weight metadata, similarly to how 2779 // FoldValueComparisonIntoPredecessors preserves it. 2780 2781 // Figure out which block is which destination. 2782 BasicBlock *DefaultBB = BI->getSuccessor(1); 2783 BasicBlock *EdgeBB = BI->getSuccessor(0); 2784 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2785 2786 BasicBlock *BB = BI->getParent(); 2787 2788 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2789 << " cases into SWITCH. BB is:\n" << *BB); 2790 2791 // If there are any extra values that couldn't be folded into the switch 2792 // then we evaluate them with an explicit branch first. Split the block 2793 // right before the condbr to handle it. 2794 if (ExtraCase) { 2795 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2796 // Remove the uncond branch added to the old block. 2797 TerminatorInst *OldTI = BB->getTerminator(); 2798 Builder.SetInsertPoint(OldTI); 2799 2800 if (TrueWhenEqual) 2801 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2802 else 2803 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2804 2805 OldTI->eraseFromParent(); 2806 2807 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2808 // for the edge we just added. 2809 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2810 2811 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2812 << "\nEXTRABB = " << *BB); 2813 BB = NewBB; 2814 } 2815 2816 Builder.SetInsertPoint(BI); 2817 // Convert pointer to int before we switch. 2818 if (CompVal->getType()->isPointerTy()) { 2819 assert(DL && "Cannot switch on pointer without DataLayout"); 2820 CompVal = Builder.CreatePtrToInt(CompVal, 2821 DL->getIntPtrType(CompVal->getType()), 2822 "magicptr"); 2823 } 2824 2825 // Create the new switch instruction now. 2826 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2827 2828 // Add all of the 'cases' to the switch instruction. 2829 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2830 New->addCase(Values[i], EdgeBB); 2831 2832 // We added edges from PI to the EdgeBB. As such, if there were any 2833 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2834 // the number of edges added. 2835 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2836 isa<PHINode>(BBI); ++BBI) { 2837 PHINode *PN = cast<PHINode>(BBI); 2838 Value *InVal = PN->getIncomingValueForBlock(BB); 2839 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2840 PN->addIncoming(InVal, BB); 2841 } 2842 2843 // Erase the old branch instruction. 2844 EraseTerminatorInstAndDCECond(BI); 2845 2846 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2847 return true; 2848 } 2849 2850 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2851 // If this is a trivial landing pad that just continues unwinding the caught 2852 // exception then zap the landing pad, turning its invokes into calls. 2853 BasicBlock *BB = RI->getParent(); 2854 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2855 if (RI->getValue() != LPInst) 2856 // Not a landing pad, or the resume is not unwinding the exception that 2857 // caused control to branch here. 2858 return false; 2859 2860 // Check that there are no other instructions except for debug intrinsics. 2861 BasicBlock::iterator I = LPInst, E = RI; 2862 while (++I != E) 2863 if (!isa<DbgInfoIntrinsic>(I)) 2864 return false; 2865 2866 // Turn all invokes that unwind here into calls and delete the basic block. 2867 bool InvokeRequiresTableEntry = false; 2868 bool Changed = false; 2869 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2870 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2871 2872 if (II->hasFnAttr(Attribute::UWTable)) { 2873 // Don't remove an `invoke' instruction if the ABI requires an entry into 2874 // the table. 2875 InvokeRequiresTableEntry = true; 2876 continue; 2877 } 2878 2879 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2880 2881 // Insert a call instruction before the invoke. 2882 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2883 Call->takeName(II); 2884 Call->setCallingConv(II->getCallingConv()); 2885 Call->setAttributes(II->getAttributes()); 2886 Call->setDebugLoc(II->getDebugLoc()); 2887 2888 // Anything that used the value produced by the invoke instruction now uses 2889 // the value produced by the call instruction. Note that we do this even 2890 // for void functions and calls with no uses so that the callgraph edge is 2891 // updated. 2892 II->replaceAllUsesWith(Call); 2893 BB->removePredecessor(II->getParent()); 2894 2895 // Insert a branch to the normal destination right before the invoke. 2896 BranchInst::Create(II->getNormalDest(), II); 2897 2898 // Finally, delete the invoke instruction! 2899 II->eraseFromParent(); 2900 Changed = true; 2901 } 2902 2903 if (!InvokeRequiresTableEntry) 2904 // The landingpad is now unreachable. Zap it. 2905 BB->eraseFromParent(); 2906 2907 return Changed; 2908 } 2909 2910 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2911 BasicBlock *BB = RI->getParent(); 2912 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2913 2914 // Find predecessors that end with branches. 2915 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2916 SmallVector<BranchInst*, 8> CondBranchPreds; 2917 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2918 BasicBlock *P = *PI; 2919 TerminatorInst *PTI = P->getTerminator(); 2920 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2921 if (BI->isUnconditional()) 2922 UncondBranchPreds.push_back(P); 2923 else 2924 CondBranchPreds.push_back(BI); 2925 } 2926 } 2927 2928 // If we found some, do the transformation! 2929 if (!UncondBranchPreds.empty() && DupRet) { 2930 while (!UncondBranchPreds.empty()) { 2931 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2932 DEBUG(dbgs() << "FOLDING: " << *BB 2933 << "INTO UNCOND BRANCH PRED: " << *Pred); 2934 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2935 } 2936 2937 // If we eliminated all predecessors of the block, delete the block now. 2938 if (pred_begin(BB) == pred_end(BB)) 2939 // We know there are no successors, so just nuke the block. 2940 BB->eraseFromParent(); 2941 2942 return true; 2943 } 2944 2945 // Check out all of the conditional branches going to this return 2946 // instruction. If any of them just select between returns, change the 2947 // branch itself into a select/return pair. 2948 while (!CondBranchPreds.empty()) { 2949 BranchInst *BI = CondBranchPreds.pop_back_val(); 2950 2951 // Check to see if the non-BB successor is also a return block. 