1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/PseudoProbe.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/SSAUpdater.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
97     cl::init(false),
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool> DupRet(
117     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
118     cl::desc("Duplicate return instructions into unconditional branches"));
119 
120 static cl::opt<bool>
121     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
122                 cl::desc("Hoist common instructions up to the parent block"));
123 
124 static cl::opt<bool>
125     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
126                cl::desc("Sink common instructions down to the end block"));
127 
128 static cl::opt<bool> HoistCondStores(
129     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
130     cl::desc("Hoist conditional stores if an unconditional store precedes"));
131 
132 static cl::opt<bool> MergeCondStores(
133     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
134     cl::desc("Hoist conditional stores even if an unconditional store does not "
135              "precede - hoist multiple conditional stores into a single "
136              "predicated store"));
137 
138 static cl::opt<bool> MergeCondStoresAggressively(
139     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
140     cl::desc("When merging conditional stores, do so even if the resultant "
141              "basic blocks are unlikely to be if-converted as a result"));
142 
143 static cl::opt<bool> SpeculateOneExpensiveInst(
144     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
145     cl::desc("Allow exactly one expensive instruction to be speculatively "
146              "executed"));
147 
148 static cl::opt<unsigned> MaxSpeculationDepth(
149     "max-speculation-depth", cl::Hidden, cl::init(10),
150     cl::desc("Limit maximum recursion depth when calculating costs of "
151              "speculatively executed instructions"));
152 
153 static cl::opt<int>
154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
155                   cl::desc("Max size of a block which is still considered "
156                            "small enough to thread through"));
157 
158 // Two is chosen to allow one negation and a logical combine.
159 static cl::opt<unsigned>
160     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
161                         cl::init(2),
162                         cl::desc("Maximum cost of combining conditions when "
163                                  "folding branches"));
164 
165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
166 STATISTIC(NumLinearMaps,
167           "Number of switch instructions turned into linear mapping");
168 STATISTIC(NumLookupTables,
169           "Number of switch instructions turned into lookup tables");
170 STATISTIC(
171     NumLookupTablesHoles,
172     "Number of switch instructions turned into lookup tables (holes checked)");
173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
174 STATISTIC(NumFoldValueComparisonIntoPredecessors,
175           "Number of value comparisons folded into predecessor basic blocks");
176 STATISTIC(NumFoldBranchToCommonDest,
177           "Number of branches folded into predecessor basic block");
178 STATISTIC(
179     NumHoistCommonCode,
180     "Number of common instruction 'blocks' hoisted up to the begin block");
181 STATISTIC(NumHoistCommonInstrs,
182           "Number of common instructions hoisted up to the begin block");
183 STATISTIC(NumSinkCommonCode,
184           "Number of common instruction 'blocks' sunk down to the end block");
185 STATISTIC(NumSinkCommonInstrs,
186           "Number of common instructions sunk down to the end block");
187 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
188 STATISTIC(NumInvokes,
189           "Number of invokes with empty resume blocks simplified into calls");
190 
191 namespace {
192 
193 // The first field contains the value that the switch produces when a certain
194 // case group is selected, and the second field is a vector containing the
195 // cases composing the case group.
196 using SwitchCaseResultVectorTy =
197     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
198 
199 // The first field contains the phi node that generates a result of the switch
200 // and the second field contains the value generated for a certain case in the
201 // switch for that PHI.
202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
203 
204 /// ValueEqualityComparisonCase - Represents a case of a switch.
205 struct ValueEqualityComparisonCase {
206   ConstantInt *Value;
207   BasicBlock *Dest;
208 
209   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
210       : Value(Value), Dest(Dest) {}
211 
212   bool operator<(ValueEqualityComparisonCase RHS) const {
213     // Comparing pointers is ok as we only rely on the order for uniquing.
214     return Value < RHS.Value;
215   }
216 
217   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
218 };
219 
220 class SimplifyCFGOpt {
221   const TargetTransformInfo &TTI;
222   DomTreeUpdater *DTU;
223   const DataLayout &DL;
224   ArrayRef<WeakVH> LoopHeaders;
225   const SimplifyCFGOptions &Options;
226   bool Resimplify;
227 
228   Value *isValueEqualityComparison(Instruction *TI);
229   BasicBlock *GetValueEqualityComparisonCases(
230       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
231   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
232                                                      BasicBlock *Pred,
233                                                      IRBuilder<> &Builder);
234   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
235                                                     Instruction *PTI,
236                                                     IRBuilder<> &Builder);
237   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
238                                            IRBuilder<> &Builder);
239 
240   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
241   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
242   bool simplifySingleResume(ResumeInst *RI);
243   bool simplifyCommonResume(ResumeInst *RI);
244   bool simplifyCleanupReturn(CleanupReturnInst *RI);
245   bool simplifyUnreachable(UnreachableInst *UI);
246   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
247   bool simplifyIndirectBr(IndirectBrInst *IBI);
248   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
249   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
250   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
251   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
252 
253   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
254                                              IRBuilder<> &Builder);
255 
256   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
257   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
258                               const TargetTransformInfo &TTI);
259   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
260                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
261                                   uint32_t TrueWeight, uint32_t FalseWeight);
262   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
263                                  const DataLayout &DL);
264   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
265   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
266   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
267 
268 public:
269   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
270                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
271                  const SimplifyCFGOptions &Opts)
272       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
273     assert((!DTU || !DTU->hasPostDomTree()) &&
274            "SimplifyCFG is not yet capable of maintaining validity of a "
275            "PostDomTree, so don't ask for it.");
276   }
277 
278   bool simplifyOnce(BasicBlock *BB);
279   bool simplifyOnceImpl(BasicBlock *BB);
280   bool run(BasicBlock *BB);
281 
282   // Helper to set Resimplify and return change indication.
283   bool requestResimplify() {
284     Resimplify = true;
285     return true;
286   }
287 };
288 
289 } // end anonymous namespace
290 
291 /// Return true if it is safe to merge these two
292 /// terminator instructions together.
293 static bool
294 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
295                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
296   if (SI1 == SI2)
297     return false; // Can't merge with self!
298 
299   // It is not safe to merge these two switch instructions if they have a common
300   // successor, and if that successor has a PHI node, and if *that* PHI node has
301   // conflicting incoming values from the two switch blocks.
302   BasicBlock *SI1BB = SI1->getParent();
303   BasicBlock *SI2BB = SI2->getParent();
304 
305   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
306   bool Fail = false;
307   for (BasicBlock *Succ : successors(SI2BB))
308     if (SI1Succs.count(Succ))
309       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
310         PHINode *PN = cast<PHINode>(BBI);
311         if (PN->getIncomingValueForBlock(SI1BB) !=
312             PN->getIncomingValueForBlock(SI2BB)) {
313           if (FailBlocks)
314             FailBlocks->insert(Succ);
315           Fail = true;
316         }
317       }
318 
319   return !Fail;
320 }
321 
322 /// Update PHI nodes in Succ to indicate that there will now be entries in it
323 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
324 /// will be the same as those coming in from ExistPred, an existing predecessor
325 /// of Succ.
326 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
327                                   BasicBlock *ExistPred,
328                                   MemorySSAUpdater *MSSAU = nullptr) {
329   for (PHINode &PN : Succ->phis())
330     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
331   if (MSSAU)
332     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
333       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
334 }
335 
336 /// Compute an abstract "cost" of speculating the given instruction,
337 /// which is assumed to be safe to speculate. TCC_Free means cheap,
338 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
339 /// expensive.
340 static InstructionCost computeSpeculationCost(const User *I,
341                                               const TargetTransformInfo &TTI) {
342   assert(isSafeToSpeculativelyExecute(I) &&
343          "Instruction is not safe to speculatively execute!");
344   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
345 }
346 
347 /// If we have a merge point of an "if condition" as accepted above,
348 /// return true if the specified value dominates the block.  We
349 /// don't handle the true generality of domination here, just a special case
350 /// which works well enough for us.
351 ///
352 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
353 /// see if V (which must be an instruction) and its recursive operands
354 /// that do not dominate BB have a combined cost lower than Budget and
355 /// are non-trapping.  If both are true, the instruction is inserted into the
356 /// set and true is returned.
357 ///
358 /// The cost for most non-trapping instructions is defined as 1 except for
359 /// Select whose cost is 2.
360 ///
361 /// After this function returns, Cost is increased by the cost of
362 /// V plus its non-dominating operands.  If that cost is greater than
363 /// Budget, false is returned and Cost is undefined.
364 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
365                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
366                                 InstructionCost &Cost,
367                                 InstructionCost Budget,
368                                 const TargetTransformInfo &TTI,
369                                 unsigned Depth = 0) {
370   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
371   // so limit the recursion depth.
372   // TODO: While this recursion limit does prevent pathological behavior, it
373   // would be better to track visited instructions to avoid cycles.
374   if (Depth == MaxSpeculationDepth)
375     return false;
376 
377   Instruction *I = dyn_cast<Instruction>(V);
378   if (!I) {
379     // Non-instructions all dominate instructions, but not all constantexprs
380     // can be executed unconditionally.
381     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
382       if (C->canTrap())
383         return false;
384     return true;
385   }
386   BasicBlock *PBB = I->getParent();
387 
388   // We don't want to allow weird loops that might have the "if condition" in
389   // the bottom of this block.
390   if (PBB == BB)
391     return false;
392 
393   // If this instruction is defined in a block that contains an unconditional
394   // branch to BB, then it must be in the 'conditional' part of the "if
395   // statement".  If not, it definitely dominates the region.
396   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
397   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
398     return true;
399 
400   // If we have seen this instruction before, don't count it again.
401   if (AggressiveInsts.count(I))
402     return true;
403 
404   // Okay, it looks like the instruction IS in the "condition".  Check to
405   // see if it's a cheap instruction to unconditionally compute, and if it
406   // only uses stuff defined outside of the condition.  If so, hoist it out.
407   if (!isSafeToSpeculativelyExecute(I))
408     return false;
409 
410   Cost += computeSpeculationCost(I, TTI);
411 
412   // Allow exactly one instruction to be speculated regardless of its cost
413   // (as long as it is safe to do so).
414   // This is intended to flatten the CFG even if the instruction is a division
415   // or other expensive operation. The speculation of an expensive instruction
416   // is expected to be undone in CodeGenPrepare if the speculation has not
417   // enabled further IR optimizations.
418   if (Cost > Budget &&
419       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
420        !Cost.isValid()))
421     return false;
422 
423   // Okay, we can only really hoist these out if their operands do
424   // not take us over the cost threshold.
425   for (Use &Op : I->operands())
426     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
427                              Depth + 1))
428       return false;
429   // Okay, it's safe to do this!  Remember this instruction.
430   AggressiveInsts.insert(I);
431   return true;
432 }
433 
434 /// Extract ConstantInt from value, looking through IntToPtr
435 /// and PointerNullValue. Return NULL if value is not a constant int.
436 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
437   // Normal constant int.
438   ConstantInt *CI = dyn_cast<ConstantInt>(V);
439   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
440     return CI;
441 
442   // This is some kind of pointer constant. Turn it into a pointer-sized
443   // ConstantInt if possible.
444   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
445 
446   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
447   if (isa<ConstantPointerNull>(V))
448     return ConstantInt::get(PtrTy, 0);
449 
450   // IntToPtr const int.
451   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
452     if (CE->getOpcode() == Instruction::IntToPtr)
453       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
454         // The constant is very likely to have the right type already.
455         if (CI->getType() == PtrTy)
456           return CI;
457         else
458           return cast<ConstantInt>(
459               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
460       }
461   return nullptr;
462 }
463 
464 namespace {
465 
466 /// Given a chain of or (||) or and (&&) comparison of a value against a
467 /// constant, this will try to recover the information required for a switch
468 /// structure.
469 /// It will depth-first traverse the chain of comparison, seeking for patterns
470 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
471 /// representing the different cases for the switch.
472 /// Note that if the chain is composed of '||' it will build the set of elements
473 /// that matches the comparisons (i.e. any of this value validate the chain)
474 /// while for a chain of '&&' it will build the set elements that make the test
475 /// fail.
476 struct ConstantComparesGatherer {
477   const DataLayout &DL;
478 
479   /// Value found for the switch comparison
480   Value *CompValue = nullptr;
481 
482   /// Extra clause to be checked before the switch
483   Value *Extra = nullptr;
484 
485   /// Set of integers to match in switch
486   SmallVector<ConstantInt *, 8> Vals;
487 
488   /// Number of comparisons matched in the and/or chain
489   unsigned UsedICmps = 0;
490 
491   /// Construct and compute the result for the comparison instruction Cond
492   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
493     gather(Cond);
494   }
495 
496   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
497   ConstantComparesGatherer &
498   operator=(const ConstantComparesGatherer &) = delete;
499 
500 private:
501   /// Try to set the current value used for the comparison, it succeeds only if
502   /// it wasn't set before or if the new value is the same as the old one
503   bool setValueOnce(Value *NewVal) {
504     if (CompValue && CompValue != NewVal)
505       return false;
506     CompValue = NewVal;
507     return (CompValue != nullptr);
508   }
509 
510   /// Try to match Instruction "I" as a comparison against a constant and
511   /// populates the array Vals with the set of values that match (or do not
512   /// match depending on isEQ).
513   /// Return false on failure. On success, the Value the comparison matched
514   /// against is placed in CompValue.
515   /// If CompValue is already set, the function is expected to fail if a match
516   /// is found but the value compared to is different.
517   bool matchInstruction(Instruction *I, bool isEQ) {
518     // If this is an icmp against a constant, handle this as one of the cases.
519     ICmpInst *ICI;
520     ConstantInt *C;
521     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
522           (C = GetConstantInt(I->getOperand(1), DL)))) {
523       return false;
524     }
525 
526     Value *RHSVal;
527     const APInt *RHSC;
528 
529     // Pattern match a special case
530     // (x & ~2^z) == y --> x == y || x == y|2^z
531     // This undoes a transformation done by instcombine to fuse 2 compares.
532     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
533       // It's a little bit hard to see why the following transformations are
534       // correct. Here is a CVC3 program to verify them for 64-bit values:
535 
536       /*
537          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
538          x    : BITVECTOR(64);
539          y    : BITVECTOR(64);
540          z    : BITVECTOR(64);
541          mask : BITVECTOR(64) = BVSHL(ONE, z);
542          QUERY( (y & ~mask = y) =>
543                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
544          );
545          QUERY( (y |  mask = y) =>
546                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
547          );
548       */
549 
550       // Please note that each pattern must be a dual implication (<--> or
551       // iff). One directional implication can create spurious matches. If the
552       // implication is only one-way, an unsatisfiable condition on the left
553       // side can imply a satisfiable condition on the right side. Dual
554       // implication ensures that satisfiable conditions are transformed to
555       // other satisfiable conditions and unsatisfiable conditions are
556       // transformed to other unsatisfiable conditions.
557 
558       // Here is a concrete example of a unsatisfiable condition on the left
559       // implying a satisfiable condition on the right:
560       //
561       // mask = (1 << z)
562       // (x & ~mask) == y  --> (x == y || x == (y | mask))
563       //
564       // Substituting y = 3, z = 0 yields:
565       // (x & -2) == 3 --> (x == 3 || x == 2)
566 
567       // Pattern match a special case:
568       /*
569         QUERY( (y & ~mask = y) =>
570                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
571         );
572       */
573       if (match(ICI->getOperand(0),
574                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
575         APInt Mask = ~*RHSC;
576         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
577           // If we already have a value for the switch, it has to match!
578           if (!setValueOnce(RHSVal))
579             return false;
580 
581           Vals.push_back(C);
582           Vals.push_back(
583               ConstantInt::get(C->getContext(),
584                                C->getValue() | Mask));
585           UsedICmps++;
586           return true;
587         }
588       }
589 
590       // Pattern match a special case:
591       /*
592         QUERY( (y |  mask = y) =>
593                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
594         );
595       */
596       if (match(ICI->getOperand(0),
597                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
598         APInt Mask = *RHSC;
599         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
600           // If we already have a value for the switch, it has to match!
601           if (!setValueOnce(RHSVal))
602             return false;
603 
604           Vals.push_back(C);
605           Vals.push_back(ConstantInt::get(C->getContext(),
606                                           C->getValue() & ~Mask));
607           UsedICmps++;
608           return true;
609         }
610       }
611 
612       // If we already have a value for the switch, it has to match!
613       if (!setValueOnce(ICI->getOperand(0)))
614         return false;
615 
616       UsedICmps++;
617       Vals.push_back(C);
618       return ICI->getOperand(0);
619     }
620 
621     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
622     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
623         ICI->getPredicate(), C->getValue());
624 
625     // Shift the range if the compare is fed by an add. This is the range
626     // compare idiom as emitted by instcombine.
627     Value *CandidateVal = I->getOperand(0);
628     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
629       Span = Span.subtract(*RHSC);
630       CandidateVal = RHSVal;
631     }
632 
633     // If this is an and/!= check, then we are looking to build the set of
634     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
635     // x != 0 && x != 1.
636     if (!isEQ)
637       Span = Span.inverse();
638 
639     // If there are a ton of values, we don't want to make a ginormous switch.
640     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
641       return false;
642     }
643 
644     // If we already have a value for the switch, it has to match!
645     if (!setValueOnce(CandidateVal))
646       return false;
647 
648     // Add all values from the range to the set
649     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
650       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
651 
652     UsedICmps++;
653     return true;
654   }
655 
656   /// Given a potentially 'or'd or 'and'd together collection of icmp
657   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
658   /// the value being compared, and stick the list constants into the Vals
659   /// vector.
660   /// One "Extra" case is allowed to differ from the other.
661   void gather(Value *V) {
662     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
663 
664     // Keep a stack (SmallVector for efficiency) for depth-first traversal
665     SmallVector<Value *, 8> DFT;
666     SmallPtrSet<Value *, 8> Visited;
667 
668     // Initialize
669     Visited.insert(V);
670     DFT.push_back(V);
671 
672     while (!DFT.empty()) {
673       V = DFT.pop_back_val();
674 
675       if (Instruction *I = dyn_cast<Instruction>(V)) {
676         // If it is a || (or && depending on isEQ), process the operands.
677         Value *Op0, *Op1;
678         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
679                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
680           if (Visited.insert(Op1).second)
681             DFT.push_back(Op1);
682           if (Visited.insert(Op0).second)
683             DFT.push_back(Op0);
684 
685           continue;
686         }
687 
688         // Try to match the current instruction
689         if (matchInstruction(I, isEQ))
690           // Match succeed, continue the loop
691           continue;
692       }
693 
694       // One element of the sequence of || (or &&) could not be match as a
695       // comparison against the same value as the others.
696       // We allow only one "Extra" case to be checked before the switch
697       if (!Extra) {
698         Extra = V;
699         continue;
700       }
701       // Failed to parse a proper sequence, abort now
702       CompValue = nullptr;
703       break;
704     }
705   }
706 };
707 
708 } // end anonymous namespace
709 
710 static void EraseTerminatorAndDCECond(Instruction *TI,
711                                       MemorySSAUpdater *MSSAU = nullptr) {
712   Instruction *Cond = nullptr;
713   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
714     Cond = dyn_cast<Instruction>(SI->getCondition());
715   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
716     if (BI->isConditional())
717       Cond = dyn_cast<Instruction>(BI->getCondition());
718   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
719     Cond = dyn_cast<Instruction>(IBI->getAddress());
720   }
721 
722   TI->eraseFromParent();
723   if (Cond)
724     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
725 }
726 
727 /// Return true if the specified terminator checks
728 /// to see if a value is equal to constant integer value.
729 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
730   Value *CV = nullptr;
731   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
732     // Do not permit merging of large switch instructions into their
733     // predecessors unless there is only one predecessor.
734     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
735       CV = SI->getCondition();
736   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
737     if (BI->isConditional() && BI->getCondition()->hasOneUse())
738       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
739         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
740           CV = ICI->getOperand(0);
741       }
742 
743   // Unwrap any lossless ptrtoint cast.
744   if (CV) {
745     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
746       Value *Ptr = PTII->getPointerOperand();
747       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
748         CV = Ptr;
749     }
750   }
751   return CV;
752 }
753 
754 /// Given a value comparison instruction,
755 /// decode all of the 'cases' that it represents and return the 'default' block.
756 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
757     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
758   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
759     Cases.reserve(SI->getNumCases());
760     for (auto Case : SI->cases())
761       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
762                                                   Case.getCaseSuccessor()));
763     return SI->getDefaultDest();
764   }
765 
766   BranchInst *BI = cast<BranchInst>(TI);
767   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
768   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
769   Cases.push_back(ValueEqualityComparisonCase(
770       GetConstantInt(ICI->getOperand(1), DL), Succ));
771   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
772 }
773 
774 /// Given a vector of bb/value pairs, remove any entries
775 /// in the list that match the specified block.
776 static void
777 EliminateBlockCases(BasicBlock *BB,
778                     std::vector<ValueEqualityComparisonCase> &Cases) {
779   llvm::erase_value(Cases, BB);
780 }
781 
782 /// Return true if there are any keys in C1 that exist in C2 as well.
783 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
784                           std::vector<ValueEqualityComparisonCase> &C2) {
785   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
786 
787   // Make V1 be smaller than V2.
788   if (V1->size() > V2->size())
789     std::swap(V1, V2);
790 
791   if (V1->empty())
792     return false;
793   if (V1->size() == 1) {
794     // Just scan V2.
795     ConstantInt *TheVal = (*V1)[0].Value;
796     for (unsigned i = 0, e = V2->size(); i != e; ++i)
797       if (TheVal == (*V2)[i].Value)
798         return true;
799   }
800 
801   // Otherwise, just sort both lists and compare element by element.
802   array_pod_sort(V1->begin(), V1->end());
803   array_pod_sort(V2->begin(), V2->end());
804   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
805   while (i1 != e1 && i2 != e2) {
806     if ((*V1)[i1].Value == (*V2)[i2].Value)
807       return true;
808     if ((*V1)[i1].Value < (*V2)[i2].Value)
809       ++i1;
810     else
811       ++i2;
812   }
813   return false;
814 }
815 
816 // Set branch weights on SwitchInst. This sets the metadata if there is at
817 // least one non-zero weight.
818 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
819   // Check that there is at least one non-zero weight. Otherwise, pass
820   // nullptr to setMetadata which will erase the existing metadata.
821   MDNode *N = nullptr;
822   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
823     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
824   SI->setMetadata(LLVMContext::MD_prof, N);
825 }
826 
827 // Similar to the above, but for branch and select instructions that take
828 // exactly 2 weights.
829 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
830                              uint32_t FalseWeight) {
831   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
832   // Check that there is at least one non-zero weight. Otherwise, pass
833   // nullptr to setMetadata which will erase the existing metadata.
834   MDNode *N = nullptr;
835   if (TrueWeight || FalseWeight)
836     N = MDBuilder(I->getParent()->getContext())
837             .createBranchWeights(TrueWeight, FalseWeight);
838   I->setMetadata(LLVMContext::MD_prof, N);
839 }
840 
841 /// If TI is known to be a terminator instruction and its block is known to
842 /// only have a single predecessor block, check to see if that predecessor is
843 /// also a value comparison with the same value, and if that comparison
844 /// determines the outcome of this comparison. If so, simplify TI. This does a
845 /// very limited form of jump threading.
846 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
847     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
848   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
849   if (!PredVal)
850     return false; // Not a value comparison in predecessor.
851 
852   Value *ThisVal = isValueEqualityComparison(TI);
853   assert(ThisVal && "This isn't a value comparison!!");
854   if (ThisVal != PredVal)
855     return false; // Different predicates.
856 
857   // TODO: Preserve branch weight metadata, similarly to how
858   // FoldValueComparisonIntoPredecessors preserves it.
859 
860   // Find out information about when control will move from Pred to TI's block.
861   std::vector<ValueEqualityComparisonCase> PredCases;
862   BasicBlock *PredDef =
863       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
864   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
865 
866   // Find information about how control leaves this block.
867   std::vector<ValueEqualityComparisonCase> ThisCases;
868   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
869   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
870 
871   // If TI's block is the default block from Pred's comparison, potentially
872   // simplify TI based on this knowledge.
873   if (PredDef == TI->getParent()) {
874     // If we are here, we know that the value is none of those cases listed in
875     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
876     // can simplify TI.
877     if (!ValuesOverlap(PredCases, ThisCases))
878       return false;
879 
880     if (isa<BranchInst>(TI)) {
881       // Okay, one of the successors of this condbr is dead.  Convert it to a
882       // uncond br.
883       assert(ThisCases.size() == 1 && "Branch can only have one case!");
884       // Insert the new branch.
885       Instruction *NI = Builder.CreateBr(ThisDef);
886       (void)NI;
887 
888       // Remove PHI node entries for the dead edge.
889       ThisCases[0].Dest->removePredecessor(PredDef);
890 
891       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
892                         << "Through successor TI: " << *TI << "Leaving: " << *NI
893                         << "\n");
894 
895       EraseTerminatorAndDCECond(TI);
896 
897       if (DTU)
898         DTU->applyUpdates(
899             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
900 
901       return true;
902     }
903 
904     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
905     // Okay, TI has cases that are statically dead, prune them away.
906     SmallPtrSet<Constant *, 16> DeadCases;
907     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
908       DeadCases.insert(PredCases[i].Value);
909 
910     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
911                       << "Through successor TI: " << *TI);
912 
913     SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
914     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
915       --i;
916       auto *Successor = i->getCaseSuccessor();
917       ++NumPerSuccessorCases[Successor];
918       if (DeadCases.count(i->getCaseValue())) {
919         Successor->removePredecessor(PredDef);
920         SI.removeCase(i);
921         --NumPerSuccessorCases[Successor];
922       }
923     }
924 
925     std::vector<DominatorTree::UpdateType> Updates;
926     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
927       if (I.second == 0)
928         Updates.push_back({DominatorTree::Delete, PredDef, I.first});
929     if (DTU)
930       DTU->applyUpdates(Updates);
931 
932     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
933     return true;
934   }
935 
936   // Otherwise, TI's block must correspond to some matched value.  Find out
937   // which value (or set of values) this is.
938   ConstantInt *TIV = nullptr;
939   BasicBlock *TIBB = TI->getParent();
940   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
941     if (PredCases[i].Dest == TIBB) {
942       if (TIV)
943         return false; // Cannot handle multiple values coming to this block.
