1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfo.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/NoFolder.h" 53 #include "llvm/IR/Operator.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/DebugInfo.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <climits> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <map> 75 #include <set> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 using namespace PatternMatch; 81 82 #define DEBUG_TYPE "simplifycfg" 83 84 // Chosen as 2 so as to be cheap, but still to have enough power to fold 85 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 86 // To catch this, we need to fold a compare and a select, hence '2' being the 87 // minimum reasonable default. 88 static cl::opt<unsigned> PHINodeFoldingThreshold( 89 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 90 cl::desc( 91 "Control the amount of phi node folding to perform (default = 2)")); 92 93 static cl::opt<bool> DupRet( 94 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 95 cl::desc("Duplicate return instructions into unconditional branches")); 96 97 static cl::opt<bool> 98 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 99 cl::desc("Sink common instructions down to the end block")); 100 101 static cl::opt<bool> HoistCondStores( 102 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 103 cl::desc("Hoist conditional stores if an unconditional store precedes")); 104 105 static cl::opt<bool> MergeCondStores( 106 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores even if an unconditional store does not " 108 "precede - hoist multiple conditional stores into a single " 109 "predicated store")); 110 111 static cl::opt<bool> MergeCondStoresAggressively( 112 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 113 cl::desc("When merging conditional stores, do so even if the resultant " 114 "basic blocks are unlikely to be if-converted as a result")); 115 116 static cl::opt<bool> SpeculateOneExpensiveInst( 117 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 118 cl::desc("Allow exactly one expensive instruction to be speculatively " 119 "executed")); 120 121 static cl::opt<unsigned> MaxSpeculationDepth( 122 "max-speculation-depth", cl::Hidden, cl::init(10), 123 cl::desc("Limit maximum recursion depth when calculating costs of " 124 "speculatively executed instructions")); 125 126 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 127 STATISTIC(NumLinearMaps, 128 "Number of switch instructions turned into linear mapping"); 129 STATISTIC(NumLookupTables, 130 "Number of switch instructions turned into lookup tables"); 131 STATISTIC( 132 NumLookupTablesHoles, 133 "Number of switch instructions turned into lookup tables (holes checked)"); 134 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 135 STATISTIC(NumSinkCommons, 136 "Number of common instructions sunk down to the end block"); 137 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 138 139 namespace { 140 141 // The first field contains the value that the switch produces when a certain 142 // case group is selected, and the second field is a vector containing the 143 // cases composing the case group. 144 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 145 SwitchCaseResultVectorTy; 146 // The first field contains the phi node that generates a result of the switch 147 // and the second field contains the value generated for a certain case in the 148 // switch for that PHI. 149 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 150 151 /// ValueEqualityComparisonCase - Represents a case of a switch. 152 struct ValueEqualityComparisonCase { 153 ConstantInt *Value; 154 BasicBlock *Dest; 155 156 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 157 : Value(Value), Dest(Dest) {} 158 159 bool operator<(ValueEqualityComparisonCase RHS) const { 160 // Comparing pointers is ok as we only rely on the order for uniquing. 161 return Value < RHS.Value; 162 } 163 164 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 165 }; 166 167 class SimplifyCFGOpt { 168 const TargetTransformInfo &TTI; 169 const DataLayout &DL; 170 unsigned BonusInstThreshold; 171 AssumptionCache *AC; 172 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 173 Value *isValueEqualityComparison(TerminatorInst *TI); 174 BasicBlock *GetValueEqualityComparisonCases( 175 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 176 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 177 BasicBlock *Pred, 178 IRBuilder<> &Builder); 179 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 180 IRBuilder<> &Builder); 181 182 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 183 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 184 bool SimplifySingleResume(ResumeInst *RI); 185 bool SimplifyCommonResume(ResumeInst *RI); 186 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 187 bool SimplifyUnreachable(UnreachableInst *UI); 188 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 189 bool SimplifyIndirectBr(IndirectBrInst *IBI); 190 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 191 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 192 193 public: 194 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 195 unsigned BonusInstThreshold, AssumptionCache *AC, 196 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 197 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 198 LoopHeaders(LoopHeaders) {} 199 200 bool run(BasicBlock *BB); 201 }; 202 203 } // end anonymous namespace 204 205 /// Return true if it is safe to merge these two 206 /// terminator instructions together. 207 static bool 208 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 209 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 210 if (SI1 == SI2) 211 return false; // Can't merge with self! 212 213 // It is not safe to merge these two switch instructions if they have a common 214 // successor, and if that successor has a PHI node, and if *that* PHI node has 215 // conflicting incoming values from the two switch blocks. 216 BasicBlock *SI1BB = SI1->getParent(); 217 BasicBlock *SI2BB = SI2->getParent(); 218 219 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 220 bool Fail = false; 221 for (BasicBlock *Succ : successors(SI2BB)) 222 if (SI1Succs.count(Succ)) 223 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 224 PHINode *PN = cast<PHINode>(BBI); 225 if (PN->getIncomingValueForBlock(SI1BB) != 226 PN->getIncomingValueForBlock(SI2BB)) { 227 if (FailBlocks) 228 FailBlocks->insert(Succ); 229 Fail = true; 230 } 231 } 232 233 return !Fail; 234 } 235 236 /// Return true if it is safe and profitable to merge these two terminator 237 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 238 /// store all PHI nodes in common successors. 239 static bool 240 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 241 Instruction *Cond, 242 SmallVectorImpl<PHINode *> &PhiNodes) { 243 if (SI1 == SI2) 244 return false; // Can't merge with self! 245 assert(SI1->isUnconditional() && SI2->isConditional()); 246 247 // We fold the unconditional branch if we can easily update all PHI nodes in 248 // common successors: 249 // 1> We have a constant incoming value for the conditional branch; 250 // 2> We have "Cond" as the incoming value for the unconditional branch; 251 // 3> SI2->getCondition() and Cond have same operands. 252 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 253 if (!Ci2) 254 return false; 255 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 256 Cond->getOperand(1) == Ci2->getOperand(1)) && 257 !(Cond->getOperand(0) == Ci2->getOperand(1) && 258 Cond->getOperand(1) == Ci2->getOperand(0))) 259 return false; 260 261 BasicBlock *SI1BB = SI1->getParent(); 262 BasicBlock *SI2BB = SI2->getParent(); 263 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 264 for (BasicBlock *Succ : successors(SI2BB)) 265 if (SI1Succs.count(Succ)) 266 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 267 PHINode *PN = cast<PHINode>(BBI); 268 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 269 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 270 return false; 271 PhiNodes.push_back(PN); 272 } 273 return true; 274 } 275 276 /// Update PHI nodes in Succ to indicate that there will now be entries in it 277 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 278 /// will be the same as those coming in from ExistPred, an existing predecessor 279 /// of Succ. 280 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 281 BasicBlock *ExistPred) { 282 if (!isa<PHINode>(Succ->begin())) 283 return; // Quick exit if nothing to do 284 285 PHINode *PN; 286 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 287 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 288 } 289 290 /// Compute an abstract "cost" of speculating the given instruction, 291 /// which is assumed to be safe to speculate. TCC_Free means cheap, 292 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 293 /// expensive. 294 static unsigned ComputeSpeculationCost(const User *I, 295 const TargetTransformInfo &TTI) { 296 assert(isSafeToSpeculativelyExecute(I) && 297 "Instruction is not safe to speculatively execute!"); 298 return TTI.getUserCost(I); 299 } 300 301 /// If we have a merge point of an "if condition" as accepted above, 302 /// return true if the specified value dominates the block. We 303 /// don't handle the true generality of domination here, just a special case 304 /// which works well enough for us. 305 /// 306 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 307 /// see if V (which must be an instruction) and its recursive operands 308 /// that do not dominate BB have a combined cost lower than CostRemaining and 309 /// are non-trapping. If both are true, the instruction is inserted into the 310 /// set and true is returned. 311 /// 312 /// The cost for most non-trapping instructions is defined as 1 except for 313 /// Select whose cost is 2. 314 /// 315 /// After this function returns, CostRemaining is decreased by the cost of 316 /// V plus its non-dominating operands. If that cost is greater than 317 /// CostRemaining, false is returned and CostRemaining is undefined. 318 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 319 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 320 unsigned &CostRemaining, 321 const TargetTransformInfo &TTI, 322 unsigned Depth = 0) { 323 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 324 // so limit the recursion depth. 325 // TODO: While this recursion limit does prevent pathological behavior, it 326 // would be better to track visited instructions to avoid cycles. 327 if (Depth == MaxSpeculationDepth) 328 return false; 329 330 Instruction *I = dyn_cast<Instruction>(V); 331 if (!I) { 332 // Non-instructions all dominate instructions, but not all constantexprs 333 // can be executed unconditionally. 334 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 335 if (C->canTrap()) 336 return false; 337 return true; 338 } 339 BasicBlock *PBB = I->getParent(); 340 341 // We don't want to allow weird loops that might have the "if condition" in 342 // the bottom of this block. 343 if (PBB == BB) 344 return false; 345 346 // If this instruction is defined in a block that contains an unconditional 347 // branch to BB, then it must be in the 'conditional' part of the "if 348 // statement". If not, it definitely dominates the region. 349 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 350 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 351 return true; 352 353 // If we aren't allowing aggressive promotion anymore, then don't consider 354 // instructions in the 'if region'. 355 if (!AggressiveInsts) 356 return false; 357 358 // If we have seen this instruction before, don't count it again. 359 if (AggressiveInsts->count(I)) 360 return true; 361 362 // Okay, it looks like the instruction IS in the "condition". Check to 363 // see if it's a cheap instruction to unconditionally compute, and if it 364 // only uses stuff defined outside of the condition. If so, hoist it out. 365 if (!isSafeToSpeculativelyExecute(I)) 366 return false; 367 368 unsigned Cost = ComputeSpeculationCost(I, TTI); 369 370 // Allow exactly one instruction to be speculated regardless of its cost 371 // (as long as it is safe to do so). 372 // This is intended to flatten the CFG even if the instruction is a division 373 // or other expensive operation. The speculation of an expensive instruction 374 // is expected to be undone in CodeGenPrepare if the speculation has not 375 // enabled further IR optimizations. 376 if (Cost > CostRemaining && 377 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 378 return false; 379 380 // Avoid unsigned wrap. 381 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 382 383 // Okay, we can only really hoist these out if their operands do 384 // not take us over the cost threshold. 385 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 386 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 387 Depth + 1)) 388 return false; 389 // Okay, it's safe to do this! Remember this instruction. 390 AggressiveInsts->insert(I); 391 return true; 392 } 393 394 /// Extract ConstantInt from value, looking through IntToPtr 395 /// and PointerNullValue. Return NULL if value is not a constant int. 396 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 397 // Normal constant int. 398 ConstantInt *CI = dyn_cast<ConstantInt>(V); 399 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 400 return CI; 401 402 // This is some kind of pointer constant. Turn it into a pointer-sized 403 // ConstantInt if possible. 404 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 405 406 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 407 if (isa<ConstantPointerNull>(V)) 408 return ConstantInt::get(PtrTy, 0); 409 410 // IntToPtr const int. 411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 412 if (CE->getOpcode() == Instruction::IntToPtr) 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 414 // The constant is very likely to have the right type already. 415 if (CI->getType() == PtrTy) 416 return CI; 417 else 418 return cast<ConstantInt>( 419 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 420 } 421 return nullptr; 422 } 423 424 namespace { 425 426 /// Given a chain of or (||) or and (&&) comparison of a value against a 427 /// constant, this will try to recover the information required for a switch 428 /// structure. 429 /// It will depth-first traverse the chain of comparison, seeking for patterns 430 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 431 /// representing the different cases for the switch. 432 /// Note that if the chain is composed of '||' it will build the set of elements 433 /// that matches the comparisons (i.e. any of this value validate the chain) 434 /// while for a chain of '&&' it will build the set elements that make the test 435 /// fail. 436 struct ConstantComparesGatherer { 437 const DataLayout &DL; 438 Value *CompValue; /// Value found for the switch comparison 439 Value *Extra; /// Extra clause to be checked before the switch 440 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 441 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 442 443 /// Construct and compute the result for the comparison instruction Cond 444 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 445 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 446 gather(Cond); 447 } 448 449 /// Prevent copy 450 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 451 ConstantComparesGatherer & 452 operator=(const ConstantComparesGatherer &) = delete; 453 454 private: 455 /// Try to set the current value used for the comparison, it succeeds only if 456 /// it wasn't set before or if the new value is the same as the old one 457 bool setValueOnce(Value *NewVal) { 458 if (CompValue && CompValue != NewVal) 459 return false; 460 CompValue = NewVal; 461 return (CompValue != nullptr); 462 } 463 464 /// Try to match Instruction "I" as a comparison against a constant and 465 /// populates the array Vals with the set of values that match (or do not 466 /// match depending on isEQ). 467 /// Return false on failure. On success, the Value the comparison matched 468 /// against is placed in CompValue. 469 /// If CompValue is already set, the function is expected to fail if a match 470 /// is found but the value compared to is different. 471 bool matchInstruction(Instruction *I, bool isEQ) { 472 // If this is an icmp against a constant, handle this as one of the cases. 473 ICmpInst *ICI; 474 ConstantInt *C; 475 if (!((ICI = dyn_cast<ICmpInst>(I)) && 476 (C = GetConstantInt(I->getOperand(1), DL)))) { 477 return false; 478 } 479 480 Value *RHSVal; 481 const APInt *RHSC; 482 483 // Pattern match a special case 484 // (x & ~2^z) == y --> x == y || x == y|2^z 485 // This undoes a transformation done by instcombine to fuse 2 compares. 486 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 487 488 // It's a little bit hard to see why the following transformations are 489 // correct. Here is a CVC3 program to verify them for 64-bit values: 490 491 /* 492 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 493 x : BITVECTOR(64); 494 y : BITVECTOR(64); 495 z : BITVECTOR(64); 496 mask : BITVECTOR(64) = BVSHL(ONE, z); 497 QUERY( (y & ~mask = y) => 498 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 499 ); 500 QUERY( (y | mask = y) => 501 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 502 ); 503 */ 504 505 // Please note that each pattern must be a dual implication (<--> or 506 // iff). One directional implication can create spurious matches. If the 507 // implication is only one-way, an unsatisfiable condition on the left 508 // side can imply a satisfiable condition on the right side. Dual 509 // implication ensures that satisfiable conditions are transformed to 510 // other satisfiable conditions and unsatisfiable conditions are 511 // transformed to other unsatisfiable conditions. 512 513 // Here is a concrete example of a unsatisfiable condition on the left 514 // implying a satisfiable condition on the right: 515 // 516 // mask = (1 << z) 517 // (x & ~mask) == y --> (x == y || x == (y | mask)) 518 // 519 // Substituting y = 3, z = 0 yields: 520 // (x & -2) == 3 --> (x == 3 || x == 2) 521 522 // Pattern match a special case: 523 /* 524 QUERY( (y & ~mask = y) => 525 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 526 ); 527 */ 528 if (match(ICI->getOperand(0), 529 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 530 APInt Mask = ~*RHSC; 531 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 532 // If we already have a value for the switch, it has to match! 533 if (!setValueOnce(RHSVal)) 534 return false; 535 536 Vals.push_back(C); 537 Vals.push_back( 538 ConstantInt::get(C->getContext(), 539 C->getValue() | Mask)); 540 UsedICmps++; 541 return true; 542 } 543 } 544 545 // Pattern match a special case: 546 /* 547 QUERY( (y | mask = y) => 548 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 549 ); 550 */ 551 if (match(ICI->getOperand(0), 552 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 553 APInt Mask = *RHSC; 554 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 555 // If we already have a value for the switch, it has to match! 556 if (!setValueOnce(RHSVal)) 557 return false; 558 559 Vals.push_back(C); 560 Vals.push_back(ConstantInt::get(C->getContext(), 561 C->getValue() & ~Mask)); 562 UsedICmps++; 563 return true; 564 } 565 } 566 567 // If we already have a value for the switch, it has to match! 568 if (!setValueOnce(ICI->getOperand(0))) 569 return false; 570 571 UsedICmps++; 572 Vals.push_back(C); 573 return ICI->getOperand(0); 574 } 575 576 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 577 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 578 ICI->getPredicate(), C->getValue()); 579 580 // Shift the range if the compare is fed by an add. This is the range 581 // compare idiom as emitted by instcombine. 582 Value *CandidateVal = I->getOperand(0); 583 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 584 Span = Span.subtract(*RHSC); 585 CandidateVal = RHSVal; 586 } 587 588 // If this is an and/!= check, then we are looking to build the set of 589 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 590 // x != 0 && x != 1. 591 if (!isEQ) 592 Span = Span.inverse(); 593 594 // If there are a ton of values, we don't want to make a ginormous switch. 595 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 596 return false; 597 } 598 599 // If we already have a value for the switch, it has to match! 600 if (!setValueOnce(CandidateVal)) 601 return false; 602 603 // Add all values from the range to the set 604 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 605 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 606 607 UsedICmps++; 608 return true; 609 } 610 611 /// Given a potentially 'or'd or 'and'd together collection of icmp 612 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 613 /// the value being compared, and stick the list constants into the Vals 614 /// vector. 615 /// One "Extra" case is allowed to differ from the other. 616 void gather(Value *V) { 617 Instruction *I = dyn_cast<Instruction>(V); 618 bool isEQ = (I->getOpcode() == Instruction::Or); 619 620 // Keep a stack (SmallVector for efficiency) for depth-first traversal 621 SmallVector<Value *, 8> DFT; 622 SmallPtrSet<Value *, 8> Visited; 623 624 // Initialize 625 Visited.insert(V); 626 DFT.push_back(V); 627 628 while (!DFT.empty()) { 629 V = DFT.pop_back_val(); 630 631 if (Instruction *I = dyn_cast<Instruction>(V)) { 632 // If it is a || (or && depending on isEQ), process the operands. 633 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 634 if (Visited.insert(I->getOperand(1)).second) 635 DFT.push_back(I->getOperand(1)); 636 if (Visited.insert(I->getOperand(0)).second) 637 DFT.push_back(I->getOperand(0)); 638 continue; 639 } 640 641 // Try to match the current instruction 642 if (matchInstruction(I, isEQ)) 643 // Match succeed, continue the loop 644 continue; 645 } 646 647 // One element of the sequence of || (or &&) could not be match as a 648 // comparison against the same value as the others. 649 // We allow only one "Extra" case to be checked before the switch 650 if (!Extra) { 651 Extra = V; 652 continue; 653 } 654 // Failed to parse a proper sequence, abort now 655 CompValue = nullptr; 656 break; 657 } 658 } 659 }; 660 661 } // end anonymous namespace 662 663 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 664 Instruction *Cond = nullptr; 665 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 666 Cond = dyn_cast<Instruction>(SI->getCondition()); 667 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 668 if (BI->isConditional()) 669 Cond = dyn_cast<Instruction>(BI->getCondition()); 670 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 671 Cond = dyn_cast<Instruction>(IBI->getAddress()); 672 } 673 674 TI->eraseFromParent(); 675 if (Cond) 676 RecursivelyDeleteTriviallyDeadInstructions(Cond); 677 } 678 679 /// Return true if the specified terminator checks 680 /// to see if a value is equal to constant integer value. 681 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 682 Value *CV = nullptr; 683 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 684 // Do not permit merging of large switch instructions into their 685 // predecessors unless there is only one predecessor. 686 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 687 pred_end(SI->getParent())) <= 688 128) 689 CV = SI->getCondition(); 690 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 691 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 692 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 693 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 694 CV = ICI->getOperand(0); 695 } 696 697 // Unwrap any lossless ptrtoint cast. 698 if (CV) { 699 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 700 Value *Ptr = PTII->getPointerOperand(); 701 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 702 CV = Ptr; 703 } 704 } 705 return CV; 706 } 707 708 /// Given a value comparison instruction, 709 /// decode all of the 'cases' that it represents and return the 'default' block. 710 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 711 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 712 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 713 Cases.reserve(SI->getNumCases()); 714 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 715 ++i) 716 Cases.push_back( 717 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 718 return SI->getDefaultDest(); 719 } 720 721 BranchInst *BI = cast<BranchInst>(TI); 722 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 723 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 724 Cases.push_back(ValueEqualityComparisonCase( 725 GetConstantInt(ICI->getOperand(1), DL), Succ)); 726 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 727 } 728 729 /// Given a vector of bb/value pairs, remove any entries 730 /// in the list that match the specified block. 731 static void 732 EliminateBlockCases(BasicBlock *BB, 733 std::vector<ValueEqualityComparisonCase> &Cases) { 734 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 735 } 736 737 /// Return true if there are any keys in C1 that exist in C2 as well. 738 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 739 std::vector<ValueEqualityComparisonCase> &C2) { 740 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 741 742 // Make V1 be smaller than V2. 743 if (V1->size() > V2->size()) 744 std::swap(V1, V2); 745 746 if (V1->empty()) 747 return false; 748 if (V1->size() == 1) { 749 // Just scan V2. 750 ConstantInt *TheVal = (*V1)[0].Value; 751 for (unsigned i = 0, e = V2->size(); i != e; ++i) 752 if (TheVal == (*V2)[i].Value) 753 return true; 754 } 755 756 // Otherwise, just sort both lists and compare element by element. 757 array_pod_sort(V1->begin(), V1->end()); 758 array_pod_sort(V2->begin(), V2->end()); 759 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 760 while (i1 != e1 && i2 != e2) { 761 if ((*V1)[i1].Value == (*V2)[i2].Value) 762 return true; 763 if ((*V1)[i1].Value < (*V2)[i2].Value) 764 ++i1; 765 else 766 ++i2; 767 } 768 return false; 769 } 770 771 /// If TI is known to be a terminator instruction and its block is known to 772 /// only have a single predecessor block, check to see if that predecessor is 773 /// also a value comparison with the same value, and if that comparison 774 /// determines the outcome of this comparison. If so, simplify TI. This does a 775 /// very limited form of jump threading. 776 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 777 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 778 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 779 if (!PredVal) 780 return false; // Not a value comparison in predecessor. 781 782 Value *ThisVal = isValueEqualityComparison(TI); 783 assert(ThisVal && "This isn't a value comparison!!"); 784 if (ThisVal != PredVal) 785 return false; // Different predicates. 786 787 // TODO: Preserve branch weight metadata, similarly to how 788 // FoldValueComparisonIntoPredecessors preserves it. 789 790 // Find out information about when control will move from Pred to TI's block. 791 std::vector<ValueEqualityComparisonCase> PredCases; 792 BasicBlock *PredDef = 793 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 794 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 795 796 // Find information about how control leaves this block. 797 std::vector<ValueEqualityComparisonCase> ThisCases; 798 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 799 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 800 801 // If TI's block is the default block from Pred's comparison, potentially 802 // simplify TI based on this knowledge. 