2952 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2953 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2954 SimplifyCondBranchToTwoReturns(BI, Builder)) 2955 return true; 2956 } 2957 return false; 2958 } 2959 2960 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2961 BasicBlock *BB = UI->getParent(); 2962 2963 bool Changed = false; 2964 2965 // If there are any instructions immediately before the unreachable that can 2966 // be removed, do so. 2967 while (UI != BB->begin()) { 2968 BasicBlock::iterator BBI = UI; 2969 --BBI; 2970 // Do not delete instructions that can have side effects which might cause 2971 // the unreachable to not be reachable; specifically, calls and volatile 2972 // operations may have this effect. 2973 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2974 2975 if (BBI->mayHaveSideEffects()) { 2976 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2977 if (SI->isVolatile()) 2978 break; 2979 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2980 if (LI->isVolatile()) 2981 break; 2982 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2983 if (RMWI->isVolatile()) 2984 break; 2985 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2986 if (CXI->isVolatile()) 2987 break; 2988 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2989 !isa<LandingPadInst>(BBI)) { 2990 break; 2991 } 2992 // Note that deleting LandingPad's here is in fact okay, although it 2993 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2994 // all the predecessors of this block will be the unwind edges of Invokes, 2995 // and we can therefore guarantee this block will be erased. 2996 } 2997 2998 // Delete this instruction (any uses are guaranteed to be dead) 2999 if (!BBI->use_empty()) 3000 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3001 BBI->eraseFromParent(); 3002 Changed = true; 3003 } 3004 3005 // If the unreachable instruction is the first in the block, take a gander 3006 // at all of the predecessors of this instruction, and simplify them. 3007 if (&BB->front() != UI) return Changed; 3008 3009 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3010 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3011 TerminatorInst *TI = Preds[i]->getTerminator(); 3012 IRBuilder<> Builder(TI); 3013 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3014 if (BI->isUnconditional()) { 3015 if (BI->getSuccessor(0) == BB) { 3016 new UnreachableInst(TI->getContext(), TI); 3017 TI->eraseFromParent(); 3018 Changed = true; 3019 } 3020 } else { 3021 if (BI->getSuccessor(0) == BB) { 3022 Builder.CreateBr(BI->getSuccessor(1)); 3023 EraseTerminatorInstAndDCECond(BI); 3024 } else if (BI->getSuccessor(1) == BB) { 3025 Builder.CreateBr(BI->getSuccessor(0)); 3026 EraseTerminatorInstAndDCECond(BI); 3027 Changed = true; 3028 } 3029 } 3030 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3031 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3032 i != e; ++i) 3033 if (i.getCaseSuccessor() == BB) { 3034 BB->removePredecessor(SI->getParent()); 3035 SI->removeCase(i); 3036 --i; --e; 3037 Changed = true; 3038 } 3039 // If the default value is unreachable, figure out the most popular 3040 // destination and make it the default. 3041 if (SI->getDefaultDest() == BB) { 3042 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 3043 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3044 i != e; ++i) { 3045 std::pair<unsigned, unsigned> &entry = 3046 Popularity[i.getCaseSuccessor()]; 3047 if (entry.first == 0) { 3048 entry.first = 1; 3049 entry.second = i.getCaseIndex(); 3050 } else { 3051 entry.first++; 3052 } 3053 } 3054 3055 // Find the most popular block. 3056 unsigned MaxPop = 0; 3057 unsigned MaxIndex = 0; 3058 BasicBlock *MaxBlock = nullptr; 3059 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 3060 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 3061 if (I->second.first > MaxPop || 3062 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 3063 MaxPop = I->second.first; 3064 MaxIndex = I->second.second; 3065 MaxBlock = I->first; 3066 } 3067 } 3068 if (MaxBlock) { 3069 // Make this the new default, allowing us to delete any explicit 3070 // edges to it. 3071 SI->setDefaultDest(MaxBlock); 3072 Changed = true; 3073 3074 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 3075 // it. 3076 if (isa<PHINode>(MaxBlock->begin())) 3077 for (unsigned i = 0; i != MaxPop-1; ++i) 3078 MaxBlock->removePredecessor(SI->getParent()); 3079 3080 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3081 i != e; ++i) 3082 if (i.getCaseSuccessor() == MaxBlock) { 3083 SI->removeCase(i); 3084 --i; --e; 3085 } 3086 } 3087 } 3088 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3089 if (II->getUnwindDest() == BB) { 3090 // Convert the invoke to a call instruction. This would be a good 3091 // place to note that the call does not throw though. 3092 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3093 II->removeFromParent(); // Take out of symbol table 3094 3095 // Insert the call now... 3096 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3097 Builder.SetInsertPoint(BI); 3098 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3099 Args, II->getName()); 3100 CI->setCallingConv(II->getCallingConv()); 3101 CI->setAttributes(II->getAttributes()); 3102 // If the invoke produced a value, the call does now instead. 3103 II->replaceAllUsesWith(CI); 3104 delete II; 3105 Changed = true; 3106 } 3107 } 3108 } 3109 3110 // If this block is now dead, remove it. 3111 if (pred_begin(BB) == pred_end(BB) && 3112 BB != &BB->getParent()->getEntryBlock()) { 3113 // We know there are no successors, so just nuke the block. 3114 BB->eraseFromParent(); 3115 return true; 3116 } 3117 3118 return Changed; 3119 } 3120 3121 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 3122 /// integer range comparison into a sub, an icmp and a branch. 3123 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3124 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3125 3126 // Make sure all cases point to the same destination and gather the values. 3127 SmallVector<ConstantInt *, 16> Cases; 3128 SwitchInst::CaseIt I = SI->case_begin(); 3129 Cases.push_back(I.getCaseValue()); 3130 SwitchInst::CaseIt PrevI = I++; 3131 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3132 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3133 return false; 3134 Cases.push_back(I.getCaseValue()); 3135 } 3136 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3137 3138 // Sort the case values, then check if they form a range we can transform. 3139 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3140 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3141 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3142 return false; 3143 } 3144 3145 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3146 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3147 3148 Value *Sub = SI->getCondition(); 3149 if (!Offset->isNullValue()) 3150 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3151 Value *Cmp; 3152 // If NumCases overflowed, then all possible values jump to the successor. 