944       TIV = PredCases[i].Value;
945     }
946   assert(TIV && "No edge from pred to succ?");
947 
948   // Okay, we found the one constant that our value can be if we get into TI's
949   // BB.  Find out which successor will unconditionally be branched to.
950   BasicBlock *TheRealDest = nullptr;
951   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
952     if (ThisCases[i].Value == TIV) {
953       TheRealDest = ThisCases[i].Dest;
954       break;
955     }
956 
957   // If not handled by any explicit cases, it is handled by the default case.
958   if (!TheRealDest)
959     TheRealDest = ThisDef;
960 
961   SmallSetVector<BasicBlock *, 2> RemovedSuccs;
962 
963   // Remove PHI node entries for dead edges.
964   BasicBlock *CheckEdge = TheRealDest;
965   for (BasicBlock *Succ : successors(TIBB))
966     if (Succ != CheckEdge) {
967       if (Succ != TheRealDest)
968         RemovedSuccs.insert(Succ);
969       Succ->removePredecessor(TIBB);
970     } else
971       CheckEdge = nullptr;
972 
973   // Insert the new branch.
974   Instruction *NI = Builder.CreateBr(TheRealDest);
975   (void)NI;
976 
977   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
978                     << "Through successor TI: " << *TI << "Leaving: " << *NI
979                     << "\n");
980 
981   EraseTerminatorAndDCECond(TI);
982   if (DTU) {
983     SmallVector<DominatorTree::UpdateType, 2> Updates;
984     Updates.reserve(RemovedSuccs.size());
985     for (auto *RemovedSucc : RemovedSuccs)
986       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
987     DTU->applyUpdates(Updates);
988   }
989   return true;
990 }
991 
992 namespace {
993 
994 /// This class implements a stable ordering of constant
995 /// integers that does not depend on their address.  This is important for
996 /// applications that sort ConstantInt's to ensure uniqueness.
997 struct ConstantIntOrdering {
998   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
999     return LHS->getValue().ult(RHS->getValue());
1000   }
1001 };
1002 
1003 } // end anonymous namespace
1004 
1005 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1006                                     ConstantInt *const *P2) {
1007   const ConstantInt *LHS = *P1;
1008   const ConstantInt *RHS = *P2;
1009   if (LHS == RHS)
1010     return 0;
1011   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1012 }
1013 
1014 static inline bool HasBranchWeights(const Instruction *I) {
1015   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1016   if (ProfMD && ProfMD->getOperand(0))
1017     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1018       return MDS->getString().equals("branch_weights");
1019 
1020   return false;
1021 }
1022 
1023 /// Get Weights of a given terminator, the default weight is at the front
1024 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1025 /// metadata.
1026 static void GetBranchWeights(Instruction *TI,
1027                              SmallVectorImpl<uint64_t> &Weights) {
1028   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1029   assert(MD);
1030   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1031     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1032     Weights.push_back(CI->getValue().getZExtValue());
1033   }
1034 
1035   // If TI is a conditional eq, the default case is the false case,
1036   // and the corresponding branch-weight data is at index 2. We swap the
1037   // default weight to be the first entry.
1038   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1039     assert(Weights.size() == 2);
1040     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1041     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1042       std::swap(Weights.front(), Weights.back());
1043   }
1044 }
1045 
1046 /// Keep halving the weights until all can fit in uint32_t.
1047 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1048   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1049   if (Max > UINT_MAX) {
1050     unsigned Offset = 32 - countLeadingZeros(Max);
1051     for (uint64_t &I : Weights)
1052       I >>= Offset;
1053   }
1054 }
1055 
1056 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1057     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1058   Instruction *PTI = PredBlock->getTerminator();
1059 
1060   // If we have bonus instructions, clone them into the predecessor block.
1061   // Note that there may be multiple predecessor blocks, so we cannot move
1062   // bonus instructions to a predecessor block.
1063   for (Instruction &BonusInst : *BB) {
1064     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1065       continue;
1066 
1067     Instruction *NewBonusInst = BonusInst.clone();
1068 
1069     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1070       // Unless the instruction has the same !dbg location as the original
1071       // branch, drop it. When we fold the bonus instructions we want to make
1072       // sure we reset their debug locations in order to avoid stepping on
1073       // dead code caused by folding dead branches.
1074       NewBonusInst->setDebugLoc(DebugLoc());
1075     }
1076 
1077     RemapInstruction(NewBonusInst, VMap,
1078                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1079     VMap[&BonusInst] = NewBonusInst;
1080 
1081     // If we moved a load, we cannot any longer claim any knowledge about
1082     // its potential value. The previous information might have been valid
1083     // only given the branch precondition.
1084     // For an analogous reason, we must also drop all the metadata whose
1085     // semantics we don't understand. We *can* preserve !annotation, because
1086     // it is tied to the instruction itself, not the value or position.
1087     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1088 
1089     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1090     NewBonusInst->takeName(&BonusInst);
1091     BonusInst.setName(NewBonusInst->getName() + ".old");
1092 
1093     // Update (liveout) uses of bonus instructions,
1094     // now that the bonus instruction has been cloned into predecessor.
1095     SSAUpdater SSAUpdate;
1096     SSAUpdate.Initialize(BonusInst.getType(),
1097                          (NewBonusInst->getName() + ".merge").str());
1098     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1099     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1100     for (Use &U : make_early_inc_range(BonusInst.uses()))
1101       SSAUpdate.RewriteUseAfterInsertions(U);
1102   }
1103 }
1104 
1105 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1106     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1107   BasicBlock *BB = TI->getParent();
1108   BasicBlock *Pred = PTI->getParent();
1109 
1110   std::vector<DominatorTree::UpdateType> Updates;
1111 
1112   // Figure out which 'cases' to copy from SI to PSI.
1113   std::vector<ValueEqualityComparisonCase> BBCases;
1114   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1115 
1116   std::vector<ValueEqualityComparisonCase> PredCases;
1117   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1118 
1119   // Based on whether the default edge from PTI goes to BB or not, fill in
1120   // PredCases and PredDefault with the new switch cases we would like to
1121   // build.
1122   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1123 
1124   // Update the branch weight metadata along the way
1125   SmallVector<uint64_t, 8> Weights;
1126   bool PredHasWeights = HasBranchWeights(PTI);
1127   bool SuccHasWeights = HasBranchWeights(TI);
1128 
1129   if (PredHasWeights) {
1130     GetBranchWeights(PTI, Weights);
1131     // branch-weight metadata is inconsistent here.
1132     if (Weights.size() != 1 + PredCases.size())
1133       PredHasWeights = SuccHasWeights = false;
1134   } else if (SuccHasWeights)
1135     // If there are no predecessor weights but there are successor weights,
1136     // populate Weights with 1, which will later be scaled to the sum of
1137     // successor's weights
1138     Weights.assign(1 + PredCases.size(), 1);
1139 
1140   SmallVector<uint64_t, 8> SuccWeights;
1141   if (SuccHasWeights) {
1142     GetBranchWeights(TI, SuccWeights);
1143     // branch-weight metadata is inconsistent here.
1144     if (SuccWeights.size() != 1 + BBCases.size())
1145       PredHasWeights = SuccHasWeights = false;
1146   } else if (PredHasWeights)
1147     SuccWeights.assign(1 + BBCases.size(), 1);
1148 
1149   if (PredDefault == BB) {
1150     // If this is the default destination from PTI, only the edges in TI
1151     // that don't occur in PTI, or that branch to BB will be activated.
1152     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1153     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1154       if (PredCases[i].Dest != BB)
1155         PTIHandled.insert(PredCases[i].Value);
1156       else {
1157         // The default destination is BB, we don't need explicit targets.
1158         std::swap(PredCases[i], PredCases.back());
1159 
1160         if (PredHasWeights || SuccHasWeights) {
1161           // Increase weight for the default case.
1162           Weights[0] += Weights[i + 1];
1163           std::swap(Weights[i + 1], Weights.back());
1164           Weights.pop_back();
1165         }
1166 
1167         PredCases.pop_back();
1168         --i;
1169         --e;
1170       }
1171 
1172     // Reconstruct the new switch statement we will be building.
1173     if (PredDefault != BBDefault) {
1174       PredDefault->removePredecessor(Pred);
1175       if (PredDefault != BB)
1176         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1177       PredDefault = BBDefault;
1178       ++NewSuccessors[BBDefault];
1179     }
1180 
1181     unsigned CasesFromPred = Weights.size();
1182     uint64_t ValidTotalSuccWeight = 0;
1183     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1184       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1185         PredCases.push_back(BBCases[i]);
1186         ++NewSuccessors[BBCases[i].Dest];
1187         if (SuccHasWeights || PredHasWeights) {
1188           // The default weight is at index 0, so weight for the ith case
1189           // should be at index i+1. Scale the cases from successor by
1190           // PredDefaultWeight (Weights[0]).
1191           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1192           ValidTotalSuccWeight += SuccWeights[i + 1];
1193         }
1194       }
1195 
1196     if (SuccHasWeights || PredHasWeights) {
1197       ValidTotalSuccWeight += SuccWeights[0];
1198       // Scale the cases from predecessor by ValidTotalSuccWeight.
1199       for (unsigned i = 1; i < CasesFromPred; ++i)
1200         Weights[i] *= ValidTotalSuccWeight;
1201       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1202       Weights[0] *= SuccWeights[0];
1203     }
1204   } else {
1205     // If this is not the default destination from PSI, only the edges
1206     // in SI that occur in PSI with a destination of BB will be
1207     // activated.
1208     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1209     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1210     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1211       if (PredCases[i].Dest == BB) {
1212         PTIHandled.insert(PredCases[i].Value);
1213 
1214         if (PredHasWeights || SuccHasWeights) {
1215           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1216           std::swap(Weights[i + 1], Weights.back());
1217           Weights.pop_back();
1218         }
1219 
1220         std::swap(PredCases[i], PredCases.back());
1221         PredCases.pop_back();
1222         --i;
1223         --e;
1224       }
1225 
1226     // Okay, now we know which constants were sent to BB from the
1227     // predecessor.  Figure out where they will all go now.
1228     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1229       if (PTIHandled.count(BBCases[i].Value)) {
1230         // If this is one we are capable of getting...
1231         if (PredHasWeights || SuccHasWeights)
1232           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1233         PredCases.push_back(BBCases[i]);
1234         ++NewSuccessors[BBCases[i].Dest];
1235         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1236       }
1237 
1238     // If there are any constants vectored to BB that TI doesn't handle,
1239     // they must go to the default destination of TI.
1240     for (ConstantInt *I : PTIHandled) {
1241       if (PredHasWeights || SuccHasWeights)
1242         Weights.push_back(WeightsForHandled[I]);
1243       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1244       ++NewSuccessors[BBDefault];
1245     }
1246   }
1247 
1248   // Okay, at this point, we know which new successor Pred will get.  Make
1249   // sure we update the number of entries in the PHI nodes for these
1250   // successors.
1251   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1252        NewSuccessors) {
1253     for (auto I : seq(0, NewSuccessor.second)) {
1254       (void)I;
1255       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1256     }
1257     if (!is_contained(successors(Pred), NewSuccessor.first))
1258       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1259   }
1260 
1261   Builder.SetInsertPoint(PTI);
1262   // Convert pointer to int before we switch.
1263   if (CV->getType()->isPointerTy()) {
1264     CV =
1265         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1266   }
1267 
1268   // Now that the successors are updated, create the new Switch instruction.
1269   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1270   NewSI->setDebugLoc(PTI->getDebugLoc());
1271   for (ValueEqualityComparisonCase &V : PredCases)
1272     NewSI->addCase(V.Value, V.Dest);
1273 
1274   if (PredHasWeights || SuccHasWeights) {
1275     // Halve the weights if any of them cannot fit in an uint32_t
1276     FitWeights(Weights);
1277 
1278     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1279 
1280     setBranchWeights(NewSI, MDWeights);
1281   }
1282 
1283   EraseTerminatorAndDCECond(PTI);
1284 
1285   // Okay, last check.  If BB is still a successor of PSI, then we must
1286   // have an infinite loop case.  If so, add an infinitely looping block
1287   // to handle the case to preserve the behavior of the code.
1288   BasicBlock *InfLoopBlock = nullptr;
1289   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1290     if (NewSI->getSuccessor(i) == BB) {
1291       if (!InfLoopBlock) {
1292         // Insert it at the end of the function, because it's either code,
1293         // or it won't matter if it's hot. :)
1294         InfLoopBlock =
1295             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1296         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1297         Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1298       }
1299       NewSI->setSuccessor(i, InfLoopBlock);
1300     }
1301 
1302   if (InfLoopBlock)
1303     Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1304 
1305   Updates.push_back({DominatorTree::Delete, Pred, BB});
1306 
1307   if (DTU)
1308     DTU->applyUpdates(Updates);
1309 
1310   ++NumFoldValueComparisonIntoPredecessors;
1311   return true;
1312 }
1313 
1314 /// The specified terminator is a value equality comparison instruction
1315 /// (either a switch or a branch on "X == c").
1316 /// See if any of the predecessors of the terminator block are value comparisons
1317 /// on the same value.  If so, and if safe to do so, fold them together.
1318 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1319                                                          IRBuilder<> &Builder) {
1320   BasicBlock *BB = TI->getParent();
1321   Value *CV = isValueEqualityComparison(TI); // CondVal
1322   assert(CV && "Not a comparison?");
1323 
1324   bool Changed = false;
1325 
1326   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1327   while (!Preds.empty()) {
1328     BasicBlock *Pred = Preds.pop_back_val();
1329     Instruction *PTI = Pred->getTerminator();
1330 
1331     // Don't try to fold into itself.
1332     if (Pred == BB)
1333       continue;
1334 
1335     // See if the predecessor is a comparison with the same value.
1336     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1337     if (PCV != CV)
1338       continue;
1339 
1340     SmallSetVector<BasicBlock *, 4> FailBlocks;
1341     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1342       for (auto *Succ : FailBlocks) {
1343         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1344           return false;
1345       }
1346     }
1347 
1348     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1349     Changed = true;
1350   }
1351   return Changed;
1352 }
1353 
1354 // If we would need to insert a select that uses the value of this invoke
1355 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1356 // can't hoist the invoke, as there is nowhere to put the select in this case.
1357 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1358                                 Instruction *I1, Instruction *I2) {
1359   for (BasicBlock *Succ : successors(BB1)) {
1360     for (const PHINode &PN : Succ->phis()) {
1361       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1362       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1363       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1364         return false;
1365       }
1366     }
1367   }
1368   return true;
1369 }
1370 
1371 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1372 
1373 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1374 /// in the two blocks up into the branch block. The caller of this function
1375 /// guarantees that BI's block dominates BB1 and BB2.
1376 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1377                                            const TargetTransformInfo &TTI) {
1378   // This does very trivial matching, with limited scanning, to find identical
1379   // instructions in the two blocks.  In particular, we don't want to get into
1380   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1381   // such, we currently just scan for obviously identical instructions in an
1382   // identical order.
1383   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1384   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1385 
1386   BasicBlock::iterator BB1_Itr = BB1->begin();
1387   BasicBlock::iterator BB2_Itr = BB2->begin();
1388 
1389   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1390   // Skip debug info if it is not identical.
1391   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1392   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1393   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1394     while (isa<DbgInfoIntrinsic>(I1))
1395       I1 = &*BB1_Itr++;
1396     while (isa<DbgInfoIntrinsic>(I2))
1397       I2 = &*BB2_Itr++;
1398   }
1399   // FIXME: Can we define a safety predicate for CallBr?
1400   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1401       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1402       isa<CallBrInst>(I1))
1403     return false;
1404 
1405   BasicBlock *BIParent = BI->getParent();
1406 
1407   bool Changed = false;
1408 
1409   auto _ = make_scope_exit([&]() {
1410     if (Changed)
1411       ++NumHoistCommonCode;
1412   });
1413 
1414   do {
1415     // If we are hoisting the terminator instruction, don't move one (making a
1416     // broken BB), instead clone it, and remove BI.
1417     if (I1->isTerminator())
1418       goto HoistTerminator;
1419 
1420     // If we're going to hoist a call, make sure that the two instructions we're
1421     // commoning/hoisting are both marked with musttail, or neither of them is
1422     // marked as such. Otherwise, we might end up in a situation where we hoist
1423     // from a block where the terminator is a `ret` to a block where the terminator
1424     // is a `br`, and `musttail` calls expect to be followed by a return.
1425     auto *C1 = dyn_cast<CallInst>(I1);
1426     auto *C2 = dyn_cast<CallInst>(I2);
1427     if (C1 && C2)
1428       if (C1->isMustTailCall() != C2->isMustTailCall())
1429         return Changed;
1430 
1431     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1432       return Changed;
1433 
1434     // If any of the two call sites has nomerge attribute, stop hoisting.
1435     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1436       if (CB1->cannotMerge())
1437         return Changed;
1438     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1439       if (CB2->cannotMerge())
1440         return Changed;
1441 
1442     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1443       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1444       // The debug location is an integral part of a debug info intrinsic
1445       // and can't be separated from it or replaced.  Instead of attempting
1446       // to merge locations, simply hoist both copies of the intrinsic.
1447       BIParent->getInstList().splice(BI->getIterator(),
1448                                      BB1->getInstList(), I1);
1449       BIParent->getInstList().splice(BI->getIterator(),
1450                                      BB2->getInstList(), I2);
1451       Changed = true;
1452     } else {
1453       // For a normal instruction, we just move one to right before the branch,
1454       // then replace all uses of the other with the first.  Finally, we remove
1455       // the now redundant second instruction.
1456       BIParent->getInstList().splice(BI->getIterator(),
1457                                      BB1->getInstList(), I1);
1458       if (!I2->use_empty())
1459         I2->replaceAllUsesWith(I1);
1460       I1->andIRFlags(I2);
1461       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1462                              LLVMContext::MD_range,
1463                              LLVMContext::MD_fpmath,
1464                              LLVMContext::MD_invariant_load,
1465                              LLVMContext::MD_nonnull,
1466                              LLVMContext::MD_invariant_group,
1467                              LLVMContext::MD_align,
1468                              LLVMContext::MD_dereferenceable,
1469                              LLVMContext::MD_dereferenceable_or_null,
1470                              LLVMContext::MD_mem_parallel_loop_access,
1471                              LLVMContext::MD_access_group,
1472                              LLVMContext::MD_preserve_access_index};
1473       combineMetadata(I1, I2, KnownIDs, true);
1474 
1475       // I1 and I2 are being combined into a single instruction.  Its debug
1476       // location is the merged locations of the original instructions.
1477       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1478 
1479       I2->eraseFromParent();
1480       Changed = true;
1481     }
1482     ++NumHoistCommonInstrs;
1483 
1484     I1 = &*BB1_Itr++;
1485     I2 = &*BB2_Itr++;
1486     // Skip debug info if it is not identical.
1487     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1488     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1489     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1490       while (isa<DbgInfoIntrinsic>(I1))
1491         I1 = &*BB1_Itr++;
1492       while (isa<DbgInfoIntrinsic>(I2))
1493         I2 = &*BB2_Itr++;
1494     }
1495   } while (I1->isIdenticalToWhenDefined(I2));
1496 
1497   return true;
1498 
1499 HoistTerminator:
1500   // It may not be possible to hoist an invoke.
1501   // FIXME: Can we define a safety predicate for CallBr?
1502   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1503     return Changed;
1504 
1505   // TODO: callbr hoisting currently disabled pending further study.
1506   if (isa<CallBrInst>(I1))
1507     return Changed;
1508 
1509   for (BasicBlock *Succ : successors(BB1)) {
1510     for (PHINode &PN : Succ->phis()) {
1511       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1512       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1513       if (BB1V == BB2V)
1514         continue;
1515 
1516       // Check for passingValueIsAlwaysUndefined here because we would rather
1517       // eliminate undefined control flow then converting it to a select.
1518       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1519           passingValueIsAlwaysUndefined(BB2V, &PN))
1520         return Changed;
1521 
1522       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1523         return Changed;
1524       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1525         return Changed;
1526     }
1527   }
1528 
1529   // Okay, it is safe to hoist the terminator.
1530   Instruction *NT = I1->clone();
1531   BIParent->getInstList().insert(BI->getIterator(), NT);
1532   if (!NT->getType()->isVoidTy()) {
1533     I1->replaceAllUsesWith(NT);
1534     I2->replaceAllUsesWith(NT);
1535     NT->takeName(I1);
1536   }
1537   Changed = true;
1538   ++NumHoistCommonInstrs;
1539 
1540   // Ensure terminator gets a debug location, even an unknown one, in case
1541   // it involves inlinable calls.
1542   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1543 
1544   // PHIs created below will adopt NT's merged DebugLoc.
1545   IRBuilder<NoFolder> Builder(NT);
1546 
1547   // Hoisting one of the terminators from our successor is a great thing.
1548   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1549   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1550   // nodes, so we insert select instruction to compute the final result.
1551   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1552   for (BasicBlock *Succ : successors(BB1)) {
1553     for (PHINode &PN : Succ->phis()) {
1554       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1555       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1556       if (BB1V == BB2V)
1557         continue;
1558 
1559       // These values do not agree.  Insert a select instruction before NT
1560       // that determines the right value.
1561       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1562       if (!SI) {
1563         // Propagate fast-math-flags from phi node to its replacement select.
1564         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1565         if (isa<FPMathOperator>(PN))
1566           Builder.setFastMathFlags(PN.getFastMathFlags());
1567 
1568         SI = cast<SelectInst>(
1569             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1570                                  BB1V->getName() + "." + BB2V->getName(), BI));
1571       }
1572 
1573       // Make the PHI node use the select for all incoming values for BB1/BB2
1574       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1575         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1576           PN.setIncomingValue(i, SI);
1577     }
1578   }
1579 
1580   SmallVector<DominatorTree::UpdateType, 4> Updates;
1581 
1582   // Update any PHI nodes in our new successors.
1583   for (BasicBlock *Succ : successors(BB1)) {
1584     AddPredecessorToBlock(Succ, BIParent, BB1);
1585     Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1586   }
1587   for (BasicBlock *Succ : successors(BI))
1588     Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1589 
1590   EraseTerminatorAndDCECond(BI);
1591   if (DTU)
1592     DTU->applyUpdates(Updates);
1593   return Changed;
1594 }
1595 
1596 // Check lifetime markers.
1597 static bool isLifeTimeMarker(const Instruction *I) {
1598   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1599     switch (II->getIntrinsicID()) {
1600     default:
1601       break;
1602     case Intrinsic::lifetime_start:
1603     case Intrinsic::lifetime_end:
1604       return true;
1605     }
1606   }
1607   return false;
1608 }
1609 
1610 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1611 // into variables.
1612 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1613                                                 int OpIdx) {
1614   return !isa<IntrinsicInst>(I);
1615 }
1616 
1617 // All instructions in Insts belong to different blocks that all unconditionally
1618 // branch to a common successor. Analyze each instruction and return true if it
1619 // would be possible to sink them into their successor, creating one common
1620 // instruction instead. For every value that would be required to be provided by
1621 // PHI node (because an operand varies in each input block), add to PHIOperands.
1622 static bool canSinkInstructions(
1623     ArrayRef<Instruction *> Insts,
1624     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1625   // Prune out obviously bad instructions to move. Each instruction must have
1626   // exactly zero or one use, and we check later that use is by a single, common
1627   // PHI instruction in the successor.
1628   bool HasUse = !Insts.front()->user_empty();
1629   for (auto *I : Insts) {
1630     // These instructions may change or break semantics if moved.
1631     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1632         I->getType()->isTokenTy())
1633       return false;
1634 
1635     // Do not try to sink an instruction in an infinite loop - it can cause
1636     // this algorithm to infinite loop.
1637     if (I->getParent()->getSingleSuccessor() == I->getParent())
1638       return false;
1639 
1640     // Conservatively return false if I is an inline-asm instruction. Sinking
1641     // and merging inline-asm instructions can potentially create arguments
1642     // that cannot satisfy the inline-asm constraints.
1643     // If the instruction has nomerge attribute, return false.
1644     if (const auto *C = dyn_cast<CallBase>(I))
1645       if (C->isInlineAsm() || C->cannotMerge())
1646         return false;
1647 
1648     // Each instruction must have zero or one use.
1649     if (HasUse && !I->hasOneUse())
1650       return false;
1651     if (!HasUse && !I->user_empty())
1652       return false;
1653   }
1654 
1655   const Instruction *I0 = Insts.front();
1656   for (auto *I : Insts)
1657     if (!I->isSameOperationAs(I0))
1658       return false;
1659 
1660   // All instructions in Insts are known to be the same opcode. If they have a
1661   // use, check that the only user is a PHI or in the same block as the
1662   // instruction, because if a user is in the same block as an instruction we're
1663   // contemplating sinking, it must already be determined to be sinkable.
1664   if (HasUse) {
1665     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1666     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1667     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1668           auto *U = cast<Instruction>(*I->user_begin());
1669           return (PNUse &&
1670                   PNUse->getParent() == Succ &&
1671                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1672                  U->getParent() == I->getParent();
1673         }))
1674       return false;
1675   }
1676 
1677   // Because SROA can't handle speculating stores of selects, try not to sink
1678   // loads, stores or lifetime markers of allocas when we'd have to create a
1679   // PHI for the address operand. Also, because it is likely that loads or
1680   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1681   // them.
1682   // This can cause code churn which can have unintended consequences down
1683   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1684   // FIXME: This is a workaround for a deficiency in SROA - see
1685   // https://llvm.org/bugs/show_bug.cgi?id=30188
1686   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1687         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1688       }))
1689     return false;
1690   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1691         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1692       }))
1693     return false;
1694   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1695         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1696       }))
1697     return false;
1698 
1699   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1700     Value *Op = I0->getOperand(OI);
1701     if (Op->getType()->isTokenTy())
1702       // Don't touch any operand of token type.
1703       return false;
1704 
1705     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1706       assert(I->getNumOperands() == I0->getNumOperands());
1707       return I->getOperand(OI) == I0->getOperand(OI);
1708     };
1709     if (!all_of(Insts, SameAsI0)) {
1710       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1711           !canReplaceOperandWithVariable(I0, OI))
1712         // We can't create a PHI from this GEP.
1713         return false;
1714       // Don't create indirect calls! The called value is the final operand.
1715       if (isa<CallBase>(I0) && OI == OE - 1) {
1716         // FIXME: if the call was *already* indirect, we should do this.