803 if (PredDef == TI->getParent()) { 804 // If we are here, we know that the value is none of those cases listed in 805 // PredCases. If there are any cases in ThisCases that are in PredCases, we 806 // can simplify TI. 807 if (!ValuesOverlap(PredCases, ThisCases)) 808 return false; 809 810 if (isa<BranchInst>(TI)) { 811 // Okay, one of the successors of this condbr is dead. Convert it to a 812 // uncond br. 813 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 814 // Insert the new branch. 815 Instruction *NI = Builder.CreateBr(ThisDef); 816 (void)NI; 817 818 // Remove PHI node entries for the dead edge. 819 ThisCases[0].Dest->removePredecessor(TI->getParent()); 820 821 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 822 << "Through successor TI: " << *TI << "Leaving: " << *NI 823 << "\n"); 824 825 EraseTerminatorInstAndDCECond(TI); 826 return true; 827 } 828 829 SwitchInst *SI = cast<SwitchInst>(TI); 830 // Okay, TI has cases that are statically dead, prune them away. 831 SmallPtrSet<Constant *, 16> DeadCases; 832 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 833 DeadCases.insert(PredCases[i].Value); 834 835 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 836 << "Through successor TI: " << *TI); 837 838 // Collect branch weights into a vector. 839 SmallVector<uint32_t, 8> Weights; 840 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 841 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 842 if (HasWeight) 843 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 844 ++MD_i) { 845 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 846 Weights.push_back(CI->getValue().getZExtValue()); 847 } 848 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 849 --i; 850 if (DeadCases.count(i.getCaseValue())) { 851 if (HasWeight) { 852 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 853 Weights.pop_back(); 854 } 855 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 856 SI->removeCase(i); 857 } 858 } 859 if (HasWeight && Weights.size() >= 2) 860 SI->setMetadata(LLVMContext::MD_prof, 861 MDBuilder(SI->getParent()->getContext()) 862 .createBranchWeights(Weights)); 863 864 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 865 return true; 866 } 867 868 // Otherwise, TI's block must correspond to some matched value. Find out 869 // which value (or set of values) this is. 870 ConstantInt *TIV = nullptr; 871 BasicBlock *TIBB = TI->getParent(); 872 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 873 if (PredCases[i].Dest == TIBB) { 874 if (TIV) 875 return false; // Cannot handle multiple values coming to this block. 876 TIV = PredCases[i].Value; 877 } 878 assert(TIV && "No edge from pred to succ?"); 879 880 // Okay, we found the one constant that our value can be if we get into TI's 881 // BB. Find out which successor will unconditionally be branched to. 882 BasicBlock *TheRealDest = nullptr; 883 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 884 if (ThisCases[i].Value == TIV) { 885 TheRealDest = ThisCases[i].Dest; 886 break; 887 } 888 889 // If not handled by any explicit cases, it is handled by the default case. 890 if (!TheRealDest) 891 TheRealDest = ThisDef; 892 893 // Remove PHI node entries for dead edges. 894 BasicBlock *CheckEdge = TheRealDest; 895 for (BasicBlock *Succ : successors(TIBB)) 896 if (Succ != CheckEdge) 897 Succ->removePredecessor(TIBB); 898 else 899 CheckEdge = nullptr; 900 901 // Insert the new branch. 902 Instruction *NI = Builder.CreateBr(TheRealDest); 903 (void)NI; 904 905 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 906 << "Through successor TI: " << *TI << "Leaving: " << *NI 907 << "\n"); 908 909 EraseTerminatorInstAndDCECond(TI); 910 return true; 911 } 912 913 namespace { 914 915 /// This class implements a stable ordering of constant 916 /// integers that does not depend on their address. This is important for 917 /// applications that sort ConstantInt's to ensure uniqueness. 918 struct ConstantIntOrdering { 919 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 920 return LHS->getValue().ult(RHS->getValue()); 921 } 922 }; 923 924 } // end anonymous namespace 925 926 static int ConstantIntSortPredicate(ConstantInt *const *P1, 927 ConstantInt *const *P2) { 928 const ConstantInt *LHS = *P1; 929 const ConstantInt *RHS = *P2; 930 if (LHS == RHS) 931 return 0; 932 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 933 } 934 935 static inline bool HasBranchWeights(const Instruction *I) { 936 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 937 if (ProfMD && ProfMD->getOperand(0)) 938 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 939 return MDS->getString().equals("branch_weights"); 940 941 return false; 942 } 943 944 /// Get Weights of a given TerminatorInst, the default weight is at the front 945 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 946 /// metadata. 947 static void GetBranchWeights(TerminatorInst *TI, 948 SmallVectorImpl<uint64_t> &Weights) { 949 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 950 assert(MD); 951 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 952 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 953 Weights.push_back(CI->getValue().getZExtValue()); 954 } 955 956 // If TI is a conditional eq, the default case is the false case, 957 // and the corresponding branch-weight data is at index 2. We swap the 958 // default weight to be the first entry. 959 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 960 assert(Weights.size() == 2); 961 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 962 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 963 std::swap(Weights.front(), Weights.back()); 964 } 965 } 966 967 /// Keep halving the weights until all can fit in uint32_t. 968 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 969 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 970 if (Max > UINT_MAX) { 971 unsigned Offset = 32 - countLeadingZeros(Max); 972 for (uint64_t &I : Weights) 973 I >>= Offset; 974 } 975 } 976 977 /// The specified terminator is a value equality comparison instruction 978 /// (either a switch or a branch on "X == c"). 979 /// See if any of the predecessors of the terminator block are value comparisons 980 /// on the same value. If so, and if safe to do so, fold them together. 981 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 982 IRBuilder<> &Builder) { 983 BasicBlock *BB = TI->getParent(); 984 Value *CV = isValueEqualityComparison(TI); // CondVal 985 assert(CV && "Not a comparison?"); 986 bool Changed = false; 987 988 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 989 while (!Preds.empty()) { 990 BasicBlock *Pred = Preds.pop_back_val(); 991 992 // See if the predecessor is a comparison with the same value. 993 TerminatorInst *PTI = Pred->getTerminator(); 994 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 995 996 if (PCV == CV && TI != PTI) { 997 SmallSetVector<BasicBlock*, 4> FailBlocks; 998 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 999 for (auto *Succ : FailBlocks) { 1000 std::vector<BasicBlock*> Blocks = { TI->getParent() }; 1001 if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split")) 1002 return false; 1003 } 1004 } 1005 1006 // Figure out which 'cases' to copy from SI to PSI. 1007 std::vector<ValueEqualityComparisonCase> BBCases; 1008 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1009 1010 std::vector<ValueEqualityComparisonCase> PredCases; 1011 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1012 1013 // Based on whether the default edge from PTI goes to BB or not, fill in 1014 // PredCases and PredDefault with the new switch cases we would like to 1015 // build. 1016 SmallVector<BasicBlock *, 8> NewSuccessors; 1017 1018 // Update the branch weight metadata along the way 1019 SmallVector<uint64_t, 8> Weights; 1020 bool PredHasWeights = HasBranchWeights(PTI); 1021 bool SuccHasWeights = HasBranchWeights(TI); 1022 1023 if (PredHasWeights) { 1024 GetBranchWeights(PTI, Weights); 1025 // branch-weight metadata is inconsistent here. 1026 if (Weights.size() != 1 + PredCases.size()) 1027 PredHasWeights = SuccHasWeights = false; 1028 } else if (SuccHasWeights) 1029 // If there are no predecessor weights but there are successor weights, 1030 // populate Weights with 1, which will later be scaled to the sum of 1031 // successor's weights 1032 Weights.assign(1 + PredCases.size(), 1); 1033 1034 SmallVector<uint64_t, 8> SuccWeights; 1035 if (SuccHasWeights) { 1036 GetBranchWeights(TI, SuccWeights); 1037 // branch-weight metadata is inconsistent here. 1038 if (SuccWeights.size() != 1 + BBCases.size()) 1039 PredHasWeights = SuccHasWeights = false; 1040 } else if (PredHasWeights) 1041 SuccWeights.assign(1 + BBCases.size(), 1); 1042 1043 if (PredDefault == BB) { 1044 // If this is the default destination from PTI, only the edges in TI 1045 // that don't occur in PTI, or that branch to BB will be activated. 1046 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1047 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1048 if (PredCases[i].Dest != BB) 1049 PTIHandled.insert(PredCases[i].Value); 1050 else { 1051 // The default destination is BB, we don't need explicit targets. 1052 std::swap(PredCases[i], PredCases.back()); 1053 1054 if (PredHasWeights || SuccHasWeights) { 1055 // Increase weight for the default case. 1056 Weights[0] += Weights[i + 1]; 1057 std::swap(Weights[i + 1], Weights.back()); 1058 Weights.pop_back(); 1059 } 1060 1061 PredCases.pop_back(); 1062 --i; 1063 --e; 1064 } 1065 1066 // Reconstruct the new switch statement we will be building. 1067 if (PredDefault != BBDefault) { 1068 PredDefault->removePredecessor(Pred); 1069 PredDefault = BBDefault; 1070 NewSuccessors.push_back(BBDefault); 1071 } 1072 1073 unsigned CasesFromPred = Weights.size(); 1074 uint64_t ValidTotalSuccWeight = 0; 1075 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1076 if (!PTIHandled.count(BBCases[i].Value) && 1077 BBCases[i].Dest != BBDefault) { 1078 PredCases.push_back(BBCases[i]); 1079 NewSuccessors.push_back(BBCases[i].Dest); 1080 if (SuccHasWeights || PredHasWeights) { 1081 // The default weight is at index 0, so weight for the ith case 1082 // should be at index i+1. Scale the cases from successor by 1083 // PredDefaultWeight (Weights[0]). 1084 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1085 ValidTotalSuccWeight += SuccWeights[i + 1]; 1086 } 1087 } 1088 1089 if (SuccHasWeights || PredHasWeights) { 1090 ValidTotalSuccWeight += SuccWeights[0]; 1091 // Scale the cases from predecessor by ValidTotalSuccWeight. 1092 for (unsigned i = 1; i < CasesFromPred; ++i) 1093 Weights[i] *= ValidTotalSuccWeight; 1094 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1095 Weights[0] *= SuccWeights[0]; 1096 } 1097 } else { 1098 // If this is not the default destination from PSI, only the edges 1099 // in SI that occur in PSI with a destination of BB will be 1100 // activated. 1101 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1102 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1103 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1104 if (PredCases[i].Dest == BB) { 1105 PTIHandled.insert(PredCases[i].Value); 1106 1107 if (PredHasWeights || SuccHasWeights) { 1108 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1109 std::swap(Weights[i + 1], Weights.back()); 1110 Weights.pop_back(); 1111 } 1112 1113 std::swap(PredCases[i], PredCases.back()); 1114 PredCases.pop_back(); 1115 --i; 1116 --e; 1117 } 1118 1119 // Okay, now we know which constants were sent to BB from the 1120 // predecessor. Figure out where they will all go now. 1121 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1122 if (PTIHandled.count(BBCases[i].Value)) { 1123 // If this is one we are capable of getting... 1124 if (PredHasWeights || SuccHasWeights) 1125 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1126 PredCases.push_back(BBCases[i]); 1127 NewSuccessors.push_back(BBCases[i].Dest); 1128 PTIHandled.erase( 1129 BBCases[i].Value); // This constant is taken care of 1130 } 1131 1132 // If there are any constants vectored to BB that TI doesn't handle, 1133 // they must go to the default destination of TI. 1134 for (ConstantInt *I : PTIHandled) { 1135 if (PredHasWeights || SuccHasWeights) 1136 Weights.push_back(WeightsForHandled[I]); 1137 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1138 NewSuccessors.push_back(BBDefault); 1139 } 1140 } 1141 1142 // Okay, at this point, we know which new successor Pred will get. Make 1143 // sure we update the number of entries in the PHI nodes for these 1144 // successors. 1145 for (BasicBlock *NewSuccessor : NewSuccessors) 1146 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1147 1148 Builder.SetInsertPoint(PTI); 1149 // Convert pointer to int before we switch. 1150 if (CV->getType()->isPointerTy()) { 1151 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1152 "magicptr"); 1153 } 1154 1155 // Now that the successors are updated, create the new Switch instruction. 1156 SwitchInst *NewSI = 1157 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1158 NewSI->setDebugLoc(PTI->getDebugLoc()); 1159 for (ValueEqualityComparisonCase &V : PredCases) 1160 NewSI->addCase(V.Value, V.Dest); 1161 1162 if (PredHasWeights || SuccHasWeights) { 1163 // Halve the weights if any of them cannot fit in an uint32_t 1164 FitWeights(Weights); 1165 1166 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1167 1168 NewSI->setMetadata( 1169 LLVMContext::MD_prof, 1170 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1171 } 1172 1173 EraseTerminatorInstAndDCECond(PTI); 1174 1175 // Okay, last check. If BB is still a successor of PSI, then we must 1176 // have an infinite loop case. If so, add an infinitely looping block 1177 // to handle the case to preserve the behavior of the code. 1178 BasicBlock *InfLoopBlock = nullptr; 1179 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1180 if (NewSI->getSuccessor(i) == BB) { 1181 if (!InfLoopBlock) { 1182 // Insert it at the end of the function, because it's either code, 1183 // or it won't matter if it's hot. :) 1184 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1185 BB->getParent()); 1186 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1187 } 1188 NewSI->setSuccessor(i, InfLoopBlock); 1189 } 1190 1191 Changed = true; 1192 } 1193 } 1194 return Changed; 1195 } 1196 1197 // If we would need to insert a select that uses the value of this invoke 1198 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1199 // can't hoist the invoke, as there is nowhere to put the select in this case. 1200 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1201 Instruction *I1, Instruction *I2) { 1202 for (BasicBlock *Succ : successors(BB1)) { 1203 PHINode *PN; 1204 for (BasicBlock::iterator BBI = Succ->begin(); 1205 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1206 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1207 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1208 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1209 return false; 1210 } 1211 } 1212 } 1213 return true; 1214 } 1215 1216 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1217 1218 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1219 /// in the two blocks up into the branch block. The caller of this function 1220 /// guarantees that BI's block dominates BB1 and BB2. 1221 static bool HoistThenElseCodeToIf(BranchInst *BI, 1222 const TargetTransformInfo &TTI) { 1223 // This does very trivial matching, with limited scanning, to find identical 1224 // instructions in the two blocks. In particular, we don't want to get into 1225 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1226 // such, we currently just scan for obviously identical instructions in an 1227 // identical order. 1228 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1229 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1230 1231 BasicBlock::iterator BB1_Itr = BB1->begin(); 1232 BasicBlock::iterator BB2_Itr = BB2->begin(); 1233 1234 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1235 // Skip debug info if it is not identical. 1236 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1237 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1238 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1239 while (isa<DbgInfoIntrinsic>(I1)) 1240 I1 = &*BB1_Itr++; 1241 while (isa<DbgInfoIntrinsic>(I2)) 1242 I2 = &*BB2_Itr++; 1243 } 1244 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1245 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1246 return false; 1247 1248 BasicBlock *BIParent = BI->getParent(); 1249 1250 bool Changed = false; 1251 do { 1252 // If we are hoisting the terminator instruction, don't move one (making a 1253 // broken BB), instead clone it, and remove BI. 1254 if (isa<TerminatorInst>(I1)) 1255 goto HoistTerminator; 1256 1257 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1258 return Changed; 1259 1260 // For a normal instruction, we just move one to right before the branch, 1261 // then replace all uses of the other with the first. Finally, we remove 1262 // the now redundant second instruction. 1263 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1264 if (!I2->use_empty()) 1265 I2->replaceAllUsesWith(I1); 1266 I1->andIRFlags(I2); 1267 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1268 LLVMContext::MD_range, 1269 LLVMContext::MD_fpmath, 1270 LLVMContext::MD_invariant_load, 1271 LLVMContext::MD_nonnull, 1272 LLVMContext::MD_invariant_group, 1273 LLVMContext::MD_align, 1274 LLVMContext::MD_dereferenceable, 1275 LLVMContext::MD_dereferenceable_or_null, 1276 LLVMContext::MD_mem_parallel_loop_access}; 1277 combineMetadata(I1, I2, KnownIDs); 1278 1279 // I1 and I2 are being combined into a single instruction. Its debug 1280 // location is the merged locations of the original instructions. 1281 if (!isa<CallInst>(I1)) 1282 I1->setDebugLoc( 1283 DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc())); 1284 1285 I2->eraseFromParent(); 1286 Changed = true; 1287 1288 I1 = &*BB1_Itr++; 1289 I2 = &*BB2_Itr++; 1290 // Skip debug info if it is not identical. 1291 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1292 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1293 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1294 while (isa<DbgInfoIntrinsic>(I1)) 1295 I1 = &*BB1_Itr++; 1296 while (isa<DbgInfoIntrinsic>(I2)) 1297 I2 = &*BB2_Itr++; 1298 } 1299 } while (I1->isIdenticalToWhenDefined(I2)); 1300 1301 return true; 1302 1303 HoistTerminator: 1304 // It may not be possible to hoist an invoke. 1305 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1306 return Changed; 1307 1308 for (BasicBlock *Succ : successors(BB1)) { 1309 PHINode *PN; 1310 for (BasicBlock::iterator BBI = Succ->begin(); 1311 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1312 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1313 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1314 if (BB1V == BB2V) 1315 continue; 1316 1317 // Check for passingValueIsAlwaysUndefined here because we would rather 1318 // eliminate undefined control flow then converting it to a select. 1319 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1320 passingValueIsAlwaysUndefined(BB2V, PN)) 1321 return Changed; 1322 1323 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1324 return Changed; 1325 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1326 return Changed; 1327 } 1328 } 1329 1330 // Okay, it is safe to hoist the terminator. 1331 Instruction *NT = I1->clone(); 1332 BIParent->getInstList().insert(BI->getIterator(), NT); 1333 if (!NT->getType()->isVoidTy()) { 1334 I1->replaceAllUsesWith(NT); 1335 I2->replaceAllUsesWith(NT); 1336 NT->takeName(I1); 1337 } 1338 1339 IRBuilder<NoFolder> Builder(NT); 1340 // Hoisting one of the terminators from our successor is a great thing. 1341 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1342 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1343 // nodes, so we insert select instruction to compute the final result. 1344 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1345 for (BasicBlock *Succ : successors(BB1)) { 1346 PHINode *PN; 1347 for (BasicBlock::iterator BBI = Succ->begin(); 1348 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1349 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1350 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1351 if (BB1V == BB2V) 1352 continue; 1353 1354 // These values do not agree. Insert a select instruction before NT 1355 // that determines the right value. 1356 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1357 if (!SI) 1358 SI = cast<SelectInst>( 1359 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1360 BB1V->getName() + "." + BB2V->getName(), BI)); 1361 1362 // Make the PHI node use the select for all incoming values for BB1/BB2 1363 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1364 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1365 PN->setIncomingValue(i, SI); 1366 } 1367 } 1368 1369 // Update any PHI nodes in our new successors. 1370 for (BasicBlock *Succ : successors(BB1)) 1371 AddPredecessorToBlock(Succ, BIParent, BB1); 1372 1373 EraseTerminatorInstAndDCECond(BI); 1374 return true; 1375 } 1376 1377 // Is it legal to place a variable in operand \c OpIdx of \c I? 1378 // FIXME: This should be promoted to Instruction. 1379 static bool canReplaceOperandWithVariable(const Instruction *I, 1380 unsigned OpIdx) { 1381 // We can't have a PHI with a metadata type. 1382 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 1383 return false; 1384 1385 // Early exit. 1386 if (!isa<Constant>(I->getOperand(OpIdx))) 1387 return true; 1388 1389 switch (I->getOpcode()) { 1390 default: 1391 return true; 1392 case Instruction::Call: 1393 case Instruction::Invoke: 1394 // FIXME: many arithmetic intrinsics have no issue taking a 1395 // variable, however it's hard to distingish these from 1396 // specials such as @llvm.frameaddress that require a constant. 1397 if (isa<IntrinsicInst>(I)) 1398 return false; 1399 1400 // Constant bundle operands may need to retain their constant-ness for 1401 // correctness. 1402 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 1403 return false; 1404 1405 return true; 1406 1407 case Instruction::ShuffleVector: 1408 // Shufflevector masks are constant. 1409 return OpIdx != 2; 1410 case Instruction::ExtractValue: 1411 case Instruction::InsertValue: 1412 // All operands apart from the first are constant. 1413 return OpIdx == 0; 1414 case Instruction::Alloca: 1415 return false; 1416 case Instruction::GetElementPtr: 1417 if (OpIdx == 0) 1418 return true; 1419 gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1); 1420 return It.isSequential(); 1421 } 1422 } 1423 1424 // All instructions in Insts belong to different blocks that all unconditionally 1425 // branch to a common successor. Analyze each instruction and return true if it 1426 // would be possible to sink them into their successor, creating one common 1427 // instruction instead. For every value that would be required to be provided by 1428 // PHI node (because an operand varies in each input block), add to PHIOperands. 1429 static bool canSinkInstructions( 1430 ArrayRef<Instruction *> Insts, 1431 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1432 // Prune out obviously bad instructions to move. Any non-store instruction 1433 // must have exactly one use, and we check later that use is by a single, 1434 // common PHI instruction in the successor. 1435 for (auto *I : Insts) { 1436 // These instructions may change or break semantics if moved. 1437 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1438 I->getType()->isTokenTy()) 1439 return false; 1440 1441 // Conservatively return false if I is an inline-asm instruction. Sinking 1442 // and merging inline-asm instructions can potentially create arguments 1443 // that cannot satisfy the inline-asm constraints. 1444 if (const auto *C = dyn_cast<CallInst>(I)) 1445 if (C->isInlineAsm()) 1446 return false; 1447 1448 // Everything must have only one use too, apart from stores which 1449 // have no uses. 1450 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1451 return false; 1452 } 1453 1454 const Instruction *I0 = Insts.front(); 1455 for (auto *I : Insts) 1456 if (!I->isSameOperationAs(I0)) 1457 return false; 1458 1459 // All instructions in Insts are known to be the same opcode. If they aren't 1460 // stores, check the only user of each is a PHI or in the same block as the 1461 // instruction, because if a user is in the same block as an instruction 1462 // we're contemplating sinking, it must already be determined to be sinkable. 1463 if (!isa<StoreInst>(I0)) { 1464 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1465 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1466 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1467 auto *U = cast<Instruction>(*I->user_begin()); 1468 return (PNUse && 1469 PNUse->getParent() == Succ && 1470 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1471 U->getParent() == I->getParent(); 1472 })) 1473 return false; 1474 } 1475 1476 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1477 if (I0->getOperand(OI)->getType()->isTokenTy()) 1478 // Don't touch any operand of token type. 1479 return false; 1480 1481 // Because SROA can't handle speculating stores of selects, try not 1482 // to sink loads or stores of allocas when we'd have to create a PHI for 1483 // the address operand. Also, because it is likely that loads or stores 1484 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1485 // This can cause code churn which can have unintended consequences down 1486 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1487 // FIXME: This is a workaround for a deficiency in SROA - see 1488 // https://llvm.org/bugs/show_bug.cgi?id=30188 1489 if (OI == 1 && isa<StoreInst>(I0) && 1490 any_of(Insts, [](const Instruction *I) { 1491 return isa<AllocaInst>(I->getOperand(1)); 1492 })) 1493 return false; 1494 if (OI == 0 && isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1495 return isa<AllocaInst>(I->getOperand(0)); 1496 })) 1497 return false; 1498 1499 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1500 assert(I->getNumOperands() == I0->getNumOperands()); 1501 return I->getOperand(OI) == I0->getOperand(OI); 1502 }; 1503 if (!all_of(Insts, SameAsI0)) { 1504 if (!canReplaceOperandWithVariable(I0, OI)) 1505 // We can't create a PHI from this GEP. 1506 return false; 1507 // Don't create indirect calls! The called value is the final operand. 1508 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1509 // FIXME: if the call was *already* indirect, we should do this. 1510 return false; 1511 } 1512 for (auto *I : Insts) 1513 PHIOperands[I].push_back(I->getOperand(OI)); 1514 } 1515 } 1516 return true; 1517 } 1518 1519 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1520 // instruction of every block in Blocks to their common successor, commoning 1521 // into one instruction. 1522 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1523 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1524 1525 // canSinkLastInstruction returning true guarantees that every block has at 1526 // least one non-terminator instruction. 