3153 if (NumCases->isNullValue() && SI->getNumCases() != 0) 3154 Cmp = ConstantInt::getTrue(SI->getContext()); 3155 else 3156 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3157 BranchInst *NewBI = Builder.CreateCondBr( 3158 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3159 3160 // Update weight for the newly-created conditional branch. 3161 SmallVector<uint64_t, 8> Weights; 3162 bool HasWeights = HasBranchWeights(SI); 3163 if (HasWeights) { 3164 GetBranchWeights(SI, Weights); 3165 if (Weights.size() == 1 + SI->getNumCases()) { 3166 // Combine all weights for the cases to be the true weight of NewBI. 3167 // We assume that the sum of all weights for a Terminator can fit into 32 3168 // bits. 3169 uint32_t NewTrueWeight = 0; 3170 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3171 NewTrueWeight += (uint32_t)Weights[I]; 3172 NewBI->setMetadata(LLVMContext::MD_prof, 3173 MDBuilder(SI->getContext()). 3174 createBranchWeights(NewTrueWeight, 3175 (uint32_t)Weights[0])); 3176 } 3177 } 3178 3179 // Prune obsolete incoming values off the successor's PHI nodes. 3180 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3181 isa<PHINode>(BBI); ++BBI) { 3182 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3183 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3184 } 3185 SI->eraseFromParent(); 3186 3187 return true; 3188 } 3189 3190 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3191 /// and use it to remove dead cases. 3192 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3193 Value *Cond = SI->getCondition(); 3194 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3195 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3196 computeKnownBits(Cond, KnownZero, KnownOne); 3197 3198 // Gather dead cases. 3199 SmallVector<ConstantInt*, 8> DeadCases; 3200 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3201 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3202 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3203 DeadCases.push_back(I.getCaseValue()); 3204 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3205 << I.getCaseValue() << "' is dead.\n"); 3206 } 3207 } 3208 3209 SmallVector<uint64_t, 8> Weights; 3210 bool HasWeight = HasBranchWeights(SI); 3211 if (HasWeight) { 3212 GetBranchWeights(SI, Weights); 3213 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3214 } 3215 3216 // Remove dead cases from the switch. 3217 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3218 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3219 assert(Case != SI->case_default() && 3220 "Case was not found. Probably mistake in DeadCases forming."); 3221 if (HasWeight) { 3222 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3223 Weights.pop_back(); 3224 } 3225 3226 // Prune unused values from PHI nodes. 3227 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3228 SI->removeCase(Case); 3229 } 3230 if (HasWeight && Weights.size() >= 2) { 3231 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3232 SI->setMetadata(LLVMContext::MD_prof, 3233 MDBuilder(SI->getParent()->getContext()). 3234 createBranchWeights(MDWeights)); 3235 } 3236 3237 return !DeadCases.empty(); 3238 } 3239 3240 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3241 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3242 /// by an unconditional branch), look at the phi node for BB in the successor 3243 /// block and see if the incoming value is equal to CaseValue. If so, return 3244 /// the phi node, and set PhiIndex to BB's index in the phi node. 3245 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3246 BasicBlock *BB, 3247 int *PhiIndex) { 3248 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3249 return nullptr; // BB must be empty to be a candidate for simplification. 3250 if (!BB->getSinglePredecessor()) 3251 return nullptr; // BB must be dominated by the switch. 3252 3253 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3254 if (!Branch || !Branch->isUnconditional()) 3255 return nullptr; // Terminator must be unconditional branch. 3256 3257 BasicBlock *Succ = Branch->getSuccessor(0); 3258 3259 BasicBlock::iterator I = Succ->begin(); 3260 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3261 int Idx = PHI->getBasicBlockIndex(BB); 3262 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3263 3264 Value *InValue = PHI->getIncomingValue(Idx); 3265 if (InValue != CaseValue) continue; 3266 3267 *PhiIndex = Idx; 3268 return PHI; 3269 } 3270 3271 return nullptr; 3272 } 3273 3274 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3275 /// instruction to a phi node dominated by the switch, if that would mean that 3276 /// some of the destination blocks of the switch can be folded away. 3277 /// Returns true if a change is made. 3278 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3279 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3280 ForwardingNodesMap ForwardingNodes; 3281 3282 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3283 ConstantInt *CaseValue = I.getCaseValue(); 3284 BasicBlock *CaseDest = I.getCaseSuccessor(); 3285 3286 int PhiIndex; 3287 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3288 &PhiIndex); 3289 if (!PHI) continue; 3290 3291 ForwardingNodes[PHI].push_back(PhiIndex); 3292 } 3293 3294 bool Changed = false; 3295 3296 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3297 E = ForwardingNodes.end(); I != E; ++I) { 3298 PHINode *Phi = I->first; 3299 SmallVectorImpl<int> &Indexes = I->second; 3300 3301 if (Indexes.size() < 2) continue; 3302 3303 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3304 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3305 Changed = true; 3306 } 3307 3308 return Changed; 3309 } 3310 3311 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3312 /// initializing an array of constants like C. 3313 static bool ValidLookupTableConstant(Constant *C) { 3314 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3315 return CE->isGEPWithNoNotionalOverIndexing(); 3316 if (C->isThreadDependent()) 3317 return false; 3318 if (C->isDLLImportDependent()) 3319 return false; 3320 3321 return isa<ConstantFP>(C) || 3322 isa<ConstantInt>(C) || 3323 isa<ConstantPointerNull>(C) || 3324 isa<GlobalValue>(C) || 3325 isa<UndefValue>(C); 3326 } 3327 3328 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3329 /// its constant value in ConstantPool, returning 0 if it's not there. 