1717         return false;
1718       }
1719       for (auto *I : Insts)
1720         PHIOperands[I].push_back(I->getOperand(OI));
1721     }
1722   }
1723   return true;
1724 }
1725 
1726 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1727 // instruction of every block in Blocks to their common successor, commoning
1728 // into one instruction.
1729 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1730   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1731 
1732   // canSinkInstructions returning true guarantees that every block has at
1733   // least one non-terminator instruction.
1734   SmallVector<Instruction*,4> Insts;
1735   for (auto *BB : Blocks) {
1736     Instruction *I = BB->getTerminator();
1737     do {
1738       I = I->getPrevNode();
1739     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1740     if (!isa<DbgInfoIntrinsic>(I))
1741       Insts.push_back(I);
1742   }
1743 
1744   // The only checking we need to do now is that all users of all instructions
1745   // are the same PHI node. canSinkInstructions should have checked this but
1746   // it is slightly over-aggressive - it gets confused by commutative
1747   // instructions so double-check it here.
1748   Instruction *I0 = Insts.front();
1749   if (!I0->user_empty()) {
1750     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1751     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1752           auto *U = cast<Instruction>(*I->user_begin());
1753           return U == PNUse;
1754         }))
1755       return false;
1756   }
1757 
1758   // We don't need to do any more checking here; canSinkInstructions should
1759   // have done it all for us.
1760   SmallVector<Value*, 4> NewOperands;
1761   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1762     // This check is different to that in canSinkInstructions. There, we
1763     // cared about the global view once simplifycfg (and instcombine) have
1764     // completed - it takes into account PHIs that become trivially
1765     // simplifiable.  However here we need a more local view; if an operand
1766     // differs we create a PHI and rely on instcombine to clean up the very
1767     // small mess we may make.
1768     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1769       return I->getOperand(O) != I0->getOperand(O);
1770     });
1771     if (!NeedPHI) {
1772       NewOperands.push_back(I0->getOperand(O));
1773       continue;
1774     }
1775 
1776     // Create a new PHI in the successor block and populate it.
1777     auto *Op = I0->getOperand(O);
1778     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1779     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1780                                Op->getName() + ".sink", &BBEnd->front());
1781     for (auto *I : Insts)
1782       PN->addIncoming(I->getOperand(O), I->getParent());
1783     NewOperands.push_back(PN);
1784   }
1785 
1786   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1787   // and move it to the start of the successor block.
1788   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1789     I0->getOperandUse(O).set(NewOperands[O]);
1790   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1791 
1792   // Update metadata and IR flags, and merge debug locations.
1793   for (auto *I : Insts)
1794     if (I != I0) {
1795       // The debug location for the "common" instruction is the merged locations
1796       // of all the commoned instructions.  We start with the original location
1797       // of the "common" instruction and iteratively merge each location in the
1798       // loop below.
1799       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1800       // However, as N-way merge for CallInst is rare, so we use simplified API
1801       // instead of using complex API for N-way merge.
1802       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1803       combineMetadataForCSE(I0, I, true);
1804       I0->andIRFlags(I);
1805     }
1806 
1807   if (!I0->user_empty()) {
1808     // canSinkLastInstruction checked that all instructions were used by
1809     // one and only one PHI node. Find that now, RAUW it to our common
1810     // instruction and nuke it.
1811     auto *PN = cast<PHINode>(*I0->user_begin());
1812     PN->replaceAllUsesWith(I0);
1813     PN->eraseFromParent();
1814   }
1815 
1816   // Finally nuke all instructions apart from the common instruction.
1817   for (auto *I : Insts)
1818     if (I != I0)
1819       I->eraseFromParent();
1820 
1821   return true;
1822 }
1823 
1824 namespace {
1825 
1826   // LockstepReverseIterator - Iterates through instructions
1827   // in a set of blocks in reverse order from the first non-terminator.
1828   // For example (assume all blocks have size n):
1829   //   LockstepReverseIterator I([B1, B2, B3]);
1830   //   *I-- = [B1[n], B2[n], B3[n]];
1831   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1832   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1833   //   ...
1834   class LockstepReverseIterator {
1835     ArrayRef<BasicBlock*> Blocks;
1836     SmallVector<Instruction*,4> Insts;
1837     bool Fail;
1838 
1839   public:
1840     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1841       reset();
1842     }
1843 
1844     void reset() {
1845       Fail = false;
1846       Insts.clear();
1847       for (auto *BB : Blocks) {
1848         Instruction *Inst = BB->getTerminator();
1849         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1850           Inst = Inst->getPrevNode();
1851         if (!Inst) {
1852           // Block wasn't big enough.
1853           Fail = true;
1854           return;
1855         }
1856         Insts.push_back(Inst);
1857       }
1858     }
1859 
1860     bool isValid() const {
1861       return !Fail;
1862     }
1863 
1864     void operator--() {
1865       if (Fail)
1866         return;
1867       for (auto *&Inst : Insts) {
1868         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1869           Inst = Inst->getPrevNode();
1870         // Already at beginning of block.
1871         if (!Inst) {
1872           Fail = true;
1873           return;
1874         }
1875       }
1876     }
1877 
1878     ArrayRef<Instruction*> operator * () const {
1879       return Insts;
1880     }
1881   };
1882 
1883 } // end anonymous namespace
1884 
1885 /// Check whether BB's predecessors end with unconditional branches. If it is
1886 /// true, sink any common code from the predecessors to BB.
1887 /// We also allow one predecessor to end with conditional branch (but no more
1888 /// than one).
1889 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1890                                            DomTreeUpdater *DTU) {
1891   // We support two situations:
1892   //   (1) all incoming arcs are unconditional
1893   //   (2) one incoming arc is conditional
1894   //
1895   // (2) is very common in switch defaults and
1896   // else-if patterns;
1897   //
1898   //   if (a) f(1);
1899   //   else if (b) f(2);
1900   //
1901   // produces:
1902   //
1903   //       [if]
1904   //      /    \
1905   //    [f(1)] [if]
1906   //      |     | \
1907   //      |     |  |
1908   //      |  [f(2)]|
1909   //       \    | /
1910   //        [ end ]
1911   //
1912   // [end] has two unconditional predecessor arcs and one conditional. The
1913   // conditional refers to the implicit empty 'else' arc. This conditional
1914   // arc can also be caused by an empty default block in a switch.
1915   //
1916   // In this case, we attempt to sink code from all *unconditional* arcs.
1917   // If we can sink instructions from these arcs (determined during the scan
1918   // phase below) we insert a common successor for all unconditional arcs and
1919   // connect that to [end], to enable sinking:
1920   //
1921   //       [if]
1922   //      /    \
1923   //    [x(1)] [if]
1924   //      |     | \
1925   //      |     |  \
1926   //      |  [x(2)] |
1927   //       \   /    |
1928   //   [sink.split] |
1929   //         \     /
1930   //         [ end ]
1931   //
1932   SmallVector<BasicBlock*,4> UnconditionalPreds;
1933   Instruction *Cond = nullptr;
1934   for (auto *B : predecessors(BB)) {
1935     auto *T = B->getTerminator();
1936     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1937       UnconditionalPreds.push_back(B);
1938     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1939       Cond = T;
1940     else
1941       return false;
1942   }
1943   if (UnconditionalPreds.size() < 2)
1944     return false;
1945 
1946   // We take a two-step approach to tail sinking. First we scan from the end of
1947   // each block upwards in lockstep. If the n'th instruction from the end of each
1948   // block can be sunk, those instructions are added to ValuesToSink and we
1949   // carry on. If we can sink an instruction but need to PHI-merge some operands
1950   // (because they're not identical in each instruction) we add these to
1951   // PHIOperands.
1952   unsigned ScanIdx = 0;
1953   SmallPtrSet<Value*,4> InstructionsToSink;
1954   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1955   LockstepReverseIterator LRI(UnconditionalPreds);
1956   while (LRI.isValid() &&
1957          canSinkInstructions(*LRI, PHIOperands)) {
1958     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1959                       << "\n");
1960     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1961     ++ScanIdx;
1962     --LRI;
1963   }
1964 
1965   // If no instructions can be sunk, early-return.
1966   if (ScanIdx == 0)
1967     return false;
1968 
1969   bool Changed = false;
1970 
1971   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1972     unsigned NumPHIdValues = 0;
1973     for (auto *I : *LRI)
1974       for (auto *V : PHIOperands[I])
1975         if (InstructionsToSink.count(V) == 0)
1976           ++NumPHIdValues;
1977     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1978     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1979     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1980         NumPHIInsts++;
1981 
1982     return NumPHIInsts <= 1;
1983   };
1984 
1985   if (Cond) {
1986     // Check if we would actually sink anything first! This mutates the CFG and
1987     // adds an extra block. The goal in doing this is to allow instructions that
1988     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1989     // (such as trunc, add) can be sunk and predicated already. So we check that
1990     // we're going to sink at least one non-speculatable instruction.
1991     LRI.reset();
1992     unsigned Idx = 0;
1993     bool Profitable = false;
1994     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1995       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1996         Profitable = true;
1997         break;
1998       }
1999       --LRI;
2000       ++Idx;
2001     }
2002     if (!Profitable)
2003       return false;
2004 
2005     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2006     // We have a conditional edge and we're going to sink some instructions.
2007     // Insert a new block postdominating all blocks we're going to sink from.
2008     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2009       // Edges couldn't be split.
2010       return false;
2011     Changed = true;
2012   }
2013 
2014   // Now that we've analyzed all potential sinking candidates, perform the
2015   // actual sink. We iteratively sink the last non-terminator of the source
2016   // blocks into their common successor unless doing so would require too
2017   // many PHI instructions to be generated (currently only one PHI is allowed
2018   // per sunk instruction).
2019   //
2020   // We can use InstructionsToSink to discount values needing PHI-merging that will
2021   // actually be sunk in a later iteration. This allows us to be more
2022   // aggressive in what we sink. This does allow a false positive where we
2023   // sink presuming a later value will also be sunk, but stop half way through
2024   // and never actually sink it which means we produce more PHIs than intended.
2025   // This is unlikely in practice though.
2026   unsigned SinkIdx = 0;
2027   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2028     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2029                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2030                       << "\n");
2031 
2032     // Because we've sunk every instruction in turn, the current instruction to
2033     // sink is always at index 0.
2034     LRI.reset();
2035     if (!ProfitableToSinkInstruction(LRI)) {
2036       // Too many PHIs would be created.
2037       LLVM_DEBUG(
2038           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2039       break;
2040     }
2041 
2042     if (!sinkLastInstruction(UnconditionalPreds)) {
2043       LLVM_DEBUG(
2044           dbgs()
2045           << "SINK: stopping here, failed to actually sink instruction!\n");
2046       break;
2047     }
2048 
2049     NumSinkCommonInstrs++;
2050     Changed = true;
2051   }
2052   if (SinkIdx != 0)
2053     ++NumSinkCommonCode;
2054   return Changed;
2055 }
2056 
2057 /// Determine if we can hoist sink a sole store instruction out of a
2058 /// conditional block.
2059 ///
2060 /// We are looking for code like the following:
2061 ///   BrBB:
2062 ///     store i32 %add, i32* %arrayidx2
2063 ///     ... // No other stores or function calls (we could be calling a memory
2064 ///     ... // function).
2065 ///     %cmp = icmp ult %x, %y
2066 ///     br i1 %cmp, label %EndBB, label %ThenBB
2067 ///   ThenBB:
2068 ///     store i32 %add5, i32* %arrayidx2
2069 ///     br label EndBB
2070 ///   EndBB:
2071 ///     ...
2072 ///   We are going to transform this into:
2073 ///   BrBB:
2074 ///     store i32 %add, i32* %arrayidx2
2075 ///     ... //
2076 ///     %cmp = icmp ult %x, %y
2077 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2078 ///     store i32 %add.add5, i32* %arrayidx2
2079 ///     ...
2080 ///
2081 /// \return The pointer to the value of the previous store if the store can be
2082 ///         hoisted into the predecessor block. 0 otherwise.
2083 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2084                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2085   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2086   if (!StoreToHoist)
2087     return nullptr;
2088 
2089   // Volatile or atomic.
2090   if (!StoreToHoist->isSimple())
2091     return nullptr;
2092 
2093   Value *StorePtr = StoreToHoist->getPointerOperand();
2094 
2095   // Look for a store to the same pointer in BrBB.
2096   unsigned MaxNumInstToLookAt = 9;
2097   // Skip pseudo probe intrinsic calls which are not really killing any memory
2098   // accesses.
2099   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2100     if (!MaxNumInstToLookAt)
2101       break;
2102     --MaxNumInstToLookAt;
2103 
2104     // Could be calling an instruction that affects memory like free().
2105     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2106       return nullptr;
2107 
2108     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2109       // Found the previous store make sure it stores to the same location.
2110       if (SI->getPointerOperand() == StorePtr)
2111         // Found the previous store, return its value operand.
2112         return SI->getValueOperand();
2113       return nullptr; // Unknown store.
2114     }
2115   }
2116 
2117   return nullptr;
2118 }
2119 
2120 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2121 /// converted to selects.
2122 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2123                                            BasicBlock *EndBB,
2124                                            unsigned &SpeculatedInstructions,
2125                                            InstructionCost &Cost,
2126                                            const TargetTransformInfo &TTI) {
2127   TargetTransformInfo::TargetCostKind CostKind =
2128     BB->getParent()->hasMinSize()
2129     ? TargetTransformInfo::TCK_CodeSize
2130     : TargetTransformInfo::TCK_SizeAndLatency;
2131 
2132   bool HaveRewritablePHIs = false;
2133   for (PHINode &PN : EndBB->phis()) {
2134     Value *OrigV = PN.getIncomingValueForBlock(BB);
2135     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2136 
2137     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2138     // Skip PHIs which are trivial.
2139     if (ThenV == OrigV)
2140       continue;
2141 
2142     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2143                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2144 
2145     // Don't convert to selects if we could remove undefined behavior instead.
2146     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2147         passingValueIsAlwaysUndefined(ThenV, &PN))
2148       return false;
2149 
2150     HaveRewritablePHIs = true;
2151     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2152     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2153     if (!OrigCE && !ThenCE)
2154       continue; // Known safe and cheap.
2155 
2156     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2157         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2158       return false;
2159     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2160     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2161     InstructionCost MaxCost =
2162         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2163     if (OrigCost + ThenCost > MaxCost)
2164       return false;
2165 
2166     // Account for the cost of an unfolded ConstantExpr which could end up
2167     // getting expanded into Instructions.
2168     // FIXME: This doesn't account for how many operations are combined in the
2169     // constant expression.
2170     ++SpeculatedInstructions;
2171     if (SpeculatedInstructions > 1)
2172       return false;
2173   }
2174 
2175   return HaveRewritablePHIs;
2176 }
2177 
2178 /// Speculate a conditional basic block flattening the CFG.
2179 ///
2180 /// Note that this is a very risky transform currently. Speculating
2181 /// instructions like this is most often not desirable. Instead, there is an MI
2182 /// pass which can do it with full awareness of the resource constraints.
2183 /// However, some cases are "obvious" and we should do directly. An example of
2184 /// this is speculating a single, reasonably cheap instruction.
2185 ///
2186 /// There is only one distinct advantage to flattening the CFG at the IR level:
2187 /// it makes very common but simplistic optimizations such as are common in
2188 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2189 /// modeling their effects with easier to reason about SSA value graphs.
2190 ///
2191 ///
2192 /// An illustration of this transform is turning this IR:
2193 /// \code
2194 ///   BB:
2195 ///     %cmp = icmp ult %x, %y
2196 ///     br i1 %cmp, label %EndBB, label %ThenBB
2197 ///   ThenBB:
2198 ///     %sub = sub %x, %y
2199 ///     br label BB2
2200 ///   EndBB:
2201 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2202 ///     ...
2203 /// \endcode
2204 ///
2205 /// Into this IR:
2206 /// \code
2207 ///   BB:
2208 ///     %cmp = icmp ult %x, %y
2209 ///     %sub = sub %x, %y
2210 ///     %cond = select i1 %cmp, 0, %sub
2211 ///     ...
2212 /// \endcode
2213 ///
2214 /// \returns true if the conditional block is removed.
2215 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2216                                             const TargetTransformInfo &TTI) {
2217   // Be conservative for now. FP select instruction can often be expensive.
2218   Value *BrCond = BI->getCondition();
2219   if (isa<FCmpInst>(BrCond))
2220     return false;
2221 
2222   BasicBlock *BB = BI->getParent();
2223   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2224   InstructionCost Budget =
2225       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2226 
2227   // If ThenBB is actually on the false edge of the conditional branch, remember
2228   // to swap the select operands later.
2229   bool Invert = false;
2230   if (ThenBB != BI->getSuccessor(0)) {
2231     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2232     Invert = true;
2233   }
2234   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2235 
2236   // Keep a count of how many times instructions are used within ThenBB when
2237   // they are candidates for sinking into ThenBB. Specifically:
2238   // - They are defined in BB, and
2239   // - They have no side effects, and
2240   // - All of their uses are in ThenBB.
2241   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2242 
2243   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2244 
2245   unsigned SpeculatedInstructions = 0;
2246   Value *SpeculatedStoreValue = nullptr;
2247   StoreInst *SpeculatedStore = nullptr;
2248   for (BasicBlock::iterator BBI = ThenBB->begin(),
2249                             BBE = std::prev(ThenBB->end());
2250        BBI != BBE; ++BBI) {
2251     Instruction *I = &*BBI;
2252     // Skip debug info.
2253     if (isa<DbgInfoIntrinsic>(I)) {
2254       SpeculatedDbgIntrinsics.push_back(I);
2255       continue;
2256     }
2257 
2258     // Skip pseudo probes. The consequence is we lose track of the branch
2259     // probability for ThenBB, which is fine since the optimization here takes
2260     // place regardless of the branch probability.
2261     if (isa<PseudoProbeInst>(I)) {
2262       continue;
2263     }
2264 
2265     // Only speculatively execute a single instruction (not counting the
2266     // terminator) for now.
2267     ++SpeculatedInstructions;
2268     if (SpeculatedInstructions > 1)
2269       return false;
2270 
2271     // Don't hoist the instruction if it's unsafe or expensive.
2272     if (!isSafeToSpeculativelyExecute(I) &&
2273         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2274                                   I, BB, ThenBB, EndBB))))
2275       return false;
2276     if (!SpeculatedStoreValue &&
2277         computeSpeculationCost(I, TTI) >
2278             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2279       return false;
2280 
2281     // Store the store speculation candidate.
2282     if (SpeculatedStoreValue)
2283       SpeculatedStore = cast<StoreInst>(I);
2284 
2285     // Do not hoist the instruction if any of its operands are defined but not
2286     // used in BB. The transformation will prevent the operand from
2287     // being sunk into the use block.
2288     for (Use &Op : I->operands()) {
2289       Instruction *OpI = dyn_cast<Instruction>(Op);
2290       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2291         continue; // Not a candidate for sinking.
2292 
2293       ++SinkCandidateUseCounts[OpI];
2294     }
2295   }
2296 
2297   // Consider any sink candidates which are only used in ThenBB as costs for
2298   // speculation. Note, while we iterate over a DenseMap here, we are summing
2299   // and so iteration order isn't significant.
2300   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2301            I = SinkCandidateUseCounts.begin(),
2302            E = SinkCandidateUseCounts.end();
2303        I != E; ++I)
2304     if (I->first->hasNUses(I->second)) {
2305       ++SpeculatedInstructions;
2306       if (SpeculatedInstructions > 1)
2307         return false;
2308     }
2309 
2310   // Check that we can insert the selects and that it's not too expensive to do
2311   // so.
2312   bool Convert = SpeculatedStore != nullptr;
2313   InstructionCost Cost = 0;
2314   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2315                                             SpeculatedInstructions,
2316                                             Cost, TTI);
2317   if (!Convert || Cost > Budget)
2318     return false;
2319 
2320   // If we get here, we can hoist the instruction and if-convert.
2321   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2322 
2323   // Insert a select of the value of the speculated store.
2324   if (SpeculatedStoreValue) {
2325     IRBuilder<NoFolder> Builder(BI);
2326     Value *TrueV = SpeculatedStore->getValueOperand();
2327     Value *FalseV = SpeculatedStoreValue;
2328     if (Invert)
2329       std::swap(TrueV, FalseV);
2330     Value *S = Builder.CreateSelect(
2331         BrCond, TrueV, FalseV, "spec.store.select", BI);
2332     SpeculatedStore->setOperand(0, S);
2333     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2334                                          SpeculatedStore->getDebugLoc());
2335   }
2336 
2337   // Metadata can be dependent on the condition we are hoisting above.
2338   // Conservatively strip all metadata on the instruction. Drop the debug loc
2339   // to avoid making it appear as if the condition is a constant, which would
2340   // be misleading while debugging.
2341   for (auto &I : *ThenBB) {
2342     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2343       I.setDebugLoc(DebugLoc());
2344     I.dropUnknownNonDebugMetadata();
2345   }
2346 
2347   // A hoisted conditional probe should be treated as dangling so that it will
2348   // not be over-counted when the samples collected on the non-conditional path
2349   // are counted towards the conditional path. We leave it for the counts
2350   // inference algorithm to figure out a proper count for a danglng probe.
2351   moveAndDanglePseudoProbes(ThenBB, BI);
2352 
2353   // Hoist the instructions.
2354   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2355                            ThenBB->begin(), std::prev(ThenBB->end()));
2356 
2357   // Insert selects and rewrite the PHI operands.
2358   IRBuilder<NoFolder> Builder(BI);
2359   for (PHINode &PN : EndBB->phis()) {
2360     unsigned OrigI = PN.getBasicBlockIndex(BB);
2361     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2362     Value *OrigV = PN.getIncomingValue(OrigI);
2363     Value *ThenV = PN.getIncomingValue(ThenI);
2364 
2365     // Skip PHIs which are trivial.
2366     if (OrigV == ThenV)
2367       continue;
2368 
2369     // Create a select whose true value is the speculatively executed value and
2370     // false value is the pre-existing value. Swap them if the branch
2371     // destinations were inverted.
2372     Value *TrueV = ThenV, *FalseV = OrigV;
2373     if (Invert)
2374       std::swap(TrueV, FalseV);
2375     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2376     PN.setIncomingValue(OrigI, V);
2377     PN.setIncomingValue(ThenI, V);
2378   }
2379 
2380   // Remove speculated dbg intrinsics.
2381   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2382   // dbg value for the different flows and inserting it after the select.
2383   for (Instruction *I : SpeculatedDbgIntrinsics)
2384     I->eraseFromParent();
2385 
2386   ++NumSpeculations;
2387   return true;
2388 }
2389 
2390 /// Return true if we can thread a branch across this block.
2391 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2392   int Size = 0;
2393 
2394   for (Instruction &I : BB->instructionsWithoutDebug()) {
2395     if (Size > MaxSmallBlockSize)
2396       return false; // Don't clone large BB's.
2397 
2398     // Can't fold blocks that contain noduplicate or convergent calls.
2399     if (CallInst *CI = dyn_cast<CallInst>(&I))
2400       if (CI->cannotDuplicate() || CI->isConvergent())
2401         return false;
2402 
2403     // We will delete Phis while threading, so Phis should not be accounted in
2404     // block's size
2405     if (!isa<PHINode>(I))
2406       ++Size;
2407 
2408     // We can only support instructions that do not define values that are
2409     // live outside of the current basic block.
2410     for (User *U : I.users()) {
2411       Instruction *UI = cast<Instruction>(U);
2412       if (UI->getParent() != BB || isa<PHINode>(UI))
2413         return false;
2414     }
2415 
2416     // Looks ok, continue checking.
2417   }
2418 
2419   return true;
2420 }
2421 
2422 /// If we have a conditional branch on a PHI node value that is defined in the
2423 /// same block as the branch and if any PHI entries are constants, thread edges
2424 /// corresponding to that entry to be branches to their ultimate destination.
2425 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2426                                 const DataLayout &DL, AssumptionCache *AC) {
2427   BasicBlock *BB = BI->getParent();
2428   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2429   // NOTE: we currently cannot transform this case if the PHI node is used
2430   // outside of the block.
2431   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2432     return false;
2433 
2434   // Degenerate case of a single entry PHI.
2435   if (PN->getNumIncomingValues() == 1) {
2436     FoldSingleEntryPHINodes(PN->getParent());
2437     return true;
2438   }
2439 
2440   // Now we know that this block has multiple preds and two succs.
2441   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2442     return false;
2443 
2444   // Okay, this is a simple enough basic block.  See if any phi values are
2445   // constants.
2446   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2447     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2448     if (!CB || !CB->getType()->isIntegerTy(1))
2449       continue;
2450 
2451     // Okay, we now know that all edges from PredBB should be revectored to
2452     // branch to RealDest.
2453     BasicBlock *PredBB = PN->getIncomingBlock(i);
2454     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2455 
2456     if (RealDest == BB)
2457       continue; // Skip self loops.
2458     // Skip if the predecessor's terminator is an indirect branch.
2459     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2460       continue;
2461 
2462     SmallVector<DominatorTree::UpdateType, 3> Updates;
2463 
2464     // The dest block might have PHI nodes, other predecessors and other
2465     // difficult cases.  Instead of being smart about this, just insert a new
2466     // block that jumps to the destination block, effectively splitting
2467     // the edge we are about to create.
2468     BasicBlock *EdgeBB =
2469         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2470                            RealDest->getParent(), RealDest);
2471     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2472     Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2473     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2474 
2475     // Update PHI nodes.
2476     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2477 
2478     // BB may have instructions that are being threaded over.  Clone these
2479     // instructions into EdgeBB.  We know that there will be no uses of the
2480     // cloned instructions outside of EdgeBB.
2481     BasicBlock::iterator InsertPt = EdgeBB->begin();
2482     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2483     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2484       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2485         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2486         continue;
2487       }
2488       // Clone the instruction.
2489       Instruction *N = BBI->clone();
2490       if (BBI->hasName())
2491         N->setName(BBI->getName() + ".c");
2492 
2493       // Update operands due to translation.
2494       for (Use &Op : N->operands()) {
2495         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2496         if (PI != TranslateMap.end())
2497           Op = PI->second;
2498       }
2499 
2500       // Check for trivial simplification.