1527 SmallVector<Instruction*,4> Insts; 1528 for (auto *BB : Blocks) { 1529 Instruction *I = BB->getTerminator(); 1530 do { 1531 I = I->getPrevNode(); 1532 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1533 if (!isa<DbgInfoIntrinsic>(I)) 1534 Insts.push_back(I); 1535 } 1536 1537 // The only checking we need to do now is that all users of all instructions 1538 // are the same PHI node. canSinkLastInstruction should have checked this but 1539 // it is slightly over-aggressive - it gets confused by commutative instructions 1540 // so double-check it here. 1541 Instruction *I0 = Insts.front(); 1542 if (!isa<StoreInst>(I0)) { 1543 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1544 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1545 auto *U = cast<Instruction>(*I->user_begin()); 1546 return U == PNUse; 1547 })) 1548 return false; 1549 } 1550 1551 // We don't need to do any more checking here; canSinkLastInstruction should 1552 // have done it all for us. 1553 SmallVector<Value*, 4> NewOperands; 1554 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1555 // This check is different to that in canSinkLastInstruction. There, we 1556 // cared about the global view once simplifycfg (and instcombine) have 1557 // completed - it takes into account PHIs that become trivially 1558 // simplifiable. However here we need a more local view; if an operand 1559 // differs we create a PHI and rely on instcombine to clean up the very 1560 // small mess we may make. 1561 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1562 return I->getOperand(O) != I0->getOperand(O); 1563 }); 1564 if (!NeedPHI) { 1565 NewOperands.push_back(I0->getOperand(O)); 1566 continue; 1567 } 1568 1569 // Create a new PHI in the successor block and populate it. 1570 auto *Op = I0->getOperand(O); 1571 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1572 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1573 Op->getName() + ".sink", &BBEnd->front()); 1574 for (auto *I : Insts) 1575 PN->addIncoming(I->getOperand(O), I->getParent()); 1576 NewOperands.push_back(PN); 1577 } 1578 1579 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1580 // and move it to the start of the successor block. 1581 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1582 I0->getOperandUse(O).set(NewOperands[O]); 1583 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1584 1585 // The debug location for the "common" instruction is the merged locations of 1586 // all the commoned instructions. We start with the original location of the 1587 // "common" instruction and iteratively merge each location in the loop below. 1588 const DILocation *Loc = I0->getDebugLoc(); 1589 1590 // Update metadata and IR flags, and merge debug locations. 1591 for (auto *I : Insts) 1592 if (I != I0) { 1593 Loc = DILocation::getMergedLocation(Loc, I->getDebugLoc()); 1594 combineMetadataForCSE(I0, I); 1595 I0->andIRFlags(I); 1596 } 1597 if (!isa<CallInst>(I0)) 1598 I0->setDebugLoc(Loc); 1599 1600 if (!isa<StoreInst>(I0)) { 1601 // canSinkLastInstruction checked that all instructions were used by 1602 // one and only one PHI node. Find that now, RAUW it to our common 1603 // instruction and nuke it. 1604 assert(I0->hasOneUse()); 1605 auto *PN = cast<PHINode>(*I0->user_begin()); 1606 PN->replaceAllUsesWith(I0); 1607 PN->eraseFromParent(); 1608 } 1609 1610 // Finally nuke all instructions apart from the common instruction. 1611 for (auto *I : Insts) 1612 if (I != I0) 1613 I->eraseFromParent(); 1614 1615 return true; 1616 } 1617 1618 namespace { 1619 1620 // LockstepReverseIterator - Iterates through instructions 1621 // in a set of blocks in reverse order from the first non-terminator. 1622 // For example (assume all blocks have size n): 1623 // LockstepReverseIterator I([B1, B2, B3]); 1624 // *I-- = [B1[n], B2[n], B3[n]]; 1625 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1626 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1627 // ... 1628 class LockstepReverseIterator { 1629 ArrayRef<BasicBlock*> Blocks; 1630 SmallVector<Instruction*,4> Insts; 1631 bool Fail; 1632 public: 1633 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : 1634 Blocks(Blocks) { 1635 reset(); 1636 } 1637 1638 void reset() { 1639 Fail = false; 1640 Insts.clear(); 1641 for (auto *BB : Blocks) { 1642 Instruction *Inst = BB->getTerminator(); 1643 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1644 Inst = Inst->getPrevNode(); 1645 if (!Inst) { 1646 // Block wasn't big enough. 1647 Fail = true; 1648 return; 1649 } 1650 Insts.push_back(Inst); 1651 } 1652 } 1653 1654 bool isValid() const { 1655 return !Fail; 1656 } 1657 1658 void operator -- () { 1659 if (Fail) 1660 return; 1661 for (auto *&Inst : Insts) { 1662 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1663 Inst = Inst->getPrevNode(); 1664 // Already at beginning of block. 1665 if (!Inst) { 1666 Fail = true; 1667 return; 1668 } 1669 } 1670 } 1671 1672 ArrayRef<Instruction*> operator * () const { 1673 return Insts; 1674 } 1675 }; 1676 1677 } // end anonymous namespace 1678 1679 /// Given an unconditional branch that goes to BBEnd, 1680 /// check whether BBEnd has only two predecessors and the other predecessor 1681 /// ends with an unconditional branch. If it is true, sink any common code 1682 /// in the two predecessors to BBEnd. 1683 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1684 assert(BI1->isUnconditional()); 1685 BasicBlock *BBEnd = BI1->getSuccessor(0); 1686 1687 // We support two situations: 1688 // (1) all incoming arcs are unconditional 1689 // (2) one incoming arc is conditional 1690 // 1691 // (2) is very common in switch defaults and 1692 // else-if patterns; 1693 // 1694 // if (a) f(1); 1695 // else if (b) f(2); 1696 // 1697 // produces: 1698 // 1699 // [if] 1700 // / \ 1701 // [f(1)] [if] 1702 // | | \ 1703 // | | | 1704 // | [f(2)]| 1705 // \ | / 1706 // [ end ] 1707 // 1708 // [end] has two unconditional predecessor arcs and one conditional. The 1709 // conditional refers to the implicit empty 'else' arc. This conditional 1710 // arc can also be caused by an empty default block in a switch. 1711 // 1712 // In this case, we attempt to sink code from all *unconditional* arcs. 1713 // If we can sink instructions from these arcs (determined during the scan 1714 // phase below) we insert a common successor for all unconditional arcs and 1715 // connect that to [end], to enable sinking: 1716 // 1717 // [if] 1718 // / \ 1719 // [x(1)] [if] 1720 // | | \ 1721 // | | \ 1722 // | [x(2)] | 1723 // \ / | 1724 // [sink.split] | 1725 // \ / 1726 // [ end ] 1727 // 1728 SmallVector<BasicBlock*,4> UnconditionalPreds; 1729 Instruction *Cond = nullptr; 1730 for (auto *B : predecessors(BBEnd)) { 1731 auto *T = B->getTerminator(); 1732 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1733 UnconditionalPreds.push_back(B); 1734 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1735 Cond = T; 1736 else 1737 return false; 1738 } 1739 if (UnconditionalPreds.size() < 2) 1740 return false; 1741 1742 bool Changed = false; 1743 // We take a two-step approach to tail sinking. First we scan from the end of 1744 // each block upwards in lockstep. If the n'th instruction from the end of each 1745 // block can be sunk, those instructions are added to ValuesToSink and we 1746 // carry on. If we can sink an instruction but need to PHI-merge some operands 1747 // (because they're not identical in each instruction) we add these to 1748 // PHIOperands. 1749 unsigned ScanIdx = 0; 1750 SmallPtrSet<Value*,4> InstructionsToSink; 1751 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1752 LockstepReverseIterator LRI(UnconditionalPreds); 1753 while (LRI.isValid() && 1754 canSinkInstructions(*LRI, PHIOperands)) { 1755 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1756 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1757 ++ScanIdx; 1758 --LRI; 1759 } 1760 1761 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1762 unsigned NumPHIdValues = 0; 1763 for (auto *I : *LRI) 1764 for (auto *V : PHIOperands[I]) 1765 if (InstructionsToSink.count(V) == 0) 1766 ++NumPHIdValues; 1767 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1768 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1769 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1770 NumPHIInsts++; 1771 1772 return NumPHIInsts <= 1; 1773 }; 1774 1775 if (ScanIdx > 0 && Cond) { 1776 // Check if we would actually sink anything first! This mutates the CFG and 1777 // adds an extra block. The goal in doing this is to allow instructions that 1778 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1779 // (such as trunc, add) can be sunk and predicated already. So we check that 1780 // we're going to sink at least one non-speculatable instruction. 1781 LRI.reset(); 1782 unsigned Idx = 0; 1783 bool Profitable = false; 1784 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1785 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1786 Profitable = true; 1787 break; 1788 } 1789 --LRI; 1790 ++Idx; 1791 } 1792 if (!Profitable) 1793 return false; 1794 1795 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1796 // We have a conditional edge and we're going to sink some instructions. 1797 // Insert a new block postdominating all blocks we're going to sink from. 1798 if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds, 1799 ".sink.split")) 1800 // Edges couldn't be split. 1801 return false; 1802 Changed = true; 1803 } 1804 1805 // Now that we've analyzed all potential sinking candidates, perform the 1806 // actual sink. We iteratively sink the last non-terminator of the source 1807 // blocks into their common successor unless doing so would require too 1808 // many PHI instructions to be generated (currently only one PHI is allowed 1809 // per sunk instruction). 1810 // 1811 // We can use InstructionsToSink to discount values needing PHI-merging that will 1812 // actually be sunk in a later iteration. This allows us to be more 1813 // aggressive in what we sink. This does allow a false positive where we 1814 // sink presuming a later value will also be sunk, but stop half way through 1815 // and never actually sink it which means we produce more PHIs than intended. 1816 // This is unlikely in practice though. 1817 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1818 DEBUG(dbgs() << "SINK: Sink: " 1819 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1820 << "\n"); 1821 1822 // Because we've sunk every instruction in turn, the current instruction to 1823 // sink is always at index 0. 1824 LRI.reset(); 1825 if (!ProfitableToSinkInstruction(LRI)) { 1826 // Too many PHIs would be created. 1827 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1828 break; 1829 } 1830 1831 if (!sinkLastInstruction(UnconditionalPreds)) 1832 return Changed; 1833 NumSinkCommons++; 1834 Changed = true; 1835 } 1836 return Changed; 1837 } 1838 1839 /// \brief Determine if we can hoist sink a sole store instruction out of a 1840 /// conditional block. 1841 /// 1842 /// We are looking for code like the following: 1843 /// BrBB: 1844 /// store i32 %add, i32* %arrayidx2 1845 /// ... // No other stores or function calls (we could be calling a memory 1846 /// ... // function). 1847 /// %cmp = icmp ult %x, %y 1848 /// br i1 %cmp, label %EndBB, label %ThenBB 1849 /// ThenBB: 1850 /// store i32 %add5, i32* %arrayidx2 1851 /// br label EndBB 1852 /// EndBB: 1853 /// ... 1854 /// We are going to transform this into: 1855 /// BrBB: 1856 /// store i32 %add, i32* %arrayidx2 1857 /// ... // 1858 /// %cmp = icmp ult %x, %y 1859 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1860 /// store i32 %add.add5, i32* %arrayidx2 1861 /// ... 1862 /// 1863 /// \return The pointer to the value of the previous store if the store can be 1864 /// hoisted into the predecessor block. 0 otherwise. 1865 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1866 BasicBlock *StoreBB, BasicBlock *EndBB) { 1867 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1868 if (!StoreToHoist) 1869 return nullptr; 1870 1871 // Volatile or atomic. 1872 if (!StoreToHoist->isSimple()) 1873 return nullptr; 1874 1875 Value *StorePtr = StoreToHoist->getPointerOperand(); 1876 1877 // Look for a store to the same pointer in BrBB. 1878 unsigned MaxNumInstToLookAt = 9; 1879 for (Instruction &CurI : reverse(*BrBB)) { 1880 if (!MaxNumInstToLookAt) 1881 break; 1882 // Skip debug info. 1883 if (isa<DbgInfoIntrinsic>(CurI)) 1884 continue; 1885 --MaxNumInstToLookAt; 1886 1887 // Could be calling an instruction that affects memory like free(). 1888 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1889 return nullptr; 1890 1891 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1892 // Found the previous store make sure it stores to the same location. 1893 if (SI->getPointerOperand() == StorePtr) 1894 // Found the previous store, return its value operand. 1895 return SI->getValueOperand(); 1896 return nullptr; // Unknown store. 1897 } 1898 } 1899 1900 return nullptr; 1901 } 1902 1903 /// \brief Speculate a conditional basic block flattening the CFG. 1904 /// 1905 /// Note that this is a very risky transform currently. Speculating 1906 /// instructions like this is most often not desirable. Instead, there is an MI 1907 /// pass which can do it with full awareness of the resource constraints. 1908 /// However, some cases are "obvious" and we should do directly. An example of 1909 /// this is speculating a single, reasonably cheap instruction. 1910 /// 1911 /// There is only one distinct advantage to flattening the CFG at the IR level: 1912 /// it makes very common but simplistic optimizations such as are common in 1913 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1914 /// modeling their effects with easier to reason about SSA value graphs. 1915 /// 1916 /// 1917 /// An illustration of this transform is turning this IR: 1918 /// \code 1919 /// BB: 1920 /// %cmp = icmp ult %x, %y 1921 /// br i1 %cmp, label %EndBB, label %ThenBB 1922 /// ThenBB: 1923 /// %sub = sub %x, %y 1924 /// br label BB2 1925 /// EndBB: 1926 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1927 /// ... 1928 /// \endcode 1929 /// 1930 /// Into this IR: 1931 /// \code 1932 /// BB: 1933 /// %cmp = icmp ult %x, %y 1934 /// %sub = sub %x, %y 1935 /// %cond = select i1 %cmp, 0, %sub 1936 /// ... 1937 /// \endcode 1938 /// 1939 /// \returns true if the conditional block is removed. 1940 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1941 const TargetTransformInfo &TTI) { 1942 // Be conservative for now. FP select instruction can often be expensive. 1943 Value *BrCond = BI->getCondition(); 1944 if (isa<FCmpInst>(BrCond)) 1945 return false; 1946 1947 BasicBlock *BB = BI->getParent(); 1948 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1949 1950 // If ThenBB is actually on the false edge of the conditional branch, remember 1951 // to swap the select operands later. 1952 bool Invert = false; 1953 if (ThenBB != BI->getSuccessor(0)) { 1954 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1955 Invert = true; 1956 } 1957 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1958 1959 // Keep a count of how many times instructions are used within CondBB when 1960 // they are candidates for sinking into CondBB. Specifically: 1961 // - They are defined in BB, and 1962 // - They have no side effects, and 1963 // - All of their uses are in CondBB. 1964 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1965 1966 unsigned SpeculationCost = 0; 1967 Value *SpeculatedStoreValue = nullptr; 1968 StoreInst *SpeculatedStore = nullptr; 1969 for (BasicBlock::iterator BBI = ThenBB->begin(), 1970 BBE = std::prev(ThenBB->end()); 1971 BBI != BBE; ++BBI) { 1972 Instruction *I = &*BBI; 1973 // Skip debug info. 1974 if (isa<DbgInfoIntrinsic>(I)) 1975 continue; 1976 1977 // Only speculatively execute a single instruction (not counting the 1978 // terminator) for now. 1979 ++SpeculationCost; 1980 if (SpeculationCost > 1) 1981 return false; 1982 1983 // Don't hoist the instruction if it's unsafe or expensive. 1984 if (!isSafeToSpeculativelyExecute(I) && 1985 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1986 I, BB, ThenBB, EndBB)))) 1987 return false; 1988 if (!SpeculatedStoreValue && 1989 ComputeSpeculationCost(I, TTI) > 1990 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1991 return false; 1992 1993 // Store the store speculation candidate. 1994 if (SpeculatedStoreValue) 1995 SpeculatedStore = cast<StoreInst>(I); 1996 1997 // Do not hoist the instruction if any of its operands are defined but not 1998 // used in BB. The transformation will prevent the operand from 1999 // being sunk into the use block. 2000 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2001 Instruction *OpI = dyn_cast<Instruction>(*i); 2002 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2003 continue; // Not a candidate for sinking. 2004 2005 ++SinkCandidateUseCounts[OpI]; 2006 } 2007 } 2008 2009 // Consider any sink candidates which are only used in CondBB as costs for 2010 // speculation. Note, while we iterate over a DenseMap here, we are summing 2011 // and so iteration order isn't significant. 2012 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2013 I = SinkCandidateUseCounts.begin(), 2014 E = SinkCandidateUseCounts.end(); 2015 I != E; ++I) 2016 if (I->first->getNumUses() == I->second) { 2017 ++SpeculationCost; 2018 if (SpeculationCost > 1) 2019 return false; 2020 } 2021 2022 // Check that the PHI nodes can be converted to selects. 2023 bool HaveRewritablePHIs = false; 2024 for (BasicBlock::iterator I = EndBB->begin(); 2025 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2026 Value *OrigV = PN->getIncomingValueForBlock(BB); 2027 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 2028 2029 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2030 // Skip PHIs which are trivial. 2031 if (ThenV == OrigV) 2032 continue; 2033 2034 // Don't convert to selects if we could remove undefined behavior instead. 2035 if (passingValueIsAlwaysUndefined(OrigV, PN) || 2036 passingValueIsAlwaysUndefined(ThenV, PN)) 2037 return false; 2038 2039 HaveRewritablePHIs = true; 2040 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2041 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2042 if (!OrigCE && !ThenCE) 2043 continue; // Known safe and cheap. 2044 2045 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2046 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2047 return false; 2048 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2049 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2050 unsigned MaxCost = 2051 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2052 if (OrigCost + ThenCost > MaxCost) 2053 return false; 2054 2055 // Account for the cost of an unfolded ConstantExpr which could end up 2056 // getting expanded into Instructions. 2057 // FIXME: This doesn't account for how many operations are combined in the 2058 // constant expression. 2059 ++SpeculationCost; 2060 if (SpeculationCost > 1) 2061 return false; 2062 } 2063 2064 // If there are no PHIs to process, bail early. This helps ensure idempotence 2065 // as well. 2066 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2067 return false; 2068 2069 // If we get here, we can hoist the instruction and if-convert. 2070 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2071 2072 // Insert a select of the value of the speculated store. 2073 if (SpeculatedStoreValue) { 2074 IRBuilder<NoFolder> Builder(BI); 2075 Value *TrueV = SpeculatedStore->getValueOperand(); 2076 Value *FalseV = SpeculatedStoreValue; 2077 if (Invert) 2078 std::swap(TrueV, FalseV); 2079 Value *S = Builder.CreateSelect( 2080 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2081 SpeculatedStore->setOperand(0, S); 2082 SpeculatedStore->setDebugLoc( 2083 DILocation::getMergedLocation( 2084 BI->getDebugLoc(), SpeculatedStore->getDebugLoc())); 2085 } 2086 2087 // Metadata can be dependent on the condition we are hoisting above. 2088 // Conservatively strip all metadata on the instruction. 2089 for (auto &I : *ThenBB) 2090 I.dropUnknownNonDebugMetadata(); 2091 2092 // Hoist the instructions. 2093 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2094 ThenBB->begin(), std::prev(ThenBB->end())); 2095 2096 // Insert selects and rewrite the PHI operands. 2097 IRBuilder<NoFolder> Builder(BI); 2098 for (BasicBlock::iterator I = EndBB->begin(); 2099 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2100 unsigned OrigI = PN->getBasicBlockIndex(BB); 2101 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 2102 Value *OrigV = PN->getIncomingValue(OrigI); 2103 Value *ThenV = PN->getIncomingValue(ThenI); 2104 2105 // Skip PHIs which are trivial. 2106 if (OrigV == ThenV) 2107 continue; 2108 2109 // Create a select whose true value is the speculatively executed value and 2110 // false value is the preexisting value. Swap them if the branch 2111 // destinations were inverted. 2112 Value *TrueV = ThenV, *FalseV = OrigV; 2113 if (Invert) 2114 std::swap(TrueV, FalseV); 2115 Value *V = Builder.CreateSelect( 2116 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2117 PN->setIncomingValue(OrigI, V); 2118 PN->setIncomingValue(ThenI, V); 2119 } 2120 2121 ++NumSpeculations; 2122 return true; 2123 } 2124 2125 /// Return true if we can thread a branch across this block. 2126 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2127 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2128 unsigned Size = 0; 2129 2130 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2131 if (isa<DbgInfoIntrinsic>(BBI)) 2132 continue; 2133 if (Size > 10) 2134 return false; // Don't clone large BB's. 2135 ++Size; 2136 2137 // We can only support instructions that do not define values that are 2138 // live outside of the current basic block. 2139 for (User *U : BBI->users()) { 2140 Instruction *UI = cast<Instruction>(U); 2141 if (UI->getParent() != BB || isa<PHINode>(UI)) 2142 return false; 2143 } 2144 2145 // Looks ok, continue checking. 2146 } 2147 2148 return true; 2149 } 2150 2151 /// If we have a conditional branch on a PHI node value that is defined in the 2152 /// same block as the branch and if any PHI entries are constants, thread edges 2153 /// corresponding to that entry to be branches to their ultimate destination. 2154 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2155 AssumptionCache *AC) { 2156 BasicBlock *BB = BI->getParent(); 2157 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2158 // NOTE: we currently cannot transform this case if the PHI node is used 2159 // outside of the block. 2160 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2161 return false; 2162 2163 // Degenerate case of a single entry PHI. 2164 if (PN->getNumIncomingValues() == 1) { 2165 FoldSingleEntryPHINodes(PN->getParent()); 2166 return true; 2167 } 2168 2169 // Now we know that this block has multiple preds and two succs. 2170 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2171 return false; 2172 2173 // Can't fold blocks that contain noduplicate or convergent calls. 2174 if (any_of(*BB, [](const Instruction &I) { 2175 const CallInst *CI = dyn_cast<CallInst>(&I); 2176 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2177 })) 2178 return false; 2179 2180 // Okay, this is a simple enough basic block. See if any phi values are 2181 // constants. 2182 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2183 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2184 if (!CB || !CB->getType()->isIntegerTy(1)) 2185 continue; 2186 2187 // Okay, we now know that all edges from PredBB should be revectored to 2188 // branch to RealDest. 2189 BasicBlock *PredBB = PN->getIncomingBlock(i); 2190 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2191 2192 if (RealDest == BB) 2193 continue; // Skip self loops. 2194 // Skip if the predecessor's terminator is an indirect branch. 2195 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2196 continue; 2197 2198 // The dest block might have PHI nodes, other predecessors and other 2199 // difficult cases. Instead of being smart about this, just insert a new 2200 // block that jumps to the destination block, effectively splitting 2201 // the edge we are about to create. 2202 BasicBlock *EdgeBB = 2203 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2204 RealDest->getParent(), RealDest); 2205 BranchInst::Create(RealDest, EdgeBB); 2206 2207 // Update PHI nodes. 2208 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2209 2210 // BB may have instructions that are being threaded over. Clone these 2211 // instructions into EdgeBB. We know that there will be no uses of the 2212 // cloned instructions outside of EdgeBB. 2213 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2214 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2215 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2216 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2217 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2218 continue; 2219 } 2220 // Clone the instruction. 2221 Instruction *N = BBI->clone(); 2222 if (BBI->hasName()) 2223 N->setName(BBI->getName() + ".c"); 2224 2225 // Update operands due to translation. 2226 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2227 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2228 if (PI != TranslateMap.end()) 2229 *i = PI->second; 2230 } 2231 2232 // Check for trivial simplification. 2233 if (Value *V = SimplifyInstruction(N, DL)) { 2234 if (!BBI->use_empty()) 2235 TranslateMap[&*BBI] = V; 2236 if (!N->mayHaveSideEffects()) { 2237 delete N; // Instruction folded away, don't need actual inst 2238 N = nullptr; 2239 } 2240 } else { 2241 if (!BBI->use_empty()) 2242 TranslateMap[&*BBI] = N; 2243 } 2244 // Insert the new instruction into its new home. 2245 if (N) 2246 EdgeBB->getInstList().insert(InsertPt, N); 2247 2248 // Register the new instruction with the assumption cache if necessary. 2249 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2250 if (II->getIntrinsicID() == Intrinsic::assume) 2251 AC->registerAssumption(II); 2252 } 2253 2254 // Loop over all of the edges from PredBB to BB, changing them to branch 2255 // to EdgeBB instead. 2256 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2257 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2258 if (PredBBTI->getSuccessor(i) == BB) { 2259 BB->removePredecessor(PredBB); 2260 PredBBTI->setSuccessor(i, EdgeBB); 2261 } 2262 2263 // Recurse, simplifying any other constants. 2264 return FoldCondBranchOnPHI(BI, DL, AC) | true; 2265 } 2266 2267 return false; 2268 } 2269 2270 /// Given a BB that starts with the specified two-entry PHI node, 2271 /// see if we can eliminate it. 2272 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2273 const DataLayout &DL) { 2274 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2275 // statement", which has a very simple dominance structure. Basically, we 2276 // are trying to find the condition that is being branched on, which 2277 // subsequently causes this merge to happen. We really want control 2278 // dependence information for this check, but simplifycfg can't keep it up 2279 // to date, and this catches most of the cases we care about anyway. 2280 BasicBlock *BB = PN->getParent(); 2281 BasicBlock *IfTrue, *IfFalse; 2282 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2283 if (!IfCond || 2284 // Don't bother if the branch will be constant folded trivially. 2285 isa<ConstantInt>(IfCond)) 2286 return false; 2287 2288 // Okay, we found that we can merge this two-entry phi node into a select. 2289 // Doing so would require us to fold *all* two entry phi nodes in this block. 2290 // At some point this becomes non-profitable (particularly if the target 2291 // doesn't support cmov's). Only do this transformation if there are two or 2292 // fewer PHI nodes in this block. 2293 unsigned NumPhis = 0; 2294 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2295 if (NumPhis > 2) 2296 return false; 2297 2298 // Loop over the PHI's seeing if we can promote them all to select 2299 // instructions. While we are at it, keep track of the instructions 2300 // that need to be moved to the dominating block. 2301 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2302 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2303 MaxCostVal1 = PHINodeFoldingThreshold; 2304 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2305 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2306 2307 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2308 PHINode *PN = cast<PHINode>(II++); 2309 if (Value *V = SimplifyInstruction(PN, DL)) { 2310 PN->replaceAllUsesWith(V); 2311 PN->eraseFromParent(); 2312 continue; 2313 } 2314 2315 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2316 MaxCostVal0, TTI) || 2317 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2318 MaxCostVal1, TTI)) 2319 return false; 2320 } 2321 2322 // If we folded the first phi, PN dangles at this point. Refresh it. If 2323 // we ran out of PHIs then we simplified them all. 2324 PN = dyn_cast<PHINode>(BB->begin()); 2325 if (!PN) 2326 return true; 2327 2328 // Don't fold i1 branches on PHIs which contain binary operators. These can 2329 // often be turned into switches and other things. 