3330 static Constant *LookupConstant(Value *V, 3331 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3332 if (Constant *C = dyn_cast<Constant>(V)) 3333 return C; 3334 return ConstantPool.lookup(V); 3335 } 3336 3337 /// ConstantFold - Try to fold instruction I into a constant. This works for 3338 /// simple instructions such as binary operations where both operands are 3339 /// constant or can be replaced by constants from the ConstantPool. Returns the 3340 /// resulting constant on success, 0 otherwise. 3341 static Constant * 3342 ConstantFold(Instruction *I, 3343 const SmallDenseMap<Value *, Constant *> &ConstantPool, 3344 const DataLayout *DL) { 3345 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3346 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3347 if (!A) 3348 return nullptr; 3349 if (A->isAllOnesValue()) 3350 return LookupConstant(Select->getTrueValue(), ConstantPool); 3351 if (A->isNullValue()) 3352 return LookupConstant(Select->getFalseValue(), ConstantPool); 3353 return nullptr; 3354 } 3355 3356 SmallVector<Constant *, 4> COps; 3357 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3358 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3359 COps.push_back(A); 3360 else 3361 return nullptr; 3362 } 3363 3364 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) 3365 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3366 COps[1], DL); 3367 3368 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 3369 } 3370 3371 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3372 /// at the common destination basic block, *CommonDest, for one of the case 3373 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3374 /// case), of a switch instruction SI. 3375 static bool 3376 GetCaseResults(SwitchInst *SI, 3377 ConstantInt *CaseVal, 3378 BasicBlock *CaseDest, 3379 BasicBlock **CommonDest, 3380 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res, 3381 const DataLayout *DL) { 3382 // The block from which we enter the common destination. 3383 BasicBlock *Pred = SI->getParent(); 3384 3385 // If CaseDest is empty except for some side-effect free instructions through 3386 // which we can constant-propagate the CaseVal, continue to its successor. 3387 SmallDenseMap<Value*, Constant*> ConstantPool; 3388 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3389 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3390 ++I) { 3391 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3392 // If the terminator is a simple branch, continue to the next block. 3393 if (T->getNumSuccessors() != 1) 3394 return false; 3395 Pred = CaseDest; 3396 CaseDest = T->getSuccessor(0); 3397 } else if (isa<DbgInfoIntrinsic>(I)) { 3398 // Skip debug intrinsic. 3399 continue; 3400 } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) { 3401 // Instruction is side-effect free and constant. 3402 ConstantPool.insert(std::make_pair(I, C)); 3403 } else { 3404 break; 3405 } 3406 } 3407 3408 // If we did not have a CommonDest before, use the current one. 3409 if (!*CommonDest) 3410 *CommonDest = CaseDest; 3411 // If the destination isn't the common one, abort. 3412 if (CaseDest != *CommonDest) 3413 return false; 3414 3415 // Get the values for this case from phi nodes in the destination block. 3416 BasicBlock::iterator I = (*CommonDest)->begin(); 3417 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3418 int Idx = PHI->getBasicBlockIndex(Pred); 3419 if (Idx == -1) 3420 continue; 3421 3422 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3423 ConstantPool); 3424 if (!ConstVal) 3425 return false; 3426 3427 // Note: If the constant comes from constant-propagating the case value 3428 // through the CaseDest basic block, it will be safe to remove the 3429 // instructions in that block. They cannot be used (except in the phi nodes 3430 // we visit) outside CaseDest, because that block does not dominate its 3431 // successor. If it did, we would not be in this phi node. 3432 3433 // Be conservative about which kinds of constants we support. 3434 if (!ValidLookupTableConstant(ConstVal)) 3435 return false; 3436 3437 Res.push_back(std::make_pair(PHI, ConstVal)); 3438 } 3439 3440 return Res.size() > 0; 3441 } 3442 3443 namespace { 3444 /// SwitchLookupTable - This class represents a lookup table that can be used 3445 /// to replace a switch. 3446 class SwitchLookupTable { 3447 public: 3448 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3449 /// with the contents of Values, using DefaultValue to fill any holes in the 3450 /// table. 3451 SwitchLookupTable(Module &M, 3452 uint64_t TableSize, 3453 ConstantInt *Offset, 3454 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3455 Constant *DefaultValue, 3456 const DataLayout *DL); 3457 3458 /// BuildLookup - Build instructions with Builder to retrieve the value at 3459 /// the position given by Index in the lookup table. 3460 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3461 3462 /// WouldFitInRegister - Return true if a table with TableSize elements of 3463 /// type ElementType would fit in a target-legal register. 3464 static bool WouldFitInRegister(const DataLayout *DL, 3465 uint64_t TableSize, 3466 const Type *ElementType); 3467 3468 private: 3469 // Depending on the contents of the table, it can be represented in 3470 // different ways. 3471 enum { 3472 // For tables where each element contains the same value, we just have to 3473 // store that single value and return it for each lookup. 3474 SingleValueKind, 3475 3476 // For small tables with integer elements, we can pack them into a bitmap 3477 // that fits into a target-legal register. Values are retrieved by 3478 // shift and mask operations. 3479 BitMapKind, 3480 3481 // The table is stored as an array of values. Values are retrieved by load 3482 // instructions from the table. 3483 ArrayKind 3484 } Kind; 3485 3486 // For SingleValueKind, this is the single value. 3487 Constant *SingleValue; 3488 3489 // For BitMapKind, this is the bitmap. 3490 ConstantInt *BitMap; 3491 IntegerType *BitMapElementTy; 3492 3493 // For ArrayKind, this is the array. 3494 GlobalVariable *Array; 3495 }; 3496 } 3497 3498 SwitchLookupTable::SwitchLookupTable(Module &M, 3499 uint64_t TableSize, 3500 ConstantInt *Offset, 3501 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3502 Constant *DefaultValue, 3503 const DataLayout *DL) 3504 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 3505 Array(nullptr) { 3506 assert(Values.size() && "Can't build lookup table without values!"); 3507 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3508 3509 // If all values in the table are equal, this is that value. 3510 SingleValue = Values.begin()->second; 3511 3512 Type *ValueType = Values.begin()->second->getType(); 3513 3514 // Build up the table contents. 