2501       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2502         if (!BBI->use_empty())
2503           TranslateMap[&*BBI] = V;
2504         if (!N->mayHaveSideEffects()) {
2505           N->deleteValue(); // Instruction folded away, don't need actual inst
2506           N = nullptr;
2507         }
2508       } else {
2509         if (!BBI->use_empty())
2510           TranslateMap[&*BBI] = N;
2511       }
2512       if (N) {
2513         // Insert the new instruction into its new home.
2514         EdgeBB->getInstList().insert(InsertPt, N);
2515 
2516         // Register the new instruction with the assumption cache if necessary.
2517         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2518           AC->registerAssumption(cast<IntrinsicInst>(N));
2519       }
2520     }
2521 
2522     // Loop over all of the edges from PredBB to BB, changing them to branch
2523     // to EdgeBB instead.
2524     Instruction *PredBBTI = PredBB->getTerminator();
2525     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2526       if (PredBBTI->getSuccessor(i) == BB) {
2527         BB->removePredecessor(PredBB);
2528         PredBBTI->setSuccessor(i, EdgeBB);
2529       }
2530 
2531     Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2532     Updates.push_back({DominatorTree::Delete, PredBB, BB});
2533 
2534     if (DTU)
2535       DTU->applyUpdates(Updates);
2536 
2537     // Recurse, simplifying any other constants.
2538     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2539   }
2540 
2541   return false;
2542 }
2543 
2544 /// Given a BB that starts with the specified two-entry PHI node,
2545 /// see if we can eliminate it.
2546 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2547                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2548   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2549   // statement", which has a very simple dominance structure.  Basically, we
2550   // are trying to find the condition that is being branched on, which
2551   // subsequently causes this merge to happen.  We really want control
2552   // dependence information for this check, but simplifycfg can't keep it up
2553   // to date, and this catches most of the cases we care about anyway.
2554   BasicBlock *BB = PN->getParent();
2555 
2556   BasicBlock *IfTrue, *IfFalse;
2557   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2558   if (!IfCond ||
2559       // Don't bother if the branch will be constant folded trivially.
2560       isa<ConstantInt>(IfCond))
2561     return false;
2562 
2563   // Okay, we found that we can merge this two-entry phi node into a select.
2564   // Doing so would require us to fold *all* two entry phi nodes in this block.
2565   // At some point this becomes non-profitable (particularly if the target
2566   // doesn't support cmov's).  Only do this transformation if there are two or
2567   // fewer PHI nodes in this block.
2568   unsigned NumPhis = 0;
2569   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2570     if (NumPhis > 2)
2571       return false;
2572 
2573   // Loop over the PHI's seeing if we can promote them all to select
2574   // instructions.  While we are at it, keep track of the instructions
2575   // that need to be moved to the dominating block.
2576   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2577   InstructionCost Cost = 0;
2578   InstructionCost Budget =
2579       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2580 
2581   bool Changed = false;
2582   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2583     PHINode *PN = cast<PHINode>(II++);
2584     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2585       PN->replaceAllUsesWith(V);
2586       PN->eraseFromParent();
2587       Changed = true;
2588       continue;
2589     }
2590 
2591     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2592                              Cost, Budget, TTI) ||
2593         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2594                              Cost, Budget, TTI))
2595       return Changed;
2596   }
2597 
2598   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2599   // we ran out of PHIs then we simplified them all.
2600   PN = dyn_cast<PHINode>(BB->begin());
2601   if (!PN)
2602     return true;
2603 
2604   // Return true if at least one of these is a 'not', and another is either
2605   // a 'not' too, or a constant.
2606   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2607     if (!match(V0, m_Not(m_Value())))
2608       std::swap(V0, V1);
2609     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2610     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2611   };
2612 
2613   // Don't fold i1 branches on PHIs which contain binary operators or
2614   // select form of or/ands, unless one of the incoming values is an 'not' and
2615   // another one is freely invertible.
2616   // These can often be turned into switches and other things.
2617   auto IsBinOpOrAnd = [](Value *V) {
2618     return match(
2619         V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr())));
2620   };
2621   if (PN->getType()->isIntegerTy(1) &&
2622       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2623        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2624       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2625                                  PN->getIncomingValue(1)))
2626     return Changed;
2627 
2628   // If all PHI nodes are promotable, check to make sure that all instructions
2629   // in the predecessor blocks can be promoted as well. If not, we won't be able
2630   // to get rid of the control flow, so it's not worth promoting to select
2631   // instructions.
2632   BasicBlock *DomBlock = nullptr;
2633   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2634   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2635   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2636     IfBlock1 = nullptr;
2637   } else {
2638     DomBlock = *pred_begin(IfBlock1);
2639     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2640       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2641           !isa<PseudoProbeInst>(I)) {
2642         // This is not an aggressive instruction that we can promote.
2643         // Because of this, we won't be able to get rid of the control flow, so
2644         // the xform is not worth it.
2645         return Changed;
2646       }
2647   }
2648 
2649   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2650     IfBlock2 = nullptr;
2651   } else {
2652     DomBlock = *pred_begin(IfBlock2);
2653     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2654       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2655           !isa<PseudoProbeInst>(I)) {
2656         // This is not an aggressive instruction that we can promote.
2657         // Because of this, we won't be able to get rid of the control flow, so
2658         // the xform is not worth it.
2659         return Changed;
2660       }
2661   }
2662   assert(DomBlock && "Failed to find root DomBlock");
2663 
2664   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2665                     << "  T: " << IfTrue->getName()
2666                     << "  F: " << IfFalse->getName() << "\n");
2667 
2668   // If we can still promote the PHI nodes after this gauntlet of tests,
2669   // do all of the PHI's now.
2670   Instruction *InsertPt = DomBlock->getTerminator();
2671   IRBuilder<NoFolder> Builder(InsertPt);
2672 
2673   // Move all 'aggressive' instructions, which are defined in the
2674   // conditional parts of the if's up to the dominating block.
2675   if (IfBlock1)
2676     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2677   if (IfBlock2)
2678     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2679 
2680   // Propagate fast-math-flags from phi nodes to replacement selects.
2681   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2682   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2683     if (isa<FPMathOperator>(PN))
2684       Builder.setFastMathFlags(PN->getFastMathFlags());
2685 
2686     // Change the PHI node into a select instruction.
2687     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2688     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2689 
2690     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2691     PN->replaceAllUsesWith(Sel);
2692     Sel->takeName(PN);
2693     PN->eraseFromParent();
2694   }
2695 
2696   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2697   // has been flattened.  Change DomBlock to jump directly to our new block to
2698   // avoid other simplifycfg's kicking in on the diamond.
2699   Instruction *OldTI = DomBlock->getTerminator();
2700   Builder.SetInsertPoint(OldTI);
2701   Builder.CreateBr(BB);
2702 
2703   SmallVector<DominatorTree::UpdateType, 3> Updates;
2704   if (DTU) {
2705     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2706     for (auto *Successor : successors(DomBlock))
2707       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2708   }
2709 
2710   OldTI->eraseFromParent();
2711   if (DTU)
2712     DTU->applyUpdates(Updates);
2713 
2714   return true;
2715 }
2716 
2717 /// If we found a conditional branch that goes to two returning blocks,
2718 /// try to merge them together into one return,
2719 /// introducing a select if the return values disagree.
2720 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2721                                                     IRBuilder<> &Builder) {
2722   auto *BB = BI->getParent();
2723   assert(BI->isConditional() && "Must be a conditional branch");
2724   BasicBlock *TrueSucc = BI->getSuccessor(0);
2725   BasicBlock *FalseSucc = BI->getSuccessor(1);
2726   // NOTE: destinations may match, this could be degenerate uncond branch.
2727   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2728   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2729 
2730   // Check to ensure both blocks are empty (just a return) or optionally empty
2731   // with PHI nodes.  If there are other instructions, merging would cause extra
2732   // computation on one path or the other.
2733   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2734     return false;
2735   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2736     return false;
2737 
2738   Builder.SetInsertPoint(BI);
2739   // Okay, we found a branch that is going to two return nodes.  If
2740   // there is no return value for this function, just change the
2741   // branch into a return.
2742   if (FalseRet->getNumOperands() == 0) {
2743     TrueSucc->removePredecessor(BB);
2744     FalseSucc->removePredecessor(BB);
2745     Builder.CreateRetVoid();
2746     EraseTerminatorAndDCECond(BI);
2747     if (DTU) {
2748       SmallVector<DominatorTree::UpdateType, 2> Updates;
2749       Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2750       if (TrueSucc != FalseSucc)
2751         Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2752       DTU->applyUpdates(Updates);
2753     }
2754     return true;
2755   }
2756 
2757   // Otherwise, figure out what the true and false return values are
2758   // so we can insert a new select instruction.
2759   Value *TrueValue = TrueRet->getReturnValue();
2760   Value *FalseValue = FalseRet->getReturnValue();
2761 
2762   // Unwrap any PHI nodes in the return blocks.
2763   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2764     if (TVPN->getParent() == TrueSucc)
2765       TrueValue = TVPN->getIncomingValueForBlock(BB);
2766   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2767     if (FVPN->getParent() == FalseSucc)
2768       FalseValue = FVPN->getIncomingValueForBlock(BB);
2769 
2770   // In order for this transformation to be safe, we must be able to
2771   // unconditionally execute both operands to the return.  This is
2772   // normally the case, but we could have a potentially-trapping
2773   // constant expression that prevents this transformation from being
2774   // safe.
2775   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2776     if (TCV->canTrap())
2777       return false;
2778   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2779     if (FCV->canTrap())
2780       return false;
2781 
2782   // Okay, we collected all the mapped values and checked them for sanity, and
2783   // defined to really do this transformation.  First, update the CFG.
2784   TrueSucc->removePredecessor(BB);
2785   FalseSucc->removePredecessor(BB);
2786 
2787   // Insert select instructions where needed.
2788   Value *BrCond = BI->getCondition();
2789   if (TrueValue) {
2790     // Insert a select if the results differ.
2791     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2792     } else if (isa<UndefValue>(TrueValue)) {
2793       TrueValue = FalseValue;
2794     } else {
2795       TrueValue =
2796           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2797     }
2798   }
2799 
2800   Value *RI =
2801       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2802 
2803   (void)RI;
2804 
2805   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2806                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2807                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2808 
2809   EraseTerminatorAndDCECond(BI);
2810   if (DTU) {
2811     SmallVector<DominatorTree::UpdateType, 2> Updates;
2812     Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2813     if (TrueSucc != FalseSucc)
2814       Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2815     DTU->applyUpdates(Updates);
2816   }
2817 
2818   return true;
2819 }
2820 
2821 /// Return true if either PBI or BI has branch weight available, and store
2822 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2823 /// not have branch weight, use 1:1 as its weight.
2824 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2825                                    uint64_t &PredTrueWeight,
2826                                    uint64_t &PredFalseWeight,
2827                                    uint64_t &SuccTrueWeight,
2828                                    uint64_t &SuccFalseWeight) {
2829   bool PredHasWeights =
2830       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2831   bool SuccHasWeights =
2832       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2833   if (PredHasWeights || SuccHasWeights) {
2834     if (!PredHasWeights)
2835       PredTrueWeight = PredFalseWeight = 1;
2836     if (!SuccHasWeights)
2837       SuccTrueWeight = SuccFalseWeight = 1;
2838     return true;
2839   } else {
2840     return false;
2841   }
2842 }
2843 
2844 /// Determine if the two branches share a common destination and deduce a glue
2845 /// that joins branch's conditions to arrive at the common destination if that
2846 /// would be profitable.
2847 static Optional<std::pair<Instruction::BinaryOps, bool>>
2848 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
2849                                           const TargetTransformInfo *TTI) {
2850   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2851          "Both blocks must end with a conditional branches.");
2852   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2853          "PredBB must be a predecessor of BB.");
2854 
2855   // We have the potential to fold the conditions together, but if the
2856   // predecessor branch is predictable, we may not want to merge them.
2857   uint64_t PTWeight, PFWeight;
2858   BranchProbability PBITrueProb, Likely;
2859   if (PBI->extractProfMetadata(PTWeight, PFWeight) &&
2860       (PTWeight + PFWeight) != 0) {
2861     PBITrueProb =
2862         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
2863     Likely = TTI->getPredictableBranchThreshold();
2864   }
2865 
2866   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2867     // Speculate the 2nd condition unless the 1st is probably true.
2868     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2869       return {{Instruction::Or, false}};
2870   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2871     // Speculate the 2nd condition unless the 1st is probably false.
2872     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
2873       return {{Instruction::And, false}};
2874   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2875     // Speculate the 2nd condition unless the 1st is probably true.
2876     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2877       return {{Instruction::And, true}};
2878   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2879     // Speculate the 2nd condition unless the 1st is probably false.
2880     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
2881       return {{Instruction::Or, true}};
2882   }
2883   return None;
2884 }
2885 
2886 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
2887                                              DomTreeUpdater *DTU,
2888                                              MemorySSAUpdater *MSSAU,
2889                                              const TargetTransformInfo *TTI) {
2890   BasicBlock *BB = BI->getParent();
2891   BasicBlock *PredBlock = PBI->getParent();
2892 
2893   // Determine if the two branches share a common destination.
2894   Instruction::BinaryOps Opc;
2895   bool InvertPredCond;
2896   std::tie(Opc, InvertPredCond) =
2897       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
2898 
2899   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2900 
2901   IRBuilder<> Builder(PBI);
2902   // The builder is used to create instructions to eliminate the branch in BB.
2903   // If BB's terminator has !annotation metadata, add it to the new
2904   // instructions.
2905   Builder.CollectMetadataToCopy(BB->getTerminator(),
2906                                 {LLVMContext::MD_annotation});
2907 
2908   // If we need to invert the condition in the pred block to match, do so now.
2909   if (InvertPredCond) {
2910     Value *NewCond = PBI->getCondition();
2911     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2912       CmpInst *CI = cast<CmpInst>(NewCond);
2913       CI->setPredicate(CI->getInversePredicate());
2914     } else {
2915       NewCond =
2916           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2917     }
2918 
2919     PBI->setCondition(NewCond);
2920     PBI->swapSuccessors();
2921   }
2922 
2923   BasicBlock *UniqueSucc =
2924       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
2925 
2926   // Before cloning instructions, notify the successor basic block that it
2927   // is about to have a new predecessor. This will update PHI nodes,
2928   // which will allow us to update live-out uses of bonus instructions.
2929   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2930 
2931   // Try to update branch weights.
2932   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2933   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2934                              SuccTrueWeight, SuccFalseWeight)) {
2935     SmallVector<uint64_t, 8> NewWeights;
2936 
2937     if (PBI->getSuccessor(0) == BB) {
2938       // PBI: br i1 %x, BB, FalseDest
2939       // BI:  br i1 %y, UniqueSucc, FalseDest
2940       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2941       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2942       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2943       //               TrueWeight for PBI * FalseWeight for BI.
2944       // We assume that total weights of a BranchInst can fit into 32 bits.
2945       // Therefore, we will not have overflow using 64-bit arithmetic.
2946       NewWeights.push_back(PredFalseWeight *
2947                                (SuccFalseWeight + SuccTrueWeight) +
2948                            PredTrueWeight * SuccFalseWeight);
2949     } else {
2950       // PBI: br i1 %x, TrueDest, BB
2951       // BI:  br i1 %y, TrueDest, UniqueSucc
2952       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2953       //              FalseWeight for PBI * TrueWeight for BI.
2954       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
2955                            PredFalseWeight * SuccTrueWeight);
2956       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2957       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2958     }
2959 
2960     // Halve the weights if any of them cannot fit in an uint32_t
2961     FitWeights(NewWeights);
2962 
2963     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
2964     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2965 
2966     // TODO: If BB is reachable from all paths through PredBlock, then we
2967     // could replace PBI's branch probabilities with BI's.
2968   } else
2969     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2970 
2971   // Now, update the CFG.
2972   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
2973 
2974   if (DTU)
2975     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
2976                        {DominatorTree::Delete, PredBlock, BB}});
2977 
2978   // If BI was a loop latch, it may have had associated loop metadata.
2979   // We need to copy it to the new latch, that is, PBI.
2980   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2981     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2982 
2983   ValueToValueMapTy VMap; // maps original values to cloned values
2984   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
2985 
2986   // Now that the Cond was cloned into the predecessor basic block,
2987   // or/and the two conditions together.
2988   Instruction *NewCond = cast<Instruction>(Builder.CreateBinOp(
2989       Opc, PBI->getCondition(), VMap[BI->getCondition()], "or.cond"));
2990   PBI->setCondition(NewCond);
2991 
2992   // Copy any debug value intrinsics into the end of PredBlock.
2993   for (Instruction &I : *BB) {
2994     if (isa<DbgInfoIntrinsic>(I)) {
2995       Instruction *NewI = I.clone();
2996       RemapInstruction(NewI, VMap,
2997                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2998       NewI->insertBefore(PBI);
2999     }
3000   }
3001 
3002   ++NumFoldBranchToCommonDest;
3003   return true;
3004 }
3005 
3006 /// If this basic block is simple enough, and if a predecessor branches to us
3007 /// and one of our successors, fold the block into the predecessor and use
3008 /// logical operations to pick the right destination.
3009 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3010                                   MemorySSAUpdater *MSSAU,
3011                                   const TargetTransformInfo *TTI,
3012                                   unsigned BonusInstThreshold) {
3013   // If this block ends with an unconditional branch,
3014   // let SpeculativelyExecuteBB() deal with it.
3015   if (!BI->isConditional())
3016     return false;
3017 
3018   BasicBlock *BB = BI->getParent();
3019 
3020   const unsigned PredCount = pred_size(BB);
3021 
3022   bool Changed = false;
3023 
3024   TargetTransformInfo::TargetCostKind CostKind =
3025     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3026                                   : TargetTransformInfo::TCK_SizeAndLatency;
3027 
3028   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3029 
3030   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3031       Cond->getParent() != BB || !Cond->hasOneUse())
3032     return Changed;
3033 
3034   // Only allow this transformation if computing the condition doesn't involve
3035   // too many instructions and these involved instructions can be executed
3036   // unconditionally. We denote all involved instructions except the condition
3037   // as "bonus instructions", and only allow this transformation when the
3038   // number of the bonus instructions we'll need to create when cloning into
3039   // each predecessor does not exceed a certain threshold.
3040   unsigned NumBonusInsts = 0;
3041   for (Instruction &I : *BB) {
3042     // Don't check the branch condition comparison itself.
3043     if (&I == Cond)
3044       continue;
3045     // Ignore dbg intrinsics, and the terminator.
3046     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3047       continue;
3048     // I must be safe to execute unconditionally.
3049     if (!isSafeToSpeculativelyExecute(&I))
3050       return Changed;
3051 
3052     // Account for the cost of duplicating this instruction into each
3053     // predecessor.
3054     NumBonusInsts += PredCount;
3055     // Early exits once we reach the limit.
3056     if (NumBonusInsts > BonusInstThreshold)
3057       return Changed;
3058   }
3059 
3060   // Cond is known to be a compare or binary operator.  Check to make sure that
3061   // neither operand is a potentially-trapping constant expression.
3062   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3063     if (CE->canTrap())
3064       return Changed;
3065   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3066     if (CE->canTrap())
3067       return Changed;
3068 
3069   // Finally, don't infinitely unroll conditional loops.
3070   if (is_contained(successors(BB), BB))
3071     return Changed;
3072 
3073   for (BasicBlock *PredBlock : predecessors(BB)) {
3074     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3075 
3076     // Check that we have two conditional branches.  If there is a PHI node in
3077     // the common successor, verify that the same value flows in from both
3078     // blocks.
3079     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3080       continue;
3081 
3082     // Determine if the two branches share a common destination.
3083     Instruction::BinaryOps Opc;
3084     bool InvertPredCond;
3085     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3086       std::tie(Opc, InvertPredCond) = *Recipe;
3087     else
3088       continue;
3089 
3090     // Check the cost of inserting the necessary logic before performing the
3091     // transformation.
3092     if (TTI) {
3093       Type *Ty = BI->getCondition()->getType();
3094       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3095       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3096           !isa<CmpInst>(PBI->getCondition())))
3097         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3098 
3099       if (Cost > BranchFoldThreshold)
3100         continue;
3101     }
3102 
3103     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3104   }
3105   return Changed;
3106 }
3107 
3108 // If there is only one store in BB1 and BB2, return it, otherwise return
3109 // nullptr.
3110 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3111   StoreInst *S = nullptr;
3112   for (auto *BB : {BB1, BB2}) {
3113     if (!BB)
3114       continue;
3115     for (auto &I : *BB)
3116       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3117         if (S)
3118           // Multiple stores seen.
3119           return nullptr;
3120         else
3121           S = SI;
3122       }
3123   }
3124   return S;
3125 }
3126 
3127 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3128                                               Value *AlternativeV = nullptr) {
3129   // PHI is going to be a PHI node that allows the value V that is defined in
3130   // BB to be referenced in BB's only successor.
3131   //
3132   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3133   // doesn't matter to us what the other operand is (it'll never get used). We
3134   // could just create a new PHI with an undef incoming value, but that could
3135   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3136   // other PHI. So here we directly look for some PHI in BB's successor with V
3137   // as an incoming operand. If we find one, we use it, else we create a new
3138   // one.
3139   //
3140   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3141   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3142   // where OtherBB is the single other predecessor of BB's only successor.
3143   PHINode *PHI = nullptr;
3144   BasicBlock *Succ = BB->getSingleSuccessor();
3145 
3146   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3147     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3148       PHI = cast<PHINode>(I);
3149       if (!AlternativeV)
3150         break;
3151 
3152       assert(Succ->hasNPredecessors(2));
3153       auto PredI = pred_begin(Succ);
3154       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3155       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3156         break;
3157       PHI = nullptr;
3158     }
3159   if (PHI)
3160     return PHI;
3161 
3162   // If V is not an instruction defined in BB, just return it.
3163   if (!AlternativeV &&
3164       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3165     return V;
3166 
3167   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3168   PHI->addIncoming(V, BB);
3169   for (BasicBlock *PredBB : predecessors(Succ))
3170     if (PredBB != BB)
3171       PHI->addIncoming(
3172           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3173   return PHI;
3174 }
3175 
3176 static bool mergeConditionalStoreToAddress(
3177     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3178     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3179     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3180   // For every pointer, there must be exactly two stores, one coming from
3181   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3182   // store (to any address) in PTB,PFB or QTB,QFB.
3183   // FIXME: We could relax this restriction with a bit more work and performance
3184   // testing.
3185   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3186   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3187   if (!PStore || !QStore)
3188     return false;
3189 
3190   // Now check the stores are compatible.
3191   if (!QStore->isUnordered() || !PStore->isUnordered())
3192     return false;
3193 
3194   // Check that sinking the store won't cause program behavior changes. Sinking
3195   // the store out of the Q blocks won't change any behavior as we're sinking
3196   // from a block to its unconditional successor. But we're moving a store from
3197   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3198   // So we need to check that there are no aliasing loads or stores in
3199   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3200   // operations between PStore and the end of its parent block.
3201   //
3202   // The ideal way to do this is to query AliasAnalysis, but we don't
3203   // preserve AA currently so that is dangerous. Be super safe and just
3204   // check there are no other memory operations at all.
3205   for (auto &I : *QFB->getSinglePredecessor())
3206     if (I.mayReadOrWriteMemory())
3207       return false;
3208   for (auto &I : *QFB)
3209     if (&I != QStore && I.mayReadOrWriteMemory())
3210       return false;
3211   if (QTB)
3212     for (auto &I : *QTB)
3213       if (&I != QStore && I.mayReadOrWriteMemory())
3214         return false;
3215   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3216        I != E; ++I)
3217     if (&*I != PStore && I->mayReadOrWriteMemory())
3218       return false;
3219 
3220   // If we're not in aggressive mode, we only optimize if we have some
3221   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3222   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3223     if (!BB)
3224       return true;
3225     // Heuristic: if the block can be if-converted/phi-folded and the
3226     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3227     // thread this store.
3228     InstructionCost Cost = 0;
3229     InstructionCost Budget =
3230         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3231     for (auto &I : BB->instructionsWithoutDebug()) {
3232       // Consider terminator instruction to be free.
3233       if (I.isTerminator())
3234         continue;
3235       // If this is one the stores that we want to speculate out of this BB,
3236       // then don't count it's cost, consider it to be free.
3237       if (auto *S = dyn_cast<StoreInst>(&I))
3238         if (llvm::find(FreeStores, S))
3239           continue;
3240       // Else, we have a white-list of instructions that we are ak speculating.
3241       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3242         return false; // Not in white-list - not worthwhile folding.
3243       // And finally, if this is a non-free instruction that we are okay
3244       // speculating, ensure that we consider the speculation budget.
3245       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3246       if (Cost > Budget)
3247         return false; // Eagerly refuse to fold as soon as we're out of budget.
3248     }
3249     assert(Cost <= Budget &&
3250            "When we run out of budget we will eagerly return from within the "
3251            "per-instruction loop.");
3252     return true;
3253   };
3254 
3255   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3256   if (!MergeCondStoresAggressively &&
3257       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3258        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3259     return false;
3260 
3261   // If PostBB has more than two predecessors, we need to split it so we can
3262   // sink the store.
3263   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3264     // We know that QFB's only successor is PostBB. And QFB has a single
3265     // predecessor. If QTB exists, then its only successor is also PostBB.
3266     // If QTB does not exist, then QFB's only predecessor has a conditional
3267     // branch to QFB and PostBB.
3268     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3269     BasicBlock *NewBB =
3270         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3271     if (!NewBB)
3272       return false;
3273     PostBB = NewBB;
3274   }
3275 
3276   // OK, we're going to sink the stores to PostBB. The store has to be
3277   // conditional though, so first create the predicate.
3278   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3279                      ->getCondition();
3280   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3281                      ->getCondition();
3282 
3283   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3284                                                 PStore->getParent());
3285   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3286                                                 QStore->getParent(), PPHI);
3287 
3288   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3289 
3290   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3291   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3292 
3293   if (InvertPCond)
3294     PPred = QB.CreateNot(PPred);
3295   if (InvertQCond)
3296     QPred = QB.CreateNot(QPred);
3297   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3298 
3299   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3300                                       /*Unreachable=*/false,
3301                                       /*BranchWeights=*/nullptr, DTU);
3302   QB.SetInsertPoint(T);
3303   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3304   AAMDNodes AAMD;
3305   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3306   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3307   SI->setAAMetadata(AAMD);
3308   // Choose the minimum alignment. If we could prove both stores execute, we
3309   // could use biggest one.  In this case, though, we only know that one of the
3310   // stores executes.  And we don't know it's safe to take the alignment from a
3311   // store that doesn't execute.