2330 if (PN->getType()->isIntegerTy(1) && 2331 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2332 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2333 isa<BinaryOperator>(IfCond))) 2334 return false; 2335 2336 // If all PHI nodes are promotable, check to make sure that all instructions 2337 // in the predecessor blocks can be promoted as well. If not, we won't be able 2338 // to get rid of the control flow, so it's not worth promoting to select 2339 // instructions. 2340 BasicBlock *DomBlock = nullptr; 2341 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2342 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2343 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2344 IfBlock1 = nullptr; 2345 } else { 2346 DomBlock = *pred_begin(IfBlock1); 2347 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2348 ++I) 2349 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2350 // This is not an aggressive instruction that we can promote. 2351 // Because of this, we won't be able to get rid of the control flow, so 2352 // the xform is not worth it. 2353 return false; 2354 } 2355 } 2356 2357 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2358 IfBlock2 = nullptr; 2359 } else { 2360 DomBlock = *pred_begin(IfBlock2); 2361 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2362 ++I) 2363 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2364 // This is not an aggressive instruction that we can promote. 2365 // Because of this, we won't be able to get rid of the control flow, so 2366 // the xform is not worth it. 2367 return false; 2368 } 2369 } 2370 2371 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2372 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2373 2374 // If we can still promote the PHI nodes after this gauntlet of tests, 2375 // do all of the PHI's now. 2376 Instruction *InsertPt = DomBlock->getTerminator(); 2377 IRBuilder<NoFolder> Builder(InsertPt); 2378 2379 // Move all 'aggressive' instructions, which are defined in the 2380 // conditional parts of the if's up to the dominating block. 2381 if (IfBlock1) { 2382 for (auto &I : *IfBlock1) 2383 I.dropUnknownNonDebugMetadata(); 2384 DomBlock->getInstList().splice(InsertPt->getIterator(), 2385 IfBlock1->getInstList(), IfBlock1->begin(), 2386 IfBlock1->getTerminator()->getIterator()); 2387 } 2388 if (IfBlock2) { 2389 for (auto &I : *IfBlock2) 2390 I.dropUnknownNonDebugMetadata(); 2391 DomBlock->getInstList().splice(InsertPt->getIterator(), 2392 IfBlock2->getInstList(), IfBlock2->begin(), 2393 IfBlock2->getTerminator()->getIterator()); 2394 } 2395 2396 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2397 // Change the PHI node into a select instruction. 2398 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2399 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2400 2401 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2402 PN->replaceAllUsesWith(Sel); 2403 Sel->takeName(PN); 2404 PN->eraseFromParent(); 2405 } 2406 2407 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2408 // has been flattened. Change DomBlock to jump directly to our new block to 2409 // avoid other simplifycfg's kicking in on the diamond. 2410 TerminatorInst *OldTI = DomBlock->getTerminator(); 2411 Builder.SetInsertPoint(OldTI); 2412 Builder.CreateBr(BB); 2413 OldTI->eraseFromParent(); 2414 return true; 2415 } 2416 2417 /// If we found a conditional branch that goes to two returning blocks, 2418 /// try to merge them together into one return, 2419 /// introducing a select if the return values disagree. 2420 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2421 IRBuilder<> &Builder) { 2422 assert(BI->isConditional() && "Must be a conditional branch"); 2423 BasicBlock *TrueSucc = BI->getSuccessor(0); 2424 BasicBlock *FalseSucc = BI->getSuccessor(1); 2425 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2426 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2427 2428 // Check to ensure both blocks are empty (just a return) or optionally empty 2429 // with PHI nodes. If there are other instructions, merging would cause extra 2430 // computation on one path or the other. 2431 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2432 return false; 2433 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2434 return false; 2435 2436 Builder.SetInsertPoint(BI); 2437 // Okay, we found a branch that is going to two return nodes. If 2438 // there is no return value for this function, just change the 2439 // branch into a return. 2440 if (FalseRet->getNumOperands() == 0) { 2441 TrueSucc->removePredecessor(BI->getParent()); 2442 FalseSucc->removePredecessor(BI->getParent()); 2443 Builder.CreateRetVoid(); 2444 EraseTerminatorInstAndDCECond(BI); 2445 return true; 2446 } 2447 2448 // Otherwise, figure out what the true and false return values are 2449 // so we can insert a new select instruction. 2450 Value *TrueValue = TrueRet->getReturnValue(); 2451 Value *FalseValue = FalseRet->getReturnValue(); 2452 2453 // Unwrap any PHI nodes in the return blocks. 2454 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2455 if (TVPN->getParent() == TrueSucc) 2456 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2457 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2458 if (FVPN->getParent() == FalseSucc) 2459 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2460 2461 // In order for this transformation to be safe, we must be able to 2462 // unconditionally execute both operands to the return. This is 2463 // normally the case, but we could have a potentially-trapping 2464 // constant expression that prevents this transformation from being 2465 // safe. 2466 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2467 if (TCV->canTrap()) 2468 return false; 2469 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2470 if (FCV->canTrap()) 2471 return false; 2472 2473 // Okay, we collected all the mapped values and checked them for sanity, and 2474 // defined to really do this transformation. First, update the CFG. 2475 TrueSucc->removePredecessor(BI->getParent()); 2476 FalseSucc->removePredecessor(BI->getParent()); 2477 2478 // Insert select instructions where needed. 2479 Value *BrCond = BI->getCondition(); 2480 if (TrueValue) { 2481 // Insert a select if the results differ. 2482 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2483 } else if (isa<UndefValue>(TrueValue)) { 2484 TrueValue = FalseValue; 2485 } else { 2486 TrueValue = 2487 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2488 } 2489 } 2490 2491 Value *RI = 2492 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2493 2494 (void)RI; 2495 2496 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2497 << "\n " << *BI << "NewRet = " << *RI 2498 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2499 2500 EraseTerminatorInstAndDCECond(BI); 2501 2502 return true; 2503 } 2504 2505 /// Return true if the given instruction is available 2506 /// in its predecessor block. If yes, the instruction will be removed. 2507 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2508 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2509 return false; 2510 for (Instruction &I : *PB) { 2511 Instruction *PBI = &I; 2512 // Check whether Inst and PBI generate the same value. 2513 if (Inst->isIdenticalTo(PBI)) { 2514 Inst->replaceAllUsesWith(PBI); 2515 Inst->eraseFromParent(); 2516 return true; 2517 } 2518 } 2519 return false; 2520 } 2521 2522 /// Return true if either PBI or BI has branch weight available, and store 2523 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2524 /// not have branch weight, use 1:1 as its weight. 2525 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2526 uint64_t &PredTrueWeight, 2527 uint64_t &PredFalseWeight, 2528 uint64_t &SuccTrueWeight, 2529 uint64_t &SuccFalseWeight) { 2530 bool PredHasWeights = 2531 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2532 bool SuccHasWeights = 2533 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2534 if (PredHasWeights || SuccHasWeights) { 2535 if (!PredHasWeights) 2536 PredTrueWeight = PredFalseWeight = 1; 2537 if (!SuccHasWeights) 2538 SuccTrueWeight = SuccFalseWeight = 1; 2539 return true; 2540 } else { 2541 return false; 2542 } 2543 } 2544 2545 /// If this basic block is simple enough, and if a predecessor branches to us 2546 /// and one of our successors, fold the block into the predecessor and use 2547 /// logical operations to pick the right destination. 2548 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2549 BasicBlock *BB = BI->getParent(); 2550 2551 Instruction *Cond = nullptr; 2552 if (BI->isConditional()) 2553 Cond = dyn_cast<Instruction>(BI->getCondition()); 2554 else { 2555 // For unconditional branch, check for a simple CFG pattern, where 2556 // BB has a single predecessor and BB's successor is also its predecessor's 2557 // successor. If such pattern exisits, check for CSE between BB and its 2558 // predecessor. 2559 if (BasicBlock *PB = BB->getSinglePredecessor()) 2560 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2561 if (PBI->isConditional() && 2562 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2563 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2564 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2565 Instruction *Curr = &*I++; 2566 if (isa<CmpInst>(Curr)) { 2567 Cond = Curr; 2568 break; 2569 } 2570 // Quit if we can't remove this instruction. 2571 if (!checkCSEInPredecessor(Curr, PB)) 2572 return false; 2573 } 2574 } 2575 2576 if (!Cond) 2577 return false; 2578 } 2579 2580 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2581 Cond->getParent() != BB || !Cond->hasOneUse()) 2582 return false; 2583 2584 // Make sure the instruction after the condition is the cond branch. 2585 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2586 2587 // Ignore dbg intrinsics. 2588 while (isa<DbgInfoIntrinsic>(CondIt)) 2589 ++CondIt; 2590 2591 if (&*CondIt != BI) 2592 return false; 2593 2594 // Only allow this transformation if computing the condition doesn't involve 2595 // too many instructions and these involved instructions can be executed 2596 // unconditionally. We denote all involved instructions except the condition 2597 // as "bonus instructions", and only allow this transformation when the 2598 // number of the bonus instructions does not exceed a certain threshold. 2599 unsigned NumBonusInsts = 0; 2600 for (auto I = BB->begin(); Cond != &*I; ++I) { 2601 // Ignore dbg intrinsics. 2602 if (isa<DbgInfoIntrinsic>(I)) 2603 continue; 2604 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2605 return false; 2606 // I has only one use and can be executed unconditionally. 2607 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2608 if (User == nullptr || User->getParent() != BB) 2609 return false; 2610 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2611 // to use any other instruction, User must be an instruction between next(I) 2612 // and Cond. 2613 ++NumBonusInsts; 2614 // Early exits once we reach the limit. 2615 if (NumBonusInsts > BonusInstThreshold) 2616 return false; 2617 } 2618 2619 // Cond is known to be a compare or binary operator. Check to make sure that 2620 // neither operand is a potentially-trapping constant expression. 2621 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2622 if (CE->canTrap()) 2623 return false; 2624 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2625 if (CE->canTrap()) 2626 return false; 2627 2628 // Finally, don't infinitely unroll conditional loops. 2629 BasicBlock *TrueDest = BI->getSuccessor(0); 2630 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2631 if (TrueDest == BB || FalseDest == BB) 2632 return false; 2633 2634 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2635 BasicBlock *PredBlock = *PI; 2636 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2637 2638 // Check that we have two conditional branches. If there is a PHI node in 2639 // the common successor, verify that the same value flows in from both 2640 // blocks. 2641 SmallVector<PHINode *, 4> PHIs; 2642 if (!PBI || PBI->isUnconditional() || 2643 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2644 (!BI->isConditional() && 2645 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2646 continue; 2647 2648 // Determine if the two branches share a common destination. 2649 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2650 bool InvertPredCond = false; 2651 2652 if (BI->isConditional()) { 2653 if (PBI->getSuccessor(0) == TrueDest) { 2654 Opc = Instruction::Or; 2655 } else if (PBI->getSuccessor(1) == FalseDest) { 2656 Opc = Instruction::And; 2657 } else if (PBI->getSuccessor(0) == FalseDest) { 2658 Opc = Instruction::And; 2659 InvertPredCond = true; 2660 } else if (PBI->getSuccessor(1) == TrueDest) { 2661 Opc = Instruction::Or; 2662 InvertPredCond = true; 2663 } else { 2664 continue; 2665 } 2666 } else { 2667 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2668 continue; 2669 } 2670 2671 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2672 IRBuilder<> Builder(PBI); 2673 2674 // If we need to invert the condition in the pred block to match, do so now. 2675 if (InvertPredCond) { 2676 Value *NewCond = PBI->getCondition(); 2677 2678 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2679 CmpInst *CI = cast<CmpInst>(NewCond); 2680 CI->setPredicate(CI->getInversePredicate()); 2681 } else { 2682 NewCond = 2683 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2684 } 2685 2686 PBI->setCondition(NewCond); 2687 PBI->swapSuccessors(); 2688 } 2689 2690 // If we have bonus instructions, clone them into the predecessor block. 2691 // Note that there may be multiple predecessor blocks, so we cannot move 2692 // bonus instructions to a predecessor block. 2693 ValueToValueMapTy VMap; // maps original values to cloned values 2694 // We already make sure Cond is the last instruction before BI. Therefore, 2695 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2696 // instructions. 2697 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2698 if (isa<DbgInfoIntrinsic>(BonusInst)) 2699 continue; 2700 Instruction *NewBonusInst = BonusInst->clone(); 2701 RemapInstruction(NewBonusInst, VMap, 2702 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2703 VMap[&*BonusInst] = NewBonusInst; 2704 2705 // If we moved a load, we cannot any longer claim any knowledge about 2706 // its potential value. The previous information might have been valid 2707 // only given the branch precondition. 2708 // For an analogous reason, we must also drop all the metadata whose 2709 // semantics we don't understand. 2710 NewBonusInst->dropUnknownNonDebugMetadata(); 2711 2712 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2713 NewBonusInst->takeName(&*BonusInst); 2714 BonusInst->setName(BonusInst->getName() + ".old"); 2715 } 2716 2717 // Clone Cond into the predecessor basic block, and or/and the 2718 // two conditions together. 2719 Instruction *New = Cond->clone(); 2720 RemapInstruction(New, VMap, 2721 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2722 PredBlock->getInstList().insert(PBI->getIterator(), New); 2723 New->takeName(Cond); 2724 Cond->setName(New->getName() + ".old"); 2725 2726 if (BI->isConditional()) { 2727 Instruction *NewCond = cast<Instruction>( 2728 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2729 PBI->setCondition(NewCond); 2730 2731 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2732 bool HasWeights = 2733 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2734 SuccTrueWeight, SuccFalseWeight); 2735 SmallVector<uint64_t, 8> NewWeights; 2736 2737 if (PBI->getSuccessor(0) == BB) { 2738 if (HasWeights) { 2739 // PBI: br i1 %x, BB, FalseDest 2740 // BI: br i1 %y, TrueDest, FalseDest 2741 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2742 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2743 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2744 // TrueWeight for PBI * FalseWeight for BI. 2745 // We assume that total weights of a BranchInst can fit into 32 bits. 2746 // Therefore, we will not have overflow using 64-bit arithmetic. 2747 NewWeights.push_back(PredFalseWeight * 2748 (SuccFalseWeight + SuccTrueWeight) + 2749 PredTrueWeight * SuccFalseWeight); 2750 } 2751 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2752 PBI->setSuccessor(0, TrueDest); 2753 } 2754 if (PBI->getSuccessor(1) == BB) { 2755 if (HasWeights) { 2756 // PBI: br i1 %x, TrueDest, BB 2757 // BI: br i1 %y, TrueDest, FalseDest 2758 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2759 // FalseWeight for PBI * TrueWeight for BI. 2760 NewWeights.push_back(PredTrueWeight * 2761 (SuccFalseWeight + SuccTrueWeight) + 2762 PredFalseWeight * SuccTrueWeight); 2763 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2764 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2765 } 2766 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2767 PBI->setSuccessor(1, FalseDest); 2768 } 2769 if (NewWeights.size() == 2) { 2770 // Halve the weights if any of them cannot fit in an uint32_t 2771 FitWeights(NewWeights); 2772 2773 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2774 NewWeights.end()); 2775 PBI->setMetadata( 2776 LLVMContext::MD_prof, 2777 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2778 } else 2779 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2780 } else { 2781 // Update PHI nodes in the common successors. 2782 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2783 ConstantInt *PBI_C = cast<ConstantInt>( 2784 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2785 assert(PBI_C->getType()->isIntegerTy(1)); 2786 Instruction *MergedCond = nullptr; 2787 if (PBI->getSuccessor(0) == TrueDest) { 2788 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2789 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2790 // is false: !PBI_Cond and BI_Value 2791 Instruction *NotCond = cast<Instruction>( 2792 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2793 MergedCond = cast<Instruction>( 2794 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2795 if (PBI_C->isOne()) 2796 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2797 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2798 } else { 2799 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2800 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2801 // is false: PBI_Cond and BI_Value 2802 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2803 Instruction::And, PBI->getCondition(), New, "and.cond")); 2804 if (PBI_C->isOne()) { 2805 Instruction *NotCond = cast<Instruction>( 2806 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2807 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2808 Instruction::Or, NotCond, MergedCond, "or.cond")); 2809 } 2810 } 2811 // Update PHI Node. 2812 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2813 MergedCond); 2814 } 2815 // Change PBI from Conditional to Unconditional. 2816 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2817 EraseTerminatorInstAndDCECond(PBI); 2818 PBI = New_PBI; 2819 } 2820 2821 // If BI was a loop latch, it may have had associated loop metadata. 2822 // We need to copy it to the new latch, that is, PBI. 2823 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2824 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2825 2826 // TODO: If BB is reachable from all paths through PredBlock, then we 2827 // could replace PBI's branch probabilities with BI's. 2828 2829 // Copy any debug value intrinsics into the end of PredBlock. 2830 for (Instruction &I : *BB) 2831 if (isa<DbgInfoIntrinsic>(I)) 2832 I.clone()->insertBefore(PBI); 2833 2834 return true; 2835 } 2836 return false; 2837 } 2838 2839 // If there is only one store in BB1 and BB2, return it, otherwise return 2840 // nullptr. 2841 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2842 StoreInst *S = nullptr; 2843 for (auto *BB : {BB1, BB2}) { 2844 if (!BB) 2845 continue; 2846 for (auto &I : *BB) 2847 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2848 if (S) 2849 // Multiple stores seen. 2850 return nullptr; 2851 else 2852 S = SI; 2853 } 2854 } 2855 return S; 2856 } 2857 2858 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2859 Value *AlternativeV = nullptr) { 2860 // PHI is going to be a PHI node that allows the value V that is defined in 2861 // BB to be referenced in BB's only successor. 2862 // 2863 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2864 // doesn't matter to us what the other operand is (it'll never get used). We 2865 // could just create a new PHI with an undef incoming value, but that could 2866 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2867 // other PHI. So here we directly look for some PHI in BB's successor with V 2868 // as an incoming operand. If we find one, we use it, else we create a new 2869 // one. 2870 // 2871 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2872 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2873 // where OtherBB is the single other predecessor of BB's only successor. 2874 PHINode *PHI = nullptr; 2875 BasicBlock *Succ = BB->getSingleSuccessor(); 2876 2877 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2878 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2879 PHI = cast<PHINode>(I); 2880 if (!AlternativeV) 2881 break; 2882 2883 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2884 auto PredI = pred_begin(Succ); 2885 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2886 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2887 break; 2888 PHI = nullptr; 2889 } 2890 if (PHI) 2891 return PHI; 2892 2893 // If V is not an instruction defined in BB, just return it. 2894 if (!AlternativeV && 2895 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2896 return V; 2897 2898 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2899 PHI->addIncoming(V, BB); 2900 for (BasicBlock *PredBB : predecessors(Succ)) 2901 if (PredBB != BB) 2902 PHI->addIncoming( 2903 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2904 return PHI; 2905 } 2906 2907 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2908 BasicBlock *QTB, BasicBlock *QFB, 2909 BasicBlock *PostBB, Value *Address, 2910 bool InvertPCond, bool InvertQCond) { 2911 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2912 return Operator::getOpcode(&I) == Instruction::BitCast && 2913 I.getType()->isPointerTy(); 2914 }; 2915 2916 // If we're not in aggressive mode, we only optimize if we have some 2917 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2918 auto IsWorthwhile = [&](BasicBlock *BB) { 2919 if (!BB) 2920 return true; 2921 // Heuristic: if the block can be if-converted/phi-folded and the 2922 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2923 // thread this store. 2924 unsigned N = 0; 2925 for (auto &I : *BB) { 2926 // Cheap instructions viable for folding. 2927 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2928 isa<StoreInst>(I)) 2929 ++N; 2930 // Free instructions. 2931 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2932 IsaBitcastOfPointerType(I)) 2933 continue; 2934 else 2935 return false; 2936 } 2937 return N <= PHINodeFoldingThreshold; 2938 }; 2939 2940 if (!MergeCondStoresAggressively && 2941 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2942 !IsWorthwhile(QFB))) 2943 return false; 2944 2945 // For every pointer, there must be exactly two stores, one coming from 2946 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2947 // store (to any address) in PTB,PFB or QTB,QFB. 2948 // FIXME: We could relax this restriction with a bit more work and performance 2949 // testing. 2950 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2951 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2952 if (!PStore || !QStore) 2953 return false; 2954 2955 // Now check the stores are compatible. 2956 if (!QStore->isUnordered() || !PStore->isUnordered()) 2957 return false; 2958 2959 // Check that sinking the store won't cause program behavior changes. Sinking 2960 // the store out of the Q blocks won't change any behavior as we're sinking 2961 // from a block to its unconditional successor. But we're moving a store from 2962 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2963 // So we need to check that there are no aliasing loads or stores in 2964 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2965 // operations between PStore and the end of its parent block. 2966 // 2967 // The ideal way to do this is to query AliasAnalysis, but we don't 2968 // preserve AA currently so that is dangerous. Be super safe and just 2969 // check there are no other memory operations at all. 2970 for (auto &I : *QFB->getSinglePredecessor()) 2971 if (I.mayReadOrWriteMemory()) 2972 return false; 2973 for (auto &I : *QFB) 2974 if (&I != QStore && I.mayReadOrWriteMemory()) 2975 return false; 2976 if (QTB) 2977 for (auto &I : *QTB) 2978 if (&I != QStore && I.mayReadOrWriteMemory()) 2979 return false; 2980 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2981 I != E; ++I) 2982 if (&*I != PStore && I->mayReadOrWriteMemory()) 2983 return false; 2984 2985 // OK, we're going to sink the stores to PostBB. The store has to be 2986 // conditional though, so first create the predicate. 2987 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2988 ->getCondition(); 2989 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2990 ->getCondition(); 2991 2992 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2993 PStore->getParent()); 2994 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2995 QStore->getParent(), PPHI); 2996 2997 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2998 2999 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3000 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3001 3002 if (InvertPCond) 3003 PPred = QB.CreateNot(PPred); 3004 if (InvertQCond) 3005 QPred = QB.CreateNot(QPred); 3006 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3007 3008 auto *T = 3009 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3010 QB.SetInsertPoint(T); 3011 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3012 AAMDNodes AAMD; 3013 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3014 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3015 SI->setAAMetadata(AAMD); 3016 3017 QStore->eraseFromParent(); 3018 PStore->eraseFromParent(); 3019 3020 return true; 3021 } 3022 3023 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 3024 // The intention here is to find diamonds or triangles (see below) where each 3025 // conditional block contains a store to the same address. Both of these 3026 // stores are conditional, so they can't be unconditionally sunk. But it may 3027 // be profitable to speculatively sink the stores into one merged store at the 3028 // end, and predicate the merged store on the union of the two conditions of 3029 // PBI and QBI. 3030 // 3031 // This can reduce the number of stores executed if both of the conditions are 3032 // true, and can allow the blocks to become small enough to be if-converted. 3033 // This optimization will also chain, so that ladders of test-and-set 3034 // sequences can be if-converted away. 3035 // 3036 // We only deal with simple diamonds or triangles: 3037 // 3038 // PBI or PBI or a combination of the two 3039 // / \ | \ 3040 // PTB PFB | PFB 3041 // \ / | / 3042 // QBI QBI 3043 // / \ | \ 3044 // QTB QFB | QFB 3045 // \ / | / 3046 // PostBB PostBB 3047 // 3048 // We model triangles as a type of diamond with a nullptr "true" block. 3049 // Triangles are canonicalized so that the fallthrough edge is represented by 3050 // a true condition, as in the diagram above. 