3515 SmallVector<Constant*, 64> TableContents(TableSize); 3516 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3517 ConstantInt *CaseVal = Values[I].first; 3518 Constant *CaseRes = Values[I].second; 3519 assert(CaseRes->getType() == ValueType); 3520 3521 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3522 .getLimitedValue(); 3523 TableContents[Idx] = CaseRes; 3524 3525 if (CaseRes != SingleValue) 3526 SingleValue = nullptr; 3527 } 3528 3529 // Fill in any holes in the table with the default result. 3530 if (Values.size() < TableSize) { 3531 assert(DefaultValue && "Need a default value to fill the lookup table holes."); 3532 assert(DefaultValue->getType() == ValueType); 3533 for (uint64_t I = 0; I < TableSize; ++I) { 3534 if (!TableContents[I]) 3535 TableContents[I] = DefaultValue; 3536 } 3537 3538 if (DefaultValue != SingleValue) 3539 SingleValue = nullptr; 3540 } 3541 3542 // If each element in the table contains the same value, we only need to store 3543 // that single value. 3544 if (SingleValue) { 3545 Kind = SingleValueKind; 3546 return; 3547 } 3548 3549 // If the type is integer and the table fits in a register, build a bitmap. 3550 if (WouldFitInRegister(DL, TableSize, ValueType)) { 3551 IntegerType *IT = cast<IntegerType>(ValueType); 3552 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3553 for (uint64_t I = TableSize; I > 0; --I) { 3554 TableInt <<= IT->getBitWidth(); 3555 // Insert values into the bitmap. Undef values are set to zero. 3556 if (!isa<UndefValue>(TableContents[I - 1])) { 3557 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3558 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3559 } 3560 } 3561 BitMap = ConstantInt::get(M.getContext(), TableInt); 3562 BitMapElementTy = IT; 3563 Kind = BitMapKind; 3564 ++NumBitMaps; 3565 return; 3566 } 3567 3568 // Store the table in an array. 3569 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 3570 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3571 3572 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3573 GlobalVariable::PrivateLinkage, 3574 Initializer, 3575 "switch.table"); 3576 Array->setUnnamedAddr(true); 3577 Kind = ArrayKind; 3578 } 3579 3580 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3581 switch (Kind) { 3582 case SingleValueKind: 3583 return SingleValue; 3584 case BitMapKind: { 3585 // Type of the bitmap (e.g. i59). 3586 IntegerType *MapTy = BitMap->getType(); 3587 3588 // Cast Index to the same type as the bitmap. 3589 // Note: The Index is <= the number of elements in the table, so 3590 // truncating it to the width of the bitmask is safe. 3591 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3592 3593 // Multiply the shift amount by the element width. 3594 ShiftAmt = Builder.CreateMul(ShiftAmt, 3595 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3596 "switch.shiftamt"); 3597 3598 // Shift down. 3599 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3600 "switch.downshift"); 3601 // Mask off. 3602 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3603 "switch.masked"); 3604 } 3605 case ArrayKind: { 3606 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3607 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3608 "switch.gep"); 3609 return Builder.CreateLoad(GEP, "switch.load"); 3610 } 3611 } 3612 llvm_unreachable("Unknown lookup table kind!"); 3613 } 3614 3615 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL, 3616 uint64_t TableSize, 3617 const Type *ElementType) { 3618 if (!DL) 3619 return false; 3620 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3621 if (!IT) 3622 return false; 3623 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3624 // are <= 15, we could try to narrow the type. 3625 3626 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3627 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3628 return false; 3629 return DL->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3630 } 3631 3632 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3633 /// for this switch, based on the number of cases, size of the table and the 3634 /// types of the results. 3635 static bool ShouldBuildLookupTable(SwitchInst *SI, 3636 uint64_t TableSize, 3637 const TargetTransformInfo &TTI, 3638 const DataLayout *DL, 3639 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3640 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3641 return false; // TableSize overflowed, or mul below might overflow. 3642 3643 bool AllTablesFitInRegister = true; 3644 bool HasIllegalType = false; 3645 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3646 E = ResultTypes.end(); I != E; ++I) { 3647 Type *Ty = I->second; 3648 3649 // Saturate this flag to true. 3650 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3651 3652 // Saturate this flag to false. 3653 AllTablesFitInRegister = AllTablesFitInRegister && 3654 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 3655 3656 // If both flags saturate, we're done. NOTE: This *only* works with 3657 // saturating flags, and all flags have to saturate first due to the 3658 // non-deterministic behavior of iterating over a dense map. 3659 if (HasIllegalType && !AllTablesFitInRegister) 3660 break; 3661 } 3662 3663 // If each table would fit in a register, we should build it anyway. 3664 if (AllTablesFitInRegister) 3665 return true; 3666 3667 // Don't build a table that doesn't fit in-register if it has illegal types. 3668 if (HasIllegalType) 3669 return false; 3670 3671 // The table density should be at least 40%. This is the same criterion as for 3672 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3673 // FIXME: Find the best cut-off. 3674 return SI->getNumCases() * 10 >= TableSize * 4; 3675 } 3676 3677 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3678 /// phi nodes in a common successor block with different constant values, 3679 /// replace the switch with lookup tables. 3680 static bool SwitchToLookupTable(SwitchInst *SI, 3681 IRBuilder<> &Builder, 3682 const TargetTransformInfo &TTI, 3683 const DataLayout* DL) { 3684 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3685 3686 // Only build lookup table when we have a target that supports it. 3687 if (!TTI.shouldBuildLookupTables()) 3688 return false; 3689 3690 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3691 // split off a dense part and build a lookup table for that. 3692 3693 // FIXME: This creates arrays of GEPs to constant strings, which means each 3694 // GEP needs a runtime relocation in PIC code. We should just build one big 3695 // string and lookup indices into that. 3696 3697 // Ignore switches with less than three cases. Lookup tables will not make them 3698 // faster, so we don't analyze them. 3699 if (SI->getNumCases() < 3) 3700 return false; 3701 3702 // Figure out the corresponding result for each case value and phi node in the 3703 // common destination, as well as the the min and max case values. 