3312   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3313 
3314   QStore->eraseFromParent();
3315   PStore->eraseFromParent();
3316 
3317   return true;
3318 }
3319 
3320 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3321                                    DomTreeUpdater *DTU, const DataLayout &DL,
3322                                    const TargetTransformInfo &TTI) {
3323   // The intention here is to find diamonds or triangles (see below) where each
3324   // conditional block contains a store to the same address. Both of these
3325   // stores are conditional, so they can't be unconditionally sunk. But it may
3326   // be profitable to speculatively sink the stores into one merged store at the
3327   // end, and predicate the merged store on the union of the two conditions of
3328   // PBI and QBI.
3329   //
3330   // This can reduce the number of stores executed if both of the conditions are
3331   // true, and can allow the blocks to become small enough to be if-converted.
3332   // This optimization will also chain, so that ladders of test-and-set
3333   // sequences can be if-converted away.
3334   //
3335   // We only deal with simple diamonds or triangles:
3336   //
3337   //     PBI       or      PBI        or a combination of the two
3338   //    /   \               | \
3339   //   PTB  PFB             |  PFB
3340   //    \   /               | /
3341   //     QBI                QBI
3342   //    /  \                | \
3343   //   QTB  QFB             |  QFB
3344   //    \  /                | /
3345   //    PostBB            PostBB
3346   //
3347   // We model triangles as a type of diamond with a nullptr "true" block.
3348   // Triangles are canonicalized so that the fallthrough edge is represented by
3349   // a true condition, as in the diagram above.
3350   BasicBlock *PTB = PBI->getSuccessor(0);
3351   BasicBlock *PFB = PBI->getSuccessor(1);
3352   BasicBlock *QTB = QBI->getSuccessor(0);
3353   BasicBlock *QFB = QBI->getSuccessor(1);
3354   BasicBlock *PostBB = QFB->getSingleSuccessor();
3355 
3356   // Make sure we have a good guess for PostBB. If QTB's only successor is
3357   // QFB, then QFB is a better PostBB.
3358   if (QTB->getSingleSuccessor() == QFB)
3359     PostBB = QFB;
3360 
3361   // If we couldn't find a good PostBB, stop.
3362   if (!PostBB)
3363     return false;
3364 
3365   bool InvertPCond = false, InvertQCond = false;
3366   // Canonicalize fallthroughs to the true branches.
3367   if (PFB == QBI->getParent()) {
3368     std::swap(PFB, PTB);
3369     InvertPCond = true;
3370   }
3371   if (QFB == PostBB) {
3372     std::swap(QFB, QTB);
3373     InvertQCond = true;
3374   }
3375 
3376   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3377   // and QFB may not. Model fallthroughs as a nullptr block.
3378   if (PTB == QBI->getParent())
3379     PTB = nullptr;
3380   if (QTB == PostBB)
3381     QTB = nullptr;
3382 
3383   // Legality bailouts. We must have at least the non-fallthrough blocks and
3384   // the post-dominating block, and the non-fallthroughs must only have one
3385   // predecessor.
3386   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3387     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3388   };
3389   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3390       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3391     return false;
3392   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3393       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3394     return false;
3395   if (!QBI->getParent()->hasNUses(2))
3396     return false;
3397 
3398   // OK, this is a sequence of two diamonds or triangles.
3399   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3400   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3401   for (auto *BB : {PTB, PFB}) {
3402     if (!BB)
3403       continue;
3404     for (auto &I : *BB)
3405       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3406         PStoreAddresses.insert(SI->getPointerOperand());
3407   }
3408   for (auto *BB : {QTB, QFB}) {
3409     if (!BB)
3410       continue;
3411     for (auto &I : *BB)
3412       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3413         QStoreAddresses.insert(SI->getPointerOperand());
3414   }
3415 
3416   set_intersect(PStoreAddresses, QStoreAddresses);
3417   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3418   // clear what it contains.
3419   auto &CommonAddresses = PStoreAddresses;
3420 
3421   bool Changed = false;
3422   for (auto *Address : CommonAddresses)
3423     Changed |=
3424         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3425                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3426   return Changed;
3427 }
3428 
3429 /// If the previous block ended with a widenable branch, determine if reusing
3430 /// the target block is profitable and legal.  This will have the effect of
3431 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3432 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3433                                            DomTreeUpdater *DTU) {
3434   // TODO: This can be generalized in two important ways:
3435   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3436   //    values from the PBI edge.
3437   // 2) We can sink side effecting instructions into BI's fallthrough
3438   //    successor provided they doesn't contribute to computation of
3439   //    BI's condition.
3440   Value *CondWB, *WC;
3441   BasicBlock *IfTrueBB, *IfFalseBB;
3442   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3443       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3444     return false;
3445   if (!IfFalseBB->phis().empty())
3446     return false; // TODO
3447   // Use lambda to lazily compute expensive condition after cheap ones.
3448   auto NoSideEffects = [](BasicBlock &BB) {
3449     return !llvm::any_of(BB, [](const Instruction &I) {
3450         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3451       });
3452   };
3453   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3454       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3455       NoSideEffects(*BI->getParent())) {
3456     auto *OldSuccessor = BI->getSuccessor(1);
3457     OldSuccessor->removePredecessor(BI->getParent());
3458     BI->setSuccessor(1, IfFalseBB);
3459     if (DTU)
3460       DTU->applyUpdates(
3461           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3462            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3463     return true;
3464   }
3465   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3466       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3467       NoSideEffects(*BI->getParent())) {
3468     auto *OldSuccessor = BI->getSuccessor(0);
3469     OldSuccessor->removePredecessor(BI->getParent());
3470     BI->setSuccessor(0, IfFalseBB);
3471     if (DTU)
3472       DTU->applyUpdates(
3473           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3474            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3475     return true;
3476   }
3477   return false;
3478 }
3479 
3480 /// If we have a conditional branch as a predecessor of another block,
3481 /// this function tries to simplify it.  We know
3482 /// that PBI and BI are both conditional branches, and BI is in one of the
3483 /// successor blocks of PBI - PBI branches to BI.
3484 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3485                                            DomTreeUpdater *DTU,
3486                                            const DataLayout &DL,
3487                                            const TargetTransformInfo &TTI) {
3488   assert(PBI->isConditional() && BI->isConditional());
3489   BasicBlock *BB = BI->getParent();
3490 
3491   // If this block ends with a branch instruction, and if there is a
3492   // predecessor that ends on a branch of the same condition, make
3493   // this conditional branch redundant.
3494   if (PBI->getCondition() == BI->getCondition() &&
3495       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3496     // Okay, the outcome of this conditional branch is statically
3497     // knowable.  If this block had a single pred, handle specially.
3498     if (BB->getSinglePredecessor()) {
3499       // Turn this into a branch on constant.
3500       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3501       BI->setCondition(
3502           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3503       return true; // Nuke the branch on constant.
3504     }
3505 
3506     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3507     // in the constant and simplify the block result.  Subsequent passes of
3508     // simplifycfg will thread the block.
3509     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3510       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3511       PHINode *NewPN = PHINode::Create(
3512           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3513           BI->getCondition()->getName() + ".pr", &BB->front());
3514       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3515       // predecessor, compute the PHI'd conditional value for all of the preds.
3516       // Any predecessor where the condition is not computable we keep symbolic.
3517       for (pred_iterator PI = PB; PI != PE; ++PI) {
3518         BasicBlock *P = *PI;
3519         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3520             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3521             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3522           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3523           NewPN->addIncoming(
3524               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3525               P);
3526         } else {
3527           NewPN->addIncoming(BI->getCondition(), P);
3528         }
3529       }
3530 
3531       BI->setCondition(NewPN);
3532       return true;
3533     }
3534   }
3535 
3536   // If the previous block ended with a widenable branch, determine if reusing
3537   // the target block is profitable and legal.  This will have the effect of
3538   // "widening" PBI, but doesn't require us to reason about hosting safety.
3539   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3540     return true;
3541 
3542   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3543     if (CE->canTrap())
3544       return false;
3545 
3546   // If both branches are conditional and both contain stores to the same
3547   // address, remove the stores from the conditionals and create a conditional
3548   // merged store at the end.
3549   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3550     return true;
3551 
3552   // If this is a conditional branch in an empty block, and if any
3553   // predecessors are a conditional branch to one of our destinations,
3554   // fold the conditions into logical ops and one cond br.
3555 
3556   // Ignore dbg intrinsics.
3557   if (&*BB->instructionsWithoutDebug().begin() != BI)
3558     return false;
3559 
3560   int PBIOp, BIOp;
3561   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3562     PBIOp = 0;
3563     BIOp = 0;
3564   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3565     PBIOp = 0;
3566     BIOp = 1;
3567   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3568     PBIOp = 1;
3569     BIOp = 0;
3570   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3571     PBIOp = 1;
3572     BIOp = 1;
3573   } else {
3574     return false;
3575   }
3576 
3577   // Check to make sure that the other destination of this branch
3578   // isn't BB itself.  If so, this is an infinite loop that will
3579   // keep getting unwound.
3580   if (PBI->getSuccessor(PBIOp) == BB)
3581     return false;
3582 
3583   // Do not perform this transformation if it would require
3584   // insertion of a large number of select instructions. For targets
3585   // without predication/cmovs, this is a big pessimization.
3586 
3587   // Also do not perform this transformation if any phi node in the common
3588   // destination block can trap when reached by BB or PBB (PR17073). In that
3589   // case, it would be unsafe to hoist the operation into a select instruction.
3590 
3591   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3592   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3593   unsigned NumPhis = 0;
3594   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3595        ++II, ++NumPhis) {
3596     if (NumPhis > 2) // Disable this xform.
3597       return false;
3598 
3599     PHINode *PN = cast<PHINode>(II);
3600     Value *BIV = PN->getIncomingValueForBlock(BB);
3601     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3602       if (CE->canTrap())
3603         return false;
3604 
3605     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3606     Value *PBIV = PN->getIncomingValue(PBBIdx);
3607     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3608       if (CE->canTrap())
3609         return false;
3610   }
3611 
3612   // Finally, if everything is ok, fold the branches to logical ops.
3613   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3614 
3615   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3616                     << "AND: " << *BI->getParent());
3617 
3618   SmallVector<DominatorTree::UpdateType, 5> Updates;
3619 
3620   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3621   // branch in it, where one edge (OtherDest) goes back to itself but the other
3622   // exits.  We don't *know* that the program avoids the infinite loop
3623   // (even though that seems likely).  If we do this xform naively, we'll end up
3624   // recursively unpeeling the loop.  Since we know that (after the xform is
3625   // done) that the block *is* infinite if reached, we just make it an obviously
3626   // infinite loop with no cond branch.
3627   if (OtherDest == BB) {
3628     // Insert it at the end of the function, because it's either code,
3629     // or it won't matter if it's hot. :)
3630     BasicBlock *InfLoopBlock =
3631         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3632     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3633     Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3634     OtherDest = InfLoopBlock;
3635   }
3636 
3637   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3638 
3639   // BI may have other predecessors.  Because of this, we leave
3640   // it alone, but modify PBI.
3641 
3642   // Make sure we get to CommonDest on True&True directions.
3643   Value *PBICond = PBI->getCondition();
3644   IRBuilder<NoFolder> Builder(PBI);
3645   if (PBIOp)
3646     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3647 
3648   Value *BICond = BI->getCondition();
3649   if (BIOp)
3650     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3651 
3652   // Merge the conditions.
3653   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3654 
3655   // Modify PBI to branch on the new condition to the new dests.
3656   PBI->setCondition(Cond);
3657   PBI->setSuccessor(0, CommonDest);
3658   PBI->setSuccessor(1, OtherDest);
3659 
3660   Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3661   Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3662 
3663   if (DTU)
3664     DTU->applyUpdates(Updates);
3665 
3666   // Update branch weight for PBI.
3667   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3668   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3669   bool HasWeights =
3670       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3671                              SuccTrueWeight, SuccFalseWeight);
3672   if (HasWeights) {
3673     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3674     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3675     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3676     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3677     // The weight to CommonDest should be PredCommon * SuccTotal +
3678     //                                    PredOther * SuccCommon.
3679     // The weight to OtherDest should be PredOther * SuccOther.
3680     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3681                                   PredOther * SuccCommon,
3682                               PredOther * SuccOther};
3683     // Halve the weights if any of them cannot fit in an uint32_t
3684     FitWeights(NewWeights);
3685 
3686     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3687   }
3688 
3689   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3690   // block that are identical to the entries for BI's block.
3691   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3692 
3693   // We know that the CommonDest already had an edge from PBI to
3694   // it.  If it has PHIs though, the PHIs may have different
3695   // entries for BB and PBI's BB.  If so, insert a select to make
3696   // them agree.
3697   for (PHINode &PN : CommonDest->phis()) {
3698     Value *BIV = PN.getIncomingValueForBlock(BB);
3699     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3700     Value *PBIV = PN.getIncomingValue(PBBIdx);
3701     if (BIV != PBIV) {
3702       // Insert a select in PBI to pick the right value.
3703       SelectInst *NV = cast<SelectInst>(
3704           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3705       PN.setIncomingValue(PBBIdx, NV);
3706       // Although the select has the same condition as PBI, the original branch
3707       // weights for PBI do not apply to the new select because the select's
3708       // 'logical' edges are incoming edges of the phi that is eliminated, not
3709       // the outgoing edges of PBI.
3710       if (HasWeights) {
3711         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3712         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3713         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3714         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3715         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3716         // The weight to PredOtherDest should be PredOther * SuccCommon.
3717         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3718                                   PredOther * SuccCommon};
3719 
3720         FitWeights(NewWeights);
3721 
3722         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3723       }
3724     }
3725   }
3726 
3727   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3728   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3729 
3730   // This basic block is probably dead.  We know it has at least
3731   // one fewer predecessor.
3732   return true;
3733 }
3734 
3735 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3736 // true or to FalseBB if Cond is false.
3737 // Takes care of updating the successors and removing the old terminator.
3738 // Also makes sure not to introduce new successors by assuming that edges to
3739 // non-successor TrueBBs and FalseBBs aren't reachable.
3740 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3741                                                 Value *Cond, BasicBlock *TrueBB,
3742                                                 BasicBlock *FalseBB,
3743                                                 uint32_t TrueWeight,
3744                                                 uint32_t FalseWeight) {
3745   auto *BB = OldTerm->getParent();
3746   // Remove any superfluous successor edges from the CFG.
3747   // First, figure out which successors to preserve.
3748   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3749   // successor.
3750   BasicBlock *KeepEdge1 = TrueBB;
3751   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3752 
3753   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
3754 
3755   // Then remove the rest.
3756   for (BasicBlock *Succ : successors(OldTerm)) {
3757     // Make sure only to keep exactly one copy of each edge.
3758     if (Succ == KeepEdge1)
3759       KeepEdge1 = nullptr;
3760     else if (Succ == KeepEdge2)
3761       KeepEdge2 = nullptr;
3762     else {
3763       Succ->removePredecessor(BB,
3764                               /*KeepOneInputPHIs=*/true);
3765 
3766       if (Succ != TrueBB && Succ != FalseBB)
3767         RemovedSuccessors.insert(Succ);
3768     }
3769   }
3770 
3771   IRBuilder<> Builder(OldTerm);
3772   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3773 
3774   // Insert an appropriate new terminator.
3775   if (!KeepEdge1 && !KeepEdge2) {
3776     if (TrueBB == FalseBB) {
3777       // We were only looking for one successor, and it was present.
3778       // Create an unconditional branch to it.
3779       Builder.CreateBr(TrueBB);
3780     } else {
3781       // We found both of the successors we were looking for.
3782       // Create a conditional branch sharing the condition of the select.
3783       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3784       if (TrueWeight != FalseWeight)
3785         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3786     }
3787   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3788     // Neither of the selected blocks were successors, so this
3789     // terminator must be unreachable.
3790     new UnreachableInst(OldTerm->getContext(), OldTerm);
3791   } else {
3792     // One of the selected values was a successor, but the other wasn't.
3793     // Insert an unconditional branch to the one that was found;
3794     // the edge to the one that wasn't must be unreachable.
3795     if (!KeepEdge1) {
3796       // Only TrueBB was found.
3797       Builder.CreateBr(TrueBB);
3798     } else {
3799       // Only FalseBB was found.
3800       Builder.CreateBr(FalseBB);
3801     }
3802   }
3803 
3804   EraseTerminatorAndDCECond(OldTerm);
3805 
3806   if (DTU) {
3807     SmallVector<DominatorTree::UpdateType, 2> Updates;
3808     Updates.reserve(RemovedSuccessors.size());
3809     for (auto *RemovedSuccessor : RemovedSuccessors)
3810       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3811     DTU->applyUpdates(Updates);
3812   }
3813 
3814   return true;
3815 }
3816 
3817 // Replaces
3818 //   (switch (select cond, X, Y)) on constant X, Y
3819 // with a branch - conditional if X and Y lead to distinct BBs,
3820 // unconditional otherwise.
3821 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3822                                             SelectInst *Select) {
3823   // Check for constant integer values in the select.
3824   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3825   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3826   if (!TrueVal || !FalseVal)
3827     return false;
3828 
3829   // Find the relevant condition and destinations.
3830   Value *Condition = Select->getCondition();
3831   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3832   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3833 
3834   // Get weight for TrueBB and FalseBB.
3835   uint32_t TrueWeight = 0, FalseWeight = 0;
3836   SmallVector<uint64_t, 8> Weights;
3837   bool HasWeights = HasBranchWeights(SI);
3838   if (HasWeights) {
3839     GetBranchWeights(SI, Weights);
3840     if (Weights.size() == 1 + SI->getNumCases()) {
3841       TrueWeight =
3842           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3843       FalseWeight =
3844           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3845     }
3846   }
3847 
3848   // Perform the actual simplification.
3849   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3850                                     FalseWeight);
3851 }
3852 
3853 // Replaces
3854 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3855 //                             blockaddress(@fn, BlockB)))
3856 // with
3857 //   (br cond, BlockA, BlockB).
3858 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3859                                                 SelectInst *SI) {
3860   // Check that both operands of the select are block addresses.
3861   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3862   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3863   if (!TBA || !FBA)
3864     return false;
3865 
3866   // Extract the actual blocks.
3867   BasicBlock *TrueBB = TBA->getBasicBlock();
3868   BasicBlock *FalseBB = FBA->getBasicBlock();
3869 
3870   // Perform the actual simplification.
3871   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3872                                     0);
3873 }
3874 
3875 /// This is called when we find an icmp instruction
3876 /// (a seteq/setne with a constant) as the only instruction in a
3877 /// block that ends with an uncond branch.  We are looking for a very specific
3878 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3879 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3880 /// default value goes to an uncond block with a seteq in it, we get something
3881 /// like:
3882 ///
3883 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3884 /// DEFAULT:
3885 ///   %tmp = icmp eq i8 %A, 92
3886 ///   br label %end
3887 /// end:
3888 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3889 ///
3890 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3891 /// the PHI, merging the third icmp into the switch.
3892 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3893     ICmpInst *ICI, IRBuilder<> &Builder) {
3894   BasicBlock *BB = ICI->getParent();
3895 
3896   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3897   // complex.
3898   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3899     return false;
3900 
3901   Value *V = ICI->getOperand(0);
3902   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3903 
3904   // The pattern we're looking for is where our only predecessor is a switch on
3905   // 'V' and this block is the default case for the switch.  In this case we can
3906   // fold the compared value into the switch to simplify things.
3907   BasicBlock *Pred = BB->getSinglePredecessor();
3908   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3909     return false;
3910 
3911   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3912   if (SI->getCondition() != V)
3913     return false;
3914 
3915   // If BB is reachable on a non-default case, then we simply know the value of
3916   // V in this block.  Substitute it and constant fold the icmp instruction
3917   // away.
3918   if (SI->getDefaultDest() != BB) {
3919     ConstantInt *VVal = SI->findCaseDest(BB);
3920     assert(VVal && "Should have a unique destination value");
3921     ICI->setOperand(0, VVal);
3922 
3923     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3924       ICI->replaceAllUsesWith(V);
3925       ICI->eraseFromParent();
3926     }
3927     // BB is now empty, so it is likely to simplify away.
3928     return requestResimplify();
3929   }
3930 
3931   // Ok, the block is reachable from the default dest.  If the constant we're
3932   // comparing exists in one of the other edges, then we can constant fold ICI
3933   // and zap it.
3934   if (SI->findCaseValue(Cst) != SI->case_default()) {
3935     Value *V;
3936     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3937       V = ConstantInt::getFalse(BB->getContext());
3938     else
3939       V = ConstantInt::getTrue(BB->getContext());
3940 
3941     ICI->replaceAllUsesWith(V);
3942     ICI->eraseFromParent();
3943     // BB is now empty, so it is likely to simplify away.
3944     return requestResimplify();
3945   }
3946 
3947   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3948   // the block.
3949   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3950   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3951   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3952       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3953     return false;
3954 
3955   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3956   // true in the PHI.
3957   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3958   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3959 
3960   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3961     std::swap(DefaultCst, NewCst);
3962 
3963   // Replace ICI (which is used by the PHI for the default value) with true or
3964   // false depending on if it is EQ or NE.
3965   ICI->replaceAllUsesWith(DefaultCst);
3966   ICI->eraseFromParent();
3967 
3968   SmallVector<DominatorTree::UpdateType, 2> Updates;
3969 
3970   // Okay, the switch goes to this block on a default value.  Add an edge from
3971   // the switch to the merge point on the compared value.
3972   BasicBlock *NewBB =
3973       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3974   {
3975     SwitchInstProfUpdateWrapper SIW(*SI);
3976     auto W0 = SIW.getSuccessorWeight(0);
3977     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3978     if (W0) {
3979       NewW = ((uint64_t(*W0) + 1) >> 1);
3980       SIW.setSuccessorWeight(0, *NewW);
3981     }
3982     SIW.addCase(Cst, NewBB, NewW);
3983     Updates.push_back({DominatorTree::Insert, Pred, NewBB});
3984   }
3985 
3986   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3987   Builder.SetInsertPoint(NewBB);
3988   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3989   Builder.CreateBr(SuccBlock);
3990   Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
3991   PHIUse->addIncoming(NewCst, NewBB);
3992   if (DTU)
3993     DTU->applyUpdates(Updates);
3994   return true;
3995 }
3996 
3997 /// The specified branch is a conditional branch.
3998 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3999 /// fold it into a switch instruction if so.
4000 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4001                                                IRBuilder<> &Builder,
4002                                                const DataLayout &DL) {
4003   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4004   if (!Cond)
4005     return false;
4006 
4007   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4008   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4009   // 'setne's and'ed together, collect them.
4010 
4011   // Try to gather values from a chain of and/or to be turned into a switch
4012   ConstantComparesGatherer ConstantCompare(Cond, DL);
4013   // Unpack the result
4014   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4015   Value *CompVal = ConstantCompare.CompValue;
4016   unsigned UsedICmps = ConstantCompare.UsedICmps;
4017   Value *ExtraCase = ConstantCompare.Extra;
4018 
4019   // If we didn't have a multiply compared value, fail.
4020   if (!CompVal)
4021     return false;
4022 
4023   // Avoid turning single icmps into a switch.
4024   if (UsedICmps <= 1)
4025     return false;
4026 
4027   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4028 
4029   // There might be duplicate constants in the list, which the switch
4030   // instruction can't handle, remove them now.
4031   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4032   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4033 
4034   // If Extra was used, we require at least two switch values to do the
4035   // transformation.  A switch with one value is just a conditional branch.
4036   if (ExtraCase && Values.size() < 2)
4037     return false;
4038 
4039   // TODO: Preserve branch weight metadata, similarly to how
4040   // FoldValueComparisonIntoPredecessors preserves it.
4041 
4042   // Figure out which block is which destination.
4043   BasicBlock *DefaultBB = BI->getSuccessor(1);
4044   BasicBlock *EdgeBB = BI->getSuccessor(0);
4045   if (!TrueWhenEqual)
4046     std::swap(DefaultBB, EdgeBB);
4047 
4048   BasicBlock *BB = BI->getParent();
4049 
4050   // MSAN does not like undefs as branch condition which can be introduced
4051   // with "explicit branch".
4052   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4053     return false;
4054 
4055   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4056                     << " cases into SWITCH.  BB is:\n"
4057                     << *BB);
4058 
4059   SmallVector<DominatorTree::UpdateType, 2> Updates;
4060 
4061   // If there are any extra values that couldn't be folded into the switch
4062   // then we evaluate them with an explicit branch first. Split the block
4063   // right before the condbr to handle it.
4064   if (ExtraCase) {
4065     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4066                                    /*MSSAU=*/nullptr, "switch.early.test");
4067 
4068     // Remove the uncond branch added to the old block.
4069     Instruction *OldTI = BB->getTerminator();
4070     Builder.SetInsertPoint(OldTI);
4071 
4072     if (TrueWhenEqual)
4073       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4074     else
4075       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4076 
4077     OldTI->eraseFromParent();
4078 
4079     Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4080 
4081     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4082     // for the edge we just added.
4083     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4084 
4085     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4086                       << "\nEXTRABB = " << *BB);
4087     BB = NewBB;
4088   }
4089 
4090   Builder.SetInsertPoint(BI);
4091   // Convert pointer to int before we switch.
4092   if (CompVal->getType()->isPointerTy()) {
4093     CompVal = Builder.CreatePtrToInt(
4094         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4095   }
4096 
4097   // Create the new switch instruction now.
4098   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4099 
4100   // Add all of the 'cases' to the switch instruction.
4101   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4102     New->addCase(Values[i], EdgeBB);
4103 
4104   // We added edges from PI to the EdgeBB.  As such, if there were any
4105   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4106   // the number of edges added.
4107   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4108     PHINode *PN = cast<PHINode>(BBI);
4109     Value *InVal = PN->getIncomingValueForBlock(BB);
4110     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4111       PN->addIncoming(InVal, BB);
4112   }
4113 
4114   // Erase the old branch instruction.
4115   EraseTerminatorAndDCECond(BI);
4116   if (DTU)
4117     DTU->applyUpdates(Updates);
4118 
4119   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4120   return true;
4121 }
4122 
4123 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4124   if (isa<PHINode>(RI->getValue()))
4125     return simplifyCommonResume(RI);
4126   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4127            RI->getValue() == RI->getParent()->getFirstNonPHI())
4128     // The resume must unwind the exception that caused control to branch here.