3051 // 3052 BasicBlock *PTB = PBI->getSuccessor(0); 3053 BasicBlock *PFB = PBI->getSuccessor(1); 3054 BasicBlock *QTB = QBI->getSuccessor(0); 3055 BasicBlock *QFB = QBI->getSuccessor(1); 3056 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3057 3058 bool InvertPCond = false, InvertQCond = false; 3059 // Canonicalize fallthroughs to the true branches. 3060 if (PFB == QBI->getParent()) { 3061 std::swap(PFB, PTB); 3062 InvertPCond = true; 3063 } 3064 if (QFB == PostBB) { 3065 std::swap(QFB, QTB); 3066 InvertQCond = true; 3067 } 3068 3069 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3070 // and QFB may not. Model fallthroughs as a nullptr block. 3071 if (PTB == QBI->getParent()) 3072 PTB = nullptr; 3073 if (QTB == PostBB) 3074 QTB = nullptr; 3075 3076 // Legality bailouts. We must have at least the non-fallthrough blocks and 3077 // the post-dominating block, and the non-fallthroughs must only have one 3078 // predecessor. 3079 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3080 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3081 }; 3082 if (!PostBB || 3083 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3084 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3085 return false; 3086 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3087 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3088 return false; 3089 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 3090 return false; 3091 3092 // OK, this is a sequence of two diamonds or triangles. 3093 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3094 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3095 for (auto *BB : {PTB, PFB}) { 3096 if (!BB) 3097 continue; 3098 for (auto &I : *BB) 3099 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3100 PStoreAddresses.insert(SI->getPointerOperand()); 3101 } 3102 for (auto *BB : {QTB, QFB}) { 3103 if (!BB) 3104 continue; 3105 for (auto &I : *BB) 3106 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3107 QStoreAddresses.insert(SI->getPointerOperand()); 3108 } 3109 3110 set_intersect(PStoreAddresses, QStoreAddresses); 3111 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3112 // clear what it contains. 3113 auto &CommonAddresses = PStoreAddresses; 3114 3115 bool Changed = false; 3116 for (auto *Address : CommonAddresses) 3117 Changed |= mergeConditionalStoreToAddress( 3118 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 3119 return Changed; 3120 } 3121 3122 /// If we have a conditional branch as a predecessor of another block, 3123 /// this function tries to simplify it. We know 3124 /// that PBI and BI are both conditional branches, and BI is in one of the 3125 /// successor blocks of PBI - PBI branches to BI. 3126 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3127 const DataLayout &DL) { 3128 assert(PBI->isConditional() && BI->isConditional()); 3129 BasicBlock *BB = BI->getParent(); 3130 3131 // If this block ends with a branch instruction, and if there is a 3132 // predecessor that ends on a branch of the same condition, make 3133 // this conditional branch redundant. 3134 if (PBI->getCondition() == BI->getCondition() && 3135 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3136 // Okay, the outcome of this conditional branch is statically 3137 // knowable. If this block had a single pred, handle specially. 3138 if (BB->getSinglePredecessor()) { 3139 // Turn this into a branch on constant. 3140 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3141 BI->setCondition( 3142 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3143 return true; // Nuke the branch on constant. 3144 } 3145 3146 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3147 // in the constant and simplify the block result. Subsequent passes of 3148 // simplifycfg will thread the block. 3149 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3150 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3151 PHINode *NewPN = PHINode::Create( 3152 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3153 BI->getCondition()->getName() + ".pr", &BB->front()); 3154 // Okay, we're going to insert the PHI node. Since PBI is not the only 3155 // predecessor, compute the PHI'd conditional value for all of the preds. 3156 // Any predecessor where the condition is not computable we keep symbolic. 3157 for (pred_iterator PI = PB; PI != PE; ++PI) { 3158 BasicBlock *P = *PI; 3159 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3160 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3161 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3162 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3163 NewPN->addIncoming( 3164 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3165 P); 3166 } else { 3167 NewPN->addIncoming(BI->getCondition(), P); 3168 } 3169 } 3170 3171 BI->setCondition(NewPN); 3172 return true; 3173 } 3174 } 3175 3176 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3177 if (CE->canTrap()) 3178 return false; 3179 3180 // If both branches are conditional and both contain stores to the same 3181 // address, remove the stores from the conditionals and create a conditional 3182 // merged store at the end. 3183 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 3184 return true; 3185 3186 // If this is a conditional branch in an empty block, and if any 3187 // predecessors are a conditional branch to one of our destinations, 3188 // fold the conditions into logical ops and one cond br. 3189 BasicBlock::iterator BBI = BB->begin(); 3190 // Ignore dbg intrinsics. 3191 while (isa<DbgInfoIntrinsic>(BBI)) 3192 ++BBI; 3193 if (&*BBI != BI) 3194 return false; 3195 3196 int PBIOp, BIOp; 3197 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3198 PBIOp = 0; 3199 BIOp = 0; 3200 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3201 PBIOp = 0; 3202 BIOp = 1; 3203 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3204 PBIOp = 1; 3205 BIOp = 0; 3206 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3207 PBIOp = 1; 3208 BIOp = 1; 3209 } else { 3210 return false; 3211 } 3212 3213 // Check to make sure that the other destination of this branch 3214 // isn't BB itself. If so, this is an infinite loop that will 3215 // keep getting unwound. 3216 if (PBI->getSuccessor(PBIOp) == BB) 3217 return false; 3218 3219 // Do not perform this transformation if it would require 3220 // insertion of a large number of select instructions. For targets 3221 // without predication/cmovs, this is a big pessimization. 3222 3223 // Also do not perform this transformation if any phi node in the common 3224 // destination block can trap when reached by BB or PBB (PR17073). In that 3225 // case, it would be unsafe to hoist the operation into a select instruction. 3226 3227 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3228 unsigned NumPhis = 0; 3229 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3230 ++II, ++NumPhis) { 3231 if (NumPhis > 2) // Disable this xform. 3232 return false; 3233 3234 PHINode *PN = cast<PHINode>(II); 3235 Value *BIV = PN->getIncomingValueForBlock(BB); 3236 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3237 if (CE->canTrap()) 3238 return false; 3239 3240 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3241 Value *PBIV = PN->getIncomingValue(PBBIdx); 3242 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3243 if (CE->canTrap()) 3244 return false; 3245 } 3246 3247 // Finally, if everything is ok, fold the branches to logical ops. 3248 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3249 3250 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3251 << "AND: " << *BI->getParent()); 3252 3253 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3254 // branch in it, where one edge (OtherDest) goes back to itself but the other 3255 // exits. We don't *know* that the program avoids the infinite loop 3256 // (even though that seems likely). If we do this xform naively, we'll end up 3257 // recursively unpeeling the loop. Since we know that (after the xform is 3258 // done) that the block *is* infinite if reached, we just make it an obviously 3259 // infinite loop with no cond branch. 3260 if (OtherDest == BB) { 3261 // Insert it at the end of the function, because it's either code, 3262 // or it won't matter if it's hot. :) 3263 BasicBlock *InfLoopBlock = 3264 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3265 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3266 OtherDest = InfLoopBlock; 3267 } 3268 3269 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3270 3271 // BI may have other predecessors. Because of this, we leave 3272 // it alone, but modify PBI. 3273 3274 // Make sure we get to CommonDest on True&True directions. 3275 Value *PBICond = PBI->getCondition(); 3276 IRBuilder<NoFolder> Builder(PBI); 3277 if (PBIOp) 3278 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3279 3280 Value *BICond = BI->getCondition(); 3281 if (BIOp) 3282 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3283 3284 // Merge the conditions. 3285 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3286 3287 // Modify PBI to branch on the new condition to the new dests. 3288 PBI->setCondition(Cond); 3289 PBI->setSuccessor(0, CommonDest); 3290 PBI->setSuccessor(1, OtherDest); 3291 3292 // Update branch weight for PBI. 3293 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3294 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3295 bool HasWeights = 3296 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3297 SuccTrueWeight, SuccFalseWeight); 3298 if (HasWeights) { 3299 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3300 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3301 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3302 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3303 // The weight to CommonDest should be PredCommon * SuccTotal + 3304 // PredOther * SuccCommon. 3305 // The weight to OtherDest should be PredOther * SuccOther. 3306 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3307 PredOther * SuccCommon, 3308 PredOther * SuccOther}; 3309 // Halve the weights if any of them cannot fit in an uint32_t 3310 FitWeights(NewWeights); 3311 3312 PBI->setMetadata(LLVMContext::MD_prof, 3313 MDBuilder(BI->getContext()) 3314 .createBranchWeights(NewWeights[0], NewWeights[1])); 3315 } 3316 3317 // OtherDest may have phi nodes. If so, add an entry from PBI's 3318 // block that are identical to the entries for BI's block. 3319 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3320 3321 // We know that the CommonDest already had an edge from PBI to 3322 // it. If it has PHIs though, the PHIs may have different 3323 // entries for BB and PBI's BB. If so, insert a select to make 3324 // them agree. 3325 PHINode *PN; 3326 for (BasicBlock::iterator II = CommonDest->begin(); 3327 (PN = dyn_cast<PHINode>(II)); ++II) { 3328 Value *BIV = PN->getIncomingValueForBlock(BB); 3329 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3330 Value *PBIV = PN->getIncomingValue(PBBIdx); 3331 if (BIV != PBIV) { 3332 // Insert a select in PBI to pick the right value. 3333 SelectInst *NV = cast<SelectInst>( 3334 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3335 PN->setIncomingValue(PBBIdx, NV); 3336 // Although the select has the same condition as PBI, the original branch 3337 // weights for PBI do not apply to the new select because the select's 3338 // 'logical' edges are incoming edges of the phi that is eliminated, not 3339 // the outgoing edges of PBI. 3340 if (HasWeights) { 3341 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3342 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3343 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3344 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3345 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3346 // The weight to PredOtherDest should be PredOther * SuccCommon. 3347 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3348 PredOther * SuccCommon}; 3349 3350 FitWeights(NewWeights); 3351 3352 NV->setMetadata(LLVMContext::MD_prof, 3353 MDBuilder(BI->getContext()) 3354 .createBranchWeights(NewWeights[0], NewWeights[1])); 3355 } 3356 } 3357 } 3358 3359 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3360 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3361 3362 // This basic block is probably dead. We know it has at least 3363 // one fewer predecessor. 3364 return true; 3365 } 3366 3367 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3368 // true or to FalseBB if Cond is false. 3369 // Takes care of updating the successors and removing the old terminator. 3370 // Also makes sure not to introduce new successors by assuming that edges to 3371 // non-successor TrueBBs and FalseBBs aren't reachable. 3372 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3373 BasicBlock *TrueBB, BasicBlock *FalseBB, 3374 uint32_t TrueWeight, 3375 uint32_t FalseWeight) { 3376 // Remove any superfluous successor edges from the CFG. 3377 // First, figure out which successors to preserve. 3378 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3379 // successor. 3380 BasicBlock *KeepEdge1 = TrueBB; 3381 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3382 3383 // Then remove the rest. 3384 for (BasicBlock *Succ : OldTerm->successors()) { 3385 // Make sure only to keep exactly one copy of each edge. 3386 if (Succ == KeepEdge1) 3387 KeepEdge1 = nullptr; 3388 else if (Succ == KeepEdge2) 3389 KeepEdge2 = nullptr; 3390 else 3391 Succ->removePredecessor(OldTerm->getParent(), 3392 /*DontDeleteUselessPHIs=*/true); 3393 } 3394 3395 IRBuilder<> Builder(OldTerm); 3396 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3397 3398 // Insert an appropriate new terminator. 3399 if (!KeepEdge1 && !KeepEdge2) { 3400 if (TrueBB == FalseBB) 3401 // We were only looking for one successor, and it was present. 3402 // Create an unconditional branch to it. 3403 Builder.CreateBr(TrueBB); 3404 else { 3405 // We found both of the successors we were looking for. 3406 // Create a conditional branch sharing the condition of the select. 3407 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3408 if (TrueWeight != FalseWeight) 3409 NewBI->setMetadata(LLVMContext::MD_prof, 3410 MDBuilder(OldTerm->getContext()) 3411 .createBranchWeights(TrueWeight, FalseWeight)); 3412 } 3413 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3414 // Neither of the selected blocks were successors, so this 3415 // terminator must be unreachable. 3416 new UnreachableInst(OldTerm->getContext(), OldTerm); 3417 } else { 3418 // One of the selected values was a successor, but the other wasn't. 3419 // Insert an unconditional branch to the one that was found; 3420 // the edge to the one that wasn't must be unreachable. 3421 if (!KeepEdge1) 3422 // Only TrueBB was found. 3423 Builder.CreateBr(TrueBB); 3424 else 3425 // Only FalseBB was found. 3426 Builder.CreateBr(FalseBB); 3427 } 3428 3429 EraseTerminatorInstAndDCECond(OldTerm); 3430 return true; 3431 } 3432 3433 // Replaces 3434 // (switch (select cond, X, Y)) on constant X, Y 3435 // with a branch - conditional if X and Y lead to distinct BBs, 3436 // unconditional otherwise. 3437 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3438 // Check for constant integer values in the select. 3439 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3440 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3441 if (!TrueVal || !FalseVal) 3442 return false; 3443 3444 // Find the relevant condition and destinations. 3445 Value *Condition = Select->getCondition(); 3446 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3447 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3448 3449 // Get weight for TrueBB and FalseBB. 3450 uint32_t TrueWeight = 0, FalseWeight = 0; 3451 SmallVector<uint64_t, 8> Weights; 3452 bool HasWeights = HasBranchWeights(SI); 3453 if (HasWeights) { 3454 GetBranchWeights(SI, Weights); 3455 if (Weights.size() == 1 + SI->getNumCases()) { 3456 TrueWeight = 3457 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3458 FalseWeight = 3459 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3460 } 3461 } 3462 3463 // Perform the actual simplification. 3464 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3465 FalseWeight); 3466 } 3467 3468 // Replaces 3469 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3470 // blockaddress(@fn, BlockB))) 3471 // with 3472 // (br cond, BlockA, BlockB). 3473 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3474 // Check that both operands of the select are block addresses. 3475 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3476 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3477 if (!TBA || !FBA) 3478 return false; 3479 3480 // Extract the actual blocks. 3481 BasicBlock *TrueBB = TBA->getBasicBlock(); 3482 BasicBlock *FalseBB = FBA->getBasicBlock(); 3483 3484 // Perform the actual simplification. 3485 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3486 0); 3487 } 3488 3489 /// This is called when we find an icmp instruction 3490 /// (a seteq/setne with a constant) as the only instruction in a 3491 /// block that ends with an uncond branch. We are looking for a very specific 3492 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3493 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3494 /// default value goes to an uncond block with a seteq in it, we get something 3495 /// like: 3496 /// 3497 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3498 /// DEFAULT: 3499 /// %tmp = icmp eq i8 %A, 92 3500 /// br label %end 3501 /// end: 3502 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3503 /// 3504 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3505 /// the PHI, merging the third icmp into the switch. 3506 static bool TryToSimplifyUncondBranchWithICmpInIt( 3507 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3508 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3509 AssumptionCache *AC) { 3510 BasicBlock *BB = ICI->getParent(); 3511 3512 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3513 // complex. 3514 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3515 return false; 3516 3517 Value *V = ICI->getOperand(0); 3518 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3519 3520 // The pattern we're looking for is where our only predecessor is a switch on 3521 // 'V' and this block is the default case for the switch. In this case we can 3522 // fold the compared value into the switch to simplify things. 3523 BasicBlock *Pred = BB->getSinglePredecessor(); 3524 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3525 return false; 3526 3527 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3528 if (SI->getCondition() != V) 3529 return false; 3530 3531 // If BB is reachable on a non-default case, then we simply know the value of 3532 // V in this block. Substitute it and constant fold the icmp instruction 3533 // away. 3534 if (SI->getDefaultDest() != BB) { 3535 ConstantInt *VVal = SI->findCaseDest(BB); 3536 assert(VVal && "Should have a unique destination value"); 3537 ICI->setOperand(0, VVal); 3538 3539 if (Value *V = SimplifyInstruction(ICI, DL)) { 3540 ICI->replaceAllUsesWith(V); 3541 ICI->eraseFromParent(); 3542 } 3543 // BB is now empty, so it is likely to simplify away. 3544 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3545 } 3546 3547 // Ok, the block is reachable from the default dest. If the constant we're 3548 // comparing exists in one of the other edges, then we can constant fold ICI 3549 // and zap it. 3550 if (SI->findCaseValue(Cst) != SI->case_default()) { 3551 Value *V; 3552 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3553 V = ConstantInt::getFalse(BB->getContext()); 3554 else 3555 V = ConstantInt::getTrue(BB->getContext()); 3556 3557 ICI->replaceAllUsesWith(V); 3558 ICI->eraseFromParent(); 3559 // BB is now empty, so it is likely to simplify away. 3560 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3561 } 3562 3563 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3564 // the block. 3565 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3566 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3567 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3568 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3569 return false; 3570 3571 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3572 // true in the PHI. 3573 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3574 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3575 3576 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3577 std::swap(DefaultCst, NewCst); 3578 3579 // Replace ICI (which is used by the PHI for the default value) with true or 3580 // false depending on if it is EQ or NE. 3581 ICI->replaceAllUsesWith(DefaultCst); 3582 ICI->eraseFromParent(); 3583 3584 // Okay, the switch goes to this block on a default value. Add an edge from 3585 // the switch to the merge point on the compared value. 3586 BasicBlock *NewBB = 3587 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3588 SmallVector<uint64_t, 8> Weights; 3589 bool HasWeights = HasBranchWeights(SI); 3590 if (HasWeights) { 3591 GetBranchWeights(SI, Weights); 3592 if (Weights.size() == 1 + SI->getNumCases()) { 3593 // Split weight for default case to case for "Cst". 3594 Weights[0] = (Weights[0] + 1) >> 1; 3595 Weights.push_back(Weights[0]); 3596 3597 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3598 SI->setMetadata( 3599 LLVMContext::MD_prof, 3600 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3601 } 3602 } 3603 SI->addCase(Cst, NewBB); 3604 3605 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3606 Builder.SetInsertPoint(NewBB); 3607 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3608 Builder.CreateBr(SuccBlock); 3609 PHIUse->addIncoming(NewCst, NewBB); 3610 return true; 3611 } 3612 3613 /// The specified branch is a conditional branch. 3614 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3615 /// fold it into a switch instruction if so. 3616 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3617 const DataLayout &DL) { 3618 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3619 if (!Cond) 3620 return false; 3621 3622 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3623 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3624 // 'setne's and'ed together, collect them. 3625 3626 // Try to gather values from a chain of and/or to be turned into a switch 3627 ConstantComparesGatherer ConstantCompare(Cond, DL); 3628 // Unpack the result 3629 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3630 Value *CompVal = ConstantCompare.CompValue; 3631 unsigned UsedICmps = ConstantCompare.UsedICmps; 3632 Value *ExtraCase = ConstantCompare.Extra; 3633 3634 // If we didn't have a multiply compared value, fail. 3635 if (!CompVal) 3636 return false; 3637 3638 // Avoid turning single icmps into a switch. 3639 if (UsedICmps <= 1) 3640 return false; 3641 3642 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3643 3644 // There might be duplicate constants in the list, which the switch 3645 // instruction can't handle, remove them now. 3646 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3647 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3648 3649 // If Extra was used, we require at least two switch values to do the 3650 // transformation. A switch with one value is just a conditional branch. 3651 if (ExtraCase && Values.size() < 2) 3652 return false; 3653 3654 // TODO: Preserve branch weight metadata, similarly to how 3655 // FoldValueComparisonIntoPredecessors preserves it. 3656 3657 // Figure out which block is which destination. 3658 BasicBlock *DefaultBB = BI->getSuccessor(1); 3659 BasicBlock *EdgeBB = BI->getSuccessor(0); 3660 if (!TrueWhenEqual) 3661 std::swap(DefaultBB, EdgeBB); 3662 3663 BasicBlock *BB = BI->getParent(); 3664 3665 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3666 << " cases into SWITCH. BB is:\n" 3667 << *BB); 3668 3669 // If there are any extra values that couldn't be folded into the switch 3670 // then we evaluate them with an explicit branch first. Split the block 3671 // right before the condbr to handle it. 3672 if (ExtraCase) { 3673 BasicBlock *NewBB = 3674 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3675 // Remove the uncond branch added to the old block. 3676 TerminatorInst *OldTI = BB->getTerminator(); 3677 Builder.SetInsertPoint(OldTI); 3678 3679 if (TrueWhenEqual) 3680 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3681 else 3682 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3683 3684 OldTI->eraseFromParent(); 3685 3686 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3687 // for the edge we just added. 3688 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3689 3690 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3691 << "\nEXTRABB = " << *BB); 3692 BB = NewBB; 3693 } 3694 3695 Builder.SetInsertPoint(BI); 3696 // Convert pointer to int before we switch. 3697 if (CompVal->getType()->isPointerTy()) { 3698 CompVal = Builder.CreatePtrToInt( 3699 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3700 } 3701 3702 // Create the new switch instruction now. 3703 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3704 3705 // Add all of the 'cases' to the switch instruction. 3706 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3707 New->addCase(Values[i], EdgeBB); 3708 3709 // We added edges from PI to the EdgeBB. As such, if there were any 3710 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3711 // the number of edges added. 3712 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3713 PHINode *PN = cast<PHINode>(BBI); 3714 Value *InVal = PN->getIncomingValueForBlock(BB); 3715 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3716 PN->addIncoming(InVal, BB); 3717 } 3718 3719 // Erase the old branch instruction. 3720 EraseTerminatorInstAndDCECond(BI); 3721 3722 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3723 return true; 3724 } 3725 3726 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3727 if (isa<PHINode>(RI->getValue())) 3728 return SimplifyCommonResume(RI); 3729 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3730 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3731 // The resume must unwind the exception that caused control to branch here. 3732 return SimplifySingleResume(RI); 3733 3734 return false; 3735 } 3736 3737 // Simplify resume that is shared by several landing pads (phi of landing pad). 3738 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3739 BasicBlock *BB = RI->getParent(); 3740 3741 // Check that there are no other instructions except for debug intrinsics 3742 // between the phi of landing pads (RI->getValue()) and resume instruction. 3743 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3744 E = RI->getIterator(); 3745 while (++I != E) 3746 if (!isa<DbgInfoIntrinsic>(I)) 3747 return false; 3748 3749 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3750 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3751 3752 // Check incoming blocks to see if any of them are trivial. 3753 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3754 Idx++) { 3755 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3756 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3757 3758 // If the block has other successors, we can not delete it because 3759 // it has other dependents. 3760 if (IncomingBB->getUniqueSuccessor() != BB) 3761 continue; 3762 3763 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3764 // Not the landing pad that caused the control to branch here. 3765 if (IncomingValue != LandingPad) 3766 continue; 3767 3768 bool isTrivial = true; 3769 3770 I = IncomingBB->getFirstNonPHI()->getIterator(); 3771 E = IncomingBB->getTerminator()->getIterator(); 3772 while (++I != E) 3773 if (!isa<DbgInfoIntrinsic>(I)) { 3774 isTrivial = false; 3775 break; 3776 } 3777 3778 if (isTrivial) 3779 TrivialUnwindBlocks.insert(IncomingBB); 3780 } 3781 3782 // If no trivial unwind blocks, don't do any simplifications. 