3704 assert(SI->case_begin() != SI->case_end()); 3705 SwitchInst::CaseIt CI = SI->case_begin(); 3706 ConstantInt *MinCaseVal = CI.getCaseValue(); 3707 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3708 3709 BasicBlock *CommonDest = nullptr; 3710 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3711 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3712 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3713 SmallDenseMap<PHINode*, Type*> ResultTypes; 3714 SmallVector<PHINode*, 4> PHIs; 3715 3716 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3717 ConstantInt *CaseVal = CI.getCaseValue(); 3718 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3719 MinCaseVal = CaseVal; 3720 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3721 MaxCaseVal = CaseVal; 3722 3723 // Resulting value at phi nodes for this case value. 3724 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3725 ResultsTy Results; 3726 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 3727 Results, DL)) 3728 return false; 3729 3730 // Append the result from this case to the list for each phi. 3731 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3732 if (!ResultLists.count(I->first)) 3733 PHIs.push_back(I->first); 3734 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3735 } 3736 } 3737 3738 // Keep track of the result types. 3739 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3740 PHINode *PHI = PHIs[I]; 3741 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 3742 } 3743 3744 uint64_t NumResults = ResultLists[PHIs[0]].size(); 3745 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3746 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3747 bool TableHasHoles = (NumResults < TableSize); 3748 3749 // If the table has holes, we need a constant result for the default case 3750 // or a bitmask that fits in a register. 3751 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3752 bool HasDefaultResults = false; 3753 if (TableHasHoles) { 3754 HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 3755 &CommonDest, DefaultResultsList, DL); 3756 } 3757 bool NeedMask = (TableHasHoles && !HasDefaultResults); 3758 if (NeedMask) { 3759 // As an extra penalty for the validity test we require more cases. 3760 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 3761 return false; 3762 if (!(DL && DL->fitsInLegalInteger(TableSize))) 3763 return false; 3764 } 3765 3766 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3767 PHINode *PHI = DefaultResultsList[I].first; 3768 Constant *Result = DefaultResultsList[I].second; 3769 DefaultResults[PHI] = Result; 3770 } 3771 3772 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 3773 return false; 3774 3775 // Create the BB that does the lookups. 3776 Module &Mod = *CommonDest->getParent()->getParent(); 3777 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3778 "switch.lookup", 3779 CommonDest->getParent(), 3780 CommonDest); 3781 3782 // Compute the table index value. 3783 Builder.SetInsertPoint(SI); 3784 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3785 "switch.tableidx"); 3786 3787 // Compute the maximum table size representable by the integer type we are 3788 // switching upon. 3789 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 3790 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 3791 assert(MaxTableSize >= TableSize && 3792 "It is impossible for a switch to have more entries than the max " 3793 "representable value of its input integer type's size."); 3794 3795 // If we have a fully covered lookup table, unconditionally branch to the 3796 // lookup table BB. Otherwise, check if the condition value is within the case 3797 // range. If it is so, branch to the new BB. Otherwise branch to SI's default 3798 // destination. 3799 const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize; 3800 if (GeneratingCoveredLookupTable) { 3801 Builder.CreateBr(LookupBB); 3802 SI->getDefaultDest()->removePredecessor(SI->getParent()); 3803 } else { 3804 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3805 MinCaseVal->getType(), TableSize)); 3806 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3807 } 3808 3809 // Populate the BB that does the lookups. 3810 Builder.SetInsertPoint(LookupBB); 3811 3812 if (NeedMask) { 3813 // Before doing the lookup we do the hole check. 3814 // The LookupBB is therefore re-purposed to do the hole check 3815 // and we create a new LookupBB. 3816 BasicBlock *MaskBB = LookupBB; 3817 MaskBB->setName("switch.hole_check"); 3818 LookupBB = BasicBlock::Create(Mod.getContext(), 3819 "switch.lookup", 3820 CommonDest->getParent(), 3821 CommonDest); 3822 3823 // Build bitmask; fill in a 1 bit for every case. 3824 APInt MaskInt(TableSize, 0); 3825 APInt One(TableSize, 1); 3826 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 3827 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 3828 uint64_t Idx = (ResultList[I].first->getValue() - 3829 MinCaseVal->getValue()).getLimitedValue(); 3830 MaskInt |= One << Idx; 3831 } 3832 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 3833 3834 // Get the TableIndex'th bit of the bitmask. 3835 // If this bit is 0 (meaning hole) jump to the default destination, 3836 // else continue with table lookup. 3837 IntegerType *MapTy = TableMask->getType(); 3838 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 3839 "switch.maskindex"); 3840 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 3841 "switch.shifted"); 3842 Value *LoBit = Builder.CreateTrunc(Shifted, 3843 Type::getInt1Ty(Mod.getContext()), 3844 "switch.lobit"); 3845 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 3846 3847 Builder.SetInsertPoint(LookupBB); 3848 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 3849 } 3850 3851 bool ReturnedEarly = false; 3852 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3853 PHINode *PHI = PHIs[I]; 3854 3855 // If using a bitmask, use any value to fill the lookup table holes. 3856 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 3857 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3858 DV, DL); 3859 3860 Value *Result = Table.BuildLookup(TableIndex, Builder); 3861 3862 // If the result is used to return immediately from the function, we want to 3863 // do that right here. 3864 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 3865 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 3866 Builder.CreateRet(Result); 3867 ReturnedEarly = true; 3868 break; 3869 } 3870 3871 PHI->addIncoming(Result, LookupBB); 3872 } 3873 3874 if (!ReturnedEarly) 3875 Builder.CreateBr(CommonDest); 3876 3877 // Remove the switch. 