4129     return simplifySingleResume(RI);
4130 
4131   return false;
4132 }
4133 
4134 // Check if cleanup block is empty
4135 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4136   for (Instruction &I : R) {
4137     auto *II = dyn_cast<IntrinsicInst>(&I);
4138     if (!II)
4139       return false;
4140 
4141     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4142     switch (IntrinsicID) {
4143     case Intrinsic::dbg_declare:
4144     case Intrinsic::dbg_value:
4145     case Intrinsic::dbg_label:
4146     case Intrinsic::lifetime_end:
4147       break;
4148     default:
4149       return false;
4150     }
4151   }
4152   return true;
4153 }
4154 
4155 // Simplify resume that is shared by several landing pads (phi of landing pad).
4156 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4157   BasicBlock *BB = RI->getParent();
4158 
4159   // Check that there are no other instructions except for debug and lifetime
4160   // intrinsics between the phi's and resume instruction.
4161   if (!isCleanupBlockEmpty(
4162           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4163     return false;
4164 
4165   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4166   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4167 
4168   // Check incoming blocks to see if any of them are trivial.
4169   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4170        Idx++) {
4171     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4172     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4173 
4174     // If the block has other successors, we can not delete it because
4175     // it has other dependents.
4176     if (IncomingBB->getUniqueSuccessor() != BB)
4177       continue;
4178 
4179     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4180     // Not the landing pad that caused the control to branch here.
4181     if (IncomingValue != LandingPad)
4182       continue;
4183 
4184     if (isCleanupBlockEmpty(
4185             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4186       TrivialUnwindBlocks.insert(IncomingBB);
4187   }
4188 
4189   // If no trivial unwind blocks, don't do any simplifications.
4190   if (TrivialUnwindBlocks.empty())
4191     return false;
4192 
4193   // Turn all invokes that unwind here into calls.
4194   for (auto *TrivialBB : TrivialUnwindBlocks) {
4195     // Blocks that will be simplified should be removed from the phi node.
4196     // Note there could be multiple edges to the resume block, and we need
4197     // to remove them all.
4198     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4199       BB->removePredecessor(TrivialBB, true);
4200 
4201     for (BasicBlock *Pred :
4202          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4203       removeUnwindEdge(Pred, DTU);
4204       ++NumInvokes;
4205     }
4206 
4207     // In each SimplifyCFG run, only the current processed block can be erased.
4208     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4209     // of erasing TrivialBB, we only remove the branch to the common resume
4210     // block so that we can later erase the resume block since it has no
4211     // predecessors.
4212     TrivialBB->getTerminator()->eraseFromParent();
4213     new UnreachableInst(RI->getContext(), TrivialBB);
4214     if (DTU)
4215       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4216   }
4217 
4218   // Delete the resume block if all its predecessors have been removed.
4219   if (pred_empty(BB)) {
4220     if (DTU)
4221       DTU->deleteBB(BB);
4222     else
4223       BB->eraseFromParent();
4224   }
4225 
4226   return !TrivialUnwindBlocks.empty();
4227 }
4228 
4229 // Simplify resume that is only used by a single (non-phi) landing pad.
4230 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4231   BasicBlock *BB = RI->getParent();
4232   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4233   assert(RI->getValue() == LPInst &&
4234          "Resume must unwind the exception that caused control to here");
4235 
4236   // Check that there are no other instructions except for debug intrinsics.
4237   if (!isCleanupBlockEmpty(
4238           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4239     return false;
4240 
4241   // Turn all invokes that unwind here into calls and delete the basic block.
4242   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4243     removeUnwindEdge(Pred, DTU);
4244     ++NumInvokes;
4245   }
4246 
4247   // The landingpad is now unreachable.  Zap it.
4248   if (DTU)
4249     DTU->deleteBB(BB);
4250   else
4251     BB->eraseFromParent();
4252   return true;
4253 }
4254 
4255 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4256   // If this is a trivial cleanup pad that executes no instructions, it can be
4257   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4258   // that is an EH pad will be updated to continue to the caller and any
4259   // predecessor that terminates with an invoke instruction will have its invoke
4260   // instruction converted to a call instruction.  If the cleanup pad being
4261   // simplified does not continue to the caller, each predecessor will be
4262   // updated to continue to the unwind destination of the cleanup pad being
4263   // simplified.
4264   BasicBlock *BB = RI->getParent();
4265   CleanupPadInst *CPInst = RI->getCleanupPad();
4266   if (CPInst->getParent() != BB)
4267     // This isn't an empty cleanup.
4268     return false;
4269 
4270   // We cannot kill the pad if it has multiple uses.  This typically arises
4271   // from unreachable basic blocks.
4272   if (!CPInst->hasOneUse())
4273     return false;
4274 
4275   // Check that there are no other instructions except for benign intrinsics.
4276   if (!isCleanupBlockEmpty(
4277           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4278     return false;
4279 
4280   // If the cleanup return we are simplifying unwinds to the caller, this will
4281   // set UnwindDest to nullptr.
4282   BasicBlock *UnwindDest = RI->getUnwindDest();
4283   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4284 
4285   // We're about to remove BB from the control flow.  Before we do, sink any
4286   // PHINodes into the unwind destination.  Doing this before changing the
4287   // control flow avoids some potentially slow checks, since we can currently
4288   // be certain that UnwindDest and BB have no common predecessors (since they
4289   // are both EH pads).
4290   if (UnwindDest) {
4291     // First, go through the PHI nodes in UnwindDest and update any nodes that
4292     // reference the block we are removing
4293     for (BasicBlock::iterator I = UnwindDest->begin(),
4294                               IE = DestEHPad->getIterator();
4295          I != IE; ++I) {
4296       PHINode *DestPN = cast<PHINode>(I);
4297 
4298       int Idx = DestPN->getBasicBlockIndex(BB);
4299       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4300       assert(Idx != -1);
4301       // This PHI node has an incoming value that corresponds to a control
4302       // path through the cleanup pad we are removing.  If the incoming
4303       // value is in the cleanup pad, it must be a PHINode (because we
4304       // verified above that the block is otherwise empty).  Otherwise, the
4305       // value is either a constant or a value that dominates the cleanup
4306       // pad being removed.
4307       //
4308       // Because BB and UnwindDest are both EH pads, all of their
4309       // predecessors must unwind to these blocks, and since no instruction
4310       // can have multiple unwind destinations, there will be no overlap in
4311       // incoming blocks between SrcPN and DestPN.
4312       Value *SrcVal = DestPN->getIncomingValue(Idx);
4313       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4314 
4315       // Remove the entry for the block we are deleting.
4316       DestPN->removeIncomingValue(Idx, false);
4317 
4318       if (SrcPN && SrcPN->getParent() == BB) {
4319         // If the incoming value was a PHI node in the cleanup pad we are
4320         // removing, we need to merge that PHI node's incoming values into
4321         // DestPN.
4322         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4323              SrcIdx != SrcE; ++SrcIdx) {
4324           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4325                               SrcPN->getIncomingBlock(SrcIdx));
4326         }
4327       } else {
4328         // Otherwise, the incoming value came from above BB and
4329         // so we can just reuse it.  We must associate all of BB's
4330         // predecessors with this value.
4331         for (auto *pred : predecessors(BB)) {
4332           DestPN->addIncoming(SrcVal, pred);
4333         }
4334       }
4335     }
4336 
4337     // Sink any remaining PHI nodes directly into UnwindDest.
4338     Instruction *InsertPt = DestEHPad;
4339     for (BasicBlock::iterator I = BB->begin(),
4340                               IE = BB->getFirstNonPHI()->getIterator();
4341          I != IE;) {
4342       // The iterator must be incremented here because the instructions are
4343       // being moved to another block.
4344       PHINode *PN = cast<PHINode>(I++);
4345       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4346         // If the PHI node has no uses or all of its uses are in this basic
4347         // block (meaning they are debug or lifetime intrinsics), just leave
4348         // it.  It will be erased when we erase BB below.
4349         continue;
4350 
4351       // Otherwise, sink this PHI node into UnwindDest.
4352       // Any predecessors to UnwindDest which are not already represented
4353       // must be back edges which inherit the value from the path through
4354       // BB.  In this case, the PHI value must reference itself.
4355       for (auto *pred : predecessors(UnwindDest))
4356         if (pred != BB)
4357           PN->addIncoming(PN, pred);
4358       PN->moveBefore(InsertPt);
4359     }
4360   }
4361 
4362   std::vector<DominatorTree::UpdateType> Updates;
4363 
4364   // We use make_early_inc_range here because we may remove some predecessors.
4365   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4366     if (UnwindDest == nullptr) {
4367       if (DTU)
4368         DTU->applyUpdates(Updates);
4369       Updates.clear();
4370       removeUnwindEdge(PredBB, DTU);
4371       ++NumInvokes;
4372     } else {
4373       Instruction *TI = PredBB->getTerminator();
4374       TI->replaceUsesOfWith(BB, UnwindDest);
4375       Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4376       Updates.push_back({DominatorTree::Delete, PredBB, BB});
4377     }
4378   }
4379 
4380   if (DTU) {
4381     DTU->applyUpdates(Updates);
4382     DTU->deleteBB(BB);
4383   } else
4384     // The cleanup pad is now unreachable.  Zap it.
4385     BB->eraseFromParent();
4386 
4387   return true;
4388 }
4389 
4390 // Try to merge two cleanuppads together.
4391 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4392   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4393   // with.
4394   BasicBlock *UnwindDest = RI->getUnwindDest();
4395   if (!UnwindDest)
4396     return false;
4397 
4398   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4399   // be safe to merge without code duplication.
4400   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4401     return false;
4402 
4403   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4404   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4405   if (!SuccessorCleanupPad)
4406     return false;
4407 
4408   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4409   // Replace any uses of the successor cleanupad with the predecessor pad
4410   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4411   // funclet bundle operands.
4412   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4413   // Remove the old cleanuppad.
4414   SuccessorCleanupPad->eraseFromParent();
4415   // Now, we simply replace the cleanupret with a branch to the unwind
4416   // destination.
4417   BranchInst::Create(UnwindDest, RI->getParent());
4418   RI->eraseFromParent();
4419 
4420   return true;
4421 }
4422 
4423 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4424   // It is possible to transiantly have an undef cleanuppad operand because we
4425   // have deleted some, but not all, dead blocks.
4426   // Eventually, this block will be deleted.
4427   if (isa<UndefValue>(RI->getOperand(0)))
4428     return false;
4429 
4430   if (mergeCleanupPad(RI))
4431     return true;
4432 
4433   if (removeEmptyCleanup(RI, DTU))
4434     return true;
4435 
4436   return false;
4437 }
4438 
4439 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4440   BasicBlock *BB = RI->getParent();
4441   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4442     return false;
4443 
4444   // Find predecessors that end with branches.
4445   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4446   SmallVector<BranchInst *, 8> CondBranchPreds;
4447   for (BasicBlock *P : predecessors(BB)) {
4448     Instruction *PTI = P->getTerminator();
4449     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4450       if (BI->isUnconditional())
4451         UncondBranchPreds.push_back(P);
4452       else
4453         CondBranchPreds.push_back(BI);
4454     }
4455   }
4456 
4457   // If we found some, do the transformation!
4458   if (!UncondBranchPreds.empty() && DupRet) {
4459     while (!UncondBranchPreds.empty()) {
4460       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4461       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4462                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4463       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4464     }
4465 
4466     // If we eliminated all predecessors of the block, delete the block now.
4467     if (pred_empty(BB)) {
4468       // We know there are no successors, so just nuke the block.
4469       if (DTU)
4470         DTU->deleteBB(BB);
4471       else
4472         BB->eraseFromParent();
4473     }
4474 
4475     return true;
4476   }
4477 
4478   // Check out all of the conditional branches going to this return
4479   // instruction.  If any of them just select between returns, change the
4480   // branch itself into a select/return pair.
4481   while (!CondBranchPreds.empty()) {
4482     BranchInst *BI = CondBranchPreds.pop_back_val();
4483 
4484     // Check to see if the non-BB successor is also a return block.
4485     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4486         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4487         SimplifyCondBranchToTwoReturns(BI, Builder))
4488       return true;
4489   }
4490   return false;
4491 }
4492 
4493 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4494   BasicBlock *BB = UI->getParent();
4495 
4496   bool Changed = false;
4497 
4498   // If there are any instructions immediately before the unreachable that can
4499   // be removed, do so.
4500   while (UI->getIterator() != BB->begin()) {
4501     BasicBlock::iterator BBI = UI->getIterator();
4502     --BBI;
4503     // Do not delete instructions that can have side effects which might cause
4504     // the unreachable to not be reachable; specifically, calls and volatile
4505     // operations may have this effect.
4506     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4507       break;
4508 
4509     if (BBI->mayHaveSideEffects()) {
4510       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4511         if (SI->isVolatile())
4512           break;
4513       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4514         if (LI->isVolatile())
4515           break;
4516       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4517         if (RMWI->isVolatile())
4518           break;
4519       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4520         if (CXI->isVolatile())
4521           break;
4522       } else if (isa<CatchPadInst>(BBI)) {
4523         // A catchpad may invoke exception object constructors and such, which
4524         // in some languages can be arbitrary code, so be conservative by
4525         // default.
4526         // For CoreCLR, it just involves a type test, so can be removed.
4527         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4528             EHPersonality::CoreCLR)
4529           break;
4530       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4531                  !isa<LandingPadInst>(BBI)) {
4532         break;
4533       }
4534       // Note that deleting LandingPad's here is in fact okay, although it
4535       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4536       // all the predecessors of this block will be the unwind edges of Invokes,
4537       // and we can therefore guarantee this block will be erased.
4538     }
4539 
4540     // Delete this instruction (any uses are guaranteed to be dead)
4541     if (!BBI->use_empty())
4542       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4543     BBI->eraseFromParent();
4544     Changed = true;
4545   }
4546 
4547   // If the unreachable instruction is the first in the block, take a gander
4548   // at all of the predecessors of this instruction, and simplify them.
4549   if (&BB->front() != UI)
4550     return Changed;
4551 
4552   std::vector<DominatorTree::UpdateType> Updates;
4553 
4554   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4555   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4556     auto *Predecessor = Preds[i];
4557     Instruction *TI = Predecessor->getTerminator();
4558     IRBuilder<> Builder(TI);
4559     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4560       // We could either have a proper unconditional branch,
4561       // or a degenerate conditional branch with matching destinations.
4562       if (all_of(BI->successors(),
4563                  [BB](auto *Successor) { return Successor == BB; })) {
4564         new UnreachableInst(TI->getContext(), TI);
4565         TI->eraseFromParent();
4566         Changed = true;
4567       } else {
4568         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4569         Value* Cond = BI->getCondition();
4570         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4571                "The destinations are guaranteed to be different here.");
4572         if (BI->getSuccessor(0) == BB) {
4573           Builder.CreateAssumption(Builder.CreateNot(Cond));
4574           Builder.CreateBr(BI->getSuccessor(1));
4575         } else {
4576           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4577           Builder.CreateAssumption(Cond);
4578           Builder.CreateBr(BI->getSuccessor(0));
4579         }
4580         EraseTerminatorAndDCECond(BI);
4581         Changed = true;
4582       }
4583       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4584     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4585       SwitchInstProfUpdateWrapper SU(*SI);
4586       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4587         if (i->getCaseSuccessor() != BB) {
4588           ++i;
4589           continue;
4590         }
4591         BB->removePredecessor(SU->getParent());
4592         i = SU.removeCase(i);
4593         e = SU->case_end();
4594         Changed = true;
4595       }
4596       // Note that the default destination can't be removed!
4597       if (SI->getDefaultDest() != BB)
4598         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4599     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4600       if (II->getUnwindDest() == BB) {
4601         if (DTU)
4602           DTU->applyUpdates(Updates);
4603         Updates.clear();
4604         removeUnwindEdge(TI->getParent(), DTU);
4605         Changed = true;
4606       }
4607     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4608       if (CSI->getUnwindDest() == BB) {
4609         if (DTU)
4610           DTU->applyUpdates(Updates);
4611         Updates.clear();
4612         removeUnwindEdge(TI->getParent(), DTU);
4613         Changed = true;
4614         continue;
4615       }
4616 
4617       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4618                                              E = CSI->handler_end();
4619            I != E; ++I) {
4620         if (*I == BB) {
4621           CSI->removeHandler(I);
4622           --I;
4623           --E;
4624           Changed = true;
4625         }
4626       }
4627       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4628       if (CSI->getNumHandlers() == 0) {
4629         if (CSI->hasUnwindDest()) {
4630           // Redirect all predecessors of the block containing CatchSwitchInst
4631           // to instead branch to the CatchSwitchInst's unwind destination.
4632           for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4633             Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor,
4634                                CSI->getUnwindDest()});
4635             Updates.push_back(
4636                 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor});
4637           }
4638           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4639         } else {
4640           // Rewrite all preds to unwind to caller (or from invoke to call).
4641           if (DTU)
4642             DTU->applyUpdates(Updates);
4643           Updates.clear();
4644           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4645           for (BasicBlock *EHPred : EHPreds)
4646             removeUnwindEdge(EHPred, DTU);
4647         }
4648         // The catchswitch is no longer reachable.
4649         new UnreachableInst(CSI->getContext(), CSI);
4650         CSI->eraseFromParent();
4651         Changed = true;
4652       }
4653     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4654       (void)CRI;
4655       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4656              "Expected to always have an unwind to BB.");
4657       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4658       new UnreachableInst(TI->getContext(), TI);
4659       TI->eraseFromParent();
4660       Changed = true;
4661     }
4662   }
4663 
4664   if (DTU)
4665     DTU->applyUpdates(Updates);
4666 
4667   // If this block is now dead, remove it.
4668   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4669     // We know there are no successors, so just nuke the block.
4670     if (DTU)
4671       DTU->deleteBB(BB);
4672     else
4673       BB->eraseFromParent();
4674     return true;
4675   }
4676 
4677   return Changed;
4678 }
4679 
4680 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4681   assert(Cases.size() >= 1);
4682 
4683   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4684   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4685     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4686       return false;
4687   }
4688   return true;
4689 }
4690 
4691 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4692                                            DomTreeUpdater *DTU) {
4693   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4694   auto *BB = Switch->getParent();
4695   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4696       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4697   auto *OrigDefaultBlock = Switch->getDefaultDest();
4698   Switch->setDefaultDest(&*NewDefaultBlock);
4699   if (DTU)
4700     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4701                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4702   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4703   SmallVector<DominatorTree::UpdateType, 2> Updates;
4704   for (auto *Successor : successors(NewDefaultBlock))
4705     Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4706   auto *NewTerminator = NewDefaultBlock->getTerminator();
4707   new UnreachableInst(Switch->getContext(), NewTerminator);
4708   EraseTerminatorAndDCECond(NewTerminator);
4709   if (DTU)
4710     DTU->applyUpdates(Updates);
4711 }
4712 
4713 /// Turn a switch with two reachable destinations into an integer range
4714 /// comparison and branch.
4715 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4716                                              IRBuilder<> &Builder) {
4717   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4718 
4719   bool HasDefault =
4720       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4721 
4722   auto *BB = SI->getParent();
4723 
4724   // Partition the cases into two sets with different destinations.
4725   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4726   BasicBlock *DestB = nullptr;
4727   SmallVector<ConstantInt *, 16> CasesA;
4728   SmallVector<ConstantInt *, 16> CasesB;
4729 
4730   for (auto Case : SI->cases()) {
4731     BasicBlock *Dest = Case.getCaseSuccessor();
4732     if (!DestA)
4733       DestA = Dest;
4734     if (Dest == DestA) {
4735       CasesA.push_back(Case.getCaseValue());
4736       continue;
4737     }
4738     if (!DestB)
4739       DestB = Dest;
4740     if (Dest == DestB) {
4741       CasesB.push_back(Case.getCaseValue());
4742       continue;
4743     }
4744     return false; // More than two destinations.
4745   }
4746 
4747   assert(DestA && DestB &&
4748          "Single-destination switch should have been folded.");
4749   assert(DestA != DestB);
4750   assert(DestB != SI->getDefaultDest());
4751   assert(!CasesB.empty() && "There must be non-default cases.");
4752   assert(!CasesA.empty() || HasDefault);
4753 
4754   // Figure out if one of the sets of cases form a contiguous range.
4755   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4756   BasicBlock *ContiguousDest = nullptr;
4757   BasicBlock *OtherDest = nullptr;
4758   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4759     ContiguousCases = &CasesA;
4760     ContiguousDest = DestA;
4761     OtherDest = DestB;
4762   } else if (CasesAreContiguous(CasesB)) {
4763     ContiguousCases = &CasesB;
4764     ContiguousDest = DestB;
4765     OtherDest = DestA;
4766   } else
4767     return false;
4768 
4769   // Start building the compare and branch.
4770 
4771   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4772   Constant *NumCases =
4773       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4774 
4775   Value *Sub = SI->getCondition();
4776   if (!Offset->isNullValue())
4777     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4778 
4779   Value *Cmp;
4780   // If NumCases overflowed, then all possible values jump to the successor.
4781   if (NumCases->isNullValue() && !ContiguousCases->empty())
4782     Cmp = ConstantInt::getTrue(SI->getContext());
4783   else
4784     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4785   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4786 
4787   // Update weight for the newly-created conditional branch.
4788   if (HasBranchWeights(SI)) {
4789     SmallVector<uint64_t, 8> Weights;
4790     GetBranchWeights(SI, Weights);
4791     if (Weights.size() == 1 + SI->getNumCases()) {
4792       uint64_t TrueWeight = 0;
4793       uint64_t FalseWeight = 0;
4794       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4795         if (SI->getSuccessor(I) == ContiguousDest)
4796           TrueWeight += Weights[I];
4797         else
4798           FalseWeight += Weights[I];
4799       }
4800       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4801         TrueWeight /= 2;
4802         FalseWeight /= 2;
4803       }
4804       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4805     }
4806   }
4807 
4808   // Prune obsolete incoming values off the successors' PHI nodes.
4809   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4810     unsigned PreviousEdges = ContiguousCases->size();
4811     if (ContiguousDest == SI->getDefaultDest())
4812       ++PreviousEdges;
4813     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4814       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4815   }
4816   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4817     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4818     if (OtherDest == SI->getDefaultDest())
4819       ++PreviousEdges;
4820     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4821       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4822   }
4823 
4824   // Clean up the default block - it may have phis or other instructions before
4825   // the unreachable terminator.
4826   if (!HasDefault)
4827     createUnreachableSwitchDefault(SI, DTU);
4828 
4829   auto *UnreachableDefault = SI->getDefaultDest();
4830 
4831   // Drop the switch.
4832   SI->eraseFromParent();
4833 
4834   if (!HasDefault && DTU)
4835     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4836 
4837   return true;
4838 }
4839 
4840 /// Compute masked bits for the condition of a switch
4841 /// and use it to remove dead cases.
4842 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4843                                      AssumptionCache *AC,
4844                                      const DataLayout &DL) {
4845   Value *Cond = SI->getCondition();
4846   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4847   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4848 
4849   // We can also eliminate cases by determining that their values are outside of
4850   // the limited range of the condition based on how many significant (non-sign)
4851   // bits are in the condition value.
4852   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4853   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4854 
4855   // Gather dead cases.
4856   SmallVector<ConstantInt *, 8> DeadCases;
4857   SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
4858   for (auto &Case : SI->cases()) {
4859     auto *Successor = Case.getCaseSuccessor();
4860     ++NumPerSuccessorCases[Successor];
4861     const APInt &CaseVal = Case.getCaseValue()->getValue();
4862     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4863         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4864       DeadCases.push_back(Case.getCaseValue());
4865       --NumPerSuccessorCases[Successor];
4866       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4867                         << " is dead.\n");
4868     }
4869   }
4870 
4871   // If we can prove that the cases must cover all possible values, the
4872   // default destination becomes dead and we can remove it.  If we know some
4873   // of the bits in the value, we can use that to more precisely compute the
4874   // number of possible unique case values.
4875   bool HasDefault =
4876       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4877   const unsigned NumUnknownBits =
4878       Bits - (Known.Zero | Known.One).countPopulation();
4879   assert(NumUnknownBits <= Bits);
4880   if (HasDefault && DeadCases.empty() &&
4881       NumUnknownBits < 64 /* avoid overflow */ &&
4882       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4883     createUnreachableSwitchDefault(SI, DTU);
4884     return true;
4885   }
4886 
4887   if (DeadCases.empty())
4888     return false;
4889 
4890   SwitchInstProfUpdateWrapper SIW(*SI);
4891   for (ConstantInt *DeadCase : DeadCases) {
4892     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4893     assert(CaseI != SI->case_default() &&
4894            "Case was not found. Probably mistake in DeadCases forming.");
4895     // Prune unused values from PHI nodes.
4896     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4897     SIW.removeCase(CaseI);
4898   }
4899 
4900   std::vector<DominatorTree::UpdateType> Updates;
4901   for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4902     if (I.second == 0)
4903       Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
4904   if (DTU)
4905     DTU->applyUpdates(Updates);
4906 
4907   return true;
4908 }
4909 
4910 /// If BB would be eligible for simplification by
4911 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4912 /// by an unconditional branch), look at the phi node for BB in the successor
4913 /// block and see if the incoming value is equal to CaseValue. If so, return
4914 /// the phi node, and set PhiIndex to BB's index in the phi node.
4915 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4916                                               BasicBlock *BB, int *PhiIndex) {
4917   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4918     return nullptr; // BB must be empty to be a candidate for simplification.
4919   if (!BB->getSinglePredecessor())
4920     return nullptr; // BB must be dominated by the switch.
4921 
4922   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4923   if (!Branch || !Branch->isUnconditional())
4924     return nullptr; // Terminator must be unconditional branch.
4925 
4926   BasicBlock *Succ = Branch->getSuccessor(0);
4927 
4928   for (PHINode &PHI : Succ->phis()) {
4929     int Idx = PHI.getBasicBlockIndex(BB);
4930     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4931 
4932     Value *InValue = PHI.getIncomingValue(Idx);
4933     if (InValue != CaseValue)
4934       continue;
4935 
4936     *PhiIndex = Idx;
4937     return &PHI;
4938   }
4939 
4940   return nullptr;
4941 }
4942 
4943 /// Try to forward the condition of a switch instruction to a phi node
4944 /// dominated by the switch, if that would mean that some of the destination
4945 /// blocks of the switch can be folded away. Return true if a change is made.