3783 if (TrivialUnwindBlocks.empty()) 3784 return false; 3785 3786 // Turn all invokes that unwind here into calls. 3787 for (auto *TrivialBB : TrivialUnwindBlocks) { 3788 // Blocks that will be simplified should be removed from the phi node. 3789 // Note there could be multiple edges to the resume block, and we need 3790 // to remove them all. 3791 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3792 BB->removePredecessor(TrivialBB, true); 3793 3794 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3795 PI != PE;) { 3796 BasicBlock *Pred = *PI++; 3797 removeUnwindEdge(Pred); 3798 } 3799 3800 // In each SimplifyCFG run, only the current processed block can be erased. 3801 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3802 // of erasing TrivialBB, we only remove the branch to the common resume 3803 // block so that we can later erase the resume block since it has no 3804 // predecessors. 3805 TrivialBB->getTerminator()->eraseFromParent(); 3806 new UnreachableInst(RI->getContext(), TrivialBB); 3807 } 3808 3809 // Delete the resume block if all its predecessors have been removed. 3810 if (pred_empty(BB)) 3811 BB->eraseFromParent(); 3812 3813 return !TrivialUnwindBlocks.empty(); 3814 } 3815 3816 // Simplify resume that is only used by a single (non-phi) landing pad. 3817 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3818 BasicBlock *BB = RI->getParent(); 3819 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3820 assert(RI->getValue() == LPInst && 3821 "Resume must unwind the exception that caused control to here"); 3822 3823 // Check that there are no other instructions except for debug intrinsics. 3824 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3825 while (++I != E) 3826 if (!isa<DbgInfoIntrinsic>(I)) 3827 return false; 3828 3829 // Turn all invokes that unwind here into calls and delete the basic block. 3830 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3831 BasicBlock *Pred = *PI++; 3832 removeUnwindEdge(Pred); 3833 } 3834 3835 // The landingpad is now unreachable. Zap it. 3836 BB->eraseFromParent(); 3837 if (LoopHeaders) 3838 LoopHeaders->erase(BB); 3839 return true; 3840 } 3841 3842 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3843 // If this is a trivial cleanup pad that executes no instructions, it can be 3844 // eliminated. If the cleanup pad continues to the caller, any predecessor 3845 // that is an EH pad will be updated to continue to the caller and any 3846 // predecessor that terminates with an invoke instruction will have its invoke 3847 // instruction converted to a call instruction. If the cleanup pad being 3848 // simplified does not continue to the caller, each predecessor will be 3849 // updated to continue to the unwind destination of the cleanup pad being 3850 // simplified. 3851 BasicBlock *BB = RI->getParent(); 3852 CleanupPadInst *CPInst = RI->getCleanupPad(); 3853 if (CPInst->getParent() != BB) 3854 // This isn't an empty cleanup. 3855 return false; 3856 3857 // We cannot kill the pad if it has multiple uses. This typically arises 3858 // from unreachable basic blocks. 3859 if (!CPInst->hasOneUse()) 3860 return false; 3861 3862 // Check that there are no other instructions except for benign intrinsics. 3863 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3864 while (++I != E) { 3865 auto *II = dyn_cast<IntrinsicInst>(I); 3866 if (!II) 3867 return false; 3868 3869 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3870 switch (IntrinsicID) { 3871 case Intrinsic::dbg_declare: 3872 case Intrinsic::dbg_value: 3873 case Intrinsic::lifetime_end: 3874 break; 3875 default: 3876 return false; 3877 } 3878 } 3879 3880 // If the cleanup return we are simplifying unwinds to the caller, this will 3881 // set UnwindDest to nullptr. 3882 BasicBlock *UnwindDest = RI->getUnwindDest(); 3883 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3884 3885 // We're about to remove BB from the control flow. Before we do, sink any 3886 // PHINodes into the unwind destination. Doing this before changing the 3887 // control flow avoids some potentially slow checks, since we can currently 3888 // be certain that UnwindDest and BB have no common predecessors (since they 3889 // are both EH pads). 3890 if (UnwindDest) { 3891 // First, go through the PHI nodes in UnwindDest and update any nodes that 3892 // reference the block we are removing 3893 for (BasicBlock::iterator I = UnwindDest->begin(), 3894 IE = DestEHPad->getIterator(); 3895 I != IE; ++I) { 3896 PHINode *DestPN = cast<PHINode>(I); 3897 3898 int Idx = DestPN->getBasicBlockIndex(BB); 3899 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3900 assert(Idx != -1); 3901 // This PHI node has an incoming value that corresponds to a control 3902 // path through the cleanup pad we are removing. If the incoming 3903 // value is in the cleanup pad, it must be a PHINode (because we 3904 // verified above that the block is otherwise empty). Otherwise, the 3905 // value is either a constant or a value that dominates the cleanup 3906 // pad being removed. 3907 // 3908 // Because BB and UnwindDest are both EH pads, all of their 3909 // predecessors must unwind to these blocks, and since no instruction 3910 // can have multiple unwind destinations, there will be no overlap in 3911 // incoming blocks between SrcPN and DestPN. 3912 Value *SrcVal = DestPN->getIncomingValue(Idx); 3913 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3914 3915 // Remove the entry for the block we are deleting. 3916 DestPN->removeIncomingValue(Idx, false); 3917 3918 if (SrcPN && SrcPN->getParent() == BB) { 3919 // If the incoming value was a PHI node in the cleanup pad we are 3920 // removing, we need to merge that PHI node's incoming values into 3921 // DestPN. 3922 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3923 SrcIdx != SrcE; ++SrcIdx) { 3924 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3925 SrcPN->getIncomingBlock(SrcIdx)); 3926 } 3927 } else { 3928 // Otherwise, the incoming value came from above BB and 3929 // so we can just reuse it. We must associate all of BB's 3930 // predecessors with this value. 3931 for (auto *pred : predecessors(BB)) { 3932 DestPN->addIncoming(SrcVal, pred); 3933 } 3934 } 3935 } 3936 3937 // Sink any remaining PHI nodes directly into UnwindDest. 3938 Instruction *InsertPt = DestEHPad; 3939 for (BasicBlock::iterator I = BB->begin(), 3940 IE = BB->getFirstNonPHI()->getIterator(); 3941 I != IE;) { 3942 // The iterator must be incremented here because the instructions are 3943 // being moved to another block. 3944 PHINode *PN = cast<PHINode>(I++); 3945 if (PN->use_empty()) 3946 // If the PHI node has no uses, just leave it. It will be erased 3947 // when we erase BB below. 3948 continue; 3949 3950 // Otherwise, sink this PHI node into UnwindDest. 3951 // Any predecessors to UnwindDest which are not already represented 3952 // must be back edges which inherit the value from the path through 3953 // BB. In this case, the PHI value must reference itself. 3954 for (auto *pred : predecessors(UnwindDest)) 3955 if (pred != BB) 3956 PN->addIncoming(PN, pred); 3957 PN->moveBefore(InsertPt); 3958 } 3959 } 3960 3961 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3962 // The iterator must be updated here because we are removing this pred. 3963 BasicBlock *PredBB = *PI++; 3964 if (UnwindDest == nullptr) { 3965 removeUnwindEdge(PredBB); 3966 } else { 3967 TerminatorInst *TI = PredBB->getTerminator(); 3968 TI->replaceUsesOfWith(BB, UnwindDest); 3969 } 3970 } 3971 3972 // The cleanup pad is now unreachable. Zap it. 3973 BB->eraseFromParent(); 3974 return true; 3975 } 3976 3977 // Try to merge two cleanuppads together. 3978 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3979 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3980 // with. 3981 BasicBlock *UnwindDest = RI->getUnwindDest(); 3982 if (!UnwindDest) 3983 return false; 3984 3985 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3986 // be safe to merge without code duplication. 3987 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3988 return false; 3989 3990 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3991 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3992 if (!SuccessorCleanupPad) 3993 return false; 3994 3995 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3996 // Replace any uses of the successor cleanupad with the predecessor pad 3997 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3998 // funclet bundle operands. 3999 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4000 // Remove the old cleanuppad. 4001 SuccessorCleanupPad->eraseFromParent(); 4002 // Now, we simply replace the cleanupret with a branch to the unwind 4003 // destination. 4004 BranchInst::Create(UnwindDest, RI->getParent()); 4005 RI->eraseFromParent(); 4006 4007 return true; 4008 } 4009 4010 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4011 // It is possible to transiantly have an undef cleanuppad operand because we 4012 // have deleted some, but not all, dead blocks. 4013 // Eventually, this block will be deleted. 4014 if (isa<UndefValue>(RI->getOperand(0))) 4015 return false; 4016 4017 if (mergeCleanupPad(RI)) 4018 return true; 4019 4020 if (removeEmptyCleanup(RI)) 4021 return true; 4022 4023 return false; 4024 } 4025 4026 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4027 BasicBlock *BB = RI->getParent(); 4028 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4029 return false; 4030 4031 // Find predecessors that end with branches. 4032 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4033 SmallVector<BranchInst *, 8> CondBranchPreds; 4034 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4035 BasicBlock *P = *PI; 4036 TerminatorInst *PTI = P->getTerminator(); 4037 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4038 if (BI->isUnconditional()) 4039 UncondBranchPreds.push_back(P); 4040 else 4041 CondBranchPreds.push_back(BI); 4042 } 4043 } 4044 4045 // If we found some, do the transformation! 4046 if (!UncondBranchPreds.empty() && DupRet) { 4047 while (!UncondBranchPreds.empty()) { 4048 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4049 DEBUG(dbgs() << "FOLDING: " << *BB 4050 << "INTO UNCOND BRANCH PRED: " << *Pred); 4051 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4052 } 4053 4054 // If we eliminated all predecessors of the block, delete the block now. 4055 if (pred_empty(BB)) { 4056 // We know there are no successors, so just nuke the block. 4057 BB->eraseFromParent(); 4058 if (LoopHeaders) 4059 LoopHeaders->erase(BB); 4060 } 4061 4062 return true; 4063 } 4064 4065 // Check out all of the conditional branches going to this return 4066 // instruction. If any of them just select between returns, change the 4067 // branch itself into a select/return pair. 4068 while (!CondBranchPreds.empty()) { 4069 BranchInst *BI = CondBranchPreds.pop_back_val(); 4070 4071 // Check to see if the non-BB successor is also a return block. 4072 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4073 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4074 SimplifyCondBranchToTwoReturns(BI, Builder)) 4075 return true; 4076 } 4077 return false; 4078 } 4079 4080 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4081 BasicBlock *BB = UI->getParent(); 4082 4083 bool Changed = false; 4084 4085 // If there are any instructions immediately before the unreachable that can 4086 // be removed, do so. 4087 while (UI->getIterator() != BB->begin()) { 4088 BasicBlock::iterator BBI = UI->getIterator(); 4089 --BBI; 4090 // Do not delete instructions that can have side effects which might cause 4091 // the unreachable to not be reachable; specifically, calls and volatile 4092 // operations may have this effect. 4093 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4094 break; 4095 4096 if (BBI->mayHaveSideEffects()) { 4097 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4098 if (SI->isVolatile()) 4099 break; 4100 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4101 if (LI->isVolatile()) 4102 break; 4103 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4104 if (RMWI->isVolatile()) 4105 break; 4106 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4107 if (CXI->isVolatile()) 4108 break; 4109 } else if (isa<CatchPadInst>(BBI)) { 4110 // A catchpad may invoke exception object constructors and such, which 4111 // in some languages can be arbitrary code, so be conservative by 4112 // default. 4113 // For CoreCLR, it just involves a type test, so can be removed. 4114 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4115 EHPersonality::CoreCLR) 4116 break; 4117 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4118 !isa<LandingPadInst>(BBI)) { 4119 break; 4120 } 4121 // Note that deleting LandingPad's here is in fact okay, although it 4122 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4123 // all the predecessors of this block will be the unwind edges of Invokes, 4124 // and we can therefore guarantee this block will be erased. 4125 } 4126 4127 // Delete this instruction (any uses are guaranteed to be dead) 4128 if (!BBI->use_empty()) 4129 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4130 BBI->eraseFromParent(); 4131 Changed = true; 4132 } 4133 4134 // If the unreachable instruction is the first in the block, take a gander 4135 // at all of the predecessors of this instruction, and simplify them. 4136 if (&BB->front() != UI) 4137 return Changed; 4138 4139 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4140 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4141 TerminatorInst *TI = Preds[i]->getTerminator(); 4142 IRBuilder<> Builder(TI); 4143 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4144 if (BI->isUnconditional()) { 4145 if (BI->getSuccessor(0) == BB) { 4146 new UnreachableInst(TI->getContext(), TI); 4147 TI->eraseFromParent(); 4148 Changed = true; 4149 } 4150 } else { 4151 if (BI->getSuccessor(0) == BB) { 4152 Builder.CreateBr(BI->getSuccessor(1)); 4153 EraseTerminatorInstAndDCECond(BI); 4154 } else if (BI->getSuccessor(1) == BB) { 4155 Builder.CreateBr(BI->getSuccessor(0)); 4156 EraseTerminatorInstAndDCECond(BI); 4157 Changed = true; 4158 } 4159 } 4160 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4161 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 4162 ++i) 4163 if (i.getCaseSuccessor() == BB) { 4164 BB->removePredecessor(SI->getParent()); 4165 SI->removeCase(i); 4166 --i; 4167 --e; 4168 Changed = true; 4169 } 4170 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4171 if (II->getUnwindDest() == BB) { 4172 removeUnwindEdge(TI->getParent()); 4173 Changed = true; 4174 } 4175 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4176 if (CSI->getUnwindDest() == BB) { 4177 removeUnwindEdge(TI->getParent()); 4178 Changed = true; 4179 continue; 4180 } 4181 4182 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4183 E = CSI->handler_end(); 4184 I != E; ++I) { 4185 if (*I == BB) { 4186 CSI->removeHandler(I); 4187 --I; 4188 --E; 4189 Changed = true; 4190 } 4191 } 4192 if (CSI->getNumHandlers() == 0) { 4193 BasicBlock *CatchSwitchBB = CSI->getParent(); 4194 if (CSI->hasUnwindDest()) { 4195 // Redirect preds to the unwind dest 4196 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4197 } else { 4198 // Rewrite all preds to unwind to caller (or from invoke to call). 4199 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4200 for (BasicBlock *EHPred : EHPreds) 4201 removeUnwindEdge(EHPred); 4202 } 4203 // The catchswitch is no longer reachable. 4204 new UnreachableInst(CSI->getContext(), CSI); 4205 CSI->eraseFromParent(); 4206 Changed = true; 4207 } 4208 } else if (isa<CleanupReturnInst>(TI)) { 4209 new UnreachableInst(TI->getContext(), TI); 4210 TI->eraseFromParent(); 4211 Changed = true; 4212 } 4213 } 4214 4215 // If this block is now dead, remove it. 4216 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4217 // We know there are no successors, so just nuke the block. 4218 BB->eraseFromParent(); 4219 if (LoopHeaders) 4220 LoopHeaders->erase(BB); 4221 return true; 4222 } 4223 4224 return Changed; 4225 } 4226 4227 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4228 assert(Cases.size() >= 1); 4229 4230 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4231 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4232 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4233 return false; 4234 } 4235 return true; 4236 } 4237 4238 /// Turn a switch with two reachable destinations into an integer range 4239 /// comparison and branch. 4240 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4241 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4242 4243 bool HasDefault = 4244 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4245 4246 // Partition the cases into two sets with different destinations. 4247 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4248 BasicBlock *DestB = nullptr; 4249 SmallVector<ConstantInt *, 16> CasesA; 4250 SmallVector<ConstantInt *, 16> CasesB; 4251 4252 for (SwitchInst::CaseIt I : SI->cases()) { 4253 BasicBlock *Dest = I.getCaseSuccessor(); 4254 if (!DestA) 4255 DestA = Dest; 4256 if (Dest == DestA) { 4257 CasesA.push_back(I.getCaseValue()); 4258 continue; 4259 } 4260 if (!DestB) 4261 DestB = Dest; 4262 if (Dest == DestB) { 4263 CasesB.push_back(I.getCaseValue()); 4264 continue; 4265 } 4266 return false; // More than two destinations. 4267 } 4268 4269 assert(DestA && DestB && 4270 "Single-destination switch should have been folded."); 4271 assert(DestA != DestB); 4272 assert(DestB != SI->getDefaultDest()); 4273 assert(!CasesB.empty() && "There must be non-default cases."); 4274 assert(!CasesA.empty() || HasDefault); 4275 4276 // Figure out if one of the sets of cases form a contiguous range. 4277 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4278 BasicBlock *ContiguousDest = nullptr; 4279 BasicBlock *OtherDest = nullptr; 4280 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4281 ContiguousCases = &CasesA; 4282 ContiguousDest = DestA; 4283 OtherDest = DestB; 4284 } else if (CasesAreContiguous(CasesB)) { 4285 ContiguousCases = &CasesB; 4286 ContiguousDest = DestB; 4287 OtherDest = DestA; 4288 } else 4289 return false; 4290 4291 // Start building the compare and branch. 4292 4293 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4294 Constant *NumCases = 4295 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4296 4297 Value *Sub = SI->getCondition(); 4298 if (!Offset->isNullValue()) 4299 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4300 4301 Value *Cmp; 4302 // If NumCases overflowed, then all possible values jump to the successor. 4303 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4304 Cmp = ConstantInt::getTrue(SI->getContext()); 4305 else 4306 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4307 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4308 4309 // Update weight for the newly-created conditional branch. 4310 if (HasBranchWeights(SI)) { 4311 SmallVector<uint64_t, 8> Weights; 4312 GetBranchWeights(SI, Weights); 4313 if (Weights.size() == 1 + SI->getNumCases()) { 4314 uint64_t TrueWeight = 0; 4315 uint64_t FalseWeight = 0; 4316 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4317 if (SI->getSuccessor(I) == ContiguousDest) 4318 TrueWeight += Weights[I]; 4319 else 4320 FalseWeight += Weights[I]; 4321 } 4322 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4323 TrueWeight /= 2; 4324 FalseWeight /= 2; 4325 } 4326 NewBI->setMetadata(LLVMContext::MD_prof, 4327 MDBuilder(SI->getContext()) 4328 .createBranchWeights((uint32_t)TrueWeight, 4329 (uint32_t)FalseWeight)); 4330 } 4331 } 4332 4333 // Prune obsolete incoming values off the successors' PHI nodes. 4334 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4335 unsigned PreviousEdges = ContiguousCases->size(); 4336 if (ContiguousDest == SI->getDefaultDest()) 4337 ++PreviousEdges; 4338 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4339 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4340 } 4341 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4342 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4343 if (OtherDest == SI->getDefaultDest()) 4344 ++PreviousEdges; 4345 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4346 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4347 } 4348 4349 // Drop the switch. 4350 SI->eraseFromParent(); 4351 4352 return true; 4353 } 4354 4355 /// Compute masked bits for the condition of a switch 4356 /// and use it to remove dead cases. 4357 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4358 const DataLayout &DL) { 4359 Value *Cond = SI->getCondition(); 4360 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4361 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 4362 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 4363 4364 // We can also eliminate cases by determining that their values are outside of 4365 // the limited range of the condition based on how many significant (non-sign) 4366 // bits are in the condition value. 4367 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4368 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4369 4370 // Gather dead cases. 4371 SmallVector<ConstantInt *, 8> DeadCases; 4372 for (auto &Case : SI->cases()) { 4373 APInt CaseVal = Case.getCaseValue()->getValue(); 4374 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 4375 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4376 DeadCases.push_back(Case.getCaseValue()); 4377 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4378 } 4379 } 4380 4381 // If we can prove that the cases must cover all possible values, the 4382 // default destination becomes dead and we can remove it. If we know some 4383 // of the bits in the value, we can use that to more precisely compute the 4384 // number of possible unique case values. 4385 bool HasDefault = 4386 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4387 const unsigned NumUnknownBits = 4388 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 4389 assert(NumUnknownBits <= Bits); 4390 if (HasDefault && DeadCases.empty() && 4391 NumUnknownBits < 64 /* avoid overflow */ && 4392 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4393 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4394 BasicBlock *NewDefault = 4395 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4396 SI->setDefaultDest(&*NewDefault); 4397 SplitBlock(&*NewDefault, &NewDefault->front()); 4398 auto *OldTI = NewDefault->getTerminator(); 4399 new UnreachableInst(SI->getContext(), OldTI); 4400 EraseTerminatorInstAndDCECond(OldTI); 4401 return true; 4402 } 4403 4404 SmallVector<uint64_t, 8> Weights; 4405 bool HasWeight = HasBranchWeights(SI); 4406 if (HasWeight) { 4407 GetBranchWeights(SI, Weights); 4408 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4409 } 4410 4411 // Remove dead cases from the switch. 4412 for (ConstantInt *DeadCase : DeadCases) { 4413 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 4414 assert(Case != SI->case_default() && 4415 "Case was not found. Probably mistake in DeadCases forming."); 4416 if (HasWeight) { 4417 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 4418 Weights.pop_back(); 4419 } 4420 4421 // Prune unused values from PHI nodes. 4422 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 4423 SI->removeCase(Case); 4424 } 4425 if (HasWeight && Weights.size() >= 2) { 4426 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4427 SI->setMetadata(LLVMContext::MD_prof, 4428 MDBuilder(SI->getParent()->getContext()) 4429 .createBranchWeights(MDWeights)); 4430 } 4431 4432 return !DeadCases.empty(); 4433 } 4434 4435 /// If BB would be eligible for simplification by 4436 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4437 /// by an unconditional branch), look at the phi node for BB in the successor 4438 /// block and see if the incoming value is equal to CaseValue. If so, return 4439 /// the phi node, and set PhiIndex to BB's index in the phi node. 4440 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4441 BasicBlock *BB, int *PhiIndex) { 4442 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4443 return nullptr; // BB must be empty to be a candidate for simplification. 4444 if (!BB->getSinglePredecessor()) 4445 return nullptr; // BB must be dominated by the switch. 4446 4447 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4448 if (!Branch || !Branch->isUnconditional()) 4449 return nullptr; // Terminator must be unconditional branch. 4450 4451 BasicBlock *Succ = Branch->getSuccessor(0); 4452 4453 BasicBlock::iterator I = Succ->begin(); 4454 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4455 int Idx = PHI->getBasicBlockIndex(BB); 4456 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4457 4458 Value *InValue = PHI->getIncomingValue(Idx); 4459 if (InValue != CaseValue) 4460 continue; 4461 4462 *PhiIndex = Idx; 4463 return PHI; 4464 } 4465 4466 return nullptr; 4467 } 4468 4469 /// Try to forward the condition of a switch instruction to a phi node 4470 /// dominated by the switch, if that would mean that some of the destination 4471 /// blocks of the switch can be folded away. 4472 /// Returns true if a change is made. 4473 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4474 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4475 ForwardingNodesMap ForwardingNodes; 4476 4477 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4478 ++I) { 4479 ConstantInt *CaseValue = I.getCaseValue(); 4480 BasicBlock *CaseDest = I.getCaseSuccessor(); 4481 4482 int PhiIndex; 4483 PHINode *PHI = 4484 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4485 if (!PHI) 4486 continue; 4487 4488 ForwardingNodes[PHI].push_back(PhiIndex); 4489 } 4490 4491 bool Changed = false; 4492 4493 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4494 E = ForwardingNodes.end(); 4495 I != E; ++I) { 4496 PHINode *Phi = I->first; 4497 SmallVectorImpl<int> &Indexes = I->second; 4498 4499 if (Indexes.size() < 2) 4500 continue; 4501 4502 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4503 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4504 Changed = true; 4505 } 4506 4507 return Changed; 4508 } 4509 4510 /// Return true if the backend will be able to handle 4511 /// initializing an array of constants like C. 4512 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4513 if (C->isThreadDependent()) 4514 return false; 4515 if (C->isDLLImportDependent()) 4516 return false; 4517 4518 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4519 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4520 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4521 return false; 4522 4523 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4524 if (!CE->isGEPWithNoNotionalOverIndexing()) 4525 return false; 4526 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4527 return false; 4528 } 4529 4530 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4531 return false; 4532 4533 return true; 4534 } 4535 4536 /// If V is a Constant, return it. Otherwise, try to look up 4537 /// its constant value in ConstantPool, returning 0 if it's not there. 4538 static Constant * 4539 LookupConstant(Value *V, 4540 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4541 if (Constant *C = dyn_cast<Constant>(V)) 4542 return C; 4543 return ConstantPool.lookup(V); 4544 } 4545 4546 /// Try to fold instruction I into a constant. This works for 4547 /// simple instructions such as binary operations where both operands are 4548 /// constant or can be replaced by constants from the ConstantPool. Returns the 4549 /// resulting constant on success, 0 otherwise. 