3878 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 3879 BasicBlock *Succ = SI->getSuccessor(i); 3880 3881 if (Succ == SI->getDefaultDest()) 3882 continue; 3883 Succ->removePredecessor(SI->getParent()); 3884 } 3885 SI->eraseFromParent(); 3886 3887 ++NumLookupTables; 3888 if (NeedMask) 3889 ++NumLookupTablesHoles; 3890 return true; 3891 } 3892 3893 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3894 BasicBlock *BB = SI->getParent(); 3895 3896 if (isValueEqualityComparison(SI)) { 3897 // If we only have one predecessor, and if it is a branch on this value, 3898 // see if that predecessor totally determines the outcome of this switch. 3899 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3900 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3901 return SimplifyCFG(BB, TTI, DL) | true; 3902 3903 Value *Cond = SI->getCondition(); 3904 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3905 if (SimplifySwitchOnSelect(SI, Select)) 3906 return SimplifyCFG(BB, TTI, DL) | true; 3907 3908 // If the block only contains the switch, see if we can fold the block 3909 // away into any preds. 3910 BasicBlock::iterator BBI = BB->begin(); 3911 // Ignore dbg intrinsics. 3912 while (isa<DbgInfoIntrinsic>(BBI)) 3913 ++BBI; 3914 if (SI == &*BBI) 3915 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3916 return SimplifyCFG(BB, TTI, DL) | true; 3917 } 3918 3919 // Try to transform the switch into an icmp and a branch. 3920 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3921 return SimplifyCFG(BB, TTI, DL) | true; 3922 3923 // Remove unreachable cases. 3924 if (EliminateDeadSwitchCases(SI)) 3925 return SimplifyCFG(BB, TTI, DL) | true; 3926 3927 if (ForwardSwitchConditionToPHI(SI)) 3928 return SimplifyCFG(BB, TTI, DL) | true; 3929 3930 if (SwitchToLookupTable(SI, Builder, TTI, DL)) 3931 return SimplifyCFG(BB, TTI, DL) | true; 3932 3933 return false; 3934 } 3935 3936 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3937 BasicBlock *BB = IBI->getParent(); 3938 bool Changed = false; 3939 3940 // Eliminate redundant destinations. 3941 SmallPtrSet<Value *, 8> Succs; 3942 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3943 BasicBlock *Dest = IBI->getDestination(i); 3944 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3945 Dest->removePredecessor(BB); 3946 IBI->removeDestination(i); 3947 --i; --e; 3948 Changed = true; 3949 } 3950 } 3951 3952 if (IBI->getNumDestinations() == 0) { 3953 // If the indirectbr has no successors, change it to unreachable. 3954 new UnreachableInst(IBI->getContext(), IBI); 3955 EraseTerminatorInstAndDCECond(IBI); 3956 return true; 3957 } 3958 3959 if (IBI->getNumDestinations() == 1) { 3960 // If the indirectbr has one successor, change it to a direct branch. 3961 BranchInst::Create(IBI->getDestination(0), IBI); 3962 EraseTerminatorInstAndDCECond(IBI); 3963 return true; 3964 } 3965 3966 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3967 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3968 return SimplifyCFG(BB, TTI, DL) | true; 3969 } 3970 return Changed; 3971 } 3972 3973 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3974 BasicBlock *BB = BI->getParent(); 3975 3976 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3977 return true; 3978 3979 // If the Terminator is the only non-phi instruction, simplify the block. 3980 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3981 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3982 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3983 return true; 3984 3985 // If the only instruction in the block is a seteq/setne comparison 3986 // against a constant, try to simplify the block. 3987 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3988 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3989 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3990 ; 3991 if (I->isTerminator() && 3992 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, DL)) 3993 return true; 3994 } 3995 3996 // If this basic block is ONLY a compare and a branch, and if a predecessor 3997 // branches to us and our successor, fold the comparison into the 3998 // predecessor and use logical operations to update the incoming value 3999 // for PHI nodes in common successor. 4000 if (FoldBranchToCommonDest(BI)) 4001 return SimplifyCFG(BB, TTI, DL) | true; 4002 return false; 4003 } 4004 4005 4006 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 4007 BasicBlock *BB = BI->getParent(); 4008 4009 // Conditional branch 4010 if (isValueEqualityComparison(BI)) { 4011 // If we only have one predecessor, and if it is a branch on this value, 4012 // see if that predecessor totally determines the outcome of this 4013 // switch. 4014 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4015 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 4016 return SimplifyCFG(BB, TTI, DL) | true; 4017 4018 // This block must be empty, except for the setcond inst, if it exists. 4019 // Ignore dbg intrinsics. 4020 BasicBlock::iterator I = BB->begin(); 4021 // Ignore dbg intrinsics. 4022 while (isa<DbgInfoIntrinsic>(I)) 4023 ++I; 4024 if (&*I == BI) { 4025 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 4026 return SimplifyCFG(BB, TTI, DL) | true; 4027 } else if (&*I == cast<Instruction>(BI->getCondition())){ 4028 ++I; 4029 // Ignore dbg intrinsics. 4030 while (isa<DbgInfoIntrinsic>(I)) 4031 ++I; 4032 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 4033 return SimplifyCFG(BB, TTI, DL) | true; 4034 } 4035 } 4036 4037 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 4038 if (SimplifyBranchOnICmpChain(BI, DL, Builder)) 4039 return true; 4040 4041 // If this basic block is ONLY a compare and a branch, and if a predecessor 4042 // branches to us and one of our successors, fold the comparison into the 4043 // predecessor and use logical operations to pick the right destination. 4044 if (FoldBranchToCommonDest(BI)) 4045 return SimplifyCFG(BB, TTI, DL) | true; 4046 4047 // We have a conditional branch to two blocks that are only reachable 4048 // from BI. We know that the condbr dominates the two blocks, so see if 4049 // there is any identical code in the "then" and "else" blocks. If so, we 4050 // can hoist it up to the branching block. 4051 if (BI->getSuccessor(0)->getSinglePredecessor()) { 4052 if (BI->getSuccessor(1)->getSinglePredecessor()) { 4053 if (HoistThenElseCodeToIf(BI)) 4054 return SimplifyCFG(BB, TTI, DL) | true; 4055 } else { 4056 // If Successor #1 has multiple preds, we may be able to conditionally 4057 // execute Successor #0 if it branches to successor #1. 