4946 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4947   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4948 
4949   ForwardingNodesMap ForwardingNodes;
4950   BasicBlock *SwitchBlock = SI->getParent();
4951   bool Changed = false;
4952   for (auto &Case : SI->cases()) {
4953     ConstantInt *CaseValue = Case.getCaseValue();
4954     BasicBlock *CaseDest = Case.getCaseSuccessor();
4955 
4956     // Replace phi operands in successor blocks that are using the constant case
4957     // value rather than the switch condition variable:
4958     //   switchbb:
4959     //   switch i32 %x, label %default [
4960     //     i32 17, label %succ
4961     //   ...
4962     //   succ:
4963     //     %r = phi i32 ... [ 17, %switchbb ] ...
4964     // -->
4965     //     %r = phi i32 ... [ %x, %switchbb ] ...
4966 
4967     for (PHINode &Phi : CaseDest->phis()) {
4968       // This only works if there is exactly 1 incoming edge from the switch to
4969       // a phi. If there is >1, that means multiple cases of the switch map to 1
4970       // value in the phi, and that phi value is not the switch condition. Thus,
4971       // this transform would not make sense (the phi would be invalid because
4972       // a phi can't have different incoming values from the same block).
4973       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4974       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4975           count(Phi.blocks(), SwitchBlock) == 1) {
4976         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4977         Changed = true;
4978       }
4979     }
4980 
4981     // Collect phi nodes that are indirectly using this switch's case constants.
4982     int PhiIdx;
4983     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4984       ForwardingNodes[Phi].push_back(PhiIdx);
4985   }
4986 
4987   for (auto &ForwardingNode : ForwardingNodes) {
4988     PHINode *Phi = ForwardingNode.first;
4989     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4990     if (Indexes.size() < 2)
4991       continue;
4992 
4993     for (int Index : Indexes)
4994       Phi->setIncomingValue(Index, SI->getCondition());
4995     Changed = true;
4996   }
4997 
4998   return Changed;
4999 }
5000 
5001 /// Return true if the backend will be able to handle
5002 /// initializing an array of constants like C.
5003 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5004   if (C->isThreadDependent())
5005     return false;
5006   if (C->isDLLImportDependent())
5007     return false;
5008 
5009   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5010       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5011       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5012     return false;
5013 
5014   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5015     if (!CE->isGEPWithNoNotionalOverIndexing())
5016       return false;
5017     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5018       return false;
5019   }
5020 
5021   if (!TTI.shouldBuildLookupTablesForConstant(C))
5022     return false;
5023 
5024   return true;
5025 }
5026 
5027 /// If V is a Constant, return it. Otherwise, try to look up
5028 /// its constant value in ConstantPool, returning 0 if it's not there.
5029 static Constant *
5030 LookupConstant(Value *V,
5031                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5032   if (Constant *C = dyn_cast<Constant>(V))
5033     return C;
5034   return ConstantPool.lookup(V);
5035 }
5036 
5037 /// Try to fold instruction I into a constant. This works for
5038 /// simple instructions such as binary operations where both operands are
5039 /// constant or can be replaced by constants from the ConstantPool. Returns the
5040 /// resulting constant on success, 0 otherwise.
5041 static Constant *
5042 ConstantFold(Instruction *I, const DataLayout &DL,
5043              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5044   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5045     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5046     if (!A)
5047       return nullptr;
5048     if (A->isAllOnesValue())
5049       return LookupConstant(Select->getTrueValue(), ConstantPool);
5050     if (A->isNullValue())
5051       return LookupConstant(Select->getFalseValue(), ConstantPool);
5052     return nullptr;
5053   }
5054 
5055   SmallVector<Constant *, 4> COps;
5056   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5057     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5058       COps.push_back(A);
5059     else
5060       return nullptr;
5061   }
5062 
5063   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5064     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5065                                            COps[1], DL);
5066   }
5067 
5068   return ConstantFoldInstOperands(I, COps, DL);
5069 }
5070 
5071 /// Try to determine the resulting constant values in phi nodes
5072 /// at the common destination basic block, *CommonDest, for one of the case
5073 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5074 /// case), of a switch instruction SI.
5075 static bool
5076 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5077                BasicBlock **CommonDest,
5078                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5079                const DataLayout &DL, const TargetTransformInfo &TTI) {
5080   // The block from which we enter the common destination.
5081   BasicBlock *Pred = SI->getParent();
5082 
5083   // If CaseDest is empty except for some side-effect free instructions through
5084   // which we can constant-propagate the CaseVal, continue to its successor.
5085   SmallDenseMap<Value *, Constant *> ConstantPool;
5086   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5087   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5088     if (I.isTerminator()) {
5089       // If the terminator is a simple branch, continue to the next block.
5090       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5091         return false;
5092       Pred = CaseDest;
5093       CaseDest = I.getSuccessor(0);
5094     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5095       // Instruction is side-effect free and constant.
5096 
5097       // If the instruction has uses outside this block or a phi node slot for
5098       // the block, it is not safe to bypass the instruction since it would then
5099       // no longer dominate all its uses.
5100       for (auto &Use : I.uses()) {
5101         User *User = Use.getUser();
5102         if (Instruction *I = dyn_cast<Instruction>(User))
5103           if (I->getParent() == CaseDest)
5104             continue;
5105         if (PHINode *Phi = dyn_cast<PHINode>(User))
5106           if (Phi->getIncomingBlock(Use) == CaseDest)
5107             continue;
5108         return false;
5109       }
5110 
5111       ConstantPool.insert(std::make_pair(&I, C));
5112     } else {
5113       break;
5114     }
5115   }
5116 
5117   // If we did not have a CommonDest before, use the current one.
5118   if (!*CommonDest)
5119     *CommonDest = CaseDest;
5120   // If the destination isn't the common one, abort.
5121   if (CaseDest != *CommonDest)
5122     return false;
5123 
5124   // Get the values for this case from phi nodes in the destination block.
5125   for (PHINode &PHI : (*CommonDest)->phis()) {
5126     int Idx = PHI.getBasicBlockIndex(Pred);
5127     if (Idx == -1)
5128       continue;
5129 
5130     Constant *ConstVal =
5131         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5132     if (!ConstVal)
5133       return false;
5134 
5135     // Be conservative about which kinds of constants we support.
5136     if (!ValidLookupTableConstant(ConstVal, TTI))
5137       return false;
5138 
5139     Res.push_back(std::make_pair(&PHI, ConstVal));
5140   }
5141 
5142   return Res.size() > 0;
5143 }
5144 
5145 // Helper function used to add CaseVal to the list of cases that generate
5146 // Result. Returns the updated number of cases that generate this result.
5147 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5148                                  SwitchCaseResultVectorTy &UniqueResults,
5149                                  Constant *Result) {
5150   for (auto &I : UniqueResults) {
5151     if (I.first == Result) {
5152       I.second.push_back(CaseVal);
5153       return I.second.size();
5154     }
5155   }
5156   UniqueResults.push_back(
5157       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5158   return 1;
5159 }
5160 
5161 // Helper function that initializes a map containing
5162 // results for the PHI node of the common destination block for a switch
5163 // instruction. Returns false if multiple PHI nodes have been found or if
5164 // there is not a common destination block for the switch.
5165 static bool
5166 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5167                       SwitchCaseResultVectorTy &UniqueResults,
5168                       Constant *&DefaultResult, const DataLayout &DL,
5169                       const TargetTransformInfo &TTI,
5170                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5171   for (auto &I : SI->cases()) {
5172     ConstantInt *CaseVal = I.getCaseValue();
5173 
5174     // Resulting value at phi nodes for this case value.
5175     SwitchCaseResultsTy Results;
5176     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5177                         DL, TTI))
5178       return false;
5179 
5180     // Only one value per case is permitted.
5181     if (Results.size() > 1)
5182       return false;
5183 
5184     // Add the case->result mapping to UniqueResults.
5185     const uintptr_t NumCasesForResult =
5186         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5187 
5188     // Early out if there are too many cases for this result.
5189     if (NumCasesForResult > MaxCasesPerResult)
5190       return false;
5191 
5192     // Early out if there are too many unique results.
5193     if (UniqueResults.size() > MaxUniqueResults)
5194       return false;
5195 
5196     // Check the PHI consistency.
5197     if (!PHI)
5198       PHI = Results[0].first;
5199     else if (PHI != Results[0].first)
5200       return false;
5201   }
5202   // Find the default result value.
5203   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5204   BasicBlock *DefaultDest = SI->getDefaultDest();
5205   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5206                  DL, TTI);
5207   // If the default value is not found abort unless the default destination
5208   // is unreachable.
5209   DefaultResult =
5210       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5211   if ((!DefaultResult &&
5212        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5213     return false;
5214 
5215   return true;
5216 }
5217 
5218 // Helper function that checks if it is possible to transform a switch with only
5219 // two cases (or two cases + default) that produces a result into a select.
5220 // Example:
5221 // switch (a) {
5222 //   case 10:                %0 = icmp eq i32 %a, 10
5223 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5224 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5225 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5226 //   default:
5227 //     return 4;
5228 // }
5229 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5230                                    Constant *DefaultResult, Value *Condition,
5231                                    IRBuilder<> &Builder) {
5232   assert(ResultVector.size() == 2 &&
5233          "We should have exactly two unique results at this point");
5234   // If we are selecting between only two cases transform into a simple
5235   // select or a two-way select if default is possible.
5236   if (ResultVector[0].second.size() == 1 &&
5237       ResultVector[1].second.size() == 1) {
5238     ConstantInt *const FirstCase = ResultVector[0].second[0];
5239     ConstantInt *const SecondCase = ResultVector[1].second[0];
5240 
5241     bool DefaultCanTrigger = DefaultResult;
5242     Value *SelectValue = ResultVector[1].first;
5243     if (DefaultCanTrigger) {
5244       Value *const ValueCompare =
5245           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5246       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5247                                          DefaultResult, "switch.select");
5248     }
5249     Value *const ValueCompare =
5250         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5251     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5252                                 SelectValue, "switch.select");
5253   }
5254 
5255   return nullptr;
5256 }
5257 
5258 // Helper function to cleanup a switch instruction that has been converted into
5259 // a select, fixing up PHI nodes and basic blocks.
5260 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5261                                               Value *SelectValue,
5262                                               IRBuilder<> &Builder,
5263                                               DomTreeUpdater *DTU) {
5264   std::vector<DominatorTree::UpdateType> Updates;
5265 
5266   BasicBlock *SelectBB = SI->getParent();
5267   BasicBlock *DestBB = PHI->getParent();
5268 
5269   if (!is_contained(predecessors(DestBB), SelectBB))
5270     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5271   Builder.CreateBr(DestBB);
5272 
5273   // Remove the switch.
5274 
5275   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5276     PHI->removeIncomingValue(SelectBB);
5277   PHI->addIncoming(SelectValue, SelectBB);
5278 
5279   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5280     BasicBlock *Succ = SI->getSuccessor(i);
5281 
5282     if (Succ == DestBB)
5283       continue;
5284     Succ->removePredecessor(SelectBB);
5285     Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5286   }
5287   SI->eraseFromParent();
5288   if (DTU)
5289     DTU->applyUpdates(Updates);
5290 }
5291 
5292 /// If the switch is only used to initialize one or more
5293 /// phi nodes in a common successor block with only two different
5294 /// constant values, replace the switch with select.
5295 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5296                            DomTreeUpdater *DTU, const DataLayout &DL,
5297                            const TargetTransformInfo &TTI) {
5298   Value *const Cond = SI->getCondition();
5299   PHINode *PHI = nullptr;
5300   BasicBlock *CommonDest = nullptr;
5301   Constant *DefaultResult;
5302   SwitchCaseResultVectorTy UniqueResults;
5303   // Collect all the cases that will deliver the same value from the switch.
5304   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5305                              DL, TTI, 2, 1))
5306     return false;
5307   // Selects choose between maximum two values.
5308   if (UniqueResults.size() != 2)
5309     return false;
5310   assert(PHI != nullptr && "PHI for value select not found");
5311 
5312   Builder.SetInsertPoint(SI);
5313   Value *SelectValue =
5314       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5315   if (SelectValue) {
5316     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5317     return true;
5318   }
5319   // The switch couldn't be converted into a select.
5320   return false;
5321 }
5322 
5323 namespace {
5324 
5325 /// This class represents a lookup table that can be used to replace a switch.
5326 class SwitchLookupTable {
5327 public:
5328   /// Create a lookup table to use as a switch replacement with the contents
5329   /// of Values, using DefaultValue to fill any holes in the table.
5330   SwitchLookupTable(
5331       Module &M, uint64_t TableSize, ConstantInt *Offset,
5332       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5333       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5334 
5335   /// Build instructions with Builder to retrieve the value at
5336   /// the position given by Index in the lookup table.
5337   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5338 
5339   /// Return true if a table with TableSize elements of
5340   /// type ElementType would fit in a target-legal register.
5341   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5342                                  Type *ElementType);
5343 
5344 private:
5345   // Depending on the contents of the table, it can be represented in
5346   // different ways.
5347   enum {
5348     // For tables where each element contains the same value, we just have to
5349     // store that single value and return it for each lookup.
5350     SingleValueKind,
5351 
5352     // For tables where there is a linear relationship between table index
5353     // and values. We calculate the result with a simple multiplication
5354     // and addition instead of a table lookup.
5355     LinearMapKind,
5356 
5357     // For small tables with integer elements, we can pack them into a bitmap
5358     // that fits into a target-legal register. Values are retrieved by
5359     // shift and mask operations.
5360     BitMapKind,
5361 
5362     // The table is stored as an array of values. Values are retrieved by load
5363     // instructions from the table.
5364     ArrayKind
5365   } Kind;
5366 
5367   // For SingleValueKind, this is the single value.
5368   Constant *SingleValue = nullptr;
5369 
5370   // For BitMapKind, this is the bitmap.
5371   ConstantInt *BitMap = nullptr;
5372   IntegerType *BitMapElementTy = nullptr;
5373 
5374   // For LinearMapKind, these are the constants used to derive the value.
5375   ConstantInt *LinearOffset = nullptr;
5376   ConstantInt *LinearMultiplier = nullptr;
5377 
5378   // For ArrayKind, this is the array.
5379   GlobalVariable *Array = nullptr;
5380 };
5381 
5382 } // end anonymous namespace
5383 
5384 SwitchLookupTable::SwitchLookupTable(
5385     Module &M, uint64_t TableSize, ConstantInt *Offset,
5386     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5387     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5388   assert(Values.size() && "Can't build lookup table without values!");
5389   assert(TableSize >= Values.size() && "Can't fit values in table!");
5390 
5391   // If all values in the table are equal, this is that value.
5392   SingleValue = Values.begin()->second;
5393 
5394   Type *ValueType = Values.begin()->second->getType();
5395 
5396   // Build up the table contents.
5397   SmallVector<Constant *, 64> TableContents(TableSize);
5398   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5399     ConstantInt *CaseVal = Values[I].first;
5400     Constant *CaseRes = Values[I].second;
5401     assert(CaseRes->getType() == ValueType);
5402 
5403     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5404     TableContents[Idx] = CaseRes;
5405 
5406     if (CaseRes != SingleValue)
5407       SingleValue = nullptr;
5408   }
5409 
5410   // Fill in any holes in the table with the default result.
5411   if (Values.size() < TableSize) {
5412     assert(DefaultValue &&
5413            "Need a default value to fill the lookup table holes.");
5414     assert(DefaultValue->getType() == ValueType);
5415     for (uint64_t I = 0; I < TableSize; ++I) {
5416       if (!TableContents[I])
5417         TableContents[I] = DefaultValue;
5418     }
5419 
5420     if (DefaultValue != SingleValue)
5421       SingleValue = nullptr;
5422   }
5423 
5424   // If each element in the table contains the same value, we only need to store
5425   // that single value.
5426   if (SingleValue) {
5427     Kind = SingleValueKind;
5428     return;
5429   }
5430 
5431   // Check if we can derive the value with a linear transformation from the
5432   // table index.
5433   if (isa<IntegerType>(ValueType)) {
5434     bool LinearMappingPossible = true;
5435     APInt PrevVal;
5436     APInt DistToPrev;
5437     assert(TableSize >= 2 && "Should be a SingleValue table.");
5438     // Check if there is the same distance between two consecutive values.
5439     for (uint64_t I = 0; I < TableSize; ++I) {
5440       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5441       if (!ConstVal) {
5442         // This is an undef. We could deal with it, but undefs in lookup tables
5443         // are very seldom. It's probably not worth the additional complexity.
5444         LinearMappingPossible = false;
5445         break;
5446       }
5447       const APInt &Val = ConstVal->getValue();
5448       if (I != 0) {
5449         APInt Dist = Val - PrevVal;
5450         if (I == 1) {
5451           DistToPrev = Dist;
5452         } else if (Dist != DistToPrev) {
5453           LinearMappingPossible = false;
5454           break;
5455         }
5456       }
5457       PrevVal = Val;
5458     }
5459     if (LinearMappingPossible) {
5460       LinearOffset = cast<ConstantInt>(TableContents[0]);
5461       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5462       Kind = LinearMapKind;
5463       ++NumLinearMaps;
5464       return;
5465     }
5466   }
5467 
5468   // If the type is integer and the table fits in a register, build a bitmap.
5469   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5470     IntegerType *IT = cast<IntegerType>(ValueType);
5471     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5472     for (uint64_t I = TableSize; I > 0; --I) {
5473       TableInt <<= IT->getBitWidth();
5474       // Insert values into the bitmap. Undef values are set to zero.
5475       if (!isa<UndefValue>(TableContents[I - 1])) {
5476         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5477         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5478       }
5479     }
5480     BitMap = ConstantInt::get(M.getContext(), TableInt);
5481     BitMapElementTy = IT;
5482     Kind = BitMapKind;
5483     ++NumBitMaps;
5484     return;
5485   }
5486 
5487   // Store the table in an array.
5488   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5489   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5490 
5491   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5492                              GlobalVariable::PrivateLinkage, Initializer,
5493                              "switch.table." + FuncName);
5494   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5495   // Set the alignment to that of an array items. We will be only loading one
5496   // value out of it.
5497   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5498   Kind = ArrayKind;
5499 }
5500 
5501 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5502   switch (Kind) {
5503   case SingleValueKind:
5504     return SingleValue;
5505   case LinearMapKind: {
5506     // Derive the result value from the input value.
5507     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5508                                           false, "switch.idx.cast");
5509     if (!LinearMultiplier->isOne())
5510       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5511     if (!LinearOffset->isZero())
5512       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5513     return Result;
5514   }
5515   case BitMapKind: {
5516     // Type of the bitmap (e.g. i59).
5517     IntegerType *MapTy = BitMap->getType();
5518 
5519     // Cast Index to the same type as the bitmap.
5520     // Note: The Index is <= the number of elements in the table, so
5521     // truncating it to the width of the bitmask is safe.
5522     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5523 
5524     // Multiply the shift amount by the element width.
5525     ShiftAmt = Builder.CreateMul(
5526         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5527         "switch.shiftamt");
5528 
5529     // Shift down.
5530     Value *DownShifted =
5531         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5532     // Mask off.
5533     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5534   }
5535   case ArrayKind: {
5536     // Make sure the table index will not overflow when treated as signed.
5537     IntegerType *IT = cast<IntegerType>(Index->getType());
5538     uint64_t TableSize =
5539         Array->getInitializer()->getType()->getArrayNumElements();
5540     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5541       Index = Builder.CreateZExt(
5542           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5543           "switch.tableidx.zext");
5544 
5545     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5546     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5547                                            GEPIndices, "switch.gep");
5548     return Builder.CreateLoad(
5549         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5550         "switch.load");
5551   }
5552   }
5553   llvm_unreachable("Unknown lookup table kind!");
5554 }
5555 
5556 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5557                                            uint64_t TableSize,
5558                                            Type *ElementType) {
5559   auto *IT = dyn_cast<IntegerType>(ElementType);
5560   if (!IT)
5561     return false;
5562   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5563   // are <= 15, we could try to narrow the type.
5564 
5565   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5566   if (TableSize >= UINT_MAX / IT->getBitWidth())
5567     return false;
5568   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5569 }
5570 
5571 /// Determine whether a lookup table should be built for this switch, based on
5572 /// the number of cases, size of the table, and the types of the results.
5573 static bool
5574 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5575                        const TargetTransformInfo &TTI, const DataLayout &DL,
5576                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5577   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5578     return false; // TableSize overflowed, or mul below might overflow.
5579 
5580   bool AllTablesFitInRegister = true;
5581   bool HasIllegalType = false;
5582   for (const auto &I : ResultTypes) {
5583     Type *Ty = I.second;
5584 
5585     // Saturate this flag to true.
5586     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5587 
5588     // Saturate this flag to false.
5589     AllTablesFitInRegister =
5590         AllTablesFitInRegister &&
5591         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5592 
5593     // If both flags saturate, we're done. NOTE: This *only* works with
5594     // saturating flags, and all flags have to saturate first due to the
5595     // non-deterministic behavior of iterating over a dense map.
5596     if (HasIllegalType && !AllTablesFitInRegister)
5597       break;
5598   }
5599 
5600   // If each table would fit in a register, we should build it anyway.
5601   if (AllTablesFitInRegister)
5602     return true;
5603 
5604   // Don't build a table that doesn't fit in-register if it has illegal types.
5605   if (HasIllegalType)
5606     return false;
5607 
5608   // The table density should be at least 40%. This is the same criterion as for
5609   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5610   // FIXME: Find the best cut-off.
5611   return SI->getNumCases() * 10 >= TableSize * 4;
5612 }
5613 
5614 /// Try to reuse the switch table index compare. Following pattern:
5615 /// \code
5616 ///     if (idx < tablesize)
5617 ///        r = table[idx]; // table does not contain default_value
5618 ///     else
5619 ///        r = default_value;
5620 ///     if (r != default_value)
5621 ///        ...
5622 /// \endcode
5623 /// Is optimized to:
5624 /// \code
5625 ///     cond = idx < tablesize;
5626 ///     if (cond)
5627 ///        r = table[idx];
5628 ///     else
5629 ///        r = default_value;
5630 ///     if (cond)
5631 ///        ...
5632 /// \endcode
5633 /// Jump threading will then eliminate the second if(cond).
5634 static void reuseTableCompare(
5635     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5636     Constant *DefaultValue,
5637     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5638   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5639   if (!CmpInst)
5640     return;
5641 
5642   // We require that the compare is in the same block as the phi so that jump
5643   // threading can do its work afterwards.
5644   if (CmpInst->getParent() != PhiBlock)
5645     return;
5646 
5647   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5648   if (!CmpOp1)
5649     return;
5650 
5651   Value *RangeCmp = RangeCheckBranch->getCondition();
5652   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5653   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5654 
5655   // Check if the compare with the default value is constant true or false.
5656   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5657                                                  DefaultValue, CmpOp1, true);
5658   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5659     return;
5660 
5661   // Check if the compare with the case values is distinct from the default
5662   // compare result.
5663   for (auto ValuePair : Values) {
5664     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5665                                                 ValuePair.second, CmpOp1, true);
5666     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5667       return;
5668     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5669            "Expect true or false as compare result.");
5670   }
5671 
5672   // Check if the branch instruction dominates the phi node. It's a simple
5673   // dominance check, but sufficient for our needs.
5674   // Although this check is invariant in the calling loops, it's better to do it
5675   // at this late stage. Practically we do it at most once for a switch.
5676   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5677   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5678     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5679       return;
5680   }
5681 
5682   if (DefaultConst == FalseConst) {
5683     // The compare yields the same result. We can replace it.
5684     CmpInst->replaceAllUsesWith(RangeCmp);
5685     ++NumTableCmpReuses;
5686   } else {
5687     // The compare yields the same result, just inverted. We can replace it.
5688     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5689         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5690         RangeCheckBranch);
5691     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5692     ++NumTableCmpReuses;
5693   }
5694 }
5695 
5696 /// If the switch is only used to initialize one or more phi nodes in a common
5697 /// successor block with different constant values, replace the switch with
5698 /// lookup tables.
5699 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5700                                 DomTreeUpdater *DTU, const DataLayout &DL,
5701                                 const TargetTransformInfo &TTI) {
5702   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5703 
5704   BasicBlock *BB = SI->getParent();
5705   Function *Fn = BB->getParent();
5706   // Only build lookup table when we have a target that supports it or the
5707   // attribute is not set.
5708   if (!TTI.shouldBuildLookupTables() ||
5709       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5710     return false;
5711 
5712   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5713   // split off a dense part and build a lookup table for that.
5714 
5715   // FIXME: This creates arrays of GEPs to constant strings, which means each
5716   // GEP needs a runtime relocation in PIC code. We should just build one big
5717   // string and lookup indices into that.
5718 
5719   // Ignore switches with less than three cases. Lookup tables will not make
5720   // them faster, so we don't analyze them.
5721   if (SI->getNumCases() < 3)
5722     return false;
5723 
5724   // Figure out the corresponding result for each case value and phi node in the
5725   // common destination, as well as the min and max case values.
5726   assert(!SI->cases().empty());
5727   SwitchInst::CaseIt CI = SI->case_begin();
5728   ConstantInt *MinCaseVal = CI->getCaseValue();
5729   ConstantInt *MaxCaseVal = CI->getCaseValue();
5730 
5731   BasicBlock *CommonDest = nullptr;
5732 
5733   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5734   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5735 
5736   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5737   SmallDenseMap<PHINode *, Type *> ResultTypes;
5738   SmallVector<PHINode *, 4> PHIs;
5739 
5740   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5741     ConstantInt *CaseVal = CI->getCaseValue();
5742     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5743       MinCaseVal = CaseVal;
5744     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5745       MaxCaseVal = CaseVal;
5746 
5747     // Resulting value at phi nodes for this case value.
5748     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5749     ResultsTy Results;
5750     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5751                         Results, DL, TTI))
5752       return false;
5753 
5754     // Append the result from this case to the list for each phi.
5755     for (const auto &I : Results) {
5756       PHINode *PHI = I.first;
5757       Constant *Value = I.second;
5758       if (!ResultLists.count(PHI))
5759         PHIs.push_back(PHI);
5760       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5761     }
5762   }
5763 
5764   // Keep track of the result types.