4550 static Constant * 4551 ConstantFold(Instruction *I, const DataLayout &DL, 4552 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4553 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4554 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4555 if (!A) 4556 return nullptr; 4557 if (A->isAllOnesValue()) 4558 return LookupConstant(Select->getTrueValue(), ConstantPool); 4559 if (A->isNullValue()) 4560 return LookupConstant(Select->getFalseValue(), ConstantPool); 4561 return nullptr; 4562 } 4563 4564 SmallVector<Constant *, 4> COps; 4565 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4566 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4567 COps.push_back(A); 4568 else 4569 return nullptr; 4570 } 4571 4572 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4573 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4574 COps[1], DL); 4575 } 4576 4577 return ConstantFoldInstOperands(I, COps, DL); 4578 } 4579 4580 /// Try to determine the resulting constant values in phi nodes 4581 /// at the common destination basic block, *CommonDest, for one of the case 4582 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4583 /// case), of a switch instruction SI. 4584 static bool 4585 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4586 BasicBlock **CommonDest, 4587 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4588 const DataLayout &DL, const TargetTransformInfo &TTI) { 4589 // The block from which we enter the common destination. 4590 BasicBlock *Pred = SI->getParent(); 4591 4592 // If CaseDest is empty except for some side-effect free instructions through 4593 // which we can constant-propagate the CaseVal, continue to its successor. 4594 SmallDenseMap<Value *, Constant *> ConstantPool; 4595 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4596 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4597 ++I) { 4598 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4599 // If the terminator is a simple branch, continue to the next block. 4600 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4601 return false; 4602 Pred = CaseDest; 4603 CaseDest = T->getSuccessor(0); 4604 } else if (isa<DbgInfoIntrinsic>(I)) { 4605 // Skip debug intrinsic. 4606 continue; 4607 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4608 // Instruction is side-effect free and constant. 4609 4610 // If the instruction has uses outside this block or a phi node slot for 4611 // the block, it is not safe to bypass the instruction since it would then 4612 // no longer dominate all its uses. 4613 for (auto &Use : I->uses()) { 4614 User *User = Use.getUser(); 4615 if (Instruction *I = dyn_cast<Instruction>(User)) 4616 if (I->getParent() == CaseDest) 4617 continue; 4618 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4619 if (Phi->getIncomingBlock(Use) == CaseDest) 4620 continue; 4621 return false; 4622 } 4623 4624 ConstantPool.insert(std::make_pair(&*I, C)); 4625 } else { 4626 break; 4627 } 4628 } 4629 4630 // If we did not have a CommonDest before, use the current one. 4631 if (!*CommonDest) 4632 *CommonDest = CaseDest; 4633 // If the destination isn't the common one, abort. 4634 if (CaseDest != *CommonDest) 4635 return false; 4636 4637 // Get the values for this case from phi nodes in the destination block. 4638 BasicBlock::iterator I = (*CommonDest)->begin(); 4639 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4640 int Idx = PHI->getBasicBlockIndex(Pred); 4641 if (Idx == -1) 4642 continue; 4643 4644 Constant *ConstVal = 4645 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4646 if (!ConstVal) 4647 return false; 4648 4649 // Be conservative about which kinds of constants we support. 4650 if (!ValidLookupTableConstant(ConstVal, TTI)) 4651 return false; 4652 4653 Res.push_back(std::make_pair(PHI, ConstVal)); 4654 } 4655 4656 return Res.size() > 0; 4657 } 4658 4659 // Helper function used to add CaseVal to the list of cases that generate 4660 // Result. 4661 static void MapCaseToResult(ConstantInt *CaseVal, 4662 SwitchCaseResultVectorTy &UniqueResults, 4663 Constant *Result) { 4664 for (auto &I : UniqueResults) { 4665 if (I.first == Result) { 4666 I.second.push_back(CaseVal); 4667 return; 4668 } 4669 } 4670 UniqueResults.push_back( 4671 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4672 } 4673 4674 // Helper function that initializes a map containing 4675 // results for the PHI node of the common destination block for a switch 4676 // instruction. Returns false if multiple PHI nodes have been found or if 4677 // there is not a common destination block for the switch. 4678 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4679 BasicBlock *&CommonDest, 4680 SwitchCaseResultVectorTy &UniqueResults, 4681 Constant *&DefaultResult, 4682 const DataLayout &DL, 4683 const TargetTransformInfo &TTI) { 4684 for (auto &I : SI->cases()) { 4685 ConstantInt *CaseVal = I.getCaseValue(); 4686 4687 // Resulting value at phi nodes for this case value. 4688 SwitchCaseResultsTy Results; 4689 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4690 DL, TTI)) 4691 return false; 4692 4693 // Only one value per case is permitted 4694 if (Results.size() > 1) 4695 return false; 4696 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4697 4698 // Check the PHI consistency. 4699 if (!PHI) 4700 PHI = Results[0].first; 4701 else if (PHI != Results[0].first) 4702 return false; 4703 } 4704 // Find the default result value. 4705 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4706 BasicBlock *DefaultDest = SI->getDefaultDest(); 4707 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4708 DL, TTI); 4709 // If the default value is not found abort unless the default destination 4710 // is unreachable. 4711 DefaultResult = 4712 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4713 if ((!DefaultResult && 4714 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4715 return false; 4716 4717 return true; 4718 } 4719 4720 // Helper function that checks if it is possible to transform a switch with only 4721 // two cases (or two cases + default) that produces a result into a select. 4722 // Example: 4723 // switch (a) { 4724 // case 10: %0 = icmp eq i32 %a, 10 4725 // return 10; %1 = select i1 %0, i32 10, i32 4 4726 // case 20: ----> %2 = icmp eq i32 %a, 20 4727 // return 2; %3 = select i1 %2, i32 2, i32 %1 4728 // default: 4729 // return 4; 4730 // } 4731 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4732 Constant *DefaultResult, Value *Condition, 4733 IRBuilder<> &Builder) { 4734 assert(ResultVector.size() == 2 && 4735 "We should have exactly two unique results at this point"); 4736 // If we are selecting between only two cases transform into a simple 4737 // select or a two-way select if default is possible. 4738 if (ResultVector[0].second.size() == 1 && 4739 ResultVector[1].second.size() == 1) { 4740 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4741 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4742 4743 bool DefaultCanTrigger = DefaultResult; 4744 Value *SelectValue = ResultVector[1].first; 4745 if (DefaultCanTrigger) { 4746 Value *const ValueCompare = 4747 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4748 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4749 DefaultResult, "switch.select"); 4750 } 4751 Value *const ValueCompare = 4752 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4753 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4754 SelectValue, "switch.select"); 4755 } 4756 4757 return nullptr; 4758 } 4759 4760 // Helper function to cleanup a switch instruction that has been converted into 4761 // a select, fixing up PHI nodes and basic blocks. 4762 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4763 Value *SelectValue, 4764 IRBuilder<> &Builder) { 4765 BasicBlock *SelectBB = SI->getParent(); 4766 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4767 PHI->removeIncomingValue(SelectBB); 4768 PHI->addIncoming(SelectValue, SelectBB); 4769 4770 Builder.CreateBr(PHI->getParent()); 4771 4772 // Remove the switch. 4773 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4774 BasicBlock *Succ = SI->getSuccessor(i); 4775 4776 if (Succ == PHI->getParent()) 4777 continue; 4778 Succ->removePredecessor(SelectBB); 4779 } 4780 SI->eraseFromParent(); 4781 } 4782 4783 /// If the switch is only used to initialize one or more 4784 /// phi nodes in a common successor block with only two different 4785 /// constant values, replace the switch with select. 4786 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4787 AssumptionCache *AC, const DataLayout &DL, 4788 const TargetTransformInfo &TTI) { 4789 Value *const Cond = SI->getCondition(); 4790 PHINode *PHI = nullptr; 4791 BasicBlock *CommonDest = nullptr; 4792 Constant *DefaultResult; 4793 SwitchCaseResultVectorTy UniqueResults; 4794 // Collect all the cases that will deliver the same value from the switch. 4795 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4796 DL, TTI)) 4797 return false; 4798 // Selects choose between maximum two values. 4799 if (UniqueResults.size() != 2) 4800 return false; 4801 assert(PHI != nullptr && "PHI for value select not found"); 4802 4803 Builder.SetInsertPoint(SI); 4804 Value *SelectValue = 4805 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4806 if (SelectValue) { 4807 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4808 return true; 4809 } 4810 // The switch couldn't be converted into a select. 4811 return false; 4812 } 4813 4814 namespace { 4815 4816 /// This class represents a lookup table that can be used to replace a switch. 4817 class SwitchLookupTable { 4818 public: 4819 /// Create a lookup table to use as a switch replacement with the contents 4820 /// of Values, using DefaultValue to fill any holes in the table. 4821 SwitchLookupTable( 4822 Module &M, uint64_t TableSize, ConstantInt *Offset, 4823 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4824 Constant *DefaultValue, const DataLayout &DL); 4825 4826 /// Build instructions with Builder to retrieve the value at 4827 /// the position given by Index in the lookup table. 4828 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4829 4830 /// Return true if a table with TableSize elements of 4831 /// type ElementType would fit in a target-legal register. 4832 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4833 Type *ElementType); 4834 4835 private: 4836 // Depending on the contents of the table, it can be represented in 4837 // different ways. 4838 enum { 4839 // For tables where each element contains the same value, we just have to 4840 // store that single value and return it for each lookup. 4841 SingleValueKind, 4842 4843 // For tables where there is a linear relationship between table index 4844 // and values. We calculate the result with a simple multiplication 4845 // and addition instead of a table lookup. 4846 LinearMapKind, 4847 4848 // For small tables with integer elements, we can pack them into a bitmap 4849 // that fits into a target-legal register. Values are retrieved by 4850 // shift and mask operations. 4851 BitMapKind, 4852 4853 // The table is stored as an array of values. Values are retrieved by load 4854 // instructions from the table. 4855 ArrayKind 4856 } Kind; 4857 4858 // For SingleValueKind, this is the single value. 4859 Constant *SingleValue; 4860 4861 // For BitMapKind, this is the bitmap. 4862 ConstantInt *BitMap; 4863 IntegerType *BitMapElementTy; 4864 4865 // For LinearMapKind, these are the constants used to derive the value. 4866 ConstantInt *LinearOffset; 4867 ConstantInt *LinearMultiplier; 4868 4869 // For ArrayKind, this is the array. 4870 GlobalVariable *Array; 4871 }; 4872 4873 } // end anonymous namespace 4874 4875 SwitchLookupTable::SwitchLookupTable( 4876 Module &M, uint64_t TableSize, ConstantInt *Offset, 4877 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4878 Constant *DefaultValue, const DataLayout &DL) 4879 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4880 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4881 assert(Values.size() && "Can't build lookup table without values!"); 4882 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4883 4884 // If all values in the table are equal, this is that value. 4885 SingleValue = Values.begin()->second; 4886 4887 Type *ValueType = Values.begin()->second->getType(); 4888 4889 // Build up the table contents. 4890 SmallVector<Constant *, 64> TableContents(TableSize); 4891 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4892 ConstantInt *CaseVal = Values[I].first; 4893 Constant *CaseRes = Values[I].second; 4894 assert(CaseRes->getType() == ValueType); 4895 4896 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4897 TableContents[Idx] = CaseRes; 4898 4899 if (CaseRes != SingleValue) 4900 SingleValue = nullptr; 4901 } 4902 4903 // Fill in any holes in the table with the default result. 4904 if (Values.size() < TableSize) { 4905 assert(DefaultValue && 4906 "Need a default value to fill the lookup table holes."); 4907 assert(DefaultValue->getType() == ValueType); 4908 for (uint64_t I = 0; I < TableSize; ++I) { 4909 if (!TableContents[I]) 4910 TableContents[I] = DefaultValue; 4911 } 4912 4913 if (DefaultValue != SingleValue) 4914 SingleValue = nullptr; 4915 } 4916 4917 // If each element in the table contains the same value, we only need to store 4918 // that single value. 4919 if (SingleValue) { 4920 Kind = SingleValueKind; 4921 return; 4922 } 4923 4924 // Check if we can derive the value with a linear transformation from the 4925 // table index. 4926 if (isa<IntegerType>(ValueType)) { 4927 bool LinearMappingPossible = true; 4928 APInt PrevVal; 4929 APInt DistToPrev; 4930 assert(TableSize >= 2 && "Should be a SingleValue table."); 4931 // Check if there is the same distance between two consecutive values. 4932 for (uint64_t I = 0; I < TableSize; ++I) { 4933 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4934 if (!ConstVal) { 4935 // This is an undef. We could deal with it, but undefs in lookup tables 4936 // are very seldom. It's probably not worth the additional complexity. 4937 LinearMappingPossible = false; 4938 break; 4939 } 4940 APInt Val = ConstVal->getValue(); 4941 if (I != 0) { 4942 APInt Dist = Val - PrevVal; 4943 if (I == 1) { 4944 DistToPrev = Dist; 4945 } else if (Dist != DistToPrev) { 4946 LinearMappingPossible = false; 4947 break; 4948 } 4949 } 4950 PrevVal = Val; 4951 } 4952 if (LinearMappingPossible) { 4953 LinearOffset = cast<ConstantInt>(TableContents[0]); 4954 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4955 Kind = LinearMapKind; 4956 ++NumLinearMaps; 4957 return; 4958 } 4959 } 4960 4961 // If the type is integer and the table fits in a register, build a bitmap. 4962 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4963 IntegerType *IT = cast<IntegerType>(ValueType); 4964 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4965 for (uint64_t I = TableSize; I > 0; --I) { 4966 TableInt <<= IT->getBitWidth(); 4967 // Insert values into the bitmap. Undef values are set to zero. 4968 if (!isa<UndefValue>(TableContents[I - 1])) { 4969 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4970 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4971 } 4972 } 4973 BitMap = ConstantInt::get(M.getContext(), TableInt); 4974 BitMapElementTy = IT; 4975 Kind = BitMapKind; 4976 ++NumBitMaps; 4977 return; 4978 } 4979 4980 // Store the table in an array. 4981 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4982 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4983 4984 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4985 GlobalVariable::PrivateLinkage, Initializer, 4986 "switch.table"); 4987 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4988 Kind = ArrayKind; 4989 } 4990 4991 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4992 switch (Kind) { 4993 case SingleValueKind: 4994 return SingleValue; 4995 case LinearMapKind: { 4996 // Derive the result value from the input value. 4997 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4998 false, "switch.idx.cast"); 4999 if (!LinearMultiplier->isOne()) 5000 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5001 if (!LinearOffset->isZero()) 5002 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5003 return Result; 5004 } 5005 case BitMapKind: { 5006 // Type of the bitmap (e.g. i59). 5007 IntegerType *MapTy = BitMap->getType(); 5008 5009 // Cast Index to the same type as the bitmap. 5010 // Note: The Index is <= the number of elements in the table, so 5011 // truncating it to the width of the bitmask is safe. 5012 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5013 5014 // Multiply the shift amount by the element width. 5015 ShiftAmt = Builder.CreateMul( 5016 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5017 "switch.shiftamt"); 5018 5019 // Shift down. 5020 Value *DownShifted = 5021 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5022 // Mask off. 5023 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5024 } 5025 case ArrayKind: { 5026 // Make sure the table index will not overflow when treated as signed. 5027 IntegerType *IT = cast<IntegerType>(Index->getType()); 5028 uint64_t TableSize = 5029 Array->getInitializer()->getType()->getArrayNumElements(); 5030 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5031 Index = Builder.CreateZExt( 5032 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5033 "switch.tableidx.zext"); 5034 5035 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5036 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5037 GEPIndices, "switch.gep"); 5038 return Builder.CreateLoad(GEP, "switch.load"); 5039 } 5040 } 5041 llvm_unreachable("Unknown lookup table kind!"); 5042 } 5043 5044 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5045 uint64_t TableSize, 5046 Type *ElementType) { 5047 auto *IT = dyn_cast<IntegerType>(ElementType); 5048 if (!IT) 5049 return false; 5050 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5051 // are <= 15, we could try to narrow the type. 5052 5053 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5054 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5055 return false; 5056 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5057 } 5058 5059 /// Determine whether a lookup table should be built for this switch, based on 5060 /// the number of cases, size of the table, and the types of the results. 5061 static bool 5062 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5063 const TargetTransformInfo &TTI, const DataLayout &DL, 5064 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5065 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5066 return false; // TableSize overflowed, or mul below might overflow. 5067 5068 bool AllTablesFitInRegister = true; 5069 bool HasIllegalType = false; 5070 for (const auto &I : ResultTypes) { 5071 Type *Ty = I.second; 5072 5073 // Saturate this flag to true. 5074 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5075 5076 // Saturate this flag to false. 5077 AllTablesFitInRegister = 5078 AllTablesFitInRegister && 5079 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5080 5081 // If both flags saturate, we're done. NOTE: This *only* works with 5082 // saturating flags, and all flags have to saturate first due to the 5083 // non-deterministic behavior of iterating over a dense map. 5084 if (HasIllegalType && !AllTablesFitInRegister) 5085 break; 5086 } 5087 5088 // If each table would fit in a register, we should build it anyway. 5089 if (AllTablesFitInRegister) 5090 return true; 5091 5092 // Don't build a table that doesn't fit in-register if it has illegal types. 5093 if (HasIllegalType) 5094 return false; 5095 5096 // The table density should be at least 40%. This is the same criterion as for 5097 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5098 // FIXME: Find the best cut-off. 5099 return SI->getNumCases() * 10 >= TableSize * 4; 5100 } 5101 5102 /// Try to reuse the switch table index compare. Following pattern: 5103 /// \code 5104 /// if (idx < tablesize) 5105 /// r = table[idx]; // table does not contain default_value 5106 /// else 5107 /// r = default_value; 5108 /// if (r != default_value) 5109 /// ... 5110 /// \endcode 5111 /// Is optimized to: 5112 /// \code 5113 /// cond = idx < tablesize; 5114 /// if (cond) 5115 /// r = table[idx]; 5116 /// else 5117 /// r = default_value; 5118 /// if (cond) 5119 /// ... 5120 /// \endcode 5121 /// Jump threading will then eliminate the second if(cond). 5122 static void reuseTableCompare( 5123 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5124 Constant *DefaultValue, 5125 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5126 5127 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5128 if (!CmpInst) 5129 return; 5130 5131 // We require that the compare is in the same block as the phi so that jump 5132 // threading can do its work afterwards. 5133 if (CmpInst->getParent() != PhiBlock) 5134 return; 5135 5136 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5137 if (!CmpOp1) 5138 return; 5139 5140 Value *RangeCmp = RangeCheckBranch->getCondition(); 5141 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5142 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5143 5144 // Check if the compare with the default value is constant true or false. 5145 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5146 DefaultValue, CmpOp1, true); 5147 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5148 return; 5149 5150 // Check if the compare with the case values is distinct from the default 5151 // compare result. 5152 for (auto ValuePair : Values) { 5153 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5154 ValuePair.second, CmpOp1, true); 5155 if (!CaseConst || CaseConst == DefaultConst) 5156 return; 5157 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5158 "Expect true or false as compare result."); 5159 } 5160 5161 // Check if the branch instruction dominates the phi node. It's a simple 5162 // dominance check, but sufficient for our needs. 5163 // Although this check is invariant in the calling loops, it's better to do it 5164 // at this late stage. Practically we do it at most once for a switch. 5165 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5166 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5167 BasicBlock *Pred = *PI; 5168 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5169 return; 5170 } 5171 5172 if (DefaultConst == FalseConst) { 5173 // The compare yields the same result. We can replace it. 5174 CmpInst->replaceAllUsesWith(RangeCmp); 5175 ++NumTableCmpReuses; 5176 } else { 5177 // The compare yields the same result, just inverted. We can replace it. 5178 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5179 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5180 RangeCheckBranch); 5181 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5182 ++NumTableCmpReuses; 5183 } 5184 } 5185 5186 /// If the switch is only used to initialize one or more phi nodes in a common 5187 /// successor block with different constant values, replace the switch with 5188 /// lookup tables. 5189 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5190 const DataLayout &DL, 5191 const TargetTransformInfo &TTI) { 5192 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5193 5194 // Only build lookup table when we have a target that supports it. 5195 if (!TTI.shouldBuildLookupTables()) 5196 return false; 5197 5198 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5199 // split off a dense part and build a lookup table for that. 5200 5201 // FIXME: This creates arrays of GEPs to constant strings, which means each 5202 // GEP needs a runtime relocation in PIC code. We should just build one big 5203 // string and lookup indices into that. 5204 5205 // Ignore switches with less than three cases. Lookup tables will not make 5206 // them 5207 // faster, so we don't analyze them. 5208 if (SI->getNumCases() < 3) 5209 return false; 5210 5211 // Figure out the corresponding result for each case value and phi node in the 5212 // common destination, as well as the min and max case values. 5213 assert(SI->case_begin() != SI->case_end()); 5214 SwitchInst::CaseIt CI = SI->case_begin(); 5215 ConstantInt *MinCaseVal = CI.getCaseValue(); 5216 ConstantInt *MaxCaseVal = CI.getCaseValue(); 5217 5218 BasicBlock *CommonDest = nullptr; 5219 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 5220 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5221 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5222 SmallDenseMap<PHINode *, Type *> ResultTypes; 5223 SmallVector<PHINode *, 4> PHIs; 5224 5225 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5226 ConstantInt *CaseVal = CI.getCaseValue(); 5227 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5228 MinCaseVal = CaseVal; 5229 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5230 MaxCaseVal = CaseVal; 5231 5232 // Resulting value at phi nodes for this case value. 5233 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 5234 ResultsTy Results; 5235 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 5236 Results, DL, TTI)) 5237 return false; 5238 5239 // Append the result from this case to the list for each phi. 5240 for (const auto &I : Results) { 5241 PHINode *PHI = I.first; 5242 Constant *Value = I.second; 5243 if (!ResultLists.count(PHI)) 5244 PHIs.push_back(PHI); 5245 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5246 } 5247 } 5248 5249 // Keep track of the result types. 5250 for (PHINode *PHI : PHIs) { 5251 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5252 } 5253 5254 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5255 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5256 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5257 bool TableHasHoles = (NumResults < TableSize); 5258 5259 // If the table has holes, we need a constant result for the default case 5260 // or a bitmask that fits in a register. 5261 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5262 bool HasDefaultResults = 5263 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5264 DefaultResultsList, DL, TTI); 5265 5266 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5267 if (NeedMask) { 5268 // As an extra penalty for the validity test we require more cases. 5269 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5270 return false; 5271 if (!DL.fitsInLegalInteger(TableSize)) 5272 return false; 5273 } 5274 5275 for (const auto &I : DefaultResultsList) { 5276 PHINode *PHI = I.first; 5277 Constant *Result = I.second; 5278 DefaultResults[PHI] = Result; 5279 } 5280 5281 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5282 return false; 5283 5284 // Create the BB that does the lookups. 5285 Module &Mod = *CommonDest->getParent()->getParent(); 5286 BasicBlock *LookupBB = BasicBlock::Create( 5287 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5288 5289 // Compute the table index value. 5290 Builder.SetInsertPoint(SI); 5291 Value *TableIndex = 5292 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 5293 5294 // Compute the maximum table size representable by the integer type we are 5295 // switching upon. 5296 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5297 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5298 assert(MaxTableSize >= TableSize && 5299 "It is impossible for a switch to have more entries than the max " 5300 "representable value of its input integer type's size."); 5301 5302 // If the default destination is unreachable, or if the lookup table covers 5303 // all values of the conditional variable, branch directly to the lookup table 5304 // BB. Otherwise, check that the condition is within the case range. 5305 const bool DefaultIsReachable = 5306 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5307 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5308 BranchInst *RangeCheckBranch = nullptr; 5309 5310 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5311 Builder.CreateBr(LookupBB); 5312 // Note: We call removeProdecessor later since we need to be able to get the 5313 // PHI value for the default case in case we're using a bit mask. 5314 } else { 5315 Value *Cmp = Builder.CreateICmpULT( 5316 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5317 RangeCheckBranch = 5318 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5319 } 5320 5321 // Populate the BB that does the lookups. 