4058 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4059 if (Succ0TI->getNumSuccessors() == 1 && 4060 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4061 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 4062 return SimplifyCFG(BB, TTI, DL) | true; 4063 } 4064 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 4065 // If Successor #0 has multiple preds, we may be able to conditionally 4066 // execute Successor #1 if it branches to successor #0. 4067 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4068 if (Succ1TI->getNumSuccessors() == 1 && 4069 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4070 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 4071 return SimplifyCFG(BB, TTI, DL) | true; 4072 } 4073 4074 // If this is a branch on a phi node in the current block, thread control 4075 // through this block if any PHI node entries are constants. 4076 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4077 if (PN->getParent() == BI->getParent()) 4078 if (FoldCondBranchOnPHI(BI, DL)) 4079 return SimplifyCFG(BB, TTI, DL) | true; 4080 4081 // Scan predecessor blocks for conditional branches. 4082 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4083 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4084 if (PBI != BI && PBI->isConditional()) 4085 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4086 return SimplifyCFG(BB, TTI, DL) | true; 4087 4088 return false; 4089 } 4090 4091 /// Check if passing a value to an instruction will cause undefined behavior. 4092 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4093 Constant *C = dyn_cast<Constant>(V); 4094 if (!C) 4095 return false; 4096 4097 if (I->use_empty()) 4098 return false; 4099 4100 if (C->isNullValue()) { 4101 // Only look at the first use, avoid hurting compile time with long uselists 4102 User *Use = *I->user_begin(); 4103 4104 // Now make sure that there are no instructions in between that can alter 4105 // control flow (eg. calls) 4106 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4107 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4108 return false; 4109 4110 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4111 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4112 if (GEP->getPointerOperand() == I) 4113 return passingValueIsAlwaysUndefined(V, GEP); 4114 4115 // Look through bitcasts. 4116 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4117 return passingValueIsAlwaysUndefined(V, BC); 4118 4119 // Load from null is undefined. 4120 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4121 if (!LI->isVolatile()) 4122 return LI->getPointerAddressSpace() == 0; 4123 4124 // Store to null is undefined. 4125 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4126 if (!SI->isVolatile()) 4127 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4128 } 4129 return false; 4130 } 4131 4132 /// If BB has an incoming value that will always trigger undefined behavior 4133 /// (eg. null pointer dereference), remove the branch leading here. 4134 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4135 for (BasicBlock::iterator i = BB->begin(); 4136 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4137 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4138 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4139 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4140 IRBuilder<> Builder(T); 4141 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4142 BB->removePredecessor(PHI->getIncomingBlock(i)); 4143 // Turn uncoditional branches into unreachables and remove the dead 4144 // destination from conditional branches. 4145 if (BI->isUnconditional()) 4146 Builder.CreateUnreachable(); 4147 else 4148 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4149 BI->getSuccessor(0)); 4150 BI->eraseFromParent(); 4151 return true; 4152 } 4153 // TODO: SwitchInst. 4154 } 4155 4156 return false; 4157 } 4158 4159 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4160 bool Changed = false; 4161 4162 assert(BB && BB->getParent() && "Block not embedded in function!"); 4163 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4164 4165 // Remove basic blocks that have no predecessors (except the entry block)... 4166 // or that just have themself as a predecessor. These are unreachable. 4167 if ((pred_begin(BB) == pred_end(BB) && 4168 BB != &BB->getParent()->getEntryBlock()) || 4169 BB->getSinglePredecessor() == BB) { 4170 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4171 DeleteDeadBlock(BB); 4172 return true; 4173 } 4174 4175 // Check to see if we can constant propagate this terminator instruction 4176 // away... 4177 Changed |= ConstantFoldTerminator(BB, true); 4178 4179 // Check for and eliminate duplicate PHI nodes in this block. 4180 Changed |= EliminateDuplicatePHINodes(BB); 4181 4182 // Check for and remove branches that will always cause undefined behavior. 4183 Changed |= removeUndefIntroducingPredecessor(BB); 4184 4185 // Merge basic blocks into their predecessor if there is only one distinct 4186 // pred, and if there is only one distinct successor of the predecessor, and 4187 // if there are no PHI nodes. 4188 // 4189 if (MergeBlockIntoPredecessor(BB)) 4190 return true; 4191 4192 IRBuilder<> Builder(BB); 4193 4194 // If there is a trivial two-entry PHI node in this basic block, and we can 4195 // eliminate it, do so now. 4196 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4197 if (PN->getNumIncomingValues() == 2) 4198 Changed |= FoldTwoEntryPHINode(PN, DL); 4199 4200 Builder.SetInsertPoint(BB->getTerminator()); 4201 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4202 if (BI->isUnconditional()) { 4203 if (SimplifyUncondBranch(BI, Builder)) return true; 4204 } else { 4205 if (SimplifyCondBranch(BI, Builder)) return true; 4206 } 4207 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4208 if (SimplifyReturn(RI, Builder)) return true; 4209 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4210 if (SimplifyResume(RI, Builder)) return true; 4211 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4212 if (SimplifySwitch(SI, Builder)) return true; 4213 } else if (UnreachableInst *UI = 4214 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4215 if (SimplifyUnreachable(UI)) return true; 4216 } else if (IndirectBrInst *IBI = 4217 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4218 if (SimplifyIndirectBr(IBI)) return true; 4219 } 4220 4221 return Changed; 4222 } 4223 4224 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4225 /// example, it adjusts branches to branches to eliminate the extra hop, it 4226 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4227 /// of the CFG. It returns true if a modification was made. 4228 /// 4229 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4230 const DataLayout *DL) { 4231 return SimplifyCFGOpt(TTI, DL).run(BB); 4232 } 4233