5765   for (PHINode *PHI : PHIs) {
5766     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5767   }
5768 
5769   uint64_t NumResults = ResultLists[PHIs[0]].size();
5770   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5771   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5772   bool TableHasHoles = (NumResults < TableSize);
5773 
5774   // If the table has holes, we need a constant result for the default case
5775   // or a bitmask that fits in a register.
5776   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5777   bool HasDefaultResults =
5778       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5779                      DefaultResultsList, DL, TTI);
5780 
5781   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5782   if (NeedMask) {
5783     // As an extra penalty for the validity test we require more cases.
5784     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5785       return false;
5786     if (!DL.fitsInLegalInteger(TableSize))
5787       return false;
5788   }
5789 
5790   for (const auto &I : DefaultResultsList) {
5791     PHINode *PHI = I.first;
5792     Constant *Result = I.second;
5793     DefaultResults[PHI] = Result;
5794   }
5795 
5796   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5797     return false;
5798 
5799   std::vector<DominatorTree::UpdateType> Updates;
5800 
5801   // Create the BB that does the lookups.
5802   Module &Mod = *CommonDest->getParent()->getParent();
5803   BasicBlock *LookupBB = BasicBlock::Create(
5804       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5805 
5806   // Compute the table index value.
5807   Builder.SetInsertPoint(SI);
5808   Value *TableIndex;
5809   if (MinCaseVal->isNullValue())
5810     TableIndex = SI->getCondition();
5811   else
5812     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5813                                    "switch.tableidx");
5814 
5815   // Compute the maximum table size representable by the integer type we are
5816   // switching upon.
5817   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5818   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5819   assert(MaxTableSize >= TableSize &&
5820          "It is impossible for a switch to have more entries than the max "
5821          "representable value of its input integer type's size.");
5822 
5823   // If the default destination is unreachable, or if the lookup table covers
5824   // all values of the conditional variable, branch directly to the lookup table
5825   // BB. Otherwise, check that the condition is within the case range.
5826   const bool DefaultIsReachable =
5827       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5828   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5829   BranchInst *RangeCheckBranch = nullptr;
5830 
5831   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5832     Builder.CreateBr(LookupBB);
5833     Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5834     // Note: We call removeProdecessor later since we need to be able to get the
5835     // PHI value for the default case in case we're using a bit mask.
5836   } else {
5837     Value *Cmp = Builder.CreateICmpULT(
5838         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5839     RangeCheckBranch =
5840         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5841     Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5842   }
5843 
5844   // Populate the BB that does the lookups.
5845   Builder.SetInsertPoint(LookupBB);
5846 
5847   if (NeedMask) {
5848     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5849     // re-purposed to do the hole check, and we create a new LookupBB.
5850     BasicBlock *MaskBB = LookupBB;
5851     MaskBB->setName("switch.hole_check");
5852     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5853                                   CommonDest->getParent(), CommonDest);
5854 
5855     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5856     // unnecessary illegal types.
5857     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5858     APInt MaskInt(TableSizePowOf2, 0);
5859     APInt One(TableSizePowOf2, 1);
5860     // Build bitmask; fill in a 1 bit for every case.
5861     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5862     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5863       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5864                          .getLimitedValue();
5865       MaskInt |= One << Idx;
5866     }
5867     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5868 
5869     // Get the TableIndex'th bit of the bitmask.
5870     // If this bit is 0 (meaning hole) jump to the default destination,
5871     // else continue with table lookup.
5872     IntegerType *MapTy = TableMask->getType();
5873     Value *MaskIndex =
5874         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5875     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5876     Value *LoBit = Builder.CreateTrunc(
5877         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5878     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5879     Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5880     Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5881     Builder.SetInsertPoint(LookupBB);
5882     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
5883   }
5884 
5885   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5886     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5887     // do not delete PHINodes here.
5888     SI->getDefaultDest()->removePredecessor(BB,
5889                                             /*KeepOneInputPHIs=*/true);
5890     Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
5891   }
5892 
5893   bool ReturnedEarly = false;
5894   for (PHINode *PHI : PHIs) {
5895     const ResultListTy &ResultList = ResultLists[PHI];
5896 
5897     // If using a bitmask, use any value to fill the lookup table holes.
5898     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5899     StringRef FuncName = Fn->getName();
5900     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5901                             FuncName);
5902 
5903     Value *Result = Table.BuildLookup(TableIndex, Builder);
5904 
5905     // If the result is used to return immediately from the function, we want to
5906     // do that right here.
5907     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5908         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5909       Builder.CreateRet(Result);
5910       ReturnedEarly = true;
5911       break;
5912     }
5913 
5914     // Do a small peephole optimization: re-use the switch table compare if
5915     // possible.
5916     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5917       BasicBlock *PhiBlock = PHI->getParent();
5918       // Search for compare instructions which use the phi.
5919       for (auto *User : PHI->users()) {
5920         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5921       }
5922     }
5923 
5924     PHI->addIncoming(Result, LookupBB);
5925   }
5926 
5927   if (!ReturnedEarly) {
5928     Builder.CreateBr(CommonDest);
5929     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
5930   }
5931 
5932   // Remove the switch.
5933   SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
5934   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5935     BasicBlock *Succ = SI->getSuccessor(i);
5936 
5937     if (Succ == SI->getDefaultDest())
5938       continue;
5939     Succ->removePredecessor(BB);
5940     RemovedSuccessors.insert(Succ);
5941   }
5942   SI->eraseFromParent();
5943 
5944   if (DTU) {
5945     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
5946       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
5947     DTU->applyUpdates(Updates);
5948   }
5949 
5950   ++NumLookupTables;
5951   if (NeedMask)
5952     ++NumLookupTablesHoles;
5953   return true;
5954 }
5955 
5956 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5957   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5958   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5959   uint64_t Range = Diff + 1;
5960   uint64_t NumCases = Values.size();
5961   // 40% is the default density for building a jump table in optsize/minsize mode.
5962   uint64_t MinDensity = 40;
5963 
5964   return NumCases * 100 >= Range * MinDensity;
5965 }
5966 
5967 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5968 /// of cases.
5969 ///
5970 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5971 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5972 ///
5973 /// This converts a sparse switch into a dense switch which allows better
5974 /// lowering and could also allow transforming into a lookup table.
5975 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5976                               const DataLayout &DL,
5977                               const TargetTransformInfo &TTI) {
5978   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5979   if (CondTy->getIntegerBitWidth() > 64 ||
5980       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5981     return false;
5982   // Only bother with this optimization if there are more than 3 switch cases;
5983   // SDAG will only bother creating jump tables for 4 or more cases.
5984   if (SI->getNumCases() < 4)
5985     return false;
5986 
5987   // This transform is agnostic to the signedness of the input or case values. We
5988   // can treat the case values as signed or unsigned. We can optimize more common
5989   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5990   // as signed.
5991   SmallVector<int64_t,4> Values;
5992   for (auto &C : SI->cases())
5993     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5994   llvm::sort(Values);
5995 
5996   // If the switch is already dense, there's nothing useful to do here.
5997   if (isSwitchDense(Values))
5998     return false;
5999 
6000   // First, transform the values such that they start at zero and ascend.
6001   int64_t Base = Values[0];
6002   for (auto &V : Values)
6003     V -= (uint64_t)(Base);
6004 
6005   // Now we have signed numbers that have been shifted so that, given enough
6006   // precision, there are no negative values. Since the rest of the transform
6007   // is bitwise only, we switch now to an unsigned representation.
6008 
6009   // This transform can be done speculatively because it is so cheap - it
6010   // results in a single rotate operation being inserted.
6011   // FIXME: It's possible that optimizing a switch on powers of two might also
6012   // be beneficial - flag values are often powers of two and we could use a CLZ
6013   // as the key function.
6014 
6015   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6016   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6017   // less than 64.
6018   unsigned Shift = 64;
6019   for (auto &V : Values)
6020     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6021   assert(Shift < 64);
6022   if (Shift > 0)
6023     for (auto &V : Values)
6024       V = (int64_t)((uint64_t)V >> Shift);
6025 
6026   if (!isSwitchDense(Values))
6027     // Transform didn't create a dense switch.
6028     return false;
6029 
6030   // The obvious transform is to shift the switch condition right and emit a
6031   // check that the condition actually cleanly divided by GCD, i.e.
6032   //   C & (1 << Shift - 1) == 0
6033   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6034   //
6035   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6036   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6037   // are nonzero then the switch condition will be very large and will hit the
6038   // default case.
6039 
6040   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6041   Builder.SetInsertPoint(SI);
6042   auto *ShiftC = ConstantInt::get(Ty, Shift);
6043   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6044   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6045   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6046   auto *Rot = Builder.CreateOr(LShr, Shl);
6047   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6048 
6049   for (auto Case : SI->cases()) {
6050     auto *Orig = Case.getCaseValue();
6051     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6052     Case.setValue(
6053         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6054   }
6055   return true;
6056 }
6057 
6058 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6059   BasicBlock *BB = SI->getParent();
6060 
6061   if (isValueEqualityComparison(SI)) {
6062     // If we only have one predecessor, and if it is a branch on this value,
6063     // see if that predecessor totally determines the outcome of this switch.
6064     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6065       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6066         return requestResimplify();
6067 
6068     Value *Cond = SI->getCondition();
6069     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6070       if (SimplifySwitchOnSelect(SI, Select))
6071         return requestResimplify();
6072 
6073     // If the block only contains the switch, see if we can fold the block
6074     // away into any preds.
6075     if (SI == &*BB->instructionsWithoutDebug().begin())
6076       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6077         return requestResimplify();
6078   }
6079 
6080   // Try to transform the switch into an icmp and a branch.
6081   if (TurnSwitchRangeIntoICmp(SI, Builder))
6082     return requestResimplify();
6083 
6084   // Remove unreachable cases.
6085   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6086     return requestResimplify();
6087 
6088   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6089     return requestResimplify();
6090 
6091   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6092     return requestResimplify();
6093 
6094   // The conversion from switch to lookup tables results in difficult-to-analyze
6095   // code and makes pruning branches much harder. This is a problem if the
6096   // switch expression itself can still be restricted as a result of inlining or
6097   // CVP. Therefore, only apply this transformation during late stages of the
6098   // optimisation pipeline.
6099   if (Options.ConvertSwitchToLookupTable &&
6100       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6101     return requestResimplify();
6102 
6103   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6104     return requestResimplify();
6105 
6106   return false;
6107 }
6108 
6109 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6110   BasicBlock *BB = IBI->getParent();
6111   bool Changed = false;
6112 
6113   // Eliminate redundant destinations.
6114   SmallPtrSet<Value *, 8> Succs;
6115   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6116   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6117     BasicBlock *Dest = IBI->getDestination(i);
6118     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6119       if (!Dest->hasAddressTaken())
6120         RemovedSuccs.insert(Dest);
6121       Dest->removePredecessor(BB);
6122       IBI->removeDestination(i);
6123       --i;
6124       --e;
6125       Changed = true;
6126     }
6127   }
6128 
6129   if (DTU) {
6130     std::vector<DominatorTree::UpdateType> Updates;
6131     Updates.reserve(RemovedSuccs.size());
6132     for (auto *RemovedSucc : RemovedSuccs)
6133       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6134     DTU->applyUpdates(Updates);
6135   }
6136 
6137   if (IBI->getNumDestinations() == 0) {
6138     // If the indirectbr has no successors, change it to unreachable.
6139     new UnreachableInst(IBI->getContext(), IBI);
6140     EraseTerminatorAndDCECond(IBI);
6141     return true;
6142   }
6143 
6144   if (IBI->getNumDestinations() == 1) {
6145     // If the indirectbr has one successor, change it to a direct branch.
6146     BranchInst::Create(IBI->getDestination(0), IBI);
6147     EraseTerminatorAndDCECond(IBI);
6148     return true;
6149   }
6150 
6151   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6152     if (SimplifyIndirectBrOnSelect(IBI, SI))
6153       return requestResimplify();
6154   }
6155   return Changed;
6156 }
6157 
6158 /// Given an block with only a single landing pad and a unconditional branch
6159 /// try to find another basic block which this one can be merged with.  This
6160 /// handles cases where we have multiple invokes with unique landing pads, but
6161 /// a shared handler.
6162 ///
6163 /// We specifically choose to not worry about merging non-empty blocks
6164 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6165 /// practice, the optimizer produces empty landing pad blocks quite frequently
6166 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6167 /// sinking in this file)
6168 ///
6169 /// This is primarily a code size optimization.  We need to avoid performing
6170 /// any transform which might inhibit optimization (such as our ability to
6171 /// specialize a particular handler via tail commoning).  We do this by not
6172 /// merging any blocks which require us to introduce a phi.  Since the same
6173 /// values are flowing through both blocks, we don't lose any ability to
6174 /// specialize.  If anything, we make such specialization more likely.
6175 ///
6176 /// TODO - This transformation could remove entries from a phi in the target
6177 /// block when the inputs in the phi are the same for the two blocks being
6178 /// merged.  In some cases, this could result in removal of the PHI entirely.
6179 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6180                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6181   auto Succ = BB->getUniqueSuccessor();
6182   assert(Succ);
6183   // If there's a phi in the successor block, we'd likely have to introduce
6184   // a phi into the merged landing pad block.
6185   if (isa<PHINode>(*Succ->begin()))
6186     return false;
6187 
6188   for (BasicBlock *OtherPred : predecessors(Succ)) {
6189     if (BB == OtherPred)
6190       continue;
6191     BasicBlock::iterator I = OtherPred->begin();
6192     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6193     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6194       continue;
6195     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6196       ;
6197     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6198     if (!BI2 || !BI2->isIdenticalTo(BI))
6199       continue;
6200 
6201     std::vector<DominatorTree::UpdateType> Updates;
6202 
6203     // We've found an identical block.  Update our predecessors to take that
6204     // path instead and make ourselves dead.
6205     SmallPtrSet<BasicBlock *, 16> Preds;
6206     Preds.insert(pred_begin(BB), pred_end(BB));
6207     for (BasicBlock *Pred : Preds) {
6208       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6209       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6210              "unexpected successor");
6211       II->setUnwindDest(OtherPred);
6212       Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6213       Updates.push_back({DominatorTree::Delete, Pred, BB});
6214     }
6215 
6216     // The debug info in OtherPred doesn't cover the merged control flow that
6217     // used to go through BB.  We need to delete it or update it.
6218     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6219       Instruction &Inst = *I;
6220       I++;
6221       if (isa<DbgInfoIntrinsic>(Inst))
6222         Inst.eraseFromParent();
6223     }
6224 
6225     SmallPtrSet<BasicBlock *, 16> Succs;
6226     Succs.insert(succ_begin(BB), succ_end(BB));
6227     for (BasicBlock *Succ : Succs) {
6228       Succ->removePredecessor(BB);
6229       Updates.push_back({DominatorTree::Delete, BB, Succ});
6230     }
6231 
6232     IRBuilder<> Builder(BI);
6233     Builder.CreateUnreachable();
6234     BI->eraseFromParent();
6235     if (DTU)
6236       DTU->applyUpdates(Updates);
6237     return true;
6238   }
6239   return false;
6240 }
6241 
6242 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6243   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6244                                    : simplifyCondBranch(Branch, Builder);
6245 }
6246 
6247 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6248                                           IRBuilder<> &Builder) {
6249   BasicBlock *BB = BI->getParent();
6250   BasicBlock *Succ = BI->getSuccessor(0);
6251 
6252   // If the Terminator is the only non-phi instruction, simplify the block.
6253   // If LoopHeader is provided, check if the block or its successor is a loop
6254   // header. (This is for early invocations before loop simplify and
6255   // vectorization to keep canonical loop forms for nested loops. These blocks
6256   // can be eliminated when the pass is invoked later in the back-end.)
6257   // Note that if BB has only one predecessor then we do not introduce new
6258   // backedge, so we can eliminate BB.
6259   bool NeedCanonicalLoop =
6260       Options.NeedCanonicalLoop &&
6261       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6262        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6263   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6264   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6265       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6266     return true;
6267 
6268   // If the only instruction in the block is a seteq/setne comparison against a
6269   // constant, try to simplify the block.
6270   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6271     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6272       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6273         ;
6274       if (I->isTerminator() &&
6275           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6276         return true;
6277     }
6278 
6279   // See if we can merge an empty landing pad block with another which is
6280   // equivalent.
6281   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6282     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6283       ;
6284     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6285       return true;
6286   }
6287 
6288   // If this basic block is ONLY a compare and a branch, and if a predecessor
6289   // branches to us and our successor, fold the comparison into the
6290   // predecessor and use logical operations to update the incoming value
6291   // for PHI nodes in common successor.
6292   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6293                              Options.BonusInstThreshold))
6294     return requestResimplify();
6295   return false;
6296 }
6297 
6298 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6299   BasicBlock *PredPred = nullptr;
6300   for (auto *P : predecessors(BB)) {
6301     BasicBlock *PPred = P->getSinglePredecessor();
6302     if (!PPred || (PredPred && PredPred != PPred))
6303       return nullptr;
6304     PredPred = PPred;
6305   }
6306   return PredPred;
6307 }
6308 
6309 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6310   BasicBlock *BB = BI->getParent();
6311   if (!Options.SimplifyCondBranch)
6312     return false;
6313 
6314   // Conditional branch
6315   if (isValueEqualityComparison(BI)) {
6316     // If we only have one predecessor, and if it is a branch on this value,
6317     // see if that predecessor totally determines the outcome of this
6318     // switch.
6319     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6320       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6321         return requestResimplify();
6322 
6323     // This block must be empty, except for the setcond inst, if it exists.
6324     // Ignore dbg and pseudo intrinsics.
6325     auto I = BB->instructionsWithoutDebug(true).begin();
6326     if (&*I == BI) {
6327       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6328         return requestResimplify();
6329     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6330       ++I;
6331       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6332         return requestResimplify();
6333     }
6334   }
6335 
6336   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6337   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6338     return true;
6339 
6340   // If this basic block has dominating predecessor blocks and the dominating
6341   // blocks' conditions imply BI's condition, we know the direction of BI.
6342   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6343   if (Imp) {
6344     // Turn this into a branch on constant.
6345     auto *OldCond = BI->getCondition();
6346     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6347                              : ConstantInt::getFalse(BB->getContext());
6348     BI->setCondition(TorF);
6349     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6350     return requestResimplify();
6351   }
6352 
6353   // If this basic block is ONLY a compare and a branch, and if a predecessor
6354   // branches to us and one of our successors, fold the comparison into the
6355   // predecessor and use logical operations to pick the right destination.
6356   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6357                              Options.BonusInstThreshold))
6358     return requestResimplify();
6359 
6360   // We have a conditional branch to two blocks that are only reachable
6361   // from BI.  We know that the condbr dominates the two blocks, so see if
6362   // there is any identical code in the "then" and "else" blocks.  If so, we
6363   // can hoist it up to the branching block.
6364   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6365     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6366       if (HoistCommon && Options.HoistCommonInsts)
6367         if (HoistThenElseCodeToIf(BI, TTI))
6368           return requestResimplify();
6369     } else {
6370       // If Successor #1 has multiple preds, we may be able to conditionally
6371       // execute Successor #0 if it branches to Successor #1.
6372       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6373       if (Succ0TI->getNumSuccessors() == 1 &&
6374           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6375         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6376           return requestResimplify();
6377     }
6378   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6379     // If Successor #0 has multiple preds, we may be able to conditionally
6380     // execute Successor #1 if it branches to Successor #0.
6381     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6382     if (Succ1TI->getNumSuccessors() == 1 &&
6383         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6384       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6385         return requestResimplify();
6386   }
6387 
6388   // If this is a branch on a phi node in the current block, thread control
6389   // through this block if any PHI node entries are constants.
6390   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6391     if (PN->getParent() == BI->getParent())
6392       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6393         return requestResimplify();
6394 
6395   // Scan predecessor blocks for conditional branches.
6396   for (BasicBlock *Pred : predecessors(BB))
6397     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6398       if (PBI != BI && PBI->isConditional())
6399         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6400           return requestResimplify();
6401 
6402   // Look for diamond patterns.
6403   if (MergeCondStores)
6404     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6405       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6406         if (PBI != BI && PBI->isConditional())
6407           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6408             return requestResimplify();
6409 
6410   return false;
6411 }
6412 
6413 /// Check if passing a value to an instruction will cause undefined behavior.
6414 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6415   Constant *C = dyn_cast<Constant>(V);
6416   if (!C)
6417     return false;
6418 
6419   if (I->use_empty())
6420     return false;
6421 
6422   if (C->isNullValue() || isa<UndefValue>(C)) {
6423     // Only look at the first use, avoid hurting compile time with long uselists
6424     User *Use = *I->user_begin();
6425 
6426     // Now make sure that there are no instructions in between that can alter
6427     // control flow (eg. calls)
6428     for (BasicBlock::iterator
6429              i = ++BasicBlock::iterator(I),
6430              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6431          i != UI; ++i)
6432       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6433         return false;
6434 
6435     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6436     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6437       if (GEP->getPointerOperand() == I) {
6438         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6439           PtrValueMayBeModified = true;
6440         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6441       }
6442 
6443     // Look through bitcasts.
6444     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6445       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6446 
6447     // Load from null is undefined.
6448     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6449       if (!LI->isVolatile())
6450         return !NullPointerIsDefined(LI->getFunction(),
6451                                      LI->getPointerAddressSpace());
6452 
6453     // Store to null is undefined.
6454     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6455       if (!SI->isVolatile())
6456         return (!NullPointerIsDefined(SI->getFunction(),
6457                                       SI->getPointerAddressSpace())) &&
6458                SI->getPointerOperand() == I;
6459 
6460     if (auto *CB = dyn_cast<CallBase>(Use)) {
6461       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6462         return false;
6463       // A call to null is undefined.
6464       if (CB->getCalledOperand() == I)
6465         return true;
6466 
6467       if (C->isNullValue()) {
6468         for (const llvm::Use &Arg : CB->args())
6469           if (Arg == I) {
6470             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6471             if (CB->isPassingUndefUB(ArgIdx) &&
6472                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6473               // Passing null to a nonnnull+noundef argument is undefined.
6474               return !PtrValueMayBeModified;
6475             }
6476           }
6477       } else if (isa<UndefValue>(C)) {
6478         // Passing undef to a noundef argument is undefined.
6479         for (const llvm::Use &Arg : CB->args())
6480           if (Arg == I) {
6481             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6482             if (CB->isPassingUndefUB(ArgIdx)) {
6483               // Passing undef to a noundef argument is undefined.
6484               return true;
6485             }
6486           }
6487       }
6488     }
6489   }
6490   return false;
6491 }
6492 
6493 /// If BB has an incoming value that will always trigger undefined behavior
6494 /// (eg. null pointer dereference), remove the branch leading here.
6495 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6496                                               DomTreeUpdater *DTU) {
6497   for (PHINode &PHI : BB->phis())
6498     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6499       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6500         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6501         Instruction *T = Predecessor->getTerminator();
6502         IRBuilder<> Builder(T);
6503         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6504           BB->removePredecessor(Predecessor);
6505           // Turn uncoditional branches into unreachables and remove the dead
6506           // destination from conditional branches.
6507           if (BI->isUnconditional())
6508             Builder.CreateUnreachable();
6509           else
6510             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6511                                                        : BI->getSuccessor(0));
6512           BI->eraseFromParent();
6513           if (DTU)
6514             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6515           return true;
6516         }
6517         // TODO: SwitchInst.
6518       }
6519 
6520   return false;
6521 }
6522 
6523 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6524   bool Changed = false;
6525 
6526   assert(BB && BB->getParent() && "Block not embedded in function!");
6527   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6528 
6529   // Remove basic blocks that have no predecessors (except the entry block)...
6530   // or that just have themself as a predecessor.  These are unreachable.
6531   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6532       BB->getSinglePredecessor() == BB) {
6533     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6534     DeleteDeadBlock(BB, DTU);
6535     return true;
6536   }
6537 
6538   // Check to see if we can constant propagate this terminator instruction
6539   // away...
6540   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6541                                     /*TLI=*/nullptr, DTU);
6542 
6543   // Check for and eliminate duplicate PHI nodes in this block.
6544   Changed |= EliminateDuplicatePHINodes(BB);
6545 
6546   // Check for and remove branches that will always cause undefined behavior.
6547   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6548 
6549   // Merge basic blocks into their predecessor if there is only one distinct
6550   // pred, and if there is only one distinct successor of the predecessor, and
6551   // if there are no PHI nodes.
6552   if (MergeBlockIntoPredecessor(BB, DTU))
6553     return true;
6554 
6555   if (SinkCommon && Options.SinkCommonInsts)
6556     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6557 
6558   IRBuilder<> Builder(BB);
6559 
6560   if (Options.FoldTwoEntryPHINode) {
6561     // If there is a trivial two-entry PHI node in this basic block, and we can
6562     // eliminate it, do so now.
6563     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6564       if (PN->getNumIncomingValues() == 2)
6565         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6566   }
6567 
6568   Instruction *Terminator = BB->getTerminator();
6569   Builder.SetInsertPoint(Terminator);
6570   switch (Terminator->getOpcode()) {
6571   case Instruction::Br:
6572     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6573     break;
6574   case Instruction::Ret:
6575     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6576     break;
6577   case Instruction::Resume:
6578     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6579     break;
6580   case Instruction::CleanupRet:
6581     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6582     break;
6583   case Instruction::Switch:
6584     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6585     break;
6586   case Instruction::Unreachable:
6587     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6588     break;
6589   case Instruction::IndirectBr:
6590     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6591     break;
6592   }
6593 
6594   return Changed;
6595 }
6596 
6597 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6598   bool Changed = simplifyOnceImpl(BB);
6599 
6600   return Changed;
6601 }
6602 
6603 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6604   bool Changed = false;
6605 
6606   // Repeated simplify BB as long as resimplification is requested.
6607   do {
6608     Resimplify = false;
6609 
6610     // Perform one round of simplifcation. Resimplify flag will be set if
6611     // another iteration is requested.
6612     Changed |= simplifyOnce(BB);
6613   } while (Resimplify);
6614 
6615   return Changed;
6616 }
6617 
6618 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6619                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6620                        ArrayRef<WeakVH> LoopHeaders) {
6621   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6622                         Options)
6623       .run(BB);
6624 }
6625