5322 Builder.SetInsertPoint(LookupBB); 5323 5324 if (NeedMask) { 5325 // Before doing the lookup we do the hole check. 5326 // The LookupBB is therefore re-purposed to do the hole check 5327 // and we create a new LookupBB. 5328 BasicBlock *MaskBB = LookupBB; 5329 MaskBB->setName("switch.hole_check"); 5330 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5331 CommonDest->getParent(), CommonDest); 5332 5333 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 5334 // unnecessary illegal types. 5335 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5336 APInt MaskInt(TableSizePowOf2, 0); 5337 APInt One(TableSizePowOf2, 1); 5338 // Build bitmask; fill in a 1 bit for every case. 5339 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5340 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5341 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5342 .getLimitedValue(); 5343 MaskInt |= One << Idx; 5344 } 5345 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5346 5347 // Get the TableIndex'th bit of the bitmask. 5348 // If this bit is 0 (meaning hole) jump to the default destination, 5349 // else continue with table lookup. 5350 IntegerType *MapTy = TableMask->getType(); 5351 Value *MaskIndex = 5352 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5353 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5354 Value *LoBit = Builder.CreateTrunc( 5355 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5356 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5357 5358 Builder.SetInsertPoint(LookupBB); 5359 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5360 } 5361 5362 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5363 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 5364 // do not delete PHINodes here. 5365 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5366 /*DontDeleteUselessPHIs=*/true); 5367 } 5368 5369 bool ReturnedEarly = false; 5370 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5371 PHINode *PHI = PHIs[I]; 5372 const ResultListTy &ResultList = ResultLists[PHI]; 5373 5374 // If using a bitmask, use any value to fill the lookup table holes. 5375 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5376 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 5377 5378 Value *Result = Table.BuildLookup(TableIndex, Builder); 5379 5380 // If the result is used to return immediately from the function, we want to 5381 // do that right here. 5382 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5383 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5384 Builder.CreateRet(Result); 5385 ReturnedEarly = true; 5386 break; 5387 } 5388 5389 // Do a small peephole optimization: re-use the switch table compare if 5390 // possible. 5391 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5392 BasicBlock *PhiBlock = PHI->getParent(); 5393 // Search for compare instructions which use the phi. 5394 for (auto *User : PHI->users()) { 5395 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5396 } 5397 } 5398 5399 PHI->addIncoming(Result, LookupBB); 5400 } 5401 5402 if (!ReturnedEarly) 5403 Builder.CreateBr(CommonDest); 5404 5405 // Remove the switch. 5406 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5407 BasicBlock *Succ = SI->getSuccessor(i); 5408 5409 if (Succ == SI->getDefaultDest()) 5410 continue; 5411 Succ->removePredecessor(SI->getParent()); 5412 } 5413 SI->eraseFromParent(); 5414 5415 ++NumLookupTables; 5416 if (NeedMask) 5417 ++NumLookupTablesHoles; 5418 return true; 5419 } 5420 5421 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5422 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5423 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5424 uint64_t Range = Diff + 1; 5425 uint64_t NumCases = Values.size(); 5426 // 40% is the default density for building a jump table in optsize/minsize mode. 5427 uint64_t MinDensity = 40; 5428 5429 return NumCases * 100 >= Range * MinDensity; 5430 } 5431 5432 // Try and transform a switch that has "holes" in it to a contiguous sequence 5433 // of cases. 5434 // 5435 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5436 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5437 // 5438 // This converts a sparse switch into a dense switch which allows better 5439 // lowering and could also allow transforming into a lookup table. 5440 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5441 const DataLayout &DL, 5442 const TargetTransformInfo &TTI) { 5443 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5444 if (CondTy->getIntegerBitWidth() > 64 || 5445 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5446 return false; 5447 // Only bother with this optimization if there are more than 3 switch cases; 5448 // SDAG will only bother creating jump tables for 4 or more cases. 5449 if (SI->getNumCases() < 4) 5450 return false; 5451 5452 // This transform is agnostic to the signedness of the input or case values. We 5453 // can treat the case values as signed or unsigned. We can optimize more common 5454 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5455 // as signed. 5456 SmallVector<int64_t,4> Values; 5457 for (auto &C : SI->cases()) 5458 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5459 std::sort(Values.begin(), Values.end()); 5460 5461 // If the switch is already dense, there's nothing useful to do here. 5462 if (isSwitchDense(Values)) 5463 return false; 5464 5465 // First, transform the values such that they start at zero and ascend. 5466 int64_t Base = Values[0]; 5467 for (auto &V : Values) 5468 V -= Base; 5469 5470 // Now we have signed numbers that have been shifted so that, given enough 5471 // precision, there are no negative values. Since the rest of the transform 5472 // is bitwise only, we switch now to an unsigned representation. 5473 uint64_t GCD = 0; 5474 for (auto &V : Values) 5475 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5476 5477 // This transform can be done speculatively because it is so cheap - it results 5478 // in a single rotate operation being inserted. This can only happen if the 5479 // factor extracted is a power of 2. 5480 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5481 // inverse of GCD and then perform this transform. 5482 // FIXME: It's possible that optimizing a switch on powers of two might also 5483 // be beneficial - flag values are often powers of two and we could use a CLZ 5484 // as the key function. 5485 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5486 // No common divisor found or too expensive to compute key function. 5487 return false; 5488 5489 unsigned Shift = Log2_64(GCD); 5490 for (auto &V : Values) 5491 V = (int64_t)((uint64_t)V >> Shift); 5492 5493 if (!isSwitchDense(Values)) 5494 // Transform didn't create a dense switch. 5495 return false; 5496 5497 // The obvious transform is to shift the switch condition right and emit a 5498 // check that the condition actually cleanly divided by GCD, i.e. 5499 // C & (1 << Shift - 1) == 0 5500 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5501 // 5502 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5503 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5504 // are nonzero then the switch condition will be very large and will hit the 5505 // default case. 5506 5507 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5508 Builder.SetInsertPoint(SI); 5509 auto *ShiftC = ConstantInt::get(Ty, Shift); 5510 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5511 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5512 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5513 auto *Rot = Builder.CreateOr(LShr, Shl); 5514 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5515 5516 for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E; 5517 ++C) { 5518 auto *Orig = C.getCaseValue(); 5519 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5520 C.setValue( 5521 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5522 } 5523 return true; 5524 } 5525 5526 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5527 BasicBlock *BB = SI->getParent(); 5528 5529 if (isValueEqualityComparison(SI)) { 5530 // If we only have one predecessor, and if it is a branch on this value, 5531 // see if that predecessor totally determines the outcome of this switch. 5532 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5533 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5534 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5535 5536 Value *Cond = SI->getCondition(); 5537 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5538 if (SimplifySwitchOnSelect(SI, Select)) 5539 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5540 5541 // If the block only contains the switch, see if we can fold the block 5542 // away into any preds. 5543 BasicBlock::iterator BBI = BB->begin(); 5544 // Ignore dbg intrinsics. 5545 while (isa<DbgInfoIntrinsic>(BBI)) 5546 ++BBI; 5547 if (SI == &*BBI) 5548 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5549 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5550 } 5551 5552 // Try to transform the switch into an icmp and a branch. 5553 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5554 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5555 5556 // Remove unreachable cases. 5557 if (EliminateDeadSwitchCases(SI, AC, DL)) 5558 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5559 5560 if (SwitchToSelect(SI, Builder, AC, DL, TTI)) 5561 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5562 5563 if (ForwardSwitchConditionToPHI(SI)) 5564 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5565 5566 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5567 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5568 5569 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5570 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5571 5572 return false; 5573 } 5574 5575 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5576 BasicBlock *BB = IBI->getParent(); 5577 bool Changed = false; 5578 5579 // Eliminate redundant destinations. 5580 SmallPtrSet<Value *, 8> Succs; 5581 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5582 BasicBlock *Dest = IBI->getDestination(i); 5583 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5584 Dest->removePredecessor(BB); 5585 IBI->removeDestination(i); 5586 --i; 5587 --e; 5588 Changed = true; 5589 } 5590 } 5591 5592 if (IBI->getNumDestinations() == 0) { 5593 // If the indirectbr has no successors, change it to unreachable. 5594 new UnreachableInst(IBI->getContext(), IBI); 5595 EraseTerminatorInstAndDCECond(IBI); 5596 return true; 5597 } 5598 5599 if (IBI->getNumDestinations() == 1) { 5600 // If the indirectbr has one successor, change it to a direct branch. 5601 BranchInst::Create(IBI->getDestination(0), IBI); 5602 EraseTerminatorInstAndDCECond(IBI); 5603 return true; 5604 } 5605 5606 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5607 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5608 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5609 } 5610 return Changed; 5611 } 5612 5613 /// Given an block with only a single landing pad and a unconditional branch 5614 /// try to find another basic block which this one can be merged with. This 5615 /// handles cases where we have multiple invokes with unique landing pads, but 5616 /// a shared handler. 5617 /// 5618 /// We specifically choose to not worry about merging non-empty blocks 5619 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5620 /// practice, the optimizer produces empty landing pad blocks quite frequently 5621 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5622 /// sinking in this file) 5623 /// 5624 /// This is primarily a code size optimization. We need to avoid performing 5625 /// any transform which might inhibit optimization (such as our ability to 5626 /// specialize a particular handler via tail commoning). We do this by not 5627 /// merging any blocks which require us to introduce a phi. Since the same 5628 /// values are flowing through both blocks, we don't loose any ability to 5629 /// specialize. If anything, we make such specialization more likely. 5630 /// 5631 /// TODO - This transformation could remove entries from a phi in the target 5632 /// block when the inputs in the phi are the same for the two blocks being 5633 /// merged. In some cases, this could result in removal of the PHI entirely. 5634 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5635 BasicBlock *BB) { 5636 auto Succ = BB->getUniqueSuccessor(); 5637 assert(Succ); 5638 // If there's a phi in the successor block, we'd likely have to introduce 5639 // a phi into the merged landing pad block. 5640 if (isa<PHINode>(*Succ->begin())) 5641 return false; 5642 5643 for (BasicBlock *OtherPred : predecessors(Succ)) { 5644 if (BB == OtherPred) 5645 continue; 5646 BasicBlock::iterator I = OtherPred->begin(); 5647 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5648 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5649 continue; 5650 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5651 } 5652 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5653 if (!BI2 || !BI2->isIdenticalTo(BI)) 5654 continue; 5655 5656 // We've found an identical block. Update our predecessors to take that 5657 // path instead and make ourselves dead. 5658 SmallSet<BasicBlock *, 16> Preds; 5659 Preds.insert(pred_begin(BB), pred_end(BB)); 5660 for (BasicBlock *Pred : Preds) { 5661 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5662 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5663 "unexpected successor"); 5664 II->setUnwindDest(OtherPred); 5665 } 5666 5667 // The debug info in OtherPred doesn't cover the merged control flow that 5668 // used to go through BB. We need to delete it or update it. 5669 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5670 Instruction &Inst = *I; 5671 I++; 5672 if (isa<DbgInfoIntrinsic>(Inst)) 5673 Inst.eraseFromParent(); 5674 } 5675 5676 SmallSet<BasicBlock *, 16> Succs; 5677 Succs.insert(succ_begin(BB), succ_end(BB)); 5678 for (BasicBlock *Succ : Succs) { 5679 Succ->removePredecessor(BB); 5680 } 5681 5682 IRBuilder<> Builder(BI); 5683 Builder.CreateUnreachable(); 5684 BI->eraseFromParent(); 5685 return true; 5686 } 5687 return false; 5688 } 5689 5690 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5691 IRBuilder<> &Builder) { 5692 BasicBlock *BB = BI->getParent(); 5693 5694 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5695 return true; 5696 5697 // If the Terminator is the only non-phi instruction, simplify the block. 5698 // if LoopHeader is provided, check if the block is a loop header 5699 // (This is for early invocations before loop simplify and vectorization 5700 // to keep canonical loop forms for nested loops. 5701 // These blocks can be eliminated when the pass is invoked later 5702 // in the back-end.) 5703 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5704 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5705 (!LoopHeaders || !LoopHeaders->count(BB)) && 5706 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5707 return true; 5708 5709 // If the only instruction in the block is a seteq/setne comparison 5710 // against a constant, try to simplify the block. 5711 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5712 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5713 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5714 ; 5715 if (I->isTerminator() && 5716 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5717 BonusInstThreshold, AC)) 5718 return true; 5719 } 5720 5721 // See if we can merge an empty landing pad block with another which is 5722 // equivalent. 5723 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5724 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5725 } 5726 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5727 return true; 5728 } 5729 5730 // If this basic block is ONLY a compare and a branch, and if a predecessor 5731 // branches to us and our successor, fold the comparison into the 5732 // predecessor and use logical operations to update the incoming value 5733 // for PHI nodes in common successor. 5734 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5735 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5736 return false; 5737 } 5738 5739 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5740 BasicBlock *PredPred = nullptr; 5741 for (auto *P : predecessors(BB)) { 5742 BasicBlock *PPred = P->getSinglePredecessor(); 5743 if (!PPred || (PredPred && PredPred != PPred)) 5744 return nullptr; 5745 PredPred = PPred; 5746 } 5747 return PredPred; 5748 } 5749 5750 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5751 BasicBlock *BB = BI->getParent(); 5752 5753 // Conditional branch 5754 if (isValueEqualityComparison(BI)) { 5755 // If we only have one predecessor, and if it is a branch on this value, 5756 // see if that predecessor totally determines the outcome of this 5757 // switch. 5758 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5759 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5760 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5761 5762 // This block must be empty, except for the setcond inst, if it exists. 5763 // Ignore dbg intrinsics. 5764 BasicBlock::iterator I = BB->begin(); 5765 // Ignore dbg intrinsics. 5766 while (isa<DbgInfoIntrinsic>(I)) 5767 ++I; 5768 if (&*I == BI) { 5769 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5770 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5771 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5772 ++I; 5773 // Ignore dbg intrinsics. 5774 while (isa<DbgInfoIntrinsic>(I)) 5775 ++I; 5776 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5777 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5778 } 5779 } 5780 5781 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5782 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5783 return true; 5784 5785 // If this basic block has a single dominating predecessor block and the 5786 // dominating block's condition implies BI's condition, we know the direction 5787 // of the BI branch. 5788 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5789 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5790 if (PBI && PBI->isConditional() && 5791 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5792 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5793 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5794 Optional<bool> Implication = isImpliedCondition( 5795 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5796 if (Implication) { 5797 // Turn this into a branch on constant. 5798 auto *OldCond = BI->getCondition(); 5799 ConstantInt *CI = *Implication 5800 ? ConstantInt::getTrue(BB->getContext()) 5801 : ConstantInt::getFalse(BB->getContext()); 5802 BI->setCondition(CI); 5803 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5804 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5805 } 5806 } 5807 } 5808 5809 // If this basic block is ONLY a compare and a branch, and if a predecessor 5810 // branches to us and one of our successors, fold the comparison into the 5811 // predecessor and use logical operations to pick the right destination. 5812 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5813 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5814 5815 // We have a conditional branch to two blocks that are only reachable 5816 // from BI. We know that the condbr dominates the two blocks, so see if 5817 // there is any identical code in the "then" and "else" blocks. If so, we 5818 // can hoist it up to the branching block. 5819 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5820 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5821 if (HoistThenElseCodeToIf(BI, TTI)) 5822 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5823 } else { 5824 // If Successor #1 has multiple preds, we may be able to conditionally 5825 // execute Successor #0 if it branches to Successor #1. 5826 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5827 if (Succ0TI->getNumSuccessors() == 1 && 5828 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5829 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5830 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5831 } 5832 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5833 // If Successor #0 has multiple preds, we may be able to conditionally 5834 // execute Successor #1 if it branches to Successor #0. 5835 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5836 if (Succ1TI->getNumSuccessors() == 1 && 5837 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5838 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5839 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5840 } 5841 5842 // If this is a branch on a phi node in the current block, thread control 5843 // through this block if any PHI node entries are constants. 5844 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5845 if (PN->getParent() == BI->getParent()) 5846 if (FoldCondBranchOnPHI(BI, DL, AC)) 5847 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5848 5849 // Scan predecessor blocks for conditional branches. 5850 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5851 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5852 if (PBI != BI && PBI->isConditional()) 5853 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5854 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5855 5856 // Look for diamond patterns. 5857 if (MergeCondStores) 5858 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5859 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5860 if (PBI != BI && PBI->isConditional()) 5861 if (mergeConditionalStores(PBI, BI)) 5862 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5863 5864 return false; 5865 } 5866 5867 /// Check if passing a value to an instruction will cause undefined behavior. 5868 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5869 Constant *C = dyn_cast<Constant>(V); 5870 if (!C) 5871 return false; 5872 5873 if (I->use_empty()) 5874 return false; 5875 5876 if (C->isNullValue() || isa<UndefValue>(C)) { 5877 // Only look at the first use, avoid hurting compile time with long uselists 5878 User *Use = *I->user_begin(); 5879 5880 // Now make sure that there are no instructions in between that can alter 5881 // control flow (eg. calls) 5882 for (BasicBlock::iterator 5883 i = ++BasicBlock::iterator(I), 5884 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5885 i != UI; ++i) 5886 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5887 return false; 5888 5889 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5890 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5891 if (GEP->getPointerOperand() == I) 5892 return passingValueIsAlwaysUndefined(V, GEP); 5893 5894 // Look through bitcasts. 5895 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5896 return passingValueIsAlwaysUndefined(V, BC); 5897 5898 // Load from null is undefined. 5899 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5900 if (!LI->isVolatile()) 5901 return LI->getPointerAddressSpace() == 0; 5902 5903 // Store to null is undefined. 5904 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5905 if (!SI->isVolatile()) 5906 return SI->getPointerAddressSpace() == 0 && 5907 SI->getPointerOperand() == I; 5908 5909 // A call to null is undefined. 5910 if (auto CS = CallSite(Use)) 5911 return CS.getCalledValue() == I; 5912 } 5913 return false; 5914 } 5915 5916 /// If BB has an incoming value that will always trigger undefined behavior 5917 /// (eg. null pointer dereference), remove the branch leading here. 5918 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5919 for (BasicBlock::iterator i = BB->begin(); 5920 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5921 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5922 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5923 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5924 IRBuilder<> Builder(T); 5925 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5926 BB->removePredecessor(PHI->getIncomingBlock(i)); 5927 // Turn uncoditional branches into unreachables and remove the dead 5928 // destination from conditional branches. 5929 if (BI->isUnconditional()) 5930 Builder.CreateUnreachable(); 5931 else 5932 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5933 : BI->getSuccessor(0)); 5934 BI->eraseFromParent(); 5935 return true; 5936 } 5937 // TODO: SwitchInst. 5938 } 5939 5940 return false; 5941 } 5942 5943 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5944 bool Changed = false; 5945 5946 assert(BB && BB->getParent() && "Block not embedded in function!"); 5947 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5948 5949 // Remove basic blocks that have no predecessors (except the entry block)... 5950 // or that just have themself as a predecessor. These are unreachable. 5951 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5952 BB->getSinglePredecessor() == BB) { 5953 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5954 DeleteDeadBlock(BB); 5955 return true; 5956 } 5957 5958 // Check to see if we can constant propagate this terminator instruction 5959 // away... 5960 Changed |= ConstantFoldTerminator(BB, true); 5961 5962 // Check for and eliminate duplicate PHI nodes in this block. 5963 Changed |= EliminateDuplicatePHINodes(BB); 5964 5965 // Check for and remove branches that will always cause undefined behavior. 5966 Changed |= removeUndefIntroducingPredecessor(BB); 5967 5968 // Merge basic blocks into their predecessor if there is only one distinct 5969 // pred, and if there is only one distinct successor of the predecessor, and 5970 // if there are no PHI nodes. 5971 // 5972 if (MergeBlockIntoPredecessor(BB)) 5973 return true; 5974 5975 IRBuilder<> Builder(BB); 5976 5977 // If there is a trivial two-entry PHI node in this basic block, and we can 5978 // eliminate it, do so now. 5979 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5980 if (PN->getNumIncomingValues() == 2) 5981 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5982 5983 Builder.SetInsertPoint(BB->getTerminator()); 5984 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5985 if (BI->isUnconditional()) { 5986 if (SimplifyUncondBranch(BI, Builder)) 5987 return true; 5988 } else { 5989 if (SimplifyCondBranch(BI, Builder)) 5990 return true; 5991 } 5992 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5993 if (SimplifyReturn(RI, Builder)) 5994 return true; 5995 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5996 if (SimplifyResume(RI, Builder)) 5997 return true; 5998 } else if (CleanupReturnInst *RI = 5999 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6000 if (SimplifyCleanupReturn(RI)) 6001 return true; 6002 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6003 if (SimplifySwitch(SI, Builder)) 6004 return true; 6005 } else if (UnreachableInst *UI = 6006 dyn_cast<UnreachableInst>(BB->getTerminator())) { 6007 if (SimplifyUnreachable(UI)) 6008 return true; 6009 } else if (IndirectBrInst *IBI = 6010 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6011 if (SimplifyIndirectBr(IBI)) 6012 return true; 6013 } 6014 6015 return Changed; 6016 } 6017 6018 /// This function is used to do simplification of a CFG. 6019 /// For example, it adjusts branches to branches to eliminate the extra hop, 6020 /// eliminates unreachable basic blocks, and does other "peephole" optimization 6021 /// of the CFG. It returns true if a modification was made. 6022 /// 6023 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6024 unsigned BonusInstThreshold, AssumptionCache *AC, 6025 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6026 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 6027 BonusInstThreshold, AC, LoopHeaders) 6028 .run(BB); 6029 } 6030